-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRungeKuttaMethod_AllValues.py
81 lines (73 loc) · 2.78 KB
/
RungeKuttaMethod_AllValues.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue May 17 14:13:12 2022
@author: merlyn
"""
import numpy as np
#these two integrator functions throw one value at a time
# first order differential equations INTEGRATOR
def RKN4_1fstODE(f,r,ti,tf,h,params):
# initializing where to store the results
t = np.arange(ti,tf,h)
R = np.zeros((len(r),len(t)), dtype = 'float')
# fst index cartesian coordinate
# scnd index the element in such coordinate
R[:,0] = r
#generate the new values
for n in range(len(t)):
# slope at the beginning of the time step
k1 = f(r,t[n],params)
# use the slope k1 to step halfway through the time step
r1 = r + k1*h/2
# an estimate of the slope at the midpoint
k2 = f(r1,t[n]+(h/2),params)
# use the slope k2 to step halfway through the time step
r2 = r + k2*h/2
# another estimate of the slope at the r2 midpoint
k3 = f(r2,t[n]+(h/2),params)
# use the slope, k3, to step all the way across the time step (to t₀+h)
r3 = r + k3*(h/2)
# an estimate of the slope at the endpoint
k4 = f(r3, t[n] + h,params)
# use a weighted sum of these slopes to get our final estimate of r*(t₀+h)
R[:, n] = r + (h/6)*(k1+2*k2+2*k3+k4)
# update the r value
r = R[:, n]
return R
# Second order differential equations INTEGRATOR
def RKN4_2ndODE(f,r,v,ti,tf,h,params):
# initializing where to store the results
t = np.arange(ti, tf+h, h)
R = np.zeros((len(r),len(t)), dtype = 'float')
V = np.zeros((len(v),len(t)), dtype = 'float')
# fst index cartesian coordinate
# scnd index element in such coordinate
R[:,0] = r
V[:,0] = v
#generate the new values
for n in range(len(t)):
# slope at the beginning of the time step
k1 = f(r,v,t[n],params)
# use the slope k1 to step halfway through the time step
v1 = v + k1*h/2
r1 = r + (h/2)*((v+v1)/2)
# an estimate of the slope at the midpoint
k2 = f(r1,v1,t[n]+(h/2),params)
# use the slope k2 to step halfway through the time step
v2 = v + k2*h/2
r2 = r + (h/2)*((v+v2)/2)
# another estimate of the slope at the midpoint
k3 = f(r2,v2,t+(h/2),params)
# use the slope, k3, to step all the way across the time step (to t₀+h)
v3 = v + k3*(h/2)
r3 = r + h*((v+v3)/2)
# an estimate of the slope at the endpoint
k4 = f(r3, v3, t[n] + h,params)
# use a weighted sum of these slopes to get our final estimate of y*(t₀+h)
V[:, n] = v + (h/6)*(k1+2*k2+2*k3+k4)
R[:, n] = r + (h/6)*(v1+2*v2+2*v3+V[:,n])
# update the r and v values
r = R[:, n]
v = V[:, n]
return R, V