-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_fig1_case.py
2131 lines (1791 loc) · 90.7 KB
/
plot_fig1_case.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#=========================================================
# plot_fig1_case.py
# Merges radar, ceilometer from ARM and from U. of Canterbury,
# soundings, surface meteorological variables, and
# satellite data.
# This script makes a single plot for Fig. 1 of the manuscript.
# Author: McKenna W. Stanford
# Email: [email protected]
#=========================================================
#--------------------------------
# Imports
#--------------------------------
import numpy as np
import matplotlib.pyplot as plt
import glob
import xarray
import datetime
import calendar
from matplotlib.gridspec import GridSpec
import matplotlib.dates as mdates
import matplotlib
import pickle
import pandas as pd
import os
from file_struct import file_struct as fs
from load_sonde_data import load_sonde_data
from give_me_files_and_subfolders import give_me_files_and_subfolders
from scipy import ndimage
from scipy.ndimage import gaussian_filter
from scipy.interpolate import NearestNDInterpolator as nn
from scipy.interpolate import griddata as griddata
from calculate_theta_and_more import calculate_theta_and_more
import pandas
import metpy.calc as mpcalc
from metpy.units import units
import matplotlib.patches as mpatches
from matplotlib.lines import Line2D
import seaborn as sns
import palettable
#--------------------------------------------
#--------------------------------------------
#--------------------------------------------
# Functions
#--------------------------------------------
def toTimestamp(d):
return calendar.timegm(d.timetuple())
def toDatetime(d):
return datetime.datetime.utcfromtimestamp(d)
def find_nearest(array, value):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return array[idx],idx
# function to make serial date numbers which are the number of days that have passed
# since epoch beginning given as days.fraction_of_day
def datenum(d):
return 366 + d.toordinal() + (d - datetime.datetime.fromordinal(d.toordinal())).total_seconds()/(24*60*60)
#--------------------------------------------
#--------------------------------------------
#--------------------------------------------
# Grab BASTA files
#--------------------------------------------
basta_path = '/mnt/raid/mwstanfo/micre_data/micre_basta/BASTA_25m/'
basta_files = glob.glob(basta_path+'*.nc')
basta_files = sorted(basta_files)
basta_files = np.array(basta_files)
basta_dates_dt = []
for ii in range(len(basta_files)):
fname = basta_files[ii]
tmp_str = fname.split('_')
tmp_str = tmp_str[-1]
tmp_str = tmp_str.split('.')
tmp_str = tmp_str[0]
tmp_year = int(tmp_str[0:4])
tmp_month = int(tmp_str[4:6])
tmp_day = int(tmp_str[6:8])
basta_dates_dt.append(datetime.datetime(tmp_year,tmp_month,tmp_day,0,0,0))
basta_dates_dt = np.array(basta_dates_dt)
#basta_datenum = [datenum(basta_dates_dt[dd]) for dd in range(len(basta_dates_dt))]
#basta_datenum = np.array(basta_datenum)
print(len(basta_dates_dt))
#--------------------------------------------
# End obtention of BASTA files
#--------------------------------------------
#--------------------------------------------
# Grab ARM ceilometer files
#--------------------------------------------
ceil_path = '/mnt/raid/mwstanfo/micre_data/micre_ceil/'
ceil_files = glob.glob(ceil_path+'*.nc')
ceil_files = sorted(ceil_files)
ceil_files = np.array(ceil_files)
ceil_dates_dt = []
for ii in range(len(ceil_files)):
fname = ceil_files[ii]
tmp_str = fname.split('/')
tmp_str = tmp_str[-1]
tmp_str = tmp_str.split('.')
tmp_str = tmp_str[2]
tmp_year = int(tmp_str[0:4])
tmp_month = int(tmp_str[4:6])
tmp_day = int(tmp_str[6:8])
ceil_dates_dt.append(datetime.datetime(tmp_year,tmp_month,tmp_day,0,0,0))
ceil_dates_dt = np.array(ceil_dates_dt)
# Limit ceilometer files to encompass only BASTA dates
tmpid = np.where((ceil_dates_dt >= basta_dates_dt[0]) & (ceil_dates_dt <= basta_dates_dt[-1]))[0]
ceil_files = ceil_files[tmpid]
ceil_dates_dt = ceil_dates_dt[tmpid]
#--------------------------------------------
# End obtention of ARM ceilometer files
#--------------------------------------------
#--------------------------------------------
# Grab AAD ceilometer files
#--------------------------------------------
aad_ceil_path = '/mnt/raid/mwstanfo/micre_data/aad_ceil/AAS_4292_Macquarie_Ceilometer/'
aad_ceil_files = glob.glob(aad_ceil_path+'*.nc')
aad_ceil_files = sorted(aad_ceil_files)
aad_ceil_files = np.array(aad_ceil_files)
aad_ceil_dates_dt = []
aad_ceil_times_dt = []
for ii in range(len(aad_ceil_files)):
fname = aad_ceil_files[ii]
tmp_str = fname.split('/')
tmp_str = tmp_str[-1]
tmp_str = tmp_str.split('.')
