You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
This repository serves as a starting point for generative AI developers looking to integrate with the NVIDIA software ecosystem to accelerate their generative AI systems.
10
-
Whether you are building RAG pipelines, agentic workflows, or finetuning models, this repository will help you integrate NVIDIA, seamlessly and natively, with your development stack.
11
9
12
-
## What's new?
10
+
This repository is a starting point for developers looking to integrate with the NVIDIA software ecosystem to speed up their generative AI systems. Whether you are building RAG pipelines, agentic workflows, or fine-tuning models, this repository will help you integrate NVIDIA, seamlessly and natively, with your development stack.
13
11
14
-
#### Knowledge Graph RAG
15
-
The example implements a GPU-accelerated pipeline for creating and querying knowledge graphs using RAG by leveraging NIM microservices and the RAPIDS ecosystem for efficient processing of large-scale datasets.
16
-
-[Knowledge Graphs for RAG with NVIDIA AI Foundation Models and Endpoints](community/knowledge_graph_rag)
12
+
## Table of Contents
13
+
<!-- TOC -->
17
14
18
-
#### Agentic Workflows with Llama 3.1
19
-
- Build an Agentic RAG Pipeline with Llama 3.1 and NVIDIA NeMo Retriever NIM microservices [[Blog](https://developer.nvidia.com/blog/build-an-agentic-rag-pipeline-with-llama-3-1-and-nvidia-nemo-retriever-nims/), [notebook](RAG/notebooks/langchain/agentic_rag_with_nemo_retriever_nim.ipynb)]
20
-
-[NVIDIA Morpheus, NIM microservices, and RAG pipelines integrated to create LLM-based agent pipelines](https://github.com/NVIDIA/GenerativeAIExamples/blob/v0.7.0/experimental/event-driven-rag-cve-analysis)
15
+
*[What's New?](#whats-new)
16
+
*[Knowledge Graph RAG](#knowledge-graph-rag)
17
+
*[Agentic Workflows with Llama 3.1](#agentic-workflows-with-llama-31)
18
+
*[RAG with Local NIM Deployment and LangChain](#rag-with-local-nim-deployment-and-langchain)
19
+
*[Try it Now!](#try-it-now)
20
+
*[RAG](#rag)
21
+
*[RAG Notebooks](#rag-notebooks)
22
+
*[RAG Examples](#rag-examples)
23
+
*[RAG Tools](#rag-tools)
24
+
*[RAG Projects](#rag-projects)
25
+
*[Documentation](#documentation)
26
+
*[Getting Started](#getting-started)
27
+
*[How To's](#how-tos)
28
+
*[Reference](#reference)
29
+
*[Community](#community)
30
+
31
+
<!-- /TOC -->
32
+
33
+
## What's New?
34
+
35
+
### Knowledge Graph RAG
21
36
22
-
#### RAG with local NIM deployment and Langchain
23
-
- Tips for Building a RAG Pipeline with NVIDIA AI LangChain AI Endpoints by Amit Bleiweiss. [[Blog](https://developer.nvidia.com/blog/tips-for-building-a-rag-pipeline-with-nvidia-ai-langchain-ai-endpoints/), [notebook](https://github.com/NVIDIA/GenerativeAIExamples/blob/v0.7.0/notebooks/08_RAG_Langchain_with_Local_NIM.ipynb)]
37
+
This example implements a GPU-accelerated pipeline for creating and querying knowledge graphs using RAG by leveraging NIM microservices and the RAPIDS ecosystem to process large-scale datasets efficiently.
