-
Notifications
You must be signed in to change notification settings - Fork 428
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[BUG] Custom model not able to detect ROIs after training on cyto3, #1071
Comments
@duckyaisha I would appreciated it if you could post you training codes for reference. I tried your method and I even cannot detect the ROIs with the new model using the GUI for n one image. I believe this is the problem of generating the trained model. I'm using Jupiter notebooks from the cloud and model path is a relative path. The path should not be an issue as it works fine. I posted my training codes below. Feel free to share your thoughts. `
` The training processing info is as follows: `
` |
sorry there have been issues with this @duckyaisha , I think the training may still not be working on MPS. I don't currently have a Mac to test. @sun1000yao could you please post what was written on the terminal during training? (with the version info at the beginning of the output) @Jiadalee we can keep discussing in the other issue |
Don't worry, I figured it out by just using the newest version of cellpose
from github and disabling the CPU!
…On Fri, Feb 7, 2025 at 12:57 PM carsen-stringer ***@***.***> wrote:
sorry there have been issues with this @duckyaisha
<https://github.com/duckyaisha> , I think the training may still not be
working on MPS. I don't currently have a Mac to test.
@sun1000yao <https://github.com/sun1000yao> could you please post what
was written on the terminal during training? (with the version info at the
beginning of the output)
@Jiadalee <https://github.com/Jiadalee> we can keep discussing in the
other issue
—
Reply to this email directly, view it on GitHub
<#1071 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/BNNTVHK4VFJZAOPWXTZPR5L2OTXYLAVCNFSM6AAAAABS6PSMWCVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDMNBTGYYTONBUGM>
.
You are receiving this because you were mentioned.Message ID:
***@***.***>
--
PLEASE NOTE: This message, including any attachments, may include
privileged, confidential and/or inside information belonging to IPI. Any
distribution or use of this communication by anyone other than the intended
recipient(s) is strictly prohibited and may be unlawful. If you are not the
intended recipient, please notify the sender by replying to this message
and then delete it from your system. Thank you.
|
@duckyaisha disabling CPU? isn't GPU? |
i meant GPU my apologies,
…On Fri, Feb 7, 2025 at 2:19 PM Jiada Li ***@***.***> wrote:
Don't worry, I figured it out by just using the newest version of cellpose
from github and disabling the CPU!
… <#m_5056221544094689457_>
@duckyaisha <https://github.com/duckyaisha> disabling CPU? isn't GPU?
—
Reply to this email directly, view it on GitHub
<#1071 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/BNNTVHM6AQUMDB7QIIS3NTL2OUBLHAVCNFSM6AAAAABS6PSMWCVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDMNBTHAZDEMJVHE>
.
You are receiving this because you were mentioned.Message ID:
***@***.***>
--
PLEASE NOTE: This message, including any attachments, may include
privileged, confidential and/or inside information belonging to IPI. Any
distribution or use of this communication by anyone other than the intended
recipient(s) is strictly prohibited and may be unlawful. If you are not the
intended recipient, please notify the sender by replying to this message
and then delete it from your system. Thank you.
|
okay thanks for letting us know I will put some documentation on this |
Describe the bug
I have been struggling with this for a few days. Please bear with me as I am not very good at coding yet and trying to fix this problem has tested the limits of my admittedly minimal knowledge of python, coding in general, etc.
I am trying to generate ROIs of simple, GFP-tranfected CHO cells which I can then load into FIJI to extract fluorescence intensity data from another channel.
The default cyto3 model works very well in general, HOWEVER: I have to set the diameter to between 95-107 to capture most of the ROIs. It detects very few ROIs with the default diameter of 30.
The problem is that sometimes it also detects miniscule ROIs with no area or that don't correspond to a cell at all. I thought that by annotating about 40 images where I remove these small ROIs, it would eventually learn not to detect them.
However, instead every trained model detects 0 ROIs, despite cyto3 detecting between 40 and 60 per image I'm using for training.
I have so far tried:
Training from scratch (ie, no default model): 0 ROIs detected
Training from models that aren't Cyto3 (namely, the bac_fluor model, which has worked as a training model w/ which to identify bacteria in a much more challenging set of images): 0 ROIs detected
Forcing the use of RAdam instead of SGD, as was suggested previously, which required me to run the training through the command line instead of the GUI, but I did eventually figure this out: 0 ROIs detected
Removing all images that have fewer than 20 ROIs from the training set: 0 ROIs detected
Increasing Epochs from 100 to 300 to 500 to 1000: 0 ROIs detected in all conditions.
