You are given a string s
(0-indexed). You are asked to perform the following operation on s
until you get a sorted string:
- Find the largest index
i
such that1 <= i < s.length
ands[i] < s[i - 1]
. - Find the largest index
j
such thati <= j < s.length
ands[k] < s[i - 1]
for all the possible values ofk
in the range[i, j]
inclusive. - Swap the two characters at indices
i - 1
andj
. - Reverse the suffix starting at index
i
.
Return the number of operations needed to make the string sorted. Since the answer can be too large, return it modulo 109 + 7
.
Example 1:
Input: s = "cba" Output: 5 Explanation: The simulation goes as follows: Operation 1: i=2, j=2. Swap s[1] and s[2] to get s="cab", then reverse the suffix starting at 2. Now, s="cab". Operation 2: i=1, j=2. Swap s[0] and s[2] to get s="bac", then reverse the suffix starting at 1. Now, s="bca". Operation 3: i=2, j=2. Swap s[1] and s[2] to get s="bac", then reverse the suffix starting at 2. Now, s="bac". Operation 4: i=1, j=1. Swap s[0] and s[1] to get s="abc", then reverse the suffix starting at 1. Now, s="acb". Operation 5: i=2, j=2. Swap s[1] and s[2] to get s="abc", then reverse the suffix starting at 2. Now, s="abc".
Example 2:
Input: s = "aabaa" Output: 2 Explanation: The simulation goes as follows: Operation 1: i=3, j=4. Swap s[2] and s[4] to get s="aaaab", then reverse the substring starting at 3. Now, s="aaaba". Operation 2: i=4, j=4. Swap s[3] and s[4] to get s="aaaab", then reverse the substring starting at 4. Now, s="aaaab".
Constraints:
1 <= s.length <= 3000
s
consists only of lowercase English letters.
n = 3010
mod = 10**9 + 7
f = [1] + [0] * n
g = [1] + [0] * n
for i in range(1, n):
f[i] = f[i - 1] * i % mod
g[i] = pow(f[i], mod - 2, mod)
class Solution:
def makeStringSorted(self, s: str) -> int:
cnt = Counter(s)
ans, n = 0, len(s)
for i, c in enumerate(s):
m = sum(v for a, v in cnt.items() if a < c)
t = f[n - i - 1] * m
for v in cnt.values():
t = t * g[v] % mod
ans = (ans + t) % mod
cnt[c] -= 1
if cnt[c] == 0:
cnt.pop(c)
return ans
class Solution {
private static final int N = 3010;
private static final int MOD = (int) 1e9 + 7;
private static final long[] f = new long[N];
private static final long[] g = new long[N];
static {
f[0] = 1;
g[0] = 1;
for (int i = 1; i < N; ++i) {
f[i] = f[i - 1] * i % MOD;
g[i] = qmi(f[i], MOD - 2);
}
}
public static long qmi(long a, int k) {
long res = 1;
while (k != 0) {
if ((k & 1) == 1) {
res = res * a % MOD;
}
k >>= 1;
a = a * a % MOD;
}
return res;
}
public int makeStringSorted(String s) {
int[] cnt = new int[26];
int n = s.length();
for (int i = 0; i < n; ++i) {
++cnt[s.charAt(i) - 'a'];
}
long ans = 0;
for (int i = 0; i < n; ++i) {
int m = 0;
for (int j = s.charAt(i) - 'a' - 1; j >= 0; --j) {
m += cnt[j];
}
long t = m * f[n - i - 1] % MOD;
for (int v : cnt) {
t = t * g[v] % MOD;
}
--cnt[s.charAt(i) - 'a'];
ans = (ans + t + MOD) % MOD;
}
return (int) ans;
}
}
const int N = 3010;
const int MOD = 1e9 + 7;
long f[N];
long g[N];
long qmi(long a, int k) {
long res = 1;
while (k != 0) {
if ((k & 1) == 1) {
res = res * a % MOD;
}
k >>= 1;
a = a * a % MOD;
}
return res;
}
int init = []() {
f[0] = g[0] = 1;
for (int i = 1; i < N; ++i) {
f[i] = f[i - 1] * i % MOD;
g[i] = qmi(f[i], MOD - 2);
}
return 0;
}();
class Solution {
public:
int makeStringSorted(string s) {
int cnt[26]{};
for (char& c : s) {
++cnt[c - 'a'];
}
int n = s.size();
long ans = 0;
for (int i = 0; i < n; ++i) {
int m = 0;
for (int j = s[i] - 'a' - 1; ~j; --j) {
m += cnt[j];
}
long t = m * f[n - i - 1] % MOD;
for (int& v : cnt) {
t = t * g[v] % MOD;
}
ans = (ans + t + MOD) % MOD;
--cnt[s[i] - 'a'];
}
return ans;
}
};
const n = 3010
const mod = 1e9 + 7
var f = make([]int, n)
var g = make([]int, n)
func qmi(a, k int) int {
res := 1
for k != 0 {
if k&1 == 1 {
res = res * a % mod
}
k >>= 1
a = a * a % mod
}
return res
}
func init() {
f[0], g[0] = 1, 1
for i := 1; i < n; i++ {
f[i] = f[i-1] * i % mod
g[i] = qmi(f[i], mod-2)
}
}
func makeStringSorted(s string) (ans int) {
cnt := [26]int{}
for _, c := range s {
cnt[c-'a']++
}
for i, c := range s {
m := 0
for j := int(c-'a') - 1; j >= 0; j-- {
m += cnt[j]
}
t := m * f[len(s)-i-1] % mod
for _, v := range cnt {
t = t * g[v] % mod
}
ans = (ans + t + mod) % mod
cnt[c-'a']--
}
return
}