diff --git a/CHANGELOG.md b/CHANGELOG.md
index 66139b50..0ef9e135 100644
--- a/CHANGELOG.md
+++ b/CHANGELOG.md
@@ -1,6 +1,23 @@
# TensorRT OSS Release Changelog
-## 10.0.0 EA - 2024-04-02
+## 10.0.1 GA - 2024-04-30
+
+Key Features and Updates:
+
+ - Parser changes
+ - Added support for building with `protobuf-lite`.
+ - Fixed issue when parsing and refitting models with nested `BatchNormalization` nodes.
+ - Added support for empty inputs in custom plugin nodes.
+ - Demo changes
+ - The following demos have been removed: Jasper, Tacotron2, HuggingFace Diffusers notebook
+ - Updated tooling
+ - Polygraphy v0.49.10
+ - ONNX-GraphSurgeon v0.5.2
+ - Build Containers
+ - Updated default cuda versions to `12.4.0`.
+ - Added Rocky Linux 8 and Rocky Linux 9 build containers
+
+## 10.0.0 EA - 2024-03-27
Key Features and Updates:
diff --git a/CMakeLists.txt b/CMakeLists.txt
index 5d29b78e..a1f072a5 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -143,7 +143,20 @@ if(BUILD_PARSERS)
configure_protobuf(${PROTOBUF_VERSION})
endif()
-find_library_create_target(nvinfer nvinfer SHARED ${TRT_LIB_DIR})
+# Windows library names have major version appended.
+if (MSVC)
+ set(nvinfer_lib_name "nvinfer_${TRT_SOVERSION}")
+ set(nvinfer_plugin_lib_name "nvinfer_plugin_${TRT_SOVERSION}")
+ set(nvinfer_vc_plugin_lib_name "nvinfer_vc_plugin_${TRT_SOVERSION}")
+ set(nvonnxparser_lib_name "nvonnxparser_${TRT_SOVERSION}")
+else()
+ set(nvinfer_lib_name "nvinfer")
+ set(nvinfer_plugin_lib_name "nvinfer_plugin")
+ set(nvinfer_vc_plugin_lib_name "nvinfer_vc_plugin")
+ set(nvonnxparser_lib_name "nvonnxparser")
+endif()
+
+find_library_create_target(nvinfer ${nvinfer_lib_name} SHARED ${TRT_LIB_DIR})
find_library(CUDART_LIB cudart_static HINTS ${CUDA_TOOLKIT_ROOT_DIR} PATH_SUFFIXES lib lib/x64 lib64)
@@ -165,7 +178,16 @@ else()
75
)
- string(REGEX MATCH "aarch64" IS_ARM "${TRT_PLATFORM_ID}")
+ find_file(IS_L4T_NATIVE nv_tegra_release PATHS /env/)
+ set (IS_L4T_CROSS "False")
+ if (DEFINED ENV{IS_L4T_CROSS})
+ set(IS_L4T_CROSS $ENV{IS_L4T_CROSS})
+ endif()
+
+ if (IS_L4T_NATIVE OR ${IS_L4T_CROSS} STREQUAL "True")
+ # Only Orin (SM87) supported
+ list(APPEND GPU_ARCHS 87)
+ endif()
if (CUDA_VERSION VERSION_GREATER_EQUAL 11.0)
# Ampere GPU (SM80) support is only available in CUDA versions > 11.0
@@ -206,13 +228,13 @@ endif()
if(BUILD_PLUGINS)
add_subdirectory(plugin)
else()
- find_library_create_target(nvinfer_plugin nvinfer_plugin SHARED ${TRT_OUT_DIR} ${TRT_LIB_DIR})
+ find_library_create_target(nvinfer_plugin ${nvinfer_plugin_lib_name} SHARED ${TRT_OUT_DIR} ${TRT_LIB_DIR})
endif()
if(BUILD_PARSERS)
add_subdirectory(parsers)
else()
- find_library_create_target(nvonnxparser nvonnxparser SHARED ${TRT_OUT_DIR} ${TRT_LIB_DIR})
+ find_library_create_target(nvonnxparser ${nvonnxparser_lib_name} SHARED ${TRT_OUT_DIR} ${TRT_LIB_DIR})
endif()
if(BUILD_SAMPLES)
diff --git a/README.md b/README.md
index 28a3edba..9e2bf7b9 100644
--- a/README.md
+++ b/README.md
@@ -26,7 +26,7 @@ You can skip the **Build** section to enjoy TensorRT with Python.
To build the TensorRT-OSS components, you will first need the following software packages.
**TensorRT GA build**
-* TensorRT v10.0.0.6
+* TensorRT v10.0.1.6
* Available from direct download links listed below
**System Packages**
@@ -73,16 +73,16 @@ To build the TensorRT-OSS components, you will first need the following software
If using the TensorRT OSS build container, TensorRT libraries are preinstalled under `/usr/lib/x86_64-linux-gnu` and you may skip this step.
Else download and extract the TensorRT GA build from [NVIDIA Developer Zone](https://developer.nvidia.com) with the direct links below:
- - [TensorRT 10.0.0.6 for CUDA 11.8, Linux x86_64](https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.0.0/tars/TensorRT-10.0.0.6.Linux.x86_64-gnu.cuda-11.8.tar.gz)
- - [TensorRT 10.0.0.6 for CUDA 12.4, Linux x86_64](https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.0.0/tars/TensorRT-10.0.0.6.Linux.x86_64-gnu.cuda-12.4.tar.gz)
+ - [TensorRT 10.0.1.6 for CUDA 11.8, Linux x86_64](https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.0.1/tars/TensorRT-10.0.1.6.Linux.x86_64-gnu.cuda-11.8.tar.gz)
+ - [TensorRT 10.0.1.6 for CUDA 12.4, Linux x86_64](https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.0.1/tars/TensorRT-10.0.1.6.Linux.x86_64-gnu.cuda-12.4.tar.gz)
**Example: Ubuntu 20.04 on x86-64 with cuda-12.4**
```bash
cd ~/Downloads
- tar -xvzf TensorRT-10.0.0.6.Linux.x86_64-gnu.cuda-12.4.tar.gz
- export TRT_LIBPATH=`pwd`/TensorRT-10.0.0.6
+ tar -xvzf TensorRT-10.0.1.6.Linux.x86_64-gnu.cuda-12.4.tar.gz
+ export TRT_LIBPATH=`pwd`/TensorRT-10.0.1.6
```
## Setting Up The Build Environment
@@ -92,16 +92,27 @@ For Linux platforms, we recommend that you generate a docker container for build
1. #### Generate the TensorRT-OSS build container.
The TensorRT-OSS build container can be generated using the supplied Dockerfiles and build scripts. The build containers are configured for building TensorRT OSS out-of-the-box.
- **Example: Ubuntu 20.04 on x86-64 with cuda-12.3.2 (default)**
+ **Example: Ubuntu 20.04 on x86-64 with cuda-12.4 (default)**
```bash
- ./docker/build.sh --file docker/ubuntu-20.04.Dockerfile --tag tensorrt-ubuntu20.04-cuda12.3.2
+ ./docker/build.sh --file docker/ubuntu-20.04.Dockerfile --tag tensorrt-ubuntu20.04-cuda12.4
+ ```
+ **Example: Rockylinux8 on x86-64 with cuda-12.4**
+ ```bash
+ ./docker/build.sh --file docker/rockylinux8.Dockerfile --tag tensorrt-rockylinux8-cuda12.4
+ ```
+ **Example: Ubuntu 22.04 cross-compile for Jetson (aarch64) with cuda-12.4 (JetPack SDK)**
+ ```bash
+ ./docker/build.sh --file docker/ubuntu-cross-aarch64.Dockerfile --tag tensorrt-jetpack-cuda12.4
+ ```
+ **Example: Ubuntu 22.04 on aarch64 with cuda-12.4**
+ ```bash
+ ./docker/build.sh --file docker/ubuntu-22.04-aarch64.Dockerfile --tag tensorrt-aarch64-ubuntu22.04-cuda12.4
```
-
2. #### Launch the TensorRT-OSS build container.
**Example: Ubuntu 20.04 build container**
```bash
- ./docker/launch.sh --tag tensorrt-ubuntu20.04-cuda12.3.2 --gpus all
+ ./docker/launch.sh --tag tensorrt-ubuntu20.04-cuda12.4 --gpus all
```
> NOTE:
1. Use the `--tag` corresponding to build container generated in Step 1.
@@ -112,13 +123,36 @@ For Linux platforms, we recommend that you generate a docker container for build
## Building TensorRT-OSS
* Generate Makefiles and build.
- **Example: Linux (x86-64) build with default cuda-12.3.2**
+ **Example: Linux (x86-64) build with default cuda-12.4**
```bash
cd $TRT_OSSPATH
mkdir -p build && cd build
cmake .. -DTRT_LIB_DIR=$TRT_LIBPATH -DTRT_OUT_DIR=`pwd`/out
make -j$(nproc)
```
+ **Example: Linux (aarch64) build with default cuda-12.4**
+ ```bash
+ cd $TRT_OSSPATH
+ mkdir -p build && cd build
+ cmake .. -DTRT_LIB_DIR=$TRT_LIBPATH -DTRT_OUT_DIR=`pwd`/out -DCMAKE_TOOLCHAIN_FILE=$TRT_OSSPATH/cmake/toolchains/cmake_aarch64-native.toolchain
+ make -j$(nproc)
+ ```
+ **Example: Native build on Jetson (aarch64) with cuda-12.4**
+ ```bash
+ cd $TRT_OSSPATH
+ mkdir -p build && cd build
+ cmake .. -DTRT_LIB_DIR=$TRT_LIBPATH -DTRT_OUT_DIR=`pwd`/out -DTRT_PLATFORM_ID=aarch64 -DCUDA_VERSION=12.4
+ CC=/usr/bin/gcc make -j$(nproc)
+ ```
+ > NOTE: C compiler must be explicitly specified via CC= for native aarch64 builds of protobuf.
+
+ **Example: Ubuntu 22.04 Cross-Compile for Jetson (aarch64) with cuda-12.4 (JetPack)**
+ ```bash
+ cd $TRT_OSSPATH
+ mkdir -p build && cd build
+ cmake .. -DCMAKE_TOOLCHAIN_FILE=$TRT_OSSPATH/cmake/toolchains/cmake_aarch64.toolchain -DCUDA_VERSION=12.4 -DCUDNN_LIB=/pdk_files/cudnn/usr/lib/aarch64-linux-gnu/libcudnn.so -DCUBLAS_LIB=/usr/local/cuda-12.4/targets/aarch64-linux/lib/stubs/libcublas.so -DCUBLASLT_LIB=/usr/local/cuda-12.4/targets/aarch64-linux/lib/stubs/libcublasLt.so -DTRT_LIB_DIR=/pdk_files/tensorrt/lib
+ make -j$(nproc)
+ ```
> NOTE:
1. The default CUDA version used by CMake is 12.2.0. To override this, for example to 11.8, append `-DCUDA_VERSION=11.8` to the cmake command.
diff --git a/VERSION b/VERSION
index efdce495..db243822 100644
--- a/VERSION
+++ b/VERSION
@@ -1 +1 @@
-10.0.0.6
+10.0.1.6
diff --git a/cmake/modules/find_library_create_target.cmake b/cmake/modules/find_library_create_target.cmake
index a1d29efb..49441847 100644
--- a/cmake/modules/find_library_create_target.cmake
+++ b/cmake/modules/find_library_create_target.cmake
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -25,9 +25,6 @@ macro(find_library_create_target target_name lib libtype hints)
find_library(${lib}_LIB_PATH ${lib})
message(STATUS "Library that was found ${${lib}_LIB_PATH}")
add_library(${target_name} ${libtype} IMPORTED)
- set_property(TARGET ${target_name} PROPERTY IMPORTED_LOCATION ${${lib}_LIB_PATH}) # This should be .so or .dll file, currently its .a or .lib.
- if (WIN32)
- set_property(TARGET ${target_name} PROPERTY IMPORTED_IMPLIB ${${lib}_LIB_PATH}) # This should be a .lib file
- endif()
+ set_property(TARGET ${target_name} PROPERTY IMPORTED_LOCATION ${${lib}_LIB_PATH})
message(STATUS "==========================================================================================")
endmacro()
diff --git a/cmake/modules/set_ifndef.cmake b/cmake/modules/set_ifndef.cmake
index fbdc9be1..85d769e9 100644
--- a/cmake/modules/set_ifndef.cmake
+++ b/cmake/modules/set_ifndef.cmake
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/cmake/toolchains/cmake_aarch64-android.toolchain b/cmake/toolchains/cmake_aarch64-android.toolchain
index 87e490f6..ec768aa4 100644
--- a/cmake/toolchains/cmake_aarch64-android.toolchain
+++ b/cmake/toolchains/cmake_aarch64-android.toolchain
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/cmake/toolchains/cmake_aarch64-native.toolchain b/cmake/toolchains/cmake_aarch64-native.toolchain
index fd4e30cc..bd49c9bb 100644
--- a/cmake/toolchains/cmake_aarch64-native.toolchain
+++ b/cmake/toolchains/cmake_aarch64-native.toolchain
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/cmake/toolchains/cmake_aarch64.toolchain b/cmake/toolchains/cmake_aarch64.toolchain
index 3c87fd65..020a1066 100644
--- a/cmake/toolchains/cmake_aarch64.toolchain
+++ b/cmake/toolchains/cmake_aarch64.toolchain
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -19,6 +19,8 @@ set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR aarch64)
set(TRT_PLATFORM_ID "aarch64")
+set(CMAKE_FIND_LIBRARY_PREFIXES "lib")
+set(CMAKE_FIND_LIBRARY_SUFFIXES .so)
if("$ENV{ARMSERVER}" AND "${CUDA_VERSION}" VERSION_GREATER_EQUAL 11.0)
set(CUDA_PLATFORM_ID "sbsa-linux")
@@ -46,10 +48,18 @@ set(BUILD_LIBRARY_ONLY 1)
set(CUDA_TOOLKIT_ROOT_DIR ${CUDA_ROOT})
set(CUDA_INCLUDE_DIRS ${CUDA_ROOT}/include)
+set(CMAKE_THREAD_LIBS_INIT "-lpthread")
+set(CMAKE_HAVE_THREADS_LIBRARY 1)
+set(CMAKE_USE_WIN32_THREADS_INIT 0)
+set(CMAKE_USE_PTHREADS_INIT 1)
+
find_library(RT_LIB rt PATHS /usr/aarch64-linux-gnu/lib /usr/lib/aarch64-linux-gnu)
if(NOT RT_LIB)
- message(WARNING "librt.so not found in default paths")
+ find_file(RT_LIB librt.so PATHS /usr/aarch64-linux-gnu/lib /usr/lib/aarch64-linux-gnu)
+ if(NOT RT_LIB)
+ message(WARNING "librt.so not found in default paths")
+ endif()
endif()
message("RT_LIB: ${RT_LIB}")
diff --git a/cmake/toolchains/cmake_aarch64_cross.toolchain b/cmake/toolchains/cmake_aarch64_cross.toolchain
index 177a82f9..844fdd89 100644
--- a/cmake/toolchains/cmake_aarch64_cross.toolchain
+++ b/cmake/toolchains/cmake_aarch64_cross.toolchain
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/cmake/toolchains/cmake_ppc64le.toolchain b/cmake/toolchains/cmake_ppc64le.toolchain
index 074c3fb0..2d6272f5 100644
--- a/cmake/toolchains/cmake_ppc64le.toolchain
+++ b/cmake/toolchains/cmake_ppc64le.toolchain
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/cmake/toolchains/cmake_qnx.toolchain b/cmake/toolchains/cmake_qnx.toolchain
index 95f337a8..60b36163 100644
--- a/cmake/toolchains/cmake_qnx.toolchain
+++ b/cmake/toolchains/cmake_qnx.toolchain
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/cmake/toolchains/cmake_x64_win.toolchain b/cmake/toolchains/cmake_x64_win.toolchain
index 5dad0ce7..87b04f5f 100644
--- a/cmake/toolchains/cmake_x64_win.toolchain
+++ b/cmake/toolchains/cmake_x64_win.toolchain
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/cmake/toolchains/cmake_x86_64.toolchain b/cmake/toolchains/cmake_x86_64.toolchain
index 8d452945..daf336ef 100644
--- a/cmake/toolchains/cmake_x86_64.toolchain
+++ b/cmake/toolchains/cmake_x86_64.toolchain
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/cmake/toolchains/cmake_x86_64_agnostic.toolchain b/cmake/toolchains/cmake_x86_64_agnostic.toolchain
index 8253d8f1..91c03095 100644
--- a/cmake/toolchains/cmake_x86_64_agnostic.toolchain
+++ b/cmake/toolchains/cmake_x86_64_agnostic.toolchain
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/demo/BERT/CMakeLists.txt b/demo/BERT/CMakeLists.txt
index cc2c8fc9..94639130 100644
--- a/demo/BERT/CMakeLists.txt
+++ b/demo/BERT/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/demo/BERT/README.md b/demo/BERT/README.md
index f867a321..27d141f5 100755
--- a/demo/BERT/README.md
+++ b/demo/BERT/README.md
@@ -73,9 +73,9 @@ The following software version configuration has been tested:
|Software|Version|
|--------|-------|
-|Python|>=3.6|
-|TensorRT|8.5.1|
-|CUDA|11.6|
+|Python|>=3.8|
+|TensorRT|10.0.1.6|
+|CUDA|12.4|
## Setup
diff --git a/demo/BERT/builder.py b/demo/BERT/builder.py
index 5eafe367..c5f21b0a 100755
--- a/demo/BERT/builder.py
+++ b/demo/BERT/builder.py
@@ -1,6 +1,6 @@
#!/usr/bin/env python3
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -43,7 +43,7 @@
trt_version = [n for n in trt.__version__.split('.')]
# Import necessary plugins for demoBERT
-plugin_lib_name = "nvinfer_plugin.dll" if sys.platform == "win32" else "libnvinfer_plugin.so"
+plugin_lib_name = "nvinfer_plugin_10.dll" if sys.platform == "win32" else "libnvinfer_plugin.so"
env_name_to_add_path = "PATH" if sys.platform == "win32" else "LD_LIBRARY_PATH"
handle = ctypes.CDLL(plugin_lib_name, mode=ctypes.RTLD_GLOBAL)
if not handle:
diff --git a/demo/BERT/builder_utils.py b/demo/BERT/builder_utils.py
index 248bee80..abf0f514 100644
--- a/demo/BERT/builder_utils.py
+++ b/demo/BERT/builder_utils.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/demo/BERT/builder_varseqlen.py b/demo/BERT/builder_varseqlen.py
index ad25ef0c..66a9d571 100755
--- a/demo/BERT/builder_varseqlen.py
+++ b/demo/BERT/builder_varseqlen.py
@@ -1,6 +1,6 @@
#!/usr/bin/env python3
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -42,7 +42,7 @@
trt_version = [n for n in trt.__version__.split('.')]
# Import necessary plugins for demoBERT
-plugin_lib_name = "nvinfer_plugin.dll" if sys.platform == "win32" else "libnvinfer_plugin.so"
+plugin_lib_name = "nvinfer_plugin_10.dll" if sys.platform == "win32" else "libnvinfer_plugin.so"
env_name_to_add_path = "PATH" if sys.platform == "win32" else "LD_LIBRARY_PATH"
handle = ctypes.CDLL(plugin_lib_name, mode=ctypes.RTLD_GLOBAL)
if not handle:
diff --git a/demo/BERT/helpers/calibrator.py b/demo/BERT/helpers/calibrator.py
index beacc625..09e6014b 100644
--- a/demo/BERT/helpers/calibrator.py
+++ b/demo/BERT/helpers/calibrator.py
@@ -1,6 +1,6 @@
#!/usr/bin/env python3
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/demo/BERT/helpers/data_processing.py b/demo/BERT/helpers/data_processing.py
index 88459ebf..e7deae31 100644
--- a/demo/BERT/helpers/data_processing.py
+++ b/demo/BERT/helpers/data_processing.py
@@ -1,6 +1,6 @@
#!/usr/bin/env python3
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/demo/BERT/helpers/tokenization.py b/demo/BERT/helpers/tokenization.py
index 434f411d..9d3cb22d 100644
--- a/demo/BERT/helpers/tokenization.py
+++ b/demo/BERT/helpers/tokenization.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/demo/BERT/infer_c/bert_infer.h b/demo/BERT/infer_c/bert_infer.h
index 2f72102a..d049877e 100644
--- a/demo/BERT/infer_c/bert_infer.h
+++ b/demo/BERT/infer_c/bert_infer.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
@@ -152,15 +152,12 @@ struct BertInference
mDeviceBuffers.emplace_back(devBuf);
mHostOutput.resize(numOutputItems);
- mBindings.resize(mEngine->getNbIOTensors() * mEngine->getNbOptimizationProfiles());
}
void prepare(int profIdx, int batchSize)
{
- mContext->setOptimizationProfile(profIdx);
- const int bindingIdxOffset = profIdx * mEngine->getNbIOTensors();
- std::copy(mDeviceBuffers.begin(), mDeviceBuffers.end(), mBindings.begin() + bindingIdxOffset);
+ mContext->setOptimizationProfileAsync(profIdx, mStream);
if (mEnableVariableLen)
{
@@ -191,13 +188,13 @@ struct BertInference
for (int32_t i = 0; i < mEngine->getNbIOTensors(); i++)
{
auto const& name = mEngine->getIOTensorName(i);
- context->setTensorAddress(name, mBindings[i + bindingIdxOffset]);
+ mContext->setTensorAddress(name, mDeviceBuffers[i]);
}
cudaGraph_t graph;
cudaGraphExec_t exec;
// warm up and let mContext do cublas initialization
- bool status = mContext->enqueueV3(mStream, nullptr);
+ bool status = mContext->enqueueV3(mStream);
if (!status)
{
gLogError << "Enqueue failed\n";
@@ -206,7 +203,7 @@ struct BertInference
gLogVerbose << "Capturing graph\n";
gpuErrChk(cudaStreamBeginCapture(mStream, cudaStreamCaptureModeRelaxed));
- status = mContext->enqueueV3(mStream, nullptr);
+ status = mContext->enqueueV3(mStream);
if (!status)
{
gLogError << "Enqueue failed\n";
@@ -240,7 +237,7 @@ struct BertInference
}
else
{
- bool status = mContext->enqueueV3(mStream, nullptr);
+ bool status = mContext->enqueueV3(mStream);
if (!status)
{
gLogError << "Enqueue failed\n";
@@ -265,7 +262,7 @@ struct BertInference
}
else
{
- bool status = mContext->enqueueV3(mStream, nullptr);
+ bool status = mContext->enqueueV3(mStream);
if (!status)
{
gLogError << "Enqueue failed\n";
@@ -347,7 +344,6 @@ struct BertInference
TrtUniquePtr mRuntime{nullptr};
TrtUniquePtr mEngine{nullptr};
TrtUniquePtr mContext{nullptr};
- std::vector mBindings;
bool mEnableVariableLen;
std::vector mCuSeqlens;
diff --git a/demo/BERT/infer_c/common.h b/demo/BERT/infer_c/common.h
index b5280e2a..da29944c 100644
--- a/demo/BERT/infer_c/common.h
+++ b/demo/BERT/infer_c/common.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
@@ -169,7 +169,7 @@ struct TrtDestroyer
{
void operator()(T* t)
{
- t->destroy();
+ delete t;
}
};
diff --git a/demo/BERT/infer_c/infer_c.cpp b/demo/BERT/infer_c/infer_c.cpp
index b868a661..946ce663 100644
--- a/demo/BERT/infer_c/infer_c.cpp
+++ b/demo/BERT/infer_c/infer_c.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/demo/BERT/infer_c/logging.cpp b/demo/BERT/infer_c/logging.cpp
index b6b14298..f651155c 100644
--- a/demo/BERT/infer_c/logging.cpp
+++ b/demo/BERT/infer_c/logging.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/demo/BERT/infer_c/logging.h b/demo/BERT/infer_c/logging.h
index 2c36d039..2c137465 100644
--- a/demo/BERT/infer_c/logging.h
+++ b/demo/BERT/infer_c/logging.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/demo/BERT/infer_c/perf.cpp b/demo/BERT/infer_c/perf.cpp
index bbc6de76..0208f2eb 100644
--- a/demo/BERT/infer_c/perf.cpp
+++ b/demo/BERT/infer_c/perf.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/demo/BERT/inference.py b/demo/BERT/inference.py
index dc172181..aa0d0dd7 100644
--- a/demo/BERT/inference.py
+++ b/demo/BERT/inference.py
@@ -1,6 +1,6 @@
#!/usr/bin/env python3
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -121,7 +121,7 @@ def question_features(tokens, question):
return dp.convert_example_to_features(tokens, question, tokenizer, max_seq_length, doc_stride, args.max_query_length)
# Import necessary plugins for demoBERT
- plugin_lib_name = "nvinfer_plugin.dll" if sys.platform == "win32" else "libnvinfer_plugin.so"
+ plugin_lib_name = "nvinfer_plugin_10.dll" if sys.platform == "win32" else "libnvinfer_plugin.so"
env_name_to_add_path = "PATH" if sys.platform == "win32" else "LD_LIBRARY_PATH"
handle = ctypes.CDLL(plugin_lib_name, mode=ctypes.RTLD_GLOBAL)
if not handle:
diff --git a/demo/BERT/inference_c.py b/demo/BERT/inference_c.py
index e2bda9af..b10127bd 100644
--- a/demo/BERT/inference_c.py
+++ b/demo/BERT/inference_c.py
@@ -1,6 +1,6 @@
#!/usr/bin/env python3
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/demo/BERT/inference_varseqlen.py b/demo/BERT/inference_varseqlen.py
index 7eb87012..700ddcce 100644
--- a/demo/BERT/inference_varseqlen.py
+++ b/demo/BERT/inference_varseqlen.py
@@ -1,6 +1,6 @@
#!/usr/bin/env python3
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -120,7 +120,7 @@ def question_features(tokens, question):
return dp.convert_example_to_features(tokens, question, tokenizer, max_seq_length, doc_stride, args.max_query_length)
# Import necessary plugins for demoBERT
- plugin_lib_name = "nvinfer_plugin.dll" if sys.platform == "win32" else "libnvinfer_plugin.so"
+ plugin_lib_name = "nvinfer_plugin_10.dll" if sys.platform == "win32" else "libnvinfer_plugin.so"
env_name_to_add_path = "PATH" if sys.platform == "win32" else "LD_LIBRARY_PATH"
handle = ctypes.CDLL(plugin_lib_name, mode=ctypes.RTLD_GLOBAL)
if not handle:
diff --git a/demo/BERT/perf.py b/demo/BERT/perf.py
index 7b4e9da9..f3d2ab74 100644
--- a/demo/BERT/perf.py
+++ b/demo/BERT/perf.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/demo/BERT/perf_varseqlen.py b/demo/BERT/perf_varseqlen.py
index 853201a4..6708f989 100644
--- a/demo/BERT/perf_varseqlen.py
+++ b/demo/BERT/perf_varseqlen.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/demo/BERT/squad/evaluate-v1.1.py b/demo/BERT/squad/evaluate-v1.1.py
index c73db423..bde41564 100644
--- a/demo/BERT/squad/evaluate-v1.1.py
+++ b/demo/BERT/squad/evaluate-v1.1.py
@@ -1,6 +1,6 @@
#!/usr/bin/env python3
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/demo/BERT/squad/evaluate-v2.0.py b/demo/BERT/squad/evaluate-v2.0.py
index e36d3e9f..67518e3c 100644
--- a/demo/BERT/squad/evaluate-v2.0.py
+++ b/demo/BERT/squad/evaluate-v2.0.py
@@ -1,6 +1,6 @@
#!/usr/bin/env python3
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/demo/DeBERTa/deberta_onnx_modify.py b/demo/DeBERTa/deberta_onnx_modify.py
index 234c4659..f8fe61f5 100644
--- a/demo/DeBERTa/deberta_onnx_modify.py
+++ b/demo/DeBERTa/deberta_onnx_modify.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/demo/DeBERTa/deberta_ort_inference.py b/demo/DeBERTa/deberta_ort_inference.py
index 17378989..05741733 100644
--- a/demo/DeBERTa/deberta_ort_inference.py
+++ b/demo/DeBERTa/deberta_ort_inference.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/demo/DeBERTa/deberta_pytorch2onnx.py b/demo/DeBERTa/deberta_pytorch2onnx.py
index 51546b29..7745f0dc 100644
--- a/demo/DeBERTa/deberta_pytorch2onnx.py
+++ b/demo/DeBERTa/deberta_pytorch2onnx.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/demo/DeBERTa/deberta_tensorrt_inference.py b/demo/DeBERTa/deberta_tensorrt_inference.py
index 378a5953..355ad7cf 100644
--- a/demo/DeBERTa/deberta_tensorrt_inference.py
+++ b/demo/DeBERTa/deberta_tensorrt_inference.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/demo/DeBERTa/requirements.txt b/demo/DeBERTa/requirements.txt
index 59b63433..c52dd08a 100644
--- a/demo/DeBERTa/requirements.txt
+++ b/demo/DeBERTa/requirements.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/demo/Diffusion/README.md b/demo/Diffusion/README.md
index d550c83b..42949381 100644
--- a/demo/Diffusion/README.md
+++ b/demo/Diffusion/README.md
@@ -19,15 +19,15 @@ Install nvidia-docker using [these intructions](https://docs.nvidia.com/datacent
docker run --rm -it --gpus all -v $PWD:/workspace nvcr.io/nvidia/pytorch:24.01-py3 /bin/bash
```
+NOTE: The demo supports CUDA>=11.8
+
### Install latest TensorRT release
```bash
python3 -m pip install --upgrade pip
-python3 -m pip install --pre --upgrade --extra-index-url https://pypi.nvidia.com tensorrt
+pip install --pre tensorrt-cu12
```
-> NOTE: TensorRT 10.x is only available as a pre-release
-
Check your installed version using:
`python3 -c 'import tensorrt;print(tensorrt.__version__)'`
@@ -39,27 +39,24 @@ Check your installed version using:
export TRT_OSSPATH=/workspace
cd $TRT_OSSPATH/demo/Diffusion
pip3 install -r requirements.txt
-
```
-> NOTE: demoDiffusion has been tested on systems with NVIDIA A100, RTX3090, and RTX4090 GPUs, and the following software configuration.
+> NOTE: demoDiffusion has been tested on systems with NVIDIA H100, A100, L40, T4, and RTX4090 GPUs, and the following software configuration.
```
diffusers 0.26.3
onnx 1.15.0
-onnx-graphsurgeon 0.3.27
-onnxruntime 1.17.0
-polygraphy 0.49.7
-tensorrt 10.0.0.6
+onnx-graphsurgeon 0.5.2
+onnxruntime 1.16.3
+polygraphy 0.49.9
+tensorrt 10.0.1.6
tokenizers 0.13.3
-torch 2.1.0
-transformers 4.31.0
+torch 2.2.0
+transformers 4.33.1
controlnet-aux 0.0.6
-nvidia-ammo 0.7.0
+nvidia-ammo 0.9.4
```
-
> NOTE: optionally install HuggingFace [accelerate](https://pypi.org/project/accelerate/) package for faster and less memory-intense model loading.
-
# Running demoDiffusion
### Review usage instructions for the supported pipelines
@@ -75,6 +72,7 @@ python3 demo_txt2img_xl.py --help
### HuggingFace user access token
To download model checkpoints for the Stable Diffusion pipelines, obtain a `read` access token to HuggingFace Hub. See [instructions](https://huggingface.co/docs/hub/security-tokens).
+> NOTE: This step isn't required for many models now.
```bash
export HF_TOKEN=
@@ -144,10 +142,9 @@ python3 demo_txt2img_xl.py "Picture of a rustic Italian village with Olive trees
### Faster Text-to-image using SDXL & INT8 quantization using AMMO
```bash
-python3 demo_txt2img_xl.py "a photo of an astronaut riding a horse on mars" --version xl-1.0 --onnx-dir onnx-sdxl --engine-dir engine-sdxl --int8 --quantization-level 3
+python3 demo_txt2img_xl.py "a photo of an astronaut riding a horse on mars" --version xl-1.0 --onnx-dir onnx-sdxl --engine-dir engine-sdxl --int8
```
-
-Note that the calibration process can be quite time-consuming, and will be repeated if `--quantization-level`, `--denoising-steps`, or `--onnx-dir` is changed.
+> Note that INT8 quantization is only supported for SDXL, and won't work with LoRA weights. Some prompts may produce better inputs with fewer denoising steps (e.g. `--denoising-steps 20`) but this will repeat the calibration, ONNX export, and engine building processes for the U-Net.
### Faster Text-to-Image using SDXL + LCM (Latent Consistency Model) LoRA weights
[LCM-LoRA](https://arxiv.org/abs/2311.05556) produces good quality images in 4 to 8 denoising steps instead of 30+ needed base model. Note that we use LCM scheduler and disable classifier-free-guidance by setting `--guidance-scale` to 0.
diff --git a/demo/Diffusion/calibration.py b/demo/Diffusion/calibration.py
deleted file mode 100644
index 98adb6d3..00000000
--- a/demo/Diffusion/calibration.py
+++ /dev/null
@@ -1,177 +0,0 @@
-#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-import types
-from typing import Callable, Optional, Union
-
-import numpy as np
-import torch
-import torch.distributed as dist
-import torch.nn as nn
-from torch.distributed import ReduceOp
-from utilities import PercentileAmaxes
-
-from ammo.torch.quantization.model_calib import (
- enable_stats_collection,
- finish_stats_collection,
- max_calibrate,
-)
-from ammo.torch.quantization.utils import is_quantized_linear
-
-
-def precentile_calib_mode(base_unet, quant_config={}):
- def compute_amax(self, all_reduce=True):
- """Return the absolute max of all tensors collected."""
- if (
- self._calib_amax is not None
- and all_reduce
- and dist.is_available()
- and dist.is_initialized()
- and dist.get_world_size() > 1
- ):
- tmp_amax = self._calib_amax.clone()
- dist.all_reduce(tmp_amax, op=ReduceOp.MAX)
- self._calib_amax.copy_(tmp_amax)
- if self._track_amax:
- up_lim = int(self._amaxs.total_step * self._amaxs.percentile)
- if up_lim <= 0:
- up_lim = 1
- amaxs_values = [self._amaxs.data[i] for i in range(0, up_lim)]
- act_amax = (
- torch.tensor(np.vstack(amaxs_values).min(axis=0))
- .float()
- .squeeze(0)
- .to(self._calib_amax.device)
- .to(self._calib_amax.dtype)
- )
- return act_amax
- return self._calib_amax
-
- for _, module in base_unet.named_modules():
- if isinstance(module, (nn.Linear, nn.Conv2d)):
- module.input_quantizer._calibrator._track_amax = True
- module.input_quantizer._calibrator._amaxs = PercentileAmaxes(
- total_step=quant_config["base-step"], percentile=quant_config["percentile"]
- )
- module.input_quantizer._calibrator.compute_amax = types.MethodType(
- compute_amax, module.input_quantizer._calibrator
- )
-
-
-@torch.no_grad()
-def smoothquant(model, forward_loop=None):
- """
- Rewrite the original SmoothQuant method
- """
- assert forward_loop is not None, "forward_loop must be provided for smoothquant"
- max_calibrate(model, forward_loop)
-
- smoothed_modules = 0
- for name, module in model.named_modules():
- if is_quantized_linear(module):
- if not hasattr(module.input_quantizer, "_amax"):
- print(f"Warning: {name} is not calibrated, skip smoothing")
- continue
- if module.input_quantizer.num_bits != 8 or module.weight_quantizer.num_bits != 8:
- print(f"Warning: only int8 smoothing is supported, skip {name}")
- continue
- if module.input_quantizer.axis != -1:
- print(f"Warning: only per-channel smoothing is supported, skip {name}")
- continue
-
- alpha = 1.0
- if hasattr(module, "alpha"):
- alpha = module.alpha
- assert (
- module.input_quantizer._amax.numel() > 1
- ), f"Error: {name} has only one channel to smooth"
-
- # It is important to keep scaling math in fp32 to be numerically safe
- act_amax = module.input_quantizer.amax.float()
-
- act_device = act_amax.device
-
- # If model is split across devices, this tensor may be on wrong one
- act_amax = act_amax.to(module.weight.device)
-
- weight_scale = module.weight.abs().max(dim=0, keepdim=True)[0]
- scale_a = (weight_scale.pow(1 - alpha) / act_amax.pow(alpha)).squeeze()
-
- # Some channel could have 0 amax which causes scale_a to overflow. Explicitly mask them out here
- epsilon = 1.0 / (1 << 31)
- if act_amax.min() <= epsilon:
- zero_mask = act_amax <= epsilon
- scale_a[zero_mask] = 1
- inv_scale_a = 1.0 / scale_a
- inv_scale_a = inv_scale_a.squeeze()[None, :]
-
- # Use per-tensor quantization for activation, add a pre-quantization scale vector
- module.input_quantizer.pre_quant_scale = scale_a.to(module.weight.dtype).to(act_device)
- module.input_quantizer._axis = None
- delattr(module.input_quantizer, "_amax")
- module.input_quantizer.amax = torch.tensor(
- (act_amax * scale_a).max().item(),
- dtype=module.weight.dtype,
- device=module.weight.device,
- )
-
- # Multiply weight by inv_scale_a and recalibrate
- module.weight.detach().copy_(
- (module.weight.float() * inv_scale_a).to(module.weight.dtype)
- )
-
- enable_stats_collection(module.weight_quantizer)
- module.weight_quantizer(module.weight)
- finish_stats_collection(module.weight_quantizer)
-
- smoothed_modules += 1
- print(f"Smoothed {smoothed_modules} modules")
-
-
-def calibrate(
- model: nn.Module,
- algorithm: Union[str, dict, None] = "max",
- forward_loop: Optional[Callable] = None,
-) -> None:
- if algorithm is None:
- return
-
- if isinstance(algorithm, str):
- kwargs = {}
- elif isinstance(algorithm, dict):
- kwargs = algorithm.copy()
- algorithm = kwargs.pop("method")
- else:
- raise TypeError(f"Unsupported type for algorithm: {type(algorithm)}")
-
- if algorithm == "smoothquant":
- smoothquant(model, forward_loop)
- elif algorithm == "max":
- max_calibrate(model, forward_loop)
- else:
- raise ValueError(f"Unsupported calibration algorithm: {algorithm}")
-
-
-def reg_alpha_qkv(base_unet, alpha):
- """
- Only apply alpha to QKV layers
- """
- for name, module in base_unet.named_modules():
- if isinstance(module, torch.nn.Linear):
- if "to_q" in name or "to_k" in name or "to_v" in name:
- module.alpha = alpha
-
diff --git a/demo/Diffusion/demo_img2img.py b/demo/Diffusion/demo_img2img.py
index bf56f6a9..74ec90ad 100755
--- a/demo/Diffusion/demo_img2img.py
+++ b/demo/Diffusion/demo_img2img.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/demo/Diffusion/demo_inpaint.py b/demo/Diffusion/demo_inpaint.py
index af635df0..29ca0ce2 100755
--- a/demo/Diffusion/demo_inpaint.py
+++ b/demo/Diffusion/demo_inpaint.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/demo/Diffusion/demo_txt2img.py b/demo/Diffusion/demo_txt2img.py
index 3e33838f..84c9e164 100644
--- a/demo/Diffusion/demo_txt2img.py
+++ b/demo/Diffusion/demo_txt2img.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/demo/Diffusion/demo_txt2img_xl.py b/demo/Diffusion/demo_txt2img_xl.py
index ea579279..96910756 100644
--- a/demo/Diffusion/demo_txt2img_xl.py
+++ b/demo/Diffusion/demo_txt2img_xl.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/demo/Diffusion/models.py b/demo/Diffusion/models.py
index b1a196aa..b48028ff 100644
--- a/demo/Diffusion/models.py
+++ b/demo/Diffusion/models.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -22,7 +22,6 @@
ControlNetModel,
UNet2DConditionModel
)
-from diffusers.utils import convert_state_dict_to_diffusers
import json
import numpy as np
import onnx
@@ -159,13 +158,13 @@ def fuse_mha_qkv_int8_sq(self):
del tensors[k]
removed += 1
print(f"Removed {removed} QDQ nodes")
- return removed
+ return removed # expected 72 for L2.5
def get_path(version, pipeline, controlnets=None):
if controlnets is not None:
return ["lllyasviel/sd-controlnet-" + modality for modality in controlnets]
-
+
if version == "1.4":
if pipeline.is_inpaint():
return "runwayml/stable-diffusion-inpainting"
@@ -647,7 +646,7 @@ def __init__(self, unet, controlnets) -> None:
super().__init__()
self.unet = unet
self.controlnets = controlnets
-
+
def forward(self, sample, timestep, encoder_hidden_states, images, controlnet_scales):
for i, (image, conditioning_scale, controlnet) in enumerate(zip(images, controlnet_scales, self.controlnets)):
down_samples, mid_sample = controlnet(
@@ -663,7 +662,7 @@ def forward(self, sample, timestep, encoder_hidden_states, images, controlnet_sc
for down_sample in down_samples
]
mid_sample *= conditioning_scale
-
+
# merge samples
if i == 0:
down_block_res_samples, mid_block_res_sample = down_samples, mid_sample
@@ -673,7 +672,7 @@ def forward(self, sample, timestep, encoder_hidden_states, images, controlnet_sc
for samples_prev, samples_curr in zip(down_block_res_samples, down_samples)
]
mid_block_res_sample += mid_sample
-
+
noise_pred = self.unet(
sample,
timestep,
@@ -744,7 +743,7 @@ def get_model(self, torch_inference=''):
def get_input_names(self):
if self.controlnets is None:
return ['sample', 'timestep', 'encoder_hidden_states']
- else:
+ else:
return ['sample', 'timestep', 'encoder_hidden_states', 'images', 'controlnet_scales']
def get_output_names(self):
@@ -820,14 +819,14 @@ def get_sample_input(self, batch_size, image_height, image_width, static_shape):
dtype = torch.float16 if self.fp16 else torch.float32
if self.controlnets is None:
return (
- torch.randn(batch_size, self.unet_dim, latent_height, latent_width, dtype=torch.float32, device=self.device),
- torch.tensor([1.], dtype=torch.float32, device=self.device),
+ torch.randn(batch_size, self.unet_dim, latent_height, latent_width, dtype=dtype, device=self.device),
+ torch.tensor([1.], dtype=dtype, device=self.device),
torch.randn(batch_size, self.text_maxlen, self.embedding_dim, dtype=dtype, device=self.device)
)
else:
return (
- torch.randn(batch_size, self.unet_dim, latent_height, latent_width, dtype=torch.float32, device=self.device),
- torch.tensor(999, dtype=torch.float32, device=self.device),
+ torch.randn(batch_size, self.unet_dim, latent_height, latent_width, dtype=dtype, device=self.device),
+ torch.tensor(999, dtype=dtype, device=self.device),
torch.randn(batch_size, self.text_maxlen, self.embedding_dim, dtype=dtype, device=self.device),
torch.randn(len(self.controlnets), batch_size, 3, image_height, image_width, dtype=dtype, device=self.device),
torch.randn(len(self.controlnets), dtype=dtype, device=self.device)
@@ -931,8 +930,8 @@ def get_sample_input(self, batch_size, image_height, image_width, static_shape):
latent_height, latent_width = self.check_dims(batch_size, image_height, image_width)
dtype = torch.float16 if self.fp16 else torch.float32
return (
- torch.randn(self.xB*batch_size, self.unet_dim, latent_height, latent_width, dtype=torch.float32, device=self.device),
- torch.tensor([1.], dtype=torch.float32, device=self.device),
+ torch.randn(self.xB*batch_size, self.unet_dim, latent_height, latent_width, dtype=dtype, device=self.device),
+ torch.tensor([1.], dtype=dtype, device=self.device),
torch.randn(self.xB*batch_size, self.text_maxlen, self.embedding_dim, dtype=dtype, device=self.device),
{
'added_cond_kwargs': {
diff --git a/demo/Diffusion/requirements.txt b/demo/Diffusion/requirements.txt
index 4de26381..5fa939ec 100644
--- a/demo/Diffusion/requirements.txt
+++ b/demo/Diffusion/requirements.txt
@@ -1,4 +1,3 @@
-accelerate
colored
controlnet_aux==0.0.6
cuda-python
@@ -7,11 +6,10 @@ ftfy
matplotlib
nvtx
onnx==1.15.0
-onnxruntime==1.17.0
+onnxruntime==1.16.3
opencv-python==4.8.0.74
scipy
-transformers==4.31.0
---extra-index-url https://pypi.nvidia.com
-nvidia-ammo==0.7.0
+transformers==4.33.1
+nvidia-ammo==0.9.4
onnx-graphsurgeon
-polygraphy
+polygraphy==0.49.9
diff --git a/demo/Diffusion/stable_diffusion_pipeline.py b/demo/Diffusion/stable_diffusion_pipeline.py
index 13bd4156..10b7f57e 100755
--- a/demo/Diffusion/stable_diffusion_pipeline.py
+++ b/demo/Diffusion/stable_diffusion_pipeline.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -15,8 +15,8 @@
# limitations under the License.
#
+import ammo.torch.opt as ato
import ammo.torch.quantization as atq
-import calibration
from cuda import cudart
from diffusers import (
DDIMScheduler,
@@ -44,7 +44,6 @@
import numpy as np
import nvtx
import json
-import onnx
import os
import pathlib
import tensorrt as trt
@@ -55,17 +54,18 @@
PIPELINE_TYPE,
TRT_LOGGER,
Engine,
- filter_func,
- get_smoothquant_config,
get_refit_weights,
load_calib_prompts,
merge_loras,
prepare_mask_and_masked_image,
- quantize_lvl,
- replace_lora_layers,
save_image,
unload_model
)
+from utils_ammo import (
+ filter_func,
+ quantize_lvl,
+ get_int8_config,
+)
class StableDiffusionPipeline:
"""
@@ -76,7 +76,7 @@ def __init__(
version='1.5',
pipeline_type=PIPELINE_TYPE.TXT2IMG,
max_batch_size=16,
- denoising_steps=50,
+ denoising_steps=30,
scheduler=None,
guidance_scale=7.5,
device='cuda',
@@ -216,6 +216,11 @@ def makeScheduler(cls, subfolder="scheduler", **kwargs):
if self.pipeline_type.is_sd_xl():
self.config['clip_hidden_states'] = True
self.torch_inference = torch_inference
+ if self.torch_inference:
+ torch._inductor.config.conv_1x1_as_mm = True
+ torch._inductor.config.coordinate_descent_tuning = True
+ torch._inductor.config.epilogue_fusion = False
+ torch._inductor.config.coordinate_descent_check_all_directions = True
self.use_cuda_graph = use_cuda_graph
# initialized in loadEngines()
@@ -315,10 +320,11 @@ def loadEngines(
timing_cache=None,
int8=False,
quantization_level=2.5,
- quantization_percentile=0.4,
- quantization_alpha=0.6,
- calibration_steps=384,
- denoising_steps=50,
+ quantization_percentile=1.0,
+ quantization_alpha=0.8,
+ calibration_size=32,
+ calib_batch_size=2,
+ denoising_steps=30,
):
"""
Build and load engines for TensorRT accelerated inference.
@@ -349,6 +355,24 @@ def loadEngines(
Enable all tactic sources during TensorRT engine builds.
timing_cache (str):
Path to the timing cache to speed up TensorRT build.
+ int8 (bool):
+ Whether to quantize to int8 format or not (SDXL only).
+ quantization_level (float):
+ Controls which layers to quantize. 1: CNN, 2: CNN+FFN, 2.5: CNN+FFN+QKV, 3: CNN+FC
+ quantization_percentile (float):
+ Control quantization scaling factors (amax) collecting range, where the minimum amax in
+ range(n_steps * percentile) will be collected. Recommendation: 1.0
+ quantization_alpha (float):
+ The alpha parameter for SmoothQuant quantization used for linear layers.
+ Recommendation: 0.8 for SDXL
+ calibration_size (int):
+ The number of steps to use for calibrating the model for quantization.
+ Recommendation: 32, 64, 128 for SDXL
+ calib_batch_size (int):
+ The batch size to use for calibration. Defaults to 2.
+ denoising_steps (int):
+ The number of denoising steps.
+ More denoising steps usually lead to a higher quality image at the expense of slower inference.
"""
# Create directories if missing
for directory in [engine_dir, onnx_dir]:
@@ -411,7 +435,7 @@ def loadEngines(
if int8:
assert self.pipeline_type.is_sd_xl(), "int8 quantization only supported for SDXL pipeline"
use_int8['unetxl'] = True
- model_suffix['unetxl'] += f"-int8.l{quantization_level}.bs2.s{denoising_steps}.c{calibration_steps}.p{quantization_percentile}.a{quantization_alpha}"
+ model_suffix['unetxl'] += f"-int8.l{quantization_level}.bs2.s{denoising_steps}.c{calibration_size}.p{quantization_percentile}.a{quantization_alpha}"
onnx_path = dict(zip(model_names, [self.getOnnxPath(model_name, onnx_dir, opt=False, suffix=model_suffix[model_name]) for model_name in model_names]))
onnx_opt_path = dict(zip(model_names, [self.getOnnxPath(model_name, onnx_dir, suffix=model_suffix[model_name]) for model_name in model_names]))
engine_path = dict(zip(model_names, [self.getEnginePath(model_name, engine_dir, do_engine_refit[model_name], suffix=model_suffix[model_name]) for model_name in model_names]))
@@ -433,22 +457,16 @@ def loadEngines(
print(f"[I] Calibrated weights not found, generating {state_dict_path}")
pipeline = obj.get_pipeline()
model = pipeline.unet
- replace_lora_layers(model)
calibration_file = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'calibration-prompts.txt')
- # Use batch_size = 2 for UNet calibration
- calibration_prompts = load_calib_prompts(2, calibration_file)
- # TODO check size > calibration_steps
- quant_config = get_smoothquant_config(model, quantization_level)
- if quantization_percentile is not None:
- quant_config["percentile"] = quantization_percentile
- quant_config["base-step"] = int(denoising_steps)
-
- atq.replace_quant_module(model)
- atq.set_quantizer_by_cfg(model, quant_config["quant_cfg"])
- if quantization_percentile is not None:
- calibration.precentile_calib_mode(base_unet=model, quant_config=quant_config)
- if quantization_alpha is not None:
- calibration.reg_alpha_qkv(base_unet=model, alpha=quantization_alpha)
+ calibration_prompts = load_calib_prompts(calib_batch_size, calibration_file)
+ # TODO check size > calibration_size
+ quant_config = get_int8_config(
+ model,
+ quantization_level,
+ quantization_alpha,
+ quantization_percentile,
+ denoising_steps
+ )
def do_calibrate(base, calibration_prompts, **kwargs):
for i_th, prompts in enumerate(calibration_prompts):
@@ -462,34 +480,35 @@ def do_calibrate(base, calibration_prompts, **kwargs):
]
* len(prompts),
).images
-
- def calibration_loop():
+
+ def calibration_loop(unet):
+ pipeline.model = unet
do_calibrate(
base=pipeline,
calibration_prompts=calibration_prompts,
- calib_size=calibration_steps,
+ calib_size=calibration_size // calib_batch_size,
n_steps=denoising_steps,
)
- print(f"[I] Performing int8 calibration for {calibration_steps} steps. This can take a long time.")
- calibration.calibrate(model, quant_config["algorithm"], forward_loop=calibration_loop)
- torch.save(model.state_dict(), state_dict_path)
+ print(f"[I] Performing int8 calibration for {calibration_size} steps.")
+ atq.quantize(model, quant_config, forward_loop=calibration_loop)
+ ato.save(model, state_dict_path)
- print(f"[I] Generaing quantized ONNX model: {onnx_opt_path[model_name]}")
+ print(f"[I] Generating quantized ONNX model: {onnx_opt_path[model_name]}")
if not os.path.exists(onnx_path[model_name]):
model = obj.get_model()
- replace_lora_layers(model)
- atq.replace_quant_module(model)
- quant_config = atq.INT8_DEFAULT_CFG
- atq.set_quantizer_by_cfg(model, quant_config["quant_cfg"])
- model.load_state_dict(torch.load(state_dict_path), strict=True)
- quantize_lvl(model, quantization_level)
+ ato.restore(model, state_dict_path)
+ quantize_lvl(model, quantization_level)
atq.disable_quantizer(model, filter_func)
- model.to(torch.float32) # QDQ needs to be in FP32
+ model.to(torch.float32).to("cpu") # QDQ needs to be in FP32
+ # WAR to enable ONNX export of quantized UNet
+ obj.device="cpu"
+ obj.fp16=False
else:
model = None
obj.export_onnx(onnx_path[model_name], onnx_opt_path[model_name], onnx_opset, opt_image_height, opt_image_width, custom_model=model)
-
+ obj.fp16=True # Part of WAR, UNET obj.fp16 defaults to True so it is safe to reset this way
+
# FIXME do_export_weights_map needs ONNX graph
if do_export_weights_map:
print(f"[I] Saving weights map: {weights_map_path[model_name]}")
diff --git a/demo/Diffusion/utilities.py b/demo/Diffusion/utilities.py
index 62d582f5..11f36807 100644
--- a/demo/Diffusion/utilities.py
+++ b/demo/Diffusion/utilities.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -25,7 +25,6 @@
import numpy as np
import onnx
from onnx import numpy_helper
-import onnx_graphsurgeon as gs
import os
from PIL import Image
from polygraphy.backend.common import bytes_from_path
@@ -40,9 +39,7 @@
)
from polygraphy.logger import G_LOGGER
import random
-import re
import requests
-from scipy import integrate
import tensorrt as trt
import torch
import types
@@ -406,63 +403,6 @@ def load_calib_prompts(batch_size, calib_data_path):
lst = [line.rstrip("\n") for line in file]
return [lst[i : i + batch_size] for i in range(0, len(lst), batch_size)]
-def filter_func(name):
- pattern = re.compile(
- r".*(time_emb_proj|time_embedding|conv_in|conv_out|conv_shortcut|add_embedding).*"
- )
- return pattern.match(name) is not None
-
-def quantize_lvl(unet, quant_level=2.5):
- """
- We should disable the unwanted quantizer when exporting the onnx
- Because in the current ammo setting, it will load the quantizer amax for all the layers even
- if we didn't add that unwanted layer into the config during the calibration
- """
- for name, module in unet.named_modules():
- if isinstance(module, torch.nn.Conv2d):
- module.input_quantizer.enable()
- module.weight_quantizer.enable()
- elif isinstance(module, torch.nn.Linear):
- if (
- (quant_level >= 2 and "ff.net" in name)
- or (quant_level >= 2.5 and ("to_q" in name or "to_k" in name or "to_v" in name))
- or quant_level == 3
- ):
- module.input_quantizer.enable()
- module.weight_quantizer.enable()
- else:
- module.input_quantizer.disable()
- module.weight_quantizer.disable()
-
-def get_smoothquant_config(model, quant_level=3):
- quant_config = {
- "quant_cfg": {},
- "algorithm": "smoothquant",
- }
- for name, module in model.named_modules():
- w_name = f"{name}*weight_quantizer"
- i_name = f"{name}*input_quantizer"
-
- if (
- w_name in quant_config["quant_cfg"].keys() # type: ignore
- or i_name in quant_config["quant_cfg"].keys() # type: ignore
- ):
- continue
- if filter_func(name):
- continue
- if isinstance(module, torch.nn.Linear):
- if (
- (quant_level >= 2 and "ff.net" in name)
- or (quant_level >= 2.5 and ("to_q" in name or "to_k" in name or "to_v" in name))
- or quant_level == 3
- ):
- quant_config["quant_cfg"][w_name] = {"num_bits": 8, "axis": 0} # type: ignore
- quant_config["quant_cfg"][i_name] = {"num_bits": 8, "axis": -1} # type: ignore
- elif isinstance(module, torch.nn.Conv2d):
- quant_config["quant_cfg"][w_name] = {"num_bits": 8, "axis": 0} # type: ignore
- quant_config["quant_cfg"][i_name] = {"num_bits": 8, "axis": None} # type: ignore
- return quant_config
-
class PercentileAmaxes:
def __init__(self, total_step, percentile) -> None:
self.data = {}
@@ -503,7 +443,7 @@ def add_arguments(parser):
# TensorRT engine build
parser.add_argument('--engine-dir', default='engine', help="Output directory for TensorRT engines")
parser.add_argument('--int8', action='store_true', help="Apply int8 quantization.")
- parser.add_argument('--quantization-level', type=float, default=3.0, choices=range(1,4), help="int8/fp8 quantization level, 1: CNN, 2: CNN+FFN, 2.5: CNN+FFN+QKV, 3: CNN+FC")
+ parser.add_argument('--quantization-level', type=float, default=2.5, choices=[1.0, 2.0, 2.5, 3.0], help="int8/fp8 quantization level, 1: CNN, 2: CNN+FFN, 2.5: CNN+FFN+QKV, 3: CNN+FC")
parser.add_argument('--build-static-batch', action='store_true', help="Build TensorRT engines with fixed batch size.")
parser.add_argument('--build-dynamic-shape', action='store_true', help="Build TensorRT engines with dynamic image shapes.")
parser.add_argument('--build-enable-refit', action='store_true', help="Enable Refit option in TensorRT engines during build.")
diff --git a/demo/Diffusion/utils_ammo.py b/demo/Diffusion/utils_ammo.py
new file mode 100644
index 00000000..8bfe44b8
--- /dev/null
+++ b/demo/Diffusion/utils_ammo.py
@@ -0,0 +1,160 @@
+#
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-License-Identifier: Apache-2.0
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+import re
+import torch
+
+from ammo.torch.quantization import utils as quant_utils
+from ammo.torch.quantization.calib.max import MaxCalibrator
+
+from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
+
+
+class PercentileCalibrator(MaxCalibrator):
+ def __init__(self, num_bits=8, axis=None, unsigned=False, track_amax=False, **kwargs):
+ super().__init__(num_bits, axis, unsigned, track_amax)
+ self.percentile = kwargs["percentile"]
+ self.total_step = kwargs["total_step"]
+ self.global_min = kwargs["global_min"]
+ self.data = {}
+ self.i = 0
+
+ def collect(self, x):
+ """Tracks the absolute max of all tensors.
+
+ Args:
+ x: A tensor
+
+ Raises:
+ RuntimeError: If amax shape changes
+ """
+ # Swap axis to reduce.
+ axis = self._axis if isinstance(self._axis, (list, tuple)) else [self._axis]
+ # Handle negative axis.
+ axis = [x.dim() + i if isinstance(i, int) and i < 0 else i for i in axis]
+ reduce_axis = []
+ for i in range(x.dim()):
+ if i not in axis:
+ reduce_axis.append(i)
+ local_amax = quant_utils.reduce_amax(x, axis=reduce_axis).detach()
+ _cur_step = self.i % self.total_step
+ if _cur_step not in self.data.keys():
+ self.data[_cur_step] = local_amax
+ else:
+ if self.global_min:
+ self.data[_cur_step] = torch.min(self.data[_cur_step], local_amax)
+ else:
+ self.data[_cur_step] += local_amax
+ if self._track_amax:
+ raise NotImplementedError
+ self.i += 1
+
+ def compute_amax(self):
+ """Return the absolute max of all tensors collected."""
+ up_lim = int(self.total_step * self.percentile)
+ amaxs_values = [self.data[i] / self.total_step for i in range(0, up_lim)]
+ act_amax = torch.vstack(amaxs_values).min(axis=0)[0]
+ self._calib_amax = act_amax
+ return self._calib_amax
+
+ def __str__(self):
+ s = "PercentileCalibrator"
+ return s.format(**self.__dict__)
+
+ def __repr__(self):
+ s = "PercentileCalibrator("
+ s += super(MaxCalibrator, self).__repr__()
+ s += " calib_amax={_calib_amax}"
+ if self._track_amax:
+ s += " amaxs={_amaxs}"
+ s += ")"
+ return s.format(**self.__dict__)
+
+def filter_func(name):
+ pattern = re.compile(
+ r".*(time_emb_proj|time_embedding|conv_in|conv_out|conv_shortcut|add_embedding).*"
+ )
+ return pattern.match(name) is not None
+
+
+def quantize_lvl(unet, quant_level=2.5):
+ """
+ We should disable the unwanted quantizer when exporting the onnx
+ Because in the current ammo setting, it will load the quantizer amax for all the layers even
+ if we didn't add that unwanted layer into the config during the calibration
+ """
+ for name, module in unet.named_modules():
+ if isinstance(module, (torch.nn.Conv2d, LoRACompatibleConv)):
+ module.input_quantizer.enable()
+ module.weight_quantizer.enable()
+ elif isinstance(module, (torch.nn.Linear, LoRACompatibleLinear)):
+ if (
+ (quant_level >= 2 and "ff.net" in name)
+ or (quant_level >= 2.5 and ("to_q" in name or "to_k" in name or "to_v" in name))
+ or quant_level == 3
+ ):
+ module.input_quantizer.enable()
+ module.weight_quantizer.enable()
+ else:
+ module.input_quantizer.disable()
+ module.weight_quantizer.disable()
+
+def get_int8_config(
+ model, quant_level=2.5, alpha=0.8, percentile=1.0, num_inference_steps=20, global_min=False
+):
+ quant_config = {
+ "quant_cfg": {
+ "*lm_head*": {"enable": False},
+ "*output_layer*": {"enable": False},
+ "default": {"num_bits": 8, "axis": None},
+ },
+ "algorithm": {"method": "smoothquant", "alpha": alpha},
+ }
+ for name, module in model.named_modules():
+ w_name = f"{name}*weight_quantizer"
+ i_name = f"{name}*input_quantizer"
+
+ if w_name in quant_config["quant_cfg"].keys() or i_name in quant_config["quant_cfg"].keys():
+ continue
+ if filter_func(name):
+ continue
+ if isinstance(module, (torch.nn.Linear, LoRACompatibleLinear)):
+ if (
+ (quant_level >= 2 and "ff.net" in name)
+ or (quant_level >= 2.5 and ("to_q" in name or "to_k" in name or "to_v" in name))
+ or quant_level == 3
+ ):
+ quant_config["quant_cfg"][w_name] = {"num_bits": 8, "axis": 0}
+ quant_config["quant_cfg"][i_name] = {"num_bits": 8, "axis": -1}
+ elif isinstance(module, (torch.nn.Conv2d, LoRACompatibleConv)):
+ quant_config["quant_cfg"][w_name] = {"num_bits": 8, "axis": 0}
+ quant_config["quant_cfg"][i_name] = {
+ "num_bits": 8,
+ "axis": None,
+ "calibrator": (
+ PercentileCalibrator,
+ (),
+ {
+ "num_bits": 8,
+ "axis": None,
+ "percentile": percentile,
+ "total_step": num_inference_steps,
+ "global_min": global_min,
+ },
+ ),
+ }
+ return quant_config
diff --git a/demo/Jasper/README.md b/demo/Jasper/README.md
deleted file mode 100644
index f8988c08..00000000
--- a/demo/Jasper/README.md
+++ /dev/null
@@ -1,3 +0,0 @@
-# Jasper Inference Using TensorRT
-
-[Jupyter Notebook](https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/SpeechRecognition/Jasper/notebooks/)
diff --git a/demo/Tacotron2/README.md b/demo/Tacotron2/README.md
deleted file mode 100644
index c687c5ee..00000000
--- a/demo/Tacotron2/README.md
+++ /dev/null
@@ -1,113 +0,0 @@
-# Tacotron 2 and WaveGlow Inference with TensorRT
-
-The Tacotron2 and WaveGlow models form a text-to-speech (TTS) system that enables users to synthesize natural sounding speech from raw transcripts without any additional information such as patterns and/or rhythms of speech. This is an implementation of Tacotron2 for PyTorch, tested and maintained by NVIDIA, and provides scripts to perform high-performance inference using NVIDIA TensorRT. More information about the TTS system and its training can be found in the
-[NVIDIA DeepLearningExamples](https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechSynthesis/Tacotron2).
-
-NVIDIA TensorRT is a platform for high-performance deep learning inference. It includes a deep learning inference optimizer and runtime that delivers low latency and high-throughput for deep learning inference applications. After optimizing the compute-intensive acoustic model with NVIDIA TensorRT, inference throughput increased by up to 1.4x over native PyTorch in mixed precision.
-
-### Software Versions
-
-|Software|Version|
-|--------|-------|
-|Python|3.8.10|
-|CUDA|12.2|
-|Apex|0.1|
-|TensorRT|9.0|
-|PyTorch|2.0.1|
-
-
-## Quick Start Guide
-
-1. Build and launch the container as described in [TensorRT OSS README](https://github.com/NVIDIA/TensorRT/blob/master/README.md).
-
- **Note:** After this point, all commands should be run from within the container.
-
-2. Verify TensorRT installation by printing the version:
- ```bash
- python3 -c "import tensorrt as trt; print(trt.__version__)"
- ```
-
-3. Install prerequisite software for TTS sample:
- ```bash
- cd $TRT_OSSPATH/demo/Tacotron2
- bash ./scripts/install_prerequisites.sh
- ```
-4. Download pretrained checkpoints from [NGC](https://ngc.nvidia.com/catalog/models) into the `./checkpoints` directory:
-
-- [Tacotron2 checkpoint](https://ngc.nvidia.com/models/nvidia:tacotron2pyt_fp16)
-- [WaveGlow checkpoint](https://ngc.nvidia.com/models/nvidia:waveglow256pyt_fp16)
-
- ```bash
- bash ./scripts/download_checkpoints.sh
- ```
-
-5. Export the models to ONNX intermediate representation (ONNX IR).
- Export Tacotron 2 to three ONNX parts: Encoder, Decoder, and Postnet:
-
- ```bash
- mkdir -p output
- python3 tensorrt/convert_tacotron22onnx.py --tacotron2 checkpoints/tacotron2_pyt_ckpt_amp_v19.09.0/nvidia_tacotron2pyt_fp16_20190427 -o output/ --fp16
- ```
-
- Convert WaveGlow to ONNX IR:
-
- ```bash
- python3 tensorrt/convert_waveglow2onnx.py --waveglow ./checkpoints/waveglow_ckpt_amp_256_v19.10.0/nvidia_waveglow256pyt_fp16 --config-file config.json --wn-channels 256 -o output/ --fp16
- ```
-
- The above commands store the generated ONNX files under the `./output/` directory:
- `encoder.onnx`, `decoder_iter.onnx`, `postnet.onnx`, `waveglow.onnx`, `loop_body_fp16.onnx`, and `decoder.onnx` (on TensorRT 8.0+ if `--no-loop` option is not specified).
-
-6. Export the ONNX IRs to TensorRT engines with fp16 mode enabled:
-
- ```bash
- python3 tensorrt/convert_onnx2trt.py --encoder output/encoder.onnx --decoder output/decoder.onnx --postnet output/postnet.onnx --waveglow output/waveglow.onnx -o output/ --fp16
- ```
-
- After running the command, there should be four new engine files in `./output/` directory:
- `encoder_fp16.engine`, `decoder_with_outer_loop_fp16.engine`, `postnet_fp16.engine`, and `waveglow_fp16.engine`. On TensorRT <8.0 or if `--no-loop` option is specified, `decoder_iter_fp16.engine` is generated instead.
-
-7. Run TTS inference pipeline with fp16:
-
-
- ```bash
- python3 tensorrt/inference_trt.py -i phrases/phrase.txt --encoder output/encoder_fp16.engine --decoder output/decoder_with_outer_loop_fp16.engine --postnet output/postnet_fp16.engine --waveglow output/waveglow_fp16.engine -o output/ --fp16
- ```
-
- On TensorRT <8.0 use `decoder_iter_fp16.engine` for the decoder instead.
-
-## Performance
-
-### Benchmarking
-
-The following section shows how to benchmark the TensorRT inference performance for our Tacotron2 + Waveglow TTS.
-
-#### TensorRT inference benchmark
-
-Before running the benchmark script, please download the checkpoints and build the TensorRT engines for the Tacotron2 and Waveglow models as prescribed in the [Quick Start Guide](#quick-start-guide) above.
-
-The inference benchmark is performed on a single GPU by the `inference_benchmark.sh` script, which runs 3 warm-up iterations then runs timed inference for 1000 iterations.
-
-```bash
-bash scripts/inference_benchmark.sh
-```
-
-*Note*: For benchmarking we use WaveGlow with 256 residual channels, and Tacotron2 decoder with outer loop for TensorRT inference.
-
-### Results
-
-> Note: Results last updated for TensorRT 8.0.1.6 release.
-
-#### Inference performance: NVIDIA T4 (16GB)
-
-|Framework|Batch size|Input length|Precision|Avg latency (s)|Latency std (s)|Latency confidence interval 90% (s)|Latency confidence interval 95% (s)|Latency confidence interval 99% (s)|Throughput (samples/sec)|Speed-up PyT+TRT/TRT|Avg mels generated (81 mels=1 sec of speech)| Avg audio length (s)| Avg RTF|
-|---:|---:|---:|---:|---:|---:|---:|---:|---:|---:|---:|---:|---:|---:|
-|PyT+TRT|1| 128| FP16| 0.1662 | 0.0036 | 0.1705 | 0.1717 | 0.1736 | 871,568 | 7.64 | 566 | 6.99 | 42.03 |
-|PyT |1| 128| FP16| 1.27 | 0.07 | 1.36 | 1.38 | 1.44 | 121,184 | 1.00 | 601 | 7.42 | 5.84 |
-
-#### Inference performance: NVIDIA V100 (16GB)
-
-|Framework|Batch size|Input length|Precision|Avg latency (s)|Latency std (s)|Latency confidence interval 90% (s)|Latency confidence interval 95% (s)|Latency confidence interval 99% (s)|Throughput (samples/sec)|Speed-up PyT+TRT/TRT|Avg mels generated (81 mels=1 sec of speech)| Avg audio length (s)| Avg RTF|
-|---:|---:|---:|---:|---:|---:|---:|---:|---:|---:|---:|---:|---:|---:|
-|PyT+TRT|1| 128| FP16| 0.1641 | 0.0046 | 0.1694 | 0.1707 | 0.1731 | 900,884 | 6.52 | 577 | 7.13 | 43.44 |
-|PyT |1| 128| FP16| 1.07 | 0.06 | 1.14 | 1.17 | 1.23 | 144,668 | 1.00 | 602 | 7.42 | 6.95 |
diff --git a/demo/Tacotron2/common/audio_processing.py b/demo/Tacotron2/common/audio_processing.py
deleted file mode 100644
index 7b261cec..00000000
--- a/demo/Tacotron2/common/audio_processing.py
+++ /dev/null
@@ -1,110 +0,0 @@
-#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-import torch
-import numpy as np
-from scipy.signal import get_window
-import librosa.util as librosa_util
-
-
-def window_sumsquare(window, n_frames, hop_length=200, win_length=800,
- n_fft=800, dtype=np.float32, norm=None):
- """
- # from librosa 0.6
- Compute the sum-square envelope of a window function at a given hop length.
-
- This is used to estimate modulation effects induced by windowing
- observations in short-time fourier transforms.
-
- Parameters
- ----------
- window : string, tuple, number, callable, or list-like
- Window specification, as in `get_window`
-
- n_frames : int > 0
- The number of analysis frames
-
- hop_length : int > 0
- The number of samples to advance between frames
-
- win_length : [optional]
- The length of the window function. By default, this matches `n_fft`.
-
- n_fft : int > 0
- The length of each analysis frame.
-
- dtype : np.dtype
- The data type of the output
-
- Returns
- -------
- wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))`
- The sum-squared envelope of the window function
- """
- if win_length is None:
- win_length = n_fft
-
- n = n_fft + hop_length * (n_frames - 1)
- x = np.zeros(n, dtype=dtype)
-
- # Compute the squared window at the desired length
- win_sq = get_window(window, win_length, fftbins=True)
- win_sq = librosa_util.normalize(win_sq, norm=norm)**2
- win_sq = librosa_util.pad_center(win_sq, size=n_fft)
-
- # Fill the envelope
- for i in range(n_frames):
- sample = i * hop_length
- x[sample:min(n, sample + n_fft)] += win_sq[:max(0, min(n_fft, n - sample))]
- return x
-
-
-def griffin_lim(magnitudes, stft_fn, n_iters=30):
- """
- PARAMS
- ------
- magnitudes: spectrogram magnitudes
- stft_fn: STFT class with transform (STFT) and inverse (ISTFT) methods
- """
-
- angles = np.angle(np.exp(2j * np.pi * np.random.rand(*magnitudes.size())))
- angles = angles.astype(np.float32)
- angles = torch.autograd.Variable(torch.from_numpy(angles))
- signal = stft_fn.inverse(magnitudes, angles).squeeze(1)
-
- for i in range(n_iters):
- _, angles = stft_fn.transform(signal)
- signal = stft_fn.inverse(magnitudes, angles).squeeze(1)
- return signal
-
-
-def dynamic_range_compression(x, C=1, clip_val=1e-5):
- """
- PARAMS
- ------
- C: compression factor
- """
- return torch.log(torch.clamp(x, min=clip_val) * C)
-
-
-def dynamic_range_decompression(x, C=1):
- """
- PARAMS
- ------
- C: compression factor used to compress
- """
- return torch.exp(x) / C
diff --git a/demo/Tacotron2/common/layers.py b/demo/Tacotron2/common/layers.py
deleted file mode 100644
index cbeb4910..00000000
--- a/demo/Tacotron2/common/layers.py
+++ /dev/null
@@ -1,96 +0,0 @@
-#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-import torch
-from librosa.filters import mel as librosa_mel_fn
-from common.audio_processing import dynamic_range_compression, dynamic_range_decompression
-from common.stft import STFT
-
-
-class LinearNorm(torch.nn.Module):
- def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
- super(LinearNorm, self).__init__()
- self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
-
- torch.nn.init.xavier_uniform_(
- self.linear_layer.weight,
- gain=torch.nn.init.calculate_gain(w_init_gain))
-
- def forward(self, x):
- return self.linear_layer(x)
-
-
-class ConvNorm(torch.nn.Module):
- def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
- padding=None, dilation=1, bias=True, w_init_gain='linear'):
- super(ConvNorm, self).__init__()
- if padding is None:
- assert(kernel_size % 2 == 1)
- padding = int(dilation * (kernel_size - 1) / 2)
-
- self.conv = torch.nn.Conv1d(in_channels, out_channels,
- kernel_size=kernel_size, stride=stride,
- padding=padding, dilation=dilation,
- bias=bias)
-
- torch.nn.init.xavier_uniform_(
- self.conv.weight,
- gain=torch.nn.init.calculate_gain(w_init_gain))
-
- def forward(self, signal):
- return self.conv(signal)
-
-
-class TacotronSTFT(torch.nn.Module):
- def __init__(self, filter_length=1024, hop_length=256, win_length=1024,
- n_mel_channels=80, sampling_rate=22050, mel_fmin=0.0,
- mel_fmax=8000.0):
- super(TacotronSTFT, self).__init__()
- self.n_mel_channels = n_mel_channels
- self.sampling_rate = sampling_rate
- self.stft_fn = STFT(filter_length, hop_length, win_length)
- mel_basis = librosa_mel_fn(
- sampling_rate, filter_length, n_mel_channels, mel_fmin, mel_fmax)
- mel_basis = torch.from_numpy(mel_basis).float()
- self.register_buffer('mel_basis', mel_basis)
-
- def spectral_normalize(self, magnitudes):
- output = dynamic_range_compression(magnitudes)
- return output
-
- def spectral_de_normalize(self, magnitudes):
- output = dynamic_range_decompression(magnitudes)
- return output
-
- def mel_spectrogram(self, y):
- """Computes mel-spectrograms from a batch of waves
- PARAMS
- ------
- y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1]
-
- RETURNS
- -------
- mel_output: torch.FloatTensor of shape (B, n_mel_channels, T)
- """
- assert(torch.min(y.data) >= -1)
- assert(torch.max(y.data) <= 1)
-
- magnitudes, phases = self.stft_fn.transform(y)
- magnitudes = magnitudes.data
- mel_output = torch.matmul(self.mel_basis, magnitudes)
- mel_output = self.spectral_normalize(mel_output)
- return mel_output
diff --git a/demo/Tacotron2/common/stft.py b/demo/Tacotron2/common/stft.py
deleted file mode 100644
index 0341d60e..00000000
--- a/demo/Tacotron2/common/stft.py
+++ /dev/null
@@ -1,159 +0,0 @@
-#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-"""
-BSD 3-Clause License
-
-Copyright (c) 2017, Prem Seetharaman
-All rights reserved.
-
-* Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
-
-* Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
-* Redistributions in binary form must reproduce the above copyright notice, this
- list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
-* Neither the name of the copyright holder nor the names of its
- contributors may be used to endorse or promote products derived from this
- software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
-ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
-ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-"""
-
-import torch
-import numpy as np
-import torch.nn.functional as F
-from torch.autograd import Variable
-from scipy.signal import get_window
-from librosa.util import pad_center, tiny
-from common.audio_processing import window_sumsquare
-
-
-class STFT(torch.nn.Module):
- """adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft"""
- def __init__(self, filter_length=800, hop_length=200, win_length=800,
- window='hann'):
- super(STFT, self).__init__()
- self.filter_length = filter_length
- self.hop_length = hop_length
- self.win_length = win_length
- self.window = window
- self.forward_transform = None
- scale = self.filter_length / self.hop_length
- fourier_basis = np.fft.fft(np.eye(self.filter_length))
-
- cutoff = int((self.filter_length / 2 + 1))
- fourier_basis = np.vstack([np.real(fourier_basis[:cutoff, :]),
- np.imag(fourier_basis[:cutoff, :])])
-
- forward_basis = torch.FloatTensor(fourier_basis[:, None, :])
- inverse_basis = torch.FloatTensor(
- np.linalg.pinv(scale * fourier_basis).T[:, None, :].astype(np.float32))
-
- if window is not None:
- assert(filter_length >= win_length)
- # get window and zero center pad it to filter_length
- fft_window = get_window(window, win_length, fftbins=True)
- fft_window = pad_center(fft_window, size=filter_length)
- fft_window = torch.from_numpy(fft_window).float()
-
- # window the bases
- forward_basis *= fft_window
- inverse_basis *= fft_window
-
- self.register_buffer('forward_basis', forward_basis.float())
- self.register_buffer('inverse_basis', inverse_basis.float())
-
- def transform(self, input_data):
- num_batches = input_data.size(0)
- num_samples = input_data.size(1)
-
- self.num_samples = num_samples
-
- # similar to librosa, reflect-pad the input
- input_data = input_data.view(num_batches, 1, num_samples)
- input_data = F.pad(
- input_data.unsqueeze(1),
- (int(self.filter_length / 2), int(self.filter_length / 2), 0, 0),
- mode='reflect')
- input_data = input_data.squeeze(1)
-
- forward_transform = F.conv1d(
- input_data,
- Variable(self.forward_basis, requires_grad=False),
- stride=self.hop_length,
- padding=0)
-
- cutoff = int((self.filter_length / 2) + 1)
- real_part = forward_transform[:, :cutoff, :]
- imag_part = forward_transform[:, cutoff:, :]
-
- magnitude = torch.sqrt(real_part**2 + imag_part**2)
- phase = torch.autograd.Variable(
- torch.atan2(imag_part.data, real_part.data))
-
- return magnitude, phase
-
- def inverse(self, magnitude, phase):
- recombine_magnitude_phase = torch.cat(
- [magnitude*torch.cos(phase), magnitude*torch.sin(phase)], dim=1)
-
- inverse_transform = F.conv_transpose2d(
- recombine_magnitude_phase.unsqueeze(-1),
- Variable(self.inverse_basis.unsqueeze(-1), requires_grad=False),
- stride=(self.hop_length,1),
- padding=(0,0))
- inverse_transform = inverse_transform.squeeze(-1)
-
- if self.window is not None:
- window_sum = window_sumsquare(
- self.window, magnitude.size(-1), hop_length=self.hop_length,
- win_length=self.win_length, n_fft=self.filter_length,
- dtype=np.float32)
- # remove modulation effects
- approx_nonzero_indices = torch.from_numpy(
- np.where(window_sum > tiny(window_sum))[0])
- window_sum = torch.autograd.Variable(
- torch.from_numpy(window_sum), requires_grad=False)
- window_sum = window_sum.cuda() if magnitude.is_cuda else window_sum
- inverse_transform[:, :, approx_nonzero_indices] /= window_sum[approx_nonzero_indices]
-
- # scale by hop ratio
- inverse_transform *= float(self.filter_length) / self.hop_length
-
- inverse_transform = inverse_transform[:, :, int(self.filter_length/2):]
- inverse_transform = inverse_transform[:, :, :-int(self.filter_length/2):]
-
- return inverse_transform
-
- def forward(self, input_data):
- self.magnitude, self.phase = self.transform(input_data)
- reconstruction = self.inverse(self.magnitude, self.phase)
- return reconstruction
diff --git a/demo/Tacotron2/common/utils.py b/demo/Tacotron2/common/utils.py
deleted file mode 100644
index 6cccbf22..00000000
--- a/demo/Tacotron2/common/utils.py
+++ /dev/null
@@ -1,72 +0,0 @@
-#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-import numpy as np
-from scipy.io.wavfile import read
-import torch
-import os
-
-import argparse
-import json
-
-class ParseFromConfigFile(argparse.Action):
-
- def __init__(self, option_strings, type, dest, help=None, required=False):
- super(ParseFromConfigFile, self).__init__(option_strings=option_strings, type=type, dest=dest, help=help, required=required)
-
- def __call__(self, parser, namespace, values, option_string):
- with open(values, 'r') as f:
- data = json.load(f)
-
- for group in data.keys():
- for k,v in data[group].items():
- underscore_k = k.replace('-', '_')
- setattr(namespace, underscore_k, v)
-
-def get_mask_from_lengths(lengths):
- max_len = torch.max(lengths).item()
- ids = torch.arange(0, max_len, device=lengths.device, dtype=lengths.dtype)
- mask = (ids < lengths.unsqueeze(1)).byte()
- mask = torch.le(mask, 0)
- return mask
-
-
-def load_wav_to_torch(full_path):
- sampling_rate, data = read(full_path)
- return torch.FloatTensor(data.astype(np.float32)), sampling_rate
-
-
-def load_filepaths_and_text(dataset_path, filename, split="|"):
- with open(filename, encoding='utf-8') as f:
- def split_line(root, line):
- parts = line.strip().split(split)
- if len(parts) > 2:
- raise Exception(
- "incorrect line format for file: {}".format(filename))
- path = os.path.join(root, parts[0])
- text = parts[1]
- return path,text
- filepaths_and_text = [split_line(dataset_path, line) for line in f]
- return filepaths_and_text
-
-
-def to_gpu(x):
- x = x.contiguous()
-
- if torch.cuda.is_available():
- x = x.cuda(non_blocking=True)
- return x
diff --git a/demo/Tacotron2/config.json b/demo/Tacotron2/config.json
deleted file mode 100644
index 07ab289e..00000000
--- a/demo/Tacotron2/config.json
+++ /dev/null
@@ -1,11 +0,0 @@
-{
- "audio": {
- "max-wav-value": 32768.0,
- "sampling-rate": 22050,
- "filter-length": 1024,
- "hop-length": 256,
- "win-length": 1024,
- "mel-fmin": 0.0,
- "mel-fmax": 7000.0
- }
-}
diff --git a/demo/Tacotron2/data_functions.py b/demo/Tacotron2/data_functions.py
deleted file mode 100644
index 623e5af6..00000000
--- a/demo/Tacotron2/data_functions.py
+++ /dev/null
@@ -1,58 +0,0 @@
-#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-import torch
-from tacotron2.data_function import TextMelCollate
-from tacotron2.data_function import TextMelLoader
-from waveglow.data_function import MelAudioLoader
-from tacotron2.data_function import batch_to_gpu as batch_to_gpu_tacotron2
-from waveglow.data_function import batch_to_gpu as batch_to_gpu_waveglow
-
-
-def get_collate_function(model_name, n_frames_per_step):
- if model_name == 'Tacotron2':
- collate_fn = TextMelCollate(n_frames_per_step)
- elif model_name == 'WaveGlow':
- collate_fn = torch.utils.data.dataloader.default_collate
- else:
- raise NotImplementedError(
- "unknown collate function requested: {}".format(model_name))
-
- return collate_fn
-
-
-def get_data_loader(model_name, dataset_path, audiopaths_and_text, args):
- if model_name == 'Tacotron2':
- data_loader = TextMelLoader(dataset_path, audiopaths_and_text, args)
- elif model_name == 'WaveGlow':
- data_loader = MelAudioLoader(dataset_path, audiopaths_and_text, args)
- else:
- raise NotImplementedError(
- "unknown data loader requested: {}".format(model_name))
-
- return data_loader
-
-
-def get_batch_to_gpu(model_name):
- if model_name == 'Tacotron2':
- batch_to_gpu = batch_to_gpu_tacotron2
- elif model_name == 'WaveGlow':
- batch_to_gpu = batch_to_gpu_waveglow
- else:
- raise NotImplementedError(
- "unknown batch_to_gpu requested: {}".format(model_name))
- return batch_to_gpu
diff --git a/demo/Tacotron2/inference.py b/demo/Tacotron2/inference.py
deleted file mode 100644
index 77bbccc1..00000000
--- a/demo/Tacotron2/inference.py
+++ /dev/null
@@ -1,266 +0,0 @@
-#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-from tacotron2.text import text_to_sequence
-import models
-import torch
-import argparse
-import numpy as np
-from scipy.io.wavfile import write
-import matplotlib
-import matplotlib.pyplot as plt
-
-import sys
-
-import time
-import dllogger as DLLogger
-from dllogger import StdOutBackend, JSONStreamBackend, Verbosity
-
-from waveglow.denoiser import Denoiser
-
-def parse_args(parser):
- """
- Parse commandline arguments.
- """
- parser.add_argument('-i', '--input', type=str, required=True,
- help='Full path to the input text (phareses separated by new line)')
- parser.add_argument('-o', '--output', required=True,
- help='Output folder to save audio (file per phrase)')
- parser.add_argument('--suffix', type=str, default="",
- help="Output filename suffix")
- parser.add_argument('--tacotron2', type=str,
- help='Full path to the Tacotron2 model checkpoint file')
- parser.add_argument('--waveglow', type=str,
- help='Full path to the WaveGlow model checkpoint file')
- parser.add_argument('-s', '--sigma-infer', default=0.9, type=float,
- help='Standard deviation of the Gaussian distribution')
- parser.add_argument('-d', '--denoising-strength', default=0.01, type=float,
- help='Denoising strength for removing model bias')
- parser.add_argument('-sr', '--sampling-rate', default=22050, type=int,
- help='Sampling rate')
-
- run_mode = parser.add_mutually_exclusive_group()
- run_mode.add_argument('--fp16', action='store_true',
- help='Run inference with mixed precision')
- run_mode.add_argument('--cpu', action='store_true',
- help='Run inference on CPU')
-
- parser.add_argument('--log-file', type=str, default='nvlog.json',
- help='Filename for logging')
- parser.add_argument('--include-warmup', action='store_true',
- help='Include warmup')
- parser.add_argument('--stft-hop-length', type=int, default=256,
- help='STFT hop length for estimating audio length from mel size')
-
- return parser
-
-
-def checkpoint_from_distributed(state_dict):
- """
- Checks whether checkpoint was generated by DistributedDataParallel. DDP
- wraps model in additional "module.", it needs to be unwrapped for single
- GPU inference.
- :param state_dict: model's state dict
- """
- ret = False
- for key, _ in state_dict.items():
- if key.find('module.') != -1:
- ret = True
- break
- return ret
-
-
-def unwrap_distributed(state_dict):
- """
- Unwraps model from DistributedDataParallel.
- DDP wraps model in additional "module.", it needs to be removed for single
- GPU inference.
- :param state_dict: model's state dict
- """
- new_state_dict = {}
- for key, value in state_dict.items():
- new_key = key.replace('module.', '')
- new_state_dict[new_key] = value
- return new_state_dict
-
-
-def load_and_setup_model(model_name, parser, checkpoint, fp16_run, cpu_run, forward_is_infer=False):
- model_parser = models.parse_model_args(model_name, parser, add_help=False)
- model_args, _ = model_parser.parse_known_args()
-
- model_config = models.get_model_config(model_name, model_args)
- model = models.get_model(model_name, model_config, to_cuda=(not cpu_run),
- forward_is_infer=forward_is_infer)
-
- if checkpoint is not None:
- if cpu_run:
- state_dict = torch.load(checkpoint, map_location=torch.device('cpu'))['state_dict']
- else:
- state_dict = torch.load(checkpoint)['state_dict']
- if checkpoint_from_distributed(state_dict):
- state_dict = unwrap_distributed(state_dict)
-
- model.load_state_dict(state_dict)
-
- if model_name == "WaveGlow":
- model = model.remove_weightnorm(model)
-
- model.eval()
-
- if fp16_run:
- model.half()
-
- return model
-
-
-# taken from tacotron2/data_function.py:TextMelCollate.__call__
-def pad_sequences(batch):
- # Right zero-pad all one-hot text sequences to max input length
- input_lengths, ids_sorted_decreasing = torch.sort(
- torch.LongTensor([len(x) for x in batch]),
- dim=0, descending=True)
- max_input_len = input_lengths[0]
-
- text_padded = torch.LongTensor(len(batch), max_input_len)
- text_padded.zero_()
- for i in range(len(ids_sorted_decreasing)):
- text = batch[ids_sorted_decreasing[i]]
- text_padded[i, :text.size(0)] = text
-
- return text_padded, input_lengths
-
-
-def prepare_input_sequence(texts, cpu_run=False):
-
- d = []
- for i,text in enumerate(texts):
- d.append(torch.IntTensor(
- text_to_sequence(text, ['english_cleaners'])[:]))
-
- text_padded, input_lengths = pad_sequences(d)
- if not cpu_run:
- text_padded = text_padded.cuda().long()
- input_lengths = input_lengths.cuda().long()
- else:
- text_padded = text_padded.long()
- input_lengths = input_lengths.long()
-
- return text_padded, input_lengths
-
-
-class MeasureTime():
- def __init__(self, measurements, key, cpu_run=False):
- self.measurements = measurements
- self.key = key
- self.cpu_run = cpu_run
-
- def __enter__(self):
- if not self.cpu_run:
- torch.cuda.synchronize()
- self.t0 = time.perf_counter()
-
- def __exit__(self, exc_type, exc_value, exc_traceback):
- if not self.cpu_run:
- torch.cuda.synchronize()
- self.measurements[self.key] = time.perf_counter() - self.t0
-
-
-def main():
- """
- Launches text to speech (inference).
- Inference is executed on a single GPU or CPU.
- """
- parser = argparse.ArgumentParser(
- description='PyTorch Tacotron 2 Inference')
- parser = parse_args(parser)
- args, _ = parser.parse_known_args()
-
- DLLogger.init(backends=[JSONStreamBackend(Verbosity.DEFAULT,
- args.output+'/'+args.log_file),
- StdOutBackend(Verbosity.VERBOSE)])
- for k,v in vars(args).items():
- DLLogger.log(step="PARAMETER", data={k:v})
- DLLogger.log(step="PARAMETER", data={'model_name':'Tacotron2_PyT'})
-
- tacotron2 = load_and_setup_model('Tacotron2', parser, args.tacotron2,
- args.fp16, args.cpu, forward_is_infer=True)
- waveglow = load_and_setup_model('WaveGlow', parser, args.waveglow,
- args.fp16, args.cpu, forward_is_infer=True)
- denoiser = Denoiser(waveglow)
- if not args.cpu:
- denoiser.cuda()
-
- jitted_tacotron2 = torch.jit.script(tacotron2)
-
- texts = []
- try:
- f = open(args.input, 'r')
- texts = f.readlines()
- except:
- print("Could not read file")
- sys.exit(1)
-
- if args.include_warmup:
- sequence = torch.randint(low=0, high=148, size=(1,50)).long()
- input_lengths = torch.IntTensor([sequence.size(1)]).long()
- if not args.cpu:
- sequence = sequence.cuda()
- input_lengths = input_lengths.cuda()
- for i in range(3):
- with torch.no_grad():
- mel, mel_lengths, _ = jitted_tacotron2(sequence, input_lengths)
- _ = waveglow(mel)
-
- measurements = {}
-
- sequences_padded, input_lengths = prepare_input_sequence(texts, args.cpu)
-
- with torch.no_grad(), MeasureTime(measurements, "tacotron2_time", args.cpu):
- mel, mel_lengths, alignments = jitted_tacotron2(sequences_padded, input_lengths)
-
- with torch.no_grad(), MeasureTime(measurements, "waveglow_time", args.cpu):
- audios = waveglow(mel, sigma=args.sigma_infer)
- audios = audios.float()
- with torch.no_grad(), MeasureTime(measurements, "denoiser_time", args.cpu):
- audios = denoiser(audios, strength=args.denoising_strength).squeeze(1)
-
- print("Stopping after",mel.size(2),"decoder steps")
- tacotron2_infer_perf = mel.size(0)*mel.size(2)/measurements['tacotron2_time']
- waveglow_infer_perf = audios.size(0)*audios.size(1)/measurements['waveglow_time']
-
- DLLogger.log(step=0, data={"tacotron2_items_per_sec": tacotron2_infer_perf})
- DLLogger.log(step=0, data={"tacotron2_latency": measurements['tacotron2_time']})
- DLLogger.log(step=0, data={"waveglow_items_per_sec": waveglow_infer_perf})
- DLLogger.log(step=0, data={"waveglow_latency": measurements['waveglow_time']})
- DLLogger.log(step=0, data={"denoiser_latency": measurements['denoiser_time']})
- DLLogger.log(step=0, data={"latency": (measurements['tacotron2_time']+measurements['waveglow_time']+measurements['denoiser_time'])})
-
- for i, audio in enumerate(audios):
-
- plt.imshow(alignments[i].float().data.cpu().numpy().T, aspect="auto", origin="lower")
- figure_path = args.output+"alignment_"+str(i)+"_"+args.suffix+".png"
- plt.savefig(figure_path)
-
- audio = audio[:mel_lengths[i]*args.stft_hop_length]
- audio = audio/torch.max(torch.abs(audio))
- audio_path = args.output+"audio_"+str(i)+"_"+args.suffix+".wav"
- write(audio_path, args.sampling_rate, audio.cpu().numpy())
-
- DLLogger.flush()
-
-if __name__ == '__main__':
- main()
diff --git a/demo/Tacotron2/inference_perf.py b/demo/Tacotron2/inference_perf.py
deleted file mode 100644
index cb13463e..00000000
--- a/demo/Tacotron2/inference_perf.py
+++ /dev/null
@@ -1,117 +0,0 @@
-#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-import models
-import torch
-import argparse
-import numpy as np
-import json
-import time
-
-from inference import checkpoint_from_distributed, unwrap_distributed, load_and_setup_model, MeasureTime
-
-import dllogger as DLLogger
-from dllogger import StdOutBackend, JSONStreamBackend, Verbosity
-
-from apex import amp
-
-def parse_args(parser):
- """
- Parse commandline arguments.
- """
- parser.add_argument('-m', '--model-name', type=str, default='', required=True,
- help='Model to train')
- parser.add_argument('-sr', '--sampling-rate', default=22050, type=int,
- help='Sampling rate')
- parser.add_argument('--amp-run', action='store_true',
- help='Inference with Automatic Mixed Precision')
- parser.add_argument('-bs', '--batch-size', type=int, default=1,
- help='Batch size')
- parser.add_argument('-o', '--output', type=str, required=True,
- help='Directory to save results')
- parser.add_argument('--log-file', type=str, default='nvlog.json',
- help='Filename for logging')
-
- return parser
-
-
-def main():
- """
- Launches inference benchmark.
- Inference is executed on a single GPU.
- """
- parser = argparse.ArgumentParser(
- description='PyTorch Tacotron 2 Inference')
- parser = parse_args(parser)
- args, _ = parser.parse_known_args()
-
- log_file = args.log_file
-
- DLLogger.init(backends=[JSONStreamBackend(Verbosity.DEFAULT,
- args.output+'/'+args.log_file),
- StdOutBackend(Verbosity.VERBOSE)])
- for k,v in vars(args).items():
- DLLogger.log(step="PARAMETER", data={k:v})
- DLLogger.log(step="PARAMETER", data={'model_name':'Tacotron2_PyT'})
-
- model = load_and_setup_model(args.model_name, parser, None, args.amp_run,
- forward_is_infer=True)
-
- if args.model_name == "Tacotron2":
- model = torch.jit.script(model)
-
- warmup_iters = 3
- num_iters = 1+warmup_iters
-
- for i in range(num_iters):
-
- measurements = {}
-
- if args.model_name == 'Tacotron2':
- text_padded = torch.randint(low=0, high=148, size=(args.batch_size, 140),
- dtype=torch.long).cuda()
- input_lengths = torch.IntTensor([text_padded.size(1)]*args.batch_size).cuda().long()
- with torch.no_grad(), MeasureTime(measurements, "inference_time"):
- mels, _, _ = model(text_padded, input_lengths)
- num_items = mels.size(0)*mels.size(2)
-
- if args.model_name == 'WaveGlow':
- n_mel_channels = model.upsample.in_channels
- num_mels = 895
- mel_padded = torch.zeros(args.batch_size, n_mel_channels,
- num_mels).normal_(-5.62, 1.98).cuda()
- if args.amp_run:
- mel_padded = mel_padded.half()
-
- with torch.no_grad(), MeasureTime(measurements, "inference_time"):
- audios = model(mel_padded)
- audios = audios.float()
- num_items = audios.size(0)*audios.size(1)
-
- if i >= warmup_iters:
- DLLogger.log(step=(i-warmup_iters,), data={"latency": measurements['inference_time']})
- DLLogger.log(step=(i-warmup_iters,), data={"items_per_sec": num_items/measurements['inference_time']})
-
- DLLogger.log(step=tuple(),
- data={'infer_latency': measurements['inference_time']})
- DLLogger.log(step=tuple(),
- data={'infer_items_per_sec': num_items/measurements['inference_time']})
-
- DLLogger.flush()
-
-if __name__ == '__main__':
- main()
diff --git a/demo/Tacotron2/main.py b/demo/Tacotron2/main.py
deleted file mode 100644
index 2fee8563..00000000
--- a/demo/Tacotron2/main.py
+++ /dev/null
@@ -1,43 +0,0 @@
-#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-import argparse
-from train import main as main_train
-from inference_perf import main as main_infer
-
-def parse_args(parser):
- """
- Parse commandline arguments.
- """
-
- parser.add_argument('--bench-class', type=str, choices=['train', 'perf-infer', 'perf-train'], required=True, help='Choose test class')
-
- return parser
-
-def main():
-
- parser = argparse.ArgumentParser(description='PyTorch Tacotron 2 Testing')
- parser = parse_args(parser)
- args, unknown_args = parser.parse_known_args()
-
- if "train" in args.bench_class:
- main_train()
- else:
- main_infer()
-
-if __name__ == '__main__':
- main()
diff --git a/demo/Tacotron2/models.py b/demo/Tacotron2/models.py
deleted file mode 100644
index fad8af46..00000000
--- a/demo/Tacotron2/models.py
+++ /dev/null
@@ -1,137 +0,0 @@
-#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-import sys
-from os.path import abspath, dirname
-# enabling modules discovery from global entrypoint
-sys.path.append(abspath(dirname(__file__)+'/'))
-from tacotron2.model import Tacotron2
-from waveglow.model import WaveGlow
-import torch
-
-
-def parse_model_args(model_name, parser, add_help=False):
- if model_name == 'Tacotron2':
- from tacotron2.arg_parser import parse_tacotron2_args
- return parse_tacotron2_args(parser, add_help)
- if model_name == 'WaveGlow':
- from waveglow.arg_parser import parse_waveglow_args
- return parse_waveglow_args(parser, add_help)
- else:
- raise NotImplementedError(model_name)
-
-
-def batchnorm_to_float(module):
- """Converts batch norm to FP32"""
- if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
- module.float()
- for child in module.children():
- batchnorm_to_float(child)
- return module
-
-
-def init_bn(module):
- if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
- if module.affine:
- module.weight.data.uniform_()
- for child in module.children():
- init_bn(child)
-
-
-def get_model(model_name, model_config, to_cuda,
- uniform_initialize_bn_weight=False, forward_is_infer=False):
- """ Code chooses a model based on name"""
- model = None
- if model_name == 'Tacotron2':
- if forward_is_infer:
- class Tacotron2__forward_is_infer(Tacotron2):
- def forward(self, inputs, input_lengths):
- return self.infer(inputs, input_lengths)
- model = Tacotron2__forward_is_infer(**model_config)
- else:
- model = Tacotron2(**model_config)
- elif model_name == 'WaveGlow':
- if forward_is_infer:
- class WaveGlow__forward_is_infer(WaveGlow):
- def forward(self, spect, sigma=1.0):
- return self.infer(spect, sigma)
- model = WaveGlow__forward_is_infer(**model_config)
- else:
- model = WaveGlow(**model_config)
- else:
- raise NotImplementedError(model_name)
-
- if uniform_initialize_bn_weight:
- init_bn(model)
-
- if to_cuda:
- model = model.cuda()
- return model
-
-
-def get_model_config(model_name, args):
- """ Code chooses a model based on name"""
- if model_name == 'Tacotron2':
- model_config = dict(
- # optimization
- mask_padding=args.mask_padding,
- # audio
- n_mel_channels=args.n_mel_channels,
- # symbols
- n_symbols=args.n_symbols,
- symbols_embedding_dim=args.symbols_embedding_dim,
- # encoder
- encoder_kernel_size=args.encoder_kernel_size,
- encoder_n_convolutions=args.encoder_n_convolutions,
- encoder_embedding_dim=args.encoder_embedding_dim,
- # attention
- attention_rnn_dim=args.attention_rnn_dim,
- attention_dim=args.attention_dim,
- # attention location
- attention_location_n_filters=args.attention_location_n_filters,
- attention_location_kernel_size=args.attention_location_kernel_size,
- # decoder
- n_frames_per_step=args.n_frames_per_step,
- decoder_rnn_dim=args.decoder_rnn_dim,
- prenet_dim=args.prenet_dim,
- max_decoder_steps=args.max_decoder_steps,
- gate_threshold=args.gate_threshold,
- p_attention_dropout=args.p_attention_dropout,
- p_decoder_dropout=args.p_decoder_dropout,
- # postnet
- postnet_embedding_dim=args.postnet_embedding_dim,
- postnet_kernel_size=args.postnet_kernel_size,
- postnet_n_convolutions=args.postnet_n_convolutions,
- decoder_no_early_stopping=args.decoder_no_early_stopping
- )
- return model_config
- elif model_name == 'WaveGlow':
- model_config = dict(
- n_mel_channels=args.n_mel_channels,
- n_flows=args.flows,
- n_group=args.groups,
- n_early_every=args.early_every,
- n_early_size=args.early_size,
- WN_config=dict(
- n_layers=args.wn_layers,
- kernel_size=args.wn_kernel_size,
- n_channels=args.wn_channels
- )
- )
- return model_config
- else:
- raise NotImplementedError(model_name)
diff --git a/demo/Tacotron2/multiproc.py b/demo/Tacotron2/multiproc.py
deleted file mode 100644
index d3eb63ad..00000000
--- a/demo/Tacotron2/multiproc.py
+++ /dev/null
@@ -1,75 +0,0 @@
-#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-import sys
-import subprocess
-
-import torch
-
-
-def main():
- argslist = list(sys.argv)[1:]
- world_size = torch.cuda.device_count()
-
- if '--world-size' in argslist:
- argslist[argslist.index('--world-size') + 1] = str(world_size)
- else:
- argslist.append('--world-size')
- argslist.append(str(world_size))
-
- workers = []
-
- for i in range(world_size):
- if '--rank' in argslist:
- argslist[argslist.index('--rank') + 1] = str(i)
- else:
- argslist.append('--rank')
- argslist.append(str(i))
- stdout = None if i == 0 else subprocess.DEVNULL
- worker = subprocess.Popen(
- [str(sys.executable)] + argslist, stdout=stdout)
- workers.append(worker)
-
- returncode = 0
- try:
- pending = len(workers)
- while pending > 0:
- for worker in workers:
- try:
- worker_returncode = worker.wait(1)
- except subprocess.TimeoutExpired:
- continue
- pending -= 1
- if worker_returncode != 0:
- if returncode != 1:
- for worker in workers:
- worker.terminate()
- returncode = 1
-
- except KeyboardInterrupt:
- print('Pressed CTRL-C, TERMINATING')
- for worker in workers:
- worker.terminate()
- for worker in workers:
- worker.wait()
- raise
-
- sys.exit(returncode)
-
-
-if __name__ == "__main__":
- main()
diff --git a/demo/Tacotron2/phrases/phrase.txt b/demo/Tacotron2/phrases/phrase.txt
deleted file mode 100644
index 8999934d..00000000
--- a/demo/Tacotron2/phrases/phrase.txt
+++ /dev/null
@@ -1 +0,0 @@
-The forms of printed letters should be beautiful, and that their arrangement on the page should be reasonable and a help to the shapeliness of the letters themselves.
diff --git a/demo/Tacotron2/phrases/phrase_1_128.txt b/demo/Tacotron2/phrases/phrase_1_128.txt
deleted file mode 100644
index 2bd87ff0..00000000
--- a/demo/Tacotron2/phrases/phrase_1_128.txt
+++ /dev/null
@@ -1 +0,0 @@
-The forms of printed letters should be beautiful, and that their arrangement on the page should be reasonable and a help to the
diff --git a/demo/Tacotron2/phrases/phrase_1_256.txt b/demo/Tacotron2/phrases/phrase_1_256.txt
deleted file mode 100644
index 8286058e..00000000
--- a/demo/Tacotron2/phrases/phrase_1_256.txt
+++ /dev/null
@@ -1,2 +0,0 @@
-The forms of printed letters should be beautiful, and that their arrangement on the page should be reasonable and a help to the shapeliness of the letters themselves and the form of printed letters should be beautiful, and that their arrangement on pages.
-
diff --git a/demo/Tacotron2/phrases/phrase_1_64.txt b/demo/Tacotron2/phrases/phrase_1_64.txt
deleted file mode 100644
index 817a8a60..00000000
--- a/demo/Tacotron2/phrases/phrase_1_64.txt
+++ /dev/null
@@ -1 +0,0 @@
-She sells seashells by the seashore, shells she sells are great
diff --git a/demo/Tacotron2/phrases/phrase_4_256.txt b/demo/Tacotron2/phrases/phrase_4_256.txt
deleted file mode 100644
index 84de94bc..00000000
--- a/demo/Tacotron2/phrases/phrase_4_256.txt
+++ /dev/null
@@ -1,4 +0,0 @@
-The forms of printed letters should be beautiful, and that their arrangement on the page should be reasonable and a help to the shapeliness of the letters themselves and the form of printed letters should be beautiful, and that their arrangement on pages.
-The forms of printed letters should be beautiful, and that their arrangement on the page should be reasonable and a help to the shapeliness of the letters themselves and the form of printed letters should be beautiful, and that their arrangement on pages.
-The forms of printed letters should be beautiful, and that their arrangement on the page should be reasonable and a help to the shapeliness of the letters themselves and the form of printed letters should be beautiful, and that their arrangement on pages.
-The forms of printed letters should be beautiful, and that their arrangement on the page should be reasonable and a help to the shapeliness of the letters themselves and the form of printed letters should be beautiful, and that their arrangement on pages.
diff --git a/demo/Tacotron2/phrases/phrase_4_64.txt b/demo/Tacotron2/phrases/phrase_4_64.txt
deleted file mode 100644
index cd1d75b5..00000000
--- a/demo/Tacotron2/phrases/phrase_4_64.txt
+++ /dev/null
@@ -1,4 +0,0 @@
-She sells seashells by the seashore, shells she sells are great
-She sells seashells by the seashore, shells she sells are great
-She sells seashells by the seashore, shells she sells are great
-She sells seashells by the seashore, shells she sells are great
diff --git a/demo/Tacotron2/phrases/phrase_8_256.txt b/demo/Tacotron2/phrases/phrase_8_256.txt
deleted file mode 100644
index eace2b8e..00000000
--- a/demo/Tacotron2/phrases/phrase_8_256.txt
+++ /dev/null
@@ -1,8 +0,0 @@
-The forms of printed letters should be beautiful, and that their arrangement on the page should be reasonable and a help to the shapeliness of the letters themselves and the form of printed letters should be beautiful, and that their arrangement on pages.
-The forms of printed letters should be beautiful, and that their arrangement on the page should be reasonable and a help to the shapeliness of the letters themselves and the form of printed letters should be beautiful, and that their arrangement on pages.
-The forms of printed letters should be beautiful, and that their arrangement on the page should be reasonable and a help to the shapeliness of the letters themselves and the form of printed letters should be beautiful, and that their arrangement on pages.
-The forms of printed letters should be beautiful, and that their arrangement on the page should be reasonable and a help to the shapeliness of the letters themselves and the form of printed letters should be beautiful, and that their arrangement on pages.
-The forms of printed letters should be beautiful, and that their arrangement on the page should be reasonable and a help to the shapeliness of the letters themselves and the form of printed letters should be beautiful, and that their arrangement on pages.
-The forms of printed letters should be beautiful, and that their arrangement on the page should be reasonable and a help to the shapeliness of the letters themselves and the form of printed letters should be beautiful, and that their arrangement on pages.
-The forms of printed letters should be beautiful, and that their arrangement on the page should be reasonable and a help to the shapeliness of the letters themselves and the form of printed letters should be beautiful, and that their arrangement on pages.
-The forms of printed letters should be beautiful, and that their arrangement on the page should be reasonable and a help to the shapeliness of the letters themselves and the form of printed letters should be beautiful, and that their arrangement on pages.
diff --git a/demo/Tacotron2/phrases/phrase_8_64.txt b/demo/Tacotron2/phrases/phrase_8_64.txt
deleted file mode 100644
index e3a97a5c..00000000
--- a/demo/Tacotron2/phrases/phrase_8_64.txt
+++ /dev/null
@@ -1,8 +0,0 @@
-She sells seashells by the seashore, shells she sells are great
-She sells seashells by the seashore, shells she sells are great
-She sells seashells by the seashore, shells she sells are great
-She sells seashells by the seashore, shells she sells are great
-She sells seashells by the seashore, shells she sells are great
-She sells seashells by the seashore, shells she sells are great
-She sells seashells by the seashore, shells she sells are great
-She sells seashells by the seashore, shells she sells are great
diff --git a/demo/Tacotron2/preprocess_audio2mel.py b/demo/Tacotron2/preprocess_audio2mel.py
deleted file mode 100644
index 32026325..00000000
--- a/demo/Tacotron2/preprocess_audio2mel.py
+++ /dev/null
@@ -1,81 +0,0 @@
-#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-import argparse
-import torch
-
-from tacotron2.data_function import TextMelLoader
-from common.utils import load_filepaths_and_text
-
-def parse_args(parser):
- """
- Parse commandline arguments.
- """
- parser.add_argument('-d', '--dataset-path', type=str,
- default='./', help='Path to dataset')
- parser.add_argument('--wav-files', required=True,
- type=str, help='Path to filelist with audio paths and text')
- parser.add_argument('--mel-files', required=True,
- type=str, help='Path to filelist with mel paths and text')
- parser.add_argument('--text-cleaners', nargs='*',
- default=['english_cleaners'], type=str,
- help='Type of text cleaners for input text')
- parser.add_argument('--max-wav-value', default=32768.0, type=float,
- help='Maximum audiowave value')
- parser.add_argument('--sampling-rate', default=22050, type=int,
- help='Sampling rate')
- parser.add_argument('--filter-length', default=1024, type=int,
- help='Filter length')
- parser.add_argument('--hop-length', default=256, type=int,
- help='Hop (stride) length')
- parser.add_argument('--win-length', default=1024, type=int,
- help='Window length')
- parser.add_argument('--mel-fmin', default=0.0, type=float,
- help='Minimum mel frequency')
- parser.add_argument('--mel-fmax', default=8000.0, type=float,
- help='Maximum mel frequency')
- parser.add_argument('--n-mel-channels', default=80, type=int,
- help='Number of bins in mel-spectrograms')
-
- return parser
-
-
-def audio2mel(dataset_path, audiopaths_and_text, melpaths_and_text, args):
-
- melpaths_and_text_list = load_filepaths_and_text(dataset_path, melpaths_and_text)
- audiopaths_and_text_list = load_filepaths_and_text(dataset_path, audiopaths_and_text)
-
- data_loader = TextMelLoader(dataset_path, audiopaths_and_text, args)
-
- for i in range(len(melpaths_and_text_list)):
- if i%100 == 0:
- print("done", i, "/", len(melpaths_and_text_list))
-
- mel = data_loader.get_mel(audiopaths_and_text_list[i][0])
- torch.save(mel, melpaths_and_text_list[i][0])
-
-def main():
-
- parser = argparse.ArgumentParser(description='PyTorch Tacotron 2 Training')
- parser = parse_args(parser)
- args = parser.parse_args()
- args.load_mel_from_disk = False
-
- audio2mel(args.dataset_path, args.wav_files, args.mel_files, args)
-
-if __name__ == '__main__':
- main()
diff --git a/demo/Tacotron2/requirements.txt b/demo/Tacotron2/requirements.txt
deleted file mode 100644
index b6eb26de..00000000
--- a/demo/Tacotron2/requirements.txt
+++ /dev/null
@@ -1,12 +0,0 @@
-numba>=0.48
-resampy>=0.3.1
-torch==2.0.1
-matplotlib
-numpy
-inflect
-librosa>=0.10.0
-scipy
-Unidecode
-git+https://github.com/NVIDIA/dllogger#egg=dllogger
---extra-index-url https://pypi.ngc.nvidia.com
-onnx-graphsurgeon
diff --git a/demo/Tacotron2/run_latency_tests.sh b/demo/Tacotron2/run_latency_tests.sh
deleted file mode 100644
index 85e5f0f8..00000000
--- a/demo/Tacotron2/run_latency_tests.sh
+++ /dev/null
@@ -1,27 +0,0 @@
-#
-# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-unset CUDA_VISIBLE_DEVICES
-bash test_infer.sh -bs 1 -il 128 --fp16 --num-iters 1003 --tacotron2 ./checkpoints/tacotron2_1032590_6000_amp --waveglow ./checkpoints/waveglow_1076430_14000_amp --wn-channels 256
-bash test_infer.sh -bs 4 -il 128 --fp16 --num-iters 1003 --tacotron2 ./checkpoints/tacotron2_1032590_6000_amp --waveglow ./checkpoints/waveglow_1076430_14000_amp --wn-channels 256
-bash test_infer.sh -bs 1 -il 128 --num-iters 1003 --tacotron2 ./checkpoints/tacotron2_1032590_6000_amp --waveglow ./checkpoints/waveglow_1076430_14000_amp --wn-channels 256
-bash test_infer.sh -bs 4 -il 128 --num-iters 1003 --tacotron2 ./checkpoints/tacotron2_1032590_6000_amp --waveglow ./checkpoints/waveglow_1076430_14000_amp --wn-channels 256
-export CUDA_VISIBLE_DEVICES=
-export OMP_NUM_THREADS=6
-export KMP_BLOCKTIME=0
-export KMP_AFFINITY=granularity=fine,compact,1,0
-bash test_infer.sh -bs 1 -il 128 --cpu --num-iters 1003 --tacotron2 ./checkpoints/tacotron2_1032590_6000_amp --waveglow ./checkpoints/waveglow_1076430_14000_amp --wn-channels 256
-bash test_infer.sh -bs 4 -il 128 --cpu --num-iters 1003 --tacotron2 ./checkpoints/tacotron2_1032590_6000_amp --waveglow ./checkpoints/waveglow_1076430_14000_amp --wn-channels 256
diff --git a/demo/Tacotron2/scripts/download_checkpoints.sh b/demo/Tacotron2/scripts/download_checkpoints.sh
deleted file mode 100755
index 0d23f2d3..00000000
--- a/demo/Tacotron2/scripts/download_checkpoints.sh
+++ /dev/null
@@ -1,31 +0,0 @@
-#!/bin/bash
-#
-# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-# Prepare the download directory
-mkdir -p checkpoints && cd checkpoints
-
-# Download the Tacotron2 and Waveglow checkpoints
-if [ ! -f "checkpoints/tacotron2_pyt_ckpt_amp_v19.09.0/nvidia_tacotron2pyt_fp16_20190427" ]; then
- echo "Downloading Tacotron2 checkpoint from NGC"
- ngc registry model download-version nvidia/tacotron2_pyt_ckpt_amp:19.09.0
-fi;
-if [ ! -f "checkpoints/waveglow_ckpt_amp_256_v19.10.0/nvidia_waveglow256pyt_fp16" ]; then
- echo "Downloading Waveglow checkpoint from NGC"
- ngc registry model download-version nvidia/waveglow_ckpt_amp_256:19.10.0
-fi;
-
-cd -
diff --git a/demo/Tacotron2/scripts/inference_benchmark.sh b/demo/Tacotron2/scripts/inference_benchmark.sh
deleted file mode 100755
index 86200557..00000000
--- a/demo/Tacotron2/scripts/inference_benchmark.sh
+++ /dev/null
@@ -1,21 +0,0 @@
-#!/bin/bash
-#
-# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-echo "TensorRT BS=1, S=128"
-bash test_infer.sh --test tensorrt/test_infer_trt.py -bs 1 -il 128 --fp16 --num-iters 103 --encoder ./output/encoder_fp16.engine --decoder ./output/decoder_with_outer_loop_fp16.engine --postnet ./output/postnet_fp16.engine --waveglow ./output/waveglow_fp16.engine --wn-channels 256
-echo "PyTorch (GPU) BS=1, S=128"
-bash test_infer.sh -bs 1 -il 128 --fp16 --num-iters 103 --tacotron2 ./checkpoints/tacotron2_pyt_ckpt_amp_v19.09.0/nvidia_tacotron2pyt_fp16_20190427 --waveglow ./checkpoints/waveglow_ckpt_amp_256_v19.10.0/nvidia_waveglow256pyt_fp16 --wn-channels 256
diff --git a/demo/Tacotron2/scripts/install_prerequisites.sh b/demo/Tacotron2/scripts/install_prerequisites.sh
deleted file mode 100755
index 5a16d392..00000000
--- a/demo/Tacotron2/scripts/install_prerequisites.sh
+++ /dev/null
@@ -1,25 +0,0 @@
-#!/bin/bash
-#
-# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-pip3 install -r requirements.txt
-echo "nvidia" | sudo -S apt-get install -y libsndfile1
-
-pushd /tmp
-git clone https://github.com/NVIDIA/apex
-cd apex
-pip3 install -v --disable-pip-version-check --no-build-isolation --no-cache-dir ./
-popd
diff --git a/demo/Tacotron2/scripts/prepare_dataset.sh b/demo/Tacotron2/scripts/prepare_dataset.sh
deleted file mode 100755
index d38be817..00000000
--- a/demo/Tacotron2/scripts/prepare_dataset.sh
+++ /dev/null
@@ -1,31 +0,0 @@
-#!/usr/bin/env bash
-#
-# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-set -e
-
-DATADIR="LJSpeech-1.1"
-BZ2ARCHIVE="${DATADIR}.tar.bz2"
-ENDPOINT="http://data.keithito.com/data/speech/$BZ2ARCHIVE"
-
-if [ ! -d "$DATADIR" ]; then
- echo "dataset is missing, unpacking ..."
- if [ ! -f "$BZ2ARCHIVE" ]; then
- echo "dataset archive is missing, downloading ..."
- wget "$ENDPOINT"
- fi
- tar jxvf "$BZ2ARCHIVE"
-fi
diff --git a/demo/Tacotron2/scripts/prepare_mels.sh b/demo/Tacotron2/scripts/prepare_mels.sh
deleted file mode 100644
index b3843a26..00000000
--- a/demo/Tacotron2/scripts/prepare_mels.sh
+++ /dev/null
@@ -1,36 +0,0 @@
-#!/usr/bin/env bash
-#
-# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-set -e
-
-DATADIR="LJSpeech-1.1"
-FILELISTSDIR="filelists"
-
-TESTLIST="$FILELISTSDIR/ljs_audio_text_test_filelist.txt"
-TRAINLIST="$FILELISTSDIR/ljs_audio_text_train_filelist.txt"
-VALLIST="$FILELISTSDIR/ljs_audio_text_val_filelist.txt"
-
-TESTLIST_MEL="$FILELISTSDIR/ljs_mel_text_test_filelist.txt"
-TRAINLIST_MEL="$FILELISTSDIR/ljs_mel_text_train_filelist.txt"
-VALLIST_MEL="$FILELISTSDIR/ljs_mel_text_val_filelist.txt"
-
-mkdir -p "$DATADIR/mels"
-if [ $(ls $DATADIR/mels | wc -l) -ne 13100 ]; then
- python3 preprocess_audio2mel.py --wav-files "$TRAINLIST" --mel-files "$TRAINLIST_MEL"
- python3 preprocess_audio2mel.py --wav-files "$TESTLIST" --mel-files "$TESTLIST_MEL"
- python3 preprocess_audio2mel.py --wav-files "$VALLIST" --mel-files "$VALLIST_MEL"
-fi
diff --git a/demo/Tacotron2/tacotron2/arg_parser.py b/demo/Tacotron2/tacotron2/arg_parser.py
deleted file mode 100644
index 2a450ef6..00000000
--- a/demo/Tacotron2/tacotron2/arg_parser.py
+++ /dev/null
@@ -1,98 +0,0 @@
-#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-import argparse
-
-from tacotron2.text import symbols
-
-
-def parse_tacotron2_args(parent, add_help=False):
- """
- Parse commandline arguments.
- """
- parser = argparse.ArgumentParser(parents=[parent], add_help=add_help)
-
- # misc parameters
- parser.add_argument('--mask-padding', default=False, type=bool,
- help='Use mask padding')
- parser.add_argument('--n-mel-channels', default=80, type=int,
- help='Number of bins in mel-spectrograms')
-
- # symbols parameters
- global symbols
- len_symbols = len(symbols)
- symbols = parser.add_argument_group('symbols parameters')
- symbols.add_argument('--n-symbols', default=len_symbols, type=int,
- help='Number of symbols in dictionary')
- symbols.add_argument('--symbols-embedding-dim', default=512, type=int,
- help='Input embedding dimension')
-
- # encoder parameters
- encoder = parser.add_argument_group('encoder parameters')
- encoder.add_argument('--encoder-kernel-size', default=5, type=int,
- help='Encoder kernel size')
- encoder.add_argument('--encoder-n-convolutions', default=3, type=int,
- help='Number of encoder convolutions')
- encoder.add_argument('--encoder-embedding-dim', default=512, type=int,
- help='Encoder embedding dimension')
-
- # decoder parameters
- decoder = parser.add_argument_group('decoder parameters')
- decoder.add_argument('--n-frames-per-step', default=1,
- type=int,
- help='Number of frames processed per step') # currently only 1 is supported
- decoder.add_argument('--decoder-rnn-dim', default=1024, type=int,
- help='Number of units in decoder LSTM')
- decoder.add_argument('--prenet-dim', default=256, type=int,
- help='Number of ReLU units in prenet layers')
- decoder.add_argument('--max-decoder-steps', default=2000, type=int,
- help='Maximum number of output mel spectrograms')
- decoder.add_argument('--gate-threshold', default=0.5, type=float,
- help='Probability threshold for stop token')
- decoder.add_argument('--p-attention-dropout', default=0.1, type=float,
- help='Dropout probability for attention LSTM')
- decoder.add_argument('--p-decoder-dropout', default=0.1, type=float,
- help='Dropout probability for decoder LSTM')
- decoder.add_argument('--decoder-no-early-stopping', action='store_true',
- help='Stop decoding once all samples are finished')
-
- # attention parameters
- attention = parser.add_argument_group('attention parameters')
- attention.add_argument('--attention-rnn-dim', default=1024, type=int,
- help='Number of units in attention LSTM')
- attention.add_argument('--attention-dim', default=128, type=int,
- help='Dimension of attention hidden representation')
-
- # location layer parameters
- location = parser.add_argument_group('location parameters')
- location.add_argument(
- '--attention-location-n-filters', default=32, type=int,
- help='Number of filters for location-sensitive attention')
- location.add_argument(
- '--attention-location-kernel-size', default=31, type=int,
- help='Kernel size for location-sensitive attention')
-
- # Mel-post processing network parameters
- postnet = parser.add_argument_group('postnet parameters')
- postnet.add_argument('--postnet-embedding-dim', default=512, type=int,
- help='Postnet embedding dimension')
- postnet.add_argument('--postnet-kernel-size', default=5, type=int,
- help='Postnet kernel size')
- postnet.add_argument('--postnet-n-convolutions', default=5, type=int,
- help='Number of postnet convolutions')
-
- return parser
diff --git a/demo/Tacotron2/tacotron2/data_function.py b/demo/Tacotron2/tacotron2/data_function.py
deleted file mode 100644
index 5d2c0064..00000000
--- a/demo/Tacotron2/tacotron2/data_function.py
+++ /dev/null
@@ -1,145 +0,0 @@
-#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-import random
-import numpy as np
-import torch
-import torch.utils.data
-
-import common.layers as layers
-from common.utils import load_wav_to_torch, load_filepaths_and_text, to_gpu
-from tacotron2.text import text_to_sequence
-
-class TextMelLoader(torch.utils.data.Dataset):
- """
- 1) loads audio,text pairs
- 2) normalizes text and converts them to sequences of one-hot vectors
- 3) computes mel-spectrograms from audio files.
- """
- def __init__(self, dataset_path, audiopaths_and_text, args):
- self.audiopaths_and_text = load_filepaths_and_text(dataset_path, audiopaths_and_text)
- self.text_cleaners = args.text_cleaners
- self.max_wav_value = args.max_wav_value
- self.sampling_rate = args.sampling_rate
- self.load_mel_from_disk = args.load_mel_from_disk
- self.stft = layers.TacotronSTFT(
- args.filter_length, args.hop_length, args.win_length,
- args.n_mel_channels, args.sampling_rate, args.mel_fmin,
- args.mel_fmax)
- random.seed(1234)
- random.shuffle(self.audiopaths_and_text)
-
- def get_mel_text_pair(self, audiopath_and_text):
- # separate filename and text
- audiopath, text = audiopath_and_text[0], audiopath_and_text[1]
- len_text = len(text)
- text = self.get_text(text)
- mel = self.get_mel(audiopath)
- return (text, mel, len_text)
-
- def get_mel(self, filename):
- if not self.load_mel_from_disk:
- audio, sampling_rate = load_wav_to_torch(filename)
- if sampling_rate != self.stft.sampling_rate:
- raise ValueError("{} {} SR doesn't match target {} SR".format(
- sampling_rate, self.stft.sampling_rate))
- audio_norm = audio / self.max_wav_value
- audio_norm = audio_norm.unsqueeze(0)
- audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False)
- melspec = self.stft.mel_spectrogram(audio_norm)
- melspec = torch.squeeze(melspec, 0)
- else:
- melspec = torch.load(filename)
- assert melspec.size(0) == self.stft.n_mel_channels, (
- 'Mel dimension mismatch: given {}, expected {}'.format(
- melspec.size(0), self.stft.n_mel_channels))
-
- return melspec
-
- def get_text(self, text):
- text_norm = torch.IntTensor(text_to_sequence(text, self.text_cleaners))
- return text_norm
-
- def __getitem__(self, index):
- return self.get_mel_text_pair(self.audiopaths_and_text[index])
-
- def __len__(self):
- return len(self.audiopaths_and_text)
-
-
-class TextMelCollate():
- """ Zero-pads model inputs and targets based on number of frames per setep
- """
- def __init__(self, n_frames_per_step):
- self.n_frames_per_step = n_frames_per_step
-
- def __call__(self, batch):
- """Collate's training batch from normalized text and mel-spectrogram
- PARAMS
- ------
- batch: [text_normalized, mel_normalized]
- """
- # Right zero-pad all one-hot text sequences to max input length
- input_lengths, ids_sorted_decreasing = torch.sort(
- torch.LongTensor([len(x[0]) for x in batch]),
- dim=0, descending=True)
- max_input_len = input_lengths[0]
-
- text_padded = torch.LongTensor(len(batch), max_input_len)
- text_padded.zero_()
- for i in range(len(ids_sorted_decreasing)):
- text = batch[ids_sorted_decreasing[i]][0]
- text_padded[i, :text.size(0)] = text
-
- # Right zero-pad mel-spec
- num_mels = batch[0][1].size(0)
- max_target_len = max([x[1].size(1) for x in batch])
- if max_target_len % self.n_frames_per_step != 0:
- max_target_len += self.n_frames_per_step - max_target_len % self.n_frames_per_step
- assert max_target_len % self.n_frames_per_step == 0
-
- # include mel padded and gate padded
- mel_padded = torch.FloatTensor(len(batch), num_mels, max_target_len)
- mel_padded.zero_()
- gate_padded = torch.FloatTensor(len(batch), max_target_len)
- gate_padded.zero_()
- output_lengths = torch.LongTensor(len(batch))
- for i in range(len(ids_sorted_decreasing)):
- mel = batch[ids_sorted_decreasing[i]][1]
- mel_padded[i, :, :mel.size(1)] = mel
- gate_padded[i, mel.size(1)-1:] = 1
- output_lengths[i] = mel.size(1)
-
- # count number of items - characters in text
- len_x = [x[2] for x in batch]
- len_x = torch.Tensor(len_x)
- return text_padded, input_lengths, mel_padded, gate_padded, \
- output_lengths, len_x
-
-def batch_to_gpu(batch):
- text_padded, input_lengths, mel_padded, gate_padded, \
- output_lengths, len_x = batch
- text_padded = to_gpu(text_padded).long()
- input_lengths = to_gpu(input_lengths).long()
- max_len = torch.max(input_lengths.data).item()
- mel_padded = to_gpu(mel_padded).float()
- gate_padded = to_gpu(gate_padded).float()
- output_lengths = to_gpu(output_lengths).long()
- x = (text_padded, input_lengths, mel_padded, max_len, output_lengths)
- y = (mel_padded, gate_padded)
- len_x = torch.sum(output_lengths)
- return (x, y, len_x)
diff --git a/demo/Tacotron2/tacotron2/loss_function.py b/demo/Tacotron2/tacotron2/loss_function.py
deleted file mode 100644
index 07b3610e..00000000
--- a/demo/Tacotron2/tacotron2/loss_function.py
+++ /dev/null
@@ -1,36 +0,0 @@
-#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-from torch import nn
-
-
-class Tacotron2Loss(nn.Module):
- def __init__(self):
- super(Tacotron2Loss, self).__init__()
-
- def forward(self, model_output, targets):
- mel_target, gate_target = targets[0], targets[1]
- mel_target.requires_grad = False
- gate_target.requires_grad = False
- gate_target = gate_target.view(-1, 1)
-
- mel_out, mel_out_postnet, gate_out, _ = model_output
- gate_out = gate_out.view(-1, 1)
- mel_loss = nn.MSELoss()(mel_out, mel_target) + \
- nn.MSELoss()(mel_out_postnet, mel_target)
- gate_loss = nn.BCEWithLogitsLoss()(gate_out, gate_target)
- return mel_loss + gate_loss
diff --git a/demo/Tacotron2/tacotron2/model.py b/demo/Tacotron2/tacotron2/model.py
deleted file mode 100644
index c8ba9f96..00000000
--- a/demo/Tacotron2/tacotron2/model.py
+++ /dev/null
@@ -1,681 +0,0 @@
-#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-from math import sqrt
-import torch
-from torch import nn
-from torch.nn import functional as F
-import sys
-from os.path import abspath, dirname
-# enabling modules discovery from global entrypoint
-sys.path.append(abspath(dirname(__file__)+'/../'))
-from common.layers import ConvNorm, LinearNorm
-from common.utils import to_gpu, get_mask_from_lengths
-
-
-class LocationLayer(nn.Module):
- def __init__(self, attention_n_filters, attention_kernel_size,
- attention_dim):
- super(LocationLayer, self).__init__()
- padding = int((attention_kernel_size - 1) / 2)
- self.location_conv = ConvNorm(2, attention_n_filters,
- kernel_size=attention_kernel_size,
- padding=padding, bias=False, stride=1,
- dilation=1)
- self.location_dense = LinearNorm(attention_n_filters, attention_dim,
- bias=False, w_init_gain='tanh')
-
- def forward(self, attention_weights_cat):
- processed_attention = self.location_conv(attention_weights_cat)
- processed_attention = processed_attention.transpose(1, 2)
- processed_attention = self.location_dense(processed_attention)
- return processed_attention
-
-
-class Attention(nn.Module):
- def __init__(self, attention_rnn_dim, embedding_dim,
- attention_dim, attention_location_n_filters,
- attention_location_kernel_size):
- super(Attention, self).__init__()
- self.query_layer = LinearNorm(attention_rnn_dim, attention_dim,
- bias=False, w_init_gain='tanh')
- self.memory_layer = LinearNorm(embedding_dim, attention_dim, bias=False,
- w_init_gain='tanh')
- self.v = LinearNorm(attention_dim, 1, bias=False)
- self.location_layer = LocationLayer(attention_location_n_filters,
- attention_location_kernel_size,
- attention_dim)
- self.score_mask_value = -float("inf")
-
- def get_alignment_energies(self, query, processed_memory,
- attention_weights_cat):
- """
- PARAMS
- ------
- query: decoder output (batch, n_mel_channels * n_frames_per_step)
- processed_memory: processed encoder outputs (B, T_in, attention_dim)
- attention_weights_cat: cumulative and prev. att weights (B, 2, max_time)
-
- RETURNS
- -------
- alignment (batch, max_time)
- """
-
- processed_query = self.query_layer(query.unsqueeze(1))
- processed_attention_weights = self.location_layer(attention_weights_cat)
- energies = self.v(torch.tanh(
- processed_query + processed_attention_weights + processed_memory))
-
- energies = energies.squeeze(2)
- return energies
-
- def forward(self, attention_hidden_state, memory, processed_memory,
- attention_weights_cat, mask):
- """
- PARAMS
- ------
- attention_hidden_state: attention rnn last output
- memory: encoder outputs
- processed_memory: processed encoder outputs
- attention_weights_cat: previous and cummulative attention weights
- mask: binary mask for padded data
- """
- alignment = self.get_alignment_energies(
- attention_hidden_state, processed_memory, attention_weights_cat)
-
- alignment = alignment.masked_fill(mask, self.score_mask_value)
-
- attention_weights = F.softmax(alignment, dim=1)
- attention_context = torch.bmm(attention_weights.unsqueeze(1), memory)
- attention_context = attention_context.squeeze(1)
-
- return attention_context, attention_weights
-
-
-class Prenet(nn.Module):
- def __init__(self, in_dim, sizes):
- super(Prenet, self).__init__()
- in_sizes = [in_dim] + sizes[:-1]
- self.layers = nn.ModuleList(
- [LinearNorm(in_size, out_size, bias=False)
- for (in_size, out_size) in zip(in_sizes, sizes)])
-
- def forward(self, x):
- for linear in self.layers:
- x = F.dropout(F.relu(linear(x)), p=0.5, training=True)
- return x
-
-
-class Postnet(nn.Module):
- """Postnet
- - Five 1-d convolution with 512 channels and kernel size 5
- """
-
- def __init__(self, n_mel_channels, postnet_embedding_dim,
- postnet_kernel_size, postnet_n_convolutions):
- super(Postnet, self).__init__()
- self.convolutions = nn.ModuleList()
-
- self.convolutions.append(
- nn.Sequential(
- ConvNorm(n_mel_channels, postnet_embedding_dim,
- kernel_size=postnet_kernel_size, stride=1,
- padding=int((postnet_kernel_size - 1) / 2),
- dilation=1, w_init_gain='tanh'),
- nn.BatchNorm1d(postnet_embedding_dim))
- )
-
- for i in range(1, postnet_n_convolutions - 1):
- self.convolutions.append(
- nn.Sequential(
- ConvNorm(postnet_embedding_dim,
- postnet_embedding_dim,
- kernel_size=postnet_kernel_size, stride=1,
- padding=int((postnet_kernel_size - 1) / 2),
- dilation=1, w_init_gain='tanh'),
- nn.BatchNorm1d(postnet_embedding_dim))
- )
-
- self.convolutions.append(
- nn.Sequential(
- ConvNorm(postnet_embedding_dim, n_mel_channels,
- kernel_size=postnet_kernel_size, stride=1,
- padding=int((postnet_kernel_size - 1) / 2),
- dilation=1, w_init_gain='linear'),
- nn.BatchNorm1d(n_mel_channels))
- )
- self.n_convs = len(self.convolutions)
-
- def forward(self, x):
- i = 0
- for conv in self.convolutions:
- if i < self.n_convs - 1:
- x = F.dropout(torch.tanh(conv(x)), 0.5, training=self.training)
- else:
- x = F.dropout(conv(x), 0.5, training=self.training)
- i += 1
-
- return x
-
-
-class Encoder(nn.Module):
- """Encoder module:
- - Three 1-d convolution banks
- - Bidirectional LSTM
- """
- def __init__(self, encoder_n_convolutions,
- encoder_embedding_dim, encoder_kernel_size):
- super(Encoder, self).__init__()
-
- convolutions = []
- for _ in range(encoder_n_convolutions):
- conv_layer = nn.Sequential(
- ConvNorm(encoder_embedding_dim,
- encoder_embedding_dim,
- kernel_size=encoder_kernel_size, stride=1,
- padding=int((encoder_kernel_size - 1) / 2),
- dilation=1, w_init_gain='relu'),
- nn.BatchNorm1d(encoder_embedding_dim))
- convolutions.append(conv_layer)
- self.convolutions = nn.ModuleList(convolutions)
-
- self.lstm = nn.LSTM(encoder_embedding_dim,
- int(encoder_embedding_dim / 2), 1,
- batch_first=True, bidirectional=True)
-
- @torch.jit.ignore
- def forward(self, x, input_lengths):
- for conv in self.convolutions:
- x = F.dropout(F.relu(conv(x)), 0.5, self.training)
-
- x = x.transpose(1, 2)
-
- # pytorch tensor are not reversible, hence the conversion
- input_lengths = input_lengths.cpu().numpy()
- x = nn.utils.rnn.pack_padded_sequence(
- x, input_lengths, batch_first=True)
-
- self.lstm.flatten_parameters()
- outputs, _ = self.lstm(x)
-
- outputs, _ = nn.utils.rnn.pad_packed_sequence(
- outputs, batch_first=True)
-
- return outputs
-
- @torch.jit.export
- def infer(self, x, input_lengths):
- device = x.device
- for conv in self.convolutions:
- x = F.dropout(F.relu(conv(x.to(device))), 0.5, self.training)
-
- x = x.transpose(1, 2)
-
- input_lengths = input_lengths.cpu()
- x = nn.utils.rnn.pack_padded_sequence(
- x, input_lengths, batch_first=True)
-
- outputs, _ = self.lstm(x)
-
- outputs, _ = nn.utils.rnn.pad_packed_sequence(
- outputs, batch_first=True)
-
- return outputs
-
-
-class Decoder(nn.Module):
- def __init__(self, n_mel_channels, n_frames_per_step,
- encoder_embedding_dim, attention_dim,
- attention_location_n_filters,
- attention_location_kernel_size,
- attention_rnn_dim, decoder_rnn_dim,
- prenet_dim, max_decoder_steps, gate_threshold,
- p_attention_dropout, p_decoder_dropout,
- early_stopping):
- super(Decoder, self).__init__()
- self.n_mel_channels = n_mel_channels
- self.n_frames_per_step = n_frames_per_step
- self.encoder_embedding_dim = encoder_embedding_dim
- self.attention_rnn_dim = attention_rnn_dim
- self.decoder_rnn_dim = decoder_rnn_dim
- self.prenet_dim = prenet_dim
- self.max_decoder_steps = max_decoder_steps
- self.gate_threshold = gate_threshold
- self.p_attention_dropout = p_attention_dropout
- self.p_decoder_dropout = p_decoder_dropout
- self.early_stopping = early_stopping
-
- self.prenet = Prenet(
- n_mel_channels * n_frames_per_step,
- [prenet_dim, prenet_dim])
-
- self.attention_rnn = nn.LSTMCell(
- prenet_dim + encoder_embedding_dim,
- attention_rnn_dim)
-
- self.attention_layer = Attention(
- attention_rnn_dim, encoder_embedding_dim,
- attention_dim, attention_location_n_filters,
- attention_location_kernel_size)
-
- self.decoder_rnn = nn.LSTMCell(
- attention_rnn_dim + encoder_embedding_dim,
- decoder_rnn_dim, 1)
-
- self.linear_projection = LinearNorm(
- decoder_rnn_dim + encoder_embedding_dim,
- n_mel_channels * n_frames_per_step)
-
- self.gate_layer = LinearNorm(
- decoder_rnn_dim + encoder_embedding_dim, 1,
- bias=True, w_init_gain='sigmoid')
-
- def get_go_frame(self, memory):
- """ Gets all zeros frames to use as first decoder input
- PARAMS
- ------
- memory: decoder outputs
-
- RETURNS
- -------
- decoder_input: all zeros frames
- """
- B = memory.size(0)
- dtype = memory.dtype
- device = memory.device
- decoder_input = torch.zeros(
- B, self.n_mel_channels*self.n_frames_per_step,
- dtype=dtype, device=device)
- return decoder_input
-
- def initialize_decoder_states(self, memory):
- """ Initializes attention rnn states, decoder rnn states, attention
- weights, attention cumulative weights, attention context, stores memory
- and stores processed memory
- PARAMS
- ------
- memory: Encoder outputs
- mask: Mask for padded data if training, expects None for inference
- """
- B = memory.size(0)
- MAX_TIME = memory.size(1)
- dtype = memory.dtype
- device = memory.device
-
- attention_hidden = torch.zeros(
- B, self.attention_rnn_dim, dtype=dtype, device=device)
- attention_cell = torch.zeros(
- B, self.attention_rnn_dim, dtype=dtype, device=device)
-
- decoder_hidden = torch.zeros(
- B, self.decoder_rnn_dim, dtype=dtype, device=device)
- decoder_cell = torch.zeros(
- B, self.decoder_rnn_dim, dtype=dtype, device=device)
-
- attention_weights = torch.zeros(
- B, MAX_TIME, dtype=dtype, device=device)
- attention_weights_cum = torch.zeros(
- B, MAX_TIME, dtype=dtype, device=device)
- attention_context = torch.zeros(
- B, self.encoder_embedding_dim, dtype=dtype, device=device)
-
- processed_memory = self.attention_layer.memory_layer(memory)
-
- return (attention_hidden, attention_cell, decoder_hidden,
- decoder_cell, attention_weights, attention_weights_cum,
- attention_context, processed_memory)
-
- def parse_decoder_inputs(self, decoder_inputs):
- """ Prepares decoder inputs, i.e. mel outputs
- PARAMS
- ------
- decoder_inputs: inputs used for teacher-forced training, i.e. mel-specs
-
- RETURNS
- -------
- inputs: processed decoder inputs
-
- """
- # (B, n_mel_channels, T_out) -> (B, T_out, n_mel_channels)
- decoder_inputs = decoder_inputs.transpose(1, 2)
- decoder_inputs = decoder_inputs.view(
- decoder_inputs.size(0),
- int(decoder_inputs.size(1)/self.n_frames_per_step), -1)
- # (B, T_out, n_mel_channels) -> (T_out, B, n_mel_channels)
- decoder_inputs = decoder_inputs.transpose(0, 1)
- return decoder_inputs
-
- def parse_decoder_outputs(self, mel_outputs, gate_outputs, alignments):
- """ Prepares decoder outputs for output
- PARAMS
- ------
- mel_outputs:
- gate_outputs: gate output energies
- alignments:
-
- RETURNS
- -------
- mel_outputs:
- gate_outpust: gate output energies
- alignments:
- """
- # (T_out, B) -> (B, T_out)
- alignments = alignments.transpose(0, 1).contiguous()
- # (T_out, B) -> (B, T_out)
- gate_outputs = gate_outputs.transpose(0, 1).contiguous()
- # (T_out, B, n_mel_channels) -> (B, T_out, n_mel_channels)
- mel_outputs = mel_outputs.transpose(0, 1).contiguous()
- # decouple frames per step
- shape = (mel_outputs.shape[0], -1, self.n_mel_channels)
- mel_outputs = mel_outputs.view(*shape)
- # (B, T_out, n_mel_channels) -> (B, n_mel_channels, T_out)
- mel_outputs = mel_outputs.transpose(1, 2)
-
- return mel_outputs, gate_outputs, alignments
-
- def decode(self, decoder_input, attention_hidden, attention_cell,
- decoder_hidden, decoder_cell, attention_weights,
- attention_weights_cum, attention_context, memory,
- processed_memory, mask):
- """ Decoder step using stored states, attention and memory
- PARAMS
- ------
- decoder_input: previous mel output
-
- RETURNS
- -------
- mel_output:
- gate_output: gate output energies
- attention_weights:
- """
- cell_input = torch.cat((decoder_input, attention_context), -1)
-
- attention_hidden, attention_cell = self.attention_rnn(
- cell_input, (attention_hidden, attention_cell))
- attention_hidden = F.dropout(
- attention_hidden, self.p_attention_dropout, self.training)
-
- attention_weights_cat = torch.cat(
- (attention_weights.unsqueeze(1),
- attention_weights_cum.unsqueeze(1)), dim=1)
- attention_context, attention_weights = self.attention_layer(
- attention_hidden, memory, processed_memory,
- attention_weights_cat, mask)
-
- attention_weights_cum += attention_weights
- decoder_input = torch.cat(
- (attention_hidden, attention_context), -1)
-
- decoder_hidden, decoder_cell = self.decoder_rnn(
- decoder_input, (decoder_hidden, decoder_cell))
- decoder_hidden = F.dropout(
- decoder_hidden, self.p_decoder_dropout, self.training)
-
- decoder_hidden_attention_context = torch.cat(
- (decoder_hidden, attention_context), dim=1)
- decoder_output = self.linear_projection(
- decoder_hidden_attention_context)
-
- gate_prediction = self.gate_layer(decoder_hidden_attention_context)
-
- return (decoder_output, gate_prediction, attention_hidden,
- attention_cell, decoder_hidden, decoder_cell, attention_weights,
- attention_weights_cum, attention_context)
-
- @torch.jit.ignore
- def forward(self, memory, decoder_inputs, memory_lengths):
- """ Decoder forward pass for training
- PARAMS
- ------
- memory: Encoder outputs
- decoder_inputs: Decoder inputs for teacher forcing. i.e. mel-specs
- memory_lengths: Encoder output lengths for attention masking.
-
- RETURNS
- -------
- mel_outputs: mel outputs from the decoder
- gate_outputs: gate outputs from the decoder
- alignments: sequence of attention weights from the decoder
- """
-
- decoder_input = self.get_go_frame(memory).unsqueeze(0)
- decoder_inputs = self.parse_decoder_inputs(decoder_inputs)
- decoder_inputs = torch.cat((decoder_input, decoder_inputs), dim=0)
- decoder_inputs = self.prenet(decoder_inputs)
-
- mask = get_mask_from_lengths(memory_lengths)
- (attention_hidden,
- attention_cell,
- decoder_hidden,
- decoder_cell,
- attention_weights,
- attention_weights_cum,
- attention_context,
- processed_memory) = self.initialize_decoder_states(memory)
-
- mel_outputs, gate_outputs, alignments = [], [], []
- while len(mel_outputs) < decoder_inputs.size(0) - 1:
- decoder_input = decoder_inputs[len(mel_outputs)]
- (mel_output,
- gate_output,
- attention_hidden,
- attention_cell,
- decoder_hidden,
- decoder_cell,
- attention_weights,
- attention_weights_cum,
- attention_context) = self.decode(decoder_input,
- attention_hidden,
- attention_cell,
- decoder_hidden,
- decoder_cell,
- attention_weights,
- attention_weights_cum,
- attention_context,
- memory,
- processed_memory,
- mask)
-
- mel_outputs += [mel_output.squeeze(1)]
- gate_outputs += [gate_output.squeeze()]
- alignments += [attention_weights]
-
- mel_outputs, gate_outputs, alignments = self.parse_decoder_outputs(
- torch.stack(mel_outputs),
- torch.stack(gate_outputs),
- torch.stack(alignments))
-
- return mel_outputs, gate_outputs, alignments
-
- @torch.jit.export
- def infer(self, memory, memory_lengths):
- """ Decoder inference
- PARAMS
- ------
- memory: Encoder outputs
-
- RETURNS
- -------
- mel_outputs: mel outputs from the decoder
- gate_outputs: gate outputs from the decoder
- alignments: sequence of attention weights from the decoder
- """
- decoder_input = self.get_go_frame(memory)
-
- mask = get_mask_from_lengths(memory_lengths)
- (attention_hidden,
- attention_cell,
- decoder_hidden,
- decoder_cell,
- attention_weights,
- attention_weights_cum,
- attention_context,
- processed_memory) = self.initialize_decoder_states(memory)
-
- mel_lengths = torch.zeros([memory.size(0)], dtype=torch.int32, device=memory.device)
- not_finished = torch.ones([memory.size(0)], dtype=torch.int32, device=memory.device)
-
- mel_outputs, gate_outputs, alignments = (
- torch.zeros(1), torch.zeros(1), torch.zeros(1))
- first_iter = True
- while True:
- decoder_input = self.prenet(decoder_input)
- (mel_output,
- gate_output,
- attention_hidden,
- attention_cell,
- decoder_hidden,
- decoder_cell,
- attention_weights,
- attention_weights_cum,
- attention_context) = self.decode(decoder_input,
- attention_hidden,
- attention_cell,
- decoder_hidden,
- decoder_cell,
- attention_weights,
- attention_weights_cum,
- attention_context,
- memory,
- processed_memory,
- mask)
-
- if first_iter:
- mel_outputs = mel_output.unsqueeze(0)
- gate_outputs = gate_output
- alignments = attention_weights
- first_iter = False
- else:
- mel_outputs = torch.cat(
- (mel_outputs, mel_output.unsqueeze(0)), dim=0)
- gate_outputs = torch.cat((gate_outputs, gate_output), dim=0)
- alignments = torch.cat((alignments, attention_weights), dim=0)
-
- dec = torch.le(torch.sigmoid(gate_output),
- self.gate_threshold).to(torch.int32).squeeze(1)
-
- not_finished = not_finished*dec
- mel_lengths += not_finished
-
- if self.early_stopping and torch.sum(not_finished) == 0:
- break
- if len(mel_outputs) == self.max_decoder_steps:
- print("Warning! Reached max decoder steps")
- break
-
- decoder_input = mel_output
-
- mel_outputs, gate_outputs, alignments = self.parse_decoder_outputs(
- mel_outputs, gate_outputs, alignments)
-
- return mel_outputs, gate_outputs, alignments, mel_lengths
-
-
-class Tacotron2(nn.Module):
- def __init__(self, mask_padding, n_mel_channels,
- n_symbols, symbols_embedding_dim, encoder_kernel_size,
- encoder_n_convolutions, encoder_embedding_dim,
- attention_rnn_dim, attention_dim, attention_location_n_filters,
- attention_location_kernel_size, n_frames_per_step,
- decoder_rnn_dim, prenet_dim, max_decoder_steps, gate_threshold,
- p_attention_dropout, p_decoder_dropout,
- postnet_embedding_dim, postnet_kernel_size,
- postnet_n_convolutions, decoder_no_early_stopping):
- super(Tacotron2, self).__init__()
- self.mask_padding = mask_padding
- self.n_mel_channels = n_mel_channels
- self.n_frames_per_step = n_frames_per_step
- self.embedding = nn.Embedding(n_symbols, symbols_embedding_dim)
- std = sqrt(2.0 / (n_symbols + symbols_embedding_dim))
- val = sqrt(3.0) * std # uniform bounds for std
- self.embedding.weight.data.uniform_(-val, val)
- self.encoder = Encoder(encoder_n_convolutions,
- encoder_embedding_dim,
- encoder_kernel_size)
- self.decoder = Decoder(n_mel_channels, n_frames_per_step,
- encoder_embedding_dim, attention_dim,
- attention_location_n_filters,
- attention_location_kernel_size,
- attention_rnn_dim, decoder_rnn_dim,
- prenet_dim, max_decoder_steps,
- gate_threshold, p_attention_dropout,
- p_decoder_dropout,
- not decoder_no_early_stopping)
- self.postnet = Postnet(n_mel_channels, postnet_embedding_dim,
- postnet_kernel_size,
- postnet_n_convolutions)
-
- def parse_batch(self, batch):
- text_padded, input_lengths, mel_padded, gate_padded, \
- output_lengths = batch
- text_padded = to_gpu(text_padded).long()
- input_lengths = to_gpu(input_lengths).long()
- max_len = torch.max(input_lengths.data).item()
- mel_padded = to_gpu(mel_padded).float()
- gate_padded = to_gpu(gate_padded).float()
- output_lengths = to_gpu(output_lengths).long()
-
- return (
- (text_padded, input_lengths, mel_padded, max_len, output_lengths),
- (mel_padded, gate_padded))
-
- def parse_output(self, outputs, output_lengths):
- # type: (List[Tensor], Tensor) -> List[Tensor]
- if self.mask_padding and output_lengths is not None:
- mask = get_mask_from_lengths(output_lengths)
- mask = mask.expand(self.n_mel_channels, mask.size(0), mask.size(1))
- mask = mask.permute(1, 0, 2)
-
- outputs[0].masked_fill_(mask, 0.0)
- outputs[1].masked_fill_(mask, 0.0)
- outputs[2].masked_fill_(mask[:, 0, :], 1e3) # gate energies
-
- return outputs
-
- def forward(self, inputs):
- inputs, input_lengths, targets, max_len, output_lengths = inputs
- input_lengths, output_lengths = input_lengths.data, output_lengths.data
-
- embedded_inputs = self.embedding(inputs).transpose(1, 2)
-
- encoder_outputs = self.encoder(embedded_inputs, input_lengths)
-
- mel_outputs, gate_outputs, alignments = self.decoder(
- encoder_outputs, targets, memory_lengths=input_lengths)
-
- mel_outputs_postnet = self.postnet(mel_outputs)
- mel_outputs_postnet = mel_outputs + mel_outputs_postnet
-
- return self.parse_output(
- [mel_outputs, mel_outputs_postnet, gate_outputs, alignments],
- output_lengths)
-
-
- def infer(self, inputs, input_lengths):
-
- embedded_inputs = self.embedding(inputs).transpose(1, 2)
- encoder_outputs = self.encoder.infer(embedded_inputs, input_lengths)
- mel_outputs, gate_outputs, alignments, mel_lengths = self.decoder.infer(
- encoder_outputs, input_lengths)
-
- mel_outputs_postnet = self.postnet(mel_outputs)
- mel_outputs_postnet = mel_outputs + mel_outputs_postnet
-
- BS = mel_outputs_postnet.size(0)
- alignments = alignments.unfold(1, BS, BS).transpose(0,2)
-
- return mel_outputs_postnet, mel_lengths, alignments
diff --git a/demo/Tacotron2/tacotron2/text/LICENCE b/demo/Tacotron2/tacotron2/text/LICENCE
deleted file mode 100644
index 8ac1abf2..00000000
--- a/demo/Tacotron2/tacotron2/text/LICENCE
+++ /dev/null
@@ -1,19 +0,0 @@
-Copyright (c) 2017 Keith Ito
-
-Permission is hereby granted, free of charge, to any person obtaining a copy
-of this software and associated documentation files (the "Software"), to deal
-in the Software without restriction, including without limitation the rights
-to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in
-all copies or substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
-THE SOFTWARE.
\ No newline at end of file
diff --git a/demo/Tacotron2/tacotron2/text/__init__.py b/demo/Tacotron2/tacotron2/text/__init__.py
deleted file mode 100644
index f81bab41..00000000
--- a/demo/Tacotron2/tacotron2/text/__init__.py
+++ /dev/null
@@ -1,74 +0,0 @@
-""" from https://github.com/keithito/tacotron """
-import re
-from tacotron2.text import cleaners
-from tacotron2.text.symbols import symbols
-
-
-# Mappings from symbol to numeric ID and vice versa:
-_symbol_to_id = {s: i for i, s in enumerate(symbols)}
-_id_to_symbol = {i: s for i, s in enumerate(symbols)}
-
-# Regular expression matching text enclosed in curly braces:
-_curly_re = re.compile(r'(.*?)\{(.+?)\}(.*)')
-
-
-def text_to_sequence(text, cleaner_names):
- '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
-
- The text can optionally have ARPAbet sequences enclosed in curly braces embedded
- in it. For example, "Turn left on {HH AW1 S S T AH0 N} Street."
-
- Args:
- text: string to convert to a sequence
- cleaner_names: names of the cleaner functions to run the text through
-
- Returns:
- List of integers corresponding to the symbols in the text
- '''
- sequence = []
-
- # Check for curly braces and treat their contents as ARPAbet:
- while len(text):
- m = _curly_re.match(text)
- if not m:
- sequence += _symbols_to_sequence(_clean_text(text, cleaner_names))
- break
- sequence += _symbols_to_sequence(_clean_text(m.group(1), cleaner_names))
- sequence += _arpabet_to_sequence(m.group(2))
- text = m.group(3)
-
- return sequence
-
-
-def sequence_to_text(sequence):
- '''Converts a sequence of IDs back to a string'''
- result = ''
- for symbol_id in sequence:
- if symbol_id in _id_to_symbol:
- s = _id_to_symbol[symbol_id]
- # Enclose ARPAbet back in curly braces:
- if len(s) > 1 and s[0] == '@':
- s = '{%s}' % s[1:]
- result += s
- return result.replace('}{', ' ')
-
-
-def _clean_text(text, cleaner_names):
- for name in cleaner_names:
- cleaner = getattr(cleaners, name)
- if not cleaner:
- raise Exception('Unknown cleaner: %s' % name)
- text = cleaner(text)
- return text
-
-
-def _symbols_to_sequence(symbols):
- return [_symbol_to_id[s] for s in symbols if _should_keep_symbol(s)]
-
-
-def _arpabet_to_sequence(text):
- return _symbols_to_sequence(['@' + s for s in text.split()])
-
-
-def _should_keep_symbol(s):
- return s in _symbol_to_id and s is not '_' and s is not '~'
diff --git a/demo/Tacotron2/tacotron2/text/cleaners.py b/demo/Tacotron2/tacotron2/text/cleaners.py
deleted file mode 100644
index 4cbcb015..00000000
--- a/demo/Tacotron2/tacotron2/text/cleaners.py
+++ /dev/null
@@ -1,106 +0,0 @@
-#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-""" from https://github.com/keithito/tacotron """
-
-'''
-Cleaners are transformations that run over the input text at both training and eval time.
-
-Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
-hyperparameter. Some cleaners are English-specific. You'll typically want to use:
- 1. "english_cleaners" for English text
- 2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
- the Unidecode library (https://pypi.python.org/pypi/Unidecode)
- 3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
- the symbols in symbols.py to match your data).
-'''
-
-import re
-from unidecode import unidecode
-from .numbers import normalize_numbers
-
-
-# Regular expression matching whitespace:
-_whitespace_re = re.compile(r'\s+')
-
-# List of (regular expression, replacement) pairs for abbreviations:
-_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [
- ('mrs', 'misess'),
- ('mr', 'mister'),
- ('dr', 'doctor'),
- ('st', 'saint'),
- ('co', 'company'),
- ('jr', 'junior'),
- ('maj', 'major'),
- ('gen', 'general'),
- ('drs', 'doctors'),
- ('rev', 'reverend'),
- ('lt', 'lieutenant'),
- ('hon', 'honorable'),
- ('sgt', 'sergeant'),
- ('capt', 'captain'),
- ('esq', 'esquire'),
- ('ltd', 'limited'),
- ('col', 'colonel'),
- ('ft', 'fort'),
-]]
-
-
-def expand_abbreviations(text):
- for regex, replacement in _abbreviations:
- text = re.sub(regex, replacement, text)
- return text
-
-
-def expand_numbers(text):
- return normalize_numbers(text)
-
-
-def lowercase(text):
- return text.lower()
-
-
-def collapse_whitespace(text):
- return re.sub(_whitespace_re, ' ', text)
-
-
-def convert_to_ascii(text):
- return unidecode(text)
-
-
-def basic_cleaners(text):
- '''Basic pipeline that lowercases and collapses whitespace without transliteration.'''
- text = lowercase(text)
- text = collapse_whitespace(text)
- return text
-
-
-def transliteration_cleaners(text):
- '''Pipeline for non-English text that transliterates to ASCII.'''
- text = convert_to_ascii(text)
- text = lowercase(text)
- text = collapse_whitespace(text)
- return text
-
-
-def english_cleaners(text):
- '''Pipeline for English text, including number and abbreviation expansion.'''
- text = convert_to_ascii(text)
- text = lowercase(text)
- text = expand_numbers(text)
- text = expand_abbreviations(text)
- text = collapse_whitespace(text)
- return text
diff --git a/demo/Tacotron2/tacotron2/text/cmudict.py b/demo/Tacotron2/tacotron2/text/cmudict.py
deleted file mode 100644
index b359b235..00000000
--- a/demo/Tacotron2/tacotron2/text/cmudict.py
+++ /dev/null
@@ -1,81 +0,0 @@
-#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-""" from https://github.com/keithito/tacotron """
-
-import re
-
-
-valid_symbols = [
- 'AA', 'AA0', 'AA1', 'AA2', 'AE', 'AE0', 'AE1', 'AE2', 'AH', 'AH0', 'AH1', 'AH2',
- 'AO', 'AO0', 'AO1', 'AO2', 'AW', 'AW0', 'AW1', 'AW2', 'AY', 'AY0', 'AY1', 'AY2',
- 'B', 'CH', 'D', 'DH', 'EH', 'EH0', 'EH1', 'EH2', 'ER', 'ER0', 'ER1', 'ER2', 'EY',
- 'EY0', 'EY1', 'EY2', 'F', 'G', 'HH', 'IH', 'IH0', 'IH1', 'IH2', 'IY', 'IY0', 'IY1',
- 'IY2', 'JH', 'K', 'L', 'M', 'N', 'NG', 'OW', 'OW0', 'OW1', 'OW2', 'OY', 'OY0',
- 'OY1', 'OY2', 'P', 'R', 'S', 'SH', 'T', 'TH', 'UH', 'UH0', 'UH1', 'UH2', 'UW',
- 'UW0', 'UW1', 'UW2', 'V', 'W', 'Y', 'Z', 'ZH'
-]
-
-_valid_symbol_set = set(valid_symbols)
-
-
-class CMUDict:
- '''Thin wrapper around CMUDict data. http://www.speech.cs.cmu.edu/cgi-bin/cmudict'''
- def __init__(self, file_or_path, keep_ambiguous=True):
- if isinstance(file_or_path, str):
- with open(file_or_path, encoding='latin-1') as f:
- entries = _parse_cmudict(f)
- else:
- entries = _parse_cmudict(file_or_path)
- if not keep_ambiguous:
- entries = {word: pron for word, pron in entries.items() if len(pron) == 1}
- self._entries = entries
-
-
- def __len__(self):
- return len(self._entries)
-
-
- def lookup(self, word):
- '''Returns list of ARPAbet pronunciations of the given word.'''
- return self._entries.get(word.upper())
-
-
-
-_alt_re = re.compile(r'\([0-9]+\)')
-
-
-def _parse_cmudict(file):
- cmudict = {}
- for line in file:
- if len(line) and (line[0] >= 'A' and line[0] <= 'Z' or line[0] == "'"):
- parts = line.split(' ')
- word = re.sub(_alt_re, '', parts[0])
- pronunciation = _get_pronunciation(parts[1])
- if pronunciation:
- if word in cmudict:
- cmudict[word].append(pronunciation)
- else:
- cmudict[word] = [pronunciation]
- return cmudict
-
-
-def _get_pronunciation(s):
- parts = s.strip().split(' ')
- for part in parts:
- if part not in _valid_symbol_set:
- return None
- return ' '.join(parts)
diff --git a/demo/Tacotron2/tacotron2/text/numbers.py b/demo/Tacotron2/tacotron2/text/numbers.py
deleted file mode 100644
index 43df588d..00000000
--- a/demo/Tacotron2/tacotron2/text/numbers.py
+++ /dev/null
@@ -1,87 +0,0 @@
-#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-""" from https://github.com/keithito/tacotron """
-
-import inflect
-import re
-
-
-_inflect = inflect.engine()
-_comma_number_re = re.compile(r'([0-9][0-9\,]+[0-9])')
-_decimal_number_re = re.compile(r'([0-9]+\.[0-9]+)')
-_pounds_re = re.compile(r'£([0-9\,]*[0-9]+)')
-_dollars_re = re.compile(r'\$([0-9\.\,]*[0-9]+)')
-_ordinal_re = re.compile(r'[0-9]+(st|nd|rd|th)')
-_number_re = re.compile(r'[0-9]+')
-
-
-def _remove_commas(m):
- return m.group(1).replace(',', '')
-
-
-def _expand_decimal_point(m):
- return m.group(1).replace('.', ' point ')
-
-
-def _expand_dollars(m):
- match = m.group(1)
- parts = match.split('.')
- if len(parts) > 2:
- return match + ' dollars' # Unexpected format
- dollars = int(parts[0]) if parts[0] else 0
- cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
- if dollars and cents:
- dollar_unit = 'dollar' if dollars == 1 else 'dollars'
- cent_unit = 'cent' if cents == 1 else 'cents'
- return '%s %s, %s %s' % (dollars, dollar_unit, cents, cent_unit)
- elif dollars:
- dollar_unit = 'dollar' if dollars == 1 else 'dollars'
- return '%s %s' % (dollars, dollar_unit)
- elif cents:
- cent_unit = 'cent' if cents == 1 else 'cents'
- return '%s %s' % (cents, cent_unit)
- else:
- return 'zero dollars'
-
-
-def _expand_ordinal(m):
- return _inflect.number_to_words(m.group(0))
-
-
-def _expand_number(m):
- num = int(m.group(0))
- if num > 1000 and num < 3000:
- if num == 2000:
- return 'two thousand'
- elif num > 2000 and num < 2010:
- return 'two thousand ' + _inflect.number_to_words(num % 100)
- elif num % 100 == 0:
- return _inflect.number_to_words(num // 100) + ' hundred'
- else:
- return _inflect.number_to_words(num, andword='', zero='oh', group=2).replace(', ', ' ')
- else:
- return _inflect.number_to_words(num, andword='')
-
-
-def normalize_numbers(text):
- text = re.sub(_comma_number_re, _remove_commas, text)
- text = re.sub(_pounds_re, r'\1 pounds', text)
- text = re.sub(_dollars_re, _expand_dollars, text)
- text = re.sub(_decimal_number_re, _expand_decimal_point, text)
- text = re.sub(_ordinal_re, _expand_ordinal, text)
- text = re.sub(_number_re, _expand_number, text)
- return text
diff --git a/demo/Tacotron2/tacotron2/text/symbols.py b/demo/Tacotron2/tacotron2/text/symbols.py
deleted file mode 100644
index 604626ec..00000000
--- a/demo/Tacotron2/tacotron2/text/symbols.py
+++ /dev/null
@@ -1,34 +0,0 @@
-#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-""" from https://github.com/keithito/tacotron """
-
-'''
-Defines the set of symbols used in text input to the model.
-
-The default is a set of ASCII characters that works well for English or text that has been run through Unidecode. For other data, you can modify _characters. See TRAINING_DATA.md for details. '''
-from tacotron2.text import cmudict
-
-_pad = '_'
-_punctuation = '!\'(),.:;? '
-_special = '-'
-_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
-
-# Prepend "@" to ARPAbet symbols to ensure uniqueness (some are the same as uppercase letters):
-_arpabet = ['@' + s for s in cmudict.valid_symbols]
-
-# Export all symbols:
-symbols = [_pad] + list(_special) + list(_punctuation) + list(_letters) + _arpabet
diff --git a/demo/Tacotron2/tensorrt/convert_onnx2trt.py b/demo/Tacotron2/tensorrt/convert_onnx2trt.py
deleted file mode 100644
index dd24c801..00000000
--- a/demo/Tacotron2/tensorrt/convert_onnx2trt.py
+++ /dev/null
@@ -1,168 +0,0 @@
-#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-import argparse
-import sys
-import tensorrt as trt
-from os.path import join
-
-from trt_utils import build_engine, parse_dynamic_size
-
-def parse_args(parser):
- """
- Parse commandline arguments.
- """
- parser.add_argument('-o', '--output', required=True,
- help='output folder to save audio (file per phrase)')
- parser.add_argument('--encoder', type=str, default="",
- help='full path to the Encoder ONNX')
- parser.add_argument('--decoder', type=str, default="",
- help='full path to the Decoder or DecoderIter ONNX.')
- parser.add_argument('--postnet', type=str, default="",
- help='full path to the Postnet ONNX')
- parser.add_argument('--waveglow', type=str, default="",
- help='full path to the WaveGlow ONNX')
- parser.add_argument('--encoder_out', type=str,
- help='Filename of the exported encoder engine')
- parser.add_argument('--decoder_out', type=str,
- help='Filename of the exported decoder engine')
- parser.add_argument('--postnet_out', type=str,
- help='Filename of the exported postnet engine')
- parser.add_argument('--waveglow_out', type=str,
- help='Filename of the exported waveglow engine')
- parser.add_argument('--fp16', action='store_true',
- help='inference with FP16')
- parser.add_argument('-bs', '--batch-size', type=str, default="1",
- help='One or three comma separated integers specifying the batch size. Specify "min,opt,max" for dynamic shape')
- parser.add_argument('--mel-size', type=str, default="32,768,1664",
- help='One or three comma separated integers specifying the mels size for waveglow.')
- parser.add_argument('--z-size', type=str, default="1024,24576,53248",
- help='One or three comma separated integers specifying the z size for waveglow.')
- parser.add_argument('--loop', dest='loop', action='store_true',
- help='Includes the outer decoder loop in the ONNX model. Enabled by default and only supported on TensorRT 8.0 or later.')
- parser.add_argument('--no-loop', dest='loop', action='store_false',
- help='Excludes outer decoder loop from decoder ONNX model. Default behavior and necessary for TensorRT 7.2 or earlier.')
- parser.add_argument("-tcf", "--timing-cache-file", default=None, type=str,
- help="Path to tensorrt build timeing cache file, only available for tensorrt 8.0 and later. The cache file is assumed to be used exclusively. It's the users' responsibility to create file lock to prevent accessing conflict.",
- required=False)
- parser.set_defaults(loop=int(trt.__version__[0]) >= 8)
- return parser
-
-
-def main():
-
- parser = argparse.ArgumentParser(
- description='Export from ONNX to TensorRT for Tacotron 2 and WaveGlow')
- parser = parse_args(parser)
- args = parser.parse_args()
-
- precision = "fp16" if args.fp16 else "fp32"
- encoder_path = join(args.output, args.encoder_out if args.encoder_out else f"encoder_{precision}.engine")
- decoder_path = join(args.output, args.decoder_out if args.decoder_out else f"decoder_with_outer_loop_{precision}.engine" if args.loop else f"decoder_iter_{precision}.engine")
- postnet_path = join(args.output, args.postnet_out if args.postnet_out else f"postnet_{precision}.engine")
- waveglow_path = join(args.output, args.waveglow_out if args.waveglow_out else f"waveglow_{precision}.engine")
-
- bs_min, bs_opt, bs_max = parse_dynamic_size(args.batch_size)
- mel_min, mel_opt, mel_max = parse_dynamic_size(args.mel_size)
- z_min, z_opt, z_max = parse_dynamic_size(args.z_size)
-
- # Encoder
- shapes=[{"name": "sequences", "min": (bs_min,4), "opt": (bs_opt,128), "max": (bs_max,256)},
- {"name": "sequence_lengths", "min": (bs_min,), "opt": (bs_opt,), "max": (bs_max,)}]
- if args.encoder != "":
- print("Building Encoder ...")
- encoder_engine = build_engine(args.encoder, shapes=shapes, fp16=args.fp16, timing_cache=args.timing_cache_file)
- if encoder_engine is not None:
- with open(encoder_path, 'wb') as f:
- f.write(encoder_engine)
- else:
- print("Failed to build engine from", args.encoder)
- sys.exit(1)
-
- if args.loop:
- # Decoder
- shapes=[{"name": "decoder_input_0", "min": (bs_min,80), "opt": (bs_opt,80), "max": (bs_max,80)},
- {"name": "attention_hidden_0", "min": (bs_min,1024), "opt": (bs_opt,1024), "max": (bs_max,1024)},
- {"name": "attention_cell_0", "min": (bs_min,1024), "opt": (bs_opt,1024), "max": (bs_max,1024)},
- {"name": "decoder_hidden_0", "min": (bs_min,1024), "opt": (bs_opt,1024), "max": (bs_max,1024)},
- {"name": "decoder_cell_0", "min": (bs_min,1024), "opt": (bs_opt,1024), "max": (bs_max,1024)},
- {"name": "attention_weights_0", "min": (bs_min,4), "opt": (bs_opt,128), "max": (bs_max,256)},
- {"name": "attention_weights_cum_0", "min": (bs_min,4), "opt": (bs_opt,128), "max": (bs_max,256)},
- {"name": "attention_context_0", "min": (bs_min,512), "opt": (bs_opt,512), "max": (bs_max,512)},
- {"name": "memory", "min": (bs_min,4,512), "opt": (bs_opt,128,512), "max": (bs_max,256,512)},
- {"name": "processed_memory", "min": (bs_min,4,128), "opt": (bs_opt,128,128), "max": (bs_max,256,128)},
- {"name": "mask", "min": (bs_min,4), "opt": (bs_opt,128), "max": (bs_max,256)}]
- if args.decoder != "":
- print("Building Decoder with loop...")
- decoder_engine = build_engine(args.decoder, shapes=shapes, fp16=args.fp16, timing_cache=args.timing_cache_file)
- if decoder_engine is not None:
- with open(decoder_path, 'wb') as f:
- f.write(decoder_engine)
- else:
- print("Failed to build engine from", args.decoder)
- sys.exit(1)
- else:
- # DecoderIter
- shapes=[{"name": "decoder_input", "min": (bs_min,80), "opt": (bs_opt,80), "max": (bs_max,80)},
- {"name": "attention_hidden", "min": (bs_min,1024), "opt": (bs_opt,1024), "max": (bs_max,1024)},
- {"name": "attention_cell", "min": (bs_min,1024), "opt": (bs_opt,1024), "max": (bs_max,1024)},
- {"name": "decoder_hidden", "min": (bs_min,1024), "opt": (bs_opt,1024), "max": (bs_max,1024)},
- {"name": "decoder_cell", "min": (bs_min,1024), "opt": (bs_opt,1024), "max": (bs_max,1024)},
- {"name": "attention_weights", "min": (bs_min,4), "opt": (bs_opt,128), "max": (bs_max,256)},
- {"name": "attention_weights_cum", "min": (bs_min,4), "opt": (bs_opt,128), "max": (bs_max,256)},
- {"name": "attention_context", "min": (bs_min,512), "opt": (bs_opt,512), "max": (bs_max,512)},
- {"name": "memory", "min": (bs_min,4,512), "opt": (bs_opt,128,512), "max": (bs_max,256,512)},
- {"name": "processed_memory", "min": (bs_min,4,128), "opt": (bs_opt,128,128), "max": (bs_max,256,128)},
- {"name": "mask", "min": (bs_min,4), "opt": (bs_opt,128), "max": (bs_max,256)}]
- if args.decoder != "":
- print("Building Decoder ...")
- decoder_iter_engine = build_engine(args.decoder, shapes=shapes, fp16=args.fp16, timing_cache=args.timing_cache_file)
- if decoder_iter_engine is not None:
- with open(decoder_path, 'wb') as f:
- f.write(decoder_iter_engine)
- else:
- print("Failed to build engine from", args.decoder)
- sys.exit(1)
-
- # Postnet
- shapes=[{"name": "mel_outputs", "min": (bs_min,80,32), "opt": (bs_opt,80,768), "max": (bs_max,80,1664)}]
- if args.postnet != "":
- print("Building Postnet ...")
- postnet_engine = build_engine(args.postnet, shapes=shapes, fp16=args.fp16, timing_cache=args.timing_cache_file)
- if postnet_engine is not None:
- with open(postnet_path, 'wb') as f:
- f.write(postnet_engine)
- else:
- print("Failed to build engine from", args.postnet)
- sys.exit(1)
-
- # WaveGlow
- shapes=[{"name": "mel", "min": (bs_min,80,mel_min,1), "opt": (bs_opt,80,mel_opt,1), "max": (bs_max,80,mel_max,1)},
- {"name": "z", "min": (bs_min,8,z_min,1), "opt": (bs_opt,8,z_opt,1), "max": (bs_max,8,z_max,1)}]
- if args.waveglow != "":
- print("Building WaveGlow ...")
- waveglow_engine = build_engine(args.waveglow, shapes=shapes, fp16=args.fp16, timing_cache=args.timing_cache_file)
- if waveglow_engine is not None:
- with open(waveglow_path, 'wb') as f:
- f.write(waveglow_engine)
- else:
- print("Failed to build engine from", args.waveglow)
- sys.exit(1)
-
-
-if __name__ == '__main__':
- main()
diff --git a/demo/Tacotron2/tensorrt/convert_tacotron22onnx.py b/demo/Tacotron2/tensorrt/convert_tacotron22onnx.py
deleted file mode 100644
index 361a2221..00000000
--- a/demo/Tacotron2/tensorrt/convert_tacotron22onnx.py
+++ /dev/null
@@ -1,418 +0,0 @@
-#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-import tensorrt
-import torch
-from torch import nn
-from torch.nn import functional as F
-import argparse
-
-import sys
-import os
-from pathlib import Path
-sys.path.append(str(Path(__file__).parents[1]))
-
-import models
-from inference import checkpoint_from_distributed, unwrap_distributed, load_and_setup_model, prepare_input_sequence
-from common.utils import to_gpu, get_mask_from_lengths
-
-torch.backends.cudnn.enabled = True
-def parse_args(parser):
- """
- Parse commandline arguments.
- """
- parser.add_argument('--tacotron2', type=str, required=True,
- help='Full path to the Tacotron2 model checkpoint file')
- parser.add_argument('-o', '--output', type=str, required=True,
- help='Directory for the exported Tacotron2 ONNX models')
- parser.add_argument('-e', '--encoder', type=str, required=False, default="encoder.onnx",
- help='Filename for exported encoder ONNX model')
- parser.add_argument('-d', '--decoder', type=str, required=False, default="decoder_iter.onnx",
- help='Filename for exported decoder ONNX model')
- parser.add_argument('-p', '--postnet', type=str, required=False, default="postnet.onnx",
- help='Filename for exported postnet ONNX model')
- parser.add_argument('--fp16', action='store_true',
- help='Export with half precision to ONNX')
- parser.add_argument('--loop', dest='loop', action='store_true',
- help='Includes the outer decoder loop in the ONNX model. Enabled by default and only supported on TensorRT 8.0 or later.')
- parser.add_argument('--no-loop', dest='loop', action='store_false',
- help='Excludes outer decoder loop from decoder ONNX model. Default behavior and necessary for TensorRT 7.2 or earlier.')
- parser.set_defaults(loop=int(tensorrt.__version__[0]) >= 8)
-
- return parser
-
-
-def encoder_infer(self, x, input_lengths):
- device = x.device
- for conv in self.convolutions:
- x = F.dropout(F.relu(conv(x.to(device))), 0.5, False)
-
- x = x.transpose(1, 2)
-
- x = nn.utils.rnn.pack_padded_sequence(
- x, input_lengths, batch_first=True)
-
- outputs, _ = self.lstm(x)
-
- outputs, _ = nn.utils.rnn.pad_packed_sequence(
- outputs, batch_first=True)
-
- lens = input_lengths*2
-
- return outputs, lens
-
-
-class Encoder(torch.nn.Module):
- def __init__(self, tacotron2):
- super(Encoder, self).__init__()
- self.tacotron2 = tacotron2
- self.tacotron2.encoder.lstm.flatten_parameters()
- self.infer = encoder_infer
-
- def forward(self, sequence, sequence_lengths):
- embedded_inputs = self.tacotron2.embedding(sequence).transpose(1, 2)
- memory, lens = self.infer(self.tacotron2.encoder, embedded_inputs, sequence_lengths)
- processed_memory = self.tacotron2.decoder.attention_layer.memory_layer(memory)
- return memory, processed_memory, lens
-
-class Postnet(torch.nn.Module):
- def __init__(self, tacotron2):
- super(Postnet, self).__init__()
- self.tacotron2 = tacotron2
-
- def forward(self, mel_outputs):
- mel_outputs_postnet = self.tacotron2.postnet(mel_outputs)
- return mel_outputs + mel_outputs_postnet
-
-def lstmcell2lstm_params(lstm_mod, lstmcell_mod):
- lstm_mod.weight_ih_l0 = torch.nn.Parameter(lstmcell_mod.weight_ih)
- lstm_mod.weight_hh_l0 = torch.nn.Parameter(lstmcell_mod.weight_hh)
- lstm_mod.bias_ih_l0 = torch.nn.Parameter(lstmcell_mod.bias_ih)
- lstm_mod.bias_hh_l0 = torch.nn.Parameter(lstmcell_mod.bias_hh)
-
-
-def prenet_infer(self, x):
- x1 = x[:]
- for linear in self.layers:
- x1 = F.relu(linear(x1))
- x0 = x1[0].unsqueeze(0)
- mask = torch.le(torch.rand(256, device='cuda').to(x.dtype), 0.5).to(x.dtype)
- mask = mask.expand(x1.size(0), x1.size(1))
- x1 = x1*mask*2.0
-
- return x1
-
-class DecoderIter(torch.nn.Module):
- def __init__(self, tacotron2):
- super(DecoderIter, self).__init__()
-
- self.tacotron2 = tacotron2
- dec = tacotron2.decoder
-
- self.p_attention_dropout = dec.p_attention_dropout
- self.p_decoder_dropout = dec.p_decoder_dropout
- self.prenet = dec.prenet
-
- self.prenet.infer = prenet_infer
-
- self.attention_rnn = nn.LSTM(dec.prenet_dim + dec.encoder_embedding_dim,
- dec.attention_rnn_dim, 1)
- lstmcell2lstm_params(self.attention_rnn, dec.attention_rnn)
- self.attention_rnn.flatten_parameters()
-
- self.attention_layer = dec.attention_layer
-
- self.decoder_rnn = nn.LSTM(dec.attention_rnn_dim + dec.encoder_embedding_dim,
- dec.decoder_rnn_dim, 1)
- lstmcell2lstm_params(self.decoder_rnn, dec.decoder_rnn)
- self.decoder_rnn.flatten_parameters()
-
- self.linear_projection = dec.linear_projection
- self.gate_layer = dec.gate_layer
-
-
- def decode(self, decoder_input, in_attention_hidden, in_attention_cell,
- in_decoder_hidden, in_decoder_cell, in_attention_weights,
- in_attention_weights_cum, in_attention_context, memory,
- processed_memory, mask):
-
- cell_input = torch.cat((decoder_input, in_attention_context), -1)
-
- _, (out_attention_hidden, out_attention_cell) = self.attention_rnn(
- cell_input.unsqueeze(0), (in_attention_hidden.unsqueeze(0),
- in_attention_cell.unsqueeze(0)))
- out_attention_hidden = out_attention_hidden.squeeze(0)
- out_attention_cell = out_attention_cell.squeeze(0)
-
- out_attention_hidden = F.dropout(
- out_attention_hidden, self.p_attention_dropout, False)
-
- attention_weights_cat = torch.cat(
- (in_attention_weights.unsqueeze(1),
- in_attention_weights_cum.unsqueeze(1)), dim=1)
- out_attention_context, out_attention_weights = self.attention_layer(
- out_attention_hidden, memory, processed_memory,
- attention_weights_cat, mask)
-
- out_attention_weights_cum = in_attention_weights_cum + out_attention_weights
- decoder_input_tmp = torch.cat(
- (out_attention_hidden, out_attention_context), -1)
-
- _, (out_decoder_hidden, out_decoder_cell) = self.decoder_rnn(
- decoder_input_tmp.unsqueeze(0), (in_decoder_hidden.unsqueeze(0),
- in_decoder_cell.unsqueeze(0)))
- out_decoder_hidden = out_decoder_hidden.squeeze(0)
- out_decoder_cell = out_decoder_cell.squeeze(0)
-
- out_decoder_hidden = F.dropout(
- out_decoder_hidden, self.p_decoder_dropout, False)
-
- decoder_hidden_attention_context = torch.cat(
- (out_decoder_hidden, out_attention_context), 1)
-
- decoder_output = self.linear_projection(
- decoder_hidden_attention_context)
-
- gate_prediction = self.gate_layer(decoder_hidden_attention_context)
-
- return (decoder_output, gate_prediction, out_attention_hidden,
- out_attention_cell, out_decoder_hidden, out_decoder_cell,
- out_attention_weights, out_attention_weights_cum, out_attention_context)
-
- # @torch.jit.script
- def forward(self,
- decoder_input,
- attention_hidden,
- attention_cell,
- decoder_hidden,
- decoder_cell,
- attention_weights,
- attention_weights_cum,
- attention_context,
- memory,
- processed_memory,
- mask):
- decoder_input1 = self.prenet.infer(self.prenet, decoder_input)
- outputs = self.decode(decoder_input1,
- attention_hidden,
- attention_cell,
- decoder_hidden,
- decoder_cell,
- attention_weights,
- attention_weights_cum,
- attention_context,
- memory,
- processed_memory,
- mask)
- return outputs
-
-
-def test_inference(encoder, decoder_iter, postnet):
-
- encoder.eval()
- decoder_iter.eval()
- postnet.eval()
-
- sys.path.append('./tensorrt')
- from inference_trt import init_decoder_inputs
-
- texts = ["Hello World, good day."]
- sequences, sequence_lengths = prepare_input_sequence(texts)
-
- measurements = {}
-
- print("Running Tacotron2 Encoder")
- with torch.no_grad():
- memory, processed_memory, lens = encoder(sequences, sequence_lengths)
-
- print("Running Tacotron2 Decoder")
- device = memory.device
- dtype = memory.dtype
- mel_lengths = torch.zeros([memory.size(0)], dtype=torch.int32, device = device)
- not_finished = torch.ones([memory.size(0)], dtype=torch.int32, device = device)
- mel_outputs, gate_outputs, alignments = (torch.zeros(1), torch.zeros(1), torch.zeros(1))
- gate_threshold = 0.6
- max_decoder_steps = 1000
- first_iter = True
-
- (decoder_input, attention_hidden, attention_cell, decoder_hidden,
- decoder_cell, attention_weights, attention_weights_cum,
- attention_context, memory, processed_memory,
- mask) = init_decoder_inputs(memory, processed_memory, sequence_lengths)
-
- while True:
- with torch.no_grad():
- (mel_output, gate_output,
- attention_hidden, attention_cell,
- decoder_hidden, decoder_cell,
- attention_weights, attention_weights_cum,
- attention_context) = decoder_iter(decoder_input, attention_hidden, attention_cell, decoder_hidden,
- decoder_cell, attention_weights, attention_weights_cum,
- attention_context, memory, processed_memory, mask)
-
- if first_iter:
- mel_outputs = torch.unsqueeze(mel_output, 2)
- gate_outputs = torch.unsqueeze(gate_output, 2)
- alignments = torch.unsqueeze(attention_weights, 2)
- first_iter = False
- else:
- mel_outputs = torch.cat((mel_outputs, torch.unsqueeze(mel_output, 2)), 2)
- gate_outputs = torch.cat((gate_outputs, torch.unsqueeze(gate_output, 2)), 2)
- alignments = torch.cat((alignments, torch.unsqueeze(attention_weights, 2)), 2)
-
- dec = torch.le(torch.sigmoid(gate_output), gate_threshold).to(torch.int32).squeeze(1)
- not_finished = not_finished*dec
- mel_lengths += not_finished
-
- if torch.sum(not_finished) == 0:
- print("Stopping after ",mel_outputs.size(2)," decoder steps")
- break
- if mel_outputs.size(2) == max_decoder_steps:
- print("Warning! Reached max decoder steps")
- break
-
- decoder_input = mel_output
-
-
- print("Running Tacotron2 PostNet")
- with torch.no_grad():
- mel_outputs_postnet = postnet(mel_outputs)
-
- return mel_outputs_postnet
-
-def main():
-
- parser = argparse.ArgumentParser(
- description='PyTorch Tacotron 2 export to TRT')
- parser = parse_args(parser)
- args, _ = parser.parse_known_args()
-
- args.encoder = os.path.join(args.output, args.encoder)
- args.decoder = os.path.join(args.output, args.decoder)
- args.postnet = os.path.join(args.output, args.postnet)
-
- tacotron2 = load_and_setup_model('Tacotron2', parser, args.tacotron2,
- fp16_run=args.fp16, cpu_run=False)
-
- opset_version = 10
-
- sequences = torch.randint(low=0, high=148, size=(1,50),
- dtype=torch.long).cuda()
- sequence_lengths = torch.IntTensor([sequences.size(1)])
- dummy_input = (sequences, sequence_lengths)
-
- encoder = Encoder(tacotron2)
- encoder.eval()
- with torch.no_grad():
- encoder(*dummy_input)
-
- torch.onnx.export(encoder, dummy_input, args.encoder,
- opset_version=opset_version,
- do_constant_folding=True,
- input_names=["sequences", "sequence_lengths"],
- output_names=["memory", "processed_memory", "lens"],
- dynamic_axes={"sequences": {0: "batch_size", 1: "text_seq"},
- "sequence_lengths": {0: "batch_size"},
- "memory": {0: "batch_size", 1: "mem_seq"},
- "processed_memory": {0: "batch_size", 1: "mem_seq"},
- "lens": {0: "batch_size"}
- })
-
- decoder_iter = DecoderIter(tacotron2)
- memory = torch.randn((1,sequence_lengths[0],512)).cuda() #encoder_outputs
- if args.fp16:
- memory = memory.half()
- memory_lengths = sequence_lengths.cuda()
- # initialize decoder states for dummy_input
- decoder_input = tacotron2.decoder.get_go_frame(memory)
- mask = get_mask_from_lengths(memory_lengths)
- (attention_hidden,
- attention_cell,
- decoder_hidden,
- decoder_cell,
- attention_weights,
- attention_weights_cum,
- attention_context,
- processed_memory) = tacotron2.decoder.initialize_decoder_states(memory)
- dummy_input = (decoder_input,
- attention_hidden,
- attention_cell,
- decoder_hidden,
- decoder_cell,
- attention_weights,
- attention_weights_cum,
- attention_context,
- memory,
- processed_memory,
- mask)
-
- decoder_iter = DecoderIter(tacotron2)
- decoder_iter.eval()
- with torch.no_grad():
- decoder_iter(*dummy_input)
-
- torch.onnx.export(decoder_iter, dummy_input, args.decoder,
- opset_version=opset_version,
- do_constant_folding=True,
- input_names=["decoder_input",
- "attention_hidden",
- "attention_cell",
- "decoder_hidden",
- "decoder_cell",
- "attention_weights",
- "attention_weights_cum",
- "attention_context",
- "memory",
- "processed_memory",
- "mask"],
- output_names=["decoder_output",
- "gate_prediction",
- "out_attention_hidden",
- "out_attention_cell",
- "out_decoder_hidden",
- "out_decoder_cell",
- "out_attention_weights",
- "out_attention_weights_cum",
- "out_attention_context"],
- dynamic_axes={"attention_weights" : {0: "batch_size", 1: "seq_len"},
- "attention_weights_cum" : {0: "batch_size", 1: "seq_len"},
- "memory" : {0: "batch_size", 1: "seq_len"},
- "processed_memory" : {0: "batch_size", 1: "seq_len"},
- "mask" : {0: "batch_size", 1: "seq_len"},
- "out_attention_weights" : {0: "batch_size", 1: "seq_len"},
- "out_attention_weights_cum" : {0: "batch_size", 1: "seq_len"}
- })
-
- if args.loop:
- from generate_decoder import insert_decoder_loop
- decoder_dir = os.path.dirname(os.path.abspath(args.decoder))
- insert_decoder_loop(args.decoder, decoder_dir, os.path.basename(args.decoder).replace("_iter", ""), args.fp16)
-
- postnet = Postnet(tacotron2)
- dummy_input = torch.randn((1,80,620)).cuda()
- if args.fp16:
- dummy_input = dummy_input.half()
- torch.onnx.export(postnet, dummy_input, args.postnet,
- opset_version=opset_version,
- do_constant_folding=True,
- input_names=["mel_outputs"],
- output_names=["mel_outputs_postnet"],
- dynamic_axes={"mel_outputs": {0: "batch_size", 2: "mel_seq"},
- "mel_outputs_postnet": {0: "batch_size", 2: "mel_seq"}})
-
-if __name__ == '__main__':
- main()
diff --git a/demo/Tacotron2/tensorrt/convert_waveglow2onnx.py b/demo/Tacotron2/tensorrt/convert_waveglow2onnx.py
deleted file mode 100644
index 4b9aecbc..00000000
--- a/demo/Tacotron2/tensorrt/convert_waveglow2onnx.py
+++ /dev/null
@@ -1,167 +0,0 @@
-#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-import torch
-import argparse
-import os
-import sys
-from pathlib import Path
-sys.path.append(str(Path(__file__).parents[1]))
-
-from common.utils import ParseFromConfigFile
-from inference import load_and_setup_model
-
-def convert_convinv_1d_to_2d(convinv):
- """
- Takes an invertible 1x1 1-d convolution and returns a 2-d convolution that does
- the inverse
- """
- conv2d = torch.nn.Conv2d(convinv.W_inverse.size(1),
- convinv.W_inverse.size(0),
- 1, bias=False)
- conv2d.weight.data[:,:,:,0] = convinv.W_inverse.data
- return conv2d
-
-
-def convert_conv_1d_to_2d(conv1d):
- conv2d = torch.nn.Conv2d(conv1d.weight.size(1),
- conv1d.weight.size(0),
- (conv1d.weight.size(2), 1),
- stride=(conv1d.stride[0], 1),
- dilation=(conv1d.dilation[0], 1),
- padding=(conv1d.padding[0], 0))
- conv2d.weight.data[:,:,:,0] = conv1d.weight.data
- conv2d.bias.data = conv1d.bias.data
- return conv2d
-
-
-def convert_WN_1d_to_2d_(WN):
- """
- Modifies the WaveNet like affine coupling layer in-place to use 2-d convolutions
- """
- WN.start = convert_conv_1d_to_2d(WN.start)
- WN.end = convert_conv_1d_to_2d(WN.end)
-
- for i in range(len(WN.in_layers)):
- WN.in_layers[i] = convert_conv_1d_to_2d(WN.in_layers[i])
-
- for i in range(len(WN.res_skip_layers)):
- WN.res_skip_layers[i] = convert_conv_1d_to_2d(WN.res_skip_layers[i])
-
- for i in range(len(WN.res_skip_layers)):
- WN.cond_layers[i] = convert_conv_1d_to_2d(WN.cond_layers[i])
-
-
-def convert_1d_to_2d_(glow):
- """
- Caffe2 and TensorRT don't seem to support 1-d convolutions or properly
- convert ONNX exports with 1d convolutions to 2d convolutions yet, so we
- do the conversion to 2-d convolutions before ONNX export
- """
- # Convert upsample to 2d
- upsample = torch.nn.ConvTranspose2d(glow.upsample.weight.size(0),
- glow.upsample.weight.size(1),
- (glow.upsample.weight.size(2), 1),
- stride=(glow.upsample.stride[0], 1))
- upsample.weight.data[:,:,:,0] = glow.upsample.weight.data
- upsample.bias.data = glow.upsample.bias.data
- glow.upsample = upsample.cuda()
-
- # Convert WN to 2d
- for WN in glow.WN:
- convert_WN_1d_to_2d_(WN)
-
- # Convert invertible conv to 2d
- for i in range(len(glow.convinv)):
- glow.convinv[i] = convert_convinv_1d_to_2d(glow.convinv[i])
-
- glow.cuda()
-
-def parse_args(parser):
- """
- Parse commandline arguments.