24
38
25
-
#### NeMo Guardrails with RAG
26
-
- Notebook for demonstrating how to integrate NeMo Guardrails with a basic RAG pipeline in LangChain to ensure safe and accurate LLM responses using NVIDIA NIM microservices. [[Blog](https://developer.nvidia.com/blog/securing-generative-ai-deployments-with-nvidia-nim-and-nvidia-nemo-guardrails/), [notebook](RAG/notebooks/langchain/NeMo_Guardrails_with_LangChain_RAG/using_nemo_guardrails_with_LangChain_RAG.ipynb)]
39
+
-[Knowledge Graphs for RAG with NVIDIA AI Foundation Models and Endpoints](community/knowledge_graph_rag)
40
+
41
+
### Agentic Workflows with Llama 3.1
27
42
43
+
- Build an Agentic RAG Pipeline with Llama 3.1 and NVIDIA NeMo Retriever NIM microservices [[Blog](https://developer.nvidia.com/blog/build-an-agentic-rag-pipeline-with-llama-3-1-and-nvidia-nemo-retriever-nims/), [Notebook](RAG/notebooks/langchain/agentic_rag_with_nemo_retriever_nim.ipynb)]
44
+
-[NVIDIA Morpheus, NIM microservices, and RAG pipelines integrated to create LLM-based agent pipelines](https://github.com/NVIDIA/GenerativeAIExamples/blob/v0.7.0/experimental/event-driven-rag-cve-analysis)
28
45
29
46
47
+
### RAG with Local NIM Deployment and LangChain
30
48
31
-
For more details view the [releases](https://github.com/NVIDIA/GenerativeAIExamples/releases/).
49
+
- Tips for Building a RAG Pipeline with NVIDIA AI LangChain AI Endpoints by Amit Bleiweiss. [[Blog](https://developer.nvidia.com/blog/tips-for-building-a-rag-pipeline-with-nvidia-ai-langchain-ai-endpoints/), [Notebook](https://github.com/NVIDIA/GenerativeAIExamples/blob/v0.7.0/notebooks/08_RAG_Langchain_with_Local_NIM.ipynb)]
32
50
33
-
## Try it now!
51
+
For more information, refer to the [Generative AI Example releases](https://github.com/NVIDIA/GenerativeAIExamples/releases/).
52
+
53
+
## Try it Now!
34
54
35
55
Experience NVIDIA RAG Pipelines with just a few steps!
36
56
37
57
1. Get your NVIDIA API key.
58
+
1. Go to the [NVIDIA API Catalog](https://build.ngc.nvidia.com/explore/).
59
+
1. Select any model.
60
+
1. Click **Get API Key**.
61
+
1. Run:
62
+
```console
63
+
export NVIDIA_API_KEY=nvapi-...
64
+
```
38
65
39
-
Visit the [NVIDIA API Catalog](https://build.ngc.nvidia.com/explore/), select on any model, then click on `Get API Key`
cd GenerativeAIExamples/RAG/examples/basic_rag/langchain/
48
76
docker compose up -d --build
49
77
```
50
78
51
-
Open a browser to <https://localhost:8090/> and submit queries to the sample RAG Playground.
79
+
1. Go to <https://localhost:8090/> and submit queries to the sample RAG Playground.
80
+
81
+
1. Stop containers when done.
82
+
83
+
```console
84
+
docker compose down
85
+
```
86
+
52
87
53
-
When done, stop containers by running `docker compose down`.
54
88
89
+
## RAG
55
90
56
-
## End to end RAG Examples and Notebooks
57
-
NVIDIA has first class support for popular generative AI developer frameworks like [LangChain](https://python.langchain.com/v0.2/docs/integrations/chat/nvidia_ai_endpoints/), [LlamaIndex](https://docs.llamaindex.ai/en/stable/examples/llm/nvidia/) and [Haystack](https://haystack.deepset.ai/integrations/nvidia). These notebooks will show you how to integrate NIM microservices using your preferred generative AI development framework.
91
+
### RAG Notebooks
58
92
59
-
### Notebooks
60
-
Use the [notebooks](./RAG/notebooks/README.md) to learn about the LangChain and LlamaIndex connectors.