Reproducing
Here is a google drive link containing the images I have been using for training + the _seg.npy outputs (https://drive.google.com/drive/folders/1884j88XyEyndEBN8BfIIyQk4b2wUc2lU?usp=sharing)
See if you can train on these using Cyto3 as a baseline?
Run log
Here is the terminal output from the last time I tried to train on cyto3 and make a model without those annoying little ROIs.
`2024-12-03 12:49:15,919 [WARNING] <tifffile.TiffFile 'scan_Plate_R_p00_0_C04f25d1.tif'> OME series is missing 1 frames. Missing data are zeroed
2024-12-03 12:49:15,976 [WARNING] <tifffile.TiffFile 'scan_Plate_R_p00_0_C04f26d1.tif'> OME series is missing 1 frames. Missing data are zeroed
2024-12-03 12:49:16,019 [WARNING] <tifffile.TiffFile 'scan_Plate_R_p00_0_C04f27d1.tif'> OME series is missing 1 frames. Missing data are zeroed
2024-12-03 12:49:16,063 [WARNING] <tifffile.TiffFile 'scan_Plate_R_p00_0_C04f28d1.tif'> OME series is missing 1 frames. Missing data are zeroed
2024-12-03 12:49:16,104 [WARNING] <tifffile.TiffFile 'scan_Plate_R_p00_0_C04f29d1.tif'> OME series is missing 1 frames. Missing data are zeroed
2024-12-03 12:49:16,145 [WARNING] <tifffile.TiffFile 'scan_Plate_R_p00_0_C04f30d1.tif'> OME series is missing 1 frames. Missing data are zeroed
2024-12-03 12:49:44,219 [INFO] training with ['scan_Plate_R_p00_0_C04f25d1.tif', 'scan_Plate_R_p00_0_C04f26d1.tif', 'scan_Plate_R_p00_0_C04f27d1.tif', 'scan_Plate_R_p00_0_C04f28d1.tif', 'scan_Plate_R_p00_0_C04f29d1.tif', 'scan_Plate_R_p00_0_C04f30d1.tif']
2024-12-03 12:49:44,219 [INFO] training new model starting at model cyto3
2024-12-03 12:49:44,219 [INFO] training with chan = 0: gray, chan2 = 0: none
2024-12-03 12:49:44,219 [INFO] >> cyto3 << model set to be used
2024-12-03 12:49:44,220 [INFO] ** TORCH MPS version installed and working. **
2024-12-03 12:49:44,221 [INFO] >>>> using GPU (MPS)
2024-12-03 12:49:44,307 [INFO] >>>> loading model /Users/Alexander.Morano/.cellpose/models/cyto3
2024-12-03 12:49:44,388 [INFO] >>>> model diam_mean = 30.000 (ROIs rescaled to this size during training)
GUI_INFO: name of new model: CP_20241203_124811
2024-12-03 12:49:44,388 [INFO] computing flows for labels
100%|█████████████████████████████████████████████| 6/6 [00:14<00:00, 2.43s/it]
2024-12-03 12:49:58,999 [INFO] >>> computing diameters
100%|████████████████████████████████████████████| 6/6 [00:00<00:00, 100.68it/s]
2024-12-03 12:49:59,059 [INFO] >>> using channels [0, 0]
2024-12-03 12:49:59,059 [INFO] >>> normalizing {'lowhigh': None, 'percentile': [1.0, 99.0], 'normalize': True, 'norm3D': True, 'sharpen_radius': 0, 'smooth_radius': 0, 'tile_norm_blocksize': 0, 'tile_norm_smooth3D': 1, 'invert': False}
2024-12-03 12:49:59,819 [INFO] >>> n_epochs=1000, n_train=6, n_test=None
2024-12-03 12:49:59,819 [INFO] >>> SGD, learning_rate=0.10000, weight_decay=0.00010, momentum=0.900
2024-12-03 12:50:00,366 [INFO] >>> saving model to /Users/Alexander.Morano/Desktop/cellpose_training/old_plate/untitled_folder/models/CP_20241203_124811