tmp_str = tmp_str[0]
tmp_str = tmp_str.split('-')
tmp_year = int(tmp_str[0])
tmp_month = int(tmp_str[1])
tmp_dum = tmp_str[2]
tmp_dum = tmp_dum.split('T')
tmp_day = int(tmp_dum[0])
tmp_hour_min_str = tmp_dum[1][0:4]
tmp_hour = int(tmp_hour_min_str[0:2])
tmp_min = int(tmp_hour_min_str[2:4])
aad_ceil_times_dt.append(datetime.datetime(tmp_year,tmp_month,tmp_day,tmp_hour,tmp_min))
aad_ceil_dates_dt.append(datetime.datetime(tmp_year,tmp_month,tmp_day))
aad_ceil_times_dt = np.array(aad_ceil_times_dt)
aad_ceil_dates_dt = np.array(aad_ceil_dates_dt)
# Limit ceilometer files to encompass only BASTA dates
tmpid = np.where((aad_ceil_dates_dt >= basta_dates_dt[0]) & (aad_ceil_dates_dt <= basta_dates_dt[-1]))[0]
aad_ceil_times_dt = aad_ceil_times_dt[tmpid]
aad_ceil_dates_dt = aad_ceil_dates_dt[tmpid]
aad_ceil_files = aad_ceil_files[tmpid]
#--------------------------------------------
# End obtention of AAD ceilometer files
#--------------------------------------------
#--------------------------------------------
# Grab surface meteorology files
#--------------------------------------------
sfc_path = '/mnt/raid/mwstanfo/micre_data/micre_sfc/'
sfc_files = glob.glob(sfc_path+'*.nc')
sfc_files = sorted(sfc_files)
sfc_files = np.array(sfc_files)
sfc_dates_dt = []
for ii in range(len(sfc_files)):
fname = sfc_files[ii]
tmp_str = fname.split('/')
tmp_str = tmp_str[-1]
tmp_str = tmp_str.split('.')
tmp_str = tmp_str[2]
tmp_year = int(tmp_str[0:4])
tmp_month = int(tmp_str[4:6])
tmp_day = int(tmp_str[6:8])
sfc_dates_dt.append(datetime.datetime(tmp_year,tmp_month,tmp_day,0,0,0))
sfc_dates_dt = np.array(sfc_dates_dt)
# Limit sfc met files to encompass only BASTA dates
tmpid = np.where((sfc_dates_dt >= basta_dates_dt[0]) & (sfc_dates_dt <= basta_dates_dt[-1]))[0]
sfc_dates_dt = sfc_dates_dt[tmpid]
sfc_files = sfc_files[tmpid]
#--------------------------------------------
#--------------------------------------------
#--------------------------------------------
# Grab satellite files
#--------------------------------------------
sat_path = '/mnt/raid/mwstanfo/micre_data/visst_gridded/'
sat_files = glob.glob(sat_path+'*.nc')
sat_files = sorted(sat_files)
sat_files = np.array(sat_files)
sat_dates_dt = []
for ii in range(len(sat_files)):
fname = sat_files[ii]
tmp_str = fname.split('/')
tmp_str = tmp_str[-1]
tmp_str = tmp_str.split('.')
tmp_str = tmp_str[0]
tmp_str = tmp_str.split('_')
tmp_str = tmp_str[2:]
tmp_year = int(tmp_str[0])
tmp_month = int(tmp_str[1])
tmp_day = int(tmp_str[2])
sat_dates_dt.append(datetime.datetime(tmp_year,tmp_month,tmp_day,0,0,0))
sat_dates_dt = np.array(sat_dates_dt)
# sort files according to dates
sort_id = np.argsort(sat_dates_dt)
sat_dates_dt = sat_dates_dt[sort_id]
sat_files = sat_files[sort_id]
# Limit sat files to encompass only BASTA dates
tmpid = np.where((sat_dates_dt >= basta_dates_dt[0]) & (sat_dates_dt <= basta_dates_dt[-1]))[0]
sat_dates_dt = sat_dates_dt[tmpid]
sat_files = sat_files[tmpid]
#--------------------------------------------
#--------------------------------------------
# Grab sounding files
#--------------------------------------------
path = '/mnt/raid/mwstanfo/micre_data/micre_soundings/'
sonde_files = glob.glob(path+'*.nc')
sonde_files = sorted(sonde_files)
sonde_files = np.array(sonde_files)
nf = len(sonde_files)
sonde_dates_dt = []
sonde_times_dt = []
for ff in range(nf):
sonde_file = sonde_files[ff]
sonde_file = str.split(sonde_file,'/')[-1]
sonde_file = str.split(sonde_file,'.')[0]
sonde_file_str1 = str.split(sonde_file,'_')[0]
sonde_file_str2 = str.split(sonde_file,'_')[1]
year = int(sonde_file_str1[0:4])
month = int(sonde_file_str1[4:6])
day = int(sonde_file_str1[6:8])
hour = int(sonde_file_str2[0:2])
minute = int(sonde_file_str2[2:4])
sonde_time_dt = datetime.datetime(year,month,day,hour,minute)
sonde_date_dt = datetime.datetime(year,month,day)
sonde_dates_dt.append(sonde_date_dt)
sonde_times_dt.append(sonde_time_dt)
sonde_dates_dt = np.array(sonde_dates_dt)
sonde_times_dt = np.array(sonde_times_dt)
#--------------------------------------------
#--------------------------------------------
#--------------------------------------------------------------
# Use radar to define timeline
# and exclude days without any soundings
#--------------------------------------------------------------
dumid = np.where((sonde_dates_dt >= basta_dates_dt[0]) & (sonde_dates_dt <= basta_dates_dt[-1]))
sonde_dates_dt = sonde_dates_dt[dumid]
sonde_times_dt = sonde_times_dt[dumid]
sonde_files = sonde_files[dumid]
dates = sonde_dates_dt.copy()
times = sonde_times_dt.copy()
unique_dates = np.unique(dates)
# Target a specific date to plot
target_date = datetime.datetime(2016,11,6)
dumid = np.where(unique_dates == target_date)[0][0]
unique_dates = unique_dates[dumid:]
y_height_const = 1.5
ii = 0
date = unique_dates[0]
print('Sonde date:',date)
#===========================================
# Begin sounding block
#===========================================
print('Begin sounding processing.')
