Skip to content

Commit f666a34

Browse files
authored
Restructure and rewrite README.md (#193)
1 parent 38a5cdf commit f666a34

File tree

1 file changed

+99
-48
lines changed

1 file changed

+99
-48
lines changed

README.md

Lines changed: 99 additions & 48 deletions
Original file line numberDiff line numberDiff line change
@@ -6,62 +6,98 @@
66
![](docs/images/[email protected])
77

88
# NVIDIA Generative AI Examples
9-
This repository serves as a starting point for generative AI developers looking to integrate with the NVIDIA software ecosystem to accelerate their generative AI systems.
10-
Whether you are building RAG pipelines, agentic workflows, or finetuning models, this repository will help you integrate NVIDIA, seamlessly and natively, with your development stack.
119

12-
## What's new?
10+
This repository is a starting point for developers looking to integrate with the NVIDIA software ecosystem to speed up their generative AI systems. Whether you are building RAG pipelines, agentic workflows, or fine-tuning models, this repository will help you integrate NVIDIA, seamlessly and natively, with your development stack.
1311

14-
#### Knowledge Graph RAG
15-
The example implements a GPU-accelerated pipeline for creating and querying knowledge graphs using RAG by leveraging NIM microservices and the RAPIDS ecosystem for efficient processing of large-scale datasets.
16-
- [Knowledge Graphs for RAG with NVIDIA AI Foundation Models and Endpoints](community/knowledge_graph_rag)
12+
## Table of Contents
13+
<!-- TOC -->
1714

18-
#### Agentic Workflows with Llama 3.1
19-
- Build an Agentic RAG Pipeline with Llama 3.1 and NVIDIA NeMo Retriever NIM microservices [[Blog](https://developer.nvidia.com/blog/build-an-agentic-rag-pipeline-with-llama-3-1-and-nvidia-nemo-retriever-nims/), [notebook](RAG/notebooks/langchain/agentic_rag_with_nemo_retriever_nim.ipynb)]
20-
- [NVIDIA Morpheus, NIM microservices, and RAG pipelines integrated to create LLM-based agent pipelines](https://github.com/NVIDIA/GenerativeAIExamples/blob/v0.7.0/experimental/event-driven-rag-cve-analysis)
15+
* [What's New?](#whats-new)
16+
* [Knowledge Graph RAG](#knowledge-graph-rag)
17+
* [Agentic Workflows with Llama 3.1](#agentic-workflows-with-llama-31)
18+
* [RAG with Local NIM Deployment and LangChain](#rag-with-local-nim-deployment-and-langchain)
19+
* [Try it Now!](#try-it-now)
20+
* [RAG](#rag)
21+
* [RAG Notebooks](#rag-notebooks)
22+
* [RAG Examples](#rag-examples)
23+
* [RAG Tools](#rag-tools)
24+
* [RAG Projects](#rag-projects)
25+
* [Documentation](#documentation)
26+
* [Getting Started](#getting-started)
27+
* [How To's](#how-tos)
28+
* [Reference](#reference)
29+
* [Community](#community)
30+
31+
<!-- /TOC -->
32+
33+
## What's New?
34+
35+
### Knowledge Graph RAG
2136

22-
#### RAG with local NIM deployment and Langchain
23-
- Tips for Building a RAG Pipeline with NVIDIA AI LangChain AI Endpoints by Amit Bleiweiss. [[Blog](https://developer.nvidia.com/blog/tips-for-building-a-rag-pipeline-with-nvidia-ai-langchain-ai-endpoints/), [notebook](https://github.com/NVIDIA/GenerativeAIExamples/blob/v0.7.0/notebooks/08_RAG_Langchain_with_Local_NIM.ipynb)]
37+
This example implements a GPU-accelerated pipeline for creating and querying knowledge graphs using RAG by leveraging NIM microservices and the RAPIDS ecosystem to process large-scale datasets efficiently.
2438

25-
#### NeMo Guardrails with RAG
26-
- Notebook for demonstrating how to integrate NeMo Guardrails with a basic RAG pipeline in LangChain to ensure safe and accurate LLM responses using NVIDIA NIM microservices. [[Blog](https://developer.nvidia.com/blog/securing-generative-ai-deployments-with-nvidia-nim-and-nvidia-nemo-guardrails/), [notebook](RAG/notebooks/langchain/NeMo_Guardrails_with_LangChain_RAG/using_nemo_guardrails_with_LangChain_RAG.ipynb)]
39+
- [Knowledge Graphs for RAG with NVIDIA AI Foundation Models and Endpoints](community/knowledge_graph_rag)
40+
41+
### Agentic Workflows with Llama 3.1
2742

43+
- Build an Agentic RAG Pipeline with Llama 3.1 and NVIDIA NeMo Retriever NIM microservices [[Blog](https://developer.nvidia.com/blog/build-an-agentic-rag-pipeline-with-llama-3-1-and-nvidia-nemo-retriever-nims/), [Notebook](RAG/notebooks/langchain/agentic_rag_with_nemo_retriever_nim.ipynb)]
44+
- [NVIDIA Morpheus, NIM microservices, and RAG pipelines integrated to create LLM-based agent pipelines](https://github.com/NVIDIA/GenerativeAIExamples/blob/v0.7.0/experimental/event-driven-rag-cve-analysis)
2845

2946

47+
### RAG with Local NIM Deployment and LangChain
3048

31-
For more details view the [releases](https://github.com/NVIDIA/GenerativeAIExamples/releases/).
49+
- Tips for Building a RAG Pipeline with NVIDIA AI LangChain AI Endpoints by Amit Bleiweiss. [[Blog](https://developer.nvidia.com/blog/tips-for-building-a-rag-pipeline-with-nvidia-ai-langchain-ai-endpoints/), [Notebook](https://github.com/NVIDIA/GenerativeAIExamples/blob/v0.7.0/notebooks/08_RAG_Langchain_with_Local_NIM.ipynb)]
3250

33-
## Try it now!
51+
For more information, refer to the [Generative AI Example releases](https://github.com/NVIDIA/GenerativeAIExamples/releases/).
52+
53+
## Try it Now!
3454

3555
Experience NVIDIA RAG Pipelines with just a few steps!
3656

3757
1. Get your NVIDIA API key.
58+
1. Go to the [NVIDIA API Catalog](https://build.ngc.nvidia.com/explore/).
59+
1. Select any model.
60+
1. Click **Get API Key**.
61+
1. Run:
62+
```console
63+
export NVIDIA_API_KEY=nvapi-...
64+
```
3865

39-
Visit the [NVIDIA API Catalog](https://build.ngc.nvidia.com/explore/), select on any model, then click on `Get API Key`
66+
1. Clone the repository.
4067

41-
Afterward, run `export NVIDIA_API_KEY=nvapi-...`.
68+
```console
69+
git clone https://github.com/nvidia/GenerativeAIExamples.git
70+
```
4271

43-
1. Clone the repository and then build and run the basic RAG pipeline:
72+
1. Build and run the basic RAG pipeline.
4473

4574
```console
46-
git clone https://github.com/nvidia/GenerativeAIExamples.git
4775
cd GenerativeAIExamples/RAG/examples/basic_rag/langchain/
4876
docker compose up -d --build
4977
```
5078

51-
Open a browser to <https://localhost:8090/> and submit queries to the sample RAG Playground.
79+
1. Go to <https://localhost:8090/> and submit queries to the sample RAG Playground.
80+
81+
1. Stop containers when done.
82+
83+
```console
84+
docker compose down
85+
```
86+
5287

53-
When done, stop containers by running `docker compose down`.
5488

89+
## RAG
5590

56-
## End to end RAG Examples and Notebooks
57-
NVIDIA has first class support for popular generative AI developer frameworks like [LangChain](https://python.langchain.com/v0.2/docs/integrations/chat/nvidia_ai_endpoints/), [LlamaIndex](https://docs.llamaindex.ai/en/stable/examples/llm/nvidia/) and [Haystack](https://haystack.deepset.ai/integrations/nvidia). These notebooks will show you how to integrate NIM microservices using your preferred generative AI development framework.
91+
### RAG Notebooks
5892

59-
### Notebooks
60-
Use the [notebooks](./RAG/notebooks/README.md) to learn about the LangChain and LlamaIndex connectors.
93+
NVIDIA has first-class support for popular generative AI developer frameworks like [LangChain](https://python.langchain.com/v0.2/docs/integrations/chat/nvidia_ai_endpoints/), [LlamaIndex](https://docs.llamaindex.ai/en/stable/examples/llm/nvidia/), and [Haystack](https://haystack.deepset.ai/integrations/nvidia). These end-to-end notebooks show how to integrate NIM microservices using your preferred generative AI development framework.
94+
95+
Use these [notebooks](./RAG/notebooks/README.md) to learn about the LangChain and LlamaIndex connectors.
6196

6297
#### LangChain Notebooks
98+
6399
- RAG
64-
- [Basic RAG with CHATNVIDIA Langchain Integration](./RAG/notebooks/langchain/langchain_basic_RAG.ipynb)
100+
- [Basic RAG with CHATNVIDIA LangChain Integration](./RAG/notebooks/langchain/langchain_basic_RAG.ipynb)
65101
- [RAG using local NIM microservices for LLMs and Retrieval](./RAG/notebooks/langchain/RAG_Langchain_with_Local_NIM.ipynb)
66102
- [RAG for HTML Documents](./RAG/notebooks/langchain/RAG_for_HTML_docs_with_Langchain_NVIDIA_AI_Endpoints.ipynb)
67103
- [Chat with NVIDIA Financial Reports](./RAG/notebooks/langchain/Chat_with_nvidia_financial_reports.ipynb)
@@ -72,48 +108,63 @@ Use the [notebooks](./RAG/notebooks/README.md) to learn about the LangChain and
72108