2024-12-03 12:50:01,234 [INFO] 0, train_loss=nan, test_loss=0.0000, LR=0.0000, time 0.87s
2024-12-03 12:50:03,862 [INFO] 5, train_loss=nan, test_loss=0.0000, LR=0.0556, time 3.50s
2024-12-03 12:50:06,394 [INFO] 10, train_loss=nan, test_loss=0.0000, LR=0.1000, time 6.03s
2024-12-03 12:50:11,418 [INFO] 20, train_loss=nan, test_loss=0.0000, LR=0.1000, time 11.05s
2024-12-03 12:50:16,631 [INFO] 30, train_loss=nan, test_loss=0.0000, LR=0.1000, time 16.26s
2024-12-03 12:50:21,745 [INFO] 40, train_loss=nan, test_loss=0.0000, LR=0.1000, time 21.38s
2024-12-03 12:50:26,784 [INFO] 50, train_loss=nan, test_loss=0.0000, LR=0.1000, time 26.42s
2024-12-03 12:50:31,839 [INFO] 60, train_loss=nan, test_loss=0.0000, LR=0.1000, time 31.47s
2024-12-03 12:50:36,883 [INFO] 70, train_loss=nan, test_loss=0.0000, LR=0.1000, time 36.52s
2024-12-03 12:50:41,890 [INFO] 80, train_loss=nan, test_loss=0.0000, LR=0.1000, time 41.52s
2024-12-03 12:50:46,994 [INFO] 90, train_loss=nan, test_loss=0.0000, LR=0.1000, time 46.63s
2024-12-03 12:50:52,022 [INFO] 100, train_loss=nan, test_loss=0.0000, LR=0.1000, time 51.66s
2024-12-03 12:50:57,150 [INFO] 110, train_loss=nan, test_loss=0.0000, LR=0.1000, time 56.78s
2024-12-03 12:51:02,305 [INFO] 120, train_loss=nan, test_loss=0.0000, LR=0.1000, time 61.94s
2024-12-03 12:51:07,308 [INFO] 130, train_loss=nan, test_loss=0.0000, LR=0.1000, time 66.94s
2024-12-03 12:51:12,327 [INFO] 140, train_loss=nan, test_loss=0.0000, LR=0.1000, time 71.96s
2024-12-03 12:51:17,350 [INFO] 150, train_loss=nan, test_loss=0.0000, LR=0.1000, time 76.98s
2024-12-03 12:51:22,393 [INFO] 160, train_loss=nan, test_loss=0.0000, LR=0.1000, time 82.03s
2024-12-03 12:51:27,499 [INFO] 170, train_loss=nan, test_loss=0.0000, LR=0.1000, time 87.13s
2024-12-03 12:51:32,573 [INFO] 180, train_loss=nan, test_loss=0.0000, LR=0.1000, time 92.21s
2024-12-03 12:51:37,602 [INFO] 190, train_loss=nan, test_loss=0.0000, LR=0.1000, time 97.24s
2024-12-03 12:51:42,637 [INFO] 200, train_loss=nan, test_loss=0.0000, LR=0.1000, time 102.27s
2024-12-03 12:51:47,677 [INFO] 210, train_loss=nan, test_loss=0.0000, LR=0.1000, time 107.31s
2024-12-03 12:51:52,751 [INFO] 220, train_loss=nan, test_loss=0.0000, LR=0.1000, time 112.39s
2024-12-03 12:51:57,823 [INFO] 230, train_loss=nan, test_loss=0.0000, LR=0.1000, time 117.46s
2024-12-03 12:52:02,951 [INFO] 240, train_loss=nan, test_loss=0.0000, LR=0.1000, time 122.58s
2024-12-03 12:52:08,185 [INFO] 250, train_loss=nan, test_loss=0.0000, LR=0.1000, time 127.82s
2024-12-03 12:52:13,248 [INFO] 260, train_loss=nan, test_loss=0.0000, LR=0.1000, time 132.88s
2024-12-03 12:52:18,512 [INFO] 270, train_loss=nan, test_loss=0.0000, LR=0.1000, time 138.15s
2024-12-03 12:52:23,587 [INFO] 280, train_loss=nan, test_loss=0.0000, LR=0.1000, time 143.22s
2024-12-03 12:52:28,610 [INFO] 290, train_loss=nan, test_loss=0.0000, LR=0.1000, time 148.24s
2024-12-03 12:52:33,724 [INFO] 300, train_loss=nan, test_loss=0.0000, LR=0.1000, time 153.36s
2024-12-03 12:52:38,912 [INFO] 310, train_loss=nan, test_loss=0.0000, LR=0.1000, time 158.55s