#------------------------------------------
# First find sounding dates that match the
# current BASTA date. Due to filtering above
# of BASTA dates where soundings don't exist
# at all, there should always be at least
# one sounding on a given day.
#------------------------------------------
sonde_id = np.where(sonde_dates_dt == date)[0]
# get times of soundinges and files
current_date_sonde_times_dt = sonde_times_dt[sonde_id]
current_date_sonde_files = sonde_files[sonde_id]
num_current_soundings = len(current_date_sonde_times_dt)
sonde_temperature = []
sonde_pressure = []
sonde_rh = []
sonde_u = []
sonde_v = []
sonde_wind_dir = []
sonde_wind_speed = []
sonde_height = []
sonde_q = []
sonde_theta = []
sonde_theta_e = []
sonde_rh_i = []
sonde_max_alt = []
sonde_time_dt = []
sonde_l_v = []
sonde_w_s = []
sonde_e = []
sonde_time_dt_long = []
jj_ind = []
for jj in range(num_current_soundings):
current_date_sonde_file = current_date_sonde_files[jj]
current_date_sonde_file = current_date_sonde_file.split('/')[-1]
path = '/mnt/raid/mwstanfo/micre_data/micre_soundings/'
file_size = os.stat(path+current_date_sonde_file).st_size/1.e3
fstruct = fs(current_date_sonde_file,path,file_size)
Sondetmp = load_sonde_data(fstruct)
max_alt = np.max(Sondetmp['alt'])
if max_alt < 10.:
print('Sonde failed to reach 10 km. Therefore omitting this sounding.')
jj_ind.append(jj)
continue
sonde_temperature.append(Sondetmp['drybulb_temp'])
sonde_pressure.append(Sondetmp['pressure'])
sonde_rh.append(Sondetmp['RH'])
sonde_u.append(Sondetmp['u_wind'])
sonde_v.append(Sondetmp['v_wind'])
sonde_wind_dir.append(Sondetmp['wind_direction'])
sonde_wind_speed.append(Sondetmp['wind_speed'])
sonde_height.append(Sondetmp['alt'])
Moretmp = calculate_theta_and_more(Sondetmp['drybulb_temp'],Sondetmp['pressure'],\
RH=Sondetmp['RH'],use_T_K=True,\
sat_pres_formula='Emmanuel')
sonde_q.append(Moretmp['q'])
sonde_theta.append(Moretmp['Theta'])
sonde_theta_e.append(Moretmp['Theta_e'])
sonde_rh_i.append(Moretmp['RH_i'])
sonde_l_v.append(Moretmp['L_v'])
sonde_w_s.append(Moretmp['w_s'])
sonde_e.append(Moretmp['e'])
sonde_time_dt_long.append(Sondetmp['time'])
sonde_time_dt.append(current_date_sonde_times_dt[jj])
sonde_max_alt.append(max_alt)
if np.size(jj_ind) > 0.:
current_date_sonde_files = np.delete(current_date_sonde_files,jj_ind)
current_date_sonde_times_dt = np.delete(current_date_sonde_times_dt,jj_ind)
sonde_id = np.delete(sonde_id,jj_ind)
num_current_soundings = len(current_date_sonde_files)
#===========================================
# End sounding block
#===========================================
print('Completed sounding processing.')
#======================================================
# Begin radar block
#======================================================
print('Begin radar processing.')
dumid = np.where(basta_dates_dt == date)
dumid = dumid[0][0]
ncfile = xarray.open_dataset(basta_files[dumid],decode_times=False)
basta_time_dims = ncfile.dims['time'] # will be variable according to up-time
basta_height_dims = ncfile.dims['height'] # should always be 480
basta_ref = np.array(ncfile['reflectivity'].copy())
basta_vel = np.array(ncfile['velocity'].copy())
basta_flag = np.array(ncfile['flag'].copy())
basta_flag_coupling = np.array(ncfile['flag_coupling'].copy()) # 0: no coupling (good); 1: coupling (bad)
basta_noise_level = np.array(ncfile['noise_level'].copy()) # 0: good data; 1-9: bad data; -1: no data
basta_time_sec_since_00Z = np.array(ncfile['time'].copy())
basta_height = np.array(ncfile['height'].copy()) # 25-m resolution beginning at 12.5 m (mid-bin)
### ends at 11987.5 m, so 12 km
ncfile.close()
tmp_basta_time_ts = toTimestamp(datetime.datetime(date.year,\
date.month,\
date.day))
tmp_basta_time_ts = tmp_basta_time_ts + basta_time_sec_since_00Z
basta_time_dt = [toDatetime(tmp_basta_time_ts[dd]) for dd in range(len(tmp_basta_time_ts))]
basta_time_dt = np.array(basta_time_dt) # holds the BASTA time array for the current file.
#------------------------------------------------------
# For some of the files, the date after the current one
# holds the last hour of the day. In previous implementations,
# we pulled in the following file only if any of the times
# matched the current date. Now, we'll do this IN ADDITION
# TO checking the final sounding and making sure
# we pull in at least an hour past the final sounding.
#------------------------------------------------------
target_end_time = current_date_sonde_times_dt[-1]+datetime.timedelta(hours=1)
target_start_time = current_date_sonde_times_dt[0]-datetime.timedelta(hours=1)
if ii != (len(dates)-1):
ncfile = xarray.open_dataset(basta_files[dumid+1],decode_times=False)
after_basta_time_sec_since_00Z = np.array(ncfile['time'].copy())
ncfile.close()
tmp_basta_time_ts = toTimestamp(datetime.datetime(basta_dates_dt[dumid+1].year,\
basta_dates_dt[dumid+1].month,\
basta_dates_dt[dumid+1].day))
tmp_basta_time_ts = tmp_basta_time_ts + after_basta_time_sec_since_00Z
after_basta_time_dt = [toDatetime(tmp_basta_time_ts[dd]) for dd in range(len(tmp_basta_time_ts))]
after_basta_date_dt = [datetime.datetime(after_basta_time_dt[dd].year,\
after_basta_time_dt[dd].month,\
after_basta_time_dt[dd].day) for dd in range(len(after_basta_time_dt))]
after_basta_time_dt = np.array(after_basta_time_dt) # holds the BASTA time array for the after file.
after_basta_date_dt = np.array(after_basta_date_dt) # holds the BASTA date array for the after file.
