|
10 | 10 |
|
11 | 11 | import numpy as np
|
12 | 12 | import dataclasses
|
13 |
| -import pandas as pd |
14 | 13 |
|
15 | 14 | from reportengine import collect
|
16 | 15 | import validphys
|
17 | 16 | from validphys.calcutils import calc_chi2
|
18 |
| -from validphys import covmats |
19 | 17 | from validphys.checks import check_use_t0
|
20 | 18 | from validphys.closuretest.closure_checks import (
|
21 |
| - check_at_least_10_fits, |
22 | 19 | check_fits_areclosures,
|
23 | 20 | check_fits_different_filterseed,
|
24 | 21 | check_fits_underlying_law_match,
|
@@ -437,22 +434,33 @@ def compute_normalized_bias(
|
437 | 434 |
|
438 | 435 | def bias_dataset(regularized_multiclosure_dataset_loader):
|
439 | 436 | """
|
440 |
| - TODO: comment this function properly |
| 437 | + Computes the normalized bias for a RegularizedMulticlosureLoader object |
| 438 | + for a single dataset. |
| 439 | +
|
| 440 | + Parameters |
| 441 | + ---------- |
| 442 | + regularized_multiclosure_dataset_loader : RegularizedMulticlosureLoader |
| 443 | +
|
| 444 | + Returns |
| 445 | + ------- |
| 446 | + tuple |
| 447 | + bias_fits |
| 448 | + n_comp |
441 | 449 | """
|
442 | 450 | bias_fits = compute_normalized_bias(regularized_multiclosure_dataset_loader, corrmat=False)
|
443 | 451 | n_comp = regularized_multiclosure_dataset_loader.n_comp
|
444 | 452 | return bias_fits / n_comp, n_comp
|
445 | 453 |
|
446 | 454 |
|
447 | 455 | """
|
448 |
| -TODO |
| 456 | +Collects the bias data for all datasets. |
449 | 457 | """
|
450 | 458 | bias_datasets = collect("bias_dataset", ("data",))
|
451 | 459 |
|
452 | 460 |
|
453 | 461 | def bias_data(regularized_multiclosure_data_loader):
|
454 | 462 | """
|
455 |
| - TODO: comment |
| 463 | + Similar to `bias_dataset` but for all data. |
456 | 464 | """
|
457 | 465 | bias_fits = compute_normalized_bias(regularized_multiclosure_data_loader, corrmat=True)
|
458 | 466 | n_comp = regularized_multiclosure_data_loader.n_comp
|
|
0 commit comments