|
| 1 | +advent_of_code::solution!(23); |
| 2 | +use itertools::Itertools; |
| 3 | +use std::collections::{HashMap, HashSet, VecDeque}; |
| 4 | + |
| 5 | +pub fn part_one(input: &str) -> Option<usize> { |
| 6 | + // Parse the input into a graph keeping track of vertices and edges. |
| 7 | + let (vertices, edges) = parse_input(input); |
| 8 | + |
| 9 | + // For part 1, simply find all the cliques of size 3 and count the ones that |
| 10 | + // contain a "t" in one of the vertices. |
| 11 | + let cliques = find_cliques_n(&vertices, &edges, 3); |
| 12 | + |
| 13 | + let res = cliques |
| 14 | + .iter() |
| 15 | + .filter(|clique| clique.iter().any(|v| v.starts_with('t'))) |
| 16 | + .count(); |
| 17 | + |
| 18 | + Some(res) |
| 19 | +} |
| 20 | + |
| 21 | +fn parse_input(input: &str) -> (HashSet<&str>, HashMap<&str, HashSet<&str>>) { |
| 22 | + input.lines().fold( |
| 23 | + (HashSet::new(), HashMap::new()), |
| 24 | + |(mut vertices, mut edges), line| { |
| 25 | + let (left, right) = line.split_once("-").unwrap(); |
| 26 | + vertices.insert(left); |
| 27 | + vertices.insert(right); |
| 28 | + edges.entry(left).or_insert_with(HashSet::new).insert(right); |
| 29 | + edges.entry(right).or_insert_with(HashSet::new).insert(left); |
| 30 | + (vertices, edges) |
| 31 | + }, |
| 32 | + ) |
| 33 | +} |
| 34 | + |
| 35 | +fn find_cliques_n<'a>( |
| 36 | + vertices: &HashSet<&'a str>, |
| 37 | + edges: &HashMap<&'a str, HashSet<&'a str>>, |
| 38 | + n: usize, |
| 39 | +) -> HashSet<Vec<&'a str>> { |
| 40 | + let mut cliques = HashSet::new(); |
| 41 | + |
| 42 | + // We basically test every vertex for a clique of size k. To do this, we |
| 43 | + // start by adding all of the vertices to a queue with a clique of just |
| 44 | + // itself. |
| 45 | + let mut queue = vertices |
| 46 | + .iter() |
| 47 | + .map(|&v| (v, vec![v])) |
| 48 | + .collect::<VecDeque<_>>(); |
| 49 | + |
| 50 | + while let Some((vertex, mut clique)) = queue.pop_front() { |
| 51 | + // If we have found a clique of size k, we add it to the set of cliques. |
| 52 | + if clique.len() == n { |
| 53 | + clique.sort(); |
| 54 | + cliques.insert(clique.clone()); |
| 55 | + continue; |
| 56 | + } |
| 57 | + |
| 58 | + // Get a list of neighbors for the current vertex. |
| 59 | + let mut neighbors = edges.get(vertex).unwrap().clone(); |
| 60 | + neighbors.retain(|neighbor| { |
| 61 | + clique |
| 62 | + .iter() |
| 63 | + .all(|v| edges.get(v).unwrap().contains(neighbor)) |
| 64 | + }); |
| 65 | + |
| 66 | + // Add all of the valid neighbors to the queue with the current clique. |
| 67 | + for neighbor in neighbors { |
| 68 | + let mut new_clique = clique.clone(); |
| 69 | + new_clique.push(neighbor); |
| 70 | + queue.push_back((neighbor, new_clique)); |
| 71 | + } |
| 72 | + } |
| 73 | + |
| 74 | + // Return all the cliques we found. |
| 75 | + cliques |
| 76 | +} |
| 77 | + |
| 78 | +pub fn part_two(input: &str) -> Option<String> { |
| 79 | + let (vertices, edges) = parse_input(input); |
| 80 | + let largest_clique = bron_kerbosch( |
| 81 | + &HashSet::new(), |
| 82 | + &mut vertices.iter().cloned().collect(), |
| 83 | + &mut HashSet::new(), |
| 84 | + &edges, |
| 85 | + ); |
| 86 | + |
| 87 | + let mut largest_clique = largest_clique.iter().collect::<Vec<_>>(); |
| 88 | + largest_clique.sort(); |
| 89 | + |
| 90 | + let res = largest_clique.iter().join(","); |
| 91 | + Some(res) |
| 92 | +} |
| 93 | + |
| 94 | +/// Bron-Kerbosch algorithm is a recursive algorithm for finding all maximal cliques in an undirected graph. |
| 95 | +fn bron_kerbosch<'a>( |
| 96 | + r: &HashSet<&'a str>, |
| 97 | + p: &mut HashSet<&'a str>, |
| 98 | + x: &mut HashSet<&'a str>, |
| 99 | + edges: &HashMap<&'a str, HashSet<&'a str>>, |
| 100 | +) -> HashSet<&'a str> { |
| 101 | + // If we have checked all our potential vertices and have no excluded |
| 102 | + // vertices, we have found a clique. We check if the current clique is |
| 103 | + // larger than the largest one we have found so far and store it. |
| 104 | + if p.is_empty() && x.is_empty() { |
| 105 | + return r.clone(); |
| 106 | + } |
| 107 | + |
| 108 | + // Try adding each vertex in p to the current clique. |
| 109 | + let mut largest_clique = HashSet::new(); |
| 110 | + for vertex in p.clone() { |
| 111 | + // Make a new r with the current vertex added. |
| 112 | + let mut r = r.clone(); |
| 113 | + r.insert(vertex); |
| 114 | + |
| 115 | + // Make a new p and x where their vertices are the intersection of the |
| 116 | + // current vertex's neighbors and the current p and x. |
| 117 | + let neighbors = edges.get(vertex).unwrap(); |
| 118 | + let mut new_p = p.intersection(neighbors).cloned().collect(); |
| 119 | + let mut new_x = x.intersection(neighbors).cloned().collect(); |
| 120 | + |
| 121 | + // Recurse with the new r, p, and x. |
| 122 | + let clique = bron_kerbosch(&r, &mut new_p, &mut new_x, edges); |
| 123 | + if clique.len() > largest_clique.len() { |
| 124 | + largest_clique = clique; |
| 125 | + } |
| 126 | + |
| 127 | + // Move the current vertex from p to x for the next iteration. |
| 128 | + p.remove(vertex); |
| 129 | + x.insert(vertex); |
| 130 | + } |
| 131 | + |
| 132 | + largest_clique |
| 133 | +} |
| 134 | + |
| 135 | +#[cfg(test)] |
| 136 | +mod tests { |
| 137 | + use super::*; |
| 138 | + |
| 139 | + #[test] |
| 140 | + fn test_part_one() { |
| 141 | + let result = part_one(&advent_of_code::template::read_file("examples", DAY)); |
| 142 | + assert_eq!(result, Some(7)); |
| 143 | + } |
| 144 | + |
| 145 | + #[test] |
| 146 | + fn test_part_two() { |
| 147 | + let result = part_two(&advent_of_code::template::read_file("examples", DAY)); |
| 148 | + assert_eq!(result, Some(String::from("co,de,ka,ta"))); |
| 149 | + } |
| 150 | +} |
0 commit comments