forked from Wall-eSociety/RevisoesHoteisML
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeature_selection.py
48 lines (42 loc) · 1.41 KB
/
feature_selection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import numpy
from parser import Parser, SimpleParser
from pandas import read_csv
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.decomposition import PCA
from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression
def univariate_selection():
# feature extraction
test = SelectKBest(score_func=chi2, k=4)
fit = test.fit(X, Y)
# summarize scores
numpy.set_printoptions(precision=3)
print(fit.scores_)
features = fit.transform(X)
# summarize selected features
print(features[0:5,:])
def recursive_feature_elimination():
model = LogisticRegression()
rfe = RFE(model, 3)
fit = rfe.fit(X, Y)
print("Num Features: ", fit.n_features_)
print("Selected Features: ", fit.support_)
print("Feature Ranking: ", fit.ranking_)
def principal_component_analysis():
# feature extraction
pca = PCA(n_components=3)
fit = pca.fit(X)
# summarize components
print("Explained Variance: %s") % fit.explained_variance_ratio_
print(fit.components_)
def feature_importance():
model = ExtraTreesClassifier()
model.fit(X, Y)
print(model.feature_importances_)
X, Y = SimpleParser('AM_RevisoesHoteisCaldas.csv').get_data()
univariate_selection()
# recursive_feature_elimination()
# principal_component_analysis()
# feature_importance()