给你一个 m x n 的网格 grid
。网格里的每个单元都代表一条街道。grid[i][j]
的街道可以是:
- 1 表示连接左单元格和右单元格的街道。
- 2 表示连接上单元格和下单元格的街道。
- 3 表示连接左单元格和下单元格的街道。
- 4 表示连接右单元格和下单元格的街道。
- 5 表示连接左单元格和上单元格的街道。
- 6 表示连接右单元格和上单元格的街道。
你最开始从左上角的单元格 (0,0)
开始出发,网格中的「有效路径」是指从左上方的单元格 (0,0)
开始、一直到右下方的 (m-1,n-1)
结束的路径。该路径必须只沿着街道走。
注意:你 不能 变更街道。
如果网格中存在有效的路径,则返回 true
,否则返回 false
。
示例 1:
输入:grid = [[2,4,3],[6,5,2]] 输出:true 解释:如图所示,你可以从 (0, 0) 开始,访问网格中的所有单元格并到达 (m - 1, n - 1) 。
示例 2:
输入:grid = [[1,2,1],[1,2,1]] 输出:false 解释:如图所示,单元格 (0, 0) 上的街道没有与任何其他单元格上的街道相连,你只会停在 (0, 0) 处。
示例 3:
输入:grid = [[1,1,2]] 输出:false 解释:你会停在 (0, 1),而且无法到达 (0, 2) 。
示例 4:
输入:grid = [[1,1,1,1,1,1,3]] 输出:true
示例 5:
输入:grid = [[2],[2],[2],[2],[2],[2],[6]] 输出:true
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 300
1 <= grid[i][j] <= 6
并查集。判断每个单元格相邻节点是否连通,是则将其合并。最后判断 grid[0][0]
与 grid[m - 1][n - 1]
是否连通。
并查集模板:
模板 1——朴素并查集:
# 初始化,p存储每个点的父节点
p = list(range(n))
# 返回x的祖宗节点
def find(x):
if p[x] != x:
# 路径压缩
p[x] = find(p[x])
return p[x]
# 合并a和b所在的两个集合
p[find(a)] = find(b)
模板 2——维护 size 的并查集:
# 初始化,p存储每个点的父节点,size只有当节点是祖宗节点时才有意义,表示祖宗节点所在集合中,点的数量
p = list(range(n))
size = [1] * n
# 返回x的祖宗节点
def find(x):
if p[x] != x:
# 路径压缩
p[x] = find(p[x])
return p[x]
# 合并a和b所在的两个集合
if find(a) != find(b):
size[find(b)] += size[find(a)]
p[find(a)] = find(b)
模板 3——维护到祖宗节点距离的并查集:
# 初始化,p存储每个点的父节点,d[x]存储x到p[x]的距离
p = list(range(n))
d = [0] * n
# 返回x的祖宗节点
def find(x):
if p[x] != x:
t = find(p[x])
d[x] += d[p[x]]
p[x] = t
return p[x]
# 合并a和b所在的两个集合
p[find(a)] = find(b)
d[find(a)] = distance
class Solution:
def hasValidPath(self, grid: List[List[int]]) -> bool:
m, n = len(grid), len(grid[0])
p = list(range(m * n))
def find(x):
if p[x] != x:
p[x] = find(p[x])
return p[x]
def left(i, j):
if j > 0 and grid[i][j - 1] in (1, 4, 6):
p[find(i * n + j)] = find(i * n + j - 1)
def right(i, j):
if j < n - 1 and grid[i][j + 1] in (1, 3, 5):
p[find(i * n + j)] = find(i * n + j + 1)
def up(i, j):
if i > 0 and grid[i - 1][j] in (2, 3, 4):
p[find(i * n + j)] = find((i - 1) * n + j)
def down(i, j):
if i < m - 1 and grid[i + 1][j] in (2, 5, 6):
p[find(i * n + j)] = find((i + 1) * n + j)
for i in range(m):
for j in range(n):
e = grid[i][j]
if e == 1:
left(i, j)
right(i, j)
elif e == 2:
up(i, j)
down(i, j)
elif e == 3:
left(i, j)
down(i, j)
elif e == 4:
right(i, j)
down(i, j)
elif e == 5:
left(i, j)
up(i, j)
else:
right(i, j)
up(i, j)
return find(0) == find(m * n - 1)
class Solution {
private int[] p;
private int[][] grid;
private int m;
private int n;
public boolean hasValidPath(int[][] grid) {
this.grid = grid;
m = grid.length;
n = grid[0].length;
p = new int[m * n];
for (int i = 0; i < p.length; ++i) {
p[i] = i;
}
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
int e = grid[i][j];
if (e == 1) {
left(i, j);
right(i, j);
} else if (e == 2) {
up(i, j);
down(i, j);
} else if (e == 3) {
left(i, j);
down(i, j);
} else if (e == 4) {
right(i, j);
down(i, j);
} else if (e == 5) {
left(i, j);
up(i, j);
} else {
right(i, j);
up(i, j);
}
}
}
return find(0) == find(m * n - 1);
}
private int find(int x) {
if (p[x] != x) {
p[x] = find(p[x]);
}
return p[x];
