forked from project-codeflare/codeflare-sdk
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcluster.py
599 lines (538 loc) · 21.4 KB
/
cluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
# Copyright 2022 IBM, Red Hat
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The cluster sub-module contains the definition of the Cluster object, which represents
the resources requested by the user. It also contains functions for checking the
cluster setup queue, a list of all existing clusters, and the user's working namespace.
"""
from time import sleep
from typing import List, Optional, Tuple, Dict
from ray.job_submission import JobSubmissionClient
from .auth import config_check, api_config_handler
from ..utils import pretty_print
from ..utils.generate_yaml import generate_appwrapper
from ..utils.kube_api_helpers import _kube_api_error_handling
from .config import ClusterConfiguration
from .model import (
AppWrapper,
AppWrapperStatus,
CodeFlareClusterStatus,
RayCluster,
RayClusterStatus,
)
from kubernetes import client, config
import yaml
import os
class Cluster:
"""
An object for requesting, bringing up, and taking down resources.
Can also be used for seeing the resource cluster status and details.
Note that currently, the underlying implementation is a Ray cluster.
"""
torchx_scheduler = "ray"
def __init__(self, config: ClusterConfiguration):
"""
Create the resource cluster object by passing in a ClusterConfiguration
(defined in the config sub-module). An AppWrapper will then be generated
based off of the configured resources to represent the desired cluster
request.
"""
self.config = config
self.app_wrapper_yaml = self.create_app_wrapper()
self.app_wrapper_name = self.app_wrapper_yaml.split(".")[0]
def create_app_wrapper(self):
"""
Called upon cluster object creation, creates an AppWrapper yaml based on
the specifications of the ClusterConfiguration.
"""
if self.config.namespace is None:
self.config.namespace = get_current_namespace()
if self.config.namespace is None:
print("Please specify with namespace=<your_current_namespace>")
elif type(self.config.namespace) is not str:
raise TypeError(
f"Namespace {self.config.namespace} is of type {type(self.config.namespace)}. Check your Kubernetes Authentication."
)
name = self.config.name
namespace = self.config.namespace
min_cpu = self.config.min_cpus
max_cpu = self.config.max_cpus
min_memory = self.config.min_memory
max_memory = self.config.max_memory
gpu = self.config.num_gpus
workers = self.config.num_workers
template = self.config.template
image = self.config.image
instascale = self.config.instascale
instance_types = self.config.machine_types
env = self.config.envs
local_interactive = self.config.local_interactive
image_pull_secrets = self.config.image_pull_secrets
return generate_appwrapper(
name=name,
namespace=namespace,
min_cpu=min_cpu,
max_cpu=max_cpu,
min_memory=min_memory,
max_memory=max_memory,
gpu=gpu,
workers=workers,
template=template,
image=image,
instascale=instascale,
instance_types=instance_types,
env=env,
local_interactive=local_interactive,
image_pull_secrets=image_pull_secrets,
)
# creates a new cluster with the provided or default spec
def up(self):
"""
Applies the AppWrapper yaml, pushing the resource request onto
the MCAD queue.
"""
namespace = self.config.namespace
try:
config_check()
api_instance = client.CustomObjectsApi(api_config_handler())
with open(self.app_wrapper_yaml) as f:
aw = yaml.load(f, Loader=yaml.FullLoader)
api_instance.create_namespaced_custom_object(
group="mcad.ibm.com",
version="v1beta1",
namespace=namespace,
plural="appwrappers",
body=aw,
)
except Exception as e: # pragma: no cover
return _kube_api_error_handling(e)
def down(self):
"""
Deletes the AppWrapper yaml, scaling-down and deleting all resources
associated with the cluster.
"""
namespace = self.config.namespace
try:
config_check()
api_instance = client.CustomObjectsApi(api_config_handler())
api_instance.delete_namespaced_custom_object(
group="mcad.ibm.com",
version="v1beta1",
namespace=namespace,
plural="appwrappers",
name=self.app_wrapper_name,
)
except Exception as e: # pragma: no cover
return _kube_api_error_handling(e)
def status(
self, print_to_console: bool = True
) -> Tuple[CodeFlareClusterStatus, bool]:
"""
Returns the requested cluster's status, as well as whether or not
it is ready for use.