# check to see if any of the dates in the after file equal the date on the current file
tmpid = np.where( (after_basta_date_dt == date) | (after_basta_time_dt <= target_end_time) )
if np.size(tmpid) > 0.:
# now open back up after file and add indices in after file with
# same date as current file to the current BASTA arrays
ncfile = xarray.open_dataset(basta_files[dumid+1],decode_times=False)
after_basta_ref = np.array(ncfile['reflectivity'].copy())
after_basta_vel = np.array(ncfile['velocity'].copy())
after_basta_flag = np.array(ncfile['flag'].copy())
after_basta_flag_coupling = np.array(ncfile['flag_coupling'].copy()) # 0: no coupling (good); 1: coupling (bad)
after_basta_noise_level = np.array(ncfile['noise_level'].copy()) # 0: good data; 1-9: bad data; -1: no data
ncfile.close()
# now concatenate arrays
basta_time_dt = np.concatenate((basta_time_dt,after_basta_time_dt[tmpid]))
basta_ref = np.concatenate((basta_ref,np.squeeze(after_basta_ref[:,tmpid])),axis=1)
basta_vel = np.concatenate((basta_vel,np.squeeze(after_basta_vel[:,tmpid])),axis=1)
basta_flag = np.concatenate((basta_flag,np.squeeze(after_basta_flag[:,tmpid])),axis=1)
basta_flag_coupling = np.concatenate((basta_flag_coupling,after_basta_flag_coupling[tmpid]),axis=0)
basta_noise_level = np.concatenate((basta_noise_level,after_basta_noise_level[tmpid]),axis=0)
if False:
fig = plt.figure(figsize=(10,8))
ax = fig.add_subplot(111)
#levs=np.arange(-40,25,5)
levs=np.arange(-2,2.1,0.1)
tmpplot=ax.contourf(basta_time_dt,basta_height,basta_vel,cmap='seismic',levels=levs,extend='both')
ax.set_ylim(0,2000)
ax.set_xlim(datetime.datetime(2016,4,2,22,50),datetime.datetime(2016,4,2,23,10))
plt.show()
plt.close()
# Because the current date BASTA file sometimes start at 23Z on the day prior, also need to
# limit the current file to encompass only times on the current date (i.e., need to limit
# the current date variables, filtering out those from 23Z-00Z on the previous date)
basta_date_dt = np.array([datetime.datetime(basta_time_dt[dd].year,\
basta_time_dt[dd].month,\
basta_time_dt[dd].day) for dd in range(len(basta_time_dt))])
basta_ref = np.squeeze(basta_ref)
basta_vel = np.squeeze(basta_vel)
basta_flag = np.squeeze(basta_flag)
basta_flag_coupling = np.squeeze(basta_flag_coupling)
basta_noise_level = np.squeeze(basta_noise_level)
bad_radar_data_flag = np.zeros(len(basta_time_dt))
# create array that is the minimum detectable signal as a function of altitude
Z_min_1km = -36.
ref_range = 1000.
Z_min = Z_min_1km + 20.*np.log10(basta_height) - 20.*np.log10(ref_range)
Z_min[0] = -999.
# NaN out values up to 137.5 m due to surface clutter
basta_ref[0:5,:] = np.nan
basta_vel[0:5,:] = np.nan
# We will also setting all basta_flag values up to 137.5 m
# as -1. Currently basta_flag == -1 only up to 87.5 m, so we
# want to adjust this.
basta_flag[0:5,:] = -1
# Set values below the minimum detectable signal to -999.
for ttt in range(len(basta_time_dt)):
dumid = np.where(basta_ref[:,ttt] < Z_min)
if np.size(dumid) > 0.:
basta_ref[dumid,ttt] = -999.
basta_vel[dumid,ttt] = -999.
basta_flag[dumid,ttt] = -1
dumid = np.where(basta_flag_coupling == 1.)
if np.size(dumid) > 0.:
basta_ref[:,dumid] = np.nan
basta_vel[:,dumid] = np.nan
bad_radar_data_flag[dumid] = 1
for ttt in range(len(basta_time_dt)):
single_time_basta_flag = basta_flag[:,ttt]
dumid = np.where(single_time_basta_flag > 0.)
if np.size(dumid) > 0.:
basta_ref[dumid,ttt] = np.nan
basta_vel[dumid,ttt] = np.nan
if np.all(single_time_basta_flag > 0.):
bad_radar_data_flag[ttt] = 1
print('Completed radar processing.')
#======================================================
# End radar block
#======================================================
#===========================================
# Begin ARM Ceilometer Block
#===========================================
tmpid = np.where(ceil_dates_dt == date)
if np.size(tmpid) == 0.:
ceilometer_present = False
print('No ARM ceilometer data for this date.')
elif np.size(tmpid) > 0.:
print('Begin ARM ceilometer processing.')