}
private void left(int i, int j) {
if (j > 0 && (grid[i][j - 1] == 1 || grid[i][j - 1] == 4 || grid[i][j - 1] == 6)) {
p[find(i * n + j)] = find(i * n + j - 1);
}
}
private void right(int i, int j) {
if (j < n - 1 && (grid[i][j + 1] == 1 || grid[i][j + 1] == 3 || grid[i][j + 1] == 5)) {
p[find(i * n + j)] = find(i * n + j + 1);
}
}
private void up(int i, int j) {
if (i > 0 && (grid[i - 1][j] == 2 || grid[i - 1][j] == 3 || grid[i - 1][j] == 4)) {
p[find(i * n + j)] = find((i - 1) * n + j);
}
}
private void down(int i, int j) {
if (i < m - 1 && (grid[i + 1][j] == 2 || grid[i + 1][j] == 5 || grid[i + 1][j] == 6)) {
p[find(i * n + j)] = find((i + 1) * n + j);
}
}
}
class Solution {
public:
vector<int> p;
bool hasValidPath(vector<vector<int>>& grid) {
int m = grid.size();
int n = grid[0].size();
p.resize(m * n);
for (int i = 0; i < p.size(); ++i) p[i] = i;
auto left = [&](int i, int j) {
if (j > 0 && (grid[i][j - 1] == 1 || grid[i][j - 1] == 4 || grid[i][j - 1] == 6)) {
p[find(i * n + j)] = find(i * n + j - 1);
}
};
auto right = [&](int i, int j) {
if (j < n - 1 && (grid[i][j + 1] == 1 || grid[i][j + 1] == 3 || grid[i][j + 1] == 5)) {
p[find(i * n + j)] = find(i * n + j + 1);
}
};
auto up = [&](int i, int j) {
if (i > 0 && (grid[i - 1][j] == 2 || grid[i - 1][j] == 3 || grid[i - 1][j] == 4)) {
p[find(i * n + j)] = find((i - 1) * n + j);
}
};
auto down = [&](int i, int j) {
if (i < m - 1 && (grid[i + 1][j] == 2 || grid[i + 1][j] == 5 || grid[i + 1][j] == 6)) {
p[find(i * n + j)] = find((i + 1) * n + j);
}
};
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
int e = grid[i][j];
if (e == 1) {
left(i, j);
right(i, j);
} else if (e == 2) {
up(i, j);
down(i, j);
} else if (e == 3) {
left(i, j);
down(i, j);
} else if (e == 4) {
right(i, j);
down(i, j);
} else if (e == 5) {
left(i, j);
up(i, j);
} else {
right(i, j);
up(i, j);
}
}
}
return find(0) == find(m * n - 1);
}
int find(int x) {
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
};
func hasValidPath(grid [][]int) bool {
m, n := len(grid), len(grid[0])
p := make([]int, m*n)
for i := range p {
p[i] = i
}
var find func(x int) int
find = func(x int) int {
if p[x] != x {
p[x] = find(p[x])
}
return p[x]
}
left := func(i, j int) {
if j > 0 && (grid[i][j-1] == 1 || grid[i][j-1] == 4 || grid[i][j-1] == 6) {
p[find(i*n+j)] = find(i*n + j - 1)
}
}
right := func(i, j int) {
if j < n-1 && (grid[i][j+1] == 1 || grid[i][j+1] == 3 || grid[i][j+1] == 5) {
p[find(i*n+j)] = find(i*n + j + 1)
}
}
up := func(i, j int) {
if i > 0 && (grid[i-1][j] == 2 || grid[i-1][j] == 3 || grid[i-1][j] == 4) {
p[find(i*n+j)] = find((i-1)*n + j)
}
}
down := func(i, j int) {
if i < m-1 && (grid[i+1][j] == 2 || grid[i+1][j] == 5 || grid[i+1][j] == 6) {
p[find(i*n+j)] = find((i+1)*n + j)
}
}
for i, row := range grid {
for j, e := range row {
if e == 1 {
left(i, j)
right(i, j)
} else if e == 2 {
up(i, j)
down(i, j)
} else if e == 3 {
left(i, j)
down(i, j)
} else if e == 4 {
right(i, j)
down(i, j)
} else if e == 5 {
left(i, j)
up(i, j)
} else {
right(i, j)
up(i, j)
}
}
}
return find(0) == find(m*n-1)
}