-
Notifications
You must be signed in to change notification settings - Fork 3.3k
/
Copy pathstat_models.py
executable file
·72 lines (61 loc) · 2.39 KB
/
stat_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# SPDX-License-Identifier: Apache-2.0
from abc import ABC
import os
import pmdarima as pm
import numpy as np
import pickle as pkl
class StatModel(ABC):
def __init__(self, config):
self.horizon = config.example_length - config.encoder_length
self.config = config
def fit(self, label, data):
return
def predict(self, data, i):
return
def save(self):
return
def load(self, path):
return
class AutoARIMA(StatModel):
def __init__(self, config):
super().__init__(config)
self.models = {}
def fit(self, example):
id, label, data = example['id'], example['endog'], example['exog']
data = data if data.shape[-1] != 0 else None
model = pm.auto_arima(label, X=data, **self.config)
self.model = model
def predict(self, example):
model = self.model
if len(example['endog_update']) != 0:
model.update(example['endog_update'], X=data if (data := example['exog_update']).shape[-1] != 0 else None)
# Issue is related to https://github.com/alkaline-ml/pmdarima/issues/492
try:
preds = model.predict(self.horizon, X=data if (data := example['exog']).shape[-1] != 0 else None)
except ValueError as e:
if "Input contains NaN, infinity or a value too large for dtype('float64')." in str(e):
print(str(e))
preds = np.empty(self.horizon)
preds.fill(self.model.arima_res_.data.endog[-1])
else:
raise
return preds
def save(self):
with open('arima.pkl', 'wb') as f:
pkl.dump(self.models, f)
def load(self, path):
with open(os.path.join(path, 'arima.pkl'), 'rb') as f:
self.models = pkl.load(f)