"""
ready = False
status = CodeFlareClusterStatus.UNKNOWN
# check the app wrapper status
appwrapper = _app_wrapper_status(self.config.name, self.config.namespace)
if appwrapper:
if appwrapper.status in [
AppWrapperStatus.RUNNING,
AppWrapperStatus.COMPLETED,
AppWrapperStatus.RUNNING_HOLD_COMPLETION,
]:
ready = False
status = CodeFlareClusterStatus.STARTING
elif appwrapper.status in [
AppWrapperStatus.FAILED,
AppWrapperStatus.DELETED,
]:
ready = False
status = CodeFlareClusterStatus.FAILED # should deleted be separate
return status, ready # exit early, no need to check ray status
elif appwrapper.status in [
AppWrapperStatus.PENDING,
AppWrapperStatus.QUEUEING,
]:
ready = False
if appwrapper.status == AppWrapperStatus.PENDING:
status = CodeFlareClusterStatus.QUEUED
else:
status = CodeFlareClusterStatus.QUEUEING
if print_to_console:
pretty_print.print_app_wrappers_status([appwrapper])
return (
status,
ready,
) # no need to check the ray status since still in queue
# check the ray cluster status
cluster = _ray_cluster_status(self.config.name, self.config.namespace)
if cluster and not cluster.status == RayClusterStatus.UNKNOWN:
if cluster.status == RayClusterStatus.READY:
ready = True
status = CodeFlareClusterStatus.READY
elif cluster.status in [
RayClusterStatus.UNHEALTHY,
RayClusterStatus.FAILED,
]:
ready = False
status = CodeFlareClusterStatus.FAILED
if print_to_console:
# overriding the number of gpus with requested
cluster.worker_gpu = self.config.num_gpus
pretty_print.print_cluster_status(cluster)
elif print_to_console:
if status == CodeFlareClusterStatus.UNKNOWN:
pretty_print.print_no_resources_found()
else:
pretty_print.print_app_wrappers_status([appwrapper], starting=True)
return status, ready
def wait_ready(self, timeout: Optional[int] = None):
"""
Waits for requested cluster to be ready, up to an optional timeout (s).
Checks every five seconds.
"""
print("Waiting for requested resources to be set up...")
ready = False
status = None
time = 0
while not ready:
status, ready = self.status(print_to_console=False)
if status == CodeFlareClusterStatus.UNKNOWN:
print(
"WARNING: Current cluster status is unknown, have you run cluster.up yet?"
)
if not ready:
if timeout and time >= timeout:
raise TimeoutError(f"wait() timed out after waiting {timeout}s")
sleep(5)
time += 5
print("Requested cluster up and running!")
def details(self, print_to_console: bool = True) -> RayCluster:
cluster = _copy_to_ray(self)
if print_to_console:
pretty_print.print_clusters([cluster])
return cluster
def cluster_uri(self) -> str:
"""
Returns a string containing the cluster's URI.
"""
return f"ray://{self.config.name}-head-svc.{self.config.namespace}.svc:10001"
def cluster_dashboard_uri(self) -> str:
"""
Returns a string containing the cluster's dashboard URI.
"""
try:
config_check()
api_instance = client.CustomObjectsApi(api_config_handler())
routes = api_instance.list_namespaced_custom_object(
group="route.openshift.io",
version="v1",
namespace=self.config.namespace,
plural="routes",
)
except Exception as e: # pragma: no cover
return _kube_api_error_handling(e)
for route in routes["items"]:
if route["metadata"]["name"] == f"ray-dashboard-{self.config.name}":
return f"http://{route['spec']['host']}"
return "Dashboard route not available yet, have you run cluster.up()?"
def list_jobs(self) -> List:
"""
This method accesses the head ray node in your cluster and lists the running jobs.
"""
dashboard_route = self.cluster_dashboard_uri()
client = JobSubmissionClient(dashboard_route)
return client.list_jobs()
def job_status(self, job_id: str) -> str:
"""
This method accesses the head ray node in your cluster and returns the job status for the provided job id.
"""
dashboard_route = self.cluster_dashboard_uri()
client = JobSubmissionClient(dashboard_route)
return client.get_job_status(job_id)
def job_logs(self, job_id: str) -> str:
"""
This method accesses the head ray node in your cluster and returns the logs for the provided job id.