ceilometer_present = True
tmpid = tmpid[0][0]
current_ceil_file = ceil_files[tmpid]
ncfile = xarray.open_dataset(current_ceil_file,decode_times=False)
ceil_dims = ncfile.dims
ceil_base_time = np.array(ncfile['base_time'].copy())
ceil_num_times = ceil_dims['time']
ceil_time_offset = np.array(ncfile['time_offset'].copy())
ceil_cbh_1 = np.array(ncfile['first_cbh'].copy())
ceil_cbh_2 = np.array(ncfile['second_cbh'].copy())
ceil_cbh_3 = np.array(ncfile['third_cbh'].copy())
ceil_qc_cbh_1 = np.array(ncfile['qc_first_cbh'].copy())
ceil_qc_cbh_2 = np.array(ncfile['qc_second_cbh'].copy())
ceil_qc_cbh_3 = np.array(ncfile['qc_third_cbh'].copy())
ceil_status_flag = np.array(ncfile['status_flag'].copy())
ceil_detection_status = np.array(ncfile['detection_status'].copy())
ceil_time_ts = [int(ceil_base_time + ceil_time_offset[dd]) for dd in range(ceil_num_times)]
ceil_time_dt = [toDatetime(ceil_time_ts[dd]) for dd in range(ceil_num_times)]
ceil_range_bounds = np.array(ncfile['range_bounds'].copy())
ceil_backscatter = np.array(ncfile['backscatter'].copy())
ceil_range = np.array(ncfile['range'].copy())
ncfile.close()
ceil_time_ts = np.array(ceil_time_ts)
ceil_time_dt = np.array(ceil_time_dt)
ceil_cbh_1 = np.array(ceil_cbh_1)
ceil_cbh_2 = np.array(ceil_cbh_2)
ceil_cbh_3 = np.array(ceil_cbh_3)
ceil_qc_cbh_1 = np.array(ceil_qc_cbh_1)
ceil_qc_cbh_2 = np.array(ceil_qc_cbh_2)
ceil_qc_cbh_3 = np.array(ceil_qc_cbh_3)
ceil_status_flag = np.array(ceil_status_flag)
ceil_detection_status = np.array(ceil_detection_status)
ceil_range_bounds = np.array(ceil_range_bounds)
ceil_range = np.array(ceil_range)
ceil_backscatter = np.array(ceil_backscatter)
# pull in after file
dumid = np.where(ceil_dates_dt == date+datetime.timedelta(days=1))
if np.size(dumid) > 0.:
dumid = dumid[0][0]
after_ceil_file = ceil_files[dumid]
ncfile = xarray.open_dataset(after_ceil_file,decode_times=False)
after_ceil_dims = ncfile.dims
after_ceil_base_time = np.array(ncfile['base_time'].copy())
after_ceil_num_times = after_ceil_dims['time']
after_ceil_time_offset = np.array(ncfile['time_offset'].copy())
after_ceil_time_ts = [int(after_ceil_base_time + after_ceil_time_offset[dd]) for dd in range(after_ceil_num_times)]
after_ceil_time_dt = [toDatetime(after_ceil_time_ts[dd]) for dd in range(after_ceil_num_times)]
after_ceil_time_dt = np.array(after_ceil_time_dt)
dumiid = np.where(after_ceil_time_dt <= target_end_time)
if np.size(dumiid) == 0.:
ncfile.close()
else:
after_ceil_cbh_1 = np.array(ncfile['first_cbh'].copy())
after_ceil_cbh_2 = np.array(ncfile['second_cbh'].copy())
after_ceil_cbh_3 = np.array(ncfile['third_cbh'].copy())
after_ceil_qc_cbh_1 = np.array(ncfile['qc_first_cbh'].copy())
after_ceil_qc_cbh_2 = np.array(ncfile['qc_second_cbh'].copy())
after_ceil_qc_cbh_3 = np.array(ncfile['qc_third_cbh'].copy())
after_ceil_status_flag = np.array(ncfile['status_flag'].copy())
after_ceil_detection_status = np.array(ncfile['detection_status'].copy())\
#after_ceil_range_bounds = np.array(ncfile['range_bounds'].copy())
after_ceil_backscatter = np.array(ncfile['backscatter'].copy())
#after_ceil_range = np.array(ncfile['range'].copy())
ncfile.close()
after_ceil_time_ts = np.array(after_ceil_time_ts)
after_ceil_time_dt = np.array(after_ceil_time_dt)
after_ceil_cbh_1 = np.array(after_ceil_cbh_1)
after_ceil_cbh_2 = np.array(after_ceil_cbh_2)
after_ceil_cbh_3 = np.array(after_ceil_cbh_3)
after_ceil_qc_cbh_1 = np.array(after_ceil_qc_cbh_1)
after_ceil_qc_cbh_2 = np.array(after_ceil_qc_cbh_2)
after_ceil_qc_cbh_3 = np.array(after_ceil_qc_cbh_3)
after_ceil_status_flag = np.array(after_ceil_status_flag)
after_ceil_detection_status = np.array(after_ceil_detection_status)
#after_ceil_range_bounds = np.array(after_ceil_range_bounds)
#after_ceil_range = np.array(after_ceil_range)
after_ceil_backscatter = np.array(after_ceil_backscatter)
dumiid = np.squeeze(dumiid)
ceil_time_dt = np.concatenate((ceil_time_dt,after_ceil_time_dt[dumiid]))
ceil_time_ts = np.concatenate((ceil_time_ts,after_ceil_time_ts[dumiid]))
ceil_cbh_1 = np.concatenate((ceil_cbh_1,after_ceil_cbh_1[dumiid]))
ceil_cbh_2 = np.concatenate((ceil_cbh_2,after_ceil_cbh_2[dumiid]))
ceil_cbh_3 = np.concatenate((ceil_cbh_3,after_ceil_cbh_3[dumiid]))
ceil_qc_cbh_1 = np.concatenate((ceil_qc_cbh_1,after_ceil_qc_cbh_1[dumiid]))
ceil_qc_cbh_2 = np.concatenate((ceil_qc_cbh_2,after_ceil_qc_cbh_2[dumiid]))
ceil_qc_cbh_3 = np.concatenate((ceil_qc_cbh_3,after_ceil_qc_cbh_3[dumiid]))
ceil_status_flag = np.concatenate((ceil_status_flag,after_ceil_status_flag[dumiid]))
ceil_detection_status = np.concatenate((ceil_detection_status,after_ceil_detection_status[dumiid]))
ceil_backscatter = np.concatenate((ceil_backscatter,after_ceil_backscatter[dumiid,:]))
ceil_cbh_1_native = ceil_cbh_1.copy()
ceil_cbh_2_native = ceil_cbh_2.copy()
ceil_cbh_3_native = ceil_cbh_3.copy()
#------------------------------------------
# Interpolate ceilometer to radar time grid
# using nearest neighbor interpolation.
# This method requires that the nearest
# neighbor be within 15 seconds of the
# radar time grid element.
#------------------------------------------
basta_time_ts = np.array([toTimestamp(basta_time_dt[dd]) for dd in range(len(basta_time_dt))])
ceil_time_ts = np.array([toTimestamp(ceil_time_dt[dd]) for dd in range(len(ceil_time_dt))])
basta_bin_edges = np.arange(0,np.max(basta_height)+12.5+25.,25.)
