-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
232 lines (150 loc) · 9.37 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#utils function for all
import json, pickle
import hashlib
from Crypto.PublicKey import RSA
from Crypto.Cipher import PKCS1_OAEP
import tensorflow as tf
import numpy as np
from keras.models import model_from_json
from commands.server_commands import commands
from sklearn.metrics import classification_report
import pandas as pd
from sklearn.decomposition import PCA
from sklearn.model_selection import train_test_split
def get_command_value(command_key):
return commands.get(command_key)
#hash the model
def hash_model(global_model):
hashed_global_model = hashlib.sha3_256(str(global_model).encode('utf-8'))
return hashed_global_model
def encode_dict(_dict):
dict_json = json.dumps(_dict, ensure_ascii=False)
dict_json_bytes = dict_json.encode("utf-8")
return dict_json_bytes
def decode_dict(_dict_json_bytes):
_dict_json = _dict_json_bytes.decode("utf-8")
_dict = json.loads(_dict_json)
return _dict
#gets modelhash and data hash from client before sending
class ClientValidationContainer:
def __init__(self, model_hash, client_data_hash, server_model_data, server_public_key):
self.__model_hash = model_hash
self.__client_data_hash = client_data_hash
self.__server_model_data = server_model_data
self.__server_public_key = server_public_key
@property
def model_hash(self):
return self.__model_hash
@property
def client_data_hash(self):
return self.__client_data_hash
@property
def server_model_data(self):
return self.__server_model_data
@property
def server_public_key(self):
return self.__server_public_key
def verify_data(self, client_data_hash_by_client):
if self.__client_data_hash == client_data_hash_by_client.encode("utf-8"):
print("Datahash by Client and server are both same")
return True
def verify_model(self, client_model_hash_by_client):
if str(self.__model_hash) == str(client_model_hash_by_client):
print("Modelhash by Client and server are both same")
return True
def validate_client_data(self, server_model_data, client_overwritten_X_train, client_overwritten_y_train):
def set_pca(server_X_train_flat, client_X_train_flat):
pca = PCA(n_components=2)
pca.fit(server_X_train_flat)
pca_server = pca.transform(server_X_train_flat)
pca_client = pca.transform(client_X_train_flat)
return pca_server, pca_client
# Class averages based on the PCA-transformed data
def calculate_class_means(pca_data, y_data):
class_means = {}
num_classes = y_data.shape[1]
for i in range(num_classes):
class_indices = np.where(np.argmax(y_data, axis=1) == i)[0]
if class_indices.size > 0:
class_means[i] = np.mean(pca_data[class_indices], axis=0)
else:
class_means[i] = np.nan * np.ones(pca_data.shape[1])
return class_means
def display_diff(means_server, means_client):
mean_differences = {i: np.nan if np.isnan(means_server[i]).any() or np.isnan(means_client[i]).any() else np.linalg.norm(means_server[i] - means_client[i]) for i in means_server}
all_data = pd.DataFrame(list(mean_differences.items()), columns=['class', 'difference'])
sorted_differences = sorted([(class_id, diff) for class_id, diff in mean_differences.items() if not np.isnan(diff)], key=lambda x: x[1], reverse=True)
top_outliers = sorted_differences[:2]
top_class_outliers = pd.DataFrame(top_outliers, columns=['class', 'difference'])
return all_data, top_class_outliers
#data of the server
server_X_train = server_model_data["X_train"]
server_y_train = server_model_data["y_train"]
#data of the client to compare
client_X_train = client_overwritten_X_train
client_y_train = client_overwritten_y_train
#prepare the data of server and client to reduce the dimensonality
server_X_train_flat = server_X_train.reshape(server_X_train.shape[0], -1)
client_X_train_flat = client_X_train.reshape(client_X_train.shape[0], -1)
#set the pca following sklearn-framework
pca_server, pca_client = set_pca(server_X_train_flat, client_X_train_flat)