- """
- parser.add_argument('--waveglow', type=str, required=True,
- help='full path to the WaveGlow model checkpoint file')
- parser.add_argument('-o', '--output', type=str, required=True,
- help='Directory or file name for the exported WaveGlow ONNX model')
- parser.add_argument('--fp16', action='store_true',
- help='inference with AMP')
- parser.add_argument('-s', '--sigma-infer', default=0.6, type=float)
-
- parser.add_argument('--config-file', action=ParseFromConfigFile,
- type=str, help='Path to configuration file')
-
- return parser
-
-
-def export_onnx(parser, args):
-
- waveglow = load_and_setup_model('WaveGlow', parser, args.waveglow,
- fp16_run=args.fp16, cpu_run=False,
- forward_is_infer=False)
-
- # 80 mel channels, 620 mel spectrograms ~ 7 seconds of speech
- mel = torch.randn(1, 80, 620).cuda()
- stride = 256 # value from waveglow upsample
- n_group = 8
- z_size2 = (mel.size(2)*stride)//n_group
- z = torch.randn(1, n_group, z_size2, 1).cuda()
-
- if args.fp16:
- mel = mel.half()
- z = z.half()
- with torch.no_grad():
- # run inference to force calculation of inverses
- waveglow.infer(mel, sigma=args.sigma_infer)
-
- convert_1d_to_2d_(waveglow)
- mel = mel.unsqueeze(3)
-
- # export to ONNX
- if args.fp16:
- waveglow = waveglow.half()
-
- waveglow.forward = waveglow.infer_onnx
-
- opset_version = 11
-
- if os.path.isdir(args.output):
- output_path = os.path.join(args.output, "waveglow.onnx")
- else:
- output_path = args.output
-
- torch.onnx.export(waveglow, (mel, z), output_path,
- opset_version=opset_version,
- do_constant_folding=True,
- input_names=["mel", "z"],
- output_names=["audio"],
- dynamic_axes={"mel": {0: "batch_size", 2: "mel_seq"},
- "z": {0: "batch_size", 2: "z_seq"},
- "audio": {0: "batch_size", 1: "audio_seq"}})
-
-
-def main():
- parser = argparse.ArgumentParser(
- description='PyTorch Tacotron 2 Inference')
- parser = parse_args(parser)
- args, _ = parser.parse_known_args()
-
- export_onnx(parser, args)
-
-if __name__ == '__main__':
- main()
diff --git a/demo/Tacotron2/tensorrt/generate_decoder.py b/demo/Tacotron2/tensorrt/generate_decoder.py
deleted file mode 100644
index 62f8b04e..00000000
--- a/demo/Tacotron2/tensorrt/generate_decoder.py
+++ /dev/null
@@ -1,212 +0,0 @@
-#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-import onnx_graphsurgeon as gs
-import onnx
-import sys
-import os
-import numpy as np
-import argparse
-
-def insert_decoder_loop(decoder_iter_onnx_path, output_dir, decoder_out_name, fp16):
- float_prec = np.float16 if fp16 else np.float32
-
- # Modify loop body so that it has 2+N inputs: (iteration_num, condition, loop carried dependencies...)
- # and 1+N+K outputs: (condition, loop carried dependencies..., scan_outputs...)
-
- # In this case, the loop carried dependencies include the following IN ORDER
- # - decoder_output/decoder_input
- # - attention_hidden
- # - attention_cell
- # - decoder_hidden
- # - decoder_cell
- # - attention_weights
- # - attention_weights_cum
- # - attention_context
- # - not_finished (bool tensor, initialized to all True)
- # - mel_lengths
-
- # The following are NOT loop carried dependencies (they remain constant through the loop), and must be moved to be inputs outside of the loop body
- # - memory
- # - processed_memory
- # - mask
-
- # The scan outputs are
- # - mel_outputs (which scans across decoder_output)
- # - gate_outputs (scans across gate_prediction)
- # - alignments (scans across attention_weights)
-
-
- loop_body = gs.import_onnx(onnx.load(decoder_iter_onnx_path))
- loop_tensors = loop_body.tensors()
-
- iteration_num = gs.Variable("iteration_num", dtype=np.int64, shape=())
- cond_in = gs.Variable("cond_in", dtype=bool, shape=())
- cond_out = gs.Variable("cond_out", dtype=bool, shape=())
- not_finished_in = gs.Variable("not_finished_in", shape=('batch_size', 1), dtype=bool)
- not_finished_out = gs.Variable("not_finished_out", shape=('batch_size', 1), dtype=bool)
- mel_lengths_in = gs.Variable("mel_lengths_in", shape=('batch_size', 1), dtype=np.int32)
- mel_lengths_out = gs.Variable("mel_lengths_out", shape=('batch_size', 1), dtype=np.int32)
-
-
- # Set loop body inputs in the correct order
- loop_body.inputs = [iteration_num, cond_in, loop_tensors["decoder_input"], loop_tensors["attention_hidden"], loop_tensors["attention_cell"], loop_tensors["decoder_hidden"], loop_tensors["decoder_cell"], loop_tensors["attention_weights"], loop_tensors["attention_weights_cum"], loop_tensors["attention_context"], not_finished_in, mel_lengths_in]
-
- # Set loop body outputs in the correct order
- loop_body.outputs = [cond_out, loop_tensors["decoder_output"], loop_tensors["out_attention_hidden"], loop_tensors["out_attention_cell"], loop_tensors["out_decoder_hidden"], loop_tensors["out_decoder_cell"], loop_tensors["out_attention_weights"], loop_tensors["out_attention_weights_cum"], loop_tensors["out_attention_context"], not_finished_out, mel_lengths_out, loop_tensors["decoder_output"], loop_tensors["gate_prediction"], loop_tensors["out_attention_weights"]]
-
- # The loop stop condition is given by the following lines in PyTorch
- # dec = torch.le(torch.sigmoid(decoder_outputs[8]), gate_threshold).to(torch.int32).squeeze(1)
- # not_finished = not_finished*dec
- # if torch.sum(not_finished) == 0:
- # break
-
- # To compute cond_out, we can essentially follow the same steps. Using Less instead of Greater+Not for now
-
- gate_threshold = gs.Constant("gate_threshold", np.array([0.5], dtype=float_prec))
- gate_sigmoid = gs.Variable("gate_sigmoid", dtype=float_prec, shape=())
- sigmoid = loop_body.nodes.append(gs.Node(op="Sigmoid", inputs=[loop_tensors["gate_prediction"]], outputs=[gate_sigmoid]))
-
- leq_output = gs.Variable("leq_output", dtype=bool)
- leq = loop_body.nodes.append(gs.Node(op="Less", inputs=[gate_sigmoid, gate_threshold], outputs=[leq_output]))
-
- loop_body.nodes.append(gs.Node(op="And", inputs=[not_finished_in, leq_output], outputs=[not_finished_out]))
-
- cast_output = gs.Variable("cast_output", dtype=np.int32)
- loop_body.nodes.append(gs.Node(op="Cast", inputs=[not_finished_out], outputs=[cast_output], attrs={"to": 6})) # int32
-
- reduce_output = gs.Variable("reduce_output", dtype=np.int32)
- loop_body.nodes.append( gs.Node(op="ReduceSum", inputs=[cast_output], outputs=[reduce_output], attrs={"axes": [0], "keepdims": 0}))
-
- unsqueezed_cond_out = gs.Variable("unsqueezed_cond_out", dtype=bool)
- loop_body.nodes.append(gs.Node(op="Equal", inputs=[reduce_output, gs.Constant("zero", np.array(0, dtype=np.int32))], outputs=[unsqueezed_cond_out]))
-
- squeezed_cond_out = gs.Variable("squeezed_cond_out", dtype=bool)
- loop_body.nodes.append(gs.Node(op="Squeeze", inputs=[unsqueezed_cond_out], outputs=[squeezed_cond_out], attrs={"axes": [0]}))
-
- loop_body.nodes.append(gs.Node(op="Not", inputs=[squeezed_cond_out], outputs=[cond_out]))
-
- # Compute mel_lengths
- # from PyTorch: mel_lengths += not_finished
-
- loop_body.nodes.append(gs.Node(op="Add", inputs=[mel_lengths_in, cast_output], outputs=[mel_lengths_out]))
-
- memory = gs.Variable("memory", dtype=float_prec, shape=('batch_size', 'seq_len', 512))
- processed_memory = gs.Variable("processed_memory", dtype=float_prec, shape=('batch_size', 'seq_len', 128))
- mask = gs.Variable("mask", dtype=bool, shape=('batch_size', 'seq_len'))
-
- loop_body.toposort()
- onnx.save(gs.export_onnx(loop_body), os.path.join(output_dir, "loop_body_{prec}.onnx".format(prec="fp16" if float_prec == np.float16 else "fp32")))
-
- # Create outer graph
-
- # Inputs to outer graph are the following (suffixed with _0 to signify initial states)
- # - decoder_input_0
- # - attention_hidden_0
- # - attention_cell_0
- # - decoder_hidden_0
- # - decoder_cell_0
- # - attention_weights_0
- # - attention_weights_cum_0
- # - attention_context_0
- # - memory
- # - processed_memory
- # - mask
-
- # Outputs are the following
- # - mel_outputs
- # - mel_lengths
-
- # Note: alignments and gate_outputs are scan outputs, but don't seem to be used later in the PyTorch implementation. For now, we will make them intermediate tensors that are not outputted
-
- graph = gs.Graph()
-
- decoder_input_0 = gs.Variable("decoder_input_0", dtype=float_prec, shape=('batch_size', 80))
- attention_hidden_0 = gs.Variable("attention_hidden_0", dtype=float_prec, shape=('batch_size', 1024))
- attention_cell_0 = gs.Variable("attention_cell_0", dtype=float_prec, shape=('batch_size', 1024))
- decoder_hidden_0 = gs.Variable("decoder_hidden_0", dtype=float_prec, shape=('batch_size', 1024))
- decoder_cell_0 = gs.Variable("decoder_cell_0", dtype=float_prec, shape=('batch_size', 1024))
- attention_weights_0 = gs.Variable("attention_weights_0", dtype=float_prec, shape=('batch_size', 'seq_len'))
- attention_weights_cum_0 = gs.Variable("attention_weights_cum_0", dtype=float_prec, shape=('batch_size', 'seq_len'))
- attention_context_0 = gs.Variable("attention_context_0", dtype=float_prec, shape=('batch_size', 512))
- not_finished_0 = gs.Variable("not_finished_0", dtype=bool)
- mel_lengths_0 = gs.Variable("mel_lengths_0", dtype=np.int32)
-
- # For not_finished, we need to generate a tensor of shape (batch_size) that is all 1s
- # We can use the ONNX ConstantOfShape op to do this
- not_finished_shape = gs.Variable("not_finished_shape", dtype=np.int64)
- reduced = gs.Variable("reduced", dtype=float_prec)
- graph.nodes.append(gs.Node(op="ReduceSum", inputs=[decoder_input_0], outputs=[reduced], attrs={"axes":[1], "keepdims": 1}))
- graph.nodes.append(gs.Node(op="Shape", inputs=[reduced], outputs=[not_finished_shape]))
- before_cast = gs.Variable("before_cast", dtype=np.int32)
- graph.nodes.append(gs.Node(op="ConstantOfShape", inputs=[not_finished_shape], outputs=[before_cast], attrs={"value":gs.Constant("one", np.array([1], dtype=np.int32))}))
- graph.nodes.append(gs.Node(op="Cast", inputs=[before_cast], outputs=[not_finished_0], attrs={"to": 9}))
-
- # Same thing for mel_lengths, but we need all 0s
- graph.nodes.append(gs.Node(op="ConstantOfShape", inputs=[not_finished_shape], outputs=[mel_lengths_0], attrs={"value":gs.Constant("zero", np.array([0], dtype=np.int32))}))
-
- # Loop carried dependecies at the end of the loop
- decoder_input_t = gs.Variable("decoder_input_t", dtype=float_prec, shape=('batch_size', 80))
- attention_hidden_t = gs.Variable("attention_hidden_t", dtype=float_prec, shape=('batch_size', 1024))
- attention_cell_t = gs.Variable("attention_cell_t", dtype=float_prec, shape=('batch_size', 1024))
- decoder_hidden_t = gs.Variable("decoder_hidden_t", dtype=float_prec, shape=('batch_size', 1024))
- decoder_cell_t = gs.Variable("decoder_cell_t", dtype=float_prec, shape=('batch_size', 1024))
- attention_weights_t = gs.Variable("attention_weights_t", dtype=float_prec, shape=('batch_size', 'seq_len'))
- attention_weights_cum_t = gs.Variable("attention_weights_cum_t", dtype=float_prec, shape=('batch_size', 'seq_len'))
- attention_context_t = gs.Variable("attention_context_t", dtype=float_prec, shape=('batch_size', 512))
- not_finished_t = gs.Variable("not_finished_t", dtype=bool)
- mel_lengths_t = gs.Variable("mel_lengths_t", dtype=np.int32, shape=('batch_size', 1))
-
- # Scan outputs
- mel_outputs_raw = gs.Variable("mel_outputs_raw", dtype=float_prec, shape=(-1, 'batch_size', 80))
- gate_outputs = gs.Variable("gate_outputs", dtype=float_prec, shape=(-1, 'batch_size', 1))
- alignments = gs.Variable("alignments", dtype=float_prec, shape=(-1, 1, 'seq_len'))
-
- mel_outputs = gs.Variable("mel_outputs", dtype=float_prec, shape=('batch_size', 80, -1))
-
- graph.inputs = [decoder_input_0, attention_hidden_0, attention_cell_0, decoder_hidden_0, decoder_cell_0, attention_weights_0, attention_weights_cum_0, attention_context_0, memory, processed_memory, mask]
- graph.outputs = [mel_outputs, mel_lengths_t]
-
- trip_count = gs.Constant("trip_count", np.array(0, dtype=np.int64)) # In ONNX, this is an optional parameter, but I don't think ONNX-GS supports optional inputs. To fix this, after we export the ONNX ModelProto from GS, we replace this input with ""
- initial_cond = gs.Constant("initial_cond", np.array(True, dtype=bool))
- loop_inputs = [trip_count, initial_cond, decoder_input_0, attention_hidden_0, attention_cell_0, decoder_hidden_0, decoder_cell_0, attention_weights_0, attention_weights_cum_0, attention_context_0, not_finished_0, mel_lengths_0]
- loop_outputs = [decoder_input_t, attention_hidden_t, attention_cell_t, decoder_hidden_t, decoder_cell_t, attention_weights_t, attention_weights_cum_t, attention_context_t, not_finished_t, mel_lengths_t, mel_outputs_raw, gate_outputs, alignments]
- decoder_loop = gs.Node(op="Loop", name="decoder_loop", inputs=loop_inputs, outputs=loop_outputs, attrs={"body": loop_body})
- graph.nodes.append(decoder_loop)
-
- graph.nodes.append(gs.Node(op="Transpose", inputs=[mel_outputs_raw], outputs=[mel_outputs], attrs={"perm": [1, 2, 0]})) # Output needs to have loop dimension as inner-most dim
-
- graph.toposort()
- exported_graph = gs.export_onnx(graph)
- [x for x in exported_graph.graph.node if x.name == "decoder_loop"][0].input[0] = "" # Remove trip count input
-
- onnx.save(exported_graph, os.path.join(output_dir, decoder_out_name))
-
-if __name__ == "__main__":
- parser = argparse.ArgumentParser()
- parser.add_argument('model_path', type=str,
- help='path to original decoder_iter ONNX model')
- parser.add_argument('-o', '--output_dir', type=str, default='.', help='Output directory')
- parser.add_argument('--decoder_out', type=str, help='Filename of the exported decoder with outer loop')
- parser.add_argument('--fp16', action='store_true')
-
- args = parser.parse_args()
-
- if args.decoder_out == None:
- args.decoder_out = "decoder_with_outer_loop_{}.onnx".format("fp16" if args.fp16 else "fp32")
-
- insert_decoder_loop(args.model_path, args.output_dir, args.decoder_out, args.fp16)
diff --git a/demo/Tacotron2/tensorrt/inference_trt.py b/demo/Tacotron2/tensorrt/inference_trt.py
deleted file mode 100644
index d1a6dabd..00000000
--- a/demo/Tacotron2/tensorrt/inference_trt.py
+++ /dev/null
@@ -1,491 +0,0 @@
-#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-import tensorrt as trt
-import numpy as np
-from scipy.io.wavfile import write
-import time
-import torch
-import argparse
-import os.path as path
-
-import sys
-from pathlib import Path
-sys.path.append(str(Path(__file__).parents[1]))
-
-from common.utils import to_gpu, get_mask_from_lengths
-from tacotron2.text import text_to_sequence
-from inference import MeasureTime, prepare_input_sequence, load_and_setup_model
-import dllogger as DLLogger
-from dllogger import StdOutBackend, JSONStreamBackend, Verbosity
-from trt_utils import load_engine, run_trt_engine
-
-from waveglow.denoiser import Denoiser
-
-def parse_args(parser):
- """
- Parse commandline arguments.
- """
- parser.add_argument('-i', '--input', type=str, required=True,
- help='full path to the input text (phareses separated by new line)')
- parser.add_argument('-o', '--output', required=True,
- help='output folder to save audio (file per phrase)')
- parser.add_argument('--encoder', type=str, required=True,
- help='full path to the Encoder engine')
- parser.add_argument('--decoder', type=str, required=True,
- help='full path to the DecoderIter engine')
- parser.add_argument('--postnet', type=str, required=True,
- help='full path to the Postnet engine')
- parser.add_argument('--waveglow', type=str, required=True,
- help='full path to the WaveGlow engine')
- parser.add_argument('--waveglow-ckpt', type=str, default="",
- help='full path to the WaveGlow model checkpoint file')
- parser.add_argument('--log-file', type=str, default='nvlog.json',
- help='Filename for logging')
- parser.add_argument('-d', '--denoising-strength', default=0.01, type=float)
- parser.add_argument('-sr', '--sampling-rate', default=22050, type=int,
- help='Sampling rate')
- parser.add_argument('--stft-hop-length', type=int, default=256,
- help='STFT hop length for estimating audio length from mel size')
- parser.add_argument('--fp16', action='store_true',
- help='inference with FP16')
- parser.add_argument('--loop', dest='loop', action='store_true',
- help='Includes the outer decoder loop in the ONNX model. Enabled by default and only supported on TensorRT 8.0 or later.')
- parser.add_argument('--no-loop', dest='loop', action='store_false',
- help='Excludes outer decoder loop from decoder ONNX model. Default behavior and necessary for TensorRT 7.2 or earlier.')
- parser.set_defaults(loop=int(trt.__version__[0]) >= 8)
- parser.add_argument('--waveglow-onnxruntime', action='store_true',
- help='Specify this option to use ONNX runtime instead of TRT for running Waveglow')
- parser.add_argument('--decoder-onnxruntime', action='store_true',
- help='Specify this option to use ONNX runtime instead of TRT for running the TT2 Decoder with loop. When using this option, pass the decoder ONNX model to the --decoder argument')
- return parser
-
-
-def init_decoder_inputs(memory, processed_memory, memory_lengths):
-
- device = memory.device
- dtype = memory.dtype
- bs = memory.size(0)
- seq_len = memory.size(1)
- attention_rnn_dim = 1024
- decoder_rnn_dim = 1024
- encoder_embedding_dim = 512
- n_mel_channels = 80
-
- attention_hidden = torch.zeros(bs, attention_rnn_dim, device=device, dtype=dtype)
- attention_cell = torch.zeros(bs, attention_rnn_dim, device=device, dtype=dtype)
- decoder_hidden = torch.zeros(bs, decoder_rnn_dim, device=device, dtype=dtype)
- decoder_cell = torch.zeros(bs, decoder_rnn_dim, device=device, dtype=dtype)
- attention_weights = torch.zeros(bs, seq_len, device=device, dtype=dtype)
- attention_weights_cum = torch.zeros(bs, seq_len, device=device, dtype=dtype)
- attention_context = torch.zeros(bs, encoder_embedding_dim, device=device, dtype=dtype)
- mask = get_mask_from_lengths(memory_lengths).to(device)
- decoder_input = torch.zeros(bs, n_mel_channels, device=device, dtype=dtype)
-
- return (decoder_input, attention_hidden, attention_cell, decoder_hidden,
- decoder_cell, attention_weights, attention_weights_cum,
- attention_context, memory, processed_memory, mask)
-
-def init_decoder_outputs(memory, memory_lengths):
-
- device = memory.device
- dtype = memory.dtype
- bs = memory.size(0)
- seq_len = memory.size(1)
- attention_rnn_dim = 1024
- decoder_rnn_dim = 1024
- encoder_embedding_dim = 512
- n_mel_channels = 80
-
- attention_hidden = torch.zeros(bs, attention_rnn_dim, device=device, dtype=dtype)
- attention_cell = torch.zeros(bs, attention_rnn_dim, device=device, dtype=dtype)
- decoder_hidden = torch.zeros(bs, decoder_rnn_dim, device=device, dtype=dtype)
- decoder_cell = torch.zeros(bs, decoder_rnn_dim, device=device, dtype=dtype)
- attention_weights = torch.zeros(bs, seq_len, device=device, dtype=dtype)
- attention_weights_cum = torch.zeros(bs, seq_len, device=device, dtype=dtype)
- attention_context = torch.zeros(bs, encoder_embedding_dim, device=device, dtype=dtype)
- decoder_output = torch.zeros(bs, n_mel_channels, device=device, dtype=dtype)
- gate_prediction = torch.zeros(bs, 1, device=device, dtype=dtype)
-
- return (attention_hidden, attention_cell, decoder_hidden,
- decoder_cell, attention_weights, attention_weights_cum,
- attention_context, decoder_output, gate_prediction)
-
-def init_decoder_tensors(decoder_inputs, decoder_outputs):
-
- decoder_tensors = {
- "inputs" : {
- 'decoder_input': decoder_inputs[0],
- 'attention_hidden': decoder_inputs[1],
- 'attention_cell': decoder_inputs[2],
- 'decoder_hidden': decoder_inputs[3],
- 'decoder_cell': decoder_inputs[4],
- 'attention_weights': decoder_inputs[5],
- 'attention_weights_cum': decoder_inputs[6],
- 'attention_context': decoder_inputs[7],
- 'memory': decoder_inputs[8],
- 'processed_memory': decoder_inputs[9],
- 'mask': decoder_inputs[10]
- },
- "outputs" : {
- 'out_attention_hidden': decoder_outputs[0],
- 'out_attention_cell': decoder_outputs[1],
- 'out_decoder_hidden': decoder_outputs[2],
- 'out_decoder_cell': decoder_outputs[3],
- 'out_attention_weights': decoder_outputs[4],
- 'out_attention_weights_cum': decoder_outputs[5],
- 'out_attention_context': decoder_outputs[6],
- 'decoder_output': decoder_outputs[7],
- 'gate_prediction': decoder_outputs[8]
- }
- }
- return decoder_tensors
-
-def swap_inputs_outputs(decoder_inputs, decoder_outputs):
-
- new_decoder_inputs = (decoder_outputs[7], # decoder_output
- decoder_outputs[0], # attention_hidden
- decoder_outputs[1], # attention_cell
- decoder_outputs[2], # decoder_hidden
- decoder_outputs[3], # decoder_cell
- decoder_outputs[4], # attention_weights
- decoder_outputs[5], # attention_weights_cum
- decoder_outputs[6], # attention_context
- decoder_inputs[8], # memory
- decoder_inputs[9], # processed_memory
- decoder_inputs[10]) # mask
-
- new_decoder_outputs = (decoder_inputs[1], # attention_hidden
- decoder_inputs[2], # attention_cell
- decoder_inputs[3], # decoder_hidden
- decoder_inputs[4], # decoder_cell
- decoder_inputs[5], # attention_weights
- decoder_inputs[6], # attention_weights_cum
- decoder_inputs[7], # attention_context
- decoder_inputs[0], # decoder_input
- decoder_outputs[8])# gate_output
-
- return new_decoder_inputs, new_decoder_outputs
-
-
-def infer_tacotron2_trt(encoder, decoder_iter, postnet,
- encoder_context, decoder_context, postnet_context,
- sequences, sequence_lengths, measurements, fp16, loop):
-
- batch_size = len(sequence_lengths)
- max_sequence_len = sequence_lengths[0]
- memory = torch.zeros((batch_size, max_sequence_len, 512)).cuda()
- if fp16:
- memory = memory.half()
- device = memory.device
- dtype = memory.dtype
-
- processed_memory = torch.zeros((batch_size, max_sequence_len, 128), device=device, dtype=dtype)
- lens = torch.zeros_like(sequence_lengths)
- print(f"batch_size: {batch_size}, max sequence length: {max_sequence_len}")
-
- encoder_tensors = {
- "inputs" :
- {'sequences': sequences, 'sequence_lengths': sequence_lengths},
- "outputs" :
- {'memory': memory, 'lens': lens, 'processed_memory': processed_memory}
- }
-
- print("Running Tacotron2 Encoder")
- with MeasureTime(measurements, "tacotron2_encoder_time"):
- run_trt_engine(encoder_context, encoder, encoder_tensors)
- max_decoder_steps = 1024
- device = memory.device
- mel_lengths = torch.zeros([memory.size(0)], dtype=torch.int32, device = device)
- not_finished = torch.ones([memory.size(0)], dtype=torch.int32, device = device)
- mel_outputs = torch.ones((batch_size, 80, max_decoder_steps), device = device, dtype=dtype).cuda()
- gate_threshold = 0.5
- first_iter = True
-
- decoder_inputs = init_decoder_inputs(memory, processed_memory, sequence_lengths)
- decoder_outputs = init_decoder_outputs(memory, sequence_lengths)
-
- if loop:
- if decoder_context is None:
- print("Running Tacotron2 Decoder with loop with ONNX-RT")
- decoder_inputs_onnxrt = [x.cpu().numpy().copy() for x in decoder_inputs]
- import onnx
- import onnxruntime
- sess = onnxruntime.InferenceSession(decoder_iter)
-
- with MeasureTime(measurements, "tacotron2_decoder_time"):
- result = sess.run(["mel_outputs", "mel_lengths_t"], {
- 'decoder_input_0': decoder_inputs_onnxrt[0],
- 'attention_hidden_0': decoder_inputs_onnxrt[1],
- 'attention_cell_0': decoder_inputs_onnxrt[2],
- 'decoder_hidden_0': decoder_inputs_onnxrt[3],
- 'decoder_cell_0': decoder_inputs_onnxrt[4],
- 'attention_weights_0': decoder_inputs_onnxrt[5],
- 'attention_weights_cum_0': decoder_inputs_onnxrt[6],
- 'attention_context_0': decoder_inputs_onnxrt[7],
- 'memory': decoder_inputs_onnxrt[8],
- 'processed_memory': decoder_inputs_onnxrt[9],
- 'mask': decoder_inputs_onnxrt[10]
- })
-
- mel_outputs = torch.tensor(result[0], device=device)
- mel_lengths = torch.tensor(result[1], device=device)
- else:
- print("Running Tacotron2 Decoder with loop")
- decoder_tensors = {
- "inputs" :
- {
- 'decoder_input_0': decoder_inputs[0],
- 'attention_hidden_0': decoder_inputs[1],
- 'attention_cell_0': decoder_inputs[2],
- 'decoder_hidden_0': decoder_inputs[3],
- 'decoder_cell_0': decoder_inputs[4],
- 'attention_weights_0': decoder_inputs[5],
- 'attention_weights_cum_0': decoder_inputs[6],
- 'attention_context_0': decoder_inputs[7],
- 'memory': decoder_inputs[8],
- 'processed_memory': decoder_inputs[9],
- 'mask': decoder_inputs[10]
- },
- "outputs" :
- {'mel_outputs': mel_outputs, 'mel_lengths_t': mel_lengths}
- }
-
- with MeasureTime(measurements, "tacotron2_decoder_time"):
- run_trt_engine(decoder_context, decoder_iter, decoder_tensors)
- mel_outputs = mel_outputs[:,:,:torch.max(mel_lengths)]
-
- else:
- print("Running Tacotron2 Decoder")
- measurements_decoder = {}
- while True:
- decoder_tensors = init_decoder_tensors(decoder_inputs, decoder_outputs)
- with MeasureTime(measurements_decoder, "step"):
- run_trt_engine(decoder_context, decoder_iter, decoder_tensors)
-
- if first_iter:
- mel_outputs = torch.unsqueeze(decoder_outputs[7], 2)
- gate_outputs = torch.unsqueeze(decoder_outputs[8], 2)
- alignments = torch.unsqueeze(decoder_outputs[4], 2)
- measurements['tacotron2_decoder_time'] = measurements_decoder['step']
- first_iter = False
- else:
- mel_outputs = torch.cat((mel_outputs, torch.unsqueeze(decoder_outputs[7], 2)), 2)
- gate_outputs = torch.cat((gate_outputs, torch.unsqueeze(decoder_outputs[8], 2)), 2)
- alignments = torch.cat((alignments, torch.unsqueeze(decoder_outputs[4], 2)), 2)
- measurements['tacotron2_decoder_time'] += measurements_decoder['step']
-
- dec = torch.le(torch.sigmoid(decoder_outputs[8]), gate_threshold).to(torch.int32).squeeze(1)
- not_finished = not_finished*dec
- mel_lengths += not_finished
-
- if torch.sum(not_finished) == 0:
- print("Stopping after",mel_outputs.size(2),"decoder steps")
- break
- if mel_outputs.size(2) == max_decoder_steps:
- print("Warning! Reached max decoder steps")
- break
-
- decoder_inputs, decoder_outputs = swap_inputs_outputs(decoder_inputs, decoder_outputs)
-
- mel_outputs = mel_outputs.clone().detach()
- mel_outputs_postnet = torch.zeros_like(mel_outputs, device=device, dtype=dtype)
-
- postnet_tensors = {
- "inputs" :
- {'mel_outputs': mel_outputs},
- "outputs" :
- {'mel_outputs_postnet': mel_outputs_postnet}
- }
- print("Running Tacotron2 Postnet")
- with MeasureTime(measurements, "tacotron2_postnet_time"):
- run_trt_engine(postnet_context, postnet, postnet_tensors)
-
- print("Tacotron2 Postnet done")
-
- return mel_outputs_postnet, mel_lengths
-
-
-def infer_waveglow_trt(waveglow, waveglow_context, mel, measurements, fp16):
-
- mel_size = mel.size(2)
- batch_size = mel.size(0)
- stride = 256
- n_group = 8
- z_size = mel_size*stride
- z_size = z_size//n_group
- z = torch.randn(batch_size, n_group, z_size).cuda()
- audios = torch.zeros(batch_size, mel_size*stride).cuda()
-
- mel = mel.unsqueeze(3)
- z = z.unsqueeze(3)
-
- if fp16:
- z = z.half()
- mel = mel.half()
- audios = audios.half()
-
- waveglow_tensors = {
- "inputs" : {'mel': mel, 'z': z},
- "outputs" : {'audio': audios}
- }
-
- print("Running WaveGlow with TensorRT")
- with MeasureTime(measurements, "waveglow_time"):
- run_trt_engine(waveglow_context, waveglow, waveglow_tensors)
-
- return audios
-
-def infer_waveglow_onnx(waveglow_path, mel, measurements, fp16):
- import onnx
- import onnxruntime
- sess = onnxruntime.InferenceSession(waveglow_path)
-
- device=mel.device
- mel_size = mel.size(2)
- batch_size = mel.size(0)
- stride = 256
- n_group = 8
- z_size = mel_size*stride
- z_size = z_size//n_group
- z = torch.randn(batch_size, n_group, z_size).cuda()
-
- mel = mel.unsqueeze(3)
- z = z.unsqueeze(3)
-
- if fp16:
- z = z.half()
- mel = mel.half()
-
- mel = mel.cpu().numpy().copy()
- z = z.cpu().numpy().copy()
-
- print("Running WaveGlow with ONNX Runtime")
- with MeasureTime(measurements, "waveglow_time"):
- result = sess.run(["audio"], {
- 'mel': mel,
- 'z': z
- })
- audios = torch.tensor(result[0], device=device)
- return audios
-
-def main():
-
- parser = argparse.ArgumentParser(
- description='TensorRT Tacotron 2 Inference')
- parser = parse_args(parser)
- args, _ = parser.parse_known_args()
-
- # initialize CUDA state
- torch.cuda.init()
-
- TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
- encoder = load_engine(args.encoder, TRT_LOGGER)
- postnet = load_engine(args.postnet, TRT_LOGGER)
-
- if args.waveglow_ckpt != "":
- # setup denoiser using WaveGlow PyTorch checkpoint
- waveglow_ckpt = load_and_setup_model('WaveGlow', parser, args.waveglow_ckpt,
- True, forward_is_infer=True)
- denoiser = Denoiser(waveglow_ckpt).cuda()
- # after initialization, we don't need WaveGlow PyTorch checkpoint
- # anymore - deleting
- del waveglow_ckpt
- torch.cuda.empty_cache()
-
- # create TRT contexts for each engine
- encoder_context = encoder.create_execution_context()
- decoder_context = None
- if not args.decoder_onnxruntime:
- decoder_iter = load_engine(args.decoder, TRT_LOGGER)
- decoder_context = decoder_iter.create_execution_context()
- else:
- decoder_iter = args.decoder
- postnet_context = postnet.create_execution_context()
-
- waveglow_context = None
- if not args.waveglow_onnxruntime:
- waveglow = load_engine(args.waveglow, TRT_LOGGER)
- waveglow_context = waveglow.create_execution_context()
-
- DLLogger.init(backends=[JSONStreamBackend(Verbosity.DEFAULT,
- path.join(args.output, args.log_file)),
- StdOutBackend(Verbosity.VERBOSE)])
-
- texts = []
- try:
- f = open(args.input, 'r')
- texts = f.readlines()
- except:
- print("Could not read file")
- sys.exit(1)
-
- measurements = {}
-
- sequences, sequence_lengths = prepare_input_sequence(texts)
- dt = encoder.get_tensor_dtype("sequences")
- sequences = sequences.to(torch.int64 if dt == trt.DataType.INT64 else torch.int32)
- sequence_lengths = sequence_lengths.to(torch.int32)
-
- with MeasureTime(measurements, "latency"):
- mel, mel_lengths = infer_tacotron2_trt(encoder, decoder_iter, postnet,
- encoder_context, decoder_context, postnet_context,
- sequences, sequence_lengths, measurements, args.fp16, args.loop)
- audios = infer_waveglow_onnx(args.waveglow, mel, measurements, args.fp16) if args.waveglow_onnxruntime else \
- infer_waveglow_trt(waveglow, waveglow_context, mel, measurements, args.fp16)
-
- with encoder_context, postnet_context:
- pass
-
- if decoder_context is not None:
- with decoder_context: pass
-
- if waveglow_context is not None:
- with waveglow_context: pass
-
- audios = audios.float()
- if args.waveglow_ckpt != "":
- with MeasureTime(measurements, "denoiser"):
- audios = denoiser(audios, strength=args.denoising_strength).squeeze(1)
-
- for i, audio in enumerate(audios):
- audio = audio[:mel_lengths[i]*args.stft_hop_length]
- audio = audio/torch.max(torch.abs(audio))
- audio_path = path.join(args.output, f"audio_{i}_trt.wav")
- write(audio_path, args.sampling_rate, audio.cpu().numpy())
-
-
- DLLogger.log(step=0, data={"tacotron2_encoder_latency": measurements['tacotron2_encoder_time']})
- DLLogger.log(step=0, data={"tacotron2_decoder_latency": measurements['tacotron2_decoder_time']})
- DLLogger.log(step=0, data={"tacotron2_postnet_latency": measurements['tacotron2_postnet_time']})
- DLLogger.log(step=0, data={"waveglow_latency": measurements['waveglow_time']})
- DLLogger.log(step=0, data={"latency": measurements['latency']})
-
- if args.waveglow_ckpt != "":
- DLLogger.log(step=0, data={"denoiser": measurements['denoiser']})
- DLLogger.flush()
-
- prec = "fp16" if args.fp16 else "fp32"
- latency = measurements['latency']
- throughput = audios.size(1)/latency
- log_data = f"1,{sequence_lengths[0].item()},{prec},{latency},{throughput},{mel_lengths[0].item()}\n"
- log_file = path.join(args.output, f"log_bs1_{prec}.log")
- with open(log_file, 'a') as f:
- f.write(log_data)
-
-if __name__ == "__main__":
- main()
diff --git a/demo/Tacotron2/tensorrt/run_latency_tests_trt.sh b/demo/Tacotron2/tensorrt/run_latency_tests_trt.sh
deleted file mode 100644
index a289cf63..00000000
--- a/demo/Tacotron2/tensorrt/run_latency_tests_trt.sh
+++ /dev/null
@@ -1,17 +0,0 @@
-#
-# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-bash test_infer.sh --test tensorrt/test_infer_trt.py -bs 1 -il 128 --fp16 --num-iters 1003 --encoder ./output/encoder_fp16.engine --decoder ./output/decoder_with_outer_loop_fp16.engine --postnet ./output/postnet_fp16.engine --waveglow ./output/waveglow_fp16.engine --wn-channels 256
diff --git a/demo/Tacotron2/tensorrt/test_infer_trt.py b/demo/Tacotron2/tensorrt/test_infer_trt.py
deleted file mode 100644
index 7023f02f..00000000
--- a/demo/Tacotron2/tensorrt/test_infer_trt.py
+++ /dev/null
@@ -1,230 +0,0 @@
-#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-import sys
-sys.path.append('./')
-from tacotron2.text import text_to_sequence
-import models
-import tensorrt as trt
-import torch
-import argparse
-import numpy as np
-from scipy.io.wavfile import write
-
-from inference import checkpoint_from_distributed, unwrap_distributed, MeasureTime, prepare_input_sequence, load_and_setup_model
-from inference_trt import infer_tacotron2_trt, infer_waveglow_trt
-
-from trt_utils import load_engine
-
-import time
-import dllogger as DLLogger
-from dllogger import StdOutBackend, JSONStreamBackend, Verbosity
-
-# from apex import amp
-
-def parse_args(parser):
- """
- Parse commandline arguments.
- """
- parser.add_argument('--encoder', type=str, required=True,
- help='full path to the Encoder engine')
- parser.add_argument('--decoder', type=str, required=True,
- help='full path to the DecoderIter engine')
- parser.add_argument('--postnet', type=str, required=True,
- help='full path to the Postnet engine')
- parser.add_argument('--waveglow', type=str, required=True,
- help='full path to the WaveGlow engine')
- parser.add_argument('--waveglow-ckpt', type=str, default="",
- help='full path to the WaveGlow model checkpoint file')
- parser.add_argument('-s', '--sigma-infer', default=0.6, type=float)
- parser.add_argument('-sr', '--sampling-rate', default=22050, type=int,
- help='Sampling rate')
- parser.add_argument('--fp16', action='store_true',
- help='inference with FP16')
- parser.add_argument('--log-file', type=str, default='nvlog.json',
- help='Filename for logging')
- parser.add_argument('--stft-hop-length', type=int, default=256,
- help='STFT hop length for estimating audio length from mel size')
- parser.add_argument('--num-iters', type=int, default=10,
- help='Number of iterations')
- parser.add_argument('-il', '--input-length', type=int, default=64,
- help='Input length')
- parser.add_argument('-bs', '--batch-size', type=int, default=1,
- help='Batch size')
-
- return parser
-
-
-def print_stats(measurements_all):
-
- print(np.mean(measurements_all['latency'][1:]),
- np.mean(measurements_all['throughput'][1:]),
- np.mean(measurements_all['pre_processing'][1:]),
- np.mean(measurements_all['type_conversion'][1:])+
- np.mean(measurements_all['storage'][1:])+
- np.mean(measurements_all['data_transfer'][1:]),
- np.mean(measurements_all['num_mels_per_audio'][1:]))
-
- throughput = measurements_all['throughput']
- preprocessing = measurements_all['pre_processing']
- type_conversion = measurements_all['type_conversion']
- storage = measurements_all['storage']
- data_transfer = measurements_all['data_transfer']
- postprocessing = [sum(p) for p in zip(type_conversion,storage,data_transfer)]
- latency = measurements_all['latency']
- num_mels_per_audio = measurements_all['num_mels_per_audio']
-
- latency.sort()
-
- cf_50 = max(latency[:int(len(latency)*0.50)])
- cf_90 = max(latency[:int(len(latency)*0.90)])
- cf_95 = max(latency[:int(len(latency)*0.95)])
- cf_99 = max(latency[:int(len(latency)*0.99)])
- cf_100 = max(latency[:int(len(latency)*1.0)])
-
- print("Throughput average (samples/sec) = {:.4f}".format(np.mean(throughput)))
- print("Preprocessing average (seconds) = {:.4f}".format(np.mean(preprocessing)))
- print("Postprocessing average (seconds) = {:.4f}".format(np.mean(postprocessing)))
- print("Number of mels per audio average = {}".format(np.mean(num_mels_per_audio))) #
- print("Latency average (seconds) = {:.4f}".format(np.mean(latency)))
- print("Latency std (seconds) = {:.4f}".format(np.std(latency)))
- print("Latency cl 50 (seconds) = {:.4f}".format(cf_50))
- print("Latency cl 90 (seconds) = {:.4f}".format(cf_90))
- print("Latency cl 95 (seconds) = {:.4f}".format(cf_95))
- print("Latency cl 99 (seconds) = {:.4f}".format(cf_99))
- print("Latency cl 100 (seconds) = {:.4f}".format(cf_100))
-
-
-def main():
- """
- Launches text to speech (inference).
- Inference is executed on a single GPU.
- """
- parser = argparse.ArgumentParser(
- description='PyTorch Tacotron 2 Inference')
- parser = parse_args(parser)
- args, unknown_args = parser.parse_known_args()
-
- DLLogger.init(backends=[JSONStreamBackend(Verbosity.DEFAULT, args.log_file),
- StdOutBackend(Verbosity.VERBOSE)])
- for k,v in vars(args).items():
- DLLogger.log(step="PARAMETER", data={k:v})
- DLLogger.log(step="PARAMETER", data={'model_name':'Tacotron2_PyT'})
-
- measurements_all = {"pre_processing": [],
- "tacotron2_encoder_time": [],
- "tacotron2_decoder_time": [],
- "tacotron2_postnet_time": [],
- "tacotron2_latency": [],
- "waveglow_latency": [],
- "latency": [],
- "type_conversion": [],
- "data_transfer": [],
- "storage": [],
- "tacotron2_items_per_sec": [],
- "waveglow_items_per_sec": [],
- "num_mels_per_audio": [],
- "throughput": []}
-
- print("args:", args, unknown_args)
-
- torch.cuda.init()
-
- TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
- encoder = load_engine(args.encoder, TRT_LOGGER)
- decoder_iter = load_engine(args.decoder, TRT_LOGGER)
- postnet = load_engine(args.postnet, TRT_LOGGER)
- waveglow = load_engine(args.waveglow, TRT_LOGGER)
-
- if args.waveglow_ckpt != "":
- # setup denoiser using WaveGlow PyTorch checkpoint
- waveglow_ckpt = load_and_setup_model('WaveGlow', parser,
- args.waveglow_ckpt,
- fp16_run=args.fp16,
- cpu_run=False,
- forward_is_infer=True)
- denoiser = Denoiser(waveglow_ckpt).cuda()
- # after initialization, we don't need WaveGlow PyTorch checkpoint
- # anymore - deleting
- del waveglow_ckpt
- torch.cuda.empty_cache()
-
- # create TRT contexts for each engine
- encoder_context = encoder.create_execution_context()
- decoder_context = decoder_iter.create_execution_context()
- postnet_context = postnet.create_execution_context()
- waveglow_context = waveglow.create_execution_context()
-
-
- texts = ["The forms of printed letters should be beautiful, and that their arrangement on the page should be reasonable and a help to the shapeliness of the letters themselves. The forms of printed letters should be beautiful, and that their arrangement on the page should be reasonable and a help to the shapeliness of the letters themselves."]
- texts = [texts[0][:args.input_length]]
- texts = texts*args.batch_size
-
- warmup_iters = 3
-
- for iter in range(args.num_iters):
-
- measurements = {}
-
- with MeasureTime(measurements, "pre_processing"):
- sequences_padded, input_lengths = prepare_input_sequence(texts)
- sequences_padded = sequences_padded.to(torch.int32)
- input_lengths = input_lengths.to(torch.int32)
-
- with torch.no_grad():
- with MeasureTime(measurements, "latency"):
- with MeasureTime(measurements, "tacotron2_latency"):
- mel, mel_lengths = infer_tacotron2_trt(encoder, decoder_iter, postnet,
- encoder_context, decoder_context, postnet_context,
- sequences_padded, input_lengths, measurements, args.fp16, True)
-
- with MeasureTime(measurements, "waveglow_latency"):
- audios = infer_waveglow_trt(waveglow, waveglow_context, mel, measurements, args.fp16)
-
- num_mels = mel.size(0)*mel.size(2)
- num_samples = audios.size(0)*audios.size(1)
-
- with MeasureTime(measurements, "type_conversion"):
- audios = audios.float()
-
- with MeasureTime(measurements, "data_transfer"):
- audios = audios.cpu()
-
- with MeasureTime(measurements, "storage"):
- audios = audios.numpy()
- for i, audio in enumerate(audios):
- audio_path = "audio_"+str(i)+".wav"
- write(audio_path, args.sampling_rate,
- audio[:mel_lengths[i]*args.stft_hop_length])
-
- measurements['tacotron2_items_per_sec'] = num_mels/measurements['tacotron2_latency']
- measurements['waveglow_items_per_sec'] = num_samples/measurements['waveglow_latency']
- measurements['num_mels_per_audio'] = mel.size(2)
- measurements['throughput'] = num_samples/measurements['latency']
-
- if iter >= warmup_iters:
- for k,v in measurements.items():
- if k in measurements_all.keys():
- measurements_all[k].append(v)
- DLLogger.log(step=(iter-warmup_iters), data={k: v})
-
- DLLogger.flush()
-
- print_stats(measurements_all)
-
-if __name__ == '__main__':
- main()
diff --git a/demo/Tacotron2/tensorrt/trt_utils.py b/demo/Tacotron2/tensorrt/trt_utils.py
deleted file mode 100644
index e150983f..00000000
--- a/demo/Tacotron2/tensorrt/trt_utils.py
+++ /dev/null
@@ -1,154 +0,0 @@
-#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-import os
-import sys
-import tensorrt as trt
-
-# For a single dimension this will return the min, opt, and max size when given
-# input of either one or three (comma delimited) values
-# dim="1" or dim=1 returns (1, 1, 1)
-# dim="1,4,5" returns (1, 4, 5)
-def parse_dynamic_size(dim):
- split = str(dim).split(',')
- assert len(split) in (1,3) , "Dynamic size input must be either 1 or 3 comma-separated integers"
- ints = [int(i) for i in split]
-
- if len(ints) == 1:
- ints *= 3
-
- assert ints[0] <= ints[1] <= ints[2]
- return tuple(ints)
-
-
-def is_dimension_dynamic(dim):
- return dim is None or dim <= 0
-
-
-def is_shape_dynamic(shape):
- return any([is_dimension_dynamic(dim) for dim in shape])
-
-
-def run_trt_engine(context, engine, tensors):
-
- bindings = [0] * engine.num_io_tensors
-
- for i in range(engine.num_io_tensors):
- tensor_name = engine.get_tensor_name(i)
- if engine.get_tensor_mode(tensor_name) == trt.TensorIOMode.INPUT:
- tensor = tensors['inputs'][tensor_name]
- bindings[i] = tensor.data_ptr()
- if is_shape_dynamic(engine.get_tensor_shape(tensor_name)):
- context.set_input_shape(tensor_name, tensor.shape)
- elif engine.get_tensor_mode(tensor_name) == trt.TensorIOMode.OUTPUT:
- tensor = tensors['outputs'][tensor_name]
- bindings[i] = tensor.data_ptr()
-
- context.execute_v2(bindings=bindings)
-
-
-def load_engine(engine_filepath, trt_logger):
- with open(engine_filepath, "rb") as f, trt.Runtime(trt_logger) as runtime:
- engine = runtime.deserialize_cuda_engine(f.read())
- return engine
-
-
-def engine_info(engine_filepath):
-
- TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
- engine = load_engine(engine_filepath, TRT_LOGGER)
-
- binding_template = r"""
-{btype} {{
- name: "{bname}"
- data_type: {dtype}
- dims: {dims}
-}}"""
- type_mapping = {"DataType.HALF": "TYPE_FP16",
- "DataType.FLOAT": "TYPE_FP32",
- "DataType.INT32": "TYPE_INT32",
- "DataType.BOOL" : "TYPE_BOOL"}
-
- print("engine name", engine.name)
- start_dim = 1
- print("num_optimization_profiles", engine.num_optimization_profiles)
- print("device_memory_size:", engine.device_memory_size)
- print("max_workspace_size:", engine.get_memory_pool_limit(trt.MemoryPoolType.WORKSPACE))
- print("num_layers:", engine.num_layers)
-
- for i in range(engine.num_io_tensors):
- tensor_name = engine.get_tensor_name(i)
- btype = "input" if engine.get_tensor_mode(tensor_name) == trt.TensorIOMode.INPUT else "output"
- dtype = engine.get_tensor_dtype(tensor_name)
- bdims = engine.get_tensor_shape(tensor_name)
- config_values = {
- "btype": btype,
- "bname": tensor_name,
- "dtype": type_mapping[str(dtype)],
- "dims": list(bdims[start_dim:])
- }
- final_binding_str = binding_template.format_map(config_values)
- print(final_binding_str)
-
-
-def build_engine(model_file, shapes, max_ws=512*1024*1024, fp16=False, timing_cache=None):
-
- TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
- builder = trt.Builder(TRT_LOGGER)
-
- config = builder.create_builder_config()
- config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, max_ws)
- if fp16:
- config.flags |= 1 << int(trt.BuilderFlag.FP16)
- profile = builder.create_optimization_profile()
- for s in shapes:
- profile.set_shape(s['name'], min=s['min'], opt=s['opt'], max=s['max'])
- config.add_optimization_profile(profile)
-
- timing_cache_available = int(trt.__version__[0]) >= 8 and timing_cache != None
- # load global timing cache
- if timing_cache_available:
- if os.path.exists(timing_cache):
- with open(timing_cache, "rb") as f:
- cache = config.create_timing_cache(f.read())
- config.set_timing_cache(cache, ignore_mismatch = False)
- else:
- cache = config.create_timing_cache(b"")
- config.set_timing_cache(cache, ignore_mismatch = False)
-
- network_creation_flag = 0
- if "EXPLICIT_BATCH" in trt.NetworkDefinitionCreationFlag.__members__.keys():
- network_creation_flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
- network = builder.create_network(network_creation_flag)
-
- with trt.OnnxParser(network, TRT_LOGGER) as parser:
- with open(model_file, 'rb') as model:
- parsed = parser.parse(model.read())
- for i in range(parser.num_errors):
- print("TensorRT ONNX parser error:", parser.get_error(i))
- engine = builder.build_serialized_network(network, config=config)
-
- # save global timing cache
- if timing_cache_available:
- cache = config.get_timing_cache()
- with cache.serialize() as buffer:
- with open(timing_cache, "wb") as f:
- f.write(buffer)
- f.flush()
- os.fsync(f)
-
- return engine
diff --git a/demo/Tacotron2/test_infer.py b/demo/Tacotron2/test_infer.py
deleted file mode 100644
index 23816da9..00000000
--- a/demo/Tacotron2/test_infer.py
+++ /dev/null
@@ -1,198 +0,0 @@
-#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-import torch
-import argparse
-import numpy as np
-from scipy.io.wavfile import write
-
-from inference import MeasureTime, prepare_input_sequence, load_and_setup_model
-
-import dllogger as DLLogger
-from dllogger import StdOutBackend, JSONStreamBackend, Verbosity
-
-from waveglow.denoiser import Denoiser
-
-def parse_args(parser):
- """
- Parse commandline arguments.
- """
- parser.add_argument('--tacotron2', type=str,
- help='Full path to the Tacotron2 model checkpoint file')
- parser.add_argument('--waveglow', type=str,
- help='Full path to the WaveGlow model checkpoint file')
- parser.add_argument('-s', '--sigma-infer', default=0.6, type=float,
- help='Standard deviation of the Gaussian distribution')
- parser.add_argument('-d', '--denoising-strength', default=0.01, type=float,
- help='Denoising strength for removing model bias')
- parser.add_argument('-sr', '--sampling-rate', default=22050, type=int,
- help='Sampling rate')
-
- run_mode = parser.add_mutually_exclusive_group()
- run_mode.add_argument('--fp16', action='store_true',
- help='Run inference with FP16')
- run_mode.add_argument('--cpu', action='store_true',
- help='Run inference on CPU')
-
- parser.add_argument('--log-file', type=str, default='nvlog.json',
- help='Filename for logging')
- parser.add_argument('--stft-hop-length', type=int, default=256,
- help='STFT hop length for estimating audio length from mel size')
- parser.add_argument('--num-iters', type=int, default=10,
- help='Number of iterations')
- parser.add_argument('-il', '--input-length', type=int, default=64,
- help='Input length')
- parser.add_argument('-bs', '--batch-size', type=int, default=1,
- help='Batch size')
-
-
- return parser
-
-
-def print_stats(measurements_all):
-
- throughput = measurements_all['throughput']
- preprocessing = measurements_all['pre_processing']
- type_conversion = measurements_all['type_conversion']
- storage = measurements_all['storage']
- data_transfer = measurements_all['data_transfer']
- postprocessing = [sum(p) for p in zip(type_conversion,storage,data_transfer)]
- latency = measurements_all['latency']
- waveglow_latency = measurements_all['waveglow_latency']
- tacotron2_latency = measurements_all['tacotron2_latency']
- denoiser_latency = measurements_all['denoiser_latency']
- num_mels_per_audio = measurements_all['num_mels_per_audio']
-
- latency.sort()
-
- cf_50 = max(latency[:int(len(latency)*0.50)])
- cf_90 = max(latency[:int(len(latency)*0.90)])
- cf_95 = max(latency[:int(len(latency)*0.95)])
- cf_99 = max(latency[:int(len(latency)*0.99)])
- cf_100 = max(latency[:int(len(latency)*1.0)])
-
- print("Throughput average (samples/sec) = {:.0f}".format(np.mean(throughput)))
- print("Preprocessing average (seconds) = {:.4f}".format(np.mean(preprocessing)))
- print("Postprocessing average (seconds) = {:.4f}".format(np.mean(postprocessing)))
- print("Number of mels per audio average = {:.0f}".format(np.mean(num_mels_per_audio)))
- print("Tacotron2 latency average (seconds) = {:.2f}".format(np.mean(tacotron2_latency)))
- print("WaveGlow latency average (seconds) = {:.2f}".format(np.mean(waveglow_latency)))
- print("Denoiser latency average (seconds) = {:.4f}".format(np.mean(denoiser_latency)))
- print("Latency average (seconds) = {:.2f}".format(np.mean(latency)))
- print("Latency std (seconds) = {:.2f}".format(np.std(latency)))
- print("Latency cl 50 (seconds) = {:.2f}".format(cf_50))
- print("Latency cl 90 (seconds) = {:.2f}".format(cf_90))
- print("Latency cl 95 (seconds) = {:.2f}".format(cf_95))
- print("Latency cl 99 (seconds) = {:.2f}".format(cf_99))
- print("Latency cl 100 (seconds) = {:.2f}".format(cf_100))
-
-
-def main():
- """
- Launches text to speech (inference).
- Inference is executed on a single GPU or CPU.
- """
- parser = argparse.ArgumentParser(
- description='PyTorch Tacotron 2 Inference')
- parser = parse_args(parser)
- args, unknown_args = parser.parse_known_args()
-
- DLLogger.init(backends=[JSONStreamBackend(Verbosity.DEFAULT, args.log_file),
- StdOutBackend(Verbosity.VERBOSE)])
- for k,v in vars(args).items():
- DLLogger.log(step="PARAMETER", data={k:v})
- DLLogger.log(step="PARAMETER", data={'model_name':'Tacotron2_PyT'})
-
- measurements_all = {"pre_processing": [],
- "tacotron2_latency": [],
- "waveglow_latency": [],
- "denoiser_latency": [],
- "latency": [],
- "type_conversion": [],
- "data_transfer": [],
- "storage": [],
- "tacotron2_items_per_sec": [],
- "waveglow_items_per_sec": [],
- "num_mels_per_audio": [],
- "throughput": []}
-
- print("args:", args, unknown_args)
-
- tacotron2 = load_and_setup_model('Tacotron2', parser, args.tacotron2,
- args.fp16, args.cpu, forward_is_infer=True)
- waveglow = load_and_setup_model('WaveGlow', parser, args.waveglow,
- args.fp16, args.cpu, forward_is_infer=True)
- denoiser = Denoiser(waveglow)
- if not args.cpu:
- denoiser.cuda()
-
- texts = ["The forms of printed letters should be beautiful, and that their arrangement on the page should be reasonable and a help to the shapeliness of the letters themselves. The forms of printed letters should be beautiful, and that their arrangement on the page should be reasonable and a help to the shapeliness of the letters themselves."]
- texts = [texts[0][:args.input_length]]
- texts = texts*args.batch_size
-
- warmup_iters = 3
-
- for iter in range(args.num_iters):
-
- measurements = {}
-
- with MeasureTime(measurements, "pre_processing", args.cpu):
- sequences_padded, input_lengths = prepare_input_sequence(texts, args.cpu)
-
- with torch.no_grad():
- with MeasureTime(measurements, "latency", args.cpu):
- with MeasureTime(measurements, "tacotron2_latency", args.cpu):
- mel, mel_lengths, _ = tacotron2.infer(sequences_padded, input_lengths)
-
- with MeasureTime(measurements, "waveglow_latency", args.cpu):
- audios = waveglow.infer(mel, sigma=args.sigma_infer)
-
- num_mels = mel.size(0)*mel.size(2)
- num_samples = audios.size(0)*audios.size(1)
-
- with MeasureTime(measurements, "type_conversion", args.cpu):
- audios = audios.float()
-
- with torch.no_grad(), MeasureTime(measurements, "denoiser_latency", args.cpu):
- audios = denoiser(audios, strength=args.denoising_strength).squeeze(1)
-
- with MeasureTime(measurements, "data_transfer", args.cpu):
- audios = audios.cpu()
-
- with MeasureTime(measurements, "storage", args.cpu):
- audios = audios.numpy()
- for i, audio in enumerate(audios):
- audio_path = "audio_"+str(i)+".wav"
- write(audio_path, args.sampling_rate,
- audio[:mel_lengths[i]*args.stft_hop_length])
-
- measurements['tacotron2_items_per_sec'] = num_mels/measurements['tacotron2_latency']
- measurements['waveglow_items_per_sec'] = num_samples/measurements['waveglow_latency']
- measurements['num_mels_per_audio'] = mel.size(2)
- measurements['throughput'] = num_samples/measurements['latency']
-
- if iter >= warmup_iters:
- for k,v in measurements.items():
- measurements_all[k].append(v)
- DLLogger.log(step=(iter-warmup_iters), data={k: v})
-
- DLLogger.flush()
-
- print_stats(measurements_all)
-
-if __name__ == '__main__':
- main()
diff --git a/demo/Tacotron2/test_infer.sh b/demo/Tacotron2/test_infer.sh
deleted file mode 100644
index 103fb941..00000000
--- a/demo/Tacotron2/test_infer.sh
+++ /dev/null
@@ -1,126 +0,0 @@
-#!/bin/bash
-#
-# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-BATCH_SIZE=1
-INPUT_LENGTH=128
-NUM_ITERS=1003 # extra 3 iterations for warmup
-TACOTRON2_CKPT="nvidia_tacotron2pyt_fp16_20190427"
-WAVEGLOW_CKPT="nvidia_waveglow256pyt_fp16"
-RUN_MODE="" # = fp32
-LOG_RUN_MODE="gpu_fp32"
-TEST_PROGRAM="test_infer.py"
-WN_CHANNELS=512
-LOG_SUFFIX_ADD="" #additional info, e.g., GPU type
-
-while [ -n "$1" ]
-do
- case "$1" in
- -bs|--batch-size)
- BATCH_SIZE="$2"
- shift
- ;;
- -il|--input-length)
- INPUT_LENGTH="$2"
- shift
- ;;
- --num-iters)
- NUM_ITERS="$2"
- shift
- ;;
- --test)
- TEST_PROGRAM="$2"
- shift
- ;;
- --tacotron2)
- TACOTRON2_CKPT="$2"
- shift
- ;;
- --encoder)
- ENCODER_CKPT="$2"
- shift
- ;;
- --decoder)
- DECODER_CKPT="$2"
- shift
- ;;
- --postnet)
- POSTNET_CKPT="$2"
- shift
- ;;
- --waveglow)
- WAVEGLOW_CKPT="$2"
- shift
- ;;
- --wn-channels)
- WN_CHANNELS="$2"
- shift
- ;;
- --cpu)
- RUN_MODE="--cpu"
- LOG_RUN_MODE="cpu_fp32"
- ;;
- --fp16)
- RUN_MODE="--fp16"
- LOG_RUN_MODE="gpu_fp16"
- ;;
- --log-suffix)
- LOG_SUFFIX_ADD="$2"
- shift
- ;;
- *)
- echo "Option $1 not recognized"
- esac
- shift
-done
-
-LOG_SUFFIX=bs${BATCH_SIZE}_il${INPUT_LENGTH}_${LOG_RUN_MODE}_wn${WN_CHANNELS}_${LOG_SUFFIX_ADD}
-NVLOG_FILE=nvlog_${LOG_SUFFIX}.json
-TMP_LOGFILE=tmp_log_${LOG_SUFFIX}.log
-LOGFILE=log_${LOG_SUFFIX}.log
-
-
-if [ "$TEST_PROGRAM" = "tensorrt/test_infer_trt.py" ]
-then
- TACOTRON2_PARAMS="--encoder $ENCODER_CKPT --decoder $DECODER_CKPT --postnet $POSTNET_CKPT"
-else
- TACOTRON2_PARAMS="--tacotron2 $TACOTRON2_CKPT"
-fi
-
-set -x
-python3 $TEST_PROGRAM \
- $TACOTRON2_PARAMS \
- --waveglow $WAVEGLOW_CKPT \
- --batch-size $BATCH_SIZE \
- --input-length $INPUT_LENGTH \
- --log-file $NVLOG_FILE \
- --num-iters $NUM_ITERS \
- --wn-channels $WN_CHANNELS \
- $RUN_MODE \
- |& tee $TMP_LOGFILE
-set +x
-
-
-PERF=$(cat $TMP_LOGFILE | grep -F 'Throughput average (samples/sec)' | awk -F'= ' '{print $2}')
-NUM_MELS=$(cat $TMP_LOGFILE | grep -F 'Number of mels per audio average' | awk -F'= ' '{print $2}')
-LATENCY=$(cat $TMP_LOGFILE | grep -F 'Latency average (seconds)' | awk -F'= ' '{print $2}')
-LATENCYSTD=$(cat $TMP_LOGFILE | grep -F 'Latency std (seconds)' | awk -F'= ' '{print $2}')
-LATENCY50=$(cat $TMP_LOGFILE | grep -F 'Latency cl 50 (seconds)' | awk -F'= ' '{print $2}')
-LATENCY90=$(cat $TMP_LOGFILE | grep -F 'Latency cl 90 (seconds)' | awk -F'= ' '{print $2}')
-LATENCY95=$(cat $TMP_LOGFILE | grep -F 'Latency cl 95 (seconds)' | awk -F'= ' '{print $2}')
-LATENCY99=$(cat $TMP_LOGFILE | grep -F 'Latency cl 99 (seconds)' | awk -F'= ' '{print $2}')
-
-echo "$BATCH_SIZE,$INPUT_LENGTH,$LOG_RUN_MODE,$NUM_ITERS,$LATENCY,$LATENCYSTD,$LATENCY50,$LATENCY90,$LATENCY95,$LATENCY99,$PERF,$NUM_MELS" | tee $LOGFILE
diff --git a/demo/Tacotron2/train.py b/demo/Tacotron2/train.py
deleted file mode 100644
index 55a9e56f..00000000
--- a/demo/Tacotron2/train.py
+++ /dev/null
@@ -1,535 +0,0 @@
-#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-import os
-import time
-import argparse
-import numpy as np
-from contextlib import contextmanager
-
-import torch
-from torch.utils.data import DataLoader
-from torch.autograd import Variable
-from torch.nn.parameter import Parameter
-
-import torch.distributed as dist
-from torch.utils.data.distributed import DistributedSampler
-
-from apex.parallel import DistributedDataParallel as DDP
-
-import models
-import loss_functions
-import data_functions
-
-import dllogger as DLLogger
-from dllogger import StdOutBackend, JSONStreamBackend, Verbosity
-
-from scipy.io.wavfile import write as write_wav
-
-from apex import amp
-amp.lists.functional_overrides.FP32_FUNCS.remove('softmax')
-amp.lists.functional_overrides.FP16_FUNCS.append('softmax')
-
-
-def parse_args(parser):
- """
- Parse commandline arguments.
- """
-
- parser.add_argument('-o', '--output', type=str, required=True,
- help='Directory to save checkpoints')
- parser.add_argument('-d', '--dataset-path', type=str,
- default='./', help='Path to dataset')
- parser.add_argument('-m', '--model-name', type=str, default='', required=True,
- help='Model to train')
- parser.add_argument('--log-file', type=str, default='nvlog.json',
- help='Filename for logging')
- parser.add_argument('--anneal-steps', nargs='*',
- help='Epochs after which decrease learning rate')
- parser.add_argument('--anneal-factor', type=float, choices=[0.1, 0.3], default=0.1,
- help='Factor for annealing learning rate')
-
- # training
- training = parser.add_argument_group('training setup')
- training.add_argument('--epochs', type=int, required=True,
- help='Number of total epochs to run')
- training.add_argument('--epochs-per-checkpoint', type=int, default=50,
- help='Number of epochs per checkpoint')
- training.add_argument('--checkpoint-path', type=str, default='',
- help='Checkpoint path to resume training')
- training.add_argument('--resume-from-last', action='store_true',
- help='Resumes training from the last checkpoint; uses the directory provided with \'--output\' option to search for the checkpoint \"checkpoint__last.pt\"')
- training.add_argument('--dynamic-loss-scaling', type=bool, default=True,
- help='Enable dynamic loss scaling')
- training.add_argument('--amp', action='store_true',
- help='Enable AMP')
- training.add_argument('--cudnn-enabled', action='store_true',
- help='Enable cudnn')
- training.add_argument('--cudnn-benchmark', action='store_true',
- help='Run cudnn benchmark')
- training.add_argument('--disable-uniform-initialize-bn-weight', action='store_true',
- help='disable uniform initialization of batchnorm layer weight')
-
- optimization = parser.add_argument_group('optimization setup')
- optimization.add_argument(
- '--use-saved-learning-rate', default=False, type=bool)
- optimization.add_argument('-lr', '--learning-rate', type=float, required=True,
- help='Learing rate')
- optimization.add_argument('--weight-decay', default=1e-6, type=float,
- help='Weight decay')
- optimization.add_argument('--grad-clip-thresh', default=1.0, type=float,
- help='Clip threshold for gradients')
- optimization.add_argument('-bs', '--batch-size', type=int, required=True,
- help='Batch size per GPU')
- optimization.add_argument('--grad-clip', default=5.0, type=float,
- help='Enables gradient clipping and sets maximum gradient norm value')
-
- # dataset parameters
- dataset = parser.add_argument_group('dataset parameters')
- dataset.add_argument('--load-mel-from-disk', action='store_true',
- help='Loads mel spectrograms from disk instead of computing them on the fly')
- dataset.add_argument('--training-files',
- default='filelists/ljs_audio_text_train_filelist.txt',
- type=str, help='Path to training filelist')
- dataset.add_argument('--validation-files',
- default='filelists/ljs_audio_text_val_filelist.txt',
- type=str, help='Path to validation filelist')
- dataset.add_argument('--text-cleaners', nargs='*',
- default=['english_cleaners'], type=str,
- help='Type of text cleaners for input text')
-
- # audio parameters
- audio = parser.add_argument_group('audio parameters')
- audio.add_argument('--max-wav-value', default=32768.0, type=float,
- help='Maximum audiowave value')
- audio.add_argument('--sampling-rate', default=22050, type=int,
- help='Sampling rate')
- audio.add_argument('--filter-length', default=1024, type=int,
- help='Filter length')
- audio.add_argument('--hop-length', default=256, type=int,
- help='Hop (stride) length')
- audio.add_argument('--win-length', default=1024, type=int,
- help='Window length')
- audio.add_argument('--mel-fmin', default=0.0, type=float,
- help='Minimum mel frequency')
- audio.add_argument('--mel-fmax', default=8000.0, type=float,
- help='Maximum mel frequency')
-
- distributed = parser.add_argument_group('distributed setup')
- # distributed.add_argument('--distributed-run', default=True, type=bool,
- # help='enable distributed run')
- distributed.add_argument('--rank', default=0, type=int,
- help='Rank of the process, do not set! Done by multiproc module')
- distributed.add_argument('--world-size', default=1, type=int,
- help='Number of processes, do not set! Done by multiproc module')
- distributed.add_argument('--dist-url', type=str, default='tcp://localhost:23456',
- help='Url used to set up distributed training')
- distributed.add_argument('--group-name', type=str, default='group_name',
- required=False, help='Distributed group name')
- distributed.add_argument('--dist-backend', default='nccl', type=str, choices={'nccl'},
- help='Distributed run backend')
-
- benchmark = parser.add_argument_group('benchmark')
- benchmark.add_argument('--bench-class', type=str, default='')
-
- return parser
-
-
-def reduce_tensor(tensor, num_gpus):
- rt = tensor.clone()
- dist.all_reduce(rt, op=dist.reduce_op.SUM)
- rt /= num_gpus
- return rt
-
-
-def init_distributed(args, world_size, rank, group_name):
- assert torch.cuda.is_available(), "Distributed mode requires CUDA."
- print("Initializing Distributed")
-
- # Set cuda device so everything is done on the right GPU.
- torch.cuda.set_device(rank % torch.cuda.device_count())
-
- # Initialize distributed communication
- dist.init_process_group(
- backend=args.dist_backend, init_method=args.dist_url,
- world_size=world_size, rank=rank, group_name=group_name)
-
- print("Done initializing distributed")
-
-
-def save_checkpoint(model, optimizer, epoch, config, amp_run, output_dir, model_name,
- local_rank, world_size):
-
- random_rng_state = torch.random.get_rng_state().cuda()
- cuda_rng_state = torch.cuda.get_rng_state(local_rank).cuda()
-
- random_rng_states_all = [torch.empty_like(random_rng_state) for _ in range(world_size)]
- cuda_rng_states_all = [torch.empty_like(cuda_rng_state) for _ in range(world_size)]
-
- if world_size > 1:
- dist.all_gather(random_rng_states_all, random_rng_state)
- dist.all_gather(cuda_rng_states_all, cuda_rng_state)
- else:
- random_rng_states_all = [random_rng_state]
- cuda_rng_states_all = [cuda_rng_state]
-
- random_rng_states_all = torch.stack(random_rng_states_all).cpu()
- cuda_rng_states_all = torch.stack(cuda_rng_states_all).cpu()
-
- if local_rank == 0:
- checkpoint = {'epoch': epoch,
- 'cuda_rng_state_all': cuda_rng_states_all,
- 'random_rng_states_all': random_rng_states_all,
- 'config': config,
- 'state_dict': model.state_dict(),
- 'optimizer': optimizer.state_dict()}
- if amp_run:
- checkpoint['amp'] = amp.state_dict()
-
- checkpoint_filename = "checkpoint_{}_{}.pt".format(model_name, epoch)
- checkpoint_path = os.path.join(
- output_dir, checkpoint_filename)
- print("Saving model and optimizer state at epoch {} to {}".format(
- epoch, checkpoint_path))
- torch.save(checkpoint, checkpoint_path)
-
- symlink_src = checkpoint_filename
- symlink_dst = os.path.join(
- output_dir, "checkpoint_{}_last.pt".format(model_name))
- if os.path.exists(symlink_dst) and os.path.islink(symlink_dst):
- print("|||| Updating symlink", symlink_dst, "to point to", symlink_src)
- os.remove(symlink_dst)
-
- os.symlink(symlink_src, symlink_dst)
-
-
-def get_last_checkpoint_filename(output_dir, model_name):
- symlink = os.path.join(output_dir, "checkpoint_{}_last.pt".format(model_name))
- if os.path.exists(symlink):
- print("|||| Loading checkpoint from symlink", symlink)
- return os.path.join(output_dir, os.readlink(symlink))
- else:
- print("|||| No last checkpoint available - starting from epoch 0 ")
- return ""
-
-
-def load_checkpoint(model, optimizer, epoch, config, amp_run, filepath, local_rank):
-
- checkpoint = torch.load(filepath, map_location='cpu')
-
- epoch[0] = checkpoint['epoch']+1
- device_id = local_rank % torch.cuda.device_count()
- torch.cuda.set_rng_state(checkpoint['cuda_rng_state_all'][device_id])
- torch.random.set_rng_state(checkpoint['random_rng_states_all'][device_id])
- config = checkpoint['config']
- model.load_state_dict(checkpoint['state_dict'])
- optimizer.load_state_dict(checkpoint['optimizer'])
-
- if amp_run:
- amp.load_state_dict(checkpoint['amp'])
-
-
-# adapted from: https://discuss.pytorch.org/t/opinion-eval-should-be-a-context-manager/18998/3
-# Following snippet is licensed under MIT license
-
-@contextmanager
-def evaluating(model):
- '''Temporarily switch to evaluation mode.'''
- istrain = model.training
- try:
- model.eval()
- yield model
- finally:
- if istrain:
- model.train()
-
-
-def validate(model, criterion, valset, epoch, batch_iter, batch_size,
- world_size, collate_fn, distributed_run, rank, batch_to_gpu):
- """Handles all the validation scoring and printing"""
- with evaluating(model), torch.no_grad():
- val_sampler = DistributedSampler(valset) if distributed_run else None
- val_loader = DataLoader(valset, num_workers=1, shuffle=False,
- sampler=val_sampler,
- batch_size=batch_size, pin_memory=False,
- collate_fn=collate_fn)
-
- val_loss = 0.0
- num_iters = 0
- val_items_per_sec = 0.0
- for i, batch in enumerate(val_loader):
- torch.cuda.synchronize()
- iter_start_time = time.perf_counter()
-
- x, y, num_items = batch_to_gpu(batch)
- y_pred = model(x)
- loss = criterion(y_pred, y)
- if distributed_run:
- reduced_val_loss = reduce_tensor(loss.data, world_size).item()
- reduced_num_items = reduce_tensor(num_items.data, 1).item()
- else: #
- reduced_val_loss = loss.item()
- reduced_num_items = num_items.item()
- val_loss += reduced_val_loss
-
- torch.cuda.synchronize()
- iter_stop_time = time.perf_counter()
- iter_time = iter_stop_time - iter_start_time
-
- items_per_sec = reduced_num_items/iter_time
- DLLogger.log(step=(epoch, batch_iter, i), data={'val_items_per_sec': items_per_sec})
- val_items_per_sec += items_per_sec
- num_iters += 1
-
- val_loss = val_loss/(i + 1)
-
- DLLogger.log(step=(epoch,), data={'val_loss': val_loss})
- DLLogger.log(step=(epoch,), data={'val_items_per_sec':
- (val_items_per_sec/num_iters if num_iters > 0 else 0.0)})
-
- return val_loss
-
-def adjust_learning_rate(iteration, epoch, optimizer, learning_rate,
- anneal_steps, anneal_factor, rank):
-
- p = 0
- if anneal_steps is not None:
- for i, a_step in enumerate(anneal_steps):
- if epoch >= int(a_step):
- p = p+1
-
- if anneal_factor == 0.3:
- lr = learning_rate*((0.1 ** (p//2))*(1.0 if p % 2 == 0 else 0.3))
- else:
- lr = learning_rate*(anneal_factor ** p)
-
- if optimizer.param_groups[0]['lr'] != lr:
- DLLogger.log(step=(epoch, iteration), data={'learning_rate changed': str(optimizer.param_groups[0]['lr'])+" -> "+str(lr)})
-
- for param_group in optimizer.param_groups:
- param_group['lr'] = lr
-
-
-def main():
-
- parser = argparse.ArgumentParser(description='PyTorch Tacotron 2 Training')
- parser = parse_args(parser)
- args, _ = parser.parse_known_args()
-
- if 'LOCAL_RANK' in os.environ and 'WORLD_SIZE' in os.environ:
- local_rank = int(os.environ['LOCAL_RANK'])
- world_size = int(os.environ['WORLD_SIZE'])
- else:
- local_rank = args.rank
- world_size = args.world_size
-
- distributed_run = world_size > 1
-
- if local_rank == 0:
- DLLogger.init(backends=[JSONStreamBackend(Verbosity.DEFAULT,
- args.output+'/'+args.log_file),
- StdOutBackend(Verbosity.VERBOSE)])
- else:
- DLLogger.init(backends=[])
-
- for k,v in vars(args).items():
- DLLogger.log(step="PARAMETER", data={k:v})
- DLLogger.log(step="PARAMETER", data={'model_name':'Tacotron2_PyT'})
-
- model_name = args.model_name
- parser = models.parse_model_args(model_name, parser)
- args, _ = parser.parse_known_args()
-
- torch.backends.cudnn.enabled = args.cudnn_enabled
- torch.backends.cudnn.benchmark = args.cudnn_benchmark
-
- if distributed_run:
- init_distributed(args, world_size, local_rank, args.group_name)
-
- torch.cuda.synchronize()
- run_start_time = time.perf_counter()
-
- model_config = models.get_model_config(model_name, args)
- model = models.get_model(model_name, model_config,
- to_cuda=True,
- uniform_initialize_bn_weight=not args.disable_uniform_initialize_bn_weight)
-
- if not args.amp and distributed_run:
- model = DDP(model)
-
- optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate,
- weight_decay=args.weight_decay)
-
- if args.amp:
- model, optimizer = amp.initialize(model, optimizer, opt_level="O1")
- if distributed_run:
- model = DDP(model)
-
- try:
- sigma = args.sigma
- except AttributeError:
- sigma = None
-
- start_epoch = [0]
-
- if args.resume_from_last:
- args.checkpoint_path = get_last_checkpoint_filename(args.output, model_name)
-
- if args.checkpoint_path is not "":
- load_checkpoint(model, optimizer, start_epoch, model_config,
- args.amp, args.checkpoint_path, local_rank)
-
- start_epoch = start_epoch[0]
-
- criterion = loss_functions.get_loss_function(model_name, sigma)
-
- try:
- n_frames_per_step = args.n_frames_per_step
- except AttributeError:
- n_frames_per_step = None
-
- collate_fn = data_functions.get_collate_function(
- model_name, n_frames_per_step)
- trainset = data_functions.get_data_loader(
- model_name, args.dataset_path, args.training_files, args)
- if distributed_run:
- train_sampler = DistributedSampler(trainset)
- shuffle = False
- else:
- train_sampler = None
- shuffle = True
-
- train_loader = DataLoader(trainset, num_workers=1, shuffle=shuffle,
- sampler=train_sampler,
- batch_size=args.batch_size, pin_memory=False,
- drop_last=True, collate_fn=collate_fn)
-
- valset = data_functions.get_data_loader(
- model_name, args.dataset_path, args.validation_files, args)
-
- batch_to_gpu = data_functions.get_batch_to_gpu(model_name)
-
- iteration = 0
- train_epoch_items_per_sec = 0.0
- val_loss = 0.0
- num_iters = 0
-
- model.train()
-
- for epoch in range(start_epoch, args.epochs):
- torch.cuda.synchronize()
- epoch_start_time = time.perf_counter()
- # used to calculate avg items/sec over epoch
- reduced_num_items_epoch = 0
-
- train_epoch_items_per_sec = 0.0
-
- num_iters = 0
- reduced_loss = 0
-
- # if overflow at the last iteration then do not save checkpoint
- overflow = False
-
- if distributed_run:
- train_loader.sampler.set_epoch(epoch)
-
- for i, batch in enumerate(train_loader):
- torch.cuda.synchronize()
- iter_start_time = time.perf_counter()
- DLLogger.log(step=(epoch, i),
- data={'glob_iter/iters_per_epoch': str(iteration)+"/"+str(len(train_loader))})
-
- adjust_learning_rate(iteration, epoch, optimizer, args.learning_rate,
- args.anneal_steps, args.anneal_factor, local_rank)
-
- model.zero_grad()
- x, y, num_items = batch_to_gpu(batch)
-
- y_pred = model(x)
- loss = criterion(y_pred, y)
-
- if distributed_run:
- reduced_loss = reduce_tensor(loss.data, world_size).item()
- reduced_num_items = reduce_tensor(num_items.data, 1).item()
- else:
- reduced_loss = loss.item()
- reduced_num_items = num_items.item()
- if np.isnan(reduced_loss):
- raise Exception("loss is NaN")
-
- DLLogger.log(step=(epoch,i), data={'train_loss': reduced_loss})
-
- num_iters += 1
-
- # accumulate number of items processed in this epoch
- reduced_num_items_epoch += reduced_num_items
-
- if args.amp:
- with amp.scale_loss(loss, optimizer) as scaled_loss:
- scaled_loss.backward()
- grad_norm = torch.nn.utils.clip_grad_norm_(
- amp.master_params(optimizer), args.grad_clip_thresh)
- else:
- loss.backward()
- grad_norm = torch.nn.utils.clip_grad_norm_(
- model.parameters(), args.grad_clip_thresh)
-
- optimizer.step()
-
- torch.cuda.synchronize()
- iter_stop_time = time.perf_counter()
- iter_time = iter_stop_time - iter_start_time
- items_per_sec = reduced_num_items/iter_time
- train_epoch_items_per_sec += items_per_sec
-
- DLLogger.log(step=(epoch, i), data={'train_items_per_sec': items_per_sec})
- DLLogger.log(step=(epoch, i), data={'train_iter_time': iter_time})
- iteration += 1
-
- torch.cuda.synchronize()
- epoch_stop_time = time.perf_counter()
- epoch_time = epoch_stop_time - epoch_start_time
-
- DLLogger.log(step=(epoch,), data={'train_items_per_sec':
- (train_epoch_items_per_sec/num_iters if num_iters > 0 else 0.0)})
- DLLogger.log(step=(epoch,), data={'train_loss': reduced_loss})
- DLLogger.log(step=(epoch,), data={'train_epoch_time': epoch_time})
-
- val_loss = validate(model, criterion, valset, epoch, iteration,
- args.batch_size, world_size, collate_fn,
- distributed_run, local_rank, batch_to_gpu)
-
- if (epoch % args.epochs_per_checkpoint == 0) and args.bench_class == "":
- save_checkpoint(model, optimizer, epoch, model_config,
- args.amp, args.output, args.model_name,
- local_rank, world_size)
- if local_rank == 0:
- DLLogger.flush()
-
- torch.cuda.synchronize()
- run_stop_time = time.perf_counter()
- run_time = run_stop_time - run_start_time
- DLLogger.log(step=tuple(), data={'run_time': run_time})
- DLLogger.log(step=tuple(), data={'val_loss': val_loss})
- DLLogger.log(step=tuple(), data={'train_items_per_sec':
- (train_epoch_items_per_sec/num_iters if num_iters > 0 else 0.0)})
-
- if local_rank == 0:
- DLLogger.flush()
-
-if __name__ == '__main__':
- main()
diff --git a/demo/Tacotron2/waveglow/arg_parser.py b/demo/Tacotron2/waveglow/arg_parser.py
deleted file mode 100644
index 7002bf6d..00000000
--- a/demo/Tacotron2/waveglow/arg_parser.py
+++ /dev/null
@@ -1,55 +0,0 @@
-#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-import argparse
-
-def parse_waveglow_args(parent, add_help=False):
- """
- Parse commandline arguments.
- """
- parser = argparse.ArgumentParser(parents=[parent], add_help=add_help)
-
- # misc parameters
- parser.add_argument('--n-mel-channels', default=80, type=int,
- help='Number of bins in mel-spectrograms')
-
- # glow parameters
- parser.add_argument('--flows', default=12, type=int,
- help='Number of steps of flow')
- parser.add_argument('--groups', default=8, type=int,
- help='Number of samples in a group processed by the steps of flow')
- parser.add_argument('--early-every', default=4, type=int,
- help='Determines how often (i.e., after how many coupling layers) \
- a number of channels (defined by --early-size parameter) are output\
- to the loss function')
- parser.add_argument('--early-size', default=2, type=int,
- help='Number of channels output to the loss function')
- parser.add_argument('--sigma', default=1.0, type=float,
- help='Standard deviation used for sampling from Gaussian')
- parser.add_argument('--segment-length', default=4000, type=int,
- help='Segment length (audio samples) processed per iteration')
-
- # wavenet parameters
- wavenet = parser.add_argument_group('WaveNet parameters')
- wavenet.add_argument('--wn-kernel-size', default=3, type=int,
- help='Kernel size for dialted convolution in the affine coupling layer (WN)')
- wavenet.add_argument('--wn-channels', default=512, type=int,
- help='Number of channels in WN')
- wavenet.add_argument('--wn-layers', default=8, type=int,
- help='Number of layers in WN')
-
- return parser
diff --git a/demo/Tacotron2/waveglow/data_function.py b/demo/Tacotron2/waveglow/data_function.py
deleted file mode 100644
index 62076eba..00000000
--- a/demo/Tacotron2/waveglow/data_function.py
+++ /dev/null
@@ -1,78 +0,0 @@
-#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-import torch
-import random
-import common.layers as layers
-from common.utils import load_wav_to_torch, load_filepaths_and_text, to_gpu
-
-
-class MelAudioLoader(torch.utils.data.Dataset):
- """
- 1) loads audio,text pairs
- 2) computes mel-spectrograms from audio files.
- """
-
- def __init__(self, dataset_path, audiopaths_and_text, args):
- self.audiopaths_and_text = load_filepaths_and_text(dataset_path, audiopaths_and_text)
- self.max_wav_value = args.max_wav_value
- self.sampling_rate = args.sampling_rate
- self.stft = layers.TacotronSTFT(
- args.filter_length, args.hop_length, args.win_length,
- args.n_mel_channels, args.sampling_rate, args.mel_fmin,
- args.mel_fmax)
- self.segment_length = args.segment_length
- random.seed(1234)
- random.shuffle(self.audiopaths_and_text)
-
- def get_mel_audio_pair(self, filename):
- audio, sampling_rate = load_wav_to_torch(filename)
-
- if sampling_rate != self.stft.sampling_rate:
- raise ValueError("{} {} SR doesn't match target {} SR".format(
- sampling_rate, self.stft.sampling_rate))
-
- # Take segment
- if audio.size(0) >= self.segment_length:
- max_audio_start = audio.size(0) - self.segment_length
- audio_start = random.randint(0, max_audio_start)
- audio = audio[audio_start:audio_start+self.segment_length]
- else:
- audio = torch.nn.functional.pad(
- audio, (0, self.segment_length - audio.size(0)), 'constant').data
-
- audio = audio / self.max_wav_value
- audio_norm = audio.unsqueeze(0)
- audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False)
- melspec = self.stft.mel_spectrogram(audio_norm)
- melspec = melspec.squeeze(0)
-
- return (melspec, audio, len(audio))
-
- def __getitem__(self, index):
- return self.get_mel_audio_pair(self.audiopaths_and_text[index][0])
-
- def __len__(self):
- return len(self.audiopaths_and_text)
-
-
-def batch_to_gpu(batch):
- x, y, len_y = batch
- x = to_gpu(x).float()
- y = to_gpu(y).float()
- len_y = to_gpu(torch.sum(len_y))
- return ((x, y), y, len_y)
diff --git a/demo/Tacotron2/waveglow/denoiser.py b/demo/Tacotron2/waveglow/denoiser.py
deleted file mode 100644
index 5dc2d789..00000000
--- a/demo/Tacotron2/waveglow/denoiser.py
+++ /dev/null
@@ -1,53 +0,0 @@
-#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-import sys
-sys.path.append('tacotron2')
-import torch
-from common.layers import STFT
-
-
-class Denoiser(torch.nn.Module):
- """ Removes model bias from audio produced with waveglow """
-
- def __init__(self, waveglow, filter_length=1024, n_overlap=4,
- win_length=1024, mode='zeros'):
- super(Denoiser, self).__init__()
- device = waveglow.upsample.weight.device
- dtype = waveglow.upsample.weight.dtype
- self.stft = STFT(filter_length=filter_length,
- hop_length=int(filter_length/n_overlap),
- win_length=win_length).to(device)
- if mode == 'zeros':
- mel_input = torch.zeros((1, 80, 88), dtype=dtype, device=device)
- elif mode == 'normal':
- mel_input = torch.randn((1, 80, 88), dtype=dtype, device=device)
- else:
- raise Exception("Mode {} if not supported".format(mode))
-
- with torch.no_grad():
- bias_audio = waveglow.infer(mel_input, sigma=0.0).float()
- bias_spec, _ = self.stft.transform(bias_audio)
-
- self.register_buffer('bias_spec', bias_spec[:, :, 0][:, :, None])
-
- def forward(self, audio, strength=0.1):
- audio_spec, audio_angles = self.stft.transform(audio)
- audio_spec_denoised = audio_spec - self.bias_spec * strength
- audio_spec_denoised = torch.clamp(audio_spec_denoised, 0.0)
- audio_denoised = self.stft.inverse(audio_spec_denoised, audio_angles)
- return audio_denoised
diff --git a/demo/Tacotron2/waveglow/loss_function.py b/demo/Tacotron2/waveglow/loss_function.py
deleted file mode 100644
index 75620df9..00000000
--- a/demo/Tacotron2/waveglow/loss_function.py
+++ /dev/null
@@ -1,38 +0,0 @@
-#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-import torch
-
-class WaveGlowLoss(torch.nn.Module):
- def __init__(self, sigma=1.0):
- super(WaveGlowLoss, self).__init__()
- self.sigma = sigma
-
- def forward(self, model_output, clean_audio):
- # clean_audio is unused;
- z, log_s_list, log_det_W_list = model_output
- for i, log_s in enumerate(log_s_list):
- if i == 0:
- log_s_total = torch.sum(log_s)
- log_det_W_total = log_det_W_list[i]
- else:
- log_s_total = log_s_total + torch.sum(log_s)
- log_det_W_total += log_det_W_list[i]
-
- loss = torch.sum(
- z * z) / (2 * self.sigma * self.sigma) - log_s_total - log_det_W_total # noqa: E501
- return loss / (z.size(0) * z.size(1) * z.size(2))
diff --git a/demo/Tacotron2/waveglow/model.py b/demo/Tacotron2/waveglow/model.py
deleted file mode 100644
index 00a26421..00000000
--- a/demo/Tacotron2/waveglow/model.py
+++ /dev/null
@@ -1,343 +0,0 @@
-#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
-# SPDX-License-Identifier: Apache-2.0
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-
-import torch
-from torch.autograd import Variable
-import torch.nn.functional as F
-import numpy as np
-
-
-@torch.jit.script
-def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
- n_channels_int = n_channels[0]
- in_act = input_a + input_b
- t_act = torch.tanh(in_act[:, :n_channels_int, :])
- s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
- acts = t_act * s_act
- return acts
-
-
-class Invertible1x1Conv(torch.nn.Module):
- """
- The layer outputs both the convolution, and the log determinant
- of its weight matrix. If reverse=True it does convolution with
- inverse
- """
-
- def __init__(self, c):
- super(Invertible1x1Conv, self).__init__()
- self.conv = torch.nn.Conv1d(c, c, kernel_size=1, stride=1, padding=0,
- bias=False)
-
- # Sample a random orthonormal matrix to initialize weights
- W = torch.qr(torch.FloatTensor(c, c).normal_())[0]
-
- # Ensure determinant is 1.0 not -1.0
- if torch.det(W) < 0:
- W[:, 0] = -1 * W[:, 0]
- W = W.view(c, c, 1)
- W = W.contiguous()
- self.conv.weight.data = W
-
- def forward(self, z):
- # shape
- batch_size, group_size, n_of_groups = z.size()
-
- W = self.conv.weight.squeeze()
-
- # Forward computation
- log_det_W = batch_size * n_of_groups * torch.logdet(W.unsqueeze(0).float()).squeeze()
- z = self.conv(z)
- return z, log_det_W
-
-
- def infer(self, z):
- # shape
- batch_size, group_size, n_of_groups = z.size()
-
- W = self.conv.weight.squeeze()
-
- if not hasattr(self, 'W_inverse'):
- # Reverse computation
- W_inverse = W.float().inverse()
- W_inverse = Variable(W_inverse[..., None])
- if z.type() == 'torch.cuda.HalfTensor' or z.type() == 'torch.HalfTensor':
- W_inverse = W_inverse.half()
- self.W_inverse = W_inverse
- z = F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0)
- return z
-
-
-class WN(torch.nn.Module):
- """
- This is the WaveNet like layer for the affine coupling. The primary
- difference from WaveNet is the convolutions need not be causal. There is
- also no dilation size reset. The dilation only doubles on each layer
- """
-
- def __init__(self, n_in_channels, n_mel_channels, n_layers, n_channels,
- kernel_size):
- super(WN, self).__init__()
- assert(kernel_size % 2 == 1)
- assert(n_channels % 2 == 0)
- self.n_layers = n_layers
- self.n_channels = n_channels
- self.in_layers = torch.nn.ModuleList()
- self.res_skip_layers = torch.nn.ModuleList()
- self.cond_layers = torch.nn.ModuleList()
-
- start = torch.nn.Conv1d(n_in_channels, n_channels, 1)
- start = torch.nn.utils.weight_norm(start, name='weight')
- self.start = start
-
- # Initializing last layer to 0 makes the affine coupling layers
- # do nothing at first. This helps with training stability
- end = torch.nn.Conv1d(n_channels, 2 * n_in_channels, 1)
- end.weight.data.zero_()
- end.bias.data.zero_()
- self.end = end
-
- for i in range(n_layers):
- dilation = 2 ** i
- padding = int((kernel_size * dilation - dilation) / 2)
- in_layer = torch.nn.Conv1d(n_channels, 2 * n_channels, kernel_size,
- dilation=dilation, padding=padding)
- in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
- self.in_layers.append(in_layer)
-
- cond_layer = torch.nn.Conv1d(n_mel_channels, 2 * n_channels, 1)
- cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
- self.cond_layers.append(cond_layer)
-
- # last one is not necessary
- if i < n_layers - 1:
- res_skip_channels = 2 * n_channels
- else:
- res_skip_channels = n_channels
- res_skip_layer = torch.nn.Conv1d(n_channels, res_skip_channels, 1)
- res_skip_layer = torch.nn.utils.weight_norm(
- res_skip_layer, name='weight')
- self.res_skip_layers.append(res_skip_layer)
-
- def forward(self, forward_input):
- audio, spect = forward_input
- audio = self.start(audio)
-
- for i in range(self.n_layers):
- acts = fused_add_tanh_sigmoid_multiply(
- self.in_layers[i](audio),
- self.cond_layers[i](spect),
- torch.IntTensor([self.n_channels]))
-
- res_skip_acts = self.res_skip_layers[i](acts)
- if i < self.n_layers - 1:
- audio = res_skip_acts[:, :self.n_channels, :] + audio
- skip_acts = res_skip_acts[:, self.n_channels:, :]
- else:
- skip_acts = res_skip_acts
-
- if i == 0:
- output = skip_acts
- else:
- output = skip_acts + output
- return self.end(output)
-
-
-class WaveGlow(torch.nn.Module):
- def __init__(self, n_mel_channels, n_flows, n_group, n_early_every,
- n_early_size, WN_config):
- super(WaveGlow, self).__init__()
-
- self.upsample = torch.nn.ConvTranspose1d(n_mel_channels,
- n_mel_channels,
- 1024, stride=256)
- assert(n_group % 2 == 0)
- self.n_flows = n_flows
- self.n_group = n_group
- self.n_early_every = n_early_every
- self.n_early_size = n_early_size
- self.WN = torch.nn.ModuleList()
- self.convinv = torch.nn.ModuleList()
-
- n_half = int(n_group / 2)
-
- # Set up layers with the right sizes based on how many dimensions
- # have been output already
- n_remaining_channels = n_group
- for k in range(n_flows):
- if k % self.n_early_every == 0 and k > 0:
- n_half = n_half - int(self.n_early_size / 2)
- n_remaining_channels = n_remaining_channels - self.n_early_size
- self.convinv.append(Invertible1x1Conv(n_remaining_channels))
- self.WN.append(WN(n_half, n_mel_channels * n_group, **WN_config))
- self.n_remaining_channels = n_remaining_channels
-
- def forward(self, forward_input):
- """
- forward_input[0] = mel_spectrogram: batch x n_mel_channels x frames
- forward_input[1] = audio: batch x time
- """
- spect, audio = forward_input
-
- # Upsample spectrogram to size of audio
- spect = self.upsample(spect)
- assert(spect.size(2) >= audio.size(1))
- if spect.size(2) > audio.size(1):
- spect = spect[:, :, :audio.size(1)]
-
- spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3)
- spect = spect.contiguous().view(spect.size(0), spect.size(1), -1)
- spect = spect.permute(0, 2, 1)
-
- audio = audio.unfold(1, self.n_group, self.n_group).permute(0, 2, 1)
- output_audio = []
- log_s_list = []
- log_det_W_list = []
-
- for k in range(self.n_flows):
- if k % self.n_early_every == 0 and k > 0:
- output_audio.append(audio[:, :self.n_early_size, :])
- audio = audio[:, self.n_early_size:, :]
-
- audio, log_det_W = self.convinv[k](audio)
- log_det_W_list.append(log_det_W)
-
- n_half = int(audio.size(1) / 2)
- audio_0 = audio[:, :n_half, :]
- audio_1 = audio[:, n_half:, :]
-
- output = self.WN[k]((audio_0, spect))
- log_s = output[:, n_half:, :]
- b = output[:, :n_half, :]
- audio_1 = torch.exp(log_s) * audio_1 + b
- log_s_list.append(log_s)
-
- audio = torch.cat([audio_0, audio_1], 1)
-
- output_audio.append(audio)
- return torch.cat(output_audio, 1), log_s_list, log_det_W_list
-
- def infer(self, spect, sigma=1.0):
-
- spect = self.upsample(spect)
- # trim conv artifacts. maybe pad spec to kernel multiple
- time_cutoff = self.upsample.kernel_size[0] - self.upsample.stride[0]
- spect = spect[:, :, :-time_cutoff]
-
- spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3)
- spect = spect.contiguous().view(spect.size(0), spect.size(1), -1)
- spect = spect.permute(0, 2, 1)
-
- audio = torch.randn(spect.size(0),
- self.n_remaining_channels,
- spect.size(2), device=spect.device).to(spect.dtype)
-
- audio = torch.autograd.Variable(sigma * audio)
-
- for k in reversed(range(self.n_flows)):
- n_half = int(audio.size(1) / 2)
- audio_0 = audio[:, :n_half, :]
- audio_1 = audio[:, n_half:, :]
-
- output = self.WN[k]((audio_0, spect))
- s = output[:, n_half:, :]
- b = output[:, :n_half, :]
- audio_1 = (audio_1 - b) / torch.exp(s)
- audio = torch.cat([audio_0, audio_1], 1)
-
- audio = self.convinv[k].infer(audio)
-
- if k % self.n_early_every == 0 and k > 0:
- z = torch.randn(spect.size(0), self.n_early_size, spect.size(
- 2), device=spect.device).to(spect.dtype)
- audio = torch.cat((sigma * z, audio), 1)
-
- audio = audio.permute(
- 0, 2, 1).contiguous().view(
- audio.size(0), -1).data
- return audio
-
-
- def infer_onnx(self, spect, z, sigma=0.9):
-
- spect = self.upsample(spect)
- # trim conv artifacts. maybe pad spec to kernel multiple
- time_cutoff = self.upsample.kernel_size[0] - self.upsample.stride[0]
- spect = spect[:, :, :-time_cutoff]
-
- length_spect_group = spect.size(2)//8
- mel_dim = 80
- batch_size = spect.size(0)
-
- spect = torch.squeeze(spect, 3)
- spect = spect.view((batch_size, mel_dim, length_spect_group, self.n_group))
- spect = spect.permute(0, 2, 1, 3)
- spect = spect.contiguous()
- spect = spect.view((batch_size, length_spect_group, self.n_group*mel_dim))
- spect = spect.permute(0, 2, 1)
- spect = torch.unsqueeze(spect, 3)
- spect = spect.contiguous()
-
- audio = z[:, :self.n_remaining_channels, :, :]
- z = z[:, self.n_remaining_channels:self.n_group, :, :]
-
- # Convert sigma to a torch tensor to ensure constant is exported properly
- if audio.type() == 'torch.cuda.HalfTensor' or audio.type() == 'torch.HalfTensor':
- sigma = torch.tensor(np.float16(sigma))
- else:
- sigma = torch.tensor(np.float32(sigma))
- audio = sigma * audio
-
- for k in reversed(range(self.n_flows)):
- n_half = int(audio.size(1) // 2)
- audio_0 = audio[:, :n_half, :, :]
- audio_1 = audio[:, n_half:(n_half+n_half), :, :]
-
- output = self.WN[k]((audio_0, spect))
- s = output[:, n_half:(n_half+n_half), :, :]
- b = output[:, :n_half, :, :]
- audio_1 = (audio_1 - b) / torch.exp(s)
- audio = torch.cat([audio_0, audio_1], 1)
- audio = self.convinv[k](audio)
-
- if k % self.n_early_every == 0 and k > 0:
- audio = torch.cat((z[:, :self.n_early_size, :, :], audio), 1)
- z = z[:, self.n_early_size:self.n_group, :, :]
-
- audio = torch.squeeze(audio, 3)
- audio = audio.permute(0,2,1).contiguous().view(batch_size, (length_spect_group * self.n_group))
-
- return audio
-
-
- @staticmethod
- def remove_weightnorm(model):
- waveglow = model
- for WN in waveglow.WN:
- WN.start = torch.nn.utils.remove_weight_norm(WN.start)
- WN.in_layers = remove(WN.in_layers)
- WN.cond_layers = remove(WN.cond_layers)
- WN.res_skip_layers = remove(WN.res_skip_layers)
- return waveglow
-
-
-def remove(conv_list):
- new_conv_list = torch.nn.ModuleList()
- for old_conv in conv_list:
- old_conv = torch.nn.utils.remove_weight_norm(old_conv)
- new_conv_list.append(old_conv)
- return new_conv_list
diff --git a/demo/experimental/HuggingFace-Diffusers/README.md b/demo/experimental/HuggingFace-Diffusers/README.md
deleted file mode 100644
index d0e4e563..00000000
--- a/demo/experimental/HuggingFace-Diffusers/README.md
+++ /dev/null
@@ -1,36 +0,0 @@
-# Introduction
-
-This demo notebook showcases the acceleration of Stable Diffusion pipeline using TensorRT through HuggingFace pipelines.
-
-# Setup
-
-### Clone the TensorRT OSS repository
-
-```bash
-git clone git@github.com:NVIDIA/TensorRT.git -b release/9.3 --single-branch
-cd TensorRT/demo/experimental/HuggingFace-Diffusers
-```
-
-### Launch TensorRT NGC container
-
-Install nvidia-docker using [these intructions](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker). Launch the docker container with the following command:
-
-```bash
-docker run --rm -it --gpus all -p 8888:8888 -v $PWD:/workspace nvcr.io/nvidia/tensorrt:23.04-py3 /bin/bash
-```
-
-### Run Jupyter Notebook
-
-Install `jupyter` with:
-
-```bash
-pip install jupyter
-```
-
-Launch the notebook within the container with:
-
-```bash
-jupyter notebook --ip 0.0.0.0 TensorRT-diffusers-txt2img.ipynb --allow-root --no-browser
-```
-
-Follow the console output for the link to run the notebook on your host machine.
diff --git a/demo/experimental/HuggingFace-Diffusers/TensorRT-diffusers-txt2img.ipynb b/demo/experimental/HuggingFace-Diffusers/TensorRT-diffusers-txt2img.ipynb
deleted file mode 100644
index 23eb1492..00000000
--- a/demo/experimental/HuggingFace-Diffusers/TensorRT-diffusers-txt2img.ipynb
+++ /dev/null
@@ -1,1290 +0,0 @@
-{
- "cells": [
- {
- "attachments": {},
- "cell_type": "markdown",
- "id": "14941611",
- "metadata": {},
- "source": [
- "# Stable Diffusion acceleration with TensorRT"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "47c80a60",
- "metadata": {},
- "outputs": [],
- "source": [
- "# Copyright 2023 NVIDIA Corporation. All Rights Reserved.\n",