ceil_cbh_1_interp = []
ceil_cbh_2_interp = []
ceil_cbh_3_interp = []
ceil_detection_status_interp = []
for ttt in range(len(basta_time_dt)):
if bad_radar_data_flag[ttt] == 1.:
ceil_cbh_1_interp.append(np.nan)
ceil_cbh_2_interp.append(np.nan)
ceil_cbh_3_interp.append(np.nan)
ceil_detection_status_interp.append(np.nan)
continue
else:
pass
# if here, then good radar data exists
# Now find the nearest in time ceilometer time step to the radar time step
# If the ceilometer is more than 15 seconds away from the the radar time step,
# then we will flag it as missing data (NaN)
nearest_val,nearest_id = find_nearest(ceil_time_ts,basta_time_ts[ttt])
time_diff = np.abs(nearest_val - basta_time_ts[ttt])
target_time_diff = 15
if time_diff <= target_time_diff:
nearest_ceil_cbh_1 = ceil_cbh_1[nearest_id]
nearest_ceil_cbh_2 = ceil_cbh_2[nearest_id]
nearest_ceil_cbh_3 = ceil_cbh_3[nearest_id]
nearest_ceil_detection_status = ceil_detection_status[nearest_id]
ceil_detection_status_interp.append(nearest_ceil_detection_status)
if np.isnan(nearest_ceil_detection_status):
ceil_cbh_1_interp.append(np.nan)
ceil_cbh_2_interp.append(np.nan)
ceil_cbh_3_interp.append(np.nan)
continue
if np.isnan(nearest_ceil_cbh_1):
ceil_cbh_1_interp.append(np.nan)
ceil_cbh_2_interp.append(np.nan)
ceil_cbh_3_interp.append(np.nan)
continue
# ceil_cbh_1
nearest_val,nearest_id = find_nearest(basta_bin_edges,nearest_ceil_cbh_1)
if nearest_ceil_cbh_1 == nearest_val:
bin_edges = basta_bin_edges[nearest_id-1:nearest_id+1]
midbin = (bin_edges[0]+bin_edges[1])/2.
ceil_cbh_1_interp.append(midbin)
elif nearest_ceil_cbh_1 < nearest_val:
bin_edges = basta_bin_edges[nearest_id-1:nearest_id+1]
midbin = (bin_edges[0]+bin_edges[1])/2.
ceil_cbh_1_interp.append(midbin)
elif nearest_ceil_cbh_1 > nearest_val:
bin_edges = basta_bin_edges[nearest_id:nearest_id+2]
midbin = (bin_edges[0]+bin_edges[1])/2.
ceil_cbh_1_interp.append(midbin)
elif np.isnan(nearest_ceil_cbh_1):
ceil_cbh_1_interp.append(np.nan)
# ceil_cbh_2
nearest_val,nearest_id = find_nearest(basta_bin_edges,nearest_ceil_cbh_2)
if nearest_ceil_cbh_2 == nearest_val:
bin_edges = basta_bin_edges[nearest_id-1:nearest_id+1]
midbin = (bin_edges[0]+bin_edges[1])/2.
ceil_cbh_2_interp.append(midbin)
elif nearest_ceil_cbh_2 < nearest_val:
bin_edges = basta_bin_edges[nearest_id-1:nearest_id+1]
midbin = (bin_edges[0]+bin_edges[1])/2.
ceil_cbh_2_interp.append(midbin)
elif nearest_ceil_cbh_2 > nearest_val:
bin_edges = basta_bin_edges[nearest_id:nearest_id+2]
midbin = (bin_edges[0]+bin_edges[1])/2.
ceil_cbh_2_interp.append(midbin)
elif np.isnan(nearest_ceil_cbh_2):
ceil_cbh_2_interp.append(np.nan)
# ceil_cbh_3
nearest_val,nearest_id = find_nearest(basta_bin_edges,nearest_ceil_cbh_3)
if nearest_ceil_cbh_3 == nearest_val:
bin_edges = basta_bin_edges[nearest_id-1:nearest_id+1]
midbin = (bin_edges[0]+bin_edges[1])/2.
ceil_cbh_3_interp.append(midbin)
elif nearest_ceil_cbh_3 < nearest_val:
bin_edges = basta_bin_edges[nearest_id-1:nearest_id+1]
midbin = (bin_edges[0]+bin_edges[1])/2.
ceil_cbh_3_interp.append(midbin)
elif nearest_ceil_cbh_3 > nearest_val:
bin_edges = basta_bin_edges[nearest_id:nearest_id+2]
midbin = (bin_edges[0]+bin_edges[1])/2.
ceil_cbh_3_interp.append(midbin)
elif np.isnan(nearest_ceil_cbh_3):
ceil_cbh_3_interp.append(np.nan)
else:
ceil_cbh_1_interp.append(np.nan)
ceil_cbh_2_interp.append(np.nan)
ceil_cbh_3_interp.append(np.nan)
ceil_detection_status_interp.append(np.nan)
ceil_cbh_1_interp = np.array(ceil_cbh_1_interp)
ceil_cbh_2_interp = np.array(ceil_cbh_2_interp)
ceil_cbh_3_interp = np.array(ceil_cbh_3_interp)
ceil_detection_status_interp = np.array(ceil_detection_status_interp)
print('Completed ARM ceilometer processing.')
