-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
480 lines (336 loc) · 15.9 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
import config
from ext import pickle_save, pickle_load, now
from torch import tensor, Tensor, cat, stack
from torch import zeros, ones, eye, randn
from torch import sigmoid, tanh, relu, softmax
from torch import pow, log, exp, sqrt, norm, mean, abs
from torch import float32, no_grad
from torch.nn.init import xavier_normal_
from torch.distributions import Normal, Beta
from torch import lgamma ; gamma = lambda x: exp(lgamma(x))
from collections import namedtuple
from copy import deepcopy
from math import ceil
##
FF = namedtuple('FF', 'w')
FFS = namedtuple('FFS', 'w')
FFT = namedtuple('FFT', 'w')
#FF = namedtuple('FF', 'w' 'b')
LSTM = namedtuple('LSTM', 'wf wk wi ws')
#LSTM = namedtuple('LSTM', 'wf bf wk bk wi bi ws bs')
def make_Llayer(in_size, layer_size):
layer = LSTM(
randn(in_size+layer_size, layer_size, requires_grad=True, dtype=float32),
#zeros(1, layer_size, requires_grad=True, dtype=float32),
randn(in_size+layer_size, layer_size, requires_grad=True, dtype=float32),
#zeros(1, layer_size, requires_grad=True, dtype=float32),
randn(in_size+layer_size, layer_size, requires_grad=True, dtype=float32),
#zeros(1, layer_size, requires_grad=True, dtype=float32),
randn(in_size+layer_size, layer_size, requires_grad=True, dtype=float32),
#zeros(1, layer_size, requires_grad=True, dtype=float32),
)
with no_grad():
for k,v in layer._asdict().items():
if k == 'bf':
v += config.forget_bias
if config.init_xavier:
xavier_normal_(layer.wf)
xavier_normal_(layer.wk)
xavier_normal_(layer.ws)
xavier_normal_(layer.wi, gain=5/3)
return layer
def make_Flayer(in_size, layer_size, act=None):
layer_type = FF if not act else (FFS if act=='s' else FFT)
layer = layer_type(
randn(in_size, layer_size, requires_grad=True, dtype=float32),
# zeros(1, layer_size, requires_grad=True, dtype=float32),
)
if config.init_xavier:
if not config.act_classical_rnn:
xavier_normal_(layer.w[:,:layer.w.size(1)//3])
xavier_normal_(layer.w[:,layer.w.size(1)//3:layer.w.size(1)//3*2])
else:
if act == 's':
xavier_normal_(layer.w)
elif act == 't':
xavier_normal_(layer.w, gain=5/3)
return layer
make_layer = {
'l': make_Llayer,
'f': make_Flayer,
'fs': lambda i,l: make_Flayer(i,l,act='s'),
'ft': lambda i,l: make_Flayer(i,l,act='t'),
}
def prop_Llayer(layer, state, input):
layer_size = layer.wf.size(1)
prev_out = state[:,:layer_size]
state = state[:,layer_size:]
inp = cat([input,prev_out],dim=1)
reset = sigmoid([email protected])# + layer.bf)
write = sigmoid([email protected])# + layer.bk)
context = tanh ([email protected])# + layer.bi)
read = sigmoid([email protected])# + layer.bs)
state = reset*state + write*context
out = read*tanh(state)
return out, cat([out,state],dim=1)
def prop_Llayer2(layer, state, input):
inp = cat([input,state],dim=1)
forget = sigmoid([email protected])# + layer.bf)
keep = sigmoid([email protected])# + layer.bk)
interm = tanh ([email protected])# + layer.bi)
show = sigmoid([email protected]) # + layer.bs)
state = forget*state + keep*interm
out = show*tanh(state)
return out, state
def prop_Flayer(layer, inp):
# return tanh([email protected]) # + layer.b)
return [email protected]
prop_layer = {
LSTM: prop_Llayer,
FF: prop_Flayer,
FFS: lambda l,i: sigmoid(prop_Flayer(l,i)),
FFT: lambda l,i: tanh(prop_Flayer(l,i)),
}
def make_model(info=None):
if not info: info = config.creation_info
layer_sizes = [e for e in info if type(e)==int]
layer_types = [e for e in info if type(e)==str]
model = [make_layer[layer_type](layer_sizes[i], layer_sizes[i+1]) for i,layer_type in enumerate(layer_types)]
if config.timestep_linear_encoding and layer_types[0]+layer_types[-1] == 'ff':
model[-1] = FF(*[v.transpose(0,1) for k,v in model[0]._asdict().items()])
return model
def prop_model(model, states, inp):
new_states = []
out = inp
state_ctr = 0
for layer in model:
if type(layer) not in [FF, FFS, FFT]:
out, state = prop_layer[type(layer)](layer, states[state_ctr], out)
new_states.append(state)
state_ctr += 1
else:
out = prop_Flayer(layer, out)
# dropout(out, inplace=True)
if not config.act_classical_rnn:
centers = out[:,:config.out_size//3]
spreads = out[:,config.out_size//3:config.out_size//3*2]
multipliers = out[:,-config.out_size//3:]
#spreads = exp(spreads)
# centers = (tanh(centers) +1)/2
# spreads = (tanh(spreads) +1)/2 /2 # exp(deviances) # elu(deviances) # softplus ?
centers = sigmoid(centers) + 1e-4# 0,1
spreads = sigmoid(spreads) /4 + 4e-2 # 0,.25
centers = centers.view(centers.size(0), config.timestep_size, config.hm_modalities)
spreads = spreads.view(spreads.size(0), config.timestep_size, config.hm_modalities)
multipliers = multipliers.view(multipliers.size(0), config.timestep_size, config.hm_modalities)
multipliers = softmax(multipliers, -1)
out = [centers, spreads, multipliers]
return out, new_states
def distribution_loss(label, out):
centers, spreads, multipliers = out
label = (label +1)/2
label = label.view(label.size(0),label.size(1),1).repeat(1,1,config.hm_modalities)
# normal
# loss = 1/nsqrt(2*pi) * exp( -.5 * pow((label-centers)/spreads,2) ) /spreads
# logitnormal
# loss = 1/nsqrt(2*pi) * 1/(label*(1-label)) /spreads * exp(-.5 * pow((log(label/(1-label))-centers)/spreads,2))
# works w/ 100 sequence len
# beta
n = centers*(1-centers)/pow(spreads,2)
beta_param1 = centers*n
beta_param2 = (1-centers)*n
loss = pow(label,beta_param1-1)*pow(1-label,beta_param2-1) / (gamma(beta_param1)*gamma(beta_param2)/gamma(beta_param1+beta_param2))
#loss = exp(Beta(beta_param1,beta_param2).log_prob(label))
loss = (loss*multipliers).sum(-1)
loss = -log(loss +1e-10)
return loss.sum()
def sample_from_out(out):
centers, spreads, multipliers = out
n = centers*(1-centers)/pow(spreads,2)
beta_param1 = centers*n
beta_param2 = (1-centers)*n
sample = Beta(beta_param1,beta_param2).rsample()
sample = (sample*multipliers).sum(-1)
return sample *2 -1
def sequence_loss(label, out, do_stack=False):
if do_stack:
label = stack(label,dim=0)
out = stack(out, dim=0)
loss = pow(label-out, 2) if config.loss_squared else (label-out).abs()
return loss.sum()
def respond_to(model, sequences, state=None, training_run=True, extra_steps=0):
responses = []
loss = 0
sequences = deepcopy(sequences)
if not state:
state = empty_state(model, len(sequences))
max_seq_len = max(len(sequence) for sequence in sequences)
hm_windows = ceil(max_seq_len/config.seq_stride_len)
has_remaining = list(range(len(sequences)))
for i in range(hm_windows):
window_start = i*config.seq_stride_len
is_last_window = window_start+config.seq_window_len>=max_seq_len
window_end = window_start+config.seq_window_len if not is_last_window else max_seq_len
for window_t in range(window_end-window_start -1):
seq_force_ratio = config.seq_force_ratio**window_t
t = window_start+window_t
has_remaining = [i for i in has_remaining if len(sequences[i][t+1:t+2])]
if window_t:
inp = stack([sequences[i][t] for i in has_remaining],dim=0) *seq_force_ratio
if seq_force_ratio != 1:
inp = inp + stack([responses[t-1][i] for i in has_remaining],dim=0) *(1-seq_force_ratio)
else:
inp = stack([sequences[i][t] for i in has_remaining], dim=0)
for ii in range(1,config.hm_steps_back+1):
t_prev = t-ii
if t_prev>=0:
prev_inp = stack([sequences[i][t_prev] for i in has_remaining],dim=0) *seq_force_ratio
else:
prev_inp = zeros(len(has_remaining),config.timestep_size) if not config.use_gpu else zeros(len(has_remaining),config.timestep_size).cuda()
if seq_force_ratio != 1 and t_prev-1>=0:
prev_inp = prev_inp + stack([responses[t_prev-1][i] for i in has_remaining], dim=0) *(1-seq_force_ratio)
inp = cat([inp,prev_inp],dim=1)
lbl = stack([sequences[i][t+1] for i in has_remaining], dim=0)
partial_state = [stack([layer_state[i] for i in has_remaining], dim=0) for layer_state in state]
out, partial_state = prop_model(model, partial_state, inp)
if not config.act_classical_rnn:
loss += distribution_loss(lbl, out)
out = sample_from_out(out)
else:
loss += sequence_loss(lbl, out)
if t >= len(responses):
responses.append([out[has_remaining.index(i),:] if i in has_remaining else None for i in range(len(sequences))])
else:
responses[t] = [out[has_remaining.index(i),:] if i in has_remaining else None for i in range(len(sequences))]
for s, ps in zip(state, partial_state):
for ii,i in enumerate(has_remaining):
s[i] = ps[ii]
if window_t+1 == config.seq_stride_len:
state_to_transfer = [e.detach() for e in state]
if not is_last_window:
state = state_to_transfer
responses = [[r.detach() if r is not None else None for r in resp] if t>=window_start else resp for t,resp in enumerate(responses)]
else: break
if training_run:
loss.backward()
return float(loss)
else:
if len(sequences) == 1:
for t_extra in range(extra_steps):
t = max_seq_len+t_extra-1
prev_responses = [response[0] for response in reversed(responses[-(config.hm_steps_back+1):])]
# for i in range(1, config.hm_steps_back+1):
# if len(sequences[0][t-1:t]):
# prev_responses[i-1] = sequences[0][t-1]
inp = cat([response.view(1,-1) for response in prev_responses],dim=1) # todo: stack ?
