-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtemplates.py
750 lines (645 loc) · 25.3 KB
/
templates.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
x_template = '''
# --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------
import os
from datasets.imdb import imdb
import datasets.ds_utils as ds_utils
import xml.etree.ElementTree as ET
import numpy as np
import scipy.sparse
import scipy.io as sio
import utils.cython_bbox
import cPickle
import subprocess
import uuid
from voc_eval import voc_eval
#+
from MMICC_eval import MMICC_eval #F1 F2
import errno
from fast_rcnn.config import cfg
class MMICC(imdb): #F3
def __init__(self, image_set, devkit_path): #M
imdb.__init__(self, image_set) #M
self._image_set = image_set
self._devkit_path = devkit_path #M
self._data_path = os.path.join(self._devkit_path, 'data') #M
self._classes = ('__background__', # always index 0
QYCC) #M F4
self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes)))
self._image_ext = '.jpg'
self._image_index = self._load_image_set_index()
# Default to roidb handler
self._roidb_handler = self.selective_search_roidb
self._salt = str(uuid.uuid4())
self._comp_id = 'comp4'
# DATASET specific config options
self.config = {'cleanup' : True,
'use_salt' : True,
'use_diff' : False,
'top_k' : 2000, #M
'matlab_eval' : False,
'rpn_file' : None,
'min_size' : 2}
assert os.path.exists(self._devkit_path), \\
'Devkit path does not exist: {}'.format(self._devkit_path)
assert os.path.exists(self._data_path), \\
'Path does not exist: {}'.format(self._data_path)
def image_path_at(self, i):
"""
Return the absolute path to image i in the image sequence.
"""
return self.image_path_from_index(self._image_index[i])
def image_path_from_index(self, index):
"""
Construct an image path from the image's "index" identifier.
"""
image_path = os.path.join(self._data_path, 'JPEGImages',
index + self._image_ext)
assert os.path.exists(image_path), \\
'Path does not exist: {}'.format(image_path)
return image_path
def _load_image_set_index(self):
"""
Load the indexes listed in this dataset's image set file.
"""
# Example path to image set file:
# self._data_path + /ImageSets/Main/val.txt
image_set_file = os.path.join(self._data_path, 'ImageSets', 'Main',
self._image_set + '.txt') #leave unchanged
assert os.path.exists(image_set_file), \\
'Path does not exist: {}'.format(image_set_file)
with open(image_set_file) as f:
image_index = [x.strip() for x in f.readlines()]
return image_index
def _get_default_path(self):
"""
Return the default path where PASCAL VOC is expected to be installed.
"""
return os.path.join(cfg.DATA_DIR, 'VOCdevkit' + self._year)
def gt_roidb(self):
"""
Return the database of ground-truth regions of interest.
This function loads/saves from/to a cache file to speed up future calls.
"""
cache_file = os.path.join(self.cache_path, self.name + '_gt_roidb.pkl')
if os.path.exists(cache_file):
with open(cache_file, 'rb') as fid:
roidb = cPickle.load(fid)
print '{} gt roidb loaded from {}'.format(self.name, cache_file)
return roidb
gt_roidb = [self._load_pascal_annotation(index)
for index in self.image_index]
with open(cache_file, 'wb') as fid:
cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL)
print 'wrote gt roidb to {}'.format(cache_file)
return gt_roidb
def selective_search_roidb(self):
"""
Return the database of selective search regions of interest.
Ground-truth ROIs are also included.
This function loads/saves from/to a cache file to speed up future calls.