"""
dashboard_route = self.cluster_dashboard_uri()
client = JobSubmissionClient(dashboard_route)
return client.get_job_logs(job_id)
def torchx_config(
self, working_dir: str = None, requirements: str = None
) -> Dict[str, str]:
dashboard_address = f"{self.cluster_dashboard_uri().lstrip('http://')}"
to_return = {
"cluster_name": self.config.name,
"dashboard_address": dashboard_address,
}
if working_dir:
to_return["working_dir"] = working_dir
if requirements:
to_return["requirements"] = requirements
return to_return
def from_k8_cluster_object(rc):
machine_types = (
rc["metadata"]["labels"]["orderedinstance"].split("_")
if "orderedinstance" in rc["metadata"]["labels"]
else []
)
local_interactive = (
"volumeMounts"
in rc["spec"]["workerGroupSpecs"][0]["template"]["spec"]["containers"][0]
)
cluster_config = ClusterConfiguration(
name=rc["metadata"]["name"],
namespace=rc["metadata"]["namespace"],
machine_types=machine_types,
num_workers=rc["spec"]["workerGroupSpecs"][0]["minReplicas"],
min_cpus=rc["spec"]["workerGroupSpecs"][0]["template"]["spec"][
"containers"
][0]["resources"]["requests"]["cpu"],
max_cpus=rc["spec"]["workerGroupSpecs"][0]["template"]["spec"][
"containers"
][0]["resources"]["limits"]["cpu"],
min_memory=int(
rc["spec"]["workerGroupSpecs"][0]["template"]["spec"]["containers"][0][
"resources"
]["requests"]["memory"][:-1]
),
max_memory=int(
rc["spec"]["workerGroupSpecs"][0]["template"]["spec"]["containers"][0][
"resources"
]["limits"]["memory"][:-1]
),
num_gpus=rc["spec"]["workerGroupSpecs"][0]["template"]["spec"][
"containers"
][0]["resources"]["limits"]["nvidia.com/gpu"],
instascale=True if machine_types else False,
image=rc["spec"]["workerGroupSpecs"][0]["template"]["spec"]["containers"][
0
]["image"],
local_interactive=local_interactive,
)
return Cluster(cluster_config)
def local_client_url(self):
if self.config.local_interactive == True:
ingress_domain = _get_ingress_domain()
return f"ray://rayclient-{self.config.name}-{self.config.namespace}.{ingress_domain}"
else:
return "None"
def list_all_clusters(namespace: str, print_to_console: bool = True):
"""
Returns (and prints by default) a list of all clusters in a given namespace.
"""
clusters = _get_ray_clusters(namespace)
if print_to_console:
pretty_print.print_clusters(clusters)
return clusters
def list_all_queued(namespace: str, print_to_console: bool = True):
"""
Returns (and prints by default) a list of all currently queued-up AppWrappers
in a given namespace.
"""
app_wrappers = _get_app_wrappers(
namespace, filter=[AppWrapperStatus.RUNNING, AppWrapperStatus.PENDING]
)
if print_to_console:
pretty_print.print_app_wrappers_status(app_wrappers)
return app_wrappers
def get_current_namespace(): # pragma: no cover
if api_config_handler() != None:
if os.path.isfile("/var/run/secrets/kubernetes.io/serviceaccount/namespace"):
try:
file = open(
"/var/run/secrets/kubernetes.io/serviceaccount/namespace", "r"
)
active_context = file.readline().strip("\n")
return active_context
except Exception as e:
print("Unable to find current namespace")
return None
else:
print("Unable to find current namespace")
return None
else:
try:
_, active_context = config.list_kube_config_contexts(config_check())
except Exception as e:
return _kube_api_error_handling(e)
try:
return active_context["context"]["namespace"]
except KeyError:
return None
def get_cluster(cluster_name: str, namespace: str = "default"):
try:
config.load_kube_config()
api_instance = client.CustomObjectsApi()
rcs = api_instance.list_namespaced_custom_object(
group="ray.io",
version="v1alpha1",
namespace=namespace,
plural="rayclusters",
)
except Exception as e:
return _kube_api_error_handling(e)
for rc in rcs["items"]:
if rc["metadata"]["name"] == cluster_name:
return Cluster.from_k8_cluster_object(rc)
raise FileNotFoundError(
f"Cluster {cluster_name} is not found in {namespace} namespace"
)
# private methods
def _get_ingress_domain():
try:
config.load_kube_config()
api_client = client.CustomObjectsApi(api_config_handler())
ingress = api_client.get_cluster_custom_object(
"config.openshift.io", "v1", "ingresses", "cluster"
)
except Exception as e: # pragma: no cover
return _kube_api_error_handling(e)
return ingress["spec"]["domain"]
