-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_mimic.py
273 lines (225 loc) · 10.1 KB
/
extract_mimic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import os
import os.path as osp
import argparse
import csv
import numpy
import matplotlib
from matplotlib import pyplot, image
import cv2
from tqdm import tqdm
import numpy as np
import matplotlib.pyplot as plt
import math
from shutil import copyfile
import re
import xml.dom.minidom
import pandas as pd
import time
import re
import random
import json
import re
import matplotlib.pyplot as pl
from PIL import Image
from collections import defaultdict
import pickle
import gzip
import random
import sys
from pathlib import Path
# local folder import
import section_parser as sp
no_split = True
reports_root_path = r"mimic-cxr-reports\files"
output_path = r""
def list_rindex(l, s):
"""Helper function: *last* matching element in a list"""
return len(l) - l[-1::-1].index(s) - 1
def extract_sections():
"""This code is implemented by MIT-LCP at https://github.com/MIT-LCP/mimic-cxr"""
if not osp.exists(output_path):
os.makedirs(output_path)
# not all reports can be automatically sectioned
# we load in some dictionaries which have manually determined sections
custom_section_names, custom_indices = sp.custom_mimic_cxr_rules()
# get all higher up folders (p00, p01, etc)
p_grp_folders = os.listdir(reports_root_path)
p_grp_folders = [p for p in p_grp_folders
if p.startswith('p') and len(p) == 3]
p_grp_folders.sort()
# patient_studies will hold the text for use in NLP labeling
patient_studies = []
# study_sections will have an element for each study
# this element will be a list, each element having text for a specific section
study_sections = []
for p_grp in p_grp_folders:
# get patient folders, usually around ~6k per group folder
cxr_path = osp.join(reports_root_path, p_grp)
p_folders = os.listdir(cxr_path)
p_folders = [p for p in p_folders if p.startswith('p')]
p_folders.sort()
# For each patient in this grouping folder
print(p_grp)
for p in tqdm(p_folders):
patient_path = osp.join(cxr_path, p)
# get the filename for all their free-text reports
studies = os.listdir(patient_path)
studies = [s for s in studies
if s.endswith('.txt') and s.startswith('s')]
for s in studies:
# load in the free-text report
with open(osp.join(patient_path, s), 'r') as fp:
text = ''.join(fp.readlines())
# get study string name without the txt extension
s_stem = s[0:-4]
# custom rules for some poorly formatted reports
if s_stem in custom_indices:
idx = custom_indices[s_stem]
patient_studies.append([s_stem, text[idx[0]:idx[1]]])
continue
# split text into sections
sections, section_names, section_idx = sp.section_text(
text
)
# check to see if this has mis-named sections
# e.g. sometimes the impression is in the comparison section
if s_stem in custom_section_names:
sn = custom_section_names[s_stem]
idx = list_rindex(section_names, sn)
patient_studies.append([s_stem, sections[idx].strip()])