2024-12-03 12:52:43,991 [INFO] 320, train_loss=nan, test_loss=0.0000, LR=0.1000, time 163.63s
2024-12-03 12:52:49,064 [INFO] 330, train_loss=nan, test_loss=0.0000, LR=0.1000, time 168.70s
2024-12-03 12:52:54,048 [INFO] 340, train_loss=nan, test_loss=0.0000, LR=0.1000, time 173.68s
2024-12-03 12:52:59,019 [INFO] 350, train_loss=nan, test_loss=0.0000, LR=0.1000, time 178.65s
2024-12-03 12:53:04,085 [INFO] 360, train_loss=nan, test_loss=0.0000, LR=0.1000, time 183.72s
2024-12-03 12:53:09,124 [INFO] 370, train_loss=nan, test_loss=0.0000, LR=0.1000, time 188.76s
2024-12-03 12:53:14,248 [INFO] 380, train_loss=nan, test_loss=0.0000, LR=0.1000, time 193.88s
2024-12-03 12:53:19,416 [INFO] 390, train_loss=nan, test_loss=0.0000, LR=0.1000, time 199.05s
2024-12-03 12:53:24,425 [INFO] 400, train_loss=nan, test_loss=0.0000, LR=0.1000, time 204.06s
2024-12-03 12:53:29,634 [INFO] 410, train_loss=nan, test_loss=0.0000, LR=0.1000, time 209.27s
2024-12-03 12:53:34,740 [INFO] 420, train_loss=nan, test_loss=0.0000, LR=0.1000, time 214.37s
2024-12-03 12:53:39,817 [INFO] 430, train_loss=nan, test_loss=0.0000, LR=0.1000, time 219.45s
2024-12-03 12:53:44,851 [INFO] 440, train_loss=nan, test_loss=0.0000, LR=0.1000, time 224.49s
2024-12-03 12:53:49,923 [INFO] 450, train_loss=nan, test_loss=0.0000, LR=0.1000, time 229.56s
2024-12-03 12:53:55,020 [INFO] 460, train_loss=nan, test_loss=0.0000, LR=0.1000, time 234.65s
2024-12-03 12:54:00,040 [INFO] 470, train_loss=nan, test_loss=0.0000, LR=0.1000, time 239.67s
2024-12-03 12:54:05,191 [INFO] 480, train_loss=nan, test_loss=0.0000, LR=0.1000, time 244.82s
2024-12-03 12:54:10,331 [INFO] 490, train_loss=nan, test_loss=0.0000, LR=0.1000, time 249.97s
2024-12-03 12:54:15,347 [INFO] 500, train_loss=nan, test_loss=0.0000, LR=0.1000, time 254.98s
2024-12-03 12:54:20,658 [INFO] 510, train_loss=nan, test_loss=0.0000, LR=0.1000, time 260.29s
2024-12-03 12:54:25,725 [INFO] 520, train_loss=nan, test_loss=0.0000, LR=0.1000, time 265.36s
2024-12-03 12:54:30,811 [INFO] 530, train_loss=nan, test_loss=0.0000, LR=0.1000, time 270.44s
2024-12-03 12:54:35,895 [INFO] 540, train_loss=nan, test_loss=0.0000, LR=0.1000, time 275.53s
2024-12-03 12:54:41,073 [INFO] 550, train_loss=nan, test_loss=0.0000, LR=0.1000, time 280.71s
2024-12-03 12:54:46,296 [INFO] 560, train_loss=nan, test_loss=0.0000, LR=0.1000, time 285.93s
2024-12-03 12:54:51,456 [INFO] 570, train_loss=nan, test_loss=0.0000, LR=0.1000, time 291.09s
2024-12-03 12:54:56,469 [INFO] 580, train_loss=nan, test_loss=0.0000, LR=0.1000, time 296.10s
2024-12-03 12:55:01,617 [INFO] 590, train_loss=nan, test_loss=0.0000, LR=0.1000, time 301.25s
2024-12-03 12:55:06,719 [INFO] 600, train_loss=nan, test_loss=0.0000, LR=0.1000, time 306.35s
2024-12-03 12:55:11,825 [INFO] 610, train_loss=nan, test_loss=0.0000, LR=0.1000, time 311.46s
2024-12-03 12:55:16,819 [INFO] 620, train_loss=nan, test_loss=0.0000, LR=0.1000, time 316.45s
2024-12-03 12:55:21,880 [INFO] 630, train_loss=nan, test_loss=0.0000, LR=0.1000, time 321.51s
