-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
210 lines (169 loc) · 8.01 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import argparse
import datetime
import json
import logging
import os
import random
import sys
from tqdm import tqdm
from da_agent.envs.da_agent import DA_Agent_Env
from da_agent.agent.agents import PromptAgent
# from da_agent.agent.COT_agent import COTAgent
# from da_agent.agent.agent_manager import AgentManager
# from da_agent.agent.workflow import workflow
# Logger Configs {{{ #
logger = logging.getLogger("da_agent")
logger.setLevel(logging.DEBUG)
datetime_str: str = datetime.datetime.now().strftime("%Y%m%d@%H%M%S")
file_handler = logging.FileHandler(os.path.join("logs", "normal-{:}.log".format(datetime_str)), encoding="utf-8")
debug_handler = logging.FileHandler(os.path.join("logs", "debug-{:}.log".format(datetime_str)), encoding="utf-8")
stdout_handler = logging.StreamHandler(sys.stdout)
sdebug_handler = logging.FileHandler(os.path.join("logs", "sdebug-{:}.log".format(datetime_str)), encoding="utf-8")
file_handler.setLevel(logging.INFO)
debug_handler.setLevel(logging.DEBUG)
stdout_handler.setLevel(logging.INFO)
sdebug_handler.setLevel(logging.DEBUG)
formatter = logging.Formatter(
fmt="\x1b[1;33m[%(asctime)s \x1b[31m%(levelname)s \x1b[32m%(module)s/%(lineno)d-%(processName)s\x1b[1;33m] \x1b[0m%(message)s")
file_handler.setFormatter(formatter)
debug_handler.setFormatter(formatter)
stdout_handler.setFormatter(formatter)
sdebug_handler.setFormatter(formatter)
stdout_handler.addFilter(logging.Filter("da_agent"))
sdebug_handler.addFilter(logging.Filter("da_agent"))
logger.addHandler(file_handler)
logger.addHandler(debug_handler)
logger.addHandler(stdout_handler)
logger.addHandler(sdebug_handler)
# }}} Logger Configs #
def config() -> argparse.Namespace:
parser = argparse.ArgumentParser(
description="Run end-to-end evaluation on the benchmark"
)
parser.add_argument("--max_steps", type=int, default=20)
parser.add_argument("--max_memory_length", type=int, default=15)
parser.add_argument("--suffix", '-s', type=str, default="")
parser.add_argument("--model",'-m',type=str, default="gpt-4o") #更改模型
parser.add_argument("--temperature", type=float, default=0.0)
parser.add_argument("--top_p", type=float, default=0.9)
parser.add_argument("--max_tokens", type=int, default=1500)
parser.add_argument("--stop_token", type=str, default=None)
# example config
parser.add_argument("--workflow_dir", type=str, default="workflow_prompt/ml_cluster_workflow.txt",help="Path to the workflow file.")
parser.add_argument("--task_config","-t", type=str, default="da_code/configs/task/examples copy 2.jsonl")
parser.add_argument("--source_dir", type=str, default="da_code/source")
parser.add_argument("--example_index", "-i", type=str, default="all", help="index range of the examples to run, e.g., '0-10', '2,3', 'all'")
parser.add_argument("--example_name", "-n", type=str, default="", help="name of the example to run")
parser.add_argument("--overwriting", action="store_true", default=True)
parser.add_argument("--retry_failed", action="store_true", default=False)
# output related
parser.add_argument("--output_dir", type=str, default="output")
parser.add_argument("--generated_action_dir", type=str, default="generated_actions")
args = parser.parse_args()
return args
def test(
args: argparse.Namespace,
test_all_meta: dict = None
) -> None:
scores = []
# log args
logger.info("Args: %s", args)
if args.suffix == "":
logger.warning("No suffix is provided, the experiment id will be the model name.")
experiment_id = args.model.split("/")[-1]
else:
experiment_id = args.model.split("/")[-1] + "-" + args.suffix
env_config = \
{
"image_name": "da_agent-image",
"init_args": {
"name": experiment_id,
"work_dir": "/workspace",
}
}
# cotagent=COTAgent(
# model=args.model,
# max_tokens=args.max_tokens,
# top_p=args.top_p,
# temperature=args.temperature,
# max_memory_length=args.max_memory_length,
# max_steps=args.max_steps,
# )
agent = PromptAgent(
model=args.model,
max_tokens=args.max_tokens,
top_p=args.top_p,
temperature=args.temperature,
max_memory_length=args.max_memory_length,
max_steps=args.max_steps,
generated_tool_dir=args.generated_action_dir
)
## load task configs
assert os.path.exists(args.task_config) and args.task_config.endswith(".jsonl"), f"Invalid task_config, must be a valid jsonl file: {args.task_config}"
with open(args.task_config, "r", encoding='utf-8') as f:
task_configs = [json.loads(line) for line in f]
#只跑固定的例子,以id或索引为准
if args.example_name != "":
task_configs = [task for task in task_configs if args.example_name in task["id"]]
else:
if args.example_index != "all":
if "-" in args.example_index:
start, end = map(int, args.example_index.split("-"))
task_configs = task_configs[start:end]
else:
indices = list(map(int, args.example_index.split(",")))
task_configs = [task_configs[i] for i in indices]
with open(args.workflow_dir, "r",encoding="utf-8") as f:
workflow_config = f.read()
#遍历task
for task_config in task_configs:
instance_id = experiment_id +"/"+ task_config["id"] #模型名/任务id
output_dir = os.path.join(args.output_dir, instance_id) #共同组成输出路径
result_json_path =os.path.join(output_dir, "dabench/result.json") #json输出路径
#overwriting为true的时候,已经存在的文件不会被覆盖,为false的时候会覆盖,默认为false
if not args.overwriting and os.path.exists(result_json_path):
logger.info("Skipping %s", instance_id)
continue
elif os.path.exists(result_json_path):
logger.info("Overwriting %s", instance_id)
else:
logger.info("Running %s", instance_id)
#检查是否有需要重试的例子,如要重试,将retry_failed设为true,但仅仅是记录日志
if args.retry_failed and os.path.exists(result_json_path):
with open(result_json_path, "r") as f:
result = json.load(f)
#如果已经完成,且没有error或FAIL,就跳过
if result["finished"] and (not "FAIL" in result["result"]) and (not "error" in result["result"].lower()):
logger.info("Skipping %s", instance_id)
continue
logger.info("Retrying %s", instance_id)
#确保没有output路径,有的话就删掉
if os.path.exists(output_dir):
os.system(f"rm -rf {output_dir}")
logger.info("Removed existing %s", output_dir)
os.makedirs(output_dir, exist_ok=True)
env_config["init_args"]["name"] = experiment_id +"-"+ task_config["id"]
env = DA_Agent_Env(
env_config=env_config,
task_config=task_config,
source_dir=args.source_dir,
# workflow=workflow,
generated_tool_dir=args.generated_action_dir,
cache_dir="./cache", #缓存目录
mnt_dir=output_dir #输出目录
)
agent.set_env_and_task(env)
logger.info('Task input:' + task_config['instruction'])
done, result_output = agent.run()
trajectory = agent.get_trajectory()
os.makedirs(os.path.join(output_dir, "dabench"), exist_ok=True)
result_files = env.post_process()
dabench_result = {"finished": done, "steps": len(trajectory["trajectory"]),
"result": result_output,"result_files": result_files, **trajectory}
with open(os.path.join(output_dir, "dabench/result.json"), "w") as f:
json.dump(dabench_result, f, indent=2)
logger.info("Finished %s", instance_id)
env.close()
if __name__ == '__main__':
args = config()
test(args)