#===========================================
# End ARM Ceilometer Block
#===========================================
#===========================================
# Begin AAD Ceilometer Block
#===========================================
tmpid = np.where(aad_ceil_dates_dt == date)
if np.size(tmpid) == 0.:
aad_ceilometer_present = False
#raise RuntimeError('No AAD files at all for this date.')
elif np.size(tmpid) > 0.:
print('Begin AAD ceilometer processing.')
aad_ceilometer_present = True
current_aad_ceil_dates_dt = aad_ceil_dates_dt[tmpid]
current_aad_ceil_times_dt = aad_ceil_times_dt[tmpid]
current_aad_ceil_files = aad_ceil_files[tmpid]
num_files = len(current_aad_ceil_files)
aad_ceil_cbh_1 = []
aad_ceil_cbh_2 = []
aad_ceil_cbh_3 = []
aad_ceil_backscatter = []
aad_ceil_detection_status = []
aad_ceil_time_dt = []
aad_ceil_level = []
aad_ceil_vertical_resolution = []
aad_ceil_present_array = []
for jj in range(num_files):
ncfile = xarray.open_dataset(current_aad_ceil_files[jj],decode_times=False)
ncfile_dims = ncfile.dims
# in case data is missing entirely
if np.size(ncfile.variables) <=2:
ncfile.close()
aad_ceil_present_array.append(False)
continue
aad_ceil_time_dims = ncfile_dims['time']
aad_ceil_level_dims = ncfile_dims['level']
# in case the time dimension is only one element long
if aad_ceil_time_dims == 1:
ncfile.close()
aad_ceil_present_array.append(False)
continue
#aad_ceil_layer_dims = ncfile_dims['layer']
tmp_aad_ceil_cbh_1 = np.array(ncfile['cbh_1'].copy())
tmp_aad_ceil_cbh_2 = np.array(ncfile['cbh_2'].copy())
tmp_aad_ceil_cbh_3 = np.array(ncfile['cbh_3'].copy())
tmp_aad_ceil_backscatter = np.array(ncfile['backscatter'].copy())
tmp_aad_ceil_detection_status = np.array(ncfile['detection_status'].copy())
tmp_aad_ceil_level = np.array(ncfile['level'].copy())
tmp_aad_ceil_vertical_resolution = np.array(ncfile['vertical_resolution'].copy())
tmp_aad_ceil_time = np.array(ncfile['time'].copy())
ncfile.close()
# Convert times from string to datetime object
tmp_aad_ceil_time_dt = []
for kk in range(len(tmp_aad_ceil_time)):
tmp_str = tmp_aad_ceil_time[kk].split('T')
str_date = tmp_str[0]
str_hhmmss = tmp_str[1]
str_date = str_date.split('-')
tmp_year = int(str_date[0])
tmp_month = int(str_date[1])
tmp_day = int(str_date[2])
str_hhmmss = str_hhmmss.split(':')
tmp_hour = int(str_hhmmss[0])
tmp_min = int(str_hhmmss[1])
tmp_sec = int(str_hhmmss[2])
tmp_time = datetime.datetime(tmp_year,tmp_month,tmp_day,tmp_hour,tmp_min,tmp_sec)
tmp_aad_ceil_time_dt.append(tmp_time)
aad_ceil_time_dt.append(tmp_aad_ceil_time_dt)
aad_ceil_cbh_1.append(tmp_aad_ceil_cbh_1)
aad_ceil_cbh_2.append(tmp_aad_ceil_cbh_2)
aad_ceil_cbh_3.append(tmp_aad_ceil_cbh_3)
aad_ceil_backscatter.append(tmp_aad_ceil_backscatter)
aad_ceil_detection_status.append(tmp_aad_ceil_detection_status)
aad_ceil_level.append(tmp_aad_ceil_level)
aad_ceil_vertical_resolution.append(tmp_aad_ceil_vertical_resolution)
aad_ceil_present_array.append(True)
if np.all(aad_ceil_present_array) != False:
aad_ceil_time_dt = np.concatenate(aad_ceil_time_dt)
aad_ceil_cbh_1 = np.concatenate(aad_ceil_cbh_1)
aad_ceil_cbh_2 = np.concatenate(aad_ceil_cbh_2)
aad_ceil_cbh_3 = np.concatenate(aad_ceil_cbh_3)
aad_ceil_backscatter = np.concatenate(aad_ceil_backscatter)
aad_ceil_detection_status = np.concatenate(aad_ceil_detection_status)
aad_ceil_vertical_resolution = np.concatenate(aad_ceil_vertical_resolution)
aad_ceil_present_array = np.array(aad_ceil_present_array)
# after files
dumid = np.where(aad_ceil_dates_dt == date+datetime.timedelta(days=1))
if np.size(dumid) > 0.:
after_aad_ceilometer_present = True
after_aad_ceil_dates_dt = aad_ceil_dates_dt[dumid]
after_aad_ceil_times_dt = aad_ceil_times_dt[dumid]
after_aad_ceil_files = aad_ceil_files[dumid]
dumid2 = np.where(after_aad_ceil_times_dt <= target_end_time)
if np.size(dumid2) > 0.:
after_aad_ceil_dates_dt = aad_ceil_dates_dt[dumid2]
after_aad_ceil_times_dt = aad_ceil_times_dt[dumid2]
after_aad_ceil_files = aad_ceil_files[dumid2]
num_after_files = len(after_aad_ceil_files)
after_aad_ceil_cbh_1 = []
after_aad_ceil_cbh_2 = []
after_aad_ceil_cbh_3 = []
after_aad_ceil_backscatter = []
after_aad_ceil_detection_status = []
after_aad_ceil_time_dt = []
after_aad_ceil_level = []
after_aad_ceil_vertical_resolution = []
after_aad_ceil_present_array = []
for jj in range(num_after_files):
ncfile = xarray.open_dataset(after_aad_ceil_files[jj],decode_times=False)
ncfile_dims = ncfile.dims
# in case data is missing entirely
if np.size(ncfile.variables) <=2:
ncfile.close()
after_aad_ceil_present_array.append(False)
continue
after_aad_ceil_time_dims = ncfile_dims['time']
after_aad_ceil_level_dims = ncfile_dims['level']