2024-12-03 12:55:27,092 [INFO] 640, train_loss=nan, test_loss=0.0000, LR=0.1000, time 326.73s
2024-12-03 12:55:32,194 [INFO] 650, train_loss=nan, test_loss=0.0000, LR=0.1000, time 331.83s
2024-12-03 12:55:37,367 [INFO] 660, train_loss=nan, test_loss=0.0000, LR=0.1000, time 337.00s
2024-12-03 12:55:42,365 [INFO] 670, train_loss=nan, test_loss=0.0000, LR=0.1000, time 342.00s
2024-12-03 12:55:47,405 [INFO] 680, train_loss=nan, test_loss=0.0000, LR=0.1000, time 347.04s
2024-12-03 12:55:52,401 [INFO] 690, train_loss=nan, test_loss=0.0000, LR=0.1000, time 352.04s
2024-12-03 12:55:57,513 [INFO] 700, train_loss=nan, test_loss=0.0000, LR=0.1000, time 357.15s
2024-12-03 12:56:02,576 [INFO] 710, train_loss=nan, test_loss=0.0000, LR=0.1000, time 362.21s
2024-12-03 12:56:07,571 [INFO] 720, train_loss=nan, test_loss=0.0000, LR=0.1000, time 367.20s
2024-12-03 12:56:12,654 [INFO] 730, train_loss=nan, test_loss=0.0000, LR=0.1000, time 372.29s
2024-12-03 12:56:17,701 [INFO] 740, train_loss=nan, test_loss=0.0000, LR=0.1000, time 377.34s
2024-12-03 12:56:22,759 [INFO] 750, train_loss=nan, test_loss=0.0000, LR=0.1000, time 382.39s
2024-12-03 12:56:27,838 [INFO] 760, train_loss=nan, test_loss=0.0000, LR=0.1000, time 387.47s
2024-12-03 12:56:32,834 [INFO] 770, train_loss=nan, test_loss=0.0000, LR=0.1000, time 392.47s
2024-12-03 12:56:37,782 [INFO] 780, train_loss=nan, test_loss=0.0000, LR=0.1000, time 397.42s
2024-12-03 12:56:42,877 [INFO] 790, train_loss=nan, test_loss=0.0000, LR=0.1000, time 402.51s
2024-12-03 12:56:48,049 [INFO] 800, train_loss=nan, test_loss=0.0000, LR=0.1000, time 407.68s
2024-12-03 12:56:53,209 [INFO] 810, train_loss=nan, test_loss=0.0000, LR=0.1000, time 412.84s
2024-12-03 12:56:58,218 [INFO] 820, train_loss=nan, test_loss=0.0000, LR=0.1000, time 417.85s
2024-12-03 12:57:03,236 [INFO] 830, train_loss=nan, test_loss=0.0000, LR=0.1000, time 422.87s
2024-12-03 12:57:08,401 [INFO] 840, train_loss=nan, test_loss=0.0000, LR=0.1000, time 428.04s
2024-12-03 12:57:13,435 [INFO] 850, train_loss=nan, test_loss=0.0000, LR=0.1000, time 433.07s
2024-12-03 12:57:18,535 [INFO] 860, train_loss=nan, test_loss=0.0000, LR=0.1000, time 438.17s
2024-12-03 12:57:23,577 [INFO] 870, train_loss=nan, test_loss=0.0000, LR=0.1000, time 443.21s
2024-12-03 12:57:28,553 [INFO] 880, train_loss=nan, test_loss=0.0000, LR=0.1000, time 448.19s
2024-12-03 12:57:33,504 [INFO] 890, train_loss=nan, test_loss=0.0000, LR=0.1000, time 453.14s
2024-12-03 12:57:38,488 [INFO] 900, train_loss=nan, test_loss=0.0000, LR=0.0500, time 458.12s
2024-12-03 12:57:43,568 [INFO] 910, train_loss=nan, test_loss=0.0000, LR=0.0250, time 463.20s
2024-12-03 12:57:48,638 [INFO] 920, train_loss=nan, test_loss=0.0000, LR=0.0125, time 468.27s
2024-12-03 12:57:53,791 [INFO] 930, train_loss=nan, test_loss=0.0000, LR=0.0063, time 473.43s
2024-12-03 12:57:58,935 [INFO] 940, train_loss=nan, test_loss=0.0000, LR=0.0031, time 478.57s
2024-12-03 12:58:03,986 [INFO] 950, train_loss=nan, test_loss=0.0000, LR=0.0016, time 483.62s
