Skip to content

Commit 6d1397e

Browse files
authored
TensorRT 9.3 updates (#3661)
* TensorRT 9.3 updates (no submodule updates) Signed-off-by: Michal Guzek <[email protected]> * Update to ONNX-TensorRT 9.3 Signed-off-by: Michal Guzek <[email protected]> --------- Signed-off-by: Michal Guzek <[email protected]> Co-authored-by: Michal Guzek <[email protected]>
1 parent 93b6044 commit 6d1397e

File tree

111 files changed

+5491
-680
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

111 files changed

+5491
-680
lines changed

CHANGELOG.md

Lines changed: 10 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,15 @@
11
# TensorRT OSS Release Changelog
22

3-
## 9.2.0 GA - 2023-12-04
3+
## 9.3.0 GA - 2024-02-09
4+
5+
Key Features and Updates:
6+
7+
- Demo changes
8+
- Faster Text-to-image using SDXL & INT8 quantization using AMMO
9+
- Updated tooling
10+
- Polygraphy v0.49.7
11+
12+
## 9.2.0 GA - 2023-11-27
413

514
Key Features and Updates:
615

README.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@ You can skip the **Build** section to enjoy TensorRT with Python.
2626
To build the TensorRT-OSS components, you will first need the following software packages.
2727

2828
**TensorRT GA build**
29-
* TensorRT v9.2.0.5
29+
* TensorRT v9.3.0.1
3030
* Available from direct download links listed below
3131

3232
**System Packages**
@@ -73,16 +73,16 @@ To build the TensorRT-OSS components, you will first need the following software
7373
If using the TensorRT OSS build container, TensorRT libraries are preinstalled under `/usr/lib/x86_64-linux-gnu` and you may skip this step.
7474

7575
Else download and extract the TensorRT GA build from [NVIDIA Developer Zone](https://developer.nvidia.com) with the direct links below:
76-
- [TensorRT 9.2.0.5 for CUDA 11.8, Linux x86_64](https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/9.2.0/tensorrt-9.2.0.5.linux.x86_64-gnu.cuda-11.8.tar.gz)
77-
- [TensorRT 9.2.0.5 for CUDA 12.2, Linux x86_64](https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/9.2.0/tensorrt-9.2.0.5.linux.x86_64-gnu.cuda-12.2.tar.gz)
76+
- [TensorRT 9.3.0.1 for CUDA 11.8, Linux x86_64](https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/9.3.0/tensorrt-9.3.0.1.linux.x86_64-gnu.cuda-11.8.tar.gz)
77+
- [TensorRT 9.3.0.1 for CUDA 12.2, Linux x86_64](https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/9.3.0/tensorrt-9.3.0.1.linux.x86_64-gnu.cuda-12.2.tar.gz)
7878

7979

8080
**Example: Ubuntu 20.04 on x86-64 with cuda-12.2**
8181

8282
```bash
8383
cd ~/Downloads
84-
tar -xvzf tensorrt-9.2.0.5.linux.x86_64-gnu.cuda-12.2.tar.gz
85-
export TRT_LIBPATH=`pwd`/TensorRT-9.2.0.5
84+
tar -xvzf tensorrt-9.3.0.1.linux.x86_64-gnu.cuda-12.2.tar.gz
85+
export TRT_LIBPATH=`pwd`/TensorRT-9.3.0.1
8686
```
8787

8888
## Setting Up The Build Environment

VERSION

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1 @@
1-
9.2.0.5
1+
9.3.0.1

demo/Diffusion/README.md

Lines changed: 13 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@ This demo application ("demoDiffusion") showcases the acceleration of Stable Dif
77
### Clone the TensorRT OSS repository
88

99
```bash
10-
git clone [email protected]:NVIDIA/TensorRT.git -b release/9.2 --single-branch
10+
git clone [email protected]:NVIDIA/TensorRT.git -b release/9.3 --single-branch
1111
cd TensorRT
1212
```
1313

@@ -16,7 +16,7 @@ cd TensorRT
1616
Install nvidia-docker using [these intructions](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker).
1717

1818
```bash
19-
docker run --rm -it --gpus all -v $PWD:/workspace nvcr.io/nvidia/pytorch:23.07-py3 /bin/bash
19+
docker run --rm -it --gpus all -v $PWD:/workspace nvcr.io/nvidia/pytorch:23.12-py3 /bin/bash
2020
```
2121

2222
### Install latest TensorRT release
@@ -26,7 +26,7 @@ python3 -m pip install --upgrade pip
2626
python3 -m pip install --pre --upgrade --extra-index-url https://pypi.nvidia.com tensorrt
2727
```
2828

29-
> NOTE: TensorRT 9.0 is only available as a pre-release
29+
> NOTE: TensorRT 9.x is only available as a pre-release
3030
3131
Check your installed version using:
3232
`python3 -c 'import tensorrt;print(tensorrt.__version__)'`
@@ -48,8 +48,8 @@ diffusers 0.23.1
4848
onnx 1.14.0
4949
onnx-graphsurgeon 0.3.26
5050
onnxruntime 1.15.1
51-
polygraphy 0.49.1
52-
tensorrt 9.2.0.5
51+
polygraphy 0.49.7
52+
tensorrt 9.3.0.1
5353
tokenizers 0.13.2
5454
torch 2.1.0
5555
transformers 4.31.0
@@ -137,6 +137,14 @@ It is also possible to combine multiple LoRAs.
137137
python3 demo_txt2img_xl.py "Picture of a rustic Italian village with Olive trees and mountains" --version=xl-1.0 --lora-path "ostris/crayon_style_lora_sdxl" "ostris/watercolor_style_lora_sdxl" --lora-scale 0.3 0.7 --onnx-dir onnx-sdxl-lora --engine-dir engine-sdxl-lora --build-enable-refit
138138
```
139139

140+
### Faster Text-to-image using SDXL & INT8 quantization using AMMO
141+
142+
```bash
143+
python3 demo_txt2img_xl.py "a photo of an astronaut riding a horse on mars" --version xl-1.0 --onnx-dir onnx-sdxl --engine-dir engine-sdxl --int8 --quantization-level 3
144+
```
145+
146+
Note that the calibration process can be quite time-consuming, and will be repeated if `--quantization-level`, `--denoising-steps`, or `--onnx-dir` is changed.
147+
140148
### Faster Text-to-Image using SDXL + LCM (Latent Consistency Model) LoRA weights
141149
[LCM-LoRA](https://arxiv.org/abs/2311.05556) produces good quality images in 4 to 8 denoising steps instead of 30+ needed base model. Note that we use LCM scheduler and disable classifier-free-guidance by setting `--guidance-scale` to 0.
142150
LoRA weights are fused into the ONNX and finalized TensorRT plan files in this example.

0 commit comments

Comments
 (0)