-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
38 lines (25 loc) · 852 Bytes
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from tensorflow.keras import layers
from tensorflow import keras
def get_model():
X_train_shape = 12
model = keras.Sequential([
layers.Input(shape=(X_train_shape,)),
layers.Dense(64, activation='relu'),
layers.Dense(32, activation='relu'),
layers.Dense(1, activation='sigmoid')
])
return model
def get_second_model():
model = keras.Sequential([
layers.Conv2D(16, kernel_size=(5, 5), padding='same', input_shape=(28, 28, 1)),
layers.BatchNormalization(),
layers.ReLU(),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Conv2D(32, kernel_size=(5, 5), padding='same'),
layers.BatchNormalization(),
layers.ReLU(),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Flatten(),
layers.Dense(10)
])
return model