2024-12-03 12:58:09,090 [INFO] 960, train_loss=nan, test_loss=0.0000, LR=0.0008, time 488.72s
2024-12-03 12:58:14,165 [INFO] 970, train_loss=nan, test_loss=0.0000, LR=0.0004, time 493.80s
2024-12-03 12:58:19,211 [INFO] 980, train_loss=nan, test_loss=0.0000, LR=0.0002, time 498.85s
2024-12-03 12:58:24,203 [INFO] 990, train_loss=nan, test_loss=0.0000, LR=0.0001, time 503.84s
/Users/Alexander.Morano/Desktop/cellpose_training/old_plate/untitled_folder/models/CP_20241203_124811 copied to models folder /Users/Alexander.Morano/.cellpose/models
GUI_INFO: selected model CP_20241203_124811, loading now
2024-12-03 12:58:28,847 [INFO] >> CP_20241203_124811 << model set to be used
2024-12-03 12:58:28,848 [INFO] ** TORCH MPS version installed and working. **
2024-12-03 12:58:28,848 [INFO] >>>> using GPU (MPS)
2024-12-03 12:58:28,921 [INFO] >>>> loading model /Users/Alexander.Morano/.cellpose/models/CP_20241203_124811
2024-12-03 12:58:28,983 [INFO] >>>> model diam_mean = 30.000 (ROIs rescaled to this size during training)
2024-12-03 12:58:28,983 [INFO] >>>> model diam_labels = 97.534 (mean diameter of training ROIs)
GUI_INFO: diameter set to 97.53 (but can be changed)
2024-12-03 12:58:29,014 [INFO] >>>> diameter set to diam_labels ( = 97.534 )
2024-12-03 12:58:29,018 [WARNING] <tifffile.TiffFile 'scan_Plate_R_p00_0_C04f26d1.tif'> OME series is missing 1 frames. Missing data are zeroed
GUI_INFO: restore: None
GUI_INFO: normalization checked: computing saturation levels (and optionally filtered image)
{'lowhigh': None, 'percentile': [1.0, 99.0], 'normalize': True, 'norm3D': False, 'sharpen_radius': 0, 'smooth_radius': 0, 'tile_norm_blocksize': 0, 'tile_norm_smooth3D': 1, 'invert': False}
[0, 255.0]
(1, 1536, 2048, 3)
GUI_INFO: 42 masks found
GUI_INFO: creating cellcolors and drawing masks
GUI_INFO: loaded in previous changes
2024-12-03 12:58:29,389 [INFO] ** TORCH MPS version installed and working. **
2024-12-03 12:58:29,389 [INFO] >>>> using GPU (MPS)
2024-12-03 12:58:29,460 [INFO] >>>> loading model /Users/Alexander.Morano/.cellpose/models/CP_20241203_124811
2024-12-03 12:58:29,522 [INFO] >>>> model diam_mean = 30.000 (ROIs rescaled to this size during training)
2024-12-03 12:58:29,522 [INFO] >>>> model diam_labels = 97.534 (mean diameter of training ROIs)
{'lowhigh': None, 'percentile': [1.0, 99.0], 'normalize': True, 'norm3D': False, 'sharpen_radius': 0, 'smooth_radius': 0, 'tile_norm_blocksize': 0, 'tile_norm_smooth3D': 1, 'invert': False}
2024-12-03 12:58:29,957 [INFO] No cell pixels found.
2024-12-03 12:58:30,178 [INFO] 0 cells found with model in 0.814 sec
GUI_INFO: 0 masks found
GUI_INFO: creating cellcolors and drawing masks
2024-12-03 12:58:30,237 [INFO] !!! computed masks for scan_Plate_R_p00_0_C04f26d1.tif from new model !!!
`
I suspect the "train_loss=nan, test_loss=0.0000" output(s) have something to do with the failure, but I have no clue how to resolve that problem, or what could be causing it.
The text was updated successfully, but these errors were encountered: