-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathevaluate.py
257 lines (214 loc) · 11.3 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
"""
Stage2: prior learning
run `python stage2.py`
"""
import argparse
from argparse import ArgumentParser
from typing import Union
import random
import torch
import wandb
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
from preprocessing.data_pipeline import build_data_pipeline, build_custom_data_pipeline
from preprocessing.preprocess_ucr import DatasetImporterUCR, DatasetImporterCustom
import pandas as pd
from evaluation.evaluation import Evaluation
from utils import get_root_dir, load_yaml_param_settings, str2bool
def load_args():
parser = ArgumentParser()
parser.add_argument('--config', type=str, help="Path to the config data file.",
default=get_root_dir().joinpath('configs', 'config.yaml'))
parser.add_argument('--dataset_names', nargs='+', help="e.g., Adiac Wafer Crop`.", default='')
parser.add_argument('--gpu_device_idx', default=0, type=int)
parser.add_argument('--use_neural_mapper', type=str2bool, default=False, help='Use the neural mapper')
parser.add_argument('--feature_extractor_type', type=str, default='rocket', help='supervised_fcn | rocket for evaluation.')
parser.add_argument('--use_custom_dataset', type=str2bool, default=False, help='Using a custom dataset, then set it to True.')
parser.add_argument('--sampling_batch_size', type=int, default=None, help='batch size when sampling.')
return parser.parse_args()
def evaluate(config: dict,
dataset_name: str,
train_data_loader: DataLoader,
gpu_device_idx,
use_neural_mapper:bool,
feature_extractor_type:str,
use_custom_dataset:bool=False,
sampling_batch_size=None,
rand_seed:Union[int,None]=None,
):
"""
:param do_validate: if True, validation is conducted during training with a test dataset.
"""
if not isinstance(rand_seed, type(None)):
np.random.seed(rand_seed)
torch.manual_seed(rand_seed)
random.seed(rand_seed)
n_classes = len(np.unique(train_data_loader.dataset.Y))
_, in_channels, input_length = train_data_loader.dataset.X.shape
# wandb init
wandb.init(project='TimeVQVAE-evaluation',
config={**config, 'dataset_name': dataset_name, 'use_neural_mapper':use_neural_mapper, 'feature_extractor_type':feature_extractor_type})
# unconditional sampling
print('evaluating...')
evaluation = Evaluation(dataset_name, in_channels, input_length, n_classes, gpu_device_idx, config,
use_neural_mapper=use_neural_mapper,
feature_extractor_type=feature_extractor_type,
use_custom_dataset=use_custom_dataset).to(gpu_device_idx)
min_num_gen_samples = config['evaluation']['min_num_gen_samples'] # large enough to capture the distribution
(_, _, xhat), xhat_R = evaluation.sample(max(evaluation.X_test.shape[0], min_num_gen_samples), 'unconditional', batch_size=sampling_batch_size)
z_train = evaluation.z_train
z_test = evaluation.z_test
z_rec_train = evaluation.compute_z_rec('train')
z_rec_test = evaluation.compute_z_rec('test')
zhat = evaluation.compute_z_gen(xhat)
# compute FID and IS
print('evaluation for unconditional sampling...')