73109

74110
#### LlamaIndex Notebooks
111+
75112
- [Basic RAG with LlamaIndex Integration](./RAG/notebooks/llamaindex/llamaindex_basic_RAG.ipynb)
76113

77-
### End to end RAG Examples
78-
By default, the [examples](RAG/examples/README.md) use preview NIM endpoints on [NVIDIA API Catalog](https://catalog.ngc.nvidia.com).
79-
Alternatively, you can run any of the examples [on premises](./RAG/examples/local_deploy/).
114+
### RAG Examples
115+
116+
By default, these end-to-end [examples](RAG/examples/README.md) use preview NIM endpoints on [NVIDIA API Catalog](https://catalog.ngc.nvidia.com). Alternatively, you can run any of the examples [on premises](./RAG/examples/local_deploy/).
80117

81118
#### Basic RAG Examples
119+
82120
- [LangChain example](./RAG/examples/basic_rag/langchain/README.md)
83121
- [LlamaIndex example](./RAG/examples/basic_rag/llamaindex/README.md)
84122

85123
#### Advanced RAG Examples
124+
86125
- [Multi-Turn](./RAG/examples/advanced_rag/multi_turn_rag/README.md)
87126
- [Multimodal Data](./RAG/examples/advanced_rag/multimodal_rag/README.md)
88127
- [Structured Data](./RAG/examples/advanced_rag/structured_data_rag/README.md) (CSV)
89128
- [Query Decomposition](./RAG/examples/advanced_rag/query_decomposition_rag/README.md)
90129

91-
### How To Guides
92-
93-
- [Change the inference or embedding model](./docs/change-model.md)
94-
- [Customize the vector database](./docs/vector-database.md)
95-
- Customize the chain server:
96-
- [Chunking strategy](./docs/text-splitter.md)
97-
- [Prompt template engineering](./docs/prompt-customization.md)
98-
- [Support multiturn conversations](./docs/multiturn.md)
99-
- [Configure LLM parameters at runtime](./docs/llm-params.md)
100-
- [Speak queries and listen to responses with NVIDIA Riva](./docs/riva-asr-tts.md).
101-
102-
## Tools
130+
### RAG Tools
103131

104132
Example tools and tutorials to enhance LLM development and productivity when using NVIDIA RAG pipelines.
105133

106134
- [Evaluation](./RAG/tools/evaluation/README.md)
107135
- [Observability](./RAG/tools/observability/README.md)
108136

109-
## Community
110-
We're posting these examples on GitHub to support the NVIDIA LLM community and facilitate feedback.
111-
We invite contributions! Open a GitHub issue or pull request!
137+
### RAG Projects
112138

113-
Check out the [community](./community/README.md) examples and notebooks.
139+
- [NVIDIA Tokkio LLM-RAG](https://docs.nvidia.com/ace/latest/workflows/tokkio/text/Tokkio_LLM_RAG_Bot.html): Use Tokkio to add avatar animation for RAG responses.
140+
- [Hybrid RAG Project on AI Workbench](https://github.com/NVIDIA/workbench-example-hybrid-rag): Run an NVIDIA AI Workbench example project for RAG.
114141

115-
## Related NVIDIA RAG Projects
142+
## Documentation
116143

117-
- [NVIDIA Tokkio LLM-RAG](https://docs.nvidia.com/ace/latest/workflows/tokkio/text/Tokkio_LLM_RAG_Bot.html): Use Tokkio to add avatar animation for RAG responses.
144+
### Getting Started
118145

119-
- [Hybrid RAG Project on AI Workbench](https://github.com/NVIDIA/workbench-example-hybrid-rag): Run an NVIDIA AI Workbench example project for RAG.
146+
- [Prerequisites](./docs/common-prerequisites.md)
147+
148+
### How To's
149+
150+
- [Changing the Inference or Embedded Model](./docs/change-model.md)
151+
- [Customizing the Vector Database](./docs/vector-database.md)
152+
- [Customizing the Chain Server](./docs/chain-server.md):
153+
- [Chunking Strategy](./docs/text-splitter.md)
154+
- [Prompting Template Engineering](./docs/prompt-customization.md)
155+
- [Configuring LLM Parameters at Runtime](./docs/llm-params.md)
156+
- [Supporting Multi-Turn Conversations](./docs/multiturn.md)
157+
- [Speaking Queries and Listening to Responses with NVIDIA Riva](./docs/riva-asr-tts.md)
158+
159+
### Reference
160+
161+
- [Support Matrix](./docs/support-matrix.md)
162+
- [Architecture](./docs/architecture.md)
163+
- [Using the Sample Chat Web Application](./docs/using-sample-web-application.md)
164+
- [RAG Playground Web Application](./docs/frontend.md)
165+
- [Software Component Configuration](./docs/configuration.md)
166+
167+
168+
## Community
169+
We're posting these examples on GitHub to support the NVIDIA LLM community and facilitate feedback.
170+
We invite contributions! Open a GitHub issue or pull request! Check out the [community](./community/README.md) examples and notebooks.

0 commit comments

Comments
 (0)