out, state = prop_model(model, state, inp)
if not config.act_classical_rnn:
out = sample_from_out(out)
responses.append([out.view(-1)])
responses = stack([ee for e in responses for ee in e], dim=0)
return float(loss), responses
def sgd(model, lr=None, batch_size=None):
if not lr: lr = config.learning_rate
if not batch_size: batch_size = config.batch_size
with no_grad():
for layer in model:
for param in layer._asdict().values():
if param.requires_grad:
param.grad /=batch_size
if config.gradient_clip:
param.grad.clamp(min=-config.gradient_clip,max=config.gradient_clip)
param -= lr * param.grad
param.grad = None
moments, variances, ep_nr = [], [], 0
def adaptive_sgd(model, lr=None, batch_size=None,
alpha_moment=0.9, alpha_variance=0.999, epsilon=1e-8,
do_moments=True, do_variances=True, do_scaling=False):
if not lr: lr = config.learning_rate
if not batch_size: batch_size = config.batch_size
global moments, variances, ep_nr
if not (moments or variances):
if do_moments: moments = [[zeros(weight.size()) if not config.use_gpu else zeros(weight.size()).cuda() for weight in layer._asdict().values()] for layer in model]
if do_variances: variances = [[zeros(weight.size()) if not config.use_gpu else zeros(weight.size()).cuda() for weight in layer._asdict().values()] for layer in model]
ep_nr +=1
with no_grad():
for _, layer in enumerate(model):
for __, weight in enumerate(layer._asdict().values()):
if weight.requires_grad:
lr_ = lr
weight.grad /= batch_size
if do_moments:
moments[_][__] = alpha_moment * moments[_][__] + (1-alpha_moment) * weight.grad
moment_hat = moments[_][__] / (1-alpha_moment**(ep_nr+1))
if do_variances:
variances[_][__] = alpha_variance * variances[_][__] + (1-alpha_variance) * weight.grad**2
variance_hat = variances[_][__] / (1-alpha_variance**(ep_nr+1))
if do_scaling:
lr_ *= norm(weight)/norm(weight.grad)
weight -= lr_ * (moment_hat if do_moments else weight.grad) / ((sqrt(variance_hat)+epsilon) if do_variances else 1)
weight.grad = None
def load_model(path=None, fresh_meta=None):
if not path: path = config.model_path
if not fresh_meta: fresh_meta = config.fresh_meta
path = path+'.pk'
obj = pickle_load(path)
if obj:
model, meta, configs = obj
if config.use_gpu:
TorchModel(model).cuda()
global moments, variances, ep_nr
if fresh_meta:
moments, variances, ep_nr = [], [], 0
else:
moments, variances, ep_nr = meta
if config.use_gpu:
moments = [[e2.cuda() for e2 in e1] for e1 in moments]
variances = [[e2.cuda() for e2 in e1] for e1 in variances]
for k_saved, v_saved in configs:
v = getattr(config, k_saved)
if v != v_saved:
print(f'config conflict resolution: {k_saved} {v} -> {v_saved}')
setattr(config, k_saved, v_saved)
return model
def save_model(model, path=None):
from warnings import filterwarnings
filterwarnings("ignore")
if not path: path = config.model_path
path = path+'.pk'
if config.use_gpu:
moments_ = [[e2.detach().cuda() for e2 in e1] for e1 in moments]
variances_ = [[e2.detach().cuda() for e2 in e1] for e1 in variances]
meta = [moments_, variances_]
model = pull_copy_from_gpu(model)
else:
meta = [moments, variances]
meta.append(ep_nr)
configs = [[field,getattr(config,field)] for field in dir(config) if field in config.config_to_save]
pickle_save([model,meta,configs],path)
def empty_state(model, batch_size=1):
states = []
for layer in model:
if type(layer) != FF and type(layer) != FFS and type(layer) != FFT:
state = zeros(batch_size, getattr(layer,layer._fields[0]).size(1))
if type(layer) == LSTM and prop_layer[LSTM] == prop_Llayer:
state = cat([state]*2,dim=1)
if config.use_gpu: state = state.cuda()
states.append(state)
return states
##
from torch.nn import Module, Parameter
class TorchModel(Module):
def __init__(self, model):
super(TorchModel, self).__init__()
for layer_name, layer in enumerate(model):
for field_name, field in layer._asdict().items():
if type(field) != Parameter:
field = Parameter(field)
setattr(self,f'layer{layer_name}_field{field_name}',field)
setattr(self,f'layertype{layer_name}',type(layer))
model[layer_name] = (getattr(self, f'layertype{layer_name}')) \
(*[getattr(self, f'layer{layer_name}_field{field_name}') for field_name in getattr(self, f'layertype{layer_name}')._fields])
self.model = model
def forward(self, states, inp):
prop_model(self.model, states, inp)
def pull_copy_from_gpu(model):
return [type(layer)(*[weight.detach().cpu() for weight in layer._asdict().values()]) for layer in model]