title | description | author | ms.author | ms.date | ms.service | ms.subservice | ms.topic | keywords | monikerRange | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
loadImage function (MicrosoftML) |
Loads image data (MicrosoftML). |
rothja |
jroth |
07/15/2019 |
sql |
machine-learning |
reference |
|
>=sql-server-2016||>=sql-server-linux-ver15 |
Loads image data.
loadImage(vars)
A named list of character vectors of input variable names and the name of the output variable. Note that the input variables must be of the same type. For one-to-one mappings between input and output variables, a named character vector can be used.
loadImage
loads images from paths.
A maml
object defining the transform.
Microsoft Corporation Microsoft Technical Support
train <- data.frame(Path = c(system.file("help/figures/RevolutionAnalyticslogo.png", package = "MicrosoftML")), Label = c(TRUE), stringsAsFactors = FALSE)
# Loads the images from variable Path, resizes the images to 1x1 pixels and trains a neural net.
model <- rxNeuralNet(
Label ~ Features,
data = train,
mlTransforms = list(
loadImage(vars = list(Features = "Path")),
resizeImage(vars = "Features", width = 1, height = 1, resizing = "Aniso"),
extractPixels(vars = "Features")
),
mlTransformVars = "Path",
numHiddenNodes = 1,
numIterations = 1)
# Featurizes the images from variable Path using the default model, and trains a linear model on the result.
model <- rxFastLinear(
Label ~ Features,
data = train,
mlTransforms = list(
loadImage(vars = list(Features = "Path")),
resizeImage(vars = "Features", width = 224, height = 224), # If dnnModel == "AlexNet", the image has to be resized to 227x227.
extractPixels(vars = "Features"),
featurizeImage(var = "Features")
),
mlTransformVars = "Path")