- "#\n",
- "# Licensed under the Apache License, Version 2.0 (the \"License\");\n",
- "# you may not use this file except in compliance with the License.\n",
- "# You may obtain a copy of the License at\n",
- "#\n",
- "# http://www.apache.org/licenses/LICENSE-2.0\n",
- "#\n",
- "# Unless required by applicable law or agreed to in writing, software\n",
- "# distributed under the License is distributed on an \"AS IS\" BASIS,\n",
- "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
- "# See the License for the specific language governing permissions and\n",
- "# limitations under the License.\n",
- "# =============================================================================="
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "id": "7a9c6d74",
- "metadata": {},
- "source": [
- "# Install Prerequisites"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "id": "b32d847b",
- "metadata": {},
- "outputs": [],
- "source": [
- "# Disable warnings if pip is run as root.\n",
- "import os\n",
- "os.environ['PIP_ROOT_USER_ACTION']='ignore'"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "id": "cd9e73ba",
- "metadata": {},
- "outputs": [],
- "source": [
- "!python -m pip install --upgrade --quiet pip"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "id": "d0214ad4",
- "metadata": {},
- "source": [
- "### Check NVIDIA GPU availability\n",
- "\n",
- "TensorRT acceleration for Diffusion models is available for NVIDIA Turing, Ampere, Ada Lovelace, and Hopper GPUs.\n",
- "\n",
- "For the following illustration we are using an A100 40GB GPU."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "id": "362193c2",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Wed May 3 04:32:55 2023 \n",
- "+-----------------------------------------------------------------------------+\n",
- "| NVIDIA-SMI 515.44 Driver Version: 515.44 CUDA Version: 12.0 |\n",
- "|-------------------------------+----------------------+----------------------+\n",
- "| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n",
- "| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n",
- "| | | MIG M. |\n",
- "|===============================+======================+======================|\n",
- "| 0 NVIDIA Graphics... Off | 00000000:01:00.0 Off | 0 |\n",
- "| 65% 64C P0 81W / 200W | 86MiB / 40960MiB | 0% Default |\n",
- "| | | Disabled |\n",
- "+-------------------------------+----------------------+----------------------+\n",
- " \n",
- "+-----------------------------------------------------------------------------+\n",
- "| Processes: |\n",
- "| GPU GI CI PID Type Process name GPU Memory |\n",
- "| ID ID Usage |\n",
- "|=============================================================================|\n",
- "+-----------------------------------------------------------------------------+\n"
- ]
- }
- ],
- "source": [
- "!nvidia-smi"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "id": "c79b497a",
- "metadata": {},
- "source": [
- "### Install PyTorch 1.x\n",
- "\n",
- "NOTE: this is a temporary workaround for ONNX export issues observed in PyTorch 2.0,"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "id": "cabe1586",
- "metadata": {},
- "outputs": [],
- "source": [
- "!pip install --upgrade --quiet \"torch <2.0.0\""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "id": "f07ee31c",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "PyTorch version: 1.14.0a0+44dac51\n"
- ]
- }
- ],
- "source": [
- "import torch\n",
- "print(f\"PyTorch version: {torch.__version__}\")"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "id": "f26c0286",
- "metadata": {},
- "source": [
- "### Install NVIDIA TensorRT\n",
- "\n",
- "TensorRT 8.6+ includes Stable Diffusion model optimizations out of the box."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "id": "1e5b96f2",
- "metadata": {},
- "outputs": [],
- "source": [
- "!pip install --upgrade --quiet \"tensorrt>=8.6\""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "id": "34a83eb3",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "TensorRT version: 8.6.1\n"
- ]
- }
- ],
- "source": [
- "import tensorrt\n",
- "print(f\"TensorRT version: {tensorrt.__version__}\")"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "id": "3a14e192",
- "metadata": {},
- "source": [
- "### Install TensorRT Utilities\n",
- "\n",
- "The TensorRT pipeline implementation in diffusers uses `polygraphy` API to reduce boilerplate code and simplify deployment of ONNX models in TensorRT.\n",
- "\n",
- "The pipeline also uses `onnx-graphsurgeon` and `onnxruntime` to sanitize (constant folding & shape inference) the exported ONNX models for deployment."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "id": "465c891a",
- "metadata": {},
- "outputs": [],
- "source": [
- "!pip install --extra-index-url https://pypi.ngc.nvidia.com --upgrade --quiet \"onnx-graphsurgeon\" \"onnxruntime\" \"polygraphy\""
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "id": "3d157e2d",
- "metadata": {},
- "source": [
- "### Install HuggingFace libraries\n",
- "\n",
- "HuggingFace `diffusers` library provides an implementation of the Stable Diffusion pipeline, including the constituent models. TensorRT txt2img pipeline was added in `diffusers` v0.16.0, which is a minimum requirement for the following illustration.\n",
- "\n",
- "The OpenAI CLIP text encoder and tokenizer models are obtained from HuggingFace `transformers` package."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "id": "2c8f24c9",
- "metadata": {},
- "outputs": [],
- "source": [
- "!pip install --upgrade --quiet \"accelerate\" \"diffusers>=0.16\" \"transformers\""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "id": "eef75c7f",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "diffusers version: 0.16.1\n"
- ]
- }
- ],
- "source": [
- "import diffusers\n",
- "print(f\"diffusers version: {diffusers.__version__}\")"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "id": "7ee62e33",
- "metadata": {},
- "source": [
- "# Run Stable Diffusion\n",
- "\n",
- "The Stable Diffusion text2image pipeline takes a text prompt as an input and generates an image. A latent seed is used generate an initial random latent of size 64×64 and the text prompt is transformed to text embeddings of size 77×768 by a CLIP text encoder.\n",
- "\n",
- "Next the U-Net iteratively denoises the random latent representation over a user-specified number of steps while being conditioned on the text embeddings. The output of the U-Net in each iteration is a noise residual which is transformed into denoised latent image representation via a scheduler algorithm.\n",
- "\n",
- "For more information, see this [blog post](https://huggingface.co/blog/stable_diffusion)"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "id": "6892fdee",
- "metadata": {},
- "source": [
- "### Import SD pipeline from diffusers\n",
- "\n",
- "`StableDiffusionPipeline` contains all models required for inference - a tokenizer, `CLIPTextModel` (text encoder), `UNet2DConditionModel` (denoising UNet), and `AutoencoderKL` (VAE decoder)."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "id": "7d3abfe8",
- "metadata": {},
- "outputs": [],
- "source": [
- "from diffusers.pipelines.stable_diffusion import StableDiffusionPipeline"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "id": "d68630b1",
- "metadata": {},
- "source": [
- "### Initialize DDIM scheduler\n",
- "\n",
- "A custom noise scheduler can be specified by the user. In our example we use [DDIM](https://huggingface.co/docs/diffusers/main/en/api/schedulers/ddim)."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "id": "8c0df48e",
- "metadata": {},
- "outputs": [],
- "source": [
- "from diffusers import DDIMScheduler\n",
- "scheduler = DDIMScheduler.from_pretrained(\"stabilityai/stable-diffusion-2-1\", subfolder=\"scheduler\")"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "id": "12fbcdc7",
- "metadata": {},
- "source": [
- "### Initialize native txt2img pipeline"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "id": "0e81860f",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "e84d2ea17a5247fea357a7499fbc9cc3",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Fetching 11 files: 0%| | 0/11 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "pipe = StableDiffusionPipeline.from_pretrained(\n",
- " \"stabilityai/stable-diffusion-2-1\",\n",
- " revision='fp16',\n",
- " torch_dtype=torch.float16,\n",
- " scheduler=scheduler,\n",
- " image_height=512,\n",
- " image_width=512)"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "id": "c22d4314",
- "metadata": {},
- "source": [
- "### Load the pipeline models to GPU"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "id": "04210f39",
- "metadata": {},
- "outputs": [],
- "source": [
- "pipe = pipe.to(\"cuda\")"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "id": "a4be4ab7",
- "metadata": {},
- "source": [
- "### Run native txt2img pipeline\n",
- "\n",
- "The native pipeline in diffusers is implemented in PyTorch. Run it and display the generated image."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "id": "d25b6e6a",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "0cd1ce8dc34e4f71be0dc83f4cb99c7f",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0/50 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwAAAAMACAIAAAAc45fZAAEAAElEQVR4nFz9V5NcWZIuirn7kluESoEEUCjR09N9z+E14+X9kXyiGX/ZIR8uL8/MtJgWVQBShtpqSXc+RCaqhmmGyMzICEQA6XutT7kv/H/83/+frW9aQ7dX/ZLScJhr4dY3zw9Dqfn67lppuz/PcwXdr1LRmV0RrY1VVgGJIOfKzMgApE0VqQIILMIoLCLAiIiICoFYRGoBAdEKFUmFWkQBOV1VPCyPf+Lzl1unVo0jLYyQKi6nJYfkW6OVDfMkhfu2XTe02/YMPIZ8ntN4nkrSm6vddDr98PubH364aY2dY1oiJvS4XmtvFdZS4PlMB+kX6uZsEouAEDJCYq7CDAjIBAKICIAIwiAIIMBCCCAAAEIIBCAIACgiAAgAAgICiIAIgIACAgiAwFIQKhACKK1cyVIqKyXCwqCVa0VqmU6eg4RRpgl46TtvUC3DUOKCSClmbZR1ZImgwjjN7bpZ7/r1qgXCCoqVVsqBpHWvvcpPnx+0du1qtR9rYFvIVQbgqmpdO1lZwTRiGR0JVAlZ9sehoo6CTy8jE4TEqBVYjaCEM3JuDMxpSkm0MbcfPjCrl4evkudVYx5++ZymsLlqb3cbLCiVCVGIwHtWDWbIJVYlMRVe0u3NtvHOMq6d+/rLP7p1A9aexzzlIqpRvvONkSpg+dPvv88Vj4dRxCDYlGWYMjgr2m03W87p+evjHAJ65bpOux6ESo6+9wmlcjUWrq62Umk6n5bnez59SS+PMAVvyRpMIXiNzmiNkmPJuY5h1tpa3zArxQgch3kAwGblvWsMmqYxIOX65mZ1vTUkRmqOy3g8qpLevbtS1v3zl0fWrWlXXw9DQRlTPk5L26/ev/8Q5/HzP/6OJbVWX61W0zD0q76COp4OlQsaI0j7pz2HRRN4p9u2AUBAOJzHIvj+/buffvf9px//cDxNUxzX765TKefTsNveDtP5f/yP//f/+H/9H32r//f/7X9b9RsLrApYZUKaY0oxppArEyjjpnnOc1CAjTNG03a31rZTpMP5tG79zfU2h2ydHebp44ePuYQvv3zuV22z6tq+q+hod5ft9n7gMUISNeforPrph++n8/j0yyPAvJzv6/mhwbBxum0NQj0/HZ/vn7rGQqkKSBtdStW+CZkFIEyzaxoWXPdrBYVq3l5tpdYUAyjV31z7Vd8067/++eeQ8+7ufbfdHJ5eas5Xn77r3r3PpCtoMirGpZZMULZXnTM0j3OYck55Op9rTNurnVE4ns8g1LbNqus2u63t+kz6HGJlFIScq1QRQmAmRESQy6WOgIAAeLmuQQRJUAQQAPC3j7isAYgoIgggeHnEZQl5XU0uqwVcvgJAJPj2F+Hlk5AAEAJizAUEWues8HLa//V//n/2918aR8g1Hodt40oORlPlapwh5WosrdHLfEbgmBMz+65XxudKx5fBWWMtUU3f//iucdqQ//nzF3L44//ye+hXoI0VgCWMp/mf//j50/fXziABrK+uC2jQ3efnYwG/vb65vdvkPDtvmk2PfXdewr//n3+tk+x2V4fP93k8hPEpjUPXOhTsG6+lng/7mvJqs47MxwBfH1/StOzWvW8cA8zLsuTq2n5JSXsNRLXUMA/DsH+3ufLG1QKrpr273fRdB7WGcVzGCRGU9e2qt0pDYimyudtsPrzz21272TRK5dM+lXkcxg93N03n//Knv99/fr57f7u+3tUCIjKcT3Eax9N5npb//t/+cD4cnp+OyihQGIVe9idmzjk7ke8+3LZtCwx/+stfXdMZ14Z5WXXddrtJw3mc9h9+vFnfXjdNq4ubC7zsh/PzYRoOV5vm/fu7l69fvOZV11hvKyuoAjmnMo7j/MOP3z88fPVebdaNMdb3K9He+NZe3R6qG6oaVJOUFRFgARABha+l9noXvJYZirzVFMprOb3WGSKCIKAAIAoAiLxubICXhyMigLCAUgpAAIQBgAVFgBARRRgJQYRZEBGQAFEu+yHwtwsFkeTtQhARARFhBAFBQbrUOYKwCBIBYBWoFRAqchUEJpVyiTFB5cYqU7nO03Q6ns/HJZe2bz7++H1a5OnLfTye6nwOYRhejk6rUng8LVpZ55Q1lGIQrinOKQRlLJHyWpVSEFEhppyVsQqNJmYpQhRy0MNMh/Pyxz9c37zf5iSNnp4+P9XzOQ9nNBpKLqUCZwRXQiZLVjNVIE1MVJlZoAqAAJFmRgEgQq6MAK+/jst/MTMAsqBSGqFU4FJEESkFBKCMpdIo4xur37VGcz6dBrdptqurWcxTODw+7GNmq2mzWbWd13X2EN5/9/4c6i/3Lz3gMnMajquGW1dR2BB4kHmeqwZP675rFJbzy9S3/ZjtEGpJwIQEggqAmZCFKlcCACR6hTpwqR8BlLcCE0FGAHjDQJflEl4Xw9cFTUAQRRAEqDIikhQ2RpciSKSQSk0EgCi1VCTse0/zLHUZxxeW1LiN0Q45I3PbWF15mkYtCBrisCxj0mqntiuN1ngdGFY3OwT823/81cKqXSmHmpQLGR72S1HKr4wirDXmWrEqqkTZt4p8S97qw2HsPS+xCMiqc7FW45TrmoKSapVcw7nuh5GRt9c326tr23YAJDWfHh/Oh4XEdZ0B4fNxXLumhJxqSiKR8PrDD1Dl4eFJ9/Z6s/JNk1NovX//3ce4P6Y5iqo7u+07G055GAcrtSaIsX7/++9v332wffv3//mXf/z7PzZX1zWE8+PZXG2vvv+U83B+eOYQsJLxa9f3LKak4hpnGodKLSGI1DgGb8y68a7vh4OSVDoLACXHDCK5SOaoKkAEIuVdgwAlRaVc23TTtBCBc5oQBKugmlN2Shvvrq56C8wpDGVJS2kJsEgpyVlfjFpSXFJ5nmfn3GrVGd8YIiHZXfc55eVlegrTZr2+3twAMOUQ8xSk7g9nEl6tekXANQszAhGUdatYGU857R//7eH5nPnH//77H3/4sMzhoKltV4+Pz8/Px8q1a9qrTXNz058eH4fnU1pqs+sFIZUyDRGd7k3bmKaqbJXyjbMKoMZaqValTOUap9NZWIGmVb86v7xM45FKcOgx5/3jc7O7+rBrDwn7Rhfi8TQvIWnTPdw/UQXfGMlUCY5hbnQCreuSFCoCWq/WNWcALMwoqK0TAHKaufrGcM2XOm8bqlPM49FodFLff/h09+P3Veo///mVythZYyGEE3OO1tmU5nB8st1aN01IqaSqtN1cXbW9LUvkiiXmPId4HhBqPFOVymFq2tZWwkQOe8N5CYEAKiMAGU2ZCzMAYAVGBiFCJBABBBT+BlYu6zq9wRp4Yz/49lMAlAs1el0K5I02wdtnAXkFRnjZfUDglXNRyVmYrTHW6GkIQZRx5sN3P0ynw3g+Q5pW3pCm0/FImmIG721KOcboFWnbcM7n87C9WitD4zRVnpFM5w0CYy6GpCxDZX06P4RpqTOFeWo3/c3H3e26ffrrP08PJyv5n3/+24fv7vrOnR8e/aqb437/+Wj6K6fUSEV42X5/teqgqnKYhquN/fSH32nb/dvptN/fz/tT5ahVMYhTnBTjdJ5rzsDVr9cADADr1nmqJs8hFmWUb+zXL0+pZNtpZU2KMaZZo1htrq6v5pDmc/z6+Wm7HrzRJSxxDgCCS4CaC0E8LY3zeEWKO42tklziNAyPFWLTN6anuYzZyof/9sNms0sxgRSvVd9sw2j3VKyWP/37v5+P4+E4bjcb13kw1lqLClRUeZqGafG+S3FarZtpCTlXQwpqmQ4nVfP1ttdQ0nSwJTm3laqYa4Zacq25Wkm7Fi2y9wSQl2E5PA6Y49U797vvro2qjRJdMyfKBTc3nfFNmmOep1B5UT5TFRCRCsgoCEIgBAjALAQAcqm3b/AbXpHHKzZ/3Xffig9EEBAQRfgVtQvI2yaHKAwCwiIVkBBAhIURgUgpAKm1Xug+EsPl5V8r/oL4AUAuaAsRBSpXRhSuDITCAAh02RgBuFRBZABhKLUScOWqvYIKThNpLOczpIQl5bhwxcaviHRljRrbfj3cP/3jz790LbZW5xhyqNZZQFUq11KsUbkWAbLO5VRJa2BwxgpwyVkbNBYVA3OtpeYanVP6nGScxT+nbj33Xd/ebOXnLzIdVjK2fqfqfIocKqmmdZ3XJHmZQ6kJJKGtqAjxQl2EWRCAkLkSIjCpV+yKAkCIgoBCAlVYAIWICCoAsEAlJQrJtM60nsSbGrhqCC3PhLQ4VdVNAi2GC4JYb0rWyCujDAA3SnRb1npIM7gqklNlAaUQLdYUZ3U6osPDsMfErrMcikSnwSPSBV8TAHNBQQRCeSuXS42gAAjKhQh+k3XgFRJdCuj1Bt5oHwAIEiBAqVUp4lIR6FJMXJkQtCapVaQSZEWal0ktg+VZmYoKFcZlnOI4WjJYyehiKdUlUqe7phIxQQrDbOxKaVLrZnV3vf/yuW3E67r2Prd+P8TDOQdquFmzbowwaCDvAkKKyYMDZXWpoSbfrHrnz/vDlFPbrsYic4ECbJS2VpElJ5RzRIXNZtNfX+dUS803H24bo7/89efr667RnHEusRAZpaiEdDod3aYdD0/Ty5hKsr5z2DiQ1ppO6ziklOTqu/dJYmYhq9qV1boAz5ySQe+Bnh8O9fn49Pl+eb5fqwghNDXwGORkQ1zqPLZKN66vnlItmsrtRntPAfM5Z61ra23nDGJFAVg30bfKu5VVOae8LGAUKGOtxlRqzrUIAikSpcC0JuVgrO01KAKyRkgDUwxJjAzH89FIY/H08hIrT7lWhWYOtUJBFXIKhVzvWiRE7Lum6TaN91uLnTfHU+Q4oUazXYltEeLV9S5M9HIaJWcSySmDMTHj4RwQ0VtuOmuMI6lWaikhH+bz183+7iks0zAO3qxeno5zCM7au9312jaqlLTMUIvSVEpdQoyZFYFSpIBQW6WddqZrO2cQODJH51zTtRB5PJ8YddWireGac1o0SVoiFjUuqdI4nw+iO990jaEGVHFGOwVc267VDaVxLqZoVRAqCorUWFMsRTtXCxTOvrE5lJRLhUpWKSKnSaAilFaDhqyUKMwEKFx15rIfh+lU9s9XjkAz5iGCaRpLjSnCKMVocTXINBqg9a5xLcVSGHW/22HMOk5zisfDKZnTbmXbhnZrZY0qMSmuVldTcgUtQqUKotDrpY6X9Zzkm0oj3y7rN2ZNb1c7vqIavIg+JPKNA799vHJ2kQs5//bxioHg2xaGdJGIgBShgCGFSEJ4WiIjrHa3d58+pf19JykRoFdkrYhopYGr6GJUjYvUzNa1VagWIa00M5GQFKnceGcUQuHjeAzjQgDauHSayB5i6/7t3/6sUrYStx39/Wl8IRe6Vgrn9EuR3PU7SMPz36bw1Kw6+jw+XB1vyK/ylNQSxvKl3d1uN03wetQgBeZxoZIUS02stDXGx8zlHMiYTWspzI0GLezXNlg3ROy61fBwX6S0ayJDCkzv/WZzZdCuu2a30p5ASc7LGJegCYxRuUgaziLFMWytburccrpqFGk4ncdhmLrtanf3XndtXMbNx3ft6oaE0mGf05TmxYhwKBILpxqmKCLXu2uNKCkBSNf4UvlwPknML6kc9vt121lrnKlcyqbzSiAt43rV3t1sGQOAGCxSQ82qWznlrkYDLVVVl11L1rn1Tb8c+f4/P0+ncbuxnrAzpIh3Kxvjghr1dsNulVOtIYB1uunIeAELVZEIkLDAK9SA/4KyL3LlN53xVWEUetMcv1FzeUPghG/f4ZtGiQCAJBf4Aoivd9HFzSBCBlRKv4kCLABKKa4FgBD4TQUVudwIwmU9ZSFCwAuhIAARBkIQ+lVZNcbWHJVSWgmoqriG8/zyn/+0xAh1EUXd9erqer1br67Xh6dD5UNMkYGBDBfWIAWqb9sUK4rSSqEUTVo0cIkX5AZCzliWwlCr1ForZK45MxRCkYoaOCPTl1/OFJbrj7t32w6tcq31YLyvTClo5bXXjbdG1Xn2XFAjiwoVwaAwAhDQ6zLAwqKkVDGAIPiKHwiALlLdK0ZlYLroKCJVashgAMB41s1SJqMVodWAgBLH01rg9v0uoV1qGaeMMTXW8mkZvrxsbvqtFdKm6bfJtcfzyzkWr6hrVrnwmQ/hPBJKUss5LHeb63Ee0mwEUNCQ0wzAuQBUgMoAIAouyOXV4QIBIEFAqK/WFgMIfMPZ+KoAfYNDCCJyuVcEGERIVK2vyFdpAhEkEEYRAhGSqlkgheX5UdOyblB7W5SZXiYpKJYqV9TVeolDUOitQU0KjZJcjg/POnQd1cPT43A83Nz0HdHpdKpKsyJtvAoGu47RllpJoVgR1FpczPlcAksxBEbKxmrTmFZLb91Ku+fTdBzHtISmtc4Y16mYEhrTdyvvnXUSkvJ9650L5+A1WsXFdHHOMgFZ8cb9eLdD4uN+DtOinDHGLiWUwle9bYiGw/F8Gq6uV95103LiWp1SxrMjWxOPY37++y/L5xdsm3Q+KKqn/ZNW1GgoMk33f2ep3pirzS6IepkH6lbbnV/rWktCpQVQQIEYDV6psuSlKjTrRs0d51PBIsBQyTWeRFJYcooiRrJYw8pIzTGn0q+6shSlAQ0q5aBgXGKpIQ50kLR4FQKLbdT1eo6RkITqPKYkrNuuX2/0Wp2GSUhpa50zNsWlBC3l+maj21agvuSZ0+KkeNtYSh/eXe2fD8sSp3GKpSwJV21rOqMUcA4hlKlI0zUt1PPj/S9/65aUxmkeBvn7L1+O44jI1mpDOJ/OVcR17TylEELMNeZKhGkOzMp3bdt3iFAAnCKDxFy71lptx3kMoYBSOkFOnFJB7QBlnhMLz0ucp7NvVPf9d87ByjVitI+E4FrVGtKttuyWFFS9apuUV94T1fMwTvOitFaa0pw5FmYJSyzM3arZ9r0qBUgUgZac5kAKXONAhBN9/eX58eE0hlFbvN6tbGPRaLu9Ft+fYmAyldimUGKaD3vf9wY2HHNgJLCNU9Yo5VXf2Omgvnv3/nrbsMwbY4zh5+N5fEalriwqZXskFJacq7xSHRBAlMt28rpaXXady7Ygb3jocj/8Bu/8Bv2IvHpg3yj2K8z5DUn6DXdCEGEQqrUSkdYqh+SsbpqGtJ3SFIr0m9UP//LjlzJMjyeR2neN7b0w1jkbUtCZFJbnh5OxTRZZzrFdeWNJg3jrlvOijSZLF0efCwgoTbTuVzLXp799GZ7256fD9bb1TjFz13fTOYynXLhozJtev79e7Ydw/3gen+jYgjXw81//1u6ux1THJVxffbz9cSk1VQ6AFVicc0qrNM6lCnrNSnPO43FGo0hVggJM3XrV7jYnJlnENVvjFWrsVw1gmea5M3rljcTSb9z7u48W8LB/+rJ/Trm0fWsaiyJ1jlS47Xy/akgyzMP09ZclwMPjy5jLzfbaFcHhpGJwXPLxyZrGUl7SPE+LxLQc5uPjQch06+0aqVbhWqY455iE8HA6L/MCha1yilTNbDrfrDqtKS+Jk7AyC+svj8NubTbbTot+enjJyly9e3+9aXjjynGEOBYANJJjCKdpORzTMG8/flyvTZj2m/V21TTaaLXd+tt3CmC6fwqHZ1dBu61FQ2yrACExFECk31hdFy0N4GJYfTOYLojlTfaRb5bEa5F94+n4VnJvD0XESyajqIt7QwSAwqy0KrUi/aomsQgAgygiYqmXl2ZAAFSIl+uIRQCEXh/8+qblVS5CYUZFIKwICYGRBBirNMrGafn8H395+fyZc+jXK2yvrm9WbrVu+o03brNu814phe+//04BQwhYZigjlqRJlNIEmJdSS0YlvnUikkJAgpBikSIaiZQSxZWZMEUQEQ2knZXG2OOp3H9dlqT4AzS2g1LmdECaV97unFs3HTZdSlV1tnc+Cd4fk0Es2s9RUqmoFQsIoYigAAkAMwpdSBAS1FfNjBGBBYEIiZARhBG4pEwoSrmY4RiSFDktdbVZff/d70u5f/rPv+ihtn7jhWwtMo3YGFKQUg2JhVRNhXLqTUo1FYGVNVxLiJPGqjATFGv9x+vd2qK88NarmrlIEdOiGMxJSSXMBYAZQSGj0CvQviBi+A15kzfr/006fIPW/2VhuzxfEF+FLi0gIIIiSqGIaK0LJCysalGMNUyyjFM8uk2jzCbE4poNegIQgACSSeklcPjl1LfaeuuxGlNLjrBok2s8DTdXq97WVsvDl+l54KJXbBpn3Vy4QiFCAi3MqBR6V1Seiy5YJI+tc1OZSVALrBSurDHbVUswTSHlTJxRUectaG/I1Aig0TZuzplDdn1LhVEJKq0cDnFBpVc3t6ocOc9XShvvjkNahLRuAOucajcv6TycX14Qr/qrdcz1dBi8UV2nESoKl5BD3BdjTFxzWsbDYL22jVNaaQ2Kc0hRG10LLLkSmZZI5njmQEZXK8gaQS0hUEyNReZCQF7bc5E4Za4lhqwQyhQIUGk0vStZcQGFBaGG86iMCfMMXIGU5ot7C1qhBqw5xCjd9m57sx3QS9vlOQaJZTrNZWLFxeqlRuUatng8TTHJfD41Mo+n55RL2649UCFzGGepRbU+5JDmpK3cXW/O5/l8XqCS7fzVbnd9ZYosp+cXB2rheQ4zsEhczo9nVu0S5Mv9X74+fF3CZIgT83mcUiqATcjpNEzaa1JkQANyzTzPc4yxX/X9ql+mKQ1l3ZA3iooap+V4GJxxumlzKV/vn1KYlYK+9UaRZnDEWqEN06pEA3WABBqtsoUVCOeastTGa2dd9c2u3foqOc851sqppEIVC6c4ZERyxrbKem+QIcfCpVij57pYb0XrgNo750CFMR7HGCoYwrZinaKy6eb9d2bT2wjHl9MS88SHJcYlxBACaOs314cES8yWqsuDrXPhSuRQNai8J/Agw/3XeDw6jOKzbVdorSAyQa1QKqO6JBlQ+CLYX8wvgQt3+2YmIAoIvYaC5M2DeF0EvoV/vi0Ib5jpNReI+MrH34Tkt2AhC15eXVhrtYTJd2sh1MbkmoshbZvV9ubx55/Pp7lv6P2mLVnG/Xmz8q5xY6ghZtKu1pxyhrG0nROitExSxSo1jnMpddU677zzTS01Fg7Hw/l0FqjvPr4jrU4hHY7LMARFtuu8BdX55v1Vg2WOx2Odp26zqzmHlCHI/nmYQs0IL1+P//j5s281T2Oa565ft30bhilKSFDGeQAgzUAsUKVykhqo68g2Qn69bv2VO7zMw3AmxZ1VpWTR1BmjKgOCJ5I4v5xPT48Px+OhluI81FwrKNQEys8VHs9Tz2ocPyN+hsxPL6dZzHXT0XCIeZpjIWd12ybnK0nnbeNbEPXP6fNfv/y5225/unoX8zLnpaSKpFxvasl5mlSt7z++v7m6noZpmueiWFt3TstwHjmR0r6I4Tm+HA67Q267ZkhLd01ch3KMXsgSfT4OL4fjZtttD0t83PP8/PFm0/t6HE65ZtHOtP2soWtXojCeT9PxqSxLS6KAOUYgo7UFLpdie3UqXjVD9Y2ivxleIK+JnFcJ5+JWINBrjeJFJ7r4ud84O35LsSEAkSJCAaaLmESKL1JTFQGpNWtU1ppSWaC+pl3fckivlB9/teVYmBSB0GXTR0TgS5COFJFUqVxBRCtikVrStt+NS6hzmM6HuExV6tqtrVVAPM6HHKWeTxAGo2Ecyg8/fbdq/MvPPz8NsyyJLEqVmDjnVLlYT0giNSOUMOfKoJwCJMicuSogrgBMKEhIWjlrRe+23TRM5+OssV53OgzLdFhKbwEmptK7trM1YfaeSPKYcmex5jplUqohIFQKQDIXvKBHrIAISAQowgyVSAmL1sQAJIqpMDCBvmSGSsFKKESCZiwFpoBKEzYlUd80dLv2Hm1DStlOycsyWb+7+f5GO80X/zJPw34wY5GStWqX83g8h2U5Gk2mtevdpr26SVSWNKdarG5UjpArsa5iNRFUILQkLIoqigAjVa5AYL6pe2+a4kX0e6N9v65vryug/Ka43kTB6rwbp6lKARRrdKlCRnulal5aRXmchscHV6OzOB6OLEBut+rXOXMuoyUMp5RLFXDLkmMc16sW2Kq+cYZIVaPrpus/fHdFYTnuH88xv8wF2p4FWEFNic3FdhMFyFwLEWhTiYCYFSXIuopWxQJVUF0CRWazvl73EEual9NSk66w5BpC1r4QKAY8jhOHdLVZQ0p5mmpV7Xaz+/77yFjC8vXPXw0VT1p5kUDg3Or2O4ewPNzvp7Ph0Hd6CaOeTK61piKK5mmepRIiK3ItdEbarTpMOJ4xUwUsrVFWkdfYgBr2B1hYt7tOpS6w1047lSGHJXghMa5Uigtna7Ng3zZSMYuap4pSFCopHPLUta3zlhw5UTlXYp3TwlwMEbNIqUhgCLQmIFBVkYBoU2xLV3f6+gOLGiu5nY/nfa6oXQscSo4CPC9nRegcDcP49OW4aqC1BMA5zzWN5Fvm7K0jxJrKqlU5Ts7ozcerZVeHKUUAa4wmCkskBX2/XhlbanRWi+uSM+Da8XyYBT79/pPfu+cvn0/j9Oe//6I0OttgxQgMjF3ToNEpJzJSskzjVJyB6oBLWBaHdtN1ac7ncXZNu9luKsJ5Gpc4F041FRFerXzrfOcsATtUTWWPCBpiqhUySEhS55jSFCLmKc3TFHvr6hKm8bykCMjAFdEAShE2SlvfWGtRSy45pIzCsaRVY1vfidJxCVi57XZV2GlBNNZZJvz68JBjmEL1VzeqUXkJcVpss16v16l1L9P88uUXPy0vC0/T0lm86jHFYT5PIZQ//cf59rr73fdXPlMclsaqxgvkIQ1ZKQ22FzGkFLJc3O8LCvlmUCEAw5tuDQAADEBI3xIU/38f36yJbwvCb4nTW3LjNfvzqwkBKAJGq5Sj0lZpvYRQcgISo2me88ywadzVu0/Hu0Oacr/SOUsOOec8z+JaJbVst6vEsu5XiWtMcQq5lILCJLAxqnKd56Vw3SjVrzsuKYZsiJ3FlGF/GKTt1OZWq3keHxTg3d2V96bG87EsaiohhWlaBNT1x51SBglMAmPkPM/H0+l5/2Kc2nWNVSrFVEs57g9LDEQ4xYURVcXW6E3flEzDmIdYNkVtNu8+/Lcf2TZffn46zdNp/1xejgRJAEEbLlkLhXHIy3I67UW47ZvzdDyMJ5+8dQ0iIenzMOYYrjftTddLSr23V5utLHLan3g6lRwZHRnV30HTtNe73dXtVcz889+/Gue10+Nyfnh5DGmal6Cpub7ZAXCcxsZbQPSr1nXtEvJxeBxy9p172R8Kg1YWymSWqfPOFMZxOc5zf+Ov390oyOP+UFhZe32a6tdzmokAjZR6/W5393GjHExTFK3mFEtOyRhTIiYV5uNcs11fweamui4nEkQA/pVi42uEGX7jnb7tOZdykt+EfhAvPtkFbMuFj39LoV2ewnKxdAFZWCklIpWLumSeFYJIFVGaONfKlWtFqy57G0slwEvkiC5+1oUkXF4IhFkIEQBYCguTqMtLX66typWZEZCBpbJRpJ2/SJRt667vdi9H0H23vbt+//EdOpvCMO0fP//pr/Nhn0N6/+nDH/77v5YlP/78c2EwiuISRTDnmnLVGirDPIcUA1YS0cyYQsYKRithIVSkjSGrLenG6q7bwJTqMrm8HIf9CK3KfqW1v3qfJN0PweiK54PVWhQUUiHMp3MQteZUK4EYZLBSwJIySsecK4ICUaRAUIBYWC462cVPQqyVQZgAuWQFCGiN0wAApVbTiulKLNfr1baxh3/+VYXx47pp1zobFTPnXLffN922a7/bCYqMoVerJYzTcbTU9s26ZCpVIkpQdhYpTsuqj5znKS8RFrZjiC8P+5hxTbP1u1w8os6sLokzImBkQgalLnGxSwhSROjC/14TkW/h51/FoTdTDL4lH5GQ4A0LK0KtdS4MiMDAhb0mK0XqnM5POZx0g+l8EoDtjccJ0zgpqiyZp5kZt+ttbn2aBqNwc9u3vomhHJ8flIqdqbExMcz/9m+f//4w0Pr9ar0B3UzDpBRpEK1IcVEIBFBrzbUgYa5M6BhM1g7EGptnBS8xqiwOoEENRFmFisq0hJWUslpp17i5FGMa4ztVqiLkEgszKgPo51qeT4u7/bj2MDw/P+xf2puP7//4ezE0nvfi+mHc362dWSgn2DTt7Xo3bua//e1Pq23LTDFlJG2t1DovYwWkq/ebS+SOQJSWhpBqrVh0OipeAFQ5iv/+fWc2c5pNTjgl1W3FrGcxWeuYMZzmtqBqWr9aU1VOCocgkJXLRZhIkyJELIFLZmeM0RqQAA2gyoVdQ+uu1cnlkEu3gevb8+pjgt1ZqdL4qk2YCzQ5He5xibtN061czPnl8aVvNorU8WVWWt29f6/qOE2nYRlaKGvNrRWVF4F4fbdCttM0CCxtZyUmDnnTt6vtWnROiUPF202/Wl0pqPu5jjXvn5/+8fVx9/HuX/777+r/5IefP//8y5cnrfu2udredn2PzpJzumsQqFRWqjTWUWULoguTMQXCar3abLbjPLmusdZWwDAvWPnqZns+HpZSnNUgEjmTNrnUwznoU9qsQa1XKw88LQ3VWkFhDQWy8Om8LFNspkkvS+HcND6WWJCdbrU2QkFrW40+LINi3q5650zOSRI7oyTlLBLnmHGBxL5vRGSZo23s9vpmOC/LDACN1ataWSkCTjUmsyrGyMDLOCzDNMRMkAo22mg/vjzWmNZdx4W4jIfnIrYhsimX02lQWnJOXKCui7g1k2UQqUjKvFHlb1QGCEmEgYjlNe6AgHIJdr5d/r8Gf94iQf8lCfT69euOBG9B6G+WBF26y5g1KhEumRvrc8oVStO2bWtTjIHZ+Pbuj//raned58NyfjY07dTV+fHleDw4hYAIiUmj1w0rSkOoCI2lGnNMxWilta0VMlOIJU6LI9V0bt21p3nOvnV339389NNVZvZ/eXl8fInBxXke99P5eLe7dv3OrnFYkpnHVe9KLETOalPmM9XaGeWsXVmfQtq/vJRacs7GWm2MNZxKAahaQWs1eWu8T2Kq38nmFq8+VGBzVT7+4ff+azc97Zfx0Hm/7ntXajwPJUEWsIqd16W4tKjjaaJOE4pWFJiXyDUhqka5dpiyAKzvrlYrDSTjfByH8erdT2Dc0yE2t9b163Fa7r8+fP7HlxL47ubmMBzPp1NBEHTKtnOswzCEYdSmauVOw4I4kCKl/XSOWjdaNd26y8JP949lHD69v3n3/p3KOIdJdV2zu+GY9KoadkDXxYQTh/0+hMI/bm5cq6JOBLFbtcy65FoZnHUQUzWGfO+/34C6OjcfFvSBlBgNACLIr3iGvxkR9JtGRZHXzA68iZB4SbOBCAq+oSS8hISASV6jQMLAF0UJCJEQgQFLZW0UIbIgMyqNReo8T6uuB6WmcfRdi6SZBZAuoSECQnrtK2NhIUAWBEBCYIHL10ClFoWotAZAYSBL2ugKkmIAxPWqf/n5/j//v/9x2p9iNXPtPnz/h+//r/+39z9+H87n/eF5fjjMz0OZakhpvelzzr/88s+np8eSqzGmcIpSGEQ0YqNSyWlOKGI1kkJJyLVKyczgGq+8NtrGXLLAOMza+zVxCE9f47RHWHIs3e16265ICkJG5MJ1znm4fwTnXGOd0jHpiXP2XjQxFATFAiVXRI0ELIIC3wxCELkgQ5YqWZCg8UaxQJZYU8qinCOrQar1HjfbEp4btzHasmBJyYFRYLy27bpbgMSecVl2t873+nAaJKd1t0qlU6hRr0MpSdj5llBKKEsotu3nxHV4JjbAFhDm8/Fw/0vX9jgproB6x6oH8lIry4KcUBUBQVRCwvxabYgEUH9dz36TI3sDQt++e+V3SAyASMiVrdGoAJC5VkRZwhLPp0aWw3nPywhpmA4nXJRV9Hi/jwnX6xVyns/zPM/b3Wbd+cQMStWoNjcb762UhLXUadp/mbwGVeH5NH55GqekO92C9iLGeYu1cmGtQAFJKqIINWqUXBKXqrVRrhGkJBYcsgaWRfLCIWBKjQZDTeJku95rV1MuBWkRFmh1m2MKqXIUEFOBhzEtx4f78yjCn+6uK6Sq2/Vtu7r5xHYdubDr+1tBi2k5dYre3+2ubt+xa/4RJxGZzsv2aqdV5Zzm4aR0ScsUBDdX77q+u4gly7y8DKfG2ek8odS7d7vWNyyUD88v51PTmzKdZIo6V+jqrn2XDQ3nEyjQ3tn1dYqxTFGjtK7nnDLWxDAvgTA71FKKVuidNUa3bV8zxFzQ4KrTzhFktJsruf1+2Vyn7vqQKDBWxrCk1jWYm5wRAtdGGmr7DtWqHF8WKO79+/faOd9vKJJS6vDylQuvrdMlKqp22/iuqSUZAKNUnMNw3KPR//ovn8CY83Jwzguj7hqxeP/1aQH1sEwPQ3x6eZHe0s/0pz//x9eHh9vdNtWyP53aft1CT8YJKUYqMRNiY3Rc5u2q6ZzWimIuV7veN95as8LOWD+N8zyPXWOhYA2phNI6/+7ddU45hfQyHBvnVOYvv9xHs7q5ere+3ig9cc4KjUU58VwycdZSSWmUlG7vNtRSKss8R6dJ6RaFljAvUywlkdIpRK3QGQuGrLFQOM1Ta+yqt8qA06KIcqXGq9vrK2P017/fr1ab29tbZdR5OOY5PD/vx+HY9LbUUpYzqrRuuiEsZeShmEaxt+R669teSizT8vPTKabiOqVnGYbzh9vbWga32hTJmnQUBlAgjKC5Cn3rLRZ8JbnyzXG4OFmvbcLy7Xp/+9FvWRF+88d+dcp+C4vewNArEBJNKuUEiF3bQiw1ppwToVhnq4AIY9fv2p/qcluWdzIc0nzKSGWZb95tsOT88DKPAxhfQQCkdW7V2WpzmJYQE5JSShnCEnKeg/aWxUSGqrub7393+9Mftz98P0/L9SJF27IMp8M+BlTNNW0+rHbXW/MiL0fqKFIJNdelQKElLqTwar1db7qcYuTChUFUZ4yyyjbWez9Oc+f1yilHxILr7TU1V7vvfrf6+P1+5iSBuubm03e77W75MKVpwlo6k/RyXqie9i8MFUHHMZcCXBRkPR9zGed+1QMIMfarTbfagFahwtfnl27J/dXWW8Q05VIeDyfVNsdpmYvEafJa7ffHeJziHLZ966w+DnMSZayZ5zROg4W6LFM5zV3f28aHJVilGm8RqW+6tmkrsLJUl1Uu8e5u4ywRoTH9dJz/9G9/vbraQGKjDTMfpuXrfoxlmY68/eN27VSdh3cf1krj8ThPU3x3+56sS9Niu45WW9XcVn3zEnEMWRQorG/CI33LnL1GewQRgX+7Df3Ge30zwH6TyRABkV/HMzCLoNIKBAQJBUWklIpInWskxZLSvERCsq13jXN9Pw5jKcVaBxUEWF2SsoIor/2SbyEjEAFmARGuTABGaaN1YVEX+SdVroyA2igUSSnnZUk1//3nLy9f73/523/Ox7PWTqumadZ5KX/797/G/dPx8+dhf/RAxappjOP+9DnnX3755bQ/qVQ1akGVc1ZGe2eFcykMTMZaRKhVmIgr1cSKAAlzymFKBcS2jgzp1ncknLYUQBDMqu2ESpBMIATSOO+UHY7n5+HQu06ZVZjTVGxyDTRrUNYwUFFAruZQpChSCgFLfk0Lc0WsSJcmKFKooGZXI6WcU3baiECpgRgVCHKxVknrmYVaP6SRRVnjjlEgmU6t++sd+id/jOuOTF2m5ydm1W92S3M1p7ifYTxH27XTOeHaVmXFetKrEHM+D1hwnIo0fZgm3+B2q6zOSRaAltm17ZZzCmmpIsBAWpdSlNIA/GttIZLARc/6rfbza2legtJyWdFEkASgMtdSrTXMqRawWhFAGqZwfDJqajgOx/tOiWoUAi45TynB+TidTpKXzVXftGqZjo1jA3R4OQAwUt86n2vcH56oZlPt4f5xjmUir7rbq+u1Xu0QgWvomybFvKQYc3JKkdIJoEohBo1IRgGgVAFAUoaroNLoDStfKLItGUqeJqi2g9YCogLJbLhWqWGZc87AmFImEeUUAKWSc0qd7/IkL6fD4fS0vX7fbG5su47zSdluvdnQqjv/7T+sLGQyxhNBbGz59P31/uWYQvDWzXNczku/slbZ8TyM6cHs1o1vNBlTmElyCpU51TLm5NqmpJgTkqd05BaVV9pzWrc0ltPDl/vvd5vm+qrM5enhYDntVm0Jk+SSE5MjrYGRiMVQNb567bRCKIwpOdRN40yrNq1RVonbYnsTrt4v3XYhk1gAwJGquUitVunVel2rSIZ4KhprL+Q6ExIsIrRqqmQk7Nuuxbs0nG/XK8hliAM7b27vNNJ4/+B8K/Zc8YtT0Gj5/PBPqst624Ioauzj+WmR5Ne7x8+/vIwpl+n56+e//+XfH58eayn9pkvTMp7H0zjtru/arikhDaeRRLzWyiirqMZFkfdW11R9a5Xi/f4JQTabrdPt+TRxjOvOh5Sz14AwT2PjHDo1nVNWRNakcTg/Pm1++N7t1lFEjHJKW19XxXy93zetc9zoOfkmf3rv9LoZx6f5cNTGNdaDqgiliujOC4EgZ40EaLWOwr21t9Z+9+7qh0/XoGV/PI5L+vGH2+uPd+tufb2YFvOSUozPhtq+M+rjtah6yYyP81RyLEvEaWERZmGxukEuSQKQFyh5GYdlzHOCCKbXLic578+7W98ZylxIARsbK10sayQAfht58SbwvPbYvE5UuexArymLbx033wSeNw3ov8SD3gDRN5PsrS+ZAFiQsNZKeJmWVEopQGK9qcKCoK0uuRbBUoWc175pthvY3HAKxd6UMt/ebShMYv62v398ejmySGMNCXsyEXJehq5rfWMUUefQamO3dyGmJZWM2Nx+bK7fq343Jkri/e79O2qQ4+nL/Xw+337cVdR2d93pTfc+d62E+WTHYXg57b8+mYZ2q13rPUudc8oI6+uNZoKUskSHQEZ5u/FWWSk15Jm5Vt60HTU9qK7tG6+T5FANNjcbYH3en7/8+e9Pp9PG1KIkgixzqpBU12LTkMaOIOwnLJEnIeS+Udcr26DEeQQoCLxMZ6LYX63e3W2L6GOwf/3nw8/3T+8OG8fh/c0Gl1jOx9ZpZwVynSXlDMM8jmO42m1vd1urYf8wayqrjqwVxXXdaK8qh3MunHJUHncdrK52u45sZaP1NC7peN4/3A/bvtWAV+/m+Hw6/Bzn/bRM1umUUuevuc626UGb4X6ZI/3QXE3zdDgd7eZGX20D9UEoAjCSUQoqV8iECuBbHcpbC9dbSxa+gSL41omDAvxfofel6t7yyMKXlJBC9TrGh4ArK0XCrIXSPO2/3u/3e2vU3fu79vqWrIVcOWflnEIRqAQEQJc+JlBvYtTlfb6Gi4RAqAKXXABrLVAlpDQcDjUk4SJcL/sdK5zn6emXr5zjeDqFc/juu0+//+O/fHx3dfjll//8jz95yZhjScWC1Bx0Lfd/+zs1ZpyCADNKKLkAV2EEJgREXRELQQHEIqVCEQFQ5KwyULgCqpBjKmWO0/Z6q41uxIpt2it/LWi4QqhimD3ROIzD+dS1q3kOKeY0p2QSV8nMKRVaCjvSIJAi44K1KvCCuhQmuQz2gnrpASvFW62RDOJyOsdwno+HIuKvb8xqp6TWMnNKIZy5jI5pilWZdHg5YWHYNgHq6TGt63zFncaGYDuPOpTlcBBt3dcTHyZ+fBhLVVR1b7XUmJeFug7JhxmWFByYrl29jMfhPMdS+rbZtg4UgOSK2XkiqKJBKkZREZmQSCkEZqwAJECA6o2svbr5r6nub1POfp0IdAFDlzVQAVetSLhCBQFBrw2gd5b75qYza8pXjfAw0K5/ejodnybbWm2ohljyMg1ovdXMEINvrFc1Z85LNJpCzvN53G7Xvm/GJcXEerfddjcLUKw0T6NSiE2jjXYIuVQWAULBy5CCS8yTWEhEMmciqrWkUK01pC2hRlu5ckoEkDUY7Qxx4VTnFFPItYiALgJFOYVaFBrr2rb/bnPtyEIM6VDPIWyMQ+cEiQSd6/rNbmE5Rg7zImGSXTBtk0NpvN70XQxSUiwxS2ZI6FrTKEtAeQocChhfmRtvx/NURESrTBRZKgsataQYBUFJi7oV3GnovJmmY99pJH6Zzr1S13fv3t25FKeHz1/v/zm4il3beFFhSFjZN+b2w52xTZ5jOM+cpFm3vgXNpWZVbVP9ZjbtBGphYQGjSDM7QhIBAW280JxifEkT5mhVslqI1Kb1uqGU6xKTUdb361JkCnzVNrZz9v1Obdbeed91+RS01v/yv/yhLGetoWn0lEwkZVoTsEw5X13fsjFjjAVq4Ty8DPvDoV/127vtpt8W1yjSAFQKp5ikFkSwVnOWeVoQimHKuXgpTa+vb7bW++cvT3OYtFLOOef1PKRxmUstyiKBIoOZM6DoxlTN7bYN4ww8Ul1qCiHMseS17zgz1Jxz0koZax3nhqjGpdPr7Xb18nLKKVORmpfWY9N2ytil1CXGIrUxymmssfTr3Xfb3btt/+H9zq/06tmch2V1e+M2fSq5afDjp6t5yaI65RskMobY0DSFX/75JcxFG7MsUwoTkun7XiEMh7GWBMcpTqPTWrIQgiYJMZgFWPmciuQsy2K9rjFZ51KtIkCggJQw0+tgtzfTil97Zwgvna1v2VGAy7gg+bb7/Kb35let59uny9PewhpvIUIRAaU0syhSxsA0jW2/IsRSChJwySigjBWSyJIZlgKNXTX99sqtuEbbWy9JN+16u3H/uD88vGx2TYWiUAhFuHpnbnZblsq1WNfe3N5W1EOsCczq7mN3/Z7Jnc8LacPa99eesFrb15TavlkYsO3uNjeS584ilzwOZ+U+H/aL4opKx1pTrRnUkqFxqm8bcrR/Hpcq1hvnG6ywxBRD2i+J0bRWBZKx5J3ptfFCIMRLzMgVNIc0pVLPOUOFrEziSEpVrlSTcDGNsrc9hwy1GE1dp53GmkMOi5TStQaAN5bebfuffvyUlWnOcgr57w970Rq8//npBVIxxjLz+TwwgvMUBRRTv9WrTXt1dfX+ene+7kqKV7udKFMST3URlpjjHPh4OJDhu/dbC+KIrDLDfn45nM7zYtumFjWGUcq9cr3fuS50x1/Oqm27TbvdNsLrYZgK0stptLRKsZ72pyGWVXEe+wRmCikVMEYTIQiJaAIUqPIt3fwavfi1tRBetyR8hT7fMLdc0mwCCITI/Aq/ubIh/VqM8i1+j0abmvJ4OB4/f/nlb395eLjXCur8L+E8ivJsje0aBYozo0ZUUriQ0kjfPLbLHkiIUqUSAjJgrsvpfLx/JBRDehzHw+NTzYk5hXmOS8wAurU5l+FwkpwJUTKXlGGJ4/PLwy9f/vZvf+oNrlvXNk47zwAsZToENRska7SNyyycQSGirkWWlI1STCqzSKlSpBQRJdoZUlaQKwCIZJYM3PeNMkYf57TEQrq3TWNtF5a4nI4M4DT6tj2fDuenx1xqZz0v08LifNMawzWFYZ9O4KwiIgRxyrq2HxOHwqiIEQsqIagxG0eCSLXUZbD5EI6f88tjBtW00vRGwMaUiYF54Ti5RoHYMcvEDgHP5LJgneJzHg+FWot1yKCyGEp13eHu64H//nh6Ok63t9+33p2ggJRpOMMcnYoGfE7h+rb78NNP83qcfvmqw4gYSp0lYa7B+g7VImC5cuZ8keeAVM1FEfLbHMzftHop+dbB8S0bDa/t76/k7hKDRwZGDbpKsdZVSKGkVDKh8X3XuNsGJllON3c3j6dziguXZLRed6vVtk0pDY8wTUEEutZATjEtEGfDrg758OUYl6BRG6UVqfV2ba5vy/b9pDrImUNUioRkiGeF2jqPCMJVuChSGhRzrcAVMQtLZaUUISOwVCihEhECEJJC1Xdd5aK1KoRaOVEs5Gqd7GrFIIXBKDQgqISs1egabaygjHu7d+v1rl+tzuOYzss8n9erbvA1J1B+nZbxeTi1nZE43z8dNpur3rSCcT+OxpueV8iFC1xdXa932zTPwzCdh6XWUlvDqEiDdsq1XRTIVbwjAZrmJXKOpGthcxhuvlvv+m48DHxOtuKH3/90c9Ov7pQydfvLDlU1S7HGzHNtV2vf9uvr1e6HW9NfLfMw76c8LkTsdIVlmpJMWguaIBQKsLBmtkQKRBMrSywaem9Km0+clgzaZsNTngzDe++vrnRa4OtcIjPY7qToz3/+8sf31//9f/3UblYR2dRoW/PP+3vJ5cd//SNh1Fpu+ju7al7GlIhDTqvt1W6zO8yh323Hl1MoZYnJWHWz3X14/50hPdXa9f2q65SBmEJdYtd1qBUpXM6x5vzx6rr3buH5uw/vf/+7f0XSfbf++ee/himUIjGXpXCsZZlGo+jdu5t+1Q2nMcyLcaZbd65tCGq30l5lC9WJjNM4hoRZlwLG2vA0Y0oaAFE27969+/4n7nqzuknH9PLl63g+K4Wm1Ur7mpd5ykry7t1uu1mVzB/vbj7d3W5XHXaqUOl2rRArCWUqS85VsOu67XbN4lG7aZmeHw5TSQlpWkJKsl1tjF0Np5dauWlsCmU6ZSWiibHObFXbNZ3XKc2QJZzzzBkNXm9XuqQ8nJJko1tirsCIRkAqiPoWGkW5sNy3hHO9dNa89UW8XfTf9ODfhn9eIxmvrtlvsBD/1hS7NMoKQJECiCSqaTthriDq8mIACklqRcALaUG0UTjFyqC1swtSQmhvPvz+/Yff/XH6+rd/IsclLOfj0flu1e+sUV3fcpWvD8/soCG/+/hpvbqq2lVtwdgkwlJrydraUmtZUtOtzFoVAGctIwlXrZ0o0q12dmcX3byf8/jyOJ1rydZYQuOalgBSiQ6qAAzH0Xq33lEuNI4LZ0kCfd+srtZu1bheI0AMMYQ4T2k6HDxLGQ+nx/t175xps1JlWrIoWDLlxDCWWozWXdc160YhNkSaKbAQVEJqnEmZfeO/+/Fu9/5GejtN4Tyc312v/+UPP9z++K69e/eX//M/JMr3t9ea8OVwP55frNK71c37bp1zkFQoLx8+3txdfTo8v7i2Pc/5PM+nMQ7nCbUS67N2aVnsOWuXQYrB+rwPS6biuna9RcL9/fMpL7f9qr29vvV9EDZUQxqXgL2Tw/O0D3PKebW18zicl8XdfCj+KlLLyuUygpAiSjkJoDGGpSCSvHqy8g1b46/o/DJ75zczD1+RunprU3x9ACGhcJXLUB8EJOFCBKCABaGyITzvD48//zMML/GwD8K/IDx8fVxt7u7+9SdttPZ2CdEIKk01F0AWgSokIpdRRUiKCJEIuKS48DQfH74+/POfBNWSncblfDyTAjIyD9MyhVgKn1BbAyQhBU2otDoenuf/Y/L/7IZ5KXGcCgknQeZaUlyWJQGCUdooE3IJIIWLQm3IMpZUSmFWpJB0qaVmriyoNWlBQwSUSpVSydvtavPdDx+JjP58/1k3rUEVF2mRvG95mfMyglJX2xbKOJ2OxvimtbXAfDrXkHXXCNQaKogG0aSJoLZmU6YjVAVVV9ZgrLBgBaMQaiaVdY1lfMbwvHVCjZ6L9IZdCcfjc2bu21ZbjklQoVu1y5y3d+9yLFlp7WwlF0qqsdTzXIaxVO63/Wp1pZWbUjjmAm1blCmEy5zRcAI178+7TpPWWnnUpgC0K39zs9YvKYRlGZdaiqguHZ9b7UxjqqYcsgAykqCxqgVOpBQSAoOgAP/a3f4Kvy8Fhm/Q51uyES8jEECYgQiFS0oE3FjNpHOpIOCUH85jOYaX+TQ9jTVMosh57ayyBqgCtjqhM8Z673JMp/0etd5sG0P4+e8/G6cA5XB4ocn217cadEEac8mC1nkttUqpiFmqAgaiKlVECEUjAGORKkKktTAjV0FUhEQgLCDMzIColEIFLFxrqZWCCDB4Z5vdutZUBUgbJFQoWlERyJWkIJeaziet4MdPP6y32y/nMYJBhUtNT8Npjfb9p9+n3oWXX455CedzjvX0fBxoygKI2LQWjJqHIxPqpkMEKTXNE5ICkPF0brtu1bfTMscxoKIUwjQvxjlkSKUe8gKw+n7V3tyumuv2z3+5J8Jm22+v+w/f7+wGsqQ8b24+fbSJOBDoZNvV7v1ds2urN7JaBduoddWhxnEqXLUPtGR0q1mbKFCKaGCFQsyEFaAQgVhbpPqbK9NYOIdUkzGmDJjisgRWpK92bVymc5gu88ZSzSEmiaXMIaTIzk+BT+fIjNfvtjc36+fnrwxqtWvA1fvTU6hJK7Ufw1SKaxrS4zLNMSydNeu2u9luhCWEYb3q1/0Ka6khAXOcZmKx1jMAM6Ay4JoaSspgjW9aP48npRQSc8pxmWOWZt053Y3HoaYikTnkEpL3tmlsyrNwhlLStLhSW21G5XLIjdaIkqZDHk6URumMc63YjtrdXb/tb38aD5NuW9Ovseam1dbrJlpbM2Zzt+k/vr8zzuYYSxjcbV+RQ8pKW7/dChdRtO7XBSjN6fC4H0cAMiGHry/7U8054xxSjqUWadtG1TbFQCWnXEQQQTtNK29ESgoRoBgSpZQ1mnIep1k+3UFNw34/Q7frNgpsrJWlXog2i1xOv0F4hSAAr6bYa/D014bf/wp5XodEf8tH/5regNejc759+3ZIhiAgMFdFWuAyiV5SitoYRAKpiggZahUUUIhIyIKvw+a1ZYRaQQo26223W2V7aoboNfU5VLpXSvWrttZsrROG2G5TEVxfm5s71awqUKnMRFVYWy0VBUBZo1ChMFqDgKXWWoUEBE3OzJGN67Yfv4slH76YpaQlc9utV/0auTgDRur08CKoGJERkCRKHkrZbq7/5ePd9e9+vP3971j1281KKszH5fj8fH//ojlLYyjX29vbxqmmcQzC2qYFpuOxRWmQYq4Si7Wla5VWaBgkyTBOVtGPH1fGNBO327vrDz9+39xsiiHTxyZViOYPzY9m17uu//SHH4fHI/i23a4/XnenwzouwTdrqgoKHYfTMuyn894YBJT4PJ2XdFzS0zGAiHG6cCRLbbOac318mR5flpR4u7mxfdc4W9EMp+PzcbZrpZZlLnWcAyhe5unr18cHnXnbiFhllFa5vbsuBRHe2bsf7buPAXWIQtrUmgFAKXodfoivjhUh/aatCxm+hZ8vZfor8MZXMQZEQJhJq1oZCZEBiaoUuXR+Vam1ooDWqpYcw6JqidMph6lt3fc/fBeX5TyEeSzrzfV61RrrQgqlFiJtQBMRCyt6VZkEgRRKZSiy6f18OO0fno9PD+Gwj2FIcSlBwpwJyXe+lIJK+7alkhmxagwhRhHltbVtXko4H6Z8brrVdteFJYmiYZ7OqXApIKKNqSmDAgAw3qScmchbC6BiiSwMAMbZvEDhVEGUMAsrUSWXnAtXMo0t2trN9c27W53ibIxF41LIkme/cp3RZeK8xHMOnIsxuqCEEJBRcjyNA84WWquwaZtOW8051rJM0+RXW4teiwXX1CrGdlKqliJ50SVhGHU48nLevOsQe5kCliXtP9O0GFE1T9SYWtKSLGhwrWvbdgl5mdKc2bW+1X3kNIa4VA1VuGguHEOINV5trkJNeTwOlRkgDAyGVqubplkZ8W1jVw3G09M4DfFlr5ZgSko5YxXhSHWpw+NKUQrYFFbGL2Ayi6jLwSeAQCz1G8r5Fgt4CzzKWyLoNw2L37rnCSrkKsUREWLOxXozVUFlBG3kJtWmhHlORhJsrx1xnU57R77V5FyZcy4siZuUqIhdNc2661JKJZ696Tfrbv+yH6fZ9dsllmkMxZuKSqooEKUtILLUUAuRqng5aAhBBAiQkUgb0plT5VwRRaNBVCAoKAiFWTihkkZjjillZlDaKC6ZNGgk0IqRGBAESpRKpLVlUaxT5Oy9/+7DJ9t0Sc/VNgpwjgMDi/W2uVNeFZSXf/wtDLUnl2Jd6hJrvbld+4ZDHUXNgl5yGpZ9nScNBRCtVUYZZxBQKkI8j8poEV7muVi13W6Na8JUbWOvP1xtdv6qUafDk0Ld7lyuxzxl4+3zwz4n0O2OG293bbOKxlhabaLV58AL16Va1xiykppeIyqdclPQNSVzSkJKNDDRZRRGJQVFFJPJVi9l8Os+IodhAURyXWH1MusmmuvWm+26mSWE4DT/8Y/f+xi+fv3a5FW1TmV9niHpTan4UjWBf856PGavjFarplfH+fPzy2GewpLrnDjFPE0Dl9Kv1w5RYjLarFyDSCS4TGNNpfMNCMYlVoYkOQs/ngd2hqs8PRy/bB63226a51h5WhYqZJ0lC7u+ccrtK5ewLBMoyp3TBjDPy3g6q1Itmnke2pysafrVZpapQZjHEw9PWw+MeBwW++5qVM3XuTCw9xt9tdr8UDfv7joliJFAPJn43eH09Lxp9HbdF87T/rzw8nSfxZru+ko3K9s1VSoqY+wqZ4758evT89/+fkiCurHVq9O85CHWwFgxjQFrVBx7jYjAXDtvNFCjwTsTYjkcjsZYa33f9l3n03zOoAhrLdNyfhnr4Hc3uLpGrJmTVuoyswsJ+NI+822E4cWDAAJhRPgV2/xXzeeb0vPtBr9BnleI9KtWfOH3IEKoLj+rtYKAUU5E4OLKVRD+lj4qIoJ4Ga4LQK8MrBJNqTyPkaPQ5ha01SAq+uvbbbtyT/fPbFy/XX33KQ/jpNtmMS7OSyo1laqMVUazgELSRAIgmipD5ixAVaoAxJgLgEIiZRARkW7fv/MWWAm9DKt31+/fv1tOp9PLE2lj1huYFm1r0zirKJbkVk2zufr40x9v/vh7WbdxLinMaZqmx6fTly/D/QFBctfudpu73/1uvV4Z5xnq5tOnpn93fnrpbW1TPL/sw3jerrxWaTwd5vPSUtcro0V0kb7v+n7b3m7cuitGBa2l1dcfP+Ks2mqqVc43t7tVer8Qk+822JjCdRin0/7w/PPXOQxDlmE4/+eXJwa+vbuJSxmmeE51WMrtdWc7yuc5LhwFSipPMStnC9dzCMo442zn1yXmQI5sc05wPI9Pz8ecohd1mvJ+UtbbArj99L4y7wF//JcfrqAtdj0qG1IRUECklClQEUSRQqwsLCIEGhER6Jvqc5lezvjWrIiM32A3XqqFuQgSaVSikBBzTICCZC4zfLgCIIGIRVPCMjw/Hx4f0njkEq3Vvu+saWI6VkRtkbA4S7prliVwqSVnRgQgYdEEilBEailpCVR5Oub5cDz988vL09eSZ66lAgwxTUPsulYil1yB0HhrweTMKeYllAyQSGtSIswARiulNOSCiKS01LSEmGNtvFOC03lRurjWmcYwSs0CIISoAXJlUoRKFaVBVVIkClmkpiSx1FQLkt9tk3HHDFe61bvOGxIAqcqUsMwcGo6Qwv54DEYpQmEJKajKXhuEmuNIyvWNQwIDVVUcphEgk6CFgnXJHMCUWBaNuYSkajSUcR5hGbRMuSzzQkxonJdcscbWCBFXTHEOSitFDhBrLcDSeC+i5hBjzb6zmCiLiNUGKNZSxkFArLX9qtOJJphzKqg1CFikzllMSUBYxzJJnPLhOIznMxcGAhFJc6hqlpp1XZQCywp1Y0BIaOKapShNDKReLdRX5//Vs39lf5dpB9+iaN96XC+ZewJgYWlsm3JgEKV0qRVERDhXFONNv+WcwLdWxattn1P4cnyKAV1jnXdFcD4VDpGIUCnjHGmVl7Le9au+63zHpbrE281WvF+IoIrSgoicK7CAMep1mWQgBFSvRLYwEQGyQFEEAEoQKhcEVkjMIixGmcJVaZVSLCkq0b5tlNYkVSSTuiShUCurSikla6eBsfGtFsWdS2h81xhru1KyIgRCaFPKsZaAjnQv/iqrZ9ALcPSN5QQ5LsJc0lLq4huNypSYpGLbdZvden8cYkzv3u3W6/7x8cTGLMIhZ6VJG5VLZcbt9noiXbmcjy/nTnDmZdor4na3yQwv52ko8+PzBLSW5sNSaGQjHReFi6ia1ZwpZEigDKBiYjCEZJo2xpyFE1RApQg1CiJUuPRCABRGpQiRWZ9TqIXDEkGhQ8tKVzSnYUbIncKrdXvIc79Zrf26LudhOFdQqCyzmpXB9VoDTmD1xC9TPZ6SN7DpPOm2sdunfP76cjpNI7AM57GExWlztd42xikAQ+TIKFLe2IwAIMRgrVHGJC5SGYFQK0FF2sxz+Pnne6U+WtcY61I+GdCtb1edB8mNVrTrj1OKISlk4zSChPPMoRIZUQ60DTkXNBXAti6dTjkOV62NKg2M8yzRtwO5w8vs+5VXpuSa/bb1q8aToVxK7LRRgo/3zy9ThuNYcgpLGZf5aX9YbXc3ym27rutsFokZYkqcauO7dx8+vYzq/uGYY/WNy0usKTfeV4EUQi3ceWhXrQjUlaAojqXmMC8xpshYC2RdVE0RW6eQ+t3aWYMMAvV0PKiXp4+3NzFwhSJQENWbpSAsSIJ4aYZ/zXm+netzId6/dn/Cf/kj3xSeX6EQy7eZcd+6xt70Y7lMocfXtrNXkvU23eVtyC9ehCSsl2HVKPTK/kXlBAdZKKdSWRO2q97c1GgNilKrK3JGXe1crSc4sDVzRjRWW9SXhiCGmguIIPPl+MN6OQRRuJZKgiR4wYxEutaKIKv1yimIISrVNU2jjW/6Mi/n+TTkOVVG44xvLQpIZkHl2nV/9b6qPgSEKoen/fj4HA4HHk6GZyIF4nzXrDebdtXbfuW7TkHYrnfD6aQx4f5s//Nvh0doek1oUKDazhR9dbVRCtom33xcMZlhPgwnQljHpk+guVRJMEdc91vXeKBaiTSaqhxYk7KwZjRBN51p8tpoe9VXkfE0ojWtVVHmkmZtab1btY1CpaYhIhjtadqfAxTl5Wl45opt08VVVqBCrek8TynXkvu2cdutEfaig9+EblOQrz995xPVUkK/E9NG0BXwEjpjFibBy6EsUOEyeQG+jTt8m7PzDU6/HX4BgvKWbi6lOmMUYVUoAiGGtmtKqbVmZ/Rqu9ofj1Y7o41CSwoaa6rIz49fH/75NyVca1pvb2vWh8Mx12o7W1MY9i9MsDbXNWdAVWpBUkqjBuRYYgglhbhMcZw0V0l53B+OD4/n/VOWgkja2yJcFM8hno+TNuR7I1XCEsOUcuUlhqXEyJl7Mow1pXSK5+MUQnKNN8ZoZUhp1MCIyirMwFKZ64WWIHItqQrXUrhU4ApaVRTUqLThyxgbucyhYERq2vbdH38axuXf//wnfbXpBaQi1aIyI8QoZYnn4fj0EjrbNC7nGlOqS6itN0jWoTbUKp1LnJ9O1vm4TIBqd31jLcA4NEvUbFtUZcISq6SwWds4DLokkGSMXsbAxoMoYHTWNRYJeCnZee2bjrV7enwa9+e26bvVlgErs3IqL0FqlhjzEpS1pNQUlpSz0oZJWu3atl2IitTeKgOcz3tiaNouL+X+NAqo/ZznkGIsCGW7aa3Wy3zUdd61ZR3Zty2bLnk+FsKMZ2UACAWYC7FoIv7Vgv3WByZvlO5bMu0t04jIwkAoQAWFtBNhJiogZBSi1JLXVyvxkE7P29v1RpGHtOlX87gOMZYMWivjG2pElEql+M2afHNagvK28Y0gTiloq9ZNIzWjVKORSiYikEpUAZiAmF8XW0Ti1/5IVkiIULmUyoYskWKoIuryblGhIDOicpq5sNQ4L4jGt2tjdM0ZgUUUSzXKEFcN2TaYykyidKopHIf9/Xq9KqhSKonrHIMCra0zzuecIsp60/X6rs5DoujD6apv1LlYa7arjnDKiEoprc2UMhnnV2tr9UZ0SmFzvbFkath74/1KR8gZqy5mWMLMNVYFYpZhfL5/6H0dwhQqhIn5rLjbIkM5pghtXHw16wmpGCU6g2QBKUkRGEBFUuOcUQQJiXQoXMnUmhhBKRYMQFiFCxkGBQpqSRqKIxMzllGcaXyz4TTXXErMVoEOqW3wxivD0FqVmY2u+v2u//QxiElVV/IhXFKwyhrFJOTb9bvvnLElpfG4b93G25Vzc12mUuISx751nW+vdrtVt0IiEdSoGmPWnevUTVgSoVFG+5U/nadSxTb++vqKMy9DVIpEm3Z3dfNuFwpjRl6KQkYOVUoq0nhLyo9hhhqMs6ihBELbNN2q3d343SYgn4cpoREpPM5pDiWGOi0oubtp2TXPpwxdv6HbJdtpOktQLSIah6keXgZVU3x5+nz/bLWaKqYl5mXqPL3brbVe1QXqEGb9HJgzmCIGBFyltvU//PjTafqTMmq9bsb9nhV++nCzzOf98UWQtLMZdQhBFGmtNWEqY5a03rQ7051PkySINY8xrrr29uNVv92attP2OIQXuwyoWRlIOShjlbE5J7z0OsBlmK0gEBEUrIxF8UVO/dUCk2/55ldGJP/l7gvxuDQdAwAAvYEj/Nalg5dlhOBiuV8YNrIAKIS33lN+jRi+hj7UZd1hRkRdawzCrbNSZOHKuVRrwbuEKB6igCwp5ZKKCIIgG9KIYI0hRK6ZLodIIZbL+1AocjmDgRUSeiVccioFEwtYg0YTObNp+zKlft1rg+eXYTgdeU55WSJnqXmagQ3VjM45p9txELuxfrc9D88Pf79//Ot/7qzCetraul2vu5tVuybgMVVA0JqRy7Lq3Xr3QSs82a+fP3+ZCnXNRjd0+12z7rfzaZmXqWB5/77ZvLfnlxd+HBKLIyuqOUxx//kk0Zj2qte98u24nJ7GNA0DkVldbUrm8fmZ58U37e6nles0OiRr4hDyeYYsT48v/cMh1Xh105rGfvxplVnnaAHsMC1ik7a5zDMylxDH0+nx/ul0OhbOq0333YePdx++W602q25dE++2O9X5XHLq3puV6kGi0hVUrgwApC7HU1yMzctOchkARADAv56jwpcjCC6YmC5DZvBNjsTXZvfKmUArRZVZOBN6JLaWSEmV6JypwIxVKVIkcZqG4/MyHobTwQAqbc77OUQpua76ruks5/T5b/9pn553d+/tauV3WxYqITTOK6fCMn35z3+cnp4JS1pGp0VlyFMo04y5llIKimbUyjmHZakKtVGaGNOY4xxrgcIAaFKKsWSUuSGrECCzZNFoCCjFRNoop7mmAmlJIrlYp0mLVCEQ3zoNupRUAAnrEkOpnLgU5oYarWwuRSEZB9YzECmh4WF/HI/eea0Rhaq2wky8sHWouNYStFdLXM7nkzGWCRgxLILOOWeN0VBDDTGcx0kYSRvXaK4QFwvJ6DgdjwjglDYikFN9llbrvm2HqShrrXUv55kUtU2rFZeSSHi77rV2MXPM2Wk7E83TkitoY1brVeNtSSnFIDVrEiKutSCxUYh8YRistXJeSciYcmNJc1oZu21QvEwz//z3xyko1XrJGSBj0eu+eb+53Xa293rdmL4jRhlUrTWPyGfhCkSgoRbEywDEb8M1X8Vs+XaD3xSg34AkehsWIoxAiEpAkNnQ5QQ0STHVJVcWLtV2DYEaQhQwSkgAC2KeSk15te6YEEo5vRxrSuvtGqqrUojASNGqol84TOB3KFpqVRrU6+FzrEjB61wsvAQv6bVVUQgBkTQpZigsVQRFhVqICEUAOA+L0qIU9I0BpjKfAbx1ClDFggwotRhtFGAtSQmDZAIeDp/vP3++uvrf90s6zcm3Dgil1JoLOevaRhDPKWvUzc2drpM8Lcqo3kPnzbptpCJ4GYcpQ9ZkYsijOq+6pm+NWbvO2RKKdzaE4qz26zYCn6YZl7hM4UnuO1Ar3/WrddtvDkOyzTbqzb5YxaswLr5pKqohAYNLRi3MpBBFtKFaKWVwKISgQTMKIJZaGfByNjhVYhGpJbIoTVxzhSrCxFUxljCGw8kgrvqGoFZNlWsElJQ1sAeuw1iGASQtMZ/U1H/8YHZXSK1Wbaka9OshMgkql9Rur1rfUoV//MefxzEWFR6+Pnhn/i9/+G9/+suftBk/3H3XGNe2/fW7m2mapAqy1JwlVYvo2sZ3fS51nhdDsl21XdtZ4sgBOdqmaVeGGkVN8+7HH4w3y2FeDsdxGlCjbg0oJwBxyDXXvqN+vdLXDljbdmNWa7JtFZrPE3k3D0N+eRke7pfnh6ub7Xb7XjoP65tqNlU1+zmB4hKihExOVaLpMP/yjy9YAsQlAXKV45zGwynP0w+f7m4+/rjpGpScpmVZjmBNf3NXlF2W+HD/dR54TobTcrO77p396e5OCn/3cQe0eT72BYkTff1yH4oMp4M2Zu1b651RWnuzatvWNvvnc8opc2yuN9WQ27Rdv/EPrTK6Qj6fD2hdTUm0FaW0ocvJhqhQKhAgIfHrBKC3YYm/zfX8pvH4twvD25lhr53M37LTrywJ8K2DTAAA+M1Ix8vklleIdEkVXezrt6fI63SiV6EKlMJSAISs8XbtTsOcMgPqxCjMzAQgHHOKSWkCBFIYlwURSyoKUCForTSpi6gllV8D3K+jfoWZAUQbjYRILJXP+zGMp+Nh//WXz7tl02/c4eFxejlBLpxKKZlTGkuWxmptEHA6vuCXn2/7Lk3n+Tzuv3yuYUTQliLPZ1bFbleKs7Z9u3GmV8wxxKnVhpQ6HU77cYDGuqutWm0276/Wm1Xnu80nNcf5PJykwX08P7/MZQEdAVxd4nI+heMh+3atul5MmzIMIZ3HdB5jLmEq2Df9cIqYS2tV17jd7ZXr7BgXAeVdDwnBdL7fPj49pVxvfvpud/dO+a7Mepn5vcVmq7UBLdggnZ8Pn3/5R7/9sn855JJ3V9vf/+vv3r3/yKJWmzUQ+b6vVYhLdi2zlJxeLS2Gy3FYr2IGKL4UDhK8HdB7OVST3mA1vCIjZLyIhq/BNBEmTYQCwsM4EFHbur5vakkAUpkJKc6LIiJSUkrNsszj088/D89fh5c95yLG5gwP9wcWXPV927SERbg8//wC+oUL3P5kqDIiOdvEccnDdHh8fPz55+f7B2MYuRBULVozIoCzTlAtOdVU274lULFG7ZQ2xJxrrkZp5w0uZZmiU/ryj0dirUgbTc4AkBDPIcy8tJ01jtISuRTvjDEUxinF2rSN00YjMROS1qQhVdIsKZeSaq2lirD2m75tbP//Y+vPnuRKl/xAzJdvOVtE5AKgUFX3XvZlk0NypkcjjWZGetGj/nCZ6WFGshFl5MhEspt996oCkEssZ/k2d9dDZCZwm4IZkEBGZASQOJ+fn7v/lt5XzU9Px4dPX8LAFzo5qSWVpR9HDt6g1Zpbmrc055rSspmpEfZdh0QmAtB8iFrKum15q1oKGHhvvkI9PjiJpNrS2pYFEV10fRc4kmSd9tPN7T2dwsP5cXcYdiUsm26XZei8gfX9QBbqauuyFtXI7sP7+6fjZdlm1zwSLDMQoHOgBrVUABvGiAqhH4KPAErWpFa1FFkHTxPjzoUf393e3+415PNJcTn3J8Do29jFaM5017n373a3+5tpN0xjkLyogoHrxWERaSruemUREqnKi3IQv2oQX3/gC9fR4AVgvDqboQIRvqAmBFNwiGBKiEYMQN106H/7G1fv2un5888/acFheIdDYdItLXlbPAG2+TD0xezSkomUZduWxIFuDgeH0ErFXFDExJCcAQOYgqqCAZIhGV9rKtmrqgXJTAA9IDRQIWgCqlBrJmveOc+MJqYVFWvaHOk+RrM6z/PlrBQHiDuI0QCrGCHWJuQgemrbcTl+vp2mWurpdEnonYudhyDFTIit1KoILjDH0d86qiu0+fT4ky+KRo+/XPpdjy76kQGoJx5DWefTZT7e7Mdu6J5/fu66/vsfbi5zPc/bfNzMc1m3wD7GrmPqkb//+OHjj9/f3L8/bfFL6QrsGu9VhqI+ZzSF6kAMRBqjmYpzrtaCFL1jaIIIjEYI1UzBgBgVVFGRRM2UABHEoOVgLaBgzXW+OAV4Om9Ner0PHYlnYn+YBldV0/qXXz7j8tRJ6YZwTK25IR2r58odJKyLtk2ZiUyUQTqyYTcKwPPT47qunQ9//sf/9Mff/+5v/82/vL+5G4ddq59v7j/cH25c7DF4rrEsCZlVdDmvZLCfxkPXp5zSXALKGN0uoA+E/dD2vqqAzknPKx+6D7fvpgEyPv/0sDw+ClXfmwt+V3iBsC5b9+7DeHODznfTMNzeQNed5q0UYCGaS/n0YPMTLuftfMEffxze/3OYphSmVF3LxeqFAznJwKaal2NaHp/L+QySAtk0dg4AWjWpfd9Pu5uqcF7XfHneTX63C9M0TTEkYWlkuUCtMq+30QZbD+x++PUHZyxtff/r73/1N+9zw8tZl1MuS+n9mNaWDYx50eLUxPFEYRecG8PGdVmPYUCLbU3z48Pj8+MzDXeWpA9+zmvD1BDG3V6ZQBQRSIDBwJTsxRDRrgkZL5DkpRq85SLZt13QC08VX7HPK9hBw7co7tf11stI+e0FXzLIXqXyL59BMCB4C2NGUCVGMO36TlrbUu5ix84BE7FPuTIRE6sJAsUQDUxEibgfQz910qCV6hyjgZSmZnJ1+1BQEXYUQgDVptCqAVEXPZGm7fL4+Zdf/vTHum6n56e8nG5vh+V45KaOuFqtBsYEDsGRj97QWj1/+st/Os9P3TQyElweOth+891vvPU/fzpu2/F0nL6/v7+9uT3c3zewlBI6NtOf/vLzL7/7KV1WVPvwm4939zcYu1OqDcv9+3f33bt4Wsvpyx9++Xz+IqPfT+P++dTqukLj4HeFw+Wc6PHkIC/LRRXZj1nq8/OiBTn021bO5+OcN38TRuiOl8uaymG6axXOxfr9bVestra6sXPTfrwRLSIl9qyOxXkEJ+iHD+Ovp3cf/+Z/p2Kl5RDcuw93FOJl3rJBF31lVgZEyaqq0kRNlJCIDJBU7Bp4+sYxxZfBzqsLEKC9psDjSxUHAnqxUriazyFcbX6u9AcmYNRp4FzsfMlolOalSb65uXE+gsJyupwfP//8j/+wnZ9R1blAsQPoxIrUmlI5PYpJRtZ0XvbvQi3r5eGZyfs4jDeHZZ3Pz89Pv/z89NNfyrr6MYjKVsVaDcyePRiZehJCZ1ZaJA+OpUrRWqUVq7HzTBiExuK5Sex8t4/smEStqUhrok2tSANQLsYIjAwACAyNpJljR8bLUhFtTUnVfOyUyLEbAoKoSTMou5s7YKTgKDpbV+/h3fu9EDw+n9y8lTUXF4cOVXPWtLZ1rlbUmrQGQNJUSut8dM559tDAxPKaa27Bs/PeESPhtp6r+ei8lJJy7nqP5LTW6N3+ZhxvdmEMQVzMDGnzppHxdL7kRafbA8VpS+3py+O6zj74bhow+m7oDMwUypZqLog87fo+doE4bWstZRj7vhtMrGxFwVRbLSuUOh36IcYd4YcP083NgCH0Lmsu7xaWsBNyZAlq6wM7T2vOburZY2kSwHaD24OLlSiDGBrCa8jtW3V73di/bcO+8u/hRSJyJRK/pv68XsHwJl9UUCIWRPQU/NQ2PdbLbP39u3ed1fXyy91u2A99ikTQTKSmldQNXfQ759iXJr730xAdum3LAkzIxs6QgED06stJL1m0rw2moRFcg4FNEVTBETQrTZTIeXaasiPYx4hgJdcp+FbTNl+aVOeJyVqqqRrtbj14z55dEDVgRh+ypMhOSrIt3+zubvcfzAKIMrkuUqcqAmtp3oVWNW2SwbhWFCfgSmlumwPSltrSlnE6+K6TYmB2d78belzOZwJhtBDp5rub2E8703i8PD+d0pZ61JuP7/fTTdtWV+H2burHUbHb3f348GzSYuWuCAtiFQUzIQA0QQESM61VifhKzGrawABIVVWB0fFVasMEraqZQlMDA4Vd5zwA1bxenuRyjM67dFGBco4GY3M2sOv7Cbs2p7U2bMV6g1Hd6jq/vy1+bxZQsDAWkVqaOSZDwcZdLKU8n86XL09Z6tPjl8fnIznHTA+fPx2/PPcujv3ovZ8v51zWGCIbDV3AKqDXMglo2gc/RpdyCSaTh90hdqFLNZ9r7u9udod3EAchb31njMOHsH/3AaBVTErSYadhn0vbHfbDMJmj/m4MQ68MjAZncVbnx6Pmuu8i7UaRD93uHocbCWND3wBChwSNsHaBmkA9n748P1Kax4gPv5wq0zRGJNRWA9PNbhe9//znn1tdsJa878Kv3u9Gk7msqT4/ntNcutD98K9+XNY1Lc9Dz4EMtEir82k9fH8fg/MEP/7wEWtdiaRndpzXy2ktjkI3QueQOXRd1+18934YP0wF2/nx4dPPv5yPRz+dT19OXdxFFxEZ2bWS7bqnMiN87W4M31x/6NUJ8e3Hi8LrBfe8kX/whctzbeKvAyTCr/vzFyXz6/QY35DQm6ELvCKjN1Xz2wbeiF4SD0SaETPxZTk31atq0nnvxNg5QoSaDSw4h2Sl1lJKqValNjE17ULniEyaAgqRXUdOhIgEhsRYU0Z0jszSRbQty/Pj48+X0yOZBaeX48PlqZHqEIKL0TlwDgzIR2fMgmZa0/lxrnI5Pez2uxiDzGeCJuny7nbvPnx3bin0cYh+YMJSRRs2jRQePz88/PTw5afHltv7d3eHw62P3aVaqqg+cPGR/HnFkpx1H6YfxtEPRLqeL2qu66fLIuuyLdrQfekHZ0V7z6ELLsaWS/DU9aOknNIG3s9rrqqCbtx3Pnaiwl2noHcfP5Tny/GYucvTxE0FGIkcINUmRXRtW+w66qbYx67vDJtZNU9LldUIDUAIxcg7YlIpoITszYxeAnCB0NGLZlCvJC94RT2vOPn1VvN25/l65b2IjgHAxBCNmMh7KVvdSiNj8s4ICaWKlPzzH39+9933Q4xW6/b43NZZWgnOO+6Wud7e3+z2+8vzOV3mS1q2yyxSb+6m2/2OVdPx2PpBUv3leM7r+vmnn9bjM7RCqLXUJlaqILEpbClLa2jkXWSg9bSEGELHxRRM2ZEzr4DO8HY37rq4HE8Y6KptY+9y3dYtiSn6AAQirSn6EJkdAADQlgqCEWPTlmoz0aaiAAVBTa1JcDzGfsutH6JaXc7b0/PnGDE6ZIQqdlzazYcf3PNSFdy6qW6rlVLXJc3L1SBbCWL0IXirTQzGYd/1PSAs0lLOLTeiAA7QoSFsW9K6TdNookK8KThydSvLcf1w56cDbPOlbsvtNLQlX84LUCCrpUlptm41Lem8JEbnwlCaiIrz0AeXtyqtBne1mFYTRDMiYCYihiZ5S2TaB0fksYKgBrLocTd15PlUtrTOEW0/9YZaAUPfd6GLkaHJ+ThvpsKwmWVQUBsMBuc6hsiEyGiCX83q0b697F56MHth5b/0da8J8W9V8ZvL9Fq9jMDQTMQYa2vNtPN7/w7v9vv9ELdPf64nKqlCSrTBbtx1+3G+nNNc77+7PdwOKk1FUs0lJXbU73Y63NVp12KQonhNYnsRrKDCi02W4dWu/GWkhQqM5q8SFDOPGBzt9kOeZ1oXZgUtDqwLIphPTw/oaX833ezjoJwkazlxYHKBKajkKx1AidSw9+OHux/ub77zFty6IDRrK1gCUw4xqxSBvLYm5k07jWbDvOEofPdu73PNW2tbk1JSqhJxOnS3H95N4w5ycez3d+P3f/ODEi/bJdx1v/rN9+nh/PD45ftf/coMH35eQWXoQEW2rFmCOleVEpihirSrm68RKoqRXsV9hmAgZNRUyEHFdi0zAmCoZMCAhObRGCRv5/l4vrvZ7aYDVqllcbZhXSRD4DL0nfMlLbWh5tnnLNhF8Pv+fszDlNalulC6oTvchP2teV9B11JMlVXa2oCAPJyW5XL80tYtKOW6Ppyextvb/e2OAP70+99dHh4+fvx+52Pb8vH5cZwm6XQ3DrELXee3NeU55dIE7DB2efPQwIFgK/vu/nBz+/PDl910uP/NP8N+Py+VGGK3O9dC3HVjFDSFJNjOVYZfjZ2ANKuukwjgcbOU5tXQXOhSacd53d/cRN5WKaPvuOvZj+bGlpInCiAMBa1YqZ58F3BpK5bLenpMx2eOjnHyXfAmzBapQj7LVnqH6Hi7rMfnsyr4Yz4V9+efvmyXeX97OLx37CN5YlCRVLS1YLVWWCpAK3P64d3wcf+butx5Pyjy3//9P9S/bNR3u90HSdtxnr8/vP/t3/3L6fup1i0g5i58+P7HFbs5t9OX083hu+52BOdzolYNWcmRiZECX5XDoIJKVz3Om6brlQr9tQt6U79/lY0CvAZofP0V7G0Dht92Ul91ZGhvIvy3ofMb6xqvcAoMQEyBWQgYcNwdwKxJc0xpW66YHxSYCBHWbWMiJAjRI4GYee8Moamo6JVQYFe4RS8EJVWBagREaGU+n7/80sr8cH4+PT5ZzSEEcrjUUvIyxA5N0jY7MMdggCLivS9SZSsA5tCgFtmKSiTJ0NrnT3+86X57d/MhtlI5YJbL41N6fq7ghv1BW334fNqOpaNeA07jnWr4059PMznynqbhWHl5unz58y/vbuOvf/MvOpXT6Xg+ncu0J47SXIFkCFNPu94d7u5IAPKMBByiv5sYrSzrtO/2u+9dJHCIXRi7TkppLYXop33c5nPsw3vaPZ1WzbIuCRC63jvvriaFxBjiAEC1yVrPZzkRgifggmbsPXsO0Ky1er09iJqo9n2vClqKiBqYYzYEUwF8YbcDoL2QsuxVaf6yXFC9rsOuxHx7yX9HQ4Ar8fR6kaynbT0f882w3x8G56PviCgVS1tLKmWZVWva1rRtaU3ZmgAvpXTTSsHUWTf1+VwFDByLQprXIIVju3z6eS3NkLa1PPzy0NI29KGkfDotwM5H5x3VBilJa8UzhiEgiJmkdZOKjs07UoQihdgxYgwYGfu73jxccim11AYmRszdMKDzArCczstcWmf9ODiiVk1yZTALLKVA4GEavfcll3UthMQmDtlFrCLbdo7aMUiRVApKBTXZ3dy//+G7//Z/+h9dSjlGhtaapLKuy+PJauonbqo+gI8EoLkUz4QqHg0d1d4Ph6EsmRDEtOVN1FRUwE7H2Qxc4LbkUmCKviT59Ok59DEEiFb3/f55KR3RuRYfOE4jO3eZl8vpoib9fgpjn9JqUsmxmbUtIeC427FzW8pJc/Q09gMSlkuqlqS2/jqeInTT6Km3lqXkcTyc5tOxXIDxdrfHOGrKWpVqds5pg3wpYu799++m+1sIWCP5IusGz8d1S15MwJkhgCi+sMsA3xiPb2ovfB3rvIAketHQfm0OX9UgBqQKCIKGL/sO01qLGnhyhwNBX6DJbhzsfTqelnPhzcbdMO7uzfVbfXC70bqQt0bEppwVBbtues+H+9zvC5IR0HVpYw5AXrz7/2oKdW0owACJyEwJvCdiA64lgjK07Xgumv1gLngXOEADVRrGePPBxxDU8HQpdYMyA3m0Turm0IehQxVVCMy9c5o3sDxh29KsnEUrAsTeG2BT6QfXzHkOIwy1Xtp0RyvkDA4ddqxFpRZCk9bStnWR2XtQp+aUdlvh/jaM0yGM485P5z8+KMDu8E6JshEYtuHwJXGr5bTKEeOGQUgFC7AiCAAZAiCDCKMZKyKpklzZHgZN1cgIQK0ZERmhIRESozMkxks616XNnKJ3BgJMzCEEcuC3nNfluYJbqxWO86W48XD3/n0XkXqPgzQF5SBhFAra2prW+byVlAAaom2l+IFbzdtlHrwP3RBi9/2vfz0N436In/7yp19++flv/+Y3Hz989D48nY5D3w99h0AtV+iBHRNi6KPr/JoKgakaozPBp8dl2GWjlZ27u/8Qu/FPP/9c0L3/8Ktta/OW8qql2f5mx11YLkdGdZ17+OkRBBfb/K4L4wTejFmaOGI/hMP7g+/a49OXJECx93c3NobTUsiqA4gojiq0FZog1r3nm5vdl/OjbzrGsNS2zKkn2vWdgqa0rgz7vn9/O9WSQ3fnuvD4cMlt0bCrDZZSly+PCf/jOHR9rFMYdtO4kWwiPE4Y/Hqcl+Pj6HU39Xe//ttxev94Op7WM44B+zh0Qz2eca03t7sfvvsgvikZFJ0xf/jw3edj+vL0UPMSPHYxFnCNiNk1rKZGYIBKKAZ83Ygrvq4nXm5I9NKV41ebn1eez9VNEem1GUJ8G+Ncd2lmX6dF9oJ+vrHX+Oqv+CLGt1ei9Qv76BrKhMgAKKJqwEQESMhqBqaeGZAM9ZrV7ZwjRAG51gZVIEevqZnXbo4ISQ2ZyMwYqbaCxMMw1rRs8/Hpz78LWGTb6vk5rRn6oazJI47TzjExwzYXgdYNAcCZYzFAgRBCPwQTYSRi1wVXoK1ptSppy467JadLer6c5sO7DxK66uNy3NZlffj5SyC3m3Y5tVrb5+Oamg33d66PruvI+6arMXLszIcCDW53Bm3+cuLWSqpZs+/c7S5Mo2dH/W7C0uWSEYSskkleLqksu2EfvB/2I3eETFIaSDNtjm2YAnked9Pd/bts3KQBIxNrU2nSdVGaoEM1IEY2IM9M5AhVBAwI0RMBg2olVAI0BkWrLYMRgBIBE4sKAiFdbypqCIaMamYApldbcjXD6zPoZemFjuxNgQNXEjWoGTEG9g6xrMun0+N2OH34/kN5Ov7593/MhoVcSed1Xpdfni7z6eHhqeQcui5niFOX01rrygwOGUAULHZhE/uHP33qery5ufHH05qSi52aW+e5pATY51JzrSDG0ZUmeStAbABIfJ16giMSKKVy56RKEWPHremSF9jy2DlGux4KIqyquWnXdYTUqqYtoQgjSJNWCrKnBszkyJwjaKYAfRf3h10tAnje1hSDcwy5tFqLqPgpsqO+G5ToktNlybtx/J/+r/+X//q/+zvnoa6fv7g+HgZHNWlOKqVsSGR95w1aKYU9IsPlvJai42EIvRt59N6Rmogs65ZT8j4E7+Z5WdbsnOtirKmR9cM4SC7H43E/+tvDOHXdwms/9Oy7Fa6+Y5xTwQ5IqJkuKamKVGFGByEQO0eRsNVCKpKSUox+MhMDqTW3XFDr+Rl209B570ERbD2d/yi/7G524sNwOFB3AxFvJmKx5eHh8+fHLVdpeP/h4+FwKGW21AIDGIOP1ftltoRiUBle0t7+auT4MpDEN+ef1+xEMDN6SfeBVwWjIV6p/dcxuKIBGjkibdLFAIYGuCyr98TO8f59GG+tP+32P9qWZBfmvj81ir8ecwxLTgLRsYu3d2HH5oelO+A4VheLEeE12Beup+W6gsPX+Top4jXd0UwBFLCqMDABIShJw7ZFTTlf1vOzruKGTkIkg9t3H9zNO+nucitY1j4E1pLTjMqAma3ZFrqhz1vZns4Da6fb+vj7TWDcTSBpXldk141907atiZuS9zH04AgNw+Fu9+PfuuU+n09rOnvS3T7EGJdlK2VhhxXqmgtLuH33vvru04yH0fkx5tanjBkGfv/Pt92705bb/QTgzmJVXWq4CGrwGUChXfWhAIpIaASKjAh4tUYHZhYwJJYqpNfvkAEakxGaiVUzjM4huNXxMGzrnCEN486H0GCH0RlbzmnOrdZKnoPvzPyW1FvWQwFia9pPIxgMENi7mpayLduWrAnXWtbNdUxSMDO04hlC11Hobr6/yWk1hcawqVbRHz9+/NUP39XaSl59vM2lmWpLbbnM411899272kqtBZBLw3lrNSmzU+PPsxzz8e6uc+S2p8vp82M43M3P66arxcDBqUqryQAxN7Lt+HSUy7acU8m2f3+7G36MYTK/K61iw90h7nv43e//w5dPX6If727vhPuneUkVd1gCYUDzKIyW82Kqzcy37AjHYcIQy+ODIFaj3LDvdwC5IlQVUTWH8XYX+vG4lIfnU3/j776/7ff+86dPx+Mv+/FHonBc1I/R74Ij9P0AysVt+0N/Pj6qox5da1DQ//C3f/ORVIkspbaLaey8d5/+8e8bt900Mfv5PF8u87Isz8+f+/2g9l/F/q5s2Hd7AAbemjUCQRBTNbiGP75trl5EUq8rL4RrrvtbrfhqlghvlB77Opz9q8nwt36Jb2zqb5T19hquA/C6PHs513pdmL0CJDCz6730OmG6TqYFroNPA0fOXoztjYCYQNUQAZTxda5kioR0zfEWEee8miERglLbvMw3nm73Q1fz7x6fVU1T8YhT15Wcc25IJlVTquw7RAZBH0L07JGYLTjnnFeVJrw/3HXTsBTNx/PlfFrm0/sP38Xb91IkbZfH7SkXXS/n6eOHw+GQS8mlAPD97e14ewcR0QFZ7Z395uP9bvSoqUnFVsiEVLSqKaC2MXaHKaLJ/HTKk/muBxe4rFw3y0udn+fTLKl8+P5775yoGMj+sK+XNZ9XbzZNO/DkXOe4r+YeLud1U/PQ952oqJlj34o0NXAYvCdH2gSBEFSkgbPcGhr7wGoVDQMgA5mqmDomVbnizmsLbfrC5TFRVECklzDxl4ABJSJrctV+XxesaqBXGoTnKtXMpLat5K6zgPWPv//TZ4Qvv/sDAT58+uL6IUzTP3z5yXV+/nRq20qed9NNM5S6OQSvaiplzaU2U1Vrx3NpHClwrrZ8fh4Y91PfO/OOVg9lbstlC32EHlpVWbMBmgo7AM/KlkCZSTvHglZxE5Nm6H1HvOSl5XZZU8kcvEdH6ljQVxRBrFV12bz3hxAbU5NmiM7IIwPjK8UVOFDJdVvmcQyMjpBTFgNBbCVvhuI7bnVzjve7w+NleTidv/vVb/6b/+F/+O2/+TcIwe36To9a13NGYpT9rk+15m1G0K53LTVR6fq+NWu55CYuUvShtWaqqtpq1Saqxp5CF5Z1M9IrVg3RBR/6oQPHAOS4Ywvn53lZN6DgQ6jrsqXsQ+fJjWNwjExuWbJzJEXKIhgsRu8cqNSctpSrVBFHJaUQHKF6RESraT1bqdtyd9ih57rOl4dTuWSi2O8m2zhpCl2Y9pM3SO60plbU+643133+/Ph0/KQi/f5gblwafs6UwAMCM5C+Mp7tJRX1Gw2YvbZzr0svvLJuXgj91/XXK2HIkBBMr+ZACHAVZpBZEzWAPnojaCbYTQoY+11PWJcNSatz1O+NWgb2BgwCjBXMIFocm4XGKIjSFLQBO4SX+RMS6hVTfx3J26v6hAxVTA3MqSFDCDBF3h5Sno9tOwXEVJasOBzeH4aDGi3HIzt0ok5F6hocapVlrr5zYTi0ky6Px3R8vhnxdkBf2+Q5uPzp4Zm29fDxPVl9Pi1tqYa0iQB7Px0gjNPN3RAjLOfl+RHmU+xw6NkRleO5LhfpO5xGiFibl7vvK8ViUjcLRopYltzHfe7AsF84NG2q0AyMfFaT4Ni7Wja+3rheNTtggoZoCAxMzsCaNjXAJoMPpNasAgAxNTUwI8M5ZRJlp06KR1EUVQQtKCRNi1hSZe6HQ0jrSs51Y+d4KI2u3ks5FwErWwUAJFUlA22ipuAAfYyjc2rtcDMBw5aroAXfRR8DBwA4HZ//9NOffvef/r/Hz59vx+5DvdWmMQRtuNScU3FI0GkMLkYGotDFgUPdCjH5sTPivus50nKe87aq+X5306G3IvPpguOu6wYPzpcEJTMGV0GXVL48Yivl+XI8Lpenzw7rD/TbYXfDSuAhjJakgrre3043t93u0BQvZcsV+8gEwCDOBIrAmrRtWy0PT8811+DD1I3DNjdVM7hsmVy/nwao5TSfI0l3u3vcNr3k85aMHQfuhzCNwTnbSr2/v3fknx+ff/n8ZSred8xpVOGWsgMch53v4lbKnB7m06nrsDvs/DjqTOt6aQF//vnLKacffvs9O66qj7Px7t2/+D/clugN5PHxk7+7FdwRCpIjiqhXPcGVPEeAZChXuGNw1Td8hTFXLPRXpvCv4+JvaBtfNWBfneu+4XS8FJO//uS3f7C/eqVv1mjf9GNoL0L6F+siM0O6nnt5mVu/gqVXPPZWpa7kWgUgAEJuKogk0jZJHpDMIsn9Lnz33ff7PqZluywp9B0iOKZNJOfcT72oiAiSlmUZd2PLtZmKCEqbhr5qDp3fjbHUJq0avezgD3c3H7//uBvHJJBUn5cVnNvdHnjstQsc/M7tOPTeR2aY12WTykgM1McYAnJwwXmtgRHqpWSp4xD3/Tgcul0Xcm3H83x8OOJ0uL2b+rLWde6xRYQ0X8pSxmEM0YOHbupj6Kou8+MTOg59Ty5mpC2XWvO6ZsHQxa6qsEMwUBADRCZ2aCYqCoZNq0Pyzts1TwlMVEy1iTAxqCIRX+0sUVtRIkJEMVUwBlQ1MCBHIIBEooWJAAnQmqhjBlU18GAKJmDOkSMyFQYgBtDapF6+PJ4fnqSUdV2On5+ZOaeNL8sd0vH5aA628+auHbqiQwIBKapeVWteti5GAEBCZAIE9iH0JJf1dFqsminVepEs0zTkUq20qYuVtaYKRMMUty2nWoi54hJCIIIkteSMzcig8xQ4QN/NJQMQk0cOgmIGYrW2evXeJZWbfd/F7nxq0tSH4MnRdTHs2IVroqWYQk7ldDwjUNqKqeRUzQo54OC8Y0fc9REBP//yABz/m//uf//f/5//T03q//3/9r+4btzbfWFbOy4BVJnwUrZ1VrUAzIGuxqhNLA7RB5KWt/NmyGXJLVffBR99Q0Ln2Uf2gSAd7m5vb/fSCjZZ14UNdtMN+u681WVblq0Co8Ka0qaC6HGI8Wbyu9sBHP/0x4dILiFsx1nSwp7nlFNKABZ8JFCmSpBM2Vop2+qYoicGbaWktJH4mhtx6ONgFZan+fnzo7QWAt+8ezf2+/N8KcEfPvzoXbety8MfH2JgxWGZ+xN0yU0nCCmGAE5qMRQCdzXe0Jeu7yrBsDe11+vH6yD5K98ZENCuJBxUAH3Nf2ZkM2NiAhCp157sSo5mdNqsgCrQKop+BDRHBGN/XesuzRiRPIJaU23NjJAUFYCZgYCIzRQBmV2DAoT6squzF6PZl0m7ApBj12pFQtBW62ahuk7G204ltLyK1dI0cDwdNyOfRG/f3U59L9sxtG09H4to2nJlgvGmKJ+eZldzNxx2Ib2/j0/zpSxHd37cK7oTCqgrMqnzw/R5fqqE/eSReuFgXSC/c/0dp8Rs0pm0iv02tGImqffGoYl/CjdCXkzZFFYxYkBeNK61irFhJ6BiTa9EMeeqKuTKxGiAeg1RAnsBg1WRAIiAEYBAVcVpG9RaTnk+h2C+8w54S9Co19pqSYh1zLPXzVHzfWRnp+eny+OypRqn3f2HWxeYhmwA7AGQAwUXIoNZNalSSiu1INkwDdxF3/XknaXCquNuEBENXEXJMQAAOubgXYiOWNo29i5wHGNFO6UNGbMZcjzcds9fHvrgO++W87nk1I+hC74ta91S7x1Ft9UCaE1r0bxu6h/nvjKNEwrH0EkIDRiRAKRtm2aXzkv98umGNG/Hviy5pbql7eGXNO2cxG6aNNqcS6FAYTdMnY+jkhPg85qa+Nt+p6RpXdllLHl+fKrbPHVeWk1tZQ9ezZmqinPYDV0DOp/WDtQJgBEYb3P98uVMSNPtwXf9eb4MgYNzZtykMVFgO3153J5ld9fTMDo/STZwfPfuOyJKW655207PeQYl6oJf1zWtleOuRRPOtv940iCGNg3hducn/x3I889//nJ82C2n/jDWsokJd4HQWVMkvZ5evVphXP1Z8L8AKfaVwvxK/8GXM/cVt7z+4c0F6Ho6vzJcv4Klb7bub09+fcb1CQj4rTU90Ut5eqNJX1PLAAEFkRTxSgk0BHrJFANAetu76XUUZUgveR4vMyRV845iN4zT1HqvVjpnv/3N99R3/4//9X+b59RPneu9b560GbAZODWu2au2ZZWmGL1JIxKk5oGGYR8dtdoAwPcY+ohjHLs43N+vtc3LNq9ZSwZrvpue5+XPjyc/TN99/BAdS82cayuJlEoTBWuiArzjfuy6PvZsTHrczufxvht2Y7X2/PS0VVkvouBShTyfY54PDvqbXkvNywKsKRVC74In9uuSy1aOD88cQphu/DAlxCwqVRq6YhjRAlrwDoFKqUQeFK6EKWJizykXJOecK6piimhqbxItZPZmqqqiiggCVq2Rua6PZj4ti3PcqvAV0qo6wlxyM+q6iQnOyzx0nY/ufDl1XRdCLKlAtegcMgJUCixZS0rnp/N8vvguLMuGIM7Fdcvrn34GhLyV/c0OtdWc03ZRADZSQzFet4bgkHjbckplLpVj13PvlBx7dB1gV8w3A3ZIaM6Tqmopwbmwj7XquiZACMGvOZuWFws9hQKtSXEKmGXqw24KIFGrjje7JO1ynpf54tjWbR26aQiDNggOHet+iokRiR1zE8kl+y6QY62mYuwdsytbazVphcMYTK2KucCKJqomQETny3xzuP27f/Xf/t3f/Xd/+eNP//bf/i//z//5f3aVAg2H3nXeLrJcWqsq5nxXSqoFpiFKk7LV4H0cAhFKTR7JDFtuiOicN9UQkZ0TadHR/c3+7u4wTcN60Vyzqca+5+DWnGsu87IgsLSypo2GOOwmNGetdj6OvUfv3n3YY7GOEErKqWQpq+a1LZEDKXS9H3rX2paTiCoxqNVxHBwgqoGqqrDj4WZ/OOwR4PHheUvJRFNKp0v6/sdfneZLDdBLA8itphA7AE9+J3GaWzxLl11XmzgST2jIqgpIV/KMXUnO3wQhvhqTv8a0vNa4F64ivvAAvtG7fnXzNABiNv2aJk0AAKRw9V1jQ1QD+Vr4rroMJINrKiIyoNlr7JgSQBPBq8uPIl4L4qt9ERoiXJWW3LQqmGN23hM0Finb5dPjl5s+sgdAvZwuYDV0XVnPtcC2Zucp2dP4/hZN5vlU5su8zapNyOm6NEVLre/j+0MIsrTLBbcMKU+UT3M6bs9+GBwHU78tqYsYQyTTrotJsDQIrtcYfHfg6FJLWjJ36tBaztXUdX0zLuirGjISoIpqBRcCqy8YmqAZBt8hVZMsqowISoSAZiZoRCoGQOjJs7WyNWm+n9C4SFUUh3g7hvLwOV1Oebk0UuddnA51g1VnGnrCVrYLbqcubUPvewxprdvxXNfUisVxYiZywe88Equ0klPwwFG5ST5vptr1O0Tb1svjlyUMQxh6dhT6PjiXq1CMjaCSqEKtxcByqdG5EL0/jKdj/+N3H9euv7ndd7tdk0abWUMf3H6aoFaTul5qbF0fiRvVtEEt5J1nf1pzXhaEAzCZo/Oaj9tj3LebD50uWZQceSXWkmy7XM7z8cuznR910Mm1/d7HQBXJ8vL4lz8u6xY/3LtDnz1fCKgfeTvHjoncsqR2zqGPgV1ej7xdHG8yz59//qmmpd3cxuD6MJTcjpdLLcU7N3Vh3HXbeUMRMx3HKYbx+fOl+eg5Dl0XmHTb2PPjw9O2ViBfFtnf7jWllPL9/eH+cA+dF8Wm0FQFiDjUss3H2YdBwRQ7wJ5CW2Fh19/87Y/vpsFcuJxXxx6cVD8oUTh8xOP5sp22tAyHyt5Lq6pkBt55Ur1GDYjJFY5chzf6TQjgVzB05aO+SR6+WXa91oyv6rHXbRfiNy/wppZH+IqZ4G3P9YpLXj53Hdq8OOG9iIfw6rd4NVR8eyl7je5+eVV73cSZwdV8+hWNvWA4fcN6jglQif10eLd0+6fjX/D3f/iX/9W//nB/M3W8bS2tc3RT7GJu0ooGF8dAkotHFNN+dK0VIiMPSDqMHaPmZe2jHw5DCBh7N+73RHwRuTzPf/7jzym1fhwlFRPJzv/06cjTjeunHXIQofXCDP10C0k+PT4jr6X1pUoxvdmPIpBzeXx4lFLuPtwJ6/PT41aai/vQu6ZtO87r+alF8HU8nZ7W0/Pu1gVPfR/j6FPdvnw6wrbN5yM73t3e2Ohl7JJYFXXOBaK0LeO+c2RNxAwAHJJJawbG7FQ0sFdTVUVERFY1ALi6silcWRVU6hqcB4Sh7y3QtuaUS05bYEKkbvDreRWRm5vJe59y7UKnTQwxhI5cAICu68isLCsaOmLN1Syvl+dUF5UyX05pS46dGfbDAMStNDGrKbvgnfd5K6BigD6Gdd2kGvZQxQxZtJ2XVHMp0kwFQUBKq9UJMNI6b1Wac+xAEQ1Erqt/H7gp1NbM1HkXel+1NhGrImr90NdSTbHWVqmu2yrOGaqgLuu21i2nxWHrvJ+Gm2ncfXf/3fm0rJcLAt7c3d0olFy3dS2lmEnOScC06PV/wBhVVVVi8CFgqQjkAMzEcm4llVLLMO5++y//xXT74f/z7/+3f/sf/t3/69/9r1/+8rMDPznyWk/rct7OWz1fsGQQa7k6QGieFBwTWYNW0XHL1a70bXCium21mZmpFonR98GRAefEDnfRO/VhZOdcrisSHdfLfJrff3jXD/16POeUhnFXt7ycz6Kz1rWYnuYtUIRiy7KaKXWeAYmvtk9CgKXYtixNBY2YqY9BrakhVim1cAzj0PWxa9pyyUvJQtTv93VJi9Hzts7Lujyt8yrvbw7BUyrl8elZuoYfptl3hTpVh2YooqBKhMhfvTjgOvN8qSHXIDgCutaLV17k68Yfvo6436qdfa168CIvI3gbRF8/8luu/NWy9Y10cG3uXuHTy8j7K03yzefHkMFMnPF1tqRghiQv2EkUAMmDyTW3l1Vl2/LlhHk9zUsrrcyLpM0Fl7cVmnShU6p1W8/lsaxPSGyC2qqkuqXNubC/7cla59vtfvBSnn95SCz93f14CJrK6ekMsasANRXnfMkVwxT7G+AxrUIeGbHWZmDoXFYSdchIhJWwwQAAzfnrIlyuIZVABg6YqmIzAGa+xgO2YtiQzCO12gyQ0IFdezM0IALx5MCybmuaF//OUReErEhjJimtLsfzl5/A1E1Ray2zMcQeLbgAaBvUbV60SgxjTX5etm3N3jsfuXdaLyemOxdCKeRiH0CdM6hLXta8ZUZXFVQNTcjEWgM1IF+ItgbMQ4weCKyuii12fdrmklaotQX8/OkPf/rD3+9c96u//efT3Z69s6q5y59/+vnyeAwBq5a86s3NofMuXZZ2Oe+6LkSvYIFxCHFbcl7LuJuALKeixD2Y5VrlEpB3d+CjK7mtl1M7PdenL3U5XYTGd7sQApLIlmquz5ezPX8a1/e3P/7KfXiPpOQwDoFIc0k5qQeMDnVbuW1dqMvTp+3xKDmlbXkEGPrBs8tbWZeMCgH1dvRjAOZcLAUOzsfny1pBCdpu7IKz+XjcHXbDEJX9WrYtFxQ3TtN52aphHA4E/bouSgbmLmvejnRze1cxFOg4jr7rZqPlogy9u/shKdl4C/0EEADztmX0dF5L2aQbPvzwW7w8/kmxsRNkaYVaKUi+CuC10biCD9NrYt6rg/M3iOetsXnFP9/Alyvxhl7RD9rV9PBbU9W3uvA1LOyfAquvFGl4qQ/wwgAi+Obhq4raXja+L9gI7NVkEVBfG7KvCjRAuUquX6AdGF6taVjUiNDMajP2ex5/fP7y5fPvfj/tx/Hmw29+dR+ifnm6lFJ8CGimtSmisg+Or51jyau2GrvAjsehm/aDNwrEsetKq5rK9L5H3122sqzraV6/HGepkJsjh5FDLdK5DiGul+J9CR33fVdzen44neYttUohHJecmhYicnF5ePr8+bGp/vL5y9Pp2U9ea0HA6KOH0LS2tiE2LennvzwwQQfSSaH12eaHanHdLuvxZOvKmllxefxZQ/PuvSO/aUOyMQ5aSkBlsJwbWYx9VNCmqiBNDdWuxiSiakQISAaoL1VcrzcCNe8iM4vWWpsZrksahp6AtjW3ILv97mo4WBXSnIKPyLRuawixjzHlVAnA1Jo44iHGAJSW+enTnz7/+Y/LOpN3tWRpVaSaGMVoiOiYfQAi13k2LKnmXBH07m6fci1r9qUSuZRKKxnQxKqSsWcAaTlJtVIssPfMKKqqSmigteScK0cmHwRBsAGKiHllp6BNvQdGbNvmFERJhdA45ZJSRtRt2UDscLd7/6sfxjG++/Du3ccPHrqnL89N/nQ8HVlhzdmDU1G1a7iBGWAtBcQQsBUpKkRChBxQrKWSpKmqGmBTXVJB7wYfs9p//nf/7//4+7//y/MvhepwM7kwDkM/2gqXelHkrSYnNXAo7EupKxEjBs9DF8Gg1FKlMfvaJEkDJDZr0kwl+ICgjOiRyrKs2g53+/1391ZlXTcxETXwLgw9EQ69v9H+uCQCI7R1vmz1uG5LRX06rV0cWZ2kEgMzIKGLoUPVVmrRJqolZWYidOQIzPKyFRFWY0QtGa0GByq4bil0zsWoSGHq0GlWaQKX0zov1ZY09D41PW+qIFyI+hGUNYt3RKhg1K4R6q/iqRdS87WcodlVEvtSpK68rG8qn70OgN5W7PD1Vb7p8OArieivPlxL2l8V069MgL8qr2/ruKsahUCvDmmAdDUyeTFuex2IGyE1gabSBw7mFDTPS0trqubAtstqYg5dLkmoOg67zs3N1ryWkgzJuSF67zho24wB1UBaK9lKrsuyIl1AE/n7wwRG4+093X1oIZyeT0z9u9uhuNj6HrtJIKoZg5mJAYgaKYgiwNWGARURDdUIQc0UUAGhqToOAASojZqRohobqFkDAVMCAkAmktqcD4RXxhyQISOYiNVV19nyrptuUxUHHAxly3W9aJqH/TjupibKFPt+r76z4FSKF78Et13Shbe12nmZS65376ZrzG2G7PoiImmtYjZMZFVNc55nqaCgy2lp2sYu3N7s+t2hAS+5LkUo9F2H61Z2u37fj6uod5gvF1NRkYefH/7Tv//3nz/96X/87/+P/+Zf/6vU5LRdpv1uqccTuw0hOue7Lno+3O6gyXraDJX6MQS/lVKbdXHYjQqGhNwFVimhH2LwIBWR2jrb2gFqmpfz03M6H6klMl2Wuu33rg/LelkuJXZRti1ta5xcZ99H5U1kKQW1tGUtAGjdEF3vxWO523WwwsPlXNN6e3/rPM3bdrxcHLpA1AWvpQUEqqkz5N4XQMSoQA/zEmL8cN8z2/npsTb9bv9+iD3vrIvTpVh/cxh30/OyJYQ/PS5/eTq6DqbDjtmv5tsKOpLjXncuYwBzgFyydI6NcUUjcklw27a81KudiPMBGXwXQRdiv6VtWZ5dj2rATC9oW8H4Ov01+jpAsVcu0Fvf83aK8Z+e6Be8Aa9t0JUR+PbM1yHNK2foDfJ8g3bs6zu8+QLBNwjqBf3oy6wIENFec+yvLRq+lTE0euHUvj4Xrrk/pi8bMb2+jZmBqgZiIy6lYQOe3tNwn37+w+efftrPxefaG7immxRQtgJQwRgEqB9CDCa1tlJc4Nj5YRqDc13nrEhwjIAgOAyTg5C2luaat3qZs4Azxm2rPnifYRi64eamYYCtrM+nRlA9amuXJJdlHsauD7xc1jrD1PXeDU1MtfWd36Scjs9u84ddt5sGLemcUjNko7ubwzbr8/HUx4DKedkef/4EYN1hzNIuzxfK1VorVUr+RQJ9uL07jCNzX1LFWpha2WYmKLOww4LJRdf3fZZiCEqqokwvSOe6d38bxaGBAjKzA0YCJresixH4wK5jaZxzBTQ1QU8xxjVlaLXr4rKuMbD3BNZMmgE6dtW0ihqolHR8/PmXP/3h8vB5nhMxA1JaUk4J2HMxcqyI6NDUTKVUqVWvzSGx77o+p2YqUmordSuZHDArB+IrbUOkpoINuzGOY4fRlSqtFMml1lxNnGirhQI7VIMKgti4j8TgTKTl1kTB0DHz4Psuup4M2nI+S6vvbm7/9re//Wf/4m+cA9O2u79dj+svv3z6z//5D7W2OO5yrafT2Wobp46ZSRp7J2qtVPYheCQCRALW2qqINbDWpNaqhsaE3hWkL+fzH748/fnT55++fKEOXYhg4OJuKFKUvb+58evszs9I4FwIbcia1TlVQW2iXhqkmpnJ90EUWm5g5jkGQjDX9z4GLlvKDbU2M4yh7qe9cUVDMA5heLe7besaySLr2JEadwEYqR/DeT6vS6oOl63WVqbBd0OPrdZUEZHBMRs0JRMQ8YB9FwnYB7aqIIrSiCh60paW0xZID4d9dCQqfcdPl21Jud91TRrFPo77tKTltDmDrBr6Xbi9uQjluaF3TAQmQHDVPrQm5NAZAeqrrY+9WG8SfNtp2VVjhfqGaL4qOr4BRvDt7/4K1vzTR69JiG+Nm9nXtI1vVfnwAn/eHnzZpb2s3hCv0UNAqKAAQMiAcI3CMABVQbRh6DNU0QxSTESagiKo5ZKbxkiEzCpkAOSwSY1diNz5bWvatpxLbZrVJIy73WEa3LrNW3nKx5ahham/+7FiRJsQouv25lxWUb3SlYSIukCtiklGFWegIGhX9AOAhGJmatgQFdGYGLQSkIEiqUIzRCNUs4rKQNqE0AEKsiCCwdXtSFEUrJksXsuudx4aayZtHrnz7BL1zkuMMUQmDw4Oh3t2cSstpRWxOKukDUxqLQWaaAsxoCcRLc1C79ZSSmmWJW2pPGnfxWl0HryLWFLVspA252XCsTM95bWlRhQDguWc141zHnoXVJgYa2MBJ3p+eNieT/fD7t1u3/n4+PzL4/PP7v136/l5OR0DYUCyGGLPLrKRlJZNTNF1u5v5+XhZ8ziM7+5vgwsG7uH5+Hx6dnVtBH2RJueCuOna9f3p8cv50y+Yc++Z2RO6nFC2cjpuuVQBKlVLK+lywS3RvOJl4e3srCzzaa5p9/5jH/ZM26GLe+9Ipnm8TeA61xM75PNlmZuVLvjJh0ix90YtSYbeueFmEgifHk/ztui2vfvxFpkXq/ff3/hdt83ZVIZp2N2/z44v88p3O9umn48JAX91+750Y6lQA0LXnzQGCjXarMyBY+RWc6mJmRpC3laDqhh858nUTDwAI4A2bdKqSSnzkAaXOUYTZQMQM0RxoKgmhvC2SPqGw/ztWOZbHs/rxvuVMfQyJfqKc16yLb49+Pjy4l9nxWjw6i6Gb+uvt7HwFRjZW091zYTCb0dTYK/SeX39exm+pG0AAl8r17U2wIu30Ns4SxGRCFPNZhS7cPvjr3vYBj3hduQy770l9j13a2qVzIVI5Nmx77x6ZG99F4eur6qxi56DtbouWVvdbBu73dhP797djfvDH//yWC8rYUyb8jg0g7K0LReP8G7sPAc1Tq0ePz0/n06eYBgiB0+WdwT76LeHz5djyaGT/U1Q6Jgu29pHzpWcw8DcypqTLmuqJh+/+2EaBpT2RKe5tiTitCyfPy95vf34Dpi2y+ZUD4d+m7fHyzGuI27bMN3F4WbWlNdzSuuX05f39/t0Ea1z46fb7z/cDreI2LRdC7HhlbX88t9IgMB2dWQDQkSn0FqpjnnoRwMVbXnemujh3d6a5JTAVJTEpOsikXPMsYsInPLmiMyQ0VVoRm3N5/WXhz///X9YT8fOE+z6bauX5xWvQvZWWwMKDj1zJGiwXJacihmFricXNjXXhWHswQBBGJVAGdARkXMhOAQsazHU0Mewi2703EWrbfuSwSzG4MCQiBC9AQEyQuhCFwMgZy+XeZtzrapAyKwNiMgrIwA8PR252M2vb3/18dfv3n23bM+f/vjLp08/P305//73f3l4OvsYc1P2Xq9b3dZYITpvgKKqTZoV5zgOERlaq1vKtaoLHj1rKaKGjrkLm9aybJ9/eVTmaRzJg+/7XDaniLk2Uod+4HHXjQNv1aOIB8LQjSOL6La0VkUxl+qj65hjcKZtu6x1S13fdUMXgkM1UFIz866prWmbL2ciqyU1w+lw46NfMiBaMxCF0A/ofd428DHupiWVS05LFu2Co4IEVKvzHkSkNe/ZOadNTQmvYVps2lRKicTBe8/URTJnrZVWEsg4DCzVtCVGK2uqOcdeimARq2JbK2GxSigulPOxdH0IN4ZWrIkKOzICMXPOvZgu6OvKHPWqs0LTa0XS12EPEOprJXpNaPmr/f5rifwWDb26R3/z2FfgdC1yXwVl8JpC9Ff0g9fa+U85CddSSQhgqGgKgIZNxTlHRGAKBqKtleJD1/fhJA96SSHwtrSckyEQOwVIrW1JRd2wC1JraU1aY3YhBCmt5Fyr7OP47u7248f3Hgn70S1lLrKUmnkSHarvpSMVahhrgytTyaShmfPeExqCmpChgjKBwZXvhHAlIoCaKb0COwC5qhfYXjikAAAMV1sM5GuysnkCsYzkzQxBEWpLCfIC2xKINc2ydd4FYHJQtW1E0vmwLbVRifu9cFdqXdMyny9o2Undlrnk5Dwzh2GMwfVbTrWqGEBenDU01FqpppQ3S87j6JwrRdOW+uh730eG7Xx8fnw857Qqh/HGSvZh6Jmo5mU5LfO5i85amc+Xx2V++OkPQwzfv39Pwn/6/R/O6ZwulychXbJJJSLH0MyaSba6rZdScwwRvZu3dEqpGgzoO9+bNDXZtnlLl5rOYNC/j61tKeXQgeb++PgwH0+TJ6WY1zT0oZVWas2l5lKqtlqqsszH+fOff9otJeXULuda02WbTzkp43QHzkvdVrOBVTuOx+1pljxE1w+DErSckVSt9cMwONxOz9CaDWNrtVja5s07dzzPeUn728MPP7y/+7ADNXPOO98dDqWPSXLrXBzu/Yqga2Daff9rZZI1GxgOsZAT80JYDaDzjckUpFYkQLCSE7IGz8GxlSJWRSoQMfoYhpvDh9YWIteauOEKo9WuQZWECqAE/m0C9DqheXPQ+Su+zzen8E2ddU3ZevWLfvla++oF9Mrs+XqYvz3qryuwl23aX5WCF3MvhCs+ewFdBoDX5dU1XcpetumGiCag1ybo5U30Wi2M9FrirnMpMjBABiPngggS+343YPqhnn99+s/PT3/44/vbm4/vP043t//4x8fHy8LBud6pSN7OdW48dH4cArNz5JEk57RtauqHSI5p3Hd3dzwceNzdvONUH3769JBy5j74GESW3KxIm8/P0QVEl1tbz8vx+UlVusA3N+OvP97f9N3y9OX5578sJ/lTNd02xLwty/l0nHZDjEzMZjafV1Ms69ZqS8Ol7AYAG6bh8flJCX3sTK1U2eZN1bbLxRNN8Q6cr82ePj/7+NP3bke7DmqRbbt8edrO5+eSQWA5t4K+H2PZ98CAAmqNnbsSPtFeuAqIeFVbGIBdcZK1Zs0UYgzQDBXZTE29C1W15AaOCYmDR3bKEMZBVAnUcVBRQ0PQ2Dl0LqB7LvPz8+f1+fn2cGvg05Y4uOBDncXYkJ0RU/TqraGmkkupiMTVs/e5NCiZwJynlpqUGomumUjOMTNqMyLnOo7jQNFlKUEpp5pz3fVdiNdMJAhI3kQQiJgVIrIYCEAXnPdEROSdgW3rmo4zFyQC56ijsN9P63z+/T+ct7pITVXtsm2iePfuPXlXW0vFXOedkJQqTXhwSqS1NW1SsvPsIhKQAFzzZfNWTAUdBxcoRATJNQvC/rubp+MFPXfOkVlVdefThgY340GqVu989HUrmHP0TC44pjG4JlW0okduVlpe50vXD+wgdCTVELDreiaoOd/c74G4VClrcd62bQbkJuK8J62yiTbdDJijdKObBjFnLcpmrutVntf5HMa+iwC6SrI+cO/dUnJJGcS5zuVa1bSq5sva9X10bLWZB3DoAxkaeJr2uy6EZpqXjVG7fjeMNOW4LLnmUs010+nDYeyY14Ro0AeKbnc7Fm9CDcGygogYMRIhONOmYKjKRHbVTyACXCfMBqgvi62XodBfjcPfStpXQPNtbfxmMfYNhvlma/ZS966EoleU9Lp4e+sS//8U3q/vcu0iX3T5BqigCKgiiEDkEByxbw3RTCSbpm6gZbatLOAouKmxSsnZGjqspTFoDFjWpSKw46kLramPbhgoRq2SPj1d0I9Z3aKOb+843Fw0APXSuXyZKRXnnY+soAKqIllzy43ZE7OaqBrzS01/NROAq8Pb6z8YrxNPMCQFNtIrhlS4ml+boqqZQwFgZIesYAoKWmteLC26LSCKITlHfHPQklNL6fkXmJ+xtMulYfUHf4MbCDQz84HzOVtJLaWWknYhIJN3zqMspdVaW6tp2e1vgmcBYVakZmVbH1cEp+CMCUNgJkKbl8vj0+m8bhgGq2alJJr3+30/7VTh9HDMnRunUNfLH/7hPx4fP/3w/gOp/+M//sV5m+4ja63nk6zNEfVjv9tP521xkVqT1mTcT10XqtRquDscjpf1NG8BcJ3P65bmPJPaoe8mT2l52rbNGOt6KtuS50td88YSd7qbwnI+o5TdtBt6JuTaRJsiYhficnyytDZrbdvWtWxgzezptFjINnoyvKRSTqfHp88//fKziN3d7EJwMXLLVHIThGnijoP5kKvmUwG7GjTh2A19N1oxWdK7d7uJYjzcVI3zJZ2bmXE33VvVVN1uN2lYA7EMuwYK5BAAPKmiCZiBc9xahmaRkb3PeePgxqE3hJw3q4mtkcOBMasSudgdOhfBsoAYswmhAagQ8vUQmpGRqRJdByj/5CC+EYK+UYHZGzJ6W299xU+v09xXJ8S3KLGv86RvrRUN8JU//fVr8apsQHvdcakZKzGiakMmFb3GblyDUxlBUAGuZjPX+ARSREB1wGYCoFdroyuCYiQBU9SiBZERqEk5Lxr6w/jdv7o8nkqyYxGu6d1hV74bg5fLti7nGcimvlMlyRsEUoOSN3I9GrZtvv/w3fu/+c3hV7/i4SCAF8GtYTInHHNt2ipn66KrpI3atp63s1iD0HUYOGftHJWUbEvUcRCz1I6PpzRvmmx9fjxGdh5ayg6xrGscg9aSS5vPmym44PNanr48IrXexS76vos5AzkfYyeqdRMEbVuuTZ8wuhha4fS0UTxy98vNBzKD+eGXx7/8ua1LKIcYg6bi+w7bVtfV9R3Dq3uhgar+9cz+SjY3M0U0UCOk2qpKs5SncSBnl5R/+d1nH2M3Tv3QVxUgEJE1myGpVBZj4zH2YHqanznAuN/1xLsxhoAXqfPpEsLkfDAg50KMXcqbQbt6LdbaqoqYkEc2IkRmLKloSZ6sFW1FtVVCiJF7F5BAapMiHXHYjY15zbnVzae0XGoprevYGhmRY2QDFIMmNbeizRQNUQx8dId9L6g+BBXVbZ2XJfiw208f//Wv78ab28P05fNPpW3dfuAAWUzQFDmEyB2t20XEBt85RGQAg2JNDCkwJpRaUW3dNgUzIDV27E3bUhIgBOdyrZd1+3I5b1C7vt+2Vrbsuy6SK+vmWpFWqkPseqbgs1ETaLmNA3MThKakVht7JO+C+LwsKSc17aL3jlEVkdOSkMx7x47H3SSAkA3L0kq20AP3zjN1I7veR1Vlmg4hxsKGLoSQOvDHp0+Ncdjt9oeJRNqafOdDH7xzXDbKFVBEBUhCcNZsngsKOYrBOz8EKbKV5lmGXRz3O+fo/HCsqUy7CJ48ddOBRM61aj/w0PcYnZgRxGka4v4Ww32K3bIW9EwADkABxbSaqagjZiTHpKbAXkGvVYjoauqDSqDaENjsjSH9hl7+S0Ty9jv7Lx57UZl9BUhXp7M3r45XuPQtnPqqGnkDCK/vji+P26vo46W4mQkheO9EGjH6YdjKlreUW/Ok7MxF1KyNoLRWGmoT8symkouqsTOA6+WGMXoMBMg3+9H74XmFz8kF1wv5C2MDvxXVqCgCZhjD1evhapxqzIYg1oyEOZJBtQoMhgxgrys/RARgAMQr4//NNAwAUBGMX1zhEEEVAQkAia6KHTJAA08ETC1LrQ1K9o7neY5gmi62cCmq63l9fKB0ZoNWIWpDbW29KK6Dd4fDpNHl8wnX4sUcQzBoUlIBasDVypowBNkWTYAKnjl0bt1y2jKAo9Ax+ryssm2eLOWtpuaQxy6MQ8hW0rrMkno2hzh2oRudI2t1/uWXP67z881ufHh+LmkbOu+oV5NChILEhmhNGqJpEy0qzZgguBA6v2xpviQkb6rP52c0W7ZNzXb95LyP3jVppaQiTaoge9kKg5nqtmwWqR+DqagW5zBEAhQFR84zexBLp6NRA4G05cJ+mAaMA6GL3eBAlqezrFtKWwgu5W3bTmbRmiey0hogC6ofgkC/HC+oOHaRVNzQIbsQOu+opXX+vHb+3XT7DjC0rQg7P/bgem1NkdVwutl7pIqUpVUEIiYCQsq5gAJh9I6kbEjeOarNKVAXYmk1RiA1aMqMiADeF1HE0MUdYd+kqUcAEr16+6CBml6zCOgqkaK3TPivTcabcgHfTuY3WOe6hPpqGPa2x7oeTnoFQ6+GXVehmTGiXsk4IK9m9F8F+Nexzys56Iq1tJmSERMJGDi4Zo2LCiICkphep02evaoomKOQpV7jWgnputNnQABSQQQgBHagAobW1JAMOz98+P6d/N1wd/P0+U95PyVAZPf99/fTMpw6UpM055rrfr8fh6FVWcradb6PI7gxDodxutvdvi8+nE/rfF7Pj798+fkhIBrR7e0NIpRUltMplzL6UQFSbusyhyEOu8N+us3Jl3UmyevxWC/rMs/OYH8zHm4O09QLKUlzaDmtUlqtYmJmBIjbmlR1txtV5LgdQzf6yLWBaDtdzq3K2Pmx813kRlRFJWuMU9cFYG+mDrP3oZY1b+tyWkjpx4/vD/uxIqyn52Z2891H7v0VqGp72Xdei/i1sUUEckTMlg0RHVE2QASpbbtcaprP59OnT1+G/e27H37V606aCogJlFTD2EutsJXAoQOf8/rT73+X2ry7me73k5b84f6uHJdWYNiNVCTV2kSBUMzSshmhJ+POOUcuuLJmF6KP/npthz5a3kopdDVvBrwmlZZcpVVpzYeO1Gqr67qYpjxjSg2AthVCDKGPqICAZlpKq7WKADnnOg9g2lqIbECmWnPp2A8399//+sPd/c27u/eD786Pz+u2imbXaCsyr/V53raStCSXqLQFwXBoLkTvHBFVE1UL3oXozYQ9irYqwhQcByQGhHEaDGwr5Xg+PzydjpLibT9fjqrNsJ4viS6+OXQczAUvjgtE87t4+B4rqD1VKtpESkMmRYrsvO84WyADsC50fecZUQKaQS0NEJ3DJlZK8rFDMh+6fpxsODQMS8p5uPH9XtVXCSUM6rioAkH1iw6tXR63mrvIMWJL0Mx4N/ppIDMsyRJigG1bY+dCBAox5QxkzWwcRnCUSyHnxar30Xsm1ZZLmkvfT6elcY9NeOgGC9LtBj8Np5SP58vH9x/Hwy4rHNfltHKhASOT90zoDNAFNStFr3RHAhOlpoYEKtWTu95uBQ0UHTKoEr6wCg1f7FbhbTH/T0HQG6Hnnw5xvtbNt6H561NfHYO+fSq+YpxX5PMi7njFSHblJX0NxkAzaUIIos0jA7jccoOwJgMXA/WWSz84q8VHp8zbXDzTNHWWSm0KaKKNmJyjLoQYAyCFrrt9911392Pqd3jwX2aN49RELpdC7KVW0EuMkRirVlCzZirI7EMXS0pGVqAiALFXUDUw1KuBACFdg2/UUBHs5VurV3hJRPTSWbGAMgBdrbjhpX2vWpCdQ/ZOPTeTi4cEVhxVLY2q5+IgyXY6tfPZYzYAT7iPbY/L8vzITtw0+ThhZGU39l1namhgxRkfnzePIR9TE5l6Qmdp3UxrH4JHdoxJTUk6Z85py0UJCkIqWU0i0e3o+x7X1kgqg0k+MvHtDftAKa1N1twuGMAP3o3k+milLvPmPRkaE7FjkaoShq7b1k0Vet8NMSDQ+XRqKi3nbuhE4bIs+91hmAZE3k27poqEaM05L6J5WYk4OtcPzgQIrTYJ0bnOFamenUHbtg05hOARKddSTpdh7Nl1MYZahBsHCIEiCANx6CYEyHVzBPOToLaIZKLBMQ9RS2FvCi0ELq4N0X18P+bTBVCAwLl2f3+/XiCvJxPZlq05in3fj/vaHc6rNsSu75eqpdViSvU6DgRV1Wpk6jkAgQKgQvRdbQUAmTslLAJF0HkPBMAMqCULBhd8bA1yuXql8zUjwpAM2YxADcSACYkQBU3R6OvU9iWWAuGbVK+XNZUZvPhjKFxNVRG+lbG/bJ2uQtCXp6EBMoBda8vVghnZTF5W4ahqwlfRqAFc7S6AAEnNmopAc+zJnPd+ThckcMD+2jgbMnkDU7YszQGqmpmYInlWAL2apuoLZ+VaLhTMkK+B84CkAKkKurj/1b/sb76z/fsQqdZlmu69mT09+2m6nI8il2alqVuzbjlfsrGQVqIwJfGfvsxf5v+cgSDGlOuf/vHn8/nSdWGahj6Esqa//PnPRbNzvi1L13cUIKXsqow89T3BsEuBtC7L5UTENaeO6G4Xd4eQ2tnAxyH6wN3Q5ZTycV4uFx87dNha3h+Gcde1Jpe0bmU21JyS1rWVFoM3tlUSonDwENCM+2kA73NRswa6gDYEU2UXeyFepe0Gv52PS15d2aa7gxv4OmJjcq852kwEAGimouqYUEjRCLnW2k87cvDHP/758svPiOs6n/7whz/vbz548v24F6Sc2+Pjc8nln/3Xf9N1w5//8FNkXuBhmc8//ekf5/kpRnd5d7NzsaN4u79ft1pyPV8uubRazQdmMrBGBh46TUVKJjBmIsZhjIoY+k5rmtNiKGLqAjKzAEiTnHPwLvoYmMu6AVPPVJsx0XCYLstaSvIdE6oCNjUEaEgWnAN2XfTRi0ouVUtDwNbMAb+7uX93d/juV++GXf/zL59OwmxKjs/HclkKO05NcsoEoCp1bQiABLXW7OjqX06AQ4jehR5R+yhgKSWnrfMdoatNFYwYc61120zq/fuD1yFDBdPdoTeN1MD5HUR0DAk9GwYVz/GObp33Ux0fpJy0bCaNHTqkbV1kSR54GiYAAJWcavQESK221sQHFwMGB3VZt/PaDzs37PjmBoZ3SpFzXdADdeq6bD4JWCOOrkkDhzxW1+1FOaU0dqGktm3adXh3MwWPsdZYKlq75hKwISHdHnatFjJDUKmiWg2cmkqtZd3SvGiz3e7O83ia122u1vhm7H3wKJKXy3La1q21O97dvLs8Pjycn9ztEDpcWh4677RKyuYDCtwMU9+Fy+O51iahUyKP5LlnJDBpUhSRkJARia4N2csv8HWy/V+in7+a+sALeHlZ3L/2ly+DHzO49hBvPGd8Mx76iqzwm59Ar1TLb4ZJL6fxOg1i9M5flhUCqRm4brp7zz5wG2j+tH6eW277MWIMa9EmyqZQ8hA4DId13ooQOupi2PVD21LBDOQxdDjdb67fjGqP1biBDjeDQ95KMlRnAoDBMYpd94dIaCKOWEDhmnxjiMgKai/9MRESqYnB9bv84hWPaEh4dUYCvIrEiAD0yu0GBCWysQ/MMW+bWW0t5+UMNXvUF/2CGj2duopSFVLqg0eTvG3EDq1yW7mm9bKWeR23Vmudj+eANp9O6BW9Jx+857qknFOcog/oCJlwK83EYghoiM4ZaE6pqBKA66Oqmho5QKIqwmmNgdmjgrZtPm8JGWLnUs7zfIoxHHbvP3z//ub25nI8thlQERwyExGoQGstmgZyjsnQAkXvQyspzyt7HhxbraTomUXK0I0AQYlSzfUi/RS7GMkgS/JM/RDAICVSbUB2PK+E4pDev7+PvsM1EVFrBbKWLalID0TsAXJA1mqe+TD14xAh52GKgrltXW/S4Fxr7rxLSaS1GLCh5ctWOez7frr9MI3h3c3IU3h4Oqfaptv+9uNdPw3efWyI1bxdwZ7vsrkiBhS3JByYyDx7KY3QOQK92s1dzf6QVISA9LroIXq5oas69qpgpgSoRhxYAUUEkdkTAAKBghIgOmeCcOUAgzkjMETQV2n560b6Fep85TlfO5c3KjQAAl2lly98H/rmzH5jdoiIYAoveV+GGAxEtF2DKgQUv7KBXuk/Lz3P1bDHiAnAO3IiueYUPAOSqakaAqroNQOQkQ0UBQL7CoaOmjVAMFMlZL4WCbGr2zWamrt+M9WEERRdUsrqIO7vfvuvArOuZ8yLBx2Hp8naoS6Sc1rrei5Scrk8OwpLs2LNMUW29XnOX57WVG8/vEf20MwU1nVrUhe7zM/H4/PTuBumqXdMoOpB3cAuUNlOQA2ZEaXlBM12+xtETyhVysOXT0tKyP5w967vxtxaKgUA+nHKOZdUrxHa27JtqQKh93Q6LczY9UHY73d9H9zlct7Swt73GFzw1epyPDeVfg9d0Fbh+fHRe9/3cTnP58uCDtmT9+wD9b0PsTOtubZrEFuroqgmQEjMHJglN5WKALlsIYaa59PPD2U+/uV3/8DUmK0s2/P26fuPJ9K2m27qnLbj/PzwOO7jbt9vl2NTOz8dL6fjtp5qXbfnKsfTPnZDCDnLuqWn09xMzEzB11IdKqGF4Jxark1yZURjdiGUpv3Yh+jnNGMAApaqYo0Yt1qYnDBdb0XMpNJ2faDQ582BaBWowbnoQ/CBGcFyyrXk0poB7nZ97KMBqLYmteQWnO+7rjQJIdzeHqZxOB2fHz99ir57d/fejLdNiphK4eDv9u9a0zNepKnjjgmQFBtkqaK22/eOEGvziL7vBVBV2MgDSm3Bse8GczYvqIihaAGrie5v777/+P7D+/e/+vWvrUADUjYXaevCVInWRRU6HDqIN9S/0+0SNEvJIZpTyA+ftV66Ida0bsvqkNnZVlZtzbMbo6stlU07t0d0gljcSP1d8reNbwt01UtFEkQ1VuOrr3xrVps6cl13sz/8cJme8/KlZjbBVurxYb4d966nmot3bjllNMqpNUmhiwDiTLFJqa3r4/1hMGWHQiImViuxG24/vAvBr4/ty8MRMHh2ALKl2XsyItvkL7/7RKEvzn741QfpegrBjtnXjfJ8efycBRpQ/+F7gzE6YXbaxdSw5lJBDa13MYRYRQzMzEjxa2LPm8XGS6V7Aytf11Z/Ne55+5y9lsLXr37JDvqWTPRKpISvZIKXF3iVqV1h1IvxMVwbNwMzUFNCMsSUxbmutEpG3kdj4wEG6s35tKXyfMKyDGSxOdcaQr2qOth06H0feozOGYWGuy4updXS0PeJp0z9umVkrqUxI6PVmoIjQG61GKJzHhBNyDNqEzHxxGgK14wBMgO4GsG/8J4M0JANTe3qowrIV9EdIl2hHaBdJ70CSAjzujom9rZul93UOadSW801raVcVvRaam5NkShtSdq51WqtxcCtWinVBzITNHWILUnZcvTVBbetJWnLDS/Pi+tjP9p+2BXJ09QZm7VGjvvO18LLslZTNmJiEMtpbbWSwnXtYk08+24YcpFtO419YCI1q1WWdS2tceB5W37++Rdmd3d738dBREyVmBGxFlVo5LXzboj9dlks53E3ItA2J62t62m/m0JwtbXLvE6HfRR1nlrRWlIpW5LWxJCsY/JI3AVivoosgCFtWSR7pCLVO7pW8FSraQsxequSa/BOxdJ8TltSdO/e//rm/Q1zjXLe9zR5WqqY44uio6AkdRXnvIG1LRMQAjjvzDpwnY+dNMNaHIbdPhw+vlvZ8c0NBv/8+DyEEcxd1uKoVC9kcd3UyJkqOUMGersmXgIErpsic8h2DZwgLy+H5sXW7zpQJLDXbDhjAng1/QM0emkrGiKBKiLwdSN1jTl+9dP6Cm/w1YDw6yj3BZgA4DWVAoAEjF70mS973Ot5NtMXSjSiqBqoiRiSc760FCmYNUIyk2txeeH7XKsMAb380+wq3SAD0EYArdXOh3plACGqKhCqWUByamikkh2y8zGbpJaZGfE6/KIXDp6CihhYUUXgK5S6sqHEpKkRGIWukKPBK4/mgIdbApsidY62pUhS3ba0nc/Hz49fPs/H83LJFcvdu306FimN1TzQYRhrKcu25mVrKNt6bqV6193dvwcHx8cnsRp72pZFNgi1EDsCSJdL9B4R+r6vLS3rktKGSAi6wgkmu8zzMs9E7KJvQtdQhFJtTRcfo3c+bdmTC10gxOhcP/TRkaqVVmvTHhEZztdN3BAsl5bq0+Pxcnoe9vsuhDJDzQWE9tMeGLrdOMSA7OZaAACZVPVFNMP0QjWvGgwAdD2dy7Yq8SrLl88/5+fndDpyoN3t/sN3H9dTfvrl891PP0239fLzI6ybLfOX//QP6y5a3k7Pl8vTeUsLsXkAK7LMpyKnoY/dbieirRowd0NQwGVeATUE74CsKIhiQ2MIPhjCmjYxWddlmU9sLUZHzvLSSmngtI/kiNd165gDWOzc+w+7/x9f/9Uc2ZalCWJLbHXOcQEg1BWpKqtqWlW3scmhzQPN+LP5xAf+Bc4Yp7qru7oy88qIgHL3I7Zaa/HBgbg3a2jEFRYRCHjAA9jb1/rk8c3NfD6fPp9zk8PNpEgiHRRFJIN2NE7BsXchAflc87xsvTVt6th11dPpktey2zny/dNPH/tWk09Pp/Np3hQcMW7bJi0D8W4aphgLZOdoSpOZ9NpyK8BachVofWsMsNtN6FzNtdTCxtM07g479O6c5/HuAKVdfnxK4/QPf/e3X//9H7769rdf/+6bP/7+j/fffaq1GDbnrNmyAnBflTmQH4WCTh5j8iBO6pDYRKbp4DDvIpXLWZ8XB5oYS5nXbXbDMMa4la1IP/s0xIMLg4SpTMfKY4VYFQ2cvmY1I+BVDWoA3juyjsQuHm/f/rbupoi9Lptf0YH2Vmep6zJ7BvZYFiFRHwMgiGj0DNY9cvAcUXzyWlHBnQu53RvHkLXHOLz58HZptqz1PM/AAKZjSmhcfEGmx/vnTvq7u1tzdJ6f4VKqAvdcLvfnZVvmmh8e3/7m63HYq3ljZmDnQY3IexQwMKQrYMMv6xi+/HsdQ75QXK+zzb+SLH9Bzf96CnpBeX71264k8pcAoC86gF+4rtfp54sZ7PqgV1aOXq0ogEROwRo2Juc4mkIT67079uo8jmq7r2A61XP3Dfpa2dF+HABVSgGn4+HGjfulleV8IcPEBlIr8PPSW4Y1QG0CaM4xqEjXl+4bRIfOEMmIEMFRFyGEq5CKrxPalav7Zbh70TMR4EvtNSgjyxdBqSq+1E9KF3XeXSvuxzE5T7XkXvNyaYrAjq+17gZQyobSvQPnHbNX0d6r9OZctNeO2C2XLWzSAdkFF8fDRN4f3ty0bfM+1C5FehestQ27pNqfnp66UEiBCMHQFOqaCdk5VrtWPIB0OT2fU4rDGF3yTNy2XLcZCjtHItpViNGhbcv28eNPDw9PuzgGjtb0cplrXqxq9KGX3qyHCLshRIddGiJpqT76OPAyZ6+JvUNiz5hS3E3jsm1NqvRrKD8S4jT6vGRlZAREU6RcVgVwjpBJK8RpIEwhulJbM6k1I1JEFjHy6Lyb1/UyrxJgevt2980dRv/08MlG/9vffXOzi+X8KC1Hxv0UN2pq3YHb3QwIsW7FBy+lLapxl075cnqcQ5ebN+9u399kwQ3VJXo+rU/ndt6enB9qh9G34EXzqsbsg4A6R71WQgIGNVXTq8gNDa9txEpXx/ELI3qVzLy6ta5HhO311/FlJPmVl+tFzWxfNoxfLzWvJwpeB52XQvUX1bIBIBCh6bUd+Vddp68H+TUS8QogGdCL8NiUmIGIqmRPxEzX8sBXTor05XN6yX3Wq6v6Sr0DKIiqBWJynsC0dzFwSIEdImirVrpIf/r0qZZ8fPNu//atY0aFDkqERGRmpXe8CkEcEyAaidi1uhzFQM15RsScy9NlY+bgHKLXJiHupNUs5o0VeXc7HN4x9C097pXclq0+10Au+DiMgw8+MrVSTfo0jugob2uen6W1EINzbCbSO1hDp/O8bsuCSt4FAirr1nLWWp7YTbsRTFoVT947B+Dyludl2bbca2fHaRwA0NQ4kgogeWayLm2rLjAB5Hnz3vXqGFOcdgeT87LE4AFst592NL69OybnoRsjQtey5EguRVey5ss2sNLokovree3VGgA559hryY6ogbXWvHdaVXNOkU31+//2XxnEMz3Nz09PD22erTelmDcxJUZ/eTp9/8//4/jmvJyKdSHpy6fPsIZW1uU8Y9chsZi2Da0DGXmmaRoU1UzHQ+qq0jt53h+Td6hd6lKlVUOMwRftW275siC72kLJWbUMzoXgpXdAwOvEpuBj6NIpcFfQ3nqvDmG/G7fzio79EMvW1iy9qYiagimqgvfc1ay3UnLZChgyk9pLuHG39uPHj8tyEullq9v6WFQViYNnpD355+W81gygDtEPfhx8MGpFWCGwy9KXrRCCNyLmteRyqZd17arH42G6O3Sx+58/VajxOC1Fldxv/+YP//A//8cPf/O3FCeX0qfHrZoxQWDvPHI5b3Xb2ppt2LnjWwnDJkAYu4h3fkUEj3RzVGcbQ08FdlVEjZB78WW1ECQEbK3XLMY9DG4cjR2SQ+dyh6aGcJXzXn1IqCoGpipIYGC5t2E6uK9+P1/Gup5RzrtbG7EfdxGRDHYOcRjxzItseRgGn5yZgknVcnzzdgiul1OuS93q/u0HGm6KGlHfag3bPB7G29up5lZEQorTLo5DuDyXIcWb92+qwP3z8/LTA6Xl8fNjE4pjWJ4+J5I0pe+fn8+fyvE2bnUWcVrmcXcTHTUkRdfNWle4wnMvpA7AF+PrX006/0fO64sE6IsY6FfX6xeJ48vQ8rJe/krz88vt++s/5pcqxV9/Bmj60rVhCIiE0ruZiXbnE9J18QwCmgHY7dLNb24M6Xyoj5/LdtqllHYDWF/Xc1d1LgQ3PD5f5tOFnRsmby5Y2HeXVtNcmhQFBr6WR4ooqqESABIDfMnRNuKX561gCKjwUinyYoSz1+fymiD2mgh5fZ8iKFzJYQO8shxoIMJozjkzCD6xD9KrIBqyeUr7A7aFtuaQoItnSFMAYsNeqioDOe9bUoMOcFo3BMQQ/TjG/TTupnBMPbfnn++3ujkR7z0SAEOeSzdJITG71q/QNzGREXYRVU0xpd2+l6uCx++PO+e4bHUMOFBCtS61l0qegnPq+fm0Pj08iOphfzuEqW8du93sDr220/MZkUMIQyQyAmkf3h298/O8WLWYhp7gsrYYYUgcnI8M83wmxF5yGkbrtC55q1sajw1sWWqaBpVOpnNuXTVFH32M6OI0OgRELWu5LOda8phC8Fq2qsirQS510cxh8F/dtN10epgvz2foYd7m2i5/+fj96el+YM/Y726897E1iBF3PjbP5nld1hTcm+OulsvT5Ty66bd3H3aHvTShtzcdcT3db9kef3zY3RyG3eisessoGoZJfBdt0JEJiQgUmgAAX0NXFOSqglNEuLZJml6/hfQ6+xj96vjBl6XlZZ24zkRXTutLYuFr8iC+tMnoLz7NV2ny67HE1x3EAACJrvPNi7OKXrchM72K+a+168jwkjJEaIbEYHpVQDczvqYTGiIQIqG94FFg+go520vmu0jrnYCM1ABKbQaKxApihh5Iel3uH+r6/PEv319O82//7o/TEN3+xjGbY0LXVBDByIhdb8KACIpEV2WYgoB24uuUBY6tqwKQmakZMalYrc3AzGoIjkV6KXV5fvz08HyaeyN2cTft2RgBW6/Pjyc1LIodbJgiOcvz07hLw24cxniaH0Cl1rlLzfOKygjIAM60Sx+8a9K3bVHs0QXvHKohEjmy1qVWh+hT6F1rqRx87/10atN+H2Ms2yq1piGYSVm3vJYKGMNYtQyjFxUGTBzi/vj+D3/gMYzDcPr8tF6eOHgXEhhb08hces3rfME84s46fP54j7vD4cNXooJiQ/TX7zPV6gPWZf3hv/z3210g1POnH7A3z7SVTda1LVvybETzec5biy7EIT2efu7QAqZ8KefHx/1E0LSvG7SiCtZo661srZXuzQ63Ke3i6byV2iiEaUyq5gKbCpFtW0FisS6GDok4rJfnreTWZdxNJjIMLg2JgByTSwMz5632joDg/UBMpeeeM366Z6Y4hGVdyiaxdjHd5q1s6gITe+cYiRF5XYupKTTHVwf89bbGYZdAreW6IjBTq7quWT3F3egTmip7vnGHUnMtuTt8++HtNPp6XvPj2QHGFLdutVcfw+3hkBzP21nJBDSNaXd7uCyXdW2lNt7FBhjS7u+++sN//D/9w7e/+U3tLNYJe6k1DewkWN4ciHOS8+Wxr0vbUoJOuyNjMBd7EwQSNCRTEzOgDqSkYWKODT1K5UmMuXtv2qm33qT70BnF1OQapYz2kjyqqHrl0RkBwYjMzAjRkJWZh51XMeddjIiG+YTeAlJ07notBx+3p6foeBiSmmzrNk4jBzfsp+bwYquS8t173r3tSwXIAPPaSrlsWbqhhsC7FIbo8pbXmr2fVDsSD2MoOVPXABSDJ9Dn5TzuwxDHu31UimOE9fyQV4k9m5YKYMModkROAHy1hfwKnPmrNfJfjSKvP/5XOPmvcaIvI439q7np9VH+9SP9VcjiL+98+STsl4HrGsdvctXAKohJ6y0QB6brMFeqhIDxuI/jb+G4e6SUplsXnJCwVClNpXVB2YpU3MWj6lbA+ePd/vAt3ryrxCLGzGaqXdkTOhYVQLjWEwGiiupVvAxoDCKGKEjXKMnra85LN4i9RvUjAIL88pzQDBSuAxAoIAEAEYl0FWE07aXlwuyDjyHtQXRbqgPvww6Gg/RCVqjWlrNzEIcpemSXtFvLPaV07bxsTSj43c3u+ObNsE8peb8jVTs/PSr0q1WQDdZtm0vxwzAc9mrWagmMfoxpHBVg3UpvPQY/pGDe++BDcEworaC1ECiNg3Z5fs6EEoMHpNp6q33dsgHu9/txSNb68XDwDs/1hKJpGPbTGJNj0zH46J1nN9zd9K5rs9pqqc2MdlMC7Ou8mmlMMYakCkMKqnrJc1k26FZLi9OOPZVaAMAh9lzDwNOUTKWpIJiKttp6bRjZKXZ258sG2BQNI6TEwSOROgfv3r+7naII/uWHH7/74WM5n2+mIYYweD/tE5NjtJ2ndDM+z1ui4f27m+ObQy6BzBMPtjvobn/cTXU3nJd5Ou4efnychnDYBWSzvEDCIUYfxg3FmOUVAVVDQn5hoUxewBi7ckPXYeMLa/xCHiH9YtYy+CVe4tW6+coxvTBbr6js/5/zaPbaBv+Fp361rV/tX/arM24AeLVngZpdRyq4hgZf/1HrvQsAvoje7Dprv+SB4ZdHgasj/+XqIQSDwAGIBUSsI2CKnpCZuG7bw88PeX5cHj45rU4atXx5uF/v3nqgS+037+5AamJq3Zz31wT53qS3TnSlswXMmElMW+6A6J0nevFokqPam6qEEJ13pdXo2ZloycvD4+PHj1BbiES70SPVvD0/PuW8eZ/IuQLQHTkFNIshmFIaEjA8Pz5FIpGSt4WBgw9DGhxiz1sMZAbsUQhNJSY/hLTN87atSDSkcYhBRFxwubWcuzEh03I5o/PMJNqRgQla01YbovUm59NzmlJrjKBhmJbcd2+G3TAdv7ppUpcTtF7mp9PNtFOwtqzk8Xg3GqharbXO65wtTDtH5AG0lewdKUDcRSbeTs/njx9/+h//9BxBVdpWSaURNemkstsNISURgzX7iRW0yQZd1suj0LCupeRFmyAOiOACbbmUpW+tl6KtSHK0doWnCxgkT5wi+mCijnFZ81IyILoQEcO8bltr6CnthiWvuW5Y8GZ/vL05DslD66Wocw7ECJ2KLDmH4BmiKhpwCNM3v/kNEf3w/f28bksuPgQAdo56VyaYdmPvWmtDAAVDJGTwzl3jGI1RpTukcRqC86oK0OOQeIhhDF3zmhdHgdAnwrnmcRiTB5H6fD7lWoZhOF0uZ8kb9IA2DjJftsenh6awvznub+8+/O6bvC75x58ONzve7eLx+Lvf/u3vf/e7D1/d1abWaNrfbL0SWavG5Ds2p+fT0avzda2P0jzOGiiHdGcx0S6JFuEmIoxODKR3T8hIvddZWiAkTwqQtZEhsnOIqoJKYEZ0tV5epQWIwPoS3W7Xc3tVvYohoW9ASOino5sGKKOUqqirSu1t22otNbXWymptCXEfnW25eEQT2c7PkWx/88Ed47nrORyY3/Ax5PIM7WnLT2U799ZCiN5LqxkhXHLOpde+9ccHP47EzkCHwachrWu9zBfveZ3ny3n13u9uUzndz5+fxTQEqeW0H/c+coMuCOXVk4QvdD8BvIoVXyyq9guM8Uvu6y8j0hds/P/XkPMKzoN9ma9+MZ38Gkn6q7df39Ivt+Uv1nlRAIjBVQPt1aADIKigKZmoiSpVAITAw238mndmoF3rBcrM6KGss6BK8+N0d3xb1su6tWn4anz7x5LuqhggheBU5FrYggju2sxoL0lE9PKpW79CggR8Lan+Mge+0F9XG92vGAs01OvT//I68LKmX7sGwZSRHEPPdXk6M1K4ObAfW9Fe0UfvHGA6klTLs3Fd58VQRbp18y4a8VZaBx2niYhB1IU0jZMjXtdly4uxImiuM4JZ67WLEm29kucwJANspZDqfhqdcxS8Eo/jmPNWt1K2hQw9M2h/ejj33mLwpQDtBtS+zstWi5imaYfAtYsC7XbDNIXjLk0pkvW+Verm1BLRcRjBdH8IAXFbto6y20/B+6fLuZbaq3injuz2uOvl/Pn+ycd3ppRz9ZSmcd8EWu+lLa23y/nkPLZSYvIh+F7VQU8+gYABltzAYIjTlNJ+N9jVRmSSc3eDH9Nwd3NziIlb26fpZtp9+HDXzpfan8yOaZr8LqKji1rPNA60c+SiYyQQdo5iCsw07cZFfZa0pv3x7dcYPZlQOflWjhHcAUPIy9q2rbk2TLfvqTsNg7ggRtIVXkKPlYwAf2XEejFb4V9liL6cCEJ7TYhA0NcDjL8MO69n78txepmQ6GXKeuWbXk/arz/sNW8L8CWJ/Vcn+fXb/PpxetXzvABI9jraqyiCYzYRJEB21ruoEvHVSG3wInV6+TgDACO0a1THdVXlGFqnumWtgqa7cbq0vD58uv/x+3x5PEzDb3/z7T4NwvT543ft/qe1WD29vz0e3rx/twg8n56GaUxxyqLOR7vSGw48IAGBGHvfzQRQQVkVoIOCIyKPBioingFasdbz0/328FFPp7JckMgp16UvvW6X1fkQQyi9C6FPvtW+nc8APedlzUvXJr2OhyMqkBA7JscGatIRBA16rRxc3jISSRqUOY2uVLUu3qEPIZeWWydmdupSJMfztm6leOeQrJUqcwvRE0HTbqbSa2vkXdrtDrVi7uaDO338+NN3/xQnpyKnh/ttWUePZMq9jIeb/ZtbBet1ySLn9Zxu3sVDbNY9uTaXhj1EXn9+mJ8epK2nH3/weimXuhZFcJ7d1krrfRzCNA2oAKSUOIvkKksp5LV02epFqpn22tvD4xZj4EBNTQ2AUMAErANdlsaTD4xklpDmvDzdPxMxAtUu5Ny49+zJs23LOabgFQ2VHKTkpjEOQ3JEpTQVVEN/zX82aK3mtjqglIYYByU/ZwuBb99/tRV8fD7dTcNhv9vWrfdqYL1t1i0FBxRaF2DuVbqpEXS2VrN1IR97l14bIhIjIjiPBNJLxt57a558cO52DI5FljmDbdKb5zlvT8vl3LesfZiGrZrkis69+/rbv/tP/2bYJwapH7fnbfFdfvvVb//m3/7Db3/3t3c3eyKNrON+CMMAm21S6tqfcp1GdvvoIll1tJ+YGJQuXl3LKOD8OGHvBup86F2dIJJDUUUEYiQAAkBStbxVkcZEiICGzpFzjgjAULoAdsBAr+uXAojalZe5ZmwwU22NCBEsxGRow5t3lgNhq8vzTKWcL4EqSAuMU/DnXFuzadx1bfM8YxPv03D7Taz0dKkgfnBJxLelynkJrvdtY3LBIRo8n5YiYkDdpM0XquVwc9yNO0f988fPp3URxDQmy1pLjyGu52VdLtjruB9NG4Md/RSDzU4W60RRrhVV9OXO/MWj9VcM1csG+CW0/hUA+lcc1v9hlPmSnvbiPvnrCeqv0Z9f/sDXS9ZefWVfkHJgAlMltJSCdEC8RhtAVila0QKQ7wDmg9/fkmDrgnHE6YbCXpbnsq3jbudjUKshRrgd3M1vdLxp4Hur5MTQE2PvotcyMjAEgi+iB4eIpKpXo/vLi8fLLX5NbH556fji/399ui+9TNcpigCNUEDNgMmuSYfM6AmvGdAgnRFMG6o5x0RM7GnYEbUC4JkHcp4EQcBqigkAn3pHgv2UHPq6FlDol5KbbX2prYz7iGDbZTYR56kVmbfc0Vxyjgm0S20OLLAnpF6bH924H5Oj+3WrJTvnCUzMcq3LujJTCK7KJqU8PD+qKUZPXc5bPc1zGuPX337FHvK2vn9zmMJ0/9ND691AiRBVtNXBjcl7bbLMW9cLR976JqaH4zGlFB3nZTUwP4Qm4tkTaes6jPF45y7rwlvxtRNo8D5wYAJWkd6ICbt47wS0gBHg7fFwjatZt62LxZBqzSC8H4634+1IQ0ojYSLyeRURvzu+e/tBtZQhGHnIta7bGhj9YexsJculY8vdPeWGQQm2yjqMNk7NRccpaodN25yHQIy2PD1/fpyrmpdbwrkFggOFXQTnpFU0RXQi9tJPanrtwgOwKz36esx+tSi84qL4OjBd33tVOL9q8eA10utKOP3iWsBfbRNfzukvXoSXU/oLBPwl2uf1hKq9YFJI17oXA0RDRjU0vvZzY/D+WudkhKIIagJCL+QwXBt+4XperqlCioTABjkvqub9wQMAgW0lr6f7h8+5dpTc1rmtpQcnXYKPMYXvP3/64fNnF8aI/daRXIbn0/x02ewt3Ny8JZZWqoGBw0rUCEgM6apvMgBwwETAAGSKCI64A25lG5In0cvj4+Nfvt8eP7NUNslrJnBdudfOGIKPqsDkdmPi3ZDXvLSHXkutufVeWx5DDEwQHMLQVUrNNdsQgmdCQmkdCR0iO64lI0iI3sdgJGYq0lWlVjFSAAvOEeMwxlqNPPWOuYln8kghBSBrSw6DH/b7w5t3ado/Py11yY/Pq7Pn56ef98eEAB8/n3tD3oXBU4iOAE0h7Qa383Mp2dNwSAa6bWe324UhzB8/p4Bqy/N3/yJlLvMZWgaAcUglS926aGcyAKtVUMBqGaagHea81dxccoa8zBsjMVM37U2AkY1NxDsk9K1atW7XtDhiBOhSzuenrbZeC4ALIRGyITYRAFMQ8CAoOW9Gtj8ejre3Q0zaRZmGcYw+oILzjjP21m4OBwV17AgIzNa1/vlfvg/Jl9oMcBgG9kwMITqFVls3UxUFAn7dXo1Amyp0RekmrRUEM9DWmnd8s9urqLRmBiAayWNANGylxoCMVGqfW19b22q7zPNSc9aiSAbxablY5//wb//Df/jP//k//F//4/Pjw3f/7b8UtcPbN29u3/6n//yfv/23/y5Mu1qbJxmCJ0CFGgaeKK6XvGVxztySt+zITXs8P5C0u5v9sj2fL084LjbueBycS12dKUbnEbRpE4JuAgCOWFTVDBgDR0YCROldwUSucMjLURcwUARjBVUAvU4HdMWGwNiQ+SpjXKSz+bh7G/Z3oB2HM+PRhbNJZdQQpTle54UH3N++hZLBUgnjTGOTobnodliJq5pKv8wnWub9TVTQNS88BOcol9wExt2OmUspUlZsAbbL+eFy+vw0q9K0T7s7z56xGoec53VZxxSZhlYtHUN0GCAH25aKFJjJgXzp/3ntFrTXdfMX5Nt+fY3+KjvtF64K//qi/vUgdEVRXi/uX92vX+D5X0Yutb/aOb9IaRDUkEjRpDdACMEhAJqKdrNO0KIDVTW6uheo1erAGXmBgcZp3B8vn0OHx+HDV4i2nB6dC276Sg7vZiVFU1IA61YJDAi6AyMzkTE4KUbkgACZQK7mYlLqIqIC/LKQ08uMBoAGdDXtv4Zp2FVi98oaspEZKV5l0/TCB3RTBUQYBi+ll1oobuA8Ncnbph6iZ8B9CqmVNe1unNX16am1i1OLDMfDYKgOdfDkx1By41bWZc59VZLLdi5rqUXGIamaYNPel8vphvZUW5de14zeXdq5thKCO5oyWAQjFaltTAlNRZqLJAWWvOBmB4vWBWMYU3rz7Tfj7vj4z3+6f36+fXv4+v17bO3+4WG/j9NXXz1v5/vlCbTttGsvaGam424Yx926L5f1LKTv3ryZ16LqppTyspjVab+nFEvV4EfvyQDmXCuWpa/McNyllIJLzkwdKiMvZyBCba2J5FxUxDvnHPYuz5d52TISj9Mw7qIIoNIh3twe3u3ffBAORRWIjKmdkHfDNl/AekRWaVpbZzudcGOWakZh3O3NXIfRjONh8rd3EFNjl9jlZb6/fz59PmuZx5gEvaZxHNK4O67PqyW8Odyak8KoAXvTbtZQiUkNgQntKjlkfdHhGKD+qlWPEOh1D7kKkoG+GDC/yIQAXlXGV57thW3FlzOt+Gtg6Jc56Avl9uWQvxxJeDmd8BoRhIBIRL13ICSiXpWDBwQkJhOQBr37FJVQTNQMkAQBmQDA9JXRBgMCVAQxIl4vl48//nl/2B9uDrmCtbqcHsvz5+XxCYhRzRMqc5nzv/zTn5xzX31454rwUpzCkY225ce/nB+2Fna3iNR7byWfHp88wXjcMbva1SOpqmg3Vs8hMoNoLQV6cyGQIybH7JCIIs/b/PT5vl4e397tHA1NbV0ag3nnxkAiOp8XF32aEgN5ot04VjBo5rHt4xQYxxgJ0fu2rmsp2dRWtRi8OZemXYiOiKVrb7rm3AY73OyHg59PyzzPZhZicCmBWF42RfUEYfTMVkpvpmYcVL13KcboCEIIh8P+228Px3dhv91/+lisPD0/t1LwTL32vIF5lxGSZ2syn54F1HB3OEQffLq5jceDBk+gtZWo2NbL+vGhb4++LfX5MShvCl3RgKR0xzQOKef1sqxZcfSJwc3nXDuguDe37zBwkWaIAkrBdcDIAdTVtYE0l5CDd2wmtdVKbmQKTFhK33JD8sfd3tAROyFuYKJa29Z6HmNQwlxK6/3m9m437qFJqyUd0uEwtlLzsvbavA/jODjm2vs6z7314L3zJK2umsUgpOC8k1Yv0hz52ruYendNhymlQlcldgrYajMSiAgIirC2Zt6FXQTR1ttuiMZ2mZdtLftp711oTUWoMSxL6aCbWTfsrRmKY9ingX3k6OfS3339mz/+w3/6w3/6N+BdV4nj+Ls//P3f//v0/t2H3//dv6neP8yLid5OSYnUpPcGBPsU0rfv5vNGIO5yfnBDvNntx+mgLbemoNVJzed+OtH+/TcpfWgAdF08pSqaanXeAZL2wshMrKatNyBm8sSodk2xMyS8ZvJevczXWGN7UbgaAJg2MzBzL9MBgYgCc1NGdM6PRu6QDvihaykE3VFl0eGwsUcbR1vruKscffGH0qC1vIk1diF679E79JECgcU49761rmtt0oBDN73ycmxQlvmpLr23FJgoVaB1LsSurXXOs5mochfQOSNzTxuK10V76TGx0tDMARCRXvtzDF7SoV8ZL7vG8nwBMl40Cq/4z6+B9H8FAH3ZRq9DjL78FrtaaQnJ9JfWVQJ9vdAR8cpgoIExvSBFiMhoRNwRmjVHpqWOIZlo2UpeZybx5MyCsXjncqt5KSkiRTIXJXCVmjHQ7k79AaB0n7r54HeKsYKYGRLS9ctr6h0jQgeVJrULKHnPoGqC0hXRODgFAtWrlpOQkFnBfhmPr8IgQAEBRFFtUtk5IgcdAEDsmvRv3QBUYgiBUVupy8Ympi0vHU3NeTOsaxVCHAdUG6Z9VTAKANJcUa+Ugln1Y2h5BW1mLm/r+bR2eYhhIDKFnnvOpYqABkDHAsqeHbkyrzAkE+nSa21gEILX0t2yjeNkAkQoZvO8JM+G6tz1SXAvVcT2+/3tm9vd8XB4//7p6fzn73/YSv7t8HUA1zSL1Fq2h/uPT6cnuwYoOaToApEPfhgjo1+3NR2Gb3//2+fHp/lPf9HSxNNhv9sfRyHT07Nhly6O+Pn5eSsrJ64iYPbhq3e3d7du8HlblsdH6bo/7LZlW9eNmKSrqnrnaq1ba1vOtYn5njgxQi0FjHwcd/vbcdhXQu9JUGuu+MCGttW8nGcfkJlZZNm6Ik3THpCHm8MYx3FIhzc3YYi429Ph2AkZQVuZn0+X02VetuXpdNj1N1+/f7fbpzRy2bBnbMhtGdLeOVp6NxM1Rr5GSQHCdRnmX68H8EJJ69Xl/iJw/lVS15eIii/7B9qvGideH4tezuIVfrz+2uuwY18U0L+cd3sxwAMigV6vN0BkBTBEtasAjojIeicwAjMF55wv7fnT4/ly+vbbr/2066UQX0NvQfR1xVJjfNH9qCkTJe9//PjTX/7rf/vDH36DH96dfn5++On75fLEus0Pj8M0TOMe0UrurdTgHTu+OR73u91uGNTk8vF+e76ce53efXW7S9MY63r59N13teTjOJhHcd6MeRgpQOmtCQCDdYFa5+f75XwexmncHZiiGzwq1FK2ZZ3n2bb89NjHcQLyyqBiMbgUwrYUA6u1uCuNVWpknvaHgNBru7vdeTJp1YewT+MSvHdcm7APgKClGxgTmarUtm1Zzdg7vd7syLU2A5wSRg5GVmvd8gYKSJrrxo6ncXc+L2QSMBGYmtYqYPxuf0gfvo4HpRQuTz8+f+yoxOSBeBy9OQCT86VZ78mTrZeOtZS0+/Bhf/fG7Y7xeMOEsm3bw6PH+vD5p3J52O89G56fLtIBXECz6L21WpfZMVDk2kpXItDe1ABjTESuNS1bYSJ2ZCghckRXz53EEKDW6giC5+ARVHptVxhIwZgoBAfsukDX1kE6oai2WpEp+GHNK6jF4IMLjt16XtGs9yqSem+1NlCJaUpDAMPSiqiYGaInJiTrrSsAv+yrqgYg4BKXS22tRU/MrvfeW7fWAbH2YtADp1fSCE219+4AVMU7r6B5K0hcqs7boggKdj6vvYgCqGMXaUxpHGJpFUJA79cqX31793/5X/5v3/7+9/Pp/I//6/82Dv7rtx++/vqr6XYXfAKkWnMv6zhO2mUt9RrqyQ6jc2kIlqsCuXY55QvaJUcyUf70uBAW7d2kEnjWEh0pcGtNVAFUBZhJWgPEiIiI3QTUBnaE2KwRMRGavjQzgaLxFamV68+vPLmCqL3MDt26AnoOiGxkiCS9d8amoBQxDN6Ip2tBe1dRVnGBG5DFztANVZClSq6LgqC5Tbo8/tTLZcRecq+oglgNcu5NDbp0KYAZTMbke+vbeQ3R3bx9y2lf1M5rnZ+eqXXIGRFNdLtsMcK0n4JIfn7m4GBnwFldU5+MAJHoJWYeXn1Lr7E8rz97vUivL/P2qxsTXzGbL3rLF6fHVROM8PpYhHrtkUCWLoRewRTBEUIHByC9OefBCBmzZCJEBTIk9CrNEzkyRAL2ZtWZUd2ktvL0vJxPw8A0jeiRSRE7W59GdgyGTbr0zM3MDfsxBHD+6emU53y8OXDaCwfVBqbeOTYhFUfmrDvirNZybq06duQ7CdRSW65M4I87DLG/FA7w1RdoYERoCq/xj4LXJi8RNZvGsbdmgN55bR3MiNgxGZg3IuhQWjnP2+mp520YRwAVqcABECMSCuRLJiKDrqaIVFRptxt2Ox+5rY9MAmy11XzeepG1bOuc94Pe3uwIGdBVrVsutRmHFGMwEwZEhZrFB8+s7NiH0KWVJgPFCiwAxh7JmUKrrfZWDZx33J13PgbHAME5MLz/9PhP//wv/+Wf/9uQ4hRH6x20H3fjcRyW+VLbloYUDnG8ucEhcGA3xS5yvsw/f/44vT2GIa3bs9T5/dtvp92ha9vdHqab4z7f/fzzx5+//1TXs0rftvkYj2+Pb8woTdPN+7dpHx9//vT5ux/ylsn5WttWGhGlMSSXTKF06aIA5BxQxCbZSlc182YpLgI5F3WanCPo2/x0+yZYD/Xtvp+B2TnvrQloP969vXtzs2ZpyDnEw7vb8OZmGhO6qNFBLbotuff59IBQb25HWc9lucic9rc3ruW8PNXlvB/e3Ry8OezMztu6NiAiwnbttnt5DVAAILyqhs3sGroDCAT6i1nB8GrGwusB/DLx2Ms7v1DML5vJFy7MTF+5W3jlak3tyxT1spVcMV0ERiUzFeuMRIiqQN6pdu88qCAaOQJRUmHn8mWdn37+/n/8t+fTaXLt7de/4WagEvdDqcpgKnrdgZCvgd4a2NV5+3T/6eGH74K2RPL03Z9OPzzOD5+3ZSEUJHh6ON1/fEagXjsRdZWaa0e5u3lzty7n09PT5wclE6Kbm7cjg8e+XU716XPLc3C3eGnSuXMgfh+mgYOrxbC2ti51PV0ef36+fxqGfTvc+rjb3926IdY1S6kpxXmG81bOpRkEQceOGujoKU4uNCql1XUFA0ZEBTTZp9GN8NXbG5J2enoMIez2+2WLqDAvGwUvquatd+m9hRDMFMGmcSTE7XIJu2OKKbjyPM/k+XBzS8zzNrMjNlzXLL2zC8hu8KFu63PJMThkqA4i8qxUnufQaTwebocu6/P66TOIecKgJs1EpZkiQvQOEz6fn5ea8M2boSF2jAAJdMlz/vxpvr9vuXXVx1PuuaxzNqQpDYhgjCq4bDkMLsSwNcjrwt7FwRvSuvXlnIEJRR2RB2JGYpRZuEuKnonPpYH2NAxp9WKIgbZW1Byw84O54EvVpWQxNSZgpwrSJMZB1epSWfkwDoNPbMToVHtZ8mx2vYHTOMUYypbNBM0YSdG69Lp2RjWV3k1kQ4I0xjgGbQoqAL31popDTN55U1MVNeu1CgpWduyFWVqvOXNnI24O1AycoxjJuKvmvrUuoOYJ1HRd83AYPHkGjikKHxq5+8s27N/9+//8P//+3/zHGOWHf/7H5fPPv/l3//533/727s2xA8ylOHaJw4ebW0KsWxZpqEp4hc0ol7KUjZjdLvGW83q6tzAquG3ThEhAhylBGIbbAwefm7BDAO4A5lFNwDB4CoiiaNodUmDWLmaidCU7rpwFCoBAR7u+6AvZ6/JFyODIwNSIEcFY5UrgIAghqkHtndm1Kg3MkQOgLtcQ41jUkDw6xV6YDRAUS4jORJC0r/Pzw2c9P03Jai1zbbvjsXUromqiItBLLS14P4wBEWtXRalVUsTkQsF2yjV4F/bTkouRVZEuZQi76BBUTAFVUJTsGlrvXj0Z1yZmfXXGKgDZF+v3y1Skvww8L9fudWv8EnBoL+ke8BLzh2YKSuQ79KvlDECZGZEQUVDBzHsHXYLzTUW1m1KIAcC0NyR0zE0VCMxEuiABMKt1VbFatG+gWSXEFCiGWksrguiCC4ioJoZdmlx3WVHTWrVpyz3n5kTNAerLzEIG3LvVWbr4IbECrpunfvn8qZ39zXGSnC+fTwYSl8PNN9+GkMC5uvXri4d3ofZmrccYAbHmwmwxxcs2I6GqiEqrXUgDewZqvbVeAYGJPJjWra7nvi15yQ58SuwJtHW6Vv+K5q35wfdW2bk4piIKYQjjQA7MOiCSwVafWu3WVc1iiqb98nwCj3GM4353Wdu6rEHNsdPeAzt2hEAiQC6EFL33pTIHbaqfH556K7W3kNLgPfaii7Bz4hw7r008dGmtbti7fT4vf/7u+63Wr96/3017x5z87t3xcBh323kd07Q1GYeRmUqtxK5IvVz68+fnedncbnf/4ydU/ebD+ynsxHRZl4cn/5u/+/1v3/x+urlZtn7hk1Z6G2+HcXAh+BDXZf0f/+NfwsDbfHmez9okDrC12lFDcOQZHZW1lFJCDDF6aq3WqoAIEqOfDoMGethW5r4/ToSkLYNkdpgS/uY3d4O8qQBrxS7usBt+8+HuMKXTmk+9YYjDu5u4GwEYmZ1jUzaF+Xze1oU8xOB3+/39n39++ulZO/lAVma26qgxijHV2mozQFZTVXBECnBtp0G4fiX1NVD0unS9TEH46iJ4MWC9tHr9WsYMX87hqwRNr8MVoJopvtTzfXGGver0XpHdl8fB68wExGhCzie8hjGCqRoTSxeTNgQOzK1Wzy5f1qeffrrc//nn7/+ynpef94nBnZbOMYUQ9WV/plpriA6aGRkrBIeK9nx/X+cZmpw/P20P8+PHx9PpOUbvBld6q7mJGRMREiL46KTb+XwCAIoUx2iL1q7TfkKR+f5pRF4uF+4lz+cZ++YuW8cMXkuLu0PY7ZgCg33++WF5+qnUZ2oNjUqnHpUMdIotX6D3MUXYTbmVh+eLQZ8OB+eotd5aT9ENQ+ylOYBdcKCaTcu6peimYfCAphqZPaAD8ETJ8WLWchazEPxuHNT6MI3TcChbSWloXWuvBmBIIUbOGZh9CtevRq+KCN4zM9Xay1bJhxgCa/MhhmGMcRynvQkuy2IueOu6ZWIWhVabiWZRZCIiH3wcgo/OJ+capXHHPIrQep6pl3Ndnz//9PTdj22twFSMDYRTPH4YhmkcDvvTT/e19a9/8151X/MChLz0JlsDiZNHAINWynZtOdkd9mn0Zdn6JTvgmJgdItLEcZPWc3FoIUXvQxdFEO8YDYBY1MyQnEMmJFdVu4hclhhjKw0E2NBUtfUhBVNvIiVX7yjGsBsnMJ1z7q0SETPG4FWhbHVr2Tny3iNoNzU17R3MTDQ4km7StJN474ZhBNRcMhVWNGZOIaLQ0lRAok93xzeD46Y2ny/Pl2UadvvdZCZm2zgMKrIs87Ab9zdTYB5c8iFWsA2pP9UU9oe7N/PzqfoaAP7Dv/m7f/fv//3Nm7s1b3POpQtHfzXlS28hBWSnYiZAzNJcM6gG7bK4/S441+dT1lZyryo2Hg5IcLw94rjLLm7rpiohxdKkE5gJmwQOpNfX3ViaECOImuhVdHKtJlAwBTAkBCYgAGXyqGB4DXonNGfQDISUCRFVECwYKggjmmliNhNmEjWTimAOAUxAFAgB1ORVJqwGqHlbHdQpOZQyOGoOBcSw+8gGuuUqyEjcehFTP0YfQmkiCj4kRHfZeqHM2OdL7ipInHape4AGiJLYI3RrlvajH6cc9xoGcoGvWsQvguardMAM1IDo1yKBX65Ye+EBr9elouHVMwj0+nwMX0wiZAoEaK8TkUNGApFyRRKBGK+B+YRgGtk5wtYrojGz6BU9AUIzwq4CiIrQzcCMAKoIqYTErWHwPPjYBaR3FwOgz1tHUHaCIJ5ZuoEhGyRGcyYEhCbQpVfTfg1DMrOel/78mcvGh53zQ6ib1KWe7llDsdOyLttldmAONttFG/Y4HkIMVysOsJmYknUQUCBmRSutMLHz3FqppTANCCBmBipgAOiYofZlPm2nB+2FUND0/HDyb/YuemZUkbptJeecq7YQxwlTallzzl3AmW+BxQbvidFxI6VtfjytdSVttWqrjZMPbTTiCliaKGdiZlUiTDG6GNbWa6tzbymGlBIR5y1fTueStxD925u7cRhRmBjJuUaYu0jusl1azS5GQDydnk6X0+3tzbu7d2NKIREBD+MOjJz6we9LPvfaC+fW6uXS0foEcc2dfFqW8vGnT9PAgeNyWc/LOvecod8/PqbD8ebtt//L//1DL9u//Pf/Vp6elueLCsQQai4ff/6cW5XWoLUUgyKhJwIYjwOoXuaTM2M0MomBg/O45tEH770fhtu3k3ATbiGkIYQJQ+ud065sl2SWkp/YZYWgwe3uvvrm3d0QnOnwAfYEyi56J1kQOaTUcidlsqAF8rmtlwYpMEekpOLyKlJaIrnZDYe7iYPVLghDa+W6TJCCEtJLWqAR8PX8vC4ddBVHf3Ec2Is7/dVI+GU5+es3fBXovSZN6CtQ+6ref3XYXwcdRHyFlH4ZnQCgtcrsiLl3IQROXrshAhGG4LUuP/z5R2jlZr+rVT7/5U+ffvozgjLo08d7JLdWnW7e3L69C+PILphqWVeGiJ5PD8+BfHZ8enj8/NMn6ZWdPd8/tNp7aWXJKUQ0YuTjzVFBt3mR2mKMaXBIaFxO6yOTZ88uJp/49v17Q/rp+x/eKrBHsg61Pv60sOcmuAlv8+z3Nzdf/W7YvyGQ5fl8vn8kXHaHcXBca3l+PLV11JtdLavkrW0ZujngxMkc78aEouSB0VhtDL5Hl4Y0BFdrkZ57y40Yyee8WMvogANurRrBOI2ly1Lzbtx55z1bbSWmMbgUY43TlHNrz6dc1Kkakxuin4YGWHIGAue4tz4MAxJd1rrVS83rNAzjNKVxGPa3MB2m/d2YxkbkRLfz6emnH+r56f7xicARUTEYOO5DONxM6TBx8q21QLvbD1/F3Z33w3qZ70/38/1Pp8+fL5/uox+aQpY2pjCOab8bp+Nhya2olLqZg6++/np+eni6v/dowVmxVmtl5wE0eOyGamLWHYcsvecWRs+Oa87OUYiuioromAIYkw8GIK0HH8eQthfZQSQHRNy7tlKkVkA0MUJU07LlEEJFCMyM6KIzMzSra3muIq3WXmLwvbUUQ/Sctwqq0nsrQjvz3geK5Kgsm4qmFAM79UGcIREysffd2rZWcBRcnKapzD1XPbz9sH9z8+GrDx9u313uH58+/3TKF8+UmBPTuXU0q6321nc3+8PdkaNjxW/ffttV/+uf/lSZghul4/nzZ06P/i7+9uu3bz585dI0d7s0lW6EpF0E2vPjBazvjmHcJ3MsBkZpE7jkWpsiklsvW4w8DuH5fimC5INPDOg6OELalrVhdx7Ye0BuXVDZM4PSte8WCRCcKKBKbV3I2LEzu0ICLx5PAIRrNQk6RjC9OuS19xfDBCLZVcdiL7gHoQFevfQvykW46kIYELX1azMzowFcGXkV0ct5mSKMiNR0t9tRAlieq9nArF2td1WJKRg4BBhSBFXr0oyYHZFrVeZ2AmQzNYbaOmyVPUb0TtUZrOdLiP5mmjju/Hhb/J58xPYCmBOgmRrSF6GPve6B8KoOes0G+eLYMoBf5Aa/CkWEL+53ADBA52Kxite/ODA1NBUCgxeBJNRmhMBgzlN0QQ26Wa2NDNhjhXb9XF6ERIBi2nvrpewce+8YUItu562bNmuGLgyM1nupPACBMrOplVzJEwVLpDU4dgyoTStfxUyiyB2w9HLR7dIwq4tWLJ+fIwuUfF5nMXVso4+RYX34JGH1d5JuboCcirVaybHzrosQETk21dZbHIIjZHNOhZ035a7QRIzM+TB413N++vTT888/eIeH3U2K4fGyzIvvvUXv120jMug1oFre4i4hlu1yrjm3SnPTcT8REoUhjYOPu+V8vpx610tdsrXi2IUYL/PzZV3YxcN+D95EawgJydwwGKMp1Kbrebkw3d0ex2HovbdeAcwT8dXBBrAbhzR4N6TTZbvYDDRWoXSYisCaqwG+fXv74au3++O0LKdayy6ORi6mgNtmrbdiISA5lGq1NIe+NBUFMDv3dT1bjAHMlaaAqCrffffn0/libvzt7/4w3hw+fP3Vwk6LnM9lOy+s8ubmcF5yWYsPcbdPgHDuoiD9svaujmnwHh2GGJxzqn3w5h1N+8EfDpxC3Cccd+MwUgPr5hq1VfL96hF7qyfLw258d7fzNxNZe55zDM6H5II3IqnNmqQUrVpZSl8z1bx8fixPT2WZdfXWdNqlm/0+jTEvD9DX9+9/t/v6Kzzcbc3Vqr2rAAMgkMGrh+tKHoNds65e9g0khus9gvCqzAEwICS5ArSGv85Uh1cy67V7/Yug+qrMBzO9PvoVUHk5wohg9AL8AFzVQqrgnVfT2ppIQ8BABIS99hTDMMT7x4///F//C/X87uZ22o2Jm9Q+TdPh/V5N18sG7K217XLxzm1rLqWcz2drw/Hu8PDTT1bl5s1hOZ/y9rwLLjmft3w+XdiQHKGnbcu113FKIB1VmIS517WO+yC5mrI/TgCudPXBL/MqJs9P5177uB+gZxUttSfHhg2klcsTebedH/tVtAQlerQGqFprXi5tW3Jr57olBGGkcT8+XM69t7c3Bwy+5g0RQ/KEJiIizdC6taWs67rUVpSkSJ/zqs6R6TQNPCTnQwhhLMVH9/h8AfIKtm4LEgBTadJNEa2ozmtm4iLaTRRByW21b1tG48P+YAC11CbdRz/uBhOI3htCVYBuo4vOx+iClSLb3M8n2DYpdRgHVRIRbNJzdrs4pWCqzGHZunJI+zsAf7o/ffzxh3x5rOuT1brMecWmZi5y7mX0qTX9/Hg6z+W8bPPpbD99LNj7ep7PS/KT915UgKBbqyUTwO1x16WZtrbmXouY1taImaK3l5cAl6IHhMt8sd7ibvQhqbiqyHHAqtuykVBMXGoruYBBCEFEvfddqqmpdDABQHaOEB17EN1yXi8X6RXBPKFzkIZgCtu2IUKIsfeKBL3LMEY0sNLHcWBgQWNF6cqJzKTU3qX74MgRCPRVUHicht/83d/9/t/88Y9/+zdHP/6//h//z7mWv/2f/va33/ztpx9//qd//N++fvcujf7p+dmYh/2hqy3rFocBENecHx+fxfuswW15Oa+//+rdcTe8e/8enH88ncM0BueUtKyXTiBcpdbL6XK67+Mh8n6cjm+taS6bbNvADIDOuinjetpqrXFKYRe6ZVM6f876yMPNMXhmp60LUkT0zjPhy/CjaLVJCElaVVVEUGmsCCpkikhsKKaGcG0w1lZdTE3UxJwLYlc/PQO0K79uaApmiFf0Tk3opZgPHTCy6XVk4KsKUQ0RgdSIgILHr3/ze9JWz0+i3oX97ngo5E+n7FgdqCNrIOQsspmI9N6ruhAMaCutN3UxNFRjHqbJURKRvOWIXqSBGCEHB+yxgTI4cKNxUiFTwZesWLs2jtrrlvja/vVi31IzevGCvNYh2us1+wq5/5K39qvy0quMEgXBsHVBQiL/Io42I0BEMo9g0KyLmCduqrW3WnsgaGrd1DsHaAaCYKjASFtusq1pn4BdcKMU+fzTp9br4f1bTNhqYwQlqKVe/X2EDk1KzlsvKDXFxMPU2UE3ZjIxAGWA1kStDYlAtpYvxNFzN4XWtHQl8uOwdyQqui6PnS4jqCdAP6hZa+ZTCjFdX2OYvPNsBCDSc3YMWEvZJA57wqivElQytZahbbrO6on2+zhOQ7WqDbduufacfcRA4CID2YCtt2rLjF28RS2LMHIclFDIM02O4XAjjH47D9LOquJjOMSoCC6Fr7/5Oo7x+TxL6dvSmsPee1FN40hE67zkZfOI2ptnCnE67EeHULYtOOzaMfHdfje4uJ3Pfkjv3r79+Dz/6ePPPy/PnHg3JM98//Dw8Hjvg5/8iMF5U+vVmbGaQyLvLbA53Eprqk2MvHXgdd30so3j3nkXBu88ff7p88fvfxYNzz9+2h93Io1LD0Tz0/NCOg6OQ3CgwDQN6bAbeqmKvneZplEiX9a1rDJNyRF5BPbOmTNTR97hcDy+HW/vyKeWt3KZtUE+nU8Pn4mNUNtW2XkkP47FLs9PdcPA427yMmDahRi3y8pAFu3j959Pn552gSkv7eHzLfVpgG1b1jnvx/T2LsaBFsS+2biPbtxliLnRPNfeETyrGb5MKAhI+EXlY1cZvb3EKF/Tk6/w6xelzl+TX6//+/V/vwZv7Ys26FeOLyLEq9Toekh+0fa9zE5GRASkaAascv18yZCNsZTNpASW7XnekAfCcRxv33/wlCJZLVsuwk76sj5+/5OUvCwbGIi0uZytnLbnz/PjhfU9El6Hipwl5wbEPnhw7nw+m4n01mpOwQ9DwOBbLSKN1LUMtQphjZFBbJ6Xp6fHGJxn1nx5Xk9pGLuxpFF3gaQH6qXVMt+LdF7Pnl2fL1qLdrmcNke9bkK9A+PlVEzl7u4uDdPt3V3Ztujilsv6dEljEsTNFEHXLTfpynDZ1vP5nEIYpqn18rxm3I13u4Mbh4Y2DMH74BBqy4FhW9fPT48G8oe/+ZvA7rzmKlUWOD1vW6nsWMy6qRvCtpZeJTjvg/eIAFbWtq0VAw8pmtl+t0PgLGrkXRhb7ef7p1ZynR+xnmU5y7pOKXahUgqoqIppXy7LZdlseOZhmN5MEDwpPf18/6f//s95OR8mf5zGGMfT01NMESrEGLDp6XH+fFnOS0WVIq49rhWwLE8BQUE6mCG21rsIEkTmMTgAVNHaxVqz3qvBNB048bquXaQaSlcxOW0rmkIgTJyLlC6INC9LboWBsKOSEKOjYKYxedXuiH1k54j9FX4wJGBCE0QxNCMwIutaUwi915y7SgeA/eFQahatJiK5arcAbpeGWtu2FRBhxb6VYTc6BFIMPjhmz74utSF8+7d/88d/+Pvhzf7p4dNcZZ7vp338T//5/7yfvvn8ed3tb//w7VeEfRh8acYunS4rkwPUx8vn+4fT2rOAlCa3h7u792+/+eMfd1Pcvbl5ejjVPt/tYpm3Mm9lvQw7SuOOImWwp8fTtvAth+qraXHWdjEEJhFzZritpXbtKhFtHFxeNzNWcdvamWn/JqJ1y5kd7WNEq9SbM6k159poHMgBo6F1640JiVDAGIjsdQZ4CQ7DFBOAsUOC18SOa1kggJgo8kvmHSKqkum1ZgvAEInRrqIio2t6EDCTggGRmAKiYz8Mu5KXx/VjJH7z5maafPTh4fPpcvq8HyjtIhTupRN1bb22ynzNBsIufc3FqfjRK6qAXBca7Z24I5pjvjnsRzJHXRSLIBh0AcGrVtfQjF9Y/6v5nBBBQRFR9cWl/ldX6mtaGvyCy78i5i+z4PVKvabfo6oRsQCYGqg58kzmENFMDNSQnbvSbl3FRGrvRQTQ5JoYFiMwkCGJ9F4QmdmxyHKen8vmybBVNt3Oj13l9s3Bm6qKmAD0Vqug54TehYSgqlbnXgvHGxdH5QCtgQGSIyRDAR/Bp8tlnSK66Nfzag6IvZoashEp4mUpKgURRLoNs00JW21ValeGGySC1qV38zGNScnqusyPDxKszlnAxXcMbERIg4/BQZdly967N2/vUDWyY6TpkFqt/bKigosk2nuTAM45rGv20WFrrmlKiRB0XVst6XCYl1nNQDHtD2lMeR+e7unp6ZHJ//abb3//R7/2JU3T/s3dodbP3306X35+PJ29YzMIMYU4eiOP1rcirQV2IXhV6yCA2JVyyUb9bb8lEASl4MK0++m//uV//d//P6eyjeO03w+tbA+Pz6Vu4266LKvXCDkz4XFKHboz82hNtS4lerYA8+M8F3z77s4NYX4+Y9kGP2lXWbT3DN16zfcV5sdIjPswrMvWayUG9TovSy7i0FHivmVWeH+zK5sTUU9sHGiKwxTrtm7LMg3+sJtEEGg37t8O+1sgV2p5/vHn7dM5msun87Kcp2OKg0NHtZl+XDSrn5wFuvvm7maYyEfyoXfjbr3X++3jw0+P5bwpGa7nncfjca+4++nn5zZXkd6pRcVpcOHurd9N2Xiumrs0NWNvcCWK0exaOPGSK3U1FCjANb/kOv5cUzNf69bBQBUYX8/hr8uKX4ad1xKMX3XbXDEh1ddtxeiLT8yulaFf4F41s6uqFAAQqqhjDiHgixCHVK2I+Bi/+vqrk8JhSI5oXvua9ZsPN5YXbfN6uqQx7XZDns/n5xMyv/vwhhlPHz+fP5nVonk+fVQDbKWfLmdVNTMG7h1rrfM8x+Ri8r11YCJwSGoNxiEmn6Ro0Vrm6s15gnWphHDY72Pw27K2WhrSXHs1aKDelATqtnETs9DNipnmrV8W5wQaGxkJ7abkApXaxbq2dnl8mFKIbie1S6/DmLxzPW+9NSRovXdQtriVum6rqYYUXQpSG3HcH28BtZZtWbYeNSk5DFOaxog+eHD04auvvEvny8+5ydIvz+ellh7MA1BXVe6gWmx7e/sWFJa8GliXrr2b9d2bYy2t9z7up5T24eYG/VBav2yPZT4vjz9xW3RbLuf5cDzGYSe1gZpjzptsy3nNaz/D7ft3aSo/ff/dGHe9tVJqE6nN1WZdUQ2dd0wUhziMu/NaBQoFqFutSp7Dukkt0FCJxMS2Wsl5YkrDEL1jxJKbSicm7yiGAV0gh8ta53kTUDFMHGoXn+J+PxB7JBcGXuattlpLFmtq5MABaRg9CACYC1y3HmMchoCM1zoEEWCjqg26AphnVmSx3vt147ZWq0D3ziEpEAzDWJZVWmmlT2MKjslsMzCDlDx6Zk9dRAGdC96HVjshp+S+/urN+3d3Py3b//7//kfd8jBMv3v7G3bjf/3nv/z48QH87nypngqqeSM2mNyA7DnCsq1bb2Hw89YQ6Pe/efcP/+5vv/32W3LmHBLq5KCfnz/9dL+s7XgcHXmQGjlFzw5gl9Iuhbxt+Vw92e7d0TtwgdyWa82bjy527wCoVdkWwrBPR1SFmmte2Rx4jYC0rdoKSiVoULa+tejueGBERmilV9pPGr2osmFUcqYEgKDMaNfKUCRVY6TeFcmMEPAqIDd8cZci44vF4tfKYQAhhGuhsYERkqgaggggkRF1sNKqdNGwg2i4O1YHPZR4+3aeZ3U67AJALb0wMQRJaScKYmDKRErISDzuJiUQ6dq1bSuiERAKhsCDo0SiKmKKgGrUwJjIIQl0RFMQuip7kAxUQAkYkTuWa9aIGdKLUECukWgE9JpBe3270llsgF0BX/oUAUEJAR2bgLBDNDHja2u0SOtqiGyRQzC9VqmDGTryyKQtm0dgENHWSitX0UniNHCvXqWcL1XyAGYiWM67IXnbokWkqTPWUrRXNcSRlUB6T5FRLNfWnRFeowhNxZSYkBEw7t841OJjWU/a+taJCIkRoo/D0HIptfoUEQKatlLJWjk/iGI3VqCGNjC1reZcxHmy0aMtDz9vj594oL42H6fy7Lqb3O0Ne19bX+b588Mjnpa989PowUxaJcJeWhhSIARG6XVZ1966qzjt9q0WKQK1I6zIGwO74B++u3cpzq2G8XAzvQnOYzQJcXjzTRrjdLy5ORzuHz/R5PfffhNyuTy36ZifH88igL0LbKgWwVJwvYJZ613nvgHSNMX9bgDnhriPA3PwYxi++ebb7vg8l+9++v7+6XPcHXdx9/723e3+cLx788PPPz0+P0eek4Ooekhh8HHOay5roBQIAbiVvCwLoChiaXkcfZoYratlaJa3RVrdpd0Qxt563swAKpRlncf9MA6hbYsnDLs4xDg4ZGl3N7u3747np9P9p3ti+erdWxjH0ttJct0ac9jtDqVSOHx4983fi5t++nTK22X9+HT+7vPoY3S9Q11Kd8PRIfeupSxqOTZHzk27FI4axGStrUo5LZ21bnl+/FwvGwUfbC5WLU2K3BS2BszwNK8w4iH6tNv56U0bDoyHumZ2XIoweURUUYPXZB57hXXMCOE1mP2XEQbwS3wEAOqvVHpfyK8Xic9rVhB8wWcBAUGvNY2mqgAEikgiZtfQK9Rfk2hEV8Laem1pHJFRq15l0eQ8kFXp81Z3NwdZ1+Xh6enhkbxnzT/8+b/vo5ecHcFyXpC8S2lrfX/YW4f1Mm/nJXl+fnhgBPIdEPO69pK992lI27q23GutIl3MGboOUISWyzaGMI57xFYrROcqZO19lw7MXmp999W7d998LWYff/hh+7zkZZZutRuUNg1Bu4ISp7CbDpBi66W2So5Ju0phhsCDZ48GHFABpZTW+2m5ePat9Zo35533BADSjZk9cCv99Pxcatu2sm11rdVHGkOabf3u+x+S9+y8eEQM+2mcdjcxzJfzaUi6vz3ENHQRIOgdClIDBO8EubduBmwWHKFB2xYK4XK+AOiwS9OUACESG/ZlXirzmzdv4/H4+X4paNMUymk5n56ilEhaant+nsfONVfnOKW0lVa27ANNg2dpy+f7jz/8GNPuN7/9m9/9/R8efvzxfP8IAtJy924TuBlTnCYOIRqlVnNfzchHX8s2uiHFIa/LVppz3M2L6Oh9SAFE8rY5JqawlvVwsxvGsVSrTU0k+LiVAmbehziNN29/9/6buzW3p49Pp8/nvK65bEZXhYAvfQUzNGajEKOqdTMmJGYfuLXSamXkhuLZ91LRcH8YAGJpuUntraJ2MNlNEQ1LWXJujgYHqAYqhRytfcHIQgABAABJREFUy8Po0rv91KSzY2PcStu2nPb7oipd58tqIinEh4/34X/8sI6H1SIF+ubbb27ejpc+f3r4TlquS/9xXg6TToGnELwLN9NoyX1enk7bxt5Nw3C5bMNh+MPvP/zxb76JyT89fMo9jyiX0+mp8rrW59xuf/MeomvaAmhezlBO7/f7XaJPc11OJW8VAKeRfGDnBt+tOR+9N61a5uwQPbMj2R9C6YAqKgWkkhSS1udzLwtg23J2fkw2wnZBYFgz9d6zOQ/gnIoY+G7URRWZ0EIkbTX37tJI111MDFHh6qMyMNQrVoxGJmIEVzhF0cyU0BjIDBsI0mu5uSGaEBqo1WtRfPC3336QVjJ6Yod71P3ZvdnCpBywXT41ATB3c3uLiJdlNhEfwzD46B0FzwTsnbLlXhmUiYmcTzGEUdnl1gHJx30Po3pfX+5HZCYEvcpymTwCqUmVhgxXGMyuQmmiax4yGBnpS2PhdTd98dm+eHHRTAHATEE8EhN2AFV9BebRX0Pve93meV43JDcdjomuUbFkYoG9IYmpAZqAmAaHUEs+PW/zaX88EJvmNXoydJf7DUC05BhxN3BdnscxKeK2lW2epWOaxlzLgLG27B2GFzLBCbCKqZoRNunWQB0goWqoGsRCzcIhNC2ttnEaiYGYemnonQ8eVFSs195bR8feBxSzGSD4Ni91ntfaIB+S5/z4qT5/7j2NKfVyOl1OFvc7bls+IQ8e6W6/K3nRWtbzRmSCmzjnia9dMt0sJO7mLk+nGEIzvaZU917y3IL3qtod99q2fIEYt/XUtSXvwOowjnfv3iKYD8Onx2dy4fj2zbKVfN6GaUrjENfqTHvrZVkdEyFAYBccdd7mtYiw8xScbnUclFAjD0s375HG8Xy6/NNf/uXHj58Q3HE8/vF3v5/SsEuRkA7DMJ8u27KVIU1pMDR0nn2MBAQw+NC75bx6xjROXZXMAiNNAZFDCuuSESlwTCHtdhM6V01ql3VeDDQNyVRzbhx9GqJj01rGwU1H9tEOtwltYhc5hAX6VvNuF2O6jcTDkJidADA6FWZlj0k7b7mWdbk7Bh801+37v8wojjkOgW6PY4hx3pYfv/uZFHdxWJfyfC7N1O19X7d2uehWtwzku/heCj3P9XnpS2mBaOiNwO33u8P7b/pwFIxVoHYtzVwMIvLSY2EvXRKIdF0kvkCt+Bre8wICvTDUv5Ip/0J5vXgZrtPPF5IMXn9AV5MHoYGhcyqmRl2U2BECEpmpqhIi0osRwgAJkdmxElhfTs+mMIw7VaKEY/IZ8fHhOY3h8lEu5wtGLlu/nNbs8GY/mSkQzPPFt4zs8mwf13mZT+/ubkDFE83nM6OmmFrJIYRpP4Fp9G5bMogc96Oo1a2wc6ZaWmHCYL6ujXZ+P4Y9TmtZ1YQBQyAXiYKX3tMYQaGV4qNXh60UYZp2B1LxwzBE5sCrWu3Ve0LlkiuZpAiiIq0jqUiVUlMMW26XulyhazVhNkIMwbNnq9AXqaUaGjtXa815I0p+55vKvG7u4BnZWlvPy5vpMB2Oay6rFGPOTfvpMl/mx6fT/dOFp51Lo0MyEQDMpZiqgSCCmq7bqqCmysTjkIig9SalmqpaH4/DeJPcvKJoQl1ErVV0AMhpnBSw1F5Kg1Y6mnNOzbZta7qBGvm2LVlqHaY//oe/+Z/+sebzp/uaK3un0LsYsFtqr7KKaS1LL3WIQQTny6wWgnc+BAVqyurJOfLe5a1Kbdp78IEYiwqCeCRBEVDPnOLgQyq9BBfTmO5ub5IftqVens+tNue9rItIi2MI3uUtd+kOY4hh3E8111qrdC2lMsdWm9bi2e3GSWplsuiZVZDBmK1p742MEuF+8L32XCqQaV7HGOM04u0A0LfLTCPfHW/H3TQv8/O20Mi54/l8crudaq/Yc14V7PsffnxuPX7zx5t3Xx+Pw2EcpmPwJMev5uCH7ZLvf/hOsd68OR7icDkt728nf3v4+E9PuXUXY+w2MH/z/vj1bRokt9M8//Dnen7SuilQOnx9vDlobrnWGD0TVdWn0wVUmcLp/vlPf/5pW4jI1xLjEPJc3TQlRlAh5y3PF+dwHMaYRkXuKiH5kKhsW9+yTx6hyfLcy1LrZmrDUUO7mBh2hLyJVmtzigp8rIQkasiGpNfcw951W/KyhF2ncYdEKsbXK+UVHgLkl1vDgJCAoQMKKuLVvY1kAMyixsxgaqaOSLsYABGIiCdvZAjUkZYG2ry7+/bd8c0uSjs90WxsJw+giGTS63WIds5x4GCI67bVRX0cHLlxd+QQedwd3r11bkje1csDALrbb3S66yH1bIQKhgz0Ak3h1cMErDi6WM2uHnhChmtA80u6rL0IF15oMXpJiTU1M0JiIpHOjGRa6tZEfBo5BDElRDM1BTTZ5ss2n7dlIQ4xRhr3xNfqa2MwVTUTulIEACxqeWuX5/z4mevsoTnFWrJjZPJoxF5727TWELDlJW/rWrtWm3b74ZDWIqA9OGzbgr2xcy6NSM5U0ZSQGKCZgLEYh2Gintcyt1qRxKFtuTbGME1C1nvNmzDtTPq12JSdI/As6Eyh5sv3/0IEvFzqZTmfUadJa7WcLTrzrSxruRSlJ9ZM02G4fROnHSca73bLsyxP57quTOhDiD6WDRWMg3c4OATvmUie7u+P+2kcvBWvpaogAaznlTwRAjRDk/lyyoTTmEaCKoLMfctPz+fdm/1lni/z3HPpS87rkiInjg0NuibPrfYll5iiEYFziBDGRNEX1ef7ZybYzD4+XRTw6Xz59PBw/3w/ry256avj+9++/9ppmR+fEN1EfJMG7d2kb70uW51bS2lwPmotl3PBKweq4I0ZWUVIMPkgYm2TtgmAc4ENsUvzDlpeDcA5a1LnRdiwW1/WbckbgwTUkPbqcHxzGNhPw7Au27Ll+TJLlxhiHKN2aTmrODOcH37iw+Hr93dh//YnEpvP23yadiEFpcXW83J+urBLf/83X+9vRoq01jCX/vm86KDbaZ7Ps0tunbeAtCdXtG/zxUV9880x9/I0L7lHcINDy0+X5mIcvqFh13A4L3K/zK0TMbfeifHagvJSt4xs8CUo/cpGXyMl6DV565WMfmHm6Re45otR4VeIEHyxd4KZoYKimI9BQEQ6IosCOCJm7Z30RTxhBKpGjq8R0GjAQB76+fH+05/+5L2nN29F8M23t1iylPN2ORfty7LUVjvgshbwuLZNL0LsaytgesAxDCM2ybWDNNBW8pqG2GustbUuzjv23oBqra01U/VMgZBjMAP2rtQ6RocIrbaQgoBkqcYwTKMffM7Vj+7th3fo4ac/f+dAQ6Ja2hiiM9RIgNL6Fq/a8u5Vtu107tsaHIGRKK6lDztiQuva1rW3imadSBCronee0FrJ85adY++dINbeujTVys7dHo+lllzyfnfYH2+giUnnFGIcZOnbZal3pUmrJLybbg9vEenjzz+fL9vz82VbN0bkODaCwTsEY4S85rVb8C4NGNghBxcRmBXRTGvp0jWluD/sbg7peNxjUamVtd/Pp7os6iE7B9cGYx8E+rpkqLgLO0NQMRCCBigaTAcHDsv72+m7kYJvKbAnT2LE7vK8bb7uDgOY9K0G0DH61tRiAG2gCKLdgKJzwaNiXlvwwC4CuWbSalPit2/fHQ7HH/7yU5U2DOMQp6iaM6/L6p08/VA//qktpZweLogBFJmCiCCwA4cC1owj78b9EJJHJ7XnvLbSsmlvFdXIISM4R33bQJqLodeOTfYOxaFjOx4OwblO6KbkQsilI6pKT2Nynp9AnYFDcyqH6Mfp5pTXVcoqnVCDT/72+KB6c3f35vbNw1YeH+5/++HD7s3eRMTT3c2728VpfDw6UNuoPg/HJK372KedVc3bZS5z9cMoUm6m8W/eHG90W/78j+d1qaeHy6f758dnvzv+9t+/e3d7MwFkW7t2UQW14fbG8vjx1Ob5cvn81NY+7XbWx8uZY4qublvvVltnphDTOE3SJFcZp6RLq21DQe2gJXel2orU7BxyishA0PLzQ0yKDcp8ulxO3SXHSnshHwkjIDvyXZHVuNSyXMrjIxu4OACASL8mAHkiYAQC6Y2QTQ0Q1ARViclM0ADJPDEZi0m7OsVVTdUMArOZqXS5vggYioKgVQVgF8YD406xA8YB/VF6vpwNK6M68Ot8WgASoDH13jeRda1eOE5Ht0vpcON2x/j+LYBzwdOwq2Z9uutuzOCNlYCsm6kwkmPuaiLGjJ4ACUTw2lvIjNestBd587Um95r9c7161V79YqigIOqIHJlKy3mxUnfM45AMoAGgKKq2kqVlsrafInEaUnCM+pJ6S2AAoqbCRBwDGGDJ2Itss5VLw5y9xXQzONqWvBuH6Pl8f29dQRsIzOfPSzGKU/RpcOi1JUeO+xDo/LhcLrNPNxSSIonZtcMRkWJgU6u1IxowKWCTFpnBiAC1NPUFzTyRVCm6aq8u+CENYRiJnLZWtoLa27YRqtM6UJ0vsyznNEwpRRE8Pc5tLdCFqLfTw0CkIS3rajmzqUld5ksr+WY/ktSWl26A3rkeENU5NwYnIq1sPYXg3TgMDchApDcCk1qGNAhCqUWWTVSoVBYhF7z33WDZsqBe5nXZzgRguREAE6UQBnbSOwEYltxb7YrBBY0obhiGEEJuZVm3bduelmWel7WUp+fnnFcCZObRx5v9PjJtl03ytpt2CdybcVTouyn23ueSs9YRdAqp5dq2kjw5Rm0KpEhkYr2KC04U17mU1hEgDNHQXeZtMCmtIGEMHjCUrfiU1LiW3lVbr80ky87td1//8Y+h9DbnWqsvHITzlqU2DL7m3gYch13J8+X7f3GH/e/uwpvbd+6Pvw/Mz/9ftv7jSZI0yfIEGXxIRBQYcBARGQmqq7pmtndoifa0//99hmZ7ZncbFMyMDODAgAKRDzLzHtQ9Mqum/eDkZmpmJyP1J4/f+73XnwILl61WcYz3j/vD3SMF+unDT711dCne7ZEcAWmru4m7Sr2sfkrTfqYqWQxEtBVFEJEQfHqYgmwtX5km9XE1LkYDuUkfYsDAcKudGyAAIgPbDdf8xcT5tVH5dUTmSyMB/pJl/lXo/DWS/a//fGVzfam0IoGDJqIqTGSoSAxmNkYgwNEJSc1UgBypoiKoqAwJzkFprz///PLLL8uUXOvA/rDD6+v15z/+8Xo6kQohBB9swBQxJN4u0ktvJRuqQ9BGFNk7nOYo6k5PL7Xlb755H8Pjzz/+MnplxrSb+mjreQUTVojeEUD07Lxj50Kg83k1FWAXliS9ndbLbrcLUygyjODt+7e//ZvvB9jTh59fPn4CGMsuOJLguA0xoPX8WQjJ7aVxKa1cVkAcA52LxHi91ljqfjeZWdkKjo5o59IgBHDep0TaWoPaKwsBJTRqYyAZITDi4bCMEdfVLbuJEJoOU+l9QBDHxDFIb58+/Fxt7I/Hb37zm7zVn378MMTI+WkGcx6YTHVbc3REBGOYgonYlos77DlGkdZE2+itFFTzzKiGY6yfP2szbejAPEEwmTwX1VyqwTgwp4XjEgUExMp1Q4R5mqclRu/61utlk17+/I//+PhwL7VCHQgjTAQhKUBvtdvYLsJEDhGJRikhuOXNw7Ze1MR5pwPAQDuADBwdXHDBIfs2uhU7HPf/6f/+v/gQf/jTz31IYvBMwZFUHDWvr7k5rqPnPlBJTUWMmNm8DmulS1cpYgRg2Kuww8NuAZNSsnTw5BxDYEcGODqbeKTkANSRc8f9XLdVRvv+zdtRinrZ7xefooiWki+XdVrCvN8tzj1/eup57Qj3D4e4n/WTrWWE9/dPr9c4B06eg//2/XdLnMbrdTruHh/3ZOP0+aOe3RIXDPx0/rzzlHYBVh4mjLp/ewSG8/nUWpc2hmyj1p3zDxz6x6d/+eHPa93myYfW5yE2BgPEEIEJRBRJRVuu3/z2/Sjw6fmsafmbv/u7cVnX8+njH//cHP7H/+Xv3enzE/mpCwrAu8cHGVC0ydaHbTHQ9nwupbJ3ozYSV0o11YfDvSMSqaVcxuUi23ACZb307dSGnccW7k/L22/QzbwsddsQ2HnCUXW9cNtcX70UVAJRaAMdOWRQEFHpSj4iOzU1BBniCJ2B9uEcB1QZN7+bxEwU4JYhMgQgRjBTEyAwjwhm5JwYlNqLSQoRXeCHAzLbfBJt6ID8J78/2ejqYfTaSgkzQ1Hg4HeHuBzT4Y53+xaSAXofEfcNtJgfg6ooERIBMOotdIMExGTAiKB15OZ8VGAlMxC4EUvsC46fvq5kKCjCl7VQAmcmasqgnphBBUxba2VL8wS6R6Mvi9DSe83lcgVpaZmQGQkFZAxVNWYyMEFRMEZ0SKYiJdfTiUbZOfUk2FYk78xB29KcYBTt237x0Zm23FXbJjNQ8sHyWkuJx4MVBRJotXeLdwdKO+Ego7Jnk2Em5D0hDhFzbETVEOO05s3b8ADBFFpmYtYKYqZdzKQYcQIWZCt57VtlFO9JaomMPvh8xdGrxomJSx1jbajgzaXoGElzHnzOuUkuMppCbX0DBDNrrcAo5LwHZgAtDYPCEKkNAV+fX733UwjA2EqrpTAagqyvZxfiGAq1ISKL9UtGN9S72och1As10Ws5TyFOjgPxaNpqD8Gpw1q6MvjdhIZAwGMAUXDsHfUGh2XpfZTcr7l8+vxq2AHMVHe7+W7aH5cZRzcY3rEzIMQ0hTileY6XbR2DL7ls23blyHxjS/NxOXjnTKHquBbLbZBpzm0UGUOneWaf2HsxeL1msbrfz8fjfi055yIghuqIpvnYat3KWZzXED+cns8//vn5X38+pN0+7MObPTw/X3sZoFtr88yefen5uj5Lvcw/HolCWu5///f/83f6m3J9Pf/wQ9s0/W4JLszLfivr5dQQkVUgr+3ins6Y13NK3tRLj//y8/lpN97eH4+P30xuQxrR45ykr/UwzXf7qS7L4fFB0zSYi0BuUoaqEjIafWWKwpdB9V8//Hf9ra81DLxRJ349euHXwM8Nx/GrF/SrVPraHfvLiwY4dOhQnJKBmhgT4GhtKzgGAyJ7CpF86EBNhwIQOenw6ZdffvzXP15fz0vk68tT60KQy7Zdnz4zEaHW2npuauSDoY5lio2IMnAgR6A6WsmjdgRnBtfL1m2cr1f+0nFDHQpDtXdScd5Fzw9v7lAsr+X0erm7P3rvffC9ttFLvgo5dZHVwbUWBgORTx9++fTzw9tv3ry9362fPkJwiLBdMg70RIBgHmU0qyVfsHVhotZH6WN/jN57w1qtB4jdRBGTc7mWXAaKUXKGqHrTiqpoHMZt1Mexp4l88DE47xwSgkgvVVpzjoCkj3p7dnx5febIyswU2lZsQJqm15MTRQEgQ0eOPCGx90jOpVlNLV9zLhXJpSUpoY5mo/XcTDTFENG253PO23x88Ti1UmLkKYbDYTcBPr2eX16v0cfdbEw4TbFfS1nzflmOh5kCaheRoWO0bXz41x/+MS6vz8+9NRRhI0BPxMlTLvnlfHaOkg8IrDYG28TTPO8ABAx5WBtQy1hmz55aK2teffIcPDqOMbG57ZzLtYwqm2YXXSDnmI673Rh1mmZdL0UlpqhGuXRTJM/srLc2emu92bb6S/De3z8epymKRhk1ODruFuu1lE1Ulim5EFH7FP1hmXchpuCubIjTd28eRqut5HmOpVTn+TDvdsmZkyXRDKk+w+g1hUOMAVV3zk3IAizNzBiAhfFlO+VtJXOPU5pleOi9j/V0+ZR+OeV2/vkjpuBbozEMLR12h/v79Xz9eLpsRYZCK/l+P70JMSqef/nl6edf4uTjm7vDPMVduFCXkmU0CimyZ8+1doIQg/NT2HnKpTjT/S60fmmXPsddL8Ptd9P5WkuWouocL8vdIAJ058u2m908T733sq7XdfPep5jEXKsGjvIqvdoQTZMognMcp+BFtWz68tTUeDpYvjICAhopmAXdhhbYLu30gj7i6Gro54CAec2qWodImv00EbngPQCU15VRWKV1qQDIwaVZyXMMAASMoF8Mo9tF6YZh5BuXpRUgRwhq2IaKDURoBpb2YJIB8ejT7g2DBm+91TRG8F4F0Qf0CV1CjhRSBam9ERNjrGZGDASBSccQMwKwr9V9VSUkRNvWS93W5fDg5tQNTG5UT0BAVUWkG1wWbw0RAFMlvuW7gRDI1FpBDwQKNnotZd1SLBgmuNGmVVV7qxtKl97copBmDUkVZag5b6h2m31X7a16AtWW87lf14fZp+QGguatFNXetl5UqklB9aNblyoAswvQyvrcXQg+JeYRQ2xbQYG0e+TlqBwGGDKCGjLb6CISyQNaIDEHwcMgVVMAZRMH5hlVBqs4j877AXC+5HZ+9bWwc7VWNJkXV0or1zw8MagPwYZUERwC5AAZ1Fx0KQXyeCkFXIyEa2vSNvQ6p5Db9vT5AwydvZ9mR94YgNDKutU21BSJt/PFpyBTIsT1uql0ZtQh2ob3oobae5ySd8zItVQT8T6kEMhNo61WVVERabTRqwiJKoiMVjuQ+eikDZFBTME7RmxbsT520zyGXXOhe5e3ujs+lnJtueyW49vHN/fv7r755p2N+/X5dXu+9NqmYEuIZBodLlNsbZQ+hg4gt1+m/ZQQ0TkaXUargGOAgy432IxHh4ajy7nL6LVLQRSNQgaTjw/H4/PzMwIuabrb7S8Apunt4zfffvPbvm2//PlzOWdZoU1+3h2W3cFB4ik6fnVhqkPURHvftvzLP//x+ePnN99897v/8DfpMDcLVfjw+N6xS0tsY4Addt/+JgJLk9fXZ0FYu1BI65pJFLrJkOenz4cpvHl3v0RErS65vVsadudcShb3x7h74OUOll272pZb60bsDAToV/Pmq5SxL1D128LX14rll5vYrWf5FWD4xSrCL4dptP+hAfRVXv2aA0JERBqIgihDgyNn4/L50+unX0apTEQuLPcP090bv+xucNDj4b6/vpyfn/LlVLfVZI9M6+Wk1nR01b7MO0bLn1+26zXOOxrQcpvmEJnTLobJ2xh5LXnbQgg6qDetpVPAljcEjDGM62B2pMA3J383H+8Oj2/vTfSnP/6sW61Ddst0H4Lm3kq7lSJdpJKvvYwpxuj9y+fXf/mnf9nWS1lzDKHk5pinlF6fT3EO3rn9svTMqLC+XjHENC+qNbduCoS0P8w+4uh5SHeRoNvQgY6QsNYaw9fMFBKiyRhgwIgu+t4Ahkob0zyrdOsaA7uQEMCRNzVQOJ+u3eqbd29U6cNPn3LG/fFIQACkorXWiIymDigk31r1gdmHVjsQkiMDG727QKN3B8DshsgYFj2Natqq1Vfpp1K2h8fDYb+k4JJPprC+bqjaa3OedEivdYo+BscIaENNkXHZLWrNBF+fTi3X4AOB9dHJwZISgrXGZAaizTqzIWKr/UK27GcbqGbBOV0HRQqOEEwVt1w4gucAxtc1//f/3z8YavJeShfR7bpCTMsUAs+52OhljAYmoDLNib3XNXcRtQFo5MlbMISt1ZlBpK251fWCPc/T7KGLdRzVBU7eOzYgT9FT4Jg8m4ZAKTireYrskXf7ME1ce48p7A+T6BitdavzwmBp2UdEsy4RcR/jL7+cpPZ8uchmL/nyBPz7b76bd1FL7c/nw/3kl+Vffvn0p//2D7WbXq61Inu32y/k4uGb92/ev/8//9f/49Pn87peS15B9TAf7+Y0Wh7baYoYI0fiyfk6OvaxxDhNSw4399WWkBr1nDegNidHnvNpG6OL2X635IZ/+qdfHCqCahu5i376PIYgsFOVJUX0HDy3PnofoCJjYKR5SjDqNeftmqW3NEUXvIwxHQ9+hNPLM5tR3dpz3x2Ka0lsIIGC+eCCKeKgcbWTogvWhZg9zCJK69q2MtrQmOiwD9OCyK136a1rZwYRq12NfNwdpsMjKN1YiF9J9l/ShmpmBq2OW4UKmAKDKoJaVzFQZ0TEIiDoaDoSIxOCKU+GoAbmfLgteACgGY4hQkpEQ7rKV/AZ0G2F3EzMEIgU4Eaad0w6ai7r5XQKcfExkdnAr+VcM7S/RBC+oHxAAUxvQ+isZjZkQB+j9ZpL26qM3mrpvQYfmUjVQITBpuSgW87NmQKomCiiIXTtQ0cICQhH6wToCBDshpEU1V5r0+L9Tntt100ImG3U7XmTGBJ5ExkInVwTJXEhkppVt98JaJyWtP9O5rtOPNrw7NQGE4GDMQS0Bh31+SWfn/Prs2xrdOicM1EDqbmh3lZOjcgccYheBFV67wMJ2ROIjDak6+u6hcDkeeumKFMQHerQdnOaIiGhiADAdjqFEEfbdJQ5MrFdc96ua/KTMPTWY5xGH9KqAcnoAICGPgQAbL2LSG3ddOAAVGCi3gcCkAmOzmCEqIo6bJpTCGkIBnQRvGxVhjAgGrTaahnMqKqGptZBRU1T9CkGFclrG6JMfolTvhTQ8fvfvp/308dP9sPzy/uH99///vu79w/DWQrL3PTHP/2cz5fv398zOKnVmiZz749HfPM4RFobjqG29XJe98vusN9PnnX0EIJ0DQHn/ew4iSmila3Ueg2ByCAgoggTMdOyTPmyBbY5QNYyB/vmzdvv3/wh59q/G388/8Pr63rdrgf0A8UvLkxxWg6fPn5mBvBA0R1jHNfz6cMvvG2hZdjtchsqdFpbG/IY7niaKmKMwWFEo3ffgYPW84Ztyx+fXn7+eL1eU7R3j2/u9qztXFpFB97Hu2++jW+4nM7b+WXeLzrPw8duboAJIAXCG23iC1P0V9MG8cu++1ftA/Ari/WrfQNfdyt+NYdu9o99/cRfmD9/QZF+ecHMEEAJwXmqpkiUgtN1vX768eO//GMvzXsvRP7T4e7db9/9/g/T/aEP09ounz6N9bRjJE+2boONRu7XUUZro4L0OfjDYSZAUOeQsJkWGzBiIpAuMnqtYJqWufZBjtSx9w6GEqMjZgQdUk3nyROCdzzUrq0F5maa5rm3220omBiTIyKPbL33vJa1puPd7vj4zZvvaPEvl5yvuZT+/Lo5wmmaOO46gHRFUBAAVI9GzPvlQFyrtlEKiuymQGq5rtKEGUfvuRY1571D5F77kGaIzjlEG61JlxSC915BdAiqsIzE3Id6Iu85r/V6yneHxYdALkDXWkXB8ialPZ9Ol+v51MZIKSopMJFaXbcG0nrzwRsKeb8c9ztH2juISS0ow3kXU2xOVAHQOSYAg6rreR1a6kQjsnPQpU2O7ndzr71c1/kweecqETkKnso1o5MYY4rRDAE57FJaFiQnw2rOSmgO154D+2meogs5F9GOTlVUwNZi4BgBRm9E/pa0630gjGme0pyERI2nZV7P2x//5U+7XTrsFmljiCLC0PZ6KmSm2mV070AQEQdBZ3ZmffRW6jakxujTbu6CHeW6XueEs+NEFpnxnHmHu108TFGq5i17T+kwFTBrpdY2tjUFEHWX8+vd3W6aw7rKdFiQcOC4P+y79fO5YcdvfvsWlBWBWfbzwfp0zT+/uzv08tIu63xc/P6BnX+YD0Dhcjqn6CddXj58/vinn0vvMabA4IXeff/49tu7MSQd7n76+PLHP//86eNHHAPHlpJzlqOPyxzT7rHm1RSWw8M0TwJ0jPFwfJimQ9Ve2zmRI0cOcPJBVb2j3TytjuvTmr57//GHP5dub3//O1dzTc49PuyfXs+iVvI2z0tkF7yvpVyvVUWd8ynokNpKDd4bUe2tq5DneJi6ylY2tR6jn5c93dxIDt6DapVejU3NkBIiTpMbADZKLWWIhBi1GhN5ECBRq3XNzWqUaoBl27oOjiHtdz5FGibqyDOwGajCbQkDCIANgUAQgKmLuMAMoAJ628oYamYxBCAjYwAiZiMEJCVSQRNDAnMIJltpjgCZkJkMAQTRmJyqGCh93dMyUBQDAkRjxwIqfdzgayqKSD7GG8MHlPGGDLGvFRJTALrNKJqpon0BsyHSlyF3G6NDr2VbW9m+/Bi5kRGBEIlQVAMhODcChTCxC+g9CnTqYGZoXTsLsGckUzCOYXm4M1lbuZT1yt7NkyuSUXqaAhGa8tbadc0+kmMjAyKPgGTK0Eml5q1hsBRT3HfAG+dGR3cOTQXNkndeBGsr22V9firnE/SyPx6RqKtsZVjXFHiM0Vqn2kNK3nGaUsl9dE3L5D2OnJ136kPdtuHII2LgLsOVRkp9iHIcBtu6kaM4T9jBpOm4PUWaaV/2KYaonZJz7Bg9iYzaWojJESKSiOzmqcsA0zEGoRoB3EZamFWUHSpqbe3p5XXZH0Qh59qHTmmuXdsYIsNMhIDZoRmIikoM6TZo4piUCAmi90uaRMZoI+fcW1PAEDmExUe/5WurdU7T8e6wX/blen2tl8lP+fX86fU5MgM7QALvAxB2VVRmp8wFrZbNBWYPzsPDw741cZuf7+7A7OnTJ0SLkbpaa1JrFqtLmPfLYUkJhhqodYnsqhmbWM1S8nKYHt7sffCXywbs0/6w5dZEmrawCwr1/PL0+rJ9+vTRTB6/fff+m288utPLi1TMp/MH4pZ2HchPs6h7vW7PP79++zeHgbz1yBAO8zLfJauX+XjEWvoIeze/+Z1G37VdI2tE06yna1l2/v2b92GAjhEjpTc7vL97LSLSqroqpmbMN/rgr8QfBEDTv8Sbv3LY/wemzl+5O0a3ghj8m+PXr/rH/s0XA3ytKZgOIG4yJh+0j9dPny6fP47LiVQ9p7LW7bIChMPd/fHuLgV3+vDhj//9v8rpkzO52y04ZLtmU1VSFVOxXDKJ7GNc5ulyzmIWEpXWBdSAepda25BxY81zIECiYY4BVHJuMaZpCaU0dk7VXHQD5Pz0+ePzx7v9PoRAjj5/eq7rNqWwbXmed7tlmWcH1hmNlEIM3oXj/d18tzufX6+nbSutydhyrdLDPJFzZavlmr22w7v7w/4uLA/7d9/G2rY/lfZ6nT1bG5yCA+siMU21d0BEIkCIwQGAiBDZMs9gcrl2FQE0590NSOyYVKSVKk0GD2QbXdCRc3GaUxfgGsCodTFmA9hy6Tp84Pmw2+nhdL6UdR2tjdFD8r1rrS1MYf+44+Be84YmIMo3hx1MCVQtl6beMWMIwQePKq21Dx8/VenE4TaeFpAcEhrs7/aeuOfmo2+lSh/LchCjNq5INrG7Xq5Dpcvoo7spyBiX67qb591uJoZpmoY5YLMhbQwBq7WNfnszySjYa48pmFlE54OzXokQFQm5Sb2er8E5512YuEs/ny9jqKFO0Ud2HhHdAOTS6lpWHU2lgSqolrKBWq/iovNqs7hvd4c0Lbp664KB05yupb2Wbd1qTLGCxSnQbibAc26xAx/IxC6lhN30cllf1i2m6IIbz59zXr13D28e9ocjKJxeL+fzVnsd20CkZRce7naq9pu//T1Ny8vpFJmvuZ0+n54+/nh9+0BV+nbJ22bT/Hh/fNjH3//mzbd/+P605fO6/fFf/vzzT58MzLHNke73c2IwrT5Gqa1LS/OiHn96fT6fzv5w2J1P8fwyAqlKHZLXggBx8qhIYGS4xImSlHqJid7/7u3jb964v/m77z9/evrw+dP9PJFPgB7BtNXcy9ayquzm3X6eEffr+ZxrqW0IahUxR5wCOEJAH6MM6GYx7X1gQmMk61hzGwPmw0LemamaaFdB5C8+inVVHhIjOe+CX1RlXDfs29gGIGrNY1hMj2Ge/HSMxg1ImBvSbYkN4EbWASRUJEAWteBpwDAkBKqle+Kb1Fe10Xpgc24CwqGdyVBF5UYnAhkGOHwkkAFoBmSgBLcJNVAA7x0iiqrBrbVGzhGaGAghMgCIqQ00mvf7OE3EsYgOo5tXryDEoPYrhI1uHRMzwdtGOyCoIUI1FWYPMS4GYIQ4LQfkOJRG12UKjrTAOF9edICL9y7dcTw0RQBxAa2JJy4lq4ELznlW0cGku12Ed3JOSJ7IfAzTEnp3pWzTHKfFq8n5XLEBBx+mNM9TK5VRA5hLbhsw4mJp35haHypGwZhQtJmYu5G6+zrWZ2wXN1pAGSzr9YIUahtm5FzoBiLWZCD2AJ4QA2JV8IHuH+8M9bnVQD4RolOplc1mwoCstbJjBf34+YNzfl5m6iJqaMgEbx931+2MiGoOhsxLaMO263pYDsXatm0IxNFPuyRDdj45otah5DwHFge1ltxrb9KdiymAZ604TGNiCwgOVa3BGHlrTXx0fnJla1UVUGXo6NVHR9i8o5hCDPH0cmZP0KVuhT3H4AFRQNeSw8Rp8j/++NPT6WUrNaXdFBcc8OnnD7We7x4O67aZwzTNw2zt1Qw9EqKOUqpAmkIiBubf/f43j4ejtLGflnwtALLMsaoqSG4bEJJzPjnwRMa7aTke74KjwPD0+clyJ4a394d5CqS27MLb798e3yzn8y9//Od//ulffxAZae8nH/fHPUa9nK+X59PIuovLUNnv9nNYasmtDw4JYtSY3P6wZQN/2N3f20NvQNkv5KecJfgEAu31itJTBEbf7x/D/cP7uwNJ3s6f2vkZHGJsAivev8+Y1l7S4X7yRvupcLisZgDn1gwdGN5wW18JWl/x6kQK8pdy5Vcr5691zK/V9199nv+RRvor7uFXqfRl0QcNAYm9AjpCGfr88vzxxz+fnp6tNtVRtesQZBzr9fzhl+gTMLx8/Onllx9C65MnQWFAM+hNxhB16EIIjqW10/kc2QUvrVZHQaH65CFw2UYbhi6hQqmWlkjMSc2xBc+IHhDWLZNHn5wnBkJGN0fMebPajg/79WUjU3RAjGnxh+M8p6mVXEoGpPv74zzvS84fPv70/fRNCIo6WDT5BD5Va1vujtUhqUhc/FpbeNjFx/fLN9/K68mndNWXHfNxtzufNxPc7fbXvI4xOPmSJQI6BEQL+wRqPjgVDGEyw6FaWwNTQByiYBqnSBO2LKQYOe52u9tMTR8W40yMZaw5Fx9RUTsMD2hmztEcvdQSOBhE4tvSG3lyNAaCBBIAFCJmB55r76W13gcJrlnv7o6E1tkUqAoYSKkdQBh5maJPCZ2v0scwYAKm86XW0pd9BBel1NZaTL7menp9GqY+OmAkopqLSB8oW6tkNqdoXdXEp8jdsWhvg8yY/bjtiqKwd63hZR2zMBOPPoz6PKdSswuhyTCwbcu55FoaMireonxmJgoNwIiCJxhEYT5YEpGu0D1C7dsSeJL++4X+9tG/28fyvG1r2URO+TKuzSEtaRmEvcP+sMS4C0x4LdtWs82H+wRsg3aCPEpxTNH5p5+fS73e3d/xQ2yq1sXEvXzYLten6FMG3Gomz2kKcQ4Ccn05Z7QypG6n67YuOB72uylo3tpoQzIs6Fy9tsvz+en8xx9+/vjTJ21yOO5OTy+75B8Psx/StvPFt8nzw7u7w90juvicrxsT9/rhwx/dwxTevG09o7rg5lp7XwcidxWPdB15q88vv/yJ8vrN/m88olvPZ0fjbj9fzmXe7c2wl9Zr62LoIKUp+qhDdAw0TCHV2os2QSVkjw5VFW7mCjqkmAI6Lttmo01+GmroglIgdqO30QYBqggvUwoxAHQTVenDUIGdcyEc7lzXhmgqg9D2+xl9yEWaGxS9oR8GIsqgYKZkiIR6mxO7LT3IAABEHeKIY5wYAFHEjAM5R9BVWg/BM4C2RmCkzvvY1YyMA8sYfLtu3SA6qIZgOoh4SGdA7zwASutoxobSG+jt3dduw/UxsnMhhEnMdQEFcMxmCoxqHe02VX17a0a6Pb8SMqI3BIWm2spoMryLh13sSAQ6H3etUx/iiRwAyRjbVtfNhxSTm6fovO91Q1IyJHatd0Y0Mx2jmXJwA1lcisfHJpRCrOfT8zlHYmbOWZDbNAfnog/Wu8xxdnMqvUmv6Kh2ZxLCfKD5Ycx78W7oIMBhyoiiSqCenIz6/Omn7ZcfJpDdnAbPueB62nR0Iz/Nkw8OTMErgxEbslezbV1TiAJYr1dzePfmvl2v/SK7/X6EOGp2nmTItTTH3MGAjJmZHcjYTluKLkxRatNmfgoxLLVfcxZjU6Q1Z5+CAQwZQ6SUTIYDTQFrLmoSYzCj3krZ1tY1zXN0oak0HeSJgtObP8QyVEgHEREiI8XEfTRQkzGIEGyAETlEs9E6IZZrQYJ5nsbotRYBdUvc+amupr33Uq6vl5jmyN4R9lZ6KaM2EPXMh/0SkNXsdF1N6W6ZPZNnhybLPKHpmzf792/ffvvdNwb2+YcPa97yuolhI+DoWJAd+dkT+/3YSfP7wy4G7rle1xXECDT6cH88oGkr7bvffveb/9t/mO/uLuftfNkua5t3cTns5hAYoVxyv/bDtJ8cbkHSHDDQy8svHfDSR4eQwu7+3fe7b3+za6Q39pABRGfkkEIgFTUiyL3XWrjiNCcOSzN9tRhdsmNw6YjWeyicRI93Z1uyoXcOZ1JmSDMBbBVqhyFATF+EC36xf27cQjCjG4j5Lwun8CvC8EsB4a/l0A22jreZ919Jh//ur38jkG7pvdE7EDGHQJj7uLxe85r3McawnC/n3ZTCsqx1e/7pl7w1l2h9/djXCwKgOhG9vzsGYkPW0c3UsyfDLXdWJTd8IFIbWpit93p7bLRh0mV/2DnHABSDR5VeaisjRd8FAIyI+xgQYE7xsCwwoM1xmqNj55I3R9Uqk4tzoskXbRWlAYHh4Xivhi76+3cPnfByutRRfaQDR+9dt/j8dGK13RQHJoHmd4f0+DA/PvK021F4fPcWR4uqPsTd4k+vr720OaXm0LJNHEN0ZtZbRWPvuZbSuxhADHGMNoYwGRIQIXt2zukQZtzv9imlebcL0V3zNkx67dOcFK2PJmQClnuLYIheRXtpgZzzjI5aFQTbzTMz3gq2LrqcqxGaGt8yiwzahwH64DHwtdTT9WKq+93so2NRUHSO2TvvAzp3ydfz9SKtM5CnUEsTlWW3UxEyQIW8ZjUBVBWYpkTMzvuExMR9dBMjIpUhImDm2DmloRoCo2Mn1Kl753vrvSsR4jQ5xu2yOqdT8nOKD28OrdZzLTnnWzOJo+9jdNFLG6A9RkrJax84+ux98C76ZfQ6pLHo2//w7jh5ruv39+67PXB/be3ybv/QXNw+PquM3XKM6XgdGud4fDiA2vX5RUWN+Lz2tDsQ43kdc5yW6WDSRpEA0U8hxRmJatmefv4I1eXz+tMfPx7uD4e3b757d+TdtH+8a12en87a1tpGN9NSnPXoJGCfUA+L66KtrmVLP/7xj3/66c8fXi5//vlTLiPFyIAwhg9MaqiyX2bJ3ZD3u8O7N9/l2vfHvBzu0jKV0Xt+3ft3TtzreYsR0zTLGGpKYDlvSoCIrbf7Zfff/+s/vfvt7x2T/uE//e2llP/j//0PL8+vj8eHUmsrxfkwpRmJdYytlVazKaQ4oVjPNUy8m+M8O0C9XrKIBu99jCrknBtVTAAminMExDF6LqXXqmLB+5AimZKqiwAirfY2TMUqOw6BkXqh2nLZmg9hDjMAlZKzIY5BLhF5Rg9mSKQiQOoQ0ZQU2IwZ1Iy+UMkkOB5bt65qSmjOE7EigbXeamXqKA3BIyzOBeBbNoUcgamOG5II4VYvYQRHhCo4ivVBtZOJ6OjbKiJhikAsTQeSQUxuR8CqBghEZAAGBKBGrKaAt2dWBwaiQ2w4DqDUe4feODirtbfWePisVDexWm2gPzg/E7h2yVYvWtscvE84R5m42rjuHKDnUkdrpgYhTNK7qSBSG4jo4xKcNNmNCaYxRj6XNEXuE5TSBGQTUIvRhxjSMjmirTQCQO9Kv21YRXKT8ZSrDJHb0BsjIioT3t6ppZe2XVEGjJHSMs9xXQVZl8lHGtJKqR0YVcXFSCnUNfdc9mA9t+vr88N37zz5cy51yzRP6LyN0W0gEpMrpbjgHh/uQ0gAqINIbwKVxoBSrCNwRPIzooK1OGFvRXMDRGISlZYLAm5Xi8GDKiD01murrXbvQpj9EGm14+2AlaJj7CUD0hQ4lzZ6deTQAgx0BHbb93YYQvCI3jOqbWsutYGYqKToU/TscJTNBfbBvZ5PIg3FHNJ+2R/u7w93d8xWtpMP5sM0RZ88z86TAOiote0Ox7BLCwdL05ABqmkKD8ejif6X//rfpv1y+Xw+vV6uW8UsmLyxm+YphbC1sq6rB4uOW6utbiSwnjIzzLP//rtvD/v59PIconv3h+/eff+9uSRBlt98++3uOEfGXvrl+unDq3WJ07Qsk3UILhv1nNfSmoSFlvuu0d9/347fwf793secqwwJnsCRAToyTjRkgKkQCaQxRNALYtnGlrfofZhCCndba3x4o8AXpGLcEB3qqYlzflyUKV1La8MLQIpRev9KLvwiXOyvulz/xsaxv/zzL7MzXxXR7TT9FYAIX89e9qv0+csaxpdPoYJ678QQABlp8sm70IdlUUGlEMOcQDUQnV4+busLe7LeHKJzXGobHXzuu93O0xhI0Ap3jTE2CL13UOgiYwznaJoj1V5KIXLBOUVjIBXNtTkgR7yWdktAti5pDq23nHMIYU4eTFsdCpAOh5h2FsvScSZVlePbu/fvvyHi19OVKTgfXKIm5e7u7rd/+P7jL3/+/PPPFeHN4+KH5vPVo0yPEZDakPP1KoAzOn98wP3dp7XOxM7vgMKWr440l7LlDEiJicnJ0FYHGqr1WqqEEAO32mut3ruUIrEDBPbomB0zO68Co4v3Hm+N9IDXfH09n7t2NOjSc92GtCWkELlfu5qItF6HDPXeM+MQVRmeHQJql45w2YrzVLN650MIQAAikTx7VNJ5mRGw9dZ7R4QufWTw7MzjUEADrVVbKWWto0EHVecn7z0zQcuFCecptd5FZZnTGNpGJyK8CWuAMQYgqGjr49dOIRERqqmqYPC3BEUH1einKTkiSsmzCgwZQ7t3yZG1W+1X8LYmDha85+BGHe26zSlOExPAlrfeWlpsn5YAVDtMy+5+N397vz96tpoDnFq9Jk+7d/d5w02M0+w9DNW+nS2Eeb+bJ9+vhUbDniP5wxxBxqVkEMG7PShAl7qeU/TLtBzv7pb9vOXRSsbmvWNGtVoSjTf3zu1xvidR//Lh58NkBeG0NRslRSBo29a1V61VgYq1z6+vnz5/EsTXXH759BLCtHsbTdRHFxBZaUm7sq7Ux/Z69RiXcFdLhuvp/ng3e/rYm9RVxRymQNC7GNbg/WjlvF6P93tkOl+3QN77ePf+/eFx7x6/vXvzu2+3H36ZjwfnhBD51qUiTlNsotfrVta1jzbFaXEBhtZcTHGfvPU6DGxIL01aQxjOgxVAQGIj0HnybUhbWy21lQ7IJpCmBCKtXl1H50hV+uhINAwMWdCayZbr5fUaUzRw0yw8TQEBEIjZuQjg2jBC75EAhlO5EXgQ0bwCcL9UQPbJex3Xp5dcuk9+e8kuuoe7gzVZTxclUarbNQOG+e4x7B8YvKgREagSmDP9+gDICMAAHkGH9LJJKWiq0kGa1k3G6BaAvAiqCyasfTQdtQ3g2+KIB0JVQYeIrCoGZDCYnSIQMiDK0L5m0rZPu9lzXUe5rlNk7Ze8nXpZw9KnAyFMvbSRWwDnpgjYLJ/KizM3+eNBNOIA7yKQV1Xk2+yamRo7dArbeWulL0sCcrfYkJ/nWYeM0aWDifdsRAoMwCFGF9DFOMBh3HcMRm4YigIRRXampiroHBGZKCKHNKd5H3qruZI1nCIm7wkYZeSt5tybuCnNU3SBtDZow/rI42KiU0peNb9c8mWVLrV2RG2tDxW6BXzUppDmGNFT6yKq6MgxA7vexJwnF+O05yHQ1JElp+v1NecCAOx49AGAjl1vdcslBO8cl9ZLaV2GCzGmtJXcWgOzNM0BHHaRXNg5PyV0TN6ToX0BSTt0DIrOISIaEJEzsNJyaZWJiAARY/QxOdUdRb7mEoPr25rPK6sed/sQ07KbjrukOe/m6IPfLSmQz9dSS65DpzTdHw5T8MF5t6Tr+bKezs7Rdi2nvP7p5599DN68FBMlAqOuSGRq0kVyI5HWGzCyaM3bflliCtqb97zspzSnrQRmdNPUDVotayvp4UBpNwcOkusubeJqHk1FujlDcD4Gn7d2fHiwdH+3+6bwvS5H2h8LIvXRxlCRW3J8mAZ0M7FDFRHvcJlC6wqAasgxiNDabTNLXv0gl7y5YIZOTcEj2iglgDjnRh1joPMBAUzVTOlmo/5q23zpetm/tX+++DZfAaT/NtfzBY34Vd78RfDgr+jD2/cTIgCoqpgiIhASwnpdycfIvNvN52m6nl+SI8e0bl1aUSDt2vqmAFPycXIhxibSS72WvPVupsGzI+il2lAmV23k3nkM72hKk3NOm5ZuAsM5F7w3ldqr9OHI9sdlOcx5rb0PYuqlI8CcovOutfH56dVRevPN+8Pdu7jM0xHdfBemlEs9HnfffvedAUzXKwIJIkfnkifHZ6Uad3e//cPu7aV//CQ1I0JAjhgHqmpPh6Of9/7+jTn3y/PT06Ucgg+9b7lcPr/CHZS11K4h+Saq0g1QDbqZY+88qlmto7dhZiLauzrGEEPwjh2ZjK1kaQqixLxu11K2Af11u2ylL/NuXibtAmrLbv7D3/7Nu2+//ed//ueff/hx1D6GIFGakg8sMjw7JshbzqUQU6ud5giixMaETFT7wG5kAIyllG3k2js7ZseldnbEzoNZr4LGzlmrTesgtHmZrLN3AdmCd61W7ygljwRWLbAjkBA8Auctl1KG3GZHA3vPnhmQELzzBAjWHAGCMHoEG9JVxi5NaQrOueS5bpUZxuilZCAYuW/bauQdIgQqdWyXa5xjcHR4+5iCA+mX02urzUB6a31khJG3FUZ/mKe85lwKtLpPNc394T/+vgj88Msft8qDY9hNW++fPj+HOT1+e5diWNBjWx22JS5vvn3MpX48V2R+Pl17fWUDaGWXoguMpGhyIzlZj+j4W0MPev+4ixNl3azw7vC41S0GL0rYh08+JbetWVqZQgzM25prk7ZmGz3u564wxWim1+fXNIXHh7slTbKuo0ur0nMJLl2u41//+U/X6wlQSNwQeL0+JUZ/+Nkfv9nFpdroqtIFBKa0zGl3yet2ulyfzwu4b/4fvylDnNb+X/73/+/p3NdTOd6/8YwOBvRRRNp13aSUragqOUohVNEt5yHVgy+15lIMwLvkg2u1bqs6dsGZypDWCxo6NxRGb7dj6hgDUKSW3W4WUmvDBpgMMEXyZtDEoXfS0SxM8x6ll9PJao6joSgxu7gTRQNk75qYonoCVtHraWzXmJyb0BBhrUOBbZEBdjnJVhfe1e0qVY1WEsHLq2dzXlveunofcTruFEkMROTWTie87XahqTKZNyDp2Mt6em7XKyM6b/6WySZU7SKmSnRbJR29rOu2lbTbuwRmQCGCkSIh3pKyZApmRoQEhGyttHW7LhERdA6+Oau59DywX3o5gw3vwtgiuAYCDoZK1VKC13y9np9PcXc80LfgdswzMzWDLmI6AoGKEIobAKNDLv1SX66lnjbrfXhWMD8lKL0PoBA4OBHLVdHTlGYXWShgnCAdJO3VRyCXvAdqpCjGKkKE5lBsiGl6uGdTPl/pfFbtbbuqbCEmVu3We88qECnuExPb1rbkgJ3VtTDTMu14tHK6WKkeA6kM6a01RQoh+AnRdL/fAdD5fOljKBMit24BGF2Y45R2u+Obh1F1zdVEvWUmQLz23gixqxLgPM8SQq2ViAwIyNAH6TJEcDR2JANEzBtpbb02x4QmhnW3m71zOlTGyFuVMcB7RyQy+lATBZuI0UiQzAeKwafoiZVIU/J5q8E4xHm4be3dAfzhb/9gcerS1aqN9vhwDwA2NCTvAnKXkGh32O33863uXXutbQhgHTbOm5h6StJUZBC6OE0OQW6exrDz+WxjzLu5iETvJh+pC4wevBuK4GCr5f0331TRAeqXnRBvuW55uN0BAZQxht18uMPlfant/Pl0+vg8FMA5TiRqfjng/JYef+vCfWdGh/AlCE/msckAQgQeXap0BvGebwUsZhLALhochSWsl9ZHU0dCMKQPMSKOTIqABOp8EYE2HE9+8t65XHPr1RMgmd2GX76MjX6ZsUD8inT+Mlz69dwFvy5b2F/JoF+zQL96Q1+PZF/xP19e/bLKDAAqYkA2T7yPoVbLr9dcS4MeY5KB2rSujRjjknqRUotPZCpmTtAUYZiO0vzE+yUko/V8BYN5nkuXWvv+sIueQKRmlQbJBee8j8EIVY0CGViKnj0DRTTHzhvYuuZp8sQYp9kQ2pBpebj75nuedi/rtj8+vv+b9wOgvrz8cs2XP7/ePe7dsn/69Pn1tN6/f3ucj6bUc/Hh4ff/8/fl9Omfnv63cz4Ftfe7nTMpfdROD+/e3337/eAdqD+fz8rUVZ0j9EHEpKsKGLDfTUjWq4Z5URyq5l1MgUFl1EaOOThHt2iC1FxFJEavMlotYBi9lyEASIy1VzNB1mF9XQUVPXma0rTs52X/cNi/MF6lIqFjNut9tN6HI4dgaMoEjtFN3jGGaZqWaU6zGThSlSZdEHDLVbq01o/3d3GOfYw0zzZG3krwYfLJTCGwmB/Nko+7w4HIAWjJudbchoLbee956HYtgLocd62NlktwHLwzUzBRxQFM5AyhSdcuo1YAm6e4282+oYzhCaMnRkVrrYlCZw9A1GVYH0g6haBAVdTUouc+BPpIy5KCQwIdEkKY57l3UdAuFudgoV9H/+n55ZMYdAuA90d4v9t/2vxpa58qIk/oE5BOPjw8kguMMnq+mlIv23FJ33/7rU++tTUmT2l5fT6tuZLKhMZUiQV0k9y1Ve8oD53v7+98sL69+d134TD1y2l3/1ibDpzPZR3gLQGrGkLLw7nQTWNMRw7PTycmGs4UiINzaOvpMvTs/d7xTnW8XE938/7+m28YKNDkmX7+6c85X+/uDqpzzdQrwKk+/fmXVEI6vHHBg4Nai4t+uktrzvV8vX54Of/0+iYdf/7XX9Yu7vJ0/uMPP4pL4uLT6dl5ljEGw5Zre7mubetDphj3y44Yc6lrycYY59kv03bZ8rZ5ZykFMbu8nkeTu7ujgSlormtbmxk7Fx1b8H6/zLlsCD1vl+Bjk76tOffmvQthYg6sCjJUW9hFdgcrpWxrKWVtjXKfXIhpbxT6EB+9c2Qg0Av2Qv1k66mtg/bOR095I3VdrjqQRj1ESphxBiUY26ldV9Q+h+gIxKMHmhMzjD6qEgGQqCGymiEaEKsBgQ3pfnSoGXu2sglajAswEZOjIKomFEMA8lj76L2tqw7xtItexQTByBEi3pjPoopEtwkeBHBGAwBBLq9XaPluf/TatnrJrUYayXn4UthZtRYiCt66jroVWnCMfl5zUsI0LfeJnbaWFRlFQDs79Dp6rQZCZkHKVtatVJQmrZXNiGz0zsj3bx7R0RAVEa7CgABaunUGniK7hD6qmiNLCGN0HYLCjpw2kGEDVcmcOb87oCCVWq619Wo6FIScA+Q+TIeKDJPRei3Xq0NmcmkKrdu21SGqvcMQdOL41r0Ixs75eGMtCgKh9tFyrWFJhqSILlAMUZEwBowhBqoi6/msWsBuB2B0xOicivbWYwghhVbKlquidlExaq016cuUgg8cEVVAxYGRKRGN3lupDRoaMqKpEqFIz7WqGSHawHWoi7cNE2CAZU7eU8kbaihrlqGHw+H59dkJfPP+O4rT7//T/6Qh/PGf/ik//fzd8XCcdq0MdDS5GPYQHSlomiOKImOutdRqTGGeShmgxp53+7vRx+V8VdOQKHoENDE0ExRRHXm9LMsU2E0xHpe0XS6ObP+4H05O61kcPnz7G3V4ePcIPr2+fqrXKrA1pRAmt8T9fCeh0WX1Me3v7zyEp48ffvzpB4geNISwG24pGEQG1bHD2+wsESETFRnMDIzau2MEVfw6SEGOSa1sW7lefZimiYMDBmwidNvskkGk5Mj5IK2rKJEzg1yL4GC+aRxBIPuLQvmieL5wMb7cxb4yMhD++vb1Vx7Qv/n0v8kIfZVMditwAhgA3Va+VF24pYG2Xs4oJa9Xt/BA7GulgQguRseM7CGyb72TQJzAAIgxBB+XMB+m/ZT8sF67iMVpCq11kvl+79DW07n1IV2WKfngttaRKAQmZbERkvPBsUhAInOi4I9OoI2hyyH99g9/w5yeTsUcP58vHz898/P6/jfvXXAvr08ffn5CcL/7D7+NC19eXkTNpL18es2lOR++/e6banHtJT7+7kjBrpen9TLW1S9p+ERp5+cDYjTHx2XOIAENBkzTTA8Pu5DYoI8uvfvZ3+jbjrGLtK3uDzvn/dolLT6EYCqiMkSuOXNFpL33LACEFlKwQTU3H50PYXYMvZ5eL3UtU5qQXTvnf/2nf/3zH38AaSbDTMn5EJxKr6W2OkKMNhTRpimklJgobxmQl7SEGHOrhhhjHAoDLKZZuIcQUvDaJcWQQmhiqOiCi9H31kQQAEIMc5qJKMRAiGOIWhujlVr8kkAxrzlEJ633UgKT84EYh7RWa6sVUNF5BBxNtA829cTRuWWOjrFuNXmekt/WXFt1MXjvKODoVrs4BAVapuQdl15LGx10Bm+G2OWaT2IjBDdPiZG33AQNyBkyTxGE8wAj51PccpW1+eq2D9fn54vx7u1331+uOb+87uf43XeHybtay4c/f7yeV8nXfQpvH96rac+ZbFjvgfFq43i//+23D0F7H/n0er6uwCmpW3Af9se3j3+799S2tX6+CvLDy4vW3tPh+Pl5e7lc9/tpXuLr0zOp+Tm0UketnsPdcQ9oYpB7d0y+YyDwRCxd8sZhArOiY/fwsJ92o8r15WmaJ2ZFIvau1jKFqW91+/Qpa3xM83662y4rOWHDn/71xxTo+edfnj98btfrqO3P//hP7//Dbx0h9lLP+YLT4XVt893eMZ8v196Hj957BypWSjcsAqNCNxQM5zJ4QorRau9mjmit7brVOiQuy5SSY5ZRem9fptE7EkqgCaFfrhfm2MaqpkqWS40iD3HZpejI5bq1smrw3iFNpJRy71VwFw7k5tYkhIEi1iooe1NruV9fk2WkKr1yZW3KvbL57TzGsMNhv+znOq7TMg3k0/NaapuTT9MSHDqfKnKYaPR1CNG0R8cANobALbsjRp66jiFdW6WyehB0SEyeWNEp4lq6IRF7z94E1/PJGJx3aY6zU6d1qCghgDNgMzVTYlaANsShBecUzHoLoLWXcdmKNi0r1IKgzLxb9qbiYFhba6lpiSFNlRSISxMX94tD4gQY9AYvAmMZMJrT4Xqr67Vul2Vx7F2+XqCVXQqRlpZNRiu9EtG0xOWwlDaGjGkXwo68WC95bbljmv3C4W4MDzgm7AuP9fzUSmMMFiKkWEb3C0fny7nW63Ykv5VRtgZsxKFWEbDWQDmq2bkouc6gpiSgaQouROqw5aqq5ByzGqjIIEdpZlXqvZsM9rRe1jR5Fwk6KuC833GIgER+5hAH83k07HK+nup6Wpytp9daWoqBCRGxySh1AJpDX0evrRkCMcfoiamNWkWm4COxE4Mx5ikKYQeVYWsuNVdPPoXoHbvornlDGwQY0KHjED0Q5NFu4LXee6+irRd22vrdYTeuF8nbYdlNj99M777b//a3gnZ4XrmVXZosA5rfPezvlpRfnnvbFJDIGEm7bWsGxxy4Z2tdehMeQ50zVZWbBOie2EwckAs+7IndPEyX/Rw59EtpWaYYHt8clof5l6cni3ip27dvvgm7mUO65lJOm9WuVphDXGial5CSkFxzCYTvvnkTjLfrK1IAN4Xd27B/V9MyzJEBIUpXNFEyQyUfHLnSBwJ4H5nd6BVAnfdDFM2i9zyNWhqRMiGpoEEg54lADXQQGhkCIjlvqEMHCBgOJiBGHYJfrZ6/CuzcRMyvE15/4Rf+X8XOzSuyX78IvxBGvwqfv/oW/Otz2I2soWUt50+/9JfT+cefXz/85EhcTOua8zkH80ua6lpHFQHrquh8Ss4MwSBEz57NgaH2Mbbzdl03QKqv50HCsxuIrdbaGxApkZIfwNNdchHbde3ragAWCIMjVS1FFUNa0nEWcNd1DSwOh+CIi3+9Xi9rGTZenj6Jtrv7vZWCvZZ8/fwD7I9zq+vdw3FBuVxe1+ezgYtG88ODYjz+5m/x8S1s6/XTh5cPP9LEb3aHsLvHkPo2GGQKtl0v2yhWB+o47OaEDOqK4JA6ch9mDlz0ePsFVhlVpY5G7EV7LlVEpjQtaKVsIuo8iWrrI3phsq3mOqqfk588NCJ2GHw18cS9j+ePH8u2zlN0hITEzqUUEJwTl2aotZVSwHSKkQjZ0xi99YzAgtcymnPoiAxgDPUpMoKJjNsujI6yZkII3nkCGW1Ia62OMTwREtRa8pZDSmlJAuX2Fldav1xXNdstS/LeoW7X61irj95McAwHQDpA6Lad4pnZgMnARlvXLWfJW82gJQ/R1mopJS6T85R7baqlqYUwAyTk/TQz58+vFyb2LqznsyLU3mw3BQ5Ijjz23nRgya11pejCwrtpr4UGWwVbgcvWPz+vy/6o6pwLZlBrfbg/QOuy9pZHzo0GCoR//elTmik5eNzN7CMe4++/f5Pren75PHl3f9xhjNlk2j3uHr4hhdwAAzexDXDTUDMsx7vH9wHDzGRv17yeTy+vORA2HZd1c2A9t+SnNKXRRQwM1GRE5jdv3y8eATsRe0SYltd2+fz6wZmsL69lvdzfHVxa0Nzd/V1tm8iGCKs2kXXn2nePO2fjw/OPrOnxcc5l++nHn8+XU9S2XV53j8f97Nyy33/3h+8v//DDei4ckgteRt+2zfuwzLNzOEprawYDVAjBld7ytpVmALJMMztPRGo6zMxhA60iu+A92S0V74MzhbyVNrrNOnprpXTrRs4lt7VSaunNzVTuwkjJba1s5zN4ktHCMguRMoewpMO9jxMQQq/BYHRBcGCGo7S8jrEmAheDC9RK1Y7INloRgdaZNlFQk75WKQLTMkfmWrp5NkeCUEp3ixI5NGRkRjQYznPrzQAdQuu9r1crhUcDGZHZAMZW3cRlyLbWEJ3g0FxErG7ZTfFw3DuPVtZRoZtTXywuFBcD0KGOnKiBYR/KYKOXfD5ZWb2Nvq5P1zODBjDnnHOxN3KepI4xSiuZadqgbdcrILJfdnd3M3niFA/7wd48sYHl7nV4G9B6PZ3K9jLRzJagl4gjmmfT203zfG3BB/GA5hBNe4aAPrJnNkxzCN3t0rwPy9JLH9vVa6Wu4+WDtDoGNnLh8S7MyxIOCNSRQ5hfn5+v29by5lldwtpabpJijPOc12yATY2GxJD2+wWdE0BRgeB58jfnbYjWPszAk9chLXfnWYek3QxgrXYzI4CUghHn3NnblPww266Xfq15vXiE8+nacgE0la6AZuoIO0gfNbe85hx8mufFea86VE3N1ryqdgALHpkoBgCmSxtEYCpNeh8iaIufpHc12R3iaMMBJpfiHMWUg/U25ikyQK9NdPRW5hDGKGLm4vTw3ffH3/8dPH5TnAPT++9+zyNfn3759u5BvfdLjLN/+Xk7X66qyJtjohAikzeyIdIEBhKwtSHtdEYwQorBGdoQcagheCYAh2n2+8f7VjoAaCAneH+/THMcoo/v3t9/+47iVBBabuU1Pz+dri/b5LwHU4R4cCT88px/ebq0pnE/k6eXj8+jt/fv3ncKcXfs7LuIAIVI0TE1AdUhPUQnAIDITLf2eFNjxwQISGaqIlU6AaQUkRwQi4gBGKD04Yi84yFdh3TtxIyA3gUDEBtqgooK6BBvPS4EU8OvmZ6/9nP+ryaP/frSv6t3/dUO2Ffiz9efcLOFbrLIvmqsl6dPf/qH/xZHba+ny8vz8MMKsbEzcOTmKXlk4p5Iz6UPRDIOCDwH6Tp6tz4amkBtl9x7A8R8Xbee/RSSIzQZXUFVEc5rXnbzu/1ydzdfHL2OVnIdVQaNct005+Dc4bA77ibBOHq1If/9v/3DtdN3//HvB9gYsuz2gG7kYtHPAEfHMjZZ146DUevn88+fL+drWbfm07LMkZNbjnfLsk/pDfQ2ffNm+u4tmMz7/RC6ru103aITP6NeLp9+/mmK06Jccw0hIkJMDsC6GSEjsiNGQsNuMC5bL6MJDNewbC0kn1KI0Yu0ViuQKUDvY922KU0uhV775boljUQ0LZOAEiIR41CPwc0Wo2fEiKbIgOwdI3Ej23JFJgRQ0q7DulFwBJBL3mrpoLvjDOCFVG2UdaACA0xzihFKLiXXaY7TkuaYai7lehkmYCaiedtE7HrJ8353cLuuI8QwhpZc+uhgQI5EOpM5VLPukb1zTZUdN5MYCI351tMf3Wy0Uk2klNpKFgRRZuedd1tt2+nEnsDR0O6ca2qXrYY93+8no5ECy9DRqiPk4J0jGVJ7BaVaRh9DW1dmdT6wSzHUXHSwXyYfUwfIubg0D4Hz+bpbpt2yy+t6XYsHy20A0JJS8vPj4z0kH2Z+c0jHyV1fri9PL2m/O8ypxpDS9Oa7t8qeEO5++72b7+rlIpftZd0I1e2PBrTmZpoW3j18Gx/e3p0+fvwv//k/j5r3y1y6O51PckMWk651q1tDdkOkqk3B7Y+Hbw77y+n5dL7s72bh0Ep9efo8CfQtg0qYw7Sfa1GMfJh23i3O2vO6PreLnl/ruo5e2nZh6H1cf/jTz+fLZ/Yjii47+H/+v/7TP/zTj64bU9otj4/bz+ea66ILis0x7Zfdw37vGSUOOOxLazmP0uroNTpHHkdvBYyZVaErkgfZRq/9Ws5HXZhwSB8ynDpTFBVtlmkLnhXEtBtgXqG1lrdcjKLowTuWWUZm1pzbEBVm88ntdmF3j1M8X9Y0JedZRnfRt1GsdWfNp8jqGGRIu+QG+gU84RORWGmjlC0k33rPdcwP9/vdvp3P13xBRzxPFmYwdHPyaa52Y5YPHs16Q6lhSkxuSIVS6vlqUiObRxqtlVxxXcVgChG7DL29ayETBiSWATDy6YQIW1M3L9M9uTgPtS8ZQEUzRODWmua8np58W2dnqPXp+dl7Oux21lzp4ENsQ+u6OlR0OroCdbPB3ofl6Od7MTZg5djAeuso2teMUr0K1Kx9GzWXK0TnU0pqW66bmgZ0YEhGvfVtzXPeT4nr6NePJzrsW0jkmMOEYRaFbbv287W+fvKTw2C6fbZaUYCRDS57/1uf49ppCHaFrWbGoXW9/Vc1tk27Lrs9IqGAgZkikPdpaZ2v51xHW46Hw8MxX9dhxjE6wtZyHV1No+eQXKtdgSYXRMTMixbHMNZcmzWD0Y2IIVA5X+uamWFbc0AgxNaLoDUdIqKi5JjIVIGd4xDCvJvnhTy1XmspTVq9VDGhFBgMdCDI4356vRQV9Oy6SB4lX7qPjGCwDc8YECYnAUY3GdIC092cRusriGfwMUito+nh+2/D4/v73/wN3L3/OOCl1Jn88fg2HT+bXY6PiyBaoktfVyvIzsAuaw4h1gopeWtiziExILEnaXojXiqoD94RiA3vGMhteSMSU9FWpff1uh2W5f6wtzHW7eJ3y/t37+/ffWduupT+9On59fV0+rx6pbTzl/O6lUtvVgXXMXK33f4uzm79UgMekZMjT4Y+cGUoo0tHIUcObQCRG4ZqMPpwTIQoJgZGAHp7bmFGvKG2yBC7gBk4jIZgQMQAZkMM0BmAYwY0NRtWbyrEsQcAQtOvVykAJAQA/R+Omf6V+rmZRP+Oj/hX42H/7hz2ZVP1JnhQQW4+kHPsmBmg5svD3fJ+eujb6fT8cYpu8szRxxAPx90ugdRLHxLCXJWmwEvg13Xta0d2qtqkIMP5fLYhKSZQ0Zprr2fAFP3oo7fGzg+1sTb/eczuwSt89+7dVsfz86V3QA7ke0oRYJR8zm1IV1r8lNJV7OU5+ykR+Ot5QzJSqedXNnC1+9aff/wpT+HNm7ui2/V6la4mRtr7U7hoGdf7fvdw9/7t/u3DcnfE+8fXl9czSM/tw8vz+fOLg/rmLi3AelmhyDk3q2OkKe28jyHG6Od5a+P56aXXsU8zJV7XtcA4tbKgn13k5B2T9oZokanUJiJABMwueZc8i0OkdS25lP3dwQC9D2igop5vjzTQmxkzRRokvW6XUxtDhpKCOOcQpNZqammZOHoSQDMHNqRpd111tJbIk6Pemidegm+teYLDm7t5ToyYIjtz61VRITpnqg61o3UYa7lcfzn5gElj3Vqtg9gF77ftQjYOs9+n4Pfz4XAYhmXLrefcO45qKNslh+gJVVUQyTrXVlRv1b95CBpgTFCu126Dgc2ktTGlAIwDtUkfvU7MPk2tmapR5KFumBLjds0wxA0jMMcBiScEKl2KDNEtD/S6n+Iupd2yXF7O6/kFR5XWy1Y+jrGbIzGhybJM3715mOfpOtrhYbfs3Jzw/Pry9PR0EP3d3/3N/v23brek425t1mxc/aQCxBM6xYicHC4TTzzy84fXl6fzp4c3h4dDeNq2S8uq6oiX5AxQbaCadKm1YfLMTpqRUEgpxXR/d383xb61XmrvFm2aMWmVGNNynPxhl3t/Pj+XvD0e7/aRJxhu9IfFRaiffvnhX3746cOPfz7MqWuv2u5mMKXv3z3+/d9+l6I+PX9yp/PZJsfBOXKkA8yc48fHY3KRu0w+pcPS+gihM+ft82sMbpqSggzpJiKgCABGJkNVtnV9QphjejjsxcBEx7jlaljFgFmZKQQoZfRaa2tN0JQYAQzZjK1JZ6IUY1cbpSOElJwn69uJxqjtYimYqnUPTNIVTCbvIyfofRhd1uwdT2mqJfs4LT4M0/WayXu2ugthih5GMxUzkGGMYVoeKB1FOa+5OwZz2Mq4nvNlS8FxW1AmqpVq06EI2PvoZeulIqg2ba0Tu5CCcxTYGTtkZ1q2c3MOpTZ05GMcagJAwICq0hHVuaQGMioYxim4x2P5uObLGaTdHxcwIcZyrQDqY3x9PhMZTzR6EwUAcOSAnAx5eX710975uL1cwn6KTK01yVnaWkedHTKp9yQil3MGdNKx96FjgBMyZMdmY0jbrifSxNK1j8tWA0W+tWpyHfVZALC1y9PP5hGPOxKJDD66NhSs6etTyaOYP6+VHS1Tyo6ZzLRbV+s9eb8EGk2xVRe8DzFNybO/Xtbcahvi20hDwGxdtxhC3E1TmF3vrDYxo0tnyRzCeqnBUZwmANWqat05bn1sWx2tk+dt23QIoEqTaYlSwROLqQwzFb4FZYUQwcTqWkJsaZpHa7XW1huYmooK9WZjCCfvmLfzNkpbdlNa0nUruQ/n/Xyc63UdW9nv5+OyBOdKya/n1y7jeDxCqQz25m4PJjmvzuE3v/9t+v53dv+Wj296iLI270Nyc3IAxwdyF7PuEUsfp/N5IB4fH7et5faC3ptgbaIgjpAcx9mfX07znGIKIn2MUVuPS/LsaivX9YzSY3Jd5MPPHwFQRLR3htFKmXfTMr8B75fDg4HvttpQFasqxJxrNbFa8vkFeO9XGVsV16egzFod4aj1/Pq8e3zc75ZpoW7SQfuwXgeHxOzMhoAZIDsGUwBFNKQbcPnrYUkVkBQUDYCYCNWAvlSw0NC+QNL/gnX+MmiBiKa3wjv+esD6yir8a2gPwr9TQ39ps9+EzRcC6RcX6QvqEL5Cpb+CEBG/Xr5uzGgwNBU1pP3h+P1vf5ek2eUcPM/ztJ7XtMOH425Zlt3s7yY3PaSPH18gjyXFNIfRaiDqDK0VU7OhxjhGGbUFR9G7ijDasDIMyEQRqLWelsl6v55eX9mOu/03v/mNuV36eBkMoEPr2vL1WtfRheJEPIfdw/7+3Q7Sh6fX6+tqQ3SIjt6u12LDZAQKqMNaa6pbXJHgej4vKe0Puzg5qOvlYz6fPvGHXWu/5/B7ZVdgnM7n15eXwK7W2mot+ewlzxET4nZ62U45+oiAymN3v9/d36XDfnx+AtMQYphCy7WNrjZaz2jDz26KkUV7LcG7wI5mpuRq65SQ2SOSoSEiEzHzqAO9J+JR2hhjqJCjdS02cAreYQC2llvPTcRMIU5+jslMW6655y7inL9lr3XwUIAxiNAjBMI0p8bU29jWtY8egp+SH610UzAZo6cU1q0wo4/BQGttQ/vlfFWVZQkAJr0zUkw++NjKZlIDyj6m4zI/3t9Js435mqG11moVaKPXnNc4+TQHc1Rar0MAwXlnaq2LEbngpzQNAk5utIqkzMYO85Y9jLoV7eZicsnlWnsdnGh32Pfee24uwS5NjsgF15qQyt2yGzxer2tvNSS/m6dv37zT0aDWnDfpYKJTDBS9AKQpJZLk6bBP2/V6OZ+JK2NK8ZAOx/d/+A93D4/f//1/dHfHxiTsLEFdL6en05R2C4WU5jBPdYyBfno83BPLz595pHR4t47y01O9ZjDwl8tqtzwgegHJZTMmn5J06V12U3TMecsh0PHu8cPHD0/P5yb2eL88Pt7PPgTnwz6utdRW1/Pr6/Xn8/L4zZvH435mFwKHmi+/vFz/6b/9y+XTp/u//9u/+/vfmx//+X/735+fPvr7v6nr9f/zv/6fouqY+PR6zmt23r159+Civ13oZa2GBCM1sG4OQBzjPnkhNLNWqyPh4IARzPJaRhcEG60/fX7xHGIIIQQXJyJnQK01JNpad4AUYj2tonLYLyktuffrdXNzhCWO5KFFbZ2Ypuhz69peuFxCvjjHBiADymn4kNKypxSbqmeW3i/XDWQM7UgEjmqvvTUiIx89xQQOwKaJSbvmlb0LHkpFCgtNB4oHCEuvZcuFJ+dYvdRer7CeRkGvxWBHfbhWnDdAy2vO66X34R2O2qU1BNTmQnA+BR8Sqas3EnUI6Hit3YV9PL61eV+ZTDQ4R4RGrAC5GSJOu0BhBzl9fvpA2pfdLvgEQFKlt9bKqjpccOtWdLTdLoxaCZUCwIDRaZRxvL/zbJBl3i2ko48K0lRL8IldCozn0/b68uJcnOeYfOymwVPbKsJYpmDYWWq7tpGzGoLbwf5emfWarV6k5aGDFKL2uvVX1N00TSGhyqgbDJB+VuxCgYEOu6PD0D+DczxPi40hjvZz9CgixVvzhFOiobLWYWDOIZpJvnQWAwPT2goWCCn44GCoGRqgALIPjChNpDemYDqYkYm6CYC53hid2hgwSs5AeL1WaI0dIFEfg5Hm3WSmrTYDIwRCktFaazmvrRbvUFsDMCXuiozhvAo1qaMiKozGTueIPvo07Q2pmYEjYF8GXHOWUduQG5j4vF4R4Lv3b0Kg0lcXEu8XmeaO/nzODVoVcMROuw2J7IvCx/NTHF0Rq2hX5QBujovMeS2OQ4hxK3nU5sZAIu8JUHaHqOKua1EZw9QJ9TJaqd7Bsuzjftq2J1SYlkVG/fzyOkaLx8nvI8+x6QDRsa5uqAckhmrttWz1dfWAMETrQkN4rdK3OvjukIi1l2vN53s6fPfNIr6GaabLyAXyUOmOQ0RguE0wkqHql0sSflmC+dJIR8Kb1vlaPv9qwHw5NenNevm1o26/fuHX5a6bJPrSbf81uvNru+svKOd//yHiX6ygr7khAkQg+zcV+duP+6vbmeFtZJXRjQ7SfQwPP/7jf2kvH63VOUXn/RSdwxGhhIZM4fpyHefNqYs+RCA/JZVRthaRyJuRlTGcqQucEk9h8kStdUc4ckaCKXpjRoIwh8lTz23jpjzf/+bv5C2sQ2w0lGYt18trCBSWfRVcdtM0HXDQe3/84R//u/Yu63Y5n5fZA2DNzaKmOXRNRtqlyVDyrIxNWt+6h9YV1s8VyQXJsL4UA0xTP13tvPrDIQE254Spla2eVlIJjqvjJiOh9tZbqYRwfT2fnl9T9A8PD2y2vj4RqGdmwJqzpokpgJiIuinG4OvoXWyKcRCWdeuteXaOeb/siLD1gUDoaCigkmdm75aJy1Z6b/3a4hyD96igY5CyJ5rYAdjwcS2r1E435izAbp6cQ0Bg8j7QsswhTSOl2lpv1Yoh2vV6abUa2AkuMURkQ8RS2zCWhqKy28/nsm3buttN98cHaSVvWwwckxO/rJfepKtFaVJPa0oxeTpdRRVUQEBd8N1MEPowVelDBYyIatPWNkEHRGwChEBoCgQ4Ru9bw14DUSM1sTG05u7DF8nunFP9/9P1X02SZFmaIHbIZUrMzFmQzMqsrKpmO2yxIwsIRBZ/H0+AyGJ2Gz09PdVVnVWVJJgTI6p62TkHDx4RmdnT8Ad3s2uq6iouZuqffucj2npnRnJuvpnI1ESmaUTV/RCgh7xe/JjGebyd94Ho8Xh21m/3o0OSgOQDj/F4WnJer/Zx8sRWPOTbnR+8c+jUjf7mcPfym9tXr+jq+qmVZoXMKbFUnNP08tWLfqrldD5dlqI4/WrPFN3c9i8Pc9q/uvvNX/78HaTXfr+cHjbdNpWOJCJa+uZZh3HuaqfzIq0dxn0Alrat2+Pod1d388P5aZz45i4NERLZ1TSAIwRHvbgmrduLV69vXn+1rPV4PmM+b3h8l/t22QKO+/n29uY6l9PM6Qz0z7//4/d/+E4ovfq7v3E913wqUg2IUozEwEwOsPUWpl0tcjkehZCoeq+7KTTVLRfTHjwPYwDHZSuAJtocU0zpfNlOy/rweN7tRiSPyHUrqIoI21ae332UUuQUg+9de2naWpX+uJaBGJxzzK30WnrrfVuX5tCGhJ4VkMiZmKYhzSOoSG+grjbd1kVqAYQ0Jgq0Pl2wd83NAMI4YQjrcfFQPTbPRgZla6V051GRq4jV0roMQ/SRI0JATDGm/VjrpnWlDB7YVAC092qlgSqStVbXy4UQhpgQpJcuvcCoBExALnpEV8H5YfbjVdwdugu1F3hGnYAi2lop26oobV1lfbR1NWJCMiFFUDHnGM2sVc9QltW0p+TQUKvU2g0LhQDOk4ftsZtHROdLq7n05czYUVu59JQigNPOtYpp0cDoHTEhUkgerXtvIUbp2rpiTL0j+mEarwgBi+jlXE6Predp3HGgbYNaeqYOypLz+bIA0+HGS10EVvQRihPrzjF5rl2Dd8M0Bu9abWA2pOBSTEM8LW3d1pur/Z5S79u2Lm0rndjFxADaupi66KRp6wiogHA5Lzd3t1XW7VK1t/2cCKmVygDjPEzzxM7XOhzPR625m7QmtVTfMaTAzqHZZcmIqibsGA05kHPcapHek/eOtZqBw84mzpla6aXV6h0kz6rSlgoOu2EGYo6MKETntfSIXYTRT/sXaUzTNB2P52VdFiQ/7jWugP6pWKgAAzSCklstjYhrdJEZ41R5Pm2Ax+XV7fXVYfyXP/1wOn7Y7fbsnPMeEHOX0oQDSG+t1OBDTMGsE5hzkNWOx0t13iP6Ybi9ml+9etFU6lyjj/M0dqzHhw8h7F98+fX16y/S/qBmy/H+zXc/tKIphCH4Dx8eJVev4BznLfP90RD6ZdE5QZyZpqZgAC643X54+WrszlfnnIPj5j4c6yZaSg2RQY30uXAJPup07JfszMd0wo+6mp+IHoDPiYYfccsnTc/P1csfhT72M5rHAOCzovmXB/hI5XzGUvDc+/5Z+fz5rD7BHfw8D3vGZoCfqKJn3bUpoYtxCHFvmJD9ME5YtzFxAAiIsm2nfK7eSZdlK0WBa441c3I192kcPXNe1jUv1jupAYNCF+0xembezlm6hOAQaXfYNRGrJTJr7dt5e3g81/1xDZOMo+crE6FW5v01ehR0wUeX3GWtFYzH9OLV3R/+j7+v6xY8MbvWmhJWkybVImjXrRRiCrtoBgUExbz6KURqUkp/+tPby/sTBDfdXK/LKr0bUT1tp4cPJLVS6ctl8DxPs5lbl0zOs8Oy1rffvwVG6BJ8cMCMMKSxlOoJhhgoxXkag3MOIDKlmNAg5+ICXV0dpPYP/UFEtStF770jxN51XdfSG5mlOHQ1ZrebvANqeVVUVHguyGUiVNCuNZcY/ZQiAbSuMQYwqblOwzCPUzcFMxIjMxBxTI2wt45E825yzLXW8/ncpCuC5+AHPj09Yaeugt6Z0Lpu67LlrQUXzRR8a7UI8bybg6PZuYG4t3o6nXIJuZan06V0ASRTUIVp3glI1Qatq6qZopGBmqiLjghLKUbskvfERH6VzQzG4INDRvbBoXYE6r2DwW4/A+P5fMl509ajd62W1oo2uTpQcM5HEtTgSUEDwPp0PL19X9f19nr+8vW1M3z/4SnXnKbhgnjZ8pwsTXvJeYjxm6++HO6uCzt1qak379swPdZ6aWrAg4tEPnCLzvkK56fL+x/f3d8/gYsQPeTaQQm8mjstbatuOPyK1LbHU4F7drYezwYC0veHXYzp8bJtpZABIIwp7VP4cP/hshyB/OHumgnY7Pj+vnA4DPMcRw6gdTuM46ubl//5f/5fiuL644cmp16XbNVzYKsP949//1/+z//yv/8/v/jy9vWrLwmHf/nvv9fAf/W3v95dXbvLZamlEZIhbDnvhxQcWTNA7F1a7VvJAjpFZgatlQzG6EIYPTsEUkExTikZUhW9ukmGJwU4LysRzymUsmmpkVREFHA7gxCNc5qGKNt2vizLZQUwr3rZsogMTB6g9VJL3VrOdYNOmi8i3Tu3P1x5cMxk60YDYZcqrTeR2hjAOWYSa2aKyCxdc+4YVXvbtq3KNngLey/WSqmASJ7ZOyMANHbP1R5IAOQ8CgXH1qz1QpVVyFpvvdZWS8nEFomXy9alBed8Iuew5daKeO+J2DM7YmOOaZ72tz3sGnAuXVQIrakReVWTkj1I8tbWUtYVcokh1kt/eL+ywzSkEMjUQGtyri6VmIYYGa1KayJmCL0i8rwH69azmrrTsvQu27IEj2lwarBtpWVFgCklUoHet166dref4uBRam+1WzdmTgP5OLgx+7mAJ+me0KFpLmA1OFBmEd9Vt207Hy/YupmQ57xkM22oIvnykAFAahXV0/E8TXGeUy3SLIfo2YcmkB8XJYqeyXoK3pxrBY7n7Ob9bndNiPVyspJ7k1wKeofsAa13PZ0ujtD5AJ6NeauyLRuAOCaAGNmzp7N0/zxwCbxVyzknlXmapNfz41MInGJk5jEGl4auPV8KI+z2M0LrKVjHblK0eySIzhEMyUcCUlvaagpI3LshYkpTbcVxuL6+Oq/ldFw3F+brL7766785nLY/fvsvl+DvXn15Pd8tp2335Rd8c9d9MFHv1YdAPoD54oNDr22Tx+Uq3uyvR5Has+Yte3ZoKKrOudoUQ+CBcl43adZhP81tqSqFfVDRrTURZYZpiG5OxrCdTwQamLwnNHr16sWL16+/+Nu/dvtdR+trefjh7entB6QwHPZWqzaJw5h8hNqqCK2FnWHPKQzEBOaIY9rtLYV0M6O3w96fcr3dJeaQi+VLVwAFUjNGe+ZjEBHtubfU8OdBhM+97fhMDgEA0E9aHfsJzfxrpfJHiPMp9tk+12HATzGH+NnYZWAfq/cM6KfeDEP8nPuDn7bWj4O1jy98doF9Wv2cN22ACD6l29dfBJblzfz2j/8NBQPD1ZTGGJb70/myWfTjbkyRy1rW1tq66oJEdHt3RYanh1Ov6oAHF5u2urUsp2menjNRDdGY/DCUJgjIQCTmALvC6XS83L/thxfgPUkgCFbFaSAk9QE6PD7mGJADrfl0WZ+2ej5c7/bT7vHpeDw9oWlysZat1ixNg/dTHAmottZ7n+fJcfDkKzTS3ks5nxdOvi35crqQQ7nky5pPD48peecxZ6lFkCL6ANzWXCA5NDtftjhH56O0cmzvhphMtFfZao8c9/tpN89Wm3Nwtd8FcpfTBRHHaXz58kUr1VDWS+5VAOx8ubQm0vu6bKX3NAaKoSpAzsmHMQYITrHVLlsudSsI5jmwY9HeqrLhGIIOTA6X5bxu2TvvMYgJE3TrWlS2jZm3rVwuW0yBvY8p+WGoqtCKMav3pbWiOgzRmy+9tlK6SZFWqpyeLmxNqwBQvlSTxYHF/ZSCO63L0+VSmpAPjUCcR8btvJUm+xCd971L611FHJLzlJxzisweiRlEHYYxRJdkK84PHOju5ood9CbeRe+6iFy2laNHhG1Z27oyqncuBe9Ae2sq7XI6jdO0eF9zVmkoilB711IuX/36xV//7W+GSH1ZH95t+VgCD1Cxbka3fpzG5XQR59LdF/H1izCkrbm2CQBmAQJFcD6N4FMr1jvf/+XdX0p+ergv62JNljWf79/vXn85vHh1ePlyGq+XpTbRw811uGHop7ffCksNbNIqWESwWgqSDimQAdSS3C758Hh/fANP5AIb3+72QX1HrU2WpRBQaRfb8n4ML17egF6iT1+8mlt+PD+05Ois+bvT+9Pl9PpXL44P+Xgu90/ftk4cbsPsadrzMLvzknMRHAMSduklVxOTKq33c19bNSNyTIN3JrVsBZkiUyKPCstlUSQmGF3Y7fbnZasGy3PiJBoRgoG0HhxF52pvoFpaR+esWWcNPh4Oh+jH2rpzkY1krY2sl205H42IGYY59LVtl80xpWHotdWauQnSPQ25AXUzMHTMU0zOaW2l1OodI0AXRQICAMZpHqCh415KA4dhGsdhijd3mMZswAweEE1IqrXees/HYz0/gtUQY7Nq6krees+5bK236Dk4L4ziKQZ2aNif73cNTbz32tu2Grs5jXPYHQxT7l2sO09oqr2XVtH8EMiHgbTXHoab28K4PZ2QQKwx+26IoqV3B21wNA0sqiRNwGqrTSH4AGCgInllRnYoYL2ZqgYGT+iZkHjdSqviiENyLffneAJ0yG6U3ra81a3aEOJ+2F3dcJyVght3IQXLS33auNboQ+1WegczA0XE1uq2FOw6zjGOqdQsvbrIHsmpuhiWRRxBSgEAEaj35r1T496s9X7eLj763TQ93T/UOdxcXzlMrV0IHPpUct62Qq2I6ZrbfL1HUDAbUyp54xTHaWCP67psl6232lrZSjmv22EeW6nL6WSmITjvfY2h1WYKItqa+BRSSkOIPviYkppJrdjVuUAGZDan5HrYaim5CQMzxBjnKRLgelw4pOsXt/Pd7fv7SwyDtt7PTy+/enW9v4J3x60/ncVguOph766m29+gQNfhsNvfpevmx7E7LyraxTM675FcMy4i1WEPw+7F613LosvltIwhonStlV3w3tfcW9O0H8GsN1MhA7w8bmOCafRgbFVEuiDU0oHstK3R03q5SKl9XVvbxTmF3by/fbm7eXHW/uN339vSl0t5ejgPaQghUCm7SJy8Qy+KopVRobbB2X70Hbhn6BXJx3ke59trcLTmS12bS55MCYzQiFGku8jWBewZ33wkXX6BZNB+MrB/Ym3sE9/ySZj8iz1+bt+Cz8UUv5xZ2Sdm57M2yD7tgPhRBGSf+i9+wSiZ/uy8AD//+FlVKn2ip8wMUZDYp/HL3/7ug67f/f4f8zkfrqeRaCIf93tqhmAUnPc2MHADa1CKuNlL18tpKVtBoiFFRcu9FW3NoKsF71w0xa5AXQDVpPfJUSBmB2OahnnUEFZCU6u19talaEBwiuy8iKCSY+c9pOjO0g/7MTlvvZdtE2meqbcGiC13BMXATEAKaFi3mp3bz3MtFYnSGE+nS6nbfthzL4lNeueeE8vtfnQhmUnFZd2ywZkYa86mJpI8IzGDQl233roZLM45502x1j7tJuejqnbpTMTIpZTzchGRYUj4HPiO2nr2zoeYnk6X83lhpBD8GLyA5a0qYW/NWtuPAyGqkUCV58wz9mkYXQrWW6+5SzcVNF9bX3OurS9bjUjCKqW1Uh2DdGNyrTbvmIg+3D9K78M4dJXWFA1LLafz6kMqTbwjMNMuBJZSMNDWKrP2XryPQFTXRcm2yCntYxpyqaJZTIFd2o1NpD6dTU1NQJAMgnPkHYHtUhq9h9q8Cz5wrn2tGfpmIoPzaRocu3GIhioA6JiV6pq7Ahh06dJ639q8m6Z5rLWQ0s18BQTruuWtEq0e3W6/uxknK/1yPE5zurvdv/jy+ubF1fn7N+/+8iMKMRvNIxBc3aS4m3i8nq6v/YvXOszC1IUtIig4ZrTOzFtrp/OxbX15vP/uX76V2pfzI6H0tS2nlZPPrc21tJz914A0pgGY4HqYZ//XAfP7774LjOfzvTbJW+0ASjyNs+USvWNCab03Q5dK1rptA027690YXG6ldVy3enk6oyiQbsfL+/Dd7vb27vYLpi9+hFVyniH0ly9+/fVvX/3q6//z//PUyvYvf/x+3F//ze9+89VvXod5Oq3ZGXBXMEUenHVrqmUp1pUMcs6qwMEFYmmVHTKHrWQVDeytSd025wM79MSBuXsvtQL2VvNlOR12owAqKrJLw+DFw5YZSYiwKgULybFzMYZcWmldtgs0UQe9rNt68mOcD4dO/H45rkZDGI8V8LyYqBukMjqppkTkCR2nFJKRioE27WzCxMRGaA7Qp8mGQVqBXspy2Uob5zFNhzjuq5mU7KN5wp4XqRtXyWsu53M5L6CCe3LqVLvUTXom7QEsOghkmNjEaxXZinNMYmbk0Tvgpa5ZahpkIg4UFLhaJ+Lg2RRFRMqq9TLuJga+nJ962RwR+4A+Hr7YJRdqrXnLVZeGqr3nWrxHFtBem6p0YfLOsWc2kV7y1nocB/NgpDE454NJr1s2gXVbXHCOAyMaWW3dIaYYJddWas0dXOBhz9Od7b6QOIoZeQKpkUVADSHNO1153SpgJTMiZ62DNRdZQGutjOYQRnY+eiMwbVNgNw6LwjilFJwAhhQA4uPxkktVhSEMKfmyWBcTdZx2caIi9HhaQaqKetOSMyqRAQKmGLpA2k0KKtrKprnrZn2TKtr1klMry3rR2jWX5Gg3XXWDSKRDZCQpYgbjvB/TOE4JQOvWwDQyhzju5xnN6loS+zg4D26RzbSjNKwdh+BCDCOlmH73n/7D/vWd+/N7Ar8cz5m8xr3wsLtLcX+XlRrgf/v2T19/8/XhyxfSCocQhxQHvX98enyX/RQOhwMiSavgwKzX0oEddkDgd/cPV64ORFfjkIhKK4IoojWX2g1WRra2VasGDlF08unlzdXD8SSlMlCKyXln1qxayz2wTztfcpMuCjwdboDT6VI3bMua61NZTn3L4LzUchlCAy350hoP0zyFXWIpbdvmiTxWqZwzvnt7v3V5+c2Xu+s7t6PT40NrwlHzmlupzPwsa2Pkqo0dG9DnQddPI6nPg6afoMvHp5/xxudp2U9pPAhmhvBcePGJX/qk6nkmZv4H0PRR44wACESf+JxPv+Fjxg99NsV/ppw+80c/zc8+SpEMDYnAIJfKHhL63qkLItqruyvXC9b8669f3d5MH+4fVm29F48GqrkoIzuCmvN6PoOp56BKwMDOsDYAa60jNSXtpqQg0lNKrfQsrTC9OuzuXr7A67ntR2ZXtZPiOaN1U5COIo7jMKhZWZthh20jthRDvayXksu2jN4jW6sN2IXoe6kEQM90mKoZXJ4W6rCbdiH583nLOSOI9zgMnkDEQPIGKpMPPrAoyrwjIO1lXVYfXUwRmUpu4+BBVVvXJqU1YjeNRM+iG/Y+JNNmZgh0//6h19JViPlyXrtISL7VCl0weh88ICIxOzeMIxPnWnPJ3YwJVfSyLioqIArYm3kiFx0Fb0xNsQmQWq+1t4Le5VpFYa0lE3RSJlDAnKt3jon2h33v4l1o0o/rtoggMRA55Mu65NJY6bScrbd5Ts6xRwtzigPtr8bRIcxRutVax2k87GfH4L2OcXaJ7enp6bT2ZqkrEBGBCwzaS+mmksbkA3vCMTinykyH6/FwM21leHp6aNKHkA7j1XYpW22tyVK2BqqtYefSS3cAiE2BvRunyZO3Iu1SQlJ/FRGsg1dr2lqDllJg0xQ57Qc/usPtTjxtBtXxfr+7uU2XrV+Ivv7b34wTsx/mu6/9/iY714y1gSig86hWzTyF9+8eP7x936X3bcvnpzc/fh8CI2hXWcuqZCES25Lff6vL+0PC4cWXd3eTQvfcvth/ZWJ5w2//5Z/Op8y9ej9suebeAuvM3js+L6dzr8fLad7fTcNO2/mSJeWGIqX1YOA4UByo92n0McXTci6e/P7m6ubKttuken396j+h+6cP779/eIq7sHx4mBL/h7/76q9++2Vp1eq2O1w5H8PgIIMG752julUjogBWt+dLgPMo0rfSd/MQo+udpfXSzGrz7GIITXstdetHQSgl99o8s3OOHDrvIDoRrdJj9APC5VJQ5LDf7a6m0vNWsnchRDKmnoW7eeYwpCYDRg7eP1f6meei2lU9AhISQwMB64Su9wrS0XQhjYwAEgCwC6GaYWstBfMDqSOFvm2q6mppFJSbttMiZmYdUYlBt3NbLlKllyqlPOfxQaemVUR7K8gWB08ITM9oh4mdmEqX508RM8bgVDsCx5TCNJEPSthqR7DAZCpkxuTY+cv9U9PSFq3nE4IZcs4lxTCksJ93l3Vr0tpqImKiT0+nYYzJO5VuYikENyRkX3OrWwHV5+saIbbnzzFxb33LGwAZWV8zjzGG6B0QsqoyKCsa4TCNLo7+5iYeXuC4P+XepbkqqlvNl7aeTarnQN5zkd66qGFUAozR++jK0swkeTfGEJxjsC1vy1bSEDz7cYDgGAVUxJFDx2JSq87TcH09M9k2hG72dNm6kJErYmQ47WeIJMeHvhVkMoNty1d3t7C1Ibl1zVvegJA86nN5iQmyde3r2qJz7ByCtGUN0zhH772rW63SgGwrhV2YyEXvUDfrEn0c4hhcBBTtPi+rj5DYNaRuEDwhGiIi+6uXd/Pt3a///f803lxL2n/7T39J8+GF41Ll8Zj3h/lqf1i39pcf36nzFcwTu3FywTfV1qohqmpeWwx9t9uhatm2ViqbOedkW8vxuJ2O08zRUYrJO9+eZMuZiImJEbpUAuy1SxeMab6a0WnNxSPMKboO0zjGwWnvgb01u72+ut3F4+l82mwad8M0s/dg/endh8e397KKVjhcX50fP9RtuXkxTNE54tLBMcTAvlEcQwhwejqHcVhPp8cP95aiHx0H7h3EvKI7Xdol22UtEhIF1C4IhM/gRz9KaD6JfuCTFudndI59RkY/Z2U+ghH7aeXn2T0fnVkfpT2fiB9CVPgMowx/tvsv9EQfF/Czuhp/dtCfvPKfTunTUMzgud/SzMxCikBOwabD/vXXX8k+ueis5nmML66meefDnk+lla2C2eXD5YfjPTobojNj70IIBI6XdQMBF9k5X1rpXch3JvaRmYjIeq2GIqpbV5f8MPosTVuBTghG2gMNFh2DVq1tyaYUAvWufbuc376xpxO2nvN2OZ89uxh9b63XLlrZMRuSoZnltZxOFwFBxcKVadu27bJtahJjXNdtOS9gVnqRJtoVgObDfhr30zQxc1kvPvAwD46pbNvWK1eKcU7jgEC4ZCA0pNq6i8FHD6aOGYibNMnFpI/DyJ6fHo6pxNsXN2CYhsBEedsAwPvwTBQ26blUMUMgMzOzdau1VXMQh0SOcq61N99UHeaavcLoGYMbUlRGXJti32pxDjE4QmTHtUPr4qDzMHSVFOPNfDONw7KuBiBghqQmRFBbbVLGGIcUY/Rb7a3X6Omwnw8phoD3b++Xp9N8dfjyy1fL5bIsS7VcpSM7QFLTWnJMYYjRBLxzpiqm2kQAYvK9NBOZ5vHmery53VWJV9ejSUdzqP54XE7bujzmLkqeOQapVaULKKNz7rmNwHrOHexuPxKb1Vxrc8gv9rtu7Xx8WrZTGObhan93d/XFX73e//qQW90e39XLybOg5tqLxunq5c10vWuYaLp9alZQxZCR0cg7p9q3bdvtp8u6HU9nZsvn84fvfgSwrq3WYqpxGDp39o4UsdZlyX/G378QfDl/Q4lFPfA0X73e3R3tux/O5d0+zZwmrcvp8rif6Obl9dUubOfj09P5subhCg53N+M0XM5Pi2QWWdcLnILjg4ksp1OYDlMcYwjx+jpcHdLg5mWKpcbADej+7Zs//uXPtW5A8u///W//t//Hf7662v2//1//ZTdPt4edy6Vg8NMYPPmWxRGHYSi1tIZxjq0LEEgTVhFpMbopuVKg5o7P8ylVEQAEE30urdxNI+xomsYhDuNuqJ56qRlUTNCRC9473o/JI3QVUmWw/X7uZpfT2q147zx5I8kqec3a9TDG/TAYEyH12qQJOgfEQIxGgCbW19yUFKYIrWmrhBa9L0vZmkVO0QcLLue8nEvyfhj2qqEWRagARh6s95JLPV36ukGTvK3eex+DbLKtlTwBmBkBohJwcE10uVTtmsIUeEAC7wmBtWsr3QUep52msfu4GSw5d/NMJGBgaATB+1jZAvXzI2AbrRFAzQ22asG1jc/bxU9jdIQ+cpxah7VXa0Yepda61pvbW09OmdBxV9SO5EIcR3CkCq30Dh3B4jiIWm5FQUst0bP3Xntv2xZpiMF555uxC2McpxDTZSvbwwmsk9MqqyzHcjxKzjCOPoSR5iq119JLbbUyoRE6T2kM0G1dtm3Jzvsqsm0VgcYh+THWnJdtNetVRfImvYzJvby7CohPD4+AwsFlaaVCV0fRpZtxPAxPb1YcfLmYY2rO1lz0+DDGuKyriLEDQ5UubBCQ0pAc4eV4qq0zWvLOARlIIPM+BLEC0IO/bFvu0lVUwYxjHKu24EdDezg9EBkRdFKP5pGuxgQuhmguhOnqtmNI+5v9q9cZqF3ykrOU1krvNYtCrY2IlsuS1zLHMF3dlvOldx/mtLVsYqhKRLcvbp8u6+lUW19JdT09BJIBZD0fqYrvOY4etT0+nDxSbe3+4SnOg6GF4HbjgI6si+ay2Oon172ey3L3anp9dZfePX3//XsoGTkQg2jrYje3h5udX/KpHi/Rv7z/8cP58XL9+ur8+HR8816rXU9XSroslzSEhwdABB9SdCkfcyO92YfpardumwU3jKmc6zz5sJ+m5FhbL6Dmzrkft/LYnaUBiEFVtbbeHToEgue6UvqowvlE2iD+hDF+UiP/TNvzExL5XOyFn/b8PL36nHn47CaDj6FAz8M2+4yv4KP3DD7N4ezjWA4/b/LLxx8hkf2sEvXzmXw8kef2W5GuZPu7w9/9x38Hy9P27sfcegzBIQxDyGjpxdyrRqP38ENf+tqkrpm8T3MUIEFA86U3cBiGkWJq0pHBIfOABGZNpLbgPKfIQSvK49OjpdQAThsM8yGkfe6tCA+Ti8m3DmvPimEIHiuT2Ol04bLlslatQGZZnut9pCs7F1NSw6fHBQl7F+9DTI6Qnh5OiAiMwzzEMdZacu3nywURHbOCSmnt4bG3FuOkquPgAaOa9FKkFuc4DkkJ19p89A1k3QoQbcs6zLOreMzrOHhS80TOs48+xbSV3FvbFnlAAxDoDQl6U1R1TF201FZ7XXMGgCGlNAQzyd2AiQMbEjts2FWtNnl4OpWWbw6Hq3nvmRXhdLkgIiG03pz4KR28Z9TmFPJyQXbL+aKisEtDZO92LsCyZin1dHrynkNIj8cjmu53uxc3t/Nu3t9s//Bf/+H+/Yf7u/fjF6+d+uPxfDxe9vvDusia5fFxk64YzTl3e3t1vmxCQGbTMCkoIg3DCN26NAPrWw+e52m03iAXXZfb14cG44c39+9+vK8dT1tr5k5LJ6T9NAGZQUdAMAQzqSWF4D3WrC9u56++fK3Sj4+Pm9ZxiPN+KJVdjiB5P/v9YdrfXae7mUDgfFrf3R/fPnnkMO6uXuz0+lV89WW8uTF1S8Hce1cMIRGACWxrAcYwT92hEH348FBPF2cdRAhhW7bWSutiIwLaZeso6gRP2/L+/G2jxMO0f3F3e3dtaoWbv46/+rvf8BiCORMo9hA32N3Mr3/39W7wvb6arndvv/uL8xqjTj7M0w2gQC4qrFzXerK6DYfYQDbV/Yuvxq+/mb74Wk6POKTe6pv793/4y7vv//hdzhswfPP1N//5//Iff/XVrwy1KF6lw/XrL51aq7UNAcWkrcV55xgscLsoO+eiK0VEDZ1TgNoaO2IhYmLPzayJofNjioJYTiftEn1g7whMSu6erHdVURNkDiFMIXoiU7EKgdkhMwWi59sWEdOtVRo9uKCltCYmkELwMaKj2np+5sERrIuVZmYARioKUMpi3COzqbIDE7mUtVShJ36GzK11UxPDeT8TDkAm0gCMPdlaJK/9vLF0MCBDJACG3KuIevYhMHLo0k1L31ptYsrsAznnPTpHhqLdfPJ9WVuT6BI571LkIWXA1iAhYuvEGBxC3dbHt74eHeSSL8MQHPoP2yJb0Yrgg9RcSlZgB6pIFAYFULLaTboCgoi205JFyYdSuwuegyu1R4qBeK2VGMcpuuC79N5LUTV0HYB6a6WAikoHEDNsrXel+gC8NggTtoWwY5e+rdS7U5KuNdePkwQGIq6tg4kpkvkQPZmp9mVdzYDYkWPniQCk9bytXap0NbM1F/qYluEQZLlcTsfjeDWNwygQXYQl64tfvXRjuJwv8ty+w/64buFqxOhOp3MbNseE4Hz0oFqbOMS0HwOz9Q41dVcJwcxcTMPoa6vlsoqasjOA4DlOib3rrQo7xxRiaL22tVSt6IGB2CE5kN4VmmefdtPh9u721Rdpd/VwzMy8XNb37/9yPj619SxV1nM2QmI4frh4R96HwSenZVvWvMC2pvGwa92syxgiGI5xWHq3XFRKvn/vkor0/P5dL3U3Jo5OVEvrp7WcL5el5OspphgIiD0xIyLupgDUQiK17j1Pu2k3DWVeTgMvW+5V4jT44ObdePfFzS6wf/wQpvZ4f3//uPoYSn5hDJNn9m6XoBS9ubu6bOspd3K2d6SXXrZGzvZxN8WX0zij9854oeY9XN/M14d5GFIHtELV3NL71pGG6JBMwTE7IhUwlI+BPZ/0xb8keD7DHPsZx/Ovv36uwvmMReDfiC38OWHzk/nr5+tg9gkq/Q/JQT9vkP9JivRxKyQEMHvugTczMyTK29LBWrFAMt5cTfsJDE5LeczrXbGb6z3uZonx+P5MRYYQf/Pbr9cu3719v3XpIkvufkpxjlhJQXoXZmLnc85NxQ2B0ZDJBWbvwzjMgysCp1w9u+Xp/PC4HV713TAAh2VbKvl5uHYh6NZyrYP3PrAP3vtwOR05+ujtcrq0U4k+eB9D9MRoiCqQSw0pHK4OwccY3LpsYtmHgEwCtqxb0y6g3YAAHJEjQuOyldaffFjG3ZjmndS+LIv2igpEYKhbKVuuWLDUfDwtWy6vXr+urba6DcFvUpnYDZGJmKmUDcyYuZRiZgTGoOaBKKCZ1G6EXW3dcu3dO0fMvUnttbUuqkQmXUnJVMi5Utq2bmveIoU1zft9fDodt2UzsS6ShjjvxshMhqDmYwgwRe97bewTIy3L0q2XWvK6KiCoalP2gQEGH5IL8zhqk+28kMGSy7d//o6AdkNqBm6cnpb8lx/f9lq3tQwpPRPIKaQuuObNak8pdtXehcmnFHrn1sX5kByJiHZ99+Yeoc2H2EyPj6fvv3tXheN05UMg9il6BMvnVVsfkpsiBW+J4GaXrGLV9vJqFx0o2S76SDBGT1aYbf/6ehj9NI676+vx1TV4vTw+6baup/W8yM0Xr69/89v9eGVXt+76qrpQqm1SwQXvPBiyo9qrD67UikyX4yam4zSevn/rrAeW5XLeSg5DQNTj8TiOAzGd84YNa+sEcPrw49MP42Efb/e/KiVbwPHl4TeH8fXXv/nh2x/y0/n5znS/n8jvILnf/O1rL7/99h/+/i9/+Jd3P/zlixd3+zGlIenGIQLEBKLT1eFXX79G59PuYNOsZI+P76N1CqNFefPDj3/89s27Nx9OtVIKv/6//e7LX31de2vaX379a3BzV++GwZOa1LYujQzHGJNzGVrzILXEFAKDMZbamAAYFbuChSFWaE/LwhwP+5l87LUimqlJF+gaUlArl7x5ijFFQFZV7wmB1jVXc3eHa8bA2Hun2l0rShjiSDVvl9bAXG29NSDE3kCkkiNk8NEBqNQuVRVbCik4x4zdtFqrVTqQRwLjdV3XvLbeATle0kCzQ/VQJTcJOEyOHOdtraVSQU/Uzmcs2zgMISWO3FXFDFgd4HPXu1Vhjx6sl0a1Rx+HKTrnTG0YEhDkXALRHHktm5KkGCiOraP3rikACksLiKFqOd/b+V7zEbXUbcU+OoyOwDHUVoyBgftWSuto6oiYIPdeelGHU4w+Jem9tt67sQIztlqCZ+3iYmIXhKpKjwwmXbYNVKIPPiRkX7ZVAGIanXe99aZSt95s8+tGYXHDpFvZ+jYnT7Um79SREkkt2Xrtz6O9OMwDwxA8MWLeynldnWcgNAIiJ12HwxBTkNK37VMDVMNWJQ40DBHNLudTr9V775B3cYj7w9NaUqevvrk7n5dykV0Kj09Px/Nx2yq8BXQmpYU4pyGlMDDQsixtq47RK6JadH54cdtr2ZYNwPwuiOBlbS0XAwAo5NkPARGYAFFa21q16AIaxhTmMBqqkVhr67L6GMd5nPbzfHO4evni5vUL74bTJX/48cdQxvV0efjxjZwu+/1uHunh/km1Xl/t4+Dyuj19WCnEeNiRj9TBOtbSUwppGhnA+8aafW2X43358OO0d4gA20lqK9hrRQPMufRSBcCl1A3AMQGu62ragmPHcHUYx8lr65Lz44d7zrWXPESMPoZhTPudC/7qZpdVrCmESL631VIMW94+/PD+9vXt9WE3hIA1k9VXX8z4XpYiPjCLWt72gdPgdk4nhJiGZSuiFaUM0R2ud/vD3vsoDbdct0YdvRICEAGoqueAhKICZowEpp8NVYT0kyH+44DKfoFW8KdxE3xUOf9idPVM1/zcpvULiPOTTewzpvq490dj2bMF/jMd9Aud9M9d9fDRFPYc/vMs4v7MJhEaSEjeI1yWC4Tg0/BwKbr/wq471ssFvNtsvt2FXdRzXh7XF1dXw2Gfzearw4/v759O59bPLW+swSGUompCng3AxFS0Vx3mgZlyrl0tEgv5RsiRTrl3rxb9WoW7aGCItLWWpE3D6HsnQ9Zy/PD28d2btq1dux9CItdFRKSZ9FbGNNbepRVi8tGFkObdHg2IQM0AqTWZUkSip9Ox9xrHgQCl9006o0NEY1ikByBScbn2urZcPDMxtVbXy+ZSRMZcGzmvxBSCAiBT36oyoXdMWEvrqhAcGHYRZketPUNUUUNU59URovVeu4D13hDIRYcee2153US6mDIxOK5b0V6vxivyqPe1bNvqwhM/Pj0+uBgAEBmJSVRLrmyewKQVhxa8q6XE6Ofd2FUe3r8jJue9Chja1f6qiXQ1BE5xRKTL6YKi+bhEiiu1bi53Poz72SdwS6n5w/mkRYJzHIKa5rU0Bzk3VTjczJGtVe2koLXW5pDG5IYYeut1rWNIan1d2w9/eAMey1aQfS5Na+WuDD06Hkj3VzPUhr0mT/t93M/Tfrdbj7BabXV78+by7FN2pFIWcu7qar662fvk0jRNN9c8x9JK7oacePdyN0/Dr76Jv/3tWbk4Rgh1FTMkds+ceu9dFEGNEIIPLqQYY9vacthtV1N+fLocz3lbXfTJJ8KCCsF78qTdTIw9B8cRant4U9/P5eU+k06zH/Yv+qY/fPvexMiMQccYk0/3Dyv4+frlFzOVt3/+77urUTOUNVvOfBigy26ep5tb007UyfPh1Yvd1fVF6tP2sJ1hGmYC/89/uf/h/UnHQ+8PVuQ3f/314Xr35sNbcy2xv97P5qYff3jrhjF5ovOxSlXvOYU0eEfqNIQqGbsE9up9KbXUzikwsEpHht6tdTBn5rj1vlwuCDjEwbEG7+chQW291jHEKU615Q4SAKuIqhAFRwwqWmTrtXUERO/dvJuXM+dam6kixRRiCDmXUjMTOMem3SMyc3uuEmbFgME7661smzRgDJiS1Z5LMRNENenSOpv2XiWvrelTWW3dxt2gpWguEFwThVoZTdGQKISgtZrauJ+k9LbWZV0NaoqEjrULqpEptQaGIiYR9ld7xLO1nnxEwqVh60K55O3MB8eizoR7dmCgtR/v8/mB65lRt3XNpe0Pt2EIioCgnjh455RNLefsgidHXar27mJK09hLKa2pyjTPISZBK60zEjlWrdAtevAhslmpWVtxZsR0GAMYXUQVycUYQzDpCpoGzx1KWdvlPO4zmrXLsffBmeVsAIhk+JwmbKLSEnvnfHSOQEFVtLVeFBw5ZnbS+kequTTrMk/D5bwE7wkobxuqTmNQMAVg8j4FqyalQs3b09FNUzs/tfNyM8UN5OKptioml3XpvUfvxMAMFFS7ShcEaFvTIiE44JBcxBgRcNmWqiCAFFNijyYEyMEZgxB6Zu9oW3MttbLf73YpDjE6QCOGFS42huu7q5evv7i6uwvjSN6b0sOPH06P99//y/fhcXbDwOzQ+e14CcHdXU2t+UAoOYP07by6EIch7HaTOXt8864BvfjmS2i11NpbC9SxrlAuUBZZHQY3OEohldaPyyKK1owUiHlMIQ1srbFjZ6YdYmAwCIPb76Za6rHk+8djW7MjnKfh6nA9zPvLtlQQAHv7/j7n7XJey2avX34ZOC6XVfLFGzr021pNsoCB2DyPfkIUs/NlnNLd7Y7ZmDQwlXz54S8/ImEcpq9//erumy/nm0NXe/+4PpzrpXLngGgKos/GKUNURrBnh/tnVIE/C+T5TOH8HHH8kqSBX4CjX379G0ufX3qebuHPFn55/J9t+ovfjfCTrPqToto+ipDQfiKNkAysaXfsRPo4RWQsKuQdTNOL330D5/un+/fymKf9walGYp5nRj/ud+MQxpvDeNifL6e3Hz589/270npICQC8G01UzdwQ1Mh7H1Iiw05uKd0BO05xnMgTUEUf96Mnw+X+uHkxIu6yvKnuppdcXt4epOR6Pp4+fFgfH4JHLpbmMY6zCuR1ZWYlbbVL7578ENM0J0QrpYi0bj0kp4AKVi6Xsq3OsUfgMayXXmqv1kMMHZQ9pzEhwPHpqW2bAxyvoiOsRbsaqSMmQBDQ/e3+/sPju/cfpjHuYgJABvSOpTU1K7U6YkCorRJidM4HV5//34i5wIat99oBgQxEpfXKWVs3FWbwzhmSY4cB0QOQMVIaw6XwOI9xSNuygFlIAY0IrVbF5xNgUnB1zZ7JeUaEvGUxbaWmcYwxmlqvSsjDHMWg17rVYlXMde19HwdCV6tO4zTtZwNGovFqdIXrWlttuVU7n8mRWWcmduDRS2lu8Lt58D5uSz8dF3bEDK21dcmI4McRelvXDK1NV2OK83zjesi9gmm9vhrHGA676TCNkRnqVtZLGng/ee9gAw0+KFhT8d5R8NvxlAgP+3E3D54pL8t4NQjWcqkNkaZDDCPe7lrYh5sX25BOa8lVsBQkdoCt9eeQUDNTEVBrBt4HZg+9OsS8LL1UkUZERAgAvTYwiNGDqVRz3vHopVc2Glzo6/LdP/+38/l+fHE93ryab25Kqa21IrmXbdk2M0Di43lb+nbz+z/eDsAhvfryS6du+XDCrVyNV2Yt7ObXv/0rF+n89AYchnmuqtJqRIsx5nX7r//wh3/4xz9M19dzmqbD9Ve//av/+X/9uyENb+5/nK+GMPnLefFTWJfNIWAgl4LB4Jis5Bw8BOYp+EjQWleEEBiHiAaI3BVqFSPtYHEYKLhaGkrvtYpiGqbdfkwxYlcfFKSnGBxj3TbnkLU6QPVIJr3nXkpZl9qkd/UpoVEXi+NkLlguEVz0gQyI2QXXsRsqIoUQhl2qqpclG/NmWrfSpdXSiTw5rFsL3g1pYLRWaojog5Tt0ntVFVHFrj0vjXrrrVzWYhB9JIdi8vB0dMuG3tfckV0YEwdiYiAszXqv56U5ZiAkAUJidl1tqzApq2FZsqhUq0snMB/DJe0H9iAiXjKsTwrFsNl2sraVnBnR+UA+UfA+BgUzbQgmPZuRA/MA7MinsL+98nkjM2nSmhKxTzGEcNhP6J0yrMu6XpacK1aJgWNKCFY7RE/cK5mGVpGCxZSldelq3jsG9CYi0EgbaQfZGIzblsYgrZfa0Dl2zgUPRE57LqXkhihhx3lrYD2EeNjzUnKvH90NITKY5G3T1sZp9EzaBM1QRIs1NEULKRKRdjGT7bJul/V8OuGJfLsQu633rbarq13/zRc//vAW0S+5MsOaN3J4Xi7czREHoo85B6J1bSYYo/fOhxBqB+c5TD4CDMzBOYFn5Q+pQK0NRExEAQkMQZfzySGm6Eh12k0vvnz95W+/uXr16nRc3/34tl5WXEs9n7bj07Ku/upghNxpO68h4Iubm5iGh/vHWuowxsS6G+kQlMtpOQmslSjoY8QQ0m6sqE9v3g3aB09Xu/FyenBzYofP9+eoigCKYASeaYw0eVdz1q2NIbIfnCdFN4YUMDhPfZgRsJiWajcvrg7XL7ZlOT+clraaNTA6r/np8WQWhl293u1CxFby09tjvEKI4fEstdYxsnPsg6/54tmmXQwjdam9iQdHRK119bS/Oey/fEFpOG/l/rS9OfZz80W9kWMUM0MzQjJAM2EkMADo8JHIwc/6Z/oMUH5iej5/w8/pPD+hIMCf9D4/m3P9BK1+oV9+Vu0Y/psoCX8pr36u3gDDjzwTGv6PoOun5x/7GQCQHRCZGqGBGBqBkVHgObrgeu1obd167isK+DT+8MP7qzQcdldxoK/GqVxOdy9uXty9ejqu3bCrSZfTaXHJG+L5vLoY55v9NIzdbOsUd7txN0s39pZyPZ/L8d0xYBuvxryubHQYIppevntTej5uT5F0JkmEaxcXYqvdllUFhpQcs0jrRZmQAodABOpZ13zKayYCEUhzXJZ6flpEuic4zGNwsVuDFBgZHKFjXVVNnRqj9t7RlJ0HURF1jEDsiMj7JrKWzM6VVk6nY67J392O054cEYMnj2qg2kqN0dfSiCB4QBAAAbIOXZp0LcyATCBmqNLWqhy9GydvYkBIjtl78daKNq2lCzqa99PrX70cnNe+iRQVNRBjSGMY0jCE5JlVnQuh93Y5nU36ft5tdXWO52l0js+lSJM0pJabC24KziMQMqowWhzT4eYKHTY2tdIFa8naGgKEyGb+clr7JiG6lFwIrKLQBBr4aWAk73w4jAiu9VKlXda8lcLO+ZwHT97Fq+vdfDNrbhM58+H8uKDabh7GFFP0IfAcgmI/P6xo/qn11p+Yox8nIoQTmmFXJxj8FOJhBnbnp7VLOT+cOLewv9Jhp8NkuzvhiebdKliWzRA9uedord6EmYzUrANICD5vhT3kkt+/P7759i8/fPfdww8/UN3GRI68QTyvay5lGgfvfV4yOXLMwCrS4zC02krL7enD+w/3893tbv/4+te/TXdXu0M63I4fjg+n9XR1uBPBdw9P5+X+dHr7v/7H3/3tb745Hd/3tdyk+TZOv3r9xfu37yq3eLgO0TVbhzGe1tJy3+2HMYzvH07ff/fmv/0fv//2L2+++ut4LpuP/H/93/7vf/c//fbbP/0hpPS3f/cfQvD//fff//j2/XSYXQqx9W6q6EjMai7d2jhEB+gQyFNRQLUQnSOquW9LYU/IzkAVzLMzESk1eW/kKHgffZXWc7uahmFKQ/K9bj5i09o7GnpQ66Lny6q9AgEyIhij1XXbyMIQESHFGFkkN0YYhmRjvOR1Kxs7Dj4CkaooaDPdls2K+kBxSOM0tNJLLg4xDQGYlcyTaN3Qde8csyNUNoyOHOBWeq39OaffKQupoQm0QHGYxiZmqkiKaEMKPl7ly2nbFkNNPqYU0hCUo/XaWsvLZrX3UvO6FSstxGAjSJsSN8mDdapbWZ7ydmSnHsy8WzaXS/XDEOKoxmbIhN5zr31dMhoyOu/YkfPOXV3v/YXLZW3luS7be+dNtJUyJubgRfy2mKkgiYjkbWNPqmIq1FtwjlpPY0wxVU0iou25DU3yttbWEHAYwhh92crtbkoOz7mqKaEj55z3hioVHGItFREupq01BIshDOPQTNZeRZr35B1pqwxaWy0bsqPeiunznQmUDRVRDIOPaISMIGbaI0E+b5XOaRpOx0eM6a//+q9/81df/+/9//jh+zfJUSRyxK2WVps1nXyaYgy7CUxb7WZaS2FHLrqIA5TOxEakasbOiNEoBh+HWGtr7eLYQcBhHHyMXZqZblvF7qbb/XC9319fG9Pb9+/+/Mcfvv/jX1DtxTT3skXU3gusl9YEunrGvORHPcYYWulpGGqtl9Py+sXNYRcv65aPJxJUo/s/lelwjeew5rwdHzvoFzeHm6vDdjq2bgpYNtm2Ns2TMZRqJjZEplatSERoXYJXENlWGeY5kN+eNuch+rDbzU+PT+u2bLUu2/rtt9+WtXXWbg9DmgFda5jL9vbNB6nkem+PTyGwtCqmy1pNFFrW3sfdAE0SsXW4XDZmC4i9tfnq9uUXXxYPN7/+erp7UQ0uS37/uDyuZGlS8gjEoKD2MWUQDYA+NX+hfW6v+JiD+DmO+d+kaAD/9YOPwpv/ARL9wqj1GQLZ/x/c89PDjynS8En7/FFn/XyQT7Lnj+s/i1v8FAv93NUCgICMhCIEpOCRGAjQB3Y03ohtp8e82dZfXu976YsC5a7HU0hpmsLt61eH69ur2/JwvxQFQTyd191WXfRK+PhwCsNwdXuI3g/72cIk5P3gL6eLmvC2lf5AtN3d7K9fpKe1K/ircehd3v3lD8t2TvXwdLmMgZzamEYm6LVflrNzzu2m4Pyy9Vp7Gn0vYqDE0MpGZqat1s4hucFbzkVKIJ7H6TBPztH7+7NpH8cQh6mpMfneKnRTUwdoSNB7r40YEZCJPDsAHGP0ITxdluS8DYmJGTGNaYhR8uaci85LqwxGpmPyqgLSRYzAfGRGLqUiYpqiAvc1q3Xv+DkgOgRnYr2KD55cWLbsHMaUuNlSKjYwAwNxjjQ3Kd0IgMj5wAgqvYmUvAJYF3GeiVG0IYKPznmS1nppqiKVcs1wAVMgRGbw5HprIsjqDvukTE4VtUGr68MRyK5v7vw4kXkCDIFAKmmPjGqIRG3NpC7GqGYG2rvU3mstihaiW/Imja5f7MZ5QIC6bet5EYEYvGRZz5cAsPW6nh+3EFFUDZalKBY1iAlG75AZGJZlXRVurnbTYW4KUHtgl9jO78/jyxRvZjfd2HzT427NVtcihtCNEMHURd+bqGlMTuSZUTUzC9FzDOf1/OHHtz/86S8//OlbaGWM1E1rKwrPNdcG8Hz5Sg26qq7rxVQ8u0XtdDy6QDOlv/z+T69f9xfXt6/+5q/2u71ul/pwPz2k3X5an/LT+VR6OV14mOb93R1FO77/wJ44pT/8+TskHMdpLX2RsjW5//P79x+O0zwN/osffnj77fdvHk/rqy9fTzc3OW8/vvv+7/7d39x9cReHcdqPbv/SxWH38stvbDqX33tPromW1sW0qHQRU+m9k3KU3tYNECEEY1QwUxFR9n6cBjErZa2tIsgUA6I5ZmNqJmte8la1qqpd+9m7CObSNECx3gS9d8Sq0KyHcZhiDF1EjBmMtG0rIrron6WUYiatOq3DlIJLTyBKQN6tS76sa+ltbXXZsuQ+zcN0M6Mj3RqBtO2yVQZTR4ZdNdc4O0ckAoaoKq0/V0wxc8xtXfMlhuSDi1Oa510aDuzDVvJyOZdtWbeFAOM4cUg8PkecRYpeQNd8Xi6lKQRCDx1Ug49gqIakwlrq+WErRgCY174c6/roPYgBKavaumXuhhwTuOc/ZvQMCKQFCaYpuZhqtba1MLnn3iv3fK0WA+ja+tYbaOUQ4m7ywaH45Ia6LufL+VPUrgSPLjm1TmQhUjQycRvUsm1dGn3KOVGzmotnHIYk5VkwLs4zB2dopdS6ZUBjUBKUKqJWe69I6hiYQ3AACtJbFu+cI04xbNuCjr3zzj2HRHbnuRvWUhQwuBCdA1TpIrlHdCS9XFYC3O3mV1+8GKbxL3/48/2Pb7znFF30rnV5TnpNznsmT+DYeUdi5lLwQyRC6i4EM8RWeq21Lo2I56vZD2NuTTsQ0rbU3X7eX111qbmWm6u9E9uNcbjZXX/96uWXX5wuy49//v7d9x8e78+kQBm0Z4c2JXc6PWquLiX20ZC3ZTVTIFzXjRyNu9269eFczsfT9nT2MRFxedqwFEUwRthWcNYuCKLTMC5rRsTWAJC7mHUgYvJorQdi0p68G4dRtSOy34X5aoo+kNm2XYZd3I1xfdQGalrXfNq2bRoP3dnxcjpd6m7c76cd9gs14a6Sa4r05a9uitn70zGiOR/KeSs5R+fGIcxzqOu2bPnV3dXVPuZSXKuHFy9wPx9e/yrtDqj9Pj8UYHPRKCAwgKCpoQKQPXeymxI+z43M8HO0zseQw09vt89w5DML9Avu5XkIhZ8yngE+1Zn+jJv5nIr4U770L7KGfnLN/2R0N/iYPf2R/oF/xRbhJ3G0PeeaPpu/fnaaiPScY8fmVFEEKHozVpCu6jjgtDd0eT0rhDPPPFj8gpunS8fYoa5iLng/h3FMLcaQIPiYmxGhc+tW59edYvDJWZdhP6sfaseuzY/mHd2+uEOh26v97748ICxF9ebFF8sx/9Pf/9fYznU5ugEffnxXPO53eyuuS3eOsVHZ6qrmnFcDRFqX4hxK02IlsRu8F++WVlstdR28T8MAu2m62U29lOPxKK0SIoJJ7SGEYZ+ktrytvfSW27NHlpicI+kIiq3WpqoALoSRGdOwD5E9zVNEENWmIKV1BA0EaYzWlScnvfbeunQgCOyFWIQQQ0ipq3FGNQvepxRMe69tijGm5GO8rAVbDZ524zhSeFov5Xi8v79/dXe1P+xpNpFmaOAx+ETCbW2llF4KeSTvXAg31wdEyDWXurWWy1Ki96bctuKf4z2Ju8iYQvC4ihD21rdeSvBhmubgQy+r7yzWZG1xHMbkEQGsareyLi9evwo+nM6n9XT+8sWvfJre3Z9aa6Kw5WbIV1dzHIbtvLW2trKV7VKf2tsf7y9Cbn9wYyLi0/29lsfD1QgMP94fhzCM03x5OhnT7jASUW15wHCY0lOr0nScBufj4/2HXuthGpID9M6lmYa9DAeJuw5BtWnvFByHuCybqnDvHDwHLq0TAgExOhWN0yAAp/PpdHy4vhqgXF+eHh1r3pYuXVsL3hOxdivSQvCAVFsvpSBiLdJLk27eBe0+gNNlPf74fX/40qfAsoFWH7G29bJdDvvddPgCLH94Wt68fTxMjgKt6/Lt3//hzbdvf/3rb379N3/F6/Z4fnjz5z9ch+nx7eM/P/zh7asPLo3ody+/fHn3xR0H/cN/+4d8ef/r370c9rz1S7pODlwGtdNjafrl178+Pj6653cwIrDD2tVEyJMDKNtalktMgYP3wXUhaDIdkhm11gWMokOQhqYIIfmapdS1GnT+eOl6uDRxcs7nfQrBLIWB2Su6LtBA2fthHJlcV9mWS15WBjADBvTOeWbq4gIXsVo2IgjBj9ELEbmIRqJiVdfSW8si0hpfLktx2RsRopSWoQ9DGMcRAQjAoJdNDF1t0nsvOYcQYhjTMDRrx9Optrb3e68mYgigtWqpfcnbVkqp3mOSZEAK1qyBouvY1n66rDmLkNcHGR0M7L33ZW3WxVyGuBV7XJcafbCyobSARKCty7KV3Hs16FtRviCQgiJ21aBKMU6EMKTncqtLKcuau6ixYkojIeUtr5eNGRA13y8uxmtHbGqMwXsM8bKspVafwjS6OERT7AaXXFwvznlCpyq9a0ghEobq162UXNbWduMwRE9EhKit11x89Nat5ay9MVAADikgc5beRHu2RjaOzhP22nPegGAYgpn12peyeYzDYXQIpgiO2XOrAsS5tNYUhojSemlIFGNk72vvtfbL6fzjd9/vD1doFsnltYTkoAmCeR9SiIP3zqDnItIJcZym8TATu9Y6IWHAvOXeVURzzcCsmdtRUcwDOnaH3YyIUotRZ1bvdT8O0zCMu/HVy5uY3MNjrssaCA7ztC7babn0sjrsrRTZSnq2wwB4hyrSSk5zHFzIW1Gz4/Fo0hGNAOq6hhh244Ao58tiTLt5GByt59PlvKqa9r4sxXn2Hs/Hc+vdheDZOYD91Xg97dCgLrnXevfqen+3M8R12ead61WkruuTToO/vns93cyt9OuXt7vdXdZ+AbkcF1/7Fy+vIyECDsEphilSmJz3tIKvUuYYNuktry1XGhIYlpyb1nEcdkN4/+5d7lt89etpGgWhEi7Zjhs0i8DJiNDMzBQ/hu58LHwnMLXnDgz41LL+zKR8HHT9BHZ+pnmGfwVE/tUKfsRA8Mu1j4d95m7s39rx894/CYwQAAg/BQiZ/dwR9hEqfdr4l/joOUaakQwUwBAZ+aPqCD02bWrG7Nw4UvDI7QLkAN1dYo9lKQLslCWTR7BO1Q/CnkJEPzrvAJEwR0dGDGxW+6VrK6WLqXaH5h0a8vXrG8ewrE/r48P+aocCWxXpdHO1S9z7dplGePnqdj/fPIxjLvl4/6EBTClWEWnNe4/o16WDA0KyauHKx+B69YV97QKtBR8hxhA9BVeXy+PxaCb7/Z592JYsIrvgnHMFAExDCCFyjMF7x4ytSykt17rm4r1HJCnNA9/c3YA96w/apWxoykao5mI0QB8jM6uKQns2/LbWwAGAEqE9p62YEiAAqiojAZonN4SYc9NaHSIAlqVkLXnJBITGDkMKfk6xbluzypEZAxlmK1qrMTIjgN7cXPvASIA+uIjSWmmbCnh0jtlH54aEhs67m5urXjfPwkMiF9zZrNlgKLnPcRiu/Lo8OVUy1S6m6p3tx5FBCb33cdrNdzfzFy9u12XTtjDROI0F+oB9N/g4BG8gq7KBM22iJOaRmVyKfhqvQit1XeYU0m48wlJKi83NV3uO/uZ6lq0sp7NzOE9pGGJec3Tcai61ltI4BL+/Hq9v+eo137zY3HC6CFBDgBiCETQ1JCaAMET92DNMiCDdVCGNg3R79+bN7/+//7g8Pk3O12Vl0yFGIs1brgLOBQQqueSa120LyZtZiinEAUW092mc0zy1artpRyLf//FP4CBeTf/0h3/54Ye3Dx9Oqg9j2l/f3PkY181+/OGRSvu7v3pdN3l6urz98HQu9Yf3HzbDb0DO2/Htm4d4E5ZLfvjwiOa/+Zu/+frvfvf1736H0t6++X3A/ld//c3Lr770kwuj93hrjtcsP7798N2f3pMbgvfuw4eHGAOHFJIXQ0BLqJSzE+lm1gpLBE+9KwADewTSrj56dilMM5pS6yodiJz3Soogqr1WWXPFBXk1G4frMY1xMMCy9ct523Kdr/Y0aPAoRZB0HHzviMjgqJW65Iqigyc0BMGytVxkbZlCmOaBvVNHgaJDRIPi2jwPwZGBdlBHFKYhhhgDewY0sdahd+1q1qwqgHYVkVpaJXZi4kOIkb0nx2S95eXk2cllC4hDiCVn6V17BXAApmaCWqRpERNlAjPl5w8qtMtlXdeFvOdO/fJY1xMISwsgfTfEx0tLLh7urvvDadxj7LuaKzbpdXVMTfvxnF0YUkyitq3FoCzLSaGrCJFTcyrsBsfSwJ7DwquJosr64QHM8DmlXWFMiZlD5OgJDUrvLWuMTIzaGyKiYzElJRfQI8+YTGS7LBcF70MKnohD4N6KrU7FoBXP4Mk7cinF0rVtQkjk+NkoSY46cMuZGIGg1XYpS9U6pNEcrtuy5rMDokrNAMg3VYSOaDE4JRqGgRCrYBXs3bbH0z//4+/3V1dlyfO0D9ycD1tZlWxI5BgBrKsoWF43BEhDItHoGUmfPhzRzAcXPCB7ZTtf1vxhO+x2wzB0tcjsCFL0c3KKBgBeSl63kQ+a4fzh3fHx4cOPHx5/eFsLkJFJK7WFyNZt3bKWFkK8nBcfoousVgjIupaq+bIN4+RCPJ/O0xADo4pFtMQAhDAHARgHT13Ol3NeFs/eI42ehjmBWpHMAlBFGSy4olYRpHXRRgmbLoPfmcmwd700f51al1a33eHm5W9/E2/nvGaFt6VAI/ZxR8EgMUbYAWm2tq7TYbz76nbY8bCf9l+9fPPthw/fP0xTijE0wzA4Ytod5jDz9csxWCXb6lJnbRHAqj59OP74sJwWKRIU+DnIzdwnfgcA4LlyAujZZPyR8PmEjz59+7nT6yduBj5JphFIP1E/H+Of/xUw+jlQsU/S6+cDsJki2k92sM/7/4R+PgUCfXai/RJVPQt9zADQ9FN52GcyCUAJGAzAlNGBofQO1J13VaWrCpIxAQbk0AzMzIXhOaWmg5ljAVAxABPP6ghMTQW2igTKZkRNGnRhYugg3Yg4eEfapZensqQxNdPHcy/FrSf8/ukN+3D19VfX1+P3//zfP/zw9suvXv3qy9fHY7m9u354f/9hq6YSxyBbb11c8MS0qUoGHjkNLL2gozHGVo24q5ozTYmlt7dv3iFYzQKMad4TYduq5O1Yako+Jl6XFoc5zSMaGBNEAu699eO61lJfTCOCaq3eRxQiACJGM1NqVYcpMXItgqQIWitcLrmJ+ZSUqoqaCAF4z63VslVo4pB6a1JLGtw4Dgb4+HQupYYUYxiMtRW5rLltzSlDF2kqKMsll3VrUuIcYyTo0HoL0U2jdw4NwRPU9VJbCWOK0XcEH0LVtpWChggYx9GyDOO0n3fWXS2naRp9SqNz+Wnrx/Nwe7j77ZdsdLp/ezkvligGd7qsntzd9Qsm6mDN0YsX1199udPt6fJ0HLBS3EFgYm+qKBdZq+tuSvHmJqJXb3I1I562dhaTQQgOAQ8vXo37dDmvwTqCBbR5jIAg5/PluPZcJDCaBiAxIJCYwtXtVe6Yrm53v/7G395lP1ac1opKjgnBtEkhcL1JjB6BfeBlWw0ohQQdS2kuBnKxLufL4zGfjvn8BI6QchxQtfcudWtqoKBM4CMZcAchZ711gmTNBMy7RJ7XuuXczLyolZb//Mc/mOc/ffduzbIcW2mt7ZMf7bJd8rYG9e+296nVaUz1ArvdS4Ip5+Xt+3dpcuogDtOb909P9ydPHqS37Ukv75fvbD/EN//4X+vxwzf/7j/d/urLYb8T7Wvpzpyhj+kQQjleREd2or03Eive+3lI3brkrRENwSEMZgYALVep6kLq3Wqrz704CsjOMRiDa1rRqXPMTlsrNffgQROXbZnSqN0MyIy8c8VqL7mUklroLVTNkqvWmhyH4AhdVdOuplpb1Qa7Kc2HKdd2//h0Wi/jftofbskRI4ra1TQGF7bShjFxoFbbuqyA6kIAh4pWTUDEAaBq8NyaOofehWVdW6sI0OqKhtN+dJ7UDAAIsZdaJaNBDL5II+dEeq2VSJnMx8ien+NAkJQ7eOfGaQDsNbeu5lL00RNjb620LaaJgYlhOZ1rreNhdiFM+93pcnE+OPZWipXWegMAJOran45Pjqm1EpIH6mRKDtn5Leta1oaOCcDzlqvWFhwFx4ywbVvOrcfKjk16CAgqaMzBlwZGUHpLLokBsUOzbtrW9TmrOaWgMuRcpetlyQZmar02H5yUrXXp0p1zNBgH7K2VklupiphSCj4gCjEGhmFqwNAZjuvlMZ8v5wuOEVKQ1nJr3jj4QOxE0HuXxqRdOIZpHMGUmUTEVRhxWPP29HRqIgE9EbHDEB1w2sqmvZsnUZXaUA0Rem/ny8UFbwBPj8fH+ycfGMCQUAiLSgcx6duaPbt5HJz26Gh0SK2mAccpSq7GsN8Nw5yGSGment7e18tlXWquWpvFaZh2Y11z2Qo57ibP8agOwzAFJOhla6WOcRiCq72OQ3CMveswBB9dXpauOkzJTKVtWs0xRe9AjAkOtzMy9dbpeiolLOvqycbBSZfHpxOq7echePOBTufHIXjn2aRe38zn4yVwuvviVby6nl7cvogONfz5Tz+cHh4Z8cWLm2lO05iipyyrc3x7PR9u9umKvadZfJ7ojM0ROQ/YKgPFOOxfvxivopFeFqXpkPwcru9WC73C28fL+0vN6jU4YGYyRVEEM/oMZch+Cgz87Pn6KB7+ZKv6hHjgZ2OvXwb0/Iwjwn/7tc9w6KNU57N0mpCeyZ7Pm3yywP9MWPTTE8PPbvtP07FnoQ997ALDX8AjRDAyVFNjJDVTEXSIAKCNQAFRwdQIkIgcEKjopkrCOHgmaM08c+4FUQW7cw4Qa62E4IgIQMnITJsKQHDeEQIYkSIqIpJhN23dDl+8HuI363m5nMu0mydGnOOyrRADyPqP//SH83HbHeb18QzQ0xDVtEsvtSoZEZuJqqn5WsWTpGAxRld6OW7Qu5PuvWPmVopzfozjeduOx/X6en+4ujp9eGitdrF6VkXLdcNsrVZEHPcTIDUAAwxjQmZCGqYphKSmKD1Ejt4riXkLQ9BqNZdqLXQKISqxoDEzcyBRJhoCI0jBIq2ZoRGW1mqpVRiQlKHXaoxVJETnoic232Ucx8tlW7bt/ukxOmZFJOu1NbX4IvXeReRmPw/emfZSynp8ioEDINZWaiWkwzhW1x/KkRDQrK5b9KHV9fyojqSXrWSfkr8ex9wxb+X6dv7yq5eH8XD+MBngUys/vHvfBaN3Q3JE/HQ8OfYpYs2r1M1A7q4PS7FzWdDa/pBQTTWIxKubqy9+fb08vM/np9uv53CsSzcXA0sLjq5eX5PnApg6jhwQDRMTWN0KRxeHQCGYj6X2Sjwc5t3r17OPVV24ehmubmycmuFWrUkLiRyiqXZBBIg+ApNIba06z9JkyxuZDzG2Vt5//7RdniSvcwoNIDjsgqXmbanrlqUpIHmC4D0S+MF5CjVXU9i2rZQzebebR2KfS+4A50vhLsQmZ11brbn2iirAjtX0dD4aWN/Kxn2O/P7H+0uKpXYf0+H6RlusbXt492532Hnv356eRNV7D87evfvxL999+/ru9tdfvfzvf/8PGeyv/5f9br5pVS7r1pASEwCD9cPhen89Hi8Xl4ZIQrU0ctk7V0tVA0YnQD45RahICDQHT841IVEBZ1V1WTMQHcZpGMYOa9uKCTCSp+gidmrRYxcBAcfs2IFqL2XwPI9OoQVvqKXXXnMhgyx9iKlrbWLOhTRPtbp8vqyloI+NoICpc+Z8aV1qLqXHIQ4psZWANEwjMm6K5krbcpYGjoMPnh0De+dUJTcBsBCD877WUmqJkb2LpWQka607cuwDUxBprTdmkm4K5pgBSFRFeog+DfFjJrX0iGweOXokO68rGI7zgGBqqqCtaas6TQ5VylZMOhOhgSe/nxyYLeuioErapLWcUwhhGLfcVPq426UhttZVlBwRsaDwiNu6rRdlIhBppUptwSERphBSTDUXkwqIaIrABrYua+thmnc0+mXJtfZxnNj73lrJVTrUrdPg0aOqxuR7VzPbSrVeyWC7rMF7chQCuehddABUeq+1mnV23rEH8tWabsVMgcUclVI+nJ6eLsuyrdsP775xafCReYjOzdNkhqVpSIM9dwKBcAqtWJXmidhzNA8RKopPDE3YdQAAbGkkYE9goCDa0ZAI0xBbRVUV7eu2Hk8nBRXF0su65q5AMaRpGEKISPt9PIwRNy3nS9tg2E8hOqiKKi9f3t3c7Jfa2lpSGAPwHFO5FMnFh8hoNWfVHseAImDWVbr1y9bncQjMFmH2aUhDyTWfl+idn5wp1lbVpGxFWm/bZZgGgy6CPngEgC6BXfJ8WS+ttd08h4DkukPazb41LWsOMaQhzmNA67msZnB5++CDcz4En8ar6XC4uv7qV+PLa605jbHXwtavrvZp2lXVAjqkeU9Tviwfvvs+uOJwWPJCm1x+eDc5urk7bGu5/3AJCi9f3Nz+6o6G8f7+Eac07n+1yfDkbs+b27IeM2UYMSVkqrV5DwD2XKfwk8jnY9Ty87zrOXLZEO2ZV0H7VxTOvxpY/UTG4C+AzuchF3wKUfyk3/nkLnseRNkn2ulfD8o+Gcfg5wf9NPX6pEj6KYgagezn5/ILedJHzxsQMJB3DuH/R9d/NUmyNFlioBJj7h4kWZF778eaYLaxAghG8LIr+/8fFwIZGQEEM9PT3R+7pEiSiHB3Y6qKh8jIzLpfIx+qIj0izM09zc2OHT16FMzU0AiRiA3RxBCQGVWVwNhxk4ZABCSqKuKSV+0e6YzBUkpoek43ZiQmNI+XgJ+pSe/CSI5dJKeAikJEzI6Z9/vJsTuuJ+/Dzd//Y7p+9y//5T99XgoZPNwfyukYo0dHAMhJtBWB3ruYWUzRgHLt2403oFIaANBzeFC1VjHdjCn6obBX5FK0NNvENO12pS7IVKFo7dDVOpu2ZgArITs1iGnIOR+Oa9qMaRp311fz1/te6wgxIBoROTiXQi8i0kSQ01Ucp9BP65rLEGOKHg1icKBdWh2iB8dCtFrPq5hxUVOrPjIwLLWVpsn5VqT1Nu02cTMteX3Ki9a+G8bdftNKb3NOwzokv41jcCHPp+SdN2siXtz1tO3avjw+dIDtdj+OA4qIaEx+mgbNbTme0GPa+u0maqu2LDHtDYEDcc+6zLnjOKW/+3/9wyPU8N//a/wTcqfd4Kc4eCnHw8PDX07h+xs/8Pb2NobtXJSf5o76/t3NMAzb6/efn/L+3d3N7SZ8/pxOx81214yLAFrry4yqaQwc/fR9y6cGwM4TETBhrRVAo3O1iIs+LzOLhZsb/PjRjRMCumnITWs3A1QECk4RsjQEVBcNmYHRTAW1axyiC1pbC957dKfD/b/+l/9yuv/SW4bWHcHp6dDX3HoTATu3yaAiRZojDN5Zk1rUed+rGBgirHX1BNFHB72LKAGSXxvMi5hwL4VJ0Cm5whxUwJGWUxYawPkf//JTrm2723387m67ifdfn54eD4fDk1GUbj6665ub66vNl/vPD4f7vsr6eJRKYdigxRji0+F4zGW4viKfrPXoOXl0zjwnF4gIkDl00d6z9AbBWwpNaxcT5xRdiGkTQ8kdPPsQSztXQmD0np0vXRWQgzdDx94zm9bIzTk062VtQwyE0FtnUiYahwCs5KwtMyCl4B2zdFnLus4ZkaftbhxjjBOLLCWvLecuyhaGkKYkqPOSc2mIgIImfQgBRNdT6do9MvtQSiZCT8TEDp0ZiEAtnT0O3nkfNpupnzQ4F4YU2LSJ9yEOicAMVKT13moDYNdNmIDAwdkDFsyZJe870NqNHTkfkXGuJZcOhOg0OAdArZfSu4mUdWUDExnHwQWnhMfDIQZP2vuSuzQmdA6UXTdlaTHSdrvZ7bY+0ukwH4/NiqYhxs2AwQnK+ngwI4cs0Bt0E1x7MZXNMOx3k2hrrarIuZ6QGgAQkRvSwM6vawkxeMfZxEd3Lm6kBq00kYaEIXlgbKV160YWUyxrZuVxN/royRMaISiYRiYXg3PY2pLzUy0rAQAoRzevq3Tx5NhoPeVlzjwwoCMK5CIiK3YTM9M4eAQUMXTOaj/MM4hGx8MQx8gUqGMzc7V2VQWglDwokKqpOuY4BEJ0ntg5UVnXpUtnR947Y1BVMdjeXI9jxNqm6G53YReZOT0uJ1S93qZhNz0cnpiZwH369PD16YmC3+zvD0+rdWVzKQwcQ2tyPM2INo0RmcLgy1qW00pAYODZIboYvHXtrUXP6zwDdmI0lXzKJuoQCVlq7wTELi81eb/Zj4RYc5YmKlJaaWI++f0YnYGpUozOORENYRyTe7jvT48naWAIy1rRYNzsr27vUhzL2qVVMfRhC1ZNw3Eua6vai/j0btrmUpbDYfPZazssx6fRRRRNPpanuec6qCWmwTsDLsI2XPu4qRKWSnPjGXARq+KMmAgRgB2pqSki4UUy/FaBjJeo1zNSsbfAA77heOA5LoaIZ13OC2zBS+L6K465xNvOk+obWyF4qXx6gTm/0gF9Sym9IKpnG2h7e4pvKJ8LnXVpBo2QABnOYOtZ6IStNSYGO6eO0jlppEtDIkLyTIQMqkCmagQKhAomvZ/zuE1VtCOBdUUkUyV2XYTgzLWxITQVQARFMpPaj+WAZgogKhS5qV1dXaXNtkK5urmpnx8+/+XPAYbWa2nVDylOAzCKWi09bUNMqdWsYnPNLrBnVuvsMQRPaPm4pBgic3QOPExpyAA5NzznvLFTVRJwwMM0fP/DRwC6f3xac66lAbH3fHjMxdZuwrxXMOddr9Z68+qALJe65mbKYuSHxNGbYwMFR0bYzLT3lluuFEi7dHgOrYL3bphGA6hgec3eMQc2xtLbcijYgc/AkKwTYYo8jNMwEJLzrpS8LqtHCJGa5HWeOcX9Ju3TlZ4zskre+gBMiR0zYfCienWz946yyPX7/fc/vEspHOfd8cux5vL09AUM4xi09F/+9JfeIY1eScePN7vtNP2Hv48abWl9WcZoNjA4Gm+uNle71oA4vp9uv6vYzXz0MaW0v3an7IdBETc/bMeu7JO4uHHMPdfjE5EaGqfQu43gRMEzERKgKRqYOOZnOmdeDQGHMSOZIwPUDGZ4zkpgZkSoUlUs+aDq1FDNGMG5UHsFQOkwjVtmyse1riery5effgTtDqnVkpcVRJ13zCRG0jsQqRkCOReC9yKIKRAhSYsphMHPp0MtOMSRVBnBpSSIJVdDlwYWNTYRNmURqM4F7BDYI2OVhkxI2Hu7f/hyhNZbrrWWprubhM5yrY/LHFJgH1CpLK2x28b9dPMdVH+6Px1OS/N+P+7YD4h5Mw51bdr06mrjTLv3npFIzDNzmE4CHR2xAqiSq0YkVou00jp0dqGVZqo+RPLB7LzKtiqNfYCQFJ002l3vo7MynwI1s74uK6oMg/NIwIAEeVlrl3GzCc4jEajW1k2UnCM058l5h7tBD5pbLbmRggs+oCdE8qxqp+PcfPXBI3Od27pmIpyGFMftui7kKKYBgEDPWx4k53zwAthUDSiQc2quNzZg5+M4ilk+nhYFla5gTQ2NFQxN2cA5ZiZCcCaonYxaaWttw6g+eDYIzs0li6zjMLDzgIGcGVipJSKPMXhHxJbXtVYZopfesVVWi6N3KYRgOefW+2aXYuJSly4g0lTaOlcA2O63GIPvhcikNmYjxJhicB4cndalS99tknf+6Xiotez8fkyTRGgCx+Nack8x7KeRGXtvrSxm3SdmxyjWuiASYj9n/XJ07Md5PuVaj8vsgrfkgkPulTuT4RSJ0YVNFJJ5WaSuYNK1t1K9RG0afby5fjdv18fDidiFcSByWm2uEj15F5houxk48Gk+1bX5FE0xL4XU3BRImuXuhNEsBocAtXQQPWfSIqOPgQgJudZiJgCoCsToA+VaAd0Q3GbcERESD47QYBOM+ymGaTumcD0u83y12+A00FqQ+MvjelrWpt24ffm6qECtomohBHIMBmvXJqWSuuBQGUU9n6vkUG/Qa22ta5VWJI1JQayr8w7JpFUHNE6bMKSlNESOLiiotQ4wNNFcxcD5GMQg94IgGBMbjYE5pWUp69zwljfTvubciuw24zgOKuXweJx20IXuvz51z2kIcbr77u+2a//z56fH7pobHSs8lg68xs12l3bHXO//eri+2eF+41ovp358XHtp2+0w7HdZgvVoabsCdH/9KPporRrn3sWAmJBJVEQNmJicWT8Ldc7BKHhmgs6QxQjQnp2g36RzPeOIc5QKL+6EL1AG8TVidSZ48AU8IdCZjnmLYMjwkjMG8EIdvbA9eME8iC9iZ3xJbr/ogeyVCnqloxAAQX8lzj6jPQVFAwETqHA2o3HBzmYAhIhooGLCZ5GtdABTMDUlZnak2s88lWc6F2VFAMceXrAiOQVkdmYqcC7NY8R0VpcjEQCc7QYIDA0QUcHuj0cW2F3dYM6fPn0qZU6BhamJnubKnpF9E+1gIQZlF7bjMh8LtPvT0+AcIXlH4xA8u/2YPNN8XI36OERAslIFwEDRETTKc45DHIdhu9/84R9+B+joj3/6+ulzW1efEiBF70RVS6nrUpbBM4dxQlAFRCAxVGSOAYAUsYEWNSCwwERcVtUmcRxr79IrCLEjMpAig4vBp1MuarCWXppgR3LMxNJ0G1PwwcxEe1EVAfSoaIYWo2cC53A+HArgfpo8Y/C624RpG0OMD18ejsf6w2/+Trocno5SKqNubqZp8styGia6ut3dfty4EOLBbkM4fj39y9df0mZ7vb/piE/H5fHpqbT16eHLx3/4zXC9v735+MNv/jDff/3rv/7zMPK4v/U3u/1v/y5ur7NSAZK4TxhLaaq6Ms3q2+BXBSY6Ww6BcRXsWlHUDxtHUJuYkhAiORXBF7/1cwaRIhIRECRmx0rURaSpd56QVM/VXVHV1Mz5AEjSBRGIWUQVEUWdC3mV1lrpbTvGVpbD/RdPtt+lNS/WtTVtTUNwFJyIhcSEodSKpj6k6EbHjghUltqKQkveGRZ2JtpqyyZG3jW1UpuCEbOI1JYpOPZUpc3z49V4k1LcbeIYrJ4OFGj0EzOqgTEi8m53ff90ms8jwKBIbb0M0fkQR/AxDqV1oGjgWoO03Y3baZh2ORet+vjl+Pl+vrt+F6edAyZhUO1piB4AVDtRU2Sf0KkYRiJppUt33muXdVlybRwcq1kVcOgCeU9rg14lJeIQcu+HXG92KU5TX2fJrYmIdMzqtyMy1qKtaggJ1bUiyCa5seHVduNjnLbTNA7SdSmFUQNDZyRzMSQysN6j95LSeuq1izFJrl0sjqNDitF5IjdO7NA7Z2YtdzCg6ImigNbSixY0C8gOAEr1BOMYzawsuSwZiJ13jgjQkKm1ptKR0DN55zyj9L6WWcFr7+u61ibTJoUxRsJi2vOauw5j8sGnzdALtbk6z0zYe+21t9Zb7VYqAJhK8M4zGwCgwrkQIEDJy3xaVHtwg3fOEnj2JqCl91yT89KbluaZmHkYIiLOrS6t4orB0do6GDjPIfnW8bQcl1zHITHgFKPUNp/mdT0J2GaagkNR9ck5h65hLu08v9feDOF4mktvVdWX2ExYbHQphdhqI1YPCVRZewpOlNdF6tJAOMQIATfDsNvuhmlKU7rajSqSYZUm7NI0Dg5pM42tt956q4W9a7UjovMOAZd57r3HFMZx8EiMzgesVbRbHDwhmKr3vuQynw5d+pCG/fVVTOEsQPHOpyGIKKHuxuhRpJYtuyC65fFqSNTbMq9Pp/Xx/hF8NMTDYa61D+MQQ5yfjiJaS+9iAEKK3tE4DMdTn091c+URmQw8EXVx6FGq1rrMlZm8c1oKIDQVj2MghuiG4McpzGtB08F5ZxIndzqW+XgcNpsY47LkVvvuattq09ahSYi+9b4ejiagJr3lkpfgwj/+wz8Scs2lFLY9DbvtkuvaZffxakhDSwQOw7TD3Ka9n/axHOf16XAiP+y3KHR6Ohi69JvfFk/zcXZTHG7Aqgwj8i4tIfW4Ld19Ld2wHaoVMUNFcgiopnwGJedMT32OGZ1DTvbi+2xw0fwA4nOWOgLac1GwZyTxRtnzho+B51rf+Bwxe4uB8A1yugCeyxtnnPOqMPoVb/MrXufy65lesl8n0j/3xF5Kxl90Tfh8fiQAILyE3oCQAM7V4g3t2bgIz54AAGB65smY6ExxIT7TXRcR9gVzwYtY/BWQvdyy8+fPWfxggPTMmxGimRKRqXF0jkcOqaupmqk5dsRdSqslO2Zix2blMOMU05DGKZR50d6xuXEcHCKLhej2261IzWtR7YiRyQLCsB/PAoDiYl4F0YfAwafllDtC127WoyPPrES7/UZUrKtnbLkAYJoiALRmJAYWXDQ3+FIkr426JZjAYJmLj9GI4rTZ7fdWcjueRDIZoho0cczERFoJmZ0HwNZacETO1SLH4zolcwTz6TANaRpiNyM1s56i/3B35azXedUu02bwqJJPh+P91dX79++mNOJNm77/+PHLL1/m+T4iUoeIBWpLUeOUtjeBQi+lYm8MAtKm7VQRO8G03S/N+sMTQUDj09PpNFcs/t32nTND7Yiy2272H9/H3RbTtoFrvWc11CrN1EQNTBoxM1CtQghnWCPMooIEYsCGhk4EFQHVGNnMuhicZbl0fuJQzZBYFNAUgIjwHNd43hg8m2qhioECkQMDUEUCUDUCQjC0NCUmM9Vlfnp6+PrlL3/ZTYkdPnx5KrUZcUespYMpe0/eYe9am/WObOtaTvPca3aBwLqV5pXYM3aorTofgahWUQAmqkvOOffe4sAcON+flrUmHDf7ZAjHJbdctLfoYwzeMRK4LjWlMG3GL/dPjLDZbdKUmKBJT1PcxQ2YUiDcRHeVeAppM8TttJ6OD18fj0+nx6/Hcbfd3151Awfsc5M0RibMy9IEohtQUbJ4h9GjGRgoAKSQfAhA3dAZ6Nkf+7xBITRHJGCqfV5PS62oHaBOntq8erAwhZKtiSxVCbiLcyGFYViWIlLGKXkXib134DxFr4y11rIupy6y3Q3TONQK69rbsYUxePTjkBi19Lq21rXFYYg+EUKuWQmn4KNzZtpqd6jI1g294w68ipqaYxyCN1FR9eeNFRgjMIPzfkgDMnXtBtgIixmqnN0awaz3dlwWF4dxN2Lg1pSDQ1CsPXbDrqSrYUf0jNFEFKS1ymAhOg9MbOShVimlAVhMUZqtJRsKOyIiMxHQ2jqoEZqKIhiY1nUth9xbjuzSNDbXTMBHDt4Zs8FmyTVbLaVhDME5DKGoLLkA6f5qA4illdMJmUlVnOPBUwwkrSCAO9dTJe9Ycs9P86HU2nonYulqqCaCHR1xit4BFtHcmpu9n0bnGMQcYYNKgIw0xggZ8ryGpHc3O/JQ8skaIJn3RAQIfV3qfHyqtbXWQkpSBRFDCKRKAME5ULUm2CUEBqBq6th1UGeACOuae62tN5POBqhalsV5n4IbxysEWkrJVXaD99ZDy5tE22SJ+P1+ZPRPB6Jx87DWT09Lszxd32RjHsKqlE9dMCzrLK0jGmirJcchRU8rhwbaxbUMJohVU4CEIrUQGyeW3lE1xWAGoqS1d2IDJs+1LKjCKuVx3t3dDImXx4w+vftwdXg6PN6Lta45b70Hx4N3oG05PiLiMCTvWOanL6fHjx8/3u63Za3teAqA2/e349XWGLbX0/v3V1J0uo3J+r5fuW1y29BBGwwx7H10OfIY4nT38bieyt0PT3OpW0hxis71XDN0NzpwDsSVrgVjLVIMgQiNn8kUog5AhGc/5Gdo8Aw97II3XqTPr1DiAnfwDCVeKJVnUIFgpi8rvZkhXWJcl8+9nOZSEf4tmLFLhtcFEb0aBH0Dfl78fPC1S8+13l+y6C/Qwy746aXU/BvtEQAhGZxz1QjswiddToDPDV+wHhI9vyYAtUvQDS9g5nIZr3Lub3TeL7fKLlDtYk53uUw0QwJCQiQmjtv9u9t3v1keZqgLWJ24mzNidkytt7lmVoBOUDGIRh8FkAACkfOh9/74dOAAm11699vbdW4tA5jtNnHaJfYsymZg7NbWyNPj0+H+8UEcAmqvMoyDi8PTcUbCaYiRSQVyyU2NEOKUCkg51cAMDiQrevYRibB2UVBDL0ZGBC6IUggDDA3NtIo01E5WFA0DuZyrA6pdvQ+baWNmjRqA9KbB8burqx9+994ET3k9nuaSm0eJThLzNo69d2mNmMMUdrvofP/65c9r7X6KGGrYQzwS5RY9b8bgB7dY2X3Yfvz+Y/Du4af7+VTWZX14PDRzj6f5KO29usdlrWTvP7y7vtuuteZj/+v8c2g0RWdLvd4MjuD4y1fzg7+e3DSRudqVkSgQo2tqQEiEqGokdokiM3ZmMzz7byICMAI/6/3fPnlnMwZ8oTMBUJ99uN5ElgEBQM0uvCPZm0TJ81g+278hG6JBk+00/ua33w/Onr7eP94/LctqAGEcFWQ9Ha2LN3OYpKnUTgYNnCmYFLOujaZ9kt4MkcgZQpFWsFmtKY2e+XSaa61qGtOQ16atS61O+/p0PyPMDxV6pt520yaN3szWOTNCyWtvMu13d/vNMPhxSH6KrclyPDgHMRqTxSG++931h9/fua03aAP1XE4qa2nVb8fhardKT8k7B3R231xK6bkg+sE7cr7mbKaOwXkSQdWuvbJPPnBXUwF21FvvVbqhsWnvinZ4elhqxeAjUVmqgUSAYUqE1rm2rrWdC7vYGLya1rqqdE0xToMjlVbzsnhWUlOzkEbsPYaQUlhX0Jql1pYbOUAin4J1qla9424658WjEYghRU/BUFsHUwT0joYQgFzpQin1RkwQYqhLZmDHgcgbOWKJaRjSGL3vIq11BUwpIFhbCwCoqAG03g00eByGBI6xVAgoqs7hGH1AM0AkcwSg6j1LBRNRY0RDMA4OTQ2h9U7MyKzaa86Gst1vx01svZVTjt7FGHrTJTdEJqJem4k6QFRDQ4esqPvtlpxfS2UkNCtN0IDQuxDYe9UubXXshzTUXNa8auvb7cbHwMrnpUTVnKNaO4KCnremxMjE0Nfqvdvux9p71x7Qs3eGyOx2+/2a1w7WS+ldWm+qatjHTdputyEmBS2ltKp7P5lYLYLM3jlP7Mhqycu6SBXnnPfsHat1sA7apQk6P00xBq6lMeJmHFrp+ZjFjBB6qXEM3nMpFUFj8KbmCFFFq02bzbiZ0DDFcOST5jmXfLNNf/jubr8NplqbnNb5l2M+GVaFQn4tvTwt7Jy1Bt0QIJdVWveOUvIKpedcqwB4IpQOvTZ1jMzkeBxcZEBycRP9yHkuLdf91QaQD4d1LZJrE2vHpUaP3qG1llJ0LMtydM7CJnatzDBtohzEusZx8IGHwK1mDjyEuN9tpnFstbF3YQj3X++ZISVqTUBbrXlKt+PgSdvcSjY/3gy/2Yw16+Oy/PJlrn6c9hOCdVbdTADQn4YHnZ7Mg2OLW/XcICMpR1CzVq02FTNkROYXxoIuyMXsGXI844W3VoHf1OF6mXBf9UCXIy/8zAsIeW7aXlHMN9W6XmHP5bMvqODNj3376hvV0a/0PS+KoksJsFdv6TdCppeT2XNs7pmUAjN96xD9tjuv5o74Fk998z++oMU3GqSLcfYzdHyBYM/9fN7ev3by5Xqeb9v5Ujp0Ax6nm9/8Trst97+sh6+ytmmbpPcube3YmDpiANYs0VMK0Q2jmE7jiBQOxwXR4vXOb5MDHa/p8LV1eYyBGAVUa63HpYADNm61ZZVaszKy52QWPTPD4N3a1DuXPB8eDr0bELVed9MOWOZDicmHgU7LCqi9SQi+5Kqg4zSg0lJaWVZWDSkwoTFXqbUJOQKks4IWVX2Iampo0tQ5do5aE1FADvv9dHtzlY+zCfvt5klOrdbl6QkjM6ERlNpN/Hcfr7Yb33q+v/+Se5tkip9THNLNu33+/Gi1/vC7d2k7HHse3++9D/c/f338/HD4srTVFsUWnUFqTKs0c7i529583EVHaX/TG3/56/3PP325208EcHhYfWqnejg22NbIN757D8ro0UTNIJCr0s0UzQgMCAjIDEUFwZAQn4OlZ8YRzcBMX/w83wDlSzjaXlVyl8D0BRk9f/Rl8L+ONTNjxC7SSo+Bg3P727vBe6n1xz//XGoz0BQdkK1rRrPem2RNRIhGCKBiJmAAJoQ4bcfdblNrQcbeWpduZL036dJFmL2B+cAeHDHqLEWEBEHBOdTeES1E30HXlscexxg9hJxXQeumZu2HH27qWvJ6Gic/baf56SGvlfc7ZgoDf/xud3U9ZBHpprWFiCHyuN26cdy/u5KsVcWFQOuxra05MDaIIQQXHDKqa2Utc9VAnkBaqyIYmrInMs/+TFYQWGtZu3hG56gcTmU+ttkspjhEACBmVCaCFInBdVFTC861nF0gkeydR4YihR0DmimW0lKaxjggT0+nY9MGtRr5cZMMONfWmnSogNK0TdvBQnh8eDo83O83Q4wezbqKALvAUrX0lkLw0QmQ1GyAXUQUgEUAwVjVASZjx4mjKSOTInVAAwGxJsAOgjZVVQFVM92MYQgerKiU1rKAY+DgKGCE4JAJHBhDaY2kMxMjDoMHsDVncyQAHLxPXcVy7gTiCIicM2BVUbXeAQj0eaONhEbmkvdErWNfZTllA3PMXQ2ll5Kli7VW5tUAUwpgYB28c5EDMQVQYMpGaigCaCBqSCRmPiQfuFfptddSVU1MkvfeQV8LSCdUF3AcAzE2bXNBCRbIsYtFhBz5mFTlNB+193EcNlNgJlPvyMi5RLGrbhI75wwsBULTmtURhsFvN1sRXde1tkoInowi+YCEgKRhdGkcjFkg17oScxyTirZWwDQldy4hOe3HEP26ZlD1pAHMe9baDYQSJ3Q3V+P333/wkX765eu//OnTU6WHRSCN5JP64MnXKj4FJECPZc1dm6H6FIYxiGjRYtqYbYp41l+jsQs0bEaptRTb7eLN3d4Nbgnz45eDNCi9z2tDdkiWT0UaXn28TcHBBLv9hKLzafHTcHV3U3oDkv31lig10Q6soonCcLXb393c7PeM6INb1kzswHM5ztdX024cnw6tWR0HIy6ff/xpOe1w3KxkBTprCDFQjmHyPqi4QArAduyqXXHYL8IYRxErXbsqezakudTWhJxTIDMLzGZnY58LxQFveRkEMKRvBD4XCIGvsy3Cy/9/g0bs5d838bLnCNq5Wbtgo8s8fUkwwxf08QxXLlXe/7b9N3Y/F1LqLTF0gR2v3XjGKd9cE8Al5IaXBQMvnNdzdbELLXNBIi/L0uWEF+kRvslSe4kSXhrAZz7prWjqtXrZuZULU2UvvwGAEZJYb1LVgMzS1e7ud79dEn9SqUv2jKtKWzsjTmNyw6CGZuY8tCZpHJEwXu+8H2DaxN3423/8jamW01Mg7jIvx+O6zEgJyOa1lqI+MAL0XPK8+OA246jSuFeSEhj2kZILyugdX9/u7x9nRRxGt98PM/e+l+h9tWIEec29aggeVJk0OeulJAA1ZdG6LqCKCC6hraoI7Mmx597dNDjnh0QdlRwbKDsWJ6aGwT0e5rvjenO9U6L2cASFwfl9jNFba8XIsfOnNX96eDKZ+jznCk3xuJ48HN/dhrrU5bSolkMuMCafJuz+/svhx//++S///GMtZBgrhXRzexVD9HQdN93ku7//0E9PZV62d1dr49aEO56q9txPT4fb99uOff784Lan/bUMlGaxmotDR0iq3SGq2nMmo4GAnjMLAfR5UJ6rsJido8kvZOfzbuGi17czjfr6FFwyKO0Zx198ueyyx3izowA0QEJmxi5SQRetpWrttL99t9lNv/zpzyKt9cra2RGK72Cg6onBOcc0xtBNxDwibMcUnTOV2qpUab2aCKqZ1FJz7RJcSCkQEpkFIjCqJMI4hOTJ39xeJ7aHL5/ZEzIf19rrqiLb7W47DCUf5qMM7B10qAU5OYvLus6zKp6izY+fvqTNV56muB269K9fTwJ882E/7ne9NXCkIs4lcg3LsT2n1UbP3tSMGFRFtTsfzoyAgZo1AANiJWEmh4ysAl1VQnAQKBaiWVl7PubUx91+B9LX4yEEZs8hei2d1VKinnVd5uQpjd6x1FKsYfCeAteu81qT+S6Wc67U4+DZMfsYx9BhqSVX6aWvQEhBYiAfMedDdDZO+xiDdOsKITkWs1pLLcM0IKELtJZatbTSEkyMZGBVAe1cHqP32g0BiHvrtZesDWkxQ+lqoo4YEYiUFHPNAFTyql2C5zSGQI7V9W5pOy45V63LmqH3Ibhp2gwpGoCYzmVFxhBSb1xNREWtE8CQvCdc59VAnIPWVUWJOI1D71pa79bT5BVxaWU+rYw8pDT0rqJrzkiEZtIaEEon6QKAnhmGoF1MmonE4EIMor3mgojDOLjoz8li5EVKE9Oz4T0iOvb7zXQ8nBzidD35OIiSCtbS51IKNEIX0+BTZKRaahomACGQ2hYPjkhTdOy81gpAjnx0gRiwF2bEEHoTQPWBIzCCgDXp3XsXogvR1dwIMW2Sd1xbWdbFBYzRI5uonJ9t71zaRhMdxsFEOkCV1vPSGLQirPnKw8fv7zYpjMHPpR8f1z/9dPjzIc8dG0RPlJLXWvO89tLQumNEdsEz4qDSnWMg0E6q7BnHGC1gwGaAzpH07mIIMZ7ycpxLSGtSdzrOtbVa5zkXZh8CBcfJX5sZikdzaUrsgpGl/Y00Sc7tN8Onn37u1cbkvx6Oj1+OxJhS2g37MYXf/O43+bgclyf2/vh4PNX+3Yeb6HGzScN4Z+yGq6u5gROwguxws0/J8XKErq51l3tFH5EDIwNYr12le3aihO4shq/NjBjQYVcVQ4cOmcghM6moPRcyPYdrXsQ1z+qVN1VKnxmMy3b0Nfz0/4BL4BIGslec8uZdfMUvb1AMPgMOeBPfwhdg9A3eeWajXuvRw3MM7FfdeMkyuyCWb1ksPNsB4Ytc57ULb0gkxDene9PbCxWEZvai9n6ORyC8afC1h3ChhZ7xoP07t/KivXomxuz1ixjYdQRVAXLDuzsfuBj4MS3HgyiaQhp8E2Pv2EUXgg+ODV1wmPz+Zh/8NIkNm+H6412v+S9fHvq58DpRrgpUiK2s1fsQkl9PC0Engt76clqToyGE6KjnkmJKMTTAYUxxCL0rEV1fjbouktswIKJ5cLsxbcS06xg9aldsslYQuL7a7jYbrcuXn/6qCsNmQsbtuzHn2lXaWqc4JO9LLo799c1OAXPJgawiIDh2SOCKyHHJy7I+PJ3K2t7dbPbTmCIYjQJ0WJp08S66sFsOOpceh3G/mzbjDSu1tQee0v7meNSffvmTT2F/dQ3i8gG0jU2xKFgI+7TBQLYutc4YCExaa9d3u/Fq6A9lLSdPCcG5zTYN6WS5S/NA1UiMnkE0EiIS4XOm2/mP/kpXXgQ7F2TzDH0NLnHoC+oBNDB6Tqc8DxK7DMvLduIVOr9lSH/FoxoadZFhHKXXUgpH56fpd//4PwzT+N//z//cRAJDCi65YV5K8FENANCzNwIAFe1EaCrkz5m5+Xg6lbUgIpCpCjsnSr01RiAwRwRmrTbn0bsoAC3DZkj7zXR3vZdl7kMqraxLzstS1/n66tpxrF3yUgZCjiMBH54OcMitNBD98vWx6/GH6UMIk6qvS//l579Ww05xc7uP3kttUntgr13cMhdHbjOyR5ccK1ouixtGI1UydAwxuBhcDKVk9mhMjNBBFaoCSK8GBVHzslIPzMZordfgeZjcZhtlWftakCISSANrPcYgJTPA3fWkKLW2ulZAFHD1XMFOrTwcY6y5qJLR4CsQKTJClr72Do69j1rtcDrOp2U4zYAW2Gmrdi5nJtZUulCIAcFKK3ltwzbGlGrtwTtTa61mBc8OWpbcDQBRQwjOmADYERmiKIiaIhqYSO9GjohQDaWISDHVRLxx3hEZgJA2Z3k9LcuKYLUVqH0TQxrCZhqBkAPZwda1dK2tFDAiJjQmUlNtrbbayQETNe2qQsTEVHM9LUuXtpOt926utYGJdYKetTrvKTpGMgQ+ERIyn1cTASWHIIDnnFxGQmsi5h15H5xjz46cUwTp3YhSig6hVuvSPDOkJCI+TNN26EJ+3KxVcC2ESAZ5bW3JVkprXaXGwDFF0oYICEqqMSZiP59W9gOgGAoDQhdGQmA0a63XJe/3Q3TJWVcLIXg1UVEm8MGjaK0rnVOviUyBCT17A4vTAApkYGDWKxHFSGjMZpEBWgukH/bTb2+vi+hSy58/3T+t/fOxPpnnYUpxDNvECFIqinrCOi+Ukg9QSxmn0fuUl7yuRbUrkgAJOjYLTHHwyJiXzArbzU4LqMrpuD4e1nXN47g1ZSR3dbON3vVaQ5pE6Onh0MpqIsfH09rKZozvr/dbxuShJP/5eDQVpx2khWHoped5SWhkPSXS7qEInEognIhlyW2q+9trYd/BOYQPd/uSpS6nEJn8sDauioqRHCGgKXRQEzMjF6KhdWkilYEQUVRMVRuQ45SidjBDZKdiZvRmB2nw7BPzamhor8QLXlTNLxbMryDizez6prKEvb59Vrg8z/345sPwNqxm3yAduNBSz5zKN8fgBWC8YpXznvcbqc9rR/BX+e4vwbgzRnthfwDwGRQ+k2HngNjFO/q8gDzDkW8R3MsV2TdYDn+1/rwhxi5L1mszb0MYz2Lr53PS89kYCQlL792BRY+3NxP78f3d8nQcng41Z3ZggAqWpjEMaRhHNt9V3TZM48gWSi1rzl8eSj48HA9reTq2bllVojcfaikqFrzV09ETjpuYPB2PWaoAYNqFQNREeu7eQYq4iVxK/nC71d5tXci7KabT0o5L3r679uMk1XotQ2AHPQ7T/LSentZpM3z4uC8HabNHYnUwL80H9ENc1hqC3w0b6z0hhSER4JrLLnhlzAYdICaXgj8cTvdfvxA5JHIhilBXUBPHuJmmaUtj8sM4bHc3S4FaNY7jh3/4w9aFz3/843rs37/7uL3anNb54ctnkeN6MMZhPtm7735bDT49HatIdO7p872tJaTtqZRS+w+/v2bvTFoacNrE02G9+fCbq48fwfmn+8+9lzhdhduPzQ0iAIZMaABiF9KRDJ79z1/ox+fx+tZIAt8OhMuwedaHvcBueN6h4HO4+u2e4dli/aLwf969GAAQnSG1iqihEXUEcm47bGotw+7m/W/b9RTbuvz80892bH4IXcDECI2cUxMiq7VK772LNWPvy1J6bSkNiGiADpBC0CbOu2EaxxRb6blUaRJjnEbfGTbRj559l14qth4Nl7z2vDoxFjh8fQJVz/R0bE/Hh+12LC2j5G0Y1YVDqc5NN3e/ef/dH+Lu3V9//um//Oc/i0u//6d/SGmQ2spSXfRzLuMwOGvmHQ+RnJJDqKAdFKl1aF0bElcVaBK860jkKAZOhFVdEZjXuS4rgqr0vKzk67DZbMax5cLIjh0AxLO9thkogsI0jj4FrQ1NNmMU6DOYd1CbAiJ6hwC9iQHm1ls39LSuvbUORCp8fFpblXETh3GgHlrRvC4mstuN1/utqRCadGGDWhqoTkPk4Fl1Ps1dLCU/eA4+heBzlVyqEuTe1rp6RzE68Bx8COxFxSLJSZgBAVuR3JWYUkqGWnsFtJCiZ0JR7FLnpXTtBuBc6X2el+i8QwQiIjBRlebIMYEDJO1qxgSiRog+OqmSc2HmEBwzdO1I2EWk5WbQuhriXPLx59n7sN3vhiGthzm3dpzXcQRA7CqEOA4REJnYM5+5dO+cd9TFLDfHhEDRcUzROadgIlWkCVhtnQiD8wGBydaiqtAbeI7jEEXUuRDDsC4zKPgYkBCKHp6OtVdEcp6YHeY+Jg7eJccG6ph718hMDrtqzqdWMDIQu5pbL6v03gMBRVIANe9ddFyqSAdQAwJVMUWXGIJTEec5pgSIvQkAOkcl51Zzby4FD6qRaRyGm93em2FftzHcf3n868Pjw5Ibumph1pC1e4WY2DNKaQS632+sWcsFEKQoMY0peCbJcMpFUIHNkJbeziVFg1BMQ7rZkVoTSNvttBlC4OPpnvyC6tR4dzUOm6HWfFyWkXjY7JJMUtbeaxWoXQldChFbXu/n/TRqx69Py/v3t5sigjrEuBmGAPTTv/zFMQ3D5Mx7c9shLk+zcc+t0TIbumaElIZxrFh6bv3IGfVY/GMrqzoDOldoNzNFUFIgYARDMVMCT4iCRp5I1ECkFTQHCL13Q3vOMEJ7Lgt6zkN6q0ZBtJcQ0Fvi55XleaVyXpDTt8v48+b2b4XLz+QT4q8AAn7zAr8hon5VOOMVO72BGfhSlez8huHFAxFfAnJw8Sj8pld2riuICAB6CUu9BvLe9vANyfOmmOrb45cX+AoB37byzdp2CW08Fzh+Za2eP0fPcMigaUNF73xrUlU4cLi68rvNdKPXtZn0Wgp7BwSc2Afv2PdizcCPPvkg2cCWh0+H9XR/+Okvthzq05NzXNXMUzGb52y1YheFnkYfkxvSSOQOT5UdsfdgEIexLZmpU7V+nK+v98H7x09frcPNu+vh3bsf7+/7Lw+KVlr7+uWJzYb3N9ur693N5P3TvH6aaz8us5Q5Rc5V2Tk/uuVUSOF6u53Gab5f8lqv9+O0GddcFFBzMekBYRzCuBkJsCxSuwGoZwYPZ8EqLm0Xx81+Py91GNUYD6XolCLscQyPvXXV+6U9fZlX+XzTmo/Jjbdtfvr8ee599Wm7222Y3YTIefGiWPoQAgK21h8/P334sO1Vr64mRLm5vd1d8/bdh5sffjAfw37nPaPfQNgIcau5mxAhMZuZ0QUMP5Or8Cp7e9mDfPsgvNGoXR6E58GN+GJO8QzM7cKFIrzwt3AxfzgL2S6KIDVLcci91JI326nUUltrTrd3t//x//v/EVmg55///Mdf7j8pVe1WciMX6tJiCEPyzGRoXnxtHRmdc8FHzz6NExH0mlU7ikbvfXCbaWJEUEghrKU4g2k7ZlxYBUrlISZHh1JKK47c9W63CamVvs4nR2682qCHXHMT3Q6bbaLb/fXh2ORpBnbDsG0ly+np/tO9Am+ubza3d+y8lDpsNxrYunYzhwhWq4shEKQQgvcI2jxj6z5yV1nXdbbqvUeUzuSDD+iwowPSojVXNEUzD4RGzng3TgxAAAy+dU1D4Ois9lY7mHlCVmTvA3tQXZfcWndDDM7lIqqdnTNHhlByr82k2trWU18ENA7jmlvOufpNBa1rFbEhTjG45Idhl8y6gpiZiEhrZt5EQJWQtHaxtUg3aMDknNdclrk4r8QAqmzQW2/Qsyud2ma/vR62GFxrKxM6aqyITD64Il3EyAEwCBh1dQ6Z2JtJE7UO0qELe59iQm/esUqpRaRxXqvU7B1ySBs3LGttXZAcuW4IImZELng0Bva59uNxQfKK2ERal9xWH9SNQS2sNffaequinRFMdIgppghm3jlC661nUHXOe+4qSJg2qdWeW21ZQ/QIWmvttSsgIDnPxgQOwaxlqUVqPmeBsXTARFCtzVmlrrWKQhMIY2KIDpmJas5SWiA2InI+pUhmj8cn7zmmUAVWbV0BBMoxi3Sw6pwMA/RW1lOupQe1qoqowUHJ0hdIQxx3A5AtevbVBEA2UzPorYF3zNgBGZEJtRsT7Xfbm+ur7RgeP396OBy+Ppy+HEthr86jHzqg9IVR1sOxLtTX5gx5SGMK5mldsyO3vdpJK9DFe3CdWuvIRN6R854ANLdubOjJq0ltFgbC4IbdNuzS8XA4fp1NzcitTUuH5sJJjAGH7YQje8CQNuSTMwPtrUnaTdcfP6QPrf3xl/nUDRCx376/vt5M7fH013/7ab/f1QlSHG5v3iO2JmV7c0VTPMxHKRKGXZxiLatg48jF7FT60qiodUPCs9ZdzIAQgOScFkBnuTt0NXSe8Ow0g4AIanpOcz9bHBqooKEZvQUV9pzTjheLmjd57N8CAHymRMwUn5On3hZn/2aPewEnL3Ghbxymf40QLsjjDETeFux6u0R8A7Z+FZR6E1t4xheXk7x86xxQQHgVPwMggP56KfrbE79FORdgaK/RsbfiiwsIfPkF7M2xt4jxsmBdLp8Q1QxAwUBUHTkmrrUwkSes2s1QEQCZRq8x9NzJbcMQjFWc5rNzbPLR+1paASB2j3M+lhKcC87dH+YAME2exE51eXyYSSAiM2CcxlrWx1a34zYmH5rWVue17KY4bQcYfc8L9B4YAwOLDuRvvrv5/p/+EN69iw/X4epz7fRwyNMWt+P04Yd32/2wv5mQR/XRAJVbzwTE62l2hkCklZz3u3EXGE9tYcu1amjqCW/2cT7qUpsR7MbddpPysoq0yTkjJIqLtq4lbIfr/c24i4+lLrlvdtdN2mHJaTcNN7HUemqnU9VwNbp69aeH4y9VfveH3938D//h9PnL118+t9zV49e2DH4Iu9Dqkh8fr0Y/DYHQV/HdVIqyBe+Gp8eTathcX4ftnoakHPxmT8zGQzM0NENAIjUFMDVFevaPugyLV2PySxDseei+DOGXxwCfv/E6oC+PyGX42jMxeW74DdWJF3b3GXWZqSEUqz55cmfS3fXWDbmogg9hTAoy1Hb7mz+Y0fHhCVRMCT2r46yipSABOaamImIqCGII9uziAGZKiN577xyoAbOKeediDMOYDIydZ8HtEL979y5F2gzu6/394+NhM6Tr3abM69WGYwj7q23V/Onzsc15HK5jpGyFh/QhbRCRiv7X//yf/dXd49y//4ff3v3hP1iYMOHVzdacr2YhcluqY8dovdfunKMIpBo8GqEQDJFbk+OS51m8C2kMYCzBepV8KuR99CzO9VKiD+SjmEquHSQxnc0HWu2FOTKamah0syUXxB6iB8Ne82lZughpD2kgRjGrrYlqXpp2aFWr2CnPa8+G5nxEtCZlntkq1HUhdcOQpjFE772j3oGBkKCxqJqZlCbS+pjGabNBA+kNycxUpaUYdzuqVRBhs9sgqLaWc1klR+fDOAzjuJmGZe49rw4Nk5dup9O81oIOg08q1mqJyuh8IDdu0iAAjk/L6gxj8M4xsQ7BB0+tlCxqitF74gTBVUHvUUTzvIaA7P265HZSAJu2U0gEa1lKczF9+fr0+PhUWlbQcWI2MFH2XHNREet63plG5xBYRH30aNhqR4XILEpNzIfIHGbtpzm3Xr13ITCaWlPnnAKKUjE1xS4t1z7PuTcd0oDsPQdE6rUzYtNnkzdACucf71vrvWZVbYK5inOaAjvCcYhVGpFMwwAO1rWf5mwiY0QmTCnFyLUXsR6G4MipiWMKnk3a2ppD3MTYpGUzZiitt+OJmc60AAKxCxBsHONmSK0UJkR8zg475PrT18Np1WJx2N8UpcOxNK37fey5WC5FIQQ/jUlrO+Zy9+5mnAIaAEEHajWr2jgEcGCAKQ1TmqiqnElrpCrWSyNyXfrnh+PDvO5uNgXiDL0j7sYdb4ItyzDaOI5gtsyn5Pxmm7ybpMO6nIjgZr/dvd9Md9MQHI/hL//Xj1baeDXc7EbX++PT4zgk532tLYaYNkEUx91m/36iZEA11x6CH3ZbZSaOLdvS/Qr+YJgBhfRM4SgAEjCiAACYmJwrNlywiV4mRLzMs/1yhF4CT5cA0gVYPO9P6XWFv9SlwEuw6BWX2BlyqII+f/4b8cuvGJ4X8ctlPbj05hU1vGx9L9vcv3FafEEJ36KHtyzP6/EX1fMrxrocfYmzXZDH+Q5d3B5/Rd58eyXfrFTfYDe73NHzZdnrwqev7M7bhcq+6fJLM/ast7ZzETSE2gWQmBxKZyCws+0vltoVwIUwTqOBdZbcW859SsHQe2OQ2mr58vPnn3/+RbC9e3+1kw/r5y/QZ++QvG+SYYjX07Yf17IWLcAYTuvM1LbbYYhGBIgEiDG6EHwBSWH37v11rYsndRt/dXe1/+4D3b2/2+zC7g5puH+ckeI4TGlwyOYjoZu2Hz9I05ZPst/d//Hf4NSPS1FBZq+913lBRo8AHkutUGkaxqvN1iEP0akzdnR8OPR1Gby/ur7xMRznPMbWxI3D8O7779wQfvqvf4lpt3v3/ePxkHiOg08DnvL89Xichk3aROPhhKmU9dPhaMEpmMXw3Xfv2VG3jl6wFwbZb7fTkFzQcbMdrq52t9fjbgCmp2P++rgcFqArzxzXakWagheFUlckOldpIgTtIqovPM+3fOLFBusSgH4zrl4tsl7Hhr3o9PEt7XgJ4L5p82V849vx/TzcPHNpTQgBoJTqHTNzV0FDVUPkMEzT7Xf/8/9vf/9v//Z//v//N62/EAdKrrVe5nlZTmmY2AXnWWpvtbRSW+9dLKVg1k0Fz36Npi1nCx4RmDAGP3jHROA8qk0hjim8/+42bPhmuTvdP62n9eH+cyDc326urjZd+nrMZp09DdsNB6qqw36/296dHu5zno95Xh8f3//u97/7+w82uk8PhzjujInAPMK8zJ6DM+vMJEVWMTXAwF1ZBFgrQxsmMjPJfRwn8sRElruZJZTSSnQMA/tpF1xspT88PTTt6AAARNQMJYYs0pgIlB3FEESwN9XcLTgR66aKygDaBYGYyDle8lrKCko+xLJWJAzeu8jbaVjWUtgFwjIfpfYpOe8wMBLpenzsXcYxhpj8OOYl96aevI/BpyEOCVXzqoA4pqDAx6VEojh6QxTRVjKaESMiiOpyWmqt5ERaabloB1PuvZ+LiDlgkYCgTBCCM9OcSwjqfYgxMNI0BlBppYVAKTKZldaPy0LEu+3VsBkf5uPnr0/JR1Nc55N2b2C9KYquK5Hz5Oi0nnIvqLasS29lGLwRkpkH2k2bFuOTYgp+e7WJ6LXVMUYwa60TMDBRYgPoQF2sA5Te13kxAxeSmOa1mPB2k8xAWkOi3jpBFPKl9+NxXtbcK/SO3kfnHDGV0uclN21qqiQGyKSBmBXmmps1MZVVqyIE50WJ2A9DWXouxQzW1k+tz12kdEO6GtM4hN57ziW4OAzTmssyl80mXW0mNJMmJj3PR2BIMYBDMWldz9WlvHcxhlZK62JGyAFQAeFwWJ4ejwYCHp+y5UrD9srFTS6rD6Zrrcc8DYkp+BA2VxO01lejEOPk6+lEItB1Mzh1YVlyaT2RGXFA817BLMVtGCI4uv/6AIDbaXIpnmYxTpTuhk082QISr/7w/bjxfHjstYToY6DT40HK6cTaTr0cju9u0phcb0cyB7aS+KshyvXVb69vhytmxPnLene7u/vuw1rafFhqXrDk7Ydp+27AgAA9REcb9pthNRRLRemhyaH7J+GF2ZjAAEFRz0IA0G7nVFpEVAAFpLPU9jmx6ZkRwefl/VzzXC+cOcCZvHnW+uCbufhFXPM6O194lbfUxplTojfZ47/6eZ6DL8AALgkrL7leL0zKKxD4dW2xl03zr7DCRepwmfkvSTSv68qL7+Ir7sA30OZyCfarhl9eftOPi/D03KWLuOn1TXjdh8M3Pb6k9bwcepNN94L6Xrv5nNdzFmoTqukZmEqvBC6FqKSE1pYVmnpPTIayLHPuntyYttstKPWibVmd1fnp0/1Pf/z657+C0w/DH26nzd/9/vfHw081n6S3BD6lMEWvUqX02jpHN0yxSZG2RAcINk7snNW8mgA7urq9ur17h7pgW1QiTmE2ii7BMHjcxzTSpqDBEENrAoxNatxcj46Opznsr/D2fel8EH/68nkIHks9fLp30tx2UKtV2ubu1o+pAx1ac56TH5r00vTp4RBRd9fb335/6z1++drmUyvqTBvFcfPhw20NT4/lpENz2JzLawbm2km6kyEcqmEY0jUdf1x++evP5fSw3wbv4eY6bfeb0nLrrTlI767ev78V0eU0n5Y8fbj67T/+UM1+/vTVcxz317aJ6eYWwtggrrXFIap2IAUCQBARQwMEz65LpzOSRXwZMK+S/bd04cswv8Cd1/F9CeY+Jw+/iTh/Ez17ReuvHNIzP2SIiKLKxCAKiI7ZxMgRAKiaqFXRfJgRw/bd/mq6bkVN/7enL1+DgdRCrY4+sHNmoAKExmjBExITGYGxZwUjpBiDqbXWyHS324pqK4UBk/dpDCCynuaffvmLxnb93c11upu/Ph2+PIwb7mV1Hn2iTdpxSsPubre/+/jdx9u7ayD4t798eTrM94+Pdjql3Xb/m5uPf3iv2g6HL9urKx9AazOA3JvUFjy4WlsT8+aaQu/dmTIjKkBrAdWTkxjcTQpx7Ia9aisyTJEdmLbcMmhPQ/CM65xN+zRGF1l6L2uW1lGdZ0fEztM5k0sUau51beTI0CO54FxKichJx24moozsPNfajRRJnAMGP8TgBFj0atoM0/j05cGQYkDvAEytdwRD07xkJvYxxBDMQfARDBQst+YZgRCRDc50o5rIMCRFvL9/KGV1xJvNOEwJOzWR9bCYFUQT0SYoQohGzC4EQCl5cczBB3LMRqC6ltznmegQh5E9994JlcidTidQMJPepbbala6JQCw4JoAuFcFaa4gYY4xjQpSn48EAqkmTdnw8itr793e3dzdNaz7Nnsgj+Bh0HAK7/bRxSOtREIwYREx7cyEIWClSupLn3uqaCxJ7H4N3CZL0hgAtV2kNzYZhUCTPhEC19nldautDnEJ0tZXeu/OsBt26QhdVF9h754lQO6A5liFRb6ymVfrxOKOYxGjSS21QETvULtqNHNdcazFNVAsEz1McoFvJi6h2aWIRyLbbyTPXWvJymnYbdsH5EIJ2AVHrTVIKMfreSqnr46OKaFnzkKL3/vB0AjI/DXHaqkMld1qW0rP3ECjWdY2BPXk/RkeQy0JEIcDh6b6djqHjh5vr66stEC6b+uXr4VizIpAqd5nG6fr6pko75SUG71O4vr3JStqb2+zGu98Ch+vUlWK6u+bkhuGqlRwixsQ6HG1d6ump1dkGVwDul2JzEcM7jNs9t6eyQbjajIL59Hiy1sbtphE1xKIqWjfTJgzcTVruQ/JiQ4+cNRyOAhtajVdxi7lqaExAaCIv/oNncyokAlO6ABO8/H/OZzc0QyO4JHPZi+sgnYNdb0DIGSu9op7zxPrGwvjNwv0MBZTOUTik18DXr2HQ8yT+uuZfuvEtYfOGxsfXyBe+zumvsOZyGN/qk87rzBvy5i3Xcvn+m0AYvq4i+KYT//4PwqufEb7p6uXdC4z5G1Xz3zTz63debvDzTTWjM1y9JNKpqmfnnO/r0ls3J2Jy+PL564+fx+tx2oanT495KYfDMt1dpe319c2Hm3cfXAjzujx9+rScPrflkdpRpZ8eP//m7959+J//l2J/91/+0//+p//2R+sQQ+itRabr/XZtuogQkfa6zjMrs8dp8FJqW4t22O13wXuwttsEqz1ud7b/eMJ4/7BUi11JGJqBiUqppmgGpsjOtS5+2HByvff939tKjMMwgNz/+c/XN1uPsOYFEXY3u3Q1NQHpelznNuftFLWrGIbgEwOaSlt223EImqnv99c47Ybbq+Hm5lro6/Gnn55OTJiLrXMruYZI0tzhWFDBGpTciEJwbRPS73/4LhK3XDKu50V0HPw4ppqzCwxstTeqy8PhSVPSMWIa9rvtSENPqQFVQyGuAEjsmbR3M3nGzYjnv+M5P8BMCS7R5ufEwlfcDgBgvx4rr/zPW+LnzfD5d56zX7Xw/IichxiCKSOf3Y8NEQiISbsiog+OydWcDXEmTZx+/z/9x9rqv/1f/0d9enTWr99dG/nDnLsCiSqA8xRDzK1p0yFwGqPU5tiNaZQu83ziQJshINN81LwWT7jWJr3X9bjk7ka4++HWhxCD//Dh3W9/812ta5Nyc70DdF+fVrGwf//xhx++nwZ///Xzzz/9H4/3jwnJgHuD4PzgHat8uL52YyBog4+5tG7dO5yfnlwRaVmmEFzwIuIEXEPVllJMgZ8OTwQ0jjH3Lp1AkZjJgdQe2ERUobZ8VIzackjkk3ORPTrwuByzH9K42fTezBSBQvDe+xZl5dVH3xqqDeMmMhMomnJvdppXaLrfbnJtp2XZXo0bAFOQUjSXCZ1LLqU4ffeuSWu5aC/S+zRsDGMvaoDHx2Xc4GY7eR/AoKxrr6JNMHkF0KpmHaARwPV+4hjnWkSroaVh8IPv1uOQhmmsB8iHyp79wL3IWnN0HKJ3FNW05JmQ2PkupigAYGBLyV37ZBZTAFNiOM5LWXtwHJNzfjATUcylTdMAAqXkOKVpiOta1WwYR+fDfDwQ0LTb1l7N4PB4Sinc3u6u99ta86xChgFRxXbjsN1vU/R1WXsrDBq8d8zo0cfQmkiXrq2upeRcRExAkwz7HTFGz2U91bl5xt1ut9klUROxZTk9fH1Yl3kYN+IBnw4AAQAASURBVDe3ewDIS3aOgT2KxYSihMw+OsfOAUtpqj2ghMG53WgA61rLvM7zrLWTWu99f71P07B8+dLW3BTqUmZAVsOrq93VLjKW42nNmdGmIQzBoVVifHd3ZYqtLMNuPBzL0+FwdbWrtT0dTzFyTISoV9c7Qix5LbUuawF0yo5SMjJjP6ZBtHx9fAyjv77eeY8pca55Pa5nQ6Yyr9Rl2kYVcy6M13d2amDOu5h242BynOu4v467sSwZRROFfFzyOm+3w7vfft+JBN0Qt9srX914bwMb8X5Eoqde+7GLkeNRHQFQwx7HOMXhtP70eT799OX07ibtxxspQidXsXO2bZo+/fi5cw3DZm7yL//6KV613c1N0RgGF6+uw5iMKAY3ZxFhCeNB+Em85FQQDakJGNFF+gaoRmevnvNsqkTgEM8SEztrWZ7DMXbeAF7WZ0UgND1PivRC6lwgxgvCuESQvsE7z6CEnlOlXiiS8+6UXr768v8bwPSqmn6enPEVuFy+8jZa8GaHDN989e3C8KbnL+Q/XuAVPIMde4khvEk8ezZfxjdGK2+A06969sr4vHThm27hazdeRED4ppFf/byBiS/k1Mt9fsNpPTdjRoCEiCr1cHy6f+Jt6tr/8l//9U//7U+/+8cPejt8/fPPh6+np+M6fr1Om6vwj3iz2eUuhy+ffv7zv2I/eWwf7jZIYNofc5k+XN19/K2EMJ+03J9qnutSgHTa7vJa16fTuJmsdhDwKQ4Tt9p8cB69ZU1DGgNDWeZWmDhc7/xwQ5haBWPyPkgXYlYiQ1BTFXPeqSoSA2IpVcxcGu8+fGStD3/6Y+35tx9voPb7T1/TMG6v9mvp958fGdmROx1XaV1Nd1f76w+3sCytt1pXn7b7d1vYbsb3P6Sbu+H6uoH6IaRN7Ie65Nq6xO1oPYPjr4evPgboWtbViu1juNm4yN11F9P4dDgFGqXZ/U8PU3LxIx9zpsRNbLPbEsVSZH+7pz0sSyHnMERDzqWodnKh1oJMIXgFAFW87CAEhICeqU98Adsv6YOXSsNn3dqL5dVr0PcyuF4Q9bfM4itrifjvjDJ8/oTZ2Qj6/AioqhAhAiKjip6fUAJU6UPyrbU8H7vnxPSH//F/3F1v/+U//e+Pv+huM5UsJ9HNMJmLRU8cnUeniwHLmPwQQkfcbqftZitdPkPLde11cYGdsxi4rOXweJBefOwfPly9u9uSyvpwX9f1w7t3adzU3tC765troGhfn+a1pKvr47r+9PO//dt/++d/++d/tg5//4ffxWE6znPL+fT58076diSQWJvyuDXkMi/rvHoXnaEIYm4SfUrBqfRaeow8xqFJLd1SjGEYsPWS1QyYwVBVmmpD1LquDco0YAgktdV1FnUcHRHsxhRDOOcdiAgSEiMBOubNduzSBdBTMCY53/FqpbTeugloVySN0TGDc76tpebCxNspkmfPRmhEhMKtKRpqV1Bw7EWNHTChqphp7z3XGr333klrakZMiuSYPKEB9FZrXZA1oBs3kQlLLTQCkTnPu+tdV11qryo8BGYKISFiiH7xDkHNIEs10xijEpIjDwHAkJiZW6utCREakhi6EEJkH6JzZKYIPQZGZhXT6HNpoIogABZDJAACTCHud3vRts7H6DjF4JGs90jUVQXBI4Go6bmYcQvBDSEYgPRuqi4wCpS5qYmqEHKKjlhBjQlD8GKdPZOnjjLnvB5zt4Zo11dXaRynKRJiYDCD4EjZumGpZgTOIRlI7610lc4OPHuHZgYOVNl57xWorDkFP44DAUQkC5ycY1MoFpyPKXkfUIonjJvJDYGCPx4PrbQGyn4InK7u7vZX25ROZT1hz95wmxyn2EXNYByT57CclsfHY21muVIK3XA9ZT8IIhGZA3VmTjQNgZnYERANg4uORNUBkggl9/0PH682+34oMpf9h9vrH757nA9X3e2vb97/8OH+x5+efvpU5mV+OqHV3VW8vtnr/u7rYplCpAF5VEORqmzI1kFbf45PlNbz2iJ5txm0LLwvW/Ce4Pp6sJ6Xdf3i/MOcfbMd65dVOYbNODwifTULOo37D2FnlucndD5tm5gKzqYVuEgs5hdytaHw2TmTCIERAIgA0M7+UIaACnQGH88cudm5SBC9TKeX2goX90FEAtXzWkxvakJ868Tz4tr8jB3Oy7td5mu8IKZnk8A3js7Ps/Tl1ct6/4qY/pa/fzO1P0uZ/2ZKf5n+v0FMl+68PfPZOuVsqvsadTpTXM++PW+4p5eowhvRxFuqCS6FxS7dfqNohW+v4RUxXeJ9b/t0wTtvARteyLGXTv5NFBHRM2vJp4f7w6ef//LPf+RtYub5672ux/mLSzbpOjurt5tY8tpE1/ufvzDc398fnu7X0wNJvr0dY+BlWdal/Bh/wbtr6tHvt9//7jd1Px8evnorfT2pdsZ2tY3jGLqO1uX6dm/a0pDefdixQl3aNA5k/f7Lw7gdtje3tH0vcSfnhG9iADMTOhe+N0ACApLez1XVVJSAzST4uPvwEUo9/vz16t3HOAWI1Z1qrm3I4omm4NZDDgPf7KbD0wGItCsDGaJ3bNrbusTA+7RNd7fx9l0VNB8Eux/S3o94nEfnQnD5+FTa3Mys1cH5MMQ5LymFbSSHua3l85en03G2LI7xdL/yxvsPHJmB+eruervd16XHcXQG7KMNPK+AjpSIgIGI0QCViVrNAHRJPDQEoOen8vmvaN8MKnwdbb8a6c/D+W8YoV+NsjdP26uL6dvR9Ex3XvD185Azoue54sXBygzArJbiHQEAMRiBBBzGm99e7azLw7vbrz/+5XRYxhSGwTvmVVGslyVvpogimxRUtZeqQzTtp9Pp/v5rl6pap91E7HwI67wAOnISPEUfHPDTp4fWCyj8ovq7v5/isKlqP34+ed/npTimQPrnf/mX+y+//Plf/nR6PE3DJKWvIkzo0T7/8aef/+3HD7952t3ctA61m3i/NN1sJjeaay23BiWX0ruOQzwnDfh4XLT21iXkhgF98mRlaSBMrA27SO1Nyak6k4aDDkMA67lVqQ0pePLOI0he1nXJVUTXnE9Ht9ttU0qmgki1laKFKxmg1C4ZRAAACbgttWN3nlAEkNDMOQe993UZOWntNRdjij64iUGs5O48xyGea7av67ousuasaq30mOLZGwMApnEUUfKeCI7HuffWQQYXEckBSmmbNJDY6em4nuYUog9RgJZiHZSHWNVqW5J4FCTnaq1LzkDGQzCHQgYK6gwdIjlUmzbxXNZOWjcR9OwCg2peFucQgJYll9p9iNF7NLCmpoKGrZRSCwBE71sxFJBagSmxVyUUI9OQIpqBKpimEKU1R8TOLctaSgEmQEaE4JkoxWDekfOmLZsIO2SObgwKvVpfDodlKWXOZz9Pcn4IkQHILEYGMVBFUARDxwIK51IhzVSBHcfIoCJnI+nSTIxiIILGgkh9nYOnd3fTIvFxXrdXQzDepsF7q3mFvibCzXbwybvoTFLrnf14KmB2wkg7sO0Uh0hkyo63u6mpHY9tXcv92kLcAAXAGJKG6LSpdokxKMhaFhAdIgYGD5APuYDQQL23MaabbeqlBfD76128vX73h4/XV9c641//+Bnv7uTdD4f2C3yk23/47TQNpRRd6+TjJiJo1ZZLqQapDePcoPsIPjkw6GDYz5WfiEjNEARN0aGxO3VFDtMP39/9nqYh1dIeHk50BdXD4eundx92v+T1pyGOQ1o3k2wd3bTFaL3+wXKreoDdpnSVpmpUDRtRBa52fmLwPAzOuVx8FomfJc6i58kO0QCbgqERKCLhhbh5FayQwjkW8ZLfbgRmRmekcSGIXoM3b319vlnmX6M8L5jo9V08p9yeT49vv/wNSkDAl+pXr+9+swzgv4srfr0GvLghvvEgtEsd+BeltsK3Mm+43JmXdGJ7VQm9cDdvaJq31Qbe3o833kSvFNsz74Wv9A68aezbq3p7i/BVMv2GwkJAM3VErdbD50+HTz/W46d+BDBqpWwDLvdP89evpuXqapqGeDwteS0Pf/rn5fOPrfd5nlWrZ1gPXZjm47yKaoqHx+vHyX13u/2n/+Wf+lo///Tz6etfTz8VrDUlurm7Hqfh8Qvdf3102oP3v/v9++ttqsuSCQxExRo5t7vbfPd37vbD0XCuWckhQe/tXMX8zV08AwMwfUalgQKREcKH7397vD967qwVa8Z7k3Yct5vkjNvKp9P7K+8G7yGLIJZ2+vw0IEy3Q0I8PTzG3dZfJbSB3Q4JMHAcaBzr09MpTpPfhrXkp4fiwLZX2z4vt++uukFd9evj4eNv71IYx8E9/vR0ejiWtGx3G3TciizHNW1CCOlmv5OcqXdXIH/OLU6aNsQ7g2hKjMBoRKa1AeoQQunyzKoigKG+HdLfkJi/4hcRDN4OpV9D/18Pf3w5/NrWazz5ZUPz75z4+XezZ3us512KqoAPHlSQMIbQzZooO3SOfv8//b/vHn4I49YNf26PD6idURO5p9OS84w9e0Q2YmYAOZ2OILYsq5kRMzm3LKXWGSEg8rjdMEzRCWt8+PkI5DiQc95h0ybz8vTp6+HptKJYK+v7m60rXx/+9K+ffr7nDp7Yev/66bNzNE7x9HCIPhi5T3+6n5/6tB1UrBNiDCiUD9V59sWqoDaR2quihugqQatZuzSBDkKnHDzJubAjWe26tCaG6KLbuXp6FBXXWnCE6DspB0KVPvfeFcgBKhKKSi7C2dXeACDFYKbSmjKsufa1a2NGx+yInXY7O1aF6Gvt0jsxMng0yfmExJ5dNZFamT0SgyETe0fesfMu55XIuvRazoW0sKsCApErXUytr9mek4M5cOCAJgbNtuPknSu1SO3MvgOlOFzvBtpq0c5gj1/vy1pPuiQ/puRLq01kCEnUVLoCSO9YOWMGA3IuDJ4ARFSbAqGYllIQzUCcY+mCqCF4ZE5DYCLp3Ts+5zhJ67lUH/xmuw3BIQJ2HHxwicvaPFP0seZ2qqdxiDFFHCIil1pKL4oKYL12AIzBR/QGAiLtXJAFEMG54JDAANS0GyiCMaFD72NKo/MkvZ6jsabmHBMjEjomVkAFRBI0YJymEdVaK845R2ABzVprFQmQgT0hWoxh3AwDdFGdT8t+TIOn2vPD/UoAMiWszYNsaLy5um1AYtjU15arwC9fHiNajEPyPpfcqhihZ5p7z7kuiyB7I5w2Ywiu5xqnwUcv1nMr83qADuzZmdXel1qsGZv0WqzFwaftZvP7f/qH7fcfFoQcYi6yTP2p+PvH/tB9ddtfVniqWVri7cfde4L89Pjll95qdlNpbibfEJoiiBgqmiKYihkSPrs9KjMScxNbpQGA84Roklsp1tPWD0mdk+aWIVno4Q97ZIbt1Ktaa+M0te3UcG3En7pKliEkbdqRlb0YwPnvZsCI6Pi8XTvzIvyKQl4ypgzADBWRn1VBb1ZbgnNSLj5v9t5Mj8+wB59f2ksS1OVtwxfL2Qt1Dy+iGTuLPQEMgJ53vvDNZP0mNQXwhf94yZX6ZjP78rlvKZtvrH7OPNVLlAC/3T1/kyMDr4jCLheML1no8OxWrc9g7huvlrdsDVz2829Xn5eg2zOQuvT4zb2Bl+NvV6E3MTW7/BFf+TN7uaSX3y7sFLRaW14JZDfGL18fc66EhOhFsffuHK1LlirENAaW+TQvp6q1dwnJI/F8nNXHVoWJfFedZy2lLP56s41Xsfb29OWvy7IOYNMQ9/tp3CSVXpssqwYX07AxwCo4t96ENnd3d9/9bnv73fTDD7Py4bTkbuDMAaiBe1aDKTyjz+dQDCJd7ouJWmPyPn78/e99UqetPD788uOXp4fHw3HFSA7sakpQ1s02uHf7dZFaqczVJz/GsB3D0us8w7Tz0aVaYekCAo7ckNLhfmk1x8kTGzoCgd003B/WMrfjks8y0OPTaf9uQjRCS1O4fnd9e3fXa9XTYZ0XYwspfPrjX+fHJ226ubuxcS8DuXDVXSi1E3lDBNNem3OEhAjgnO9NnplZMHgZjP9eiOrFtPCbgfE3EdOX0NjF/gffDKfXsfXvWUW8juTnlr/hS1+afx52KhqiN9GaMzqK0fdmrQt7N1zd/eN//F/3728//8s/3//5j/m0doDdsEGzzz9+cUhdbDNNosre5VaWklsXA8u5ikheawgKQs57Y8LaabsBwJZls9mF0TP2zz/+/McfP/23f/1rNdykUdbD8Xb74Xa/Ho+mNqRpv++91bks/VhU9/V0GKfh7v17MPn5rz9vN+Ef/+EPcbv5ZT7d//TJzLshTaZpRYlpHMYgukDC7qS3zsbkh1b7aenOmSMeogPsa60FCdPoN7cpME9Ja86tYgfryI7JgIwFTLqQwxgDMStC7yoqZFZLA+jM0FtDhVYbwBkbkoC11px3ZBC8G9JA0E2sSXPsCFBUmHG/2xTAUhTMeSQTAFICMG2MuJuSqNWuvQoi1taI2HlPnkvpNddSipn6GH3wbETEzoOJmIJ1dYCeMI0bYN+BWlPy0dEYQuBFWWw5PuVWNmCIxo794BlZTRmckZlqXlZVi0Ns7hzfVgBwjs1ApfvoDHBZVjO9ur4S8MfDWmubkkeGaYqqRsyt9t66Q4xMhNxFS20UvWN2jrv21hsAnEuWoHAcQq/9eJqdp91mV6XMspAxgfHZ5sURGtVuTc2skXVPjhi6amm1lG6APqTNduedK6W2mk1MupBnJTSF6NhUiImRPFEH7IYAXEpxLpxV0S4EH4r0XlodduM2bUxkqS32YTdNMvbQJYAG0GVdcs7jZsKQ5tz0qUy/G++++/jpYf386evt+5u7/Xf5+Pj1x58i293tB0Kc9eEwn4C0zKVVJWRR7T23KuOYQIgJGIUQXCAi7ovT0FN0oM20pkClNyZkYiOGMPLmboGprvGXUy6umITq97VBe6yCEV346VFQKq689be6SeA2p+KC93PaZTetzZ2LNJt0NWE0QFK9JOcAMJ/trw3IOWYR6dLnpUlVRxFd7B0NkIfNrC0Gv/lwbQZZTCL5wIpwXHJITswvy0rOV1HPaAYqCggERoQAYGqAZi++HmgdhJ69fJ7XT33W+sDzqgMC5+DDc7KtEKKZnvGEXkCAggHKizntM89hb2gQfI6jPSeIXxb5C//zIjdGOrPwL1Pry1z9llS6RJfwdb43gjecPTwzHi/TMsCb+fsZFbz1fbssLefPX4ivSxYYnuH8t2TO8wJ8gXrPatQL6LqoMJ7PiS+duyw7b8yMnnmnV3n282p/Tnj/f1iQ3i5sF9oHXw7gs1vQ6+qmZkSERCJQSp+fVuhqiipGARCUAdOY2AOCAGJZK3QbhgEZzEBQgB06bCfjEMfg2UHyfh/8SLg+Hdensru+tnHy2z1vdtZ18/GOt1eZbPpuL8ONO8kwDjbdCGMYruNUCDi9u9lc3xqPX8V1xYZE3hN7QAIShbPR+CuyfcbpeF6AQcCAsEnvQPH6SiGHRN7xu+9/+L8p+69tSZJjSxAUosSYk0OCZEYmgFu4Rbqqep7m/39gHmb1mupZ3dW3Li6QicxghzgxokxkHszM3SMBdPf4WhHnHHdzo6oiW7ZsEUUho0VJut0+0zgdexb67u5xqst5kFwHa1QkDhNMwLa7A7sV8CompcSghqhytrIeDW+2Gwc+hgADxqlPff70/Im97aoKN5s8pdPpqMmx5fu67Sqzqbm6v0+jP7wewVVDlnEcc8EpIkpdN/fqd+K2aqoYosEyd9YARrZUCoSUgSzRrDJWBLpB8ut9uO36vKIWvEXKlzDlEhzoylV+i3GW8b8Mnd8OtnU437bqvIy7dYStAREhggqillJyzpV3McYSgnU1WkpZnWPbbH68+8/397v/DvF//C//LYfstrvGVbvt3RQGYCiap5DGEFzlBWS73/bDGEJgoNo5ZhpDjCmSgcaZfhipqoy1m7td2/rT66+Hw9PX59ePz4dBeVMpx/7Nw10pmJI2zd64pvbN0J8+Pn0Ca8haiRCDnI+DEXx9PThua6MVBhPPDZUhJ5MTVsYWRm+tMYRIgKIoGQoCV84DmZgDKtXe+MZpoT4lQOu3b6uH731bSbgbnr9iGDkmjVFLBM0MXNdtLoNCyTERR7KkRREMGmsZJaUylRISIFWuAkuSAI1BxJKlqhzNg1Jks6lES86SRCvLBh0yq5I1prhYYoZCCGgMMimSpjTVVZ2SphJBpRRJU3C+ImcQkJmBIJWUUk4CJmZk9sZ0dW2Zcy5COceQFTQXZHPsj2NCMfXuzXvquu1b6QmnkKZxsKU87DeEgqiV86yclK0xOSYQ9c4awpyTSJEklfc55hCyb51lo4LDMHpvDTMKWWdDzDHlytsimQ0b65sajGEgNUgpC4gSIjErgKstJlKEKUwAcHw9+dojUy6lqFbGNl3timEkKciGDRYoORfJAIY45pSyapDMxXs7hRBiSCE57533hg0KoJSSMyO7uUOz8avEAb0lQ6YIlBhQ5fT6ar0D5JRL29YAgiJK1DSema0xw5SGMBkkKFLGQsIiJUomwcrYrqocQoyRcrFsd912CLaqsu02ze5uGsKQRNSMYg/H8xgEqTmfD6GPKOAMg0BIIYQ414a1lZVYUhG2gEyVcUDGCKDKtq2o9sMwakr7/f7u4Y1r72338BLN8OV8VExAvrXCoIQhq7XWMKmUXAgreEXsR7Fqaf9uKFLIp6wZhJiJZzpREGj1jAiAIIpEUmTuqUw063KU56VvM6himib2ngjClAiMgGaVHAsCWmbRHAvEoCCATLb2JSY1iIIMpCAIoDL7W1k8NOGFpFGaoYEqzK0L9eK1L/KThejWy2JBi9QXFQAIQAgJLl1HdNk5EF43vnZJ1Et1lS6kxML+0Lw09Uq66GqPURXmFU2uCz/g2hpnsb+keM2F3YqfF4yxBscXlmVhEmAFf7C8OZ8Z6ex5lr3jxTXcxOFr2onWxoS6apdvOxutfBFcuCu4SRLCmrFAQL1pzDvvZnVmepvyuvFB6xfhontFmRtRL7dwOW0BIMRSpIAKElnX7nbx8Hw+n533KeciKeaEQszofGWci9MoKTtkSNEaW3dVVJNViwgzgQIrUhIvUkMOz5+nKbHdtpv9/dt3HsUixdP49o+/85vudO7rtqaHvBXjXU0EwOgMb1UzkRBPtppiTtOAZHIpbNiwnRW2c9H+5Q5c0KyCqsyleshIKQdhVuBMDoCM7T785//y5vsf4vHsKFGJT3/+aOuu2XrDLCVUjjbv3hDj4fUFuj2Qr979Dpp9Mk5BiTDHyN457/ePO3XWd3XUkRVsun/GJwjVdBo3D1tfO5gGOp8Kjdo6RIrD+OvXpyGG9z9+ALTS7pv378l7DSOzaQrZdsubjXAVnU2q7IgISlYgtGQQEQhiDijorV0Divlp33Cnv8U/Ny2nfgNf1pL5VQ50O4j+Jhmr68z+5r118F0jiOuM0d98WRUUiCnlYo0BVcuICCRi2UXQw6FXA3ePu/sff+//j/8N2DS1N9ays0R+HKtpCjGkmBMiacp1Vd3v72o/HA8vklNTO1BOnAiUHVnHp/Mp9f39436/2xjLYbDDONVN7ZrqZSgb63ft/uHNww/fvbEf3ceXYGdli6pxvtpZKdDebeqqAqJh6B8emvfv96fXp/MBxnNvrAdkg4qaizdMWljBMMRSwhQMOcRSJFpvjfPs0DhABjAOYjF+2775ndl/D9a47a64PU2DlUQx5nGI06lrO1KHr4eUT/35EKcTCxlTMaABtLXzxsSQQNTVFXt7Og2ppLaxXdemlGNKUpCY05SNcmWrZAGJm9YQ5ZRhDKXkNMZBFU0Gw8Zx1W58DDGnLKqiBbUYhAxSciwMhmsGNETGsPOerUupTFNEAG6bMaXEVDsjIENOMaaaTIzxy9OrcHX/u4f6bft0OBHkiKWPY5K8rTpTWw25pJgwg6K1DjI5i2gRjRIjGizKRUiK5JgRVKSMU3SM3tWocj4OxtYpFzJGVKaYvHM5yzAEEamcR1SVTEabxqWUxzBUza6qKwplHEYpBUAqZxBxnCYkcN4YZwpmQqx8JUVVi+bCqNayAiSRiCAgIaYsMQUEFMfkGsdMqGXsT01V184yQk65qSpjaUo6d2FGtgJoq8ohxZCm89kQWC4IAZGlsHOWnSs5VK2TUtI0MiqQnYZJSilIh3NkxU1bGWesRJuyxKmzXO/aEqb+eHz/3fvN+8fg+HQ4v0z9MZUvr9PnU+mHwRnab5sstoDp2soSjuPIXAxDzqkkZm8RGBVzSEVLZR0p5LGAha717bbZWJ5O511V3+/37Zt3we9fkpmiEhsSAWSRhIC141xEBADBuDqDBpVRSuUqLdY0TormWNCwIqRSGJWYpQgUADKEBKoAAoBMBgBSKVKERAkKG0tgkiSEXDGn6WwtK4kjKUWZyTgDIlCK9zammGO01hrDmhMQAEGZq0hmPmNmgC7ilBv7pzAr6C55FFr7y65q6DXyvkCP9btIS6nYrMuAGT/NqSVd5GA494RGIFIGJUUhVQUQIiEFFNRCywq7jEXN3JoIFAhEBZf+/6iIcoMBSIkRVFEAQOcrXrJkooDMCnnOTCmutWsLTpipFZl5JwEEZAJaeIaZNlEQ1pusF1za9Cy3QXWl0hbxsRIKAiIhCCHJ3DUABFEVF4oIAGVZgnstqpmpMdAFIaJearf+tq5f4dbrwcpQrTH+DUFy6ZN0ifoBcS71ExW23GxafHuH4fzy/KIlgRYmRJYpjFMI3huQYlC7znnDUkoehrq1sWhQ4YoNCxU5P7/e3dVyfP308y9JYfvwnYzv/HcP+viwC38sAelhn61RHoM1WKNBLkBDyMbRPCYVNeeiYyRCMCakYo0H1CGOqGismbsDgy45r0tWcQYKc6a0SHHWqUISAetDVvQdm7aut9WbVJmSzsOd3VIaNl7G18N4nOquevOH3wu7/HzYff+dA2M2+yAcFco0SUlkdUgRxbX7+8RUsJC4x4d3TrWt7v74Rx9DEYPAANMwPb96W9jo8PocDi96Ok/ODqYpwFDV/PYPUHWoWoiYUQwPBbJoKgWxIIOAFhREygA5CwAZ42FNUq+zVBesC5c07IXUvAQrV7bwtioSr+zjt6PqtgPQPMBWpHVBmmve+YLi9TKmABSW6tF5EpCCgBIzASkzxpiyApJsu1aLvj69TlMqJbZ3W+IqDOfxXEAdsQljmcbRVnXUMoYRBbx3iio5T6f+DLTbNXHgEKcSIgBhidaYEid02LQ+9cPpfDqdDpV3x9dD7dp9bXIIh6dzC675ruOSGZIzUtL0/HWazofTeAbinAcVJKcohDFLiuQ3MYzPOX35/LUk3G0f+P7O5IwM7CpmSwoZCkiCkpAdKGrKwXiunDUGS8lDKGoYqp3xD7x5NN3uOEXLW20NVgkgaYoy9g7vXd1A5nazhXg2p6fx/EKqhlyZcsoTgDBCATF1jdYKMVeVZvDbrtt1h9djOA9hyoasM5yyAJu6a+7evkEtYRw2TZuKfH156joLIvE0aQFkVmUpiGBSFFFg4Lquc5n736LkosgIYoiqygFAjEWcNHVljAkhTikomqatyHOaRk4hIyBLkXg6HMyLH/uxTPF0fDkPPSpq0WkIRgREpiEgMCq0ntvdNqZ4HvqYCteWjEMDIKQq1hGS5pRBsPKVpCIZ+mnoYzaVrxuHwGGKqjqMMeREpI6N91x3fhwiEnS7zlbWWGvYCOSSrXVsrBmHBIjGGutJpLw8PxNwZbxkySUZLNYZ53zlEK1NRQA5jBlApylYx85XzrI1RABENDclct47ZskxplhSDmnyjdesJatzxlvnLHvPaKluPBDmnEuJMRYt6g2RipakOTlbsbXeMiAeppC0xKINYFt5LAg5185sGx9Ten195U+f37jK3u+IMKaJDWaCf/v4zMYgYk2UUvYO2XhfV5qjkjAjgjhnmsaDgpTsKoNEBqBtfB5yKQmMSEm2xMogs/HGWVcp+2DcpEYFiyobLCUjAxEoykJZaREkRUXDkDGqCGAqOr9tSIsoMqqUxY4RCmJRYYB5UVqdVZ2IBgkxGyBC6Kdz5StLbBCnsTeu9o6tpTBGBuOsLSmLFIdekdCwt5YJhzCSZdHZiS6Od5b9rHkRuCZgYBEQwLX0av5xodsJliY/OHvRi9pgTWrppXDsm/gSEUFpAQ4X6IAw7wIUVAAUZgG4CgKpKiHjjKLkUm0mM4JaTnguu19TWwRIyIqIUkoRBEUmQCwi89mtFelXDQXA3FBmteGIAipQFJCXd5euu6voYXEzSwmyIgKCZliD4wUzLVddQBWUliUrZ29Ba7ZsyREgIKrKimLmyFkBZ2GvLEyUAhKtV3Ajg13ZHl0UP4AXcu0awOuqRVozaiI0Z1dFkGH/sGlxn14+v3wpkLVuK+OgxNLnXIqEIbdtVTmrObvaZpbclzRIjMW2xhrbeQaAbM2udjVgnzPwDJVCGE4pF991ueYBTBgzkUfFUgqhAigYI4gimRTm1CqQIHMqyXpjgBUUJBIbVRVQAqVLZR5eMB6oKCIWyQxs2RJz6HuImFGt92OcLGJVddkr2rpyNYS+rin4r213V9cWHx8VXdXs6e6elRKZEIui5JKgaOVMzqqiopJEY0kGBC2VVEzd+KrxYMYc2bI3u3i/Q81aSv34VtMYp0BEVeVTlpBodG1hfxhGWxsk1IKSixRhxLl0AImQEOcVS1QR0bDJJc9ddi5y9oX9vDI0lyH8bSvR60fr1Ae8Zm/nPV5LI2/ZnUs8dJnJ32S8YEFIevlgbi6+TMmlUaKuP6DylaZUSnr5+EuJ6X/8y19eX/vKufZul2N52HWk2PeDGDsOQzFCw7mEAEUt203b5JxfTi8hBIZSGWDQuvLeV/25z2GquN5uOiXZbCphDjH8+sufj6+vu6b68b/+Yfz5i+ScxuF8eJk6Or68/vfXLwJA6r98ej6+fEZrkIyCtLv90CcrYxlPzggUH8VAVSfXhSk8tvfN/VszTXHTVVXn2ZlxHKYxW9O0rSuaGVFSBlJAFcEiZhKlalNtHkz3Dn0bchQtWRhdFyUnELSF651KGhkZrfiWdWObqv7uQ42U+zEOQy7T4enp9HoE4nq7K2iNc77qqp3dP2yZcjn1Q5YQI0pqGmscSilVs0FGaxvfbd59/4OowZ/+9OF3jwT5y0+fnn/9Mp57ULbGFyjTNCFg5Su2RkRLyUVKyRKngRgMMxGISNtV87okzJCGNA49gHUWjeHNpqlsjda4xp5CThgOnz7aukIoYexFcuN8CWGUYFS9d0xGi7Ih3zhVESkplVSKiKKBxtXTGPIUnJi2qtFQiSEXgCLGcFU5dYYaa62Lw0QIxlhb4DzjOM++qZNlaLHylgBDTDlmx0RQuo13xgISI/vag6ighCnnKZUSEqRSxFpmS2zZNz4Wdda4AphLFpzGyTCyIV/XdW0lxMo5wzaEMnFuqhpES05hClpmKV9kJiJVyNMYtaTKOb/1VVshQgwpTgURAUm1aFqIJWuNt94aEgVlzcX150CMbCkXZUPb/Y5FSFPT1C+n4/FPf9oe76r9ZlPb6rH56U/gKsebpj+fptPZWKmbrq581jT0J2utFDVeq9oRQyml3XhUiTnc3e3aronH2DpjvUOTeRqdmma/efin79sfv/8a/XNIr0NGdM5xkVlYilIAiETUIBCiQlEByIpAgMpMqgpIRLPbA8CZExBCFiCBi754XoIdCqmA0ry8FkgppanrAhIkFMG6qZEo5VBADJGI5JgkF+dNiKEUMNbnIghsyImKljVhpItOZQYUdPEglxzNrAnQ2ZGuy1CsflfXrM0FwyzIY5XU3nDvay3XnKuY48iiCKIIggmRYS4gg4IADGQAUPPMz4gUABQgAZVlHeo5IzaDjsIzhbNCF5wXGFNQKaJqDLnKAqCAiggh6rWeHy82eynvnzN165Uu8msUIVil2CvBs+rD5+oaVF4+WxzCvJQsAqaF8NIFvNACE9f1UAnnxZBQUXRuqA+oYAwjQJaikpFAERHnvA8voG9h3i4JM13w3JI+1FXpdNF14fUJ6hr7z2NAlySSsUYLqpaSkzeYvXGe2SoQWMNZsET1np2DytmCMg0hTbHtWus5TYklMBhS+t3v3+7v/KYhR1023cOHNw/f7U1tXk8px6SEiGqZpAgUJFDUAiBEM+2mpACCiAqEkpMznEtOkADAktF14U0Aq/OQIFCi5QaIABGCenQll0Qx97mxNVgTJOUxOraGacp5mIOQpnab7jkE/v6uwSRQvgKx8bnCT1GJOMVURF1tkICtFUUiADJFFQFrYyUDCoLxMZecgsiURVgpJBEEw5Z9JdnbzdYqEHMuCiIeeRSAkn3lRCUN2VhrEIUQAYhI5ytDmMsZCeeLzWsBGMBN44Qrzpkh9zUr+tu2UjfACS6J7DVb+k15wWWjb39eaJ75PPAmvLnAL0WSCys87xkRSs6i82onfhiGp4+/ji+fc5mePn399Zdnaw2gKSH+WvnD09Obx7vT86HuqixZs+y7bYlJQawmS2YyprZmv91aa/pJXOXu7u68c6Wk7X7TbdovXz6Nx9Ndt5UchsPX4Xh82Hw4Hg+/fvxoDe5axyWNp/Ow9c3Of/ju7eGUjy9PLbfkmhANVa3fbDBPkKNB8/BQ7e43uG11c7dr9/k47d79uPnhvZlyNqrE6K0BqTb1nbFNP4aUJnKm2XvnrWjJAqLGcsXtljc79J0w55JVpRQCRACjIEys6A3CJCkXVbSeG21J2LC3rhv4dEYQ290dnj8jEdcNkGVrnPOu8gw6ng4hKZFBRTZcFPoYEc34ejyNYffm7rvf/9De7VXobrh/8/69NQBZTs+H82sfgwJgKZqikGElVrLAQAySVFIpKSNiU3sFClNgUu/tcB5DDCJZSs4JhmGgOWULQMSe3aDl6XAYYvZ1jYiguW6rjW88Oy0xlUKUXeNcXXVdDSWmEENJxMSMBUS0lDnlrXkKUc+p2rZV5SpyDul0ODnr37193Dxsjs/nT8fTDImSFjOCsrl7uPMOh/OY4uQMqkKacgmJCDZdbQyHGL2rN10bUyRSEgXi4qoppBTLHHnbyvm6QaAUJiCunQMIdeO9I1FBgKp2COCca9pKoiZUYlAJ5/NZc+qaRpWmmGNOlqltPEBGpsrXxpp6b503w6kvJdfWWudENZxHS/Sw3zR1nWPu+2E4H411be0VO0NGUjw8T83Gdbv9aYqsZbvZ2E0TT6cchji4AtB0rQXaVN6SkiZHuU+DFFv5nTMAGUCgxOKdddakVGKKTV2jYchzT0ioDG/vt9pJilEkVajvHu79/sG+e9N9eJsjffk0whCsRUOgIrMvUQTQAnNBigIIMgAKCggRSRG6UAOwEiWKuBADygvlInMOZFYN8xqLCbKSKoqoMC/F2KVkZiqSiS0hSVbjzJzHwaV9ucaSEYCJRReVNSBeYM2CYXSpqbnQ4csSXYpLcc2MiK62Tlc7fO0EspRQXbifi6lc+RYCINEl14SKKApCKKhEuBAYJEg065KICGWmQqQAqcK87iNePDlfo0+9JAUIUFWIUEWiBFEtRYkYaVYlLYb8pp7+tivK0oSILm5jcRpIqKSAIIpKixpnEVLMDxLW0rM5ziYgBUSV650CAZ3XgJ3FV0DIrLg0uSZAg5JSypmZDDESK2ouGQEMWVWd0wsrSru4qyWgXzwgXNi6a24DbzIaa4psyYMQEyNgjMfj4eunT6fTufLGWZ5yHPtQWWzbSsVEijmEcx/r9ztFIkscmVUrb4aUWmOMpsr79293ruJxGK1rtg/3d28f2s1G2JYyqkIphSiXLETETHOzKKT5ySstVzD/PmN+YURRJaTZw9PKwM2XKAuWXgfqBYsTqWRrjaqkNBERECJIzgKoc6VjAZ2UgBsmEjUAMDdWFgUgEgJENqhF5oCBRJZnS0xZSxFdmA4CZJqHiGFSAFECwKIwd5srhQFRMmgBJlZRBNL54gmsNYCQcybGtRLzAi1kmTsKILpq7eBalX7NSsHtGP6G+vmHr4XRWRmhW4JnfeMCib4ph/zma1cW8qYzFV5IIVQVMMaWLIowDf3z1y9//bc/pcMTo8CU3t9tYk7PL/2vf/6zQ5DjE6dkidt9m0PqX453dePv7C+//np+earrzf2m9XUVYvBkLZYcs5bweL8xVBSkq61sW81iUFDC3fbN797/YBmfv3w9nF6twa72joy1xjv/7//9v//9jx/+5V/+9fC4Eana9s4122OQw3EiYo/Nu8d33Y4O/VTG8uO/+357d5ezeLOxtTdiqr4Yoppsbf1uPEHl7m1NeTwHhOp+R03LyLmUkpSsN00H1giCgCotiymqzPQ3zgbDMGaFEGPK6ZwGLALIY8DWVaazbMz28X33/rspxWwMsnFEaQxTHofDYXx9zSE7Y7SuBDCiKJJBHocYT33isn23+/L103gcn56fUup39/Xr81dm8rU/H8dKPLKIQQU4nHsykSyhZpSSS8mlQKKcizFYJMUpFXGhJElSNR6ZspQQs5RCQCMntIOxno1xxn56Pn55PbPFtnKdd5v7riMHSXMYSLNqrFzDBMN5CtOkIHXtgPk4nAvmyqph77SEOJU8xaF0d3f7/ba2DdtKPD/87u2bt3eb7cvw/Onw5dVqrgzvOy9sNYYwZswZpxSyNE3TOBcLAGrtmxjCFFNMUApMY29ZiaTxlVoqArlkg+Aq41tWwjGGaRyBrAHilDFMpNq03jnj6yplHadpjAkzVHWtpTciD1t3OmWB2NS1czyGUnI0Gbu2ds6XURtfOZThcPQxSVRBAskKxVmqKuutaayNYF5fz6fTZGxuWuOJi+Hz+QxERcwYYn84hWl8j/R+37beTzlv97v9h+9q1x4+fvrw/qFkPceTbNrQordViUGEN02rVRnHiYARgC2Y2hDSeBwdq7UqISkHkOSYtp1VKA7Lw5uOHh/zbleYLYFH9Z5BoZQ8K03Wab+uMzCreRBXlkcZSL7tzQJraTfCvKTELDee97UsLrFE7IigQGRAYNZEK4jC3ISVAI0IAIMQzeUWgIhEqSRCBCRAzFJm7HMTPeJCD+gMlRY0JKC8YLKZk5OrxmUBPKsEeLWEsEh7V/+DNxZw/hRojVeX48gcs6OoJqOsgEoioiAkuSgBECIRICsKgSDNN5WlKAGKKAgArVomXXI8sx+a76sCGUQCMIuURhFAlg5tV7HT+kzwioT08nyQFlU3LSyPzu+CrjmnVe4MMLN6ADhnsubF1IAU58eOy2PWpVgeAbQUQM1SLBtAUimqAiWJIFu/JD+LKqrMWTSkdSHTS93ybx3aZWDNY2RxlFeZxzJQcR1cIkWLGFCyOAzTEOPGsoY8jVFpduHRoFZEERAUJEosMU6psRY1ayh//N13VeNLTk3TVI587fFhn42nZpvY9kmnIYyhKJu5PRQTIqqUPN+Ti67lJnGDIgpAZblxLKvEdvmJcoVByyXOkYUoQoaCCKSzgF5pptHWaOMCyREQss7U6szR6pyDhdltyy3DIqrLV1Fk6XSuiwxfl7V/l6zSJdc0q/hp1iUBIciClhVwgdFL3lOR+BJYLBzjgnEJVGS5+IW30ZuqgPX81jDpgn4uY/KClX8LYf4RSsKbpglXDITLiFtg9GLl4Hqxs2R/KRnQG1EQLOkzYSYSFUn9eO6fnrnAbv9mv9l9/PgrVtWbTZOmc59z/zKoSvdQnJMpT7bUFdvvHu7HsS8AVe2R9Hw8H+NAmhEQSiA01pb+PDbu/uF3H/rDcTr0BuT77x5/+P73r19f5HB8+37/KhP0U7dtu7ZpWs9SPv30b1P/abtlavYAhjX//n7/r+fDx18+/v4//Ic3P/7u1L+gc5u7+8eH3f2773/5fByLYVOZqq3IV8B11moYckzG1FvfNr6rCwDudupbQ0ygEgqwz8wKAprmjDgTCaIUwIIISkxQJMZMDMbgeJ6OX18MsvEUSVMD3dZ6XxOhima14j0xOgMa08vT+eXz19wPDsAgWDanEKYi+5237JIpuaQS8uHr6+ll6I/j+Xj460/p/rsdpgSTDuPoGk+Oz+c+xcDMCpz6nhhrZ51jUUgimrQSsGTIuZjTWLIi1tt2023TlPtxOvXnUJKknAwYAUA1le86cxfk4/NzKqXdbnaNM6TGcNe1IF2e+oIxaTw9Hae+r31lDGcp3ptN1xCDJ2vR7No65zjEnhg2TWUNn/u+oFjrjs+v3lJJwVtzt9sxs6qQ90k5jlly2rbNVHQMYwRANCFE713KmY0zJodYzv1ACAXUGBNSzkXZOUuY05QgFZBYUh/7CXKDpnbMSB4ss7GdRRFEMJWPOfXDubK2MV5iedi7Dz++/de/fHk69X0MdVXtq3Y8jwTqmStgtZDHwSDXgkbdbtP0UV6GIUna3XV1bafzUM6jkkckcj7kDGNf1Q6mqWLa3N9nltOpB9GS9XzuWdWhPj+9Ptv67uGNas5DaI3/T//84/P55fX5q73fasbh1Hd1fb+/o4KhDyWUzaapqkZUcpR5eTVmqA1jiCkVf7fZv9sjFghHMFo8SWvAki/CWrSkrEQWZRa9XqKx5Z8CzJmmxfUuDNFamrxCkJmGWc07wMXIwVxMtW4wq3dW3kgQaHaEAgDIc9aDZgaDZgGIMvGSe4c5hl4pn3XnV0WQrsZ7DSyXpScUAAiwzE5U4cYGLuSIghLgUpytIPOZwpLzgsU8r3z9UqilulaHCAORIgJkISRAIUYukBVBFBRFsrCqZUuAZfUgjCi08BiLt6dFSpRFRIQYgbSo8lopNNcILUjmyqPM+A8VEHAtUbut1p9XIUOaJdKMTLRsqVoW3Lfkm+ZeAGX+5loFDzdlZlBAUZXWm8gEiGqQ5uYUAuLYV10NRcOYFLMie2cUciyJcZa+rG5n5UD+xrutfWIW+kxmwKyr1HoF2UvTXhA1ltp6Azls336vWuLXLyHGJf+pMJx6Q7ZyjlDa2qNQDtkQ+8rKFKrGv3t7t9tvQXWcxjhGhs7fbaXpsqmotVHyoZ+GlJEtEosqyoxar6zCKgLHi6fHBeBdb92KnGFVpF0e0JxUVIClVTIu3Q8uznkef7qM4XnQr895qf9b4IpcuKWbu4rXHOkFJCxoXy/b6Tp5l92BKqyl6utYX6b1qr2HW6h6vRcrWr3wK4vAa7kQuE7Ty0frDbmBRQrXy//2Nv/N63q1M5d2oXRmS3Ttg77eL1w0gtcBt57YpV7g5mIAoJTMSFoKgNw9PHz44Xc/v56G52OY5JRPsT8/vNn9hz/+MPT9Lyn99eWQJecitWFvOE3R7/dvf3ywzh3PZ0RM0zQ8v4Th/O7N42a3s7U7np8daff2frNprFBmm8k0rqVEH//6kYz78fd/MLvuL1+fLSOJoqBl++Xj19Ppub2vvvunP7h33wlwfnm5b+r+68fx7GjTwv6u2bT3dWU3nYgej31EFueikrl7szsPGdAANTGPsGl120XL6OvaWvB1RJNUGQkrG2XG+co0L0YBRQGQUGgG1zkrkWEkNam2Vs6kxKjkrbPOGxhKjNj5fsrHp6MSbeuGQfL5VFGGYUyHAWJGT4CllKiaU4xhNNYRidSWDejzpycki8BpzMfTKedc12bXbVzjYkiGKZYwxAEAAQ0QGyLvvHpTNGcFIhTlmGlMOCkpCoiw6BAmS9w1jQJm0QSFjW23G1/50zSGMd5vtsxuLMOuaxoDkGOQoUJPjOQNEqsWsm6zMfe7XUghlli1znsXxymNWVmburFu14QaIBnGYTh++fySsnS73fQpTsdjZbl29fvdd0jSn4/n8yRjhpRqa7dV/d393Wk8Csvr4Xw4930czyW/efOmvtv7VDALqMY4JYEQQpbsu6ZqKpGKIIuqhCgJDJu6qi0SsiEnzjsByTI3sOG6ampvPQEJBMh1t1EQNma7vROyxCaHoJp8VU19Oo0nAHbO39/vttWbGOXt+/fnkNr+BAaswbaq+i9PH//y14jJtHV39wZUSxwcE9Y1NsZV7XE4h1G6qt48do2zEKFMSmI5UnieznF6/drvHnbd/aZ9vK98N4Xek+mqzhLnrN5UzlRTDEgWGGOfS9DKtwbK/V2331jtR/L88OHD9sNjjkM+APqK2hq9YyJ25IwBEGXKgEooqGt/ljlQWziAGZIggK4q2lkefDGDCwhZbNpqOGh1z0svwCXemjUoSzfkObSiRXuCoAS6LL2Oc+06qRZcYurZ+82Js9tUDd7+tn5y4wLgKsu9goZ5K13fRFVVZJy1C2voWmC5UELgeZciumA4BJ5JIWFGQgTRQkRAc12YEJGAEqMAEisjRMkCSIYUwRBLLgVmfgZXhgxl9T9sDBssRUpJMnd3ZItMM2umS7pkdSNzyD37qEscj6CgAsKL3xFEYDagJRcRLEiIgAICSgpMqjIzNqCCZYa5tDzM1cXq6kZRYSY5dG6PRMTsLANQER1SsczkbSnIzABoyAqgatGLe8Krw7oBP3jxrFefh3SbywBYsixIICKzSxOlIRSs2vf//p+b1n7OeTyPyFg7n2Mk40sSKcAKQGitCzGgChsUAlv546nvdrWvfP/pPPaTvbsLg2zvNu12B8aez1NKocz5S0ABRVSi+WqueHvpF7V0xgRRuDjZWa0/w7jr5V7k6Ah4SRUtgGEZmQu8XYvhAPAiZ1tAyfJdvMLU+QC6gqxLqHIpEbjcyQWq/a2/v753gx70ihCueG6FqnBzKZc80oqkVlR1eecGLV0+gr/9FqynvYKlv0E/VzOwDpZvN7n2YFhuqa7isRsMdGWcVitxe27z5RFiKZkJfW3v7j7smqaO4X/7f/+3/tRna8kzUsklvn/3XQ0Mkp9ePnNliLjeto2rU8njODVt+/j4mMKQLd9vu3OOv3v/9vsfPhzHIY4vze5u9+at99X41E/nSGjfv3nz9dPh+fy6e3z8d9sHi/W+3n/S8+nj690bl+/lOIQx6l39xu++s+27quuo3dH5+P33b9/8/sPuv/w/szKh1NxMmqeUj4fjAN5UxgMat+kaXyI6oarZtWbb+W07xsgFBeZqtaRFDREZkEIiai0zGVQAyPPtRFQgBhVQ0RzJKEnOqa9Zmp015Liy5AwVHKY+j0LkkUhVHeK+9qV/zf0J+hHG6K2xiinnLJmMYashRgnFEDDDOE4Yi6/IEBqgh/0OSMpURgwiGlKEEciwcyYniUUJxDrva59z6fsRSnGmmmLuD8NUInrDllAxJsllkqSMRpGqpmvZVt63bcuMWHOBviSqdttsas3BKFZVbcmWUIYwlRJ8xV3Tvnn3YDRDzs64jAZIwxim86SCaZI8iXPGWDCsU5piFinZsXNkQo7hGNE7h6YoGjJsjarkXIBZLWYVV7n32ze+cVPMf/n06eOXl1jkdD5WbUMCjq0WnUI2hhQpZsGYN7VnZiaALHGKHo1rG2dcyXIOORcZQWzjsPKu3U2J1Oj9rqkNDq8nV7X13TaEESI4LW7TRuVTDq5t3r55G8+nT2E4nuPD9qH+/t/VdQ0x4+OdU/3guG7c8ctnztkhnl4OkLTuGtc2bWVg7PN4qu4ejsfh2J8aQ37fbdrm3Zs7RpU8oaW3//yH7vFRDH96ee1PQ9QSVdibaUglit06qjFPUbKUkjebZsetrbnk3nEBR76yVVU9vn9oSDJqveve/fGD2W3S+VzQmKpVtxGuU6DX1+HUR0Ekw1kKwszGrCGqwEpiz8VDslTeLBmUOekyL6l+m1r/ZnmIOWKlm4ByUSAvnygAwlz8NPuQayIH11h/5ZOW8Oxq3WZDvtYo3Rjk5esyu/yVOplPTlfVyEpPXTwFXg66oDbCuTRs9lcywyURAQVBnJerW3aNWFBFCoMSUBFNWqBoKYUtqWABRKApZTJm9i6MKFkMERMnmeEhiCiIIs3VMyQl5yjE5KxlRVnWcVVkkiWNhXiNwWUtqMIZt15SMURGVWfFUlEoWhiRDfNaY2WYVEALLaAC5wckc92Xgsy9Eq/QZ3Eii1dRVZkbMZVikZmVGTVjjmLAGJrnckiajXXMPmtebjJewu1Fm7V60fkZriH7WpZ/ecB69VNXdiKnkAIplpJtu3lz//CSXw/HdGiszcCC4jcmhlRyUSAk7NomjQOK1pUrJb88v2733hnUnPOUAaxtds39o2naj798Pbyeo6LheklfIs4VcbqK7Ze5ccUaK4bRmQSEZTLdMBrL2c8quStTskKeldSB9RszRr6da3j5f8kEKigoLVIkFYBFrIWXra+z5AIo9fajGdIssGE5yroyDCz0Ca4JTLyhdW421t9gkFvoerOn20u53XTZ528+XRVDK294eX0LWvB6uGXja471FnOtO9ULpF+2vVBu12vTOb+JBJWrQj/ESYwGDdEoMJGSqnMgOo7p86cvta3YwPsf3tuWT/1LTHFMCQspGpEJ5CWrKGQUsa5yrkpJxjGEMAGZum3Pp344TSVILPj05UXJ+8ofT9PL+eeX82SqNifwxrNFRwYFmOjt3WNttumU2Rcl6J+D6UsK5vHDD29+/N3xMNjapYxT6C0pk43nION5DJOJUvm9R/RT9EwuJMJJrLNmqaCn2ntJQgRFlFStMVlyhsKwmHFLRgyGWIxFA6QxQEkljIhxCgcvkzHOA2CiPL6k40FKu3nzfr/3kov258PLxKdnChMNUyW5dlZB+zGqiG8rcCbFWMZEYETVOFtXtYr253NtzePjbhhPr4deCKxz+7v7GLNHNGgzF47FV7aqHYgyineMxMawSsmSRKSxzliDiM75lPIkkQxMcTQEFZJVjLlMw9CHMwB4471zU8p9mNj4unIG7HhO09DH0JN4v+0kj6fXF5K8eWiL6DCG15ez49qbSkGHYXo5xf2u3bRuGmMpWjtfubpxlYqWBImgT8PT6dw0NscQU1Zni6bXvs8pC6lh+fHH7/7Tf/1P3/3xD//6P/7t8PLaj30fjn0fDdesxhjL1hBoSwxS8mnIoMZxTgJJu6ZBMhlYjDdbl6MU9to2putGV8eCYUxPoo2C2ezf7uq7t60LPfPP56fnFIISP95t6q7ebHbN2wfbdT99Ptv3vw+PP0Qyx346SgvemspsLcQ6dJqm03n7dvfHD28Fzaefv/hcOicx58rZNx8evjydU9F3P3y4e9ijTCpxHFSL3N91EdJPnz6lMYOE0Ofe8fhliJLv7++YTSxhGqZ4GkDC+/cPd2/aLLF/yVi7/aYVAHB2d9+YmJCzf2iw4iyItrJbO0U6PCeRmAg/v8TnUQWIQQwozD7sxiLSwgmvKfHFz84/1gj2Svjooty92I/FKl1W2lxQjKIunWEWRHW1vzd+Yl2I5xtDt+oe8OolFuRyQ77PFpzWJjQ3lhGu+1waOq9mkQABVXTWOuDF++rs12fRL6yCJkUARjPnqkRFlz6MYJhmxY8QIiOTquaUSxYwxjpXAUJJJcdAAHXlQUoOiY1la4C05IKMoLOQXAyiZqm8Y7KkqKpCICKpZFhThN9E26qAtAprVz0TACOXUoiJiESBDTNxKkmlGINpClhmWGWSqBAIKYnAIpCeF8KbHwwu/k9W4gAJkeYie5Qyd7mYpkw8i5LXJCbzwjWhIgIDlYWcmJVEuvj7S0c7vMBjXImxVe1+WZ5JAWc6RkUKIFBV2RCKIVdQmsrq69OL/TeGUnkDNZ5ejtYCoJyOQQXlKG1la2unU9+2HYGxbFnAIWx3db3t0HBddyXR+WV6PcZ+AlfXzBUhJAlIMymF881YagMBaG3xuCIcvc6I1Zve4oU1xLjQeMvcmdEe6jqNAJT01pvj1bvfEJlr+yZAVFhqMS/KrW/w4vVYlym8HGedZpc5haAXmI03OOqiy1rm9wLhFC6reaxj8oJb4Nv3YX2413m+7uH6F1yOvIreVti8XtLtXpcb9Ju3Yb00BNCb1cdUb27NSmetJ3GFYrhgVJEwBsOGJf/1f/zLyy9/Of/6SwljivJ8PDVN01j81//jL7/+5eft1v+n//ofHv/w5s//+i+vXz/3iKcxHfvXyrohaUIZxjMj1s6/9Gn8y69fz2PTudfD2I+/pgynw7lpNiWreneKUx/DMIYpxV7UdvHpeBpT2G3qt98//Pgf3pfhEA7hcDyo4LvmXWY8H1I+9K9Pw9fy86/F7N6/f9z9PmAZJnnY7I11OTx9/fJlEjHbx7fUVRTk8OvxfPja7DYR4qZr2tYaVyc1DFaNlBItmySqosaYollECIjJgAIRkkUiJBVitSWV3Ec5h+ElDOfu7V1lIQ0xHp8xZZzIYqo8xjL9+tPXfO5dmowkX9Oj352OfYhZAUxVxVKMs9Y1gpkVkbXZtFpgGCMi2IoYiubAoN653cMbsPUU8vF8wHGwnJtKXW3I4DiGGINFcK0j4BjVVJ4Am7ZDIiayZBXEuUqoAOQYYor9FDU/v7JlsFBy8Qbrqm2aOqGipahmDLkfx5TVe7/tWsNUpowle6uQYuOd8T677Hzd1m0aIzF665u2IkQybi5DJuasMoaYFRpvJy0hT4fnI4lYV5HDEmTKKYQpSrQEaKDdb5vd/s3+7s1mc+qPXw+Hp7qPE47nDAalSNM1jd/SNIZpnFIS5yeRKJnQV77DegPGGWU7CRprmzb59hSScVBbnM7H6Ti82TXVdoPeMtPjhw/e8vB6VnJ29xgcvkq6e/vjm813Q3d2j9+d/W6I02SByYVJIaYOZe/3JcdUD2//p8c3b/b9YYBS1Snw+Qlhevv4fbPdevtUMnz/4UMocejPm/vu8Yf3T1+PQ6JInHzbbjq50yEWu++Gl1NT2fpxCymnoJFikMEiGIsGpG1cxzuH3FgXo/j7++puzzmVcaBNU8wmko9qhPhVysfzpPGsNp/GnMHCZZJfl1uCtar0EqFfrNGtUPFqRtc/boS5t3T28tHFnKquistbd7Ga6vW3VStx3eLqHq72az0UwoVSgov1vpzMNwkxhVXyu9BOc2H/XMZ8myxDndfPwJUsn8NeIwhz+QsjIogyMSAVKbEoSgEDs6ZcUjGEZj5gzCBgmFg1JkXNQCCapQjPJXOWyZhSxLBVyYrYWOuoKYIpyRiilFw74xxb9jK3E2MHMyk130mkxRPPpn4N/ouqIizdkhGwiJZAOeeYFbAxBnNGATCZzNzvEGZ2g2aZ7nLts/MRWKvwcb1VBGhJiThPQUomRGcdEqac45SIuGortlYVFTFnuXku6xDRC3OIK6WiN5/qxeHPiEBAcEHhqABzdZTOJCYRCqYUkC0aU4qGfmw2XdN6RKmcC6oxJoBMwJbIVPVut317f+8ZpvPwJIK+QtuOBSmW89PpMIQk0LQbYisFEAxhmjW/Sqv/Vriq6i+D7Do7cOVRLnjmOuavOBxWJkxXDe6Ni14nltw46Ms+ljtDMLenXMnby8wA/VtIoGtUc50Ti/bl9gLmo+gqJvtmtsPNrJsPoRdcdjUpl319g4JWnunmPl1oqd+in9vbtFSkX7KK3xJO39I/l7duMOcF8cwf3qLJbyDaFeVdM4BEzIS1s/3r809/+rc//8v/7kqx3qfxPE7BVY2giWP/+nQUuetP/T999z5/+P3b+7d/kX/59S8fo0jJ2aTsttV4zuMwenYpFTUSvhzckQUkvZ4E4HwakrIxbrPfVG2VQmjvu0agfXwcs74OfYhjRHh4v2n3FVSQOxjJJ/DD6VlBfeW33QezaXuTBg0YBjocylymWODLrx//+qd/ffn6lHMxyVpb1Sn00/kwvnxKw0fv2+rNW7JviEyIUal47xUwpaw01woDASPS3KYsSoIMAqSgRSLkaXj9rOOr6lCXEPPw+pSGo81jbMhsq7poov65ql3r4JfhSUP5+Pnl4W3n2kqmBBWpQkoEyorUn5P1rt50lTU5hRCiYcMGnXfdrgYqvnGZwW4q6GxBR75myVrytvKeYQohaLaeCZy3hIQlgRL6qlG24JyxjEklQykkthRV33gxgOiYNhK0e9g9vt/3Y4yRmrs31jKeny0WVJAU/X3SnG0OFgKR29xV9aaJw2tV2bfv3mcov1Yv57EopM3e3FfteYqn1zPXze7xTQxz+RamkrNkZTgPhzGEVFKMkZEaZzZ1600dU8QsQGS9U6D/z//yv9rKUKZdXX3/3buHh8eRy+fP519+/nJ8PQ2Sm4cdV46k3HcNVVWx9dcxu8LGWagb3dypcyFCnqTrqqr2T8fBAFRWK4Fa6pBTx4RxOjy9Uuf8xuNQW4Vm+12qH5/jNJX0S65t3Zg3b0NVBXIDaGJruQqicYoRUW2FZRL76LpNUWd2m8e7H935fPrLv7pmb99/KMD1PUvMp6EkoGK7yWy4ewhx+3oupwTj/TskC49exnxm5s0HgfJqhLnIHTlbu+02vn597pNhrJpt3VasZpoiee82b4dMTFU2VRZjYh199eXQZ6gC2Reccq/IIshIZK1JOV3iyos0U1HnEmhYrYMuAmGYS7oBL8mu1WqtwTl8Y9kW6wy4Vo8hKmhZai2WHa9A5daDzG/eCB5u+OkrCLuEnwC3vM56QrpmJS7h60J431zanKRAFSHk5U0FUERia81ygppFZVmOoYjqzBgBAM6LI6PxSKhUFFWgsIGuta2rGCiHEodEWiwCGTLdJnMCAsQq5awFprGgmphAlM8helcRac7UtPXh+fXj56cvh4MBev949/hmWzUVYylSBBRUAFVBpJSlg5HMITgikiIIgEhxxkHJJQZiYIuVt2wMMFdgrGLbdgVkLDhJPsZScM2sze0KFUpJBQohkRbNxToGmdssZhU1bCoLzlAmRLb1rq02nYCeh/50OJeS83Q2zithFp3LZRcNN67dF+c+ODMxeB08l3Gwqr5Wz4SzLBoR5tpy1VwygQJyLkIqRGR927QP2+24bWsijOMgCrbm/f0uRsWYW28d6rs398BMDCGEkgXBs9nYzUO12QcwKeYQk6sq77ikUkTHEg0xsyslAUJZWzIAyNwJYulRcFEsLwTIJYt0YTz0xtmvrnsmRWClVpaiegQAmskdWNaFW/E9XsCTwpomRFZYum0igi69yC8nsPIcN6+bzN03OOnbSOaCgy7fWif/t19c66x+K+RafqxZ66ua/Qb34N9sD7dnPJsmhfVyluFx2fC3CqEbPvEbodktkLuBPnj9p7reVli6yaPOoi5ri+IwxcN57Lx1+w0D7n0LhAJaNX7bvm28/etPv0iBtu5+/O6fZAzD66CEOWUgLTlb7xWxRMHKVbtuGMaPH5/evn3YPTyGkJrtNmdRUGFJGjPmpql3u92bP3z/y8evH798JMq+BoVpnA4//vCDqfZjdHFI46df9KW///FDc//dm+rHVxxOGhjrUtLr5yOx/vmX189//uXTX/7t5fl5//7B9OOYwhhOw+H5S12BdXy3a7ZdTcjjENBUAPMywgwk85jmuRAQUJEUlRg1FyZiIsN2PI7HL7/i+LKtTeu9JRf7ckpDiJNpmp1rBbIen321s6ZyVASKq2slexzGcRgJyXfbMuX+PAJCzY7ANNY5a9QaiRkULGvb2P22hpKdJdd11G6o24I472pj/Uhsy2QoWwfjWNg6x7VBJWeUGAcdg2blnBCQbSk5lZgBvfd1bS06BTaNqx7RNb6r0TNlQduQbRDx7v6eUEvKHpVRIYmM53B+MgS1sy5aNuXxfrut6k+fPjZYXO2GMGpKVeWDxOl0TEOMMZUiKSdDpqmbrm2SlOfX11PfA5FxRnOZzj0KGDQkutt3j/u7NI2OLaD8+udfnXHStcx0/+N3dVs/PhhL7rg9ZkbXNFoErW3v9lw3gdyjaYcgGqIw5boRw4UZrSZJ0r+alLlELAWBKlPajWm9GEzG0e67B2PdWDDQMW/3B6wHrJD5UyxeMRk3ZRCI1hpWDakg2brtUHTIIJmBml/P5LPWFZ8BzQS8f1SRX7R27KWCTEHRszNg5MuU3QH6Uh+0TLYWY2Ip1rhYl1zUOZNj1FI8++qh4d0DnA++22MedGsHb0DREGdNQuY04QSErEVtTFZfsvr0MiAwCZmg3lTMjCoiOeaSAVFEiFaze7Uti1FZDcZNPolIlizLDa+u8E3gfg3L5h90CRFvOPGLAZx3cAU4q35iUfLipVXgur/byBlWR7CY47XEmghlDaIvop/L7vFGIKmqjCQic5caZgPERCYmjaWMY0QVY9kay2wZlYkUUAlECzqjwiLEIKABJHgL3bZ+2G3v6sYVDKf+DKf+pXdodg/b5mFT3IyvWCWH4zi8hudDyDEb56y3ls3dQze9nD//9ePHz89fT6en8yAph2FMOX//nbGWCTGXwoyCpAqWEYqCzjhixZYIc5cOp0oqtjLWIVs0iKaQr61XxRD2DZKl85RfjgMCnDMkJSBGZADQkkiLITEEVIStWlvYoSbRoiDoLHhLdcVmWytAc7fxXUPWTGnz8vx6fD6czmNKI1snCmQWXzW3iiG9VMHh7MxW57w8+nUk4QVHw4oSrrlPBcM2xEiEAIyGSJ3f3r374z/f3W3T6fn0/GpUvOXOGmXKlphRSr7bb7Z3TXf/dpzS4Xja3d21D2+GSFpX4usIGAu4pkLimLOIKjKzRVnENvMChUv2bklXXQW3M9G10jjXXNYtS7kigd+8Fke+FA0syaVvGaYbX72SKetfS3ZxAY1zSHBDPl0m15VkuQCdCwy6TNAlXPj79VjzhcFvPsBb4KM3Z3d95/KFi/Lmt7fgepkzMfybLVaY8jfb6g3U+3bz3/yxaKGv1uIWwcHKLa2Pan6QUjKMYxQwd49vms22H/r4cppC3G+3jq2mUIGtGBxyfxj/j9c/7Tf3X3760rbwP/3P/5Gt+/mnn16eX/pTb2rTdE0cU5psLEC2+vD7P3SbZtN0ILmfzimlbt8pSAzB1b5m122203H8/MunX37+aynZWfr45186B+536rzLyuN0jM9fiWXaG7hvqNqBIRyNQatT+rf/9t+/fvniap/P4/NPP4WYUy5GU3x9fiYFS2a727//3Xe7/Z6MC1GoQO0bZhtKVBViJgQpcx0mESIqCRQUYmOSiAqQMdY6ZFsEpiFUxYyHCYm2Taem5hyOn59srfvH3cY0SvaffvfD6eX8r9Mvhy9P1nMISdFWDRvLrSMVqSoPwPk8uK5pt42Ycnw+GWssIeScS4xRsG1MfWd3b41vEKhti0d7+vQTFgQ0yABIgEzOqjO5qHo0ltFQSBmc9R65ho5rqG1xQFg0JEEH9dbtdursmGImcdaDrVQByQISWskqwqhZwG7cZo8Spxyzs/Vmkwx+OR+Gaaos3t/fjaH5+vLVaPzuYUMlff06eCjcWGRG5ZRynHp0ZrutrTGKQAbTMKYwhZDQ1JU1lIPjDJrCcdw/Pqq+q+rdpnWn8Tg8fW6m2qDf1M7jzu8aJYpqAtieWH0FTfs0ldP5tDG43VYTlpATs4GUYTqH03ODaD1rLqVkSamxVKP1bLaP9/WuYd+1hbJrI2+Og43WOm9LyseYrTVAKhJzBiKyREUSgbAhScKVFdEe4Dxp6YNlsWIr+whKJAQqhAYqBWBJxbIWIDnjlAuwR+tTloI6DdFYRoJSCjELUUJMoGhqao3fv8MSnyQfWFFBc8Fa2XIUFp55CyNAmnCalLhBIEmFCBVKKlpELXPJWQlmyuCmiTysq6EvdnfVqs7BkSgs+o5bEdA1RF9gy+oAVjuGq1bzWxb61qrr+uWVUF+IojUnspBMeCXMFxs8W/252yGuLnQxYKLKgERUpCAtK8DPnYGQEADnRjOIRFBKUSIEpZxwTOnT58PXl0NOUFV+07Zty8ag985YA4gColCM9SmohlRR6lrommpzX737/sErmTTpaQyvz+XLsxlyvane+J1jHUrKjMY6o2JaDoG6bJ9YiyOuXBhT/vo5n/vUHzVNUz8w63Ds/8enX8PpjCF9/+O7qvEWSUWygrEOJSOUkkUVSoyIUEpRFdViDaeYWgu7jd9t22pTSdHSL0tFY+iHPgEmb6sHMQ2a2vhD4pgLoyibnLPV3LSmqqyztauQuVgGTVmzzgkoZjSGmSkXVYglATvvLb29bztHh6N/eT3HIpSFDMNlMVmh2TXPPIesoGHNq1ww6ixqWSTeuDb2Xni6WeBdiI0FUCQoIkPJxtD9D+9DTflg68rmwVrV3A8xTjVX3c4rNuz99v5h//2Hr+fc3AHt74JrcpEoIohFSiaxhksBVCyqRGiJskQVIF3Q2pVwvDITqLezYYUbutZqXUiHW4rlKga6fPiPYMG3r1twsYKAxW1fM9kXWuZGPQP6myMsf10m9LW07MoCzf/dnL/CmnNdmJrbHNaFUL4eQa97+oe453pBy4Wsf60nv+bkbrik2x1/A7PW23sRO8/DiC5XrJdxhlecrav0SVcyCBSYaejHtm0f3r/f/LQ/DefheFLV6Px2W1V1zXnMfZ8hhjHGUF4/vxpD/+k//v4P/+X3VesFEhk8H3oBTVOiLLX3KQbv7Xbf5Zyfn77UzjDr7m779rv3yDakWDcVCo7n/uOnpy+fjnESIKOT+q2phZ7//Fe7nZLpxtdjyi8I8vJs3MZbK8Z7KlBifPnr169/+fOf//TT44e7ishiqhsumkzr7K/HQVGbTbd/++7hhw9Apu/DkII1HrSAoojMg/eCpQl4uXPzEuUANOc8yfh6s398P2KJhy/n/tSfz03dNdYZpumcQoyInCcaB7Kde3hssRDDrzkl6xwz9SGmk3hHXUWaSxz6ohhSTpqpQguAmKXkkvH1eRhCYN+0XUPVnt3WuKrEWNUV7TfpWMXTOSVt6g0BhFimzMSWrbHEdeVNWwFCbe2eyKMBW4szZ8nPXz6/9v1YYoWnyljSFuaVe4VMLllUNVtjZw9RsjAymQYKGVOpSxU2KjHK6ABrZ2E6FWMa1W3lbWPfvHu722zvt2cyxrU2aQxBnp+OMQyOqt12420+nU4S5HG3qeyWimgxueQEQ23h7Yc3x5cDgPzun//Y7u5LmvTFTSKgnlz7/PVwPh7v+GG32VhrzuKHApYMAIqqMcZZ7Nq6BZ3GNAwlx2Ah9+Mwnk/N/Z4Mno5Hz1RZL/1YuALZ98OkkcesYOtJKACB9blAKoqWE2vOkUgWW6OFiQCLSBFUQpNnfSRRVg9sMuqkQMzACFIAeIamKgWjEDMAZSwERKJIhEWdYyJUmNcYEEWUeXE+RHCcEIkNzqXjgMqikBVRaO41TApMyABQUBWZQYkKoRYps7ZDBYCAcOlbf2M+ZnnFHCCtVnsNGQlRb8PWWRn7G7OFN1b8yvrcRmZ/awD12y/f/ncNVPHmm1dGAG5+whLeZSnWEJMhQClScplJqEsyooiAFkImw6gYp9EZ3rQdsXs9hb9+fP38fHw5jlMUVawqGAO7sxrD1lm2pAqiwgaZAqKxom+3dtdUH95Umz03zsa+P3z69fDL0/i175/71vlNVeVDzGM8lkkqrNq6NZzPwUzYMr2Gqakqa/jT+StqetxsHaH3TSnyy5fPejpUVMr0PLza8lijaQ1QirmuKslFc8rTFMZUVFPISJhLKTmLSFNXkqKpEFvyhpraKXOxrozTmI5lmvqvXzSM+81993jX3TUNNXwuMReDBQhSUk+4a1y9qamyrmXgMjeAZSRURkCFIqWoKqScNaeQsgxhCrV3jff147Z29un5ZFGDiCAgEepSy2aYZR7w8/NbMIDCim8QUVFAZS6Gn9uIf+PgEBWUkRQKlMhEhUjJZcpme99uus3j3Xj4AiHllzHH5GqzvWuTwBhhqjbPEaDdM9iBfFHOUBRIRQGUmUCRiXKReSF3nVdDQECY18hUvHH4K5lxLSrHq2vWm9H7DSsyo6RvRHgXOuOWePkHcOHKX+gFRsFCAl0lxpeTnM/vuj+9fhkuc1wRbzb4lve55Y4uE+5yjRdN4S13fPv6v/POP3jhKmz65p5fmLfrQmC/RY83JmLRal27IF4+XS5ZLwjo8sjm/5FAS6kr4yuz2bTv3r9DzR9/+kVV+9cjp3DXOQyTM5hSjjG4qs15QsJhjL/8+skYDWPv2drdvuR4jCdUYSRks911vrLjkKPkkuFhf/f+u8f3331fd3d9nD59/vLl8+cUwrmfckZ2LRO2Tffd+3etrcLpPGR1d7XbbDm+FcymeSBuSgZmoMLH59PLp68sIiWNU58BYxzf3u/RstlUbtP5w3nq7jb1/bbPJaSYRQpDyTH1gwp0m43zVcxhwUBKADJnwXDuJCZAQCKSczHom/17KJLGkKeXblN5Ysx5SsXUrm7aEsqXL/GX10937x7ajT+fprqrFYG5QiRDU4ZcNcZSzrlYwyWCtQ4Ax9OZLbUV1u3GuWo4j6zOt/f19i3X+yjVeJoaS+iAW7p73L2G3hnXPdylFOGcs6l80zrLSOS3HiwAFlYFVRVhmwHVW2q7eppaKOgqX1eV2+yiao7RIDEBEhI5VQUoTLR2dkeAepJSbDdKYVugTNvqbR+HMf+5GeOHqnr4/ntbY+Xarnm436Xn4ZBVa9eK0Kbd7vebqR/P555SdkWqrvnjv//d2zd1Ph+ff37+5a/PTc0/vH3cPT78tYJPLyepXUSImjZ3Dy36DAxYQ11Z04qvqGliweMpQmUbhjKO9+hi5TiNHIbOcMFyin1MvdewqfV4HsPTpIbj0D++f3zYueFlTCd8/espTJZbELTjuQgjZ0RSAClQEECleLPGWQqEVFRwldHkFIlnhSZ641BhARmqKDMSIFDUrIIERIqKoESEoDPyNgQIIKXM0HtVt+C6piSVedlJnFchmMUydu53pwIIhMCSlVAsM6KiZNUCqmgQgUFBYFGkrkb0aoxmS3MjHr4BGFepzTXIXTe+xMNLKLWEaJeE1rXu42/Cv2t9yfLFq+VdUwuXU7iGuZfjr5Z53q+AOGNVNUvSIkTMzNbaUjSmDABERIyqmCWjqFXTVLU1Jmd4eTn/+efnr8cpZA7aqiMEmEDCkKEvgEiG5lp0JmJURui6TWftG7QkTFOA55BeIcc8fT4/f+qHQQ7H/LCrzCjnP38xXJqHyqk5PZ9fp4xFQe0pyesUXFBQmM6HNw/dh7cP2xSrp9N9V3/Yupe9q1pLpPd3232bLB6pmDGl/vAsyMgwDn3fjyEpGuLa5ay5SFEIkmSMrHY7+mmI1UaM88khGbZ8z1bD8ZRO4+H55NutfeCm8W8pgSDnABJVwaowFMZSEnPy4EwWVWRBYmJdnAUiKmeUKCCCUEgDxMQuzRa+9s2nT30Z+oJQVESADRFwjNkSI2JZIQAvJdyqIMAEigC0YI0F8a6do9ZeCQYZVGd5AiEgc065T+irDTsqfsPVHqLyNtSMpgIlzGOyxgzG91JR5oKYpORUYF7BUwGZVEWKIgrB3AydipaZklwSt0gKgheg/63HXQHcZSLhdcReN1y03DeBwrd7+b8DEFCvM3QVUl8SXbdu/uawsJZn/u0R4TfbfvsnrpZCf7MJ3iChv3/SerlTF6x1eftvjjpfwjdY8iI1vxDUeP0Qrnv+B+e/qsuXJf9u7NZ1kwugwxvbuLwtUAhA07hr/Xf3+9PHv1aoORVrnUN5ef78u+/fvn9/99P/+Mlntt6U4ghkCv1f/jz2/asx4MB0vqlqe9c66JqXlyMx322aqqknz401qHi33zdVfX56DeccUX/+6Zef//pLmPLheD6O0VZtt2vqtioJ2Lj9fYObnX/345DsS86O6e0f/lm226cYLLPm/OXjv3799Zc0nTcbm9PU50SYD/3p4fGtSSLt3SYI+6piouE8orXe12JyOE9IaJ1la5HQEIsWnHn1pRQYiWhOZROSMUZUp1RIfKE9N/fW5LpEDinFsdvvsFJnKyh2ejodX/ooL/XJiEybbeecO5+zM95tmSy4xpQY+5g3XTtOOUkpII50Gs7WObaWq6bxu4pc1W2ru/vJdlm4KBWkPiXHhI7qrjZkU4kxh7pt6u3bqtvkEnKJxkiGpHmcYu4zkjhnE1oPrjZ1e//WT0kLemfZIBHSBKWkkov4umEClZILZFIihCLLMMK5GSEzEjt7klxKHqHdV3XnFDDCOJGlDnTqnyWMtml3j/eGGSex9OPPf/7lOJwSECJwXde7mjdqvT5kVOB297C5+9Fvah8ma5pQN8a39bZ62N4dj/r1te8n9Q9va3osZZogh5w8m5wC9EWVQ8ljiJIClUyOaJrodO4g1JBMVe7e1sOUz6F0d92uroaXY0mprjodpf90Ki6S9YdeoWXnbJSoBIZBVZFQcyZGBFMWlQoiIIgy0zxakGbORkGVCZaVtEUBlQhoXgJovpNXEmVp0Lv0tENQmUOetQgZAJFkXrJAAZdWt8AAMBcGA81LUIEiqqiKQDFKAAXnPIKSgqjOaxLpbenTjVGDv28OL+z3N1HspVRsrcRdDdPa5O9md7qa/b+T1789yo24Ua8nd0VrN0qim23WCBqpFLk0gp5nbChFy4zMlJnQspQMSMhk0Dq2/Rg+PZ0+Pp1fDiGoA9MgkpYoKKJYpJRcABALAaAyeGsrx0QchDDrz1+Pp5fhqwvva9xZBtFQGM02VXl08KfD+EUNM9WkTUxEokWmPqEx4KrXKY4hm6Oi5o1TfD7Z+qOSyjR+eHx8cI/4w2Zztz/HsL/fSpy0jNMxTU/n/NoXMGgplSIxa1aypsQASE1bhZynmNnw4ThKziFoVm72RVA2d13bPHBTU5+DOp2m6TjQp5dkTt5Z5xhNLJLSlPOYUs+VbLI1KTkST1U1L/9etACSopYiqsBsq8YggJTk2JQwlRQ1HUFM63etUbE4ZhlyQXZIBgGtZ8xFRYhREUoWApg7+xHhPIRnb0VIC3unt2MPL7zLvB6Z5iKQJQsSj1mmUgxZ2+zFgu1IUTMpqGKjRJiKRgEQIkIkMMBFC6ggz8lZVFRCWjNuqt8g8dvVI+BS9PTNGF587M0wX2mMpbTguvW62d9OjevY/9vX5X395rfrpFrevs0W3fA1F4D0mz2uiby/gTl6OUn4B2e0zkX827NeIdk/uphvTuLbK7kcUVdpIF7fxG+/9o9e+Ft0NJuSa03ojENnq7E2QFr05yqixprxfBaDNRnnnJQYx3NXdx/eP55eXljcH/7jh5JTLImcTSlMOZSQVYuzZhojajHIurPIzEyMNA6TQI6nft+2YN2pnIvAqe9fnl9TSEgGrPn5y5ef/vprCFkRE6KvK2uQKwbPYwHoh/39Y/twP57BvHtnmKXZZnG189tNdcTD+XT86d/+devNflO/judjHJ012dXJe3M+T7HQ5nHf7htm45XZVKQctVhv201nrZ+mGHNkwnkJmOWmzVZdVVULakY1ahBQySpDff+AOvIQ4PhF8mgbabq7TFw8Nm3zpvHozRCmIlmxdPv9nXO//vX59ePTprJt5UBECBRhHE6ucvebhtjFlF9DVPIZbdXtjN9mcqZtbbfLYLmoshYugBAmZUG2bhiGIU6KWjt43NpuVyXhc59NA0CIGZR9hGqcMBVUX01RPaHvRKc4TjENBwQkV7OqIBWAJFJAtWRVUgUshQUMAqOyZS3ZOT/3MzPOZdy46t+RxOd0PqURpA/iqv788unzft9ttptQ0un8uuWuPw2pyPc//kENpxyK8aeYXgU3+/dS8ts31f3jd2PMvUx5o77OmewhI0eaXiKpr7vtVI4h9Ww5Qzq89hbgrqkMGpCYrD9nHhIV8A01gjD1p3gado14KwbEV8aR8RaN8f1zfzoftrutMd5V/nAKr18Ht7vnegeuodlC07ykkioAskFABJ6jQZoLN5gAgIkWcwmglxUIFxIECOYOwoqIRNdGGTeVVoDf6PmWKXpJXF+sM85rtivAvBJCmTvpz3NdRQuQzFHP3GB5PsyiIV1+wxtz8Deg5CJ//CYeVVit+8XsXD7HuQL78sasyoXbNoN4o8P8htH51jhdz+yaHVhivSXmXf6/Wty1vHblyY0x5DiVJAoimQiRWEWSZE6kosSG2U2Tfnx5/vz12AcMYKmpKeGUtJSScxRJsjT2RSREmvtDk2NuqhrJiNLTaXxK49aOPSe8a6NTLNm0W23rXqZn0AHcV22hsPYDviQpGUVUCCuG2gzZoLD0cd+6ZDX2If38vKmkrlCn465m73aiVFnvjCeDaSxJ891mo1kP55AFjWnabtMZKjSFcUAoMo2s0jkLYPvX4eVQcjwo2PcpNx2pK2qp5NQ93jfG5uPXfBw19JRZJtLW6cYWpGxEWIyxpQh6IAKIiRiRBMgCKZBRJkAsIkCkzIjExpBxtqolTTBFnQbow31NNdGQ6WXiSTkkTSWRVcnRsUWhmdtBAQQtWogtEBYRVSE1PDetnlfUvKzfCqCIqkIwt70EQDII1htEnNPQQBRS0oKFgImYmJmKlJCygGYANkYJFFQkz9MI5o7fCoBYloTXFfrDLCXRlSm4DrfZdS7jepWS0Cp9gzWoWWbBTapML7qhfwAN/hFgwG9mJ8C1luB2g/8zuHGdidfZ/g1NdbODCyBaCyCusu+bba/hyt8eF697+T9DK9cDXU8OF+5nDX6W+rubU75e+qqmur241cheIqn1mcnt9eu6SpouAd0cH869vtDVtXWMCtv9/bv3H9LYV4RWQ8P57s0mnaZxTGzql+dTTqKMOZfhKajA/m5b2WqK8ukYi7MONIWjGpP66eXLa9s0EeE0jOdxOhyHPMWqrVUpQTr1Z0dUtW0GfZ36cTy1tbl7uNs+PEQpx+Pp8Pll2H/2b37w9k0ey3NMXddsusYZ3W3a3/3T98PXn8PzKxneUPXaH5xx999///2HD6bpWtIGUTAnGYdu95BzmeIQJNR1iwpxCiLFsF1CyDn6RlDQOX2ASEBEKFKyKrJhBcqqtt0zjmU8hfTVBYA0itD5EMbNuWvutzsvr6Fpa1MbUztRrWpTVxYJtOQU0wg5AxKYzcNDs+0ELAvx5h0aX2339cN94aoIFkO9ZClqCbzHFGPtjfN2SOXzr08pJ9vamKbTl2PrW2doc7/v7h6ZJeYosRSoJ2wmCVp4FBFSQ6wSjXG15ylMsT95QOPrksRb14fR2WXRVyLEIihKDKgAkgkxx2CtIYMhREQm45Tb0TQ9D5ibJMJhELNx9R6lCS+Do8Y29Z8PXw99PE/iDY2n8eGHXXv3+JymX7NAVe2qXd+0vwxfBcHaTaGQUkm59OcEErwJj9vOGojjGdhHlUBWk0IpTU2IKN4H7xJbJX17d/eu5jPK5/4gUmKU8xhSimHKxN5ZGI5D1dZ3j3dFRSHvto06qd/eaV0NUHJUTKxk1sLNWZbA83RBVJGCyLctP2QxyTNUXgDD/IaIwmwrmVSuxKteZ+ll/q/paVhkEWtOTAEURMuKB+ZkuErBebnMeRV2RIEiS6UNzmsbXFrow21E+PctEd5s8U0QCHq1+4uFuprBNUjTtfAV11y9XrSZywd6tUnXYt3bI11Y91Uh+nfyBLry1ku2YcFkmLIgqAColtnPsIUCRZIgsbU+Fzz15dOX4+tpOPWJbIeuEqApTcM4gSppVklz0oeYGcmS88ayNVVjCHAcQxSdpgQCqGbX+ZdSjWOyTKzcD/K5l1c0qarE1hk0QY5TKZGMovdexaQToPUGOI6BGDaV87tacxz6oasdlKwo4TyNqQRvgHPXOQU0jTM1R4CMk5ApyIAGDJbCvsA0hSmqIDiDisDWO7SiZpzy8XBmNZ1XzIiQsHGk3vvGbkkN6VQ0CJAgWNda7hzEApnQGm6qLApFYIoFIizEmQcxiGiYRDWmREzOWCEStUpIDkml9JPmYkT3vkm5TH1gZrYEhpXqFBOVRITWMCiqEAJABjIMiFmF5owY6Jz2Ur04ekSd4wlYWiKJIgLjTNQgIJQiooSERSlnQQEmRcSiKCJAQBZUZEkb3bjUedDKkuSa3eps/OdPr5N1Jnp03QbWOBlu++ss/hv/ZpL/BkDdoon/C6LkdgeXOfl3dvP337qlmtbPrsHYb7+6XNB6mN8YjhuGSdcw5O8eEP9m33/z+maTGevQb6ko/QYbffPdv7+X36yJcWGy9NtTvqTdZinaRcmk1nDKCQmnkAphc3/3H//n/8fbN3fnr7/q4TCE035b3VfulPSZwKjmlFPMbdclI8d+PMexiBXBaRqEokNlAIPUbTrJ6enLMzjPbJBMAj3F6RhGVPSt7br6odsymudz//X4NMpUcGN8s7l/u912sRxecjqVaK0C1wmisU2u/FmmGCTHkRk329ZLRjXhmKioFXh39+jIGGd537X98Xg+PHNT4msczykVzUTTVNh7NWy9JwRRQUCctf8KoiI4d/YSEEARRiwooCop+8qz2wPB6ctxzF/SYdy417pyOIRhGEIdfLMBgdrV9b47xeE8DCmmlGSMuVSkmKCp6zd7R97cPfL+AW2VotTsjfEFMDibFJMIZmFODsRKgjhaLBtXd5X7WVOKcS4xf/n53J9G/OmXSPSf3+y77WYY+6eXQ04Uc3zp05BUfYOenSUlQCDvrHgFlGEcwwTWWLJuSnnmxVEzQCFgVZ374AvNi+MgG5Ml6ZSdc6VIDAJI5KpRIcUilbfbapyqU4RmqLe2ayy9TOmlehgMFrvDnEupOfkGmsIuUkklDK/nr6d0GMbtrhUgiejItrvOVhwTTefh62m4b3FjfAIrwIXx+PJUxpPsfVMBmsCWKhcRhMsxZ76/q528G5+fXr9+Pb+eLWoKGTjv9/zwuHO1dY6mHLv7OwA7Hod9lzMcYIpF6iCdImcFmlOiBrPKXEoEM1mKqrIsdL3EefMPvXa7WOIWBSVFQAEVEJzXdrqpa9B1waxby6jzop0LFTn36hUFWOEVooqlC2RRRRJUABYo87pVi5lcVrRAvFg9uDVXt1bl70GfC3hZyj5u3AZeN7m1QwvzffEBcCtTgPW3W6v6jaW8RN0XJaPCItW86ei2/DnnpxFIVUEgl0KWrDFECJJzCijqybGxKeqhjz9/Pn869mgb7roYSx6GGFOKSXORLOjmSoi5Et8QWG8a752i5lJSDsMQUlbnGvYNopTOf9IY+qgSYSBgm8Fm74DdFGSaYopYwELFkDVNRRKQ9c5wEXHOMpam9rt7b4PJp5wF+ylAZba1N5UzWEhCmQqU4rxJBfyuuWtaFcxJDy/H8Zybpqtaa1mIy6hBQYgNGbHWdnVjGxtD+vJxGI7npqLdzlVbLJSBlTaVGk+1sVGYKRmvbICd8YlQARkscQTJSUNAQjSimkWyGgNkEDwhAbKKSk4AiEToHNdVqWrgnvqhY0DBkgpmGYpGgQwugWNDhAUgF80AzGBZEQgJGGFedVFQkAhl9sK0LDO7DPRZ+IIAKqqAIrlkRBQiQSSyTNYSp1SIGBRKKchKzAJFUYvIZfAvxfigAgjz+rh4O7hlGWCA8xLua8IXZa1IvEylNarRyzyDS4GYroXW8yHpbwmU+Xh/x8X//RdeYNTfT6Hdzs1v//77cGTZ0aVs6gqP9HqOy3tX5fblmm/EeeuXrjqpa0z199HQDdTBW8rmxlgtycXrxSosVe03l3ZzkrO1uHlCswlSvDJmK7pbzMoirp/3ToAixSAasl9evuz3u8jIu7s9KOR0Or1qOJfPI4KEr4e7gtq4VNUTiG2qgixPkFJOJQMhOUogSJDGtG82mqFkeX4+bx9ct+madtuPQRWOhxcCccZsa+OFy5Q6VheDAIRT6EPKzlXb+5oaLVHbDgkFyWw3wKaXVPKE4zh8PfzpTz/98vPHFqiqcByDRz++TP/7/+t/3b27N3EcpuPLy9NX4xk0IlREFSoaIM0ZfVX7SolVEYkUlrZgIEIAsujghBVnLcUsgzUWY4kCxvm9ffw+jF/z6fMwDBKORIahQYTx3GPR2tL48nIMR1DI/VHL5CsfJeUS24fH7vH7ut2R31C7Va6wLqpUgEOOkiGLFgFLzAWJkEsOh0OKRy/1kLRBef/mLgGllC1z0zWHl5ccx3f3neaHMZb+OarpilotM/QlEEWkourZOOdSVrIZpmEcTkHId7uSgMCjEjGAiiYhREQogCCKBgCxFHXWGmtyTmwIiUtBBSLnSUSNV9umWvsSTfPuJYcvpwOoVrvv2qqu95vhqS/ZnrLXiXzduNq/pNNZhwqNa9osKFMkLSUJARvyuZSqws2m3doEUxmG7AitaMAckozSYMpF+1Ih5wniNMXTxzzYAu/vH5Lx5yEqMjuq2/p46lOOD/edQaAUmgo3LTpngHVrz97wk04NVibIk2QBRgItCIi6aH1WQ7Z2zLim0BfnPf9c28Tr1RTgVc9Lq2JgxU54QU03xA+sCzQjiRZAmIESIYIUQ7QgpMXq6CzeVAAEutBRK5lyNbC4Vr7rJbi+Zqn0t2ZqRWaXNqlX47pEVBcDtJBh13BT9UIvX3a73oFVCbpYxwuLvZzYmlPAxQivhmu9SVflIq711IiCBpCURGhGjMDsLagLUX/5dPr49fgy5GSd5UoQo6SUc4xRikguxFhKyaJgjDHWGu+9d84BQUgxTkm1KKK1lpmkiHoe0JxDSsIqTgO7yjFxEUGwmorGTODQ2QKlSPS1R+MEjGGb01gZqBxVDjClFCIiI9iSMjbeVR0yG8wlB8kZRMJpyErO1+yMZx+DTP3rcBoikqsb4+vGIuYpyaBQGke1YU+lQuOAT/3w66/H2rs//ruHRyOGcGZ2rPfkPUhKU2AuZExEiIqkaiwQFBTBnAgRiABAtWgOIrkgQxay3jhURUil5ITIZCyaStBi3ZJ1kDJqaYoyx9dxOgwliQiCNayKArx0RiRAISklgzCpYS6aFGBehB4Av9VtKBKs/cWJEQmYrBEVZQaioggqIWdm9mwRsCgKZ1AguUYXs/hjZTx1FvjAkiNeV9S6xDC3FMcNQLqhEm5+vbjldbnab17/GOH8/wF/Vu/92+998/2VYcX/y12vFA8CfDvFES6qvqXl9IUw0hULzaLGm6PcJsu/Oeplq99czW83vMVVN7f3H2C425jtt5+s2bMV0N6gu+Vb1wT6pUPrHHmCYZtzfnx8I1DGKRLS9u6hJrQxDJ8/P336NGdFOlc1D1vbdKPIl6+HxPDQ1YfDqfbGGGMa573LfX889kPfYwRGadoqhiwwmdpV3vrqrmIETbtd07CBKEUpCrzdbWOhqr1/8/i22z0mU/XjMBZqsU2jqhXBoiKuqbNaKtA8uH8RPJ3H0zi0bWtNteto0OF0eB3SYDSMp5fnNE22209B687XuwdVSiUjWbBeCpZcigobC6iiOjdMAdW5EoHXfiigLAgFAVAI5zQ41Ludh3/Sc5MPn06Hz6DYvNk0+/3Ll+fj0/NnyPWmMhrGc08hvN17U9mXQygJja/c5p7btwlsAFeExZiSo0NUsorAxjAgFWUUlEiFzl9ehuFLJU3/+jocjt3uviJzOAwNl7td3WsIhy+v//3/W8UftN5tmztsH6ZMptFOYQJMrIU0aGFAUxCNJZ881OV8zPFFTqm1O0VKSW1tSbGUgsaCoQICqqxikIw1WUtRBUNAQKhAWopaFF9Zx6yidbf3iAK1GM5WmBCbraltQQYPdo+nKUyH47t6VzF7W4WmVHUFRSRNDtiTn8ZxPB2rzpocRHqXHQO8fHoK/fD28aEW0Vr/f6z9V5MsS5ImiCkxM2fBMvOQS+pW814sGhBgFrKDlxXgn+MBDxDIPmAWuyIYYHa6p/vWZeecJJFB3N2IquLBw4PkuVXYB4RU3ZMR4cTcw/WzTz8l9poZuakaLFI0Zu57X4bK4fPjl/12d9g8p2OvqOv3y2H/alpCy2M+HPb0frPu6rBYh3cVulo2zSK+juXYv190XsdxxNeijlpUJEYVMyViRCMAEygwLaJ5gSEwVUCmCT3tBCszyTj5roQ8tTk5SyjzRmY2+ZwzwM5L70xbEJ3iWTStAjVVZpMaTEnSaqZmMPnNBHTOwZkWE5gWxsFTe1kDO1v8tXzzZ6BkblwHF3jDszN2em8zN5w3nXjPVb7nlfJ/g10nJ+yUEA6gZlO5PiKBwpTuOieCnDrDTBsDAAGaiqgiQc5jFZwlVVUABGYfGjX/eixPr+PPj/3zrgjWvmmPfe77Xk0QCZmRnGomR6aKYEQ++CqEip0XExHIZsWAKaApKuQhsncmsN32JcW6bnztRKyP5shQUU1V8LTQFgERVU0dkHNGAFbluqpY0qKhmsu46zXGrm7rrqnZRKSPuWodMskokrNjtmJpjK5AqCtPhI7ahmJQArWoxUpoG66qVHI8RKdyV/t3d+1iVSHQkPKwGw89L7a+7fy7BZNPRTPmggIaR009gwOrfePKFPWPAqhQAMUAAJgACPksZ5CIIgmaQxOQrONgORU1ahvnWiWnxNZ1hcwvEhz61Z4M+6rAIY4xqhGp9+xrYlZVcgAFQYuA4bRC69S/6SRLXMdEFNTmFdHJeHoyCMxUFdSmtB7n0KAkEI8BCLIUAHQuIKCqGsIc9AAAw6lX0RzoOTkGZ6dgelQn2fUUtp5Y9/VMPDlIeglgw/kAE2f4C8Xml0P8jun9me1slptnPXZmJl8Ves2x5usPL07OTZTqK0IFp+j7m+N+Nc5pM7wg4WUzfLvL71/kXNk+36GzEnd2pC64+Ibn/Y4EhucbfqGLeL5Zl6vFmfzY7Kye10IjA3ndbx8e3hNxxmKm6ImXi3d//fd5LMflzyzZW/HM+/7YBvx2vZHDy+ft6zd3dy3IYdfrOKj646F03v3wcT0MefHtZtEsyDAeh1JUs6CqFmmMq1AHRUkDooWmYoFuWd+FzQ//+F///T/8w/rdO6ibHZXUJxjImaID89at2+DwNadl3XVtWN+9Xz18iMfX9d268+1x+/KwWRfVXz9/du1y0a4X+8OxF6iasHz/3twiZ3BQkFjRi0BRIYdzWocSIirIVJJAAFIYAZFMABWdIweMQAZIRNQuffPX2N+bWyWsWQdab5JSzKqAWbDjmotKAgMAT4XYr+9XYeXXH63ajFgnw5yEHE3d54opM4EqM4MaoXW1t2Es/T7323jcsnnTPOxfmtp//P4Pi027GEqJctf52LDXKMPR/MJ1LgUUB2woYgGQEAdRA8ypFDIgY+8bvwKCYb8DSzWrgvZiRaRyFIjAbIrcsBEUJRMmJMfRIKtQLn4SDosagCClNKUPuVC5MWVRbZcrB5gF+sMoljyFEKqctX99di6tAIi8CzSMx65u8iiurTZd8ypPHvl+s+hNDtteX3evST796ycPhRcVlIjHZFKVaqCwqCH0u13c7eqgFgulWPrjL69HJl6tm5SjoYpat2iHXRljUjMssvQV5tyPY1Wv4t5KYlAAzJ2vK6Be1USYHCHKWe0AOC0LeWVzc/somAP/59wUmAShGaWA7KTqGE7tRea9QGeJ48SXrvytS0HqhAZ0anSjBnTRR65Q8ew7EdKUGDNTlQt+/i/wOc9weAaj66/On50x9uInzpL47Hkh2ZzzPU8xBqemZDNqTaoZohogERggnWIHeMoNuKDxTIgmdmYItuhqKSlUjBBSwVTwONDrcfiyHV724/FYEnoDivuhSM4lmQF7IENTU4BclNm5yrEPvgrEbKRZTdQUgLzLWcmQQYnAMRLxWKIyZEBUEislqwJU3gOYTcuxq+Qs6MAZZFAgL1lElXzpHLy779a1DceRHXbLBhCR0IGVmBnRrOTjCIhUOU+8HXdDHEKUA/bCZKCrTdOExZj45ShSjtxg6xyOnPO4bGhZ2SKAArPzGf1Q6Pmoy5ehBlx4ImNEkJJFUpFSDpGHxE2NdY2eEMBSsVNCFZABMxmYOUdVAEREVNOS8yQ5OkdSLI0x5uxrdXWjzmuwjCRU09KvFk3dDXE/1tvh+RCTEihA8d6zMcDUE7UgTu1cERQIQPjy5JOhAiiA0jzTTiFhMVJAMnDoDRRQ52JEVJBkgwkSYdGiBgjuOh95Tjib355NenqszOi0GNpE5U8nvVAOPMsHV/k4NxYyP/DndH34yozOhn6hDL/LkC4sZCYa5z43b2WRiyKDXw/sLJm84SswG9XV+E7XaPjVkN5oOW/p4IVjXQjI77xw3hiv7tU8BLu663gje9nVNfy+rnQztLMkdc4BgrOwdLlgu/TjnlqzyR/+8IfPX57YMzlEhefdvmGq1quP/9t/Gv/4rfR7PWzT4XD45z33xw93i4ZxXdPDekmx9HFrYDnHjOndh4fvPryrlsuHv/5htXp4+vUpbnca4+tu9+Xz577vl01To9cxHYZjd9dRXR0fn17jsO7uqGl+/O3xl+Nw//HbXLCUEI+ifd82YXXXOcFyGNkwJz1oqtv1wzffS9ysmnB42WUozoe6br5tv3Evu2O9Wfv7b6sowXO0MBQAdjU6BhIFgcJEbmL55xsPyvOtOsXBDIgIDdUUSUFVBA0csyO39qul9/e6+KbxMaOUWHCNq8W7tl1Z7bj0La8BREy5Wyyae/UbbBfgq6KsokxIIMggio645NE5BhkMjEBtlPz6G+1+aWV7ODyVbcPmmnYNGMi3d/fLtW9yL/tffuKq+bDqaLWIzV1PPknJjlQJHLNCGVPr6yxGjoQgq6Ajptp3lmLiLE4HYlDPCQypqthJgSRmBkjkwZyqEwAHAjiVWOdxNCjOMxEbU05jFbxjPOx3o4CrqpSKEeRSkgqbKapbNOidlPK6PVZdg6ECLOM4FrV+GH7bvn523pd434Zx+/n45cvr53/zkPtD/PTjy30bxjb7ANXAtZX+N/n8Eu5Wm7jfjcfDcNh+c7fahLba4NPuAI7M5PD6umzrxbqVYnWzXLRNHMv2ODASbjE5vnu3fjlQ/6qL92H1vqu71cvO7Y6kU9MtAwOYGkPR2e8wgKllG1zKTPFMdd4WnV4nXeI0mZ/qameLPgXWcF5d0C6giIhzCQPqlGF80urRcE6QsHOnTqPJGT4Rqhn034o9b9Dw9u+Lz4onn/nsTF0we26jgZf8oCsEhlkTulz/1bFPPUzMjJCKFjBAQOccIxlYLhEBiTwzqZZzF+eTxCQmIojOOwc41d+ZFcgKYrgfbR9te+wfX4/P+1GNELGUgipIqCmiqkNCASSa1vsi9uyruq7ZezWQaeikoIBAKsDkp+gjsQgqaanrRrSAqZbMxFwxGTAjqMQ4FEkKptNKqkwnXiqKBCX3rpZFwIVX84aBq5YNcinSeHZmlGJJxaKg80osAqJhLGUERWcaC5os26oKWrVcdXRIY9QCwExi3gBiv4tM2aq2l/H1uB8HWrb+Z8kuVR8XrmKtV94kgXcmLFIkFsyxysyVI2+SBWlaBwwsZTHMsZDjaqXUEXvPRIpkQMCMIRBz4CmHWnTosfau8uBqpaAiGSDc+dB2zSLV2/3hMByHlNORpQBzITBiQMxSHDMaGhEAGgqC4ilrTgEN1JAYLrUBp0Jmdy7VBQAzRZ2sCwGJSEE9uUll1TOjP0+BV1HqU7bc3L7qKmXkqiLpWiE5Pe6nWO0bmjBn6VyZ1e9l7OB83N+Xhs42dwGKCQ0mb2i26692/kp8uX5d7H0SrvCW9syHnPDsjHVvucyfGe1Fc/kLG8H1MWf36trNOjmNUwbgfC+nt7OXN/8mcH35J2J3jWgXzwnmnq9wPt35tp6eDQU0tay67491W6sqTH1QvS8IxbSwb3/4wZcUX76k3z7fuWCH1192BwthyXd5TE0If/zh+26xLAhP20fvQB137+9pteD3mw+bxfO//qn/8jlkdF7ARhPeb0dl1Zrvfvjeh/XxX79sR1kuly+iut8vOmp9duiGl2F7yF8eX7777sP9+/ekVlR96A6vw6pZff/D30Cy//g//Q+Pn36ylCUNKb0S+W7ZupfHR+pL9+DqphWRIRVathyclVJSslNkGoqosZnZzINQDWBaQQlI4NQaCxnATESJiAhzykDOQM2ghMZ/+B4qVS02jKvNR0ujEmNwLIljrro6FyFfF1qAWwiZgSoaB0YAA0EkIjI0xw5AimioHBXZfv65vPxpJT3J2Dj38rg97AbnKxfw6ek15LT+8GGxXNPmzvDlvmuz07F/dt6wZKhqpNYUoOTGsZqZiUpKJUNVq2AWYHLtYmmHYx72oVH2DSHlZI4DKjBq3vVArlu41rHK0D9F83XTtGpSSmZCFmTni2gXfPAkObLlitl58oSAig4D1gEsj6OqOI/twqfd6+vLy/vvvksKdeuPQ9JAr9vRIN052D8fnvdPzz/9lPdbKqOAWzXrVVP1T9u2w+XivohCzuv1pmoc71TH+Pr40qh+uF91VTiwG0oMVY0heAQqMhziw/3m+28+9i+v4y69vvTSuPu/+a69fz8Or8+fdo0aIOdB8kgADDCtNCnEbNOKCBNDmc3PTmY8G67NnuVszVfQcnZj7AQx17VOBnpupHZJEUKAaTUKnJxInQ4wrWs+OU+znHPOI7I5ExFtJmQnxMTrUdllaNcpiLewNaf+TNPJWeo5JRLdrvL+BttgTg+fjzS3RryFKEQyUwJCR4x0PPZExI6dD4RT39GCqIYwlbhNwUEEdM4DsAL1/WAqKWUAIsdj0f2oT4f8ckgv+0HJOUeoqpJNDKfOvgZoxoaS1RDY+aqqna/IOWJfSsGpLZ8ROQQxMVMEnirjzUyLkngAYi+apx+NiByTlJQkZ01iicA58o4YAcxUzMi7NI6Tc5j7noOvA5tDYkAzS4KeqorRRFCYERBjzkXZiKIoCJFDNUwDHMfx3QaXHbStYTAcIWVZ3i3Yr4KHZXB1BYVASMyJMb6Ox1yyh1xZd9dRVbJpRg++q4wNk2k0ScUxmCmBIHkfAnoeDv3xZX/cHWPKVdcs75fLuw3WrVWeqsrAZSB1HVSeLTEjsAIolOQAlVXQVEo2dME77++7ejnG/XZ3eB1TzKYZioD3zjlDB8ZlasOMBQjUAGm6uRNTJlWFKUcT6MxRbIpkTY/61DvGptgWqCkBnuwGBYym+OmsuZ7t8eZBPquSv0t3Tu/PgexZ8/2KhtzmKH81V19s7OJt2J/b5mKaV8e8CYH9uddfIFZXWT9znGluz3FynK5DgbNF///rNSEoviFwF+iBUxYj6Lnx0g3QzuQJztz16shX2tAJeRCuxn9OkDrXyE4xuNPaLZUPIgWIkNDU+OR6AQCVAEcFhsDrj6tqU6U0Pn+24655kE8//jKO8eO331WOs2Ri13bu+eVZHJdAhxzH7dOia5bfb3I8ptft6vu7hz++f/7ymo8RnHv44zd//e/+m+Mhhv/Xf25TahZ3VHfVugltZ+TYsWF5evq02x/ij0O39H/91+9W71fHUbgOI9jdN9+tFt2//Ot/+tPPu2XTlJjQiJnaunJd1wqyR9d1q5RiMQTPpEYlOdQCoGoATpEAwIp6ZhA1A+NTJ9CpOARw6j2hjgHZmaqpNo4BEYkR0RQKAGDQgIYLBQPVLCpoHhFaG4kIrQApuCRTaZDh1G3DdEpPBuCcS+VYDAspIaFB3x/z4ZUtvnt/v/zw7sd/+fTL0/Hjx1USev3XX3zwpddv/6bxbVfSYT++jMft08tB8CF8+Nv2ww+JwiFnNHOoCmZgAppL8cEJ+GJmVuq2AYD92PfHbVgqGGshcB7UJI/yepAsUJa+c6/b58Ohv//224B5u93los1y5S1oMSJgKg5B04FzqrplCFjGkRyD87EAsgW2klNVhXa5HuNRU0IHFdemsesCMH+z/sa2e3n8Kb9s4+tj2j4+rNuK259/2315eVp+994cxsNQuz3a8OHdt+uPy7GXOiDGsSb69cdfLB+Xy64/HvbHfhE+rLq6f3kpr7tFVy84bjg1DWwTN3cberh7+ONHVFltYHxvdVOGWL4M/WtqpK7n5W/g1FoQTlgBgPNCRzYjmE0FRLN14ln9nlD5GgthFoqmDRUApqa4eDncybrPkfjTGwQEm3ofTkIRzgLlDRLYTFbm+Pbsqs4Hu/WfTuN6kzEwffIVzs4zgyHODOkaJq8K3K4ml7dhN5vh7xzjVysmVV1P67ZOCKWqiOYci8mpn4CZ42AAYnQc8vZlt315RaS6Xgg6cjaUsh3y6zEdYwF2ABCHZCU5RsegYgDoHJtMBdHIRD7U7AJ7p0Cigp4BQESYHCACKJmAAtjUMcYQEYmnrC4Cpzr9aKYIihSliCoiMhCTn1YTBjIFI3ZFAMXGklMv7q51FKb2UkWEURWVHJupcFEFUclqQy77NB5yklJwZCQ28ajuy06NYbVANVHJoWpc6MCRD7TctC4dhlFXdbVedVntkIvvfA/0MuZAFLhg0AIW6uAqDyBsRkUwoyRxFcMUTUJGcIDU74ef//Q5jnr/4f7D9+83D6v2/aJedNg0TCGRo0VHTQOlqPQSC+0PVCUkz0zErAUzGTnHdeXrcLequ34cdn0a0ngci0jKRdGLBjNy5oFRQIEMBOcoryoIIRYtiH5SZY2mJumGCqdcZjA75TVPBGcS8Wjq8oJocyiWLtP6abK3OVYFsymdhc/rZJl58/kpnmfb2ae4nsvtojXM/70xgDP1uSUWV2ebJeXzUW+n+qutz4b2hvP8pQKzs72fqwpufLY5qH651muq9WcO+/un+orQTVg2ZwrOOUA4A4PZqQrwWoB641HCSWKz8/dfn3fOR5hdyxlt4IrQGUydpS55SGrnFaCnX+e8B1XBAUAuuWqWvlYdh/cfv8E4HL5sMWGtefH+DlO/e/ylgvzdNw8PD2vs6rDelK6J5J5eDzwOGlz97XtD8VCX7v2GHTl2Td1n/PL5cRgPy7Z9WL/74a/+Vr0doVfTXX/47def99vXL49Pvuo+flx//LZuswvkXVfHTMlUiL77ux8+Pf50+PLSeN9y9eHdhp265WLVrt9jsy6Gjl3joKCCGJkwAiHqBKyEhIYEATXnLMTeQ7HERCUWMPCeGVVLIRBipyWRMTNkADFERgVQQSkKgkQ0GimyMiBiUjWemuupiQIiOwY0Uzp5h0yTbqtijoOZEBHBlHVLEjiCqPfV5oMPvhvpIdx/94c/yuERxx5Vh5cv24q7zT3Xi9d9f3g9WIyhtbvFBnzzKOKripBVDIo4xsrXr9v94XUIDQSPZpQF6rZt79eHXz8PX57u7h+KFM9EqP3+xUscDv1r2eOqGvtj5bnBUg7b4+Ov2zGt4sfq4x9zgqI5LJxoIZA8HsH5pmuzjMU4ixXRYz8ufGByqYizUNcbkSyHUi9WxYzI5QxN17hWftsdXn76CeLOKzqgkvNx/7rfF/vmQ90uYp/7w1ivN11F6bh9/rxLfY9laJpQohOTWFKRDKCmBdVpzKt1u1pUmOKwf0ljct6tP2z4wwcFevr8S6N6976htn6FNotX5YltiCkQGM7NYU+pxICnXDv7feOerc9uQONildMfV2UmSFcYdLutXdGLE0af3dNLTsP8B53rW6b/nGjNCeDnfacvL/oMwnWp1+0I8PRkXhXGnlztad/rSp1ZYj5h5w0SX/6YlWq7PpghYgjeCaeUsiYgJEBDUFMRNREiRnRqbozy+LL79Pjy+OUFFEPVrO8ZXRUH3Y/5MOY+ZUBwZqjGYhkwTwsuMJiCqYIBIjofXAguBGKnExtCNAMVJUQEAgOTaVUrAgM1NVVCVAPVU2sCsKnjK5lhKaJiCIhKxIyGBORpCmEIKjgkBmYM7Grk4EMQklIKSEFvSAKEiELOVEwEY7E+ligpQ0rZdGTiCgS8d5xpt4tMXLnQMWUByDIce2r8wbTWUYFb9Ot68RpSURClXSyrAHUsjNoBmkgBQ+JpeQkpWRhL0aKFVcGUEMiFxd2mPw7LY0mfXl93xzHGLz/zNz+8u//4sNhsaL0IdVDw5nzyHqlByzgWLGiW0TkMhsyKoCVpyeQcO1ctF2G5lKJlP6Z92u13schxHBiCA1QjZyymAgQGUKZuhYgIjGjTo0oGoDjFcQD0EgmejPT8PJ6LnA0vD6jeKAIX+WFKA1Wcrfc85+LJyC4f3VKOv/D6XU5w4jNnH+RqI7s5Kp71UrxJFr45lL15P/9xSbO72vJigJfNr+Wqt1zixk/6M1zq/PlfUJyu3aT5oDb7gXBBjzPzMDi3IPua9k0pTmdJ+SZEecGh88YX9Xr653SKqQ3C7LDBCdbman6aA4EwRYQASUHU1DBmJUSlqseALhxqaf/w11Z6bSlgvW6wBvju3TellF8fX1I2x1WoayFOMZKvN++X6HwWxjuoF4uqrvvj+Hm7/ed/+eXnn39bLTabrvv24d2X3fbL7ihi+ZiO/eBIGsYQzPK42x3Am3PB8SIDp5II4fu//7v9fvt//7/8X3OMi/vm/t3Dzz/95Oom9PEIEFxVo6TKsVfIqjGNMVu3qINHKJlEyKIVQSlczLUL4KYUIWCQgqaOiLKyCZqUsVgRRM+hA67UiumUFD2FE9FAxACAAVCnhEKbJtOTWcnkvQDAtCjN6adGRkQklaltOzIiBl7efUNx3x9fftqlv/nbH9Z/tXzU33i9Lvq6+rDcVMGlff78r8rWffjugKXGsli7av09390fm7D//JrBV8sGnImIY8eBzY+73dAVCA177zOHiCTcVd2y7Pbp8RG1VA93qYx4fFr6YDI+/fIZ8/3mbtVtOkv98fVVh2cei18uSVNJQMHVTR37Q9tU7uhjVo7K5IkxkAOJTROc0n4sWAUNTW2ku6fd46GDjrkdYzkc+92Xlz+u/Lh//fXnn0Me79ern37+DBrNyqqrh5Qej6Mq16HuqN4/ve6PP+WsBKH1ATx1d13TARMLYXUkAjWzh48PXe3H/rD5sAZP+5e+W95VwZWS026UYejLuFq0Y9atyR5qCTWQUy12qkuCU63IrEGfvQ58436csBHw3NTL5qJagHNz/5O+fLbUc1T7YrEnS6arbE2cc2fgwnHwCv0mOz/vMrk8yogzhzr7iufMhjOAnAQWfOsyXpG8GSlmh+wqC3re6y2BOzmxv/fhiT9eoMsMcs5zuiIyEDGWImVqb+cdEY9j2b/sfn18/eXz0/Nr9KHZrO5cXWduD33e74ekkESCd45UcrIiRD5w3acM3huZmRgqsjnnfahD2yKzmk1EBwyhqCMyAwavaAZFVYmQwESLmk09mhTAMZdSCBCZp1h5ERVRUEQkMETDisibGahaURFCretq1dQCth/GGhEEyyieEEDJAxgQETtHBTRjMikwlfVPkWsrAoQuDRJHib3V1Xp1v2ycHI7D4XgcDr3sGGq+21SVdwGpIocExlwIR00HtVqojhpI24q0FPXAHIwpipSxEIEMiXPCQBUStot62X6offeH77977uOxP7w8D88vr798wTGVl375fu3fLaiqoW2RnKHnygMrGECOogJjcU1NjoTBVC2nUjI6oqZBCn7Z+Fqr++UwHLrjUfoUj2POPiZGx0hebGpFgsyECAoqIIyKdpEApifv8oTbSRM1VJyy5i4qzZWRnZ5EgGvydE4UgZPGcLa0t8/wX5rs/xyNuDaq8zHPydV/jnjMhnZZfOYrG33z6YQxb0973gpuFRCa+QQgnhFpult2boD0ZmxvmNhfvBfX5/29jfH2fszMcgbKU7bXNa15u7VdsOmsnsGcznXN+mZvC/CUVTkp6aR2I5AjwLT89Pl+GgCTmSiZIQrkUQF8VR2HwVSs9p7XlqtChciAeLs9fvqffwXJx32s7uHdYpNiv3t8kt1+3SyatsWmC80dZowCvmkdDttfXn75cjz0qfO5KrL/9dfffvn05bjlRUfAlW/Y5WrVdptQ6Q7iymOLpo5s6PuYc9u2y+Xq3/23/354Pfx//p//4Wm7+5//+d/A1O1fD4PQ6ts1kEgcaSQKFWVNfTwex1ziZrMKgJR6lGPuey0lJa3RiCwopFwqFxyZHnc556pxaKb9MaekXCOAVUTmTGHy+ZQBkBQMQAkNkbICEk6+IwIim4rAnOk+m+MU9J6mOPHMRZUJRRUBudmsv/2755/+VbsOVg9NtcCfXtxiUcqqyNCulmsI/etLU0G9ag/EOWdjX5zfH56zDI0nyFmSywjOu0IGCNxWbh81ZiCumk6FUlbA2kM1HH6VOFDJz8Nhed91DuPx4CTKeNxt4cO7B+/c6+HpuH2pANv1oq6dxd2622S0PPZdW6XtEynsxlSq0nkK4EoRNCulZAPw7TjVQDlCxOffPvXZNh8+DEPMMW2aqqR+vazfbVY0MGkxKU1Xffz4gTD0x/T5aeg2XcnQPx+WXVOhJ039fr9YLKpFq15z7vOYCSUElBxTb+8+3sswrLrm/ft3jLzlQ85pPPR124nYu7uHRROy4OFoz0d5Fs1spxRLINGrtAA7G9dZLpkiU/bGKi/uzpVvcpOSfMLb0zd4AwpnXjSld165cdMXNxUM8/GvrR9nVf5cvP4WwX7P5TuNZMKNiePdiMa3CAXnfKbzyS7Y8xbSZ9cK5znqdDum3vOAMOkriGpMhJ4QUYsSIxMjECAfjumXTy+/fn758nI4RvHVZvP+47LrgHDfp90xjjEZI51WwSglRy3iPJtxXdWGhqaihsjeex9q9h7JTfQEEUGLKdLUBR3JVABhys5iEAQzQ0UEJKS5CPRUIA6mplK0FDvlKpECejd9K2ZiJSkgWCF0zlOSsj3G+8qsiKsIQNUMgaYDMjpHAKfOrMzkHWhBMiYRzGbeu9gnLbgfcJVg3VUd4rEfLedSLDs+JlAQx+agMKopqgWjkFCPJXWGLVGL7AONyXhRKWQByzk5RyYFCZ2AxOjaDtBC22AL680CxzK+ro+fV6k/KMDryz7msiniuuTvkEJjjFYHq0lLAgVVAREQB44IEQOBgcaiYykxGXviGgPV5Ljqqsbp4RBxPByyiRRhAyMOiEFAC4jqaCSTvHPqYmioyHiqhjqXWs3VUQg28fc3+a8X7fP8z40/AG+e+VlU/V2pB29aAv3eFvDmO3tjrr9zWJtpAV57OGdF5Hagp66Ndm3jF/r09XhvhBM0u7lYvPwJ8AY3zrveKi7wF6779776He5oV39ce2VXJ5pcr9sLgJmL2fVR5/ywOYAG5yQBmNWg839PKdYzTl7u+XwmMyAwQJyKQtV7hqJqRshmBUmLKgdXLdaES4nRSskRf/z106//5aeHuyUZx+OnXc5a5OnTr01VDV365dNTWN1tPmAf7fPjc9e6PB7/+T/+p93u4F3jObw8Pu0Ox58+P70W1RB816yXTctKkPGQKBj0MjwOhYa7d5WmolkGHfjOrd49/Pv/7v/c1PX/+3/4D9vDrm2CC87G4dh/+a1dLxuCHFMZHFd18DSSisQSEwC7YhqTpaRp0JzTzhrLZOpVuaoRYHx9Sal3tAq1Yx1EMxEyZnCqZIAoaoxz0eaZQivQtN4f8/ykGTNddL7Tnbfr2Ubn31jEBKz2dfAf2vdWL/w2aoy6effB1e364x8GosI4FO4lanY1VtX6Yb+PxxI7kaH/bf9YqN6su4cMdXQeK04lidqiq2ERxzwAAgGv23Z/OKSYK9EGyuPnT7UjSB61X7btEEeNcdE5R/r85fNhCP3hMLweu6b1DQ27lxqwroILQWNiKP1vT0nUVfcTggtRES2pKBRfeUJ0PoiBSl6Q1Zpff/uprQMDVwRdV4WY6oeV++M3w6dfLeX1YrN+t1g2y1LkibeHmAF1Nx5SKYv1X79bPzz/9vnz4TOyrjcVWNkNfTwc627RrZeYtDHMr9uu4W++3XjSmMjVy2EcxzwsKCpQ8FXV3u0O+DmmA2DhCgjJZAp88VR2frYPO9eg2qk4DMHmVYTw7IuebXa2xJMpngHlqp4KAQz0BOxXzESvE53hSiS6YMBk4yeAhqk7zmzVZwS4ClmdzgxXhV3nf25A0y4HPoMC4TktaI7Kz0+sXQZAdrkHZy41HWpekBXNcM65VANDYib2MUU/3UAVINQiHBgNU8yv+92Pvz7/26ftMZsPq4fNumvWzrn94XAcx1ggpVI5ct6VmEtJasLsQ1XFXMg7R1xyARMiYu/runNVBYDFROdV26YomydC5CIiqgqGIDY5g2BIU3YtATAQmQoTIRihEkCRIiWZCBEgOSQA0mKSdBBNCGRG7EBKHEcorQO0nBKr1k2NkgEExBMhIiEoqlgpVhSNGB0TgBUBTKZiAAZqLgo+74oPcbGoQwN1cLrs1FgQ+6E47zxj7cxDJhFNCJ4FgnoaZBwKVJE7VzlnznthVUzIxYVaI0sRxw4KYC7AJKLI5CqGyrpV6GgTj1Wfy8vr0PeJPh+6DZJ5XhE0JpkhgKF5j8AE2SAXKICewFeAOLVrlpLAxFIPSMoBEELliRdt7ZtD2h3isc8JTBFjAgFvGIjndGZQsKlYDNCu2kVPniSwIRmaAc1l3LNEMFvAXIFww9EnKj+Hra8M4y2TOFWMXb+BN6/fYQQXL2hCjyvH5avNLyc/12/b1ViuQOBMYq6ZypVb9PUALue4Ll/DWUk7c5wJ0OyS83QemBkQ/M5F//lr/4tbXJepXtiPXr6/NNE4jez2oq4OOhOhMx+6+nXsTFUvJX4XhmsnSRHO0zDOGtpUeWgASI7Hkj0xTT5PUSILDM4TIQ1DMoGuWQGED39rGVHjeHwd//Tjr/zjb6smjGlYfNhEpePrsa77p9/6AtCPx71Jjv3TTz+iyrJdsQu/PX0pVIaxhGYdUzzGAQdGsk0dNuvV6uGu9Ok//+lftn3/zV/98a/+4R+Yq6RZiJLa3cf3/8f/7v/kffif/vv//k8//eLaphr7sT9sVSIGziWhD8vgu+BotTAtooKBcwYr4AGRAEHKeIggBGDOqeaSJI17KzEdFaU2tMW68RyMFB2A4zRLAIhkBqjTnTuJOjB1PTXTuXZhygu4BCPOpNwIAcSECAHNmAwQHYty8+4jkX7ebhGV6i5zqOpmQWiHfdxDhn73+Vjdp/d/dZ8Xx7qkhu3wuj389glD3z0U2mi1WKVMUKRbNZ4sS3x+eTxynQp87JoQXF03od242O0/E0oBxP1+F/uhlJxS3GzuiN3Q716eR+eCZ+/QWzKVnoLff47LD+9ZedhueTxisVX3ULcOrKiCB2+gJYlKwgDBuGnqhVGNuQ1x+3J4/Rzau28d4rh77l8eq8OTjiOrLlctBGdMYkQMi1UrBx1yAkDn3DH2Q3Q+MKIeD/vjPiBBPw4QHNYVkmPIjaOA6oON++3r56fdSFRvlnf3EHD3+Mk1G1etHnf5lx39+poPHGjlVBSsTMkzhnrCgHNTe7sFo3MPrSuWcQVzZ64BV/hygjC79Ke4WOyVkHP+fDJLOj1ll8KIk+8ypzvAOakQL0nNiIB65SBOX9FF13ozILyc/9w5xc7zyLll0VXnkHmjr0DxDO+zeRBcEjungzIyTGthkiOPVtTEiiFOoSXfj/rLz9tfPj1+2g6D+nq5Xi3vlsulZtu+7mMZU5FSzHnHzDlFMGFyYKSAasbOIQFqMY2GUNWdrxrvK3JOFcCEEBBJtUyWq2ZkRoAFREwQgBgBDQRmJ/REUhFw7jtpapZzLjmbCiAbGPJUN6gKCkBErmRxhMxoVsiQADXKctk6ZkliaGJg6A1EVaZKTSmm6kyn7ESXc5pcqxhjIBbFw1javgyxrBtr2wDkhmiT6JSzcIV1pRXlo5FkGNXlrjFfCesxJ1JxlTWNNwD1QA1y1NqhYJXGkqMBKPUjgjGxIKgxgIJElVRU0blm0ZUxKxQpMR2odowBuZA6BiIRh4jkHBjomKAgZikE4AkRBcCxWTFAMUvTwl2K4hvuQhNa3w55jNr32XIBKwoeEIFYFPTUwHCaxAhPXrqh0TyN2+RFnmsyp1IEvE46uTK628DXFedBnOmBwcUY4DKTXk3Mf/51w6hg1pLe8iy7/ePCV6a0pK/OcuWp4Fdmd30lt59ePCe7utirarTZoTk95Xb5+FT1alPx5tSz8urCrujaDaq8uUJ4+9kFAa+/wQszupC8r1ndzX5n0ej6TDOdub6a06ODc7D0fGeubrXp7Pna1NobjRBxaqRlYCpE6LwTEy1ZIJsIGA59PGz3uQgz74c0xBGAUj/EFNtFTYDHoT8c++fP2xh/5MCh9Q4g98cy9o656xYA9nrc+wBN3fjGcxEbZdjuV6tmc7f5/tsfXN18et7lKIx1ThBcjWqaoYwWTYopu+p/87/7b0uSWMwx0sM3922SMWbJMQ3HZVh2znJRBY1qRFB1rYUm5fGw3bLE4FFA0vCKRUPbakxxiJYLspZxRETX1kgIUDT3Eh0QEFV20nUAVM8etKEikBkYql4RUjv/8nOdJoDZRL4AGMnMpvA1M4sYIjiui8RUAIAcVa+RCnHtuqbDVbd4uL//8cdfS0wyHIbn1/14WHbNYZ9T1HH/utv3i/tj/fCemmUb6lCiDAc9PFna7rIvzLRtXc3vVhXuLdS4uqudgrF7fNruhl3Xhs16uagqNTVP/TZRhat109R+GHs5vILTUFXxt6FpV8Pz1o7bbz985AVmHF+Oe26XjmvwdR/jmGMApZS965yN4/H18PxFDn0KrmkWYO51vz1++s0dn+u8XyJkVTBUdWMpaRwkFy24butmuSrkcskvr08L33z88B4Ag2+2x8N2DxF0VdHCU3npm656+NCt7gJZgVHzId3fLTd3d6GB/rAH7zJ2n6P+OkrvK2FPCqYCdMmUO7tCJ05zkWXPXOiisYLBaS0Mm5WYk0XbjRt3gpiL7V35lOeg28U5m1jDLNue5f7zaU8YNe9yftJOiH/Z4AazDODWc5zVndOQ5mudTzN7sdfDm5/kaX34Sx3YfMyzt3VqhD0trzfVmhOqyEkJQmvqSjMAWM4F2QFVj0/jjz9/+fHXz32EUK0+vv/YrVZMcDgc9/0xF01ZzYCJTDSZFVUCcAwITkSc84SYc1bMhsocqtCGugGAMuk9HHLJADgteowGYoIgqgDGRE6hgKriqS31JF2BKRqTcwCmoKaQY4w5FhEwIzICZHICaipTdEuVna8kR4EYggsVM1po62rRmpZihogFOQMbaFITNREBAdVMVCESoLHjXIoVKWlE9EKuKB3HfDiMd6GqQzimY1QhdpVjkaKmXQWbBo9JYnGiVgALsTX14XWUlJuCHTNIVlTnK0oqQq5ZqsZh3+dxCKXUIq5ryYUMXggUMA6l9AmBK18BZueUSsaEMBCw4CIzN8qVYDBU1Myo6AlygSESA5OHyqP3KkSBGEEkI3K2fEoO0EKBFy4sl7zdDkT50OdSnCqVjAYMiIoFURER1IAIDBHUTtkqAlP7NLJT6rMRmAOEqaHi1SR6WtP4Yj+zC/GWzM9P/bU1wEV0+MuvGwXiTaT8q7PcTugX+7qy0pvu0nC2Vrwx65u98GKWp6qIy/7nbmKzp3UpX8DLoaaw/6x9XcjIFR6dvMNrRLkaxFfs5+22v+88/u7Nub3hp5PovOe8+USGEJFOla+GRrMbiwBgZDf3aWqAaaed1QDgalcDEFBEAnKg4MIpoRcVTa1uQttWcRgef/n0n/7H//jy5ampqiyWRFfv1w1sZPvUNa5I2R+Ou91+2A1lTM2iRl6aYzDtmlCK9WP0nkGAjUTl+PScrACGylWx4KfnPiyhdfURDqtvvv37P3zXrNeh6yAnrr3zTk2jaUrD3d36f/1/+G+qRe3GNN7d39NYShZC7OrQMnAajsey2w/ocLX6rqucr6tUVuXpMUdzbQCVHEeJBRTIec0FzBDZ+cqH1vkqj6NqUvNjBjJ2TQBCMSBAmtIAAAFR8Kbk8sxH4Urig7MNzl0ldAobiJIBmAJRUTVAMQhNq8WcC0mL9SMF7qq2rlm2L8jc7573n+nly4+//vxvD+8+el8T1zk+yzFXWBwbi46wiztliHZ87WrotQy7xy9/yg8fNoWb8dcvj3/6lPY9+jDkIY0jikLOBHo8bodDQgQGlTg8/jbUbWjrymnKhxeGZTn0z8/PoYiTvPDmnL6mfdq9egBy5JFrn+QQy3FYdiE+vqQ81OMeh/59Uzdd0++eDsdYxj4f96DaG6RSdIzUaNVRkSIpBeZAoW6r9aJSqPb98XjoB6GmbbpFF7Pufv0yDIJtADApFpquuVuIY1q0XfAMsuyHdx/fawBaNL5ebgfuX9NTxhcgqSrnUK0wntDCzrZ0/q0m0DuL6JOjcgM1cAsis/7xxmLx7PXM2sy5ovP0hZ10nWlznLXEWZI2mJdSPUtFJ9O+5FjfAMu80+nob769ZnBnRQfPDyaevwSYj2FwJW6dhakzaYPzVpewuxkhIRIhq4KqGZCaMk6rnBUE894RUir4+fPu5y8v//yvn4Wq1f2D960PTUoClsexj2MsgOwqIjaVkpMWC8GjmZrpafkSMpUJnptm4aqavIep8JPwJPARFS2IPEVSpnRmJJzcXJAp7HX1a4GYEaAhKgOqgZrkUnIWNUMwNXB8KiYCk6nIVgCZCAg8U3C2rLjl3HSsVOI4ECsyKoiZKkIRJHKAIFrAGE2ZHJMxokNIKt75kooRGcghjrsDx45CoKqqaDiWUprQEKHmgaQsPDUMQ599wyJ5GMrCk/Mhi41ZdOzBF1EXuOGKxiSa0VUNHnsVibGklzHEVG2skIojV1dhUSibU2JmDC7lNKZeS0HmgIyAgEyegFUdFiZk5wgB0UqGlFUi9J4XLVGtBmICSITkwAwtl0gAaMoAoLJZ+kXr9/uhH8txkEHY0Ct5A0JyeirEMwMBnGKVBmZIYlAMEIGnqKVO0epTcsElQw6+0hXOLs+13bwh9VdQMOuvZ7O9TQ9+o3vMtjHJNjg3cHybA3i739fHuHl7lfxyQo03gtAMZmce9uabeQHRW78I3tyHGYfmw5zGoHPfgev79/uv8+Bmr/HCH98yFzxf5lTy99XlvLkJcCrFsKl1ybUGNM+7J0/wejc8McKb8VxuBp7IMqABnoJ+pAamKKJEyEQAqmLeeRMjAI159+XL65dPT799YWSq6qapwOBpdwgyNC0O+yH2Y0mRSRfrZrXeGFPRzIEReUz98TCC4uZhLQAwJhWs69AtGscuHsffvrz2/pcHM1fZ5sOyumvU6SCjq3zwzIimFgW4hhHk/fcfm0Xlfv3Tl+eXo2taIlgFXzGR5WH7tHvuc5KqcvpE6oq6kIcnyS8l7od9DeQAaOrKQ6ZgFuo61JUhaskoIXiGqIrqnAPgKZ/cptW4z/MZzlPf1NOUCI2nNgOnZ/WspU93fJo3kYoJoxEBFjgpdYpCoIYhNOaMq0Cp6HhE8DmWf/v80/G3T/vnF0bdP/82HndeeoivdahcVVWNd6h3a4i43x/zmMl7WHeBUUCTX7Z9P+puT7xz/A4P++Hp0O/3ryLtchHAUhq79ToQPj4996/9erVuAxeV/e5gUG+W1apZlpIOT1tDdzwe123XLRZMTsZezfx4OG63TfdA3uH4WqdcOVt4L2T719dh+3jvw4eHj7Bc/dunT+XpS1uH1ftFzPWnT4OaT4LPn45VKw+r9t3yvvFMVgrafkzjcUBCgGrbD7H1jVsWBd8tvnu3aNfdmIeuae++X9zfrXav231dRxXfOP/QHVyIRi62yfyLun1ye9XsnAGhKZkiACJO6c9X6TPzJGhwY37Xoa/J35zXxvodm70WTc7/XGHWTGfsjK0XSJll6lPlOcz0ZLbwS57gzVmmIZzSFvCKYd28zmzl1ie7ELybq7yiafMYzvXGlw+m8ZhO8wIhE5CoiE7OOgFRFSqTSGBAGIfBRHhZM/njMP702+PjfkDf3W3ete2yiBWxPI7jeIhlkAJ1uxADU0MA51lEJ3tjJFNFMtUiIsTsfPD10oUw1dUDTEkiqiqGYHLKtlbVKe3RwHAqlgae5TwwOLXpRjAC1QLMDGaSs5ZiIlNzyFPbhFyIiHS2f0Argpodlo59R1pDrMiXUhRzqMiTeScqA6Jz3pM5JC4S0ROQskggyIBZEY2A0EiLKSEc4/B6wP6hCsvaaQYoYCBScV1bloqh5UQx6liqRR0ALI25ZwRAdK/92Lm8atU7c7UXRFLL6Ri6rrmvDs9RijC5HKPrD8jZtQ0h+mUlRbXPbBqQXd2VnIlciUWtZ4PgGMzIs2YjF4o6dh4ZwQoMkPeDpsEPmbvMVQXOK4CBAiECORemyGHJmRGJNVR0X1Vt0upY9kc5jiVmA+9NHYAhkGhG1qndD7MDObkOBnbK4zJBIAA1NMS5U8QsMsyB7fMsPD/MMJvXuWPEybbeODPnnc4m+ta+8EY3mrwfuyro/Pr19hRXkHEDK2c35pRqZ3Bl9naxULzxVS5Hnh2TqzP9DjAY2Hkte7zkFsNXUHi9y+8d63TS882at7mGnVPvjhv+d9pnpo5vKOANaOH5wyn/5HoIc1rkGcgv7+ai7JMTiucD2zl10QiUEXHMkckBgIqWkhjQOVeKWLHty+G474OvgwugkvaHst95AM2pSDrsdtwuMgAI1Ow/Ptyb6pfnL2NKwTEAFMkpj5ah35MkX1fVog33q3Z9tzj0R3GlbbvDsLMt/8N/9cNyVSn0ecxWL6pmg0SxCKiJlBSjMq/axofOpeGohq2rmqbxxERJhv64O6Yh1qFyZk+//rqPx6at+peXYf887HZjVYeqa9tFVZNIIUQXnKsDMueiuR+zQLuoKm4FKl+vILSGRIBMPD0rJ1cDaeozBAaEqGLTmmKi6mYl4awdnoIPNnU9JZhV+CnJ1hErw5iPla84OFEhBh+cM5BxOHz+8st/+RdHEMikLw+b7q/+8Y9ZqR8z5LJp3P19vbxbPBUYhgTJiN2i60K1+fK0NYVu2WrpCWJ6foYx3W/WFcrj45MnQKSUVJKOx1hSrmrngopJSonYqsrVFXu0PGQpaUyHkktKnLUrRRmSHPoWynG/2+92Hz7c15L2x+1yEeiA3DT3bdXv69yP8Tg4Dx0ka3GzaRZN++Pj/qhSdZ1HHvvPP//yhfD9d998s1yvh2EoVqpF4xv0LgTisttRi2WzqcPiw+YHUWuaKpS4fFiR8NDUWm8ebSBJ62XXszxLkFBhqUXdwWhQKuxVDUHApjWFABCQTunCc1nBldXOP9itFZ8q5d8aKcJMhK+t9LzFSQG6Slw+nckAcW7mYWfonXnFLaicDR8uFv6VrwdgAGeHzd6M44zSl6uafCKYKc3XF3VDdk4u2PkunVMwTs0hkE4JNAiEyEw2FXuhjnFkpFwkhGZI8Py8e9wNx4Qc1pu6qbsujvnQj0KkYnEcmdF7X0RiLpWviBDREVguiYkAcWqsZQBIzFzV7YJDNYk6agBohmYKUwALZ1ickoGmLIfpzk+pejj/Hqe7csqyAlUzNSlSUjGd5CQCZFVjQjQgJAOackZjHJ2N3kMXiLUYmgAWDhxaJHIkxIAIjtDVIZdoSMpkRgRAaI7QETCAKWYpCgjkVCFn2ccxppzVGWawaEZjTjVURNQ13Vpd9aX3kFetWy5YDmU8RNe1CXA8DFWBRdVRMQwAVeVcNbwcNGqz8M19N+56zcJMNgzEAoGpagCQWoEsGktOOefCjpIVQqWc6SiI4rWF1rERArJHAFJCWNQcvCYofSqvBxmiW7TY1lQ30yQzLfGOBCaF1NSyiTp2yNR0vmqqpi4vz30PeUhZyJOrDB0yKYCKKiEAMQEAi5raNJUheyIgQyxyFhXg/JgizjnJVz/yhRK8oSJoV39fm+D5iDfVWNfkZZaRZv3pssFNCtK09YXv/BmKdLG9i41euT/z0W9drdth/c6VnK/evt527ud+Tgu0r3DowkbOmPfmJs3/mR298y346p6/oTnX9/7Nl5c3eBnn3EDoDMY32DqP4TqX4KYqBU7FYXbKgZ6hl5AqXyEAgQIRoQeFmHIVQhrGn/71p8ffvgzHAyF6cszgA3kG55o0jK/bAwC2betdbgIH54Y4ZBlLyd5VZgZqjtHMUBTIqxIDe8Qy7A4vz8j8x+//do+Atf+rHz60q25/PBAoY5bUg6sI/GQIyE4RX/ejR3LNsr179943q8Pzvs/7zSaASUyjD9C0Ho3Hvh/2e4lD2h8JyZAVYRgjka+bIGY+oDH0cVSl0CzYh2OSMmhXB6wX4hoOrRmgkUOSE18kxHPbF2BkVGVEkYLkCBwiGOrUgfvmUZv0PgMAI5hcVZu6fmkpy7oxVUAtOWnJm65qS3x9/O3w+U8VHNfdsnNe4ut9bd8vg3F42g+HPFaeqhAM6qqpFkjb5+cxW1rWrqqOZdgf5JsPyw/fPIzjbv/0NO4Pta9hGR4fSxpH56j23iLsxz5UVdvUcRxEi3fcdXXVtEh4POzT0NfOVb4paKqQKUcd3lULKDhK3MUXBGt9A1TG/fPTc3x4d++M7u7fLd/T8cvT/vDUZF2BrRtqAxzGw1iOkeTx0HftwtWLrqa75ft68UDrj1QXdkRtZ8gFKBLAKmfWw7LxVWsbK33cZvFLfETzla9cg177fg++DL6VNe+yiXkGVoUCqAAiSoinNdmNEM5u3gRUc7vSiwM0S8o3RnWyP7yJsZ8N7o2ndKnAuODjiQOd2cnFSfzKxbl5TbZ+WjTI4NrxmQ9uZ33o9r9vMO+EPfQXz3mVonje5QRQcwqFTfG5KRKHBkBQNGu2EEJdtwiGZEVTSinGUXKum8ZX1TDa9tB/fjock4Fb1b4i9jHlXFKxnJJJMeZpfQksuVQhIKCUggwARMSnKBQiEjETs2dXO1cROTOYq/ZOt5uQdP4pRWWKMyLiSfbBy48Cpx8biRhPZA5UVURKKaIKCgwOp7CLndIligCRV9AiglpqxFXl1rVHkEF8LnXxtaqjbAcZ7lusV87Vpn0vmhWAQ12MFBAYGCgIZGdj1CwmAMge0WXIY4E+y6aIR6gc5VhGi/tYhQCBSIjb1j/cU83AkgGgZBN0AimpxcIpMiEQG25aQgpRxv2rD027qtFK7pPlpCMCKYea/ZJrDyFYxcfPL2jMYGZasqARK7BpOiiqOmmxrdimFdxVsgADOPZ3rXcoz9u460s/VndLMoGqRpr40rTgHoObnqdS0BALEyFotwiOuT/E/W4ckqSSxoLsGdEBmyAkEcjROfW+AnRIWEqSXAqITho8ngrJz0/waYo79Wj4fcIwP/RXjtDF4TiFdeYn//Ll7fw9TfkT1b4qPzobz9la8fbwlyMZwNkVmwHlxM6nVtdvqcUZkq7HcbH+q0u5vV57s/kpAXGCxTcdNW4J363bNRvQJcI3Y+YFdOwUawJApLkN2DTvnbO1Lvfm5tgXjD79M7uScDWX2uyXwlxycr7Bdu2+zWkD5wyDOUCKNlMhQADPrAZmxawoGDunCHlMjBnBHMHr09Pw/OLYE3Lbeuc5pRiLmnN+tUhq+2EIDgUwmxQobVM7YkJ2tfcCZJTHVC8W1XrlHbPDknTcvxy3z826qt2wWXcC2Q/bmHYyFseVFi7qsXLeexOrqlpjFDNlJ2CuqV1dIUAiSH2KL9u+CQKOTEqKI6GrKxZRHCOliGbrzXrsR5FS8pjYfO3NVAsAeA51aNdcNyxaxKyqsOmo6cTYTAGUEMhM50UrAQA0EyCAU1NQdOQFDMHIQAEZ4OSlwOkuA9CpONGm7pMACGgFQAmMAIopGjoiBcjjYLmX/ev2t0/rhu6aUDHn4svrcKTt6n790IVaMVS1WywK14vajXFbS//5twMOhatqtz+EpoWSvfOru4aGQiNQHRZVk8qYx6EMpWtCCAwZ0xgHQGJicqBQu4AKx0N/fN6hyWbT+roy5pyLgQXv7jbLh7vVz/98DJYeNvdy3P3086/p0C/JYS4dlQaPRBmWlYyF06Fm8K5qXciWsSTI8elpP3bH/9UPf/PDv/unh7Zu7h/6au3UA7tIlSINMY0lu8VSnb0COqyMYDAAwtr5IfZ1U7lCTByhBbbEjagOJiYOAXiqSpo6r0//UzylP8+MhAAVZl/nyk97iykTAbDbD29e15zkXEL1hhVd73X2ai7K71vTv3p/FvDfINAZKeEcBps7w10g+5Iw9ObqTv7RPICzg3l+O4fiTuA+0yyc54v5PSIVVCAjZiQrZcz9ODVVDs75rksZhxF++vT6vB+GBFwtAAK7akxpfzykccAw0QutQm1FxhhDUyMyIaSiWIwIJi1aRJgZmb2vQl2zC0AM07pCOJVwgNkU7QJiMrUpzGFqzDSJVAaqcmZHeLpQQkQCpIknlZRlCumpTplNxKctGFAVFEjNFKFIqhwGJM9s4MXVr/0ub5Nb1Fl12PcdFtXQLaGtyXKSlBmZwKYIIjOpIjsOTj1qRoiiJMDMjoJIiaNa4aquFk07jkMU64chK6lpiqVr6y5MTcpKs+meX46GkECKRwk4qrRcqaAV8221eHgA0GJRilZNzQZJp1U5BHB0cIRNB4GxrcOmS7voAqdDJANRsQSm5hxpKnkfXQHsGJwBEhmUUcST857XCyxWIeV4TIe9oTlAamoALWVaqw0QiTiAsYGYFrECyETatNxUi7YO+/242yeVEjOE0CB6x5QlmRfHiMpAJlYUZHrOmWlanXZaWvisCMxey8XR+PPOxlfWem08N8rLlWmeDPisNJ0dpzmVzq4Zy9vXNA3DnIEzpxjZ/ExeGfqVVgO/M5avToBfX85XZ7+99jm3EH9noJdzw8VmLjvbaYTX4DVX1cKZ9uEcurpck8238M+c8sxl5xPcjHlO37v6SezsAF17h6fbceLBF81/2mTyjNW0SAIsKUUAnTxVNXLeiwqabu7u2rqN/BpTrlofPMUy7vpBp4TUuipSckpM/uX18PKsq2XbtV3lJaXMFDyjb00rH5aVOWQ2xyxFyzEHICwS+0PFOvTxT8OYzWG1+O5v//7+7sNBdABKRXIqXLiIiElhFlEXUMvhxdBDTlDGKAKSESwOCUp0SKEK3vkcYzoOVROqqkI1SZnImKE/HNsmVItl3a2VW6tWVrch1FQUGJVIy8QNCXFKYURDRCNGLFIQCVCRwIqRQXAuWpFSBBGQ0QBMZxFoWmGKcELn0zI4pqhAwIZgmEoRlUDBimkGK9Jvd6+PT3kou1hqt/NIDgqFavsS+7gLqxZ8pXXHzaYOPg27jQwD9pmG4ctPEYjbquT94/BJh/bdqnEif/j+Xffx+0OMiGXYbbdf9ukYrUTJScoomkvJi2XbVFX/eohF66aumxpKTjEhUVUziiHJugl33UaJ1MgKxteh1+P+edtxe7fZ1A5rTHZ4dAVrV8eq9nW475pmseB6ienw7RD7l92ouw3B//7b9b/7938MyLvCP2VMIybz4OucSzYE5wwxZ0VHccwlA7qA6AYFDe2oQAKmSi4Y6hATEVNwyGQqolNXSADQU2k3KCFOi8ARogLo2RToOlfwykO76D0nW7zIrZftrwnRJe3ggoPzhueEvNnxOv07h+DPjROugeTseZ5ACs4QZechTK6nGvAVdMAFC65eZ2kHry7zhA43u77RwOdNcC5GtbMoZAjAyOAZQEsqKUXNuaoqdk6MY8FfH/cv+/HltURxyA1zLWLDvo8l9nE00GBGio5dTpHRtW0HzFmKFiHAKYFZzaa+QkBMLrhQsQvEAQAVptQuQEIVEBUFQUMydypLNiOki4s738frCmEEmAuECAxVoRTJRaQIEDhGRkQQB0SAaoxAamJmZAqiruaC7tNRnw4xpQzB4xjVnAoftaQ4NnVYVp6LYzSUHktm4klSYkTH4B1UwaIJG4pmKBWjN9XjWGKCpqkWDQ6jG45pPORSZBzMIS4a1yRrajIPdx8W3qXRSp+LepBQzEmoHDjux4JOmqpdvv92t/sy5NIFruraCmUpJUrKQx5Lk4u7W6BHamoYxTQhozMCBTOQaAXFmZDkUswLqEcoDoN3CJJUDIWBlxW3nvd+3O/jfu8cAQG4wOQMSdCQGIjB0ATM1EwQDQKaIRI1awpdG1qi/XDsS06K0ih6JjN2pRTTCKqeXV15IqcqRVTEZuOblZ45znE1G4JdT6JXc/aNF3JrQ5OlTJ0rce44c7bAi6w0W+Qlrm1fwcPZqM8WNWs+14LImV5cFK2rIb05DlyQ4Pc2ubrQ338hXidbv+mfdL3VOQXczsO87quEb85xjjNdjnPeYbovt1TrCiDfjP0ypPP5b8Que8uEcLbwedxX7HIWuk47TAeaCGwuEaAwA5MjZjVAIHZERgj47V99I8M//Yf/2/7zb48KzOBIUhMwGxzGPO41VFwFjyJFYhxz21RcVezJwI7j4NDpGOsANeZSIA0yIJtAZebqtgA8PR6c0diPNthYWFpqNnF1T86H8TBUNQdfqebgnCJPpN9p1mE8InHVVEBuGHLJopINIec8Rgk5b5ad5ZRTIiYXCwP6moEhSjTHHLwxABM4T65SrMSCMRoTGJgSEjCRgSIRGDESIKGZI2cgxSzl1HrvEJKOwOSDSyUhEqmgmQEjsqGd5UREBGQAOVVxwkm4I6AquJSyFK19CAZpGKBkADHA1/2B2W1Wi2q1qBySwf71VTyt0EwUzdLhVXP/0NYf/umPX/bjv3x6ck1Iw7A7HA7DLpW7VcV9Odj9yJUjxnEcYu5N5Zv3H8T0db8DopRTLimPutsfxYi8X3ddNjuMQ59KN2Zn5kghDofdcxJEw++/+/bp16f8Omz8ctkt1qtNjIeXp91q1TjgqnFN04bWOcZ6tayrlnYFPz74Ib3zTajo48ItQEg0gb1f1xrcL6/ax9FECxR2DARM5AKnVJxjdj7GnHKua8+EBKgmzFxMgIDQnKeSMyNMCaUnodMMFE8doGdV9mwjsyHMljMrIFdYepZz31jolf3fHOeGRF2b+LzXjMI4LWJtV1h3htMZRU4QeHYk8c1xJ7Cfg2tfoyXeeme3vOftYM8Xee1I2+Q2TQoTzh1mCREQxTTn5MghwjAeVQohudAg10no8/b4+Xn39NqPGZ1fVM2SvB+GmFIc4lhEkdgRmxbvKPgwxiIGZIBmjFhUEYkIRAoZIyITOx/qpmF2gKTT0GxaHpxMzwRv/kVPyD21agc1m+tzpuuYbBBNT1lZ09UKmAEOY8w5K4gjNtQkEtgpoBQxMHSMjiUrmqEWRJ/UvowxHQZCDQ1Byq7ipqlfHoeEZfVluKvpQ+PrBmhXSDM6UAMVYkQgUzbnDKMhACFILuwhSTmWNGhZgHfkuqb5+WU4CnRVdzwcSXNxaRH8/bKCiusa37/rPm9TjoZWmVerg4GXLAiAuWSMvqoW64fcHySNTM5VaOpS6XOKYsUPVWiCAnEIdQcpIZICWSDUIkaoamMfXSjoCFEYKyiAziMaEZZSjMgqb0XNV1QVp7EMkcyoUQw1ugBEcFqmGsxAlcwUzcwKIZkVYuIqbB66ehFet8fda+6PQywjVt77IMgKhZGk5JgiQEREM5ro62munCvAzpERwK8mdpuyMq8mzRsjOc3cJ/ngrchzwzkmFeqcIIfn3W9M8doVudjjnJNy7XlNFo9XTQpPrtR5t1sM+n2x54pO/f96XXSqc4Ox8zdGiDfAcYtjN39cRf/OAf5LLtNbVJv/hPOZ5zFfXdBX1zaj81msst/lbHhBr69v2QXaT1TJAJCAAJkDmBCBqagCEuWcnYMqeCvC7MGQAcowHjMAYdvUGTEXGnajiCCDgIBBO5UKiTCgiRliHyPkVDl2MKX/ofeucwH6Y0yRq4UCPW0P8TB+964msacv28J/qlfrdz/8YdG0pYjmUlDIu7qupBRScGPfN5WHUnLUdtmh6eFlyCU3ixY9xhQRSVXVlJhRoaTs2NijmgZfrVZ3UCQmwAZD1agLSSTJEKqmKAAgOTYzkWJoogWBDdmRMynoyIhUDR2JKZaskAErITaDaVmhqeAWAMyUAAGLgLG5WflUmvrVAjB5MQGdtAnzwddgRuhR7+5XnimOMYu4KpBD5FIht11nNSNqfH3qt/tVF7wht8v24cORX/HlkIGwXQDQ08t2/HT49uN9yPL6n//07n5Nyo5CW7UpHQhLUweJoSAyM2fPzK36YYwKKEhY1SaWRnUmWVNT2zjsfvzTvwxRGl/drTvKpap8BnQh7OMw9BEMs0jnXWDoahetRNW0j5vsMY1dzn9ow4fqgdbt3f09aFCJnMeAh6VWrechAjtyzhuaoTIjaK7IShHM0joqWjwqI5espELCTeAxpZRSydyExlTPtmh6SWg2PEdupizYOQnuZLJnUeXi6N3IqTdE5AxKdvvh7G/cen8z67HLvhdKc+0hTXPzLY3BOcx9Oc9VIh8ATGnBeIaMS/OP38GQk3c6O12nePjsE51HeAUqMzzCORd88l0JgYGQjNhMFdGY2IVazW1H+/Jy+PGX5+0wErXO1xw6MygpqeRcxmmpS08MJgDERCIyCc9JixVz5B0zoIlOiRzmvGcfnKu8r4lYVAF0ojOEhABSZBbepg7PU09IwpnbqdlkjDaF6E4uuKoqAQKTmjFCjjnlWHIuIpPuO+GBEZVTDy8BU4BgZp6gIjLV18MQJXl0VfCIDgHANKZckA8pHqKMqm5R5z6HliqBMUbvWwWbMryUiBySR0c8pizFyFGW8dCXUZOrmtIfPWMykcXqM/rnlG0cP1b2sW3qttGF9TGmYq/7Yb+Xtq4SQoImZ1BJkqUNlTiIsfi6JlrlA41jBIfYoNcgQ3aetaTjy3O9WSBVzhMuGybOh5iGqOUUTBzyiKOAM9WupSWRAhAgQROcAQiJY2Ogtg3BQxokxdyPrOrUsDbiYDS1lUKkSR0iUzE1BeXTQiEZCOvWB7fsqvjy1A+9jqJpp8Ye2SdLhYSIGMERI6EI2InP2BSENjQEQpvWu5mi4ACgiKAn6nMxjauOE/Dmvwaz2glTWufvSEZv+NBl7xlPrqwPz8rP9ZdXIHLprvI2Ue3ad3pzxMsG/wsYz82+Z0X3vJ9d/XFV+HDe4M8JSrcenl1A96wDTVd9E/I6gd5VRe7VcU4nv1bBb053c2P+zGhgDuCfuc7Moi7FrQgKRjw9LyhqiOgcG7BKFsQUod/3T48vOZUm+Da4Y99HS5WKD2G9WDQQht0jgknuQTFUy5RFJC6rBgFzzKkUdnAcU1W3vgYfnAIc+jFkaRYLXCyNmu0wDPvYVOMw5qc+jUTfPP9w9+0fAHAcYrtqyREoggqolpTdMEZiXCzqAppTBrHSx6omp0IM2DnyCM7CojLn6iqIQoxD3MW69m2DlqIqqTFMAXWVDGTOKZpqJmYpJTADA4BMa1wQAxl44qwiihP0gpYy7kseXbuhpiVyUgzJppRbRSNyoKCWzUysMJxUR1VFMEQgtCwZEeu6GYcxl2wB2q6JTVVza6I5ppiyAarpbvdK3fJv/vA3/q7dvfTPw3a1Xt4va1Byi9Wn7dPTly9thS+Hw/HYK8Aw9Lv9Lo2x9dhWwSt8/PihXSxM9OXXz/1uu3t6VSnZTAC9D4u2Wi0Wwxh//eXzDvLHb9+TMw3aOZbMi0XwdStNLWVQ0+enx8b5775/9zoMQ0qaQdFE4XgcmjXt99vd9tdmUzfL9njYHzXddQuNaDmScVvXru5y0obx3WrhqTruc0XkGAiAybKKSjagqTwcVBSp8rWrWUpUYABgRrDs0WHwhFMh0NRC32DCQITTdHia722Gwjkj7hphJouxEwc6m9GVq3jqz3NSam4R6QI/V6LKtbWedZoL+fjqdUq7vBJfLv7Uxf85XcFUIYt2w5muXa3fR4R5u6/kdbt+e0GXmRzN/9dT/9S5lEKyAJh3NSAV87887n593G33+RjFqKnqVdu2BJhTHIZjUdEihEjsCAAJEEhEgaZCHzYFgIIwrwyuBYmRHbtQNw3SFIYiIFItAEZEgGCqiKhTtAtNVWF2YRHsUpyMdMWIp1XKThkJqoaoKlokl5xF5XQTkVSBHBuxAaKpFSEDE2EQZ+o9CWhMaRiHpu7aZcuOgNQgq1loGIDREfkQQan2uKiWlff7ZObBnAhmUFCoPDMhqCEjiZRc0OQ4yvaQjtkaprjbc9BYxl93Yz+a9bJEnzJIMchWipWS+uMxDerIHXro67KoFMuoVoYdem4LEHlm78OyyYjj/gimfhmgghxjVsEoeBgBCdlR5Z0RGOac4jBY0aoOCCaiwbucxsOr1Lmrlgw+gBZoPKiiJjEFIqorYGSAkosOKRX1ZliZsQciQwRidoTktJScohVBQOen1UhMNAFDt6qbutnvx6enYx57yeRC4z1XTRtzypIVFKfOdjgtUG2nTm2Gp/wfQ8MJAWyWDt7KmbM1nVNNrmb7C5+5civOZvSVfzF3QvlzrxsTg9NILoe8KqC44MMNqNwe7WpHwGurvR7q9Sl/XzA6iyo3m53iY9e06gwFeB6+3e705/6wGUvPDtrUjMTeMKurGzxH3H/nWvB08mu0+wuZTzfoeDWQ05dmakZc1EzMMxGiGUjJzjtgGHMRJr/o6vUqxyNVHqVKfR5ed5uHFUNcLMIfvvnrzy9fXg45kH983jK5zaKhzi0b3x/7ZrGIcRyPh8MYfRYM1K6WElGIxHGREnevKQuCe9n3Y8pKnj0rymH3MlgpCh12jmhaV4vUYkwOCF+2h1RK6IL0hcZSgVGOHkQIEgr5OqzrulnUCVXAGePQ5+O+aMxjZg8x4SjILmRjWDW+XQkiIyPqqVmQCk1oiyRT0AsKOMJT2zcWKZpG7A8MxUOeVhJBAweoesrRQ0Y1I2AzECmePQACooAQMpMyqqGyYwIlMkRUMKpcvWwOj4/9fi+lLNtqsXBVjft9KQGLB9PcpyPUtHrYfPrt02Kx+PZdQ3lP+fjNcrWk+tPYvxyOy4rqjw9S5PX5mVZNSsvXMS7ePaD6BS4zf9rm3xASsTkyK1nysKi6LKlxUgfN+5dF6+pNJUMx5+7v7pbrNW3Wvh777csQj1CwXhBCREub+8Vy6Y/bIXhaLv3x8XU8vKzX39w31dNut98ev/v+71bLu93j01hS8+1Dd9+Mj8+lpFD/oWpWXqzshpwSgVHlCJX8dNMMGTkEBRQDBBRgAjRCQ6dg+5wQ0cCjx3IqzTvl0yCc1ZFLLcXEey6xYLwyvhtbu7KoM016E/m+AUi0yyGuNrtwozOpuEG3G/XlShN6G/A6H+Ea6i5pzhel5vch4BTyPnlDv4srtxh5Qwzn2wlzCdgUyLBpsTPyXtVtd/HXL8+/vhz2gyGF0C7qqnHsTcsQY8xxjOM0YoapHh0JGQHFcpYMpIhARIgOwQykiAICs3Oh8qEm8uS8nbzGmQWqEaNOrQ5sWk1hYoQ68ZdZFjAAQpv7WgPZVOAOs5tqZgq5JMklDqPkDGY+ODZk79AxslMwLQqgkIWEGMWjMjMYiqgKeA6OHVpyoAqZLDjnuWWV0h+jPlS+a2vHeRzbDclgGi32OoxFVWqPjfNFsJBkLSZALhyPaXewmCuGUVFRx3HXV3yXFI+97TXpXSdJohTwntUgxcAh5/h6SNsQ34fOoaQhH8dXKkO9WBVAqCp26FoXuI373kBc60IbShTPPtQVkjN2GCrg4j17izbuVEs/lLpZMHs1kZwpFRi1DFqvOnIBi0Bw1LA5VFQDZQTw3lW15WIKOkQUw1px6lwANuWwIxI7J2CqVoo6RARjZjGBAFy7dbcKq6r7/Lp9Ph72PUgQ68ixc5WUTGwECCoIcEq6VALEc7dzBARUhLmC5aQ5zAzpZHOn0oHp/9cT5JWjMhvezH7sK6szMyQ81Ur+maTiKyfmrR90c9IbZvA1ebl12y6fnOnQrabyNT3Ay9Zwwctz3dx8bddAdRKpr1HrcvhrxnN9Zri6nafG8ZeDv72uW3w9w+50+HNfi7Ogc/4B7O25v7raqwCfXVFawFljn7DHALIIIhYVIyTiJFJUq033w3/1Nz9Dfv7lt77PSLx5+EABRsOYsiGM6r/7u39yoX4Xqd8PLYmmPqfCCjU5dBXVxTnQEqE4NaOKGVzK5Tgcxxwr32wWG0/GoX24+/Dub/9w96H1LgOjsRMZcFrPBwnMiM0BWZRU9tklqlzDo1QMJpk8qalJYVd3i6Zqulz4cMjAoWvb0jZpOIRA5J0wlmg5imLvO3VAGEfEWHkmU9MsSRKgiSmYEgN5ILLg1IB8QwQMWvpXjoeqa0IICQAQiaZkZ0QgBRMwUXUGwTGyBzNgBLXgwpjGQEymBMaGKkKEABBF1CgbjcexP2zfvXuomvWw3y2gulttxMrnL7++e/9AWupA+/3uddeD491h5wN++LAC9B83y3fL+p9//Dk6t/r4/nl73I6xadqqW1K96i0Yh9WHu47rWNWsYyDRcXz5/Lkvfdu0IbjFoiYrRFwFZ5Jyyr5bqiPXhsLCDcIeuXIxD7t+W0TGcUCn68UiLIOY5DjmMrbL1jnfVIv7OwGDRC7ctWsv8rotzrjmQnl7PL58eh4P/gW7QYjZvGMzUwNimtq5EDIhC0DOxTERIRAhMiCDiqoxIzMxc1E5TXYz+ZltcFYwTnPn7Aeco+3nLa9IC1yED4BzJdQUL0MEu4WYtyLtbSMvu1j7nJ55wsHZnq+AcbbqGwB9czY8mTV8VYRxGd1ZyJorEk+wf9nqHGGbtpwpHM587gwrp0ErEAKgiRiAd2zqDP1hLF++7H572j3vYjRHVdvUbXDeOZKch2PfpzFrASUwDewIwETF1OCkRDsfFNRKAUAk1kmAISQkF0JoaiaPjtXAwFT0BMdwWn7VTE11TgMymqptTzHPSQ4AmApw7azJT0FqwinwAgBoKpJiyjmVUoL3hA6JwZABrSQAtRRZsgNlJUQlZ6f+iwCg4JiwFNEcGmIEBVVTFRsSHhONI1ZNWD4shuPBgUlV7BAt55zVEbTOLwIX0JJAvZVsCCHnEnuCXNEU7dFCAqipwmoX5ZhG8h+IfRrGigMnLX3OhSm446jPL8Owato6xL7s932/291/wA06QAZgqIJzTJ702NPUbseEnWP2MZbggpZcNFVNqG3Rpv74vB93gw8VQfDO9TGqJkFxxQAgtMoopB4oMDphK7kURe8d88KOYx56LSMWcQTMDBQUdcpeRkRyPDURBMWcCoA5z8QAqkUiudCu67pyi0318tvry+vQD5maFYL37AmmFecKnjq74JXxo8HU/3LKpIcTLzmJPXR+9Ofn/qIomOn13H5mGDaHyAEBL1Azx3LOsDCn9N1AwsU+Z3fmCiTO7tHVHjbnUp9kkxtIuWZjFwfq6jDX1OpS0nE9npn2zHzgAiNnlPs9P8luT3zGELhgzwR218GtKx/v6ix2QsobWJsv+S2nmp3Zc2OC+f5fYePXTO98O8zOmWI3tx3NiGjiw4o2dZWi4FSKluLrqm0r0EJShu8+qoA+D9l09e1DaJyo7r68Pu168+0f/vG/vv/44eHjH7cv6fN/+c//5X/8f/z2248Ss29K5erKh9bTcf8ai7487QLX9WpRVXXWUtXdev2wrFcx9tVq8Yd//If7v/++uVtVLojnQ58MQdQYyFRSn9TUOU+hJskWnA+Vk5hTSakfEQkD1U1wzP326KALVbu536irnp9eeFW37z84UELqiq+SpTxmRwIAeaR4kNhLIGApOYJALiCiQFh1HbhK1GXjBFg5XylVlkUTMDpfJ4VkxuzErCRBBHQsZohsFomMtZgI8ZRJ4ICJyU0BGnZe1aYkBkUoRr7uQvuA3IXq2Hbdolpuv3wpgdqPyyKqhzzgwSGS90+fnlPMX357QfTLd+vV3boU8IYf7tvF6m8yhX2MVMo3//j3SKG7e2jefZu43Y1ZIcDmw6LpalYu/bjdLiCAjd2igZgwMEherxbkBAzrrqoX6/Zu6ZfLfjiCYlXVPdd9n/QgdQge9bhNmIdl472rHn997Pfjh3ebbrkZxihxXC2qfnx9enUVIjcVLNvMJG07jPQ6upc8Hj1btQAiBUMmU00mUy7V1HdXzZDJEHDqxKtCZARQkTNAs6KiZGcR2gBml/Ba3jWg6dNTu9gLV4Bbb+wNVICdCckZDL+ST+z8xaU04VZoOmPHbfAN52HetIfHy7+nBrYXSjcfwXCub7p4evMUP1OqS/DN5oaJ07YIpxYdJ2foKgv8RMsuBavTTZvCTDgt7gvoFN2X5/5Pn14+PR5GIa6WwQV2lWOHBrGPpcSUs5gpEBh45yb4KlDUdFpIGMkHcGQkhsgsokXUOfLeO+d9VTsfbBKMEFVVVQgn+qIAMOXzqJ2EHiYmIjWwUzd8nDeZyC8DgIISotns+gNNsbwiJZesajjl8yEaYs7ZMLMWz+oo3y3rhtlM9/0goIaqagjQ1HUgyP3BM1DTmHJRU7LgQm/4ea+LLwORLb3zFMijaa/ZXANO0CszBjXjSvJzMsLEVIANXYolHvtNZxVSAFq2tUENCSoWDxkpsW+5Vy7SEn+4X788i3pvVh/ScMz4ftnUDT0999Fo/1qCT0v2FBiQwCEgQDErIjmVov1xBHN9HHMRJS2S+G7jFu2KPhLXOX3uh5HQUFvnamXKMRWLdGRDIyFfVSwFs+eGkVR9QGYwwsq4lBKjxAxgXg0bpcoTYRJF55DZIQOYiFpOplaSEBM6cd4bQdLEtW/9suma7un1sE2HoRz6Qs4bkYFh7U69wA0JEGGqirS5JGvCginmQlfKHwLqZDpzEdnJfhDPVvdGazl7A+dCLztJG6fvv0aR03R7oQP25ls4h90vdo9Xns1VWcY8dZ+rJ+CqIO18Njvngl+d4+1JbUYqnK39RoeezQcvxGIupzqRnHnHE3s6MwzAK/oy3UezydmhG0ZzSwoBLjcJAQF0ztTBmaSeBkgXmJvv1c3F3SSWXy75hjzCHPe0acEegCmXERFPdbAIWIVqEDkex93+KACrd+8W3YeHEXlZ+4by7pVzWi8eSuHsqtUPf9csVtauF6EZM1WfPsVfHgM6QCcChiCsztdDGkUNUJ3jqnbElQF4T1nLl9fXD123eXjY3L3PTguUccilKJJTMc/kva9aHtLocoq153a9Wq3Xw37ofcxZBXB/jCQcXI1J8+FAVrVLBq/Nnf/u+4edCAaqiXKf04Dg1ZmigwTF8hHLfty/WPA+sAvBdzUDG6Ij9SEYBlEe0ZFRsVylrMeXBnpsquJZTE0FyZFzYCgp5ZR8VRUtdaAgmTUfhx4YQ9MAW9ECyEXFMxKQTNl7J5+XufLhmz9s0u74yELIBJ5Rklq2Jni1tPv0tLpbhqa9f9jkMY5jOe4PdeMW79aL9SakvP/yZdUumvuPX3avTbXo7r+1ajkAjVgVX6VoWdD7Bp2LUoJvHS3vlh88py7wuH3BYt9/fB8qGIbXumnqsPTVcnV/p868uu3jkxOKx3Tcjm0VlitdkYuMOmTnPZuVMfngVncbF9zw+hqfthSI6+Yw9KFdrx/u8ZsPWTi5nJs66aofEapOgaRkdEiEyAwy6xOT9gBIRGYymT1NlUgnDFIihhnK4IqC3FjbrQp6ch5spglwo0j/jidxKQO58U3OZWRnFLj2Cs/s6YrmnHoRn0ZwMkbDt2e7WO78Hs+y9NQc8WszP38/oeAMbheqpTjX6F6VttgZQ87zwJRAY6dddO4Pi2rG4ENdFI6DfnnZ/sufvjzvo0AdmpWvaud98N5URMqYYklJEQgdgSCjiSnilL1shGDoiIDYVEEBEabuO0BIzlV1G6qKnNd59poWxSDHZkoIRKRaZilpQlgkQiQkmxY8JDM1nTMZDCeEsyKmp2zU0+9OIKI5F1WVSWFybFogJ8qxDbRpaLOqV1X3sGw9835M//zTcMxTIpp6olAFIoxjhsqpkYjlrEDquiopfNoONRiZxKEsN65eeSLLzqDmBVLt8HU/dqHiQDGGEodRtYBQ7QbJ+6F/13k1XDTNEWjbD3nUwCWg7g+7gsvQkOTeOV6v2k1OT6M4FwCgUFWA0RF4B+J3hwSwz0k31lbsGTwou6bRUhDYGQ2HfuyPKhpTUVC1knhwHzq3vl+5Lsb88svneNiWcVhuOt8FYHbECBCHEQuVVEJWL8AIVDnyIKWQMTrmriHmHIcyxpxypcVBCz6E4M1MVZAYgMCAnDcpmouJkjGCIKJHyzkiIQfefNysN7J7PHz+HIeYMgI5B0oAREZiIAbeDFABhZANVKdE9mmmAzRDAQGY2oUhEAJMXRPhzJmu7AztakI986kb3+bkPtHN+lN4rTRcyM1X9jrpsrdMA86OiV3ve73jDYdAuOyL52+v1K4rIPkaLG7owvmcF//neu9rsLuIOycGNb+9+s6u8GeGGLthiecbdCsRXZaGna/lZnu7eXPhcpch3MD1NXKf7+CUqzupfaggMJVJMBIiAyGhpVKG/tNPv/zy80+Nc13TGvLdt+8//PX3Q3/U9WtLark03fpoEJarseiXn35drN8vvv2w+cN3D4+ffD98qMP2+fnl5WmxCR8e7la2fNntPbFaAfab9R1XVQiLx8/PL9stOE6lN8ZYrIgc+4Ts2KmKEEIXWi2aFB0jqCoxIGFV12n0mp3m6nXbU7aVB80lAPXPO8jEtbNyDKvg2pbRVS4Y2Hbo0ahGN/Z9puQawtJXFSs7bZa4uNeqVkMyYFZQAZiCWF7HHoed6/fQv1iDYdGFpjUlygUzKoJDYDBQZVUGadEYct8fEIFdReSUnUZBRGAoKgyGgMyMiNMiG4mgapf3f/uPdVfLuHdYqtwSUD/IEBNSXFR1kfj/Zey/ulxXkjVB0IQLABShtjgqT2ZeWaKre/Xq+f+PMy/TM6uqu0tckeqILUNQAXBhZvMAgmTE3nmnedaJTYIQ7iDs88+06fjqbrWI+LTZjGOJXLsGWzaouQy98zF4v1ouBwkZm+q6UfiQVRScj2AoamqO0FVA1y6wqcYGqOVq7XFt14uCWZtVcRzbFfjFw6gxevCLND78/Ief0+OjpuHmankVSMRuFl2xApKkKnMGRKNy2D/l1CNhLdQa01FPdyAOqMm8fij9liOuAqKzKrGLJlKkTFke5+ayBoCoJnBq3ISkRxeHGBidquicUtxPsvBM3i4y4C9stc9R6oLjXMDCSeRPwQWn812KJs1fz4BxWRAI7UxG8FgiARAmT4zZCxEFgDmN4lLsT6EMcDTWvKBO00jPUKD4TK+aJzLltcx0SHWq+UlMHhBUqxZ1SKqVogOCNGQHZkAhdmL+4/3u53f3n7e7IbNrrxvfhdAAoImKlVrrmMexjKDgiEGEAUxFDarJ0fGI6F1AJEXTagCGjCpqCM5H33S+aZHZkCZ8U9GTi46OzNhEVEUuge8Y7D4/AmowESQCIiZDnNKwwUx1qg6OBIhqpiql2lShGYCJHUhD+XohP76Ov/vm+u2r7nrZlVwfHvrdZo9QgcATO9LY+KZrU04JFBST0jEFtGpO1dgb8sd9JRM0dVgjGAf0bQOcVUbP0DgpJXn2ZRnyaNnyMFYInFA/7PbrbhEgdEHfBK8N2Od9ZWDEPud93y/i5KkHNmgBg9AopBh2mQ8VnSm3fnxKJVtK28OQRk23CsvlgqdQZc9M0RxqzcN272OMsUlFNtth87DjsIx3kZbd9Q/f1iIlvRvHgxugXazEgUlBc1Nr2lpEq4FM95OB0VSKqA8evUfvPJP2BxORPllV37UAgM4RoIkJGBMhk1YEwKmntyaBUjlwiF7FpFb04Jb+xq3aNmw2477P+5THRIaMLhJO9uACoERgqoSkpoSEQCqqWBm9pyB2TBs0UMNjj3kAgKmy1PlpOgHCMSp3phR4TIqYHqGJvhBciLB98fdSQGeUwkuAsss9zhkX/9bLLt7MeDCjwrMwnpPdY1Z4cA5+Op1hDj0+g8R85LPcNbg8YL5RF0HlJ9DEZyObWQzi+dCXvObZUJ8HSD3jgceU1OnkF9UYv7ghJzoFaMeib3PpATguMDjV+TK0qUkyISiiYOPc48P9H//7P394/+7pYeMdtk2Td+JWn8b95u77Vz/+7k2L8vGnd5vPH0aklWMkh3n0rvjonMPFuokebz0trHt97RdLXIYGHXxw9vHjRtu4fnN79903d999y0Tyn/+P9cdfxsPm559+Cd/+kKIfxwzEy7YzrQRaSwUvdci1T47USqWnx8Gsubm5aXMZ9j0y+mjVZOxzYHPRE9thtxnuB2JY3HXN69c3b9/cXL3J3oqCCje+0yet+yd2sIjer1eZF9oszHWpmiF6RyICxipSdFQoPB5weNL8iJoyrEyprQBDklTJBTRDR2QlgIFq05Du9yCl5kTN0jULwUl3NQUFYhEzUzQGNCBTBFUroyoF6m74DVE9aNmE0PS7g3rnsa66q9C2j/f3EjGr3N69EQ62H/zddc9h8zjQIQ1uqdrudjUjbzDuc006VgoGTCp6fKZRlRRBier0HBj0WsAxLHmLtmw6cO1QCtNVn5BQgBxhq9I8PSas+N23337z/Tepfxr3+4YoxCgF9/u9axv0blvr/rHXIa14ef3qu7a5bhzmDP12cDHtqm5TGJDEtYhcUgYTIDebJc4WlpOll2Z/NSFdeHboLBhnS+pzWToxHXgWWPfCNY6X+HMGrpMyA8/efGkjep5PilM67oUf3J7pQxeSb8+B6lJwn7mwjnJrx5/vGJFwOuh88RmmwQBnJ9Bs72UwRTRCVAMzNQQiJmI79rYTNUVCZoapmrJIrcIM0bep4O6gv378+PHh8GkzCMZ2eRWaVg1qEYeECCJJRFSViEQt5wKgMNUkQDAFO+ZQEjGDGYohoaqKGjORdy60sW0BSVQVjJnNzGAKrUNyDKomOqWyT1GbSDhVdDY7Pd9A+IwdHssAHX8Im/SNydaloiYKqlIq80TaCkJ6ex3/049v/uH71c0COq+E47vdeP/4eL/dKwEDO2Y/3StHj5thrMnHRoEQkMEITRXEY2HaFXB76RoMAVnz9ZsF+kCEI49G5hihFHN8d3MlUKvrD7LNqEPu77fy7Tq6lMCUgl0vGxcCSN1+eLfr82Y/NK4JngDjzVUcZFCUn+8P22H4+LHcxvVVIN/4WvZVWQDLWOTzvmawV3Z1SwaqDjkGbILrQt1aySmulp681O1muxmKfUPQXK381eLV335PbJufPhyGvW3Zt4E8axEDJHOqmjWBgZj4rFgrRucCmyp6BmZcLqPzZThozukw1CqNGnYthoA4hQOoASKzJweqoFJztiIIQmZETD4oWBVBZ82Vbxa8GsLHj3vb1yyChOScEVoFQmemgqJWQad2ZIQAVTOjI2QFECvP5PXYVZ5n7/KFaM8Cegz7mSN9aP44LfFzjNFLRea5/J6Bwi4VtpdXg7PP7KVa9GzfF/6fU0A3fnntmXEdpzO7l+ZgndPHZ1M+WlZejtKe7XIE6pdzvdS7vpz++cBnG8+HH/uUXRx1TpIFvAjmhNkBd5H8anCyCV3ELpztSrOH7xiRSIjALGIgoGqOEYFyn3/540+73SMCitjjZrd/OCi/f3z88O3Tt2l7xynvH5/e//KYiH/4h3Rze+NI5enj7lFc3q1bGvdjTuVm4a+//ZaCacpQkrQj3a1vvv/+u9/9xq1WV69fpzz4Zfj+d283m9QPpVTD6O7v90h4vbx2wdWSzYAtpN3jn/71n10bo6Lb9ZlHveJIcSEQ+2FcdG1onFg2FYTC3msFxgqgeSfsgi6XkKWN7fpqAeS9hX4H425nlbF7zaGLsUsAu/0DCfu28+TYzHufpYCMBKDD4/D5L7k83dzeOodaUtpt6yDOsQMs+eAx1mHr0Tw2Ue2QNqXUJq6hWwj7XGod++jDUTlHBGIzABUTY0JCqoCFmydxvltIHQRfSezLaqyI0RkwFqwpd0CxL6C5yeF1WugDRSWnHhUHXPkeYypBg+8jVGMxb0gECiYw5YorEpIhqqmZMQEY1qLOszl/gFqLgjrmqMWjYXCupOoAqV28/v3vSfPVejky2IJLpUHwtllQI1K5a7nrOu4alX542iEt1t98197eEsl23+8y4g7f7ceETSY/jpWdNW2Txv4w9iEEIDqqKWbzInZ+nCct6yjGOMXynMOGzxJ0KQh45EAX9hh8JnXHBNmXwn1SUY6NDV8aWZ+/EHSuPDNjA15ag054cD78qKvZHPR3OdMjKD1X4F5c8EtNaT73HIx5nL+dCotM7GcKx5/amRISMLMppFJqEWYXfGSEUgZjUDNHHpRSpg8P/YeH7fvPhyTI8SqGJsRYq5qac57AUhpLKaVkIFJRq1MVAzMAmULUEdn5if+oKhoUqdOtYHYxRhca8hFw+lUJAWoVUUEAJGJ2nqmCVRGbwp4RAabQH55iVyc7o/MOjQBAaaqyNZUHN53gkhAMxBQBVLXWMg7J1CZ5IKhs+aqFf/ju9f/yN9+9vcbUP0hKhySP+3Lfp10WDgvIwkirxpdchjRWrSKWs4gRERgpmJJzSjCU0URACB/HsVBeQ1hCy877pra1H3sMzkp1kcB7cuCI2hiKJCQMIUrFzed+t98s3q5T0xfsgGKx9tePw22bGh+vI8UGr1fOO1wt0Uz++OfPm0+Hx9auf3vtjALVcRzD6i4X2RexXR/JsUFsvAWuYi56t7pqKu52w+g6751f9nLo3/38jsm+c7/BdfA3zWv3A4E9/PJ+3CUQDsvAhMMweptS+jDlUUkRIFLDqsAeCFM28s6HgETBswwjpiS1pu3gqrpOIAbyDpBkWuGYQADISFGKadE6VvaeAlAIyKFIUSwuYuvb73xcbcbttk+lltoPlQBQHQgaOC9avSc1Mc0G4JwDUAA1UFM7Fgk/SsgkPTNSzOTghdjOS/FkYpmD9uYlfl6dXwoknIUdAJ8J+OwgOlkx7MXVLs5xVAXP8csXFGB+Y/iMCJxJzawtHZFsjl+GYzTk8Xi7xKmj5etSjXvGp15gEj7/YM+HN3/E50ceCeMlMp7J2ovTHWMGLpNZn3PAE7N8YT6bGd7sW8QjZZ2XGQMgZjIQNVPTLKBZNk/b/jDsdofr68WqbfZpbNFEyvDp41/6pw9/YIeWd6NkWtzeffrDu927d8GVb97cLpfttewC4y76AENofIxh+erWs+bHz2U3trH95sc3i3U7aNbto/P06tX1TRt8s/C338ZWh5zyZjSOZdBu3RoYRNr1+19/+dO7n/7g1utVHaA3prbLwL5ZLlbXj/f3IUDjCFX340jRt87atruOV947QB2KDQ+7R/rIod0edhxCExcAuXEMBesI7ZVT09z30g/EAUnLCL5pHQM6sVo98Wiy2z5q3tNyHRWqWEr9arkk70otJJnHnPst2EjWNKFNMFYl5Ijc5KK1VHIOGUlA9Viqa1olCYmmABiyXMCMzJNyo+it69SX6EMBeUjDumEfrg5DVqmjBgqskbcioA06R6urwzBis64UJu0JgR04AwEphMfLToXbp5w3A2MmqRIcASgEJOTHTe+ZF61Hx56pSKkquaRx7LuWve+K1m22H3/746u//d3HD5/QBHPR2jPK7Xp19eY7bPkwHPJYy+1CWp8q7zwdkmiixwTVqWu8Z1TTIfUGGttWVfFY2YVOoHDpuDK72DBTmrPL/AvDDL4Q/RPuXArYc9/8hbSfzvnSj/wlHTmL56XIwyx5Z3vNJdQpHZ3/OMv9CdoughxfQAF+ZQSnTyfDz4yt0++Mk0lqJo1TwjkygKqaSS2CRI6ZmVQgpV5VHRMiuBAR/HYzftrsfvqwfdgOBr5drkKzQmI1BQB2TExaaykyDiOQIZjNoW04adeA5AgMyBCZplIRgIQGoup9CD7G2PqmMaBSBRBoChjSY7gisyOaqnSITCljQIjIhMQEiCAoOuWIEQLNt/VC91NjQEMyUq1ipmZg1WopCDAVJq6luJbXV6ublTfy7ze7MVVPORikvhZRchxikw2dassYmbOkknKtMgXyVRMGNwWME6OhqJQiVpx/HCWnIXJcb1K3CKDsFy30OQ2ji6im7x737x7r/XbYpVqZrm8Wb+5uICUrte93jYSuu0qKXesOy5C24+YAm95IxQ3b5ar1FK5W/s2Nu/8gabN7unf64+smrtrmYT9WZSYftQ7KvE8Fn/ardbOKyyJ56BMytusFOg9oTHR7d22o+c/y4d0DB/fWfUPr1pbx5u9+b+Y//+lj6ivpGBrywdecIwUEU4BaSp/3phKtc2DQAge2CmqInjBEDg0dxjoMOY3Wj1WK14atAR/ZMRioiIEgAHj23lkuImPN2Rly8CjiHClwMTVV1/CdX18t4nZ3eHzsS7ZqjsgbIgE5H0SqVHPOoo8IlCUPee9ccEyTAM4s5xT+fKQe50o7k2SdTcQTgBCck7+euXReSuzpoMk7ZSfmcQauOTn/vPyfEeR03Zk3nTHimcXj+Vt8tu35QJ6BxXMjzXHOZwD7StzSizdffHjxwsuMj/k+nIZ4nPmRucxs7Ti7S531ePRzR9uR1Dwf1YsY8DMcG86OvyP+Ih3xsWoVQR+8Ixw1Idpw6Pv93jtwbKC19n2D0K7aUsyiM4+51P1uf3jaX62uXamf//TnNGzvbps7p5FWDZRv7175H36D+0/jYe+9j95pHtIhMXkkGp92aUiVNd8/Lm4XN53DeE3tunZx/7gVarsYhwLbp+2idTWl3fbwyx//8N/+3/97F8kheQoQ19zeLsPtau28Wnr4HGrpS1Vii4uYC2x6/f6Hq9XyisirFUqlVh0fd1mfxpwQaQuU8ni9XgQfuXFYk+WBh6EzkVpAxAU/bntqAjljqw6gIXy1Xte9YiktIDA1zG3g7GoatlwA1dXDI9S912akNRM3i05cUCI09ByY0QGQpzEXBDJVIJiQXU3FFAzR1NGUTAtVgchTDIqUwbALW9AQG4MMZlsUNNf4poKZcaliZrxcAPqqOvXeRUI7xmCo4VQsmYGmJq1GKOQAp3x/Ah9dGksuBQFciEVt6Hdd2ywbT4r7h+3m6WMHErgpVdrVEtbLZtWtHT7+/JkNb96+bSLF9bWFBXcL8N0e8seBa8WsvlgsqCU7jQ7AqirQtATWY/7OMWR1zhc4qzkXRt1z+dZn4jmZoU9W0jMReS5Bkxh9JV3jOW+5EODnb56Zs3EWytk/d8lFLipnzKZmnBPxDadE77kj/TPt7Nk18aw/XeaKTLB59Hedxz7fHjjfoRPOHfmA6RwBetxhiiJWAwI0NZMqlcAhBTEZetv1+/cfNp/25ZAdttfRNc2iY/Yp5TGltmkc8zgMQz/Wml3wtRSpMoWXiiqY4jFQYnJSFSRDmxrSCiC4EEJoY9d5H2SORjIzMVEzQGBiJkYiFRUpVarqcQJTL/AJ9KYeplMo9FRfcSrKQoQACFOqPCIikpLqpO2JSC0lS5FjSp33GAPGLqH7H78efvrwcHeNv3nT3QaOEBhL9M3Nmh83AyEGNkKoVVMqoOaIPRNKnYKrDc1M0JSs1mraoDkeMhwS7g5yO2qD6JyPMYhjh7ZX/el+/8+/jg+7Gtp2vV4wEdWR027lUl3Yq6vw5m++vb8f73/6lHfbtmkWr+9gGe/3O5TUA37zdr1eN99S3j02v+w/5cMuZ2uvrrqrK180QTUEZdyUbACCqgdxHuOC4qoBM7Pil76M4ExoEa7dTanw+d3D+58eHPm3f/sW1gG5e/X7v2Pr+odPdRzEO26dqR7SoWliiA0S11r7YahmLXTBiBUgGAAJoKG56LDtvPPgWGvWUmXfWxbXGcQARMQkagpKjEAOibHUmgurwJiMCZUBkZDNTYu0uI5um1XT+WabUsZhrEVJsigaEjA5EUtYQNDMHHtG0KOY6Cl89kLdOQmOodGsxJw9QTglGRz/eQk0X4OWmf08Q5uzL+iSXMGJBpzhZtrrolwhXLw7DfevG2W+AoTns+OLHb5GnOwiz/8rVY6OdrMLCDzD8Eyj7AUtme1VJ9IIeAGFzyb85ajxxfgv54Cnkh7P7sKc+DKvDDTFvwMx4ZATgFkxZI5dtFI3/X7c77oQkndQixlaTlRxtVj45SJJ3UmfkRchUi79/b1IgZLT07j5JV5bCbW0d+1V6x8e6zD0brUenh4//PJud3/fdktVt/vlkw8UGnLt8ue//BkaWt29cjdFkrSLO9+0gf3+kDyN5fBU9uP9n3/68Oc//vmf/vTqdu3GlHOthOxYQqQmxGbRrG5WuRfy6D179MUphwBEWSWnUiswQOuDAyglYUm5lErkF83qdulimxSzFgANHnMWQvJEWIVMWYsHV0t5enzqgFbrK7do0SGghehAsORMjiNTvz+MQ6paHNmYhrThsL5R5GJaczZA5whBRaoKOfKCQODAFE2JEQxVgRlFBKZwBjM7xmqBgplaCCHVOkrxoXHshr4ncKWy5zCmXASQnQNHAFVVtDARI5mhiKKpiAAT2NTL2dTEoU390wNTkaJiNacqQojeeTTN/bZKCt31sOvHw8htFz0LgQ8Yr1dPZUwHAyTyEV1Y3i4I3dMAMhpA3Yy6yZCRrKgxoWEFr4jeE6gCmqqamXfeDFQNCHSqeXBRJxTOFOAsUhPrmLNAj8J28qnjyaf0QpzxpKA9ozrTyS8Uk7N4/RVAeyGAdlKbLlDyGerg6b+j1jJvP3On89WeA9ZJBZxpzGnbbPCZPlxMCS9DGk97mdnkp5MphdwUZh6kplKkpDFEv1gszHwqtDmMv7x72PbpcKiFWxcXXdc59qWkMQ1g1sSoqkPKKaUqBRCraCkVpthlZCA0sYlqo06hSAoiznkDEDUi50PwTXQ+imoRQSLvnRqoKBgws3OeiMygFhEV1Rl/aVo7UKcgDgNENjAxkSrkeOr4zMYANnUkN5OJmBAhCKieTEFC5EIISOw8lSK7KqrypHk0WDTd8tY3zjxbF4x8cODyMKK3hDKaDaoAzBgMsKqgnKkqqaGBMaRaDcgjDUZFaRxqbMJUJZUZO/bDYFl0kzWFRbu8KiIxRCwH0tQs2Hy3XHWLNt6Xh4f3v/Tb8Zu//9vF1UJMXIz9dr9/fFL2a1ksl90//O2PrdTxkA/bwcd2cXV1h/Tu0x6IEyggjogecKyyfTosK60YoQkqoA7DopG+SKlN6+7e3uy26f7D5z/86y/g4Pa3r9V7bOLd779zvj6+S4exzyaLZYNI+/6wZhejE1FiAtOSRqnC0jgJFquyQQi5VMeOKXjPVlIZ9pKT1h5VqTYYw1QY28DUJkcVubZzvpKZlCQZOAae0uwRtEpRQQZm61axWy3GQ3l4HPZDTqWOOQM7ig2zM1FDYUIDNRAEN2XOI0x5iXihT7004x6NE0e5PsPDFwRjJlH4pQyfZfcrhOQlGl1sP/97KfnPYeqF3vbFCS4vhmfwmE0hXxCa054n0nc2b788HwBcRCp+CZbHURsc7fczLl5iJczWr7/G1F5e7rwGPFsZToh/Dha6qCJw8d3pA6CIWIhNKalWIQRS2D8+ffjll0/v328+36vpfkjbLA1By+Sk1H7XVx1TEbJmGSlrtbpcRudbMvn46XHcbtfBP9wP7k9/+fzp/eN2+/b7w+u7m8PTuBt0X0cKcbFcCtvD4+Pu/nA47Lb94c1v8/f/8ebqzU1zfQvATRMaz+JK43G3exo+fervP/7H//ijleqGflfGEZhxz7CIuEIGCG30YW21mNkwJOd90zX7IT1u9zkrVGq9o3UDDgIIsdUxL2O7Wq0JKZUq3CCxC2qarJiL7FzIOS8633hkpmxmJVX2laP3HhESkiBmNdGyAB+bdvN5U2q6fX1HoPu+TxpSdjG0Rt5EiNABTK2kmafW0woIPBVeqALIzFRzIZoq8yMxApipIPEUv5BTYUIzq6a1CjqHwFm0lDE0AQgFMZeCCt4z+wZAzZQM2XlTMsmTW4KQslZkHFW9Eht6ZHa03T4h0XY/1FSc724WEUApD/t7KaXevP0WjA5PTyLjt2/W19fdfuglHwK4mjIz8XIt3GxLGipLin0Jo1aKTABgqEZgwHzEIDMwAwKeytmpCBxdF3ZpKr0QW7xUnE41ME7iNJGHmWicc9Iv5OYi8OcLIYVnX5w8b/ZMsi/Ur9l4PjfnmnvfXCh0p1OeLUCTNcSOIZVzwjo+2/lrIGDnGX6Fms2TQpw2T9FRYHgsi4xHTmhTLy7DSf3CY0UBMFE0bduOmMSoH+3XD5vP28P9U1Fk3yxb9qHpTAGsMGCu1Xk/BUmXWlLJU4lCqXVK4ZvwjoCR6NhFAuZaTYSqImDsQgyti5F8MICqOpGaWo8ToQvKqDoldSkhIBPAlHczPww2hUuDmclUil2JJuMPos7xq1OPMFWdwopA0ERVlQiZYSJspBDJN61Hx3l0SpW48z6IHRC09RjJX7Xdw0PejLuEIbEkAkNHLhj7VBQMvSPHDApVTIUAOVfLkq+XIQH01cYiKzMCIyQm9kggxbF3LQa+dqEdNk/ELngHBcRQ2I1Jdw+9lbJqHF43d2vfuBpJv397t23hw+Pjv/z8Dt7h//w//cPN7Z3/e71//yGnp92Or1/d3IZ2v8+7JEWsiERuDtUcYyCjvdR0WFyDWy/FcZHSdp3lopKbNly9Wm93/TDsnj48dU0IN0TtCpjjq+VSb91ul4bS7zOH4NvlUKpoCk1DiLnUUqsP4kBBhar46NGZKEJl8AxEGHyghRBDzZqS1UolkEaIAZnJQFWIkZwDJtAKqaoI1AoGTA0gEBF4yLVWEEfm0GILr/1yVXS/Gz99OgypqiIwgRkyCAkwOWNDYzsuzIRgs/BMZlU7Pr9HRMGTWF0AwmTkgwuWcAkeL0nH8YgXXOYkwXY++OwFe65AvXzzEibOXOAiefRrZGwezly248z8vqR2YBeJanNtjPPVTprjOWX+IjnsuRaIp63nfV5GLn956754Xdyp8124JDjTxi8UX5jXlCMOntAdEZxzClDyiKBSQGp9vH94+PwouQjqqIjkvQNuXJ8LmoXVsr0Nw2E/HA7cUEu+lJzAisJmM0DJb9ZL+ng47LbsccjlY//r3xe4vlrXoX7+vFvexdsfv2Nynx5l8/khhiZ0193V71Y3f3vz+m9Gh/t+K3kglFH6GAkgrRuNll/dXAM5l2pSyZp13PgNhIa6qqDgcxkhKZJJFQAqOaWU0lhUmc2R+v3OJGIgSCXpWIA8Z2FWDhEoigmqicpqEVKVw37XrVqDKmqAjokCc0mDgmaEJnDXBJAaYqhZ6jhER10MDNmjETftspOCFpYU1+SdppHMRAERPAcFqqoCAqZMZCpmoKiq4B2jghyJwinEV491LESntEuHnGr2FJhoTuxSAGNCcEiGk3qsqmBqOHmt0YiBcDIteR+KFWNTIlKsCibaxAY9Pz0+Pdw/eoqvVz+8Xl/9+ue/7J9IEBCbnKUf6irE2MY2Oset1OSN11fXfZG+wqHkvUDFQK6VUn1sASuRiigCoiMgu9S5zsJ1KZzzQ316sqe/F9vO5lK7NE+/tKY8F+ZZQ/jrQvbcdjp7w/H518chnfLILmr0PPPZX4gozVfE44lnWbyEsf+/CtB5B/zywxzcdAyUAgA75rYc74Qdx2wGMBU9JSM+hkGwcw7I9aU8bsd3n7YfPg/JHLhliK0Pzjv0nkFgTElU2rZRUKgquZScCExMVY2YGQHAFEBEDJSJJz1+ChklJDCsYEjOh9guOvahqBapU48wg2OZYGZicgAgtZqBqlSpCIgzLzra4+dU+UuXAgAgITEfAwJEEYyIkUgMVFTVVMDETE1FCc2QSqlMtFjGxaJZLNoiKjkDe/CrQcpYhMwcyAEqAAEAAElEQVQYmcxCpANVTX0lBDAmEkJwrhgFcqLijFBQpzpFysgEhEikZkPK+8FSpVqqRwIgQJ72g6pQK6HUVNRkvx/obaCm3Tw+7Pv905BS1eDid998+7DZSSlQy6tvbpfBrd7cctP84df/9u5+txv++e++u/vd29vb19Y/PToPyM4rXrdB67DdVzAanGDjVBw4V3LJfU5ZVkA+NIpobOqpFiKw2NJiGcf+8PFh75vu23YZ21pNad2uw2t4B6VsCDQyg2fRWmrlKuSZ+djwTaTCoE6rcx0kQCZ0UpO54BQdhcAcLA2YBpUsQ1bJLC3GBpGYDGqCOSKQQyBVraZFEEZkMkJkjjEUFRUZxpGAnI/LhhdtR5jvPx36kgUQHRsweac2Vfg/aVk0NWi4KPM8yQ+d1utzjtEZDC5CV85yjWCX0UL4HE+e4cfzuMKTJ2gW7AuP2TOQO214CRcIcFGRccbKU8T1s9eZTc1AYedQnMvsUjtnkp7PeTE3vHTt4QXDm1XT8726GPKlBeaLF17MBb++z3kUc4w2ni74nEadnGFHfLbLmKfZ4oSYSwbA2AStlZG9894Fclyz5TH7JoCCqiTFMZtKvV7o9TI03IFWyaoAY0lZCjCrp1Tx/b63VDziMiyIKzexr6i7cXsYNv0ooT8c+hCbbrW+ur2raUBFQGpioFqCI5P+cOjT2DdXbQZrlt1y2Tqxf/ov/+yv1o6Db4n63aFkG0Y9ZKOwXKzfqsGQqqYRgZlZS865mGETIhgTc1Eru8wmpaaaq1Zqu+zdom3aYpzGEbB6T4GZc/WoqKNKPUhpmujIOYZqtZq4xlPLQNZ4cM4UYEh9v81YyrprDofD0/7BL28XN9+6q7ukXiugIDpURTNDxxWhmhKCYySpCEbkChqgqQoaIZNM+TM4RQghIoEiTwGfiGDqiHGq24SCBFWlmqgBExtYsWoyy4JVsOrwmPegVgMFAqhm3rMHYCKrcNj3RFVLEildE32goskXXYauL/Lu8/27P39crbrFYjWOlrYeOucBgg82KrFLg+Z9SezAGAhzqgjIjFWm+nKAhFNsqhjSNJap7gIigM7mlmfazyzyxwX8wip0yUnw+ZYLCf1SdOAL1emvHmVgQLOondgQzDmjF9Jusx41S9xz9Drjx4x1F8TnOah8oat9SYq+CEw8VYmeceV816arTt8bAphO4fYANPWNEZuiLoyr8eNmePf58ddP+yTIvPTcuaZrugbJREoqRUqtUomQGEysHw9pzMAThZoj0o9NSo/sopqpCRMxezAgMgNDI+di0y59iEW11CoGkSMiiCgSESAjM5GaiWqVKiIIgFO60VSeEXHac3oyVEV1imqc5udOEa4AAGg0B8PlWuuYtAqoIlITGmQ00JIrmKlWJkCV1B9SGhjc5jAGNKfaMaGCyqiS0apj0ipWzJPjwCFE9BGtQlWRCuQnG4Fnp2iTAlCqJpH9oaaRpFB0wTufiKoqoGEVGJPlHTbSeHjabvd3b7ruTd6On7f3oZPlkCBG16xlWz983gUffni91lJYtXPNm7vvPu8+/X/+r/cfPxf8365/9+rVDRPEoM4C+duuSdu+Eaue81jSmBZ361dXzcp30o/9uNt++rymdXu9BMxGXBE15UUTrlfNZhM/73fy6b5bddE5biKGRtF3N6LF6n6fDrsWO2aXtYzDXovzwXsfwAyqKVplplFAmQIDoXMEYgpq7AGJ4pK8x35Xh6HsRyjgOoLgITKYGBQDBGMKjOiYEGtVUZMKBC42SBTYKyB4X8YEIMF5ivz2bXO1itt9fdjXQyqlViieVA0FmaZ1dor9Ujg2AjtKMZ6MpJdGlLkc0HmBPWa/w9kCfHJ22VlJu2QhRxUFZnswzDEOJ3g6gcwzBLtQ8/4afJ33Pxlqvu7cAoTJY3xhMznbZiYWdwKX2aB8RJTjWacJHJWr6ciLNPUXV1MAxFNM8wVps0l5PBrzL+Z6qT9e2LFevOwUhnVR+XUe4DPC+AXwn5YMMjCVyu5oEHSelt3q7dtvnj59+nTYslMfqe9z36dCxQA1y6df9zxu28BebRizCogKGTjHIYQxxjJkQVysVmjkTMOySYjjri9VyHHqhz/+0//wgV6/vfvND7+vufvwl58///L59savW3MldumAAdpX3wiziWTR1Wr56tXtr+/uZazONQuHqMrLm9d+/ca4M8ftzW21pJrTXgJSbLxJZUKHrFKdYyLMOY+HnhEIxNSGYXx63KmRKSTDIefQBt8FLdrFBgKkkqvqbug9ateuuuCdNey56VoyhVpRikcTlbzb7Pa5Xax8u5a03Q/7xQI756uYaM2paM2kTN6LTQ4AZYboiUlMKqoiIRERcxUxAjQ0QyMjApyyoiZtBacVebLzo4IRmKLQcdmZtBUwMD12OTGcCsERzSnQFnyYVjLXOIAq44joXWwZMQ29j+xQl7er1ardbR7B8Pr2BreHzoeH3f26CS1h/7R5bODNzZUhaBrlMFiS1nvXhEXTjdE2g9VaEbHWOtXZZHaEKCo2KVxHx/GkQpwMJ0chfO6WvtCGnvmwXvL9F7rBV6TmAoS+IqjHXc662cnjNHUJfsm+jiwGj+RndnEfdaPLS19A2mUw88Xrrw0Jz9B0XsyPX51mg2flcS5KhnBsPTg7kxAQTAHBRKYaQMwMROS8otv39v7+6dePT5/3Q9UYm0XXXfvQGOBk6FegUouqOOcRbUw5p5TGcf4VgR1PZi41FT22W58K/xBNVIXMrKoxO+fYT4WeDXWKRASwyR/EDGCOHSKpqojUWg2MmaeyPTCBNxEzIRHIaTEiIphbyOGUWDDnz9LR7qVgYFIlpSwibBgDsyMAGFNSMTNJpRzGodS0P/S1imPe9GNgXnjnQEgrmZgR+uCbZdlKFSViBDIVkAyqIkIApYojIFUVJUdEVKsU1Ex1QB0OYxlZPbHzHBspAwAEAjaRlC027H2x8jDqulk2V3d3IHc3i2W3GEYreRCDXZ9+fffhriH4du3Q1Jrf//ht9euHfX63yf/1T589rr+/WjaNEwLVGtvQNa7FQ5/Bh3gY69O2v1l2q2YZVt4cDcP+6dMWAJsV+sW6gAORoPbm1W2faZfl89Php58/tN5fv3XI3hi726s2ut07fnovJdli2bgmDHkoqdDUJ1fEDF3waCapqoAnpOqUCXjyzxuQiiPEyAQOCcZsqml/cNEzRWBEByBgcFq1gdghSpUKAjKMLkZgR4A+RMesUnIawcR536zapo2xlQ+ft/1YEbHUilP6JbEBAhAcIw4ZrNqxJrSdJG7WVSYL/BQ1BMe6QUfNQwEAjJ9lir3ElDMC2KyZ4Lnk0DPxnz/MjAReOPO/hhXnRd5ebP7a64LUTQzmeV7I80idr1lhcD7yZFV5gbZ4VBLPozhzqGeU5iIg8mJedpyKnQ/8clIX/5756fTprK/iPJwXMehHJwQiIxsZotVUkAiN2m6xWK4Z2czaEBEJRA1A1LxHB4Sl9I8bjU4plCJ9X2JwoFCS+NaBYYiRuljFSh6l1lySrhYsGhyHEBzRYb/rh0M/7F1w16uVqZY0/Pwv/+oQlndXqRYIkRFThXEYdr98dId9vz/85u9/l8E59aHPVVwTVrft1R0t1kVFnZQtGEGITNXa4MzclBQ7JEl5yFDykKXmGHwIBKJDTsPDx6H0w7jH4H1sPQfNUqoiOsfsidHQM5lWKaNDcW3TLLrYtJKHvN9AGmqiUoqMOYaAHIdClZrVzdtmfZuljpvPTbt2aBUqwdSCCMCMwTyhM4Haa+5zTmYeY+vbhUPMWqYEl9meajCXQDZDAFUAADYCMTk2iUQ5uhiIp17YDlnNwJCICFARQEERs1RP5H3T90NAX3Lafrpvm7i6Ys0j5Ly+usoe2gZYxuGw7VbL6nWUtL5ZfCM3V4s2QurzXkun6nNJ/cM+yNiw3d61buUywwY1jVViHIqpATDbFINtVemkAE1PLcHUPnbWV2YjEM4YBBeVcuDCHHui8CcRfWkRhjNleAEZf5X9wIWV6Vg8cBKsqZbgs6PP+hPOQHIyw+JZ07GLvxMk2Kw1fUW3wZnnzJB3Mk2/QJln9RPtOFU7alTz0dOeauLMIYJOaiqKqiIYu2DAfdJPj9ufP+1//fQ0FOJmsVzdLNo2ep44XVUR1CqiCsyBmaWWfkxVig8hD8nAvHfeuanvRMlFtFatTG4qlULIyHy0BRA5H5q2Yx8AoVg1QGaHUxML0GleU5tbFU0pValEFEIkJgCYCi0y8lR8RlHVTFREhJGIybE7Rjrpca1hRCS2ieCUmlMSrUTkyIfgAbTUOsWHkyNgFICsVgEVOYvsxxRD8MSFrCH0SArouzWB1n2fIdFU3bQmrQMaes/soynkUgikCZEJs1UDy6UWNnEwjiWPpTRMjQfnchJkaBqO3m0rZGAxNmg+bDIMH1fQ33TL6+jYdHPYbTYHZn99dVvS7p//5Z1K/fG7m3VjixbpN6uh/+5//Pz0h58/sqb03c3vv191nSWqOdjqtvum1k+b+liKd6iqHz495aFftsERYWjQpN8WsCEYuSawB08Um3Cb1ve7w+6X4df3T4vYhDa0q4aJDZDbuHx1g+a2T9vdYVwsGs+hiknVsc8UCMFBMU9mUlAVHZJ3YEHVnCcZskhxMaKPYAGjeRcspzIm6SvUzMsWYkBkZAdiagWJkB0SOvJSq4mUYWDvKAQERhfJeSRXylgVCCoYrjr2bxcp43ab97mIqBoqE6BXM3ICoGYVUdHEyAyIkGeJJDMzVDCb+ydPEmnHIvRHaVNAMDtaHS/g6WjhOCHSLLpTV5xn0YGzediOJ32pwR29vid+dOFtu9jvJZG4QIrnUGc45+SfE24veJZdgoxdDOZYi3liKafQSnuGeGfacyoPYACX+SnP9j21pj4dO98ye7brCQpPJX3sZGg7rpAApxTciyjRmZKd9cXJfWYqykRqikAmVvqKjkwQjEUtEjFgcFy8ROcZDCRdXXcNkJRySAoCjgMREkLKkvN+zHWxaNSwjAkRmaCOYw7MpochN7FFZUMuBd69f1T68z/8499VokOuj3/+JaXyw2/ePtzfK9rt6zd+ud4dhrLrXS6eGdsGlJ2q1WLkW+SWY7f89m4oddhjGNb18GQlqQyAENt2LMV7Lyyl9CXnQ39AMnKoGVRUQGvK5LHtQgTuFrGJwYwO/TCUgUDIGaA07NJ+/1T3IbrlzVXwTnMtY3ExmOj95qlmcbF1odv1aTgkCCEsO1EZDwdgJiuOHZtH7xQNVS0XYvVIUIvkgw0DmEmFGBYMqHoM1cSpXcGktBKZzb/8BaueTX/HAKGp3jeqERCYEpACTVY+BEViU2We6rTo1XpRarn/9PGXP/3xh+++jcS7p6fVqik597sDq1Hrls0ikKtaMyZQuVpGllLGtFh49P7Dh8d+ODRQmhbTuF+k6DtPrNXjzYpALIkSshEasB1LBU4UY2rkCc8fYZ0l7VIYbFYapif60gryXG16lor51X1OEvwVFepCds9g9Xynsxn1+DuctKazunhGouPFcCqP8uzyOHvWj/L8jOHAbFJ5gWjz7z0rRfNTMJGfYw1GRAM9diUkRAMVEUJQFVUxU0QkJnIekXejDCm//7R7/3D4+DgWCLFbr6/vlt2SwKQmM2X26EBSATU/xehMPtIqCCRqgMRMNPU0QC1SDewYfaNGNIU