"""
cache_file = os.path.join(self.cache_path,
self.name + '_selective_search_roidb.pkl')
if os.path.exists(cache_file):
with open(cache_file, 'rb') as fid:
roidb = cPickle.load(fid)
print '{} ss roidb loaded from {}'.format(self.name, cache_file)
return roidb
if int(self._year) == 2007 or self._image_set != 'test':
gt_roidb = self.gt_roidb()
ss_roidb = self._load_selective_search_roidb(gt_roidb)
roidb = imdb.merge_roidbs(gt_roidb, ss_roidb)
else:
roidb = self._load_selective_search_roidb(None)
with open(cache_file, 'wb') as fid:
cPickle.dump(roidb, fid, cPickle.HIGHEST_PROTOCOL)
print 'wrote ss roidb to {}'.format(cache_file)
return roidb
def rpn_roidb(self):
if int(self._year) == 2007 or self._image_set != 'test':
gt_roidb = self.gt_roidb()
rpn_roidb = self._load_rpn_roidb(gt_roidb)
roidb = imdb.merge_roidbs(gt_roidb, rpn_roidb)
else:
roidb = self._load_rpn_roidb(None)
return roidb
def _load_rpn_roidb(self, gt_roidb):
filename = self.config['rpn_file']
print 'loading {}'.format(filename)
assert os.path.exists(filename), \\
'rpn data not found at: {}'.format(filename)
with open(filename, 'rb') as f:
box_list = cPickle.load(f)
return self.create_roidb_from_box_list(box_list, gt_roidb)
def _load_selective_search_roidb(self, gt_roidb):
filename = os.path.abspath(os.path.join(cfg.DATA_DIR,
'selective_search_data',
self.name + '.mat'))
assert os.path.exists(filename), \\
'Selective search data not found at: {}'.format(filename)
raw_data = sio.loadmat(filename)['boxes'].ravel()
box_list = []
for i in xrange(raw_data.shape[0]):
boxes = raw_data[i][:, (1, 0, 3, 2)] - 1
keep = ds_utils.unique_boxes(boxes)
boxes = boxes[keep, :]
keep = ds_utils.filter_small_boxes(boxes, self.config['min_size'])
boxes = boxes[keep, :]
box_list.append(boxes)
return self.create_roidb_from_box_list(box_list, gt_roidb)
def _load_pascal_annotation(self, index):
"""
Load image and bounding boxes info from XML file in the PASCAL VOC
format.
"""
filename = os.path.join(self._data_path, 'Annotations', index + '.xml')
tree = ET.parse(filename)
objs = tree.findall('object')
#M: find img size
img_size = tree.find('size')
img_width = int(img_size.find('width').text)
img_height = int(img_size.find('height').text)
if not self.config['use_diff']:
# Exclude the samples labeled as difficult
non_diff_objs = [
obj for obj in objs if int(obj.find('difficult').text) == 0]
# if len(non_diff_objs) != len(objs):
# print 'Removed {} difficult objects'.format(
# len(objs) - len(non_diff_objs))
objs = non_diff_objs
num_objs = len(objs)
boxes = np.zeros((num_objs, 4), dtype=np.uint16)
gt_classes = np.zeros((num_objs), dtype=np.int32)
overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32)
# "Seg" area for pascal is just the box area
seg_areas = np.zeros((num_objs), dtype=np.float32)
# Load object bounding boxes into a data frame.
for ix, obj in enumerate(objs):
bbox = obj.find('bndbox')
# Make pixel indexes 0-based
x1 = float(bbox.find('xmin').text) - 1
y1 = float(bbox.find('ymin').text) - 1
x2 = float(bbox.find('xmax').text) - 1
y2 = float(bbox.find('ymax').text) - 1
#M: clip
x1 = np.clip(x1, 0.0, img_width - 1.0)
x2 = np.clip(x2, 0.0, img_width - 1.0)
y1 = np.clip(y1, 0.0, img_height - 1.0)
y2 = np.clip(y2, 0.0, img_height - 1.0)
cls = self._class_to_ind[obj.find('name').text.lower().strip()]
boxes[ix, :] = [x1, y1, x2, y2]
gt_classes[ix] = cls
overlaps[ix, cls] = 1.0
seg_areas[ix] = (x2 - x1 + 1) * (y2 - y1 + 1)
overlaps = scipy.sparse.csr_matrix(overlaps)
return {'boxes' : boxes,
'gt_classes': gt_classes,
'gt_overlaps' : overlaps,
'flipped' : False,
'seg_areas' : seg_areas}
def _get_comp_id(self):
comp_id = (self._comp_id + '_' + self._salt if self.config['use_salt']
else self._comp_id)
return comp_id
def _get_MMICC_results_file_template(self): #F5
# VOCdevkit/results/VOC2007/Main/<comp_id>_det_test_aeroplane.txt
filename = self._get_comp_id() + '_det_' + self._image_set + '_{:s}.txt'
try:
os.mkdir(self._devkit_path + '/results')
except OSError as e:
if e.errno == errno.EEXIST:
pass
else:
raise e
path = os.path.join(
self._devkit_path,
'results',
filename)
# old version
# path = os.path.join(
# self._devkit_path,
# 'results',
# 'VOC' + self._year,
# 'Main',
# filename)
#
return path
def _write_MMICC_results_file(self, all_boxes): #F6
for cls_ind, cls in enumerate(self.classes):
if cls == '__background__':
continue
print 'Writing {} VOC results file'.format(cls)
filename = self._get_MMICC_results_file_template().format(cls) #F7
with open(filename, 'wt') as f:
for im_ind, index in enumerate(self.image_index):
dets = all_boxes[cls_ind][im_ind]
if dets == []:
continue
# the VOCdevkit expects 1-based indices
for k in xrange(dets.shape[0]):
f.write('{:s} {:.3f} {:.1f} {:.1f} {:.1f} {:.1f}\\n'.
format(index, dets[k, -1],
dets[k, 0] + 1, dets[k, 1] + 1,
dets[k, 2] + 1, dets[k, 3] + 1))
def _do_python_eval(self, output_dir = 'output'):
annopath = os.path.join(
self._data_path,
'Annotations',
'{:s}.xml')
imagesetfile = os.path.join(
self._data_path,
'ImageSets',
'Main',
self._image_set + '.txt')
cachedir = os.path.join(self._devkit_path, 'annotations_cache')
aps = []
# The PASCAL VOC metric changed in 2010
if not os.path.isdir(output_dir):
os.mkdir(output_dir)
for i, cls in enumerate(self._classes):
if cls == '__background__':
continue
filename = self._get_MMICC_results_file_template().format(cls) #F8
rec, prec, ap = MMICC_eval( #F9
filename, annopath, imagesetfile, cls, cachedir, ovthresh=0.5)
aps += [ap]
print('AP for {} = {:.4f}'.format(cls, ap))
with open(os.path.join(output_dir, cls + '_pr.pkl'), 'w') as f:
cPickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f)
print('Mean AP = {:.4f}'.format(np.mean(aps)))
print('~~~~~~~~')
print('Results:')
for ap in aps:
print('{:.3f}'.format(ap))
print('{:.3f}'.format(np.mean(aps)))
print('~~~~~~~~')
print('')
print('--------------------------------------------------------------')
print('Results computed with the **unofficial** Python eval code.')
print('Results should be very close to the official MATLAB eval code.')
print('Recompute with `./tools/reval.py --matlab ...` for your paper.')
print('-- Thanks, The Management')
print('--------------------------------------------------------------')
def _do_matlab_eval(self, output_dir='output'):
print '-----------------------------------------------------'
print 'Computing results with the official MATLAB eval code.'
