-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_clip_from_scratch.py
149 lines (122 loc) · 5.31 KB
/
train_clip_from_scratch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Adapted from https://github.com/rajpurkarlab/CheXzero/blob/main/run_train.py
# python train_clip_from_scratch.py --output_dir "/mnt/scratch-lids/scratch/haoran/results/MultimodalDiscordance/results/clip_scratch/mimic_cat_40" --noise_type cat
# python train_clip_from_scratch.py --output_dir "/mnt/scratch-lids/scratch/haoran/results/MultimodalDiscordance/results/clip_scratch/mimic_random_40" --noise_type random
import argparse
import collections
import json
import os
import random
import sys
import time
import numpy as np
import pandas as pd
import PIL
import pickle
from transformers import AutoTokenizer
from scipy.special import softmax
import faiss
import socket
from pathlib import Path
from tqdm import tqdm
import torch
import torchvision
import torch.utils.data
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from lib.utils.utils import path_serial, Tee
from lib.datasets.utils import get_dataset
from lib.models.chexzero_clip import load_clip, tokenize
os.environ["TOKENIZERS_PARALLELISM"] = "false"
parser = argparse.ArgumentParser(description="Train CLIP on MIMIC-CXR")
parser.add_argument("--exp_name", type=str)
parser.add_argument('--output_dir', type = str, required = True)
parser.add_argument("--dataset", type=str, default="mimiccxr_caption", choices=['flickr30k', 'mscoco', 'mimiccxr_caption', 'mmimdb'])
parser.add_argument("--noise_type", type=str, default="cat", choices=["random", "noun", "cat"])
parser.add_argument("--noise_level", type=float, default = 0.4)
parser.add_argument('--batch_size', default = 64, type = int)
parser.add_argument('--epochs', default = 10, type = int)
parser.add_argument('--seed', default = 0, type = int)
parser.add_argument('--data_seed', default = 0, type = int)
parser.add_argument('--debug', action = 'store_true')
parser.add_argument('--save_interval', type=int, default=2000)
parser.add_argument('--log_interval', type=int, default=100)
parser.add_argument('--optimizer', type=str, default="sgd")
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--lr', type=float, default=1e-4)
args = parser.parse_args()
hparams = vars(args)
out_dir = Path(args.output_dir)
out_dir.mkdir(exist_ok = True, parents = True)
if not args.debug:
sys.stdout = Tee(os.path.join(args.output_dir, 'out.txt'))
sys.stderr = Tee(os.path.join(args.output_dir, 'err.txt'))
print("Environment:")
print("\tPython: {}".format(sys.version.split(" ")[0]))
print("\tPyTorch: {}".format(torch.__version__))
print("\tCUDA: {}".format(torch.version.cuda))
print("\tCUDNN: {}".format(torch.backends.cudnn.version()))
print("\tNumPy: {}".format(np.__version__))
print("\tNode: {}".format(socket.gethostname()))
print('Args:')
for k, v in sorted(hparams.items()):
print('\t{}: {}'.format(k, v))
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
device = 'cuda'
with open(out_dir/'args.json', 'w') as outfile:
json.dump(vars(args), outfile, default=path_serial)
train_set, val_set, test_set = get_dataset(hparams['dataset'], args.data_seed, noisy_labels = True, percent_flips=args.noise_level,
flip_type=args.noise_type, return_combined_dataset = True)
loader = DataLoader(
dataset=train_set, batch_size=hparams['batch_size'], num_workers=8, shuffle = True
)
model = load_clip(model_path=None).to(device)
criterion = nn.CrossEntropyLoss().cuda()
if args.optimizer == "adam":
optimizer = optim.AdamW(model.parameters(), lr=args.lr)
elif args.optimizer == "sgd":
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
total_batches = len(loader) * args.epochs
def train_log(loss, example_ct, epoch):
loss = float(loss)
print(f"Loss after " + str(example_ct).zfill(6) + " examples and " + str(epoch).zfill(3) + f" epochs: {loss:.3f}")
def save(model, path):
torch.save(model.state_dict(), path)
example_ct = 0 # number of examples seen
batch_ct = 0
report_freq = args.log_interval
for epoch in range(args.epochs):
running_loss = 0.0 # running loss over batch
for data in tqdm(loader):
# get the images
images = data[0].to(device)
texts = tokenize(data[2], model).to(device)
# perform step for a single batch
logits_per_image, logits_per_text = model(images, texts)
batch_size = images.shape[0]
labels = torch.arange(batch_size).to(device)
loss_img = criterion(logits_per_image, labels)
loss_txt = criterion(logits_per_text, labels)
loss = (loss_img + loss_txt)/2
optimizer.zero_grad()
loss.backward()
optimizer.step()
example_ct += len(images)
batch_ct += 1
running_loss += loss.item()
# Report metrics every `report_freq` batch
if (batch_ct % report_freq) == 0:
train_log(running_loss / report_freq, example_ct, epoch)
running_loss = 0.0
if (batch_ct % args.save_interval) == 0:
model_path = os.path.join(out_dir, "checkpoint_{batch_ct}.pt".format(
batch_ct=str(batch_ct),
))
print("Saved checkpoint to: ", model_path)
save(model, model_path)
with open(os.path.join(out_dir, 'done'), 'w') as f:
f.write('done')