8w6RCAZJ3PsbWx4jEVU2ntDRCBFQTPeaxEzLlUkpOBua8d8555wGgVoGpOa4dJ24AU0N4x8ceKiKipiCGiEyuVgE157lWS2NKKac0apUYA7tJUEDV2DkTQERiZ+iqmQIpqAGN1R63Q6TQOvJNtHwAIuBgJC42QX0qVbSSFZDqvIuRkVFEVYUZ69FDQqa11prFakMVeCy6UAzEi0UYhGthtOqdOiYDVPAF+ONu/HT/4Qp2f//jLWOwUp8e98E1LtDrt6+sXr//08///Y+fmq67/e2ylsNtaP72+6ss+vN7+/UhSf7kSf7mxxvXdVkVRrm+XrJXfeq3Q9Fc1PvHzfZpY4uuXazaGBwJYV9V9411znsgUiTf+PVyEV0cxsOff/q4vFq9BuyumlS0Wq2Aqzd3gu7pYTPmEpgAMI2FuTiNTRPAUIu4QERQh1RNvQFENgrMDomkVhAjx8hMwaN33lHdH8qYDcgpggdAAq1qAoYOARgR2QEZVq019wNL5RDNOSSHrm18kFLGoZecmuDbxndNu/Ru4+jx4ZBqMXDFhMmBqIIJCkJFVAYiALMKAHj074LaUQuFo6nXjrkaABcxLWinVflCemdJP+swcwTS9MVFYtkJBM6Qc6JEpwX8azWnjwu9vUDOS3B7hkHPt19cDuAYIfwFZbIXF7xQ3o6lmGdMOt6i2bwzn/3kkT/dohN82iWzPGewvhgywotk/2fscD4STzA5o/28bp5CIcFmzqcGOLXKYTCsuVYV0NKtljevXt1/fC+SfOAQvXdMgFhFhRCg67r9di8lt4s2IuZh9EwI0PcFci4IzlMbPTNpqUjoCVOfKshuOGABIopNy7VIsZrq7tA/PR2Q6P7pcNj+4dPHj92i1RGLvt/v94sm3F1drVeLP7x74Hbhrq+udMnt8qpbv+blalST1jNft5K92vDhw1A/ZTU2LLlqFc+ha/0IlgIo2G6/A4AYQ9FCzBzYCIiAGPrhEH0ALVJ1GPvQYNMEyTXtBy3F8QIRxn4YtknEuqvWkWX0CcyJ4JBKKbViWHQc/DAoObdYLtRKVcMY0CHmQqmgVqu1KDADWkHGwL5dril0Qk5KJiZABoBJkZ2rdcnUoRrNpqR4NJjK+TNNoTV0fkANGJ0gzA4RBJvQXBFIxAwKVtWcd58+7j59krtrVg3s1Ozh8XH/dMgH+Zt//GHVOBl2VaSJzf6w1ZxLTsvGhdVKPP3y7kPq+x9/uPVd3D89vPv18w+LZbtEZorLKDt72o2AHomYEMz42DLwTNlP8qEzB7IvpBKe23xeiO2ReNjLQ772/muif8kj4CzA/4Yh2Z5ZWCbaAThrHpdYc2QnM5s6N6/4EoZmbe6s7iDOrMdO9qLLGzJjxFEdmqzwU3wYHp8cBDBHhIQiKlNOODMw54q7vrz7sHncD9uhFnWuvVmv1iG0ITSOSE0qWLHKCigAqqSKaqpaai1SiRkACCDEgARSRUTUpJaips55UlAVomkt1+kmMDsfOx9bAJKpLeqkOSIRkVSZQNTMSq4iUkUQwZPzztPkxrKpTTQioM2dNRCJQAmIkRChiEzlE83Q0JjYUHMu/b5X1X4YpJTgQnAOQXIWnjxmbM4IwExgqqeohmaoCrVaNhiS1Y4UwHEQ0FolpeyY4qItQ0r9Lpg2kdsmsvdFNJWsWh0QcmUxxCnFombTLC5DBN8a+yJZJLPDuGiatic0JgNAUVIXAHFMPBa6Hdw1r6LLnZgTGCUtg96+ueu65g9/ePeHD8NyWe5WofXydk3h72+vF/zf/vnDr58enB6I6fvff9dd36oPmR66FTU37U9/eejHiqKxaZGsqm32gw+u9TEWXGRjBH+9trYZq4Z1c3W9uOqajdb77e7Xj0/E1Cwb71gBx5wHqetvr7PktNkE8E10BlakmlWvSgSoZIiiigBUiu12LA6hA/YASERiIsUMgIMj3xA7jw7HQYphX7idosWVGRXBrGpFQkYk9GHSriRL0eQaNMcKZsREEJu2IJQyGop37Ft3zbFZ0nBI+50Mg4lBFURy5FhtILTJgIAGCqZWEYzmTDFAmMvRCwKAHYvJzFTouJbTZbDicQW2s470LOTlSCPwmZDjyZoyo8yJotjJKfcsheqoe9lFEZwvGAw8M38AHOdyQsdjOM5sDTqxsiM0XWDQPNjLTRcjQUA45/Pa6Riwk7p3wWbm6T+nQc8Rz57djSOPgomrXURtX96OM8IeR3u0qM/5X9PSSECMqpWBrAo7VgQBWL69+vEff7cfHj7+8gswUIEitVusxkMPnlOV7W6fDj2ZWYbQhBDQijoEYF6sVrmWNIzONLZtlipFsmlsgmNIWVJKDNYtFjftNSM+fHwEg3ZxZUQFabvfDkILvyRuP7/789Dvv/v7v22b8PS4vVq3cdE5ZB9caNt1bBvw7ml3kEWMsfWrb2zQ0Nc89EVq2vVlGMDAB+m6FowIaX84QIRSyv5wqFKbNtZa0ziCGjkuxQLHMqqKNIGCc3nIwyExs2vINyGPefv0OO5yCNG3jpYhrJeUC5jVZIjQNNx0nr3zTBwagzr0fQVurpaWzYaRakGQaa0Th4zmY1RskKOhq8cialM0xWW0zJQzfnz658xsQyQwAruwmczHHKmwTjbc6blEADZQIixjsWAio6YxonKunWO3aPt+t333HsckKLv37xNKS9YtO1+17of9/b2jcr28Ra27p4f9wx6qHHbsXr9tVt1+N242fbzpAmOpY0RuPdaiUiq5oAaEDFO4j001OF4kNszWy7MA4llneikMl4/8c/fus90u3/zfeSG+vBxcCONR6i+9YZfpnie33Szdz05ykvvZVnRxnfMJj98YnAHteADOBHeOwp4VmuPvfQyPmOFh8hwBgFRTVXbsfTB0h6H++uHp01P/eTP2SUOziG3nwqJtFoAsorVWdg7YValSDap4AjStRUSkWmXnqqpjduTQgdaqUkRFtQIiEasIATrPACgKU78xYscuTEYFA1RVm2LapqwuA8dOTFRUquZSENHUpqLVR1147tZOiEgnZq9ECIxTqjwgOnLkCQBKqaUKIphaTllVa81SKhE2jfOMpWRVQBeAjv4yni4mMwFFqlWEWZmHJGN2NThCV0T6XNWMHVkSMRWDGOJ6wcQ+V+3HcUgJTZsYI9GUaYRIhqZmpQigq4KlCOiAloPnStC0Prpj+UTTKuDQMS9bGVNyrcTrq9tAH345fPy42+209usYv3/zLfrVr7/89NOHp4ZvvZnV/bc3111z9fS4+6f9/l8/7rL9uRD9h3//W3/9Kvigw97noV8xZGlCXN4s2EPfD0/b/XbXxxgdK6b8+u76O267dolOHNirb6729xsF2afx3ePGBW668PpuRS176A6b3WE3vP7N67HD7YfHqigAlcwTDWnw1fnOkxU2AkMTYVFBIUMLim2DTAwsFU1KqYnAsYJjx67RmkUFcmU0cMfUPjUBtWrqnEdEYISKaMBmU2shZp6eVib2TYfBmUoqo1ZzIXYdN+uFX/T+oQy99JmNg7ERBTNSMFNlAAaPYAoEJkc962zyPcbyn40lqHOszimO+LneNfMOPPl2jqI7cYznXOYSkp69n5ESL0wqpws9g5yL7c+p0swOjqe4CLCcC1KfrnShlJ04xUt4PEcyzTA428JPgc+XQ3k+r1nTPDm87LS+wcmsdGlUQzhd7njtF3N+eZ35rhxDfs4q87FtCIKJVjRmIvCulqSAy5srT9+//+XPv/7lT5LFIRliGUdVAcMidpC06MLNqilmudYQHAP2+1RU0GEIUIrKMXnDJmiqIrHpjCQPRQGAMJeipfZ938QoquOYfQhh0TbLtm0Xm3Ff2RarFjxux/6x39+8fltTcuCboa9wGIq60pS6CFbbEWPTrf0bduRMpH/4nHcbGSU2LYPLqXrvaylt0xDhOI6q0HVd20QtdbfZ9zyIKKMTSjlVkUptWzMfDj0SNw2rKXGsVUvKqIKllj6169XqpkNmTWXc9+RGseqh5GEriixZtdi4F4Gse8/BWYWSDUwVV7c36v1h7KuhD8GYilXyTMJH8oOERtNTbiQCoGBTo2k6Pp2TPoKEbBOlAJiifaYH/ujymAP5EdBQwcBUQ3DscDyUWhJW2X++fwjeIx42T+npcxd9JHn85//mUX7/4+tVa49PfZt6LQelFKVt2OV0GIZtIOTRpX7hovMaxYloYQWn8qpbi0V7yvuMhihqZnLslnX0ytExOO3YG52PXuWLmOeTpNiXgvd1ZmP/xndfnMUuBB0vcOQscXPex9FagbNCdMlejqB0OniO7tZjUBPMJTdOfq+L3NHToAwMZwXlDCjTvzjH9Nkpb8WeSf7xNyZAMzVTAHDsDE1KZWbvgwGXDI/7w4eH/c/vtptRkJdx0TVNdN55H6QaMgCSgmmtpahVRAJillpAtKopqJhJKU3bEpGJ5LGUknSylhg6ZgRDIgCdBsIITEzOuxDZB2Kn03CZQI1gKvgCYIA8xWBolaJaidk5ds6jI1UzVJ0K+BAiECEjIqLBfGvBbGJZaqACajqm3B8GdsRIU0UAqdUxOUKPCFI1Z/R+zoCefxE7Vsemo2XPVEGEaoVUeKws5MYKhwwVKeeaUpUq0dFq4dto212/6ccsKopgVqqIGJo5QjBG8MzGTIhYcx6e6iD7tvVuvcylas6kAioqFYhAUnRmQde31zd/86oGfH//GYY9qVmynz9/qCP++//QfXO1dvA6D5tPDztbByCgvixXq+v1yjX9Zhj+8MsG5E9L7775/k277ohKlu31LXsIMfqwQCBYhEUI7tPHp+3TLizCsB36QTks34YQl00VjQv3zQ93o8q22iiy7cvjY3/VcKDovVtcr3abx8p18WaVd/v9PoW2Qw4pF9Iqkiv4YhpjcMimxGpsZEUVC7FXDy46MjVUMpSSVaFY8YGDa1QTmVnKqA4AgYmcU6uoZqJTdD8RiprkSpDQFDw7IiHMVQjAoefQRK45japZgTm41V27WPrd40Afc6pSklfmSmBMAIwARGxWDZTAAA1REXgKUztGT4ObpNCOreAnP79NKucLJLmAjLPkGtoUDzChwtdztk4wMZ1kDgO4yNW60LtevmYKc0HHZlixy1Jal5ee4ehoTIYztYGj0WVGndm2dZ6andVvArRZ+561xFPu2VGRPDIwOxtlzj6CEz2yE2a+RO/TnYCTTmkXd+v5PTnZ5OEUdwWgYDyN3zOLQUrZR2+oztFq2b1+dd0/PUVma/3YC7EfDiMw+uDf/nD3+vtXudYP7z5gTrfrm6eH3TAOh3G/WC8Wb+5MMCcJPiSpaaxEjMh5GE31ar2KwZecVZQIpBYicmat5xj9ZrsdDv3N1bJZdE3AfU3Nov32N9+Mu+Hh13tHzdJqGoc0pJzJxW+v0FhN1Qew6iisb946w4MCxAU5tiopjTWLamXGbrGoIvefH2tVx+yY85i1ytiPTWw5sNQyjON46BkpBk9UHzb7xbpTKS6Eq1VXqTAAm+Y+EzcugAdGH/Z5i6h1v9tsB3B+2S2JVIc9CABUatoQWQxSFiSHSCqA1CpF5QaZCUxVQcF7VhGAisgwKafmEZRIwICAp2fjHL1vp2dwXgvmILCjmwyn5cimNoAIyOzGkvaHseSKIsPj47th9+bNzX7zedw/RWi562rtTWT3CHm/eXzcL2LXOvj8efuJ7Le/97EOrzu/CO7VuoGcU5ar29vr17eRGhkrmy5aFwCdEZhlEeZjRjkiquksvxdeIaDZuqXH8n2z6FyQBLiQ+S9F/WRkeebBPovEy61fg5uLbNNZTzprFCdrj31VxJ4PZJ4vwGzj/VKPms1Jz9IwnuHOaeNF2N80wbO0H9NYTNWmXreGNv3QSMQcALhP+uFh+5d3j0+HPBbPcRmbq9X1NYKoCTvv2YtCzkWn6BURMkRDkQpipiA4ZbGrd0zswNTM0phFBAmYeGoFQbPGVkqdmu4yO++jjw06b1MjejAEwmMND5ssLmZUi9ZaRBWQpoww5x1MvStNRGSKEGJiZp7ZpBmAmTnHzA4Ac06HfV9qTSnnnNjxom0RYTj0Uot3btE2bFZrnXQDRJzSCpCAgRjxFNJgCMhsQEWhGBXlsVAlOhTcVRwFdvtcVbzassU2Uq1jP47bw2CAPkTvvVTNKVMAQGcCYkbMwTsyZITxsE/9tiwbaNpcWYqQ1lrNRJAyCwRF8i4ur3X16iHtH//w8db2d13z6va2Gny437Y/f/DN5+vXV7d3t7I7DGLdYgEc7989LoJvHf26yyb6p/eb/P/8P/7dv//tv/sPv121wa8WLcKqc1JIQJDR+bC6Xl5fr9/9+vnDp89dtwS1T5+eXOA339wAASCv1u3r1zf7ZPf7QxZ7eNhdO7oDpCXGJuDdXf+0xVy6q2uBPZAznjqNVFPFapgwqyr71rVoZEUBlbRqSgAeGQAQCUGVyTFN6iMQMbA3UVOALKgAwQM6MiICUKlSgZCJQxe0lDr20ovrGte2zgXyvuYiMLW5peA9oORcarHQNn7Rrb0jGobHst31paKSIwqADGZZq2AxAjfVXEAwRFIDE0CatRuYDT4EoDR1WrVnwv6Cm5zY9gkCjv88izm+AB24QLsXPcq+ouddrv5nLevy68t/8TSFlztcwtfl8adJ4V/ZelEbaNIWDY/x3LN552IKR9pyzF2e00cu788Z+p+9XtilnmPuyyzc0zGzEwUIzAAJAEstwTkzEK3mWEoV08PuwGOhKaiyVhc8AhUsgNYFbhuvNYFJCOyjaz2XCv1+l8rQLNzqbt10C2Y/7sefHz4UFUehqrH3jpgRHFEMgRBM1UeOwZcxd20bHAbvhr7fP22ryN3t9aJrvbeuW67WqzGlx827ctg6v7qxkPSwwVo0Z91tfTHUQ8oQOt8tXROXRbd2iJoQGEoRwiB1TGMmxrjoYmxCiEjUdK0ngiJmYCq5ZgouqYialOwQHRsZMgrUlB4fmze3PuDhkGspsk+1ZB1aDgzVcqoyDEioiMs2KDuVXlKq/RhD18Tg2mCIaMTg0YUhS1LhtjPDNCb2np2rpRCSTJ2UjkubTMRgsh6rCAIQO4OKR+VXDQ2n3kvHFvMnmUKYqIQhoKkaIjsiBRSl2C2WV+P1sts/QLQE42H3udeaWFJNMIAg1Kry6dN9cNx1HVgBM0deso2Pu5DTt29evbpbFqn9eFiE5rtXr4HDdrcTs5wG6+l+j097S9xgYJgWZZNJu5pXySNdm5USnRd6sks+P9OOZ3mmJ63krBu9pDhnFemLr85bXzChk3TOcnyKyMPLHS6A5gvrlMHFSOFZNoednFyznMJzbmYwhRTOEzsefKZhhoRghlNDL5jojyEeM1LQULXC1PGUHSD1yR63u5/fPX3c9odE5LvF1XVsO+cb9k4rqIkhiB4b5YqqFAETIKipqikhAAoTi0jwgYhqmar8KDAhekb23jvHACC1ilRAMnTABgjE3rF37ID4mD2sAGDExEhSBadqELmWXKUKMTn2Ux3nqcA0To1RzQCAphKJhIigevyZHHtRLTWp2G6322z2asaOjyn/QcG0lspkXQyLNppIrdk5BEI1QWaSqU4EAdjU5HU2syKwLypZYTA8VCLgXbZtsZRlLBodXK3a9YrSsHva7PokVc0A3BSfpKZSpUAxUGDRagpgRAqBPYR4OODjNg1+DO11iF3jNyQl58FTICXGBsJyV+J/+Zen3eYh/3n3n27gx2/W33932/zU/J//9P7dwwARn3L+hx9fX60WMfDy9UoL2Kaul/7NqvlZYVdJ2+WfPj7eb/5HrvXf/f717d1yuVxkrp6bUUcppVYl0btXi+ubNv4TvvvlQRXHId1/eGKx21dLQx8bfv12eRjzbjiknD/3QyPQNl3kXHPlbhXjVd8/LbplRzzsdwEVHTgOahUEMAuBI8NcMwSeGqkROg6MwpCmoEhnIujAkMBYVStKcKwGAEqIoAIZwACYgABIphJLU+A8IVkWqTk9JipCiwV5H6I3gJpLzYlV2FPgBoDHwbhBiOHqG14shvhpt9uOXlxVycUpIntG9AqGVBl1aihER+s1nMRt4tAGJEcnEk62jBMunFbo02r9XB+7RAc7J0B8TTsDOKlHR//XRSTQM5Pwv/nxjFTHqCQ8xcZ8JZHkcv+vjOt5ytuESJOx/JS5YReM5suTz9FHF6Tqpftw3nyG9Bmc5zt8uf8p4+68RsAzGIXTL2RTQbopLV7BoFt2imDVRMRxWC7Ww9P+cbNvYigll5RvV4v1MqRD3r5/H6mEpunvN6kfxKCC+dhc3VyPqbz/9X3ap35/cLFpFiG2oe0aVW2Cd4BjfzhIXSy6V3e3zvF+t0czqzrUcd/vieDN9S2YWq3EntjVXJ8e9kOqITrnmragQSaPyIRVChwOBs6GVPYAti6kHBq3XgyPiiZt0zHouKtJdKxFEYGgXbTMSEQlFVMzQKlCrPv9fhxyE6J3XPpeSvbeLZetc6wp10PfhMhg+0NfyWwYODWKpGNpQpPHNAz91au761c32DZpHPNeOahrO/BNX7GKBibXBHChKgOzglPQqkXFCDE4d1QfdAr2dI7YAAhBtRIQ09E+P6kRNneOBADDqezvMcpmskxOD56oHOM8TafcMlUF5YDkQYOzaNU7LHWspRrAWEqx2jl0DmUq1cEGpFLFtS42Hq2wJtZh2azHikl0vxvGvt89PHx8+Pjd734MIe5yEfBKgEwMhqgqhYjOZMSOIniy9XzFrDKT/2MmzVkML9690Fng9NA/23DUqb4m3BdE61KYJn1FT+DxHBqOozrG1p350nPidjrTyVozK3pTSuss9rNCY8e8vmmPycgHOJdjPM38Qk2cowFlfnAqgLKPiE7A7Yby868PH+63T5usrvGLax9b7yM6p2glj46ZnBtzBiBTUJk6SaiiWZ3qtGhVYyIwmIwvYFBqUVUAYPY+kHeBmMzURNXseAJEdo4ce+cQnU2FyWezJQJMOV/MTsBMIaecS2FADp6IiEhVci5g5oMnctXqMUCTEABNbXK0TdmFBJTS+PDw1A/9OBYi9s774Lu2AUBVicEjatdEz5jq1BYKgQAJxAynYlnkAI9t6exYBoGNENRKLYeBHKKJHbKOaoehiNirpX+1asD6x/3hMOaiRMSAk8qhDsFUVaHUSgEArEopSWpxCIumXZaUH/abp6f+itcxNm3XxhZyraAODMZKuXAe06fNpw8f75cl//1163xYBteAiuD7h/3NNzf73n76y4fmm7erxcKxH0v2TWRv//F/+i6suv/X//6Hoa/L69ePj0//+b/+iiL/aL9ZtbEWraEu7q5rTelpqEPKfb9sm99+e1e2abvLUnTztLVcmhgWjM5z2/i728Wnz/7d+wdU/Axu/Xn/1i+BhLj4poUVlFrjcmml5PHQcYCWSi45ZS0oNgWKwjCOTpxH58kQGYkAeerTomJWKzOF0ACpSAWpQGgAUhUdEADUWou5yIBAjhC0lkzGzgEvFoSUD6nsBxZ1iwW0gOx94LGClBrBT0FoEajkamDK5FftGigux34ou23Gkis4haAWEBwYg2bBCgxmwOaAyIxNYSouYkSGZiCzGjanaV0WBzyCgz0X4+dL/FGi4RyJ8/J1saqf7P5fEKkJhebr2lGZ+gr0XULnEUuf538cv7qwWl0iGZywez70Qmd7fo6Lw14OZNZBz7t8MayL23O6Cc/wGp/ZgV7esdMKc7wzc7QWAOJUPdU7l0oigLaNfcpFpfHh7XffrZeL/2r8eP/RefVMhSE0dnXdLL9Z3b97f3jafuw/5FFqBSNaX1+Bc48fH4toGoaxz4umAceeCRhTGp0jMgzMOVWrFp17/eaOAD1zv9mN/ZhrHXMf2LXOj4+bbS23r242T5sYm1dvvvvNb77b3H9ygmAOhaBKcYYNcE39kKX2uQ750+5pcd24Nvg2ICyW6Mt2L8PYRger5WHoq6gcHcNUUqmpSKqqsGAnuVQwRAjRgWgBQETvfYjReUeoOWWoKIJN20mk3VgEbLvb94/777/9gXzLCq7pDoOS07hYOvLGpZofRjDHhk6NGopAkUIkQwRGU4AypbUwOlFldNXylJxnZopWqwYkIlCpTEEBBDIC8FRPeTLxIJDRMZ1KcfaxwjEjBg0RJhcJIhNhOQxPv7zb3t9rHm9WrSc87JIqhLbNtXLwTeMj07AfkuTtQcyUkAWKGtaiyGWowyjZXcXFkjd/2Xz89FGQG981TRtiYGu3O2mgjkJaxKAQ07N0hue8w/BYEfUievCZ7AH8m8gAcxLBnAN5yst8JssnqThRoZMwXOxzcscj0vNiZS8F+6RevLzCMzA6jmt6i0CzVen5NE5oNieizYFHOu95tEpMKst0Dpqz/6cETXaM6AR4SPD+89O7h+3Hz30G8t1t23Su6ZwLzGQGqgIw9cM2UDOTWlVVT00B5sTfI01ApKkl+7SdnSMmU/PeOe8RUFTE1DWB1GquAOZCcM4zs5rJhGuihMDsAEmqAqIi1Ko55VIqGLBzhASgtQoYINLUVAGMmMNs6yIRMzRQUAFCDJFzKofd7rDf5rEE76XWYcjuaqmlZhGw0sRwfbVetX7s+1IyO0JyAghAYEjM5KZCigowsaqptBaaKVoRLSnbYzV0PGTd9QMxBMdtdAH18+N2PyRDJqIQA4CCKRowI9OU5Gg4lRkyzX2qua2AtGhhDNi7misjoAEScnBkpEYV+P5Qnx53KGpgeZC+VEF38/oWLQUrXQefH/qxrLDyp32S7bu/GfPrvGUHeZtSqu26+e0Py4fNm//2x0+9QvvqVar5//zvH+oAf/vbN7drn3f7osPiakmd92R5/7g77En5x29v37mnp32uAGMpH97f39T16xC4dVev1n8DPxzG8empl0CPwxA2eL2MXiuU1CziMEiuEq87OIgeMimSDwichirF9vkQWu+iU9NaK6IikCMCBgEPITDH2g+5T83SYfREiIw1ZwxoamZApoCO1CwJUkAmJPGBDBA8AQk2i4ixpkFLLbsda6G2BXJN20GMOuQ8JjIg4NA2EHxRzLW4JrZdbIDjw2586HcHGVIRAMKOmA0RiauIEHjHMoUCoZlVQCXyZjQZZyfr9cm4Mucz4MUaPcPb0SEzJ5BemLC/hg5HjDhbMi6R5itAcnnEpS3ELrY/M7scT/bFBjiRnXNI8oxFFyM+6m7HieOlFwqPJ76Y59fHi88/ngfwxcTsAo6PJp0j7M9GrK9O5HT/JnRlPHZZOCuiKqCK3m/2w2q9fHWz/g++7Teff/3Lv3740x/X62bZ+eBwuYjN99/+8Q+/9LvMvmHngCi2yyqaxj7n0oQ2rGMTIwUqIFVS6oewWnjva0Zmim2otf7y08/LRRu8b5uwZYJiq667uVo1nsd9spxI18SRjR4/fkrjngmckThP6oPsDpJG57CMRVKxZAFJh2GgEmqTNYGa95xKTkMfPS/a6AJv+76O1aaS/WaeGVlFDRVBLHr2bZRc8pjaLlKttdaW2q6NaDLs+wKlXawXN+t9GhZErmv2u32uVQK33bqltShvnwoBX3OMrqs+l0rgo++W0y9ZGJk8zoVavPOMJCYIplaAoZgqqWNnoEWzKHgXTU1qRTSDOlVWtiow+aKPQbIzXTCg2RqBUyk6sOnljkWAjMkITdKQxsEhGfHh0Nc+h0WDwZVaJUtYtB4hqTrPXRv6/SGXHBy2jXdMr998e/fm9iD11erKh2ZINGZwwd3erRBsP9YUoM91Uol99FoN4JjDfLTlzAUazs/nqePyWRhPf8/P+vz/qf7Gc+f5zJC+Wpr9bKP5iqQB4LHa7BmaEI/EEZ+L4pcHnkDmcjAXcDdvtwsV5+QEO16NEM30FBU5MdjjBKe8zSO80MnApXO1RucIARFZjD89Hj7cH356v9kXBF7E5bKJS3I8OaHAdCqPaQaqqjoxCTE5mp5gCv2d6hUhHy1Q0x9CAIzckOPZs2+iikjEjgiryLHwNAAxI7EhmhogmOrcCFZRiQnJOTHTmkutTMTMU8HoibUj8/G+KCgJORQxVWVTdq6qGEKIAVQl62F/2G77nItz5BlRwbeOTHMaRErThLYJ0RFIlZJVJDbR1AiN2FQJCIHIpiZpBgZmZkiMZlrVmSHCOJbsHCmNqaY0tpFW6xAYdttNf+hLFiQfvMepJqTWwOBBCcyIq6mBec+s6sw8Q4yOIjZtm4fPNWs+FAJUUS0CquxZFcdhfNrvgyGYONQmIAUipjL2td+sFm6NYbvtYblwrv3ju/tPT4//6d//ZtFYLdrvBrcbLDav75a/vHt6OAzu6soU95tUy8/9cPhf/vGH6yu/2WyBjds4pkNDbFVUhBGuroLvmt1h3D0dnjb70MTlPlHN3dXq1c3yx2/uPHHfj9seCQrBerla9f1eHbjWswtgjghyHTSPKEjOOW/jmNhzKTnVsli1DCAVEASoOEdTpQNySJ77bUpDim0TVpEDIjBi5YCialIRlNgBEhiDMhiinwKCCgGg80DBhQipL5LSfs+l+OUSfQRyEAxNyjiSpGgAGbxznrjkJI7I+W697JyL23GzzzXXUseSDBwAUxuiIpSUhVQBGcExIUKpGRABFMEB0rQ8gx6NDEfZwS9WZJirIs6+bPyrwHR+2fnvjHR4Nsh8be8TabETbwA4ald4tjpdoNRfvfQX2uf8dvZ2nXnWhL9fRC5fXmOaxFcjv78YCJ7mcnw/Z+ufZzMP5xjF+dX7fRrPTE6NpnoZhojkmcexECIjGqB6Nue//7vfbz52/WFX+72lXse8r4dgILkg0OpqDRQAnRiMQzE0UPWevXdZSyqpaaOZiFYwHXZ9dR4Ucs5mvpj2+914tWhiU4eiKsv1Yooj2D3tlo2XQDfXK3Zd13Z//uMf//LHf3n77RvXxIVpjQuoo+zHp0M/Sj5QKa+apQ9h1+8ZQYZeSkag3mo6DLWU4EnRjJG9j8TeMaM5Qo8MQaUWZiqpIJgpoFn0DrSWcXQUg8eGWRUORTlQIau5qNrt1TL44N689kDmLLESEIUmtD4h7Iuz4GnZRWTvo7EHZjM0rQAQgweDkpLUxN6jOQJAQjEhEEbUKkQGZgQUY6h9T2COuUoFYDKuaHBuVnXJ5KeSvEeJQkJTPdN0RDQlJh9ptVqMd7eaQyq1H4ZSh4ULCrWOg4jWgI33LWoX+dX1Ki3ih18/dSG8WS9R6s3d6zc//vaXdz9vitxdr+7e0GbbF8L99mHt3CGHj0/bzagVvBk4oKO14ugjvyQ+p6pVc7PhC4Xm0mr6TNYulKhp6jaXKYMTv/iaZOFzTLhgKKfr4Skf4+Rz+4pR97Q/zG0Tj075s8n78pg5b8uezcOevT2BIB7TUVXVmBiQ1JThmGJbpZJDZAKAKSbMVBHBhSCGm+3w4dPu50/7bdZq0XXL0KyaRUfIKScwdY7ZEZgSH/tWaVURVRPT4721OeAGz4iGpsf214DAjomYCMUURE6zVj0iETs/3UM1tWoAyABESISmZGLEgEQiUkoppSBi4EBMomKqyDQ9KI7mykZTvUQBYmACNMUqZqYApdhus+2HIRdgil0MwAoMZCBlGMdBSl5+83oVOSKMw5DSaEhoEgm8QyDNRSsAIBkBGKoo2ESBqik6zwgkldA7ARpKzTmh1mC8jk5y2j4+9mlkCo5dNUOxEHzbtVqypQSiAuh8JCRHElGvY1w11vqyalqJDhUOm9R2h0XjAhDkihDYoVm13AdNDhgNwCFJrSp57D3XQOLIAF27Xi0WV10Tu/X1/ad3/98/ffrh7fWb69W3P74e+v7nX+8fHvvbZTfkfvu0Cc7Y82Mq/+V//BzA/z/+198t25VnX6TkOqJiF5oYqOZMRdjr3dtrF2O/Hw8p3z9sui5G59j0b377TbeIf/rze1NNANssfj/kPESSTmJzswL0GqPjRYJ9ftp7rbHz5KzvR44UY4QqVZU9IwCMhmDcKDACAjkNnnI/pqfR0xLUESI6DwwMpZYBs3KIgB4wWC5GgsDARIRSxayy8+QccOcSWEpQRMfM7IHI2EMDREa1WsmYC7AH7zxDKVWhYHDOtVfLGFMedv3haRhHqcJgIQ+A3jehEdOigChT9wznnENHaLlkBNKjlvJcm4Nnn2Yr0YmbzDHVZ7JyCYEzStizry4PfwFM9kwfOxKXKafVztTHYHZJ2wyycw2i88nnPfHY7u9ilH/1NafnTFBql2O8TO06fzxteWlov1zfJng+2sdfRhrYxVkufAbw7Cc42YdgxtsJ71QUDESMkIJnUegWrVQZxHIuxvzj3/39m5ub7aeP9+9/efr4frf9SADjkAB0sWyL6DBmqL7mimRXy6VBLbk/7McMabFqPTGFwMggWnIO3nkmcs7MitS831kR572LvmuD1fGwyV3n01hLLYu1u1o3t9eL8bC5WbeONIBRt2QXYhPajx9/zWm/8Hx7tTj0fcm9i9SEroxViva5B1XnXZnChz3HNjYIbfRpSGbqvXOOyBopJfdJVKRIu2iZafd0cA4XXSSRcuhzLT4EYXjabpZX13fXV1wT5fr66pqa+CRM3aJtO7NYKtqUcrZetz4ysZZ6GIohABGjIzApiiiqRQzAMTs//WIoyOTVFEwAlImqAYKQlBiYGbUeZYXMiGjSVY/P0mT2gGNu8KRRwTGu7hh4gQAKVmsBk+7m6hX8BmTQ3W5/eIQKpqWmYiUBmJSC3kUmqjmghSamrm2it7E3kbHvS61C+PD5qW1ay8U5o65JT4JGgtwnGStwG0wdEokZ06lM8oWV5pmIwtko8oVh9NmDPleYwC/YzwsxPKPHpUHor9lzToE8sxji7KC2k85x9p0dceEkhieidpFmeUaKl9YoOytAM67Npcgm+DSYahg4ZjGspYIpgnk/Bc1UVXNMYEDszWhI+PFh9/P7x8+bNFSHfhHbhWs6ckGqCQogqiqiUwUQQ0CtKmJioAqihghIl8XLwKb+7XDO4kciJAIks6m1GMCx1TuKqKlNVQ2ZWE0nC5MBMBITExCSqRkSIRMYjEOfSgYg5z07AkNVmxLNPLuZjU4WITJRZkBCrRWJfOCU66EfhzHvDv0wFkO3XrWB8DDu+5ShikhGqV1060VonUkdx5LVkB1Fz9eNC8HGIVtRM9Rjdj0IkNQpfFpPdMvQZ3NaLauYSMN63QWnctj3u2FEcj5GA7Qq3mHXhuhQhdV7dbbPQrOxqQ1uteRl14AUpiZG70N0DjZPe11FZlp1jVQGBtGqeWQQMjAi8jQM4/1+eNzkN6+vqL0b9ltq2tisomMPGFZNc/Wbw/bxkAUxOoevv7niNm7+85/6vl/GamRDMUJcXN+Up6f/6w+/rtbdv/vHbxvfMI4D0v3nx6FZvr19Ha+ayGapjiV31x16p0UOY5ZSo3chusXdzQ8hSi3jmA99+rzdbdP4/dvXZnlzvwkE7vYGAf16YeiVsWyeGDU2DBaqVJSCyFqndbJO65ACOucRmRx3q67xbnf/tP34ELtm8eoVGIHVKfewpoKKxAYAGD0aaFYlpYjOsyqaiiGjcyCtBwcqVlX7AbzjtiXqLDZQku4PWJL0AznmNvimBUIVESD0HHzTtG7Rjf1hGA663xcAqSUhRMAQ0KsCAFYVtanIvRl5NWAgAYVZgzpiwrHzxdETdnZMfRW34FxTDC7cRqdImUtgOVXNwIvs1PnwC3Z19A+cU4ZPf86HfJEuMptZEGaVDk9I9mIccAo+vQwJwOP2Z5O8pCf/d7bPZ7s0p88ZKuewiWes6WvofvF3Vn6PIesiynObAjAAPXYiVzMzcY3zcXV7c/36u++a6+uEuH+49w5DW7tFuH1zm7LA/WNOkj9vmNEF8URte7tc5X3fN0RGCKvQhVbHstFN04Sr67XzoZY85nTYHYoUZUSSdhXrIE3X1JrbJlxdrb759k2/3y+W4YfvbvdPj65kq6VK1PVy4WpxuwAbA8WUhk3/NJahbPXqipfO9f0hl+wckotT+2AbK5nF4FyFLLVKHVQ9+dZ5B75bdKXUolKrppQNIDYx+LDf7g4qy2XnApWcl4vuzdsblrJ72qZRzC8HZn9zt/7+e2K3f0rD2CepFLxiGJJKyd4RBJermgCrYRWsRaAAVB+jA56wH8A8+alkKjiuUJDJcraxZ8keHAEwgZiBqkNCnCq4Tb+rzc4vnJIyz0oF0PToG4AqApKAoKNwfbteLdJ+u9Ofm+vbZtV4rds0RmpC68cKh7F6ACS3P2RN4iu9eXVDMuQylP6wfXwc95mA9h8e90/bsF5169u7H+6GQ5madhN7RK+EuSaiqWjYqQXg9OFc9fALfeXZZ/xSXufn+ExyzuT/Uvzn7+avXojEizO+JF8AR/m94D0nSTr+ixfH4kmIL4XyNJyzSelLI+8RlRSAwVQ9h1qroJRcnGfn3LFEMSIhpFTADCiG2KSs7z9sfv20+3gYD9kbX7l2GZzzbuorgQAoIo6RQzBRRKrVZEouVzREBQEAsCmxTEF16tHGSFOIFNIRh6fKhCoVANCmCH1UO9rv7BgrxIhEiKo6cfRJxVRSUFAxYlQxU0spqUoIDQGqCMxqHRtG5wFQQaqWUisig4IPftLVHLEojkO5f9z0/SgCgOycA3M5j32f9sOIoF0T726vbxftVRdUhlyKdwGRvMNF5OtVcCgotYiqmqAiIht5ZgEecwYAcjTphcRuFCsqotIiXHdNE2gYDrs8gm8MefKdNh6jgyWjA7OAgwGgC86JoQeICA3hovWAsjv0PDh0cXm1rjp+3O5AQ7y5udGxv+8PmjKwoHlHUKcafwTBf7zf/euvT0v/+qeN/uHX/Rj9b378xota3lrFsArhynNxIqNmzJIXzv/Nb64tJYBAXnOvh2Jcyt2b17v3n//zf/9pebX4h6vWMd8u7w4f86dPh6edoodlF958+1Yfnv75D39ybnH36nXThuF+e3+/vVp1zD0H/vbb2/3hAO9ll7JFToz9oHVfdLx/K+SvVy42fL3EKNIpbjeaEjqBUq2q0dQepJSE4D0i6yhAxfsACBCZQlho8/jxYfswxKZ1rVcTlYJgsW1VNUnR3Rh1QbElAUIGZUAjrIAmCoDEMYBzIAVqkTxqsUCG7QIomnfWkSRSEJPKBSAEqJnYVzQDYseKNVwF12K7tGZph/04jrlmFaligb1TQHaemFULMxoSAqlWnHIzAQAIDAz0xAXmKkGXCHQEB5tB7qiqnjEOThaUoyhewh/MPOeFseMCzWYIPbuFZgPPKez5rES+sKs8K+96MajTVS6MVM8Z1QVmXoRywtdg/GLYX+GDioB4LPw13xF8NkE8T2S6U5ds6PzVbEc6WsGmcEYFQ0KhY9oDqDIS2YRdhohpTNkU14t4c/1t84+0Wh/u78FqQe2uFrev7kxh8fMvud99/unPw8NDHQaHbtm2XRMWkbaPDwrYLZZXXaPeoWSH+OZ6iY76vZIUZZKidUyj55pb5zA23JF/8+3b73/8IRV5+Pi4f7hvGnr95toVySmnouY8mUMFzNkGKQ6g1BqaMPZ58/jkzMuQU8kS0HMwJC2KxYKHCEBmzDSkKmOpvmJnkT1HV8WIaCi5pOzIRGC/72serdQYwqJdXF13btWKjMOQlRzEpq8wAHTdlfCSAJsmLJQ45yb4w/apH5OodaGNXcshiJjJ/4+x/2ySJUm2BDElRpwESXZZ3WLdXdXVrx8dBgx2gF0RfMA/hgACkd1ZADOYmX1v9tHmxW9dmjyIEzNTVXzwiMjMqup5E3IlbxJ3c/cIM7WjR1WPakqjaUGS4BHZDBXJY1FgUhMCDs7nUhCR1BAx91ufkzo2iGBhl6E5FRPvpfMA77bVaVYS4b0Zj1POBxgAGCOp6SqVgKxcc5ydvvc+rC9gva6ctsvGLMcqQikoFqoYYhy2GwKZLWdtffTq2y8pEPlqduQigfRbLaIAwGHk6u2m25gNEMiFbEaIpSgQqwru19zd5Nyvjx97PYAx+PALwORH3XMt9rWUh5zh+0t5+tP3UMz3lu4PMM7+Mt+/ox+504NzsgcycG8R7p5gRxEd/Lk9t7wfeocMVW3ifthxLmKgZjxl6eokXE4YffQxpqTXt+nFq8s356uL21GqGYZFqOYh1igFSVUEYNq+kZnBUA1MTUUVUEQnlQQBVAMylV3oxxBhH4aabhWBCYkQdt1NVaeUJZBdvEwmMyOqNll9AFMjJNhRSKoCYMDOgdk4piIFEX0IPngDk2IT08FIwTk0MzIANGR0gDseU51jCk6KbTfdu/PLq+sbU0Diuq6i9yUPfbcehm1OadY0J8fHzx4dLwOiDl03olGoAquhjJEsoEUCqJwCQuaCHpFNUZTVlJ0DVdNiCs4HVRODPGaz7BtqK+ex3A6diILzxF5KdgwEFtAqAu8piYXAfSHvHatRTiSlDs4TeCYgHcch+NDOmtVNF4IhQYz+ZF5y4jd92aTMpPtoHDjnqtnicn3zD19fELrvXl6/u+ppOQeDGDAkZct5SMLA5t5e3R4vTo7aNvfJs/785x++eHMFt5uByuZie3011K6qZkcX66vffPX6+KR+etZEx2ePTm5W27/+r3/fqf7iF5/OHj9bnJ41by7fvL1pjo88tdddKlqLZXHDbB6jp/rs6PRofrtNL95cvX7zromR1K03o3zz7mTMs8eeauTo+XgmmF0PHIVcsgIlKzIikBYTNlZDU80ybjuGylUePGET29Pl+t315vbGj6FpayIsRVxTsSNG1W1PkiAR1BWYQVLwBAhmMjVrMUBkBkJk4qQgedysKA2+WZirsWo5RAoB0xZyhq4H8ODB1RGYVMUAiyo6Ci3HipfzerPuNuthu0ljLlooxlqdU0QFNlM1KyAMOhXtGxDe6yAGOyJ5x+7s5bvuTMSezLhnPHYG70FI6xC/um8bf7zQ66GBuw8udvGBA0mDdzTN978iTDoUCHfI44FP+mMmEe/+ZvdGAj08Nd7jmx4c9cOhJq0BsDuzij+00j985v3PezptR7TfJSY9cJIPMTpCE6WpnaGZqVZVVaT0Yx5YqhjPPvjo7Ol7QLpNgwuhnbeS5YPZHEs/m1cXX3519erN7c1mfdN5Ril5u9qw5+PlwhNmMO/JG0rfA2redl5pFgNY3vYdZMybNQdfhVg5bmI1rNeXV7cydpHZGXnnnGfkypMJIShQFRdNsyjX77abTWgCBXYS+nHMYMVyP/ZcqPbsOJBaFUIdsY4OELjCIrqVgRiLZisydGNJEuoaiMdcwNMwpmGbZ00UhZvbjmK1rGsbZT0Urpv27FSUK1cNLvb10aiREQjVeyF2gFL5EEIwAZSCmk0RkYHRtwGMRFJgDN4pgohN/a1JFK0QIIIqGAEXxCGLNwVRckTmiL0AGvK0N+Me1k5bLO3Fp/ZrSWG3uyLBYQ4jEqtkCI5DmJ08Wjw6hdXp5Vef200fiB49eqzE3c268vrJJx8y0JUQQq4fH2HwdTqtj1rfRE+NjmsH8ekHz883/eX1ZqzgSv1t5sQRkckQVGsfUsl0SPg9zOv/hifwYDbbgxl/h17uINKeD/3BarKDf4BTbfbk09wLNj1cPgD3OB04DAMHe4M/OPK+C7dfR/j9xXkPRB3orulAe7CY96ndmCWbGSPHGABBchlLIoPgArFzoRqSvnh59er8+u1ln8xhPK7aOceZqitFPBIRswsqqmYOHCiZWSnFdOeDGmIxIUAgMLEsBWASmAOaGrMhIKCaTXXpU6cNxKn5nCnoVJCGe3S5ExHcvQsKUzyMUHXCVZMEPGXJwziWUqYIEBGpaUFBQAL2jpkoayomAGS2y+RXEQNQRilpte6ur9fdZoNmjpFRLQ9CIpJT7lSkjtXxcnF2vJxV3tlYSiIDIEYik+LIHOQoXLOSt2Io7AqEIpjNCqigkEcwlCwACkAADGKaE2OOFCL7ksecEqJz3qmid5GwOMLANFXWOyYzLgbBBXZEA8BmE51vKne0mPlQCkAR88GbyaytBtA83Cyr4E8quelvS08kQGCgUgCRmBYDy+/O85vVSx07o7ot/uri+id/8uzEV+N6/a7r3930YzYSqub2l88/aGZDkov57HgUe7fqGuK5o+vN8O2Xr3720YfVyZNv397Uf//Fv/qLD08fzdpZ8/TkaNm0717f/sPvXo/UPDtbuvnpKTZ/+MPLvn9x+ujszfUNq5ys509P509Oq/nceeJZiMfNUtOqH0oT2qxwe7NCk1kzIxNwgIHFu7SBJjbR19cX1wrmVB07ZkJFy2qSTKWKNWTLrICO61BHszKkTSqDZEcFsAyCeeAAGCAPvRPiavp8vKKzIhwI/a7rjoEWM+88GCKhywOMnW3XkEaaLS3OCqL5ConA9TgkSQlVGAUxGgIRKrKaEZOiEvPc1c08bFdptR7GVFT7MtV/+MDMzAToyAoSApoawl5KA3eNt+xgdvbhl4cw5WAafgwK2D71ZW+ufpjo+336Zm+57tiROx76/mH3OXjb5yzuftwXfx0uf2di/8hrAix3F50cv/spkvcZq3uP8Efg1IPO9DsH8nvH7feA/Xto90zs4XnvsVC7B7n/JPsPwyZxoOlM54MBmtCYEkcnaQBAHxwTE1gv0l/dWNHjeV1EClTo59muUx6DBVNF4moGTODY5Zxvrm6GrovElsbgUSXPZkdYBUkdMLa1O503TduOfZI0nL99Q+8uzKTfdt1td3J6fPz4kasZY1Oxma/8CA5aiSf9xe1FGnpz4MH7GMih5rJJopAlWbpI5Lj2VTVrEEiLOO/a2Nqcou+YKQ1jTqmUMqQEzM47djSVULkQOQQmB4jKzMFxiAqcfNgQkovAlWAQZCnZWaGiBoUYg/OmGZiZnQmOWchg6s4emKwwuIqYVVWsAAEx465WRo0KEhAhMZAgeyYtde2ASAsVxDJJd2tGO2y4eE9vZp9ZbGaoh63V9rJdgGCGwVdGKID1LDiHxM7dbJbULhfN0Vk7jCbNejbn8PyMC0SbF8vj8lkBgxNLgXph5LgtHbI7Oj5NeXU78KCw0jAgGQAbgCgRmu720X00+bAA/tkX3luXdznJ+6l7N/F3xMpUNnWAVock3gloEIEZ3Z34wP+ywzUe3ti9ZfMjjtZ9Fwb30PMHOYn3Lc6DcPW+svQwktm+GGTyPoBYTQE1lwwGhuTiTJXfXGy+e3Px7avL1aDgmmp+5GJLzEwOidSUPQvCNA4xCUDKo6oy0tQ5S0RMBU0mTsjMdl0maOoxMMEmACJA2CdA61TqawAGaAq25+D3ycqA+8JENWIiRgIEJlRVIDTVUiRnMVUidM4ToahMFzaFSeEwW84lCygA7arLiAwUzBhx0w3v3l6sNhsEntUNk0jOZrmknPOUhNgsFounT08bRyRJSs+IdayyYTIDtEjYOG4C1pHTmNUUERghpyxFJ50CAwNTVZn6QKdU+r5XKXWkpq4QbdMNuZSqrZldUmVHqMRME3OexjwlVXnAiNYEMoBhWxiy99FHVzEmk6yGYHUdZg0PYut1hyShcZsRztdlCFQGBYAx9SQWYzNfHK1ublZDiuSip9ZVXZcub7fYeFNaDWW9zeRCcP7d5fbNq5sPn4bjozZU8fHTo+rFm3Szrp3fIKSS315cnhwfY6Z/+vI7leGXf/LBzz75+IOffNALXg6/ebXqP//u4tW7a83pT3/xSWgXL9+9fXv9Mos2rfv6/PKDJyf0yw+zMIyjr/zp6TKE6sXrd1dXVzXAPHoz3F7dBFu4Ra2AHOMIeLPZHi2OFsePrs7PkwiShhgdOS1FiqBh3ligSA4yFGXP5F0zczhKkjwUCoHRvXl1nvPYzqqmDhwbKAhjUizmHfoAgkYAblJVVSLOpgbqmRBrZ2i2lXG0fOVmo5/PzEXztSYPNmjZoKmNA0PBEJAnSSo0AympiDCh87xc1vNZNYx5te7XmwQOAdRRMPVEaMBT9v+kubbfS3cZCntPadeGYpeTYw+yCQ9IZG8q7sOOOzLovpU5MP3w33z90eTlhwBjZ5t+eIx+r7R2B55+ZNR7oiQ7n84A4U7SA+DHz/sxCAf7zOf/xml3T/Hg23v/fe9dwzt39vAJ3fPOd/LflHOZrFA7bw1Qi2XJ2zSgKRDSJOojKoLrde620nVSErrYPD0+dZLenb+eLeeEOgz9bX/Tr4ecSnGMhKAUQ5jNFiEGUyWctYvZ0emJc9UmbF++uCljPjs7kqxp2wemumkM1GnXD52cLBc+w9D1kHrHEluH4FVUs6LmyKaWMbKVOIzjMCRTQLYuQ0kYEasQagyzEJ2JSBlzKWMOnggjoFnJVXQxhNoHMy2iPoRYV+jjts+LOHt09mSN/Gaz6dUIDBhKSQ7ErHTdNiE0s5kjLkWKiZowmq+cBS5FnEdTZUZDLoqmYCqIoKKg6MiISUQMbNqqCLWOriX0zoYkCgagk0o3qn4PDNu9HdnA7nMs+xKeqZgaTdAAEH021JJVoaGmfu+n8Uyrphq8JkFrhjHgOw6BMJ2eAOI51qrKIYyW1l1ACb0eKfLVtt6Q2ygOxRXngIB0V/ysprDr8j7FSvBeHHofKP+jy/aOON6tg7v5vHdlDo+7pyEeBpsn52af+ndfonU/kt0tCrt/ken0ewbIfmgT7t3VgzG/990Da3XPCdllqcMddzKBoCn3GYAnRZmcivchhGhG6y6/ubj89vXVxaq/3SDFRTM7KuhQwTtyYIQKZGLFgIoII5hJzllVkZgcq4GkUlLCqV7QgBCR2FDNdtqC01suZlMTdiAjM2IGAlFBJFW1e8kKk/e1w5tTfSkgmCkKKKASMWkxVUwyllKcc8xMPIX8CiIwsrERgZiIZgNTRYIpfXqKgakjVpG+21xdXo6jzOdLUJGSUQuRFTERcc4/Ojk6WbQLj5HzmDvgSR4SneNsFhzOY1g2btk6USkKo5RUMgJoKqZALjikAiAK7BwgilrSPJbkEEJdGVOXcl+MfUQjy1L5YAbEkZwVkF4KEioAiVaEzxbuaFHJUNYSostkJecRJRuKD8DBnRw1BVNE17QnQ4K0lZZdhTirGzHYlHXFYgwExQE77wtIMjLFzage6VdfvKkCzpuqT9mwmsfam5W+v3nz9klcLGaeXJqdhfc/Pvvu/ObqdovoEO1mvaXg28A3N+P53/72vFvH5cmHp7OPPn7vZ2/Xb//hi5dvrh49ecIY/+P/9qtPP/vJo+fPf/eHr7vRroZ8smzfdfpff/fyyWJ+XPtHp8ujwGeLxXIxe/3q1dvvXr2+WtGjM9/lo6URogJzNVs8Cd27q3HbH83mtJydvz0XM6g8gDGT5gxqwyaNuWvxyDVtNhPBpp1D8Hm1zp1EJFpU63W3XZdvvvj66ZOz589DiJ0vyN4BVOAcFFVkQM8RuIxASJazoZJjAuMKnBGQpqQ3V1RGbOfoa/JRgRyClawliSiWgkBIHsiBKJIzLTlLhuIAXRWaGJpZrK+3my7lJCUPJpqU0Rk4UhQFQCBEAdSpJhJ2iZCHjdcAcOej3vERBndLamcy7uGbu8KqO4tiAGCHqNb+lAdG6gce5w89uUMF2J5nwnso6IDBvg9A7tj2B7YP93b4XuXVgY6f/Ca8G+GPALP9Q99zeP+70A88vFk7QEn73rF2dyP2YCAk2nELRI7DmLIrwIQg5hQck3PO0ETA0Pm6HgZNBbiqx2SbzRidQ/Sb7c317eqkWpLDze1WRg1VTUHHfmRRdDSOmTdDSNl5fnxyshmGq+tV1YgUQXCLZfPBR8+v3p5bP8zns3bZHj0+csP1uZTshk5F3l29xbFIt0pp9NGXLuXtCJ5Eh3lTzRdNFeLNasPYh9o7zx7NE4Lgejush9zMGibLJW+2Xd+PoY4cPJHfrjcIFqtoDGOfpWTIfBwdjN3qJhm62emT6L1zDgRC05iQM/UAlPthdZU9zZoAFABhSr4gUEUTTcyOjBgZQFWN2OU8MEH0CGCi4hlQTbSoqoepGVMm0Rh8HruuGy1WFryJFclEhki0XzR7lZ3dZEXcb0k2tT3ZcaGTkh2akgoTkWgWII+EHuOseNQQkCzZCG0YmIspS1HnAcmBNyhKMVBg4LItEGpRhq1KwUJeXDBGLIKgyAy7Hsmgpoj3yMmDh/PPeCx7amU/Xfd24j6yuz/1bXeBh57JHUb6nuW4txjs7tvD7+98hn252R6J/UhO333DdFcoceC46dDB9FBqNv31PltlZjC1NZk+JEypOE913RBxUX57fvvVd+fvrtY36yxU1cuT0Mw5RiKK3jlEySWLIKIRiQkheucQjcFEJ0CqJiJStMhURc+OHTtDTGPORYiZHU/UlImC4UTvGKJOeAh2Qs+7x9nJAOxSVaYs6QP1NuEkR2RmqqqmqoqEhExTJb8KwpQurex4JyaNCLsMRCJkUQ3eu0jR+/N352/fnqtKqGIRkdSRSayjJ9I8enZt08zauo1UYYHceyzFCJxnZFVh0LryTdR546LnbpCsMCQ1NPaMTjCLmU5tEMi5kso4liJ5yNnMBCEV6fo0aPa+RTBkF9xOXd0HcmRAJlDQYDIQLcnZjN87rSXZNS60dGMql9cbb8NiFutQV/OKAt/c3kIhYkdAOKSZwydtyJ1Ui+bI4Xbbr3tJRcQAicl7kFJEb1ZbktinbCiBu+B5vpxV6MrQS+q2GyKau6jbcQ1UPX58/PzR0eX5SzCs22rMZbvtZLDlyePLd+Vv//B21L/+v/3bX3z43pO/+hd/+na1+V//828Mwyd/+unlKL/+zYvFfP70vfdeXlyK0XaUmHF7Mbx7158u6+X59tHR/CcfPjl9NH/25IxUz5m3qdQpp36MjSMfxbieLWqsL7/+5vZ61VZxOV9sh37Y9nWEGL05J5rzmKAgu20QirNZEhA0Iu+aVlM/bEeXrWqamfpmvX3x+t3V9ep02Tz74MliuYBcEAQaZiBQgiTgCBSQzAGaSjEDZlfNoETGtXRjvrrGzdrNj6GeEXsIFbig2ZtkyUqkIIagaEDIHEhJDAxERbKZguF8EWatH0e5vdnCZlBAUDYhIUS2gxe6cwEfOnx48OvubOI9qLPfw+9LfPwRG3YY88BvH+pWfwT77I3P/RP/yEA7k3Xf0f7BYD/kXe59//26sh8b4J97/cDF/LExvndzD9+Ou4H2Zb77QOTBi94FKCb0gzuWm5CIEcA7HvtRRNomxorTWMqYXPAEzARsutlsutubty9erdYrAmOTm6u33ep61ga2wkKBKC7nzNWm77s+bYfM7FW0f3MZPB41fh7j5eX1duwXR0fBhaqKpyfHbYzu7IRLns0X9empb2u3+e5LQKV1u1pv3169i8AeoYpYipaUQaTrRil9gEUbq2UVSTQSoQPFIuPYK5SCucBYpDU9OZ4J0Qg4EpQigRx7Be9Kzn0/mlhOGVRU8tBRGsyxKzldv3sH8xmDHsVZjDGPYlCqCEO/7dZvKbawPAIX0DERMRGZTipwKgnRTwkpyCia2YRNYVQXg6IpTBl1SgDad6PmEpiUc4K+6ySJq8mYtajfqTccFgncD67svt9zLGaoNhU5G6KJFUcOFSwnj4ieDbFTRQzk3bofPO9c75KNiBxF9M4ASMGUgdsBzAEqKYAXNNRM5AxpEv4n1WkDRUKwqbnknuP9Ac/7z75sH7rbr//dXP4xKnS/CvDhG/CAQLL7y+SwJPCP3889NLODPnfo5yCXeBfsv/f+71wpRNipHCmoAcCUd7Nzu/YfGU1thowAEEFNpahjcuRU6XrVvXx99fJyfXGbkxI3x1VsDT0YeXLkiRBMwQDVgKcS4SnV0YAMCaCIpJxVJk3wolOdPSAC5ZT6YeiHrSnUdaveT1Sdd84ICJiQJy9TdOeE6o6bwylAsJuCYKrKxICTuMgucVEBpEgRMVNERCBmAsRSCpgB7fClHuawTpCIEamoSM4IVvlKFLohDUOetXNA6rY9mwABu5hKZl/XVTg9Xpwu29oJy2ggAAQuGEUAtLEnLJF4EV3tKaW07rthBMcVUERywQGCFICs4kPQTEVKN+Yh5ZKzaEEzyTpsUx1oNqsdmquiIVgagQC0OO+ISYXJQRVcLdCCNlhmLgGJzni94etVt7pe107m8/d81WZirDgmsG3RlHXIbGkR5f0FxoAjwdj660a/fbUau654j8QoiMRmUAx6RV/NVfN117sknfWqMWTzWW863SofVTPnre/S0Xz28bOz87e3X16u0HvPPo+5EFHTPvv0F999+/Jvf/+25Pwvfrn98P0P/sVf/Ik5/49/+O53v/7dz//0F+vLizcv3zjv3v/ouais3159/YfPz56/D4v5lzcjXgz1q+vffff25x8/evpoMT97fPrh++ffvOhuLvRVd4YnrVsgVeYj1rFeHq/eXYy5DyFSLtu+FzHnl0jOMUYAMZVhGKV4gmrWCmEvQN67I+atrG/WFN3Jo2W9aL798sU3X3y1Wm1vNun5+88WbdMU9SgAChiUCWovpihGXhGEwImoMSNHCMpasN+m1UY2PVaNny2wnQE7YgeMZGqAJRfUXZMvJmT2ampWiEAFck4IFmJoQnSVczeDH2AccyqE4AAIUJCniCqRIIIAmyrgTg2edpVIe5ZisgS2y5Deq33cc8amBXs42HZQ564C5g5cfc+E/bdhxz0/z1D3Nux+xs6Bl/ohyLl77e9nZwX3PtKDq99DIXv8Yffu8Efw2N1FH/q0D059SCnB/gZ2PvSOCdj9xXYpWftH27WjPACtiZqjSYFDckneu6r2gF5KTn0m4JxyjBWjr5q69B2Mw/m3316//s7pcHbUwND3m+smliePj2LFknSjOGQt45D7IY9jDBWQG/qxjMOirrYmV9e3oOIVocv1UQtspRvGzbZpgj46mp0dnXzwwZDF9VcXJXft++8N65vh5oJciG3VraXfjlUMmsrQ9SpZy9rAz2ZzRle5qkhWE0IHjI7ZnGlRck7EcilJEiCE6Jq2Lmbr7VZT8p4xOBNVEWICIzAwDAp+SElWq0LkhEe5zaMgacQgY6djzxzIzCFZyuxIJGUtUwImFjNQo6ney3IuqGIi634kZqoC1S4wAJqUPG5W4ziGk2MfomfXFd0Ni0xThZjsE0QBAafchYPSxAEMIACYAu76iKGpAAAheee3w5rYxRCB/bobxHIM6KIDEwQ0Q/ZsamLI7ABNLCMCklO1pOZdyGimSuQMbdq7SZXMaGrYZDaVD6DhQZr5IZk5QRC7ty6+v6buyfHdeT8T6ruD/fcdq50gxW7gezKG34dM93HRgZ35/uLC76/Pg2eDB0dq50Aczjl8BNPj4ySXDIjsdkaPJki6r0Gd2OeJGDEp4zA474nYxXrI9urNzavzqzfnt31xmSLHOsQ6xMiuCrHKKjllBWRiBkJHagqARKSGJWVQFSmllAmzTE3Xvfc+OBUpOXXd+vr6Zhx7HwOiBauBHBgSMQEyO9wVEcrufZ26Rex01Giv8TghzZ1fNeFPQzCFXIqpighMyai4s/lmeoCjuxOJEFCzqBqiatExDWBKAJ5c11nXJ3bOB1+yjP1mVoXn7z273gxFbT6vl/N2EbhmjYwIVAqrGjufAXMpkkdE8cB18IC6yWU1aCoU2loyZBHnuHY8FCnF0pi7QbuuX23WRU3FVIvmbApd8DHwNksdnTJHggrZkRmIoU19Odlx5XnmodESSCxtmIsPVkwHoBDYyzgMskTOhiXlKgRMnpXRj5vSc8Ajdr513QirTa6PYh7bcSzrrC6iZigG7IPjiD6sNsUFhtCKln6QG+vnjgDcm6vtt2/Wx4+Ofe3y1aZCevZo8bOPntxqXqkHISmw7YfxxcXj52dxcTSY+/xVN8i3L9/cfvrT93/x04+36/Gfvn7z4pvXz99/3Lr45sXL737/xccff+Rn9bg8Wt8O16sc2nrWzrar1Zt3r1dd9/i4ef/5s89+8Ul98sQ71m49pEy3HUY1dB4jB0qaV7er46Nj9HXpxvVmIHR1G5GsXc4LwDD0fdchr1rneFYb4jbleawDI6ecypiGzfLx2U+rnzsf3755d7Udxm9eL5r6+Lh9Qqe1c1AjTWQMTl1Ud7mPiAgko2R25OoluSoaS78dVtd52DZyAj6gq8A5ZEJkU1XViXkDIiBSkzwmQiWm4J0qZjFko8ofnfpZsvXt5mY7SGFTT94T0igqAHygSpGAJoNAwRABCyiCGSgigtHeRCrscdHeoAAi7d0q29FKu/LwH2n+s3cZAX9gWe/ZQYM9G70DCPqgIHZKmrT7gbt7IGsPce6zQPf88J0VgMNv9sYRER7e0n0b+8dfP/RRv4eHEOBui9gnxe52B7xnxPc+29742yFH2/bHTicSIjiI3pvZWMah69m5ug3HR/Prq1vnGcGa0KzRXV9c5jy0bZix9zU9Pqvn81BFP6ujjHLBV7/59Ze3q87I1VW1PDkOPl5f3yBAu5gF0jGVxaw5OXImkzMo69Vq1pZmfjo/reI8GEMA77a3F+N2WzlneawsnTR129B6WwZL21WOIYKrNr2sx9SX69Njmy+O5kcn45iurq9FLbQxViGI+JQdo5UskqLHQtTWFYKVcSBTZCpFkV2oaVSpYx1CBYRZYL1JFD0zWs7DoL1su6GE1js+Ds7N6lrUZBgtFCiaUgeBx6GgB0M0RXAglk1zGYc09NEFMNOhH8fRBdeeLmJ0/TBqN1LeggmYQVGgkTQzAmACiNPEV4CdENBhFuymGu0dBqAd0zC5FTo1OCIwtTSacHCMBJJFcuWJKJqqanGIosLsdkp2ZlDKVOZsAI69oU2GgQhUpxrWadkQAeKuU/cUAqJphu1gNu6hy47BmUpsHngLO2oEca9IDHsP6QfEynQw3jtxwvt7tI942LLvYMrBVbq33GxHAdkDn2SHi3ZXO/zhDsZNjsODdbv7SKYsWmBi7zwCSBakqYmFFS37kvMpxYURQKRMnRXNtG5rQ5cyvnu7fX15+/Ltaj2kYpW5EOLMhSp475xDJlGVXb3g5NWgiUyF5+Q4SSkieUylFCLyjkVLSml6FhEZ+u3q5ma7vumHTrKA1MkHA3QhOhcPXBuCEoDs59nkc5qpmampmRHTJNI6hcAAEAEJQXQX+xKVqcu62+lBK+ylOW0/Jk+xMzHbxcogp7HvN94R+qhShpSGMZnR2A8lp8WsOV22wROhhAB19EdNPA5WQUEANVVRZlcKqJZcMqrFQJEsOEpFugIDBAgBfY0iIMlAgJAZ2XCz6TerfrPaDJKQA6Nj8sBWtHTDsE22GYemDn1ObRWO23rmuYqOyEwzs3mWNsYFuQYxeiQWDiCJtoqlaiEwjLBKZdEV30YoOSL7QBZDUgdrwR6Cx2DBr4W473L58NliSNpfbIohmDrCKTE8S3HkppTrQDBV52XFNMpqta3/8Ors8fHHPztr20B9PllUZ0fN07Pj/qLrExo6Mbe5Hfrx5fyoaRazSPOXV+s3b79+fX712ccfPz87zcbfXW6//f137z87+elnH7/48pvvvnrRVPGDD5++uexevLpIeXRMiOTa5evb8vLi3VfnmxeXmw+fnHz85PHi6TOVrk8bLtnGDXMmHEKT/YgZoJ4tKEt3uXpzfnki83beZCH0wTcBfQWm/WqonfdVYxWLWCaMj5Y0dC8+/3YYxrOn7/3sTz+bP3v69vWbYb25TTnd9ANenXb66JFC9FCIAwIjMIsAejJ2yBCglCRZyVHA2ZnzzSytAK2sVqMIUfBN49oaQsVTshrR3pTtLEouikWd945dqIIpigl4qRvPrnYV3dwOechaQNR79MxOtUcUBAtMEwxCslQGRCTwniOglpIMdiaLwGiXSr1z9QwAQABoL3Vje0IaDul4d1qIe6duX+D1EGLc2cydztkk1TilRxzs9F3e5r6o+D6zZD/uV05j3sGl77MzO6N532ofzoMfvP45THT/qtOz2IP7nKw23gs07rztCW7CHbcGMEVJ9sTXVPIhQghD7lUUERbLeZE8jqOk4kLcjGMVva/8Npf2+Hgz3G7TiJgfteH00aJtq269vtlsa4p1FY6P2hg9kA9t2x4tt5ueEOqmbpaVg1I2W9XcBG/Frm8vKPByOasqUBmS5EHTWGw2P3Xr7XZWu5x6U13UTR3ZO6oqv7DZZp0NyEcKWm3Wm82Q/XbwVaYhKUKYtdvt0A2lYV9K0ZJTki4PiLaoYqhrAxrGrLkQoiCkJF2XYh3IeWA3ZOXAxejd5c2Q+tlpSxwAIfVjGrJCHMZmWXEbm5ub7frqxsgBU8mZxJGQ5LLtRyDXLqq2DuN2k7YbkLwuMm/nraftYCRKqfTjsO5WrDpr6jrE9Zj6kobGFdExaRiSeVC1HZV12KEBVAF37OW0ZCZoP0WPpiScqS3G5DIoIu3aXCGalcmp5x0RqIQApgg78RczmcoYwABEwYAIwQSVEICQ1ARMTYFoinpMX6aqIZx4nkNrsv3MtP30u7dY7iGa/W/tbv3C/SX4YG3sAcmP+zoPo9gPahn2uVOH1bxfS7jPAnww5P3w1wHR7TCSggIgTkVPExpFy5JMzLMDVBWd8prNAJGmBlgKplpsYt0QyEUxXq3S+fXmm+/Oz1dDn5hD40LFMTpfhRicdwAoOtHoNHmXomYqNOFKVcGSSxYRBTDEUkpO2TlqZg2Y5mHs+m6zub1d3aS+Q9Mq1iE4KQXHxD6gY/aBnMd9AHJKY5oCVapqansoY6A2dQebXKfpYJ1mpaqKHuDtIVXoHsY0mBpvIYKCqUouogLEpSQt2YcqMqHosO0kZwIQEIZydjQ/XrSlJGeJEFpPbUCPxSOnYmMqjtBMwTKoQcnOcXAQHKcsarbOMJgT9ggYPDv2WrKauuBJNZdx7LdDt82mofbkEU0BlVkJLKuWlAcpaNL1Qy6aNBh4DHhUV6ajJ6gDR4BFXftQmpkDJ7ZNRaUfCozWYEoSx+1QRecclz4hena+caFg3ZWBnGtdQ1LMBDP6Oizn3q9o3QsFNhEUCU0kBDFBcoayvV01ETC4lLIUI6Mvv7s8/sdvl/P27GQptiqb4cMPH98U+/rVF6k3cN6YOPIwdKHHygWpKwszNfrNV+erzfjR06enx8ej4KsXb77e3n72p5/+yZ//8otff/Xq1cU6v/r5n/9y+fj4n/7+19JXSMzO39wOzoXtVXfTff3q9fnV+49/8v6T+TzUzSlQHzx5Ymji6dNTxJu3b277gov5SRptfd1d3N4o4Qig7ObzeVXPx21fRkldYgpV9KOMvUiIsYrz5x+8v7662d7cNsvj07NjctyvVmk7bFard5e369VmXG9PjmfNooZFDSEAMzsnAIQsuTCCQ1JGESRHxDV4B6Su28owDOOQ8xBz5ZuGqgqqhl0N5A3AxEQBmBl3zlvOSqiAE8POJSdf8XE1m7fN+npYrXNfegIhVxfHwKFIyamgCTKyoyoGA80ipXSGSuQJsQASKO6crv0mve9cbFMY3fYNCnc8zE7G9AEXc7CzB2Jkb83ug5ZdeuNuzMm92a/XXVHqFIw7cEX3jCHsocMBb+3jSbDrVPjwnva38PAG7pH/P4KB/ntftkdWO0cZ72ki3mPH9jvCzkHfhSZMYb8/Te74ruCVgImLpBhDyQoARCyIRmyAYz869q9fX3791Tci0lTzy9cvLfJHHzxePj6t2uDrsL268oKX3bqu/NHyCNh3KQ/bjUleLmpmyuMAnpZnJ5hGKdpU/oPFk3bZVE3otpdj31EdCmAGvd2uHLFXYDMXvPOBxjJu171zMVY1ujgOCRBqYB9m3kfPoYB2MtSz2fyojfO0Xm22XWciJY2kyo6cw1moEHA9jDnl6Lz3YdVtU0nroRM0Atx0Y04Sog8hppzfXWx7KGdnZwTar9cqqpi258J1kG6Q7XZMhRlcHSWXpm5KsTKMOqYM6LSJ1towwjgSWilD19syHi1miyRlzMKRLcaSetUSiDhlLUyz1ns3plFywpzRnIg5RlUhJptAAx5YFzPcF1juku7pUHu5n8e7oIuqKeouVQZUduiDpjiGGdrEMe1mPSHtAxg4qeghmgM1nIql2e6mGJihFVRUQKNpwu142z0ruidVHoCMHcGyL+u/D4+mNpmTuBHchcbwbrT7MbIdxJqutfdoduPZAz4H7IGlubdODkzSVMJ5AD33aiYPjwuTpM10CCGpqQGUomiAVnZXQXTsVYEcmYJhsSK5qPfMLgrgpi+XN+uXr6/Pr1errRbwFNtQtewCe3beEzuYVErIUk6ARCA06YkbqKpMmmwlZymqxuyQWKYEZDOHliVtNtfb7brbdmPfQS4hhhA9O4dE7JxzvgrR+eD8pKkCBjpJChkC7TLsYQ9uySbOCe90n22yPjrpwymYEbKBmaoSoRkiOHampqWAATOZqRmVLFIKIHh2yTQ4Wrb1onGrVVfSGJ1H5jyM7bz68MmRY/j6m1ekcLI8fryoajIyHVNWxxzQkjIhEue+EIh33hFmsXUvo9jtKOqjKEOf2sCOsCD2qYAxEXrnYwijc2BmqjklLclZQQCHBqABMaIrm6GAjt243YS0bOLjpVHwrHWFDpTRqhACaVuRD+7WjV5Kd7VJKVVHDhcto0XHUkoGBGJ1EGqO7BbZpy5RGhyTkaY0KsFxhc+Om65sRzNA0mwiwo4JKKUMeTyu/MkygMnl7W2oWo9hM6S//82Lk7Pj/9O/+YWvRSw9Pjv6jMM3r2/e/uqbcXQhVsyGEcauP+81zObNbNbOlzW6dzfr1fbFe++ls5PlIj5/+c13X/3d747/h7/6V//2L+1vfvWH33xJ7vPP/vLTv/yrT16+eGeAV+eXzWyuICHOkuTPvzl/9/r6D1+8+tmn75+ezp6c1ItmBtHpoOBq9Ony+nW57H/ycROapR/67c0lu7FBn6GkpMdHR4GCWSn9CIQea4+EDrJm9mFxcjSshxdffNfMbx+9/3xRVfPKYYHt9uTt69eXb95ur7cfvPf4NJ3M1Zk3N3fqlCqPgFI0qzIxOwJUVc3j6IAQHFTLGFpXxpx6K0n6zbhdU4y+PaJqhlOnDiKKAZFATUvptt3YDcTEnnzwzFg0u+D8jE9CE+thux7Wt5vtzcp8RbOW0RMoQAYTFDVQZCNTMWEk3sm/TV4MTWbO0PY5BIfuGvsqib0JpXtpLnuS416ZrD3Y/n+MstmpLeoh1LWPCR1QxT6f8vsgaLrYIZy0T8GY/E18cBA88GQfXP5BBODBn/47SaDdrrE7eM/04w8vdaCADoVC030T7rkp2FNih/eU0RVRIEypTIpoY9IiOpvVY3f78vMvzl98c/H63enxEhMiowN/e3lzfPRBXNr2+vx6szq/uQhWDUNxkT351fVGLS+b6J3zwYWqqtt205XbfmT2Z+8tj0/mfb+9vd6kDJ/8xZ8tPvpwrSWP2YUQxixqqQmsAqqciiiMzhMixToCIfuATC4GMJSsqWSUgcmpM3MAjlzFCtpvxoq5ripybKIlSbfp6na2mC9dqK9vb0VNFAhd0YLMq23fmjVtM2YypHHMadtv1yvnXdW0adut0wiiSACa+9VtlFZyyauNERRRYnYA42rclMEz1j4iKoGlMXfSgzkB9bMmLhc61uvzd6t+qCwjuKqZ+dnMxEd24HnK4EIEQHPsipT953gIG+khoR3MdJIShx3JaWZTehcYEpBNJZpo+7DSRENMpVR2N/n2E8psquacEoGneWYTPMCpkzceyrDuyBzctzrd3dOBd7zDMHvEs5/Md0Gm/W1MJVI7pvaen/FHfIa957J73QumPTzm3gK6B7V2BNCdOzE9xS6d+Q5G3atk290S7N4cREJUNWaefDcmmCglAQVEA1PQkgoShSoi+S7Zapu++e7txfX2ejUkIRcWIUQX6hgrJEJCBQQRQdRSAIEdg4GJGigQTlrPU7qxgqHBlMEjOZtBFbxjzGN3c311e3uVcyqpgBVyCEwigARVHaq6quom1jWSBwOZ2sjYjschBCDe6TsbMNHO8dtFBhFhgmFgYCKqInulckM4wFqbOrArFARDJphEGg1NioEyOkKsgo/BljVbKpZzE50j0nEITf30qD2excvbtWqZN4tl286jYxMp4jz5wCWNSOKqMGRLJQMiOwdguRgybcbcF3OBkBxAMTVUkVImeMbk6rZGRafaSx4yDGMyKYaKhIyADGwmIsSM4Eax4baTIk3wi8rPF3UTDGRUEzRyqigA6JoQa3ScNK0GN1/UPjrvgMwAXeUpxoQ2goWqPlna5fZy2A7M3ov4lPqiC8dPancd8PVN0eCDJ82pCLMLYBIYPnx89Ozx/NXF9dvLjFaYXWjnl7dX//Cbr0+Pjz79yYKaapT+uI0fPD3+4sWbV5fdYDqbNybGZkUxl3FILmeNxBCqDsqrq+vg+aQJn3747OZmc/X6na+rn/7iYyT65utvf/sP5ac//3A2a4ZBCcjMyDkgGgahatan8vKiv+i/PD6OP31+dnu1/ODpmZR0ero8fXLULq++/PyFj7P3P3g/LJZpLH2vi+Pm+Gh5cfH66y++efbo6enjo6H0ZRjMLMwWRpZlzKN6rOaLI8DLL7/6bjXkZ8+ezo+axcl8frys67ptm9urq3c3q00aH4/p+OTY+UAtacnoIzEhe1QFAgAmNuJYtqOV4slBW7PVLA3kXnMat9txXA19qpeJ6xZ8dN4DOkCyYgLqoi8pERoaalbvHKFTUQVlF9qjumpDrLZ8uR7zkDMncx6ZyREHRR1LMlUiImYDU5iE4CcHYi/nBjoV8u445Tsue/KnDI3u/WYf4TkI8Dw0i3tm55CAuEvevEezT3+07530o2Z2b0AfSITsPM775Pk+8vWj8OcBQNsb433E7sdr3v7I6w79wKH25cEd3Ht+ODyo7a0WEIJOxPa+e6bBvgXRlD9GNDU/RDRECz6MImnsSxmHbkixbkN0UrrLjUW7rN9Vteu2Q9cNbd0Q+M1N6vs0X87rEK5vNuO2e/be0+OTo1JyWvcMltJ4fSXNIogImNZxCQClkBpwrF2Yu8Wi3fS5H0p/vQXVuglgkCQRQYxuSGO7WCzPTgFhGEYVKVKS5FHLkHPKZRzLbD6Pde1iLrYNdSxk190YY1SWooMo1+0iLCgZbbcdUYgxxIg5j4KCDC662fE8ad4OXUkpRIuRfaSiWiYChojNNI0ZNfXDOA6A5qKftXPPrtv26269mM/niwUiiACLrdfXSag9WpCLY8FNAYzL0vttkqqpYTnfxop96+osXVFFRCRCQ4ADPqOdGyCapw/I4OAkKAAdNHjUgJFNjZEAkIB0B3j3Qsm4F7/Be/MJjHacoCkIHlwQVNhnV9/NdtxjmR2MQj24MbAnH3/4Oqyh74F+PJSP3VuJk9tx52TcO2cPih6qYhywzcEx+mPOwQG03YGiA8+087n2xZ2IAA+oIJvsFMHd9Q3B0JgQiAx2dd5maikHH2KsFabcsuHl69u3V6uL624soFhTrIQcUyByzA7AAElUAXlKIUJEIHNT91yEqZOooampiBARkQPGPOah6x0jkC85b9e329XtuN0CKAHFENSmxhMY6qqp29l84euamQ2wSDbNpRQQ2M0TYiAzMTWdpgTv8r5g7yvuGgDkVEopqoJT/4zJhCACgEPHzIBmsssb0pxBRIshEiMjgvMYMbRgFUhB4sCBHMIgeThy+P7JrG6b796+M+OjxenZ0WnglPueHPnGWSlOcqz8QLTJeVVyiDULkCMf3KDQqQgiFPMRDTCLWMmlGLlAyKJWV55ScYumNh0Vx2xpHIskBS2loJaUSs6FCH2sGXDsu9tt9+bSHh2HM208YABALXnotMIxq2bzPi5ni7NjC87Pm8qHIAjdWMwBOWeegahoDo59Vfd1q+NAQG3VjC1cn68BfXQ8C7Un65KqBwLw3gGB5PTsZPbpByd1Rd+86QCBAylpVnCx/sPn3zXOZrM/ffpsVvp+c7OaMZ/NZ0n4eiyS1TNxYBIVB3nsjChEj4GI6iGnb16/7dvwydPTj//8w9tV/+u///vZ47Of/OTJ8qj6w2++/v2vv378/L0M2Tdl0/VNE0vJqZQqzNVcMssFhtv85vzrfyD30bMnj08WP/+0OTtun/30Z9tUXr9+u9Ly/vP35s8/uHz99nK1OTo9eu/Js9//5ndffvXNSDY/njGKpQJjDouQBXIaMlBomvc/+eQmwTff3GzW8snPnzd1K8Wqtnn20/dc6y7Pz7dpfHt53Xd5se0XT2bKWp149B4mj00V1IAcALK3LL1qxiTADhAwzMhDTVXOaSxjGjoqxcUKm5ZcNGREcsEjk68CqiKCiWlRYiDCLCaWOQSOcVn5xcns+mJ1c5u8oBZlIhVQJIAaSSdVt8lII6jBJDqxD+Hg5HgawZTAIHeENiLYXRbiveSX7xk3fMiN3//9jtCebDvsQj939hbvrOZhR7grnT0Yv7s+XXfXuDPiO3T1R3VPdozyQZXH7p3/45Dp+y+7c6i/j9cO4OuHlz18vYvQTykf+1yhu8Yk07FMNFHdofKsGlqOQ1gczWeL2aOnxYt5JS9gfWKON69uNmkdIh8fPRJuJSuM2/VtL2M+Wixur1frbZ8VxOzq4splnTexaevAvox8uy6eaX50OiNIabh+9y4+eUzEjpjqeYXBtjZsbrf9TZrPm7ppnSPRstrcjkWBMFaRGLQU1aQlm6qP7IiwishMoaqrtl6eolq33abBKdpgo2vnXNcC3PfJsW9nS0cEhJKzc3x0uixjBiZ07A3TsC1F2jo28zaTMTEgIRsZplywpDR2OSUFRUJWGIYtk5chIaHlsFndqgioqWoeMld1iN4Ebq+3qyRHVb04mSfpIdhIBjEEHwE62UqRIqqMbIjFAI0mRTnZadMZIhBi0QyGAESIQKBFEB0QgODUXAoMDBQMcGrYB/u0+X3Ea78odiBqAgK7kPBuv0Oy3TqwCS/ojnrSA5LYrS7c+yv3ZttuZu3n+V086m7O7ZPa9lN6H3u6y197MMv/2CTfH3wY/+Gxu3LT72lW2IP/duP8wJ/au0C2e8t2YSDapecYlFIIyQDE9NBnmJnRB0BUCpt+fPPu5ru3V2/P19tBFCL5ikPNPoaqinUAQ2CUrKhGRBN7x4SOmJCmChfViUzavfVqAAqImlIWVR+89zR029XN1bDdSMmEJKIushmWAoQcYj2bL+fzZWwb0YksVNnxIlNZFgIgKJRiAEaERIi7FmF4MMlmZmayz302FUJGMsKpAg4IGYl2QVNAUABUlKI5AzISKQBaxqKtg1OPlcebAsxApZCOFaX3T5fPTmc3m76I1HW1mDV1ZB2zd+ArBypQxsUsivF6SNuuT6KaMxh6XwUK623fjWaIDopiIrJpJSIRO1bTMoxq0ERe1AsFTEhjse12u9l0o5ScxjJKITNvQFLGtRMJReqgNJZxVQ0xi4u+Yk8EpgjVOLrecnB8elSPXZ7VfDx3daDoMUQeoBRWcsUMEAWRyLl2PtfCqtJQUOa3V9tRShNxUdlR4/I6kymBOIdZiox9U7Wnx7PLy4vVauOqEHyQUsaS6liVXP/u1dvl31X/Y/uXj09Ptb/86L3w5vz26modTVysVPLYZXTg2UkpgG7sRwMJVXV0dCT9et2NV5frD58/efa0enV+cX11nbMA0fsfv/f65fm3X794/N7zxcz1t5dnj9p21lzdrl++PI9VhUTIgQuM27zK+Xr1Ooa3b27Xf/WLn5ws/OLkOAMUF7YCgr6HeHN1g/7Vv/izn//Fv/jLv/7rv/2vf/ur93/y4cc/edI4bxnydvSMoDqMW9ESZrOTJ09XGxOovvj8zfp2+OAnz5GwJJsvl9WsWq9ubi83b65vbtfbD917s3mE1QA1YmQwUEsECMBADnxwjjBvpWQpiX1gRXSe21NW9TLm1HX9NqiIFKTgYk3OIzu0SWIeEAFRUp+AzHnngwfmXMRYmRCjO3l8Mp/Jdp2HlHPK41CGpOiqqXuKQClSEPYM88Td72MwCLATj97F4G1vxNDu0lv2a/Bgr/Zw5VAc/NCxvONjYe8e7xuV3fP5DsfuWKW72NA9w/gDi/vjBvmfAzM/5gL/uMn+kXPv9gzAvUm/P+gPX3ej7oHgITEIDphv+ssuc0RVcBLfQ2CHMqTcpTwWFGyaOq07Yzo6fiRgCo4BL97ePHl65qpqPVxXHB4/OqmrbhgGkaFZxGruZ8uZliyarGQVfPzsbDavc4ZtKYNJ5VvXejPjwCajKLtYN20TtuPoIimXtCkQnWuq4HjIAyTfp+H25mZW1+2sCmjFLJVct7FlD0jgfEIc+r5qF7GdjdshLo6rE+w2KwRp/bxuqtUw9n3PgLPFzLEbhqHkEr1XMAoslobePAdSCi6EEA2h67Ym4oN3yFrUSslShmFUTe2s8bHKWrpuS0BkXJGnlEuWlBKzI8eO0AfnmdKYxKiuGueCGvpQZRlEUSkMI9hGUcimLmgCSJBVQXRSrBZVQ/DOFRVinhJCGNlEp8ocKbmKVUItmgPGaeKjTQIs+8m9y6k7VBbcAYhpIU2kkZkSoBkSEJgpGeDU/QkJJulnVJsCPQiAZFOp15QmfI/ToT1lcCCe9hPyQEMdvsL9rOMH8/deUYEdQNV+HU425M5R+fG19MBh2N3hJFqzX1K2Qzl2AEy7pXnQ1Np5MQAAOzxIYOqZiRAIJYuqECIzI7NS7Aa5ur559e7izfnt7Tal7JCaKjbsA7nA3oc6uuCkqIAWU0Tw5FEB0RjJASGQmJacS9HpjShFiIB3NO4UEVVfx5KG6+vr9c2NQ3VT3IoQDHJRohCqup4tmnZZt3MjBBWRUrKMKYnoxPBPvLyCTr0jiBwRMTIhIYGITuzxxEWlVFTEJm929z4amCLz9H4YqFoxzQhmoqYKAC44ck7GPpRxYXAa3HGwIoKgkhNJCdo/X8SPn7RnC/7muzdp2J6ePKm8UukMx1CBowJS6iYGH2472W7GzWYUcgYqeXDOjzKuVr0gowMqyY0SA0XvmBygSZGsimYBMDhs6tr5kFRvN5teB5MexVAEDZsYg+VAxmmMMp6c1LPKtRGOIcF2PdTFn501LriciRv0s6xrtNTWeNxyYD5bVK3DmoTYInAmJShooqLiHECkuvLZ0jgiQaW8WAQZMhqdzd2QtYAJm2aRNJDh0axu5811P7y5Xg0Z0QcDRYCiMpKG07Pzi3f/n7/9qloc/U//9k/mjxazavjF80W/Xn5922/ZCcbZcTuuN9tNF2JQwK5PpmXWtr7y641o4Xeb9Ksvv/v5z97/sz//5D/9b796+c2r5ui4nlePnhy9+Pbd5uK8jf7ZzH/6dH6ybK9a9sN4ve1XXSGc1ciuwno588iXb65+9fsXVxfnv/zk2fNH8/l89vLi9nb7pl2ctk+ect98u75u3p1/9PjZx5/92e2vfver33y7GfQXn350NHNOS5EcEIQwp3Ec9fh01ufTzXYYBvzi5eVF1z9+fNQEbtsqVtVs3lb16t2L881q/Paby1mgs5PZ/NGRW7ZQOUIGR1IEyIgrAjQsDAlysSJiROhxB0MqH9w8RFNJOUneyJB8jK6qiCbdIAKAIjLZOSmqWoCVg8tZjMkzKYtfuKPWqVbdtl+vB+ywmBZNmkhRyU1wGSfCHgn2XYQIEBVMJ1010KmQYE/M2KGxxs5m28FoHQibg127s1i4dzphl31g+4jbXdnsnau6p1H0YXoN3tMauTt0h8xgbxX/CIqxA9OyO/B7uOdHwwQPPdK9vZ92jHtvwb2uFv/c6/5t7d+0/S8mTm4fIQGYhIdNFSEz4eW78y9/8/vzF29vzi8BrGkbH6u14dVqa67SVZdGvrnox5u0XW3nbTmqqa2dZL3ZrBj06GTx+PGSnYu1S6u1M3EVJu36nGnW1M2sebSQClXAmgqch0naM6BmEHG2XDRSTW3GUhqzD+74eKZSIGUyIVNGRlUSi+RItJSiJOp9JqNS5nUEDkPOcV5lT5Gxjn4+q69vbvKYTQyRGCANIzsqpZiWunIqmsfRyDywr2JgTkPSMfVDj0TRecck2XLWnJKBioLknEuWkj1SROeci46BnOQsuWgpDOwsoQ4I1DYt+CBjGUaVLjEKMkmPZTCfWVXIERsERkFjmhJOtZSCiEpE6BBLn9ZtvUhSHLlSihYFM+/9tAl5YjWZwp4HjGN3qTt4CH/eIYvdFrYjfGDfumEHJ3SXnbevQkOcqsRMp3R6NSHYU6umu3mPB7YJD1PX7ub496DKDovc/80eI+20dqbh94tx7yQd1ufBCtxxTfeW1e7JJzJrH1zbJcrtBrxDWYe8ILszEwa7VPOpH5aaqRQAcB6JQEFsklRjdi6MGa+74cWrizfvrq5ut8NoSsGFJsSa2bNjHyI6NrOckooCgHN+uisfnKmqSDGxIlN6MpEBUskiOaNzIQRG68Z+7DsDG4bNdrVKfTc9zZhSHlPVRFVCpNC0R8dnbTNzoUJyBiCQ85hzSqqiisg8faJT/y/ay08xExEiTOhHVRUQplwQA1NVQkKaYuqgqjhxlaS7d80KoMA+cywEdgGZrCaKhU5cOQ7aBhoKoSqiQOnmFbx/1j49qvuxu765HIbhWR08F01905IDCQDtInCI/WCbNF6utkNS31SiUNRuN/04ZgWMzQwFTQU8VuhVkTyJZs0F1JiojiGGYIBd16+3m5vb69XtOollxVIUUSNiA/qoDacnYTb4j54dt3MKAQH8epvGfuzHXLsAzHHRUlOxFhlWiDJrHVGJDqHosB4bQgohBEQztSIGWa2oIpELLqc+j0lKOlpWVLtYptllyHRdSqqqPIolYbT1evXbYbPedOgiCOZUHKDnUEpRy1V7MqbV/++//tqj/Q9/9cnCu0dns19+9n768vVv391obGezVsYxBm+ASQGIHBiUIXc0b2eW9Wa7WX35Bjh88skHj04fXdx8NwxjAonMj54cl6FvAh2fNba6eP/Dk4/Pnh9X4Z++evPl5Vo9EggiSS6xictHjzWnr95crjc3/8NffPbzTz6KzdHn37767vWbDz89qk/Orm/Xv/r85epm+Oi9j3/6s08ub//+b//utyXpTz968vhRExwbgHeeWoiCRWGch267bR+f3Fxv/vDVuzfvbj58fnpyMl8umkePj3ysTCkdydtvX3/7xdvjWfWTn7337P0n7ngOwUlWqgkZTYqgihCpA0KHpDYlTFsWYSTn2VMLaMxjxiGnMZUs4+CrmqwG78GACV1TSSnDkEmBiRAwOl9EihYAMBAiJO9mYVa3Vb8tfS/bderSiOxhqimBXWGKqSERoiGSIdAdPLgLNO8t5J2l3MeQ9sZ5+h3aXU0J3lnVHR9vO85nlwltB/b+Hj55YCnvXer7Duf3X/b9s/ZD3y/tfzj+D7mq/fH30dTDW7oni3Tv1Ls7+5H72x+I9w+45+3u34JJ5gXNjIlwStICcEzDdvPymxdf/e7z7npjY1kczZo2Eruby9WwWQ39ery+OTtqUOH2dpNHlTLmwcByTj0iVPNYVTGPw3xx2tSPt8FrHrOoY5kdVbNnj88+fF9A1uMwj42PFQClTh2Yba9v+5SKoQf20Qcf0pBzKg6sraKZ25bcbTdoVoUajaKvZMhmaGp96gqxhIDg9Fg4RHYuEfvlyWzWLhctgXhR26TtzUZvVo3j28ubo+P5OI5VZDAlhVJkTF0d62ljiNFBOyegicOUnMuonhgd91n77ZBUkIAAq+gcEWghBiMNlSujWCklp1AB9mBapqgSo+tzTts0qyuvVekM0cfKeZYypY9wTloix8yYtSiaC87MMowlZe8aUO/Z9/3WASsAKDCTgeQ81FWjCLs0WbRdChyAgRkoAt+bN1PKte4n1G59gAEgHaoBDCZQQErqgE1B0AEqWkYUUmVyYrJfUHt+cV9Yb4dazgmwPCRCD44G7A+9R7pMpx+gD+ydmDtgd0fTfG/+fx/477yp3dcd9MM96QMANAFG3AfrDllPukNKtGsqCoCIDOTYDEQkmaAgOg7sg4itNund5errN6s3l7ebTTbyPlQ+BkSnSszsfRWCJ6S8EwcyZtppa0+fhqEqqhYzY2ZRUTM0ZcfOVaoqIkPq+74HFUQb1puSxuC5aBm6Acwo+jEZOWrn89nibHl84n0AxFRKyimVXErWXJAAyQHu5RAQCZHZESG7HSW4i5SJEqKpFZBcspo55wkRUNVURRimRqmKOk0XYDBiQoaJW4oVuWAVSo0UhI/YZjUF7zSBV6od1hGeLpqPnywfn80+f329Wq+Cqx1KJEYsbRUigpN0tGgGdK9u199d394MRSFgJkNQ034cxzGHupqCx44wVBUyDuMYkB0hGkxlcN45Abzt+qubm9X11Xa9MUDnKgUTEEh5TvyodX/5wdmH83iM5biF+ePIzqH4P3x9/u3lzcW3b+lkFhYNkCiIbyL6hrc9ayYATf2I0PUlS4yzNswiMBdh89HQqRUuEkCAbDv2zvRkXtEguhVqlI4DBbUbPd9kRwSkTHZzuyk5I3sfG+iyZAVGZh7zMA7Dolks5kdXl2/+w3/69aJq//JPn55+9FTi7OvXtzxcDGO/GsUxPnl6tr3tr277WWhPlyd5c7t6c8XRu2aWwQPS33356s3t5rNPfvqz4L57dXG12m4APnh+5ufu6cns8dkRXF1UsnXAf/bRqYC92mxuUheiR4Q09OvVtjk6CXUlQ7sex99+83a+XP67f/cvQx3/X//+P3/9m98eP36yOHvaXV/909dvuqSPj5Z//suf//53X3z+u6+2XfepPX98vKw9OuaIED2oFDtxqzW9W123Z6fHqNevb37921cnp+1nn340q0rWsV20R6dNiE0I9Yuvvux+92LTy7MP3zt6dsIVQ1ZAABFmYmyMMjAAqI4JVSSPnpnM0nbw7J337DxX5Iik5DwkGVKoEsfI3iEzOE9E3rtJnMIMQAGNVAQJDAUAmUhVKFLLoa4xMMQeRsEuZUM0ATUwR4aTlLsCKk1F7oioO411Q0LacSZoBrjzvnbmbN8ae8I1d6hh3/Br7yTukdR+t7/jhO4Bhe+jB9z/2xnWO04cDifjPTu8O+tAKB083Hs0zoFyuff1/m++x/x/z5ZP+YW2J7G+D2f+GDrbef6HxzS8I7N2QUG7a9+KupPsACZCx8ZkQE3VxFbOns8FyvXmakpijDWtL67nXh4dVY6sl9SnUbkWQRk1unh8Ojs+W5acXr961W/Wy9mxiQZXVRX7qiwezarjxfZ2s+m2zdGs9QGQiioiuGFMnkFFN5vtfHlUStFc6rp26MmZiuSURTWlQjYweQ4BijA5YudQHGI3DCIi5s/fvKnmR1C5UvyoghHnMapomM2WJ2UzJlmtuy57KMPtrW+8J4KcGdh7KqB57FRGnldYyHmuoh8ToFnJBUx9CJWrZL3th6GomeqibaN3XhHFyphCHY2MAysoKJScYISSddiMGMdY1Y4Yw+RqK2jyAavATEZqaUjrmxtw7Bv2nhMgOC4qRYUBKh9ELQ1rmrY0LVWsEKEUQZUYK5Wyz/WCA6TZrxfY04qH6WqHCbGnNwEOCGE/6SfihYFxatutRgQMONWGEVDBDEAGQIyme/70Xu70jne6N6vvpfvs3IXDGtvf+I6LfXji/VVie8bq4dS/Y4J+bFUYoO3proldvldDtmdY0dB2IWMDQCBAsZ3p2WthT6vFlVJcqIhjLnR+cf31izfvrlbnN30BT64OMRI5QGYXQ1059ogkAmLFQAnMOX+wOCqiYsQOEIHRAIuIquyuhR4BxpQ26xWCembvXd9vQTJaGfuUh4QIQCSGPsRmNlssjpfHp75pAKwUGcZRpJS8K9oHNXJISIgEYEzIzM45IpoqB81U1XaqClNpsEguGY1cFQBAxUqWycIyIOFu5mgpKOoZ2IzIEIo3qMnVjLVJAJ0FrjwjkQs0D3Hse6/waB4en81ndez7BManx/NZ5dnyYhGC5dbj8cncz+qbG3l5uXp1tc7gEaAMIzpXiuQigGijAI7MGNsqBK8ljSmZsm+rqq0JSRRW/bjphlU/3KzW/WZrJh6d5hyjV7MhD9S2Z8ezJ7P40VE8qRBkW0cX64ijPl3wZg1d36cNWRty13mvzDwB57atxk3fbUaVYqjMTFxciEZk6NAxAiADOyQxRQwcxpRRbOF8Im1idBkArRdcbTddEU8cYpCSRDVUnpnNY0lJjNiQ0SKhpKHLnt1iNeT/+L//nr3923/5y2c/Wf5rgxHgv/zD513P7XIm4J0TG29dw0/PTnKQbguJ6LIftkM5OT0e+82rq0395nq2qHyMSEMS3fZpUREAc+C4qDfr7dHRrG4jknrH1pex5DpWzNY0HiRvhkGyLBbL85v+b/7x901VP3129m/+8s/+/le/f/lV73/x54nnq7T+9ddvz9urv/jFZ//u//Lv/uGffv37F9++Xl19+rPnnzx//ng5qwOjpbzp07avUSin3PUnp6c64s3F6nqVX3x3BaPNF4BBq/nsvU/fe//DZy7S629f/OPvPz+/XX3W/+T08YlbRM1GngEQkHdNX0iQCdUIGU3RBCVnKVoG7xw653xgdkSsuYxdZ13nQgh15aACw+DYDM2AAKUoIjIR4FQ9a2kcgXasGHmaL33T+m6buYOxyJALIhMgMBnspEQZdi357qzkgS0HU9ynMO9TWA4IZU9iH+AK7IRvHprBu4YCh9qwu3p2O5j671EpP5SHvk9Hfd+4PoA2D5kl/OEv79HtezLmAZ8De/f3QEPdgau77/AOFP6Ykd8Ls+zO2j277V38XTBQ96EDNNJdlYmNWUTx6XtPWpPN27c2dpvt+O7V63q5WMyOhOH4ePHxSXvUuO16m8c09ENoWvBVGsWx+VDN6/mm3KbteNVnHY2JHMHs/TNPPG40VFlHKZvNdjtUo/pZmxWUovNN+/j56duX7263osIqeHV5vZjLfFaLyO3ttuRMhLGa+eDBOe8DB1MFCs6hTwYBoSsKILnblj6HRT1/dEIqN6vtpg3LxeLoaBkBjsh0FtLqpvR5HJInrJlpCsOqqmWxAsZpyDaaMRuiZjVEJHSByREyecdC7BlMrPaEY0agKtSUsqoQkYqZZIUy5mIOAFVzka3EhUxYuiCldOUWS4hBoY117MftenW1ubqo5/M5RYc1mgMgNWOiwOxUzLJIAQQmIJYsAxKlNHpm75weVIJ2M32f+zYRMrsynjtYYTv2AwAODchwvyLwjteZlGAAwcwTmmQERcdTBwRTUxDiqf+UTkVn00hqMtE+uxYt+6Tqe8vsMO93Me67lYKm+ySiSarn3oy3PcSnAwNkd/X4B8bpLqK1WzJ7fAV7V2i/mKeyt0npWc2UiadaKgNUmwqvmADRVHICRFX1VYxV3Y1ye71592713ZuL8+vtUFQghBDZB0QmcOSjixX76FwokosWUGEizz6wVwAFKKrZxFBIjBCAjGQqigcCiFUspazW6/V6A2ZNXTHh0G26zSqnQXMu/YCI5JwCAnBsZ0enjxeLIxdrUxXNKSUpolOSNfOufJ0IgBGIGBiImZkZEUVFVA8fxE4T2oyQmCadxqlCUIuqY5rIqn2zVIQCbBpKmdcuMpiIQ/WWo2EFFjw0s4rZbYeUkIFK7exR2zw9rZqA20232XbtYuFjVXsONraRo9o8wOnJ0Zt1+fybty8vbjfJqjqWIZc0KiB6L0VDjNOjYuBpLZdSQHeqCqWYWunHfHl5041jN4w5FccBDTRl0MKM3pEEn3Lqh+76OpfFUaiwbqLWvgdl0sWCP3XL9ahjzpY663zWUQoZWs2czLpSuiF3t9tYhXYWABq1RowUAHJxTBjYAMEcuqA2qgApoKYZFEVtl1WVbQC43uYxdaWIMyfqfKgRUDOgI8qMaKrZEYXotGBKOYYKufrq9ZX9p98tF6d/8ifP3vvo7C/WH1y+vf7uZrtJabxZY0neE+V+e3H+0/fOzn7+9Ho1/vblzRvaFtFYLyX3v/3quxh9O4+L0+NuU87Pt7Ssvrl+c/nd2w+eNlTGVRG4SZ9/c95vrYlzRZHC3pH3wRRBBGe1olNefv326vp//o//13/3Z//jv/s/nMziv////tNXv/7i6P0P/OzJ+uZ1d93nz7/805/+9F//H//tQO5vf/3bdXl3saHPPnYfPZqfRLIiyyYcHR0P+d3f/urrs2fPnj09OTqZXV7cvHp7fXO9fnQUlschA334UQuWPvvTj+eL+PXX3756ezGu80/ee/r0J2f1soY2ApPyTkUfxRwRAKBzqkVNY81aUr/ejCnVVe3qBkPwoQZvQIPknLs+dX3VNxy8b2pEFlUwMUAgYBeAdpmSRIJo5LDkAggY1Ec3966ah9U20VrHJGMRAEfo1ZyCFJKpww0aEzi5I7RtUmveMfF6Xy4fAA58+WTtdqzQHkDBXt3wAci4o5F2o/zAR5xcwGkHuQdH7tnkw5cDW76/2Tse6N7rDjIdhsEHg+H9H3bA5eAv7zzWu7Ee3sIPodjB2Nv9Q/bfHLzsw9D3ypNxvxepgnchOM5j3/WrqKKa+74n32ygdwiLplrMayyDSa4CdY6kjE1zpAX6zTYv2jymbrVlZECo6gggNxcXOnZPnj+rjvzVu8s0bJ0jlbC6sCgiscGmcWjQ3Q5pKA4ZxBBR1YoZeTdshzGV6GNVVwBGBCJWWMmzZR2LOHZimkseuuQEKx+qyDD22G2O520y669ua3QqWiHNF7NQU6r09m0Xl4t+lBidZi1Jh3EsuRAhE2qRUjL5IADjkNGFuo7MBIoKAiLRO3YcvUctuR8pBkfm0cqYUilFBAkVTJDFEqNAAQLq8pqYXV0VAfRVyQjBYZa0aPMwDusuDSOzw3khRaeguwglS5IAUiHMmhrZfBWk5PVQABHZARiSM52EL3crQfeZ//iAy4Q9HNjn9zycKPfTh3ZTYlc5hD5UYFqkZBCcOlwRgpGZIZKJkk2CplOKLBPRvYASwH1EsmN+ca9rsQtYHzir3VrBe7N2f9r0Hx6Q/AEO7ess9q7UvTW5l944kLi7ywOYmYqSo12bM1XcCd4I4eRYTUiPEUCLqCmg49hko24rr9/efPXizdV1vx1lFIfO+RAMUQW9d7GuXd0YkQGmklQzAXrnHDokzGq6azqxe8PNigBCVjNl5rqKIppT3mxXt9c3xG65XGiW9e3ten0tJRMYmIboimopJdSzaraYz0/qdoE+plJKziJZtZiiAThmZlZEYpp0MImYeap+mN5/xV3wcVcdNkkz+OCKABKXnMdx9MFPn5qa1lXNnkWLQ0PAyOQNK6Kjmio2KObQSDUgLeZNqJxzfsxSFIaxU0yN05PGHTfOOVh1qc/ZOVd5pjKcnrWhjMs2PH68HAS++O7d775+c9WTYUwiNiV0y06+E1SJwDNF772jMo7jMHjvmrYdhrTtuq7vtv04jGORnSiIcwzCStlARQSQ0aiq6q4rb3l8vcK6is+WCxeZXNAodSULCavr9N35cLG6ZRcbIy5Sz+qMpc+Z2GHgJEVH2G4HirWHRk1AtPIslkUUnSMAqshFN4xjwcKROOXS975uG8+NxwrUoRUmVcs5B4doOubsQ0uORDOYkZsEwKyqAwCOqXg/e3nV/T//l79Zbz7581989NlnH3sK/8t//sffvHjrZ/M0lOMnx8FsHPrVdnj2aPHTj5/5+Tz9/ovX11uoZsjuZpvckNVzTaEopqLs46yO0Y3bMb979QY4cpy9ux5ygqqOSXJJhaMrokQ0a2tVKBmTMcbjt+tX//Gv/64G/MXPP/03/yL/p7//4urNy6PHzx89eX91ff7lq3e36+4vf6E//ezPRt/+/suvf/Plu+vb7ub90w9P29YbSZq37XuPnv0hXLz94sVRQ/WsWtSxXw894dW23KzXlzfbPKqHfLw8+uhPPqvOjr/+w4uXv/nm/NXr99+cfPLpR+/99ENoIk5y6qaEwOzAoaaSssQQsIk89OSHMo6bm+vy7l21XDZHx9S28fQU+rGDm9z3/e3GVd7E1BEQ6WjonIteoaAPU/kQIqiKZEEzBTVQMgCmWIWj6Ku2urneyO02p0wevA8ECEZWMrFHYjBUVUQQkKLFMQXnmFCkoO5RC+1smx2YkO/DAjywKfuf74DCA+LkDnwcmCTc/wR74HRAL4fT9wGDB9vGj+uffC+FiOC+utr903fm+wBEJgu95+F3F3xI/v/wWvC9e7iXcAHwYBu6I61op3G3TzA1YGYEyMN4fv5uu745CtXQ9x+8//Tmdlzf3qJBezTTXAW0osWHsFz6bJrGbjavMhky3m7WV1e3aSzNLC6O56Zlu7oWVYphM6Tb6zcnR+3JyRnF0CfLAlU7F1e51fn17euLYmajCYI6PHnyaD5feG9suXHsjIMPUsZxSIpSmzG4MWVTdMGJ6sXlbRYNgziR+aMTKZCvs4dcA4BBd3HjAD98dsKDjd11ExEXIQ9jZNTS99tRsmW1rOI5hOBRFaR4R6mopJHVgFmMihkw5lQI0fFUpiw+cN16JknDOAzJAHzwZmgKYgVUcpE8JjCZLZumnZPTdU4lSYh1v81JNSM03kfnLYS2ih6YMrCJNwDvxqxMPnq2fp1vrkG6ZrmsmE0oh0qRxaamBEaHiOke/O+IkX1N/GFK4N203pUAAOwrt/Z1YjapJCMAqiEQmYo6NEIoIAJGQoTIvAsLEaIaiJmgMSgiTQ0LzaZxcD/79ngb78eUDw7OLltvL9j4w8T/fd72YW7frfAHEAp2DXfgYCv2iT8ICIqGgGqKvG9yjiA21QIAISPYBItEpEhiYHZEwaUM21HfXFy/Ob95/fb2dtMNI6L3vm0NsEipqyr4yofgYiRCQMxaDMyxd+x3UUtT2eUXGyiwc7hXIZw4M0Y2s267vXh3TghNVccYyzgMQ7/Z3o5dzwzsWdSyiBkS+3a2ODp53CyWBm7oBkUtKU3mg8CRI3bMTAxE5ERh4u0c0wR6xJQQkaaPE1SUEasmEFPORbWoiZgioyFIVmYOwYcqGGguRc2aGANAJFsEatkiq6pFz1V0wVEzD2YgRXPKJVskFxkI9bjmJoLBuOm7zXZbxlLPuHbqNJ0s69OT1oXmyy9f/cPvv3t71UtYGPOYCqogGjOaFCbSPDrv53U1XzbMuL69ZUKLruvT0A0Xl1fDOPb96INLYwkxsFlJPZESowsBjXMSJtak5v31IH/35bv17Yzr5dO6aao2c9aN+LFUaP0mffnu8vXF9mfvnf3s+WmDBGaunV3YxhnQMJRROy2yuo0t++i5mHOeGNQQUZGNGZiUULly7DH1yg77YdwolkLBx6aC1diVMhIWApYixjaWPvoKsgCgWjEQQDIGQrACiuiw+f3Xby8u3prAv/6XP/v5n7yfzfph+OrdFcRorVcnXW+/e3W+GrZ/9cufP3+8fPO2ffnq3QiGLrgYQ/A3m+F2k0lRU9Gs73/0/PTYXb292OSrq3UW3LCftTNPHFQVIgJBVkMyJAPQoYwiCIZVu/z26tX/4z/8F470L//lz9fd+d/87ZcagU/OlscnFtx5f/Mffv+bn3/4sz/59KeB6MvPX67P+7+5/OLXgT/86Mxr8Xb96Se//D//27/6f//f//36qy8+/VefQSirCINhWB71a/j625s/fP12UeNnn/7kkz9ZnD59dnzybBEff/3b3/7qi89fvH7383e3j5+enT0/aY9a8BWggQqIOXaudSYAokC+WZyID+s350N3Kynlvm9OTuLJIwi+mR9LqIauE5Hbq9vZchZnVRbrum3Uir2yIbIC0SRYOrXHJtRJqFYAFISiq33lY6wbv77ZSpacBlE2ZKCQjczAcnaeg2PvHFMsZey6DSM48ohI7GxH0+MknH+geeCu/Av3vu0d3W5wFwrYs0L38cIhmAYHi7svLTnYa7u3k+zB1d5GPwAYd8AE99fYE/M/hlkOIOrOeu8vvb+labuYon1odo/c+SNA6O7ydv+/e8Dv8HhwGG8vVoQIKKCynC+ePH32cujI8ZE/iV1XeXd1te42g464upTsYduljaCrWyvldj3OZhjr0EvSQX0Vlz6Elo1h02/NUTNr52dHFtyTD5bz2rNzWamtZzSfaWi6wi6XUobEnr33OY2O61lT1ZVHktmsGcY0rIbtehsCeUeT3PnY930/oHPo25RGNGmrqqmaR8dLG0d05gqPt7dUtbUjclUV49FiFufhxfnrm+s1FC1Zs+jYpzQKIhem5NAcOrFgRD4iuzIMaABSSj8AgAAyu+BQpEiSIuoIfHBMgGA5j2lIoQqxiSmpDgkQVMBUyBmqNhU1gYcypDQWK2FuwYeul6HLsYXKefCeLEm/7vOmIFI1926uWZzXiNx123ffftnfvruZN8dHx9Ac4/KRD60YjWNxzACKeKemjAdP3nb9UO4Ej/fhMTuQgTsZRKMDI2NKzKZARKqSSiaz1nvEslUbTZKpDxHRUAozEkJGZHC460i3y7QHwPvTdQ/2YY/1d8vlLoCFd3e3n//fn8fTOQ9GvbeW7O7ce3hP99Ev3HFHtsuzYzMQyyLiiNk50AkKQJGCBsysgEpk5LLC+dX69bvr1+dXV7f9thNAdCEa4tD1oapniyNC52MIMZhNCrDqHO8zwydG20oRRCLiqeuTikwCPMQ8iRL3Xd912+1mjWjL5ZFn2qzX19eXKQ1gk26QlqJZLWer23q5PD0+fRyqVg1TSeM4AgGoEjEioyPHDLST4WempopmMgUawSbOVRTQO8fMiGZTc0cCU1PRIpJSRsCqjuOYS0oxBCJOqRAjsiNTKwlMKgcBhBWaioAckSwWofF+HFLJBcxBStGUPM0XgYXOFtWijkVhGNM4JlMlHed1aBwuZ7Fq25eX299+e/7ivMsQd9noYlYUCYlZsiGCpGyIde3aOg5pXK/XphbHUcRUNQuIIjuHgI7IEYJZzoU9Mjv2TnIJrIFsxvreo0eaNjfX3UtNP72FxyfONTBKAhFLIBrPV/nzV2v042a0LP7Rsnr/6SJwYFyJDu08nq8u4VZx1qwv7Ph4juYEFDAQILEDEVJJQzIrxIyIsW2yUu50EBXTtuFmoC5RMSECpEnf2Ckj7goaDZCJSIsqKNjU+gyKIYT27c3t//yf/8kg/5tf/uJPf/GTbtu5v//iq7cX3WrVzCqu6u1av73o6PfffPrRae1w2VZbETMlplRSKsUHKqoAcHmzOr+ozhaPZ217dPL48t3KtW3JIL3KtgsNI9KYi7HXokwQvZ8tQtcP2+1Y+hLc0ett97/+9T/mLD/54EOP/vym3wy3PTRjAY3NZux//flX43pog3t0Ml9d6+12ezt057/u57OqqeLGvvj5syd/8Zefvnv5FQ3946P2+nK1vty82YxHp0e+obcv33z33cW7636d9KP33nt89vjs/ednTx9//e3yqz/85r/87/9wdHT8s88+eu/p4/c/fI+mPAE0dqhkZoqZci7siarF/Mw5H2Xscknr6ysz47rxruK6aatKxkFWt13XZcmhrdqmVpM09pgz++iiZ+/21DkCIZGbDFoacrE+xMY7f3zczpqqX/Xrm8HGIgqxjmn6RJlBYRiSsTCYY5y3jUohcqgg++yGyaLvCZ59zuIhhWBv6/adQ+/l+j6IUR3M6T1kYIewwAOEcWDSfwxu3BVWTYDsXrHuw4vtD3sQULvLWoJ7kOtejdo+MWN/K/cvfLjOAzIKDqTXIQ7wY3e9y6vGw4PtPGRVC46bk+Of/fKXvoq+Jif6m7/5+7ai2bNqs+rmCNHBclnzvLr97vz6sm+aeuxTSePME0h67/nT2dGSUAXL9eWNWfbez4+XXZdctnqOm/VmFK2PT5bzxjgOo3CsXT2vaV6JFE2ASZoKPBTpN+QZQQMTBE5SmDB4x4QGYgzqMUuyZE512fqqqc8enS7qVvqxT9sAZejGtNmc1bUPQXR49e0rTYOIvbvsdBxPTxel9CUX50NompwyOunG0m83bQhm4orkXMCUFYJXJhpTjrUPbZOKjOMIZK5iB9D3w0AgKi76uqmJOOc09gM4ZuedD2oMRoKw7bfXt0MvXM/mTH4+W7SGRXK+3VjqoAyS8utXb9WIYtU+eb+eNbPKtY2TmwvZXNpwM2yvufSQx9ljXp6cuba5HMq4HadQIMA9zU+7q2/az5NddGlfV/Vgwu/mOxzq4Sd9zElHiLNqYHJMHkhMRtUCzgGiCogCG6gyOEASoH0wRc0IkfD/z9d/NkmSZVmC2CWPqKoRdw8eySuzSFdXV3dPNzCLWcxiZWUh+KH4CfgEYAULkZlp7Mw076quqq6srKRBPJyYG1HyyL0XH9TcwyOrdzxTwt2NqKmZ63vvvHPPPWdOkLi//7gdDbPt4lwNm7cyR97J7LZ0a7dlK7hjjd5e6/YHI8CO9TDEYzPDfCsed0nzxzBvhwSZ582a6FzKm80nTUzY89ws4ByrcRbc7qdX55tX55uLzXbI1Yw4BO9drWZq60XLsXUhEnvnHcyNzWBuVpIpgJlCUZ2jVen43k0JEMwIwCGqalHJpex2uzpVz3F9ttRah/6w393k8SAqnj0yinFSEIW4OD15+OjswcO2XYypjuNeANSUwAcX2BGzQ0IEtFmZjzBLL5lYQFQVCVQVwcgAzUzlGGWvJlnMTMGqiIoF7yRXEuuaNuVy6PcA0LSh6ZxJtZwJavOgXURethhZY2DH2HqjMkWDhtE77pQnqN2KV2sKvjlZxNCE3VCGYUrjxMAtWYfy5GS1aMPuMP3qq9dfvLyp2LmmLVmYhUkVVYiAmByoqAF474gx5XSz2fT9WHJZIdYih/3QLDsOnsXlaXAOVaoBArEc29mqlJHS8Pz56Y8+fPjx+w9refTr3/SbzfbNxc1n761gmOpwGZyv2v3XX3/9y/P8VR/Rr15n/XLz6rNH63/vmvdr7SwDlG0eO66HzRXn1EKZUJfdOouKGjtPgCooBaappDG7xjtmQ6hIBbliBdDGYeeZAbKpC14BRciZYyMQ9eSnktCTCSCxqQoIEqpSVomLZn22+PL89f/jf/kvMsG//Tc//uOffrQ6Wf6H//zLl9c7EY3dCn1z+er811+/2u62z548fP7+069eXvd5CjFUMQ+AplOpXdMkra+vd5999Ojhycmzs3zZa0/eUCiiVQEwBQMgNVSBPNZIvl34UiZyxYWOkVPvPn85jPmf/4f/4x//9Cc/+PCw//bl4ZvLYT9OjkPOcN1fX7+5WjfNRw8e/+Wf/jSNu7/951+8uNwLe4n47Wa73W5+/MHT1ePHJ+u1iHz6cBkLffl6vxFanj2g9iQd0stNHv7ut9988/q9J4+ePHr22Wcf/tsP/82nf/T8b//Tv3z95av/+ne/fXJ28dHLi0cPT588P2vagMErAjlkx+ipaAUkf7JcLjsQzf3V/vom7fc0JQkLaqKPDXu/Pl3vtvtpmppFE4I3c1ZyKcVMCBtQRUfzuJ43UAgEKo6ZDT2UPPREzjsfHnbtsl30adhOh+0bAAjd0igWAeZoZORkdt5iT7XKPBLnbZsdxYyGeMem32kbb0UG9hZfvLUSArwHOI6cy7t1onchxh23Y+/+Cmb3XvR26Zhn2LufDd7eS/f3u3+w3tybto//3FE89vYHfAtVvveUd1in77XFvEsS4d0/bwEdHkHk/FIEBpZMsir4+PzHP26WzZsX5ycff8K5Hy6uulaDySjlQeMfL5f9NMn5jemIJmQexaSWadx7t3BghNYPfdtFJjftp+3mZbtoygEP0xAenDbvd4diWkXJY1VHznkPNgkpBtcCWBrHUlTAuOG2a9qu6domTWPJRdBi49rgEUHHsaTc+LBYNKEJbRdMVVQYEaXKOExT3TavF+nUvAd24+5Qxn2u1TEjOe9aXoYYfVaLYOhJa8lWpmolF3JkIp7IMYfgo/fBVR/YOYzOt4ERDa2WMU8poXNd07kYkTnnkqWISZ3UeQsYxUyqwM0QYqhTYeKu8a0zD2KidZrydNhtNwiFUfa7PRK6tiPfOHLtehVXK9e568O25vH05OTsZN00zeLBarlejKZSi/eeiMBIQW/pyDu9892f+O0V+5ZnxFvg8faSOaLjWQEtc+6VoZiVWlSNOFHNVIgIXGXEKlCrKAGqlhkJkZtFNSRzxNnsc3xHct6CszmsDmF2Jns7DGbjCgQjQL3jgN6e23Es3d12VDXBO4aI72Cie+Pi2BU5k01qRChVggtggHN3t6maETA6j4CpwH6sb653L99cv3i96ceSsqBjIlIAK0AYfXCx6eJiKcjkPPExQBQJ1IyRDCzXomI87w4NkVFFQQTAvHOOSVXTlA9jPw6Dd2G9XjY+pmm8vr4c+z1oYQLPbCopC8eWCT279cnD1cmZCux2hyxZBZGdY+99CMG7eVI2REIAvEXHUGp2xCKCiKWKqgRmdgyAtYqKsWMfvJlNKe23h1yq8z7GqKJEoKa7Q98PIxGl5FLi1nNDJmAcwuIsLL1RmVpnDakHFZB2FRxwG1pcd2MeyVkTuGk9AqrIMJTttk9T6hbLrnWrLqyWAQi/Pb/+/JuLzUEgroicpixFyY6p2gLK5KQqILDnYRz3/eH6arPve3ZuGEYVa9qAaGkqJiJFVCE6JkID0JLRjKBCmYK3B6ftokHEUsSu9uPrby+8k/ceL/9s/d5JXL9+s/vNl1/9189f/35bByX2nCrtzg/DUFpP6YPurCsOkQUYrQqMU90PmXhqmwWxAzUrakXKWDRrSnUaartAYxunPEwyZioCUhXAMaFnTECAjACAbEqMZCZkGFzMUuZN+wxtQYGIyJGIZiHfnlz3u//w178uafrLP/vJR+89+bMffZD/6fNNssWi4yyH1ToNeJMQbxIF59gBZGT2TA2CGRnwar30eZxq3g/p/Ufrp48WmypfX/RC5NswDSpaTRWRwbjWWqt4TqkWgRJ8IGPgZnGydJa/evNC/8uv0r4+f3qWS3lz/rqaf/D0pHp8k/eFaDfm68Nu1+8/e+8ps/3mm29fbfqbq72drPvpMKX80ePTZT88Pz07+/DsZDVVPP/lNxdX+zJUC6uH7ORqd7ntz3/3zfkn723HNH720YOHD579m3+3evL+5re/+d1X3377u29ePn68+uD9R3/0k0+fPX/svQODlCYfXWi9GmRTQ3SO/erRmhstUxrT9mbTLJbskKNHpG7ZTAlKKa5W8i46r1mkFEVQKWzekQdiAFMBMSEzQjBRqBaQcspoZq6GVYyL9nTV7K5lGHKqeUoTUaTQoneqUHPNtRIBzZkyYAq3lD4cnd7w3vR3iyiOBAoesRHcdX8AwJ3a8h7fDzALJ/A4MX4PXrw7j95Ov0f26G3U2LzVfHcJefvcIzn0lqv5VyticJ/Cvz3bt+d7ey/ePtTeLm/3NEj3fIXuVQduZ/u787q3RNyzdjTjOXGcEFvX+hYdhdXy4cfvY5pCaIeLy2lzs9keuJ3eC+Hx2bLmsu8n8/7B6SnkQtSZKZCgJ8ccvCcgAT2M03K1bBdN6Hh9suo+eFxCU8j7xQKNraBj76c0olGInhClmkI1sCpFi+GY1YNDNAFTpUiIBmomwgDOcfCuyLyoauhaKaXvJzJIKSPIsL+xKqayOOmgH4arnQPx0Y1DP4PkMcswjKFza3bdoukBVYEJU86qZo5c1zSLBYO1iwCqeZqQwBMQWK01EFHbGnuKETgMOfXj4EP0sWHDYZiqoKqZ1GbZgNmq6Yy89PteKp4mFyPmfX9zPe53OY1YpWnDoo3TtD+8/irdbFYPH8b6ZO3dsNtN4xib2DXLdrXoVgsFGdNBsji/0FLJAQKo2qxyvb2q7dgkZUiA84V71yZ472K9VU2/pSrR5jQcs7kK7SRh3gU/qE4VvNCyRaJAQ3WpFiNQNScajs4WVhRBGZkUdc6Vn233CNBMiejI66AZoIgBKwEZGoCiwpxDzni04KN7Y/H+VW+A8vb87w9am4Gf4d0bxvkgZDi7YBkZiDkkQgOEagpmSBSdU3BFaejT1aZ/9WZzsd1uboZhKoie0SMQgnO+Yd8613nvfPQutGAzy25zLVLVTK1WIWLHLLPwCBSqoRAzs5uDwDAXGcdhHEYR7eKiazoinKb+5vp67A+1JIcQgxcpSbKCWc3t8uz00RPvG0bu+yHnZGCxaUPw7Nh5dkyzvSE7giMRx1K11GpWixUmRoKUMqjF1jdNW4qkUkueiInZiUguuRQhZEcOidEol7TZbq+2OxNddm3uxyBcG9ZV45fL3vD6MGWsS0uLYIsFeTM+CcFZF5x3jOhOOFYThKKppkmE7Xo77PaJ2HWLpm1iExkQvzvf/uqLly+vBoxLVe73A4PSMToNAMw5BwIAplrGoZ+GXhGnKSNw9FGKIEBwbg4FAyT2wTkUKyUNjl1A9WJd8IvTNgTYjf0//Oa87bpxtM0hjRy/25Zffnv97L1nnYtfvRz+y29evziUcHJ2Aq4UJWJ3etJb/t9++823L9x7J+HT5+uHp13RRDFU53oDFn1I2ngjFNJcRytJwNyUdMzSFuXAm+24nbQvflRIBYCZydFcx0VUA0Sep3sCAjBGdMgCFQBm+268JQVCdLvt7uz05OTR6fmrV//vv/pHQ/qzn3/y8z/5cLUOf/Vff/v69UtenT1++ujNG+ynSXup20TOO+9y1eBn3R6tGx+IjHCq5ZtXL9ZxXLXNsxUd9igi1ZSDm/qMiIhUU3XggHSaijF2C4fe8ihlmpq2bbpFe/Ls5c3N//I3X7z39ExZvtvuTxenvk7vPVqfdvD5Vy9uxsMbn/tf94fD5rP3n/5f/+1f/ubL7371uy/H/YEcfXfdb0vewoSh/fBssVou3n//wYvh8NuvL7lZoW8E2MU1WN1P/S+/efH1ixc//9FHn3z0+NnTpz/+6WcPHz/4/efPfvXb357329e//eayr88evf7wvafPHp0tl1HHYojgCJGMcRhGBxCbpV8swmLim51KSjfiF5FciG3wnRfRXBJrNSMfnJst1kwlTWhKPhCwAc2xX8SYJxmHFF0ITZMk5zwZa+DIwZ09f7LI9bA79EM/9n3Nk0okboi9IRvOgRzVDAiOBDrCHM1zC4SOOOiuIdbeaXh5i1nwLQWD99HEWx3mu4zJ26n2WBN4u2DYcR97i0DuU0Fva21zi8s7iAj/8BVmVEXv9rvgLcSxt+jnCGzwuD9+pyp2/60A3INMb7HT7e+353Jv23/7qwGaHRNQPE+lsvFivW6bxqmWB0/Of//VizGBH/dj2U95FcLD09VqtUiTaE0np91itRAB8pDGTOje+/DMB4eEKSd2eHK6XCxaaZohtOpWi4cPfGzG/WjFXFUtqmwwToUUmjYsFi1OSQv4EBCtPxxQoY2+W7SAalJF1YpCVSNMMhkxMU1D3/jgA4tCnyYwZU+OgKxolf3lJSEsWl8qAECukmpVszJkz4hjidy0zMKEwUdFUCwmsQkUXAHwMZppLaOKaq1iUtLoHXXdEoAFSdQq1lpLydXHMPcGh+jHvnh2y8WKTEGMmdS0pOHQH9K4B+fSkGoaHTEaiKqppiGVkl20KmCLgNOi31UGQKM06vaQ3Opk3495PEe3IDUtkpQbbgDME+lb66c7MugYXKrztU+opsd8XLgjKe9as+5UwwxgDAzIaiqpAlTUfknJzI8VF4vgXXDotgJKDpgCMqpKLVOdXGiC98BsVqoZoYIpI6KiMasqE6Ga2VHGqwA0n6gizm0Dc1gn3LZ53W4i3g4IMDCz40Z5Fvvdlcbhdpty3KjYrOu2Y/cZAdhcmiJQ0VpFAX0IQKzAQ7Krzf71+dXri83V9X4qouCIG0LyzgGQETNHF2Js2hjj7Ysfm7uYaa4hqhgyGACjMxJVNVUwc0zOoWcuuaSUpimlnKSUrumWywWY7bfb683FNI2M5D3Pqh8RBWBibLruZH2yWC6l6DgMKY1S1fm5PwsIiZmJaSYIzFTFlMhqNZ0/QTQwnfeqRN6R836aSj9NUsU5pwZ5HKsomnnvQmiQaL8b0pSGPBz6vpYanGOktm1bp6J5SnBDsL3Z+rR76MrHp82jZ+uuDU0L1FJwgFoNEpAJmGghq1rRDBXdTZ9vDskAHXMTfNuGpPrd5c03r7eHiaoHIEOo0REzqqACEswhaSZSCCHnKlKqGrKLbVNVpdQYSIqYGs04WKoVARm91UWzWLSBaiYU51nJvrvaDDe7GPYhLMjHsDrpofzqu3MfcOH1y+8uv9mMe/ULHwI5yQOpsfdK/nJP25vDYWgXq5NSp347+rhgwjJi9iagYJUBoRZJlTGoakppGtMwZmzi1aDbSUaBrDhloICE5GZrDil0dFkyxTmPWGeQTcf8pnlUzKZLCmDrrq0pFxfFmm3Rv/qHfzEo/+e/+Nkf/eSzyzfb7c1vdoeb7uGTEOLhkMUs+oCEnrnmNPaFonuwXDik/W7HbN43r883D6Od/fDj9x61wyiHtN+rhKaZkoLNVpnkCBV9NQamVIUBmMl5Dwi7/baUHOLichg2X7/yDZdszPmrL789bT777L33A9k//eZ3V5vdtHC//vZ615dPP3i+bJu/+NkP31ztLvcHBbre9+N3RRK+6N58+t4HsWmaLlLAdtkY+v4whNgamJEb+v3FOPz956++fnn54fOr9549/PiDZ3/xf/jZww8e/fO//P784uJ3L66+fvHm/Hr3o08+/PiDJyeLmMeeInennZi4AKZYkBARfecWUvq+SKFKqkaRKXgks5KlilhtFx2xq1UQrZaSx5Fr9daSY3ZeFAUgrDpJMuzHpopbRg5exab9gIZzLPLZg9h2mlqbJhlTnUqupshMjg3NFM2OkTi3UuZ5Q0fHdPl3yBu7wwm3sADezpv3UMDbutd/Q+WDb3kZvHvsPB//Qe/XPaYI36KP2yPgOwd851n34Mrd9vvOFHe+635v/N18Pg+BeRG4p166RVx3K+Dt0Y4f3e3bQTzqyu+YJwMAUAMzIpRcGAnAYts64hhiToIE+Knsby5pyVVyoKZzbnt92FxuyMXYNE0M+5tdOky8WiweLIi5W7TT0B9udtVywSjAgKFZtDH6aUpSZXexcYddj2Y5V1LwjhQBHbgIUHUcx7YJnrnUwo7ZuVpymgrNf4GKVYUdh45Addz3ltVTQEJgUDGZxGGJLjrn8pA4+m7d1iqHw4geo4tFxGEkUa157ItBKWqxbR2yg9S0PjYeCcXqlAEy1KJM6Fw0NbWaa9VhJI7GJrk6H9lmzhKQaBqSjx6X6NC1TdPvdmjKoopQTQBs3I1VtJRiCKvl6frsbLu5HseUgXwI0bchhAgarSLKatlRfF4VDJ0a6VSmsl8sIShlh4vmjJwvNQOAiqLjO09jmPMcjsVhndMrAczmkBokM0NwAKCgdGRHjwUqMFUQUOddsG7FZgsqCyaXrfXcBiip92Y2FF6cInlVIgNHIS6bsaQpT0jkHXjEKsdM+6LC1ACxiLAJk6kqumCGs7W0GTAQAurcHHWH346szjz33yp8EAAVjO42OG/9kGaal+4NbUJTUEMHwHcUKkIR8c4ZsgCnTJubw/nl/vXl1c121w8pJyP2MbZqWFJFxBCjbxrnI4Xgg2PHAKYqBAhEc7zPcWdDAAYEIJpnVbEZIGFgAtVccsppGEZVcMTdqmXiceiH4TBNfS05ejbVkqVI9Z6rEnDoutXy5GSxPqkp7XcHBQHAxaJzIQAys/MhOOdmcsBMS62qKnJMbfXBO2ZVKaUQQBti20YwO/Tj/jCgQrdiqZKLEloI3jlXai2p7g9DzrnvBwRaxEUTnTNrAlst4ziMNxnZOTIaNrqgj8+eLtbt8rSTOkouxNEFBiK1QmYBRVKFSt41k+LmMF3vJg1ckiE6DO3Ly/1vvr4831ZuHqVqiOrZoBZUQ0NVVaosnghnC2sQZaYqRU1yAas1eGJ0UI09GVoumTS7mhonTx4vn73/BJEuXl9t94eiLOynGqE5U+cnRZsMEdH5z893rze7RaCUYVudujZncDYyVjDKkwqhujZ7S649WOBx6A85n+ezsxWQljQ9fRBbBlNwIaiIDzGlsUzjOCQ41L3X8wErxFG0VBUhzuLIOebgqWABnUvB3ojEDE3mxW/ez8wcNjOBGgGqKBOlqb4eLp89e6yw/Pa7b//q7z5vQ/vnP/+jP/6THx2mw9/95ttxd901q7yyfr9PaoLqQvTkJ5HGNR89fxJEXtY05hJDc7M9bAYyWD5cNMNJudqNZdSpAFGQkkDMezIVNSPfCMgwTg1R0zhAMKmKGjz74AyXVabBSlbMh6lRe3l+9emHD//n/+7nD5fd3/766xvBA/vPr8tX11+cBPnLH77/Fz/9kNj/46+++uXn3+TkfvHlxTchutXjRce7fpyqOK1zq0VVCd6v1qft4nTs+8OUDtfTd5dfP/7m9Y8v37z//Ol6tf7g2XPmjv3Nze7md6+Hq8O3ry/GH7z/+Pnj5Yosb/ZGgJ7UUWZDIE8cunVsW81JcjFVGaszxNlPwmEgZwYiCkjsHRqCoRTLknwbeY4HNhIRF1yBSYbqnKdFmCv/dRwPu9fOwcnpog3cdqze99H3E+1SzlpqBTVwxHhH2t86AOHdrnCe2hHgHcvj75Eis3YH8BaJ3MMo9zrE31Ii92tE9yHLHVZ4R2zwLnJ62y3/9jRuwcv3QdPd4975/XsFs3eOf9vA804Z7K6IMU/ncPRUeYt17gGtt5jqNmzg7uSORrkEAAZt0xBxriUXyQymsPjgvdP3n5YhDfvN1B80T3VIXdudPZL4dNs0aqT9MJpv4ilw10zVIE85T4iWa5522dquW8Wu68Ag3eyr4Ob19Ztvz52WUrMyMs+NMWalZOd9t4gpGbPzjhwSEdZax3GUnNu2QYOK1gbngmdyRphL7UvfNIKE3rmsqgbTlA0GANBaTcyxN1NQETHvvPMOHNdcraiCFKuVQbVgrTy3c2tl5FJKlRxcg94rAs6iG+KUtiUnNvLsTY3mK1Ekj4mdj55DcNw5y5bSlHIhNJMsqiH6pnFSxaEF70YptZau7U5PTvabaxRqY9t4F9AoDcPVpWcfoz999NjQvXpxXsfcrDwVGa5vmtPTk0WLTbNPBZiLGcwdPMhVKqLOlysDE5AB1bmdXc0hmhiA3iKBGWQo3GlmFTyxaJntfilwLbGoB9GGFYBYcLvbCZmvjrQWcnNTNnoXGi8mwCAz8CL0QFUUAIG4gpEBmTqGyBiYRqhHHdo8Eglv1c/HcXyH/IHsbizhbbvn20rzbZWbDEUVwECRmdREDUAVbO71RlBVMFMFQiBGF3OB7SG9ue7Pr7Yvzze7w0HViIijJ6BSFJBi27LzzWIRmgbJA6GhZc2emAMD4NGUYK64ISKpGhhYzhkMQvDOMyOo1pxSLjnlAobBe+8igKVp6A+7cerRLHinWlSq1YKIqlgVQhPXJ2exbadhLDmnnIioadpuuQBiRMcxOO8JAQjNtBYRUTUFAgJiYrxVAJgBeee8M8NSa1FjZiMb+hEBYhObpnFM+/3u5mabpmQOpSqTD94vui54TLvt4WanZeynfkgS20W3aFpsVo1/cLperpoZF9ZaJrPYNuiAiLBqTUnG7H1X0W020/n1fjcVNpumSQHHot++2b0436dKy66ddkNOOTgHJZWaKbQ85/KKkeMmNioFDGZ9koCAoY/eM4GoatVJsxRAXTb+w4fP1q1rgq5WYXeYUs1jKkJKgclF5GYOjAUw75yyL67d1DwqIDA3y7ZbqoiUws7Q0KoakjlXqiveSwgPHq3XK/7l335xsd3F6J4+bDcP23UT2sXCx050MtVSi3dMnq76abvN315vzx4/mXIxQHZOqjCF4J0TMkMFVTFRMrZZzzWHzqLSPFKPPl2AjsM4HoBdCE5zzSWXUmJ3ts35P/3tbwzoz3726U9//OmXX736/Zvz+MCv1p0WHYbBRzZQNAbgWsVJedgFe7j+8tvzWlXQ30z46qpvWRdeTxp8sxumKWULjNx0IaWkUMCxmQIRu2BWi1QmcOyYQyppHBIGx00L6qskMq/EX1xs/D/8k/Y/+MHDR/UT+6tff/1m2y9OH95M0+bmYNNXH11c/vDTjz796D3fNl9fbS83/fn1/u/++dsf//D9ENvlYr3bjeyjY56mLEW6BXWLlWMHNOXJm8abkv7u8+/++fcvnz162HbrEFcPnj7F2B4Oh6t9v9u9fHl+86MPTn/6oycPTtpaM3oSR3HdOgdMbjrk4By3q8P+ajzsfHChbZpV59pgiBjYqqZc1ACJ2AVPTFmAyIoUmIzZhaBgLvjlg9W4OUyHg2VuTpcheoeguZt2N9thFJU2tM3iZLVYdk1oqx9KGsY0ZVWdS2F0rHQh33bBH+fJ253tXRv52xUdbjMQ38KUdwpd9j2I8s7tb/HJW/Rwv7529zL3H3GPS7orSKHdv/n7X9+71d4SXe9Wqe494V7tzu7dfO9gt53N/8p7vsdn3Xu7gLcUPjjmKU0hds6FMRXyZIi+a01kGAWbdrWOerVVhKBq1Z6ePuy3N54ySN6+OYdpeNAFv4wOBKach6Ef9rxao/d8+rhZPwAfx7Ga2tjnzTeXuZ+c1mICQNh0cXUSDWvNmQCCc1qK5mrehxC0FtUqpXjPiFZqRhRmCAyeyRCBOdVaavEhNq4Nsa0iaaxTkpJrDI7Q0jAxWkAYpmnYHWLbkou1KiG62IBTsVqKMEIIxAzsUUFKVax4sm6K6GbXJ8TYxBBDx90I1sRF2y6nqYIBEEXnBJStRoeoGUo2QFUb87ToWiYCEOcxT0lK8c5J1WmaTAkX69YHWC4ArAlIklt2nfeH6+splcXZycnJg36YDpdXcjg8ev9J8G7sNWR34kI/bnEUjaH6AIgllcZ7MEAmJgJDU6uiAGBMZkBMWisZEgIoCoqCAJJDJMRcq0M/0yNEIGb7ft8ulklh0BrKhKboh0O2WrXpWs8MAa+HETkU8Ow9OkCt3pCZFaGKoIpzXAWIKKuZKqM2DpaBUtFcq0AgojlydCZ80ejWxALvLt1bzd7REuP2MlZEMpvD2sFAAcjRrfHx7DFqqlXm+hAAKoBUM0Dno1boh3J5dXj55vq7V5vdmKZpnnhI7ehRSs4hsW/aGJvYdiFEm5efeUeGDIQEJCpgRkhmUEoFNFVFREZmJscMqqXWnKdxGIjZMXsX2TsVHYdDf9iP40BmzjGC5GmqtSABIFdD17Rtt/ahUdXddl+lsnexic2iNSQTcJEYaTZfsqoiVVRVBRGY+eh6gGimauqD8yEU1SmPqgamMbKKlVR9E4MPZcrbNNzcbKYpseOGu8jOLx0T0pzGOmwsDVRLqeI4BB+iiw9a/vjZ6mzZoZVaFBG8D4hUBQCU1EpKZRgxV2viiPLtq803rzZ9NZYky0gIV5v+fLMdTTlElUIoaEpA4D0iKRIDQdVaJ6YOkQmsypSkIJp37DwTk0oFq2SFTKFMTfBPT04/fu+pw/rddy9eXWwOOQ/JhEjJoaGIzO14nlFVFcqUxDuOfukU2EAIGDU0nBVyqaqK7IxZ1QTxar+f9OzTn/3k8fIHrol/9b/9zeWYny4eVotpwvXZQjCYhwLiWvfw6dlI8OLN+PXVeL6feHVmagzADCklQnXoSLEWcy4Yk8w6OFPHTDIXcul28TMAFNRBx3axRNOq9fR0PU1jSmUROxR+cXXz//vbXyza8OMfPP35Tz+96n+1HQ4kjhyT88XEkzMg501rSoerJx984tuTV1cXPdTFowcJ8eVud7q0046fnIUXF+UAMCoJYwHNWkELsES/MOQqBlUVrdbK0ZMCAyuDogCiiTUhKjqleN2Pf/u7F/2+/x//zc8+eX62q/kfv7642F1TjNQtPt/ufnd985s327/46Y8/ePZERVbBvdT83ZdfRivxZL2Ii21/MI6j5KpCrMN0YIbouXnU7fdut90dUq3mmOAgh7aVB6fGhAjUtcvgm912/8Xr3X5MNyn9+OOnHz1/6KwOF5uyPZw+WmEUh6jAJZs1saXT1tOxlRMqtWGOQmZUBFIVI2Nk9o6YVLJoUUlAQshgRAvfaTvt++nQNx6hXZBz7cmZC2G83tTDsLs62ArDIlEbT9q2c25cuAPXQ5KZt56nPTWYW1LIo9qRxT8mg922yt6DG3jXm36LR+BdUDPnRN/HCPgOjHlbloJbX563d95uOe/COL5nCY3vwKf/3S878vDfZ5z+20+7bwcHt3zYvQPivUe+W5K7/4Hc0UTHqZEwl9o0i1J0Sn1oGkI1U7JaaiW0WksxWSwa8oyMlpEXTds8it6Vkhh8B9Cs2qnWaUirE8clS79xHtcPz1ZnpzmVUoSbFopevjq3AprFsScwYSb2DhBrldC4WqsqgGpO2TEjgJRsKk2MzGCqOJdJGIhRtYqCSgU10ep9IIdk1MTIkHNVwuwcBc+mlTyZoqmqSUoTlCKiTeObpqkeJZkD67qwcI7YSs1TziTVh+gZppxVRKpIFQ4++gWzOz09jb49HEZTmnL2Wh2AyawrqaUWIKfgYhcraOeb4LDmqUzFOTStViU4hwolJ3I+EHNgzcVE2mW3XrTTlKRUANptdt9++2q7vXF0OhwOFFyIa0SYrt4UGZGasQZdrQkds6tSvWNiStNA3pEhAR59UT2DEQMzoSNXTStUx86jL3VQgODizGSIzeaAtlh0VcuUx6tpUtCGmdjKNK6Wp82yzTWBA3+oVaCaSMA6GeaJEVAoKyn5ORDJUESrQRAVQ2UwZ9VMWZGRZnYfkdUMTHFO4QCYi3Vza9jx+lVE5PnSVbC5kAdvy8HGjMF5QxApeUrs0HtXsYpqLRlhnqp8rjZOdrMbzy+3L19dXG52h6EYOeaAiD46UTNjQHA+hqZD5Ni1xKyqyIxIjAQIjDTrnZHQe2diRUqtFUDZcXCeIplaLXkcxzRNBiJVInlmYodS8jgN0zjmPIJVABARKWKq8+RWFVwT1qenbbesIuM05lrVlITYRXYBAMkRoBWpDAwAZqqqagIIRCxz1AaCc870aJKgVatIKRXBCAGBHGOzblUt53xzc7O52RDx+mTdxlAnbReL2IU0DIftTb+7Hvodm7AAILnowYqO+vTh6YePVk9OorNJS24XHaDDuXwpWnMtUx7GCat5KK/6w+9fXLy56Ss1tU7GPgH1m+HN9UGQfddOaURUzxSDN8djzmrmOBqiaaqFmYJpFVAi9M4F5xyRghbQUguBRIeLNizb6Jmvrjf73c3lZlPAKhGwV+JqpnMAiKmIesfOewXVOnuGUwUjh465Hw5FhEEdcVXznqpUJFotGg/5zdX291989+G/+6P/7n/8ea/7v/oPv9xNaSx22Ov6MZDz3SLsDxvB0j1om1xuvutfXh0yuEPS1jsoledgOMRcspl5dmqAhGRqZg4JFQj5ttXTAGbaFG7bg8AQ+mFQVHJIDhUKOwbfvdz2f/PPnz8+W3z22cdffHe5+/3VVPZ+uWbvhmEC9j4wUJ31YujM2MyDip2crvfXh4vd8Ovp6uc/eu/TTz7Y9nn31eZQC6IHQ+98yWX21lZQEzDnwJQ9q8GtIA2YSY5A3KliVnHdkgK+GvJf/+bzn3zyYdO6dctX+zyOSdpQXKcQX/aGX768uO6Dg+1m88GH7z84PdtfXghBv5cmhr4UJAQkYy61Hoa+1/rwwdnJKjAt9oPrc3BMlXC7T6VsCW2x6GLwzvv1gwc+NLup/8UX55eb3cXl7ocfPVvGlWdN+1RGaU7WSlZU29Wacqljn6apJe+ik6wmRjQHrRmgqmjWihQdICCTFQPQXNiZCDk1bH3r1m7fT8MQqlIM6F08WSBy4ydMuY7T4XKTc3KND+uT5uSk7ZbrBfZjGcecSlZDQybvHWMVmU3a5tZONJ1Vxwi3tn535a9jHekdaIL3gMF/E6Lgu5jn/k/2Lra4lWXeAYq3D/tXDgoAR6H/2yPfVaneecoRo33/a97t3nvoW4+Uf/U4x8/krXrptsXszmFF1Qhm+eZsQ8CIYCoEVsbiQxByzGaKjsmH4ILTFi6udqXqcrFYr09OPozjvozz4hKTsoAkH1rnqHi82k9DPywWnWnav95/99Wr/moXo3NN0yYrwQd2ZAZSrU8ZEF0TmmVsFg0p1pTyNDERB6dmqeScMztqmgDEpUhOqZQ5nIZqGUsSJlfYeeeZCRUBoNYimo29CQggekfeqYCV6tktGs6GCuiCaz0vgiOyg0y5Fmca0LjWhecSiVCoVCOoUEE1sEMwIy2m5qkk2u/HLrjGOam1CrFnRMZqwzCAKpPTXNsYT05aq2W7PdRkJecedyX49WrpAFJW57lrF0yBPZ+cni7Xq+ub/Wa/b7vFg0cPY9PshwE5k1UPpWvzm5vBrAmxocCmZgCqRQx8ZNHahBjQlwLIbpSSS1k30YpOSYwdEhI5U2DgLMWRoYEYsvdSs5pYLYwAqv2ICv7BsmuNOyfrhjNI1uTMQrBDP6k6LoS1NpADY1Gu4tCzoeQxoXNiVk1YVTWjR8+WU8LKzqMiq5GIItPRQ3FWOZO9xfBvG+rnH2aB01ECZADIM86SUUYwcI5CcMQmWk30uJ1hrkpTrrshX1ztXp1fX98cDodU1AC9d25uvDGBuTcWmGOz6FYLZGZ2BmAGjoiIzQCOkfHoCEU11aTl2NhPyEzOkZvRdpqmlCapwsxtt/COSi4l9wCS01jSxIjeh1qylKJSEY2ZBMhx07SLGDoAmqYhTdk5F2IMTdMsOlVwTCE4QFSzUvPc2TY70hLSnCh3K5EGMSXGnItKvu20RWJmxlptTDmnNAxjyqltF+v1KgRHZqs1ucYNadjvL8f9Zup3loW8J0/IlEsNKh88PfvwzL3/gE6amvs9deTIFEkNtIqpAAgAlKxkrlT86s3N1+f7UQO3KzHqIXxzNR52u92gpZKCVEMC9oGQyUBVq6OoJrNxpUpFwJonRmg9k6qz6gwFIGtVmv2+oWtiDP5muz+/TFkqsgciYp5yBjPnfZUKQMzsORAZEjpUoLn51EyhgoHVLHnWWQsQsqsK2QRVo28A/BdfnONhu+7w3/zbH/33/8PPdpcXv//Nl1+OEj746NH7LgC5gE10iIvFcv3tXi8O377Z5XYV+z5Ti63zRRQYS62KSswkUEsBB2iApt4TGZqiqtxO5KZic6kVDJMkU+UQUi1s5KObxmwuuLYd+/qbr18/efAv/+4v/vQnn7z36nyzKcU1nC2OaTIgURPRbFIULm/6l9f77X60uDoM02EYoIrw+MEg74X4yQdPtyPYVRmRhHzJlTAQcpGCSIRmiFKBHYooIOqxRm1oMO+noovTmF301Cw3+5u///ri1X569PjpVFFNmJyBZ8/kLJF+vckvL89XS1fTdGObTz943ngQratiu5t9Qd+u10hUTND7yUyL6mbbtXG5aFenZ1fb/fVmXyo0we+GREhjOXRtjJ6AMbYRmMbEvz3fnO/GQeDHH7335MHaNSpSxrEAZwUzT2L46uXmcL15+PjB80/fZ+eMSaUaADOZwewcZsA1Z0TzoeG5z0LBAEoBTw5I/GIBE+eULKfQNeiji6Gu0KJrl41dwTSm0k/jrofXr9ZPHjWnp223SrHdD3l/GBRNVFWQmNCxqpZS0ZFJZUQ0cOzQFBTptvilxxrPrQ74e5jmHQz0r+l63q1E4Tvf7giUW1XC0Wnje6jmfw9i2a365l466/EV75gn+1fAz33wdRRl3xE8dxjnD4DXu0DqDi/h/OmYEcypAJrqiMRorFbQTM2YOeWExCH4WjEdVZV2eb35xT/8Kh/K0ycPnzx5ZKYgfrFYNw0QYwVcrE7a1VnNad9fpzwuli1H9+bleb/drdeBMkXfuFIVZwWfoyqSUmECH8gTO+ZZAKYw6xkMBgMQBUAi9g6Iq1h/GK0KAaKhJ1+rlVIKZiJyi1X0ET1n0WpaVBGUvNMJ1ObOT2LktmmhYu5HUxHUlJWNCCwntQoBvQMKnj3SyJqrDZNMSQgLmjDvjGwSUSIVHFIac22aKKbAjtlxEwyoHIZUhnEaSHnRNItFY8Bq1YeIpZIqm2opwzgEcsG72DRVcBhLrUaOD33a3ezb0Dx+uD5dN0whTdkBrhs+W+I0HVhy6xo2RvRJzXknllVrCA5QA6nksYwSlqemKGou11orIBmQQyeplCoxcNf5msWzNyAAmkUyHh2AVmCBtrqYY+u4OkypHNRcLbmk5IwX6BiIptFz7YJ2nsYCaiwOc9UiFdh557SiVUUTMmRDp9VX8cFlsCyESHNzr6oR0r38lneG3Xy1K94p+eaiOMy7HjUxlTnMChFUtZbqiDmEopQK7Ifx1cXN5c3+zeVuf0ilqCo574iAGaQUZi+K5NiFGJuGfeNDYzB7QxvB7JxCYDALjOcWehWVWmqReWsW2tY5Z6bTOA1jn3MmpBCCcz4El6ehlly15GmqtTpCZi5pQhNHWOTYr+Zc45uFDwFAS0kq1TE5H5uu9SESMAcmRjVlYjOdjdQAgIGQ0B07wsgASikpZed4hj0wp6ERdt3COVekTH2/296UUhC467rleoWmdSrswHtM03Bzs7m5urTUoxTnHLFXU0cYiR6vwqfPVp88XkWS3B8QhX0opVQ1A2cqWotonVKGEKr5g/B3m/HiUIpxcFzRbfv04mI7jsN+LOSbqRRFbr0zsFSz1MougtE0JSRkpOhZc0IraODQAUiZMng2IK1lNqNi71RNqxqAOvZtU0VNTeu8h0ZCco5LrYB4/N/UVB2gQ2JkY3CEhirOoZoKqoiPnpm5CiEQoWZG11705b/+w++axv305x/8+//hLzGVyy93N6vDYTc2S/LMyNSdrCwsXm3rxUEPCcOCUipt8MagJqXWXOqYKwRPiFaEj4JNYwTvXClApvqukNNMCalYdcTIIAoAUIsgszKgY/JtMfyH33z16OTRZ5/94IuvXl99dV7ShOybRXccMFKVRIEvNuN3b/a7URu0lA4isp9KJfj9y30bL957+ujnP+n6f/r8y82BmpOuaw4HQWRTUxPnsCrcVr0JZ4eJ2cUakJCQ2BDa6EUlGUBYCfP5JLvzG0CPLjoXcxFAUJHQRgXspUx97prmxeYwjN989HhBps8+eqxt//LykHNi53I2YmLApvOSp30/5FJibL3jxWJRUmZPiFxTzUXUpuKpbSN7wBg9O3B+KMN//sfPX7+8+rM/+vSHnz737Pr9oGXwgTQbop8KXO2H7ZBH4ycfvLd6tLCapnFAMgOKHSMhqgTPACAViOcwPQAEBSu1IqGL3hOZUpr6fntomuJjE1fNMNhY0uqTJ9yF7asrhwVMX//uK+7a02fPVk+ePFwtz067w5gOQ6oqSWrJSMwxBENw3oOpVK1VmJgcixSc7VjxiDxvi0RvrYPupEJ/0Dv+PZjyLuy5D1ZuD3OEEW+R1n0L3rfzNsC70AjePvFIXb3zkHeV2d+HNG/fxu3Db3Xg33sT/0qR761G6u1BZvBmhKgEpKimctwEzfpIA62mVWqqRBTIDZv9q29evPnu4mXbPH56erJeYPUGnl04PVs8eLJoY9PEZr/pMeLD549Xp81hdw3AZ2dnu6QfvPfjl9++cTklLSX4OPWsUrx3XRddIDPzhJ4pSfIOg2czlZpySS6G2MRc9JCTc5yyOKAmRmZnBWLjg6ecEzvWkoOP7F0IKL7tpwIETBijilZ0kchF3/gmiFQg0Yy7w0GqPHjkYvClOMc+xsCOnPMutGHim34/qnpkB+FsvdyPPbjqugZAx2GYpgF8NB/IueDRGPdjr1PxnmPww5iq1jGjS00B8kxKHGI4PQmShlzKfle7dtmdnk5ZXry+Xp90ij6p9JfXdRyfnj08W7Y4jRzgpIupFpgOFjQP+5oK1AaKYQwiomTAngnK1E+H7b6aFRh3+dH7LsbAjE5L22AGHevkXZe1zgJZMJjjoqqZlIwAjkhZVcx8CGdn0zRcZu48e7X9mJjLVC1Pw4Nl92jZXd9kmzQEOVtgAOGKaeordC54jJwAiL2qKdgiOG8Jcl1yogCGPIGbKI4KpRbnnYLO16WZGpjgLcuPaAhoajhbjQLNDYxgNEfQo7F3CA4QxUSqiigSG/mqtB/q+eXu/HLz8vz6MJQhH7lPN7PVZKbmvDNwhN7HGGLbth2HxjknokjISogoKnPkuNmx+KVSTAwBmxiJGAkRYBzHvj/UWkDBMTvn2LGI9PsDWM1lGg+DD27ZNSo1TVOtGQAQkYOvRUyxcb4N0YVjPCqAOmYTQ4PADpgATKrWWkUViGITyWbfH3SemRhgTq6rORdAMHOqR/KMkIhYBYrK9WZ7c3Ojak3TNLFru6BVGKBtQpV8vbne7ffDONVUnEJsmiIGBFoV1dZL/4Nn60+fdA9X5FwtVn3gDEhTkZwNo4r1/c5IswDFbjPYd/v9V5s+cySwmoqU2veWy01VzeYIPSKCAhgQ8piLAgUXVSG0DqxKTlgrpbReBHJOQbLUIkXYDIgZEYCQHDPZ3GuJTWwqUC0FpCJAcF7NVBTZ8Uzmza2PYjy7h89e5nPyn1ggR4RZBckIwBFWEChaFYljWJyMMvznX7yulbrl8v2ffPxvyf6f//f/9eXLr36wfbh8+l7dQTxZbrf1283rf/zty81o1CwFuBaxKuZFRCYpWfOoJZCbPbvRkMAMgB0zknmU2T8ADWHuK8R57p5laHNr52zwzY5ELKkaeyI83+5+8cU3zx49ev/9977ZpqtUDck5llwZ2XM4Oe269XrIuh9MsRMMKlUFU0Hz8bff3KQxt93p6bJ9ftK+2aVDgaqEoWHGkpOZiZEhI6JJRTBQQyIkhwCAgqQ6N2eAOaRi5kJkCKWUQwViRkcGBKAiBdE0FwP2IQQOY+2V3OWQynldtPh8mden8ZDy5W4Q9Y48IBmAIAqwKIxjoSJtDI6ZAhkoOxc8i6jWqgpTlqq5KphB03bKXCt9/mLz+uLv3mw++/M//ezxoweQ/HTYbc6vF08enH789PzQ/93f/Lr94uJP/nj88JOnKKWJ1C1Cu2xBtVRVUec9B4+AUsE5AgbQAiKISnrU4YWuRaNhtx13gzUVVLtFO2XcTaV5fLLu4ubFhfTT6aNnaRovvny1e3P99KP3m3V7GuPJ49WY8vaQh0mLmJXiQgTTnIsIMDu1WegARGBmhKR3Doh2hza+B0Ju8QUeEwnfopt3zHKPWOe+jAbvWKC3MMduscVbCdG7h7wDR3bvMHdkz+1Zfu9Ub49kbwOU5kcfwz+Q6J7n4dvm9yMKfEtXAd5SRrcnRrPjneFcvSNAIzO6TTVgMGZ33Ic4RwBN41ddjAaNEA6lP4wk/f7coHA/SNs0z95f37zEaaytW+aqp0+eW/14fzXk2i+7R0/eX6VxOoxZyDnwiogGMqUxECNgzZXZx8iAOE1jScUM2iYaSJqSVHAIHjBXEa2EIfgQPTMSobnofHTmHAW2WjXLvt8jkQsRzQVHJSfnGBiZfTVk7405iZmIElW0/ZjSlCvx02ePQtudrteNC2ql1jylfH552VdJRqWf1ov21IWAoFBAWTQN/ZSn7FtvakgEiCrSOj9R5egRFiG24zCmsfZjMs/VMPdjQMetd45KVc+OCA6HgyNExGo8pSKs3vvF2q/aNgafxmnKB4xNKeVmI2Rusztc34wDYxcfLhZnzoVq2QF3nobDm1e/+2KxiFM/5r00TM+fvxdQokf0nMya6JUUlHI2R5SlwDwpszeV4JCcGhECq9RhPzFzNi5TYeAGuDFLuUqlGMK6wc4t+v3gy2B9Ze+DIaXcNMxNy+agOAHsPDtsYzksPHVIms1AYmTrzq6KpUMmZCSedy5HDI9oBooGCEcfMAKAozoQAfA45FTFiHEGTzbPAz4CcxXdHvL1zebVm+s317tdPx6GKuAMnQ8RzFDVOTJRVQSOPjTsm6bpYtM4H5AYDJjdHO8KBmoqKvP2lj1VMaliIt6FED2jG9PUD0POuZSiqsGHEDwzz8NVydKYak7es2OUIjmnlBIAEMydH2gF2QffdKFpkFwuCdEICAG95+i9c2SIuUguRVUMgBhQzXkyRBPVquhnF6FaqzjniGhGbCLKTN4HQB6HcRjHzc11LbI+OV0sFjF4JtRqIXoreTzsbzaXfb/Xao7NM6moCnhGQ0KzdevPutChNVzajqcJplqDBCtQJh1Lub7pr28u4iL6drVoly+2V//y+vr1fhBqUAEUiH1S6/sJnfMhIjE7BlUwQwUTYs+M5FDAipXJU27ZNNQHi4U6d0hakiHNyZxGiEzM7G6FmVRrUeYstdRqWhvvkbyKiAmCESESMRGq0FEQiczsmBFhNhEwJDAkmt1ENZWkUlEBHFaRlC1wSBK/eLn9x19+efLox8/ef/ro6dmbL76Z6tS0bXHNJOHvf/37X3x1/i/f3hyKc00AMlUVqWJBDKtaETUEVWVk5Fumn9AMcLYVB7tVAN3ueW+lDaqzXA5VDZFNYbYC98HVrIWa7y53//Qvv39wdrZcLC721+gIyJuBGqgoe8wGIpgKCxD6qKCAjIrGfjuO316lX//+9R9/8uD99862lT9/dRiKVmRVjd6ZzsFWJHJcORWMEZAYAJlBFQFZVMiAGIiCqoohh9bUwEi0EoJ3RDojWK4VzKCK5orIzoUwlArOvv3usm2bIgJgBEiODUnUUlHnPSqrCPBchlMDc+zAIJeqoo7msAAQEWIixnHoHVFYnRj7i/3Nf/zH3ybIf/mznzx/0LlYcSx5GhG6pjv1Yf3y/PLVq7/5+OMnaDlG+vSH73/88Qer9SKeLnznZ//T2bZS1NAUQRhAZJbpIDDO7RQnzpc07Hc3KZU257hu/SJWET5tHi3eGy767asrQlouupLG8y++PHm46h6ehNVyEWJcx7HBw1SnqZTDTtnIN66JhFTlCNC1ChiYKZgC3rXJ/6vCH7vrML/FFTiDnT/ATHco554CCOG+gRzcekPbPYsivA994NaF5xad3MNAOEcw3d55d2kfU6vxWBfDY5rp8b/7xne3FYO3rzS7p9yr+cEt/Lmr4NmdZTTNXTiz+GhuP0CiIhUATc0x+xAOh+HFty/efPeqY/rwyUOomUPdX19F9k/XK3I2XV3scyZy3918dXp2piLXVxcpTSdni+dPH1/8tl6++o4VQrdyzK5pIhuQqidGs9z3NTtYdUiQhlxTYRcQAZGC96DiPJKV1gkQEUPoGu85D5OZhRiJraoxQQFIpZZczSDG0nYREaUfRlMfWyRmxFpzqbXWMg6HXDJ6d9EfGMlZvekPD05XxgTBpZw2+21RG3Top5LJ94dh12/axn/w6GEtZUzjfkpTzrXmxmKQpEMZhn6xWCzWjaH1aTK0dtmZI3UTExCrY1I2hOpIm2VToWYAwlpKpsY3y65gQUaVuliuMNvF1U2qSyIc8jTc7EMTvD+9vtHNxvpRpakseRVo4ReHBDWNEW0aBt3fAIQIUqY+XQZY+JOTRRtcddJ45Mbf7PtD0ZKwbZZN8DknkLxovJmxZedIm5AzwkTLpiFSRTEAVUHTzsUArBQiAKWBptqpei9gupsSsFeGnLNsd6XpMJw4JSkZyuhZvQMtpebaNe1yuRrJYS6qCsSqcNvteXspGyoiAAqYoRLM3aE29zzNK9aR5VXLuQChc4F8IwqHSTY3+1ev3lxdb2+2fapaqgF658IM/0EVpIoBcwBkcC2FJjaLtm1d8KpgakDgiGbzFTGzanAs1s2uP4aEwOyQpNQhD+M0lZIRqWmaYzceWK3FVEspOU1SEhEyoqnlnGaWyMzQOzUUMY7Ru5Z8gxzMjBznIZtabGLbegLLY0LvpFbRYgbeR+e8Zx98qCpVJZcMtRASIDLPK/tRAc1Ijh0C5pw2u5u+7533J6enbdMwEYOSQYzc97t+vz30m/6wY7PWkUhWLciOjMEs+hidto1vovPRxcY5jyi+9dGhKyq7Sb58cXOxGbaHIbRw8uQRFvvFVzdfvrkeJC6WS9OSSgb25lGJHDoDVgHQ6j17wCoWgqu1mmRXJ5iGhcfnD5tlIO/X+6Ecah37Plch541o7l5kQkKgOYqWLLiYq4hUx569N5UqBREBaJ5mHQKDOiZQMwMGZEImNDAmMMWqUkzFZlqqmmggAqRq6siZGbI7e/Ss1MOXX1z//LPDD3746I9+/ilDGcQubmxr9vX11X/6h+++eL0frNPgsUqVVNVykSqgRqJQdZb7IxHNbmzzAqaqVaXqrECDowH0PFHbnc4D58QTtaN8fgboKgboY3e6m/p//vLbHwoEz8voelEkFCQpWlLNI99QP+zKVEy9m0olNHLIGIsxLUKv+VffnDuffvLZ8x9/5PeHcZjGAnFuCEDUqipQnWMAD1IRFIBgDu1UJEAxnQMCweZBZwAIZMSoVeemTyZAwrnNib1HQ6nSMKdaKloMkRiryHZfDMk3oSobmFhFREQldOSICQ3VjACInM2eAc6gagVA54PqkTQ1FEIU1VKnZr06O1tdv3j5V3//xdVl/z/9n37+0ftnDxo3poND+OFH7+dDmZJubobvbtL2Zkts32zG1d9/c7qMn3z6wUcfPHny9IHrHHoGEqkzeM/E7IiASLTUCobkfOCm9V1sDbZvrsbdZjGmk0enTJjLCEzrp4vVabt7fbN5fdl0rUO8udxcX1x1y+bk8VlcnyyadXPapOx3N5t+SgYM6PKsxKIZOtCtfxB9LynrDypdM4C5BQf2lhw5kiJ3bAvePvgPeR+4y2Gd5Qnff51be0O7pYjuV9NuuaLZ6fqOF8IjiAEzuzUunK/52yPirY4ZbqVEb98CHm3h5jwAwzvq51YXdXzmHTBEuJMgzVlqdnyXCIimRkRAtL3Zv3n96sU33+ab4ebVJaT0wbOTZtFelAkUz05aAttcTwzctMFBW9N+uCh9LtcXV+2yOTx/xqLbzXbRdW61dcu2Dd6XKVkxH5xjQtAxTf3BmiaUXGqtxCwqUxpZ0TGbatWEBOzQQAAqErkAWWTIY2wbEy0pqYBHB+QQsPEhel9q0Sps0CxD0y0K4VC1mhG4SVNYuKpGnSei9mGnSLvhUKXEJlatUymqJlYUSowNWCzTmNIwTisz3ex2h2kEAPKMqmQiNTPY6appF3EaDlfDQNGRVPYUG88igVRzlVIMLWmKbtksF54AsxYsPnLRMhvB9MNUBFBh2I2K/PDxGaOlcSyjou06H4m7rnHiCKc9jjuq3HoaazWdMOfOYUt2crq+ztKyNJjX3brtfI+564JifrO/wRKgYB3dMrQt2mS1zdO034Omjk6Ka/MkDQdwJHWMMUD0U4GGnQvRA6BISkPf73XqQ/Bu3VXvdvuJkSiGWVZqNVcY0YrlhFq6pa9l6g+H6Pxycbaf5GK43lRUc0qgIs6xGZjqkYWdraLhOLjmyhfOTkdqACpmNC9eZj56IK/m+kmvtofvXl2eX1zv9+OU6mx6bkiADpABTEt1rDhvU31LHH1s20VLzOBYAYkJAHjeKygoGJgxoZhJVQEgAHa8XC6K1KEfciqllFJq8MF5x+SZQbSmqeScRIpUBa2OEUxKFlVJOROS80FUDVEFgJnIu9D4GBXQzEouuRQ0COBrLbVKLqKACsYhxNh4792xH62kUkWqqs5BUcwECKoiokw+Rk/EOZX9fn/oh5RTDOHk9KxbtnVMUKuylSJDSbvdzTQcak2eyKMRmFUTs1ltRQBdExaRTfF6O732yOgejLhaRgachtyP8Pvz/W9f31zuEyDBVF9MNxDHV5txKCREIqKmhlCloGM1MeTZRNsYcU5RAeGSA8iDlV+a91171vGHz9ZMup3o9ZvNrlouFZ0HZkMEYgIlAJxDVxDU0EAUZoGUGRz9Debu17uuQkfocFYczswKqCncGSch6Aw3kICJHWmpJqoARa0NrSogO8u+H/X8Rf/Rk7Pn7z1BkzTAb7548ctX4ze74es32/2k3EQiRJBapVRKRVI1MyuzI6JCJSWvSKBydIWodYbhMHukIx4DYhDpbhU5FsOOrQHHZQEJVIWQYrvIvV7s9uF8c7peMJmkpOhEFJGa2JQquz5NU1UgY8w1e1eZiDymjMzeAPap/P7l5tHZ2SfPH/70kwdTrV9fZ/TO1FSNmNExmLBzjslUAECO5QU7jlk6Rg4c0RGAqQmoASDPp6yIOi+oRoYCM3QPziOyGE1JF10TPU9j0pyAzcAYZsfwmRs4ZkfIvHyJiVQEDN7HEGquORecAybE0IiCmwnmXAWJ1k+fpt32Ny8u9L/8/b//i5998oNHMdQQHIl77+Hp5zH0oYTVuvOLqU494PXF7tdffPvXv/j8/SenP/+Tz37wg+dPnz9ZPVyzQ0AB01IzgWMFdmRoRWqq6kmd883pioCmftCcb86vm8Y3Cw9mgGaNO/3gUXu2vvr24ma7s2x1SlqrdxSD5xBYAA258230U+F+mmot5PxsUQYAc7+qGd1WhO4Xo/5QVoNv77hXSroDKPc4Irz/pHsQ5tamEG6Byd3vx+vzttx2hClvX+b227w/o/te03NV7giDbj173iIqvK3CzclPb9XNeIeZZjLrbTnu7p9bPPX21b5XIZxfz2w2EPGBx3F69eLF7z7/7ebNZWsuBHSmj86abt1N/XB+fuU8YS79zR6IEDQElFQ0a0t+vWikys35VRfdatWmlA5Xk/OMIGJiojblslp17XJB3iMrMSIDCTCD6UzwUoydqRg4dOhCKMWmXErWtvPecZ8y5+IRWCW44EJbAxpQXARlLEWRm8bxou2Wyy6DsWkBmErh5FPO0z6hWhOdqYiHw5QO/cG72K4a34bhZj+NufXh4aMzYtptLtnq9rAR1VQymrFzYsLEoYmeadF1T56eHQ5b74lE6jh79BsqEKLMlyWjKY5FvUARq7ksY3h4eqoIN/tetIQQYxuziQgmgAmkkrnGx4ZvbraH/e7Jg8dnqxMBGPNwuHwdmwW2U3hwKnXa9Zf10HNWwOrX+MGzJ8G3ixWZ02IVtMpgKSdOuZU4DbWftp3HBx1Gk3L5ym5ucplWWjiBVYLQmSgQ5opJUMGvF94M81jAKIlTa4iqMrgQK8CbaeyWbbNa1iFrUvIIeQLDaGXV8dIpKbplh3HZY7g8TG8OWeMCQ2DnNWcwJTyOBTt2ehoZwMzsIwBIqcLsnPMpjUxUqzlmcARG/Vh3w/DifPvizdXV1X6sVRURybFnZhUTMRRjRDUTMXZMvqWwDN2CXfDRz2mmc9w9IgnM3kOgx+0Lss0uH0BIhDSN0zCOw6EnZu99cMF5x45rqSnlknMp+agFLtU5RFMRqTUbGtPR8IyIRUEJnfM+dBy8KFQQs1qlzs3eTJzGIqoVBJCZPSN7FxjZRPvxkGsBQh+Cd24OHQMEqQIGhOSICVBUxmnc73elStd0Tdt6x1CqQ4MAOaehP/S7Xc2TlkJSnEMDyUWM0XDuggEm8GRMeDik393st5d0/ST+0Qeny3ahiJe74es3/W/Od1/epEE5hKaMOm134LVoMWAErLWQP7b9Vc2gtVSlGJVczpqKxoC+5FjHJ6ftH3/y6AfPTngYHdRh6r95vfn6erochxG8oPdtZ0BVFY78BxAdbU7mGc4xocwenzPnTYiopnOwBjM6QjQlACBkICZyhCKmetc9c0yRY3QIaFiBQVRCDFOePFCo1LUL3+DV5fT6xXb1yH/w2UfXr8d/+eV3//Dr7/bYCPvoUMcDMiOYoWbDSSTmYlZzrlK0GqATIjQ8tvIhUK3VDJn5VsH5vV24HcUZ813H/e6RyC9p8LEx8EBhEr4+DBwDMCvUUnIV8BSMsQIOpYoYOUYmUa1SnTGQeh9i15QJ0zC9uRm/en3z/Mn6T/74w6Lw5up3RVzFgOw5ulyLqlQt3jdEM68qasB2rDPKDIYQDdGObs7EzAVNTT17rZkMFExIFEjBHBmYIjtPXkqppuRcWIZcs41CHBnJdK74wFwqn81ggaGKMICKRs/BzXlnKOW4lCpANdBqzMSORUrta3AhdssJ6Vff3uzHf/i/yM//5McfVkh9v62lvPf84ZvtTRr2i+VJ2iX27frBMrQn+zT+fjN+/R9/d/KPX/3khx/87Ccf//hHH3YnDRDNSnZTKFMFohAdIivoNB2C8/HxIi6adBjSYci9SK5I0J2uq1glxFX77KefSM7715c355dQyu6mTtNlt0qrs5WxZ4cPTs7AtWOul/v9mCqoAjkx06owb1Tm2CG7S5k4Uif29gK6gyR3VMgtrjlSILduszOfd188fZdJ9i6zNEOud6igo2HQTFbCUXJz6/KPRyrztsD7FpDdo6Tu6M9bYDQPA7wllOD+qLiP8b5H9sAd0WVv3eXuBtLxVBFmtMUkIgBHIr3Uut/d9Ie94+7Ruls9DGdPTpdnZ7tSX5xvzl9d1zExUXD+oCM4qyWtV+um7RAh5cTMQC7nEhs37g9ORKEqGRaRycxXbdrYNS2R1pqjWYbE3tWpNt43sXGA7BskNDRiZ6VW0TGXItqddDEwKTgw56LzjRiVmoGcMhhzXK98u+Ba0bmUk7BplZTKMCSwsmC/XDUdRzOrQ82QCGHZrkB56qWkOuwGElh2i459CLA8Oxn7aZx68P7xo4ekNk6HIRNzdE27Pls8ffpktWiHmsXgZLXKuQLiYFkNmJxWcJ5j66wCoK9GpaoUCau4Wq6vrjbDzbBcNAExSxkPObTLbrGYpny93T14uFotFtvNdhrG3E60XEIZa7/DJkLaJrFKo2oZtm/qzVaHOgz14P0HP/jgwYMHbReqSZomMLNDgVKXlXLRKjBqpTS2S1+wv7l+efXiZc6TTbvl04nbE0QVoAI2FR2qLRY89pWDRxcP+z6SD916wRE5F8PLze7NTX8WTs04V7KU2SC0AUQwTyFyqNQ2dJDQo+uLvNmnfdaHDzryXLMYA2id7Q3nLl8kQtQjt0soKqIVDFVVVENsVAUU0PksttkN33335rtXVzf78TCJgUMKsQmqOgd2IaBjlFKV5nFHwNH51jehaRpmN5uvwiwmnHUEqqZKPPuVg5kRoWOPjCWVKadp6KdxArPYttEH51lEQU2lTsMgtRqIqdSczKBmVRUiJGQgQMJ5riJiM0EkNJq3yrVmm2EfgHPOBaeqtUqqFR22bRti17SNY6diUxqHvleApo3BhdhEQENEqTJPK84xodVS9odDP4y1FMe+6xY+eMlJFLzDNE3D4dD3uzT2VsXNXEqtcwSXISkCEnlmZpA6JailqBXJJRHKR08fAsZNP/7q64tff7d5NcnBol+eJLHCObMQMXsHqgaGUAEIUVirqDESEJniEb6ANmAB8pM1/fDp8i9+9PizTx4ervb//Ivf/va711++2d+IG8kXcsQeby3EEdAhICITI6GaIM6SMkWc70UBUFOYex0RaI4tMaUjrXKcpec9pNrcokK3YkpUVUYi9mqCPLfRaimpNt61nTBcHsaXrzc/PD1bna2n0Wt0A2JfoVt0Og1UEoKYEQVXASpxNTGpVVUUgHhO+Z1fmOno8wJHmcKtTzrczuLz53VrEnxsBLCjh4qqxuDUZBpGQkLX7KaKm92ijU1n0iuqEZsLAaFKLVkrkLLV4MgEtCp78IyWcuOoeC9qLy76X/zm6z//6ccfPjz76fPlV9d5kxGC11o9eQV0ZCpCpMigqjRjcJvbJU1tXmiQiOfli5CAQQTAxBGCHYcDgDARIaiaahEEcojGopCmojBnLAOZqZnJvGOaVzSD2RIUCBlQAORYD22jN5UsSshzaaWKqoGjuRyHoIretetVs+i+PX/1//pf/7rfjn/y84+70yUifURPxePf//qry/NLCO3NdVk2gbsHIY4YUzqki37Y/OLL3/zu6x//4Nmf/tGnH/7gg7OzBUUHeYJaTKoYMpsLxMHlUlTVuxhPToJv86Gvmmqu+03frbvouJrkPLnAZx8+Wj9cHi52N29uxj7XvJdSF+t1u1zoYSQvmMvCxDubqhQlAjQw9iwGUirxnM6Bs5/iLTGCt5zJbbnsHWHyXEea77398YiLDAiOkujb7rL7Deh2B4xuUQvc+Q/Bvcfdfbe3HNI9nc4dArsjee6e/rZ3/g+Ngux7tTuAO2mR3Q+Nt1u0dQ9x3RbU5s/C5mY6mpuLqzji95+/12+uvxPDbPtD3zRtb5aH/vz6slqdih12ebUM7YpVtA759OzUO395cbXrD4goAGdnZ4S4udkCgCtiqzbmoSCiGO6HLMzLpfdNtEJaEjV+SrXk4h2J5DRkH7wPTmoOPkbwiDDlPBkGbdq2w7FaSaJiKH3OVUrTeXQeG+8oDPt0GMc+Je9JuZZc6lBqleVJ+/TB48htqjZMqa/T9rDdXG4l57Zd5DQ5qi2GddM0FJusbYOVxTArK/uwCBFN0wANt223RN9CPBm1OexSbdqz5+83brfbHEpO5pwxx+hKGkUsOCdaZZzMN6TUtF3XrKFg7RNlZQ8+QguQQLGk0CwSo6HkVCBDoMYa9ahBUxNouW6h8bVs97sr6rtl15btBQ7pYdehwXDTX56fP3xw4sENkgZJ3oc1N672ZdiuiB88fLDRFGKRfifj5atXv7+5vuxi02+paZsAVS0hNdhEZl56HwlbCiiQQbiLYCBlrFUDomQ43KSaiMFrtnkTFn005DGNruS8L3YS0cWUYVPGwQBdcxLJm1guUHIIvlYjhDn9e17OAMmgzupURCXwqlZF2Tk1VOQk0h+G88vdy/Pr8zc3h340IHKe2c/rKoFVFZqXrDmildC7QCE43zVdF2LjCBlBRA1xbiCfVxFERMdICGqgighEaGZpKtM45lSIcbFceueZCMCkiKrmPEkVJjS2mmrNCUxwrtiBKd7W9RAdzYQEOOfUEJln+qZKySWBgokQYs3HeFNECNQ0PsToCSGXKZcypUnB2rZbLRdNE9GxmZVSzZSIQnC1lLFMQ9/vDr1UCaFputZMtZY2upKn4TD2h93QH0QqqsXo5zIMAhgqKagJITO64L2febii4DxxHCbZTbpL+uLN/pvzi3/88s2LbZV2LdxqUpRCqKFxRA5QQaqpqCQ0xzPpr2LI5IIBIbMniyJnDj5+vPrBafj0/Qc/eLw4XG//9p8+/9tf/e5iwqsB/enaDGYpSc2ZiRwSO4Q6a4VBxYAIEEFlnqQJEIAYAAlBFRAZkQkRjg8kJgAjtNlxx8zUFJEYkY0VyYBUKpAyIhCbgYo4FMTCWMacNtXGy5sI/fMPlidnRCp1ygqc0bE5A++DGqjKnOxNqihVRGqZK6BIVRWNZuqTbpOeVAEZkdBmpe2t3gLvVSVuBamGt+WFIjkwhuCnISFFF9qSxrHKwtGqbfI4RE/IZqjORVBQtJnjZEM0bzMVU7NKhYZMTZRfvNqO26uu8T//ow/+b//zn//z7y7+v3/z+yRIrgNy5njY7wJoteq8985nMRUJxERsgKZ1llUE51RnmGesigBk4BABGRRuB+m8HM18haohAe4PvRuACJm9qiI6NJr/qoZgJseKj4GagTERidRayDEBoiNMqZJ3LvpaNauoaS1GaETeAEtR3/jQ8MmjZ5dvXv5//uPfp5z+9M9+cLryZydP12fLwzh9/c11L+aaUET326E5Zc3arZbOn272N+dTuvzFi999e/XjT1/+yU8++eyz95aLEEJQTdOUFItVBvLMXIoqiXOBV13sWhr66TCqpDoJVwnBhRjGcTQAjLR8vPZdnG6Gw+5wtdn2UwnbvXNhdbJoF20MgItg5nYJd0NVoixFK5AnBQVRACKH8+QzExqgCvNnDLcrPpLdms/e4Qc440JukAABAABJREFUCizJgO6EmTMjZLPOawZDx1tulTj3v8Ht/XfQ4x2oM9N2syb6Tv1598S3uOeIeBDvCK0jCfQHMAbvWVTjUQV91FzfbiLg7vj34dJtTe5OGj3vptDEEOz5e4+78LPW6Zf//Purq03X8cuXF/vD9sXX35qgIsdFcI0jh82iBYlS5fJiM0xTKVJAYtuMKcc2cGysFAdGfT9atRC9GHFkMtBUBYQJTK2omOpytSLkfhj2ZQjsbMgO4KyJXbeKbvDRZxQXfBcbAOlLrgpTKoOU6LyRjWNvwiogWac0HHYHQGiXsQmBgDRnmETH7FeLdt09evakoL25uk7TF6/PN+z7VdesH62en5xOu2HdrU5P2qrbzTjmPDoXTOvF1etxmkzp9OHD1dlpu16L617fjGO+efzo9OzRGdZmFBguckr19GyxWoYJbdcPHqkJIWfRWmff5VIFch7HwTEtu0Ubg3Ou8Z2Rz0geHaKgFAI4XTR82jREDcODs1ORMkL95vrm0PeuW1hu0rCPSuuTR8452KGlcvP6TVnue8vNw4exWzplG6Y0Tn5Z1qfBku73V8nK1evLzWGfSE9OFuwiQMUyAOiY99q1i7NTH3wIfNZ2VepuszEX4mJJpHW3g5QA4iosF6v2waOzqYy7adSq7ekJchAFZ7N9j58kCIftVe/W7r33HmtJN9sNeCICBgQiAKBZ1WEopqpKOBvOFpubLIgJmH3IarvD+Pr19ZuLm6ubw/aQckGDxnkm5llnUFImtKOMR497fEZHGGNY+RhjbIiYCBDNMSmiAegcIQLGRMw8D2edr8ypquW5Q8h7F3wMwTNiLWUYxjwlBPPegSmi1pRLTqb1WHohFAQAVFUgJCQCEhFyDgSRyXkXnHPewSRDETALwc9QzBC98z40sWlj1xJSfxgP06BmLsTlsusWXRMCIKgKmAXHgKwqWvK47/th3x8Oc36Fa8ETOIQQWPI07G72h30pk9bKiC7MZRqrpmDKjhQUFJgoOHYIYEVqUSNHrEpZobL/5vzm6vLm1dX2fG8JGqRgAHUcQTITMjuz2VoQ2IjRA6CpIDpCyqYoxg6lFsaycvjZ0wf//Z9/+Li17ZvLL756/S9fvvynL1682UvmFhftKFBUg3ceWKSACs1FTZjF0PPER3a3Bb2djI8MDyECOCJmYoSZbMBjo98s/cHZwhhuuSVCNORjrC6hA1IENEEzHxigjKkfzfw4dRf101fb0+XaVYvoPDsHXHMlMWKcOXUxIwMTLWqiqsCKCqp8S2ocJ2Q65hqr2lzX07fuLfPSNMMgersJnitnSArI7FUqMxNSEaMQKpU+1y56j5atTlPx3jcxCrJrGiA0FJ3XOmTnG8sjoVgVJkbn0+gndOc3+ZMh/dnPf9itHr25PHx1cbjYbDS2FF1so5VC5NWRGapVQkR2ahBiIPBaZ+eKeXM+G7cCqjHS0c4LiUzNKpoazh5CSESiJmZMUKwGm3cNBLcY8BiSjAQ4y4CM5uIgsamVak3wUquIxODn7GVHBGGucUCtolqJODShlnrYD4u2XT9+73B19de//OYwTj/5waMffvD0dNn++Z/+8NnZ5refv/r69UE5tm1E1sV62e/qNElYniKCTelq2P71L7/84svvfvKjD372o4/ee/7o7MGyW6xMpOSx5AkYQxMAqgAYewXQGL0LzlTTkNKkVdFD2wYA2O0PTOSXPnZncb0Yh2EYptcXF9M4dm18+uzBg4cnLnslvz45i43vcz7sTUFLrkBEAMSMNieKKRiaysySkpHMAToItwMA6Kh3trdEyazHvzWnva2EvWVS7lMrdutCdNesZbeY/daAGe9EQ3aLWsyOah473n+XcvZOb/zMG94r0b0lb+5/HSXV70aivQOq7JZXfXu/od2lur4TNa8qRMZMi+XidH22WHaHLorA2Nf9Zpr2kw/ROV+85lrHTOSYEUUhF6lZfAjdIpw+PJWqUypd10IIzoBv9nsVPVstl4uubYJndIhkMqX8+MGjYZo8B6lK4KGpi6cf7YYJgRbRE0NfR7G8bIlr3e+u65SCa6oackDkrm26LtRcpjSlvjjnA4cyZyp4Ck3sYhzTwMSQdfZrDGenqw5PHz72yxaxnp4sxpTFqu/iLk9VyvMHy9WqS1PdD81UdgDViAalDG59evrwg/cfPnwcF6sJnfaTiVs9etgaZ1XoeH22PFzeRIKFB05AnV8uYuOiCPal3uwPQEwgtQ4ny8Xq4ek4pX4cz1br4DiVsk/VSpryYWDHpg/PTpFQSuYYKlZiLPvizTslNiql9ilNFY233nGIHLBuX3+r6+Cif/LsMYdmHGU/pqTFyXB18e2URga8vLjeXO6DW4SwJO4gtNmsATkcrlOulBrH9fQMG1pi6nPOU98XzuuT05aXnPY41OjC6kGjbQBXp2GPkMwt9hmWi9itl7AfwrIpobtOVnwbV54dLx1dXW9q6X1cA3AVJSYp4p3XYxMjyrwOKdRSkTD4yD7kotvteLk7vLq4efHiYkx1nATI+RhVAUxrFQBAUTQVK+ydEYqYI2bnm6bzYR2WC3KeHRPA3KWCSKYqakefCUN1SEfjXTCxUkqtoqaE5Nm74BEwl1JyLrlorWrmHIpKLWVKY0lJtTKim7W9bGo02yUQoSMyACIixFIre29SSkpoaibB+9i2xDQNkyqEJoQYmqZxLlSRKadh6qdx6rpu2S6aLvrgBQzUEMGRI+Za89QP/WE/TUMeRy2FzAhNJhhrbhZLtJD6fX+4yeNAYAGJEJis5ISIRCYCqgaAjtl75wkdGpkC2/+frj9tkiRbsgMxVb2Lrb7FHplZy6u3daPRgwGEA5BCfiBFRoR/m18gFOEMwG6g3+u3VmVl5RKr77bdRZUfrplH1MMwSqoq08Pd3N3Mrt6jR48e1USAoKyuyoVj9/2XHbFvA7GZa9LMpJGReFRiC3KMiJTs/BQZH+LgvdImgiZEFlSEyIONwy9ubv/td28XVXG/vvvdnz4+bIf71m1dFvMqMWRuiEQEUYAEBYgQRvuTlMKxTKQ+SxwD4ki5pfg+KmcIUSEQjHsvTLIhBokAwsAgUWIEhDT1jbTEIBIFBFFpUnZ8b2x5aHt3ZvP7tv3DX75czedvrxbni1riZ4zaqgjABCJEjCTMGhklxIiAgCP5NCbSo7z/VITAJB1OtQIcdUn4kiZPhYpR1SAgAqxApfqt1RmiCRLSM5shQBStqC4oNh0hdt2BUZui8q5nDuyDIVLKMBJogMAMoMgobS5ubjMTH4/dH/7y6Xw5m5/N/9f/9R/+/Nf7//yff//QHFDPbF31pHvvk02WUqhYhr4xWS4sWhtW3PcutWIqpQMHACGt0xkVTAp7EggTiUAp8ac03Zm0QsMcEBFEjTYFKAIjWRYl+TCKIgWChMRaAxGTAg3ROWN1ZrSPHANbRR4oMKe0CghiZLKKlOmGWGbF9bff9fvtf/3D5832yMGcnRUX5/OZNTn62uKH+52LvmsNZsYWWdsO4Jwwz+qKM9W1x4dDv//dpz+9f/rVt7e/+eW7b76+uThb2NXc9k1/PPpmYAyYlaSjgB7FaCrTVimfcQg+tNwEm5v5cunb3g1D5KhyXJTLcmBji/3zunfNpy93X+6+5La8fHu9siq3WV6auVFisvUxDA6ijyFC5BTPFBFppWIMgwwITKQUiKWMp2LraLkwdp5MpSNkPGEieY1ZeOJdxqHUCCekIy+KaBjRkLxWDJ06x/B11etVd/6IZl6QywicEF/e4lVp6wSJRtXRK7AzvfxvNXQwHWQqxL1YACCAoIiAMooldn2vlTm/uj6/et4875rDMLud56rQYvMsN1UuXfSDo7z0DG03SOR6VpV1Vi8qIeq9R8KuOfZth4zalJX0rWvbx81GKXCd5AaMUciirPG9kyj5su6dRKbbb27y+dnzoWGBHCUO7X5z5/xwCH13aA7HzmRkMmSWosxNWdjcliX5pg+DA62KzPRHV5ps/mYGmljCYbPpDo1CsGWtVIwxHg/PWOHsfH51cQZu9+Zifjj2T7vtEGKza6IP68POx3ZWGlPM5ld06Aay9mZ1aYtFUeSLs1VZzRiJI4mHQmWga7KQQ12d1ZX9Zv3x0/bjp3g81qVZ6MpmNgZWOsfB79uDRB9dP8vNxbur4mzeDP3m/mDQnFXVZrPZ7g7WQO+GPrSXy6pQoWmHallH4S8PT9GHLF8QmcpkZVEzkT92nW/b9qCIlovauRj7YTmbXdTnNur2sH963HXbI5h82+27+7vM2L4dPn15DECL1dKFeNi3Pofd8bhYuqY/EOLFxbX2DbYWIB7bbj+4zFoF4I/bYlYroym3dT130W37fZaVhZZZqXvJnBskOqMhq4tyUQRH909rp+Hs9qrf7fu26domSlSgwWg/eAWkLUTv0vZEADGpkAlIq6RK7ppuvT7+8NPd86F52rV9z0iWdIao0tKNzAKMDAKRgI1RabQkKgVkjC1sXtu80lkOSgMhpUFZAJHj5LYrilJpBUCEQ/TehxgAhAg1GlIKGIJzgBBCcIOLPhCRIgzO+cEBRwkRR5ZVABSn+kXSlVCylknsAjGLURoVeR+A+8SCGWu1McluUVujlNLGAKL3niN3XRdjyKytqno2r7XVHCPHqFCEJUZuj0PbHtvm2LedRI8ctRYW4RD6MJDWkV1Hir0LridgY7RGjMGLACnhKJRosVQwIiQQJaKUKEoSGmBgowAhMnCPFEWBtqgMEUmMzIPROvUvSdKiA4DWwkEQIjArEfAISKQlsm+Pixp+cXNzVVeb9eavP/zx+bC/fzjuW8DlAqpMAILvCCHLdZQgzKl0mLywk1ZMkrZ55BbGZFWQR5DzEv0YCUEE1UlEmaJ5ulqJh0nd75hwFoEk/QNHFhAiMpnWhMKBMbUzUVT6yPT9/e7NT0/nq2VMaXcIaDxzCMgCya8IFIgCASCWpDWb+nclVfEQkUCAcJoAM33IV1FfXrgfnBQXkCwUhZBCiCOmFyYi77212js+Di7XeLaYZZaavt8d9yqrOWaeY3BRIzGJoGeGzFBEioEDxwKAFRx7/7Tb9wdBMv/4b9/99h+/u7i8zkT99cPj93dPm23fi6a8tjphRU8AurICcRj6oT3azCqtJIqgEIFRViMyJ+VShETiABCTjH1ByVg0OezI2CaEKCAs4dUuyJCG04CIcFL3iUQGNEYLSzM4rQiN9T5gskLRanAxxoiKSGurNSnFIfohGGO1UgDQdU5nFXfhw30I/PGb2/o3370pVPjqq/Plcrn4/uHHz08fNs3xEOtlsVqVoR1iiH5wgGCyKq/nPgzPTbv91w+//+uHX351/Y+/+cWbN9ereWXzc+Tey4EJ/OBZgtJGF5ZBQGkkBSpqUkPTRI45KKVzSyqGEHoHwkbD2Xm1rLPBDbv94fFp/fjl8fP9ermanc/mF9er2fkC69V5aUJBXeMOh94zBcSIFJgZRGk0mCEhAUiMzdBqUkgaAIESFXMy7XnVSJU6zCf18M+9CSeo8lLmStfwpKAbFTyvRNnjiyal28/kOC8QRV7f8Hhq+TtxoS8Y6fQKOX2O0xFeN7//zVu8hmQnoDW+SeRolDJKAQNatby9rj7dobXb9Xpe9xwjCYQhZHOiDDFA33qKUWIMwS/mVZkXs3m93u4e756yzEjg2bzq20Gfvfm6ur6MbmgfHn17uH94iH0zn89WZwtwoX1qZxdnWsCjCqh2DkLUen7pYwjR27KqrLZFdXy8O657LOtsdQ7GZEot6nk7uMZ3yvPQd0PfnJ3NlERt0AfHbR8Fu6EzSCpTw3Ac2qCliCjz+eWytrmOMmxw2EPgeZbN3l13Xpp53zTtsesO/SHfU1lVZ7dfnxeFUyQqM7YIzq2P3SEia7U+hG4/LOoCgzrSYCxfXKzyjJof+iEOZ/P8clUBqg8/fep6t1icZ7ktCj00XU5omH3XXM0vZ7O5rov+ud3tD4Prl/OZZ1cvbkPfXtdFptRqObOL6nGzv9tvjbVXpRn2B3KBD4e8qq8WZ6GauaEnBVVl+55B1agu8uI2DObu6f7x/uFitQrEn366s8YK4cf7p4fHbVHVqyvrfe+d79oWgEUcoK/yujYmtzQ0m/aw9t67LkJRCyEh9+4ox60GLufXR9c2oc/FzquMlGU9Ox4HbJuIfVYrrXQfeHBu8L1GEwHWh31EyGwJZLTOvE+oB4E4uXsJiwCjNqQU2TwEub9/vvvy/OnL8+O+8aRiJDLWqiyE6IaBEJRRWqGQUJToYwweQCEpIqWzSusiz+s8K7XNQSkwJCDCLJ5B0hYHWpOiND00pcSeI8cYWESRMtZooxHRDYMbBu89gChSKlPsQ/SBvY/BcfREZIyKmAQPY3ZBRJiq2QkLIUYWYdFaARIpFZmdG0QwAg7DgKS1VUZrhcSRIwTvQvKMzHVeFGVRVlqhIlCkPHs3DMH7vu+6tm/7JnqPAkpYoZAwAURh5igSQ5JXxAjCBEAiCEICMQRAEWYyCscPDgbBkhhiFEZhpRUgGSJF7HxgiVprpTWL4sDIgSkyspOAokBEgUpfOk0dFPYx9kiiELWmrusMwKrU785nM4Prw/Yvm+3T/tA5FsqgzLWplbbsvUEn6ARIMQqSUlqTBgSJYxpH4xuMVDak1uopVp/qL5PrSDLtg9PAgOmK8FRVAYUokkqCTAiIgghEmrQSlMACgDEEZijK2kdGyj/umt993F6/O7YhGINZZAQvwlNLCUpkIWQEYWYZ1dYkQECpmxuJZHJvApHk059297HiNRYPTgntq0GUkzrIoAniPQeFSiF6AO/F2Dy6rgtD3u1vFjUuii9qexgGzwZFjDYcvfNeKdYEUQhVFoLnAMy984FQmOzDcfh//+5jG6OpZ2/env/H//SLf/yHN//ln/7yz//66cPaA7JRFAQiYz94a0nYK0KrrDARKSHxPgIFsgY1SgAQkAiigEEYgAHGG2/8OiMqDBDT9oSQkGTiHDhJvGQ0jAdExVEEGBQJkAD3XW+M1ko7H72PWZ4hkjBATAbaQloDYIToQ0yV0sxm7GLnXX2+BO8/Pe2Pbb9vw1c35S+/uj6rC13Nzy9X87/e/fXLpj1u0SxNplHR0DtAUpo8B21Lm5Vt2z3s97vff3n/4/r26vy3v/r2ze2bVYGXNzPQkklEJYN3vvURNSqtjCZryKgqq6Lr2743mVZaG82ZLWPf+7bFOCgJlTX17c3y7OrL48On959/+PPnj/Tlzc3FxdV8ebGa31wUWZUpPT8vu4g90KEZnPNhcEPHpiqZKQIQkM1KkJHjOUUqmeDNSzMkJvQ5ApYJk4+ezCMOTzp3mP70M6QCrwRGL1Bp7A+b0Mf/UNgaRTlje6NMH2piRU+H/rnGCF8mc0wf6/XPBITk1QvxlGqkb8TARmuOIYoEH7Uy2mTFxUVxdn5seiGoq7yps6NrXShJm8iha0JuVFnYXuKxH3RReE7bA4UhlHlRWlNlVhfLs7PVPFPYfr5fP3yCrOoOe5Nn1e05UkY9F6tFcX5hkQ777qnpPu9+Wlxery7OUGLnBzU7r+o5owmiKNfz62vneFHmNxfLp8fNp7/+uN8cxQ1llQ9uKJSZL6qhl/3+cGybvu9Xq+XybNUewHW952Bsltt8OHQfj+/Zc+g7BXR5fb1cLljZeI0x0vc//vjh/Q9bHy90dl5nRTbLSuMDbNbb56d10/azsxVZtdk7GSTjswHCZrtWGC3BUUKIMa9rLaxVDqgIbd91SndFTXVRlCqzZCxhs2uf7h7n+iyvDfT2+WHT9W4+L4BRWTIAeZaXmlRmh973Te+dgEYnIsLN4bBbb8r5/PrtV/lqsd89DUMXho4F6/kZqPzpaW1L225a8Ri8HFwbIheF3R7a3aFxzBhCH3wUsda6wSHBcd/dXJ/P5nXbNn3XD67vjs1qdV4o41wjSGrIQxyk61RuvfjB9TF6RZwpGpDb7lgqIkIXXKZq1/kQJDN6VlZ1rgaDu8f19cVM52WD4kOwJCIRoiilmCMpEEIDJpIWMQ8P3e54/PDjp7v753aIjhEzY7NMRLp+UEiZ1QQsSoQkcuAYoo9p5zI2K6t5ls9tXhEZUmnmgEhM7oYiAiqpPdIaE+EYnXchRElqTaWt1aQUIcUQYwghmQILk9IIEIZh6PrgPTCTImssSxTmJBmZNtdx40JIbRnIEgEJFQVhCKl8Dj74EFmASGljEBglxABMSoSVUmQyQ0gImGcWJHZtQ5pijK7r+vYYUknO+xgZhBWSVkQ46metSZY4INGzAAsnW8fRfUCBpG9MACIxRORoM1MVNlNEkPqOYZSKk0AMmkBIJ18cRE4ONAgRx50KFKqpkYMFJZl4KZWkyiDCEMNiVv7mlzelCX/54/td20djVT4LKGgyQuq9596RQGaACCMAEoloASWCwgwsgknbI6fMVF6820ZtCMDU8jLaniXFcaqInYxBMO2/DJOeAUZLoAReSSlEIlIxREZQRP3gjMkUahcHnWU9+p823X/76916v0cABHbeK200UTq1ihQSj0S/MIgkZEgKCYQFhAVpRGjTh0v7zt/0uUz6hRHuJc4rCb3TloIiDEpBYAIODEZZzDLXuMOxPy+Kb99cXp/N//z+0/unNUNubI5KR0IW8DEG5zOTISlgZpQIEUlRnnMw+6H/w/t1H//p73/95u/fnF/My//l3//i229u/+kPn97f7Z83x74NxXxWlrMYXQgUY+xcEIwQoyKVrEQ5OGEgVAAgyCwMiDRydS8b1VRIQZpYuvQVR5Q7PTLu3zCJviQtpagVMkrvneKY4JNnIWBBIK0AkRmEI7NorYJAiDwcvbe+rksd0YPLijIT1YXhLz+tu773PSwW9ups9dvfvLlYzi/e3/3xw6f77dahLhaLsjRBqO+diHIsSqu8nGdFFXvXsv/L5/XHx91q9sM31/Nffb2a19nV7VVVGJWuLwFg9L0HRK0zjRZMXlgbwuC9VwqJSJelLjJu2v36ObqOncuK2a9+88vV8uLu8/36/unT/fNf/vL9u3fn797eXF3f5rO5mZ9XRWaJNBunsXM8xNg3bWBSmSUyOjVTjixLEtPjz4tNMGHs0akWT3+FEWycgAtO8Dwhm9Pffu5I9Ir1kZEvwlGtLJMJ+piQAEw+QKfKGL4C/68h0GtN0stjAq9e/LNba/wKUxFu6mkbfYAAQICQUKEi8jE2QztfLb/6xbcGOPdDLjSsCmyccBh6L85BCGTzssiJYN80291eG6PIzGYz8BEZDNLgnR4Yu2O8fnNV3VZmeVV/Pfgoyui8MBKl8Gyr0uT54IeyGlTTb56e+3YbvJnP54ODY8txiMXlu/P5ki3Nr5bH9S40x91+TdBbkv3+cDavvXfOd4uVndU2L/XRDTD41vcaILd5eX4Nhz0pnM1X2pSHbduHUBQLQA0YD52T5zVmWmeZtfXqbL47rHyU4+Cf/vDnLLfLy8VsNjfCoW2Oz3vuB4AQmKyyzUOn+qLdPVuibSUC8eJsObu4iOt10/cMXFYr74xSSlzQEcpqYZUNzovQ7ukoGc6vVvu+DVEYdecFNDXHLvbdsqwsq/3DrvODd96CkYiD83lWlEV1GI5+iMFHxaSixH6IWpus1CZv++5xc788W1bFPCvyzvXHY086O/Zus956Jcs358bmHXcEUlU29EZEFOo6O7PGfHn45Po+yzLwvN/s3n79piIEpYn7btu2m0NVVYi2afde/FAUi+ulXRTbbejabnk2BzXLtdoeDuz5YmZW17OqwGBjUP1ZNm+6nXOMRZ3nuWeWGL1nIKWtIdJDoN3Orbf79z89Pe/3h6bxnhXqPDdiTGSAKCbTMG72EjkpdXoFQNqiqU1R2SzLs7LIZ4qUACAyokgUjiyog0gUyUwaBOE5OGEZehdiQCRjTOomVWlwGjNziNELs0JQCkCCc8PQD8F5joEINWoUBQxBItIoZGARQJWaXzh1USCKjDZ2IkIEiEgEkRGAALU2VmkFwG4IAGKsAdK2LIAleh9jdP0gwiJMWomwH3rfdyIRBAhEqxF2JFYkqUlSjQeFURBBkle11pqZWRAQmST5nzILcCQQq1RhdK6VRC9EIUpMYSkm138UoThOZCBEQRJEUoAChEjpm47pFQpzMFoFZiIKwswhy1VZWmR4Wu83Td8AocrKvEaKXdsVRhmjXRg0IgFjBE0koAQUkAZBgRgVAxIL6ykqEqAA8Rih+RTfYKSJBGlEopTiHqcmX+QUzJEQSSjZdKfwKQigVWKMEBEZQEBCDEorkBjcEBR1QkW9fHL9f/nhCwg7IJVR1yRJNREikAKICdNESB3wQIRaa62IY0zJ9ZQvs6AgqFeJ7hi3XwsWUn6LLyEdkLQAjzsQBATWGiLLoT0qrbOyJg4/3a01u//47/5+ZRX6v/6w7v1AYjKymUg6IQ6FFYLSFCWE6Jkxz3IRldXLqPlf//r04cPjp2+u/v0/vPv2V7fffnd5cbP46eP+j3/48Jcf7p7bLdgKFanMotZt69zggVgUWCQFwMwcQWlkBEFGYBKERMrhhGQne+uxYvzKkni8pNO+JZNjQQJERAoAokSJZHTuo4sCihSjOA4wOtOQMMjIgwITAaFRhvs+shybY5GZGKFpNpWty2rWN/zpqd1s9teXxRD9u7N6MTf/7t/cnC/1n366//C09dwxaaOtmpdt5/wQFBAxBw5VXbFElsIFd7frH573f3x/f7Gsbr/aXS2KRWlvbs6WZyWLI4jaGCRxvo0sWhttbWQVQh9CyGyuMKNZuSwWh/Wm3R+Ou213/6WsVl+9fXN5fnX/+eP93ceHh93j/earN/vbd9er674+mykFC2VpXja+6Fl1LgTG3jkGFgeRI2l1miePyHiiV+QVvJbpkTE3GC/JCUZIYiBHYdaEWl4pjH9W6JoemNTHJ5ufxNu+FNVkSlpgiqUnyulvjIj+5ueEv06E1Kk69kIQ/fzDpH8JUBACs0ZFqESiYrG5XS7O3K7d/PTeHQ5lTrNcZVTpevG07QbB3oe+aY6agBiEnY8Ds80yk2UCQ4bKd24Igz52zcPj5sjy7vw8kpUitzZXWQEoyNEKe8RAKhCqIluVy8V8+fR0f/fTe3d+cXnzlVL52u+bobOqUJbW61ajmp/N+sfPh4eH/fq5b9sWeHU2W9zeWIwYous9QBRgY5QbfNMPRUYmz/PMzGaV1ioElRfZ+dWtd+Hh6cunLw9lVTEJGF3Olrae1de3oNTDp8dm55p95xhClMwYA3hzuVREhcEisyHCbnvc3a81huXFhYmitZqpzIJ0RL2PrQsas2qurdU8HNdNu3NHms8RQGkzK6tK2/557ZuDsdi18fHp3uTGuUGBxIgDQ9MObdtGgrrMewjgh7KucDWfFfWxH5wfnLcSvPM9gzZEctw87bf97ikr9PLiXBSpXjZbaXZHsllR1eXZanVxoTPt+uPuYYNkdGaRlFG2bYeIbuiHdn+MJiwWdeSw3+3rMrNGR8ftdnfcHsGHMssKJRSh37S9zaq5zjEGCVpkMVtoiUG1FkGXutbC3cGym+VguFduyIIoU4ICAXQBbFGist3gjvvm4enw5Wn/5XF36KHrAmkDadwyaeehd64wShENg0cOSMQRgotIShtTzJaqXGblXBMSAwmw96QUKgBAiaM7UGSSVPiILN4RihtciBERlUJFpI0Cweg9J1teYK0VIAQ/dF3LMXofAMBaLawUYegHZg8atdJAKBwQEUFNNZjU7JAiBUVmRFDJyT9lPUAIPFEskZklRFLk+8GDCz4IQOQgDJoIFXJI0h0BYU04utsgInCIjEjj7g2YOoumFE0UERF65vQE4dSfn55PCFErlWmVW50ZsgRC6B2MMgFGTPNoBQCBkAQ5CU9J1GuuexToAiAwCBMhCxKQRnDOG63rqoox/vDxrhuOUduqnrWeu7azhjJiDgFlKEtjSXEAZgTQIArHrnZKoo8oAdJ4sYkBT1scyku0HQsopwYVACQQiKnAlH43+RefUmJBFGBJWnWjFSnFwjEyA0cRBCSlJERmz0zCMWbFEOFu12sAUFoRIkeFooFZCEGMUkn5AsJj0y4IYvL+GTUWCS/K6JmAU6R/1RSDU4niVGo4FSoEECECE4AmAhZCBARN2LiWkTOTK1t0zfDhcU//9Lv/+I+/+n/+X//n/9f/9vvf/bgOsdCmdqwISWuDCMARQLSCyAgE7dCzIBMqoqbFDvi//uVh2/b/sOt/+93txUX9m28vr5fVr95d/+n7zw/7/uHQPT23qihI6VmRR4IAUQbPzChsFIIEIGQEjPJixET4oiFJmx4m2lQwmQZDavaZRB041jAmwz0WRE1mCD3HYI01ZJMZo/cexwoJIXOCm6gIBWOMRCoK52WJEnzft67Ny2I5X4Q+HJuWQKEqD34YHv2+v7tbZN9cr24ulm/enC0u5jdfnv/809PToT+0XT5b1HXJOYcg4oMh452PBLbIwRjGQKbYuLC5b3/cfDir8GKZX/w0u75YrGb56nxWl9pkYhVFiqgCR0ZSSpkIMHiPIkoZk9XlmS7q+vC09sEFd2Dpcpv9+tff3L69fHh4XD89fXh8/PDlfl6XX391c361WqxWuoo6L0ubaaA0nbp3oe+8B4WMhCjJPiIBGJBEVI9VJ3kB4CPIea2tG/HE61IXpUU1XZ+XTvmRoYUTpJFTfpL+Py3ZV4zOCdOM4HWqxf0NtfR/9PM/YK7T0kng7rXb0ek7Cky9DyFEDh6ErdW5oquLs0/LxcP6S3PsLs+XJMQ2rypfKLN7eLx/2h3bRmeI6Msic91BU2G07LeNybIyr4ui0m3bXpyvvHOd6zm4zjsZujwGa4xEVgYBiIMo0kQYRExRLy9hGNzj44ZMvZyfV0XdAUd2EMPh+ZBZque679z2cS2uy3KVFdlidTFbVBiax58+HdshzyzhMCu1zvOhaWPD8zzLqyK6VoHR5EGDyAGI0Bgw9SEYMTorZ11eUbksZpq0vi2vzq7b7nDsh0YKar2LqGZFfnN9djkzJWk/hIdivW90keuri/O+89DF3j/uk2VL69bHwbu4WsyqxSqrKsft47o9OH19cbGcl2UFEtt++7zKigFVdzj0zaFrkbSq6/LQDqosI2FgLstSZ0YX87wq7h4eg4tVOROFkWIXWioEBhbF1iJw1zVPEJvSRgz7rgn7Q8PDUBtbVPVstZxdXmJeRMUIflae7572x5ZJG0Nmt9/pxs2zPC8les/BkaLN8yNwTQEgind+Xhfni+p6ZpCgjdI7efrwHC5i61uV5ybLveeu2dYZkrEOvGvuSWcWwrwsMLjzuqhNMdj8KBpJhyBezO7Yffpw9/nz/bY5HnvfeCIz17kFCWHwPnL0gnmZZWW32yktpCDPLEcYmj6zuS11PquMrbNiqXQGwaOIREleayFwDJGQECn4CGSN1r7tox+MTk6EohQpVMZaIpIoREIoMcYEjCKzBN+3bfAuTQ9O45hSNq4MIceJeyCGNIg9WToyvuxgp8Eeo+edpAkBAoSghMVzAjKahEOIzKhU1zkRMdYabawxIuxjEGEkAiEySUkhwlGQFYIihHHIkqQO+Wmvp1Q4UkASeaS4kTTpsZiQzAYylVlF6RMyCwPHpIEmHhUCY7wi0iKIQCKcBnJN+1ISdJAwRxHEpPUGFsiM0aQIwHHYbQ9R4mw+IyByfWF1Loi5Pbat8z1Spm0ZSbMIgkJCESZBBi84dn3BiN7+xu7jFHFhpG5etALyoniAn8XnETghEfDJfCfF2lR84aTdTdSEgBAjCrLXaECYgRF0ACZNmijPNQJLCKS0Js0hJpMbrXWUiCxaKWuUQhRK5peTccnU15VIIEEZ0S2MjU/Th30phuEIFxhlzKFHPg8FGeqqQCIO8TB4k+ddhD+vd/b9D//+26/+H//hlxnE949Hx75VmrJsaPYcvCatUHFkQSUcBYg5DjwMPpZVlRuza9p/fn/84f73d0+H/+XffnVzPptl8A9/d/aLb5d3j/0fvv/8w8fnh03TOiMUxNpkoy4BjDII4mPkSbh0Giie6h40Nl6fOuenFF5g0nfLeJ4E6NSDNDoPp+GyJmKI04bHIqgV4jhaZKIUABGFRSkFiIMLhApESGlDmfcRoDdKRQyBQUPmRXrnNw/d02546vht47+6nJ/V+S/fnM0L+/Hh8P7L5ji0MYA2RpREoWFwxhpE7LtACo22SqGZae/8brN3Pj4dt/DD09m8Oquy5bw4X9aXF/XV5exsVVCpiAAiexZSiAwsIOC6ri+KEnW1epetrs92j0/Pd18Ox01mC5PN333zzZuvvvry6dOXz58f7p4+fvnny/Pl27c3129vz99e2bIygqygDSRkVKE9GhedAIMwB0mFLlEoAIrGKaQ05gRpjU13KSfrEph0wyd4MYJyTIU1hJeVN63WV1BjIjLHuxqmyudY+zqt2JNL48talde8jvyPy//nWOoErl663v8G/UAyJkIASCNlApFiZKOV90M8xsCsTLlr40VZmKzGCF3vvn57drUqj5f6ebNs+v7YHZquK+uy7SISi1XSaSO8PC8WFyvdbo5VtcirbPu8W8xKVDpEcM4jYIyRPZMirQ1pwyzBRSLIbHH99pvN48PT/X3oXb26KpcL5zsSPr8quO+6w379vFlvNlfzejGfWzBBIkt03dAcdkKglK5KfTw64b421qLOgHQIfd/3GiOqqLPBHLJyZc+ulmeWMTN5mc1rMEqpnEkL4aoiugy+bbeHTd/uJXRibOToteoEQn/0zdB33bKezRczQ9z2TfO83/YuQihXK10Y7Jrn53vUw+3tymiTVbaOUtZldVYrg11/EHdYlMVisWoH7UOMMSJpY0wIYX/Y9M1OoV9dzZfLWZQ4Xy1sXm436wHFibeZUXWhM9MdD/PVLKvn57NLK2ZT2uP2qSxzjrE7do8PayQzn9UX15cXVzdn37w7Rt62TVFn1axD9dOhOx42R2WND0ce/FeXF7goj+3x2DZCikVYsugi+5hpYzW6oWVvjdHkJXSxab3WUC0KylSMXXfou83D2ayol7VFCaERDqt6paw6Pj4UNq8K26JuO24699P94ePz7vmwf757Ou4asEorS6QAhGMY2q7MQBGgBu+PMvCFVcqELFMxuGOAgiDXPJtlNrN5bo0mHwMoBKWcZ9ImhOg5IkLkEEMK7OydeO+FoyEjjISgiGxulVIcGFBijBwiImRGRea+a13XhuAJWGkCkmRZhAjes1HaKM0gEVg4AAgLkxCwqGmm8YkoVkRJ6xpjHGsbAoSQ+BQk9CFEjpEZMZXhUClTFIXShIIcxRQ2MidlUhqjhiBCgihq3DDlhLkmYplAUCSyRBDBNJ9VJqEyc9qFjSZjFBF65yKwUvpU/SFF07B0TpvO6MALCEhJUzkGOBZAGt01OCZoJyzWWpOZvmuGIRIxWW1sbmweXciM0QgQgzbaKgWQozIhcKoREiIwIJJIBI5AMJoYwKRFeCl3QWoRIhzdgUbKZJQnjaDzxM2PZX+eAuP4b3o+CggpiszMEjgCgFZaEGIIhIogaESjiDmwSFEWwQ9RQCJnVklgiEGTFolaE0cebW5YoQaT0I/wBAHGrZwIU7EBZSzaoIwKhVPQPz1dTkO2EdLFEBSOo+smAghErQ0ABAkcGRXqrGBQf7lvYvv+N+8u/tP/9KvLz0//+ul5aI4heGVI0MaASitiQgRUuveBtNJKG1XEwbXeY1k4j1vv//nP9/vt4bfvzr55tzo7n2mt376bXdz83a/vdv/tv33/8al7PHSdF5tbVWSQAfsYOARmEARIDewJz0UBTnNhOZWpE/2TKiPpC76GfJNWi8YNEZNtn2enyVidRQ6AEjkqUjCBXWahkTCCqdIJwmCNDT4gByTwIiDogmMB1KSUJaWz0vq+J1bHGH54aJ627WbffHVRXxf59dVivlws6ur7j49fNsdhQCpKICrr0rnonShjNano3DA4ZVgQq/mSg3PstZG7TX/3tIn+y+VZdb7Iv35z9vZmeb4oLy+WWVkZQkAfg9cKiRRYaNuGSGmtdDlb3NpiOXu+e9xuttvtcx59bu2bb7+5/e7rzx/u7758Pm6f//uf/vLXH3+4vbq8vLi8/fq2ulyVWVZmuY/q0HmN7DnEABEppElYpKLEICejJgQi4Djeg0AgjGkA7SgGSmZCJzwxAtTpLxNoOV281/TdhIFgVBS9wJpXHO5JBfT6sdOxxpKovMJAOOGmFyQkL387OUL/zbGmkh9EHk3J67qOwTvnFODicnXz3dfPz5+xPfZRlmW53e6Pz7vbhZ3PzM27287xw/OXvCyLPPv8+fF4HLyDguy337zR2ugy0xj1l+/vL95lvfcaTHmx0oDOiwdSmYYYIgtH1koiCxryIYbgy8xe3Vw93oXt9oE1VmfnZHLXudxmpa2HtYjKg1IDOKKoyLphOGyoPfRsrCjyoKt6ZrUDUnWZEUN3PEYH+azskQNbyRexWOHqOjNzQksqMzZDlAAxomFBFOm8Bx9EUFe1VSQwy885Mu997KPnwW0ets26ub1AU8+btnVdr4TFDwRxUWC5rDE0xyyQNCzHrFouYCaAqMT3B3/0oTsq8YWeA+tlPQ/nDCEYmw/d8PSwk+B6CKuLYnVdcGg00WxlbZH/6u++vr9/erg7IOKqKAPG3eBVBsvVYlmvrBiFkplss+9soYYAzmMX+mI2E5F+aDePd4M21eV5fXEmZg33n7Kcnrq92zbzAhdlvSwzgZgZnNV57x0jWGsVUn9oJLLEOET/sHm6vDgPPsbWLcr6bD7LF/net89ffspJKz9sHrZF9Q1mCiUWOc3KjFkOvl9vm/kZ5PUK+/iXP37+//7x0zqKiyIDI2cWjU4ln9AFFy2xDC4rDMXW9l0hcrua1XPTD83dU496NgSRoT8vlkbF1Zxi3zsyRw+Nh3K+6KMPPkZC5/rQdOwGQyioGUBrY40FjkiklVZEEoJzQ1oG3nkkAsII4L0f+p6jS3s/MgKCAkBSAEI6TaUMAIjCgpDcfiC1gIFMHn08sgqoA7Nnh4gCOpV10uxs5ui8TxJcBFGKssxorfO8ABEfPDAbo0WYY4ToEGIUplGZBIIkzAIxlb4gDR4b7WZSm3fCLpFYjyUf9giACFqRIm0Sc+G9REeIxIiiQCkAYBEep1YJnATHEtNbEZEwK6LRqgVGSWFCewSocqUUaQQSjsEJQVFmwXEYBo6iTUakIjvfO1TWKgsEwQ2ghEiYWRECcDoWAzIyEQiDQkQGolM4xMTAoZyoeACQpPlMdb8RFQIyCI1x8aQzGeXgiJhGZ4QQhYWZ0y9TdkugkqZWIQiLD04RCbDKNEdxziuAusy1KZt26IIrbQXAMJ5/0EprImEO4jmwViaVGjDhy9SHP+4ur9LfF95+ymhH8mSkSkZPIxyLQon7wwACwoERKTKwF2PyLpo/Ph033af/9A/f/v2vrzMV5c9f7rsu4CLkFrQ6tm1tMqtFQAwIaSTUSJBXthscEYC2wNqj/ev98Onu482Pj3//65tfvLu4uDaLeV6V86uzf/v9Dw//9IcfP2/bIUYXbdTKceQkS0hjMRLiE4wcAUklGgYQSclEFIgIYhLLpXtYTrzPyZlvTC1YjNLCzMgATKDSFGRNKtkcqMmHIu2PpBSnOrAwERKNRvNkVBQnFBBBI0QOCiD5hGuTh+DX3dB+2Xx52v7y9uJbpc/m5XffnM8zffm0+/S83fnWoRHUeZGbjHyIwXtNnGuVLhNLTASyGNS6lliJuAPB4Xn4tPmc//HLzbL61Xdvbm/Or84Xi5lVuQWIru+UUkWZu8AuxgCYl7Utqtv5ZbXd7B42d49PD+vnPK/Oz86u3ty++frt/vnuy4cfN/cPP368+/Tp+ae7p/nl2eWbi+X5KrfZsqwFyIFuBugcshCSSUmXJmRmFz2BQgKd4oQIkSSPr9ShBSgCRECvU5+J4RGaJpXAS6nrNd6AicxBGS1J/8YR+uV18vLg65radKSpsPUCZE4r5Gc4aKKUTq86/WZ6AotopUTYx6FrWt+72axCxUHaq+tl8R//5/f/8t+H9dq5/rjbh+6A3FS1vs0Wke1x01flmbZZNav6ntcPT65ziuOsqLywDnGYVXXs2r7vdhR0bU1Vk1DfD7nOdKbFiwjEwD5GW1hjDYiPhMaW5zdvYW22u3UkXpxdFnnuXewj23J58e7XAOR39x4N+14b3R7i0Lb1fF4v5/td1xz3ZZEXVc0kx65vtIY8v7n9KtN5G5XKl2BrVc5E5xzFifjoOQRBUQYIFSSVllZpoPFsOQ/BezeUmR56TxDVImKxbOXHFhXbUjBYDIuzJXWuPR5FSfR9pfmb25WtqtIaoxUhhWEwmj1ADKE/9sPQdwEEq/OLSmvkGMS57rAzCqqycq5RCABhdTHPZyVlWdQqWxZZVxQd9C0/bfdkqHPcN102c7Hft4e2Oexd3z+t12XVlEXthXZNVwxuWK/7Tz+W82p1+66IrvW9Ar68WJ3nRan097//F2BYLOcDx+gH74bZYsYgPnh2wZANgwPhell7N4jEvLCIkaPkuSkz5fu+Px4LY2aFVrro9gGdJ9SWcoO6PWyHxrs2hgAgcNxtHz7vnj/frR+eQlED0byqQtejMEW2ig2ghM4SVLmeZ7FAlhjmSq7MsCip0xg2XWdsE6HI7UUW6kwbd2AmzivXQ9CWxXnvRWLfd33XxL4DN4hCRI2ks9xkuY5BEEGBoETvgxucSExzxEgrEoyRg3cigRCFSOMIJ1JaQyn5xqnZBzDZk8DIuiSH29H6fVyPyROF9DgeAEbad/CROTCAIjTa2swao7UxSikEYGalABCYXfDBey8chJlQEQJMTQyJjRFgBDpNW5bU4jRyIGmTARIRjom50VoZTYpIK+LoWCTpowmIU8FgHPQYASWKpKGugoLjqG+EiSJCUmmeOSGwIADEEEghoYAE5x0pYQY0ilnSeAqlVRQIKACodCaQPLwVaU0qiXWYVOJLEIQwfYBUshqHfL0EOUJIbe9T45DISUI5XQVJFcw0jCzR9xPlknZINepsJc1UjUm7TsgsiX1iYUBhTJODDBA458syZ5KhH0B4tZgTwtA5RYzIiBCjjC1PIEmFkGpViZOIzDiGfAHgU0hHfOlYwVc7SYIBMsnqJxZfcEpxESXpYNzQJ1dLieJdEKVA552Xh8791z9++Ydvlt/cXi5m8//+/tNfHtvdwXmT5doYm2klbXMAEUMmuEGYBsVMSQ0mINh7oGAaNxzj8eg+fvm8f3e1+var1azOsiz7zXeXq8vqxw/P77///P6u2RNFoKzMmYwGRqYQHRCyAJIYbYkooSIfggt+TOMTzZecXZLyDAD4JI+S0zlJRdJ0JVOxjHAqbqYxTzI2+/x8A4Wkx0rT1AXAcyAEAeLI0TtCVEZrTaIJkTQRa9V7533wX5pNG7++mt0s8vmyuHxzcf7l4YdPTx+e9sc+lPMLQQBmRC2IIQzBeWW0yQ1ZE6PpuhZAsrw0JgeJgycXw77rnncPn7eHq+Xs69vzb2/P3725LOvcljVwGLoWtdZEUWLXD4SKUJXzq6q+LObnD49fHh6ff/zw06ysVrNyVs7n//AP+7dfr582z0/3n+7X7z8/z//68fpyfnlWX93eqKLM5uczk8+XtWM4tn3bRy9RCHWWFdqCsCRbfRCdQofwxAaJMBBRnIatTsKasdg1eSqeCNrXSANOCAjTnfq6pwxfqM0XO5/X6OV08V6t+tePnxipU4n09RNPJOrrT5LwdbJqI0RtjAxcLOYcQohx6PplXc/t7f37vz7ffWq2e53Z2aJ8vt+2Rz2fdW2z+fL9Z3bx8s2q2e2HQ0sg3bH9b//lX96+vSrmtS6V+3d/f9s5uHvsQHc67tFBhlaRBx8VZWh0YBxcFMKuHTKjrEVm6FGZclYbdAjdcVdoNZ9do7IRRYyuqndoSre7Jb8nv7Ma/K7ThMW8NLqoFvnAAFlWXN4wmeAhDlFVeby4RVsZodR6xIBhxH8hCqAiRUYQQIFEVoYIgEgREwIQwKwoOcYhDKxIZ7mucfkV5sBdmVnS7ijIlJnSkXVx7/t+WWYXizmoAkgPTff0+LTb7FaLFRgZgns+Htb7YzmEaPOBZGgOx/aoRAFTkZWM3PfOWDTKlPXSk4KirpYrbg+8bbnEzWbf7joh7nywNrt/amLodtvDEIeudzFG4451x8FzVOZus0NkYlcF79kUh4buPuW5uVie/fLXvz6rFjrG4/NTz9Ttjs516H3vgxB1XUd4XJYzQ1DVBfdH5/tyNQ80qEKw65tjl+UQAbRvV4szjc67rtDaRomu9323X2/6JrBoJ9QOYR+f2q6/f9px250Xymfq2Lt++5RbgwC5xeB9ZtWbq+Kw2dwsZyW5LA75nHMBOD5z1Ger2pfSGW5Qri7t+RKax/sqn5ms8LmJZHdGfXzeB8auafq2EXYYXfSDi1gUOstMpk2mlJCEyDH6EPwwuBiTcxhk1oiPASTEyMIqhdqpfkJ4KvYkEwxUmJwPU282jR0HIoQ4yoAIRUZXHo6iTSE4lVd84In210pba7Iit8ZqrQmRCCX1k3MIISSHRo4RkxQplUfGUrgQYSKoxgL82CKTnJMBEBhQYYpmjJIGtaJRmBuNIMxh1KSQSrLtxKMk2zqBADJ+HgIl4+9g0iimvWk8JkdGYeYAHJUiCTEFUK01EhEaERitCCQqhFRvGh2JEIBZaTUKQWhUv6ZLkFhxlbY6kckFaKxm8fQInvzQaHJyE5jQKGIaw5o+PSGOA1gQBU+uJpGZAdKE3iicpvYmBZgigbGlixKXEEIIAZRSEmJR2EVdeucgBgmRY0iQWAQIiYRiDARIokgRp+FDyU9FFNJJIzEZGckEzJJUXab9BhFk5PEAgABJMI0jRQBN2rMgSpGXPoQQIyGYjJhD54ItCqbyx8O2+ev9f/il+vXbS6vi3Gz+8Hm3ccHW867vbGZRG4jB+QgC7KOIAoQIohAFIQLqPBcDrXcfn/h5s/vh0/HP33/5+u3821/eLhblm/PqZpl/Xeu5vfvLut0HDKQG0UQc3MAswqwUMYB3rsjzcUmNFgCoSI81kHRPphRilOsivGyaP9vMxm1u3FXHIbITdfTSQoTjXcLTbjnu35SgECOKSr6MPkSlKN1cChUQicpY1P3Orw/h83r/zXX5269vLstwfVnP63yWP396bjbdDjAzyiarQ/ZCyiBRiMyRAcEYg4guhBgiAWqbE4jKco79/bF9Omz/+nF9c/bpu3c333x19fVXZ8vaZDYHDRCiALpkeoFeGWOL/KK8Xt0u320Pz1/uHz5+fv/DUzlbFLN6sTr77c2b4+7q0w/36+1xu11//HB///Hz6seHejlfnV/MVsvF5aXV2dJkeaH7oAZhH8EHpwAEk2t35BjKPNeIHBPlrIEwMiilU36Fo3pughTjf/HVuYWx3i9T6TmlVVMUOVWoT9f2pRf+b7ia12hmXNpTK/tITr1087/S+U2vOmmQ0uFxkkkCCHOIvjB5UZbDMGilJTKIOBdtVDdvvm22zZf372d5Nl+sDutjc+Q///591x4yRUbi08cvDw/PJqsW8zn3vHvcPP70dPEW9eXFxfPDQ0CsK5MXhcr0ANwOvSHGCDKIKitltBGK0TMy++gYtdagqHOoVXZxcdttdbvdgaPZ2bUiFZlBjF2c57OS+4OCHkPP2S5XAcvCqyo6qWZXZDRWc22qpS1rUEzIOguiojAoCZFFhIGBxJBKW0fau0IYSBBRAUFkVkp1fc8xmEIni96hH7a7oxuGsiyVVo14UVUH7dN2bZEK0VpXy5nR0nMEpaxEtd8/N8fGKDufLfIiA0W2drEddkN43ncYGXnoBz80RwW6qsrB9cKUWys+drsjlSUVUSnKihxJH9thc2x8NHlVBGi85+bpGDwDKjIFaBVp6Lqu7QICBBELhbZU5yWgPu4PzfHoxQHKdnWpeqtA14sra3Nmv94cj/vBRN82TT2vAMQNbjBuUZeZIYj+4vY8W1VdlHldzlGtnw5N05ZFvirqLMp2s908buvZsppTZPn041M/BNDZbDk7dsOHuw2aVhuM0S0LqhaXn9aNBXGOiUI5KzT71rmazK9vl3duvVLussrd/pgrrHO737ftdrMo1VfzomVxBt+sjISDise51rlmLAuH3LZ76XzTc9e0HIfgeoLIzMrkpPOsqLTVzFE4+sH5GLwPIXgAISRSlNZmCIElTksGTy3SeFo6MMlMZGppmXKPkXMQQaCkFQZB5DQ3GxEjQKp6cRK6WGu11khordHaGq2UUkQIEr33zjk3DCH4yHFsaMcEql7eN+3sqEREpc1ydMRIPd8pNCARInNgDkRotdZGaUKFwhxiDCCg1GjcIpC6l0b+aCqmEQECAk1OLQTjXC1EEmAWRECRwBJDiAhACpiBY1RKTYk+ihq7cmBEUAiQGJZR+pJyShxP+NT5NF4KoakxNp3nMdkHUIgs08R4GtP7FPhSnREn27epTDZSLyhAJ12njMIFTv1vgMngetIhc5rjDoRCEDko0iCS5qCDxKHv9ttDnltSlBFyjACEREqdGpkSJEaYICxOFA+eMM7pK8FLLjyJLHBKntN9SC+9UwAIJCgsTIq8Z6VIaYqRgYgUio8YGZWw1oHLh7b5//zrp91m9+vby//7f/zH+vd/+uf39/v+SMrGCDYvwPvoPAGSxoTUNIompQzGGLvAkQOA0rbohV07NL7def9l15zNi3cXi3mZV4b+T//wzdnD5of7w08b17cuGKLMsIIYGBQpFq11jBDZRw5IRDQaaSKOvqLj5JCR4Jo21rFQ9sI8TL+ffGRGDck05fyV3nayG8JJE5/24qnDjl/uN0nTdtPbogARGiawCjRzXLvOfdm3bbhcmttVfbmY//a76/Oz/ofPz583zbbtxBYqy9CaofPiWTBqIqM1A4lwWRgXfQhBEDmp8BVqssI8uPBx579sf/zd9x/f3dS/fHv17ZvrxawsqkIXWWYBCAIHAe86T1oj0uxsNV/Mz5bLT58fvjxuP/70kD8fb5fVqs6+/bvfXPbu8f75/svnZr+9Xx+f1sf7j8+z2l7dXl7dXpbLVZ5VWZZTNTsGPjah7zqVmywvQLSigiXGyMZYiBinYSYSI4+dY4SEKDzJ7iY2EyYN/wsOmZye5NWt/ArfTB3sP6N0Rqei029+TinhdLsIvPA9f4OWfg6dJnJ8Og7DqHxShkIaqeSFfbCZVYYgUgC5+Prry8vL76//Zf9wt9s3xxDOl2Wzb/dP21/96puiKDb7npSNAihY12WtLcR4frPSQ6Aff/xgZ9ntzY3NGJ2jvOi6LpBfFBZRH/c7Uy6KvBo8DU0wxqAmrUkpcH0IQLnOzlY3u4C7zbMPYX5xaTMrYCJrAJtVC++cUYDLHiT2SodIGrQFQJJBUFkL2iQyLArECJ4ZWUjheOsLEFGSkwpyqvono940JFwnUTzT0LssM1VRWK1df9AqU5QVRQk8uNjni8vAOfvYBwE5zIqqb7feD8bzwlbbFtCs3t3cXF5dMHhusjNTOsxbF0Cbfd/5rpFBNpuDBCqavqyzt2/eFNbv1s+KYG6zcOwe775oa5b1XMshOKQ8z+tZD83gh6zKhm3rhzArysXcNK2A98SKI3vvNIjOswEiiWgX4xD6vg0u9muQ7of5+VlAq2crYC+HYAouUcA3BKC1BQQXISur2pZFqewy5zxHW9i8rM7QLJpwdCr44XhsDsfBx+MAYrgeuBl862wnJivmvly13X7bqdC62co2bWtBLcpwfN4XOoK1PnKeCQxBo7N9n7X6Xa0yFW5q8ip3nbu6WK6W1ecfv1DPqznZ9oDWZM1aF2VxWYEP2ns9WFiLdNBv+NAHa3UcBtd1SosmY43NijzLLCD33RCc88Enr55E2GhNAIIcBYAgCsQTZSqY7PemnAKEUufOBJt51AYiTKiEUivKuO5SzQiFJYhLemVEMCZTxlibp24RQkWESiuJHJxz3gXvnBtCCBxHA0MiGnfpNEl7lJUCTGlQKhdNdh5wKpClOdoIgAIKyRqTWR2jj9FLjCnVFlEpQvAY9FPgEZLpUONoSsCkQJ3EGJPYWESYITJHBEZK065QaZv8/zBNQABJ9Na0LfGJFJ9CXgqSctrJ0rml0YcEcWqlS4KeiY5Kbs6pd1pGU4DxLAFML0rGgTJpYUcMKyjJGJMQhAUhYbwop/aUcc9kEHoZI8kcgyWlEKN3hpRSMjgfhUPgxDQJJFcgBJDIrGjcpZPoGmGcQ0JIMJE9E/qZKHp8tSGc9g2ZNozxdhORcXIBg7BEbbUPARGV1iIcmYFAaXRtywBVXZf1bP388J//fL/u4v8ly/7xV28uzmb/++9/+LDZiVl4p8hYYJTgmFkpwwDJaVowsmJIM3KForAyhlGOAeOe7vetkuNZubk6z35xc3G9WvybX91eXp3RP32I7baN2nUQUKKQsblWHJ3jGJEwiqBI8vtOsJNQ8ORQAImVhKnK/JLe4+RUc+J7XiiIEf1Mp27EP0mAkm4thvEKj213py3zJLUnTSziOCIgATDEorTeIcc8Avz40H5+GJ6u+199LW9X59dn5aIysw8Pf/rwdAiCGkGVJs85iGAQYQb0wkSIyclCUeoaSJozAiJjMCtE2HX9XdM/fr/74UtztXw6n1fv3lx+9eb84rzOC9KKQBFg4BgZolgUovntxeL26uLL5seP9z9+evjj+8eyrs5WIbd2fnGTz2bNfj8cD+un9eG43633j4fup8/3i0W1XM1Wl+f1amVVNsNstSqPIRz7Y57XijQJBed67wVQG2W0UUoJBI7AMk69RUAQxlGVfCqM/Q2gwfGS4KsHQaaiJoxwaXwavGKQTqqi/wOIM4HcSXONI9/0N0+WMVmdANApIiBFESWkUIswB1Fap1GLkTkCKK2sqfKq/urv/s1jWd6//+Hs+syAt8u6LgoGY7L6m9++PeuH9dNzOPTd/vDV7WW9qPZh0B8+3z/fb27yN4xZ2/QweEtV3ztdQGYti8S+dx3TCosiUyYbBocsKFER5SV1ngNQZvN6dTYMYb1ei4LZ2ZmxmaDEKMJA2jogb3KlITCIIUUmRhGJQwhKUHxMtzuLIJBK+RAwIChBEIGUwaWJaClyIpNCECFFIGwAWVHXtM5387rKlT07X4gi1zMi5lk2dIMAzc8vgbHbN08PW/+8X+R2CFGisDbeVDaTs8tLbdXOHw/RsVLn19crD12zf/j4OQ7NanY2Xyz6NkTmvCwX5ysTj03TW6tspo/SNodjXZ1fXVz/9jfVvuGotC2zo89MkVd5XdlZe+yRovcOIy/nM2B0nilmZBSI+BAVoDU5O1BkI3g3yON614HKq8qDD35wSPVy9e3lsj8+N4eNsEQPru86H67O5/NZETD0fSxzi6Aco60XmXLxsD64dn9oFhcXV8vV8dA9bTd9BKzy3f0OoA2F37dDBLBWBxc2m42OrHab2PQKjS6qRVUH19RGh5kZ9ru43ZYZzY2l9shda0gXuS2lyN5qzQPxECDk2iyXdX5+1ge4/+GO+9ZaW+rcKDkedh5sVirmgChG67yoqvnMGO28Y3ZDP0QfEuujFCmUpEYOae6iCIAopFHFPEbLtHuPnbdpx59EJlPGOS7EFLb5BJ9Sgpe0MEhESikkMspYba0xxqCIUigSEMh1Qwx+GAbnXaoEEaIyqU9IGEfl4Dh6dGzYPiVAU8cnQLKgHnf6tKkzK0XGGq3IGCIUBnbOISIDqmm++rStIlKavD51Wadi1AjmAHEaJ3QaQyEShbVSDASKY/DMkSgVFAhITdoAIRxZq2knR5wmD52y9QQZE+E0ct3pSuBJAzB+95GemVSaCSwBTD1D41Y5giZ61a4CIzuABDASdSP7lKoklFDsqUVLBEUoiBCQQlKE7D0B+MEDx7K087oixKZpBDBE1oVOVpKkkE4ffer3Hc9z0l2nr/BKTHp61oSpT2KLV0+QExI6cXEjXwciStHokjD2i4siUVo4AIYwIEVVugz++Nh4/4f/8N3bb97dRvb5h/XHXf/UeJ3NGRhABEmhaERgloig0s0MIhyBlWgXAhGSzXqgoRdktx/cuvdfnt2qfvzlVxdnq9V/+IevLs7Kf3n/advHgSmS1hwBhFkcixLR1ggSA0tM99S4JCf657QT0rSo5CUdeaXvmfa3CT6+/sFXz8CJkqDpUeGR/BNB4HHti0QvikaYrzTGIN57gCjCg2CMZmD58Ng13d3DrP36ZvnuevWPv/2mrosf7/f3+2Gz6x0bW5R5bkIIIcZE9XFkZCYRJCQCZbR3ccxwFAkoUxDbDImPMRzuu/cP+7/cP9/+WF6fzW4vVm9uL+Z1aTPSuSEIwbnAaaXR2eXFYnV2eXbx45f7L8/r7z89IdDloqxyuzg7n9/c6NXmcFxvtrvN83qzO9rjYf7wdHF/v6hKW1SLm2tyZ6bIr2Yr76VpjiBkrTHWRCDh4KIDFmBBQK0IIUnXTnnXlC2I/Oxsn/700ouJL5cLJnpohFATgJGJuf3ZoX7+83LxT5kTA0wg6oSJT3zxVAl7FbPRhxAg3dyYGnBFhIyKnoUDe+lDMFXx9te/XqwW27tPzdOdZpF22D7vA4fFvLh4c3l9sfj+9993W7Xb7IBh75x27Q5FfCBVLIyOu+e9oyEzucogKgwuGgLftLGjKKUmAwWBQgEeul4ppW1BhMfQV/O6ZHGGNvtdF+Lt9S1pRAXC6eRHBNZAilAEY+hcFABg4RiRiAJHTSQMRikZTVyAOc0wBE6qTQRKWcd0KhGTqcdglSWr15vnTOvghzIzqoRIABF91xUF1kYdm75nn+fVfFE3TTG0h15byedaV5ydaSQF3VHaIYb7w2PjPHEhrAzqIrM+DF17vLo4X11euC74zqEKm/3D9dwuFuVivqjm89495RqX54scyyJ3t2/OhHQQYbVyMVjI3379JoTu+fmha2jru+iGMi+V0dyDl2iUza127eA4VHXNwi5Gr+IxtP5oyDkHnoMvDM1tCWjr85VY4hhV8EPbDMTBaLLVsH/eHu79saGyVGVVVKWKXuJQz21Rl/m8kqzwwTf7YxRz6LrtZhubASlDgHlu2A9D2xeZiT4m+WcMzmJW6cDcfX11iYHaLMSuo06M5t3zgTTMzs+O22eKdFbNIGBzdLNVNb85KxZLBjIMCI6wvX27CH724/ePs5XdPA/OK2WUtVVRFnlWaW2cGzg4Zh8jo5BSIxYZnSIEQCC1uE877igrfknCAaYmcoBRczuuLHn5fZw26HHZjfx8FBJBYGQkRYCoQDBG5h4Qo5fUrM/CwYcYQorfU/FoVPaMnIhC5KmYM771FL9PVAUkgkMQYZxEgaKQjFVaITD7yBxjQgZEmBQ8p4JaQlKUNm0SACFQ6chTXBGcajEKQIRSS3NiMpIF9sik4OjdIjBtX1Nl61RrADgBgxe6hU5QB6YxtpPkSCash1PJAgASPTbxJ5hQweltTsfll0iNiKgQGBgmu5BEOYzjOpMwaOTz5QRlCRURAQeNnFsVfWDxRVYaa9um2R1bneU4zZpPYQRwLDcS0DgVFAToZLXyUoObkuHTJjHdWP9j7E+XNt10I783JnKYHIwijF6MUYzVCkEbjCoMXTu0XV7Py9oO7eGHY9P+9fNT7766nP+f//G7f/nTlz9+2TpyPZNXBKSnqmGyjaHUxa9AJUU8Qxx8EC9IpiwrbQrf+73w83awx/ix/3x9tv43N1df3dSLxVf36/4vH7brzoXAURQZpbUmZCCQxLmJUOq8nlz6BJGRU7WQXvay/78/J6JhLBNPJ/j0OkRkiRPncBIWndZ4Ij8T5GURiXG8KWNggVTZZK0UoMoWJYDv2/bzzj2uH57a9rlt3l4uf/Ptxbfvzv7w1/t/+evDxgfNFiKevBmTGEijSvMBCYkQM5sLcOAQgkdEQwqUAhIQE5WNMT51Yfu5+ePH3aJ8ur18fHe5vL1eXJ/Xq4XRudGoXO8ieZXn1sDXv1jdfLP88mn98ePz5/vHnx63lBVl66s6L3Vlz7Or6my+vDoc9317XLfN9vNR87Yuq/LTuirNzTdvbr7+1po5kTTes4gIKZUBCjOyCCbDNEiOPgLy+gZlnBZ0enjENi/rHqec8VW164V9g1OidVoTL5f7f6B2EF6OK6dgcuoVPDXUn0DYBIhGkk8EAJRWAKiUToJOAeEYk+8JaRVCBGZbGGXt4u07XVXnby+1G/xmh/bjod3+9ENfz+Z1Pfvu23eZjncf7tab3dnXb3WVm7K4aAXvH7dfXS8g8PNPn26+/db1jc+Y0FAMOnT9c9sRVudn5ayOADGCjxQiKC3KgELTeFesalvr58+43x026+f5fFHWhfcBWJTWEDG4IIRajX3KiGq6k4U0CYimZDQVI4PE1A/CIKmsgEgkyZEFkvkHa1SKIHAgYzHwvCg0kevaDDJtSZPRhd0cGhywKIjz/NCHCJIpOVvOeiPWZDqvUM9aZ4Muc61aLRiHNmIfjEQMXW9FrA71rNYkyipGIauVyO7QDKHJKKuL3CuIBtnFPC+Y+GG3eW53UVghVnWlqjygWJXXJmv2wVXZrMrKyj4+PhlrjLIDSwxMCMYqrUsZcN/2CKqYzZ0izAvJM1FZjJpBm0xVs8XsbJ5XXJ6fqUwVWjXr9WF7EJupat5vHx43j/tjO7t6N6+tB9g3x3Dcz8t8US99iMxSL2rn+bjt26ZDEoM8NPuqKiujm74hkcViEaJwCFjxMPRD1w4bv1xkvtldLpcl1yHL9k9P3b4tbba8WBRVvt/uh8Fvuq6uNGWY1Tlpfdgfs7xs9o2tSRVlF9Gx3h39senyIkNEY0yR51lmhaE9tkHC6Fsj4wRqAEksLkee2BQCkqSCHZ3aQWDqwh1dI6b24xey4tXyx2ltAZ3WnkBMDIVwYFQghBghCEcgAiTCKBI5ntYvISid2H0QiSw4YgASESBSRIiALOMWmzpTBURY0oY4wSFRmkbWRliPbVmp9JcYLEJMs0XTLwAFgBLPJaMwBWlMEHAitmFqwJ74mBcmPB09MBICC6FCTB3NI4eVPALwZydsqnZNJ5nwteh1imI41eHGXPH0wtfgAMdDjfB0whJjFWViDqYgSCPRRAkwjDzRi6RkDLkwVmFSuKfk5QOBM6Pmda6xatuWI+93Ox9Z2Uxpqwi8c0qpNPc3FeSICFgSU6WSCQKOPVBwSp9Pt9kYyk91sck66IXZwJcSgYwXBgQVpotGyXOcgb14ZtGkhq4viwJsdIMf+pZYocqCsZ+a5ul3P327Kv7x26/+zbfv8qL6/v7py+7IolVVICoEFAUxRolAgoQaJVVvhCUqpVARI/UcyUcAjJF0PgsQHw7dcWie7/58Wee//Ob67fUFR22eD9uhbZ1zgxJSZBSwEI7V6AQ1CZL5AgCAIHJSYsN0s71aeX9L9OBYS6R0qFfN0iO7IDzezCOpOb0HnuiEl40Up1twJNIoIT/NEr2LKiOlQeU5BzMM/uOmfdzvnvbNr85XZ8vyF19flYvzP314/Py0j95qg8yotA4R2cWgGE9TfRmFOHXeKQQgZO85ShQmFESFWhtdiETv/HPntx/WH+82yx/019erNxfz2+vzxWJezzK0KMH7IWqlrbLv3rx99+bt89Pzv/zxw0/P+4fnvWzbeVHO62Juyryu5uc3fddunjeHzdPguq73w9OutnG92fX7bnZxc/71t8V51bih64e2bbVR1uZaKRGKYyt6mu2WMplXqGXiL2VcrHK6bFPAmKryL4Fg5EXTIpTpsRec9POfn6Oi03WWKQ0U+FmIeXkJjit/0hIQKa0JVQiB2adBvRIlCiFpBFIKkGhwoR2cINh6MTufFyLqtp/fvn3/xz8+P315vHv4+hv73Xe/wnkOeU1oivMzXdZ1GxGE9of1Po+aj+H5Xq0yiV2ARbU8ByMg7f7h0WTa6D6nM13OtgMPjeSzGcfYHoNVShMyhszY88sLEmoOR6Mzra0AK0RMvbigGHAIwWpNY8FLAESiJ53cPWJiiwlRVLJrEwIEIH7puxNE1GgiB9Hgo8uyLLDzx3ZGarlafrn7OBy8ndUWgyHSOcW+AWOzItOz+f3dQ3/slrnOq6LvBuIQOTzvuxj8Yl5kZA2Vweb75oBIJjObzV2u/eLiqijrzgXAqMkGpryqZwvdtrvILu9Dt+k6x4s8OxyP25ahyKgstvvOGJsVlc2MAmmbY3PYWiWkjAsqK633kQT94Puu0RwxKlQaotXGMEEfXU82csTgCpXl81VOVIPP8my2XF2/XQ6Kj+5geg+tN0u9WMxMOZOsagKZxdLefoVFNcQjZWV99gZjaHvmwNrCen08OH7etxDhaj4/dgd/aB+fhdiawvrgu32oZzPSYkkp9txEi1Doavu0v//0yEOYZQUxk6F8VfmuX39+KMtsNqv84INAQDcrl1pn6/VuaAYJYkwJ5dmHjfxpu/u09c2gTF3kWZFEvcwyuMG5gAo1aXUSziEiThQKYuSASEgkMnYEYerMwdOakiniJinHVHl4WYZCQDBuQDJplcelTgRKIwKNP+k5EpVSqTGe0mQLgKSYFY5IKgk008tOLMTEOSXzFzUudwYEjBIgFefSvAoEQlIatdYcY5oKymnsBgghjSZxlKS5chJUTOoJSeIIAoCkLsKkGCUAGFWQgoAoEmPktEuICHNUWmPSS49SRUBIdY1TFetly3+lDDiV4aasDkaB9On/SZMFUzaIUxkSXkXA9LYnZDTyRlPT3MtGiYQokScCBRESX5P0S+NOmH41YhCFqBBTrVRppTNljR2Ca48dAzGqrCgSH2a0Vmmcy2igMn5GSg+OM+MnFcsYkF+1qoyqoBG0/Qz9jOcvwVZOKWtCaIQ46tVO8JsQtYnMvRtIqPfRFLbIzdB1PHhtSlK5J7uJevNxfRw+/N/+7W/+/tvzRR7hT4e7NjBoEVBKh5imonC6ewGABWNkIq2IACFgYAyaRJOKghHS5lJ2PjZ+uOuGT/7zxWx/XtTffXXhvLvf7D4/t83gWEgpqwgFMCbSklTwXoAVKVGUMDhOkFhO0rbp7oGfgeDpPjgJqk6Zf/rDZGn8spcKjEp4nNoNUabTjTDe/+OBSGmNyvmBkYeh1R6tMqQyMyv8oI8y/P7z/uOXw/V58evv3s0Ws7/79qKw8GW737qAlKUUIMJEKCpMk5hDYAAkpbU2SrTWOkSviQVZInrPiWHN8kJBEWLYu+H5sfnpua3M/Zurp6/fXPziq9XVsq5ybaxBhr7tlLWmoJs35Wr+q58+7374+HS/3m12h8/bwxeRWV1enS3yrJjNVVnMfPTN/hDz4/54XN83m+FutThePO7efH1VLmfzvFTzWet8CG7wiGRSkITX+DIFTBnDx0lIOF0fAZBxethrXPNC/kwJ5gsqmspV0xtMj/3s0r0A49dPHKfPnArtry75SaQEY2GdIzMwx8gcUlU/KfIBRGKgkXlEm+VCigGe+qEocpsbczl/k53ND7t9s9XzvFuc2ay6mV3MFnMXQL95d/Fp3YSBraHoh9i1i3meGSFj292hnJ1VRS16VxsA37nnu91+a5bLfYDnHZbt4uLrd5nJ+kODisQSB22MPb84q2zuGdrel6XVmnwcmCNqJREVaR+dRiRSagyDFENM3pWKQCkAhcKYujcEhTkCkB+c1koAA7PSxirtolNICrW16rC/19bam+u6njf7xkWCgBm5i5n9clh/ud/R2cKH42b9tCjU/OJcsdqDOO7BK8HY930ILvDMKuWlKC9LQnS7td9jVVfzi8vQDIfdToIX0tcXq7NV4UOrwvlsNYes2m5dZEITVBWBTL2Yo63RbhsXURsA3R6Pu/sv/vh8frZcrlaUGSbwAwgV+0NjteEYumYo67nO8uOxV4jKFMZoU1ao88FLHCJq6EI3GFC5yeaz3dOnzz990AFqyZht03pVcUumPLuprt7B/OoQpW8ONuhlsZhV1e75ue33x6en7z9+6kTtd+3VanG2WOaK7x7uuIt5tbAUVXDSDbu2XSzmXXtUKGdn1dlyftwdow99M1itd4f9N1/fLvJ89/wMoTeKgnOK63IxDzx0ja97Lirte79t9jfXl8XZzcHM/vWfPvzr43AUO1vOUes0cjv6NOcdsswq0koRSGRmSLu2CPMYK9OmPv59DKA87syIOMnnpsA7ZRQvLMH0pHHLxNGdblrWWisilcpZqSdLBEBEK2IRQpqKucDAMloXMmBqPR71Lqey9ZRPvXC8mCx8QQlwhKSiAEVKKbRGI4DSJMJpwP2odNKolcbJFhBfosUIWV5/V4SprPb6N2NGLRyZE6GfFppSREiopqxPgAXoVGaaIM4pvqXvIjK977TJQcKDMP1qeudTRMWfxb0EodIXmCLvGERP2oOR3xkJAB49/oVGe1sY00564bkEU/s9IAASCiETgC4zkHg4dKQGP8QoSFoTqBBiqgIYpThGOAmcRlpuqhuSopP0BwRTyWekwH4W0/F0ihIGHr8MMsfJOjGptMbuuRS3iUZ75dRip5K7kmA3eIdOWWUNjT3iUUjpcnU2NPquPf7n//6X37xZ/Oa7t1ld/+7957ujWx+aoE0Eyqva9UEEGJiQogijMMcYAipkxRGCeGZUAhoFkFAUclCiKsB4t+vXx8MC2/O6vFrV87ySJe7b3mHqgo9REAUTtUCKoiBDZE6Wl+PI30nresI14+30UsF82evw9MiEHn+2RcJYRH5dKQEY/aXSFTvdmuOFEWEBYgjaZgRGM2kUBHKRfYiCSiRjynaM3XpYDx8uFvabi6vvvr0x98psmm3nmqHVJjfGICEzROFk3YVCAhI5shNhrxUqnaoUAgh5biZiChmQSENGaDLm+DwMh8/bj4/b9z/lt8v5V7fnNzdnizrLMu1D7/aRIKio3t0sb9/c7DbN+58+//Blfb/e3z1uHh42eZ6vZmWWZTrPysuZ1O1xexDhfbt9/rL7w493V39ZfPft1e3b24s3b02WWW2DligSOUBqEyCFCDxSqSPVI1O1Gqc/jFdqlJyP5/SVFg4Q6cX1c2wWkFMy8IJe5PU1mZ728tC4bmG6SRIKenlUpm7CyVhcWAL7EINR2mijCJA4edAPIbaty2yW5YZQc4ghxggAqIcIXQya1ezicnl+VQVHil0MuoRyKSEKAelVZaKq9aEPA2P0ymbl8pzKeZ1nfn84HEKxmBd25uV5aA9+cM7H/vP3VNSz+e1cl3nsBQCVDH3HaBGIY6itzhezQ+scSWTw7CN7DYScvqdoUiDMIQRgAVBAUwqXxjgxQSoIgM0sMAhBjIialSYQEiKlyRqEiJ47tKBC1EzHY3doneRZ6P2BMfOYGyF2+/2Oqny73hLjyuISWO+3y/MqX5bP233n9ksiif2xO+wVZ0VWW6UQGNBk8+X1t2WhsaqM7hbljN2gFRWLwnProyouV6aa9472h7UhYxTFrtcz00ErSlULZdjGqEUUAgyxBxSb5Yw0my9mZ0ulyn5AEWq2m7bZD0NLZHsfxRhbV1lWBITZ+Yps9vh47DwfD12RB1Tchfbxy5d//f0/Pd4/3lx/E609tm7YHPj5mBf6+rvfsirfPx4GVrGn4XkoNF2d5X1nIdj1Q9N4fNqsAfUQQjsMpa3eXN6s18/rzaNrVGbU/LziEINr26HVmS7yIkR2gw9Dn1tarMqMZueXtfYBSkWYr1ZLhWpohu7YdUMfQG8fj1rlvu1C74t8Rvnsx7X7/eP+/aOvLt/UZeWcD84JhJEKIY2AamJ8JiY8GfqM7nNTLWWEL2PpYdqOYWwnl9QDNNIjgHBaXtMin1iiKVkFAKKU1Wo1uv6+Ss8xCqRqHE0NURP9MeKeieyYVD6SRiPJWMNLvMGodyECiTHBfSFURoExlAyjnfPCzJM2WiutRsUfwsu2OiGSEfkRAL+chBNSmr52EoiLpG12KuGhpFCehlmOHNFJjTGeJEwoJEVDOVWuYJRuKKBx30onOh1LQEAYpolmEwI7IaMRvIAgIKnpzI3UmajUAQHEki56BEnjxBGISUZzxMAvsiqVii9IhJjQ5ChhBVZKRS9tM6BGazJlFdI4pZ550iyNH1smXMap+PriRZQurZyqOqOkfbyuU8gmJEE50VpTlwyMYq/pzoRU2kwvYkCRBO2CCABqnQV2JtMhBOmjJjQKIwfnGZWSKCYzUYo/b9brrnWZ+dVXb/+nb9/e7o6/+8vHNnqPWXAds0pOCwG91hoZIWJkj0QIQEiKCIXwxMGxIKHSGgQw5lH4KYSn5/3H46Ew5nIxu72+ACN91x92Rx8lIgUB7z2giYCBkSFB00ngMZ228Z5lSf1b+HLfwnS3ntDPabWNZOB0z8ME5l9A0XSHvxxlhPCTCAxQYhSEiACGFHBAQq0pSEQiQ5aQQoDB0ZdD89w2hy68vbpYLutqtvzxp4fQbzgCUSaiQIA5CgIhkQYUYoTIjCSRowQEZoUkmGZ4CE3zYVM6kGVZZFG6EPaHofvDx8MPn3dXXzZvrxZvLuqv3l3UVZkXhbY5hkhaa+Lb6+xicfPudvnlof305enzw/Ou6T91ncqKYjUHBPJgZmd5lgV3dtzs/O74ed9uf3dX/fXp8vLj9buri6uL1fmZtYYFI8XAgAQRhVmRUJryKyycjB8mB8XT+RQWIhxtuQQIlQCmcW3JGZym1QwCL50RUwz8WbIzru2pdD5BohOcnYLCqbzzchOMsVWERlUj5lkuAoLMgBgxkVWZMdVFNTjfDz2I5NZarZxz1hpgQJOHEIcwhBCVMgo1aHUcnM4sEGgk3W53s+UyChy575v2fHkRKGsiVIBVVe327ZZZDc0wtABRi/Sx5X64XJ3N5hlQL812ux9MlqFSw7FDKOrFzEfREHNrtIoMIY6DlCkED6IFvDKoAAzSaMvNDIQgNDJdEpEgMkdma0ghxujBR6tQRDgKoBYnoJSSCCKZ+Cy4CtiRFtdnmjOCIwdS1LZdCN5WeYuCQjlQ7oeFJtpuUbzNKxtFXCiQTK0MqmjIaqUhUoyD4+ipyFak8NAFjVm+WGVGg28OQyOtE4TB8Tr2x07tDnBWlovsotnfWXI+h11zIKCiXB6b9vF+E7pdkevzr742trzf7jObnZ+dF9UcdSiryvVDOLYMWRRj80KjKua1UQq9txAN4cWiHJxgpb+5yFYz1bT7u59++vj+npTBbLGJeAR9CP55tz9fzc+vVr2Hz+vtl3XDrve7VrycV2uMg+Fj7vt5Xm7jLrBvD8enIG/Ozi6WizAcP/+4kyK7eXtVL+vOuf1mrzWCIJAeohy6AUIkioDRlua4XUPvvnp7WdUFCLo2HPZtsz5SbrNFBSrb73tFOF/MA2UfPj3/l/e7TweJtmath8FJcIAx+etrIkBNSSLLMUo8qZ5PorkpdJ68m2HMSE6b6+kpMDWOwNSgdCI5pvWVsvJTRvqKr4BRVDsdQRLNkwpRaZTVq9+mKu2JayFEHl0Qxw+Y0MkpFEQJLJE5jgQSkCBImk0qIjEGZkJInW9Kk1IqzSV7tVWM+fSIBxHGpv2XbziVBgAA0+QPHPvahUCdpNnpOJw0QKkkM8KsFAdPMGjaygHk1NKawhmd4iAlAdXrwsdJEDNqCaYPhdM/oyggDRwZE3iOYzoqLCyE4yiP9AhMsHUU6rAQgQgoQkyKGoVWjyY+AWIMEZQyRZHm1evkHwcCLEn6IyKkIcaICMw8+TMlxymUZAiYaJLp84+qhGnbPfEZJ0gELypvIEROkuFTWB87x5GFIe00kFyzJbC44GOM2mhDhp1TktJ2zq2KKINzNjfGzhBtH5r/8ufPTed+tZq/OSvxFxddVD897z5tjwylzivBAIysgJA0YQy9UiahN5UExGNaP8qbmKMwoFKIWmW5iG+974N0T/t8czxfFJkxVVGCUs7F3gXiGNKoClSehcc9cipSwXhzyulOxJfb6LRW4WWp4cQwTitUkuHPSA+c9s50sFG8MvGRU6+BAAEhARIju+ghBqMI0wJTQETII1gnjQKZBYXiHvZuvfmwqvOb65vz1VKM2R273jOzKGUEiAgF2IdICJBak2Gy3018MI/98swSPAMAESKR954ZyWhlDBIFbVx09018/MvdD1/w7P3nNxfnX729urycrWY5uiE4pyBqRVdn+dXV4u9/dfPpbvunv37+8Pi07cLj4yavSgzRHXulhyLTOp/PiqXrXL9/3u73Hzefig+fL87mt2+vbm+ubm4uZ4tCgNphEII0igYhYSBUSrEkwicFE5qWIwBwDBEACUfok6KkUkp4yjmnoHvSFf0MxLxc4xe2dIqwJ/HPmJy9fvnrVyZ9oyQmFYF5HKwTWHRijAhijD50PkRr7MhAC1ht01TpRDgJY3LtF4YogMpGRhYOMeh+27q9h7yWgbs29Avd+hh227rXc0MShvX6gY/b5v7TxaLM80LrhVRwvTxjiJunz8VZ4GPXHRQZI6CzfKEz0w9OWTKL2hhyPgIJIgWWwQelUGvVDp3VujAmdaQkjpFHJIpGKUQFCgMHjl6c6w9bcF5bQqUkIBgdFQ1evPd1lmuGrHeV9LPZvLSSG1VARi6E4EPoV2V57Jp2u42YHQ8Dx8bYRSGim4M4B/sW+mExX9nMHvsuDEBKrEYEckPf7ALki/qiwky1MXi0OZnS8qKu1KLcH9s26ojVl8EfOOujzWMhqjSsC1U1OET2vun69bD9/JO4/ZvffvfmzXfbLnz5spb10PTZrBgEXD/0lNW6Bi1hMZ9nmdkfdxhbieSaY49DVeSXX18SouKhxtZ3x2Pn97uDwrKenVGxaJ3bRzpw/Wm7+3zvo92VNr/b+g8PO9ceM+J+e9hvyLpDFo7vqqwhgK4jojCwRzkcpNCVVbxclLPF4vz8vBk64aCNRmNY2UPrfJTAVJSVsUJKKaJue9Qh+t7pszkgPT4dn/adycrV9VlelYtlPThvZ0UxW+6D/ZcPHz4+Bz1fLXRt8sw1LSBbo5XSQCRCUQiEhUPkKDBpSuElBZxi6InkeNlOx4ITMk7jH05ZSQqjJ/5n5C9+tjqnv1HaFgAmwiWt7pfcKM0yTet/SnVHh1UESGNTUwQee7v59LyUQApHZubIwiODlFZhlHGGD/DoZUSIqRYHaZjX+DanGhgQpNFUDBAnUPTCHE+bDZ5yO0LQShEiM7/ScacoPX7n6SBjj/2p3P/qHI2XIAlUp3M4seYTJ4cv7VwIAOPcjZcfScPCMEW40ZsEAQBi5Bhi5NTZRakoOcowJzOikT8SAAA6GR0JISlCAokhKEUxJt6FGIFIi0AISV+YCmsoIExISkUAIRABUFMDXCpQJd3OWAecqD6YviaO0ftEdKWAjidUh5CuoxLE5IwwioCS8mYESgyCiCyIAIooctTGeA4KIc+teE8AWmsweuAwOOf6EELIs9oD7Lr4u/fP+8ftL98u/v67d+Ws/uc/ftju3vdOSVEKkdY6sgdApakoinjyo+LpEuMoc5NkiwWsIKn3SdAoa4Co7dtmCP22zbUqMpNbhWSBRpPu01WclsFoEzDeqNMdlK77RO+8PDT94gWvT2zgiYxMZ3TUX00LeWTQ6NTEMCpZEABYOJXNFaaBxRBFaDQIZxBBocBBUEEE0tbawjvf+qM/OqfWdV5pW+QFRhmCcywxLUkWUWO1lZFQIaXZHwDEDEAYOGoyQkykiUiAhUUrzchRQgyRBK02lGUo4Ib+uRvud8dPO/+Hz491rt+cr95drd7cLpd1DoKZUYgxL0W/y1bLt9+sz3/4af3Tl82h74IAK8sicQjgHBFpVerV7eryjXdNe9z8tGnujh9/uHu+Ovt8MZ+9eXt9drkotAZFwUWGGEUINQAQEohEpsgxCCvSwCwctVHWlkQ6dbyGMCgEpVVKpJI+Aaald7qMp56IEdHiS+r58wAg0zU8QSZ5RbaegvwUxESISEBGzxNIhmMCgqnDHASsNSm6S+KoAIh0inWjfZQg0HgDaIUpJwStdT0vHx8O2+d2IG1t3js2mSGJsXe74wCK8zw/huC8X+8PaKzNcqO0712Q9rh5Bq2FCZRBUrMy0xCO9x/azntLC7zIK8OBQdDkpdV2Ns+AxPtBoREA753WlIJgZE5sm0qRQiIwZ1oZgu7QHNYP3DZVaYZ+AEFb5kfnDm4AgJuzy+s3S9V1NjpCUewzXSpSLjaHZpirbG7L57jGIRz6bnf3dF3pfV3WlalzHazZtK0oWuiiMlnjwn3XRRlcr7rebbcHdjav56ulAYvShQNH3ziVxWy2wgCKQXG23YXAaOqiQfjcHFcY8wg52nk1b5vjYd3sN0103giyUC+qQ+mD6vdd7B6fKKJ0LmJWXWM+Z/CqWNSltZktZ+b/R9h/dUuSK2uCmBkA1+Ghtswsea6YVmSTi2vxgVz8/XwgZ7rJafZcce4pnWqL0C4BmPEBwj12VpNRlZkh3OGAwWD2mYChby5muJQS39/W73+80/3Q7C7njx/OfZeUN7cP365uRbm8PaDaNd2A6XMznDEla/7r334vgPfdaAWz6Y9dKxGe94etGjPQwuDQtbZv1ne3eZmnidR99/rSy0Q9vn+3WG7PXfP8ui9XBQox9LoZe5EoskjaFGm+vdksFILWhhMp1PPzhYRcrFcMSguZlfn67o7J9N253K6Tcnto4ed9/2+v+jzKtEoZGIwuSsUsyFJwjzKQGbUm6pVMENS0b3MK9nvfj4uChFLPfqGwW8wwsyMYQoIdzKBBREfzn/1t6KAGzfS92x0OaMEACfDLbpbZgj7OBQH1uIxo1xz7GDa5LwgQLDO5Yv5+9xUCkLXsgA6iEOB3qiO4up+x26GrURlzRD0cSzPj5IKIsMmPz0HFEIpHDFoKAV0mjTe6hK/SgVOWjv8zU+2TI8dvhAsiMYTyo0scJpeVpzxZv2vN0c1qg+6ADiAmklIiOA88yDAqZkB22TSC2Nc4CTo1EocBBRMbQz5NHhERyXJI2RYylJwm52JiCl4rV/nRx09DoujEPC5GGN08E61jEC94guauNAcsgkMoOMQACVwxT+SpWqbzPCIwZDIBIrIkUAGzNgxgUGKVV8MwAotx6LW1DInNimc76g+HIiv/8fvk3313/3ps/8tPL01zSIoqLRIeLQohAKVKiawUztElgvng3YVuTQkXsTXEgg1ZQBYqFVkObPvRaEva6kGDkok2mpFRSFc+QRD7mlautKZLopt4ZZp6pxknagXmmn8R6mUBhq8DOprx8tuEP8+wLnPOu/kAANxuMsmAiKQCwhKIjIwJEBtjCSTKPLdGHRvbdhchuyRNUECWKWIxjMZ5Opn92S/sdyTGULMrGiqCzQDeq0FswfgTURyZSDoDSqjMskqyqiNzfG6Zm58/X9593D38Ur672dzfbG+2i2WdMGkzjlnC377frNfbb+93P/3y5feXQ9/2hCZfVIZoMMQ4iERmrLK8TlXCurVmeGna5/3nFD/f/fb8Dz++v7lZrzerPM+qMmekYej1OGhrmUHKLE2TXEomtsygpGXqhp4AU5XmWVqWKRmtrSWXuxjLWgbnTbR2guU5CY3J3RPnd/beg2bPAOwXAMYVNXnu/QSA8LIKvIREn6XkNycKFE5chJ1vnvtigUVXg56YpURiVkomf/d3311GPA19PwxE7Tq7K6pV21yen9rRdjf1Jl/f2ddL2xz3+1NWaAZ7PLuqueJ8biktHr75Js3LXKBou+H5lY8XDeNo9+V2AyxYJPlWVWUuELTuM8lcJL1xJ84zsbXuxGwgJiZkcock+6xBTpWUwH17EYNh043jsPvYE+NgjGDomn1S/QXOnTkbkSRYylYJQGHH3rQXynIaqUgrlbYLFOlWSeiP2t5iqspNsdxs87Ue9Pv1eyDs+Y+++zg2F2vGoekvz7tMLdPbdcIZQFoXqe50N3YG+fXwmkjqjW57oztboAQpMUmIhl43LYm0XBrm5kJNiyizm3fvMmU6KX/dvXbEzJAKIYHA6HEcMEtFAgDicB7t6Uyi+If/6Ydv3r0fLqePv/1rrswqZzq+mqG3zZG6rkpzWS4hKQWnjcw+NN2HU385mNaoTpvh3Ox2H4Vt8rLKEpGzFmjaYey6c53DzW39zaagBk4XqlZZuagSVEPX92OzyLMsq87d8HpsOk10tmWVM4ix71dpITPZG9Nfmn4hb26WeiBmoSGRSdKTEr09dBcsk8VmpRR++e3T5XL6ThVFcfevL7v/+ZfjKblZrhfWcNe0Heu6rgUgWzDWMrqzQwkRsyRlZmLrjoFBf0y0V0YYMBEAxHprQUROGohnyhndlqJ4JufMGJ0M95kNE4WphwMh5jOdrcFhwzf6OD/73WQQfAAwwYYg9kMQxCUGsQCUrrqKQLKW2Tq4IUXY7eWUMQkCcuc5xDQgZ7uHLat+Z7DPNZqERnTPuD2rLkPFgqtozNGCuxJFgIQgZ58nURbBjRssB+wH8cdQl2hGxmjeQVDx0/QAABMRMBnjXSYMQookTV1A1J3w5OKCIfzBCII4QuHoUnCjZmYkaxGF35sd+AalK60Q9lT4VBXhcRuGjDEEDFtv/Za+CCbDUALqgrj1bBoRB0R0pdZDvk9wXQC4nnrV4K4KWUgM4M7BBUTFgIYZCBlhbPskz5SUSqUEzGSVhKTMiGHfiV07gniu1ovHdf6/+7vH01n/68t57NGiJG2TArMiGTsjmJ2LcbYQvCXsQJAAacG6/gsAgYKtTRLJiJwkwNRbo9lISS5bSyIId7QvAAMLRut25oUsaPBQxCeCXTHbV58csIwptoH9ZqqTeeLECXlPLQffm9vR6a0Sv1eMPRIDRhDoC+uiVZKNtm7ruyxzMrodR9Y2NZwXWSITYyFVTjNZFL7qFgOA8+LytNCAmdh6moaTdMnvnrdKoABhgbU2KIUUKFEkUjIoKVJC0Np8OOpfP3zOkufNqnz/bvPdd/cPN9W2rhIFmUzKXN3kvM3E3TL79fPp87Eb2k6CVZnqSBsmPYyHZkwQswSzfJlCrfXY9sMvr/3+8ntdfrm/Xd3erm5v6rrOyiKtMqWSTI9EBKMZxhEAAIUSKCRKFCABiXTbDkJKiciACJLDiuOAfBAmGszcOxhMJi+PrkXtnAHQ/zoBpQhyAqf6TMsZjAbna3ZriL1RNJkk0+0YskpjopEFAERDDMyqLOQPf//QWPnzb5/4ZBiSui6Kuta6ByIaejS6yJIiT5HzcRws0am9FEWeKvV4f28JtDXLJLUSmS1TXybUK0t6bD59NrvzdrtNF4W4XJpLZ1kb02VVntysE4GomF2KoBAIwhpkcFnmbiMOWKtZiqwoV6sttxfuD1kqlIVmaEdtBArFwuyPv/3zT9s8HToia2+XWZLnhATdfth9botaJwpxzHN8+OadPdf9+SVD0ILaxFY5CSuZqEfWw7B7ftl/+qAkV3mRMRdM2DXD69MneeFUJdXaslBsqkWhu+FMVhswRqFS7eEMTHm1wAxMrw1kz6/H52PT9bZcLOu0VKnIC6El7g3vj5euuVRSLDerMpUJDqrKMF29XPoR+tPrS5EuFH6TJ3z7fvuw+veff//r02//YnUq0lyPoxJ1Vq57KE89Hpr25Xj4PIyHS6tIJlnKXafPx/58KjNIE1RkuuMRZZIIqRNpzZjnSVEoKdLN+taqjBGyRAlIDMlFVWR5tvvjuTsfkzSpiixP02VVCaluN7eJVKdUve6fDsfDpkhSIW/ublBkpLjeLlLFqklyoer7Wqam6ZuREyw2H079P314/XAwY1KlKBHGNJNgUaIctXYK3TChZEAmskRCCsUAwM7WCssj+BYwBmuC1AkamAPYCRoorpIo8cMPk4ydSlP4pTVFz8LNRCT8lggbcmO91pQoCaw/esLhEh9j8zWKfJw6lOpDRCkFgJQolJJKSgBAIYgFAAqhEIHBRtzFTAxWBBToTXTfYxbhpCqA6P4HcJgPvdAItrNwB4WAFIQEAoB8gioKp8AcMMJw3GigQMQwUwxo2ro1l1iBdByIAz7VBWJgTfCM2n4rviVjNABIEDJRUkiVJg6ouE46cMEcc8HIl0ENxZG8GHYZzbMzxzlc4lAOuR0wLNifkotBoQJMXp8pQjN3WDBAcLZNUA5jKhj7PXARA2FwRUR2nYl9P30uCBXQuCead895fU0MgoFYEiCkIgOBhgiFEEguoiYFSpkKkYoi35nuf/mXP95V6u/+4cfvv3/ckfx06AFoua6Hvtc9AaK1ViUyqCP/+CkexS4e55lD+dx7MKMxbKSQQkoUgpzvw/vVSLAAJpzy7QUw+PoEk69sGv18teL8+xjrnsOfiHwnFvdfUPQOhCmDSVq4OtjexRky0Xx32FciAGArgAEhSaQxyCCIUaR5KhImC9aOoxHMhCCVdBUfCZCdW5EJvFE1U+uTO8SZcKFMOrj6ve6NO4BVMlljjXXHd0glpMrT3OpBcdqb8Y/98OXy4a9/fHp3t3xcrx5v1t+829Z5liE+PKyWm9Xd7fHnTy9fds15ML1loZCV7LWRoHSvW816ZKmUSLJksRDETXe8HIbX83Pxab+us826erxd3t+tNus6zRIpQJLQxhCQpZEMglBpmgiBwMpYq0drgVWSCJep4kEJRGddPBBuPikexvBUvskLCvdf3GDKke3DLE1M4Vkm2riBFyJC8rH0qxdGzpnhrbi8g5JwLatKUSXGy0W3p9fzpSuX68U6JzBGn5Hax5tK2q5tjlkGWZrvXwayRlrI0zJNEjScKxJdd/jp1+R2nS6rJM9MIjVpNkaQ1ZdhTE2Zr2RjgNXpcrg0x+3D3XKhKEtGC8BKCklExMgEyEKCZAYQoGkYR41pUub1cnPHpj9/GfVwQivuN++bof/y5bVt+uq+3r8eRKXWZUajTnayVr2qaqSu1+f1IlN8qIS5USN2z8PphZrT4mYrpNp1h17ay0Vfzr1udXtsf/791z8+fbi5WeZZWZXluxvdHVrbPZ0PyKzKdL+6udFWb5ao0/x85lHmo5C7y8mM43g6ZpdjelstEco0O416bC6SocAszRKjQGPGSZZyngEri63pjlRlWX2/LRNEC6pe3y4X6XldPt4tCu7Hw2fTF6C7YX9oDodF/SDTBSQCk+yM2XMrX7rxt8+HpjX786Xtzv/w7XtzfsXzC7ZHNOeiXrEeBjNqbS7n1gpZJJAX6WD7U6+XOKyqlQH1vD+10Kk8yRf5drta5Hl72DfP/aJQPzwupcKFGJ6eBtmdIS2BYbHY1HUBaX5pL3ffLO3Iu8Opb9Nkkb375htYJO2lGffD6v4xXb372MM/f3n542Cz5S2ZVI8jw4iJGsiSGchQmiRsrUzQCnZTD0jGGgEKJAKDj/Q6f7XLwXE+7ZndMUWPQ7ZklKcxaQAAnH86xjSCsPRGZIygRIXkdBczufMVAMBtX48YyZ0DIEBN8pe9qzb4SPBNHNyFdYQ7wsOd3iAAmF2pH+e9j7qTmVCAAgkOOoQ99hwe7xHdWwUDE2HQCynnIHEKxhfM8BsyhXAHt0b9G8Yyl0EQyI2AzOTPMfWyzGOeN7jRHaohhJiaEoJdfBHApyGFeD4wCymSJEFkS0YwkjUuTdyNWAiJAi1ZcEnoIVjkkAwB+wxC9FpUCBmSYhnIi1h/GAhGlMPB8QI4HfUFCKGYk28syOEJX4op4jj7Hq6lLcxvm1JkPF96pcyMwX/iwZPbC+LI6s6C9VoUCdmVTvCdE8AA2hiVZMzi0gw/PV+eT3CUnweSnGZloSyR27e/2x2Xm7XKMrImBHUn1R05iDBwPiAAWiK3CBOpgEEbAwgSXekEt6UQ3FEqzmvpPK1M7vjxWdbUpMog2CLhzbX74Ip/Z2/jVzExaMLecTSB8PFr9ozrYqfRzcDOKYQABGQHkihUkmmLXTOoVGZZAkjESOTPFiYbt34yo9/oeaV1Z27SeAzdlM6NwKAMIwITEkqwYIUQCIKsRQDSDJaFQCkwrbIcMmMKMuOl7/71t9d/+/lpsyzf3a8e1vX9ZnWzWq4Wi8fHTZrgqiqez/3rsTk2ndYWhTQKZZaO2hgiqzWwNjxkMk+zSuQLPep+GHZtnx2G357P6w8v61V1sylvN/VmWZaFUkIykU2BiLuxMSCQFUqZZSmjtEyWLAbv2+R7w5Db7N1Cc/PBw5cYIAtA18tGx/oMfgMlz0xWv4QD3MFgfLgnBO+r98JF/sKJh6NAn8Kx7jEU5g8B1CJPMwl366pKxYs2zaXbn47LqkZDeuiX79elyofzwRqtJPRDbyynaVZmBbHt2y7PEoFozsdLd7F5UixKGI1KpYB0tVjkWUKmRz1oAm1At2cFVhpSI4GSvbaoBDEwIRIplNqMJBOywMBCpVIRMXSDzlWalkuZLo6ve+jGu5uVktWO91IK3TVSYQu2QIEwPv30y2X3/O4vPxSA77fLallhgiPpOmGy/cv+WSCuNzVKsb8cO21Bi67tn17Ox+PlcDmDEIdDkyXH+7vtpl4uVbrfv8hOVUVidqeh0yqTWlp5s7EDN9Z0Vj2dmrzIiptbfXlpz6eHdakUCJar1bLrmra99APaFAdIZV6k0q5SSFfJuekRuVxX2aYolUqEQsCFzNX7byolqB3o+OWPP7rD4YUFVpuH93/591qtGxBfTv3Hz+fnxvzxaX9u+kTgcNlfji97HB/XGys0Q1tIuxIEpM+X0yJJJMhj2+t+zOs1E116k2bMEpRgPbT7c6ey7Nsf3qWZFEx1Jr97WK3Xy1ISpumP391JtLuXjtmmSSLSdLNd67ZNs2KxKfp9Z/qxPepEqu+/f3+hru2ab/7xHwdTvA7qv/+3n396ulC6tIwKDYAmtDJJWbMFkEkCiC7IJUC6g7yYtBDBwTOpOcCZpPQiJVoH4chTv2gwWnyT/o7LgMOSnNkZkxT+6r4pxBJ+mSLdc9E9W3uuF+4ERy8IQwcYEKREt/6iy4rIFbOW4aPHFEoK9zCi4CFAYCJEwVfx9mujOcA7b+iH7FHnmPIKIOAX9IQLboupCZiltnhsGa/3usDnel8BpqhnogxyjhoiV2sHgIFCDrBzpKhEIYJwu/lCjrZ3bvmcCox7yMJNGHrFhMBE7sAUdAEndBUjEQGIjJ8sBiUEebt0DhxxwgHR/YcwixPxbGww3TT/KZA9UNU/MaKg+BOEmKlPy0QxUc9zi4NmDgf76wSChzLoc8LQu7bi4RQgVMZKnFj/9fORrNCgyKKQ0pAWEheb2rojtQUghnN1p/5fQ4jYb0RgEABgmQGUkH4YAgQq34q/gx2QRkQCYrep181daDCoJJ4/JpTQ9pPC8/U2fR+J5K6OHp1QEjTiTJgA/BukNaVuOVROACiARZpKCWyJBWOWJZat0ZrICsQkUUogAhpriQn9MXzO9BCRA/xkhw/TKVfhwKaApgW5abVEQJa1QJHKBHyRD2RrAUCTESoBIWWayyRnolGPu7Z9+euXf8uel1W+qeubVV2nIhPAKk0yLHMBkJyb0ZWUQSVUVloiBtsP3aiNFXoUQqoEpQCZIeQDmdfz+HI4JMmxzNX9trrdLO63y01drusqzxMkyiVbNpa1cTl0Ip5ywt7rErICfCmgmJQ1bZH0f4mZaIH49VVu0ISRJ4sOw6q4muCrVzQporiKjtwrt9PEFYhx8hCAWe33A8F+sb3JZZap7HXfvWRncZtsVttD9nR8Pm6+X5aLRT904ziKLJNkF1WVJKhHa7UliUymv7TnXo8SFuvVplyUQthEGNOqapVmVT8Mx+PFgACBi2LNIM6XUUHFoiQjCMkYI13qvARmK6Qc2ZIlFEKiJR760VoSLHKtkUZuu75Ksx+/vev3B9N2aMja/HQZhrG/dG11KdOifP/wmC9WWuJFdzJLU0IkebO9S4tltXzX6JZEr/JisP3+cvnj48ul6UopF1XZt+3zy4ulfpXlrBllslislBV67A6nL9vNIlkmhRnusrR9vZyOmjlJilVZpCJHaI95WaVZVldpWld0Esdzg4w8siEtjFZyKHP1eCPGm5W6f794uM2KvEok7/f9y+smYxp1+9onBDTq9ti2g8lvbrPtuxOuzjbfk/3vnw4fPxy1kV2nFYAauprHYiH/8q5+V69++fWpt6cy0f/+Ya2K8vmZpWVMky+7w3GnoenlYlWt6lRYA0IZmwIh62Fga/Rp93K49NLSX358KFeLzpAochTqmx+//+4veZovPn5+/v33T2IcTNM9/viwvbvtkv7Sid2uL0GgkPVqu7x/zBc3/+u/Pv8v//zHP308jWIhoDB6REFCABMbPUrlwb4hdoecRKkohPJ1KSBoA5yvl/hZBHMffDLHbMVdb5yHq59mtvnXC9JrJY+7vF0hQmlD8LKYJ+3gqnuFkBzGp7ktujN5js7uF5KFAJYxU2Lma2AB6PbGu3so1D52RrTwUE2wD9lEqTGDWNEo8wMI1MBIGHbOA18yOlpmARsGhBEp4vV4MKHYjwQmxBTtPq/sQw6x27jhdqqHbeQ+jO9dawwMvuo2MBFZ8lUtgdGfiOruopBwQy71m4Pm9P0F8HFGx0kEzBLdDvqEXKnMOFgRAmthXgBjZM6nq/jt8QFlX4WwArNcsYPvR7wgiPIZE7IXw3h9s2eloKrRnQcXUBY6FxEwCGQXNXNEZ2JBAqWQUjiiJFmGSWa16bQ21qpEpakSiIPp8yRVaXJuOiQRI3duPjmWsvT+U3Ary2dc+H1PIIQkx6GA/ggwX9OcgBgEKRFz0kAgWp/WyoF2f74ZCCMdeKoqPv0Q/Kmz64NzJfBj9BZMOhMZ/AF5HObNN8Rhk58F4WorICpABCQp0BXblIBsjFCSmbQ2VggpBJETAyBdzNUdQBvbnkKpgZR+Bv2curCyqxEAZEAAWwPIRExSSVDCiTKBiETAo7GWWEiZKSVBlFludGq0MUjPrfl4PqjPu0LxIlNpmiupcpHocUwTgSA6zYxMViOiEkJWZc5CG0NGO0TNhhgwkQkJwZh1FrqLPXXdb5+bKn/d1uX7+/XNZvGwWWxWeZoorfVo9DCMGhORqOBbdQfxIMwIAZNxEVeDD8UHRohYVzCEIBhH3PQVuuHpjUvDBI48gF7GOlcST7mak9XCgU+8JsF5q57zGZRVKec1yLwul+vSnPZ7tGTG/uHb+5T+/vOnD4agKOos706Hz0rK1bKWUrWXFqyu8ux8uehhFCpBlZC2w6XDtETBRutze3l+3j08PCqZjUZ0w1BVedOONJJJ+kVKcpkYor7TIKAoFBujJCiVtWYkMoSoBCIBMFtEUAkJpfICmQSTMMMyEffvNqwXw6hRJl2n244G4GQEfdF9cgKBnRS2rNI0W+TZ0Ax1XmfVUqAUgAkkq3K9H/f742V/voBllaTLRX1iOLfnl+eXPsnKPL97vCFrmWG5qk66Eczr5bJclGma9YN+3V360ebApRBpnhVJXeY5jSZRaVJVRoBQme21HseuN2WSpGwLKQuVL/MsX61EkpEUQLY/HrrdbnuzOrXd05fXoqzTvEg2dY75idR5zHY/f37uzR/74+7QUI9gQFo9NPtVlVeZ6Dp9K8VfNpvnv4325bXaVA/Lsl6tt4ra01kV6f2q+F1Ce7iAprKsJY2Hw2slJRAuqoUsFonKT6dGWbsscmDsLWx/+BYy0ZzG9SbNi9oCvl9ki/W6v3SH9FIsb8dkdRZK1/KPj5+TZPPricdzl6+yLz99/G8/f/754/lsyyytEKUUAsAaS5YJkVSSaKsR2O/OAJDgs/RdUCp4R6LNHZdTgDoYIxRzmRnkZvSThzXk1mHUlhDavxK74UIMiyy+nE7AIEoZvSx16hMmLRLsDIQgFr17xUfHEAQKIgIR8I0P8bij0UkIEVetP/0BCFkIFM6mZohOXgCmWGgxrvNpgAGMoPcYONcPTe4et29FBOsVZ/knHuYwB1+BM6c4wB1EYCAntF2Vdg/UePImsN8m4wveBFuRgVmgP9reBd9CypSXTADo6q1Fwy0CvTBeIkuzFB8P7jB4bnxv3YkG6KsXxHaiAylc6TFOwJqTFHdjgTAmPy8YmWpulUZkHOcvvg0l/Tm2huQP8pxOdPV2LjLEYpseKTqfpnClOt3sWQ6TzmStHUer8kQkClTKIJJU5omyw+AQkyUzNkZJX+PoDWjzyAxDtQH/h2eVd1zgEkEQMUI4+8uyAQcqWBABMwVaYuBThKB4IpqdwxUOKVMcuCtSzK98p8sizp6pRAwU8z95IOI0LcG0YMMeP/dcBnBHdgCgEAKFNdqCYWYlU2S2ZKQUDCBRIWKve+MPgJfT/Lrt9HMsi5Ed/NoJPznVHApVADFaAEiUdO5NJhqNBgQGRqZECZQopZCJtJYGrV1nGEGkSgglWAhrAKwGcxysaW2ZYa6YtEnSFJW0QCyQrSFiIpBJqoQSSqAQRJYROZGWwBrrDvVApVCCITPqsRn1/nz88tosKvluWz/cVI+3y5vtsiirNKdOj67kN6IMlYGmKQhRP2Cg6MFnCHWiAyrhOAtB8n6FesJ6/voVkMtkgU1I3q1dnr4B7wjiCfjM4q0QSM6sME+L7aasl5vBSJWlMkvqkpEtj4ub1a0kkKLOVlLJsekOr6ZMi6xKD2YcLVghVVae2nHUY7Wp6ioX1trBqAyrLEMhXk/t62moioSNsANpYdpxMErIxUqavsTq3LcgMC9SiwbBWk2pFMgklUQpkMhqyyjSTAqVpoWqV7VKobK97k7doDeP26RKz+duJDDWtl3PQuRZDoYOzy/H5rh6/021uiUrJdIiT8dmGI87VeeJNiljmWZjWRsrhtEWSq2qOhdSyxRUWZTLRZEplO2+HXW/rBfF+r64WV+GAcq6WG8U0rtVqu8WH14G0TcMbZLStq5SwW1zbvs2WRnTaWXY9P1waZjVAFyuF5hmh8vRHE+32KxkIohPx9P585dKJE2PjU6HfNUnlUgXLaXPpni+DM+/fT7snpumH7Sps1T0gzIGxr4S5i4XOOrRcs3tfZn+sF3uqzRn+PL7rwUm32zvO5V05rLd3i6IfideVkVWZLuP+/2n3bv1TT+kINXd9ltXBna9KeoqH9GourRZ0V7O/Ujrm02y3vanPVD6w7t/1K35218/HUehm+Tnz/rlDB9xediLomv2u7PF3anVDYMRdVpngKDNIMDKVPatkVnOgGBRGJAKGAjQIghB4Df4IMEU/IgChZ2GDuEP8tocYtiCPeKYpCuEDQE0WYwQNVgoq3O1tuYYaiZ1/T0URLqzPmZJrNPN0RNC4LMlMYCq+CTv7pGCiUlIwa6qCPptJS4Y5G0eAkbpfAAUBhCj7MFLFuTNXEkHRILBRAu+gygC/G7e6SueZE+AHXNVH4xvBLzyabOPXQKE8wmisnO4hJAEMwWPtHOMuaNdPa5w9QIccQQgEft6kk5BeyUJU2aVzy7ywS6GcAAJuBo//vgKEN5OREAK6T5+QFMmd5ClEegEvYsQvFazwXIk1MQ2c9aJ+R+Txva26vVDEbz1G1v03jknsWdOp3hmmMuTD+xuAIC0TtKEra1ySWjsoEEoMiQEWGZjDZKQMmW2SqHbhE1E0p0tEHoVeh/m1JPapbHPVL6vxu5OzwMEUEJBHGxk7YhCJj0WV1NcBZFuCJGfEWcrPl6D83vCavRTGdAghDlyus5tcHR1qcmxpQdIzgUL3q/KyMQk0FXEYUASiImUTMwCLFtiTtLE7y1iy26XMrKr0eWy+H37Qc3O65AxAIBgsK4/ApBdOShERpeHzShQpdItAQFsSVtjhRJMWiIoJTSTCSXLyY5CqEQiYiIx12zyRBqk/TCkquiMK4ojvJUBLKQy1qJlCaCAUfj66SiAlTB+4tgaC0RSJRJTYDoO+jQMn1+b8jf1cFM/PqzutsWyylaLrCwKVGK0aBnJmU/OLykZQg1RnG3pcl44cBlVLiodvDPThq759oOZwL16+WuEM7pwYiSINkvksakdb+tEDrluMmTiqTpTp6ePl8OXRVa9e7e8uV9xUvz+9Lo/7d49vlvd/+Ww3zf74+32ZluVv/z1306HQ4LZ3e3qeLhYompVW2Gf9ufRDOu6xNHavmUpl+vNqrjLVsOXp+N+f1ESyywVwMIaZjLdhXVjxxzASpS5YNItaKMgOb18sVmaLkoWyTBqpSQjGKQsVcWygqFa1Wna7Bo6Z2lZ14vL66E5HQAS1FpfWpUlZSrJDIMZuqbZCKzq9HjuCdVqvVBJejycQfcJD5KGy+61qFcPjzeH/aHOikSAGTvBti6S2+1KMY/DOLQdkOngtCNOctXq/rdPH7NVWi6ylZI3mbwkdGl3QKhkUWVVBrqxY9+Nl679+HLWhKz1YXfe3r9XaaatakYeDbSnoR9+I+jSjNtLm8isWG3/+uH51A/Fu4eDpv2x6wE+HJrfvxz6y8U250xwkWFiW92f++a0LtKVkuLykpAu0Ca6Nd3rt3d3yX/+P1wue2uIdJfyKivz+7x4fLyBvsFxXa3XuVQSVSLzYbQCldW2P5xVAuUiaVudJInIEynS46fj4flZZUW1HKs1lFWeVQuZb1+7046LX58O0O0+7IfnY69l9utTk8oRDI2jRZHJMiMAIqOk0GZEoERKqRIUOVtr9CgRBDAJAmZBhBC0DkYnh7N8Zhw8NwKvJOm0uQhi0iU4Ze3VbbjHr1CcPEjz1yRjg8r1im2eTe2XN0bTNIpxp9842iRTOAoYQUQ4guyMUBQgARgkkqt0HA1eRGS24PbSIgPHsyGneNus8M/Vug7/zJR63IMGfpNOkBF+M9QsFj+pdj9eMQW8IFzM0yN4ysOIADOoUDddMYgX3QLhAxM5jOdTitEpdvZHNEAEXgF3zDbecKAAB9kXwV/U42G2J4E4wVCvA4MjIcBLDj8F+RkQ8dwX5bNbrtT4FVeGTuCkB6KEDyw0nzZERJe9NGvDjyLgRHSOMyBXQ8lv3INEJgoFMGlLAhmAZZbo0QJAkibWkpLCaCNBMDudG7O3Y0I4h0S7ELmNzM3gkJkjswjOQ8YAdoERWCCLYIG4U7H8koyXxBnxlJkDxxldr1fj9PNsmeGM6NGMAT/7IXkKrssmBnQesa33PriOuIIJrvixL08KgpGApSv5g0wc3I3B88TuHp96AoFjp8rU01pgX3sSXOSaXXFv12W3o8oXfDHAAoVKpEDJ1pLVho1QKhOSmfyJvYyWLRAYYJCC2LqdaxaYiNgyIgORVMLZKcLzIFl2J9gKBpBCeNcgMDALQBbIQJaFQMBUAQlj0uNgL5/Pvz1f6hy2i+zbh827h+3tdq3SJMsSS1Ybw2QBBBC40LLjCks+RAoCCFgJ5XblEZOrLeHoEqsZRhkfPa4zQe8iApGa06XTHjKPwp25ZBElcMD3kwT2zD3FAAJbqYzGsb8IyqzVFqrl9tZk5Z0S3eU1W6q0TNUgSsre3d0vpKgS/v3Xny9dkyDbFJve0NAsF0JiyiBgbMZLI6Qqs1WRS5uwUmzG4XJub7YLYMsEi0LgMMjxlFMt+2SZVwYMjX0CI1ljRnHeHzFVS3mjqEQQhpgTpdn2oy5Xi3Rs+sOLQlosynqR26E/PD115/PN9iHL5bDMEETBVhk99JcsEVWmEjTMfT+qjnK5zBZ5YmjggSSP7fnzuhQ/fntXKElNf3r+MHSnXIrlYkndqR91WZTVtm66trP9y+sfeZVnWfr7H39NMv39d9/kZXqzyfqxzxptFd/U65tlvUQ9NidiPhN0vdaUAiuDZVE9LjdLg2M/NlLIvKi6S3v4/PJ4U90UpSnky7n749g9n1tlsgZw1+peN7vWdoOx3VhJVQgraezO+74/8zgWMGbp8mZRrosVGt1ezv/lf/2///jNv/sP//DvD6fXL8+fEyEPL092aL799laMnRovdWJ08/J83m+qevvtw3C5JEqYgS8vH8pFsay27al/+u1jvVn/43+qrTGlBWmhfdoJwVm9UGX9euT/8rfdz5/75zNcdqfGDBYEMZFIOmMzTJIyJUK2AGiFIksGFQpw51QLazQwKyklSibjTj4PrgFAf8q3SzKMERDHtiJoRL5SNk7EIjBaDDJ8Eqre1CCv5Hzyc1SaXmxPiounPQpXFgVOcjv0dhYl8xBivtrQR69CVxAdEHHO+Wk5AgAACS9bhfuBgQGFlMLLEXecJk9acwZYZu+Dnuar79CfRQVRDYQ+QiBdGLjXDhFy+vLUISsoYB33oLARKhzHhsjxyLbo9Z564TXRVJUgtAJMAgNccsc4eX3v5aDPwZpJLgBfpSc8h4MPwPXaOzM8vvRfA06pQzynDgMT+M0kEwTx7rUZjoWIXHjek2l4wBMQj5tUAn/NZXHAXjCndPzHZ0kFZxL7o8MwBJAYXKiUQbgDz61VQiJKKSQBMmOilEupctBIIZLRKJAtSIEwxbp4hhuBmYIJEDCgs0MEOuUdoLyjLbt0Je/zgZCH6skWgmsxF3Wi2ARhQg8AYpLIjFIQuZs5MsQ04xwMG/dYDisMMMxdXOSzQhjMkb2BGYXLSgtxxrgE2CMaB3TCMzAcOT45LDyvBrLEJsADbofeffp0/EGEHMFwirLHyMwMRORTghQgIAoClCit2yzhgscCmIRAJCTvqSN2LIHAkAgQYK0BVwQfBDKiP79OhEJLAgEFkDvig6wTwOQKGCADSillQtZ2hruzeT0PH16/LH553i6zbx/X372/XVZZWWSYCAYcNBtLzCRVAsASBCJptsQAQlkmSQAIUgoGFCgUSgDSowFBDBaEEKAcqnZmgM+t9DzgWWAuZDFsLJiJYODIZggQStOH5RhujVI/MIQCTdQPZZYVSdb1PZ0PiZS5gqRMQXd2QCG4qteYFK3pN48PgPbXn/52eNknMkkVnC6n1bJ6vL8FmTx9fG26vrrfbm5vZJ7thk6PVkrBYNM8Gcf+0jd3m3WtciVYWYPjwCpRiURrEYxum6Hlvmm4w7qqs7RiImNBphmxQMmWxyTJB4K262/KDFk1p8vh0pEFqWSSqnpZ5WlWVZkZembOinToOzR6XWdda8/nQ1FtVJFZ1mW5zLLk+enj6fz6+PCXze3N4eOn9vj78bRbFhWV+flwTDJZYp6WWbJcqi7recyz7O72BhCF5dPrU71eVWX54/v1pemNxHpZ54qVwNvtuuzOheHddnHRUiV5keqH221apbvu1OnLQibVokgULxblw90tSPxt1/z+sr9Y83I5J4Sc5c2hOV2szOsCUUtTpZnpTqZvzaiFEL21bUcX1TQK6kQqwOP++PHlSyar29s7lpJY7PcH2w6J5PvHG4tICMPQfnk6CpGt/n5TLBJGneRJyplNSUqZpaLI6rHTxnDf93aALEkXm+W+7ZvdOckWl3H854/H//rPn19PllTWaTIslUApWKBgkaGIh6M7ny5bRikEkw18SsFkQgxHaSIDBSmJwq8BYI6eBRF8GPOQbuRjnq6fgZJox3oVFv0EUYDN10fU/m9UW5THV37+YC0HJRIbiu+9veJ23nPoZPDfsP8TVRAHM9sv4/AogWiJQmQpaOdQ7utqLc86j1Ne4dVAwvqfj5JDF1zPcQ6eMFr/MMGvKI8mG9qNx5/TztGGc6OO+mweMfQngfi4hTurbEpZDLMZxuJrOof9QgFgTeIvoJTYQ+8bC46kyAvgCew5A4Ddrn4vLF13ZgQJQtMHC2a0fvPysNC76wKVITBQYJlA+3jYyNXc+fiAQIwwHANHeSDo9sdFNw0ggJAqupmcYrChBLYbvEUAIQUzSOEdZiK4Ep3pADBl/k8UDbMWh4eIIass1LZBjsBnQnyBU8nDP54YZUI/AV2ETxzWWfg1Uoxju1fURggLhgERXQXqWVx65k/yCzKESf1mSPDIDcICDyAp/ITovUoh0S522O3FmzGD7whPH9yTgtERUpEc0znqxbmdLSyBFI/PQQGA5EKjoegVoDcFfe6Vq4oODJJdrJ85wAipyOqIBZ3HMDYLE/EZAVQ4UgYQffwdJQGIJJEKLSdkqNHmsh9eD83z4fTp+fV+s7i/2WzW9XKxyLKsSlIiO4xaa6O1YWaZqFQlQiZm1GQNASGASBIh3AFknCQKkEEoZiZGAgolNgI3egng2ZADg0f+Cb5rnM0BeHsZrrFOFPTzFwIwqG60p+NgqQesrJSX57O8aCnEIhcFJrrRzacdy9qYpOuOlQA0mGCqB9aCRuAsWy6XmyRJmtG0A7OqMF/1mCDx6+6EkNeLhbY0ECzWK3OiRpv7zcZY6hqN3A2DkUVZlqkAafsRNOcKSWXGiEGzFZilmSbJltJMSctKKYswDCOX2WigGUiki2KpSKqRxrSuJCanprND+/jukQQyApsxSVNZZQyQpoKIUORlvtFiTJtBqqRe3z+sy0SOP/0rXLqTQPuQ3mdVBcjNOIoiWdUrEtkdJN+//+729pbZdt0xg1G3l1SKTKiiEEVdawGH3SdUaYKcgy7KorvNXlqbFuVQQELnBJTtnsXYrbf3ZSJwuVpWNSbqeO6+vJ4uo760TX85L6sSTHsv9d0yPbenQzdIsMSjGXpETvPSGpFkfDkcP+vRtOfT6bCp8laPYOWvv32SxaKoirYb9GXUvZYKfn9txHZpy1Va2eUmHQd6OZ1qyHrmRZItlvlms8BxIGu262K9/oGTUks4Hc+phMQsq3WdLjYiXX34/fy//fXLa2MGq4RAKSSQQrYAwEQoBJEBVyLMWVsEAiUxCyEBRGRAFEiACJKdrA9pOoQ+bXbyVnvO5hkDz0E/eNkdoAeCxAh2oongBAxHpo/O0JlTZbY4Zn7SKBaiYTcVtnl7W5SwTpy7RIvgGhDIDDbYyOzykCbPihsYMnoyIbHfTCveCCwGmNKBwvPnWMy1HlEYBKTiqTWvsXE9Ak8l79EJ4gaC02h2OUJsfXKZuO6GX5yNHoX+tGUrYh5PIqe70CdsQ4y8hLma/Sv8nvHgHYqag72XgmN/HGKc5mUCNYHm/tngz5lCJz3n0ApnjDYL+80oNyc5hnyHSI0rhR6A9Ewtwwyvv4Gks8mLM+GtBR9U9JQkYF8tlINnERgwZHxDmHL26MUzPvnAj8tYCfAmqg4MigbRbdgBYEAWMYQE5MM94BNO8AryBQb3vYnI4H+IHyF44GafYwem72b0nLB04GtAd2huQESevgjBuxSmDoPujKs/YtG4fDGsIOYJbPptVBxSAGHKEwtD8D3xQfZ4tEk0uFxn/EMxOr+jDw78ISKR+ITMyBZ90EwAAhChi/gwsq8VEh1bfo2gYCd1GUAgO0lMwUEbsmMgOD192hyDm08W4E7IIGAkYkSlEiUToIyt2bfjoWn+9vFUZE9328W7u+X97fpmtazyJEuTNBOUJpbIMhgahnEUIBKl3GYLFsISj8ZIBKUSKQCRLRODk/2MJIK1MeGYCB2D3PJUnVmlGEE2AHpfe2CNGdv5C+aflEVeLFfn/eX59VSt10W9tDQu67ISskjkoe9oHA/d8WV/Gaxe5vltlhhMl5s7ALGoq6Iu2vOuGzutrcxUotKRYHc8LpY5WFOUmUJ+GXUvoKorC+LSD2WvyfLhssvXBouFvmjYLGQtAGVVqCqvL5Y7o8dxyIrSjoaUAhZgeexGGI1ExSCOp0Zrqqpyc/9AtmNhNpulSsru0tgRTaIuzfjw7UNWlWMzdIc2Xy5X62XfdW0zVOu1ymF/OJjBIKrL5dLb5nxuN7f33/3wl92Xl8N5TNMSyWo9no89EQ69rqvlqloWKn96+XQ67B5uF4uqGrRtun6Z5yky6xF0e27O1PeS+rysCwu1xDxXF2Ofn36HA5Ew27pcZgg0spYJwn53/vS8P+yOH3/7MJCtWL+rhEKRVEWSlS/n5tPefDzpU3dJsrKo1kCa7FBW5Xk0EkxSpBaZpNrePSxXN82gXw+HG+T1dgs1Pn1+edm/tL9/aKnfLMpFvUar+tSmRdZ04+HSdySz5UKBlaiUFMfX0+puu9iWkJWaZX/eX4bu7pv7pNp8afmffn/5+Y+dUQUpZLIsCCUAi2A8ka99HD36Ljt2ijdxEACMPv7tSrw4tELO5EIWQV148MFBSESdcoX63WefaxIV41dxivDROxggoKQ3Tc0MVv8ew7JxxtZcW4UGryW8s4h9R4KYdU3h7LKo42ZIBXxm7Mw9MIs5wMzkCaVUo23tIABe6WAvKWIsMRCTOfrGcEaECCPfDvHqqtj3q2t4/tSZvxkjGVxcMIjqqNtc/6IW9kDQz/ZEGy+evYNtcnBEzOR+jiDpqrvTk9B5+Rm9tyZawjMdGKNvfpRRL85QUSB8yCYLcJEjk0wDgkDwGRQI7Bx/D2sEMGwq9ESYC35mV+NomgbBLkI6ARlwKy8W0RIBuE3owTV5PZa5+wJjfwBYIFp/MHvkVV/6OThkHaJwqyCgeQ6+oGkwOLFb6Oh8ZU9uVA+TQxxtMkgQrogd++nlDUKUA348bqXAtBUSYhA2cvxVchiGaeMQwkaISSiTm83zBSOEDMM4JUEaTH4djODoanGGVXQ1DSiQGUPQm5w16OtehORtxxhOTroH+D3l/qB7CGlbgAI5+uZ8BtjEO8BBwFLgMTePyCxIAAIKTBDc0fDEYC0IYYxCEF0/HBq7Px8/v5yX5ZdtXd1tlvc3q+3NqioKFFIhITHbkQmJM8EKGCQQoFSJZGBjtQucCXBVZYXnH9+xwG9+hilMp2fXGXbE6/X+p24ht+S/Sp9gUAimKOTYqKHTxtiyqi2xNZBmhaWxvXRlllmZPR2b3blDVZDhU8vb1d2mLnXTtJdj0+yNGbrO2NEKkbPVtjeiTFdlJZMUiFKlhErGdmQjBg2/fnze3tywxtxiKdJhAH3UF5IMCRsSwH0/XHhIBBZljVI6GM4jCgtkKcsyUS/b52eZppgkqcqNRrIXAi6KNEvE61PTdY0Zqa4WbNHgOLCwYjDm1RqNgBku9Pn1/PyxuRy3m9th//T7zy+Si/eP//HwxL/8cjp/Pt1sVquqRMZu3w0XTqWwYHmk7rhvX5/b3fPr2Gzv/veQJx0dB8Gntm26gdmCIiNM17VmBOJcCcTuQj3tn5/TRf7+m8dVUQzHXdc2N9sHpem33z+02ujTAU/7x9vNYru5SzlDs8pUvqCmLne31X9/6v/b7y8ahUgLq9kMwyIvt3/5vrDj+1WxLbNCgTQ2T4vGmpf9nsnkRTKgacZ2ZJuiuRyPN6nK83ywVpBBSImV7u3h8loY+7BZDE0nVNL3fS9P72+393dLkcnd0yjTApNy3+P/+98+/8vH40GjTBQIJr8FQrg1xGwhLDhEMVmqzvsaIimOL4nZJb6ERIsojTg4hCepFLXMZADi1btg9PsVHBh78r7Mlg0EgyeKOt8MguDr1TETV34phpBQvCaYhm7Rcew2BoXmF9zkkb3WylH8z3TT7P3Vu3jo/NTDILzFtNpx1v408KilY8YQTnJj1qJzwsyG6RXyRO9rCgVAwOCrvs2UG4anQjCSJ63gdRxGD900D0AQ3GJvezcRJyoRZp4/E3xAQURWwGsKxK457mRfFDjiyLdjCDSYoZYpy2dSzpE4wReC8yt8uHACP77nkdVnKIivv7hi8JkdMS/TyLNt+a4DAT56NBkgocMIcRQhXBc7iqEDiAAggoKHoJNo8pqgQPQ57Dx1N4C6ED+a5nx6O83BbF4YMIQlZ2Of+S0DW0evkiMXkcfqzh0SZQj68Ybr3FyG6DdgSBScgaTQMEJcv1GshHnxRPXf83VvZxwRlLI7cA+AvfM7wON4nevsHM+69MfJ/GOfauj8e55OUcELAEJE8sYFTEnZ3m0Vioz72fQHAAbCRtzHYVEJFoAgEFm6ohvOlmFSishNNwqBKJNEpRkxstXnbjg35vPLvvx4vl3vb26q7brerqrNsqqrtChyIjaWRtNbQxZAqMwpDYVAnt2YGVCwq3wRJEBgy5l38QroTBLJ+zgDYZ2ghoB5IHw7iZr4TiCq0/O+RVhvbt5/901SL0RanY7Nab/7OJyyXCLjIq8TzFFlFlMhkg+fn89Px/bcqW/u9OX0+vJJyOHmbpVXGcLl3BkebbVc3C7Xp9Pl9XAElW63SyMEAlSbbT/0X768ZGmRlXlVVZlMVAqDNWMvRmuG/R5JQCJlmismGnWRpZrs0HdpXS3rVdvvzocz9LZeb0gIkWWX41HYXoEcRzJWm7HXndbDMFr+5bff7h8fMMmzer0ock0DM5X1oqiz464du1GQ2i7vmt7yGW7ub/NykRdVUlavp5Nmvaq/z9OMsc2kXBaqTLDvLkZBWWbtWZ0vbdMM29u7clXb7vLHz78dz6eHd4/bm8fd66vth7pY39e3x7G7DGOj2zrF9+8e3z++Px1eD6/7rrncVCvTNX3TJ0ny3WazAHr37TsluDvvue+E4WUtv//2O6pu7U/PPz8d/ng9WjOANe3lqPOkvFlZsiBFUeb6fNR6yNMsT/PNarlIZJmKw/NBd21VVf/44/erIs2tKQXaVPZtd9kfMKszlGAGe2iy9SKpqk8fX9e3qzQrUAkGXRRyc7OltDaq+OX38z//9vp01pQoQONhDDAChB1c5FedwGnfzSQ1nHGOUcWGCMTM8rvyO+Ak6KbKbVHkzHXplFZ7JUrCIYxvZGqUd5O0nkkfLw6CPPAqYYaw4iOC6mVADMddggOEQXDEx8UUkrmeja+58ygEcYJ8vHLMe0tyZttM2DEK6Gt5PBucS7qMXYKpM74GjBvONEyM7fHUBIToYewlXpF4BkV8r96EI/3zA4f4cFS4h2OR1tDYzPT3T/NqnoOwD0g5dmIOI9h7Ijg4J2BOFHd+UewVB8UYErGcMn+DZ+JczWHK1KbnnnDFpPsnHP6mF+AFtatjNHMI8PyP54zIf356ed7D0HTsr698PcE/jhW3w9xFUsAMwcT1FLKDZ0lL6MeIwqfrhR1gkXMcxYFDCs3EdAF8hJCnmxMRMF1klze4iUPzHsn4rDrPYq5fjge8nys4bkJ7PiIWZnveK/bRNw4MMe3sQoi8iPM1HRw8kT4wy1/y7O5yddxTyZHf1Y50OAgjpnsLo+JIAYN/chKPca2ht2BcMlY4CDnwCBP4M409vJhAY/Sxho8zSTWvk87AQOTqtaJL0UEAENYSI1pCgWCMEQiocrbWsm1G1rvh5dgV6WG7Lt7dbe9v6rrMFosiy2QuFWVkyRJrIrCGpRBJkgOAO/gBHNbyRSB8Oe35Arzi8fjeBwuDqxu9dBEzqD1zsc3uDUhdHfZdpkRZDyBNoljrSyINWnr6cFxu6tXdjWVlur5O1aZSh8PB9q0A3r0ceGgy5L4fs0IYkpvtZlHdvu7apj2XRV6qbNe/nnev5aKu8ry1oya7WK+rsrLG5Hma52WSJ0PX634gielibVlYS4s0X9S5RmAezWXfta1mxjQxtjsfT6A7tjoR4v7hRhQlZDCOjT7T5nZTLorz/hlHun94v1hvD+cOBKqiFCRWVVokMDajlKqoF03bG2urzUbKLFlsFF8ebh++ud/00P+7//xjcqP+6X/7p/Pz06aGFUgNqRJmu8nq2zKpVZKUaXF/Jtvqbmc60TTruhYi71urG0qTZb357qJl12tVrEmmxpx1e25fvmRmWIqh5FEjlqoolllVVGPfKNZiHMoiS9flXx4f0yR53avj4YX7s7W2lCrLq7u6wb4bj0cxDKnEMpESYX/YqbG/LZNXPZy/fFmlySqpRAp3y+phmasExFjpQ2UgL2WmhNDjkC+zdbWpl8nu2DaDLitZ1VVVpjd1JpO8s+Lm/V2SsWLVNy2wUvl6UMuPB/v/+XX/8Wi1yFCwGXopw2HHgHiVo+vYeCbzgsgUYjoakIAYI2qf4EWUvXNHBsZVjFeSEWayepa1Mzkw3ujOq7fR2zvX236pxbOeQvtewjHPEAlixAG+XzGLE8M6DA/kq8eHv6IAnLn+Z7or9uiqAfQBlpkAmC/p6fbZiIJIDQLGiwSHCCh6C4I1Gmk7OcRCL0KyOYS/r3T8lHIFAXxOYwxTA35y0dn8yB7msc+rwNDMhAPfuEnib0FXYXRw+esYAIidYeghEUb1FVyDGBQ5hxDF1H6kbozpxC5i7MdcZ81eE4h48zNOszHnAf9MjgMhiCG4t21P9Jh5j8JvQZVF2Bh193UT/vyKyHPolwzEDHicAVw3IyKsQuFvCsldXoX7s/k4oBWMHZ2W9pQb7pd8+NljLAj4ZVq8gYwTRPDaLFQyj00FGiD4BCqnuK+CfRyeMN2BkY5TbyahEIN4DlSL0BvXSQdBhIhxvbhcJtkTbQO8GpIvgAlxqmD20AjUglRBmNFuwl7uYkIUBBTI6BemhCmZKxAhiIcAcTCuaIh+TQZARmIUAgRKRGQmQkQGCQAEmCSKEYlAIhIiE6GQSgkEd6QI90Z3vTlezl9eukWV1lX6cL+62ZSbZbko80xJKdAQGbSGyZAGFB6BWkAlMMSpHKdNcnSC1vhVcgP7gENIqvM+4Lfyf7Ym3DpkBET18JcfkwQH2752DSlEBrAgcVRSyayQWW406eEkrJLGmPa8rOQmu00E9+fTZb8rq0W9qU5d2+/2377/y7tq/csvPw1Gvx72h0OjVJKkuKhzRfbL61N/4aqsl7nisSepusvYnM40mGSRL9UKKUmWq9vtOs3E+dKcLuceunq5Qcv7189pkchxtLsX0faP3z3ePz5wniSLdLta7D99Wi+Kw/61afXNar1ab3NjyxtTLorh1Jx3ZwSrh54sJUXCqAYziiK5q1aGbQ9Nts5LLn59+iXJ8N3DO5mL8fxyTMwylyuVakoE02a7efj23XHQLLFcrh5+/KGjgQkvp9N4ugztqWvazfqmLFf7w/50aTQUJ0xfnl4vlxfqu6Zpiajb748IjOJ+s15tawZou+GmSr98/rj7cHh4fETbZ2Vyv7nTfUtI1uJxd1Ad7z8+LTJ8vFkIkawWZb3MeRxP+6eyLHXfnhrO0ixJ5eV8LOpasSozkaUM20z9eN92gsdL19NqmSeZuNuU7364eTocPv66M4O4X1ebm7Ulow3+w3/6u3YY+sOeMjEmot5sbbb5cqL/9a9//PPvr5chUUUCrNEwkBVSCZQUZNYMrgRE5Ms7I7M/8RGnanWSgZgnO54jf8YkD44pmTP0Ex+DMf8PYC7kcdbUXLy8eYXY1Aw4TSLACcFJqF05gabmosKc5xBMYCbiAb6+M4wFw9oN6mTWu+giifLfD3pa8+FC9LLPk8TLRYRo9E2ZQwGdzQ0iDCA1iNkAFOZduiL9HI4FbQwArsRIFFIQpTZGZDshFAd94/B40g48E8f+WdPGPwyc5jWjn52oXPxIgWP4j2fNuKa8ZpyPZQrQzXQYYogHoR/kV3L3q7lwHyayu0fNkC7AzIkIb6FTJDyGDA4XHOKgsTyxY/Ks2xfGELHLNEczxpujHcCQYBWfjldD47A2JvQbL/YIYEqTAXBbva527ztQOWPpWZDu+uUvxvlUQgQ5EJYxzuZ7dpnnLJ7QW8TjHCFdvDgCbYzZeXMm8I3HKj4+WU1MnQpOJbfapzws9pw9cw5H7Rp76hDeLHkL41SIeENY6xxYHgP7xKkVHEyFSXDFjLEJlEYqubi0ZAj85BMP2CNSB5sd0gpgFjyDIIKr5WrdSrDgDlAWDEBsLAAKlq6WNDBYa91ECwSVWoJzT6e+k7v248t5s0g2y2K7XtysF5vlIi/yIq8kgrFu1xgpIYRMXJJ54MpQGSFspQgVUmaLBidaAjCEsiPERsRT9jhOS7h2PgfAqrrdns5HoSpOaLT9ZlFeDue+2aHMVS5lIbOEitYIQCvxpb9kaVavsrzI4Kb8g3VeFbJMjbGHsxlfdnVdXyw3h8sp1SQTUebHQRcyXd1UlLAY2lIYmQAJEoqPlwuQTlO1quoFSXs50NCYMVMyRz3a8+XSW+rHIk2T06H9dFouqhIRsyzNylGkoszKRbGo8v7SPL/sTE/l8q5n+rx7LUqZZFmRk+5HDU3bqcVmtVhmoNKuGyyYIpeJsgnbdmg1DH983v/rv/xrVaX/kUVne6bxbrsplBrH0RjLEvokbWTyOh4+f/rXv3z/d+9++MfWUH9oQDdf/vjj5dOXRCXJZn05fvr8/PL0tEOR5ZvHixG7favPzUIt13UFkJ33RyXM7eOdFGNvaFVnN+VDCuM+F2kinp8+KvF+udpUZX00XVavRJ41TYvjsC2TvCzW69v1orbjWZ8P74u7sW90Ozw8Pn7/+NiddsfDa2MHutC728xc2sthf7dcVQ81SCClZJrS2DdsV1X2uH5HzN1lfPjmUUr55cunfFHW6wReBgCG0Q4Nl9u8ofKff//43/726dQJSFLJYEYjmJVMAaRlBiB3ojixILB+ncNM8wMKIbwHJZyeyF4mBInm17IIvgQv16bdRxg53WumWVZJvCRqvJlkC372P4FAV5+8DIzmHoQYHXtREhxLb9vgIHN8cMFrX4hK79pUd7Bm3sxXmQQQHBNRwAUKXKsBCCo+Pm36i2cfvPNqppGDJvZKzfVojn4CZIvEDEJ1NjTf9aukKw8d3HOmYdNkg0ZvCkGc7DckdW1wTEgSMCNGDFNGrRy3y4cZIowJARCg0Yy2sSdh81fkDQ4pvaETIlKJpufPJm5GcuT56Ca1PaPWpB//DEjNpXRg9ED+oAwRMRQXnKvSONEzLBhzvmCWo4TzR+EEbgLzB9XnSuP42Z9yjwCif4TDzcHnwjO2DB0LB41NaMuDiEBnDo90XOoZaUrK8j2YPuNEGXexiPMffwydjZtDg5zx2Uvgj20JzOre+ONIgdhxhivWAcavDbfvckJqAOAxkKuGOIsZejwnwlGo7E6pi3bdRA4Ox6V6vDE3MzzkdoAs+EEwesjCIkeAcJ7uLP9vCsjPd4MyIJGv54SuSUd8B/U8K7CvyGrZOpYQgeWEEMKVUWCWDJatcA+05OJl6HGeBCGFkoBoyZClS2f6Yfyy67P0uFrkd9t6u1ncbOp1XVRFVuQl5DD0gyFDBEIJYsssBQJZFG7rv6vshQjCb3D0yJ98GMG5qUTYPCMC98ZjAHgi62ReISAzqJ/+5WcD9PDNTZ7k43DpRK+tQSnTMlVKXM6nZZ2tN5UZaLWpji9Fc76Q5cOxsawuxuhe982FlWy0OX34XFUnwVoS9aOVImmG/nRpMSseyyRXSWIToa1p2qKusyLp+j6T6Wa5Xtcb0vZ4bs3QNDI1hkw38qhp7NvdUKyq3PTCDA/VdlGvEpXdvb/HTJ5sTy21r/vXzy/d7rxd1SjwdNiP7bmusyTtLesszxY3ayJ16UaVZypBIUXf66Hr6kVdpKkx+qiHl9PlotE0/HoZ8mX28OM/5Mhpo5svu2yRkiQuKpOk/ai/fHySCDfffC+TTZaJsWmUxs1is9putaTjpbEkeksf//g4/P6yvH8wpm8vJ+LkYbVWKMBAVmVppgwYkYJELor0h+++XS2Xr7u91ZqZ7DgiUFku17f3XWcgT7f36W1Hg0rv7969f3zfvnx6HS+CGdNVm3arKn/3cCce1+fj9tPTF226c3tRZti/7NRavr+9VZlojNbUEY+Xdhx2Y12Xd49rJlEUZd8NnLCslJK4XJV1nh56/nLiT7+envXwX/71w8uZIM0QUDADMZAgYKEiYEFkFijBr+LgoIWJ6aJ9GswinqyMqG8iU0Jc01eqwovCaxQy2V3MQkSdMZOJb3VslPtXrbwBU1fhE3Q19UVYQfNXLLIcBDzEvBkM6jN2xfczWp9h2Fd4ZYZjglSFQA2vl3GKfIf/5pSKb2e04jk4Cc26YcbtQh7Jvb01Ui3QZhrPZDHPijAFRBRnVgrptqX408vB1Yi6bteHPibo4KnAIYNs8i1Nk4zRDIbgVZrUbVSIc5LE4MWEaDEayNeoAqfcW5zN5PWLvaKKaV6z6bp+8Ne45y1S8joYXIDEgxlHUkS3MACYScSEfXwzS2HepuHPGOm6D1dOmuveRijs4YOHOdOamBkkHKg1b38OhSNc8tdzUE2AId1mrpHAwQhv5ATM4TagA4E7UAICo81y0TwLOLREHp052rlBoE+GQfQtcEB65OLybMk6Q4H9Fg/XdgAFGLCU67v76Epyuz+IKFAgui1Nbhxzoy7gnxheD36Z6L8EIPalngIwjDhnmiMRV6sr4+yqZ0x1sSfwjxiclyDYkkYAdxyHp7Arjy19FhcRYViH0uV9wcwRDkiuaBaAUlKiYLJuWSIDSgFEIISrrGAdkYRAFEIkltU46rG3bd8ezkP2abcs0+2qene3ebjbVmWZJkWaMFmr7Qhk2K88xRYkSiGZCIDBGiOU27EvBKCQQiARWCbJYLUxYQrcyIUA9CU3APhN+DOwvXr948NqtUj6ZVJnoiheXvapLBb1TbVaQJKc+jbNRV3XQmjdjw/vb6R86LT+559+/fD5Q9ea5WLZj107NEJinS/aYbi7qRMAJnPcnzTKtu//+P1TwrhMhe06CdwfByGyag0362VWqP7S7p4+JoQ527SoW83Hw5n69rzbGTB397c56Et7XCvMacgELW+K9V126frUImvav15I5svbnKzd785spTXp5Uys9CiH777Z3DxsTqfuNAyLPC2rLMszCXg6XPqGUikHTs6DzbbfPiR3uVSyXsJCPb7/+0QwHE4sPylLRZkvtiuRYb18fPxmgIyeDvu8TKHVtrfL7WpZL2Re7XTf6EGKAS/28/FL0+6/VfKbx1VaYP/0en6W6aZerart7Y1SqcoylnjcXQ62z1SSVpvMiKou8rzcvby059PDw/skKT5fzkamz0Mrl1vT6KahVX2/QNz97d+oO99u6pz7gjp7ea4Wmcxx/Xd/ednvz/vd7XKdJb3WSgN0Q/Plw2fQerVaCIGWrEUJOfRNN5y6Yr22Atquz2Q39kg2/dzCLxfzx6eXj+fxuTFG5VKklrnp2zzNrCVGnmraIDERurAxA6BEf+5y9N86RE6ToENfN28WPAoe65mMvlIYk316vchnDnGiKSlnagCjkvkKD71Rah6OuYAMxmvm6ZxfvbxkDCOddGaUy3NlFFX0TE2Hi8PqxK815fxi755BhOD0Bg5lS0KHItqMhlD84VodcuihBwGT0vJq3Wvgqy1L050w+VEgXhb7GgYya3bSdDP1GwZ27SLh+E2ALLOCT2HmOJAklDykN6PD+Da06kV8yOGYgTYf9XDQh5hELIB0DavjCGaidAYgZlwOMRQ3B23z6b3mg4lLYwpH7HRg4+Cee7uhKD7063DTV+wU0PN0zywMOEOmOLXmlKvwT3CPDjwwwSaAmEo+QZ7gz8OAeyCgkciark3hag750LeD1vMUFg6bqdwoY2739VpDD20EhCkKpGQghFBmBoGJGZjY/U8R9Dg0GxOH+WqcnjgWGIGAEWkSYEIIYCuFEIIEC0QQDgsJnk87BiQV8v0R/eno4BZywOfgtgQgCgr+HV8k08kpBoGCwEKsZTV5mIKPjoHRuN5LoSJu9llvHj96bCAFkMOEiKGOGWOQYB7SOIc+EgIwSPQUJCJGqQiYPAi3zNZt6bQGUMo0VcCETP1ou8Hu9pcPT+3vn0+b1dN6VW3X9XZZLKq8qrIiLRjFOJIm8klOZNkiIiohLZEFMnZUUklUQCRRWdJEIGWKQgKQtgaZpQClUnAINuDOyKocYpxqu6lTic1hD2OzvqmLZAmQGuKxtWjaXEG3v3CrpYXT6YCJuHm4/bw/povi2A+fnvbb3o66b5p9rmSvzpvF6mL1j9/ft914PBwGhqwszahfn3diseiPp0We5EXeXpridKxvlnWlPu2a54+v23qdkMkTIYtcaL077u35sKiLEsZVmt/ebyWNEgnJVMsM0GgzZFnZnHuZFCJPEwWgR9WbIltIWl/OZ1VmaaE0KkYp83y5zDY3W5ngOHQMkBZLY2AgZWVhhcmXG6xELpVKpcjAyhyRB7xgvUpYZGXOSrzsnon5+7/7u7TIrJCjYSESXKz2++Ey2LrMT8gfX15P+0PbDVmWjudTZoaF4bLIxs0iBb1ZZ1WpJAx6ZBIgpEqEOh3PYqkwEavtdlVXY9vsds8MkEipOyPT4vfd6b//7bcO8Hg439bt4+072+4GAiD89OV5tUjqquz6pr+8WmOr+tZ249jZg26QcpVUo1XGCjKiO/aX19P67ubdX75bVPXh+fPuy8vy5iGtsEwLELKx9HTQv30+HKD8YuXLYJ+OvZWZyiSwFSCZEYQwZIUEJMJpO4MICtDVlAg5LBiYDYK9F6RFiIdHOY/gXJ1Rds7Q0CRbZ+I8yODorPcqd7rDS5dwG8PkPp41At75z/Pvv37xmx8nNcOTZAyRuaBeooIO6mIy9tw9UTK67s4SNP6sCxOIm8Ubrt8E63Si7aSn5/42/80MK3qpMLsA35AqGqVB0899CCEPecI1k764nk/+Ck1cDfKrSRBBCwdtEUTyHOcG4x6idnzTUCSJzyTgadSzSyb8N0OC4drQw7mXaYoPXT3NKyiAGHLk2T3Tv1/fOXUztgQAEM5gDxEonN+HEXuGuZnBrtifWfN+xc2+nQH+2LvowcE/WyBT21dryi2AmLoCcd/iFViJiWK+syE+NXOUUsA/4XqY0mrY38TXPZnBzJBVzp5PQ1QEfOVkCm4eYmBgS+Qb4BlFonN1WgPeuSAYAFzVnRDeZ2YiBADr7EECd5AtopQuNCakENPimvlvGa1HPihdtyAMVKCrkAM4ufti2hMwW7fM3AMAQg4coqsJiQgYj79weBYnDnbdCOs05mp6PnBJmjEZGwW6E+UY0FeWBgAmBGAUQoqwyZ6ByG85dRXHhUsbsswsBaJQzELIRFvanfT+3KVfjlWR3tTZdl3d3KzWi3KxqLIsq6qUgPTYkzGGGZmFkFIqBbLIEiLWWhurDUolE+kSqAUiqBRTj0c9hAQIe9zm7ObAm/rxH348Pj1ZMF3TFEm6qLfaJoxGpSrLQeueDHPfiUSkwhIYa5uywLvblUhFa8ZUj8tVqUrsXnfj2AsoT/vzLhNFvcgL2RzOg+ktQSJhs1pglmmm9/fb8+U8tsd9fzDnBYzj3U12uy3Nue1NtywXuVHLm2VDI4GpYbzJFousNE1zHsfNcrHIUz1q0hqVbdt+1MzE5WIhobhfLpZFKpm0tVYpY+04XvbHY5akD+s7TLKXw263fwZIi+oWk8xAOipUSxxADMCCQQnM0nQcqTODNZxWZZ4VSOPxvB91pxKWeQZJXpZ1Vm6Hzj4/Pz3x8vJKubEiVbsOX56OKZnv7pYXHN8tilpIWZayXNTLarkqJZnxcsq2m1zIURschyoRiGTIJmlq7bA/fDofn+tqOXbHNEvZyN3T65fX3eu5ldbyZfyv9P+sFyqRcjDQ7Np89S5Z3goF3eH55fOL+X1fZPLbh9tcZIdjRyprIRv1uNy+YyP/+PU3rPTfr5aG4PnL7vJ8klgtt1yJstqs9zb97fzpv37ujyq9KBoskEyUEIlEq0dEhYK0bQ2bBFL0J3ijtza8EKSZOe7cCjjVUgWEsKlh4kbEIK/mqnd6XWsH/LPvMSALgBA/i3b4BBow2OM4F/Ch429VRmzaf3+l3jj2PYjgKJaDAPc/BzHsAUaQOnN189WX1+ObFO9X182GwG+vno9ugiERO2EYNF/fEyHMmwYDyaaGQoJ6UGmhIxzyRK50XLBJeYIEcxQ3H/YMXswSqSMmibZybOUK6/jMiYi4ZrBrTrcprST87oVi6GQk4DX6AZjx1uzz1RO+ArFz5PcW7Uy9mlZT1HSeaZHBp4w4hvJocx63u3LAzAiL1w/5EwDzdVcZghtnNrPezej9hEEBc0wjm3U5EG5OqOjhDXFM9sklk/c0uOVcii75yGMIHXGEQdG48lzJU3rPFBKLSIvR1W1kAAZLbnsgu9xtdn7pCfnP1oxP6kZPbU94AACmKScsSjEREL4vikGEiL4SEKOUUimJiC7IFaJTfhMIA4ckHAcXeCIaeMNCAFJMh2K/dBmQgK5KMYYVLYRkr+shpFq7N8DeYwTRMTfJLr9AmYAYXFYzI8xinxgvdHlEoQ4csPDRO2Yh0KVXAwsGf/IZCEtMZBAFokApZSLZGiLbGRgvfG4uH18uxe+7RZFsN/XNdrFd14sqKwtVZglkoh+GYewtsUqUsNKF4/IkQwECpQXSWgOjVDJRKTISWQaXBmR9FpYz4TiICABEocpFzrqQgtBYIHvcnaAoi2W5uFkqHMRhHMaxvbRYpVUpZSYFjNtV3bQjWi0l931/c1Mvq+w0mIWQCWJvtLFDlqyXdd62jRUSVUJsRj3W6zpBMIjVamG688vz02m3X9TV3c26ytBYSY0lq1eLRSJ4VEhmlKWksev6UbedFYg00jCMqIH0ZX867c9db5IkGYjSVMmEMIE8z4s0OfSMWidouW0hkVaoQ0e71jacMyQjiTRLgRRIJXLFhoAsCQQlLLBlo41hkRgmJsoSNRb5+n5dFPWX/en5eLl8+qKyI7L6/GV3bKmoN/bMSUJ6TBO12Eh9V6hP3WlVFFmSd+25p96czDCc6lQqkCrPytUmK9L9OApphr4ReZqkcHx9Oe+Om3qVpOnucF5kq3PDurNK5nmOmzJrT91f/+1vjw+bh5ulQSHzwmBGMiPT9711B9RUVfXwcFvX6/zYnwZ9NIa1SRLY3G3zVWUEPR8vgqEbadBsjD3sXkfWanX33Mrfj/BlTFpURiKhTRMhjaHRIjCwRSAim0iJwC79OQpi59MWDO7kUfaq0eu5SQpH7R0Knri1HjKIvcMiGugzoX2twd7gHy+Jrot9RkdLCOf7X66CB3ND+E91QmjkK9U1bTyJUbgZ+oGgKKN3+qq/14+41pgz1BD1Ckzo5JoQsxzXmcZ/01P3B2c4bm5sz0HS7B6EQMI3WtMboBDTTTAEI2bYdj7zUZPOnvMG/eBX/cD41xWpeJqwwCMxlPBW2wc8EYgHETN6UDGjG8btOF+Tb47j3nTHzUwYPF+Bymk0eEV7mOZwTh686v30yOun+x3psfEp6YdnN1519i3fXpNn6t/s1zds4pb5vNXoePC6hGNAxYuCABZCH/0EzzfYhx1s4awX50WJxHB5YwFjMIII9SlCyxjYEfwVgRzuD7lgFoI7Z8p/Te450Yq5Jj/PJi82B6G73gvm87sxyj13pR9+iFK70DkxEwjBYC0JQGICJhYgpeR5BJn9Ceoinr0azA0iYl8e0NucAamAq74GMfuHoxstMIVfdM43FSRymJgARBnjw8KUoTs/AzAWOPVs7QtGBMzly6oD+XKpLngJAEIAAxP6fGsmYgEslQIpgMkYY42WUoCQUkgg1ha6Zjg2vRL9l11bfHiqy2yzKu5v1vd3m6qqpUirOpMKrdXjMFogS6z1KBOlJKPARCZuarUeBAhLRExSSeVOTMNJkLltOU5sqe68rxaYqpRaPbTW2K5aLrJtrhPoL725NN3ufNrt+ypdPS5SkO3lVRVrodPbevkrPXdN0x4XWMjVstjmmbkMaaqYbaLsTV1Cb5txJCVRqsE0UtOiyj+9vhRSZoL7RlurN4sFn5vdaSdBMRTt62X/8bUw7SbPvnl41GReTvtT3yqgpMz65qLOCS5SqUA3PfHIPCIyQwYSyepBm6wQZrSd5qoopeAlkCoUJAXLEnMl5ci5GlXCada3OgclSOZ5qhICYoNsup7IsMU0zYGhIWoMG6qNrnqNvx7E337qP/z6UQh8/OFbk6z7UgnGlz8+Qntamv7fbxfva9SvfyyqtL5dkcxej1/a4y4juy2TsVBsYaGHxXabbDfJzSqjVPWMqspkwgR1XuVpdWyaRltqBiEWNw8Pt6ZQ3fD+frF/fh1//YMZpFQGJYrE9HB4bS+H526/k4K/+eGbx/c3yabaDy0tVaaT89NrhUSgR9b13RbqYuBeWZGv1imnq+3m5Xg+DvTJ7v92kX+ceFRlvli0Q4tASFYoJAPGMkoWUoCxntERkXzqq/tbuGJZTIyCWUX0gUGSOrc2zxbgJGqjxPw6r3NalDO5PL2C6vRbUebyPWihINSnZ4U2ZpkQPDX15vUGv8Rn+k0srpkg968GFy+lkC789hHsO+H1KE5tvYEQ/tNMucVk6phPEc20+OBgW09oYU50uL586u6b36ZRX0OUqSshjAgAV1G8STHPghvglOkkxeNFb6b+ejanvxEApxoIMfFncnF/PZS33qYpdDX7ZY5+gukf/Rmz+ye3VHQ+ed51F2JQwTCbnzjcK2gQ/noTnsRp9JMyc46Qr1bB5OD8anK/YuWvLrhaLVeQEEM6z5SSE0gZls0sTDjje8+MwXHDIQVNCGRApnC+RGyOfAPeb8dARIBCiuDviNvoA+yIOwk8kpm2LAAAh3P0KI4phJogSAn0Opu9DyraFhFbOZHkThQJNox34MRIvscPEMNg0QaB6BNGALZkmK0lNMhMCCAVkw0hKr/Z3l9LhOFYU3JxHIc1hZS+rz6ChQzs3UIBwkXuYIBZUQwCwRKQcZp8EfK7kCGe+AHgI50uzuW9O95dGlKnGBjM9XKKsV6Mk+ilFQUflnf8OQNZIAhEi8KiQktkLUtIGFNUrh4nd5a6i349XP74cl4uDqvV06IqH25X9zd1XRVZqoqslAqMscYSo7CGtbHAKFBIlbisaUSQQjKAIQthqQYl4xcOA6hCqUUu66q20vaZHQDWD5tW2HE8Hz49N5+epLF5kRky3aUZ2qHtm/vH5N1q9e++eTi8HH767Xm8NJu8ToCHU5vJfBRZ0/HlPFZ5erva2OfD4XTZ3K+N1a/PFzMuQNNx0Anw2I+3N9vbu3d0eX3+clgtb1Uq2uPlcjo2/VndrPVqlaTpsqyxXmcpksJOSGupSFKRJCvB/cgo1fJ2I/OCmDNMqjzRIDrLUKqz1tQZlAWmSS+T8yguJuE0lUWm2VghbYpGCGEIybIgAOxGUlIAQZbmMqtGYzXRy9P+cDydTh9fTpeORK+T8vHHMs/VcnloTk+vx8vp3ByPqbWYJ5gvGbuyrJfbfHmzumhTVQnqbJMUtZLWtKfjabG5I8bXpsuqokgg6YE4kxZ1klpWzy8nSGi5rfNSKeAf727F5u6vv366WWbLXNWlXKh8u1wdUvXSfTw1bfLleWzPFahlXYAAkSnMin4YWzumeabK1I6jRnVuT6Lu6mzRDWhBPnz/Ld8ZlRWXX7/88/NL31w+NHjQSjPQ0CWStNZgAVCBSKy1iZSAbBkQYp691wSxQgNG0xr9GpzEarB1ZvoCpojDPCdzJq/5T75782uAEPG6SRY7k3O2Tmfsf63p59pxpkWjzvYDnHTPXPtNuyzfDuENGIMIxuaDja1jeOrXeazhYrx+H1TNGy/B9U3/A3eAv+vrR13F2CKOCvd6mjtFMe0LeosFwv0c1fPbxp0pG/XTvHMYMW248rrr8zRRvhqSn7s5/ScQM+GSmAXxFWaY3en9Fn9CIXdr+D6gGo5RwfBknjcHgVmuWplRLAblJu06XRZdfS7kMJEmjgiiJp7w93w00+PmfD8HItdD4zDFgMCAISQ08wnizEECcbxBDwaXS6hKB+x3XeH05IkWs1lCVEqFTnCAkBDSdXxfvQ8nWB0B9AARIQKxDSBGTMk24aC4MBGIoexzFA5xmXPEC+yP9nEIU0xkYeDgyHaXXZsLwaGFlkmwALDgrQQiJoFCSAHoAjMQA4oAxmcn+axqkEIgSikV+LxkDmAPAUBOIchJhoqpfge704kAAqyFEOYKnjQMvY9TgX5vfXBxQ0CyfhoDWJsWNXtSI/oKldG5N3OLEbE1RGRcSrNEIQkBSSQCiLUGEBIlAhCgYIssEwN8bOyhOUo8//bxdVUkm2V1e7O+2awXVZ5nSVZUUqHGEckyE5ElZjKAgEoJFBIALTJbtyPNVzYHdqVSARiU1XzcDYpWAtJmbM72bE+Qp0m329tjM5y6oijz5RZSqnPgYacsr3PL4/4/PKzFP36/VUIt6nKZt+fzqbkYY0dQY8/2aX+3qjOVM0g7MGmrJNPQ61bkWWYZRkOocpkumoHNCK1RFRYMEixnKl1uN0khj8fX1Xq9rOtytbGWRiFUojiXhLVMCqazGVHIysiq0Woc7apIsrQaUJ5a2/am2beZVJlKui4RrHorOaswwabrR6tVxkVZoiWyhrVhRiGlzDKUAjDtrbocxqfdcXc4vby+dt3Q9wORrDbbar3K8uRw3P/0x68v+5dEJYlQuVQgk73hv72a+n7x3VYtslMqdWmGxHbb1eLd6n6ZFvuXJ2vU4+P3i9Xq0J/tsatqoYQ8NTQMjAKNlIvNuqqSAfuh2efLlZTDXSrlY1VVojlraIRSUFXJaKuiWRUSskTcZMt3i1Lm8Mf+5Xyobh/eFeukbc+UF6vvV7LX4+kEHQGmGcoqyYhB5eXHl6eugZ+b5F9OWWdka6UhIRMUZJisZAHMlpVhYZBSmRo9MACwQCFipClwFANIBgqF8edKiKPsvXp5ETlXibMfIQACLzD/JD34jb796udrfXoVoIpWy/xGni73se8gK2PGSVSiQY4HP3aQ3lPKc/QOBcE0/eChx3UyL86wxtxJ4Ay7CTLNcZg30KYPMSoxOXyv//Gdnv8aG5zDKN90THcKA0APV9n3PNwc8quuZ+D681zfTX/DVxd9DUch5ND67jKENJTrLKY3N1/3gWdXzpDPDG59fe//n1f0kQTFzG9vmZ4ZMnZmVI5q37sArwDKGwgTIducQ96ARJ59N5/YNzhvjmH+By+ctTYLkERoBdePd+95DqiCFwAndAHRCzqjfmzB59e6bczEzOT+AmZLbtdWIEDE/IEbQiCYASAcUzg1LqKDJ1DZfU8zWORKCoUSExEQOD7n6Hbyzwyc734NzD/bWjg9iFlIgcRuQxiRdSgNBBC5wOFM7EzSzm9IFEJIqYSvrcYRW3huDsKGp1kVPkUb2NV59zgSPWxk5unoHg59ZneKcISDIAT4kLt3SAEAimDRzjZbIkFYnA7gvo0sTpwAgpVAZpGAkCj1MCoGt6vdgE4QLYDRJJyHiBBQSKkUAnNOBPtDfzo0T6/9h6dLkX6pq2K5KtarxXqZb9d1WaRpKq212ozjqMlaAyBVhiCQhXMnuiQ/txsZ/XhR7V92fdf1vRRKvux2p/P+sd/crVbQjQqgKNJqs2h1mytpBk5YPtx+kyXZ4bS7X7/L/v7bh8ebFpAztXva/Vv/25fnS15lEtgg93Y8nhvGZHWz0l1XFMndzUolibW8qAuFiogu7dD+9iGBQQrZ6q4/7JHF7XZ1d1vy0PanCzQNlKmwPVs8n4Z6s7SjhW40Azcve9O2A4l2ZCzLQRtuQSDrJGs6aFoNkIyEfUvUjmmdFFWeqKRtz4Z6JSQbo7uOABOGsioZEm2o03zed23T7p6Pr03/uu+ari/Lcr28W99klqjT5sOHL+fzqb0c8zRNMFcs0CKCZCm70f5+sqvMqkQRy7Q7Hz7/8eWPj9t338iqZpn2QkJa9hpObStTNAP252EYu+NFpsUaGXptMZMdyPNFJ3kqlBB2kNray56TcrteNOO6bQcGWxRpVeabKr3LVI1inSf78870duwsEtuxR21B0uL+Zr1YdrujkCi5kSJZ5Is25Z+fD//lr59bLL4M5SHZWFENRkslEhdJHE2aKvZMAoAI5JclIBCxcGl7YS0Gy8ldivPVfG3oTeJvvu7/B4I4iLW5p+HtBX/24j//FFIsvazwx4W91ctBh/k+hswGAHDpQ1HdQbBrg27F6fZpy8bUWJD3M7fXJLWdUTlVU/Tw72qj1ddjDgkEUxmeGRqbe18iSEFwSTPRVXDV+ldQJILb2IijR5zhK2/Ln77eooo/uzgY8nHoHPTvBHC8RsJgaU+fJya6VsFXT+JQtAlnpPezHPa7z9Q5Th3wpJsYIowqxBxC/gNfhdMgzKH/HMDaRHmvLGGGVr+iz/T46KLwcxmnZd7Rr5fan6KfANX4Kxo5tokOEY/bII52Rg0OeaXgGNr956K9GIceZsuJhpgrDODL60zdjMxMxARsjWW2RMCAFA/89Fp7hqUYAMPRUT5t3P2OGGvAhJlxICbUWZ4SvR2FeMqtD7m806LDOIk0xYz8kp6hZz9HHEQHCiH8nLEQKFARu5wbDPnXbnYpCiMp/R1CSLeFDAGttUxkyYZ15+fJH+TnWM17YCjKsVgciKNHjZmIAhtSZIeY7OMHQCiF8EOIns2wGsNxrRimlydfGobkTgYUvrazmxglJARHIhAXRUF2ZGIGC8xSKcGAzseBwNqQJa21Zk6UVCopklwIy8YeLuPBdq+HTn2BIlOrZfZwu14vq826Xi7KosjKPAc2Fq217rx5N0kEFhlcOhW4DW+MrBrb7o/71pJKlB712PSvf3vGu+HbH9410JzOPfNFAqSUf/zjyzB0/5f/2//V8nhoPml6Xq3u/sP3f/fL01Na5t+/v8lL1f0//mUY+4d399883l8Oh1PzabFYZUn68vG1zJfb7bIbTHs4QZoUuSzyare/7HY7oYcfvn9IS7RG63OfJiko1XVa1bkp1AW07k8Zy/F0fjl+STeL+uHbvuPCmodFfmx1ZzphJTLzoE2Hgi1qUJbTNG966MmoXFmF2vY0nszQAhmVqiwrrB7yNJMoBMHx0uyO4+f95fl03r28no9nkZZpuliv7reb5Wq9fXp9/vDpj6Y3jbGWIFusFUggYIGjJcMMhALTvTH/ry+7s07/T99uvilvUVGWi56qM5YH230ZO2X4bz/9Wh12q28fU5W1ZNlinhRVVf38y2+//fKZOanW65vbRVVtQRVZXv5lkwJdOn0xJr399puuG5uXF4W2TIUduwsKLXHssSjz7e2dYnj55VdN425/5qwiVIvtbfHufjE24vTSDXQ49b8f+p9emr82RcfFqAqTJsxCSglgnKwRMiVQIK1bQAqRaBBopUyJrRBiMsk9OGABoQSvg0DBwfMm/YIBQtYeBr8vTsL8yv4Nlgz86SsI76l5jiLprfgPgjsUdY0yIV47ieEJzDjJzrOv2EsWn6PppflX+Oxtj5nfKOoQ8wttQhQlV3SKZLj2rk+XIeBM0iHCm44AQ8QE0dh0spmvCTvTpkHNXeHVqysjNAxpLXGQwPMuzM/g+nOINFnvb1nAtxmdBzB9CwDByT+bqenfP8ETMQAb02rfggxPovDVfBwTHHhz4eQBcgo8gmecLoTARjDTGHG8sa7dW7pcET56Leb7CdwEiUgqCFkdEGDvDE7O+nMNXMHrLJ5TUEzDneX7sHDul+iy5AC4PR+7oHfQtB5VsFdBgMhk/VyEdpijAHGpP0hEDEDMZH1NGXZ1EDmk+M7ocp0wGFGKcLgC/B4viNhiguteTggEr6cj4T3CiOGSiXLexTV5TwOqnTDxLGEKg7EjULjtsa53IoDB4CkCFMBTIrI3slw5RLLWsNuzT+7ld5YKQcACOG4a84IXyIerrsUiBbTnXdbTyfDAPqtpvnJYgiCieDRvyHBAiMkPfl+eK84kXMzOs5WHRH6YzCz9EbyAKKwlFODqNoMQ1loAdAUTiUEJFC7gqCRI6SbCaK3toI0VUkgWicpEmiGwIXM863PXPr22SsKizO5u1/e3q+263qzKLJUCIU0lkdDGMpMlV/oHpJQE5Mx49b/97ZdUqUEo3em6zAqlUI/S6AyMWKT6ts7z/Ga5Etb2l+bwsWk13NzdLi6756cXIhjZDq+vi/T9t9//0Fn+5ePhj59+t8RS4mDGLFOrRa7SdFjVDKLv7GANAQNbKQjZuOK9qsgwkShhUZXMmLAZ+1GWeb2tQErd2/XmBprBqublad+Zfrm5FwYTpsVykVd8aPvLOJZZkmRFiqSEBQUIFq2s8lKhSgqZJkjDoIe+EJyVmZApkTAsL8fhdGpOTfN8uLzsu9PIrQbSpihXVbXM86U25vPu8C+//t60F61HmWRKZtJXwEHLBkCiEAqFHi0mQsry2I+/NPQD1d/dvF/BIlvcn/WrtnowQ9MNskUrpaFeqe6g9xIu//iPP24fvv345emyP57PjcVycb+wAJ8/vaTV9uGbcpkLYE4A6kXVZ6UwFpEPTy8VKibq+mbXtFWe//jtDyoVL0/PPBTD2O73J8jz89AZtqIqVyrNlzdfPj79068vv57GDxc6mQKLBWGiR5sKlkoQoTVGSilkYpgEgqseJqUg6BFACgBySzjkSGIQqOyF8uQ1fyN7IX4TZAgH0T65Vb56Bb9N9MPPRPeb7JE/0WnXbzh0gUMgexZ5wunHgGwQw/Y0DAreafUo3aYHzFV8VBLhJyc8oki9unHqxZ+RwMGlPwmuAARtB5PgcrEh3/+g7Hzf5l6MEI9hdod4hNMJXFdikD+OcqIge9B7jUvc++thfXXBnw/v63HNv5l0uqPqhLtnjeJE/enfaN/HEOT/gMHmrwC4ZpMZIQ5cM3SgZnAxAEwqgCPx3Xbo0PnZEwBjSeJrDRoRAkxusXk3OE4tOrvW75UKRv68cxFgBqCKfD0jky6fYMxb9Dgt0BluDzHQKRHHewZjxg8goyULAP5UcUAI8RaA6XxaP6Xho4t6EQAQBTwhXYN+y5FXwOzPU+FZR+HKQeuNq+ismRZLgM6OuzxLe1Tkez+lK82JhTERxpkeDCwA5+slxMsRGKQQZC0L721ztqWPN7nBOLTqnW6+f0TOTcVkLTOTBUQf1+PQMUsMU22bCVQCQNwV73FnuGRy5QW3TpDQ0SycYzecXIwOvgBCdGx75pzRE0FIQT7v3J8r73VEMIcdHyopXMlpYkJElBKFcnPr/N9MFLCkSwYHIVEooRLlCGGZAIGIhBCYpAxiMLYd9KXrXo7dbx+el4v87qZeL6vtql6uFmmWCyWji9xYQ2Rc0Woiq/b7S1kVBA11Y7t7+Q8/vH//7W2m2DT79ePt6v4bqwVaGC+n2+1qJHhpDtVNVa/uzSiEkpdz056ashz2z1old9/9/X9iW/SX8++fnlj3OUruepmqzf16/9x8/LyzkuplplJ5Ph0GmTEJQKPyQgO87PZLJb993BZFjos6XVXaDF0/5Osyr5Zg2zM+S6XyotJ6tKQsshaUpMlKlQWzSBQisG1LlVSWqgy6sTu3rUpVkWUZp4M1jTZSYIrZ7ji87treyNfj+fn19dh2reZ+hHK9yctyXVUqkcdze9mfm/7SjwMDGosIicSUCIksoiABQkjrA8BGJQiCrWSZVifT/8+/v7xc9A8lVkwKukK226rgzXI/XNIqf/d4n+Xyl18/WbN/fCy3dxsw7XqR9JulWn7z7Y9/+fzhv58vveK83R/bL59fnj+/v63/p8dbzdWX9ixJL5fVu8cHmaf/9vtPP1+aAfD3py9Pv38aLuf/8//xP7OQ1SJNpPj8+28/te3i22/W//E/cV5c5PD7effr3raiEtVyNJaIlBAoCAgRBAhpmRFYCkFMAiQgMLMUiWFDk4j3TOqEc/QVeKDg1+RXivuNDvJWx0xwfvWaZGOASxx/maR5xEEhwX/eGMerg7PE1XbzYmLCRv7EGWeVCgzoDIBpniY4TyeaxMu1tTjXlJNf4SuR+hVh3uifmFwSf5mQEsYbEaJwm54Sc6ln8p0nxIGhRwjTMyBiVwj2IkZFytcepq805dsRzXQt8v+PG6aZCl62q28i0AhKOgbBgK/anLNPjMxgbDe6fmaY6eoVQcCMSqHv8XFx5udHSvLs9snBw7OhxH5ew6OYaD3XzfMOhgST696EgUzZRxBBSQi+TKAtpKSEtsMRE5FoE27y7UQs4WIlpIQMi8TFXRiYvQ3vHRnsd0KQ9UV2HOhz/h/L4dBP5PiomKfj8+3iOOIQQ8iSAtkRfQDD/R/KbE0vP3M4M28C2SM3BuNtIn+MiYeBz9u8TvSONMLIjeCK9ESWDHE490kJ4VYR+8nD0C8hZjMZEaS7fZoeIkZm8uF68u5nClE8JAzlbSBszg+8NhdJfu2HRCKMK9wPxw9UTAMLoA0YXQYRU9htD0JMZqEX3LOtq/MEd8/mQICu8raA+cr02/6jrULCWXDBQGMEAMECQ7o4ukJKgFZIAeRCd4iolFCAYMkcLuPhcvrwdMwSuV0t1pvFalktl9VmuajKQiEkSioltTaWLQOoerEc+n7fHh43K6CxKrMqU2ZodU9m1GlRkOWXp1172N0s19//3Tcfn16aU50X6c12W683xsLY6yJNu8ulvr/7n/7jfyxXd//2T3/tzs95WiSy79rm0r/myyLJxeux6fp+VT9UVfqyeyVhUKZsdXOxaQLCjFmaMqGSaVIsMEmHvgUklUpryRjdjoazonp3K/JMnw2U+SCEUqIs0xqFAGmNblqCoa1llWdJwgaNkRmkgsZLq4yoAPqme92f//bH6/NpbCm5tKMlLdM0y1KVJmW1StMCyJzP5z8+P/ejTdNUJIJRIKIAIgDLRgghEK3brymEy9eTyIystZUsmOTHoz41p8NCPmT6h+V2efvtIsWhHVDlSbmAKtXW3H3/YG310jT299+qfH1zc9/qg80X+bJatVtZGF7dHfruy7khkciyRqHaw+np46eCxXpzS8RVqnJVFjJDQ83l2DcniaSUWC83553VzYhnreECVWMvDdVbSGtRbvCsAFOGBJklkkC/1CaFLpjJSiHBFa4ABkKJEnC+8QEmbD/BH5dON237jksMp+V2ZT1Eo2KSXVeyZia7r3Xen8CJq3j8vIkIF/zqDKEZnIOJ2EB0F/sSvHNB4kQAOM88RcdUUJ4zo31Svl7AOOM1REO+6v2s43+KBeHPfsTZP/6vsEnYIUsA79HhebdgTu4YfZuFgNyH0FUn1KeHzuaV4SuC+wuuaTtvemKEN12frruCDLNmnQ/f/xA8jkGxXE1ldGSF5M4ZSuf5YANXTOgnIq/IBrP++kmeJjG2I6YdMN4E9npFuPp4VxeHYsehC19T0HfW6SMAZBmQDROhwLj4nCYKvqvJCxLV/6yRgJ8D8GWerkScNrFDYBBE4bInhJAI4HifnXPYxWWYrfPxRADGQAyIwm/dAmCKsCMe5hX2VoW9ADBFQ8PKiWb7xEXCN+fP5XAgEQCmtLtpOGEQ8cuYORVhSIgFB8cVX8349Yz4iYpLOE4cB36ZusmICGLafwUAHAr5OHdHxF1h10IggA9mBQRLFE7wmBx4GCGLZzT2YC4G6Zwjx0UCMeIxDwy9ieoGDBOpkMGlJzAKJOJYqXLm2nQOTwo4G0TEsQhub5XnRe859P69QHIGALe7DaZMKQR2SCicXco0GZkIDCDYcy0LDl5HmIxmRC/2RIIoiaxhMr3tx+bz7pRIrKrsZlOv67LM8/W6rKu8yNK8yhlY1VUurW76AXms61ym4tRczq+vm+0tf7mcfnqp623X0eFZJ9TfL+qbPBNDe2kaAUmeA6TJ5ua2XFaXtumfsJPrQyv2dgVpKuRo+kOaZLo9QNPXy/J2XXWtyCWmibh73Jx3jQBcr5YyybJEWRLG4MdPh1Hju/qugqyqCz2y1ETDeRg7WderxSK52TILptEWmVwVgNy3DbRjgakdtR71KKXNbJYUpZKipIF1szuTVcbAebdnGgdDtrmY89h1UBXlalUlZd4Q9ka0umvHgcfh3HYyVwIFSqWEGI1FiRKFtRad5otShRkkAglGy2gVSmIAgZbSE8FPl/Y0kCq2d+M6644s68XdwiC+kr653/yHf/jPrPXnPz5c9ucqWxLaD/tfGzB3f/n+/bffNf3wYtPM4Lc3yzTh+3UBWdL0p2MzyLJ+uZjXl8/LKgHidDA89GUiq9tNmssEB4mo23H/fKnKOi2K/ulp/0spvxeLqi7LkvkMgEiERIBETCCAIOTxMyGw3wqJjCwQgZAQJoVJYRXitGs7GlRey0UzIHwZU0Fm0CVmogTpjXNNOwmZKF3m+nGSPn9y9dXHAFymPevOdz1tw3Hn+DG64hXukEMMg8L4bDf7AV2gwLC31g1EvEl3mfoZJYhriSOomOOHKw0w3R+eANc/84waAQFMVhgABE0fL5r0RcC6E+ad8Md0RRCOXqHw7Kfpn1jd7u0sTJ8nhTSfjas7QidnaS5zglwFeeKPV2++whMT+8H186/QmMcanvPiYQD+XFIf53UqzdVxEeAzHrxSn8IiHN1TwqMTAQAgEKSX85NdQFdxUpy6iJ4OfMUbLLxSc2zmi8cEDB7jGV7RRRoGfDNfRCIQcoKF0dMYmGEGhd3gEIhs2AQABAQgyFpLRCEqEZAoM2JwoQKgYGRiCurP/SM8ePOKzX9/BaZxmpo4sitoEEBdaNQPIXo6GSBGwKYL/GDfeI54mvbrV/Q2RtabAtlhZbuvBQr2jBrGcR1xZAgYBj2zopMDrsdxEcPkDwvgzAvPIDGCZ32eYPnG9xj9uE4Ux1Su2OAM/oQsxsmucfjVp2qGx4ZZmeCx33CHCMBuVQjh8sfDuW0hRWwS3RGOAXnPFYQnOwfWPMwGvlezArdxpTMCugKPDo8hCgCBQiqZusuRydLY9mM7dMdLpwSnSq6W5XpR3myWN/fLelErQFIJpqms6sWiyJ5ednerxermgSyYzrz+/twtSGbFol5pQYfj6Xa7NOMoZdo23f7nf9s+PixXy+Z8uRybAdtP4/npLEcsFquNMAONkjDZrJfIp0Tq9bqsi2xRFtBRKsXNZsU2YZRCpVZrpZKx7c5Nr7LmZui6C+jhKIARUBu7bxrI80295mzZ9B2Xi6Ss0mU29s25GUU3DENPmrPlgpLs6XARYLar2mp9PJ6Ol17I1PRjt3+tcrEsysdVKWWWXcwPf/+Xqkifzpfu1DVdd+hGTXS/XKQJ98RJIhOVGK2jLSXQm0DuxJcIp93mOslCCCRAImTJIKAn+TRa/ak5Dh/fpXybQU6dgSG7r2SRmVEXabXefHs5/fZlP7wc20+79sL08x9fiu82fa+PrVl/85DUmUSqCgWyymtarG+63pwOu0+fnkpJ94vCNK00XV0tVzc3MhMwtobG5SLvL1rl+XpTfHr+0h+e8f39YrVKM1YZ8EAALBEs2LmOB89uLBBCDX4CAAmSA08GEeAH//9l7D+XbUuSNDHsc4+1tjjyqpSV1QI9mMEAQyNpRprxAfkAfAK+C//Q+AswEuBgMN1TXV0iM29ecfRWa4U7f7iIWPveJnDKKu85ey8R4eHicxEeVkdiqqdX2Wc7oiLc3xlLCr2AZo/x1ZBC/vjdSxPYrtbF5/mOUHDa3hw6TBf3L7CU0SX8YuqMcFzpNiojxy7LTRX1atZv6ExNqOw29j5odma08QVVEpZ094dSRhK2f2CzF92n3f0ZGuuWMfbQxpTzq8RVWb+xDL/1o9XzqXzxzddus6MCuodSg3ZwDls8Vs+IuJzrv/6j/X8yoWsvtq4shNgV4wWqBJu4+g/HGSzmgFuQmEC1VkCsn+8iTQqS9MjzQ0qRiVinhkkUYgJzq1lRVdWqlqsi7qbtDCkinVNiD/JzClqDrBCHVjnbhVHbaFRV1R6oaqdzVokjRKsKEVsyRpmNEcXhuK+IGVwiELiDV63Aqy/yC2zWNXTo7DmhF7Y+Fd4+jX/ywvaQXFl0nNyz9IIztAMHwRXNNTIlohpgpCudMdLFY/qBNPQZwdXuxTHQYKTE172IpHKg5UNTMIww1Ep/YkG94jpwR9PArufsgct2U0H45oGlHxhjEthR8r61T5XshEgH5+FPEmI2kg5bL8WUKrknigZP2ne+t481z460sUWzTalVyXbtM5c1qFji7DhNp6nujy8fPzz99dfP2z+Ud29fDaVg3A61rstmfSJ6ety/unmzvXl32O0eHx/fvr45TScmfPe3f3skHYcyMz/tn7/7/na9Hn/59TeZjsQX+5f9QChXFxu5ePPNq5VcXq4udb+Xx5vjh1+O8+PIvHv+NGA47ubNOLx6vT2dnuY6VeD58VmZv/vum6vLy8f7z7tHGm62Ozl8+OXT89P91c2ry6vtw+4wjYXLONQiJz7qmlfjarvBPM/HOq6u6jQ83e8uLq5Wr94cdX56f3c8vVQilcPLcX7aH4/H56uB39ysX23K+nrLa8FKNq/Gn37/5uH5+f2f7n95nj88TYdaLzcYyvzqojx+2tVaSKmUca6qoiiAqQ/TTLEFUUULDQQ7BI5IqZBSgQJlvABf/LY7nh70geX1/Hxz+vzTm9Xf//QNPT3+4ec/btYXopf/8off/vlPH4fr17e//4d60j/89nmU6e7T53Lz/bsfV7rX58Oubphls5tOv/726fnzA+bT08tDpfkVzZcDqYqedrofRt6sCq2K8nrQb9aTyvUtdLjY3pbrjTzVpxUdBqqMFYHnKlQyL2MHMkuAbkLGeRwAeGb4TE+w76Hs/R0Ne9jgztLfxZd/NBWzfFBYgvwbgNfXRag/hog8Fqczo4sptKe79YLJqntj7XkxGIptbomeKB4TKfcEIR4Kac57C2dppw3/tZ9zw62NHuov+aotV7dv/f1dACF8tHhUvyhJlgxNdSQ35aJfs0D5CtD5sLsxNCP6v33S/Vfxrm7R89GI5VymJL7yPO0NZGfoFlcurKV9ZXtbUknLLAb0ZSijU5UIXKwiQgl2LLYKiKqqChEUdZZZTrVWVXB4spqVIhkyzIGZnrcSUftIAagdpclWTMPp5quIEhfVSn4uk+EuZxhVJSWKZi7EqjojzFFDeh2s1TRjUCtWtpBnACCrmHXX31wn9hMZFKoQZS6FB1URRK7EGlS519R4QtIYZxoWXe2KZjwgbbXLZ1wuSLeKzhd5KS8Nr3RXBBBBWOMlEsnMUQT2EECnrVVygqq2PNx5DTV1/0fnioRcnw03NE6MNJVXCw15mru1nES3e48I0Cy4WgDvZYS1fWtRKHHeoowSpfrQDjIZfeJECfhO2QDm9ruIrbmJB/UlT0hcu/BhYjcww45H8fIyuLXVKHKSHFY8hEQrkUIriQ5s+5OqgrRaPqaoainjOLDUuU7H550+Px/ff/jz8Pz8slmvwPz09PL6+vLy+vpxt8PnT8fp8Pby6u9/+Obj3cPq9uL63dXlxWZVhvq0o6eH43HPhS5vLleXl7v9tF6vN1Mdrjf79dX65tXTVCCYjxtcvtXL4Xj/6fnx16m8MITX43h5OyuJHqmU/e6oXC5urlZXVydSvr64ubncvrp5KXxfDvvV1VS2srrQ8ebielM2GwwXzxNRWa03qwo5vuynebq8uXx4OenA6+vtUU53j49gpYH/+uv7/fPTuBor6svzkxDdvr25vbyqA9Eg7+/vfjvi0zR/vnv45eMB1+9WF9eP958uZ/r2u3ffff9d/Y9//MNfP0qdx9WKJPSN+mlXFhZ04Gy4CBxOVCVSiM5VSYayXuu2PKhMz9NLlX+4fPv67TffvvqO1qc/fH76693TUetvu/Knh9Pr1fGnH398e3n78nh/Ou7u717+9vuLq83F3ePn4/Pz9FR390+//OXXf/xP/0lOx6v1ajruKumq3Ly6uDg8HvbPj/Npf3V58eOPr4tiHGh9SbMIrsaL7Wudy+lYx/Vwe32xKQ84ncQLm/y4YHEb7dlUoGNaJncq2x4jVcoGKh4ECuQeTmdz6prP0yR0mWl3qXGElSYWnd7rr474eW9tXYR6nNX5Tb1frwDAYCHJ8G763ItHdjgsT6rvtCd6XLd0Q9Mw01LKv/Kj+W8WvHYlO6FRVCMikjBEMyLVZuYraLeGQbFxdEWYyOeEXm95rAaEUsO2VelAGdFX5tSbco/b05fr9/V7kx5fC+EsM5G+DDa3NApt1pSjTIMX3iea+HYmL45ZCEsWtQtRy2B7BKzXRZUZIOYSlHbXdq4yT3OwLYEAwVylymTbfaPiBD05lmEhuyqbNaSJhSVbCzcTClVLx/kuKS/jVXiXE//H1pu9Nk9BVusaU9eAZASy5jQWUrKGxAKNXeza6nHStIZaSMAUYEa0kpEo84Pctr1lksZpnjwd0KBnMcMfmp0kpBf9s22ViWAbm+TgeogbMZOOockTQT1OctZNyQjZaUIX33S5KDjH9NDtzDVsS22Pz6rt4PxOV3bDVvSPCdnmLmPWUUHz/9G9NGeV8uULobByH1iGw1C2Cb7XBvhYQ0ujsXGQmpZCq1amRd7DiZhCP+c4qcEgo1eU8/XE9GlSsweBQCn+NroRDIEbbzIXApnIKTCdZql1WK2pUtFhWBdikjpLnYd50oNURdFKWkthHGfZiQ7jFbbX0zDefvua1piPj+Nq2t/NRYer7dV8ml70MN7c6sX14f7p25u3p5enp5dnHsf19Hg8TqplO1zytWIYj+V6XOur71/xNK2Vi9Djb78VXGy25fZy2FxsX06Hj7v9sB42m0sdGLfv1pc325upKGEYXxSXF5c6QodhQtFJiOp8OOyOs8qxEA56GC8Ky3isDy+/Pu9f9ttxCznt5Lg77ngqm8sNF/706WVbtt++Wf/6/uEvk/7zp/nXPZeX3TTpXtajjPPMhxfBZjOX9afHw+PLkQnDukzTATSoalViZkVVVc/3wmGQgsVAgGkhIoUykxIdXp4rKxc9EfbDuFtf3OHqL8/yenNxHL/99fBhvxr573767/7u3zx9/pdJnv7hb/92u35z95//MD3eFD3R6Xh8/LT7fFfr/jSfPv7ysRyfV8yyf1rNh+uLzc112W55VS6e70911uNh9+vP+7Hg9s2bzbt36+3tcP16IP746/2mrq6vbrYXO67zdizP845orAKU0NcWwTIl1k6fTq1CLs7unpKqoAlOE7zQ6gsjRL3E9NoCQBdo6JUFpXihF/L4JSyJeqqOXMZcPkIBtbu0m4IJHKdY0hmgQhtqhx7i817h2RCaRe1ucqnVs0n///05D+g3uNJCaq2YJJVSRyqgn0tAyC53FAW+Zyjhy9d2D+g+pIirf3X03ZM039zZeFquxpfTbRcvQmnQ2G7YT6UFuhqjntsaf1ZTnnFjZ4Jirh6ij5YHAbrIQvxxo4JIVEQUAoGdV6nzNM1WFKOR+xHYf0SQXQC/IFnocyJmlz4gNz+pBycJquKFE47Q1HYfqQiHBBJgJ0NYwFZUiMBUyOI0Wa/UloLIpFgJCvb9WxBvxaxij8i5W9QnTRAc3gelgttc6gyhWnqEwl0UBP+cF9/E31+mweNMC8usIItCXAHgvPauK2pZZvsQ5pa6t2GBURbME2FG7cB2hEw0v0fPLECISGKOBYJpGtVJ2SEvb83cRYsjv2ZPd6kX7cbA8WsW/nTEiCDJAp5kqbXCqiFtkFZTru7M25w4gHJ7WKOKds5OBHDIjufzgBUpKgnVAMrkZgSZ3c5VNPSVgkmBgFvo3bLM0XogdCLg1faqLBCpVUROAuYyMMCgzWoAjdNcT/ORAZlktVoV4kplGMGX4/r1m1fX1+vHj48fPz1+893bm83lMAwffv20+/Tpxx9ff/PN5enwfP/wSedxXN/orOs1r9eXN29f80D74+PLrDOVw3pdMe4fn5kUw1CnKkplpevXq+HVNzowiVythtPjsa7Xa5qJ50rE46rsdvP90+rqcnN7OVWZ1tcX1z+sLwkoNNBQ5LjbyXxcF1qtWAX1dGSaqWBcXex3+8PpeLvdnnT3cv/8+bc7Ur2+4tPxWEhvbi6OL6fLcdy+uqovL9dXm8vry+nzwy8fXnYylO3r8eJ2TVJOdT/PgL56fUsj/umPv+4Ox5f9VIahzkKFaj2VslKH69SDAiVYiZ9JJqCVQMQsSgSGrMdymE+AYjPs6/jn/XT69fPP82rz/vT8+PLwPA+vL95eXBeV01H3u8NQTj9898Pm5Zvj88tvHz6e/uPp4enDX//lT+Ool1ebm1W5/OamCnZPT6dDfXO93ay5lPr67fWbm81uPx9edo/Pdxc3691pekfDxcXtqQ6Pu+PFdktK027Sqa7GQXfCPCgP6ufmUMQHzDpyiKi23Y8UlhfNsdBeRInSWsMFzNXUFxqqM6WhPXrAsvhZ3BiACV8ClgXO0LN/+68Wn4Uz11v6r1n384fb2n/l+ZT6vf3pVy8rWv63/aSx13MK9frXlThIuxsSDPUQxJVylxgKLaTxoKiy1KbyOoW8GL4jk7O/449ESpoqLb6Nl31J6xhuc4MDiH25LGcXhkXuNWsHizS407Q3GsI/j/95GAjqneVA5H2MAUg12FBrFW83C0gVUalVqmgmJX2EZC19k8xKjcjxPwBQEQXUdyN7JMFezWHlOvNLsBMWRCu5UaQ2JYdxwTmKaqU7RgbV2LdE0THZ1RvBEl9QqKiCrU0UJ1nbEJxyER7PaJW/HArEERZnyxEmrVvg7m/4IAmIfQXdIrqacV3UIpFLXeAKqmeMhQFHly/vb48NlMgIXO9hcK5aPMRvCqnqIk698KTkBtP5x349hQ7trm6Rp3QdM5DL0ZvHl8t2sfm+ugB2GTbrSBMP8OFwRPSDoTh+7Zp3NIlapNlzKYI6KVhtCXxaNiqP2ivIw3hhZ2I9SZ3CFipsaT7ru2ub59rCWMpXVGHF1/CsBPthlSAQqc4yQZRQhjI0HiXUKgQerrb8/bvt9pL3z/eYX4ocP/71l9PhZXVx8fJ4+LA/TC/72+u/oys6PB/f3r7j8erjhw/jZnt7czVgmp7vjw+/7efn4dufputXp9V22p0GnEopx1mEIEQK0jJoGVfb1YF0vhi3P65WhUTr6XQQxusff1w97avoeH1V97tDJTqeZtVJaLtZi1QWGcaRmeZ5VtHtxVahU8WMEeNFnXe//Ppxd/eRynDii5eHp18+/3z16ppZdw+P22G8WZX5MP3733//D3/3/Q/vrvfTu//x112tuHn7ZnP9dt6/1MOdTBMNhS8u9rvjp/v9DC7j9Wa7Oh6O0MpM0EpKEGFvSJBsLURCKoBaMglM0MqggXieTyDicZxVdkcqZTyqfH7a/5fdy1Sfterlxavb1ea3/+XX+fH+mg/bC/7TX/786tX17Xdvt+8/lcfd3eOH+/tPTw8PNB/W37+6/uaNKFelYR7L+Or25uLx/o63w+vx9vZqsxnn5824/eb19Te3cjrsHnbT8dM8693j4823Nyh8/f1Pt5eXm+3V6dPjschqxVpFrYZ/AQJMg2uaheBFhBhoE1GCQpg4+D/juOLlohZuWdivlPfQ1c1Lana4hzG91V98tNBXYcRa+XGT/ZB8+6W3/r6XJ5RFqMDOo8qfsDDL2aciTPTXV870b2o6ZfHTfbK0I/017U1snnRonVCcPoTGnJSkCf2fUCipTf0kNXX50h41IrufGmyxBHtARm1CofV6VJGKtaus/nKai1+aau2DgNqtd44w3MK4tLNLcfwh4NEDX1xfZ7QYng8uV6DVL4tLSBVVlVrnuco811p19oYIJAo/jITcdArUurA5vvQFM9L4Zpm23cb9DlPmFjJxygsQOxfVp0us3r5CtVYiNpaIRSeCbydmS2rkwliPK46cNnJgZmWg1r9HVC3ZwWwrr86d2crBeIAzOeY52S7QFtc4sdXKpdHBCKTfnEMAAQAASURBVCT/afur1bo7AlDNiIrZyog5tciHtsd2rkzHf4lWutfmb8u/OsVz5gl0R4vlBV38yLJK+XdgeX+v49FkhXRfQnGkTIWodZ5L+BIKBWKPXei0QDCOaARqR77bQyx4amtmXJBiHqGWJEOnDagRN1ZEexK2EXTLGc8MirfgFhr3qpJqbIWMFCg5FjLURHDg7g8AeRmQN27N6LeASOzAC7O+ROSfKFQLirKKMa0SFQJBREFMIsN0nD9/fricTpin1+9uri5v3n98fJlPTw9ye/X66ubVOODjL58ufrx68+NPr69+mE/1eHwZVkykz5/vDrvnstrsacTVNV2/mY91llMpg85aUBSYq1RFFdW5is6q9XQ6DYU2GMqwXl/eaq068HC1YmUpYyXMmEimcRw3PKjUWqcyFhU5nCoxFx6PGPb76WF3fH56Hklpf1ceP+v+8Xl/oOHq8fD8+PCpbPntq+vnw+Eox0fBeqS/+a/+ZrUe7w7Tw4lf5uFpP20OMuHl6eOn6fiCAQqVuQIYNxekZcA4nSaQQlDKONd54KgM8HyxpULDFihg57ipWlmtADwUKFFhCAkLxrEyjhO/zJPiYrPazMPV4US8f6Tdy9vfv/rh29s1lZf7RwEd9wfIdNo9nZ5fLtYjaMLpqLvnQem0n6/X46vXb/cvD4fn56vh9nSan6bTdJqu3rzm69f7ejw8P9MezJd3H5/unz/O+vzj1XazweXFajWulKFAVRGtxNZ8SkLtuL5O78DdOZe/PDGnqwdnIuuU7+XU/hxqfu4XJn3ZLrnL1FOnP1zFpMi1KEpTZ4ovH95bMBshqFd9vXptegfxuphtayvWtFCHYhoI9glrFFJnSk+hsetmASfOidEe2b4/fzc6TdtqVvz4pXa7LucTuKd/bwLBRS1EqtNuXG4iKUnajJu2SH18ThmB0swB5NSMPfKx57O2ZTyP8rgt7y2Q+9hRE5JLmOTKsxegcEih/Wq7qWm1BO1VcAPbeuPanFTtrAaRKnqcaq2W+IKoiu8U8yFEtRx8yOqlvBRmIup+Dbx41uOMUAq1/IFZf+Zi3e9C9ATRRkUtXhNus0GCRMEWvJIqRG2yImZNzD/pecyRoDWtU/ubKeTByl4jpUsAhIkjW4glQdOm5wceP04zebbKi6Vo0RuHAJn+MEHmwEFQYk427Dqqhs5Ie9/VijlwyrelBkn9oEnDYIlQGbZQ2rNHpxUaWHLF2CMY5BDiqalhc2g5riboaMPwgeWx9tTlENHwYRQspgiGOm6qUjNuhMg35nQDmHVxoAy3n3Nq/K4wnyRTmEkOjdt9Ltb5kDV1Z6MOQKpZANeilyHdRM726Z9FbIqi2oww2LgG4lCMxs0CaGtN5eKB4Yd/8/c6CZFeX20L8QnTzfcX3/34ZhwKDvLxj7/NWq5fvdFVubq51uPu019/Pu6fLt68Lqf1er192RPdXm22r142t4f9/LQ7MkpVUkUVqlVRChhlYCJFPanqaiiV6+64X5dhQJ2r7J+Pw2rFTPPxNKzGccMEKKpFimeRKjyO65GHp+fT0+74+Hz/tKu/fX65+/w8zMc39PJvrodb8PH+6X6+F6ar9eZ6WI1aX99c3f3yuNf9eH3x8bfHP/z1065c/tNv+/eHsVxfPjzu9H43sGKzqaqzQImYlImK8KyTysRMVEZVZSrBHtYc01NhCmI136tkwEQVAq4qQxlUlGYZCBiKWqeC1YCBWNdUh8PLjp4P31/ST79789/87ff/9v/4++3t9v6Xx7/85S+ffvnwp//y50Llcti8eXO5XQF1d3h8WilrrdN8moeBabNaDyfd1GG74uliNVxfDI9Pj48fPw48vXn1/fbV7f6kx2Hevr3avrt52T/f3T0fjy8k9epie6o1NytKs/tuBYKXtWNItao7d6NFrVsEa7F2nybh5iRFuJ1aJIACXbjMnFm7kIJg+068XVbSgPZmE83ypdJbPBNhwLtrv7zsfCQxGNMRpN1YyCXajyuiFnv+6kM1VRn9r79VQ9bPjEQOuCVQbFcRR/P7DBcgtGtDiuGya2hot+te3+HfUqiq+FTTvbZR+ZJGFWQjCNTOVCL3UBMFe8Knw8XiL9EsHTPNZ5s7HG1pIztSgXYzC4XtsCKXxsyzMBdP6BBFhJwiIuPXobUitHETUUEkgzj4nohJqYqIyDxNs8h0krmKTYR4sNKdGviIvM9bs72m2SU8/taMynW6205DygnT+s+TacL0sItqVHEIlKDpbqjvENbIBaQE2n0+MwmqEiEgNdWQLgUHpordDlYgaDU9ECYCKvndCliygjQMH8Ua9eZVsuTWVaXkfHN68a/zY4Sf7DqhwALhd8Yq+n/CRnbS0+d08udrOdX2VVuJnE1DYDEpH0mHinpIFOhBu2/7teyCJqnqGmhM2Jw6rkU+SBXKGAgkqNyfKBeJ0CByYyd/f2KTBshS27eVUqCvr3bWivGi3ZdhckoQ6TqYeo2XGrrhMQO3PSiMhyhUwbbfCJFcRcOVLirEUREGhZUrecm2Cpw/laioAsoABOLbydQioDq8/du/P+1OZSyX2y1hGKbj9rh/+8PN5QqPv9xP396+vroqV2tclKfnw3iEoMjqct5cH8btAQVv3510vR/GPWF32A+lQHGc55HH6qVQNIwDmEiEimHvUkmF60A2UQyrFQ+FiAUyyUxVAC1lkKpDGYjG41QfDvPDw8Pnx+ffPj/e3T8/vsz7mU+Hup5PF2+H1friinG7GXaPL5eXt9+/unr39vp4PP5y/3I3Cb2+3B30n/7l08fj9Cwvn07jC210Ay4ivq9LRYnsGF6p8zRZyw0QM9EsYmG3BNKN0YSIWEgZJfxkgoCZBOAyzHUeiFUAVSrQWieZoDKWslqtUUuV0+Vq/Dd/9/3/6d9+9/vvr/fTy4c/v/zln34+PD093u+LrrhwUbndbn/68c1Ax/f//M96PK2LPu2eTyu6vLzh7dU8T/OwGS8vRz0Q0eHlaQR99/bby1dv9nXeXK2/++Gn6x/fXX77breTT/d3T7tdFVkx4SSlmL0hDlMfLozrNIWy/+vg2ZjTqxI97joLKZSGYYjwrBc/Vom6zQQLDV81I5oOXycMqRMz7pNeZTPni5/Op2oSenbN4oOmJPJi6p4eTwqx/BpiQ2wDXHzbfK0vv/vKTwdN2gNCEWH5ZNcYYbQQGjaVEfWTtCoW8qhe06kG39lVIpOd2SS9HrQYp2h0tVNjFCJk74PIarmOo4QPFNbL1TwRqZ0V3k8x4J6fDa5eHyDup3nWSr0Pv7cbNq5brmtqUgHAQBkK81AGpkqZ93Mk6O1+u7XniMJkaxNVIchsAbA613mutUqFqoiWceQBaodcEYFYFQKV2Y+nch53a0EOgSIakJ0mwqQGHgmEaYuVmZIgdef72qJ7bCkW3ZjfW65QfqpLgpPRUWHnKKBlcj1JACJJU6fOQgwrOgnik59ZRYBqJS7eNVihcaRMBlzOkEbiA6Nznl2VIKODQTHjTBZ184koRROOECKl7jXtv63nKqUkxSp8Ra67rLu25UqF0t4buKeb5Fkks0WQtGXQNGoJ+jVc9IUNvmmPa9gl1xsEO7Ciu4Tg4CJwVY+5fOia9A8Mos66NnMmEkg/KdIEhcGFGtovwFlDKo2p7bn5ipweEOrByePXRROGOBMMFE22CNEE3HNdAApznHnrmC+WNeqFTDdZYsaSHVHHS0rD9d/9u/k4oWih1Txjw/MlzaLHg5y2P2yH67dyPD1i2q6vXnaVj9DtW766/MSrWUeMmxMNlWhWPdYZCiqipIVZMHMZDRyLisyACMMAjRJRKay1VlFmjONQZzmcDuNqJGKpWsqoNJ5mPLzUl8Px0+Pzp4eXT58f7x9fXvanaVIdRi1MTGVVZdDnuvubV+sf+OrmZn737Te6r/fv35/K6lGGXwTvX2iq609P04E3xzrQdjuDWEgg4kezWdbdSc7McRwJCaQwqYq12YjFDzeDSQFGMTVqYRQLu4FItZYy1DpzYUI01nRdw3VShham9Wog4qf97pcPL58+ffzn//Lz+7/eaZW//Zvv/w//5//9n//45/u//vk4TONw8/bmuuzebEo5TvtPdzQfjvPLZymb/XT866+H3e3F9Ui63z8/HlbjaihbEjoen59enq7f/jhcbfdV9hOfJgIPQjJNYBrd5daOPVUir6c+O5cXBUgJhaiw97qNCkiFCPMA9UYoCpWqhbg4eDJPXtU3wxIcrYclIzOvhnWMVEyeVArkQwH90eQsVEnTSmkZXV+fabcvdV3YpebwIXVJKmHtU22uMfIlLr75Y5emW5cB5E6rLn96BIYvntWUor3YYYi19JXltDQCDU1rW4oGADOHxhWAGNwHxdmLtaCqTERsLetIiTR21CtS66biRK3eirWKwktHIKKNkCAfQyhLYx1z2iKAFstsszIARASrR1HtGJVsfzac7gQv43X4S6qDgEh4DoOqClJSISamwkxxCJGbL2rFao4PFJAqII/92OYuJi4DC8CFSX3/F3w7mDCxiBRmZkZgdQUQ1UNpLPPVTkVqAwkx9DibHShBxFw4LtTGEK0VReIMCoNr71wEkAKsO86yewweiu8mSvvultPKKfwBLdOhQVYE2RybsD2sC2+k+5JgJS3zMqFCy1l8kQ/19y7qh5L3yc272DRdS/uGpBh7yEhIfArXUmckDYNoTb5CXigAhkdS3fIngyb2Cso1gKQ5ZW1JZCyWyT7p4EqnG1JTRbo9H0tR5+NL5PX7Ham6fHf3PMQiNpF2xdqrK9e/ic6TLNzj/YjBU4t7USNzJBMaZRukSveNBH6SXJLMlIn3soKQd/NMKiohSjCMPyMUak4cFIwiUD9uDABIRIh0kKuraZxqnUCjFiLUgZSGrchRTtP6mxs9nk40zaXQdrXajNMsu4HqalVRKlhAVrmnUC7hSw7jXCe2hHGBeZ6kyswiMs0nhRYuhXlclXme52miMoyrFZdBhETkeT8/Pj0+704fPzx8fnp5fDk+7aZpVlWatRAV4oG48IjTfPzTbw/lxHpc8/7l8mqtLzTt8f6JPu0Pn2n8UIbjjlDW88X1pJiEeCwqUnN3Uxgv7mo4smEZeR8UXz9Ki2a6Q9WPJDEj0ZweW0ElMA8MhShM7UrFOA51momEmWSWu93L/+cPT3/8c725KrXWh0971e1mU6bLm//4x58//vrpely/zPMvHz+f9vuXu/t/+K/+ZjteyEoOD0/zUQ+TztP+09202q4HHu8/vUy76fKSn3eKje6nqYIIQz3O8/H54QOmGVC2YEAZhrnOHTIHAcxF8qiehjLUci5h+BQKFTFrxsyFB4HtY9EqwsylDKQMiEIoIQScnGQmLwxiyC514qjnch/9bjMK0AxBdChqbk0ntlGSk6ai6SbtPwhhjJs7zddrz/7hfSavPcORWFbYhP1DUzFf/JxppK983QLzRkcxlg01aSOOuAugWi07Y+Ajs2p2qgMRqUqtYtFmBhERU7EGrkwcfX61aq0qAtUKrU5RRAQQUKlVRAVaxTY8Q4lUREUsGsARfwqyWXBHPUxkbzbKcwMJGmbWs/hxcRpSWqyXt0Km6N+gKtWy//4fZXgR4TAwtypLtTMsVFUFApWqCv9TwzWypxQmVJX5RI4rPcqtqirKzKUUb9WTfOJtbPrV02QGW7KGQn1KoduJSImZHTIG03aOfSCJhBbJjo5N3MioS22kyZy1m3QDHWgBEBFguIUL67PQCo5I4g3pzAePGB0CrnCPgSj0S+IwDY3aqNcuVwTcSuHL2CviS4oJiphaTqucBIqfjCl10tXM9UJbnAVwG6zR9mujRgqoBk5qmC6QoAdJw53p8FX3ijifzNcn5q4d8Xu4gX6UnVgE8tJezVF78WLgWbPtTJLS2Csw+zv6wLQxx+tiOcztCSa3t8QdGb1SF728AgB5r/VOz9r/7BR5gKPlHpnmJ+20h/SrYXCzIdbuEJmBWaDD426qdRKppRSmQsqnepoZLOOw3eowyGqe5pOAhvV6kEFGPTDNBRDbgECsRAQeR9FapRKjgImKmNbxw9XA0eRi5GGWCqJpqtM0F2Ie18NqmKTs9tP9w/PD0+HD3dOnz4/PL/un/XF/FEVRLaWMXJhFiRV1qvNcwWMZX7D949Ppw/3Tlnh7GOXjQUWf9mVfN9N6fWTSsiIaRMsE4RWLiFTlYpglHZXOCyCIaqs06/knmS/jaA7pBfCW34gqBiLxmi3LFAiIdChaAB4HAU7zzMN4ksuPh+nuiLGuxs1WbjDQqBerfzqc7j7e63Tx/e1Ytvrhpb5//37eP9LNw82b23m8WL9ebQ7yqqzGx7Fcbd59/+O8P/L9Sad95Ytjua66euL17fff3Fy/Pn3evbw8MV4fnk/Hw7y5ujwqcSmqcy92ZiY95h6a2EoKPLskAtVpms2olUIcxxSZ0VMFg733K+bQlpKyxQ59WBENSJpnYFTmqIZw4xXCmUIc3lH8JzS4L01DEim56bMowlU6bxvd9G94tImxwkVx5eF6LH38dO6oA5N5R4fz/jX00wbhouuGavF1XxvRTS1VWzdj1y/mAhK4RGYpylvJNotG4xk3saLVdM2MWqvMVUXrXKud8V1FZI5wgJlzIesuI6pq+6VMYJgdPkgzACE+qgYdQqcTiFk541agsKYAed87P1fBU/4RlHM0Ea6eekTE4pGNpQJGKViFiFGrKkscgClKrATxsz1RxRof2+CImQGGiMgcmKoZIbezFhMiBxy5MkTsPjM1PZOr42BCI5yAkIZOF8Vun2CwhdVp1tWXO721NB8ZaYrAqvZZJ6DnyAyvLjlRrclQmPpmav0FsU2ZEFvx02UMxk/QTgkn0mjHhNjL2jigTOMbKLziyh8lLsrhzQPw8HCmgrxjEiWHpHiEdghY1MEA9ovz26WRDyqhxarDcjv7IZCgj0pbYZavkUd92kLZpR3kQk4JAZe7UVD/D0Edn9oj1UpdkOU7Tanmf4xptH9cDDzICIIyc4UnSeOSbr6B25MiCusnFHkyVljrc0nY1VMa8WSCdhVMBHQNrfPiRgnjdlH4MbFUmE2BAWoxWkDJGlqFhsgGFgENm14fhIAyMA9MQykDoAOPPECm+SD1MNnpn5txtZ4EehIQSeFprhYgZ2ZzMCni6tVTcKxVBapVGWKh98nUL4iYiMtmu4bSNOluopfHw8PL/rcP9x8/P37+/Lw7zLPSaapCxGVdeAWiWh1gAQqqEDCNNKxwoU8nPmAY6gkvVJVVSLHGsDrNDB6YilSFCI8FqipaBnYK2saGoHBjswXbdwgypI6aOBIaMjLfGJaLD4srIBqYSykM9yZ5NYpYOohWmy02gLIOw7EUHfD4fJhOGIn45u1ELy+Ft2NlnPbT4/GFTv/88ZudXq7Lumo5Vtbn5+eXm2GYdvsqBes1xokvN7i6PIjcvP3+zbs3etw9/3p3mk5Xv/v+7dvVxcPhrx9eVreva52iajUFStP+G5pzPUEe3SMmqSJ1ErES4FJKIcU4EhPPDI1j5VUEdkRYmCDtlLX7l9pYEkirvwARDnU6ZaUpl0DmVVJU8r4u6t10akpsr1zDPU46RD1U3tA/woXZQgfaHojFTx84dCiXIv71n9ATqR2ab5hfNQyWE0oP1a1U2im7wYuLI1Chlvxy5Wkm0yy/n2ypmEUA1KpzrVWkivkcFgZxAGTMwG66Qyda5sxOg4LVhUQ0ylAXezY0NoPE18xWdmx63JRrGIymgX2NYvaUyi4WwHQQR2DHHMSAJOpUsD2PSkJA7BczD0UzqUCEPK/UZJuZUIy5CRjKYKAfjjw8hmbm2Z9i8ffOBAXICfvkhEy7pFF709BBY9EEkb2xjFW2kF5+0MGlcBtCyq0RtPr21Y7vFvY33uMiqiGTjjaTt7KZTgKelJGoWYrR9Lzavs3USyIPT6n07olGnUnSMl72RXEewVI/MSQHf21aSxQXbJaKxRfRV0IbOTuk4MxOBnZ8AlAIhauTo/MoZ5fZ989TZHqKn7lHXUAtVXRohqAWZZzDSjNJo09gZ65CRhVnj4mFMQ5vv1vN3xkZ87bIguUk0A3FqUFBXopdhG0584YF7DFVH2M+W9S0sMSwfqCmn70Q0WoEjdDGpxGda4+2CiHWiNra6g4AoRApSQWJMgPEtnddKoGpQkVUpmoNRatYRt4tgKrUqkRUZfaCGGZRZXBhFDAK13lWsd7BTCAah2EcVMo86+Ew3z3sf/30+OHu6dP90/3DS1U+TRVUiAtKYVdYWoiUMGsVKIOZaCgFVGYFMGKkmeU0b2apZRxJAWKQbY2jOgkITKxVVZWYNRbQaZSLEqtLjY1z7dEvV3gVSckIBif3u7gpgRg0lGEsBVAlnmuVKkRUShHROgtAtc7jUPQ01UO93m7WI7MSgPVNKZtVLfXDw6/3z9PAm90en//6eFH4mviKi7w8ztMTF1xsNnNZnaYjuCpNTy93t9+//vZ371bDuD9+Pu4fmMa3r7a/I/5P//wzy4Ewi/j5vTlyYz3TeLoggtGn2XFb/blClJjVz9VQgQiYScNt1JraPG5NbzeeGpoyD8lTZDC8iWpkmxJzaLMHXwEWGuIfnVk0B+CaNw1FG1iOEouH5hS8TqKZE0p6LMeQoC68kOCWfz0I1MbXkFqzHoiQiaY+UIcT2tkBEgcWDm6srpCIrLKNtRCxilQRSypLnaUa+rGTD0jU9wfVKmLBGpbY0dsajVniSiK0F5+VIJSNAn0Bj/fi82wJx7R9N5KJmcLDhQtPOv3qDuPGCe0N/uaxdM5NgEfBXMqZiGoFUwzILZhkkQsRcYHBPgAQmVUIYB5W4wqqgDAVd4a5pXFj/EAWhYc6JlhXEiSmaBzW7m8lL2pkiFY35NqmwyTJE9o/aTGMdiGBVEXdm7dOP356Mbfw2JJ3GyQDsR+5ZcG1fgIx4KoSlPeVyvoCiyr5+FupbmThPCnS8CF1YRGrJmzTifdShre6kSuR1xRSxhy6OUWYzaFXX9XgnOLujiSsR3NAqCGObnWTwIsmFxq23LFA7DaPzes5ZUKiPEUEwc80pcu8f9vWBUGmtgWhq5uMoLqvUcco1G3m6hKOHWkRnS+Se2ysoeeYyWvaYgcGApKRnyxETV3SshHm8k3dL/FXpxypt7n9/UQUTYcBtX4/6tQlFTAXJTsWg72NOcLTg7R1JSbooCrQUqsOxNN0LIVkpqMcodjwCBQlVeLnw2FgHpnLMJiOMBAhtUJQmKBaRbmwVK11Jh7ACkBEVYUUPAzMRUCT0v5FXvbHu89Pv77//Onh5dPD7nCSuepUFUygkQvbQR6iFQKonaWjbBEcVCiRCKjO88zMZRxEhdarYrygisIiUopqrVSIeWQwqdQ6qYqAiNmY9IzTkm2QUhFM1r5T8/002dDZs9cObFFbWNpSVEQtPKIiQoVUMGlVkalaFSUqSbFDbKFShZnBY60yEx1VJtA8DtNcV5cXNK6ssvxU8erd63XZvrmmcSAdh+2ba8zr7cXF6nq8fnOBIo+PH+f9S60nGvW4e3jz6tuffv/6n3fHx/1h4NVyu2TAEbgOTgySzggBolpKIUKtpNYpToEJ5BtA3I/iaJtkhqCFv12W7C0aUXoHXOEuBIPH17npzAfkZI4ecgmH0BDKwlh8Edvv1GOvKw2jOP6Da9um3fTslz6O1KT3jH1aBiRm3mvM7onUa4JgM6Are9EOsrdhRygqMoOuVdicObXkEahWFVWpU61zFZlO1bZu26kHEsE+hXWxstezkqXO7a3CVDLeQURDLpl5elIBVJHALYHdoghJRRy8OWFdI4lKIfbgnk2z7ZA2/SUUVtZYqUJYibyfjqEJVUTy2pffD++zP0Q8DRQr57GaXDpJyGqKlr2PkAWeLQ46cBGtiKJxikUWN2jac5RB8PTbm75vKKINt4v5LSxDhnyoR4Aht+GXd2aqRwCqBDCZ74vWU1rtuI0QbE87huy1Hk+a+q17PnI2fcSlE90Ighn1/EkNuyfHZ0gPyMZ48S0FkF9QprORZ5oLsRyRX9IFQWG1QQrxxo7WWLjBMRcri2ylZEcIBwFrkgStmhFAnqUcpt/4ShynA2SJ5rTHrs1ycknthc5KoxNItYGj5Z0Upop1ETNKKmlEfvMG1+yOzzhjbpJIKN6XSFNj9KkA27vR/QSGdV3YNFk32JixwkgRc6EmFGFcc/yZrck9aZnQsrmoybh1qHJVELFY/197L+lAOqvIwEXqkdnwCo08UKHpONd5wrhSKpfbG5FjQUU9cSlGilkmYjCXWmdiYkYhArQUrvM0V4GCx/Vms4WSCvbH+rw/3j3tP35+/Pj56f5p9/h0OkxzFQaolKEUY3euIhCAuXDxhhOkVSoLA1YVSMxsOTiF1nkyp27gQZVmVaGqPKtKKRDFDCHlUo3IUohnlUZsacrYFyIZ0WMImllVjVIuZgOYnCyZqQkKhUtEIGZmOyuUPEKrpJDZjoljLrAQWp2OU5VxGD5/2hHhYrMZCwjzQXZFd68vh7/7/h/uP37YH19uX2/erC5Od5+f33/ajhdv370axsNpoItv3lxeXBLNQ9HL9QUrP3/89On9x92nh+16e5yPHx/u3377N+/evcZ//GU+zcNmJRriqpAEyGnnjdujSpTNoWMGwExga5OrUK21QsGEYSikKMUzIBK1iuz6TYOiRkwX9UbveG2TpVTxoRRTus9hRBO7lFkl38HbC2zDVY7PmrXRiFp3Tw3rHt5493lTR/1wAQtEu0paynIbndvZBpxabi4sRecStah3fK9LsxdPU4Jt4IICtcpca51PVXS2MI9I1aqqoKIGGewnaG3mMBqGEQobE4jMBBXUAYUtvidJFEDgFVuGAJT8gF0u8I/sjCqE+BD79vqEwn7qeBgUtzw+Qe84rI5NPO4qgO+ShbMZU5SKhNMf3oklrDqcGqq16c8EIwWO0NiL3DRHBJ1L+JWa/IQMZuTWGwIUHKk0hC0K82HNNVLZd0ubOj/ARUoEeYOirJA9g9KdmUmb5HFupqENNiyZ85UHqtotyJcSoGzb8iKnH0h5wfgpDZ3wniH9sOcZPsVZe56FOV8Y+jC4rclFIxN3FNLlJz47BKnU2NSwO+L4U8qJGyM0XN4piRxom1xTRq6fuh8jMqfn06BPrEj3opB6aBASrYynp3FHKiDUC+X+klhPbegAHiVOvaIaLQ06knOn4Ii400iacwwaZgTNEVWCOA3k58HpNlSOG3v6BJF8GB2I6qrGugkn2FxSAW37fTrPlLiKukX0ra+UMwHRUEXAWi3eYJMXAaRWHcZxBAuPM6viVMy/Isg8E8DMhSxLAx6GqjMT1zoTBMA4FkUBGDwejnKc9f7h5bdPD799vL97fHnZz7t9Pc5KNFblcRhFFYV0VnhvYg7lGhtIRAqXJoZE6o3nq6oUUvNNrfZpYMxchWaSSjlnIhRPvSug5FVy1gyOvAAu2GQhtdGHlKjjlXR9nElDAzojE4UdUAVUfOOZioiqUJ2hpKpVICoM1TqbWrIUo9S620+osloNMuj++PLDd7/7h7/77mE9/suf/0l2T8I8z8enx/v5sLu6HGk8vr16++3bN5s316fDy9PHTzi9zLK7+/Dp8893FxcXl29u5PhYVsPmcnV1tR2GoiABaRVVT4SlplaobSv0DB+RxVoG/9f9SCIOq2SbnCWcaycEE0ohAluXxaJkCRNHWjDXH4Bnc5HbahA6r0F+IG1cU9PNTWlGxxVh7wHGpwFv7cSZNH1t9VxFtIxgLnDDH5RQgRIrUtREIhLk5mFkHCl5yXcbNmZbwq9+84dPOaKUFDUKJqcRkDCNRBRdiavUWlV0FhHVOlcRnaeq0cfJJIA4VTOB3NyrCLxPPNw2NFCgxcp+AECrVIq0QlsF8riJeWvi1YcEuO0lO6izrVYE6oys9lVncwzMhEPSrAjyruwqSAqwVSFpq4lpzGgT6dIQFFNE6H2HDwIEW4OcHZMTXRbCMnXWmygDXqEWgk8i9qGeXxDqbkqL19gkkEOMcfFlRNsCTdlj8o/eVLfnUcOAPXTo2DJDP2g4KNjbJMYn1sxUCgwFRqGYEryWoBtBn3CJmZz/JHSFlwkSqdVtBG5uR8omuMqXejVPrDscOmsQPt4aYwqcEGFTBxUBLRo9/Op+oIgAZlMyFHPyxWmHmLWv04+LRfQ7KP41i6QN8X0NC8RtPRLwCj9NXnbPIfVnA1cGanzZYuqduxH5JOmErmP0hp2Qyl7P8FwIeMKcVqu0IGp7rGKpKoPqbX6IBYqX2ztsrcIUKGLIzhHI6sP2uvhVVQZiNqDh5/Axg1m1cimshhOOI1hqBUPE6jlcfZdSqorYWcRKMlcGcRlKKVRKVd7tT48vLx/vnj58er572t097p8Px+lkadaBC4MwOF4UqV4MR86apKhViJQBMBVEaU4VwNvOws6rAaAg5qLKREW5EhMrM6Eoq9f9MYiVZgIDNPgKBccCho+kj0LiHMwCySvdMpEvjaoyeWDJrI2xYJ1m8VylR52jLliECd4tUKGYZBbVWQDS+aQEcFk/1Hn/dMI//fWi1m/X4JfTh08ftn83nqZZhuHNTz9ub7b1/lkfH+nuw7T7KMfD9iQvj4fH/enjh8+b9eVPP7795eEjbcvF1Waudb+bpJIoT9U39xBb2Ye3qxXR3CnC7LkAVRXf8k/sHyM2MBeFkjiWgnOhRtMe4zZtRtXjvxzkcCgSQtosYOit1skGWQVofN+HNXNhwrHzMLJJQ7RkDG9DOULCqtq667vaJdckEa/ShAPh7jeXKniIOHwdw4IKBrgU742kQiiOusMjcpwUUkmudqzdbbE3mPBqB9JEtHqURkWqqJCqKKr69q3qzXkiIKPgwsRE4Ni3Jeq7sUw/RCjIVth0Yp7l5upZ3QJ17jhFG9rQa2QbwwxzMIwHQjmqElklUCgqG6A3ZMuu1hrWVwkOywiO9jwcYw1yQOG5IUC0bYhf2CumxGqmQ2PhLZKkiMIRojygCxQnFTkKdmfA4FOUdmrjIHB/bmfAjG5LSxCtKY7OQOYA0yJT/jdDGHFd/AQO8y/y00VYqbMekhElCmzQjzcfGwBiQSWAVDoXulk4NJ1JKba6eKSr9N4oL4aYjzHJtRizo1ZlivIjV5tI8qBBMqU+wuezbEfTpLpn3/higV3yZlS+NGlenUjqFim/iIxnwr9mVDtkEDYBicCQvNFAfEdmoG1BReLOWIGkpSJDpNQqMYx0adYpHHXJB/qgUukgPJcYh3KCxWxx6jQhVyA22bas/aBMtqX1+AZ1FNEO+bRVXxZOORprYaQkpSIdxYYGNT5toCmUdpiZBsE8LG53d/2/QDQouPOutKp3xbBJF2/mOyvpcZrGMnBhgApRrbOoiKqIKGthXg1bKFXFseLu0/PHp6ePn+4/3T09PB32Bz3MNGkRYeaB4HqmqhCBzUtyMhJCP0kQMlCXE9GmUp2BoWQxXGvirkqzsocSoAXqXYujgKCoSFhGpIl06UgPu2O7M6noWdKburoxNDIK/GBEbXUCsD3CVcAKIhRWZa1K1TozSbq5hSfMKINCxzKQ6mF/olKoXHy63/1///OfD2+vqqwIq/v7l8txeP367c3FlU6nOuvHX+53T6fVqtzebgoN++fD8TRtV+u3776ZoeP1xerNm7p+/Y9/uft//+Ov909VuczzTKSecETIeoqgWQYFqdY6K7RQsWuKSLgrBPaadMp9P4YkoBaKsDIUTXk3ZMEGAj1qxBaECFFKD9s/VFZUZA0HrN9el4DJHBpFEkCjiBQeDgj0w1AVK1KpBjf8bc1uuPlGLIvEoQHGg5Lfx0f+OttWboPgQgMXVRWtXgfschmiSI4SA7/7qwOBgVl85EwqXpc7z1YTJ6IqntKqaaMV5E37oEyFS7FIOjPz4Jkcgz7W+wdwxKURxFs4aRpMkVFXJVhQzxGJT16qBfKsCwtH6Cu9C1Ul3ywPJoJX36cCYweskSE15RwcQ6nRzAXynVOWWQYk4j2tBoUoTDEaA7SAYPu/hrE2LS3htCAH0RBDsy+BHTgTNW5Zlka96Y1U3L1aQYSaqI28SwrkWxML9elT9G9rgKdtXuriE2mUcsf0wqp25AiOPsMW6bM1m4N0/M+mivNn51i9kOBL5JODz79UrYLVTytrj23jpyCXjd2VTsRv3YX2MuQwruagqGcz3VVTwfkPtYMRjagIY5E/TSEQMvTQqZ8MLTYznynrnhOprWcXn+ip5/gmdWHwa1S+xGS/mEVzPJdYxccXD9YYW0NF6ay6dCKsWFDSn2LKM+cY8CgFpIMviLB6b8Zz1m3wtPg9TJLZeghRV00ayp8y79/oh1AI8Ih36rJo9m4MMaiInd9pg9ZI3LgaUBBRGQZRHQaCqLVEO4kWYq06DuNqNRDodJp3R3nZnz58fLx/2H16evl0//K42x+OVQREA5XCzGUYRGdShPdWRLSqwPWQ+4rOmKpgZUfPYihBpdo2emKwMIMEZWatXmIi1glBABKCFutJo9FsiZTAAyDmUqh3+w77mCHQnhm/YCtXMZ4INc5SUojAtkER2Pa2SFoRwMoehEnJrI0oYBvF3eKRkNKKB1gjQbIWc9CqI18Sl4fj4bdnfv3m+6vrq/np+eJic8HT3T///ILju9utUHn6yyMpPb7aXt9eXL+9Xb8Gjbp73t/dTT/+d/8tbn78z7++/D//xz/8j//lw+ORL16vIGp7npsdN3DKQXWPzjkrO8RUK3UlOxWIuJQyiOoQ51Ez2W4ud39JiKzeQzUCM5QpcWNiy0kRkQpEpVY30wErPdqhfmKDA+8wF+qHjfQ6HOpbtX0rYWeGqIloaAKisKLqaqkJLjy2HM9O3ReQJsPVplOt/slrhQHVqtFdpkl8BiQyVGGGPSIiAQgsvBFkEa2z2JkVYLbGPm0LE5MdE0llYOJSuAwDsc/KZNz6ZHhjYxUGBFUMznpVnMdpXHkpQMqk5OcdWDsHU6ySUXIenGiBIDkCT7EY/mirNqHCVqJIhsIUfnYVoBy9b6KdcEQd1UNg9i0XclXrmjsWK61OinP8gUhiZiwnxtwD2vZxUwDBItrWnXwHeLNuaM9bIoCwiO2ReVMOzdVO6Pu8JLw8e0NngM9CPK6KqGNc5K8dniXqzXgYnyVeoWYxkwMaYvepxmgCcQZ90sRpDqMjpnZuSeaweio1HOFH3ambJ6eGsYQbNG3y4zS03Xba72xvKeaIvTlTOXt42GNJXooVbcZ9STKK11ImntwIs5/CFsRBd/cyKZbz7n5SJ5wBmsXj2i0Rmo0hRiyj8SragndBn6YIEyDQYijabFzoxATO3vgY4jzXcbr7Gd3o2y/UP6nNol+/s5+eUZsQG+fQknBBs8bJTax6tnJIZEYfoME+YiqqSjRYYFApmwtBSas31SaO9sCiCh6IaBY+nWh/OD097d7/9vG3j/efH3ZPT9MJVKVUJeINiiewqijqxIVEZjsrSyP01dUDhoNl7GQtWLkrzGKroagDSiGFMse2WYcuHrgGqTmIxQ71Q0qRl00ZVThwTKjKZOZkqiWhE74G8lVAVVTENLZpBAkg2biBmIWyTYG2OBxAtteGyINZAoKKCgFDoek4M4+8GmYdHk/1og6AjqthLLxaleFi3KwK5DSsxvJqhA4fPj08Hed//9N3jy+Pdz//strelNufPh3WH5/3/6//+df/9OfnA23HS4ZKNorPObK3YEnLEAvR2WwNVspMRq1