@@ -26,6 +26,7 @@ source("Helper_functions.R")
26
26
27
27
28
28
``` {r data read}
29
+ BRLEAF_SUMMARY <- read.csv("Outputs/Broadleaf_summary_metrics.csv")
29
30
BRLEAF_SUMMARY <- BRLEAF_SUMMARY %>%
30
31
mutate(YR = c("1971","2001","2022")[YEAR],
31
32
YDAY = (DAYOFYEAR - 200)/30,
@@ -34,8 +35,9 @@ BRLEAF_SUMMARY <- BRLEAF_SUMMARY %>%
34
35
regions <- read.csv("Outputs/regions.csv")
35
36
```
36
37
37
- # Check priors for count models
38
+ # Count models
38
39
40
+ ### Check priors
39
41
40
42
``` {r count model sample prior}
41
43
mod_pr <- prior(normal(2,1), class = "b", coef = "YR1971") +
@@ -50,7 +52,6 @@ test_mod <- brm(SPECIES_RICH ~ -1 + YR + YDAY + (1|SITE:PLOT) + (YR|SITE),
50
52
data = BRLEAF_SUMMARY, family = "poisson",
51
53
prior = mod_pr, cores = 4, sample_prior = "only")
52
54
plot(test_mod)
53
- pp_check(test_mod)
54
55
pp_check(test_mod, "ecdf_overlay", ndraws = 20) +
55
56
scale_x_continuous(limits = c(0,200))
56
57
```
@@ -286,7 +287,7 @@ basal_emm %>%
286
287
# Cover models
287
288
288
289
289
- ## Check priors for cover/gamma models
290
+ ### Check priors for cover/gamma models
290
291
291
292
292
293
``` {r prop model sample prior}
@@ -538,7 +539,8 @@ awi_emm %>%
538
539
# Binary models - Regeneration
539
540
540
541
``` {r regen data prep}
541
- REGEN <- REGEN %>% select(-YEAR) %>% rename(YEAR = YR) %>%
542
+ REGEN <- read.csv("Outputs/REGEN.csv")
543
+ REGEN <- REGEN %>% select(-YEAR) %>%
542
544
inner_join(select(BRLEAF_SUMMARY, SITE_NO, PLOT_NO, YEAR, SITE, PLOT, YDAY, YR))
543
545
544
546
```
@@ -680,22 +682,15 @@ siterich_emm %>%
680
682
681
683
# Site level AWI proportion
682
684
683
- ``` {r site level data prep awi}
684
- BRLEAF_SUMMARY_SITE <- GRFLORA_SITE %>%
685
- mutate(YR = c("1971","2001","2022")[YEAR],
686
- YDAY = (DAYOFYEAR - 200)/30,
687
- SITE = as.character(SITE_NO)) %>%
688
- left_join(select(BRLEAF_SUMMARY, SITE_NO, AWI_region) %>% distinct())
689
- ```
690
685
691
- ``` {r count model sample prior v2}
686
+ ``` {r prop model sample prior v2}
692
687
mod_pr <- prior(normal(0,1), class = "b") +
693
688
prior(student_t(5, 0, 1), class = "sd")
694
689
```
695
690
696
691
``` {r awi site rich mod run}
697
692
awi_site_rich_mod <- brm(AWI_RICH | trials(SPECIES_RICH) ~ -1 + YR + YDAY + (1|SITE) + (1|AWI_region),
698
- data = BRLEAF_SUMMARY_SITE , family = binomial(),
693
+ data = BRLEAF_SUMM_SITE , family = binomial(),
699
694
prior = mod_pr, cores = 4, warmup = 2000, iter = 6000, thin = 4,
700
695
control = list(adapt_delta = 0.95),
701
696
file = paste0(model_loc, "SITERICH_AWI_BIN"))
@@ -728,22 +723,3 @@ awisite_emm %>%
728
723
```
729
724
730
725
731
-
732
-
733
- ``` {r emmeans site beta pairwise comparison table}
734
- sitebeta_emm <- emmeans(site_beta_mod, ~ YR)
735
- pairs(sitebeta_emm, type = "response") %>%
736
- knitr::kable(digits = 3)
737
- ```
738
-
739
- ``` {r emmeans site beta plot}
740
- sitebeta_emm %>%
741
- gather_emmeans_draws() %>%
742
- mutate(Year = as.numeric(as.character(YR)),
743
- .value = exp(.value)) %>%
744
- ggplot(aes(x = Year, y = .value)) +
745
- stat_lineribbon(alpha = 1/4, fill = teal) +
746
- theme(axis.text = element_text(size = 12), axis.title = element_text(size = 14)) +
747
- labs(y = "Site level beta diversity")
748
- ```
749
-
0 commit comments