地上有一个m行n列的方格,从坐标 [0,0]
到坐标 [m-1,n-1]
。一个机器人从坐标 [0, 0]
的格子开始移动,它每次可以向左、右、上、下移动一格(不能移动到方格外),也不能进入行坐标和列坐标的数位之和大于k的格子。例如,当k为18时,机器人能够进入方格 [35, 37] ,因为3+5+3+7=18。但它不能进入方格 [35, 38],因为3+5+3+8=19。请问该机器人能够到达多少个格子?
示例 1:
输入:m = 2, n = 3, k = 1 输出:3
示例 2:
输入:m = 3, n = 1, k = 0 输出:1
提示:
1 <= n,m <= 100
0 <= k <= 20
方法一:DFS + 哈希表
由于部分单元格不可达,因此,我们不能直接枚举所有坐标点
过程中,为了避免重复搜索同一个单元格,我们可以使用数组或哈希表记录所有访问过的节点。
时间复杂度
class Solution:
def movingCount(self, m: int, n: int, k: int) -> int:
def f(x):
s = 0
while x:
s += x % 10
x //= 10
return s
def dfs(i, j):
vis.add((i, j))
nonlocal ans
ans += 1
for a, b in pairwise(dirs):
x, y = i + a, j + b
if 0 <= x < m and 0 <= y < n and f(x) + f(y) <= k and (x, y) not in vis:
dfs(x, y)
vis = set()
ans = 0
dirs = (0, 1, 0)
dfs(0, 0)
return ans
class Solution:
def movingCount(self, m: int, n: int, k: int) -> int:
def f(x):
s = 0
while x:
s += x % 10
x //= 10
return s
def dfs(i, j):
if not (0 <= i < m) or not (0 <= j < n) or f(i) + f(j) > k or (i, j) in vis:
return 0
vis.add((i, j))
return 1 + dfs(i + 1, j) + dfs(i, j + 1)
vis = set()
return dfs(0, 0)
class Solution {
private boolean[][] vis;
private int m;
private int n;
private int k;
private int ans;
public int movingCount(int m, int n, int k) {
this.m = m;
this.n = n;
this.k = k;
vis = new boolean[m][n];
dfs(0, 0);
return ans;
}
private void dfs(int i, int j) {
vis[i][j] = true;
++ans;
int[] dirs = {1, 0, 1};
for (int l = 0; l < 2; ++l) {
int x = i + dirs[l], y = j + dirs[l + 1];
if (x >= 0 && x < m && y >= 0 && y < n && f(x) + f(y) <= k && !vis[x][y]) {
dfs(x, y);
}
}
}
private int f(int x) {
int s = 0;
for (; x > 0; x /= 10) {
s += x % 10;
}
return s;
}
}
class Solution {
private boolean[][] vis;
private int m;
private int n;
private int k;
public int movingCount(int m, int n, int k) {
this.m = m;
this.n = n;
this.k = k;
vis = new boolean[m][n];
return dfs(0, 0);
}
private int dfs(int i, int j) {
if (i >= m || j >= n || vis[i][j] || (i % 10 + i / 10 + j % 10 + j / 10) > k) {
return 0;
}
vis[i][j] = true;
return 1 + dfs(i + 1, j) + dfs(i, j + 1);
}
}
class Solution {
public:
int movingCount(int m, int n, int k) {
bool vis[m][n];
memset(vis, false, sizeof vis);
int ans = 0;
int dirs[3] = {1, 0, 1};
auto f = [](int x) {
int s = 0;
for (; x; x /= 10) {
s += x % 10;
}
return s;
};
function<void(int i, int j)> dfs = [&](int i, int j) {
vis[i][j] = true;
++ans;
for (int l = 0; l < 2; ++l) {
int x = i + dirs[l], y = j + dirs[l + 1];
if (x >= 0 && x < m && y >= 0 && y < n && f(x) + f(y) <= k && !vis[x][y]) {
dfs(x, y);
}
}
};
dfs(0, 0);
return ans;
}
};
class Solution {
public:
int movingCount(int m, int n, int k) {
bool vis[m][n];
memset(vis, false, sizeof vis);
auto f = [](int x) {
int s = 0;
for (; x; x /= 10) {
s += x % 10;
}
return s;
};
function<int(int i, int j)> dfs = [&](int i, int j) -> int {
if (i < 0 || i >= m || j < 0 || j >= n || vis[i][j] || f(i) + f(j) > k) {
return false;
}
vis[i][j] = true;
return 1 + dfs(i + 1, j) + dfs(i, j + 1);