93
+
NVIDIA has first-class support for popular generative AI developer frameworks like [LangChain](https://python.langchain.com/v0.2/docs/integrations/chat/nvidia_ai_endpoints/), [LlamaIndex](https://docs.llamaindex.ai/en/stable/examples/llm/nvidia/), and [Haystack](https://haystack.deepset.ai/integrations/nvidia). These end-to-end notebooks show how to integrate NIM microservices using your preferred generative AI development framework.
94
+
95
+
Use these [notebooks](./RAG/notebooks/README.md) to learn about the LangChain and LlamaIndex connectors.
61
96
62
97
#### LangChain Notebooks
98
+
63
99
- RAG
64
-
-[Basic RAG with CHATNVIDIA Langchain Integration](./RAG/notebooks/langchain/langchain_basic_RAG.ipynb)
100
+
-[Basic RAG with CHATNVIDIA LangChain Integration](./RAG/notebooks/langchain/langchain_basic_RAG.ipynb)
65
101
-[RAG using local NIM microservices for LLMs and Retrieval](./RAG/notebooks/langchain/RAG_Langchain_with_Local_NIM.ipynb)
66
102
-[RAG for HTML Documents](./RAG/notebooks/langchain/RAG_for_HTML_docs_with_Langchain_NVIDIA_AI_Endpoints.ipynb)
67
103
-[Chat with NVIDIA Financial Reports](./RAG/notebooks/langchain/Chat_with_nvidia_financial_reports.ipynb)
@@ -72,48 +108,63 @@ Use the [notebooks](./RAG/notebooks/README.md) to learn about the LangChain and
72
108
73
109
74
110
#### LlamaIndex Notebooks
111
+
75
112
-[Basic RAG with LlamaIndex Integration](./RAG/notebooks/llamaindex/llamaindex_basic_RAG.ipynb)
76
113
77
-
### End to end RAG Examples
78
-
By default, the [examples](RAG/examples/README.md) use preview NIM endpoints on [NVIDIA API Catalog](https://catalog.ngc.nvidia.com).
79
-
Alternatively, you can run any of the examples [on premises](./RAG/examples/local_deploy/).
114
+
### RAG Examples
115
+
116
+
By default, these end-to-end [examples](RAG/examples/README.md) use preview NIM endpoints on [NVIDIA API Catalog](https://catalog.ngc.nvidia.com). Alternatively, you can run any of the examples [on premises](./RAG/examples/local_deploy/).
We're posting these examples on GitHub to support the NVIDIA LLM community and facilitate feedback.
111
-
We invite contributions! Open a GitHub issue or pull request!
137
+
### RAG Projects
112
138
113
-
Check out the [community](./community/README.md) examples and notebooks.
139
+
-[NVIDIA Tokkio LLM-RAG](https://docs.nvidia.com/ace/latest/workflows/tokkio/text/Tokkio_LLM_RAG_Bot.html): Use Tokkio to add avatar animation for RAG responses.
140
+
-[Hybrid RAG Project on AI Workbench](https://github.com/NVIDIA/workbench-example-hybrid-rag): Run an NVIDIA AI Workbench example project for RAG.
114
141
115
-
## Related NVIDIA RAG Projects
142
+
## Documentation
116
143
117
-
-[NVIDIA Tokkio LLM-RAG](https://docs.nvidia.com/ace/latest/workflows/tokkio/text/Tokkio_LLM_RAG_Bot.html): Use Tokkio to add avatar animation for RAG responses.
144
+
### Getting Started
118
145
119
-
-[Hybrid RAG Project on AI Workbench](https://github.com/NVIDIA/workbench-example-hybrid-rag): Run an NVIDIA AI Workbench example project for RAG.
146
+
-[Prerequisites](./docs/common-prerequisites.md)
147
+
148
+
### How To's
149
+
150
+
-[Changing the Inference or Embedded Model](./docs/change-model.md)
151
+
-[Customizing the Vector Database](./docs/vector-database.md)
152
+
-[Customizing the Chain Server](./docs/chain-server.md):
0 commit comments