给你一个正整数 num
。如果 num
是一个完全平方数,则返回 true
,否则返回 false
。
完全平方数 是一个可以写成某个整数的平方的整数。换句话说,它可以写成某个整数和自身的乘积。
不能使用任何内置的库函数,如 sqrt
。
示例 1:
输入:num = 16 输出:true 解释:返回 true ,因为 4 * 4 = 16 且 4 是一个整数。
示例 2:
输入:num = 14 输出:false 解释:返回 false ,因为 3.742 * 3.742 = 14 但 3.742 不是一个整数。
提示:
1 <= num <= 231 - 1
方法一:二分查找
不断循环二分枚举数字,判断该数的平方与 num
的大小关系,进而缩短空间,继续循环直至 num
是否相等。
时间复杂度:$O(logN)$。
方法二:转换为数学问题
由于 n² = 1 + 3 + 5 + ... + (2n-1)
,对数字 num
不断减去 i = 1, 3, 5, ...
) 直至 num
不大于 0,如果最终 num
等于 0,说明是一个有效的完全平方数。
时间复杂度:$O(sqrt(N))$。
class Solution:
def isPerfectSquare(self, num: int) -> bool:
left, right = 1, num
while left < right:
mid = (left + right) >> 1
if mid * mid >= num:
right = mid
else:
left = mid + 1
return left * left == num
class Solution:
def isPerfectSquare(self, num: int) -> bool:
i = 1
while num > 0:
num -= i
i += 2
return num == 0
class Solution {
public boolean isPerfectSquare(int num) {
long left = 1, right = num;
while (left < right) {
long mid = (left + right) >>> 1;
if (mid * mid >= num) {
right = mid;
} else {
left = mid + 1;
}
}
return left * left == num;
}
}
class Solution {
public boolean isPerfectSquare(int num) {
for (int i = 1; num > 0; i += 2) {
num -= i;
}
return num == 0;
}
}
class Solution {
public:
bool isPerfectSquare(int num) {
long left = 1, right = num;
while (left < right) {
long mid = left + right >> 1;
if (mid * mid >= num)
right = mid;
else
left = mid + 1;
}
return left * left == num;
}
};
class Solution {
public:
bool isPerfectSquare(int num) {
for (int i = 1; num > 0; i += 2) num -= i;
return num == 0;
}
};
func isPerfectSquare(num int) bool {
left, right := 1, num
for left < right {
mid := (left + right) >> 1
if mid*mid >= num {
right = mid
} else {
left = mid + 1
}
}
return left*left == num
}
func isPerfectSquare(num int) bool {
for i := 1; num > 0; i += 2 {
num -= i
}
return num == 0
}
function isPerfectSquare(num: number): boolean {
let left = 1;
let right = num >> 1;
while (left < right) {
const mid = (left + right) >>> 1;
if (mid * mid < num) {
left = mid + 1;
} else {
right = mid;
}
}
return left * left === num;
}
function isPerfectSquare(num: number): boolean {
let i = 1;
while (num > 0) {
num -= i;
i += 2;
}
return num === 0;
}
use std::cmp::Ordering;
impl Solution {
pub fn is_perfect_square(num: i32) -> bool {
let num: i64 = num as i64;
let mut left = 1;
let mut right = num >> 1;
while left < right {
let mid = left + (right - left) / 2;
match (mid * mid).cmp(&num) {
Ordering::Less => left = mid + 1,
Ordering::Greater => right = mid - 1,
Ordering::Equal => return true,
}
}
left * left == num
}
}
impl Solution {
pub fn is_perfect_square(mut num: i32) -> bool {
let mut i = 1;
while num > 0 {
num -= i;
i += 2;
}
num == 0
}
}