|
16 | 16 | },
|
17 | 17 | {
|
18 | 18 | "cell_type": "code",
|
19 |
| - "execution_count": null, |
| 19 | + "execution_count": 1, |
20 | 20 | "metadata": {},
|
21 | 21 | "outputs": [],
|
22 | 22 | "source": [
|
|
25 | 25 | },
|
26 | 26 | {
|
27 | 27 | "cell_type": "code",
|
28 |
| - "execution_count": null, |
| 28 | + "execution_count": 2, |
29 | 29 | "metadata": {},
|
30 | 30 | "outputs": [],
|
31 | 31 | "source": [
|
|
43 | 43 | },
|
44 | 44 | {
|
45 | 45 | "cell_type": "code",
|
46 |
| - "execution_count": null, |
| 46 | + "execution_count": 3, |
47 | 47 | "metadata": {},
|
48 | 48 | "outputs": [],
|
49 | 49 | "source": [
|
|
60 | 60 | },
|
61 | 61 | {
|
62 | 62 | "cell_type": "code",
|
63 |
| - "execution_count": null, |
| 63 | + "execution_count": 4, |
64 | 64 | "metadata": {},
|
65 | 65 | "outputs": [],
|
66 | 66 | "source": [
|
|
78 | 78 | },
|
79 | 79 | {
|
80 | 80 | "cell_type": "code",
|
81 |
| - "execution_count": null, |
| 81 | + "execution_count": 10, |
82 | 82 | "metadata": {},
|
83 | 83 | "outputs": [],
|
84 | 84 | "source": [
|
85 | 85 | "input = tf.placeholder(tf.float32, shape = INPUT_SIZE)\n",
|
86 |
| - "dropout = tf.keras.layers.Dropout(rate = 0.5)(input, training = IS_TRAINING)" |
| 86 | + "dropout = tf.keras.layers.Dropout(rate = 0.5)(input)" |
87 | 87 | ]
|
88 | 88 | },
|
89 | 89 | {
|
|
95 | 95 | },
|
96 | 96 | {
|
97 | 97 | "cell_type": "code",
|
98 |
| - "execution_count": null, |
| 98 | + "execution_count": 6, |
99 | 99 | "metadata": {},
|
100 | 100 | "outputs": [],
|
101 | 101 | "source": [
|
|
114 | 114 | },
|
115 | 115 | {
|
116 | 116 | "cell_type": "code",
|
117 |
| - "execution_count": null, |
| 117 | + "execution_count": 7, |
118 | 118 | "metadata": {},
|
119 | 119 | "outputs": [],
|
120 | 120 | "source": [
|
|
140 | 140 | "outputs": [],
|
141 | 141 | "source": [
|
142 | 142 | "input = tf.placeholder(tf.float32, shape = CONV_INPUT_SIZE)\n",
|
143 |
| - "dropout = tf.keras.layers.Dropout(rate=0.2)(input, training = IS_TRAINING)\n", |
| 143 | + "dropout = tf.keras.layers.Dropout(rate=0.2)(input)\n", |
144 | 144 | "conv = tf.keras.layers.Conv1D(\n",
|
145 | 145 | " filters=10,\n",
|
146 | 146 | " kernel_size=3,\n",
|
|
157 | 157 | },
|
158 | 158 | {
|
159 | 159 | "cell_type": "code",
|
160 |
| - "execution_count": null, |
| 160 | + "execution_count": 9, |
161 | 161 | "metadata": {},
|
162 | 162 | "outputs": [],
|
163 | 163 | "source": [
|
164 | 164 | "input = tf.placeholder(tf.float32, shape = CONV_INPUT_SIZE)\n",
|
165 |
| - "dropout = tf.keras.layers.Dropout(rate = 0.2)(input, training = IS_TRAINING)\n", |
| 165 | + "dropout = tf.keras.layers.Dropout(rate = 0.2)(input)\n", |
166 | 166 | "conv = tf.keras.layers.Conv1D(\n",
|
167 | 167 | " filters=10,\n",
|
168 | 168 | " kernel_size=3,\n",
|
|
173 | 173 | "hidden = tf.keras.layers.Dense(units = 50, activation = tf.nn.relu)(flatten)\n",
|
174 | 174 | "output = tf.keras.layers.Dense(units = 10, activation = tf.nn.softmax)(hidden) "
|
175 | 175 | ]
|
| 176 | + }, |
| 177 | + { |
| 178 | + "cell_type": "code", |
| 179 | + "execution_count": null, |
| 180 | + "metadata": {}, |
| 181 | + "outputs": [], |
| 182 | + "source": [] |
176 | 183 | }
|
177 | 184 | ],
|
178 | 185 | "metadata": {
|
|
191 | 198 | "name": "python",
|
192 | 199 | "nbconvert_exporter": "python",
|
193 | 200 | "pygments_lexer": "ipython3",
|
194 |
| - "version": "3.6.8" |
| 201 | + "version": "3.6.4" |
195 | 202 | }
|
196 | 203 | },
|
197 | 204 | "nbformat": 4,
|
|
0 commit comments