-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
100 lines (78 loc) · 2.77 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import torch
device = torch.device("cpu")
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import numpy as np
transform = transforms.ToTensor()
train_data = datasets.MNIST(root='data', train=True, download=True, transform=transform)
test_data = datasets.MNIST(root='data', train=False, download=True, transform=transform)
batch_size = 50
num_workers = 0
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, num_workers=num_workers)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=batch_size, num_workers=num_workers)
import matplotlib.pyplot as plt
dataiter = iter(train_loader)
images, labels = dataiter.next()
images = images.numpy()
plt.imshow(images[0].reshape((28, 28)), cmap="gray")
#plt.show()
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(28 * 28, 512)
self.fc2 = nn.Linear(512, 512)
self.fc3 = nn.Linear(512, 10)
def forward(self, x):
x = x.view(-1, 28 * 28)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
return x
model = Net()
#print(model)
criterion = nn.CrossEntropyLoss().cpu()
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
n_epochs=30
model.train().cpu()
for n in range(n_epochs):
train_loss=0.0
for x,y in train_loader:
optimizer.zero_grad()
y_eval=model(x).cpu()
loss=criterion(y_eval,y)
loss.backward()
optimizer.step()
train_loss+=loss.item()*x.size(0)
train_loss = train_loss / len(train_loader.dataset)
print('Epoch: {} \tTraining Loss: {:.6f}'.format(
n + 1,
train_loss
))
test_loss = 0.0
class_correct = list(0 for i in range(10))
class_total = list(0 for i in range(10))
model.eval().cpu()
for data, target in test_loader:
output = model(data)
loss = criterion(output, target)
test_loss += loss.item()*data.size(0)
_, pred = torch.max(output, 1)
correct = (pred == target.view_as(pred)).squeeze()
for i in range(batch_size):
label = target[i]
class_correct[label] += correct[i].item()
class_total[label] += 1
test_loss = test_loss/len(test_loader.dataset)
print('Test Loss: {:.6f}\n'.format(test_loss))
for i in range(10):
if class_total[i] > 0:
print('Test Accuracy of %5s: %2d%% (%2d/%2d)' % (
str(i), 100 * class_correct[i] / class_total[i],
np.sum(class_correct[i]), np.sum(class_total[i])))
else:
print('Test Accuracy of %5s: N/A (no training examples)')
print('\nTest Accuracy (Overall): %2d%% (%2d/%2d)' % (
100. * np.sum(class_correct) / np.sum(class_total),
np.sum(class_correct), np.sum(class_total)))