print '-----------------------------------------------------'
path = os.path.join(cfg.ROOT_DIR, 'lib', 'datasets',
'VOCdevkit-matlab-wrapper')
cmd = 'cd {} && '.format(path)
cmd += '{:s} -nodisplay -nodesktop '.format(cfg.MATLAB)
cmd += '-r "dbstop if error; '
cmd += 'voc_eval(\\\'{:s}\\\',\\\'{:s}\\\',\\\'{:s}\\\',\\\'{:s}\\\'); quit;"' \\
.format(self._devkit_path, self._get_comp_id(),
self._image_set, output_dir)
print('Running:\\n{}'.format(cmd))
status = subprocess.call(cmd, shell=True)
def evaluate_detections(self, all_boxes, output_dir):
self._write_MMICC_results_file(all_boxes) #F10
self._do_python_eval(output_dir)
if self.config['matlab_eval']:
self._do_matlab_eval(output_dir)
if self.config['cleanup']:
for cls in self._classes:
if cls == '__background__':
continue
filename = self._get_MMICC_results_file_template().format(cls)#F11
os.remove(filename)
def competition_mode(self, on):
if on:
self.config['use_salt'] = False
self.config['cleanup'] = False
else:
self.config['use_salt'] = True
self.config['cleanup'] = True
if __name__ == '__main__':
from datasets.pascal_voc import pascal_voc
d = pascal_voc('trainval', '2007')
res = d.roidb
from IPython import embed; embed()
'''
eval_template='''
# --------------------------------------------------------
# Fast/er R-CNN
# Licensed under The MIT License [see LICENSE for details]
# Written by Bharath Hariharan
# --------------------------------------------------------
import xml.etree.ElementTree as ET
import os
import cPickle
import numpy as np
def parse_rec(filename):
""" Parse a xml file """
tree = ET.parse(filename)
objects = []
for obj in tree.findall('object'):
obj_struct = {}
obj_struct['name'] = obj.find('name').text
obj_struct['pose'] = obj.find('pose').text
obj_struct['truncated'] = int(obj.find('truncated').text)
obj_struct['difficult'] = int(obj.find('difficult').text)
bbox = obj.find('bndbox')
#orignal x,y in VOC is int. But x,y in here may be float
# obj_struct['bbox'] = [int(bbox.find('xmin').text),
# int(bbox.find('ymin').text),
# int(bbox.find('xmax').text),
# int(bbox.find('ymax').text)]
#
obj_struct['bbox'] = [float(bbox.find('xmin').text),
float(bbox.find('ymin').text),
float(bbox.find('xmax').text),
float(bbox.find('ymax').text)]
objects.append(obj_struct)
return objects
# modify
def MMICC_ap(rec, prec, use_07_metric=False):
""" ap = MMICC_ap(rec, prec, [use_07_metric])
Compute VOC AP given precision and recall.
If use_07_metric is true, uses the
VOC 07 11 point method (default:False).
"""
if use_07_metric:
# 11 point metric
ap = 0.
for t in np.arange(0., 1.1, 0.1):
if np.sum(rec >= t) == 0:
p = 0
else:
p = np.max(prec[rec >= t])
ap = ap + p / 11.
else:
# correct AP calculation
# first append sentinel values at the end
mrec = np.concatenate(([0.], rec, [1.]))
mpre = np.concatenate(([0.], prec, [0.]))
# compute the precision envelope
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]
# and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
def MMICC_eval(detpath,
annopath,
imagesetfile,
classname,
cachedir,
ovthresh=0.5,
use_07_metric=False):
"""rec, prec, ap = MMICC_eval(detpath,
annopath,
imagesetfile,
classname,
[ovthresh],
[use_07_metric])
Top level function that does the PASCAL VOC evaluation.
detpath: Path to detections
detpath.format(classname) should produce the detection results file.
annopath: Path to annotations
annopath.format(imagename) should be the xml annotations file.
imagesetfile: Text file containing the list of images, one image per line.