means_server = calculate_class_means(pca_server, server_y_train)
means_client = calculate_class_means(pca_client, client_y_train)
#using pandas to find the differences and the two classes which have the biggest difference
all_data, top_class_outliers = display_diff(means_server, means_client)
#at the end it shows the difference between the data of the server and client and the two classes which have the biggest difference (maybe cause of label flipping)
return all_data, top_class_outliers
def validate_client_model_performance(self, client_model_by_client, overwritten_X_train, overwritten_y_train, overwritten_X_test, overwritten_y_test):
model_architecture = model_from_json(client_model_by_client["model_architecture"])
model_architecture.compile(optimizer='adam', loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True), metrics=['accuracy'])
model_architecture.fit(overwritten_X_train, overwritten_y_train, batch_size=16, epochs=1, validation_data=(overwritten_X_test, overwritten_y_test))
y_pred_logits = model_architecture.predict(overwritten_X_test)
y_pred = np.argmax(y_pred_logits, axis=1)
y_test_labels = np.argmax(overwritten_y_test, axis=1)
class_report = classification_report(y_test_labels, y_pred, target_names=[str(i) for i in range(10)], output_dict=True, zero_division=0)
class_report = pd.DataFrame(class_report).transpose()
client_test_loss, client_test_accuracy = model_architecture.evaluate(overwritten_X_test, overwritten_y_test)
client_model_test_validation = {
"ClassReport": class_report,
"ClientTestLoss": float(client_test_loss),
"ClientTestAccuracy": float(client_test_accuracy)
}
return client_model_test_validation
#client gets the model from server and the datasize of the training data for the model
def decapsulate_model(self, client_model_by_client, client_data_by_client, X_train, y_train, X_test, y_test):
#hashes the model from client
client_model_hash_by_client = hashlib.sha3_256(str(client_model_by_client).encode('utf-8')).hexdigest()
#hash the data from client
client_data_hash_by_client = hashlib.sha3_256(str(client_data_by_client).encode('utf-8')).hexdigest()
if self.verify_data(client_data_hash_by_client):
if self.verify_model(client_model_hash_by_client):
b_server_model_data = self.__server_model_data
server_model_data = pickle.loads(b_server_model_data)
overwritten_X_train, _, overwritten_y_train, _ = train_test_split(X_train, y_train, test_size=0.9, random_state=20)
overwritten_X_test, _, overwritten_y_test, _ = train_test_split(X_test, y_test, test_size=0.9, random_state=20)
print()
print("Overwritten Model Inputs: ", len(overwritten_X_train),
len(overwritten_y_train),
len(overwritten_X_test),
len(overwritten_y_test))
print()
#verify client data on anomalies
all_class_data, class_outliers = self.validate_client_data(server_model_data, overwritten_X_train, overwritten_y_train)
client_model_test_validation = self.validate_client_model_performance(client_model_by_client, overwritten_X_train, overwritten_y_train, overwritten_X_test, overwritten_y_test)
client_model_test_data = {
"AllClassData": all_class_data,
"ClassOutliers": class_outliers,
"ClassReport": client_model_test_validation["ClassReport"],
"ClientTestLoss": client_model_test_validation["ClientTestLoss"],
"ClientTestAccuracy": client_model_test_validation["ClientTestAccuracy"],
}
pickled_client_model_test_data = pickle.dumps(client_model_test_data)
rsa_key = RSA.import_key(self.__server_public_key)
cipher_rsa = PKCS1_OAEP.new(rsa_key)
#too long for rsa
#result get´s encrypted automatically and just server can decrypt it!
chunk_size = rsa_key.size_in_bytes() - 2 * cipher_rsa._hashObj.digest_size - 2
chunks = [pickled_client_model_test_data [i:i + chunk_size] for i in range(0, len(pickled_client_model_test_data), chunk_size)]
encrypted_chunks = [cipher_rsa.encrypt(chunk) for chunk in chunks]
encrypted_message = b''.join(encrypted_chunks)
return encrypted_message