-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathmehedihasan740_Heap_Sort
62 lines (53 loc) · 1.9 KB
/
mehedihasan740_Heap_Sort
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
class Sort {
public void heapSort(int arr[])
{
int temp;
for (int i = arr.length / 2 - 1; i >= 0; i--) //build the heap
{
heapify(arr, arr.length, i);
}
for (int i = arr.length - 1; i > 0; i--) //extract elements from the heap
{
temp = arr[0]; //move current root to end (since it is the largest)
arr[0] = arr[i];
arr[i] = temp;
heapify(arr, i, 0); //recall heapify to rebuild heap for the remaining elements
}
}
void heapify(int arr[], int n, int i)
{
int MAX = i; // Initialize largest as root
int left = 2 * i + 1; //index of the left child of ith node = 2*i + 1
int right = 2 * i + 2; //index of the right child of ith node = 2*i + 2
int temp;
if (left < n && arr[left] > arr[MAX]) //check if the left child of the root is larger than the root
{
MAX = left;
}
if (right < n && arr[right] > arr[MAX]) //check if the right child of the root is larger than the root
{
MAX = right;
}
if (MAX != i)
{ //repeat the procedure for finding the largest element in the heap
temp = arr[i];
arr[i] = arr[MAX];
arr[MAX] = temp;
heapify(arr, n, MAX);
}
}
void display(int arr[]) //display the array
{
for (int i=0; i<arr.length; ++i)
{
System.out.print(arr[i]+" ");
}
}
public static void main(String args[])
{
int arr[] = { 1, 12, 9 , 3, 10, 15 };
Sort ob = new Sort();
ob.heapSort(arr);
ob.display(arr);
}
}