给你一个按 非递减顺序 排列的数组 nums
,返回正整数数目和负整数数目中的最大值。
- 换句话讲,如果
nums
中正整数的数目是pos
,而负整数的数目是neg
,返回pos
和neg
二者中的最大值。
注意:0
既不是正整数也不是负整数。
示例 1:
输入:nums = [-2,-1,-1,1,2,3] 输出:3 解释:共有 3 个正整数和 3 个负整数。计数得到的最大值是 3 。
示例 2:
输入:nums = [-3,-2,-1,0,0,1,2] 输出:3 解释:共有 2 个正整数和 3 个负整数。计数得到的最大值是 3 。
示例 3:
输入:nums = [5,20,66,1314] 输出:4 解释:共有 4 个正整数和 0 个负整数。计数得到的最大值是 4 。
提示:
1 <= nums.length <= 2000
-2000 <= nums[i] <= 2000
nums
按 非递减顺序 排列。
进阶:你可以设计并实现时间复杂度为 O(log(n))
的算法解决此问题吗?
方法一:遍历
遍历数组,统计正整数和负整数的个数
时间复杂度
方法二:二分查找
由于数组是按非递减顺序排列的,因此可以使用二分查找找到第一个大于等于
时间复杂度
class Solution:
def maximumCount(self, nums: List[int]) -> int:
a = sum(v > 0 for v in nums)
b = sum(v < 0 for v in nums)
return max(a, b)
class Solution:
def maximumCount(self, nums: List[int]) -> int:
a = len(nums) - bisect_left(nums, 1)
b = bisect_left(nums, 0)
return max(a, b)
class Solution {
public int maximumCount(int[] nums) {
int a = 0, b = 0;
for (int v : nums) {
if (v > 0) {
++a;
}
if (v < 0) {
++b;
}
}
return Math.max(a, b);
}
}
class Solution {
public int maximumCount(int[] nums) {
int a = nums.length - search(nums, 1);
int b = search(nums, 0);
return Math.max(a, b);
}
private int search(int[] nums, int x) {
int left = 0, right = nums.length;
while (left < right) {
int mid = (left + right) >> 1;
if (nums[mid] >= x) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
}
class Solution {
public:
int maximumCount(vector<int>& nums) {
int a = 0, b = 0;
for (int& v : nums) {
if (v > 0) {
++a;
}
if (v < 0) {
++b;
}
}
return max(a, b);
}
};
class Solution {
public:
int maximumCount(vector<int>& nums) {
int a = nums.end() - lower_bound(nums.begin(), nums.end(), 1);
int b = lower_bound(nums.begin(), nums.end(), 0) - nums.begin();
return max(a, b);
}
};
func maximumCount(nums []int) int {
a, b := 0, 0
for _, v := range nums {
if v > 0 {
a++
}
if v < 0 {
b++
}
}
return max(a, b)
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
func maximumCount(nums []int) int {
a := len(nums) - sort.SearchInts(nums, 1)
b := sort.SearchInts(nums, 0)
return max(a, b)
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
function maximumCount(nums: number[]): number {
const count = [0, 0];
for (const num of nums) {
if (num < 0) {
count[0]++;
} else if (num > 0) {
count[1]++;
}
}
return Math.max(...count);
}
function maximumCount(nums: number[]): number {
const search = (target: number) => {
let left = 0;
let right = n;
while (left < right) {
const mid = (left + right) >>> 1;
if (nums[mid] < target) {
left = mid + 1;
} else {
right = mid;
}
}
return left;
};
const n = nums.length;
const i = search(0);
const j = search(1);
return Math.max(i, n - j);
}
impl Solution {
pub fn maximum_count(nums: Vec<i32>) -> i32 {
let mut count = [0, 0];
for &num in nums.iter() {
if num < 0 {
count[0] += 1;
} else if num > 0 {
count[1] += 1;
}
}
*count.iter().max().unwrap()
}
}
impl Solution {
fn search(nums: &Vec<i32>, target: i32) -> usize {
let mut left = 0;
let mut right = nums.len();
while left < right {
let mid = (left + right) >> 1;
if nums[mid] < target {
left = mid + 1;
} else {
right = mid;
}
}
left
}
pub fn maximum_count(nums: Vec<i32>) -> i32 {
let n = nums.len();
let i = Self::search(&nums, 0);
let j = Self::search(&nums, 1);
i.max(n - j) as i32
}
}
impl Solution {
pub fn maximum_count(nums: Vec<i32>) -> i32 {
let mut a = 0;
let mut b = 0;
for n in nums {
if n > 0 {
a += 1;
} else if n < 0 {
b += 1
}
}
std::cmp::max(a, b)
}
}
#define max(a, b) (((a) > (b)) ? (a) : (b))
int maximumCount(int* nums, int numsSize) {
int count[2] = {0};
for (int i = 0; i < numsSize; i++) {
if (nums[i] < 0) {
count[0]++;
} else if (nums[i] > 0) {
count[1]++;
}
}
return max(count[0], count[1]);
}
#define max(a, b) (((a) > (b)) ? (a) : (b))
int search(int* nums, int numsSize, int target) {
int left = 0;
int right = numsSize;
while (left < right) {
int mid = (left + right) >> 1;
if (nums[mid] < target) {
left = mid + 1;
} else {
right = mid;
}
}
return left;
}
int maximumCount(int* nums, int numsSize) {
int i = search(nums, numsSize, 0);
int j = search(nums, numsSize, 1);
return max(i, numsSize - j);
}