continue
# grab the *last* section with the given title
# prioritizes impression > findings, etc.
# "last_paragraph" is text up to the end of the report
# many reports are simple, and have a single section
# header followed by a few paragraphs
# these paragraphs are grouped into section "last_paragraph"
# note also comparison seems unusual but if no other sections
# exist the radiologist has usually written the report
# in the comparison section
idx = -1
for sn in ('impression', 'findings',
'last_paragraph', 'comparison'):
if sn in section_names:
idx = list_rindex(section_names, sn)
break
if idx == -1:
# we didn't find any sections we can use :(
patient_studies.append([s_stem, ''])
print(f'no impression/findings: {patient_path / s}')
else:
# store the text of the conclusion section
patient_studies.append([s_stem, sections[idx].strip()])
study_sectioned = [s_stem]
for sn in ('impression', 'findings',
'last_paragraph', 'comparison'):
if sn in section_names:
idx = list_rindex(section_names, sn)
study_sectioned.append(sections[idx].strip())
else:
study_sectioned.append(None)
study_sections.append(study_sectioned)
# write distinct files to facilitate modular processing
if len(patient_studies) > 0:
# write out a single CSV with the sections
with open(osp.join(output_path, 'mimic_cxr_sectioned.csv'), 'w') as fp:
csvwriter = csv.writer(fp)
# write header
csvwriter.writerow(['study', 'impression', 'findings',
'last_paragraph', 'comparison'])
for row in study_sections:
csvwriter.writerow(row)
if no_split:
# write all the reports out to a single file
with open(osp.join(output_path, f'mimic_cxr_sections.csv'), 'w') as fp:
csvwriter = csv.writer(fp)
for row in patient_studies:
csvwriter.writerow(row)
else:
# write ~22 files with ~10k reports each
n = 0
jmp = 10000
while n < len(patient_studies):
n_fn = n // jmp
with open(osp.join(output_path, f'mimic_cxr_{n_fn:02d}.csv'), 'w') as fp:
csvwriter = csv.writer(fp)
for row in patient_studies[n:n+jmp]:
csvwriter.writerow(row)
n += jmp
def select_test_data_from_sections():
all_sections = pd.read_csv(r"\mimic_cxr_sectioned.csv")
test_ids = open(r"all_test_ids.csv", 'r').readlines()
list_writer = csv.writer(
open(r"mimic_baseline_sections_test.csv", 'a+', encoding='utf-8', newline=""))
list_writer.writerow(["subject_id", "study_id", "finding", "impression"])
for test_line in tqdm(test_ids):
# img_name = test_line.split(',')[0]
test_subject_id = test_line.split(',')[1]
test_study_id = test_line.split(',')[0]
for index, row in all_sections.iterrows():
study_id = row["study"][1:]
if study_id == test_study_id:
list_writer.writerow([test_subject_id, study_id, row["findings"], row["impression"]])
break
def data_clean_for_mimic():
new_test_data = pd.read_csv(r"G:\Medical Reports datasets\mimic_report_val\new_baseline_data\mimic_baseline_sections_test.csv")
list_writer = csv.writer(
open(r"G:\Medical Reports datasets\mimic_report_val\new_baseline_data\mimic_baseline_sections_test_V2_Clean.csv", 'a+', encoding='utf-8', newline=""))
# list_writer.writerow(["img_name", "subject_id", "study_id", "finding", "impression"])
list_writer.writerow(["subject_id", "study_id", "findings", "impression"])
for index, row in tqdm(new_test_data.iterrows()):
subject_id = row["subject_id"]
study_id = row["study_id"]
findings = row["findings"]
impression = row["impression"]
findings = findings.replace('\r', '')
findings = findings.replace('\t', '')
impression = impression.replace('\r', '')
impression = impression.replace('\t', '')
"""delete note like 'talk to Doc, at pm, where'"""
sentence_list = impression.split('.')
# "with Dr", "by Dr", "to Dr",
key_words = ["email", "phone", "Dr", "contact", "discuss", "minutes", "review", "dictation", "observation",
"communi"]
first_cut_pos = 0
temp_key = []
for sentence_index, single_sentence in enumerate(sentence_list):
for keyy in key_words:
if keyy in single_sentence:
temp_key.append(keyy)
# find_pos = single_sentence.find(keyy)
# first_cut_pos += find_pos
break
# else:
# if len(temp_key) != 0:
# first_cut_pos += len(single_sentence)
if len(temp_key) != 0:
break
# if sentence_index == 0:
# if len(temp_key) == 0:
# first_cut_pos = len(impression)
# else:
# first_cut_pos = find_pos
# else:
# for ii in range(sentence_index):
# first_cut_pos += (len(sentence_list[ii]) + 1)
#
# new_imp_text = impression[:first_cut_pos]
if len(temp_key) == 0:
new_imp_text = impression
else:
for ii in range(sentence_index):
first_cut_pos += (len(sentence_list[ii]) + 1)
new_imp_text = impression[:first_cut_pos]
# print(index, "\n", new_imp_text)
if len(new_imp_text.split()) < 2:
print(index, "\n", new_imp_text)
continue
elif len(findings.split()) < 11:
continue
else:
list_writer.writerow([subject_id, study_id, findings, new_imp_text])
if __name__ == '__main__':
# extract_sections()
# select_test_data_from_sections()
data_clean_for_mimic()