There are n
people and 40
types of hats labeled from 1
to 40
.
Given a 2D integer array hats
, where hats[i]
is a list of all hats preferred by the ith
person.
Return the number of ways that the n
people wear different hats to each other.
Since the answer may be too large, return it modulo 109 + 7
.
Example 1:
Input: hats = [[3,4],[4,5],[5]] Output: 1 Explanation: There is only one way to choose hats given the conditions. First person choose hat 3, Second person choose hat 4 and last one hat 5.
Example 2:
Input: hats = [[3,5,1],[3,5]] Output: 4 Explanation: There are 4 ways to choose hats: (3,5), (5,3), (1,3) and (1,5)
Example 3:
Input: hats = [[1,2,3,4],[1,2,3,4],[1,2,3,4],[1,2,3,4]] Output: 24 Explanation: Each person can choose hats labeled from 1 to 4. Number of Permutations of (1,2,3,4) = 24.
Constraints:
n == hats.length
1 <= n <= 10
1 <= hats[i].length <= 40
1 <= hats[i][j] <= 40
hats[i]
contains a list of unique integers.
Solution 1: Dynamic Programming
We notice that
We define
Consider
where
The final answer is
Time complexity
class Solution:
def numberWays(self, hats: List[List[int]]) -> int:
g = defaultdict(list)
for i, h in enumerate(hats):
for v in h:
g[v].append(i)
mod = 10**9 + 7
n = len(hats)
m = max(max(h) for h in hats)
f = [[0] * (1 << n) for _ in range(m + 1)]
f[0][0] = 1
for i in range(1, m + 1):
for j in range(1 << n):
f[i][j] = f[i - 1][j]
for k in g[i]:
if j >> k & 1:
f[i][j] = (f[i][j] + f[i - 1][j ^ (1 << k)]) % mod
return f[m][-1]
class Solution {
public int numberWays(List<List<Integer>> hats) {
int n = hats.size();
int m = 0;
for (var h : hats) {
for (int v : h) {
m = Math.max(m, v);
}
}
List<Integer>[] g = new List[m + 1];
Arrays.setAll(g, k -> new ArrayList<>());
for (int i = 0; i < n; ++i) {
for (int v : hats.get(i)) {
g[v].add(i);
}
}
final int mod = (int) 1e9 + 7;
int[][] f = new int[m + 1][1 << n];
f[0][0] = 1;
for (int i = 1; i <= m; ++i) {
for (int j = 0; j < 1 << n; ++j) {
f[i][j] = f[i - 1][j];
for (int k : g[i]) {
if ((j >> k & 1) == 1) {
f[i][j] = (f[i][j] + f[i - 1][j ^ (1 << k)]) % mod;
}
}
}
}
return f[m][(1 << n) - 1];
}
}
class Solution {
public:
int numberWays(vector<vector<int>>& hats) {
int n = hats.size();
int m = 0;
for (auto& h : hats) {
m = max(m, *max_element(h.begin(), h.end()));
}
vector<vector<int>> g(m + 1);
for (int i = 0; i < n; ++i) {
for (int& v : hats[i]) {
g[v].push_back(i);
}
}
const int mod = 1e9 + 7;
int f[m + 1][1 << n];
memset(f, 0, sizeof(f));
f[0][0] = 1;
for (int i = 1; i <= m; ++i) {
for (int j = 0; j < 1 << n; ++j) {
f[i][j] = f[i - 1][j];
for (int k : g[i]) {
if (j >> k & 1) {
f[i][j] = (f[i][j] + f[i - 1][j ^ (1 << k)]) % mod;
}
}
}
}
return f[m][(1 << n) - 1];
}
};
func numberWays(hats [][]int) int {
n := len(hats)
m := 0
for _, h := range hats {
for _, v := range h {
m = max(m, v)
}
}
g := make([][]int, m+1)
for i, h := range hats {
for _, v := range h {
g[v] = append(g[v], i)
}
}
const mod = 1e9 + 7
f := make([][]int, m+1)
for i := range f {
f[i] = make([]int, 1<<n)
}
f[0][0] = 1
for i := 1; i <= m; i++ {
for j := 0; j < 1<<n; j++ {
f[i][j] = f[i-1][j]
for _, k := range g[i] {
if j>>k&1 == 1 {
f[i][j] = (f[i][j] + f[i-1][j^(1<<k)]) % mod
}
}
}
}
return f[m][(1<<n)-1]
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
function numberWays(hats: number[][]): number {
const n = hats.length;
const m = Math.max(...hats.flat());
const g: number[][] = Array.from({ length: m + 1 }, () => []);
for (let i = 0; i < n; ++i) {
for (const v of hats[i]) {
g[v].push(i);
}
}
const f: number[][] = Array.from({ length: m + 1 }, () =>
Array.from({ length: 1 << n }, () => 0),
);
f[0][0] = 1;
const mod = 1e9 + 7;
for (let i = 1; i <= m; ++i) {
for (let j = 0; j < 1 << n; ++j) {
f[i][j] = f[i - 1][j];
for (const k of g[i]) {
if (((j >> k) & 1) === 1) {
f[i][j] = (f[i][j] + f[i - 1][j ^ (1 << k)]) % mod;
}
}
}
}
return f[m][(1 << n) - 1];
}