-
Notifications
You must be signed in to change notification settings - Fork 3.3k
/
Copy pathpreprocessor.py
315 lines (272 loc) · 12.8 KB
/
preprocessor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import json
import math
import os
import pickle
import monai.transforms as transforms
import nibabel
import numpy as np
from joblib import Parallel, delayed
from skimage.transform import resize
from utils.utils import get_task_code, make_empty_dir
from data_preprocessing.configs import ct_max, ct_mean, ct_min, ct_std, patch_size, spacings, task
class Preprocessor:
def __init__(self, args):
self.args = args
self.target_spacing = None
self.task = args.task
self.task_code = get_task_code(args)
self.verbose = args.verbose
self.patch_size = patch_size[self.task_code]
self.training = args.exec_mode == "training"
self.data_path = os.path.join(args.data, task[args.task])
metadata_path = os.path.join(self.data_path, "dataset.json")
self.metadata = json.load(open(metadata_path, "r"))
self.modality = self.metadata["modality"]["0"]
self.results = os.path.join(args.results, self.task_code)
self.ct_min, self.ct_max, self.ct_mean, self.ct_std = (0,) * 4
if not self.training:
self.results = os.path.join(self.results, self.args.exec_mode)
self.crop_foreg = transforms.CropForegroundd(keys=["image", "label"], source_key="image")
nonzero = True if self.modality != "CT" else False # normalize only non-zero region for MRI
self.normalize_intensity = transforms.NormalizeIntensity(nonzero=nonzero, channel_wise=True)
if self.args.exec_mode == "val":
dataset_json = json.load(open(metadata_path, "r"))
dataset_json["val"] = dataset_json["training"]
with open(metadata_path, "w") as outfile:
json.dump(dataset_json, outfile)
def run(self):
make_empty_dir(self.results)
print(f"Preprocessing {self.data_path}")
try:
self.target_spacing = spacings[self.task_code]
except:
self.collect_spacings()
if self.verbose:
print(f"Target spacing {self.target_spacing}")
if self.modality == "CT":
try:
self.ct_min = ct_min[self.task]
self.ct_max = ct_max[self.task]
self.ct_mean = ct_mean[self.task]
self.ct_std = ct_std[self.task]
except:
self.collect_intensities()
_mean = round(self.ct_mean, 2)
_std = round(self.ct_std, 2)
if self.verbose:
print(f"[CT] min: {self.ct_min}, max: {self.ct_max}, mean: {_mean}, std: {_std}")
self.run_parallel(self.preprocess_pair, self.args.exec_mode)
pickle.dump(
{
"patch_size": self.patch_size,
"spacings": self.target_spacing,
"n_class": len(self.metadata["labels"]),
"in_channels": len(self.metadata["modality"]) + int(self.args.ohe),
},
open(os.path.join(self.results, "config.pkl"), "wb"),
)
def preprocess_pair(self, pair):
fname = os.path.basename(pair["image"] if isinstance(pair, dict) else pair)
image, label, image_spacings = self.load_pair(pair)
# Crop foreground and store original shapes.
orig_shape = image.shape[1:]
bbox = transforms.utils.generate_spatial_bounding_box(image)
image = transforms.SpatialCrop(roi_start=bbox[0], roi_end=bbox[1])(image)
image_metadata = np.vstack([bbox, orig_shape, image.shape[1:]])
if label is not None:
label = transforms.SpatialCrop(roi_start=bbox[0], roi_end=bbox[1])(label)
self.save_npy(label, fname, "_orig_lbl.npy")
if self.args.dim == 3:
image, label = self.resample(image, label, image_spacings)
if self.modality == "CT":
image = np.clip(image, self.ct_min, self.ct_max)
image = self.normalize(image)
if self.training:
image, label = self.standardize(image, label)
if self.args.ohe:
mask = np.ones(image.shape[1:], dtype=np.float32)
for i in range(image.shape[0]):
zeros = np.where(image[i] <= 0)
mask[zeros] *= 0.0
image = self.normalize_intensity(image).astype(np.float32)
mask = np.expand_dims(mask, 0)
image = np.concatenate([image, mask])
self.save(image, label, fname, image_metadata)
def resample(self, image, label, image_spacings):
if self.target_spacing != image_spacings:
image, label = self.resample_pair(image, label, image_spacings)
return image, label
def standardize(self, image, label):
pad_shape = self.calculate_pad_shape(image)
image_shape = image.shape[1:]
if pad_shape != image_shape:
paddings = [(pad_sh - image_sh) / 2 for (pad_sh, image_sh) in zip(pad_shape, image_shape)]
image = self.pad(image, paddings)
label = self.pad(label, paddings)
if self.args.dim == 2: # Center cropping 2D images.
_, _, height, weight = image.shape
start_h = (height - self.patch_size[0]) // 2
start_w = (weight - self.patch_size[1]) // 2
image = image[:, :, start_h : start_h + self.patch_size[0], start_w : start_w + self.patch_size[1]]
label = label[:, :, start_h : start_h + self.patch_size[0], start_w : start_w + self.patch_size[1]]
return image, label
def normalize(self, image):
if self.modality == "CT":
return (image - self.ct_mean) / self.ct_std
return self.normalize_intensity(image)
def save(self, image, label, fname, image_metadata):
mean, std = np.round(np.mean(image, (1, 2, 3)), 2), np.round(np.std(image, (1, 2, 3)), 2)
if self.verbose:
print(f"Saving {fname} shape {image.shape} mean {mean} std {std}")
self.save_npy(image, fname, "_x.npy")
if label is not None:
self.save_npy(label, fname, "_y.npy")
if image_metadata is not None:
self.save_npy(image_metadata, fname, "_meta.npy")
def load_pair(self, pair):
image = self.load_nifty(pair["image"] if isinstance(pair, dict) else pair)
image_spacing = self.load_spacing(image)
image = image.get_fdata().astype(np.float32)
image = self.standardize_layout(image)
if self.training:
label = self.load_nifty(pair["label"]).get_fdata().astype(np.uint8)
label = self.standardize_layout(label)
else:
label = None
return image, label, image_spacing
def resample_pair(self, image, label, spacing):
shape = self.calculate_new_shape(spacing, image.shape[1:])
if self.check_anisotrophy(spacing):
image = self.resample_anisotrophic_image(image, shape)
if label is not None:
label = self.resample_anisotrophic_label(label, shape)
else:
image = self.resample_regular_image(image, shape)
if label is not None:
label = self.resample_regular_label(label, shape)
image = image.astype(np.float32)
if label is not None:
label = label.astype(np.uint8)
return image, label
def calculate_pad_shape(self, image):
min_shape = self.patch_size[:]
image_shape = image.shape[1:]
if len(min_shape) == 2: # In 2D case we don't want to pad depth axis.
min_shape.insert(0, image_shape[0])
pad_shape = [max(mshape, ishape) for mshape, ishape in zip(min_shape, image_shape)]
return pad_shape
def get_intensities(self, pair):
image = self.load_nifty(pair["image"]).get_fdata().astype(np.float32)
label = self.load_nifty(pair["label"]).get_fdata().astype(np.uint8)
foreground_idx = np.where(label > 0)
intensities = image[foreground_idx].tolist()
return intensities
def collect_intensities(self):
intensities = self.run_parallel(self.get_intensities, "training")
intensities = list(itertools.chain(*intensities))
self.ct_min, self.ct_max = np.percentile(intensities, [0.5, 99.5])
self.ct_mean, self.ct_std = np.mean(intensities), np.std(intensities)
def get_spacing(self, pair):
image = nibabel.load(os.path.join(self.data_path, pair["image"]))
spacing = self.load_spacing(image)
return spacing
def collect_spacings(self):
spacing = self.run_parallel(self.get_spacing, "training")
spacing = np.array(spacing)
target_spacing = np.median(spacing, axis=0)
if max(target_spacing) / min(target_spacing) >= 3:
lowres_axis = np.argmax(target_spacing)
target_spacing[lowres_axis] = np.percentile(spacing[:, lowres_axis], 10)
self.target_spacing = list(target_spacing)
def check_anisotrophy(self, spacing):
def check(spacing):
return np.max(spacing) / np.min(spacing) >= 3
return check(spacing) or check(self.target_spacing)
def calculate_new_shape(self, spacing, shape):
spacing_ratio = np.array(spacing) / np.array(self.target_spacing)
new_shape = (spacing_ratio * np.array(shape)).astype(int).tolist()
return new_shape
def save_npy(self, image, fname, suffix):
np.save(os.path.join(self.results, fname.replace(".nii.gz", suffix)), image, allow_pickle=False)
def run_parallel(self, func, exec_mode):
return Parallel(n_jobs=self.args.n_jobs)(delayed(func)(pair) for pair in self.metadata[exec_mode])
def load_nifty(self, fname):
return nibabel.load(os.path.join(self.data_path, fname))
@staticmethod
def load_spacing(image):
return image.header["pixdim"][1:4].tolist()[::-1]
@staticmethod
def pad(image, padding):
pad_d, pad_w, pad_h = padding
return np.pad(
image,
(
(0, 0),
(math.floor(pad_d), math.ceil(pad_d)),
(math.floor(pad_w), math.ceil(pad_w)),
(math.floor(pad_h), math.ceil(pad_h)),
),
)
@staticmethod
def standardize_layout(data):
if len(data.shape) == 3:
data = np.expand_dims(data, 3)
return np.transpose(data, (3, 2, 1, 0))
@staticmethod
def resize_fn(image, shape, order, mode):
return resize(image, shape, order=order, mode=mode, cval=0, clip=True, anti_aliasing=False)
def resample_anisotrophic_image(self, image, shape):
resized_channels = []
for image_c in image:
resized = [self.resize_fn(i, shape[1:], 3, "edge") for i in image_c]
resized = np.stack(resized, axis=0)
resized = self.resize_fn(resized, shape, 0, "constant")
resized_channels.append(resized)
resized = np.stack(resized_channels, axis=0)
return resized
def resample_regular_image(self, image, shape):
resized_channels = []
for image_c in image:
resized_channels.append(self.resize_fn(image_c, shape, 3, "edge"))
resized = np.stack(resized_channels, axis=0)
return resized
def resample_anisotrophic_label(self, label, shape):
depth = label.shape[1]
reshaped = np.zeros(shape, dtype=np.uint8)
shape_2d = shape[1:]
reshaped_2d = np.zeros((depth, *shape_2d), dtype=np.uint8)
n_class = np.max(label)
for class_ in range(1, n_class + 1):
for depth_ in range(depth):
mask = label[0, depth_] == class_
resized_2d = self.resize_fn(mask.astype(float), shape_2d, 1, "edge")
reshaped_2d[depth_][resized_2d >= 0.5] = class_
for class_ in range(1, n_class + 1):
mask = reshaped_2d == class_
resized = self.resize_fn(mask.astype(float), shape, 0, "constant")
reshaped[resized >= 0.5] = class_
reshaped = np.expand_dims(reshaped, 0)
return reshaped
def resample_regular_label(self, label, shape):
reshaped = np.zeros(shape, dtype=np.uint8)
n_class = np.max(label)
for class_ in range(1, n_class + 1):
mask = label[0] == class_
resized = self.resize_fn(mask.astype(float), shape, 1, "edge")
reshaped[resized >= 0.5] = class_
reshaped = np.expand_dims(reshaped, 0)
return reshaped