def _app_wrapper_status(name, namespace="default") -> Optional[AppWrapper]:
try:
config_check()
api_instance = client.CustomObjectsApi(api_config_handler())
aws = api_instance.list_namespaced_custom_object(
group="mcad.ibm.com",
version="v1beta1",
namespace=namespace,
plural="appwrappers",
)
except Exception as e: # pragma: no cover
return _kube_api_error_handling(e)
for aw in aws["items"]:
if aw["metadata"]["name"] == name:
return _map_to_app_wrapper(aw)
return None
def _ray_cluster_status(name, namespace="default") -> Optional[RayCluster]:
try:
config_check()
api_instance = client.CustomObjectsApi(api_config_handler())
rcs = api_instance.list_namespaced_custom_object(
group="ray.io",
version="v1alpha1",
namespace=namespace,
plural="rayclusters",
)
except Exception as e: # pragma: no cover
return _kube_api_error_handling(e)
for rc in rcs["items"]:
if rc["metadata"]["name"] == name:
return _map_to_ray_cluster(rc)
return None
def _get_ray_clusters(namespace="default") -> List[RayCluster]:
list_of_clusters = []
try:
config_check()
api_instance = client.CustomObjectsApi(api_config_handler())
rcs = api_instance.list_namespaced_custom_object(
group="ray.io",
version="v1alpha1",
namespace=namespace,
plural="rayclusters",
)
except Exception as e: # pragma: no cover
return _kube_api_error_handling(e)
for rc in rcs["items"]:
list_of_clusters.append(_map_to_ray_cluster(rc))
return list_of_clusters
def _get_app_wrappers(
namespace="default", filter=List[AppWrapperStatus]
) -> List[AppWrapper]:
list_of_app_wrappers = []
try:
config_check()
api_instance = client.CustomObjectsApi(api_config_handler())
aws = api_instance.list_namespaced_custom_object(
group="mcad.ibm.com",
version="v1beta1",
namespace=namespace,
plural="appwrappers",
)
except Exception as e: # pragma: no cover
return _kube_api_error_handling(e)
for item in aws["items"]:
app_wrapper = _map_to_app_wrapper(item)
if filter and app_wrapper.status in filter:
list_of_app_wrappers.append(app_wrapper)
else:
# Unsure what the purpose of the filter is
list_of_app_wrappers.append(app_wrapper)
return list_of_app_wrappers
def _map_to_ray_cluster(rc) -> Optional[RayCluster]:
if "state" in rc["status"]:
status = RayClusterStatus(rc["status"]["state"].lower())
else:
status = RayClusterStatus.UNKNOWN
config_check()
api_instance = client.CustomObjectsApi(api_config_handler())
routes = api_instance.list_namespaced_custom_object(
group="route.openshift.io",
version="v1",
namespace=rc["metadata"]["namespace"],
plural="routes",
)
ray_route = None
for route in routes["items"]:
if route["metadata"]["name"] == f"ray-dashboard-{rc['metadata']['name']}":
ray_route = route["spec"]["host"]
return RayCluster(
name=rc["metadata"]["name"],
status=status,
# for now we are not using autoscaling so same replicas is fine
workers=rc["spec"]["workerGroupSpecs"][0]["replicas"],
worker_mem_max=rc["spec"]["workerGroupSpecs"][0]["template"]["spec"][
"containers"
][0]["resources"]["limits"]["memory"],
worker_mem_min=rc["spec"]["workerGroupSpecs"][0]["template"]["spec"][
"containers"
][0]["resources"]["requests"]["memory"],
worker_cpu=rc["spec"]["workerGroupSpecs"][0]["template"]["spec"]["containers"][
0
]["resources"]["limits"]["cpu"],
worker_gpu=0, # hard to detect currently how many gpus, can override it with what the user asked for
namespace=rc["metadata"]["namespace"],
dashboard=ray_route,
)
def _map_to_app_wrapper(aw) -> AppWrapper:
if "status" in aw and "canrun" in aw["status"]:
return AppWrapper(
name=aw["metadata"]["name"],
status=AppWrapperStatus(aw["status"]["state"].lower()),
can_run=aw["status"]["canrun"],
job_state=aw["status"]["queuejobstate"],
)
return AppWrapper(
name=aw["metadata"]["name"],
status=AppWrapperStatus("queueing"),
can_run=False,
job_state="Still adding to queue",
)
def _copy_to_ray(cluster: Cluster) -> RayCluster:
ray = RayCluster(
name=cluster.config.name,
status=cluster.status(print_to_console=False)[0],
workers=cluster.config.num_workers,
worker_mem_min=cluster.config.min_memory,
worker_mem_max=cluster.config.max_memory,
worker_cpu=cluster.config.min_cpus,
worker_gpu=cluster.config.num_gpus,
namespace=cluster.config.namespace,
dashboard=cluster.cluster_dashboard_uri(),
)
if ray.status == CodeFlareClusterStatus.READY:
ray.status = RayClusterStatus.READY
return ray