wandb.log({'FID': evaluation.fid_score(z_test, zhat)})
if not use_custom_dataset:
IS_mean, IS_std = evaluation.inception_score(xhat)
wandb.log({'IS_mean': IS_mean, 'IS_std': IS_std})
evaluation.log_visual_inspection(evaluation.X_train, xhat, 'X_train vs Xhat')
evaluation.log_visual_inspection(evaluation.X_test, xhat, 'X_test vs Xhat')
evaluation.log_visual_inspection(evaluation.X_train, evaluation.X_test, 'X_train vs X_test')
evaluation.log_pca([z_train,], ['Z_train',])
evaluation.log_pca([z_test,], ['Z_test',])
evaluation.log_pca([zhat,], ['Zhat',])
evaluation.log_pca([z_train, zhat], ['Z_train', 'Zhat'])
evaluation.log_pca([z_test, zhat], ['Z_test', 'Zhat'])
evaluation.log_pca([z_train, z_test], ['Z_train', 'Z_test'])
evaluation.log_pca([z_train, z_rec_train], ['Z_train', 'Z_rec_train'])
evaluation.log_pca([z_test, z_rec_test], ['Z_test', 'Z_rec_test'])
mdd, acd, sd, kd = evaluation.stat_metrics(evaluation.X_test, xhat)
wandb.log({'MDD':mdd, 'ACD':acd, 'SD':sd, 'KD':kd})
if use_neural_mapper:
z_svq_train, x_prime_train = evaluation.compute_z_svq('train')
z_svq_test, x_prime_test = evaluation.compute_z_svq('test')
zhat_R = evaluation.compute_z_gen(xhat_R)
evaluation.log_pca([z_svq_train,], ['Z_svq_train',])
evaluation.log_pca([z_svq_test,], ['Z_svq_test',])
evaluation.log_visual_inspection(x_prime_train, x_prime_test, 'X_prime_train & X_prime_test')
evaluation.log_pca([z_train, z_svq_train], ['Z_train', 'Z_svq_train'])
evaluation.log_pca([z_test, z_svq_test], ['Z_test', 'Z_svq_test'])
IS_mean, IS_std = evaluation.inception_score(xhat_R)
wandb.log({'FID with NM': evaluation.fid_score(z_test, zhat_R),
'IS_mean with NM': IS_mean,
'IS_std with NM': IS_std})
evaluation.log_visual_inspection(evaluation.X_train, xhat_R, 'X_train vs Xhat_R')
evaluation.log_visual_inspection(evaluation.X_test, xhat_R, 'X_test vs Xhat_R')
evaluation.log_visual_inspection(xhat[[0]], xhat_R[[0]], 'xhat vs xhat_R', alpha=1., n_plot_samples=1) # visaulize a single pair
evaluation.log_pca([zhat_R,], ['Zhat_R',])
evaluation.log_pca([z_train, zhat_R], ['Z_train', 'Zhat_R'])
evaluation.log_pca([z_test, zhat_R], ['Z_test', 'Zhat_R'])
mdd, acd, sd, kd = evaluation.stat_metrics(evaluation.X_test, xhat_R)
wandb.log({'MDD with NM':mdd, 'ACD with NM':acd, 'SD with NM':sd, 'KD with NM':kd})
# class-conditional sampling
print('evaluation for class-conditional sampling...')
n_plot_samples_per_class = 100 #200
alpha = 0.1
ylim = (-5, 5)
n_rows = int(np.ceil(np.sqrt(n_classes)))
fig1, axes1 = plt.subplots(n_rows, n_rows, figsize=(4*n_rows, 2*n_rows))
fig2, axes2 = plt.subplots(n_rows, n_rows, figsize=(4*n_rows, 2*n_rows))
fig3, axes3 = plt.subplots(n_rows, n_rows, figsize=(4*n_rows, 2*n_rows))
fig1.suptitle('X_test_c')
fig2.suptitle(f"Xhat_c (cfg_scale-{config['MaskGIT']['cfg_scale']})")
fig3.suptitle(f"Xhat_R_c (cfg_scale-{config['MaskGIT']['cfg_scale']})")
axes1 = axes1.flatten()
axes2 = axes2.flatten()
axes3 = axes3.flatten()
n_cls_samples = []
cfids, cfids_nm = [], []
for cls_idx in range(n_classes):
(_, _, xhat_c), xhat_c_R = evaluation.sample(n_plot_samples_per_class, kind='conditional', class_index=cls_idx)
cls_sample_ind = (evaluation.Y_test[:,0] == cls_idx) # (b,)
n_cls_samples.append(cls_sample_ind.astype(float).sum())
z_test_c = evaluation.compute_z_gen(torch.from_numpy(evaluation.X_test[cls_sample_ind]))
zhat_c = evaluation.compute_z_gen(xhat_c)
cfid = evaluation.fid_score(z_test_c, zhat_c)
cfids.append(cfid)
wandb.log({f'cFID-cls_{cls_idx}': cfid})