};
return dfs(0, 0);
}
};
func movingCount(m int, n int, k int) int {
vis := make([][]bool, m)
for i := range vis {
vis[i] = make([]bool, n)
}
var dfs func(i, j int) int
dfs = func(i, j int) int {
if i >= m || j >= n || vis[i][j] || (i%10+i/10+j%10+j/10) > k {
return 0
}
vis[i][j] = true
return 1 + dfs(i+1, j) + dfs(i, j+1)
}
return dfs(0, 0)
}
func movingCount(m int, n int, k int) (ans int) {
f := func(x int) (s int) {
for ; x > 0; x /= 10 {
s += x % 10
}
return
}
vis := make([][]bool, m)
for i := range vis {
vis[i] = make([]bool, n)
}
dirs := [3]int{1, 0, 1}
var dfs func(i, j int)
dfs = func(i, j int) {
vis[i][j] = true
ans++
for l := 0; l < 2; l++ {
x, y := i+dirs[l], j+dirs[l+1]
if x >= 0 && x < m && y >= 0 && y < n && f(x)+f(y) <= k && !vis[x][y] {
dfs(x, y)
}
}
}
dfs(0, 0)
return
}
/**
* @param {number} m
* @param {number} n
* @param {number} k
* @return {number}
*/
var movingCount = function (m, n, k) {
const vis = new Array(m * n).fill(false);
let dfs = function (i, j) {
if (
i >= m ||
j >= n ||
vis[i * n + j] ||
(i % 10) + Math.floor(i / 10) + (j % 10) + Math.floor(j / 10) > k
) {
return 0;
}
vis[i * n + j] = true;
return 1 + dfs(i + 1, j) + dfs(i, j + 1);
};
return dfs(0, 0);
};
function movingCount(m: number, n: number, k: number): number {
const set = new Set();
const dfs = (i: number, j: number) => {
const key = `${i},${j}`;
if (
i === m ||
j === n ||
set.has(key) ||
`${i}${j}`.split('').reduce((r, v) => r + Number(v), 0) > k
) {
return;
}
set.add(key);
dfs(i + 1, j);
dfs(i, j + 1);
};
dfs(0, 0);
return set.size;
}
循环:
use std::collections::{HashSet, VecDeque};
impl Solution {
pub fn moving_count(m: i32, n: i32, k: i32) -> i32 {
let mut set = HashSet::new();
let mut queue = VecDeque::new();
queue.push_back([0, 0]);
while let Some([i, j]) = queue.pop_front() {
let key = format!("{},{}", i, j);
if i == m
|| j == n
|| set.contains(&key)
|| k < format!("{}{}", i, j)
.chars()
.map(|c| c.to_string().parse::<i32>().unwrap())
.sum::<i32>()
{
continue;
}
set.insert(key);
queue.push_back([i + 1, j]);
queue.push_back([i, j + 1]);
}
set.len() as i32
}
}
递归:
impl Solution {
fn dfs(sign: &mut Vec<Vec<bool>>, k: usize, i: usize, j: usize) -> i32 {
if i == sign.len()
|| j == sign[0].len()
|| sign[i][j]
|| j % 10 + j / 10 % 10 + i % 10 + i / 10 % 10 > k
{
return 0;
}
sign[i][j] = true;
1 + Self::dfs(sign, k, i + 1, j) + Self::dfs(sign, k, i, j + 1)
}
pub fn moving_count(m: i32, n: i32, k: i32) -> i32 {
let mut sign = vec![vec![false; n as usize]; m as usize];
Self::dfs(&mut sign, k as usize, 0, 0)
}
}
public class Solution {
public int MovingCount(int m, int n, int k) {
bool[,] arr = new bool[m, n];
return dfs(0, 0, m, n, k, arr);
}
public int dfs(int i, int j, int m, int n, int k, bool[,] arr) {
if (i >= m || j >= n || arr[i,j] || (i % 10 + j % 10 + i / 10 + j / 10) > k) {
return 0;
}
arr[i,j] = true;
return 1 + dfs(i+1, j, m, n, k, arr) + dfs(i, j+1, m, n, k, arr);
}
}