classname: Category name (duh)
cachedir: Directory for caching the annotations
[ovthresh]: Overlap threshold (default = 0.5)
[use_07_metric]: Whether to use VOC07's 11 point AP computation
(default False)
"""
# assumes detections are in detpath.format(classname)
# assumes annotations are in annopath.format(imagename)
# assumes imagesetfile is a text file with each line an image name
# cachedir caches the annotations in a pickle file
# first load gt
if not os.path.isdir(cachedir):
os.mkdir(cachedir)
cachefile = os.path.join(cachedir, 'annots.pkl')
# read list of images
with open(imagesetfile, 'r') as f:
lines = f.readlines()
imagenames = [x.strip() for x in lines]
if not os.path.isfile(cachefile):
# load annots
recs = {}
for i, imagename in enumerate(imagenames):
recs[imagename] = parse_rec(annopath.format(imagename))
if i % 100 == 0:
print 'Reading annotation for {:d}/{:d}'.format(
i + 1, len(imagenames))
# save
print 'Saving cached annotations to {:s}'.format(cachefile)
with open(cachefile, 'w') as f:
cPickle.dump(recs, f)
else:
# load
with open(cachefile, 'r') as f:
recs = cPickle.load(f)
# extract gt objects for this class
class_recs = {}
npos = 0
for imagename in imagenames:
R = [obj for obj in recs[imagename] if obj['name'] == classname]
bbox = np.array([x['bbox'] for x in R])
difficult = np.array([x['difficult'] for x in R]).astype(np.bool)
det = [False] * len(R)
npos = npos + sum(~difficult)
class_recs[imagename] = {'bbox': bbox,
'difficult': difficult,
'det': det}
# read dets
detfile = detpath.format(classname)
with open(detfile, 'r') as f:
lines = f.readlines()
splitlines = [x.strip().split(' ') for x in lines]
image_ids = [x[0] for x in splitlines]
confidence = np.array([float(x[1]) for x in splitlines])
BB = np.array([[float(z) for z in x[2:]] for x in splitlines])
# sort by confidence
sorted_ind = np.argsort(-confidence)
sorted_scores = np.sort(-confidence)
BB = BB[sorted_ind, :]
image_ids = [image_ids[x] for x in sorted_ind]
# go down dets and mark TPs and FPs
nd = len(image_ids)
tp = np.zeros(nd)
fp = np.zeros(nd)
for d in range(nd):
R = class_recs[image_ids[d]]
bb = BB[d, :].astype(float)
ovmax = -np.inf
BBGT = R['bbox'].astype(float)
if BBGT.size > 0:
# compute overlaps
# intersection
ixmin = np.maximum(BBGT[:, 0], bb[0])
iymin = np.maximum(BBGT[:, 1], bb[1])
ixmax = np.minimum(BBGT[:, 2], bb[2])
iymax = np.minimum(BBGT[:, 3], bb[3])
iw = np.maximum(ixmax - ixmin + 1., 0.)
ih = np.maximum(iymax - iymin + 1., 0.)
inters = iw * ih
# union
uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) +
(BBGT[:, 2] - BBGT[:, 0] + 1.) *
(BBGT[:, 3] - BBGT[:, 1] + 1.) - inters)
overlaps = inters / uni
ovmax = np.max(overlaps)
jmax = np.argmax(overlaps)
if ovmax > ovthresh:
if not R['difficult'][jmax]:
if not R['det'][jmax]:
tp[d] = 1.
R['det'][jmax] = 1
else:
fp[d] = 1.
else:
fp[d] = 1.
# compute precision recall
fp = np.cumsum(fp)
tp = np.cumsum(tp)
rec = tp / float(npos)
# avoid divide by zero in case the first detection matches a difficult
# ground truth
prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
ap = MMICC_ap(rec, prec, use_07_metric)
return rec, prec, ap
'''
fac_template='''
# --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------
"""Factory method for easily getting imdbs by name."""
__sets = {}
from datasets.pascal_voc import pascal_voc
from datasets.coco import coco
from datasets.MMICC import MMICC
import numpy as np
#Set up MMICC
MMICC_devkit_path = 'DEVKITPATH'
for split in ['train', 'val', 'test']:
name = '{}_{}'.format('MMICC', split)
__sets[name] = (lambda split=split: MMICC(split, MMICC_devkit_path))
# Set up voc_<year>_<split> using selective search "fast" mode
for year in ['2007', '2012']:
for split in ['train', 'val', 'trainval', 'test']:
name = 'voc_{}_{}'.format(year, split)
__sets[name] = (lambda split=split, year=year: pascal_voc(split, year))
# Set up coco_2014_<split>
for year in ['2014']:
for split in ['train', 'val', 'minival', 'valminusminival']:
name = 'coco_{}_{}'.format(year, split)
__sets[name] = (lambda split=split, year=year: coco(split, year))
# Set up coco_2015_<split>
for year in ['2015']:
for split in ['test', 'test-dev']:
name = 'coco_{}_{}'.format(year, split)
__sets[name] = (lambda split=split, year=year: coco(split, year))
def get_imdb(name):
"""Get an imdb (image database) by name."""