if use_neural_mapper:
zhat_R = evaluation.compute_z_gen(xhat_c_R)
cfid_nm = evaluation.fid_score(z_test_c, zhat_R)
cfids_nm.append(cfid_nm)
wandb.log({f'cFID+NM-cls_{cls_idx}': cfid})
X_test_c = evaluation.X_test[cls_sample_ind] # (b' 1 l)
sample_ind = np.random.randint(0, X_test_c.shape[0], n_plot_samples_per_class)
axes1[cls_idx].plot(X_test_c[sample_ind,0,:].T, alpha=alpha, color='C0')
axes1[cls_idx].set_title(f'cls_idx:{cls_idx}')
axes1[cls_idx].set_ylim(*ylim)
sample_ind = np.random.randint(0, xhat_c.shape[0], n_plot_samples_per_class)
axes2[cls_idx].plot(xhat_c[sample_ind,0,:].T, alpha=alpha, color='C0')
axes2[cls_idx].set_title(f'cls_idx:{cls_idx}')
axes2[cls_idx].set_ylim(*ylim)
if use_neural_mapper:
sample_ind = np.random.randint(0, xhat_c_R.shape[0], n_plot_samples_per_class)
axes3[cls_idx].plot(xhat_c_R[sample_ind,0,:].T, alpha=alpha, color='C0')
axes3[cls_idx].set_title(f'cls_idx:{cls_idx}')
axes3[cls_idx].set_ylim(*ylim)
fig1.tight_layout()
fig2.tight_layout()
wandb.log({"X_test_c": wandb.Image(fig1)})
wandb.log({f"Xhat_c": wandb.Image(fig2)})
wandb.log({f'cFID': np.mean(cfids)})
if use_neural_mapper:
fig3.tight_layout()
wandb.log({f"Xhat_R_c": wandb.Image(fig3)})
wandb.log({f'cFID+NM': np.mean(cfids_nm)})
plt.close(fig1)
plt.close(fig2)
plt.close(fig3)
# bar graph of cfids
fig, ax = plt.subplots()
ax.bar(range(n_classes), cfids)
ax.set_xlabel('Class Index')
ax.set_ylabel('FID per class')
ax.set_xticks(range(n_classes)) # Ensure x-axis labels are integers only
wandb.log({"cFID_bar": wandb.Image(fig)})
plt.close(fig)
if use_neural_mapper:
fig, ax = plt.subplots()
ax.bar(range(n_classes), cfids_nm)
ax.set_xlabel('Class Index')
ax.set_ylabel('FID with NM per class')
ax.set_xticks(range(n_classes)) # Ensure x-axis labels are integers only
wandb.log({"cFID+FE_bar": wandb.Image(fig)})
plt.close(fig)
# plot bar graph of n_cls_samples
fig, ax = plt.subplots()
ax.bar(range(n_classes), n_cls_samples)
ax.set_xlabel('Class Index')
ax.set_ylabel('num samples per class')
ax.set_xticks(range(n_classes)) # Ensure x-axis labels are integers only
print('n_cls_samples:', n_cls_samples)
wandb.log({"n_cls_samples": wandb.Image(fig)})
plt.close(fig)
# compute cFID (conditional FID)
wandb.log({'FID': evaluation.fid_score(z_test, zhat)})
wandb.finish()
if __name__ == '__main__':
# load config
args = load_args()
config = load_yaml_param_settings(args.config)
# dataset names
if len(args.dataset_names) == 0:
data_summary_ucr = pd.read_csv(get_root_dir().joinpath('datasets', 'DataSummary_UCR.csv'))
dataset_names = data_summary_ucr['Name'].tolist()
else:
dataset_names = args.dataset_names
print('dataset_names:', dataset_names)
for dataset_name in dataset_names:
print('dataset_name:', dataset_name)
# data pipeline
batch_size = config['evaluation']['batch_size']
if not args.use_custom_dataset:
dataset_importer = DatasetImporterUCR(dataset_name, **config['dataset'])
train_data_loader, test_data_loader = [build_data_pipeline(batch_size, dataset_importer, config, kind) for kind in ['train', 'test']]
else:
dataset_importer = DatasetImporterCustom(**config['dataset'])
train_data_loader, test_data_loader = [build_custom_data_pipeline(batch_size, dataset_importer, config, kind) for kind in ['train', 'test']]
# train
evaluate(config, dataset_name, train_data_loader, args.gpu_device_idx, args.use_neural_mapper, args.feature_extractor_type, args.use_custom_dataset, args.sampling_batch_size)
# clean memory
torch.cuda.empty_cache()