# in case the time dimension is only one element long
if after_aad_ceil_time_dims == 1:
ncfile.close()
after_aad_ceil_present_array.append(False)
continue
#aad_ceil_layer_dims = ncfile_dims['layer']
tmp_after_aad_ceil_cbh_1 = np.array(ncfile['cbh_1'].copy())
tmp_after_aad_ceil_cbh_2 = np.array(ncfile['cbh_2'].copy())
tmp_after_aad_ceil_cbh_3 = np.array(ncfile['cbh_3'].copy())
tmp_after_aad_ceil_backscatter = np.array(ncfile['backscatter'].copy())
tmp_after_aad_ceil_detection_status = np.array(ncfile['detection_status'].copy())
tmp_after_aad_ceil_level = np.array(ncfile['level'].copy())
tmp_after_aad_ceil_vertical_resolution = np.array(ncfile['vertical_resolution'].copy())
tmp_after_aad_ceil_time = np.array(ncfile['time'].copy())
ncfile.close()
# Convert times from string to datetime object
tmp_after_aad_ceil_time_dt = []
for kk in range(len(tmp_after_aad_ceil_time)):
tmp_str = tmp_after_aad_ceil_time[kk].split('T')
str_date = tmp_str[0]
str_hhmmss = tmp_str[1]
str_date = str_date.split('-')
tmp_year = int(str_date[0])
tmp_month = int(str_date[1])
tmp_day = int(str_date[2])
str_hhmmss = str_hhmmss.split(':')
tmp_hour = int(str_hhmmss[0])
tmp_min = int(str_hhmmss[1])
tmp_sec = int(str_hhmmss[2])
tmp_time = datetime.datetime(tmp_year,tmp_month,tmp_day,tmp_hour,tmp_min,tmp_sec)
tmp_after_aad_ceil_time_dt.append(tmp_time)
after_aad_ceil_time_dt.append(tmp_after_aad_ceil_time_dt)
after_aad_ceil_cbh_1.append(tmp_after_aad_ceil_cbh_1)
after_aad_ceil_cbh_2.append(tmp_after_aad_ceil_cbh_2)
after_aad_ceil_cbh_3.append(tmp_after_aad_ceil_cbh_3)
after_aad_ceil_backscatter.append(tmp_after_aad_ceil_backscatter)
after_aad_ceil_detection_status.append(tmp_after_aad_ceil_detection_status)
after_aad_ceil_level.append(tmp_after_aad_ceil_level)
after_aad_ceil_vertical_resolution.append(tmp_after_aad_ceil_vertical_resolution)
after_aad_ceil_present_array.append(True)
if np.size(after_aad_ceil_present_array) != 0.:
if np.all(after_aad_ceil_present_array) != False:
after_aad_ceil_time_dt = np.concatenate(after_aad_ceil_time_dt)
after_aad_ceil_cbh_1 = np.concatenate(after_aad_ceil_cbh_1)
after_aad_ceil_cbh_2 = np.concatenate(after_aad_ceil_cbh_2)
after_aad_ceil_cbh_3 = np.concatenate(after_aad_ceil_cbh_3)
after_aad_ceil_backscatter = np.concatenate(after_aad_ceil_backscatter)
after_aad_ceil_detection_status = np.concatenate(after_aad_ceil_detection_status)
after_aad_ceil_vertical_resolution = np.concatenate(after_aad_ceil_vertical_resolution)
after_aad_ceil_present_array = np.array(after_aad_ceil_present_array)
dumiid = np.where(after_aad_ceil_time_dt <= target_end_time)
if np.size(dumiid) > 0.:
dumiid = np.squeeze(dumiid)
after_aad_ceil_time_dt = after_aad_ceil_time_dt[dumiid]
after_aad_ceil_cbh_1 = after_aad_ceil_cbh_1[dumiid]
after_aad_ceil_cbh_2 = after_aad_ceil_cbh_2[dumiid]
after_aad_ceil_cbh_3 = after_aad_ceil_cbh_3[dumiid]
after_aad_ceil_vertical_resolution = after_aad_ceil_vertical_resolution[dumiid]
after_aad_ceil_detection_status = after_aad_ceil_detection_status[dumiid]
after_aad_ceil_backscatter = after_aad_ceil_backscatter[dumiid,:]
aad_ceil_time_dt = np.concatenate((aad_ceil_time_dt,after_aad_ceil_time_dt))
aad_ceil_cbh_1 = np.concatenate((aad_ceil_cbh_1,after_aad_ceil_cbh_1))
aad_ceil_cbh_2 = np.concatenate((aad_ceil_cbh_2,after_aad_ceil_cbh_2))
aad_ceil_cbh_3 = np.concatenate((aad_ceil_cbh_3,after_aad_ceil_cbh_3))
aad_ceil_vertical_resolution = np.concatenate((aad_ceil_vertical_resolution,after_aad_ceil_vertical_resolution))
aad_ceil_detection_status = np.concatenate((aad_ceil_detection_status,after_aad_ceil_detection_status))
aad_ceil_backscatter = np.concatenate((aad_ceil_backscatter,after_aad_ceil_backscatter))
aad_ceil_present_array = np.concatenate((aad_ceil_present_array,after_aad_ceil_present_array))
if np.all(aad_ceil_present_array) != False:
aad_ceil_level = aad_ceil_level[0]
max_cbh_arm_ceil = 7430. # m
# Limit max CBH to the maximum detectable by the ARM ceilometer
tmpid = np.where(aad_ceil_cbh_1 > max_cbh_arm_ceil)
if np.size(tmpid) > 0.:
aad_ceil_cbh_1[tmpid] = np.nan
# Limit max CBH to the maximum detectable by the ARM ceilometer
tmpid = np.where(aad_ceil_cbh_2 > max_cbh_arm_ceil)
if np.size(tmpid) > 0.:
aad_ceil_cbh_2[tmpid] = np.nan
# Limit max CBH to the maximum detectable by the ARM ceilometer
tmpid = np.where(aad_ceil_cbh_3 > max_cbh_arm_ceil)
if np.size(tmpid) > 0.:
aad_ceil_cbh_3[tmpid] = np.nan
# ensure that the vertical resolution is always 10
unique_res = np.unique(aad_ceil_vertical_resolution)
if np.size(unique_res) > 1.:
raise RuntimeError("AAD ceilometer resolution is not unique.")
aad_ceil_height = (aad_ceil_level+1)*unique_res[0]
#------------------------------------------
# Interpolate ceilometer to radar time grid