if not __sets.has_key(name):
raise KeyError('Unknown dataset: {}'.format(name))
return __sets[name]()
def list_imdbs():
"""List all registered imdbs."""
return __sets.keys()
'''
sh_template = '''
#!/bin/bash
# Usage:
# ./experiments/scripts/faster_rcnn_end2end.sh GPU NET DATASET [options args to {train,test}_net.py]
# DATASET is either pascal_voc or coco.
#
# Example:
# ./experiments/scripts/faster_rcnn_end2end.sh 0 VGG_CNN_M_1024 pascal_voc \
# --set EXP_DIR foobar RNG_SEED 42 TRAIN.SCALES "[400, 500, 600, 700]"
set -x
set -e
export PYTHONUNBUFFERED="True"
GPU_ID=$1
NET=$2
NET_lc=${NET,,}
DATASET=$3
array=( $@ )
len=${#array[@]}
EXTRA_ARGS=${array[@]:3:$len}
EXTRA_ARGS_SLUG=${EXTRA_ARGS// /_}
case $DATASET in
pascal_voc)
TRAIN_IMDB="voc_2007_trainval"
TEST_IMDB="voc_2007_test"
PT_DIR="pascal_voc"
ITERS=70000
;;
MMICC)
TRAIN_IMDB="MMICC_train"
TEST_IMDB="MMICC_test"
PT_DIR="MMICC"
ITERS=70000
;;
coco)
# This is a very long and slow training schedule
# You can probably use fewer iterations and reduce the
# time to the LR drop (set in the solver to 350,000 iterations).
TRAIN_IMDB="coco_2014_train"
TEST_IMDB="coco_2014_minival"
PT_DIR="coco"
ITERS=490000
;;
*)
echo "No dataset given"
exit
;;
esac
LOG="experiments/logs/faster_rcnn_end2end_${NET}_${EXTRA_ARGS_SLUG}.txt.`date +'%Y-%m-%d_%H-%M-%S'`"
exec &> >(tee -a "$LOG")
echo Logging output to "$LOG"
echo "GPU_ID ${GPU_ID}"
echo "PT_DIR ${PT_DIR}"
echo "NET ${NET}"
echo "TRAIN_IMDB ${TRAIN_IMDB}"
time ./tools/train_net.py --gpu ${GPU_ID} \
--solver models/${PT_DIR}/${NET}/faster_rcnn_end2end/solver.prototxt \
--weights data/imagenet_models/${NET}.v2.caffemodel \
--imdb ${TRAIN_IMDB} \
--iters ${ITERS} \
--cfg experiments/cfgs/MMICC_end2end.yml \
${EXTRA_ARGS}
set +x
NET_FINAL=`grep -B 1 "done solving" ${LOG} | grep "Wrote snapshot" | awk '{print $4}'`
set -x
time ./tools/test_net.py --gpu ${GPU_ID} \
--def models/${PT_DIR}/${NET}/faster_rcnn_end2end/test.prototxt \
--net ${NET_FINAL} \
--imdb ${TEST_IMDB} \
--cfg experiments/cfgs/faster_rcnn_end2end.yml \
${EXTRA_ARGS}
'''
short_fac_template = '''
#Set up MMICC
from datasets.MMICC import MMICC
MMICC_devkit_path = 'DEVKITPATH'
for split in ['train', 'val', 'test']:
name = '{}_{}'.format('MMICC', split)
__sets[name] = (lambda split=split: MMICC(split, MMICC_devkit_path))
'''
cfg_template = '''
EXP_DIR: MMICC
TRAIN:
HAS_RPN: True
IMS_PER_BATCH: 1
BBOX_NORMALIZE_TARGETS_PRECOMPUTED: True
RPN_POSITIVE_OVERLAP: 0.7
RPN_BATCHSIZE: 256
PROPOSAL_METHOD: gt
BG_THRESH_LO: 0.0
TEST:
HAS_RPN: True
'''