SKwmrIc9C3tduGJgITCwgUqYoPaHm2LkynWsVlXmeoTTXudZZMgBoNsdPMLIXagTDTSocU2RRAFk+An7qgYVmWru28A7FYxK2JBmLCQ9gsf6afS+/KqPeA1CFmHSuzNaxXQPARVgG2XU54hLxFnIhbs+2TlFpdMWCSEysBWxxISVSO6dOI3EAosKFiNgOZfAPbUV8skxFIFW11jnIByZW31me8zbMoQRiokJUSla3k+13Dv1PsPIwtTgDIVIdmkd4RSDQo6ZMEiV96fdQmCuNE639UQ6cPUFpjUqMfyicaiMURWtCAqJI03cIZ0VqM/thL+P83sicdcq05Wu0M5OK7HDc23nn6qV+duHptbN/TouQD3151Rk46eMJHQ86EI8Kp/6qCKV+wbAxt/Cll/mwxdB9bBlLojR7iwnlHxSDWEwzoyFh+PMKx0+26F+tHIoCF/Pgz2iQHKNRbKWh1iKYRCZB3ced3PVoLF4etOlgck6k85Oh7VnaLjwvmjhHOe1CL68JvRaMnIimQZ7Osn+VCUIrpieniuwxhXxwLEzvMSQf2vw1N09lbptMHpnyXBN7RtKWWjQ3TeQXMw5AuUBtSZ+ejOdPIEc4wXUUJUWNYh32dwAea5TPaHVIlJreKmFYnfns4Y5IxHop2mk4UwVhHMowbmgYBi3Tsb7sD09Pz58+P334dHf/+PK03++P01whdSir1TAOI5cqMk2niimnW2exnJfIBLJzLSzapnY8EIWrzJ6GJwAiytFkHoD1TSMLziuXoCsrQAqy1rXEiDoKUpFqkxbr5BF1dqnETGtZ+WNsGExeX6ou14lBaUtbtE6UrhoTZUU80T4Sfx+8VgJE5JCzEhGJxah01joOhRTDigbUejrOx/0A5t1+3t9Px+OpXH//5uanf/i7VxcyPT58/HBfefP4Mj+eJsb6MM1csFpt3rz7Tl//7n/4x1//+z8//em+Kq8vr68Opx20OnhoZTn2P7WNAsl8iGN5bdq28868d28FoASi6tWdqqIFGl8iNi/HlnXKqKSqRmlUFVGd6wwhhdRqItFwiOOmNCUaQZvCgSVcXynUq2E9I0UczWtc3YjYlmDpz5lyGGQdCTSXMHSHw11LHHmgK6TWQiEtbYfwWJxZrIiT7fwH5egzQp50Y24HQERzP3sdS+I8oGiMJ9xfEeSBFTELQKGiVEirzlKZ/Hw6igoVawlNts5KBLUyHqXWU8fmbzvPiZSJC5ehtGMIh6GoioILcZUaj40MPFxjUYBVVYuHGsL36gQuCoUHGBEghvpoSmPKTksGLAmCq8clDE5JaIjknWje1Izx4hW+UBnHC6FN/UkJMnxd3E2K8flwTAlrOFro5Kf/NWaZ+bweLGn+x/ixOVlOClo+1vUIrFNBoLcu7BFmLgnXBpNwxMbStYdejCPqnuyumLbm2L4gXUQBOzOnHanPCpQW+M5H3nI6SkwkKlDrJEca3k9PV2ePXAnDEpaqdgKmr2qcqbSwqE6p3D3VzHmXXdIYPxakSBUfkZG2Rl9gXuCcZtqtNgJfJegw4AFEN4sOFlAWKLV8E1Hq7RT3eH0rLIthdzE66tbEQSKYvDWGibxvrrRnSgjCEq8k/PjyJ6Fpx4CLyfhlna2l5X9AiB5oscgx1MXQG75qSK03ZmZV/LMBospi/cmqCCks/SF1tpwDMSloWG0KsQhOE14e94+P+8+fn+4eHu/vn5920+44H46zMFarjRaUYbC28nWuXMowjNAqdSLYGYdKXOAditQ2SieFoOIuop8ixIhoQa3WUdo0Gnmvc7CS7w0lRTGvnoUgUGKq6o3hQL4BkmyvvnEXJykobFDwJbUsiXZesYaRCt6mVA+2X5ZzIy8U1Cli+A4ff2e2UFXFYk9OIQEEkKEIAfPMA5HIMOi3N1f/7s32Brs7pZ1U4plXfKpH4tWrb291KE+H+qffftYVsBp++/T49//u73/33/6H/bz5Zdr+L7/+8o8/38vmzcV2PNV9GUhm1Fm8mDn5w9WIhDMa2j+KWyRE1pWOaSWbevBjpKtkFoUSalWAw3kwa+iGWxDRHTMvrASmYeTu9OnkaRdyAjkRCdZuiIizOtGLYkQNTzvY7w3NwN5jLWQ3EJQSiEpxKQuKdKYjvCfTPpzWkUO4bVYChTT32pQIEQ+lF9TeCpCpOIdRHhOJgmPbpWjv9WNHAIgqW6NtkFSJvKBCEEerCwQ1bU/oCs8ntjxvzNbxSpgockb3andmC+6YYGqTBIq64aa/0eoSWmkTwOI+vOU13HSQHdQRCXc4WtJwpJcMEL5tr/0JANlGIT8BKlgx5rWEDZEMahM3Sws0o9jFLZJ63eepl6kjbmfj27ri/KdNIexcGwmoWSrEtpbGg18+rLPgi+dgMeO2s1Dz7XT2mP5XDZwXQzQNG3N1dR0aq4Mjvm+v810IiHBsm/4XxNEEbUb/NrowD7Eb2HddpE1zI+Icwq60yRugG7FFsw1S2EAjr7+Dk+gtAuRqoymJZk21RQpzEk6qpf3XGGKoAh8sBcs169OZfH/KAuv0dj6NVS532I4efIXmoeWQAmL2n1D3XSpJ365jr4/ZBGimZjU7TnZLQQskvXhzm1D3auq/zKFREJC6OxdhygTTbUY9EO+qgrSngF0Y4dtBgblWYi6FqwiqFoCUqigVJuZxHBTDPOl+P93dP97dP93dv3y+293fPx9Okwgrr1BWZbUeBygqQ4nAlY+nCcxzrVWmgRWQgccVbwFM9UTEyh6B8JTtIr7ISnSSOpRhmuexjKzFqgIUqqwzRMHFg1Za1ZJLFpd3fRY7rdVQNEGbRvVQgpOYqS1gi9ssXBws9IYiHuGY1YxCaHCzpk13JhLvpcbyF2Lbg+IIF3X3noSUC4lMzMpcRGpheXVz+ePtxfVcb/nm4UpRyof7+99+Pn24uvjh26v15fb6dn378fEwvbz99vKo+O//05/f/u3F+4P+46fnfz4wv377+vLV9HI3z5MOQxUdV4Pbm85xotBjETRUghtgie4wThXynGprnU5ONwlL6iQQrc7AqvA32lvT5CvsbLI0AM30pYZ10QN5RzNVUhE1elFa4TAyFhSPpTQtaZlFKFqUizw8pOkTL4UTILA1dQ/BZ8DdIwYhajuV1CrdxfsqI4xxOvvR+Q0eF8ntV6TRYcHiM1BVyeY3ZGmadlaTvdDabWthWJ5Y4sQvR2Ii4uVY9kbb+eV7mpmLAiqVuZifKSIujRwYwoYBqgYpmaSCAVQowMR2VCcRzbUq1D6x2JIaR/tk3UlwPjOzZnV4lgmLMsTwQGLZyQNYGpVJgLoLFEgFfnyiCV6Jwj4H0IGF3IKiE+Jmk9PbSWvgiiivaDdEZiBMGWUuINmj6dvmWzUDks8jVwQLMAz0tq0FXnNwYe3bG7rx9W+Jb9sl8fYQrO6Ny+f1UtDsXb4eHnBVL4fyz4MIFL9rvs4uSVyq3TvChkcGq13MlvFEy0vk/NtoclaOo2x1NKQUCsCq1ewQ8S70n+g5i6bDvejdowAn2pGgo28WvuTKNytsQD2MdH7sST042ItMqE8jZMRLNTTrlDQXGQGkOhjYrbt2lG/8EEAhHh83ekQtxQ5AS4kqexwaROHy+d7QBJTkY6IvZtoG11Z9OcJuyhGVTRnS9oRGHUS+MijfweV8/hcf5s3NegEAhqp1GIqIznUm5nE9qggrDeNo9QUvu/lp//Lht8+fPj/c3T/c3T8fTypzEbBiIB5QRhBzoWk+Ees0n6Ag8FBWKFShAzOL+Da7qkQ0llXVSbwbimhkohios5SBxJxfJtV5MxTSuVqLvsJmIxViZsyaGNoSMuJMaI9qEMAZu4VVVJibGHwe3J9U9nOEGq6MxClShSzUNGB7szX7u2Cxqbk5Q85SWaprtfXEyB0HLkOgChlLqbUWZhDxsFUe9XSapxl1+vb1Zb0Qen9fV+Xu8fjLL5/ey8Nvn6/+m//d3333+vLHn368fXO5ub6s21fHJ/4f/vnTh2n8n//6OF9eEvFh97AeagFmb6qtVo0ePOG6I3y/LIbN0IdYR2ZSQw2FeuwI+EkrDims5olgIA8UBIIfQwvDpArA+gsnc5s4aYIFcqF0oGGhhcDOqgKwuIQzqPnrUEVxgbIYDxEglch5JWys/aqwIKWKx0kjfqFRohVKDTAkEWqFmUEEtiAEihQrM7abI6wWhEzWgQZnBhKEwr0vm5dXqRCAalVUFOqDo8uOGhMSERWQmB9sG9C41hlhDwTpGCmgdtqD0cW2exIC+qTdBTEVW1a1Mj61I99F1boSeGF1lRq8ZGEibjo1QkpWcgeIqIBKGK3w9MKyZ/DeraURnqlYlX2LQxEFQiCAqJhcx0bekMEwS2l7+wyKugJIOx6CsFipTIH2ACmFAi100LvcXQ5oMZHUDh3W76BCyKATwjX6omZwASocz4Tz0Ymytl8ymqMRDT23U/31PR7Ktyw+C+jTES3jN7GQEko4yQiFn4Le8EWDE52p9lxU07H6RdRqgYDCaoa34x5QnNnkTmgN95bCjsbENa0AcPaeIBtcr/hq9XWkcaf3Pu0qhNCvbmAAuyVlLDRivCmWJnZpImJtTmNfqU5jN9gTlyVEiBl4urX5XsHOGvFpiuIet4DxLN8hAQspw/NiXv3QGJGwEKvzH4pxtfVtwqM9IbrLkarq6w8OZzmC/+jo1BMk/lLq5MbIP4yF6yyoNJRBRBXCpZAU1fLw8HL3uP/lw/2vH+/vHp8Px6OIihTmgZiHsYhUBYFEpWpVO6Zs5LGKb1cLZUagQaRCROVk2QCFlsLEIKkgUi5VlUCjnbKhUmUqomPRLTMRnex4Mm+SzwCJZe5IhEntzA7ANydZO3ACG2xWiClr8ypS9hKStIPgsj30gvjJ6URZNqShnlT9oCVpiD+Dzl4fEyyH4HCE2u5WGrDyci0EaAWpRcmUx3kWSHk5Tc/TXOcyvxzHeb59fXF5/c365ruHD4enafr5l1ORJ5a5Tvrp/jhutnj19vSy+/TxyFd8tV0fX57KigRUK8EawjR810s/GZyjUB4xbsqenhz2RyBs5QfeH4S72RBb3Sv7fmFdTNh0k6onmE17sIUuckBuEdOxCKyaRo0IUEaki0x6NWEm7G8/ScP3VBVWqVGiZJ6EZ/hgeAkWw4iNZ27gJGCZk4mjFY2iVhFiJqXCJKLMAXwVChapbgwi9ZZPCRtnPCbOMcxQMLOQDk01L8I/wcHqc5QIgVk3L5CCCjCU0S6sYqDHbhA7s8/PK5bo/E9EhBoxMq/i9pdIoBNkxNBL9IiylMoKvFUhUkPfKSwc5KfD2eSVUFM1GZ72nu+RO0uEY3aWmFiVaOgkNDrdh7bTXiGHFUqiUQhds0M9kNAe9pzrZGr/icVbphLS2U4qtWfT2aD6e5bvi7/6TowA/BCAjJ/0Qf3QZkbr9s74Sjv0g5hOfBh2uk9ldD8tMBZGy52ARf70a+CJgNwll9a/jcdRyCI3gTBjXS7Pr0y+gyuRMHkLy7iIU+VonOGccuGT+O+mz5nZFC/BO8x15wMtEAzQ1UN01I+v2ocps4ux+Jwj09GOB4DPChnARkRRv4gPLvkuZrgYZDyofbD4k/pJedy7j4yBUkGTh2mT8Y1L1AOgdM7AZyvS/+W6xIfj359FXpObw5PIKC/65yyJ79qqfwT13yvaOOHQ0D8cZJZaUYaRhrIu43GWl/3p6eH5w293Hz58+nj38ribDjNAhcoKBBoKqCjrhCpk7r4QwxqDiRJZXaSK7bi3hsKihdXSDGKHyAtIC2SeiiqXIm5dSbQ60JZK87wZy6DHwoMU6KxWFspgcTvtJ61AwcpFlSBCqlGWCuUCDie3zTwwdoigKa/lBoSO1hEBbLUJvUJjVbHjyezYr7BvQslrwaKpS4IpnS3ymoBHygytdTVu9pMepxMDQuXpOP/p4bCdZDzNm8u369tvebie9nfvn1/Wq2F8OByeP//u7cX1Nz+Ml7d/ecR//OX9Z1w+7rHZbOtxv2KMgOggdRa13t9GggQZJoZaoj0Juc4msU040STL91YBsRk4vS6fEcVusp7MSWcAph81vGiP76ogd2ZFzioVcwSNzYC6IU9hiFh2/JrJLiIiiIqzi4L9XbVXGk2hp7SFEAZI8WBTaKcQUABKokqW5dOScm6hLgIKF1GJPZQw3RcvcWDXcHkUgYq3T3S+DbzjxEdkc2yRBKrudLgqpT5wTGqHtHvekAqAFReoACsoRKpIraoiNX2p7Oxt76Z8FiLKx6zAXKt60ViBQiRaSzSgkZGP+NtLO4PrnZt8G0Y2U8rnuGk3bwYUFjJBpI8qFFynDTvL9YVrj1xBbVYlODVKfbp7PFMQoBixNEpkpzB2y5jLEJbbX9MGSUmXwG0Uv2ZqBu2baAcQzOrKKII54V7Ff+wJurCeGRWIpziVjeiAZmViWFTNYIl4jdQZREoqdgONjzSWKNRdinVntINSqZXdCmfVUDzVLsh4flZ+NJeoM40N97Zgw5lmj8/Vtlu63MVo2OW9CXEUJySzLRBqEHhJ7Rhp0s3sR4Sg0JIM3WN8UM4ZbcGdhkv6R3SoEb/DtsufvjbVXyBq+4FiQTKm0lM+dInRwrcv+EgohhAgKf6P9lDNRwVHIln+DPfHyjVh6Kd6RutuiG261L5tVy9J4SJgFw2TrqkMlYbTSXbH4/v7h98+3n/+cP/w+WG/PylG8MClDMxUaPKtVHMhOyEHIiCCaDXNzNH2daAixQpmI+IKJhZlYh6YR4LCug8LZNa5zqWAieZaS6FhHLkwRHmamTHXysOKgFJKoTIrwbqttYBBYS8QVYckUHU2FuIh9GQeWJfwtiNLuCgLJN2zI/WKskV8yS2W/WnVdhL71xRd6VEsjuvM5AVG7JsnwLeHCXs5tcxSx9VmXF0fpuEPT9PTy/HNeng1rO9eSh31Ux1fxlHXeNHj8fP9Tz+8/f2//29+nsen3a//9Je/PuoLbS9LFcipDHrYn8q4GVebqpb8aurB/W0QAIEyim87NqZsWcVk8was49hKdZOQ5ijtUKArp5KLqDkXpsrbQRyc+s7VnJmiphFJfSE7p7KTivglL6QWrQkx9ME1iHOmvXIcoaX8qa7/GkayVspNT0WpCsU0vR7Tu4P44zorSaoqWSqM9nw7ZU4b//l4W3wtrg217UPo6dAPzIFhAasoMxUyseBCXCuJcq1aRTL25REwXwTnbkqOtuQXQW3DPpyGnqFSAvuZzGmOEUgGoe0MSHnbCGdDp0sczhh7eQm66DQLxMFYyWKhvrOtbTBc/oT9cP4D+QlB1H1nE4Gb1ybvjmu7OVCYSWtk1ZlnH0fjyQRGiZw1VXqyNbW3I3g+kIErEUmL4bap1a0sMBwFeRuiC6aN40MCaveGM4F90NSu4jiLeOmL92wX8+jWJwmdwzr/pU/uuF0GAOJUjpozCqmwggdtMVQfc7/MbdoRv84oSyj1ptlbmIXgOx8985x9g2GKPAFrp9Apn5O8ZiaPOqjXc6dn91w5ZMY/xtjjIQJlS7mUrwUsiJnkh+cX9NfGIlGMiqm/NWfT/fiXGvCNcr4deF8E4s45xD9ty2O6g9ue0xZ46gXDmLjXvd3aObnwxbuaqT7/rglTM73AsH319ulx9+uff3l5fvrLb59+uX8+VMIElkFAw3oDYuutr7PISMNqYNA8TVAiKqUwtDp3mDal6MvjY2UmIsuCkDITMSCVmHSeRy7M0DqvBiaZiWjgQRRD4aGsZKo6T6BymudKJLyC7QtTa9xNCK/aDhkgihPkrDLEWmkFIg1D0MJfaoUsQbYA15Sr1JE1VNu5K4v+Y3PMiEi0dhGFBRYIUQ5xpNwelarZ/scKrTINZbADU5kHwfbpOCqmp3n/8UWvx2mq86Qsr9/ePd/zdnP95ts/H3n/xw//8/uX//jnDy9E43YQnkAybkiFCtbgsRKYqNrBJv3Yg8FKZ2sJ54wWzmuKUuNJa++76BDXaOTzTwMtiBoUs45sVYjUW31qYtbFr5PBe//BEIy/JUrkcv3c+fJNbIH13CoHfu38cg2hx9JC2PS9mNZezY0KprNDC8Zi5yDdiV9CYbRDzk01xl0t6dERUZvdsj99P79tD7OS5LDdzZfKZbNhuzcgFVDRqoGBV0NRYgWpYx5VQ7UiIpGxSieUyEGKcmBfNR6IZeM0AUmMFD10mCgE0/KJmWhpiC7kTcPu+1KnAncfK/oJ+Cp2TzDzEidM5qOCLsmiafsR7nCai9b1pCeniaqk/ASTt4dSWEy079vCJGhOpugf5NtIM0yQJHMmRoQTmk5BZ/wbgmtxy9igR5Gez1hiRyuEmT9TWx0/9ram/1mMovcgv6JJ+gcsvALkQjaHPcAgPCjbobFOG5+JHXrqIdfY5aM9J0FryqAqiASx98a1e/K+nVBmxOzPQPkCIwbsJwukRbetBafB3gdVO3XbR9UcxcaZ58/Xxew7SHn+41RUqO9xoa9+3xFp8ZUrnnZRBvSk07QNZiQH9y4IYeFntqclR7fkl33eRcf+lYk1YfoKIFr+EH3xy//1//Z//5c//+njz78dXnYnLTtclPXtzeUVKQ77g6iVM/BIBJCwJxIiakZKg0IUQqrs1lyt4Ud1NcAFzChQsQgQFJNMALHQwDRALsfh9uaCtT7vDwehWYgKA3M9nPhwWK2Go+qRRIeN8Jp5JCGGqh0izzSroDArMZSpQggQ5VohA6+h7JuUVEz2FVh2tSPnIkWscJA/4O2X9E95ye8odhVF8Dn9BU2Sa9sluDTdLXIevKY0lHKYdquyplL8EZbpEwVOY6lEUiehMo7jGvPpguVmjTrvdyf5dMTLpONqu7pYa50BVVRoIRorWFQHJmiFZvlLGxMQe02TNnD74SNehEo6ZYuvcPYXpGsmqyOzNvbNuNkXTwrRCAPWOQQJjLpLz0oMNPJRXRLgXL9/VZvbV2nZUmn3VgwZ0/OeSY0omuj6y1YrOZretAdBzNZxD4hC4YYeaTYoQk5udDp6ELy7YdrJ9Hkl2V59tDZwjppuV0nwXf1WoSReEC2q1hEqmcMQDOfpw51dtxlKSxDFW5GVW4DX0EX9XAt7wBFs0orIXwRV4DwutAAAsTqgYAoX0ly9zlQayUNUQ8qbrDpvWlo91rDTwBbHjZBcckHS2dc4aRBS028etu87fHZuNrqfLsoQw1v+nKVXtM2RPJt3/uQv1FyISy9MTtT+jR0bdyJ+Ntzu/wvZbXPpzLsRl/KPFsRxDKihLrtFb2m+JZ36P/WMWilWHO8hF4avTIMSn9vatD8959WAdyx596xUfane1NpSm3PGCHcoMHSI+cK+99NbgIuvrMuC+v2TKDOtiYnjusVrloq4f3Aq0VSMC1K4TdCss4ZTrJeB8C5zQtGkkHz1qUnY4sf0xXm+bBEhWoj2uXa3W4Y//ad/+uVPf379+uKbby72M7+/BxU9PD6VoRSmephoNRAr82i6j8Cz1oFHitM9bSMWuzNqQ2WNMmACGMSAgABiBQECBmi9Xk+nSaED0/evby5W9NffPv36dBCUgfl4qoxSVqsjqgzFutEqdNZ5pFEzKStSirfC9T4/bOczRpUP4vQ+TR3vsu900J4gIOqJ2BN1ufK92ULoaMCPsQSzF5Bmf1bXO9rQl6rlmvyo5WBPBRFViKCsypooqnUFRFzKoFR02BxVTscDVR1ogI48rj8fDvfzgYlPR51pUzZMA4nO1hKpUFFma8JbJBs9WoiXdcE4rgoaLKMFC31NE4dP34d9k1gmFPQFsKQs88lFSJo2JZER0gVrI1JJqWsiB6H5TnImdSWi5AiD8zmdyoaGp9UZ2m4OpqoyVmuj6BXHMoLYT8nVzhc2rIuT+g1d6RVganFp3dHcQhtUE2w3BNoOvOxGSsno7bPCnNxu8mDHjEChVTJ1nQjZ/Qhigm2plH65mBmxS8/4wTVb+691zrT8RdJYfZ+Cyyc5YXxCth5h8tpqUHCFduxh75U+8mc/TFFyZF57utdhBuziPmposbQcZq9mFz5t0tkSAZ4SdX8fuWOU2upTb4r8dm/hjaV/bxnCDATGFND0TkRDexiaRIKzSPe8tGERHiRmFQkepQwI5br5TAK95VM0yZDSGBPvuKwfTic2nRZJA3h2V1rKtI8uqBHS6hVKZ90o9ftShLtlXP4nEQ8yquv1i91ZlC30s3jceSE3hbVuwUe/On08XwE/JNKDQTadEtzuVauxVb6bmb+Y/cpkmBiOFwuczzr/6P5Bz2xLl9YjF+Bu2tSmksg1w9DxGueV2J2KCL01E0tm/kKpZ7lEzKHVf1LPG9TwZbeq2g0659k4ifrvzjyB+Hj493//4//lP/zXb28uv3979ee//PJffnn+z79+/JefH3m4GIYNDySYFTyd6mq1qTLTMI6rVZ2mAcRalFkhxKyoVZVYAbYtREVBKoWV/HwfrlKHoczzYSyrU50n0ZnKPM/7aRKZL4b1SDKdTicdJ9HTPK/KOJa1yCRETIOAWamqzjoReCxFqypVIq5STTIKs4BqFXYhFnUA5ruemiZrMc9FsiNyy0kk6nmmg8m0gK0e1tEuDhTaNVbA/PN29DB845OrPzckzksjsVi5K4iEXVlBUYWIQUVA43rNQqSYa4VARq4yrgZer8tYeaqq5DuxC9lhIt43hkgUlaBEY4h6FEUlv3U8bir4HBcGLVMt5iSCaE1VpnfUa35n4vSCwxNrS4MwTeRL5u/UpqWweFSHw5QAtZ40jPTK+xaW3TwozKwHCeztsRhfk7NU99pm31/UZU8iEhHk6DSQq8ReVJNiCQ1beCwHrhBaFKyGJiczukj10QEkD4Fp4/3l9KzEphTbCg+C15hXNDYmYtvOoKIVDocSKgWuTsNFuX5JZGIvnDJjYdgn7XhvpoigJI5ykJkm20OqiZPb/LVf295n1gDBFtmMCJWTMs7hyUiSsTzSNLUVagkSX/NAOqmYqaQEERB9fM+UdTe8CHi2UpP2LvNCQvCCNeL3nHKs8hlTa3hTzT4axWjJgrYBsz/kPegKP0VEA/b5t19k9NLAfaEhcmxm2o2y3DbJpuls69Ym0unj7m0+lKa2g4KgbqHiaUv81wYeof7wOA2t5oYDNBJoxHTzq2alRTLwy366c7Kc/1cV0b4rzY4locj8CHt1K0U2A2rk6k6IWjJijq8RTV3C0eWQCN1Sd3eG6ug04VIL+Vi4Y5Zeq3QvbZyriFK+1J0a68wci5HF5w3Lut7K2GcTheVoXNb9l57XtJF24Wm3aS7UZ/t4+JvvX715e/m33//w9vL6uzc3P/zu8f7/8fDrSk88i9Zv3129+fbV+w/3d/f70zTxarCanmoRFCIiKgwhQImK6T8WJabCUAYzKgCIEIHLAKKhFGYGymE6bbaXk9ZTne+eX95uaAVRES0QVGUWpRmoYDCrqqgAVLgQUAqLyFCKgZyhFGJMUqEQqda+n4GIjlNIApFbx2UsvvvXpD/A7VKPnhG16SNbf0lfyU9FX2SpQ/c0DdaggDsZ4bS5HESegVSJpJgDC1GWOhENhUioWINe09dMulI5TZN4xavZIykAiZsRZRVQVThEIILvxkyr0LucEXYOHYOm0Hos3gSj2eyFXYJHVwJHhYpbrIIbElVJdu2pH/elTf9KwpsiBMVxMBL1i2fvWxhA1yM9KEuV/cWq97oxmEpbEKIHyBE+gMWNkoDnRAuCt9eGfHMq+VibbmCcuMr00EIfpsoyZjZg5wuRzeGgPmzxeKhXNreN/q3lua2Fn4IiCoh0R6HDid6hNO2mk1xgNqNVFvUhKnjlaSwXA9amiEHKQnbIrrUOygAvuiROJhWc7XJpGuG+rAUJ//usCprS2je2T3rntz1Q97FQ8HhnKLonxeJHeKgRiHtTrehhRkabl+wesaVenM5+OqCWk/AWlOEMdSsQSDumibYYcPTqHkb+kny5fG9quIV8G+7MDuxBpt6wN9OlbfxnuiU90kA8Aegj0Xhm/HxOlMNCyl387f/XhgIb7bup9QHCbqQO7yVPVkyJoT440i1UaEKvX2cisOOHpu7SFaJu4TsJ+9IqLXXFYjGCoKShOIHA5UHPtlKhldRuaGuPzjKklmj0UlEfsF8SCMgP24G2Wfm9LbSvi3Qn9bzr8/gS1TTRyrzxQqu3e78uIMDw7XW5KAfaffjLr3/+3U/fb//m1e++2fxP//gIvVqN69//cPP3/9X3h6e7z9NhGC55GI/TLJMUUusPqYZ+XINaJltLHkvNlhWbqUyqYN4qRFlJq9ZpNRRm5WGosxyOswoutxfjan8Q4mHgWiCgAj1MIw+1VlWiosU6H+ps9UarMtTTYQUW0CSVqQzDONfKQKGVVfxItN0nbwfj0kUZ8w0CtxDRgoB99qApwY67yH3Tth55lMTCqMXDNPRfGAsrB24qxiMWfkyazlEkTTZE24AnKqABDKIKYJ5VVIoAYOVCTFqq4TCxU+mtkwqIqNgeMI4Ad5hfato3BaRxFoXqbrptoR/gt7oSaA+nDEqH566pxkLCKY1+9MOOVHIORFPzNV6PEEwsh6ZWBMKW+4laMTDuanEIuRBfqJTOG4yZ9hhF1fo4hxgbH7QFJ8obOHEZhQoPZkiLqamkMm5iT2lwKdciR6mduPfGcTloNN/IGkOTayHf02XWybZRahhy6p9G4TnY3+pbxOLINWrbANsaaGRwMo5P1osos2DOEmYqrFQpQYXCu2CraU9u2KJbALKzyowGXpnuLNebK0/qJJBwEvca9WvRPqNwpwqS9M1mp2lww9yXMzdO9Qe3vGB7fW+BnHGdc7SDLuLSEewRInbGG/3AsfjORcqHqdYjjSi2BoZeCmp1YL3PHXTA6KxpSG+RF1a1QX+PZLggUIY/XeG2cpSkQ4xefVSUbwjvwnmn/ZnChFxTjcUm/z6WqlMoC/IpFlNuX7sGa8mpdkk+1wfrmNxL+znep82pyHc69KGgmzvobROD7WxApyTQ3U7UZ+t6ANh0d/eyfqJE/USzpYgCJbR0ym+Ami9zgUHrYJQwkcjqfg21D0TniCRcmh2juu3nMA50MTifctKBlkPozNLX1rSTnGbphw9/+ONqnOo3b47H08WF0urqtH/W+ViGq9vby+9ub/afP7w83k1THVdlmmdAC5NUGZjAEPg+eCaQ5Ro8tRPEZShYZCIi1UmJTqfjdhxH1hlV6lwKq/AMlDJcbjbr1fjwPHPhUpjVttkXgJgKEVV3+ESqEo9QnurMkDpNFTqUsRAxkwgRiAtXO84VBoS4ATVYKX6/nhoqIDzmACiUtVhLzusYS3MVm0Eyk9Apq1yeOMwmkEbnErkG920asPS87UoWH1RhhmiNuipREdFZIaCiijKMUFViZVKqqonsmDwYqwRSZkpJdguZQuF56E45myWLSWeQ8twktNAaOa2X3nlfbhG0DOuYbHwuwP64pPUSZ7hdbni0+UFpxZvaDsGMR1I+3tehF5oAMPG2M4QRNhn++uaodYhKu9qkwB2LyZ3H1XKiLeWQFgpeppQuVpteGJhGooj4pClyyXc02s+F4i2EPJlDWirYFZet5wzLzDJLnTlOh3X1nT+u7R0PiXa4Jk1hRJ2IyP/vcRDK+wFlZoL38sJCnJqX4v8kFFosa8TnogZDNc1X5AqIrEGlItcnURTQI9bA1dkiHBocpwARL61Uz03LcuNkq6YXErbb92l1KGPJlGQJKqP/tVdSucYNDRAoy7Pt0nyc/ZFRnSaUSUwCulBEb5O0OTPJfEjLt1CPUbKarLgcq4biPSdd9/R4e1O4vS5Ju5pq2chGiU6+UB+9WqeO/Lk4fawu8plnP8ncTr8Gqow/RJVb2yENZra9CakdUw/bfYGkqbvg7K1B6xYGC0JpN0XqL06VqPmL9pQ70+u2jj3maRGp8NabwmrvIoWItVlxGBN4LhhYAYqH2z4yMt/UPHywws9IJiLpdq80Xv8S5fRj7wS4SY1F5BqfYhjKap7rz3/9ePlq/fHu8yT73aFOB1ABTvXp4f7h/sPnx6eyekPjaO0PRxpq1vYNBUABFSWiamJEKn4oOltayDeGkIoqhjIULutCVXUCZhFinudZtW5Wq+04FD4RWLVAdWbVUmbVkQcSVkyKaoeuKwEk9TSNg1yMpQomwmmeuZKooLDF+7jF6ELpUTR3aAvb6Q/30gMvUjh15wqlZzBNLg1GTE90eXlbLk0lBzutyXQMFPBjHQ0+CgSsUG9MoSQMZbKmd6RabXsdE4FLGYrMlVSUpAa2Y+IQOZDvFFZLOivV3mkIu5Hhd4sEUNAthSBIFpYMESilhY5vs29CFOq9qeBOKRO0k5gF7RJ+UVsxLCUWzRrZR90TQl1+RWASlrS1w0LPEb5yl89QG38sQDLCjIaa7rT9gnNyBmfWPAe20H9N23ssm0DRr2i5X7GZGidfRFrctjEAlejF4bXJ5gWS18wBfmKXK/XYpo5qnY2iCRCkmRTXC22kEWKwN5BreENyjOh0FFo2rUewK6mmN61ErUCsq3c3Qif2CcXdkcEjTGcrm7RtxfMp3m0Knj2JBg0tqnTmFrXpA2dL7KsZ/Ywy8N9Gk78H+zmFXAyWneUbWyfgXXLrckTtG0/xqGqG2jTqf7W7zKdA3axz6AjrGvYzGc0/sNUO0VdVYmgcGhPp51439FFDKKWeTRsb2lij3sYv12W0w/XIMmDgo25rTs34d625ensQAbPghwgW5Fr2AtvPPR7htSFOyggRkigirU3qJ/Q4fMiIkIP1IHXTDU26XO2EWtJYjxS3HMoZG/jFbXBR85TviGR+i9k3b7w9KNPGEbjv3pI20omeEySFcmj75toZ7TlLCDxiVuOgRiI7VhJNeSXZ/eCdXOrFL4HUm9gjSeIWHlDQ8N33P15dbv/ln/7p4293xFePL6f9c726upZVWeGou5d5v1+X1UlIVJmpKFRm8p2yKFqUlO2sSE/yG5pTtePXRQsIwspSmGutAxPXerHicbN6POClViVMs7zsj5ev15fbcXyiSbQUENsZp16jx0xCXElh2NlOPGIeB3p1faFKn3f7qYqiDqtBhGYrtWRXK16fWaCS+RJXyClyatzYCYu73CGPyfgpDv2jYEpmoYQ6HkkmDt3jFj+lKyITzjM2bOpxHEGJxcLXzMNg9T9sKTBAgGEoEBW1XnSqqgOImBH1FdJSVAj0k5jabUKyblcs1StnxzsNcDRhTu2cYZAmGBnrCjIEz6dt6nLM3gyteZMdBRvx2wN7CaD+ovZN+pbaBdTVbVNonybtLW6bFsAViIYIKppnb0a2B2CpxlrIN0eliMe4A6dtCdrANQADcuT5LnSSnW9MhRbL4ZNKejYNofASV8TueeeKzuAlQ4RFBDJSiYjimNZPmio6QnWmHu1pocTacndGHaEGM41FZkE5rJmzUkLlgA6KDN9yo1lQilqFR/C+qBBIMmcTvm2v9yPbQh7TjTFzlwyOLIyxsHaMlJg0wIQj/Gb6Att08awgZItUor8gHpmrT6BWeIFzxljANAKUiavW4tT1yFC7oqm3QDDpjDjlKRY9AXViiIWI5nOaNffUVoCqBLzBiH21QZAi/vCoST7WdVCwg9/chqHxviXC6Iy2IifSKLpQG72NX2iZfi0cMSq6jkB5YzK7Tyj0Tl7F8e5Qxb3G7WgaA1zGY5JKQZcujLj46XMdTsvOe/ShqrtzkQzJ8eePZ/MphGypYXOw4Vgh/SG3Fy5TEecKGxTQWqs/pwsQ+ihIo6Q3rEVI/WIMOJv8l8To1kMH7Ccd18O4efpYr2R83B/vPr5cbje0Gr6/2f7u1dUK08f9y/OeFVSYSItMWrhQYVFlGkSEFaUQiRJ5stojJ1BSKVSYWZj9vGgFDsfbi8s3ry4+PE+nh2mvWoHn/eGHb169ulyPRUV0ICJCjdARMTFhAFn2SiTcYkIpBVVEReps/B1iUJiE1I5cNyjhbpV2piD4RUIKldBXBIQr2quRJaHDEPQuwdmapKOvEYvxLHjAWl/J0KkQiAJsxzYQSypEJT+TjliIAD/03vhMCFUqs9eusU1AbTMcK3mbLVUFRL0QMhRIcB5lXq6DI02ssfxl8W1OH2jPaFaRumsX2jIab2h/l7Yx6DmLd/fi/KlGUO6+o/MR98vZJo4zae96swBhqHLcrnpiowRFYUt7eggZeuuSt1JgLwo3un95ch0SoHcPMCqxdoNVbzEVOdy2bs3XXyj3IDgtx5PvprYAQTyHPQmFunovOFRNcxioiruaCV/ODBGRJ6hh1qwp/lDk3NalO2OuWWIEOFla4TCYbekaM6t1UvXHaNHu+AdH22C1/YMixAZZ4MaXmsJt6McJFLk2JGwLU6Pdkjp6iLCLfdje0ktdClVqlrhmYaAX/wZ1GgOgzRagavcWLi53HbXPHoBm6oI4yMXu8Vr/jy1BHqWlATLIOoCktPoSGZ+0zgWdtWouSv8ThIBmZvDMFbOxR1BPiRhW8tRxRAagCJqNTDsChvLpXurvXVy6fJyzwWLAFj4kK2aIz4JVcp6upDXemmrk/AwBwBx/eFCk4b/uot5OtbVEiyKeU7Q594ZNMy74tZ8uHB2coF0GJOmUCRCkL6/ZAy/xF8VkU3HacxWxgTvjTARPYDUN4jZ0sRi5Ky/EJFf6bBY2v6Hun+/3T9tx/eMPP91cvmGqb6/e0+lwkvrDm+u//+EbrTP9+XGkwbRRKYV5UIWQTCoV8zAMrEQkzKXWuZIWLlxYZAK0MAaGVmXi1VCmWgnKLDqfrgbF9fj+fmIuRHw41QpcrMaLoRwPolWKzcLOhSffyzyAKlSJa0UhQLTOdb+bRGWaq2IYmKpWrVTGgYlJFEyFqKoqCYQ8eOWkFuqE0blBbce5Hy3v5RQLNdZxV/AleiIvo+Oa36VT6NUcSF6JB7mWKGBRq55jgFiRMSzLeahYzb3C98eJpSWsE4H5uypzRhLDNqUpE2tvH3NpflCbyAIM+Kgbj+fczpDhUnK+8iics2OYCz3XqvFb589/cXOXtupHiGT9L4YVQ06TH0rkqyK/BE7LtyuSsF0u/Owit3voR6NNN3XGLF/YHDs68wtDpi3Q0YfIO8oZDwcaiBubzunQjppaaTpFM1tvaxJoKk3h4j6z/KpE5kCELuPQcj2JYjyayslsmCeZmlJtk3I8EUt2xjZo4DCYIOVoQdSkQ/cApeUjWm4rAzClaIZqgGzoZcZMw5RpQiJVeBMUo36LJPUa2HVKmsYERG3oqjiba5JEuwWwWYXz3IiXXO2+ddYUJhU7hk8w642M2iIsjFKScTGaxZsNX0ajj8bC/ofGKie9k3t5mU80W5cIJtBzhy6CAD4lZ1WkDxLqFuzOFfUEidd0AdFllicHn4sMdKzWrkFg1iDlGXSglgWzZzib29GERhYjn8E4hibbJF/1643Adp06AEJCcP55+DL9R35HAukOaFIqw/OfbpJf+y4ucSzly+1Pi09dh6QP19p4BMO1MIFfq6pKdrSz+InWYE2AaCLUhR5zNY2mnDxDS8LkEg3H/bMy/80//P3fv7q+e3oSffj+7eb4/qmA3t5ub8byZrX62+9ejcfhYS5VyjyLMISq6rQeuZIyQUVmqVzKpJWUmHSuBwKGYYCACWDigVTIzqdcbVezzDTPt+vVzagVKESHedodD5er8Xa9ej7ZEfUkUokGZakQq3qxqKEqDWXwMuCpHmU/rsaiXFVVarGuA1LNJxOVGURcAGGAi+0FjZxnEND+FOtqT5Z5cpUOEga3xfcPe+2QZfymCuJWaMinqWdpkmJPcm3QmdnQQVFj6wki5w6Gn+dAWiw/yu5Hm3asoXlFBFDfo4cSxQQhdSQZxe+EtjP2TW4IacKoH2J++yXCXlApWFx7WVmwY1Pe6egrlj9fE8uFqkO+5yu30Ref9QH7UGXtimYG9NxwIn3gFLpWoIVY0SBn0DCIb3yS9nMxqk56m5uvbWotU5aBBNcv/XL4aqVh71VA0j2hVaCstjxtvRqNNX/1USxonKfQpyrvABvl3DWI5ccA2TyWxhZwnjWO98Wg7g8HS3EkVhdPasvUrZaHB0ycm8UNyqWB6OBDegvUJeBSKXsxeDKNA80sYlA/lSRdKUQobaGdCdnAeiGDZvi1M5ctQYzufjc0lOtqW4EMFWjYm+DgJQ9TW5qlKFJe0IQ62MYG2Y2DUnnlM30pOVikS17HW1o5fG/eie08uLiK3LpZOAKJ5JIomsfC5ZiB/uQuOJOno9lYOACYNhr6DDVfEHjAu1B2IZ7G3l12bHFLTmppemNIqQwJnpKw/S0KJhb7VltwLt4abGjL0MVHm+S6maC4BymSiyVwMe8mu/ihJYJZfNGo98U9y6EmPTXG4mcytnCORnyrxW81U7EEDseAjbdDSMlXNVnuLOa2GOQX/h6aWrWvh+Nxt729VJ72u48ff/n5VOW//odvX39/+fAyX29KwfH3P95+0On04bT/PM/Dard/waBl5NVqqKJDgdRpKGWGqMqqlIEHVj5NExQyCxRUsNmsDrsDFNvtahwH3e+maT6dpjdXq5++uZaneprqqerD8+GHV1fvbi7uptPDTlGgqowKpZrSCIhUtuOqlHkcSHQzrkfGsYqWMmslazutrHMtoDKWUkoVFB5VROsMEFRAXn4MzWVXXxflMFEJDiKkRme80JnPxnuqofjOzIUrkryDYEaRugsIEHeYTE131gEIy6sqwkySQEM9CQ2YP6606IJtI4tTRK2iwsbRDEB6/snR1M+qsburMMqbO4povrEfckbU47kxsq4mpHu4+9G0ePIXPynfZ0HYhZ4+z9f9Kw9T/cr3ruqWinwZp4qABp0lJ9AhXwp1lKuQFUDNMLYPGqUWwt3ld9riNqcJaKb7LF5Cro8CHvWfUM6zf+di6DFOQmzNyInbvLTBByyXLA1eaMDF4scjOt4KKlK8XVM220JF/ERU2O/xgbhULQdBTh3kgbvUmcqOTmdmXrtpRg2DNYlGpCBMWfuxg/Zq35l/ZoQaKPIIfWTAO8n2B4ZK0jasyCKkqWuL5lEHy/B3ZtyqjhZZ3HhcW6TF3DMSGIYqYWUsVMcLi0zgkk2TFzJElEU4hEj0Y8kIHcHC+hoQ6PVIwiyKAl7tNpxDTVU68Yk7D4MaD+Tv/ndYYerXW4Ps6Rnab5awZlLV6DTWv8H4p1VNdYrNRb6tmyl598QVRAKNGjEjr6Qr2J23ZTGtjii5dTLJ/68oOFp+3mO57hJfj16Elspo8ewv47L9Nd13LQRmK5RsHE5d6sZeCXqKvHMwJMjo+U8YIc/ehhC34F6gW/QQJwINm2252RYcH+bpcLU5rYbt4TAdy+n2u5uij4cDRCqd7ullOnx62b779mKUYRwUyuCT1tNpUkapuvFjUDEM40BDPR2Ii8yYp2m8LvN0JKmlFJ7msQy1lNMkT4fD93z9+3evJxx+e3ie6vw8HUUvX19cXD1OLzSPw4orTTLzUACIoDAziJUEoipTxTgWVSkjWE4jTZOgjGO1A55FCnRdoDIf5qms10RVpI68EkscMQTEAPtuJ1IIEZSUlaFgKCii9J6rTcVJzXR0vKON/gB5X/xcWuc7ECFbp8Bf7dC9rWrkyES7Fxh327ZBa5VovVjai7OMzIBY3OpedANkxhiaJqqZs06aGqChNs+whQhruhArZ8PW3Xpph8+NUyhAQgZbAqUtRLPdQr189YP90psJE+Hxs2W2urOBX9yZhpB0MeLux/Xukhu64TZ+oB6jxL0axOtwdd6njS6LVVFkQp26qyiG0yXzGmowhaNhi3JsDTJRR4Dl06nZU4sZobNvbQQhCaH4s26IrcKjYyhjaef7HEcEcoBmwLBYn3CebSx2ZDe0EPexnz6Q6eAjgJylIij9z54zv2ou/HHpp+YNWajTfdTlfcybp/anGWYAEBWXZkK3Y7InJ5z7AyvFqhsfgpTEMiBEkUOw2Vj2J77yEab/o914aWmS0+cOwe02fje+b4yQOfQ2cJ9yaqFAJBQYQhtvLu5bVhc0QdPujWTXIdctTR9FvCPxsK9zyk5bNc08oCNk1ww52hQiu5wAzRBdD0Ud4nTgbwEWTRM04WzYIdlF0SjMBvJsn67Y2d7B40hR024NO2iSeCv57uuayol7Fg5Kt556tRGfSCRPkwd62BifoAOzSr5ha1GU4ClbJhL/KpVaF5zz7pwgP1NrWdbQyVHaryZovSeZ0XeFH/9wvr4U/OM/w+XNzat3rzabi4fn58sVb9Z8e3NzkNMJ+vH9h+FivVnx5VYuVvO3r9e3373Wcfvrz++nea7TtBoGZq6qMsm4XtepKtHpdKiVeJ65yCh0teHL64EVdRxeng/rld5sy/OLngb6vNs973c31/x6w4+PVQedp9N0Oq3G1apQoUl1BKEQiuV0jFrEpCjKSjQOTIyqvJumS8irq+1axuNqvTvO0zSR6lj0ajvO01QnnaUCNJaiolJrGagSPOUKEFhsya2zI1kxDaC9nrH/a1q/YAP3HwIbRM6qtSYJCJJirH4+kfND490w/WTYpDVAa3zXxFKigWzCLGcehWTU2OAVNWwCgL3xCaV17nHKuZAsglgaVjMIof2DAQTUQCfwDV717+r0a7MmGSPF4vrQLs3cnUtk6oHYLL2cTMsIGQ0X8fzzqS3anX1F7v1JRvYIimgKW1IO4Qq6n2MWP3MUKb2x+JabaWtKqfOTtq0MJD832e+Srf08U/M6EAplHfbJn+C6wa1Y06kxesRvqVU6/RQZo/Csmox0Vq2tulu9s8xQDDqKI4N4NrxYFMS0guD9OvcW1FYvD9nqYbeXWcCXm3t27WGZRxeQ+KzxXliqEDBbFX8IdZSKuEQ7UyIRoWfPzmQDgDcPcS2TJFfHcPakSAPkwLXxONrm7hSVhl+IfAzqFsUBpq2ddrQKa58s7YuSxjM5YPmvRhIwlV7/1PbwGGFIjoZBc9fCDZ8TOHwtIoKcKRkETGi/xy3UhoSenurKmrpqlIRdKRDNxAdfLcBN7CRfVBH4ygDt38iTth73Gtm1sNpEVBBe9leUTobDlh6IMUwiAiZumq1hCbRcWVvcgJid0ATpulCyX/CVAXUjCBWXHdqdxoicdaQsWyix3U8dG8fDF+9J5Q8getlrDJKctDF+l2GTrgDJ2tEcqXsUw3c//H4YmQdsVxstBUrH3bQaLu8+737+y92r//p337/9fr7YT3L46d++xfVPf/z589PuzxdXq2Gsd3f3q4vLzWazrwIaREkJUuei+t2bq/3THU6733336ubN6mK1ffh0+DTPt+9ubt9d3z9t/uWv8+60f//wRIKxjteM1bgagf3ueHk1bgYimaVWhRZFEYtqrEShYLC1XVQr8CHmaSKMfLEZ6CRjmSeZ5lpJsV7x7ZaxXslL3SnPSpOgwOqH5gFk54Qxop81KVujKvOmuDMpCUrJxYwoOXVZKNLcLI/2JEc280EtI0Hk73f+cN2q1AJ1ybmdnx+9IPpXmhwplKhkdROhswyOzdyOKjLYEqkKDWQRKtr+PAtw9O3BqLNjTfR6jNg5jT0/dy/qH3CmJ9t3oWhSenRxadulFc5z90o0s2wFL3nEZxuV0STdPsIXs/Yl0nhhT6eF3ozL7WRcSqWSZgQdQ+UYlxrdBTXNaCNRgyhNGSeXxIf2LYXq77K8wUHpZzXIlYHIMH7B5TkiJENTp4dMDTWGCDUeQwyK9IUNjcOW1PWhsXNqxK4IFIcpN6aJwF4uq686sYdGg+bUv7bbP49IFfXFAYkOEa6+dkPM1EFXRONKNsttyO8iqO0TVHYegKOyALIAFlhcbadmt7pd4qSNxIahIOvDDdGkeySmO53UCzcB1kdNdSm3Iblh/IwfOpn2Sxu2b/pnkWQO3Wek/zKKe3Zv/EpuqDoPUDUqdXJMrqe9q1KrHEq8kvPND+25bXqAt+Dr9IIzRgvoBvNrR5pYBcoRa/z33ISjW9v8IBweQtdnrmEg5GNi0E0Q7UpTq9piNm0WgaLcZ6NU2wnpFFZN0baWufS3P63GNhnTS69a//G2aqRfWVbq59/WNJH2GSljao6BONKQX1yS1LB5+Ebz0IjOkP2efGtGEzlEciLbE8SjpIbYhtuby5fn+7sPn1jrxeVNWW2naZoOT7un08Xm6vrmm1c334yXu2n+LJvNX+4/3P3lD1fDfFWGMsirb291tX18mWi9npW0DJD5crV6teGfvr3eb+qHP93z6fGbi+0Przf3NF3RuL3dXr26fvPN6uPD/f2n3fNxfiqH715vttubx1qfD/uX/WF9eXV1sV4POGiVqlRAfsqKFhqsGooBJqlSRaSseFZMOry8TDLPOoseJ4B5GESkHg7bgbZcjrNOAoXyMKBWJlRRJmajIAnImo1YvETg50bkqjXRWHB4tzwhFZohCIehjZ07o2XoB9TnekEg/YK5+iFkf5FeoiMI2z7p+VHzmiZN4RCkqicg6i1VNRqWNRFs8p3ObXPCAAQoTNlUhPNmt2S0w74MDZWvWFjvHiQkW2tIUGir5U9MkFoAIvyYFuzQpH2Wfttb2Q5E69TPQq1rBK4Xy2JfGBJVdLzRxDXASqpZf3hnRrT94t5kc3YSgYUBp7Ob2is78JUWy4xZcl4YBInMXm8WkRwroVtcOzdoY3okdBViE2WP+pKkznyKhWbKueaENAM/3vUw0yK97+2hi4QDIS5AZwyWwQBbeuawCo3F3KbGo0HS74/zcSstliaNNqc0JZozKjGbprei8NxbgWR+d04df7koi4hXhdtDIgbX5NWI01IVIcSua6JhrvN3cFDHVHaPZkijM7nGcosPDPM2SWgc0gDNwkblQvgDqFMOtt0kebNlNxaPWRIY+av28DRpTciYI3Ui4CPXhDNAVgg19gxhiE8yGIpOxeUYFsEu6u7yKbpvk8ocbeZQP2MxhqdJzhhBw2CIDwFCWugmxpSKZFEtpa7gEgt0q5AYJpBueuGLtHofJkxP1TBPCLa2KffL3dOpf/XiM8qZuyLoF5lI/TShCAgsY7HJIjn90ISdkkmyuuvks3e8mHIVI7AF93M/iIa//OmvzKfDbrff72509cNPP96s8OHh8P27t2+ubu4/PT6/vd1eDN9sxs+7T5//+Ofj+/ff3rx7s1lrOX33448f93X39EhDkRlCc6H6er25Hev3FzRevtKXz7wGGPPu4ZZOr364LO+uPz097R5B8zyu1yeVYeS3V2Mp8lCHP75//vxyuHl7++7d7ePu8PHh+KLKBD+hGgygMMiaCUGJKohorgwchfQIFpaqVWjcjETD6bTfz8dSiLGZj7VsrsYy2i5WmQVEFcJcALGtmOxsrEQCgNrOL3UiO8FbukHJg9uu8lRbuNmxes/5we+dGLYAoC+mxAq3s7U79mPK44nRHpnBluT97MDb7tXU8fY+Vgh8P0X0WFCEN90ZxoVWcMHtAxhxZ7ugCUWGPTS8bVDTCkvhjzkFwG9HQ32hqPqbY306mJWjM52xcBOpkxZa6CdtA+nKJqC+EV8jbm3KuflhMYq2KgF64wMClDk1Xrtcw9LTWQCl050d2Gv5L6NKp05j/F0E3NMVmadP/X9uw/KZ4V4gPHEFRbTAphF4IvWU6abFAvo4EqR5bWpK13k5QeOkXL62+qnItEWQwm+mkI3WkTu2q5uP7+G+5OMgIvr0CJYtlXwgjaKUWsCk2/chp1iF3XAiJScFbR1EskXJ2I64Dx4ZShE78cZHnc5qgx3wCTblk0Kf6h1EHlxqqyAwQNWROQbTmC0NX/AtHJRSSx4sxeSr5m6hkGzbTmobjeBKhhMWHNPIbcPzP+I0HtU8QtVTdj0u7X/CPsa4vcdgVwneJ6rCOeudkVgxysl2oKKpB048mXShIGSv0AhtsE1GncLnLAdE0Xof1Qn+ioE349Erk7aejRQa97qGyedRbrvpdAW6K6hRQNvze+c8FVsDJV/+tNm3N+Qfgbn7gQVzmULhbkH6x3DIRUeWxTtz8ezZmjgxQmiCMEbD54f7m8vN7fXb06l+fri/fPPEvF6v11fXq19/ef+Hf/rDsb787e+/o3kuJJcDfXez3V7wu0stw0p2j8PE27HcHw5AKbWu9HRZaCuVj0+XV5fffHM7D4Mq3z/cbWd69fqyHg67h8f3nw4qOqyGaZoq8Vjm3//ulayuaj0ej6dC8sM3b6ViOv08y6kqlcJVCAqRysRMwqRShQmFqZ6EeKiFKkHrfJS5rAYaxrmqKLgM1zcXL/dHJqVCPJT9y4nA2+1WgVlQoFJVREuhloTWyGi60QqZXYTxehluHNhy6WkHfRHdxlipNZaxny45CVoKqrNkvPRM6M9Wv2nezja6IokR5CXcqosyqKjWxyzsf9i5sJvtwcmUruLiw2R7SpbXmNCi7vIro2+EiA6pTQjpbHZhTtG93uVcIIG+ZAnUDLm2AgoK/KkdFLFZxK+tXsSpYNTJiG3zcAmq6dM01RowybQNRxFPDClp/TV2Wq4XWtzB32tQI0ity0xczCVZMT28tgDa1jPVuy5sJFL9dWGbvC/M/iL4sjxsFjFApaBzjqzxqi7/JQ9V5G+hLRu4SpZ2+en1MBFlYiuFcGEz4pG53OeobKFeKW+KZQi5ieirZrrQxai1V+6Ww0u1OhEiim1lADCEN5/lPKk/wlKkkDl7aljy5l2npc1AiwYfKVCIO8MGIOqHmhikuY2hnyUmeprE1UlHWLfJGANcUs0ZTP1AjYYBWKjXH43tKYsgO3VyRp1+WFkPBzUAmKvYW9js8K85y6BbLA/n+eyhZs7fGTjEQattIG5V6mW5fzShkHZ/xmfUTdFXM11Nv7z5dRpvCY6OR/f8ooD7DA1Q+xS7sKx/w7FqEcBvs4i1VqMJ63Lk/6s/yYH9Z8sgJdAsxFkdEXVL8eXLdKE1gQXfNNuhQR3NPUX2/GG7KRfb8mq7XdH3vz49PRyemI/M/Pm3D5/ev7+9uiwz5ul0f3+3n3F1c/0fvv8dqU6PD1c3283tbf3lYUNTmeQ462YcVvX47ur2inQ6PD7SCTzfvrotVJ4fHjZXr/jy3afd3f3DQ8Gw3aweP71sxtX7z5/fX0z//t/9cHF1+dvrq6fdQQeda10zXRR+hh6hBWZZlJkVQtaqB0qACGZFKTysVsSoxyqCWYRrNbqV7Xp1dYXneSh8EiHRYT0yjbQadZ7raU8EFQEPtvMcUlEnJhYhGtZh+WyZNCPwUSBL6ffFOhBlyN3WR5cLrek6SKRmbKml6xLUpWEb5zRlHK/r1hIuWV3FdPKFq4POovX39L6X+tsVi02efcDfxQCdSsxfzwU74KP2keczhvWBtyxJqGtNrYxUyKGaKK0KQoOnCtAAGQyL41nwqNlLtxZMUHCE+iI31slMp4/JDWaAY7i9CUzp7OFT7KBa4BTNExkTQscLAeaIEJwvdZC1Gfrwq20twjplZi9qs3rOiIsDM7i9ypribsurVr/detNlIhcgoQgJNPOTVIUn72K0QQjXrxQmrp9TG9/SFviVGcO2MI6GX7AQrp7buthYTicj6r0cL+7qRqL93znR+K+2WQUXWlczcnyWznG6Mp3JQUDqGCd19CHyMJvPv0WSGkhreYvgIvtfxI+TBxUJHhNqUt5sz5Vg2uzTqBG+9i+a2AnA4QI0VXTueCOH2UxwaqkmKQvo1y2VaZ7EQGHYW3utLpyElKxeOWLxvPQxbI4SLE95VbOtPf9TAgDA4x2+bByfxgcasDEEHGTZAEbm4Mz74rQZoUDjXf2wQ4AIkVejjphfgIg0J0iyujzEpp7oNacxweDKLwiXU9JKyRUwWBfftXVylRIieTbEr/zYp1FToZnvCPBl443eYLRYgG7ZC2xvWqPhQt59qTrE2XJ/xhJnoQMCgOH2+qLoaa6H29srvVz99vw4rElI5uN+u1p98+7t9fXFZhieaff8eF/Lli/w9t3b4zDcXG83r28/PEzX22l33G0G+v6bV9cD/u7b23cX5eXp7uN+f3FxscZYT1LGm82b7w/r7eePHzBsr2+uHj69SBVZ4e7l9JfPh798ePn2OA11/93t9d1h+vjLn1F5W2TF9XgUHQujgEsZWLVWEamgUqAqKlJQBi6lQKuAyjjWudZ5KlSgEBoeD3PZbMdZDych6JtXN48Pj9PuyNN8PeI0V9AwS1UMpKJTHUnWY6GyPgmfqrXDd6jgUfeW+dVAlynZ3aKkIBgjuhcslIpGYxOai2seCxRLuFA6aW+XgtH4uNlJ6p307p/kldSpTS2jKVPu4Y/zbAtNtahn6CPx5nW9EKTn2FVxZqIiWTf+z8TWF8Dn7/CGvkRL8XQ++7sTvybwJBCtC4ql3YzmWrE47Ma16Z0Yt//EggQTENRtSS62mZMzX8UF3I1vo1v7r7qbGuCkmWOKxewVNhB7djqEE/nXxoPx+gam+7CCNdzzh2jo/nZx32iu23sfj6Y0v9Re59+3hciPm8cXt+Z3hFTIvb8ZK5oxCvW1oO6FX/5QhjNa5M6ZtgfZWTsQA11kHfqlSOkkbz0HhEFlarsw/YyZnEOHwmIBqSdIA2KEiPrkq1ueSGOVm7hH7o7CU3JJa65txKTCWmRAhM5pp5yF/wTbDZLv8gjj2YFPhDOR7HzwxHvLCGQYNaLujri8z7HkK1Kpou/RQDGqfyUKHh5O4PugsXFpz4FBybyqpy8QK6xnJSsJgkBobRu7scW6dBJn0JKVdOnRIYB0I3Z7kk2xp3qIPbrkWeOncGUallP7o5+uz5XOphqD0HhSair0xay96HSjXf58BQO5Zgqu7J/FDYZRsg5l8J28UMEjk/buRTkXBXwKui098SUe6qopOvYZSHk6yomO68vVSLgcaD3KkafXr8ab19+Mm6vVdqyn+v0PvxvGy8edPu/kT/PHy+uNFv7T+w/TuNlsKu2f3l2v/sPfvHlzUdYyXW+EZ8bmSofN/qm+7Pe7l/0ff/2trlePx9NqfXXCOGy3r94WRZFxeKr1l49PN8Pq3c3w+s3VP//6+Y+/3I1lc7se7mnCxbivM8rATKpVZGJoVSUqTMNApJgLF6lV6mkoxdB0rXOdT8x42h8Oh+Pq8mbYDDwfT/sdLniNvZ6m281ms9Lnkz6epsIji8zzfHM5bqicTtPx8EzjlogUcaZW8x1NCqghoehqFVrUbWtocUXYC+6aWiQ/xRM5LutMdpq5FjM01ed/tMUM7PBFTDDC0aHmW1i1E8i8WlXPtRxRS5ZRpH4iQNIrFgrG7FhUe+WWj+vuUDfcBFVhO/zNNuCZb62NZVtRsxu0pj7VRVYtWKqq0CoiHju0LUGwtjS+KF2shspQHHIRKeWmWTKMnWUeokJExHZUeos7+cI1Cx3DbNRdBmf68BWhkVEDVVBb/iX14v7O8gS/9MU9zQBlViXURTi2C30Vi2ss0ZHWgg0LPaJxpUJ9hwL7XcvXd4wQRQax1osRus6PyVs5dDyn82+b4UT7T+Jr/5rilU2nOzUzdRVvbBavsaP9pAcQJoGoSxCgfZtcqv3tixEGvkScCN/Zkxbyt+fF+bQLBJzz5CVd4bBXlx+6JUkIQGiUTpgXdXCURCPi8PSaidNzBdFI7mgjwWQv+RSvsDEES4e7lcPvfkutktVZulhZBzNY4BgEc8XleRhFh626xeieZ7cEl6Vn0mmsNmh0oKFRE92i95qvy676XAxWJhhowaDuHLQlSXLZnSQIQLPg2CjQ6NR5e7zGdREHtDhlhyHiUYuE6CJSoqnXfEL2KGP78LZ7Qe8u7p7pasgRWCOiRji9m1hj0nS2m1I9R14UOtOMbopCy6132iIem89RHV5edqzzWMrz88thrsen3cudnPbzMJS337y6fvOuYn563I1DGfnt+un49JePP//64Xf/8NPTfvdw2F9ffjuivr0aXm1X23l6vSp6PD19epzmeVhf1aMMVVnK3d1BK/PFfP/4Mpa6XimjFCmVxu129fzw6f3np3/7wzffvL7WYfNyWn3+LKRy/WrzcBp+ePvDL3fPdw8n81mZMZahDjhUKcwkuhlXc50qdDqe5gHrMq6HQZlf5v1QyknkMB2v1keieTztMJ9uZKRxrrvd603ZXm15Rw/Hw+lUV5db5qpC+3l6eXqhcVyvQTV4JOxuSyJEhDa0lACFCNmiF84kZDAhMFGuQWNzf4bbhlY648HX3suOtAVS2M5qZHr10IUO2kWa20AW6rp7IsN9it7ttgb/KippWNApq/aTpIrOY/1b8h/64mq4F11FUau4T0uAqmQEpivsUBGkfSKCktiRFCrpvYlWK0co7HF8tR7Z1HSgGSZRKaUQETOnyonq1K66gshIQeF+xxi6/Fb8qwsd6purzox/kAF8Lts9lXpD3yAzhxFCmJzlTc0cde9BlPIoLVbEmtBGkMCjCoqYwmJweZvXKES3w8a6i6vsM9sklUYw2LnTnh7P4ByAj7hBo54WPcQImLB4WgwRtuLcwrcLfeuv7v8Mvexim0mrRsTFHEmh7RzwgIfw8eS+thhfGqYWWHOd3LRLro0BrE4BfOHgNMzQBmhUTjo3YbP3L3pJhCNBvvODQOGceykYZaekdOyC7KpdTjWnp5rGvyNpK6F11ZK2UBGFO12U7gtSf6FmAiGcBUssTu8ym6H5rNg703b92/IJHaFdNSPr2IKoGrqvA1GaYDjfTt2j6EsBcSdRg4sRRGgCr2fBJh94lFWlmqYMnOdlqshaYkIcER0Xa9AxVu481NcNM5RdKAZVaO726dRU5DFzjbthN/cV1EcsY7K9Rgw3jAA/PMcLZ3slEzCyiQvize4/t/kk0ILPGgAwzHWq06nwuN4OkPpw9wQeiIBZynzC7q7q6XK7EpW7x09PH19OD894Oa6Uf/l09/H5qb4uaxp+eHv5u+/fXK3H9cClrC83b192+98+7XlYXW0uHp+eUFabi/Xm+mo+6ccPL9Oa5nk+TFXLat6W593uv/zx4feXejm8vbisFzhdsxDxq29v19fbw7B9f3dXMK9XQ5W5jKv1ev38sh9A83wsM4ZSZZpWFxverkVmHrgoM/M8rsfVAOjMYDkNoteyvx7xD7fYENHVuL4YPr4c6+nIECojVCG8f5kKy/rqSsexclFVEEMkzh1om0gj3MppCPybSGQF0lHAzmXTsN2IMGnvnSdg4lBxjh8C1pKr79A7XTQ1lFHyXyhZjUxuOgUhIaxdthW9MvJXuxfOptodPcT18WZO5eWPlcz4d0zZBILiyT27wgcpSlClKjLPVUVr1Tgo20XO2j6ZKhERAokoM2WxUWplESUCqVIhZmQUDHF0go+vAwOqYvs7kDFxA1LMqsJsc6Xe57VAQdRPLGJ06la8yWAEFdo/vSZOgW4arftxtNkYC90iLy7sVxGhtpFjC/ucarJfcjNepui1ab0eHiytkB9+GT53r4C7azLybbSPvGGMqTvsy752GQlEEBi5cxecsBrYyNV1OBm6NAb2dqEAd47u011OKXUlqQ02MFTBVJQcjSfh3H4HXkRbmAYEmtAlekH7I7ns/8fXf3VZkiNpgqAIAKWXGnOP8IjMrKqe6iE7+7b//y/sOXt2e0jVdGZlBnF3o5coB0T2ARAAahY1NzPML1GFAgIhnxAAYsaSyYvUxhC2TKHWFcMEDvYhSWkTYpsY3kQGwOi8h18JYryPQY608+FSQFA+8gtpL++1iUw+esYcfn5zkBuQAKcvWBCJDDIYwBViytg0DTZ9+MBnYV4iHGFJWX6AOx/YOOvHWl4jVMRgUGM5NgOuWmFpImpvED5I8a/Q72jsU5FLlpPNd1ri1Xy/0wpxU7T4MXDJSoW8j+fHzmXfx/cZKk0sBKm5yM+JW72m8xcTs/JHkPoLYlRbIRNneIUQ0wxn4eYggsIREPiWdcR9ES1+mEIRbnjHHBnb4HsamqZtzxfmoiFdL86paoPKEIAp9LS4+fkRjKu2G2JgmkuN27K82223pjo01ent2Z5fHh7utkV5qIva4NwPh31blgWQVvM4jfNMk1H45csNGdg27eFTaUbXz06jK5tyBLx2nSWaAV+76XRdULmbY/Mvf/7x5XnYFcXC9Pe//o3n4bA7mLJyZPq+d9ZWhXLjUheqNQjsYLEGHRd6sYqZZruwI10YUxTA1NQtzn2r6bgt7mp1p/ttAVjWV4fdtFynpWhbUDUDMoExWCqjytJqNS2W2GngUAbEmcXxgR3xgIUxKJxAK3srcqbTJFwcmDaTlbD3fYymoChJz9Axlh94I5cjCTas4ujheZk44/rmFYcknSwcz8zgoyni/gIwoS/TRTklzTMpQVpkDpDbAgj2SzZmFoPka32SFQ/KMtg8QkBCpdExKi11HJLtkjgQALBWigG0CjADoxX2+wigI6JgGEJeJZ6UhkoFDCTBA8kWZyYzqLzQghbI5CtGfc8lkydoNPOaRDWtAY6Y54z0ggOCpshic9EBFZgWr/McIroun/XoeqYnwruv4oMD+3CWkYzhDula6mmu1+PlYcwSF+CPD16NP3fNPX1VsMirgQgqEK24ajM56GItAutm9/vvFUe6xVs8j2SLXSI1so6s7EecdcRE7gRZvPjkhjvB4Cj7edYhDTQzuEHoENfXRswTp/EdoZKIB6iYP0f0ROwzIAAqxcyyFBG8Rfc4hsiPJflWjMwESvlTGjKuxfzxGXthwE8cA94CHWKIKsfuuaVfDSWbMwEBH2xXNtAcNyZuyd6lZ6yuwdXD1mAjqNZomSHTFZBH90MzUaO9Y+QwDcnBTIUqmM2d9D8vlcv/Se8jAVn0AIgSlxdHZ1v6I7L+sc3wBeZv5MN6xhmENbwB4PhozmjHHyLdmLwRBkGDGCtHERCARLcHJc7sHabwe9w3MuvkR1T7nwzu3c8oNocR0Oz391Ds+3m6nC7zskxgfvnbEzH+l3/+83a3HS+Ptfb1Du729rDfFrsjvXX9ZlN/vvv5pqFC6bv9ril1Uaq+n75+/zbRze5wtJa2+1p1hJY3h3Zf8fncmXncaAN3zcu5Y133lrTFacFi2x53xQzaFcXmcNBA9zeMEw/Xy+X6cnr8bb/9DG176gZGVAr6rqvrqgTaGfWX47ZszP/2t99mmKalIALrFnZs0ADAYq1G15QFTe6+Kb9UxecGy2JyTC+d/ffn01dbnq02bc2qIEt1W7ba2MkOs5vBoQKjDROFqkeUDe8jjVkCCSu+Cfv3sOR9vYEVQUlMHjNMAFF1JQ37cer89IWmYrAj3JDsE3DmUfim/KnKIGFPFHMlD/J6CgHiynyv78I6F4xmLqCiwOvMSiOzEkiXsV+mk2KeOkME2fmvqZ8EjMCsAACVKpCZiZiIQBY1hMpjT4noygeBZ9EHYX8tpRWA0kr79J1SGpXy12utII4LRLyZRVH76Nf7JfR+zJklSM5WGoSfIi9qf6ixo2LI5zW+TTrqvRldf4xjF2WQwjCrq99ZDpYrYwgsP8ZKVBTHiFnkqdwyKLHTMWEWrsyPFPDZnyg0gLIvduxZwjecdUGwCqYMRDbwVZQemJl9ZC5dKuGfrBiLZarFB43BQr/2KqWdomSKfyOz4jsaDcMfal7/kixDZpK8U5QpDXhn+1kMRKToqpF3JjG98iYxpOEYEtFytCTJGA9CY/cw/oZapSpfEQVIUiZOiNyRcWCubMIc+dlD9P4SpBlPMpX6RllqLg0nt3eeKgEh/Gd0yEgqg8pUDr4jSEan3K7Kn3UPAbI4HMSAjp/KCDv/iCFWnVohrFzJZwH44FCv5vFjg9EKrKUzNChe4WqwLEwgExL0/0cGC1biHcR4T7o06R4GOnKRMJjtJZePYx2cChOaBbbTLsCIyAS+PJ/zp618+CizsXPvFCasP+buOQKA0Yx12XT98nq6KI1jv/TjfO3Huv3e1kVbtXWN4NwyOaZ5nJaiqH/84VZrU9ZK8Z2bp8O2LozqxuXt9bkfRzx1bErloCzVtmkXpQe01/4KfXfqX5pmUyjQOPVzN87cbO+qCTQa7fjt5fry1P542JrC4DSaeVEWKoZ/+vzJVTePg7XjaIl1YZTCaRqMs3tT/s9fjpbtU2NOC4yjXax1RGVZm6LUCp2dQLnxPBR2bsoW0D29Xm/v2wnK36/D185dCw1V3U8zK9KoyrZVjMSWLBGTqUrFGpW2ZKOTmxFTpRR4zEzFuI7YqSCDq2ijVxMgyaA/EugMsmOIorCoHg0Ut3/NUtuei2SFeq4EI4IPt4hbFqQ4RuKD6DFiWAavZCtIzMp9wuo1kPoYBIhrczjWRYV/UB7AEL1blm8jh4bgbQyjSKhGAZBSoSgEQpZqvUcFhoy0h4TBHQH2EI4ZjTahNaVkzYtiIkCZApD1tlG/h71VVMptsSdPcKzCKJJioEwqk3R9tFyxRHBlxpORe1fg+QFApYYoU1CZ14irK9f9ZPlK4mGxdie7J/qJMTz2sQvR8oGUPGDUUyv1JLBSnp4UadaplZrNGDfT6RgfpJQiopgbjulU4dxYZhE5HINZjUORjXNkmKEfwt1+i1iIlXwJMUr3Mmr+weTw6pMMAd9fl4xHkMh3+DVaxIj411SJc5GDJAwD+miQI11zEyi/ZZgk+enMHGiUlgDIADHXhCkMkpkXAUbp2ZC6maZaFJPcmP28ss0RekAeRor9T1ST5MsqpPMeCuSvqKkEAMdVnquGZQi8ovWHcqx3LWf3M+f9SCSKX6yGDn/wIaOjH/XqMhEEKbODFOcT0xArgHDVE1xTM2oBeOc7Jfwf2SUfbXhcII4fLTNBiBQxhKORk9eYFU6sVKKSsSivqECUjjw1oSgWj/iPfc33r4+TZZ4ff292R1xmN81F29RV/enT/Z1jJvfyejr+5Ytz7vHb71WtsYTXy9vYj/vjzXa/6wbqx/H0en19W477zenSXfpRV42p62mZ+uvFjPbT8e54PNTstGO1LTYaGGC0zg3XfhzLzU3TlLqD/nTZlLVF+/L4+rwrPt3fnF5f3TzfHm6qtvzxUzFvdv+/X97euvl0npWGqiqH/sLz2KjioUUm9c9329dZj9+nxUHRlkVVzePEbEtDJYAbRrTTMM1QcT8vvz0tE+LzYrpyr5pdU1QwjURc15Wdp74btdZtUxliBlxoVohaju2N0xcAQUhq+fI9H1p3SkHARcI4eThHeW5IRkFqURnfSYiXfw4FGYQxmu0jh5LGz9db+CgJhJBjFNrwmNCgeHL+roSuc3PHwERRZ4oCZI/uPOt+yPp4LvWrWBDRH8cboEZAFzHR7XcMW2NzSH1BpcFvqKGVhlBr5Ycnp8wnNRfbTDssxYIGUelZ8V+wKEjkAMBFpZpkUPR2+IbjNHFYCM1JdSdfKaJAmb30LjM5EoGLMyB/ss/SdHaf3BDCFVK3iPkMBJ2T8HegwwrGRDpCQjkgw31nSrM+rTSHAHFgCMdaxXbjBRjrewCYKZZQiEnMKIArUslYMgXtMY2gdlB+26TseXEGQyUyxvalQhfZA5qAZEOzgaC+ZyobMjD48hjwJ6pjhkIwTeO71x9Fbf+zV0wgpC6JmGI+fEgGLAoQylytEmRZ7z0hlVAkfrOSVAEgfjiMoWwue36UVuHDCBLzmKeogRTjDdZXec2YfoQ4h6HzHKQ2yl9WwQIIMQaYZf3DtCfRA0hnifvT3yKjZRmqOOz/5CWQAAGSVV7hjYSAOKl0Adx/FJXKpV5aCF9hrmhF1HJhC/jyXaPvbkoWRrhHQIa3FxgNSpSVLNkehx2TDzIIT3spKsOojf6AaukGxlAO6pWk4uiWxhYBHHFkBUg2TkYdqZ6d1CtmTokpY3FdkgJ4BwXhPXKTnzJqRtqZ6/V6unTD5Ora7LZVd5lvD83dp0/IZMcJQfVDd7lcy/q2qfdlvXx/fP32+Hq42d/c3aEqrIXvX7+fd9vD7aZpt0VVN5st0bLMp6mfztVobNO5vu/PYPG425uq+Y/vjws5XZQ3x4PS0PDUbM3Ph91WLSUstEzTeL2M50K3m92+WIZ+7LUdNrA06GyDRaX3x8Nv01Upp8Gen5/vbpv/9b/+/OtpepxfaajuPj2cXl5x7FG5UtsKkduKLX5/fqs3Bk3x+jJwW85Yj+hK1gYRgZ1b7KyYGI3WxqAGo0w/DqCIUccNTBWm87JksxwG9mKsmAiZFDKhBgBGv/bEeftLTAj+vN+UtsbEIvhhmoLCYOawV38oLsQEnL0Sj/VlAfATcHBlJcMV2Se07JdLiRwlKCNQh1Cp2EcKeIeSZkiOu1T4ATCw510fXVC+eD8Gi6NJy4qgM6TAQWt7J4457rSBnniAsoln0G25egihV2TZvCuaZMygFUjjJP6H5Gw4UTXKELKMKxBbKhZDB+KVsRMfDRFGMRdUlSmbTK+sVN1KqnPXMIInTG37/wSPZQpJDDvmN8buebrkao3D7fhO7YYfOaqVYJOiUYb3LWG0zrj+etUgYPYmMmnGrX5KMzsX7X/QsyhTFh8nw+TocCtAOTkmas3YXIJfmY2URvz1kVfzrwPzpa5J1CkfYSRTXiP4x8RYf/SIiN9fs57GxKreKUFOkpQsbSQYi40MBlasSPhayQaagYQi+irxbmamMYg6ZBpFppHjlBEx+nWZWZG7pEbDexA+D2qKOMGXqCQxjTjow8AD7xgIIQsUhfH8kdlOFF1ZzgjOY7MQDXScIZlLT6Zg6SGGHtfehswYp8Yhn6nEiO81yR98+vhLPnzpeZY/CpsacLome2pELolvPUdxdhp01FKJKn/cHeErgedhrxBMU4aJlKmhrGA/H9haIEXfxvbj3WtT6a+Jhk4knddNiLmLLpKp2sMvv/y6WHdb7oaXl+40fP7px03NwGTdMly+Pn17mcbr0yM3I+tNu7v7YeIXaNpy0/AChTFFWRam3O62jp1DRZadVYgtG32l8voyvF4fC0Cc0Y6nonVnp7g9LvMyW2rd9KBhtyn+5VOzK2tY+ruddkvHyhXb3YTlMJ/7y0Utszq/1cPVmJoYb5rq+K//8vzr327v6qKgusSe5lo5hK4sK6Vc9/JW0/zTj5sSyY0TbjYv5+Xlra+Pn6zSUFeqbivTgF7mfiTrlIJSG0BgQAdAxBNZUtZURjGQc4wOCTQqYkYk5rAHGgI4Iq20tWyKgpa5YKuBLBqHJbAixyL7pPzW6OxDG8mggORgABAZCSFF9gAsOURlAIgImD2EcsxKeS0jC78hCX7OU1FtSmIo8oNowLD61HOo9IqBHaWYKVC4OWpOSIIRsQhKhCaELpUi2Uks95RSKDO3CUmD+QpVf+QUyS8YS1CRIUV0BJqE4FwmOmIQBWcgoCTaAlhSKot5RJjAQJw5EDG/ArKsLWTE/OGp4ovnG//HvJp/HyNJufWFVf/zVzK0/Ee/vtMhqZ1AXxlNUiV+3t/dGP3ylUoJeNqnUbNUT7TgqZ0YQeJUpB+xiFihZOtSb6K2XgXDEHLLIUwoMDsL/0RFKzBIzFHutsegvhel8D15MoEfIoiOxKw/CeJBipaKaEGYWv9rzAphEonUe0+tuC93Rt33SjvYhvyrrPhi/QqznByg8LUSFMeCMMSu+aNSBdUFGZPjHYLnkqwUKn/WEGTbYHp3L02LzJryOz9lhj1JHjGiprDOOagVlthxMkaiDVjCqwm0x9RzgEEYjesHEgpW4sgPq3TIR8uNcdqybz7QPCnOLEUUQ9GJlxGAUnRt9eiEC5Kqz/TyWmriF0IHzAz4x1dW7b4CNn74JP1M1BLKeHrHaA8ljAMA+RkmkY1S63lrqWOieyTkDqhQhR1cwo4qDBJajHkDz/zSlJiumBUTtsqJFkRutY9e+F5QMccureYhixeLqITHG9Xsq13P/XmZl1Kph0+3dpkv5/NuWxuNgx23m/pwe1RlQVg4gqapf/rph93txk7T68vrOC4//HB3vD/aZRym6XIZibEqmnGil9ezfX7bHPfdtBQam6JxgM+v5wULBlyG8TIv2337w7b6+dPhx7vdeH0r6qpqm3l2Tc1QwLe3by+/f2uBH9p2V6qfP20391/+4+vT9fT885++VHfH3YaLBhaYXrphpLqoy2LE/vVpo+1PN9ufb9uaaCjcRZuXK2zv73Z3n8bZUYnDDEM32nl2y8xsGAG1osWBVpzmhVyICTP4oByQWGWvupCZtdbMXBTGOVtq9c8Pt+iG35770zSaqtZlYZd5otmg1sawZYWKmDwrepu6gsbeAoW/yERKi0ojB4AKDaBSQM46UCgqPXA0AkoKytuwyCmY2bOg+ZiZ0AdCEoj3xsbviJOZHwUetq0Mab5nDGaptxi8QO21heRo/zM3ImqHqOAy529FmsjImIWRU5o4tZdFR1EGBghBs/taItkAN+EWQPArxViKoZMU5Y6InFm4SsRgLPhKGFGtIgr4B9K50i2cXZDHipIB5nRPTCZkVgiSlQwtJusiwRKUDkZTH9IQMsL1htF5jDJT22mSM6UvqQihjHBg0E9R7UVrkVBgDgIQkkXlWNSQ+DdXvuA3L4jeLyYOj8SMSBcEuYhFTkA1geMUfWFR7aGUIvQn+rjSgfdWauXa5ggzt5CZMY91S2IfcvMWZyKEUbJpjJMZFxhLPEJmXCYy1YOH9lFHoICSxgQIGef3gurjPbhimxh/WwEHrwG0ZmaN2hMypdz9SbqBJoH4vuV8bzEB53E2M8gUrbwfqagCGQBjwhoxRgVRUwm9kwiIu5cieNlYZPAI+UYAoWHRfEF7J3cFcU2SFfLF7L93D5LOhk+x/OHD6/39YRa934WSOPyjuyLRZSrfdSTSDqUS6o8UNgOgShttR7YUNze0FJWFFyxOyg9X05BG7GfKE5Sy7+T3qBg8P1OKrcJK/QPnDg6s6ZpH+BjAXJe5vT8WQ9kUxafDcVno8en5ch21USWCY9XeHlGV3ThUpW4QNdA4jMu5G7oBgdu6MIo02368zv1sZzf2FjZmWZa+Gya76Kbc3mznyb514/l6BVRl1fI0mbEvC31b7z4dN18+7QtkW2tTmoULMrpq9GLRTpObaVEAWt8+3DSsuaya70DLMD8/b1Ad6rLZ4jiP59mpw6HZl4uah8ennw71//Ll5qf7kif72zL3M989PGC9XSbXXa+kCl64YC4K5KJkpcbZhZyjUkigtAJmdiIQqNBlLojfEQejikFyThvD5IqCvtxvbqrD3P11JnYICIoca78VDTMzASoAkn3zwwPk/8AxSIIY+BnR0UIEGhQzELlQIKYUKHRMDOTjlgoVM2pfYJPrBMwUoGhJf41CBDkTXhxn2YMh407xSCCexJvYLtMjKz0UFPF7YxYj2CvR5GBsYuQiwDJxUkXzJcbmuKlSaiy5s5k5jfKepEXy0BjNrowojMXrdl79lOQGY5/Xqiil8XNTFf8JD8j7BhDB7soSSptpZOHhCU7JVQJPWPBqhpAAEeXg8UiK6KsmjOS1p4fCOmzEDYCskjHJYkoqG7J0LkeeYVC80raJB+KTIf9OaBtYIRkf/+C86DbUOHityugQALNsaWwwkjm6jDneyrrvqZdpyWgeYqBL/ggPcGJUMeh/ZCrSsHL1nPEU579LskDFzufaHQC8pEeB8Q9OPckMgLdgGOYiJPBTKoulviMDvRy8MkAEv8NWCmKuTXqU/6zGQ/op34R8UAiXSEcCmoW4IR8DxYrXOPEMLLkwAAAJR2ZbPEdvLkm5ID2URdgsPRW5iwYwnxvhxTQ5EgZMMEL0NLP8QWDMzgRNRj3Dhxl3hzq4THFks7oyx4mOIux/xFl5SEo0u2BR2UgcMTs9NNcnfhIyTZL1JzwPw8xmiiuSlFd2KncQo46Ij0onI8TKr/yIYJmNTAjieWEAYkWy372W8wtgWDa9i1o2m4lcB0gUOT2TMBoSBNNfX+um2NRFpctlnpn4hx9uL8N56UdVlPME/XA+nbppnm9u9/fH/dL3+7ZaHCwK9g8HBqdBtbWxC5qquXvY/vr3p7fXV1MVdVspLliBW2CxOM409EuzacvCaEtVW99uy4dNcaiBhjMZvdtsVFFay6+ny+k8WTLtZvfTX366vjx1ywxlbcf57e0buLHVxfnp27Gtdj//dH84/P77rwaVAjBkebjebfVPu+bzoWhwOl+v4IgA7ELO9efX6+VybTbbfV0f7m7qdjc7eO36l9fTOE2oFTNojYhAjCC73IUAhygQRkZmWT7DwITIqJw2aMn98tv39svdzw/H5fH8+7mjUptSo1LzsoAijURuRG2I/ErFGLnFyH6pcA/ZL4AK5ZhKgSOltK9VRKVYIbBitqRAgUJQSCpXjhLnjHPPyT9gAgBZZqgA/eJzURC+7ghiGQxIF1fH4UDwgQLvJcFMFi6T6tAuBFODiUsh1u6J6xx/5eg1iiYNY5KET4ypimueLJ24RBALLT0RpE/ZiqE4C5kN/BivSmogpNQgF+ek2/Ikn+9mqA1Y+6EQR/MupwGximatoeTWHEDButNxOV74Nen3GC2EWMCEgokgTEEWEUujyYDmR6cw1yx/8APKdpoZUF6rdI48nxz5xD/y1VqviXeJCKDlCRHcRJMSWZdj5IDXrnzsq39OGkGE7JGTxEKDrHhIPjSnqIxX9Flyj7MnMUYp8d/Es+8o0+Ty/MibqQwp7GyUQioYaqFWRixFHNb2IJnBQNWQmQJJYmJUPhgK4CIfRyvzIeYDGHxHFJiSBoLpijA1khwU8MZerzIiEgP6csPAhf5NNHWURF1Kp/OepKkOrkAShPf0Ed75ELmDeAOu240ElLAfJh0aUEhyATORwgRrkp6E7Kd3lIqfGCSXKaA1vaJIYz68CD1BlJsvHMbIqIBpz9IwLZ4iQmE/iiSPgps563rs9ruYWtSKwpABLmbbWmTTETljBSLlMsy204C42VLCrknhp4/R7kTVIIKS+fNrHYzAzOby+DwZVKRuj/vNzb4odWFssy+HznbXkcdpWcDO7noZ3cwlo4KlvWmKutlsikvfDcP4+YdPVVUMvXHL0pb4cLdd5slU1eF+29tpmN00LuOwkHM//eXHeZ7tMN9tmv3N9maj/vR5s9+a15eXaaC6aRWqfuzssIzn/jouzFDd71ULw9KD0pOd+/5ys20RzWmZFS8KyM1EE5uF+sdHuAzqet02pmFVqoloAMWs1Ok86rs7BCyMvt3vm6bZbpvjcaOq8vU6T0M/u8mSraqKHBEjOEC/BSwDI4GSHXPkzMBosn2aWylw1iqlFgf/+H46VOZPDzen0/mEkzXL5IhZK6WNQnIOgMNRh2KD15GGyOJhkpXWTIBFgRqM0QqNs9ZH4H2HGNFzNhNhOEJLJWsufBWgPa5iKpk9EgWS0DdmiiBFNUB+Tl0N+goyP/O9OYyXRy/0ncnP+iofMwwUi3oBMOUjMr0eBTs2z2IepCmMwCtZpkD5gOLemUbO3ovIvHvyinwc98FBwWW5PxxynTE/FWpMMO4tFXOOuaJJxkOyI5kIw2rdWZjkhCGkhAVBCerj7Io4ekbP4ghybjZCiO0LHTysDHgvwCAOmcSkAnE17fI1psnIiBptbaBYHrNLOioCisyQYXxYCgpFdzyyaBpi/DV369+9PtZbeWQgBIqxfvbjVpiiEKEgLQKWjLVxNReJlKueypCS3fT8Idgpg46YPkczlVHd/xy/4Rjwy5OoAJn1iNIR+iRW8L3hTzIAsCJVdi/gO6HMLWQWUAFWsRzJr5hFFVKKMvUCfZKlDUTIZCFMWk4rlPxfVArAKuq5jEFzm7jm3KjeU3cRGIAUKvGYWDgPVdoDIghjwn8o+iq0KBHo2NX3LJeUT2bvY/eyl28tzU24kpmVhA89gPFCihibpASUIHJVKM9UMVSYHiN3p1AkJwif9SYppMiEKdLPOZ4RlRZonnEPIKSNZUESuBFx5hyYF6ZjDKoLB8cvxS5l3wPIhvxhooxS5vJ6rkyhj8faGG1w7npVKDfbeZyOx+NEWDazc8SMjGTnZRiGdr8h1JeBbx9udzeHoiiqpnh6fB76zhj4/OlmAeUMD/1IbgaH6BZapukM4zjwbLeHzd223tew0VrZZRmmrl+YT6yneXZNvbu7a8avT29vF6eoKFRZVcSIi9uV5af7I5L5tN8uyziP498vl2UeN01L/bJDpxv1w6683RlU02KX/cMPU8NqeO0mp1E1m01Tb5SCZZl++/p1Yny9zOdhGcmWZeMcIQI6b8oIkBQgIlOMlwEHaMAJe/gzGBZnEQsmxKp5He1Nd903+odD+zhNkwVGKIoCgYhB6cJHfxgcikkLtjnISsiDIjMwASmPu4ixLIxdFmBiZ5kQTUEMDEQe7WfeWQ4vvFyghF3CMjaUxFg0S9HhyP4JTXHWtDBhZFOId2SyANnXifk/BlX+8JVpXIlXRfzFqcMAEH3B3OIl0Q76HQHiUuzYLK+6u5Ix0fNJV8UrP4yAM2qsBqBSsij5zxmN4jQxSk5doQqQItkpyBqPzm3eGzFkufwHyiQDoVDshuRKkp1L2+SgX/QN7JfTxd2x47NF4fqq+GhMgh3OjWMccWaeUXzJyKT5BARom8+SqLEwExLS5/Rr7E/Uyll7EKv53jEhR9LkGHZVYAJ50jSPB2Ai2YeXADaI+tV3SwnpI0gXZo3IDMRyfLCLGcutAl3SQcjEVpQAA8d1/SwrNtbzAtlHoRakfefWAo9KOgmRx1DsCMBqltNHcVSE5plOiWQM5c5aKQrijTFUiSCZbpa9YTApLpQoTmxZKBDfMqQCxGwO/5jAH4M+CTMqwDhihCASfoSZQ7PeVStN5TunKdcqMdWZ1YbHTqVPclESpfVkIuSCI33NVuit9Gl0KIRzOB7TI4A9PVwyoEm8eEXjXING7kORvdVc+HcoXlTgIgnP84qYEBFMPtqgAVTqTRTP1L2oJThCyUyTo5xB5nWcwaqpbsxx1xSberS2Vnq4zt3Ygy4JFRu9qaq6LY77agF0bu5P1I20Gfn82p3ezgTqcFtWarPwfO77t29nIq42Rwv88vzy7fSksdrUu4Kpbqq+v3y+P6IjtBNyoUD33TB0b0M/b9o9LdB3Y99Pu3u1PeyOg/318eXXX5+ON7ufHvZM0FowjHN3RcT7zw9Tr6fhYqdumrp9CVtT/NAW5cP+flchzKfTU3cd20P79eK6BVW76aczz85BYdmdLqd+nhZWRNXCBk2JZWmXSUv8BMCHeBCAFIbNbVjSpwCkAYFZK782G43SCllXlTG6m6bn09ttrf7p856/XRayEwEAOEdl0TjrHJHSCIhhj5zIqWHKPBBCRHRMCkCjco5A42IXtyxtWYAylpxl61WxQlAKNCgK2X+K2jy4CywZbA7pW8HFkY8T9hcnJljnpCwRRXySSYP8lWmQGGLJK1ilO1Gc8lvFQkNWfeDvyPzirDRA5Cn+zRxXBCSg1aHzHyxWDOb5WziP3cslyf4m3fIBJok+z27OK6iCEY49TEpEBNGP0W8QlXns6wgcxFhQTDfEJ3EWC4mEC9oEc3OXRxjy0eS6CkAYMsMi+dh4NSMAuW/7hxB3jR8yTltd5NUiwhrJREWXpzzipKUhx57kwEX+rJ4Xe8mYR2vwHRoQJhZ4ncVyICaCszhKpKZgHBBxDj8qVNJgyr3kCDY3AO84BuJVnkYxp/eB0ixp7gjFMosHq8ayPoMEk6LfDMlIecJmQospY5ujINE1KPvFC3hmiLhGwre8KgdEAGCVNmKidIxJkphk1wShxQhr7EuWbIVo4/ldnFRgotAmCNzamifQHAYeU0QpeBlBSdAgkE1fHHlkLJbW1qoE009ZnEplRiH2Q1jg/VRybCxBzvB9EIWoTQDCNqCBEiGSFRmGUg49gdrMBmSQRqgQRTbdmVRkqMrmoNLiMCXgHUt5VBAnf0JAYjDfMkVSgT+uEfKfs3f87ss1yQNlooEDZjONU1Oapi6B4PHp5cdP92VVPT+/7m/qm9vjSK7vT4rd7XH7+NZf3rq7uztwbupcXTZ2tI//+F4VW/Xpy+n5MlyH7bY1uiDdbOvqdHmudVEU5aatd5W2y/T59r5pitfHVzfP5AxDvTg1LrzZHY7HuxlK6qaX19PwbbhjpwuoypIXVWJ1fruwnZCtUYCz00YvlzckdXPYGagevy5sqdBFY1Rbac3z5fTy/P1pnNWvT7/8dnEn1fwP/9P/XG9+/tv/+d8fn05O4TTTwtqBZtBF3VjtGBhRIaB3yP2qEqXQsXPAgMqgJnLIBKhJAQExk0GzOKc1aq2YWCnWVcGOzl3/sNn/T//yp6L6Nvzj5aXneVnKqkbChbgwhtmvEg2ejMUQWEJAVsH9JmAABayYnSkVE8+zVcR1VTRlMY7jZZyIEI0Co4HYkkPUcfucYGRZNGDgpSgtUYVS0pOeS1CCLTEMAGKbIKGfXD8KfwVRiz4CBsUSwzYBROXW411b0fYkNRPCodEiitJdW4dMxwH4AEyyl0E1vk9cM/vDEJSon/VwvM5AMQUJdmQjxlzCEuEiCkmkCyNOdVFSnJR6DaLgMBZ+JL2ZGVgBl38AJvJIXNL0CW+B0BciesrQlB915mDmyC4YSKXE6Q5tY5xW+Zblxsh3+WttVfMe5eAy8oMgkQBvpGfx8jQDLFAlFcmkSVnZifTcdXwIs3YlXpNYUnBC5F2BDBB4XwxlaCXOe2o7+CcifQjhMK4w5NRHmRleBSvf/7fCMjE2EfrjPzPLSfUI67lIs5yxLcQ4U3RepEMpKc0xX8erHyLdmANkCvY8yG8832S1XAjkqcFDJ8ZwXK6U5onnJY6ZyukSqCEk4ehyIKxURB6IWeOUhEg/Aktc/8mIFb+NMG6l0WIf3hM8GeDIJ7CanEzwk1O3bgMT28bAVNIzgQhSeiyJLIhqKPQhDyRxlOPY+3e6UuLPELWOp4Jk3ERNishECP3OAxEm5wwukjcbojRkvzsxAinVKAr5XWNB6sXaSbc/yHvWGz8LZrlerXU7o/W2HueZQNXt5ub2aKrCkR37XpEbL9ez7dGURYX93G+bmnmwbi5KmK7T6fl7Y0pDdlvr/WYPqvz60i0jK0bD+POXL23VTt1pHO3NvrLj+E8/3paF6a/9te952xa7vS7rC1hVlbVudrdbi46UG8exrtXD54dCm+ntfDpfj582dVNsqtou4+vjP7Y3x6q8cTMUzc5adb6MzsLleq3LxQAZ3Tw83NCVP+8qjc3b9bLXWwvlhOXkHBuDhXIz0giKySC5eVagUBXEYBmUUgCEDI6YNKIq3OKAWGlUjKi0A6eLgqyrTGHtTEQKFROwdYtdJgZdN7XR99vyoOjinOUStVmWaVnmstw6csTOYywKZ54TggImDZqZmEkZ7dgqDTwTkwJUi5vYTo6qpqxrU8/LbN3irEKtyJ9+BQhhuQHFuGqIS7KPAoH4ZRBkAhSjT7sgIBCEVBmD182e3SKoSry8dv68VMqHTEcnAwyxzFnEMZOvdxLiFbYKGCXXAknBZyUdMQCR215gWeQPItmcaTjvFlPYXDJzCeUxUSmukEP2ClSK+AdF6IPgeguw0iOY+gpJ+YdkWaIKSjkEybKOVBOZV/7AO00uGi31PlggTN8mpcfJwCSzkfTJ+wEHvYyAGbUg+PYgusqrV0CAd2HI1K0VtvEIOY8ovM+35v0ITLcCBcFYw0e6Jtz9nlh5s9mjc8MvXUzOQ96TyHdioJnjrsvBoGAEIakn0QwnNc2RgiDbjK/rZTP3PQpTNtZE4mjqguXxvjmupC2bN8l9BoMOnO3OCoImIZ9caSPfdCDvSDLcvp8q8ZLfM1B+wFQvFeMzIVyZZ11BrQ7cCDTy76VNmfdYMuzLN+MO1FGqOKiEVJAd53tFF1x94ggbMCO9yD4IypIHpgkCAEAOZS0JtWOiM4LoWsgT1wAQD9JOwcIMXoBQTvjjg16K3/uJw2ycHveItMu6qyQgojs9R+RcL3taxLYliyD3Szw1IZWob98JXgYfowbIJilX+AhIcgDlO6UU+VoIr9AfXhkZKNFXGvTuRwbZTW20AVVoDcDNtmWFFrhsGkdu7sb5PO72LTZ11RZtW5clD6Nb7KKNevr+PC1Lu9+ZwpzOpwrJgBkmN9jht6fXcbF931lHzrFCsPPgxmEp4PPDw7ZpztdLh8PkqARs2qYbhmlcNsDbdnvzsO+ncVmIgXe7yiCXGrYPe2PmH368RWQ3TsuytJXZlHrq+nFBVZZusV8fn87n7nhs0XWf7+53h7sJi0lbKjfXy/zrv/21qev+0s9Oq7oE1Ei42KWqGmst0wTOVXWNrIzRlh0jW+fQ6EIXWquFqSi0Bk1My7L4HcOQ2HO/VpoAS6MQAezi7DIjfns57/TfjYKtogqmWWm3LMxWaWRwaECRcgsBAmovFwqACQjYMRIBF6ZEJmdnpWBelrKstDbzPMzzAK76/HDbj8M4DcQKnTHaMAORVX4fG1+cmpnuEOHMtFUMdss/Ubq8csQV3zJHQ7qONGeXiFCLrsgUanyw/y1z5GNoJ/Jsxv9/nC6J5mIF7SH1NzjZ60xBJAfGDsRkd4YoMhlPFEhpw5U5FDgXSjgzGxCdoEwvrvuaPcYf1BDJGuriwy8CTNA71uGnFY0gpEUiTJARpZrW9AvGoWFGkmTw84HFpFsikvQmPiejaHp++CXFbNbjfgcp09KhNPCoiT8q+D+wU7HnETtkIBRyamWUDwntGO0X0qZmMg2bDzeLhib0g2JpslilxD4/DDzhkxg2/cORJgiyHmuItMaBeeOfyzF7gxBY6l1kI2IvTsTh9+BPCMOQUmNxtsWEiOVO7QuYjqzmlUmKe8Wexo7LOIWcye1RIKfmQEYH2YTJd5799n2xPi5wByZyYuaHRM5hhjVpUSQ2DSZIdwbCMi5BXx0fU5q5ZEAkbGAwWV6QtRCuiMb5nWvBgnzDTRFqSfvvWBIisEnthDkLS3owkShGjUiF8lFBYShU5bz1fIIFesSOsnQ+o2MgPMblF6GTnLWWBhJphisC+stVWMuL0jjDh2fFqVdhj65EmzzWlbokysEcj83t7Y0DBOaiUs/PTxrVbrMl66Zu2DZNXZa21BOMtYP9pm73+uXl3C9zc9jUoG5/+ELouuezYt5tbn5/6357uY6qPrnxPKm7m5trP8/X63h+3dTVPOLL6/Tf//3r2+l1u9/ffb6rNgdd8jL1FWh0yzJc3Wzd7JiwMBWNy2Sn9n5PtOy3pi3UOIzPXx/Lsty2m1qXDgpdV6d+fn57ncFZZatD8/L7s75ed2Xz2g+Psx5oebyM40iVIQ1KMbNzjpwCbKoSHCvNYAwbZa0lgMJojUysjC4ss9EKidE6xxZQsWJWxAyK0SAU2izTjIrbbaWWpVCqqop5tmPXv3XLL677ctx9uWkI8ZexeOxGBKgbs9geARVqpZDYBgOglAIkAEJQoLVCdk4DO3LWWVNUZVFaRHaLVtjUui31cVP3XXedFiDnA0BIgIqDi+YjG+KXZ1kkL/0MwM7vWR78DV+EiwD+9K68kj/sToKMfjdIL1wrdZmJDAYFJMYo82H9lSncucqpAaBsQZsENXMyV5Ijz0sKP3uCSHgQjCRS4t/IjV5ZZMoxuZypHCNKrRgDyCt7mPyxuCrGbWJjYkTih+CDxlg0i8LyXo6vWQDZQCOWHccYgUclyfAG8sQQTm5WARDjvq5r6mSAIVpP+SPECtOQqcUIV4DzsAgixMNrA8NE3iAgxHeNvHtFCnC2+1qM3WSTu8IHUetnn+RtAKEplCCWLH+qd1izO2L4fsVJGX5FoSRASscIiTxaBbH7YaYSLhS7F3KbmBXVrEA+Z3//gF6McUrCJYm7JAUXLw77ZeR15cJMqZAP5a7IDpH1QjgOIaXCQ7QwmcPcyYp4Pzwq2epcBKNR8iTHhFoyxOJzdr7oVTBiKIxB2YNAADLGN5lbs3q9r0zjVX+ElwI/ZDY4FclgKu/x7JIydkAerIRKmeDFkD9JKEQpAngJxI2PgcxnCiIQRQEy2ZQnBVHPhvfuXdRlHpyhaBSMGCBRQq3mMZUHMCaxwPwZH7h0ReBkDjxpfFYhgHCOA48F0MLDDPFteFrOUEEwmQFQMxByrBRbKQhRB4xeFQloXo2Y198gIIBBdoVmmp0usSiKfrnOgJvdXhk1d/22abrr0M1jN1yPx+3nh4fKmP3Nbrj202i3+83t/c2wTJWu+ks3qvL36+vfXq9WVw7NZOrLDBuL8ziPl+nz/UPbtK/PL1+/Pi522d3cN/VOoTKIt4etUWBHezl3pOuiqK+v1+E6wTLvdk1ZslaqxHq8Xs+XAbWpqq2dl++n16qsrS7fTt3L09P+/u7LlwdT6r7bv830/HJZ9Oa0wNP5/NbbuqoLU+oaYeaJWReFtTPyVJuKEfpxLoui1MZaZxeHAKCVNoUi1ohuGluN8zipQgOjUgqVKuqyLgo3zArRklWWtk3R6IIdM9HmeNMWdrE9a/WvX37Y7rrLf5yvM1gwWmtrZwRAZq281lfIjsEBKGRmIKNNWdXn01tbGgKrFJMjZCi0hlIj0jSN09Dv2mLflgS4sLIMDKyV5pjD4mQbI3tF/kVQxBS2pQZAAKVQAwKqoBtRBFL4NHIPZ8AlcXLOY5iaiFr+ndjEnzD7D3IDBqJRo5YATBpwbZf+0Fpk3368SBAZJ/FMtEnCgyzVQbmzzSvwxSh4JA09Iwu/o33e02DAiNhrHrHXK42dK7UYPIua1ZPILy2Oy/rincl9jTmLqLshs1IZdOOocsFb9QxTQFIjYk1DvWYMeeV0Znw3dpBnyoiiCQeOFZOr2OJHjJI5jEHnrQaSz3UeXVxHLFdY7305mb9C4H1MPWZ3eDOEOWuLXX8H2NPuQpHRo4GJtyZ7nNcFr+1zJOlqUr2xEU6Oi60SniXhFXFCMMNkYRI+jMB/yrKbmW1ODBwsck7WPILCKxInsvg5ZEo/yp810wOAklVgcg2DmHNOc+gBka+fXfN/GGBE65wCeii9CnCEOZxp8SFqB8xeKyaiCemYHYDEq6QCACG5jmHuxJBnBIGsakW0TSSV0ChQIk6b8EmY3VyOAhRDKTgmDC2gEE7EOZOhPAKW4pD8sT+Jlgk7Bv2xEvaoEgX2QZzfP+Bo+ZQxCr3jzUAKRIjne4gJeO/RfIS5oqLC6FY/BeqZu7tdXZi6VFVTOAJ72BABVqBZbfZNP3bXy0hKl2U9L/z9+2vZbG8e7ooN/v71+/PlggjV3fEy0beL/XYd/vo0vtlyIaOVGns79LMd6FDDn/7yXzZ3e+Ws0uZPP/+02W93x72pFNPSn7p6W7RN1TsosCya/Xmax2Epi7psSizIgW1qUwCcXiZr3f72TmM9n9+eHl/YLRbMgkrR3BT4w+2+H4f98dif3eOopqq4IvRky6Yqy+LaXWmxAIWpSiy0BrbDSLw44KI0iKwNalMAADJYt9ihK43ZNo2duUB3d2xRuXM3zJaLstrUpaGFjUPGeVZjd/r85efWtL/+xy+Voj//9MPz738fpuX+4dOmLNTQF+PQqPI0W2LWpmQmYgICVJoR/PaGxM6YgoAJ2FlnEJpCkSkGS4SKyRKRB8DLMls37TYN3R3Lll47e77O2hiFwORIBAvkLAqfDAquarCZXkIUgldzqEEBEICDsJ5TeN8DquAAcspSZFKxVhi4BkUZ3+G7O9/9GKwNhy6lI9zllqyoKX9c9vwV0pH0Xgj6BNkU/Sc7HCTQk8VRotxg6k9S0v4gsHDAOGcGCMRFjiY3huTFXoiGiKrFHzAH6emcDFuMgqOUK3mQjEGBBjXIROhX0WQGMQHEbHoEz8m6ePCb5IRqDAAwWol9imYn0BTBbz8f1HcMzjFwqviBoFvCl+8yDQGVJI7xMcV0wXvj88GcfbyEV2NMMclVTi7eGI1J9gqpNsZ4djpAZIQVGAntAjDkljIAxhBvk7NXObWcYqU560qkLxIDJb7yEVvE99EiJagRuBchDx2kxFxmz/J8RN643CWgLuUWsr6lS9MIMlwXnyJx1HdSmURJYmbZzx8+MQBwjACtJ1Iem/ZikCBHluKXf8T8iRim+Qzy6z9lQ3g/PDHk8rQsthWreYLGwHzWV5O2fqW5iJ0Jc5gV0Ycoo/+C33dwFVZnCCUBfjSoUvTIPy8En9Pwg0UQHy9vKZdGGXj0U2SG3tMqqYk0vuA+c1QamawKjVY7Q8e7Y0o8PVfS8eHz++dnRic+IT4v8Vv4Lbq1xo7zQNg0NU1wHQZjClWo/nJu23p/d3z69uYsHx4O7bHtLt3ry0l1dne8HS5XIrc4fj4NzuG//+PppeOLM5dF6e1NW5RzPyhTMy3nftxWm7u7B6RpHDoErtt6s22Zl9eXrqpMQXg5DcN5GAcq6sM88+UyzPN8vNtu20obW1e6rHC6Dm9vp6LaOsZ+GgD1brcdpx4JKlMSL7u6KLH8fjlP2J7d8LbQAESMZVkuxOM0loViB/M4lYUutSZiYFuiMlU1ox37nstqu9stFtg6xaiZmhLuDpsFeby8/etf/qwB/u1vfz0P47ap7vbV8HJZprEta1M1vcWdKZZ5HLvu4dNNjXZ4fTHKWee+/vqrG4bPN5vreXo+j6TKdtcSOedIa+3YKVMiwEKOmQAMMSGztVNbmn1ZoNLTqQcDdh7nxWl0uiqqui2LujS6KoutNufhQkzgnNLa73eDWhM5b7DCKqeAaSRzhOi3okZAIoeAXmUudjZFKezm1fr7rICY2I+2KXB+dkvmagXGxfXFSXaiFl+JX4QOyTdd3Ryl/n2HUnpEBELGI2LNoeg0iTYnqy+aceUkZSYMRespEEWS9cDnqcSyRD2d3HFMHWYVTs32fqSKFgUBCRgRiInIDwF9MjIU3QMhg0KtlXbshGj+Zq/fwv/iRGBQrCQlYEkLywgYmHxKjpghLFb02TS5ISDEMAjJ9WQkDDH/EIx8P+FhwvxGoqtAnsTRMrgRf0Uh9AozAOR4JlZMCWtEmiQ7x+JLyyazPoWBqNdu4jvrlbjI9yMVPQmVvUyB7H2duCVGTUGOOvrwjKiZJeayokDOEri+I8MfnJJjCOjxmJxIimJg4f2LM7KujOzar4m/MqeRcdZGgrU5hkpoVSaJP4wM1lQPcBFA0oUf+SdFKWLMCiCED1AMe7pgRas4As6HEWVm9U1M4EgyKbXIDCJWIhWAq0SSgqQ8PyBuECAoMJrFYnttgGEkmVysiMb5POW6Lt6DkMHBNARRthl4lrNKfMQvarwPYOcD72B2UepdrpkDKSQgxNlPHB+fjWb9iGRlkqVA+Bj9eXdDHqNOXkqwftLP0IbRWhlthr5/7kaljalU2ZjuOiPo5tCqUmOph6mHEXVZHu7vqFCv/YnGyVo4/Pjzf3y/nvvxf/vt9Hx1Zn9TbnYVGLYOmW5u9jyN3CMgPH777aZVjYaZl/EyWDuCgdfTeb+/+fLwpT8/9921LLfI9uvX3ydemkZXrdbalprrogTrTueLrsrt8eb70+v52v/0+cuPf/qz42lc5mWaD3tz2FdK22s//+3Ffrd8mq1pS3DgnC2rmtqy0shlhWpUijcGJjeTGn/Yb3e7Yz/3z0tftfpwaK9vw/Prebutm7Y9HDeHbdUty3LhypiH43Y4755PvG3Lu1q5m/a6TE0Jh33zOvJ0fvnHr9/7fmLX0vX0UBdlsz2dXuanX788/Nhu74ff3roZTjNpDexQgdK6sHZBRCJbaqV0yajQgQaraXk4bP75h5vv3x7RLmVVzc6aQpW61KicxcW583V8fHrtrB4H1oBKaWAAhQSMzBo1AQESy/oLZgBU4E++AAIk5RNeDMROoVMMtS7FVAeuEfF4ZxFWkfDUfBQezLwjATEqvxyTthc7JVUzsRlJgEmNQh5CyrhcxENFgZFvY8FPbr2y8cS8SwqPMaTdjXOdGS2Zt3DxgKng5oTLveXPrbmUNqz0/7rIFoKxyrrmYSsqQH9kbawDZHIQU0vsfb3QYfKLh0PaAJPNBgBg2cQ1GAy/bBAx9CV6/H5/ByZHxOTImwttNCIqNJwRlEL8jFBpwGRZxJRzuDINNZpODrADOBAzbkL7wbMUexYmAyHf3i3oO1zjgHeoSTRg5FgO84DJyQaEEMRKmjhTl56AofopcnhIX3BIXiKA82QPnfXrMQPKSmvb/sCerz5yHrvKvw7diHkpX+EusIkTF/nbUi7MY6N3RvSDCWEQqPx+CnKSRHO6ztPGKp10Qz5PMrD3Tf+nkQQ/OwElpNSwNBPtfIzZZeVjKApn1X/hBk49icutUYlu4Qgd5ZXWWiQNkPLQHtomrwbCnGQR4I9RN88VQeGkRgC8bkGEbDeTqMlWLyWiHTViAp+RQTH7IocFmOieBzETjnv/aOaksbI2/gCIZO5omkqZt/g5S+KChMc5GwvEPQ8x3Sxqdl2ZBKnVDxwWM5754wEg4yjz+ccfSmUev34b+7GsqnZXMvPd/e009rN1h/sbANP1PTFvd7XG4jpPZVPppjz1y+PAv/f2eZ7Prnybh83Cru/QTGWhNbBR5twPt5umqvDt9fWuvt1sa5rK19O1rdpq0zhApcvRuqI9qIUXXVz76ToTFHC32wLC9++Pyi13tzf7w5YdEMLinLM89PNs2aFGXWjnFuambWfCX397+e11ejy7F8dm07jRmcq40ZGdNsWGhomBTQmbpvz5083X3zpV8O2m/OluW1SHx215mRdgh4ZHTfeH5nBoS0PL9e36/Tsu9tsv/zDLYV9jxS0vzpwvP97dcKEBcCF4O/dOawRgWOzU40g/HXc//vwDle5b3xw/3/PN/V/q7bP7/fz9FY1WSG4iQjZlYZ1DIqXAzg5LU7eN7btNrXYl3LZmaou6xmJTaq15tk3TINvLpatKp2A5X69vg1ugLquDLoyzixJ1SwjEoFAh+e0a2fvxjADECOjIKgR/TgcgsLWIyMTMrJQgDkC14iDRpyCAB1biKfrKuzxROWXRBRHxaJUgc3aiAU0m4INCfp9wy8VKsg9rnZHJ2irULTKDnEt+GkrWdtSy/qNUaic/avWo98riHfGi3pK9UkIg2ocOGAGZiIGZSSkVSINZawI0VAgXBVWYo08xIawkX45xJgL6AQmwS+RAeShM5Kxzloh8NhUANWmjtTYQ1JBoUPanWLETky+Px1gNk0pWIuVRMGLgolVBx0pTYZwyDno0mrGsNZQQS25rIWcDBukOAwISxpKpxC3ycWXv17BfsHgeZpIdDiOzZWY7ot1URpZKPP6zF+ZP/CM0EoE0Js5kcAhKJCkUA0EqK0MGSqZDArQ5nd9xf6RipHHMuTDkpA6i/L6rwcBls4rvxeLdsN4TRazr+9IOiJFgr0wi3ox2NDPNuY3GlUGUmUcQVCON4CogxhFxyjgQOR43Fk9HiloLA8NHKq2Msq8u4Hh6WuqHEEmOws0mNyiAFXB4p9PiR07aJ442IpvQWMqKZtT244ooECCyb5raBFA+sGWmNpMSyjqT3Z03hvlYcrWcDSf1ILGEdPKP5ON9A+txhvulTVOXNVhXlkbphYFVNc+LhVlNU99sdWnKzXa72e6wAnbz9XqaLWs4jOheFvg/f/n2bUZb74uH48Nhhuu1cbaExahCmdJO8zzOVBdFUda6ZgWWuNq2eu6qQ3t7d6/K9vnljcCVdbXh3W9PL6NR9Q+78Tp+e7pMbbUpN9fnV+cu/bSoQu22m8v5+vr8Ng3L9+/fl7lRbMdhMVVV6OaX5/HrZP7tTLOqm+2mavQ0u26YiQs3WHLnTaOVQlK039Y/Pdxy9/qtf3bjy87s/unHnz61/N//47fR9bRc7jf040O1zMN87micK572u7akeTq/tq1uG40Axo0HNzY70zv67fl8vZwf/vVfJ9CsuCnMBtXDpm3msdhV9/+v/wdh/e9fX//2e3e69mXTFGXhBuuVCTNr1MisELUG55wjZoUa+ceHw+2+Pp1wt6lG55CcIovsAMA5p5XSXBhdsZqZFWvNyLOb6qJAUA7NQjPLARkK0CEpv1MCIQBbZgWGAYCtUgYRQXGplV2sY2Z/phiDdzUwFv1+SD+s+SpqZ5BdJUHYPEWzca1RcuYNpwGnoAqmdHAmELEPWSthfxBmxojZ2Guc5GWm8ISIVNIPKCkRb8D/qItJuKL9XZtthsy4xNQ3hJIbDz3jTaLTgL2DDiv7K91kH7ALMMX3SqmoZhhCIF3su+8HeziVKUw5aFkmCgGYCXy0xzmPt4iYEchaYiZ2se6SHBOQDjjJo7IQAEEPdIPKRETlj+iNbnNGhRQ7EIgWVXecFMFKYe78vIjD/aFig32APfyU1OmKktGuCbUD/cMEqPSlt3yxXymClz2efcw0zpd/Zjb9GNlJ+AA4CZAEvnIMkfgw8djKGrzDv/F38fFJEIq0KfQKRUwMkAWHUO5ML+nq+hkZJlo3/AE+5WohoEz/jiULinIjSOZolRb6v4OE+dM4+ytfMUCc02BXcf17CvPl2fjYOGcgIoTUstQsZ8qAfdEKotelklQKHpScb81xjBTfQ2RKlZ1XLxRGQVzC8KFVwSEoucz3w4YVJ0E+sVFYJBIVHJLQbpS4UAMkldqeUpiKhNIMBOILNT4oyFyZ5jEeIXgKh6ev8xvebUbL0vsI3CM3p6fJIN5xSPb7usHsDQOA6cdx6LphGTbHdrvZX+d+Wiws6BCGxb2+fKURDocbU+ixP7+9dZvDp97y72/Xvz4Pfzv1F1dsWnDToIbu50N9WxsAe74u319ewZi2qcrKlKUuoez64WbXtPttR1fUyhGD0ZfraN3Z7nbTMi1Gzcw8u2EY9WyHQv38+adDe3h7exzn2aDGyc5uIaNU09iy/Hq+Iqnd7s5q8zwuf3sbfxvgZUFj4LaugWZktjPVVWlQlWiPTYUFnqdxvJzQfv5yd3DXrUY3Tpf++nx9e6bpfHd8KJBAaQUL6gXcUmm8//Hm048/7Pa7QvMy9+Prte9ONAzKbeq6fXt97YY3hfb6/DSczodK7zXcbtvjtq4NWbtU7f4/frn8t3/77a/f+6Vs2SieHJDSWjMBMxRaa0PT1O13W1TVaRgKtBUubcULTQTUttXpaXAEyzCotlZaqUIZhWBpu20HXfazcuzc4iM6DoA1KFIwMQO7QmwyMWkmr+S1AqNKywsxOHKIxqA2xpD1p8GK2uIgNInPMoMWwQgHbev1v6gQkWYAlBWt3qysG0i+Ybgs1B8BSE3DKnqba990HwTggu9EL+88xJ9S/QtKP0Q3oJjLP4Roq3P9VjIFKQITxVV+iBJHcpMX5LhEiEEhMCuFyd6G1pnDzpbB9gKCCn4nst8QhaT55FVGfR3zBSQRdwhZP2AiAmDn7GIdsSUix+S7KSvtgmYiImZ2SD6IqCS052dSa4WAqBUiykouUWiy1iVlLeIyL864RaZGVHYMEMEqg5DNWCxj9IRlmTRBQsyco9QEUUD2RpJ4CUYWDMYhHhYmvwmqpGwuc+0azwoQ1paKzJzBcpMrYCW0hnJZvOMdvEjkjiYxfIyVph7f+NaQQ4oig/4eKmfNvUNYQqYgJ1EIcumRGzC+8X0V0Jd3Wd7iaijJ3rMEq1avVf1G/n3e6Dvc5PsgNxLmub5sFae0GjaGQEDyVYAYcUz2KAkt+TAthYxyMuQ+tgoIwETC6GkAEu9GAL/MIJSHCU2IKPN3ArsGkeBE47wo/31I60MYLzS2SkylGqrMZcI0f4J+4iM8Xo0Nr6ZdUJSPlaakVcK7a30obYgZEF0nkhgFKxvf6sWJ7EmMMoaN975PfWVvEnZ9xzf+a/Pr16+mRCa9ae4ONw9uueDcIysAXWF56i/DpWcHN7d7N9O4MC3w0g/fe/2GLZWqXJwau4Lnuxb/+UE/7JrJTueDHtzwehrqutKaGYgUtU3TNpvFzWVbF20zuOXcDcpUC5tvb92inFUwjm54PRfottsGSzfCcHO7qdtPby9PSqFRZd0a07tuZjZFP9nbm88vs+mm5Ws3vlh8W2hGMIrm8VRosPNC7NjaStl/+XTYGtNNtu87LpHs9Pl41wIwLQqW356+Pz5+RyqbqkZtNruWSlqW4dovW42H+/bmU3NzdyDHj1/7p5e33/76y7aujnc3bhi/n8/OWVjGFuzOTdPlfDh+Oe4K5+b2Zt9Z/sc/zv/t35+/nwF2n5Su52mZh0lpVGyUZg1gx4spqK7w0/2dKRr76z9gmo4b3Z/PX3/79WphgnocLAIoxFKbyiAQzHOn7VJAoZEAsKgKJu2WkREUKEJGVBrAIGjHQAwaGRWygsWigrDmHRDBaF06gGkejUIGVqjY22pGZEYmEdRcaWfCkQx/kIh4PHa8DlcMmDgRhRszSci0NmZvshQ/hPxCSrFJU7SWhFx3p4vAXyk6RH5SwRB+9BzSZ4nsZ/okvU8K4p32ZgSkaPjetZXyFOCIIs2kgMgjEmYmZ52HH6gYlQII7mYqosS1xAvai6EIPxXh9HdHzlnrLDkfASJiduzQ1654TCPa2HcCIyoIdtFvPY7ESqFCIkRUnrXCpPn7PZLOLA1K4sG3IgNOoHk1eVFdA0RlLr8jCO+Icx6321sXjkAIvkhxuhSoJAuaeBhSjktKeqL3muEVTm0H5C25yDzIlPCC2IFsaHFEEX2sgqM5ovacidJnjoaHUxGK0CKgzqwZLzV5sEAM0ro6OiNvZpAymUAA9luVpYZoZWEh2fGoKLIAA3uu+KN6IOnNH/+U28o//jH7lNSPfxziO6lEjuojsANm/BZESiQrUQUTJpTIBCoEgnCyVWggQM9UbR+4O+JvpRSLQmImzj4EFk8BKFG7cU5jZyGDSnnJMwirZZgpAbPAQBzPl4gYKMU+/wCgJNrKbHLMGucoKrCrV1/x9Pgkb2uFyZRxiWiM9zzgYZxsFRtncPXQQN0P6jf1Nh9FnFHT9QMP/PDpZ8biMi/GFDfHO2D19vzW9UNZbHrtRmZs2n523/r+/Pb4OC4nQq53iuF2a+5u26Zs9jz/60+3X758fj2//B//8ct2g+eLU+A2m8q6SRm13x+NUtO4GDBusZNduuuIpu4nIg26Ksa+n4bBjktR6Lo4FAXN47gYw8xtu9tsNwB6uZ6vy/TcWU04TYxbfHm+WNRfzyNvq2ZbE82HTbHZ1oUyxTg4OB831T/dHP/lYftps/v6/W2Y3s5jd3787QifbjcNc3E+v02WDruHQpnHr98YYFfq/aZxut7d3xxLY2EYLi9Nqy6v/de//mPu7V/++V82zebt9Pr7X/+xuWk0uY2Bn+42/+XHB61ov6+m03l3e1Mf795ehn/72+N/+9vTi6van1pAXTJPbiJWaNBUynZTpdAw/PTnP7XNtu+HY6PqqvnppgU3vV76k+MZ0aAqS8WgqoIV0zJO5bbZbzfXyWK/OAeFVo640AW7Gd3EAKywKEoEhFClEBSRMQoBgJxbZm2UKSpQaGenETUCEQEgakRvKsXGRPWQCZKohlw6RBGqjOvj9dEWBZWeoRMEWDMuRAEUccCgdtLP0TlHsVnhE3OK/yeG/6BYw/3R2ZMnMn9QxPJLGqls+C7KDiSynCGtVKIh0YjgmYM3R4Agy7GA2DExQdCPSiGgYiYmInLOOWcdeH1rCgCt0K8/y01q2CVM4hn+WQGAxIsAfPCHlmVZrGUmcoQKwCNkr7ZYIjURUiH4c1IYSDQYggNgMIiAYbGYZkRArVArBQqYwhJ3vyZGCIPp0HtM+A3SuR8S046Ac+UgsijZ0LvkXMYYidBcYiGYDJk49hFx5PMceUZqb72l+2iT3+VIcxWf8YkYLAgSIaP5Axue4bqwqd47meB3F0u4ChGyPC9L+XCwG+Fq8TBY2COCuSA7K/wSBD2djYHIuQBwWM8YTGAWZsgGwiIdjH9Av2ykLLopI0QiIK/nPtr7lUjG9/iO9tKXlOSK+CayUbxqtUQvITZf6M4S3gTwNFSokhpUSI4AGIgdsU+rMgVko1B5vaoUQjiwiDnsVytym/LDBJHxWd4HVsbVwBL6ARAsEnFWqv5iSIAq40G/BHNVHZ/mAlLyMsvUhzlNICZhnbxxEJ3qQ5EUN3OSKrKkxdMRYxxJkM9C6JfwY2LOwOcZNBdv9r1NWgUV3/OhaffbeVpMYQDp96+/7bab7XE3zf23337H2ey3x4XxPC7TZRyw/s02/3juRgDLBOertuOn2+N/+emowDVLv6sKo7hEu1Vc03LTmLoq95vN9DZN/TL10+Ppld24P+znZb68vSmomfnp5W1UdLjfH7Y1jMPQn4v9vjaq3Wx46V9fTpdLd3e4b6Cxll/fums/XnoyerOgefzbL5VqLXFZNEq3WFW40ViC1Wp3uIXT+fr2dlOZ//rnh//nP39qmXA6vZ2Lc1P9fFc3ahjfXgtTaFiq2rTVrnu+vPzyrTIFb9t6Y6ZpWrqhwKbdlWcaL29vc2c3dbsp9WH/UJjm6+NLf+0/P9wYbTY3N/f7qm3Lz5/urbOnCvafb88d/F/fLn97Gc9Y0WbL1rmxM7w0CK5UpizsvDDDbr/ftqZtt19/+617e/3zw/5//PNfjgX8x3/8zS18vL2fsDIw8DSWtS7V0p8nA7ip658fbr+9Xn6/OgSrtaEFp6GrlG0QQOseeXKWlQHlnXpGZnKgUDtrS7BaOQdIDoAKozSTYyKjlCWHSgNSWtUh5l5Ej9NGzolHE5YJ7ApJ5vK4bF6/uuLyzNqKbHwwNJB3I3QGRR4gevYY9RdkOiNhnBSMCDYSvZWNSTfIHiGBJTG6HJ1xMbDJRMewS9APyisBqfERrRJ0C4W6AQBgBprtAszKaI2ayHm96awlYkuOHDOz8okmIK01evPnyEeGmB1LWChilIDSiDkcuM2gka2zdrFkiRwxhSISTuovQwIRSGXBmywPH11bj9RYMTuHhdHKIGhgRuVzYOg3XuCIyfyhPF5pMcT97iVzkDRx5I4MDnicGm1jMmiCXMWDZvFTY5vB7sb3GQhi9rPrR81EyeIwxAAPrAzwOzjzXsm+S1SIO5yMAMree4G9wvKf1E5Er3FgyfdFICANRvnqWsEBAdZ4iQD5XwIxHOVImnrvN8s/vJLy3Ov2+yPEXosARirnya/QE36PGkP44X32g9Pw30t/MJkZ+slQQExgpyEItMuTpyxk52zDnDC+NFxJ3yIDo0LMm2YABEcuUsk5X6RH7Bwjii8T0LNEPJVSCmQPLoUqVMwhgF9XIbifZettCGoDV10HgTeIEQQAxKoeuSSDwvELIVXoFgSFlmuzFIHiFFZZKcSc4yMcjNPjmxdU5BPSSvA2RHcnFoWKvoS4RjgT6SDTgkXT6GLgMrIHBxqkGHzg+jTDf4DCjVJFXRbXU69NAa4s9eH5+XrpL0XRGlNNBKSb09j/8vffodx2zpSH/e1+WxBfvj9Pl4sauoNWNA08jm9PT8syz1PXmurHuyPb6+xoOF3Y2q7vfrPLRtnPx8PGtLR0aqbdtjVLURXn6zjP/Xj38MN2WuDS3++2h007TbMbp2meX7u52BnbLWTteZhMUd3ebXBzeDx1r+fXXQ3Hu+Ox2VyHuTudwM7XcwcFajebfqqn646Kah7U3C1Tj/31Lw83+vDjn758vj6e//e//7Y7Hkypu2l66ef+9XKzbY+7/Ubr6fXy29ff7WRv/4d/3ujadf3UdQYrtvD4/eXpuf/04xfdVjc3x0O7udmV+33T9V3fTY/fZ1a63W9fX/v/739//f/89elpNLvPn87DYIdrpUDRorR27NzCBbBSix2Xcnfnxuny/OSG17ufN3+639huGPu+ropPD5+GRf/j7R+Ol31baubZLkAzOFspXSo1DZOd3NSPCg0uS9nyD4cdI3y9TNMw6VY7cshkDLAjckiKEKgtsDbldaHBWtZaKY0KHTnjQ5bxlDyAsDoIYiSYMyUQ2AxTrTGKfRBBSb5pzoI5L6bfMf4bC+JWywgym5P5EP4ylNoTEE0oMp68yCim0m0JlQRHJ3gqjFmzKFWDESkxo/LLajKjEWP+YjN9iIEgM8BirdkXFhB73UoERGTtYq0FZmQiIq2VJcv+4BYiX6JMAM4BM2mtTclFYQAANQIzk2NxAVnAmlfxzOz3vXTECMjknHWLXYgcA2Hq2NrVBiGTZO/8/wLBIO55A0y0iBmzzjqHiGCKQitUSoXV8gpV8AK9OWEmBmDftgrb1xOEsuqs7NlPCtEqSxONJBOsom4BGEW1HjGBGGhilqU72aiiisTUModNQiOk9QgtBgfzePwaia0YI0mJTE0wPPGGVVIAgtGOeQtJHgX+jZYrsJKK3vG7suLYVH6IXSpAptgH5ITR1vAtmB1BAmlYKewYpTvCf4R3aa6YJclvjVISvwxgKAhrtPSJkmFqVqFBAV5xI4KI7JJGyq6MMxOAFIS4hP9OpUoVFoQEiFISEAwwAhD7SksGDJtGkM9jEfl6ORk+xxkXRKgAIWyiGuK8iACo/KIR1FoDkNIqJF+F47wy84tDBZ1APuFryfUDS2MJPc8v8uo7cmKEShKUS9GWyAdJB2bfJqbwjxEoH36nCOdXZdaYdSuWCq4BbAZb/gC4iKeajRjWlidh9zij79sAAHO+9Ox0synPz6dtu+Wy7sbJ7G5bhc+/Pr28vqntTh8O/eXt/HYerm6zq/9yc3PTbMZd+fjdFaWjqbt8f+5Op/n+5rVbikI1daOc3ZRVA8Xc9XbpYR4747a7zXZ30za78Twd6g2UVVGUd4ctK73b1fu20OpI06iMpmU24Mq2Og3z2en5dG7GoTVmZGxvbo77u4HML8+vhHS43fzlv/xwfTnhdaqBe0uTs+PYb3bll9sjNDe7Rhc0u3nqu0s3dtXutqprO092nOzoqrLRbdn10/n1TRP89OXu4fa2QPf4+Hx9G1DhTPjyNPz6j8eiNre3N+yUcworjUbd3O7bwm6P9acfb9E50HgZu8fns9YVFtvfn7u//nJ6Oi+9Vbut3QLpgqvCjCNep6tpi9JAuRC5macJ5sbacYvLbl/t1WgvT+duOL09N/v7jVbT+bIFu7vbVZtCMWyOm/PJLss4T+ehf7NLr6CYx6FQpi3wflf95ce9RuzHr4ul2S2WtNYKye9fzAxcIH/eVneH7d8fz9PUOyxNoTWyXRwzKa2JERQAhRhMwAcpI8LArFYVm7GSI/qmUTOKTRJU8E4IMymKb3Jrl1fVpBC3BPMDIHrH25j9k4eiYhgVEXzdLPm7GcK2xRyOug4OCgdTETwZ8tFuBPTrw9nvTxgFO6x9i4hK9lMW0cfgJhIzEIMHAeg1q09zMYMCYmbrQn/JOfAJKQAfPlkcERMoYGCtNPrBeKAiOwsiSigIAKTe2ffVK2nylQcBtyWyRgUjCSCZXK8mMaGNWHtNAMRk0DCC31TTMTlyijQq5fGzXzgGAi498aLRgvRsFm7iTPGFEmdvVUTHMaAP40cWSPzAIJTNzGdAChHD+2uzwgoGRpZxiobHHLCkAKCf67VezeQhG5GYhQSFVgo92BVIqTyxNR7rRNOVJZQTKPDyyVlcLTYsG2L4AvsYdcJMJCiKg+AOuSDcm7xnhYwASo4ZFuZASPVAEeLFtoKlTBtrsZhq31WEIF8BxiWrJsYMZbRiN8M/CWhq0T/RsiZVETnp/b1hzn1nFAAhKibyWS2PHbzz4HmJIGxMQeA3WSMiAgZrHfmLRTZl+iI05NRdhlAKKNt6KVJ+bhQgIiqttNEKES0bVSD68LCOcdI49RGGRs8lPodDwDnnsVRlyIKEgk8mrB81LoZN47KpSEAnPCgGqBSmc3X8fMalbMLlPl0e1KVHqSy1UxCcw9jNGL5N0yXjEgGB1JGgWoO0ioJYMUdWo5FazhoHMNXNdlng++vl5fnEj6+HfpwU3n2+vV66t24YmSqly027oeXt5TvasWFHl2/Obg5ljfvtAtPUTddTNw+27+blMrfbxi04d1MBUDblZZmHaT7sW11pV1SdYzOMyhijTXc9WatrcP90vzMNQ3e53e6Kz/cTkda6aTcv527R7fN0Pp1eb2+2G6XqQm8qs8zd2/NAXbevzZfPN246K3u9b/DY3rCCGQ4vL99//vn40/0dzTu27uH+bnu8VaCON+CU6a7nx2+/1lSWVTEOQ13owhS0uO2mNrUal2Eimhd3vL2ZyT69nI1W51NfTXq33ZRV9ac//3D3+aFtmu58shtVt/o6DAWo/c1Nq+6enp+tpceX0/NpXoju7m9VT42B7XEzjuM0EQKXRhnFxo16cW0Bu/tbVcB4uvx83PzrX+4f9sX17e1y6Q/bButyOr12T8/7Sv/8+XC+ntkth+1mb471oUStibiqi9kWI9E09/fH6rirbreFAvjzw6Hqxq9n64iZqCgMELNiVlAwPxzaHx/2p354u8KkAJVWSGCBvbHUGqRIECV6DshxqYlfdZJrehSWXKOcGHYVY5At3EpqHCCT8bXoCgYK13G6hTG1Dhh1mi/BFk90/UpaMuZyQifDHs2Y9lJEjN6D3IWI7GgB8guliByRD30H+6G1Vkr5cBr7E0mYiZxfrkXEjry7yAz+zuhoBncRERz5s8FEwlkUn8TyGYCArbUMzIoVIng4411QwXkRAPkfIGolJl8WBkltxBGnmgwPAKMfnGyG71jQs4CIROS7oBC1Vr5kaV4WACQVAttKoS9a8ugPmFF5vR82M4obvzEzBj+ZZMEwo1KCDrzJ93aEMbJT6GBYqBWDYABeK6fydgE8HBlJKW+ss3WMiUcz5kEZf6h7oXA1BGC1Qj6YzRyHDF9qBoAj5Ir3ROgQGhSrldn/UC7BFAI7YYaJQ+FWsDEQiuM9oUniVihrkcQ3FizC0cj4zWACOIEsjik9ymOqiH5CPRGUj3CA4AHBNCikhViHk/ABxGCg4K1E+YS+hKYsGVUMO2dKOCiV4iW0IcYVk1nl8H2GQRGQECGEQv3m5/4XKbFjZEe+EI8cOQbgmPAK8hVqggIe9VFMlinMAjUovErMyEh+B3jplGK2jjynGO03eUdjtFaFD7kqBFQYgG3Au8IY4nGmCWYIWVHZNZGJAFcdEaQXJQIRFQe/1+8nEjWsJNRWAAMl8J30cpA99O5dDFgmXOY50XNYDtlFMCLQCQA7enGQXp7iXsJXWl487Qwnfnxxqo0zM5visKUZH399+vr7c/V63d7fvMy8Nfr5PO8OB1UXU9c1BH++3dlNZdyM/fXaXa+Epqi6/mq73lnXtttpdG/n09hV+/2+MsYuix0GRXbTNnf3D2VlLm8v3/qTM9ttbQquYLjMXbepqr98ue+ni10utW43h83AbiTAolw0vC30NBe9boe5wOv155uicqogt0fzY7N9fDk9/e1vf/mvD/tjpS/LbbV8+XJb7o/dsGkbjW6Bxlgwu7tqnue+G5qq7peFpsUtboYFlPv6+6/78Y6IKoVN3RLrx7czW5rHmYEXssv5ut9sDvvjplEFAtlrs6k2RV3jUjWIm2Nn++e3S1Go0zxsbvZcmeeXl8t5GEkrsA3Mtz/ctPv9y+nx5fwyk8ZC32+3NF1LoLrkpizLqpiZJzvf3bRf7jZ1gZen2SD9y19+dlj9+u2l4Pm4P6AbfrypLy9d4eDu8/3+p0/jtdNFUzasez7sdnYY7u/3DzszXJ7asvjXv3wqn86n7mmc0aFSypC13nNRioFdW6p9U7SVsYTEvDgLAForX82HYUW61APHte1+G68EuLNo/ZpDRUYys4Pri6LQRAbPvHn/k6SlUugh3hEQDjP4EtxYhgoYjDPLkqCYFAaI3mnURjEOH/wb77VEi0UkYQtwxN66B7VBxAwEXosxABpjtFKonNfVHpUQEQDFFhgEpIiX6c1ZZnFAgm0irWIIEZRSyEzOuaC90CEih0CUqBwhFDN56JDMIQAAKB+VQeSM+J5kWdVHaAvlZ/DZ0NQv8E4q++xVlqknpmWZyTkle+pqrSSkFEyC1qiU0qowym/+RgDsU12BrSINQnYn7F7IEVajmACW17sQeiixDGYZxUKgABlR/ZFjIOY7P76ST5wKnn0XQxlNoFJkQxlFjF8FhR0pmOl0gfmpuCqC75COZr9AgRUogcGAMRIDcWFgfHRm5pEE60rSK2EgFo/cw1+5iwV0e3MNLOOVEx4AtFLgV3RH6yWOECXwgQEsBQynhLlySUc5kplld8+MhulMwJCMCxusokpnkaazzVmAUwx7RDaOCit117NHPIIzxkSZ2XfJMTHTQsTA5KUXXPBVopFVkmYU5IsMGA7ZAxCOj2gtUkl64CmDIbxEpJRyy+I1n7G6MKB02GZChU23BF0yA3A4psYfp6NQRewchC9sQRK3ggpwMUpOwKm+uw6CewTow6gY0WxSopBtoY4CyJKYBFUSBsh+3jFMSoZORI8nsQsORjy2jBNYyUQl+yq9E5zk78zVIGTGaoWjgM1+25Q3u+drTwqu06RV2x42w7g8/f5YAJp5Pj8Ozk4/P9zXu/3JvtjZtqq0dplmNwyTKQqtta4bpQwAlkU1DhagM4WZrXM0VlXVNlsGmO3MCMO09HZRC7d1dTjiZtMwkQJbISsF3eVcoqJSOV1aLt/6eQZYiMtttTtsv/3+eKH5z/fbY2uOd3eX8/S/L/8X43xXFsfdbsGucrwtsdC8vWvnYZiXudnuwBTzMnz/9Zfu9dIUm2m2l/482Kms2pnUuHBlCR1oNG60l3m0vEzDcDgemezSWUfOGHP8dLdpUBXUdbNWdri+DU5V5aZstl0/oTLb3e7f//3fu7//UhQlQIFVWbD56ctuttiPw3Rd3p6faFm2+8NsLU79QfN/+dOP4CwQvl1Hayd0VwRkN1rUjApN0bTbxWFTFO0PDz/9+dPUXe10RtcXtT4et6h1N7luWoqicPZag2tbc2jKpqTL95fXvvuX/7rFaYRlVqSI9bIsyFiWpaO50LCM0/n0ViLVii6LdTwDTYUGBECF0UyhAvBBXkAGVpGx2cuABFGzUrt3HBp0UMbEImlRCSUrB6kRSBe8Ez9Rc0mAMp8BxK5k8EhaEbVPWQGEdNl3ypfZyJPRW2Sf3wcPeIic80dk+SuDJgmuIDHL3s0AgCQBotzy5NBQkvzg/8Z1ymtZ5XiICEtCRCkFCP6EsIjTvP/p4yrZZDAC+kqgaLmVR0BZuC7zxjgRTgCE0EO0XOxrVGrs60oYOfTNETPZ6A/GV6Suc0prDSYQzDlH5ILXrFXoTyBaIL/1dCaQc+xCms/Ht+J6OpncgLTSOeH+UQG5+WKNyCyYlV6HXnPMAwojB58z8aEA2ZBU8KEOKd5XEWFAYEYPDwGFcQDCMhzgrO1s+r3xiQfNesMbggZSmR/IGnK1IA5J9ByCXETm8v1OB4mGjkngCOJohSlAKU94hZh8/hD7UUopH9UMfBjqeEL1qQ8pRSnIrJJXJcRCIpmZzG4x+YkCQDm8Wf6kkiSJ3cWEb2jNEzmIc4JcGKczwJKIgv28E/mFlz5R7et7yEVyJb0WAnCAMfoYOM1znUB/wSgikBF7olcBGT0EgypxFgkZLDmyMzqMgq8iQAwiHPGOB/KoEJUHS34ZL4atu4KiDOEpjrQEAYLxCwWYziRkKdtGEX0Q+gsGlO/i6CU0mgKfsp0ZJDoG2XuHSnIjkKn6lc5P1iNjV5S5z01L5pd7IQkDkFbNL//9b5//9HP3/Fpq/PTDsWraY7P57fXp+/fvpVZa3243NTrSwxUUTqe3cRoLY4wumk3dgCrrouuH7tI3ddtsmna7vZw6a8EBAcI8j01Ta4DH3746Ox/2bbcsFVtsi7nUu33bbuqhnzsedrtNsei376/XeWyO26HAx+718bw8vg5k+fr7c7ksN5W+bYsKFpy7+7ubW1PZh2Z/d/f5h7tlcifm/XbTj8P1ekXNTA6ZZ6e2u/2wzN04mG1bmma0VwY1zW6YO0s8M0+W67J08/z21pmi2B3bze3m5uFmttMwj0rj8bY9bttCu7KCtkIstbX8+9PzvJw3mwNqXTflNNh9c9NfvtppaXZt3e5mxt3tzeky/u3//d9GcqquD7eNMbq4jKWbdwpaNyumzW5TgH18uexuNjfb1pS6H8ZrP3YLj/imi1IVuKlLGIeCF+fm3batNptxWeg6DzO8nKbX67JpNsPjc3tT26syTaNV8XzpXh6fDpvjvi5erz0VBTpDDh27qsC2LHbbsil0qUjRbAdb71oEM02dKgsEDT5AoNiRU5FZk+pD8cbC+njMGDTyW0BNkPM35mCJ839C7CcqA0jJqPDgEJ7xW0tw4GKIYpjuDr3xiYJwQYhABRUjV4h/LnJBwb0LjqXPVgUA6ICYguvnQvEOpwcAEAMBhX0EGMT6AgAo/wSMxANQQjVfCh3WQGCAH+IAJbwgu8qqdDaJDMJDVa+U4tiZEcKWhUHRKISwqVvyjtKvsigupIpifFl+FW0SicwcPDUS1ITM5DcB8owhiTwgJmTwACTcS6y0IiAAIrYA4JwsI0OltPIoSoWkjSRKOJgjJFBKKa09lHVM7HcADQYoHevuI/HCrIrEKguBAxUDq7HwWvoy2N1IMInxC3RMOlkgY5iIHEnkzikLUgmE8HEquTIYkFyQAFljOG1NgQJUcS2dZ2mMCcFYrCVxO0TR+wFxoBz8ssbYcQD+3sByYmckgZZCV0H2fTmUryoLm2hyNI0sm7MHSZMy7hw/yhyBrBGLrIsiCnEuBDMxOAAgBgcM3tYHr8GPlJNBDljMQ3OIsSL2YyTH6CNY4aoQQI2uDqMXT3DsQOJhPosYoHcgYNJvEU9AiHYIkTkONs41CFNEHvJo2jNpKJtjAMsuAMUwFQjifTALt+eLRXwYDRUga1SIoIxWAApRxdQhqhjbie5eCkSHJX4s7BVYXhSvB0wsmCeHKujFFpjJK0yMgcSIx1cv54/iBgYGHVBjrA+TAJkQUeKTGDeV9XcqVB7hS1P5hrVR1fnWOJotQDBI+PL9qbucr9fOWcdEf/s//t0urgB286jAlQBjP07MFtCO8zzZ01vXtG1Rct1UfnsSa+0wDqY0AFyWpSl0URfLPDKbZR4VMNnJADTGXPvr6WXa1vfjuWtKKDdtVaKpVLmplg6sBV6UhkoTzJfOICINN9v6ti7ut2qz3z3sy22plHVj91pg88PnQ7MriMbf//61LreTpfPboHdmmjuFyJNzc+csWMT98VDVWx5BD0u9OZzH5fu3Z1OXpqqGYVao58kViIVRU99vb7YFUlGXnz7dgoXdvkXkaXH9NKGiXbkdl74fp0s3dwv/cP8ZGV6enm+ONw+ffzydXifLC+vT6+u3x6fRWnbzdtu2hy0Dj5fLfav35aZ/eX78x9/32/bhprW1gn355cfPW2OWYXp5PM2LM6ayjopGVXVxPT1Tr7ZtsWsbY/aE5XWarMW3p+fL+fX0Ou6PdLctbjfFvlWf725uKj28Xo0qy6IsEbdtQfXm0k+lKQutNS242ELBzWFzvl5r5M/H3fbh9unrr8ykgGdrVVEwABMr1BzMR/CWglAKAMeVrg7yEG3FRwyf7HluxnH11rO9V4Af7HTiaOak3PObIfr1MRvuk0yIvvpY5DRc6CEIIDA55xyJFqQQwInKE1jOy3TAEDITspBWoQ+PhXRY1IR+r1n2h7eLr+/RjgSfmZnZee2DAEzgK2ckXqK8DQcADKYnKCB/cRBtKckV3ZSpQ687SPahZiBw4TaPkMRABoKtEvsoliPNqUyKr5IIzfqCHpaB+U5qSQSs15IxeWKTc4vVWqFCZwmAnQdAzkd4QCmltfKlRT7q5pxzzpfNKkVOKcUcTm716TMhmlfDAYX6t0r5kmxSSinU4kmnEtGIN1kIgMnbTUyKmHjM25/oakpBjDQQkgEcuZK9cUnPY44VLVmzAUNIhyKc0Ur5TzJTGMMJGOrXOOZj/Mvvp5AhIM8CUShl2+tYPQMAUnUX0ld+J04pLEPZxA84FMcQs7NWpj6a+hiaYuEJWHUcAJXymD5GY+UJyOHEl8CLEZGFfxkELZFj5lBqxtkDhdkAmNkxYSC8i5QJAhjlnYkF5IVxcD7FcUKYWCquRC/4/quIDyKeWWnHpA6F+pxTO1wkGpWY/d4QAqR8f0FwHkSvECFGdnx/GJG8D+AQEVEzIaAOkAqVQgQKRUscYa7o5oiDhYQIGIGsaABejSf0RUEIfwYiht+91pQUeQYII6Bm8d6YIa89CmALMvYMUDiXR4CwV6uMJ2xcgsCyi29UaFHIvNCZaaLn1xdSYIwpUfEy2+tQov60abfHViHQsiCoy2UwypiiKUjPsytL5+w89tftdnvYb4G5u/bd5ao0mqLQBse+B17KQrllWSa729RtUe43m6o1BUBTbsdhqmZEnOdlKs2RrD2dTw6xPeyr3fZ6fSum61/2d1+OX1hXy9Td75vDrm6qou/HedTzvLDRZVuep85OREWxADx/f/7xx8+H49aqXVOV86n7/uuv/eX88MOXTXuYHH99fXo7XYbFzVCQaSzoZruhfp6GkWZ7d7vbtMXlcurOj8j9Zn+4vz0WRX1+eTu9vG42m8UtgG4iPY49OzZaH7ftT18epqHvhn4iWsZpdmpa3PlyXUartF6GvjCk3bBRrXa8r/HT3d4gLfWxv1yampQbDSyfD/tDWU7jcHp5tcNcaF21ja7rqq1Ow0ujsS0UOjt0y83tZ2YDS//2/fn6/NIoe7c1tbL/9fN9Vbu72xppPJ/eqqYEA9+eH7upK4vSGWxKvfQ9GFOWtFyv41UXfHe3renLzVTe94S/nl6btiANo08QMTI7FeKFjKiJrVFKuFdCDyLwLGKclOhH+U91jrmKDkzMIlii9b1IrzBP9h9idB1FFaQMCIvmZooS7lW4Rk0QvCdm8CbVJ8UoRCHYYytKpQ8UvRylvToERAVMDExh7+w4kqDrvSsEAtQYwjaHDC66fGLnAMTLXmkW9v2UeBSwQuXYAUAsBGEAIoqlNiyWJqp2xFB9HMJfQotghGI8TNwiFvsbtBIq75J6SMMyiWIm4k45TERy8GoEYemECj+XFIBg8CqZ2QI5S5KSC6XFRAzggFkhKr+SzAXX0CchmQHRKUrFMRT0PooxDWeDgizoRQR0oRLBaK0UK/absvhnZ9Bb+BFDvWlAVBI45GgOhOCeUbzF9GghfOP/F+sRMsUvofgMvwdGF2qnTCr6UjwAZlIh+acEHCtU4Hd4QjE5ElPIhC94vRIq8QKbhuNDiCgoh2Px6fp0TAQgAHLOIxpHzjkHPk3jHPuYEKWB5ofTZxha8peAyA4AFVKGWpVC5aNJHtsjKGDKduUI3O3jSxJxCinpsCs1A3hxC3LnV2um0QWEIzMUzDQzKJnv6HjJQ33czaPRtOwuiG2q+I5iiBGoRNWTkV6mCbPrY3AFREkK7g6KBFkOH46Yxes5xeyzwqD8OrN44iA6YCQmJkTlnAuwM0SYpJyLATJ+S0OGhMIj9AmPTdORnAef0g+x23A4I0i4NMxWBJVe0QmqiVT3G5JlXjVHrSOD9ve/NyMiPenLCMQTloozAKLpzNdfn/ph2D4cCoCirsDZ+/uDcqxN2eya15eX0Y37zcYtCxO3zcZM8+KWqir6y6UfhrIom9YhETjH2mpT2GWaRzd0Y1nC8fagqxIc11WpGebuYlq13+8NqUKXbAE1GqeMU8swALiyqZxRl3lSWtWVVkt3u2s+fb57e2UN7nZfEOPS82j57fVtfzhs2j2wMqo43h4ef3sdJjsubC4Dq7nSZVk0harfzm/LyDzroR9+/+2pH4ay2fhavMvb2bm5KbTRZruv28Y0tdk0R23o5e1NGdU0zX6/f1oWx6y0aUyBADST7exhc2yJbm+PzDwME4GeCL/9/htZNqZcFlcVZdUUu039669z312K3fZ2s233hWbabNvtz7eP3767cZ67vq4qo/Tzt6e308txf3N78/D08tqdzuUyd2daxulPnz5v6/Lb77+O7HTVjteufzttK/3nT7c/fKqgbhTrT9umbFw3nv/tf//72+vp8w8/OOB+6GuFDDQPw1YRaVsh7CqjuWg0umGksSt4aWum6/DTp8PE9NzNWpXe6yFQQKwUurCzBUiGhJJrlAlwYkPPuZghGE7XiJlJLmcSdxTfw5skFoQjYiqShwkrJW0CIdfBEhP2Xlzw6xQiApMDZOCYcIm77DAwkfVB24hZYs8kTB0SP3K+T7Dz1llIYEK24xEAEbIF3tOMLQEDApE/UUgJpCSFKvcHIz3Q14dK4aeHQRiC8tHCxrh0qPvJSQ2pwDZBTVHbcg40QKSpV3fR6UvaOhgzlESFd9pCxaVcE0ocHFMgQgyFS9M+UI5iiRQiao0sSAzQF52yI+cgLIDJdC0DO+eC9yehcUxWxjMOA4Rwvtd5FPtNrLVCVIwxmO7JRYJdvemPuwaJlUIIC/iDOg8pUi8VHj0LOoTMC/BsFV3tXHcH3JHMJzNEH9aXVUEI4ZCkpP1gUSkVUpsIkhvzBRwqbNaJspVFtGWhdE+4LPCsiKW3M76SKawli7adGRz7tY+yLIoJEJ1sebx64eoAz5BFYVbKF7+hUugPl3PsT9BlRCAgIPT74/gJ8AP0mAv9cMVJYOmY81OYIZuQf0W/2NJlpUaCVTEGayNfJn0Sv/FvCInIQVJ6gUOQEzCD5AQmrSZlV9lFgHmq0k9Acjt81NKLmORxWZaMhoAfhuxYDmrj4CMnC4gPEuFXbECYWAgyENsU2cE1XEh9zCAP5IOMAZ9Q6Rjy11pprRWEAyxYfkVKHQ7gRgK1eavpipXfAKLzI11WIJ9zLJXtH5G+lMx1CiCZsjIvb517cUW9qeuyrMttod1gh2lSXNQVLiMXBbbbzdCNjhdE1kDzOAJjU1ZMvIxzW5eFMaC467ppmBVyWai6LudxLoxuqqpANMR2nK3FSQ/97AyzQ2aAfb0xrMepVzS39Xaw9ty9Vqp4OB5fX0/z+KbouGvq69B9fX4Zx6lWxbKM4zgyYr3d7LY32tRDb7vp+zjbp5cn66pxvDx9e9yUG3SmKvbPj93z22+XcXx96Zq2JKbL9ersVBbollHXbVXBn36+31aFAa4rpZRm0pNbvv/2bZodER1ujm27KVCVhZnGAZw93h1G667DcP77L/MyW0A3Lqdrt902ukQeFzsuSHqzqe42za6Am6p42G0L4NeXp/LQIDlyzk5ucAsu6KZpoRlJb5qdJQeOXTeO47gAbo4b01QT8cjq9scfHerv35+nsfunn/9U7/YjmufzGUa6OerZzi+/P59eu83uqEx56bpl7H+4ueGyPJ1mY/QIlz/96WHu+/2n/cOxfb28nM6nrh9/vLmv1PS//K//9Ne/f388fXNKFVUNhMB+2w+fyyUHzi/RIYawu0v0EyS9K6IvMhy/w+zLoHGDNYnWRW4UTztoEwwCEoMXmbwHqQ9b+gThDyWj0bX1WyczMLAj5/weOMTh6AlmH/32N3oHHqKjET2kMBKJsATP3mulGNAPBbBigL3msgg+YiSGMNIk2BQG8FXOyttmBSHDHcLaATQEJRJdz4BeoiEDgDCCd7BNpF20bHLfmCWTEJQG+yqkHJGKAglBiISOGMSSiErCYB3Yj0oKMFFxUkaSFQmQLupQoZ7KNpVBBb4kC5iJfTLNa1SpZwKWHEHUjAGMIPh6XAEdIDDZW2GHjI6dby3EkVDFeJjSGpmVUsHMQgq6iN4P1p38jr9+8RrL2qEExVjCJ3JXzr3CE8EEKl/nlCnxBP3DsiohrTCnCzFGHWo8wGfIFChv5jwOAok6CBIECWYhADvirEpYuAsAGSkEhsgxMaHzouPXQgas5zcFTX41xD+SOgehn1zsHyVniHlakcD+YJs9rwAi+AhdsMsUgFqIFmIIQTMysqIQRwEmxpxMfiWnsDhEIQpGMvlmYb9NRkHw4EvOFaDykWNxMLzUIpBomig2yXgLTdIrRDPEw0pSKLostM9e3zkiF7YWUzG0mVa/5/ET8MyXdE/c4Sxh0LSHV4z2Sa+QAUFSwuAjfyFgE2U70xvxU4qGhc4zatZaKTZMgAo1JvUgy0wTPeQpKMoV3pFFDIg4DoHELHZG2oqtChdx1HpRR+YsHkSP0RDRYbd1DBpQzYtBVddGteXYnYbTqWnKzaEE5mkcxnFwCzGjtcs0L23TtNu273utwZiibmoiBsulMU1TOXYK9dB1M7nysGuaarx2h/3GFHoY5vP1erPdVHWlANvtppuWx8cXU+r7T3c847dvr4fN/vb+R6CCCr52wzSN3bUb51mXRbtt6wI3Ozq9nf763/9x/8Pn7fH29dT99u1pGF3R1AdTFVt1OV9AcWWqzi3PL0+TpXEmZXRZVtPcG3RNDW5hJtjUZtOUDFZXlUI+Xy7Wsi70cDm9vZwdubvPPyhlGEAV5ny5MrhunN3LCbR6fnkhC0VZns7Xfp5RG4TCjb1xy3Hf1k11vV5+uL+5+/Qv0zgOp+v5fC1rPXb9sAzOsi6L4Tr2/eV4c7fZ78nR2/UydBcE2m3qoizK7aba1aCQtS73x9dzVy28IDtyr0/Pm2nmtqTh2uiWhv708gJc3t3/OM7jMIyz7WsDNY37ut5B1W7aeaseDs0V5tv7zeF298s/TuWmPXz58XQdrv18ci+nbrBEoAD9jnYIzEC+cgYJSbGCtDEgM4KEK5IsCcIWPyHDRZzsQkLuEf2swLxIkzTgZTY+AkiKMxIe8WqTmb3h9QtXg4cMyI6WxVprrbP+thgq9l0n8Kc6h0VwSSx9R+Ipm0EUw41KIEnEeWGjuKhzQCy92NIEesT7EmyXYt+RUEGxcrQpYZ0UR5OQU4yCscdMI+Sq1us9PyyBUPKs+GXQ8llo21MAY6tBqypMq1VDdzmDOlFjcaxgDXGO6DSKRpJVaQDELjOE4ftMbXugIgcTsAwcfM28QCv2+6wk7guWOB6eyxAzJyBnOoBnKkREcL5sKISv4syEgBnKrjZh4sU7j7ySEGQeXZCJ8nztV8yBzDxA3DWXhcuE9iC7+sjTss18KKA/irUOHk972B8qkQFRy1m/JCXGAEGWHUtdPEcbkXjROwrOOgJwfgfOJLNeWABlIyUhSWRdAY8yoQGhJrb1IJLkFgzXR4MHoFC2sGICqYETBSFMppDZhaI0gboRUgTAEIpo4gvJZxtFtMDj8wzfpLmIPgLI5OB7CUlBEhbezG19nHyBvPIzZ1/E6Q+k0NpAAH5RDPw+TRLrjXAqCqnf+YIFJ+W+KSLGxBSi53ytVJApGaHQ3n9O+jn2NWGhhDswBIMxqGPnHDOS9DXhF4+y4pd+UtlvAKt10A8ibaLXPU3jMBNpc3zJnCBeIreE+zJg6qXYU8tMw/TDly/EOHTzMk8E8wRcqrItSlOVSmFVl/O0zMMIdimK0lTVNOmZLBoY56nv+3EcydHN7W1VVe12S0TTNCulqrooN9v+9fXYNvfH3YUYkbebSo9uu9kz0+l81rpYnOona6moTLMQK4XbzZY0XoblOixutNe+Pz0/LXa+vbkzDq+XN1RFWbZuuZzf3pyDaXC/P54vl2EB8+3aN/bWlJsrzG/dWOCkNQ0Fd9NUlu1xv58uJ+vG/aZuj9tlmS1RuSnI2mEYkKg/XwBcXTe7xpRojoddWWiyMyKiKvphOF26cRyZ3evbdWE3Dt3dzdEwaHBtpeq6bEqNCxe7tmlqbTRVWilbIPbz8vr82l0u+8N2WrhoCl0YpdQydXVbt9u67wfnbFWUBGznpWqbTVvXm9LUqhuG55fr8+tlmO3h9rbEcrs79ucrzbaciptN01bl5e2Cjj8dj//xy2/91P/LP/+8R6UdtVBUpauP26pt+ou9vvz6sKu2ZsbpUhfd/Zo4AAEAAElEQVTq5vYnbHf/xy//9vdvp7fRlW07o1GIDM7rVlDkgMCgYwKlUWtigSWYrF7iw3whSlBXOZ9GfyIpeEDIDpf22a+4ZMPzdPDUvKOmfFGwYBgIbmgAGgzkiMmRs/6ELO1lxZFzlsg5a22ASsgpxBRWEEQYg6nPHApHMGqnDFEEbRUdDMh9waTiguKL+1v4Ch4ZPYqnE91UiL2A1ED0owASXd8rZXj3vbQneCNORwxRpE5nd4g+AQk4QXCaML8oArfYEIDPCqCSRXyEUpwVdJiAXQlFSDUABoOEKQThqRONneAMmbdIYQ6RoPiVD8uJBkdGqfQFiagEHKJyDBUgLwKGPeP8DxR3rBZ/Ohm+pFdjnFBMkkcjmMlGjMGlgjnPQxyLHmIqJOcE9JCXBMwBAYUSJyVLzAEQHEDcWY8CAKIw187znxdaQfYh3OTHStIMQEQSvksh5APsyIk1Qsw5iOPgxLj5lJxvINYMQ0CLiWcTIOEInuJOCn5OXEQ7DJ4IKMcAZ/Loj5cgoaj/EoP7L1QVuBMkiMOKRWaZgLiT0js29/u2y5BRRhgbCxMfHbnc/ZCRB4bJg0IpUyVTn7gLRa/IJwjxLWHG5DZB2LI28zoRYy4rUM/3XHocdKwPywlFgP3+/jHfn/ckiVuK64lIReQa/EHrCDNMh7IGBRHR4y0E8PtIASijENBo48eAgtZ8MZyMFcS1ycqD1iCIEXzeOI47uXPvgajgfwCz3be6KNByYQySY3Jzv8w01227bdtr30/D0vXdbG1dNWXbMmNVVQDelLimrfphWJydlnkm12yacZimedw0tTG6RCy3m21TbZui+rx/eX67Xs6bbVPV5unx5MDqip9//1rVbbOpmqKdLoMD+/nzD8Psvv/+8v3b98vl9OmHB0Wqv1qtBmPm18tZl+XxeF+3TVGZypR2mlC5P/3Tl8dTd+ovvz6/gobXl5eq0IXmAmGZx3pb3WyPhvDad0zTYWNa3bCpxmUkZwtTNFXppoUc7o93dd20dVkWjXX2dDr//utXRH28uS2qahineZnqslQKabCVLipTVsbcH4+6VgigHM92UWzt3C+zAnb9dfhG1PfTte+HaSrnum4Nk2IGR4zaGFP23dR13XbX3H467uzm9fuLAq4Kfdg03Tyd305Pz28vb5dxdkXd3D08bI0atWqb6ubhoAy+Pl+6y1iUzTxOYzccj7vPn46Is5psrZQ2oEt01MN85aWvsJyvFzcUTVPt9vvfX/rR4t+/vtW392W5oYFMqRkJFAEgAbEC1sDWKQAEE+1EFBzOQ6LJCgQFkAU1ACQDnztZEDSPb4JTazGtgZ69lUFfA+iCHkHFSP7EypAuV0gOrLPLYpfF+cMG/aP9ahWfMPELloI/DUH1B5SSlo1DFPWkEcKOesSih4ICECcjOl3Ra4pxZrGPEBV08mLFeUwaJzMs6ebMJ4uXJdLGqzLNEBMf0nhMdaiVMyxN4PpJcqOUN0U7HeCMGOZ0Owo/kI/JMKdRhllTqf+wKu6KoErsVyybhRjtR0FjouVBTK4ESVBsc1ye5vkxGP3QQIxvSCBMAlMoxaC5qo1Rm4h/MroKiURZC9m86SWZ7iggYjCTEgZEf/AqpvVg4dJAPRLwR2kCgICRQpFZQHOSTPExMKFibnIxPRmEcz3l0k43SoKSMnjJrSilY9hNsnVi98P10SbF/EzAtATOj1uShKGV4O0L00v/eAUVIhuh9CmEHCJYWQGLyNusBJh4lz9adQl3BZyQw9SEAsPQMki0+j5SKFEXMHvzTsAicVbXhwBFKuQRIB/YGVbjkvyXUCdIc5idBNNFF7NMv+zLgaKdJRNJXhs6choRpI7gw9AkvCmck5wL8HFSjzOl5IiTdZD16pwwECADK0QXjodlozUBKFGoHuhC3IEscLBiTiHStYZISkAcKpk1ia/JbKyvBzCmKJ9fnuzilFNlWSillQYEcMyvb+fvT6+g1LwspjSbfUnTTM5WVWEQ7LIcDzsAVZUF6rLreiTuup6ss9b2fVdrBcCfHw5kp/Fy3h8auikRDUB1PneHm3so9KW7EPRVpfZNZfSyzAMr4ywss+3HqeumotwWzRZZv349d25o22aZlCJ3fns5NO3d/S0yPXenfaOvji303eXiSBMyAh0/H50d7DgjWZq5RG7Kwu4aO1OJuKtKU+nz2c7sNoddVben69kSllXFhM+nqzagCM7dcL72RABabzctg9UI3eVqjLq72SOwHWdT2LopgC0z9Zd+6uayqIuyVKWxix2HyTrWpijrkgGrpqk3LRqz0Pz6dHKLq5sGFG82ddPWRaE3m6ZUerxeN21bl1XXz8tg0SFbrE1z3OzbukY7VEWx3W53u/0yLew6rUtjqmUa//zjD7e3211ZaKWwpHnsTpc3ZYqm2ZjK3H1+IMvPT8+6Km9uf/z+y+/nEa3Tm8NdtbsHUFXtykbN0+wZCgCVVswOrNMayS5eDJXWxOSYMUaYRW98sMrCpanMFiCuIg1uOIuXFi1ocmOYWQESOB1Uc6irDWgJEdCXyzI5cNZZx9bx4sifcIMAsu6cZG00yiELH3TTSvQ5D2wn798H4WMoP6EPif6n9gJSECwEEruOHiKEpvAD7VYdxOxvdgmIp4Nq9ZNYe7HSAnvkZxkcSNWE2EOQalz5m2EDTsurM1SDMREmPRSkFepyc9eWo8li6ZnQTKp5klud4Q9giJ50wDwRbrwjNUREiYrlWEoPsyTORbiiZIrvxQQIZFbIPyKg8OjUZoE++ZPMpJJyB09GWbEV4qYhJh+RnIBgCaEleCIRgmC5PXSPwxDzGcafnF/fZQw8FyIl3mZyIhtgTAYEaysMTx5U+WVVCAiMJLlOaT15QZh281txrKCHiMDy3qKwjwCOGPAQVk2cEHPKwRbGhHAUmCBFiYQgtI7jjn95NfeJEVfYRfoFgWljn5O0SAh2zarxOh/zxTVN0szAil4Ro2YQLUjcqlkhR4ybAgRhRwgZXPGuYkeyJqLykb3FvepmDPu5B90mYBMgyaM0yHHIou+CMiRZQyp7poQ5SA8XE+En2Ge+QDMrJucs4qKVljw2iMuSwkje2VJKBZ2MuIJZgTgoYpd2RPR8gTFtLZd6UpjHt5eFFjexZr3bbTa7GgxWZXU+nZeZBjsTo1+a2HWDc3bT1t35aq0DBiZwZFEpa2diV2jTVKVVi7MTONtdTtVmowEU23nq3EK7Vk8jOee2bVO19cJcVw1tl/2+AXRvp9Ph9jBb3ffDMC0K8e7TLaEuqmaaFlVVp36wGva7ViMMc7ery2UZhv567k56tx/n+Xx6dgsP5zdTFD//9FCQ0waau5ZHZeelLe2n25vbzY/Xyxs7CwRkQZui0mXdtI7g2nd9P9bblgmenp+UgrZq+mkmJrK8jNN5WbabVjclLQsCI5NGcET9tXO22B43s12cc+22KVRp/eF5louibNpNUVXkuNkopfDldKrqSmvlF2BrDZumWmamZble3pq6NkYZrS6nq7WWAW52u7rZ1GUzzvbhuDPsLuc3zXS5sKl1U2+Ox6OuayB12DTzOO42pZpnS0PTlN04z7PTaLZlvSk2TVWeX/rr5TtO892n8vnrtysVy2h/+Hz/y7cTotpsKzvMCEgMTKy0tszAgAyFVvM8a208XkEAFaFP1EVRjhK/iTUOgH2lSUVjc86bKjUX1GzYgpAsSKyH2aHf1wvBEjqikOSSpVygEEED+GMMZbd+JqIQsg2KI0SSEaOJXamsNSCK4xP7mGurIIJ5HprTm2DKPihEXl2Z9MwfUUleUVeHXI+YXlwrzOhWv9P5cT6Szk+etVyf1o9ksS4QHZ3MFogOxbhDYxoSB3Uuc5xBlgzNvFN0SvntB3MDEkCVeMRB5Ud1nOHFlcZPq5qz/I5CppgwY0ElwqfeNOfBJ290KR4cmsbPLBZRPE3/X16thpKzDJYv26SHJYvh6YGJOmnkyWghxhXycp3YnEhPH8pEKTBah6T8bHC8WcIqHBGXdMFXUHGwV4QQvHa/ySdEXCP3pafETG+ckCQCsd8SmUxzm71HiNAQYyQqW5oZwKIclpfh93CcVwi8oZT8xKqShAwgdSXbyAyzv4K3MhlfsZYwdegpp2/etQ8AEdqtrXX2oDjc2CjGaEo+hfwupSoDigg+l/XQ6krsYoBECrkCCyAjJ2XOEUBwpFkMnOYKTPYBk9o+/xTZ5ioQL+qnRF9E8awI2C/wA3DWb3ctTJACRnKXAlSa/Bo4CXcByNMT0X2lpIAkr9+iC5BRBwDAOGVMUYJ2inkGS0PfNrXlqV+WYZiwMHVZ7/f7ceyHoa/r3Xaz7btxGsayrM6vA4FDheTcOA5lqffb2s0a7VSaAp0rDdt5LBosW2UqPF/7t6ehrNrdcTN2J1DF+eWVrT1rxWjJ2b4fTdEuy6IRwbndpmVUXXe9jiNUAATdMrmJ27IGxG9vL6fLieZxInfY7JTR221rwBostOI/3eyqSp3evlN/aYzSrdlXzMvFELWm6N3y6+9fJ8J6U28O2+tl7Meh77tptC8vl6I007QwOyAe+7EsTF2XZWHstCzDSEYbreq6QgIgLgqtVd1s6qquLy/9vLiiVJbp9e3EwE27bbdtWdXTOM/jvNttiejl7VI10w8/fr67Oc7jUpelmycN0LaVdfPc98wwdpNbLMFS1k2hsaoqN8/d1VY8GESDXBUlECzjXJmiLFRlcR6XTVvjjFPXu9KO/fWqwBFUza45HNvDLTnHxA5m1lV7uJlM1ZO7vbl77l/m4VTzUtSNIkuOQaFCzQgACpwjXozRitGgFmVko2Q5hZgWH2HirpVNT8bFi5y4hn6nfADZayyAEgqoBP3GFsxhqysmQO352TomYAJerPXnFDoXNmzLK5R8OUpQQBgLciFkvaLGEemJfo4AlkxnpfrWd05vkr/3qaV4b37RSlslg0ccjgyLtusjfkmAIummgMtWUaD/m85k8/IH1wlmScoewx5y0lGM6Xnv6WqpyRCdC7K8Rk5hDJDlg5IGigrde8EUjuCNCEesKEtQR4LtgdNYNNua0tmYUKyMXLOqTAshHzHIcnGurUPOTgp3MuqpcOI6RFbxXXHRqMeJjEmZLIWXI4SMEeSOFaG8jUMO1d1hQJzdjomTMuOW4UzAECWK9hw4Nx4hFOnHKlYtHOSOAoRlNVqK6iS6S2yTAzgLJThpvHJkXY71FELcJDOOOCKGlCSKAA/9YX1ramHcEZSTksn6JJXfCLEZlIBkmPuIoFO0TBBM7NZHmLOCdXGuPl6ROPb/T9l/LtuSI2mimDuA0LHkVueczKzMEq2mrzXt8trlNSMfhD/4ADT+4GvxaS5tOOyZ7q6uqqxUR22xVOgIAM4fARVrn+wZrrTcZ60QEA4XH9wdgEViRjvNQMFpB3K9wMX74HGJ25ofg9vk0p/c2jvrQCKyfIumRkA3jvYtAAiWS5KdHTjnmQHiZp9Pt2WY83TNkc1Z0MzKd2ZO3SNwKN1gEW0mw2jbhkialJbMOFaNj8fQy5wFgwjAiSFozpg2h8mbZ2Y/odnYwAVSHRW1tnt0mDUNoI0FEnf7/fPzi5xUnIhhlNWlb9M+yzMmGBMMSaexyLJIawEUizjSxPph6icFIDXpScksi3nExcQYEigZcdis8t1mVR3PQjCNIDUQsGGST0+HppKrko9KF+tCAPZ9X18qOB7zdVoU2aePT0le5vmKtEpSDjQBF8fjy/OlFllBsZAahn749HzelAl1faT1OkuyvCzyVSaSKCqGTk7dyBntyzQS1L5M4zjm2TorUgF4fHySE2V5rom17UhcDO0o4mFo2nboh76fRn05nfOiyLI8z2OOwIg4gmCIpGIBbX0RIo4iIRGmUWol5aiEYHmZdc1wPlyqpm3qbrVeI+cMoFyVIo7btj1fKq20YMDjeLsu4yLerVcMmBxHhtC1DRKt8hRZOgzDOE6bTamkimIRiaQ7n3Gatutsu03zmE99v17nq2KDwA7nl2nqozgBQETVNRetJUNIhJAML5cKRXx7c1euNwx5O3Qvj4exkbv72+x2V3XDerW+vdk0k+RVLzJ2aQYRx7rtZy8J43xSGogYAUeMowi0nJTkjM0Awhw2A25mQG79pPcbu6mBF2S/3MNp2OCmwTt2+kFmETkxIMW5MflKa6mIgKTWk5RKKQ2klDaKgTHSRqdYtYdoN4yZdxp1hsKFO2xHrGq4noxaBUXBY0a7fUHx+S55x1dgj6zJnRWQOQ81NOX2UWc/AjhEdgYFXkuEUMeo1QB9gp8kuTg92NmZdYy/hlt+Fh4Arzl9Euwf8r4ml1/jdSmG2CNonKOrfQoAyB865Arw4QF3tmMIbJyONdbFsw/49/xQQDi3Dn1nflSv2glkdgK6Hl2yJPatdx0yNKOQ7NYAetSyIEnwzdkK26cAL1y1wD5KMyq1xtEC+wDAk00tsqARrF0iIIe8Xb0mWjRLAs37WAFYfvAG9XU/LBu5iu2OPHNDZycEBjWRdtvp2DwSIpgPvTHzE7QRTAKrZ5hVEuTspSOdHRqwIm0fBHAxGk/2ZZpUEPEhsAjI9Zb8S060/Ozh6iH7pGm2k9F5QG2OMyGgVYKLtDObAgO+tR7vAQbpbGTD02TaOsM9i3C9mwgcVyMikLb7igeNtyQB3zzwkmYpYYZ43mqSHG8ZpyEa77qVNePSsuAVQWvDn2CWQxIgcuSWOj5y75hVgUYCDcRgPn/XqQofFfWmxkmr0X3OCTVzirNOKKqXU1fVWgPoOBIRophGyHPGlE6FyCMOeurPZ6WViFjXDadjfawvHEWZp9MwCo5RGiNRnmcCceh7wVkU82kai6JYrUuSI4LuFZs6zaKsWHHkedWNImdxlmbFihFjQrMIGXDQXEu4nKqmbwY5xGmc8CJKGDBQCOdqeDnVPI7HaTrW4yoRZRSt4y1LsksteSSZHHRfJwirooC+mrRiUq+LLRPxqWpBt6eXSmv4qlglaXJ/x5quP58qJaciz7hGgVyDIiWnYUzjbFWmWk164kPd9qPK8yROk3FkjFGc8Kau+3aI4xgJh2mcpGKAEY8SkcRJlsRZWUab1VpE0fl8Oj89E+j729syjxnD7faGxUzglMZ5stpoJZOI+q5FlIKJY9NEcbK/3bw8HQBIKQlIUR6vdqs4joe+bcdBiIgnIBiL62jqB44iy/Mkovp0ktPAAHSWZmXKI4YiSZMIlSItx2achjEt4rgoqrGblEpipsfhqzfbbI/ysT7UHRIwZjaBVdOAgIKIsYgzmA8kVgo4Y9q6GZ2it0JGZMWZApt1peNtLIgsHJoX+tozpBfTdaOnkaNWqBG0UkqRUlJJrQGU1lIrpQkQtUn6Y8bIkPXIaxNEY0ZXklNM3mBZO+UsgZm72EesTptdEHYm5HTnr6AfCDCM65CbmhibabV2oJgXkMoqLW8AXVgEnHYP22j0gq89dJ5fh+HQ+sUCXOI67k0sWXjhh8fBXJMV/ioEB0GxQdvDuq6ABS4ecrUavWVAJ1rt6ZW+oQK9IvV16Y707lQ1sp6bMG/Avu6CAS6cATZyhUDz2exzIQZNWgIimDVmFgzggo8WSbvhx2l+12CytmTeD8+7MQIqktnNaF6l7kNrJmRml3sBstnaEoGbLtPcVMPt84PG9tsQApHW1uD49dK2rXaNlzWOZIGmdWKhbeP8lg+4zhQmID2/ZMTKGVLje9AWrvlRnGfw2iWZzfjPVmTqmccLyKRhEYH1ZoB7xJp2cr2yTbMYxzjNyF5bsjMF8UAnrj7QaHkCwGJ5A+Jm5xtYZvB8HuJoy+wUlG3YHE2izPyES+4Bi3nAJCqYzclY6LK2CIk7XBmEVs3YzSJmGmNcLNbl60c25Nv51DxyAAkNhU1X0J4N7KZvCIHCMGCLkT30MNAQZmmxtmpd65lYZCkUACBDbw1OfdFcgMsjcw1CIBDn83mcpklSwqM0T1IeZ1kWCYChi6M4z9NxGC+XWiFxjLuhPp2rrhu224QLrjUI4qiVmmTMGSeUw8DiGBPRNH2eZpxFEnXfd4R6sy2KNe8bqYkNl/F8bkBEXd+sVuV6k9ddy0BEu9Uo5cvzoR3rUfaMlxnmiBAncS9V27WHw0mRzop8IOCQl2kOIh4lvXz6rGmSaui7ZluUMafTJNU4KqmSYj1K/XS8oEQkxuOolVOZi3JT9P0A05gWUR7zJEnHMT5XlQaGTAqcZF8naVQWEZeiVzJLI84ZA8qzmHGGRKtVzhCTOFuvV1rJw8sLSb3K89XNDoFP0yTiCLXmDNZFIWJ+d7cRDKZJFmU26qmuqySKpkkPXR/FXPBSaXmqLy/Px91+fz5XXd9naaZByklRN5SbQutJyjGJRJwkSik5qbzMmkqN4zAMkkdMypHUFKcJIDIRJyICzcema6tuGDXjbLPKJAFnfL/JqqY6P9UjilV5p9uu7TqRxtOgpNTIUakJERghYyyKOBDJSZPZcs0A/JmvF7K30CCzaDEXZnKPkFWwfjLmzLaROAcQ7N5w826MkpTScpqkBUBEoEETAkPuF0KwOQFWKyW1zTw1RyR7lwm5OZmLfcCXzKbT3Rg8EmT+Or3hRTkoxnVs/hFmCC3fDvww3qRb2qCDSbZYL8pO5XjkEgyEn94udbz12gTudgyqtknQXoMBGN+PhR/Bm8w9E7oNvL65VpeejH5Gjkv6BvEGZmevIcKy5s2T11Ljqpv+H68fAczCcvM91OkBmPQQzXq4HOYjInOU1TzHdaQgp4i/wCFoA1NkyY3Bbdd3CFmSwO/3ADaJNORXcjaArIfG52SgLWp+V7s1O4iAwDwUQ7OFi7ZuFgM5mGmzJuIzZLRM5jvlKeI6CHreHFL782edjHto4e3hggIeb9iRDYK0JsIxc5pzk4Sf0CIGXONWa2qwwITIZCYu+dNGO01XyKAXtLW7IaZF4wMGspDKspwXmiVDGO0yj5ItA90/piLv2zCIEha9JpvVbPjGst4MXAh8iNHz9kxfDDncEM9w/isVYmGJtuqTfJ0BugIAIs3A7kUE84koNjRJMENVw5CW3Q21UNt5hHOXEfhjSGaZ9yJiiONnrLQYEdscw2hg+sWcckEQkx4VguTU1ScJKouz/cOd6nupdSf7KOKCI2OkSI9trwmSWHDB1+u8b85IUywEI8ZAbcqdlrppm+2mXK3yx+b506e2qboo4zCMWcpA6FgIrXVdtYOcYEC41IdT03ZSJ3GvQKsxYlHfT3FWsETECStX6bltHl8+NwN2mjMB231xPpx03yaRUL0+y6EA2GzXnNGqXIs4qtpLc77Eo9xvy+58aavL9DQ2Wh+rimnc7fajHN6//+WrN3d36+1unTG5UnqI+bQpU4Q4EdQPfSQiEUEkNKhxHMY4EXFccM76tm/rJk0jOY5CYFlkaZxopZv6RJMusngcARiC7KVGZFTXR5Tw/PgcRWJXbtO0lKqtq5oaFhdJsV4rJT99fgSA9XalNXGMkBdpPnIe942KkzwvSyBsezmO49COU09tXe3WRVFmbScvdcWQSSWruuk6meXpqkiiOFuvVlGWtmPX1DUSxCIahrE6N4xhlMUUpev1Zr/bxHJSUZXmWduql+fq8HSOyj1oraXWWiEjROTAOKJgIBUM/UAMGGcQnjBn9/CxTIcETjmi28DHSXMg/FZeLTwiIHM0hEnRIQLQSiutCOZzBrQ2JxBpNS/8soqAzB68VjUSzYlJgkemtLlAFxSw28nM0zsKEdBCQ3mVQF4roZeuL7z2Ws2FsMVjLgCYg3ELg22QgzOnzpENOD8PRhs6mxfW5ab+/hOCmkBPh/rOf/dvBjmYpss6DND5vnjE9qpWeG2cvkS10A/mbntXj/OHm9ReeIWpLIlDsBOUBCGh5ldt1hc51lz0bPGdvAEOyW0CRa5H5gHtwJadC6NDIU4I0PfAgAAnNJ5Ctp1hgNZedCdu2crt8uV5a1C0QaO5XNJa+82TyC7bsl4BBC9xITNaF8oywkH2ujV9FLRZ25Rqsj6nmWhod9gxJth33YnHEhM5O2woFnzm7bkNHvWkDD4Wuwc84VnuKr3GCYTrOIViumAusjAxVAEuH9uG6hyNrJAaOrnYomEeC3gcHgSPHs3wO5Zgvv2WhXwn7N7jziViZTLwS1nut3jXON1np5jPHsRwOAJ5t/5gcBrXQQqL3twQGtg3TxVmIUOAxR7phjKuT264bSjUPgPa7CNhKWkjiQZ+ee3k0sYWFCVvY6wqQdQGDyEAiXxVaA7DpJuqrs+nIep3N5uxbWlokaScpjgSkx6JUHBBwCIeDcOwKZNDUyk5ZFkURyxKo5v1ahwmPfZlGuWRIDU1Tas1FZClSaS0evp8SuKkyEtFNE6SGNPd0I361DQdnXiK0zh1dbNdb2IRT5pWWYHIx75ijAGTqDFP4tvdVt7sq3MVcRAMh7rlqDhMoPoyX6126/FD97lp8qJEzkGgwmmcxn7eNoy0HIe+G4exb8qoEJwDizhMw9Q1VRLDZrWNY9bWI+OIWstuYpEQiMg5IlOTbJpa6lErJacJAARnaSymaRp7mRdZkSV1U0utOcPbu71murn0UZQg4vl0WW83RDBJPQyTZtUqQhFH0yDHYYjieBjGw/ESi/ju/i7P8rbu0jRN43gcujRJ16t8HGPZSqVGLUlNrD71TddNwxBFcRzHZQ6R0FmeR5xigcD4MMim6qqq5RyzXV6WmSY+Tb3SJDggkgCWxWmcZP2kjn1zaQbiXANMk9IKGEfNSMl5Kx0ulZ6UUjODcjavBtHz2VvAAMCdBWrUrlUYzv2wcDKQlUWw/lSTDIRzwjJp0pqknLQmqZTSCmbzS6RodoHahDvmE39p3sVLawDUNDHGgcyB0mh2fZ3lZRZk8no18Dy7wsLvQRaKM7HWkRPCmwWQ8RrlGpD4AI6ZrwS1BlY6mFoi84ssghKukBY6yElWDTv/nGuatwN2sACsQ844D6wJ8OYa7dDhAmiA1VymoXakMXhpERsI63/FD9bC2B/OsM6hGLcFyNKi+ZKXsUpwQANdMyFUjtZXP7Mput2Jgtb5pvgr7nhPB9BQ212Y7eUrLkIAc8SHDbR6lEEWQqGB7oTeFNsRmJcdaG3YwgUi7MSCrLkiX6JmbgmMQSGzoJGzS2jShucEnxkAgQFqfmht22AOUWsb3Qi9W95gu9gFhaFk78sIaWwRG9h9pAwT+oC6R1s+/hh8TAHaP27pYY03kr1GlpvQ4isduHDQV2QGMnA4hTjNGlFA6+vSvj3ovCrkBMA6d7yqsRjDXkYnATNY9WzkWmP9eei7gJbW9mqgjsxgGTxgtI8JO9koYegscQN6rbxcjYYEVjd410owkmCcZK7vRtDm9DKcV9p7z4sZJktN2009u+S0OYRbEyKaie38FlkRDhfbmr6aDQKs5jCIyteDCG4WYJstGKfNzYqIXuR4rDrUw/HjJxGLTZnQhF3bD+MUp7GII62IKYg0y+IsnqiMEojw/m6XpxFHTKOIlUkSa6CJk8zTeLPlb776ulgV9emkusu6yNpmqKs2WxUlL5tuvFwudd/1nbx04/3XN1JP7TRC2079ibTqhokzTPP0/u5NdLmMI2mgdRGxMtmv0lSgGobs3d26LJq6/nT+yONG6fvPHz98/PD++HI8Pz5nWVRkuNpttnEJgHocUapO8KaHceiPpyMQ5FG23W81G9u+Y0zUTXs5Vi1rV+u1VHKz38RRdHg5ElGWpnmaRsgTEXEk0JrpUQ5AUm/KYn+7FYJLPfRj/+bd/vbuoR36M5wFRnq8+anutdLTNCqCslwnWdI37fP7pywt87JkUZSmeVSP1flMSiEhSQ0p7+q27ZrNZr1ar0hqhkLxCNJsIqgPVV/XjGG8waJIyjzrWzlNU3Nqh4jLFfKYSyXlSBjHEMXFZgtlXlWHWCRZngpgXTdc2ukyslZNrWZxEm+2vJNMKTlOI9M6SgRnTI2TYiQ1TESSoRAMBVejBkRkdjXlLNUE83E8WtsJKBj/pJdI67Iho5et2puDEbOLnkBrqZQeJ0lE0zSvandKZ7YiNsvPaDkkIIZgnPhAnDEAPW8RZ/NTZhElq15CW3/lhXkNLLxqmb8vJA8W6OT1JzCmgWSCcXKEFS9tc/j67NAiP33Eq9KvIYaFaOSu+AfCNIaAOOBMLgZEcIAqdGbYehysWHTSDvUCDFjSBbjCl+vbF3x3BslFSUKzBFcj9ioOAgF5ravAZhN4NWx7fWVajWJ3kUV0fhsH6Gbwjg4eLLbDMWRhduN/MDkx1rB7Ex9QyPqMnME2MTpLY5jDB0EcDc2BZ37i7jqijVEwZl6ROXGdXFV2i6Y5tWJ2vjqLaTCL7ymGpYezBQ/mFqMIMzpgdjI/I7bFOxZJGrBi00uYsW3oPGyIGACNmQ7kYiSe5T0AA1jsAwA24gIOR3iXlntlYVIDPgKDajyksHIVeINmYhE5LrXoyj1inM2GXNpyQcC7dnKG5n2nXGePr/FXIhnpdhm/FiA6h1MwZ4GFbIKNPAXiQnbjb40wL2u0SgYWXQaXOuk5wfxCBLMOzRKQwK0yo0B6HE28pKDxXZFlN23VMzjhmfnTwBk0o+vKQTezcLrVqWvXFQr8awH/iTQSahhAawFU5pnWqIcpKeL9tpADH/s2ycr9/R0X0dR3Q92ObUdEOEWbMsvLdV4mAjESPBUsERHD7FSd6+aUZRHnBYL68Yfvu0u9yjPBOMeIcSaEIN59fn6WGkQUN10lVae4FhEwwHEau67r276puzxLvttssiSNmNBEUqq+6QD1d19/g0qOXTsNI0NabfLkmelpWhXF/dv7f/3TDz/+9H0/6m+/edjc7KIoYQziOFFATdtzUPtNkSXx1E8EECWCI0gpo0hoqdUky1UBigHhqixiEfXDOHTtNE1llpXb9TD0pHWWxQCg1NRNahiGvMgHlSX5Zvew+/TpA5Fq65NUMs14fxmGvt3syjiOpFLIcbPZbNbF8YXev/w4FWp7t+Ocizi6vbsdh7bvut1uKwSSklINQHIY6rQXciIAyUWilB7HSWstuBiHQfaSCpqm8XKqmrofh0nEMQjc5JsoFlmRJ2VBcTSAWu/Xq33SVe3YDIqTomggcdHYKE08jvM468dJjSiHmGlkOkYiDgpQI45aaUAUSIijmrel1YwLJ77zRlgzv3I+Z+mjnXM40Q4spJ36mCnDDIiINNE4TkpJrWg+bVGT9gFsU6rNg1i4651nPlA9djMJM+9eRHvQ4RgrPFfKj159cZJjJdwW+qufMP3GJrJYjxKa79cNM0QBF0IHv7WG9ff7mdyiMSFEQGJop7mBup9rsPMkr3sXpsE+FWoKZ4VdM2lxBX3HwmL+A9Isipz1/HUt8y3feAx6HZb/xRpdDS7qEiDX0GngdeKrNpNbrQuA86nA1s6hzXUC9BjfVmribjOPMgDtQ2O/ShnvwJmLsMPlCiZvXk2PdICBTBOIwMyctQcq1sFjnEbo5xKzmMxOLO3Y1YuVoRVZG7PACN6vESIaADAmk5m1yhqJO5DknYYewgTHn1gGd/5InM+XstbMARJPJ/AeFiCanXS4ILZPgiUHAQwhAm6iLw6Oc8p4bGX+cXk5DrDYEUQLjkJ5tAovkCcAG9Hxpjv4FmAj25SZ3+ZuBFAVfXFhEwN6hUDVuL7AAkzDdbYs8q2EVzFGi0n9bUN238iQ8D6Eqsm9qF2Zjs/QbHMFtgHzmDmf6Sxtfq2i1XnmArl0b0Mnz1EBMazAgmsdiXWelpvs6fNTXzWkeJwmImJdc/78qUkjTFPGUA5dHacxQwW600Nd5HnCZFHkxaboh0Eh5Wk0DM3ppevHHiM2TZJhohX9/P2Hru9iEcuWHYdRTSqK4zgWUvb9WCdJuS5LzgQpoogmOQrEoe6mvivSrMjSaey76iwYSwVGUYIJPtZ1J9ume9YdVacL5/xUXZqhqbu+1zJ6OX54uZxGOaTxWel6gLHH5+bYde3b+7eCQ9+0cpj26S4VEaAUSYJAh+NB4/Dm4aEoCoWkJcUi4cAI5di3AHq7LeMoWpWl1qoZWyLK802UxLKfaIJklUmSAAw5rLKyKYu2rY8vz3mapmlR17WUQ5rFWcbihDSSVsNYaxjGlDOuJQ7DKCc9jnESl0WCZbper5FkU512u1XTcACQSnXtcDxc8rJA5P047vYbLqI0juMk0grrumvakYkoiyIppdRy6HupdbbOkjwVMQOuh64mNfaXpq27pCg1JJIYxUkt+15p0igVTFWbqGFVpCzhE+i6m+yCKkQeR3EMSEqOiAiE9ggE5ABIjDHUSiEyJEHAJE1iPvaFHIuDY1YANGtSrAaRSipNUqlpkkoprW2KAmPmPAGzYN67LKyr04r0bEStBp2jydrJ63zVLDe3ttrIx//4xylMYsiWOsJa2S8YUaeAAhToFNP1066qQO94d7pXk2Gzbblelbq5qbu16KaZ6QeaeAEmiTHTIzZPvl0OqK2O/EsLF47HTb5AXDZ2rtQvoHNmeKkVr7CKhbFfavDSZWZvvcYZQbTRGnT0StzUSUEPbAoLACLOOyOTty3WOWajjN442XYT6NmHT2jm2XOCGrkpuFfRBDTvOYQm4d8Fjmb4ooNqA1yiveUig5LQ2ODZK4XzHi0mK2Y2/oTMZqsYu2ScQcg4BvDLDq6hgEMZxpbYqf1yiAMag/FTENo92YPRmx8IeoUO1pA52NdtIkCLTuO8lSU4T0Yogo5hgoGfH2O+kXNAb5G6Tr8ymbF+OQrhC7iDVuZX7VzP8rbHOIE6ukKJllgUEszOCy2K8hrDzCcJAUB7909YHtpAj+d0C4AXj5IZFAj9MQ5xAobt9/DB9s/5sSx/WhGe71ks4mpC46HExfCAQ7Hzd1OCLxgQ3SzZ1u81adAfAov7mNE6ZI8AcANk2dgLnVmjIdpzVaaRniaOEOcRj0RVN3VbV4WIOV+tcyT1VFUCcVUkZRK//fohjUVzqqaJJekeIt7WzaVqGFBPo8gi0hSjAGBdP43jFCfJZrMp02Iap9PxfLmcG6hEHr179yYrt209JFEsEg4pXk7nvu0YwGqdvXvzVZFkchyenz+TlkkSJ1GqSdXVRXPd913b9P3UF3FxrqtJTjpi9ThWP/78/nB+rI7jqO4FpGWKyD6/f2yaiiu225RAmgtsq2ZsWgaYMWRADCFLy3WxZoLLaSAFFDEWJQyF1jLPsiIvGTBFsutGwZlGimKeZ5nCmOd8VW7iNJ5oaJsLH3ga53KULOWC4+lwGjq53W2iLBMRR9DT0FdNN8bJ2A5JmnEejf3YTlOWTVG0WZVrqWVdX4AUaUVEShMy7Pq+qds5BqJBxanQehw6KQRmUSrl1HdjnEX7/Y0c5TAMyIG0ztdFnGdZXsaJUMN0OZ2V1MhzkcbNpPq+nVjBkxU2uq7qOEq5VNhXNyl8+/UNZMWPHz+dqobF2aQIkIkomuEHaRKMA5AGVEoyzhhwziM5jbPC0koDA2G3wXLHAszLssA7PGFmSQ2ktZJSjVIqpSclfZ4CMBPsBu00spkxXSkAn/UIAMAYM/FjcNbYSp8VsdBmvtJLv/YhL0BGR3gk8Rr8eADgbYy9hb799IVF0Q4e+IoDkQ6U6cKkB5U6rwUAGA/Br2AgdM2xxgbt7Nb6kMhuNOL6HlDMT7DmUt0s3wPPV1QxSsuG7ZdZTXRNSQoLWaYMW2paGrkawrvOcx4AX9PJkM5ozb6dHAdkndWl1joIw3lykys6IAWamKyZbs+1sNn0AjgPpXMrzA2wBICgGhMbcqWG1+duz9vQ2RDKXIYmj9es7TLYC0kT6Xl/o4CycySDvH+FwsU74MsJedk6MReURzuKLsWNSBPh4mgU/zyBG0+Pz5xkBTgaad4Mk4WpM3aYLEKxxHHOEUtVdOFKcC+HK+Z+dYLh6OzcdBYl2gQTD0MDakAgYc4Oe5BjAKCTvRCzoB9omxlmATu6ipZ87vUB+t/zUM4zTY9AAM2pXxjOQwDtROcaB6Irz7qiLdVtNz3aCITXoyjXPDsyALMJQRfwta21PV72jzAsIyg/oJltGFqV7+hqsJndtc7BMSJxqo4kpkvfUKzynTjX7cfj04enl9s3t6CJfX5JI5EKEQHQzXr7zZuszKvj8Xg+JlNW7PeTon7UWmmicX+3yfIUBt037fPhUtcjimgkdVEDizJN0Ee6HUal2LvV7VfffFd1w+OHP2dJ8eb+vlejHic5dhx1kXMe9WmS5ut9xLEbO0Jo2u7z42PTtCKJqk9PPMHN3Xpo+wkGxXXdjk/P55fTL49N9/l0lpNMo2gl2LRaD03DgAjkOHQIlBcFB46gopiLiBFNqzLbbTerNKnbFrUmoK6pdSJZhP3QSzXESUxEQ9/LUbf1NMopi4s0JlA6TniMUy6iS9NXx4OIkqIolQJOkZK67YZpogx5FMeM69PzS9sMcZaLVcFFmqyKvhmbqkcFeZbmaTzIqbvUzx+PcRxHMUOMojgDpPrSaK23u/Vqu523gu3quh9qNvEsTTXTPGEiiyjS63IjGNcgozyhJFJEPMGYs1braSQW5XG5Hpvxl+9/fqzP+R3G+Y4pvs/z+4f9WFXsrG8L/Lvfbl5G9ucfOq2Ic8GRzRuWSz0qkiQnzrnWiokIEIChlAoj1BryJJuUlKRIaz77EELdiQDA3ARFa62BNKlJSqnUNE2KSGk975uGAIwYAc15z2gmK6G3YBZGtyjFCnugoXxo3xldu7qIAqn5H0Y/gbgtXQlfUkSvZDQUUwtw3MQyaE+I815VbK2snzxd4Ti/uAmc5bG3/IPOfRwo3UXLDZGDhIxAnYXEC1tppulGB1GgFZedAD+zny0CWf+SafEipcmFLuzz1+jHPxrWYMnheAZNGgpYL6JBM74D1l1ItuIFafxxoaYLcwJscLJnkH9h4YxlSkAE0ABzOGcmPgLYU4CdnwOMj9Q3wEcpDHE9cZxVdiDA+H4AAM3R3G70An+Ve5esR2Ge94flGnjq0JQfgkU0NqR60CS7MRQYctqJCJn1o26sjbn0KMkAF29f5xG3TgQAIG0iOFYEjCJwIG+R6QquPhPFQ/+8hUPaPei9F4HHM5QaAF+080U7AbG7E8wtdoeYmWpmVp550K2csmK04OgZ4HtY5kTeisNsyZc+q2uRWEZvbaaVvef0jPf3zB66BVctgvMWpjiN4/EUBPiGgsVoDoYGgSeHSvxXu0cQhMN+pURdmb6HngFsA0ghujNVtW+nMQfmgODgIok/fvo4/TQKEfVNp7kaNTydqlPd/9yccSIu1c1uc1MUuyLfanx+OX34+ROSEixqZad++dB00+l0LlZlkomXtnm432ciPj2fn55OIltJwT8/n+X5kr6c8izVcuKCrdc3nPEPP/3QdH2SoJJj31dpluSpaAQiYj8Onz8/juV4twdFWiFMWtZ9dzjX/aTLNH58/3mi8e7dbXWu+mnoB9kM4+HUHi/NuRuqYVRS/vTyPIz943qTi6hMo3IckIPgfLfKd5vt2DaMUZwkXdMdnl6QgBEQQlGU4zT23TCMY0Ri6EYp4Kcff0CC1XonME7ipKm7rhr0eFzlGUSivtRN1dZtPS9TqqeurntkbLVbp/mqO5yPh+MwdoJRe2mGgeK4mEYlleIcpSQElqVJwsXQti/HQ3Wu1agVgZpYkqisKKZhTJMMCMZpmqYpScU4TVzg/naTpjkpiNIo1tGopqzIynKlBjVOkCTZQKT0WF3Oh6odOgAUoHU1VJ8ej0/H+iw1tZPgPfSdVu14gX2RvP2n71Kapq77+LluhkEjcsYBuZYjjGMSsXGakhgF6ZHUOKkkyzSABDmMUxwxwdmkSGvJBBIoZ11cdH9mZGSgSWvSWtOk5DhJqaWSanbTmwkzQyDEeXG7l39rCcDu//GFPTwCe2BXNzixR3t1YZ/RA5D/7ocsOLiety0e+ZWy8PpB8h1zQu+sxhfedRbrP2igtZ5Gj9twoVc3wQR4oXedTjboZ4FxFqDHtidQSsvgj4FAv9ZUt+LEh0DMyJqj2NH5eHzgi4CMOrdmD5HNe4oQ+OGwpAJy3kecT1MxU3+j77U/D9f4lDwsM4R0Bc4N055nHLgGN8EnT1AzqkTW42LQkmNXgz4R7RFjHjc447TwlHjgElyy/QzP5zKtDUwmOs6Z3bfOzrkBvAqX2JqN6C5oEvD2wrP0eoS9w235yIwFKAwphb5KAgsawCJXP6IANO/KPb9PYZGzm88hOXStc+23zpilf4Pc4YJO8shgnJA1rwmPFv1QELoNS7GtNirPIb5F9a6oK/kBcKDZcBQ69QcIPhr6Rf0TDIF1x7oBnuGXobOFckGTQr+6A+CLHpGZwfouXjXaPgcm8Bq6wOxYvXp1SeMvcdUXuhliInJKAEPqoe8qBXJmmwsg/vOffpSSoigBDb0aRqVHLRUQDUoPE0rZqElKnZeFjsWnl0tftZv1ar9ba85/OdQfHp+fn06C84ev9pz0h6fj29u7y8tFasoYu3TjaVBVW0/Ty93ddrcuM+CX06W6nI4vzwz5brdnLG5b6Hrqhm4YGs2I5+uuHs8v7+t2HKcRIpaWedX37TRpxttJHi7tU3X+WA1N053rppWyV6obJiU1MSEhliiOnZ50204qAb7frIf4uMmjbZnl2xvA+vj0iKhub27kNA7TeDie2q7bbNcsisdBEbIkSUHDdnsDpI+HgyaptY6SSKyYJikinMZeF+mEMEpFMFV9z4BDP9T1GVjEM56gjpK0TOQ0Ts3hBCA3q41A6qpq6LpJTtOksjwjqVU3CtQYg5rGGFmxLtIkBUTGsbmcx34AQGQsTiLS4+F0GeWY51lRFFlaEMEkR8b5uszXm41S+uV87Oo+a4Ziv0GB1fMJJi0lQwFDVx+r7tPnU7HbI0fkOlJKqInUCNO5iHdvb9ZTL//lh09//Pmx1ZyiWCOfpKZRCVCbIgcer3fx2A6XRmst51MXGWNqlMi50qOmUWnJUMw2Bu1MFKxW10Ck9Hx4l1RaKjWpad7PkHBWxsjYnEZNDJABRwCFCr3TxDK/dyMEYYRQNmip7gJohPadq6SE/+5nVthXYghG7EIdEEhoaJa/IMYmTL5sw1Id2qzooJylHINBHd71hZZGYI8SMa/TQrtdqTCDOXyLyZVOxp4sCerb4ye0Hhu5cpYVLQcLF+8bjBIi11fG31gCn4eBuKjZ/tU2ckSzLxIIyARTDRjyhgmCrI7XtaEmY0pnaB4ujnORFpgH06xPAQBCFmYuzfm5xv6DJSbZZb5BfRiykHkdQ5KGSNQYVsts1jWCtkcIAHYbXlOoPdXCrr1ypLOAT89b+rDZZXvVluuBuOIiCngyQKwACMxdN1U6zAWoQTNzwAVaSOA6AnZvjfCtICBjuPpKyAIggp6szOxRo50YGMNoJ0avaWx+OH1ii9KBz+eqUgrhsrsXTkhMsWF/fV0Es54JGmhLuKooqNj11wMel6ljgaX33M37H1jq2MIt3gqmLwE4s5DMdpkC6gJY+G8BtNvUwCnbGZfNdJvBqtvHxDrFMCjpC70MPi7V2cyjTJFuOmRp4nqHYaNn6oqnSy9iUV+e0qjgEUfBWczVpIgAU66GaQTRSHXqx4+nZuqGLMkHnhzHSaJ8udQ/PZ3abmyqtiK93WTHtn86dX3TA+f8VJ3qvu2HYRomOWDCNGldD6Cmh4ebfLWNGNvf3IzTVDXV8XiCiDf9qDkKAs3Fh88fD02f5LHI45ypz+fzh+MROIva9OO5erpccq36uj2dql6SBNCAWmkeARdcCA4IivNaQ6dl31TNe5UnYl9kUuGuKFXfJRFL8zVqQORMRKTY5dRsbmOYN98bFQdM4lRLfbu7RQ7jNLZdnaRRlMRKa2QIgjXT9HI8TnKcmjHGKM3zcVKa6XGcFI6bPOeIXESoJAOxLtej0o+Ph2HqkCOQaptmGsdI4DAwQazICs1JTVowluSJBNU0fXOpGWdpkedZySNR921eZFmWjnKSTb1dbwREGliWZ0ppJYELgQwvl6oZxyJPIy3KVXY8NV3XI48FyP22zDYr1dRy7PIyi9YCoEwy4iD7rj9U06dT+1K3lJRpnJCWMQPNZUpyz3VRJEnGTpoNvW4HTVLTvAkwEpGeJiXVhAyBzxoJ582X5w36geZNfUhKpaSUdlfD+ex2QMA51gYEChFAaUmADAUYnRWsH1maVliIZyCovy47AQL4/+djwxl++nlV7+uU0ODW6wZdzUd9RG+JhbzWu0ZzLuvDpYN4Z3tYsQuyBNPa69aEbgbjRXDKck68MjaJrP64rsRiAEsAk3ro1vsHehzcYhPfMesRA2sS5mCocd67Gd08CB4xBUlBtIB6846vOLsbLTwwn7kN1uGElnRwNXIGJgVhwGD67YbH05Ihs54mG0YEB4+Q5kSYEKpZn5QOXZL2SIsljlzA0wDs2eo9pjeozO50Q8auG3sT4Cvb7znjJIi1kTNmgeW6ZhfHHdcECU3vgkd8EMbEI630EhBD5iIU7kmHL2w08VUDyHdjZgzybozF886h4Vyk83QhhBQG3MD1x3peF8FZBxFeYSD/AACGR6+/igqT1sAQnBs4UHAeJSMAgbZJ3CZJJ8gdcxDHkd+wrPWIzHfdglATyno9qF8OWofoxlADghChYWBLAPIqws2agu1LZxHFACGbes1I+3Ai/ApVr+jrXHyWJCb9P3wOAOx8yqVTGeqKnpD6QTE9wQgoQKOatBwVMgBkPBYUscfLuZXjc9MkcbQucn46DqOUJNt+eDmegYuxl/KItR6Gthv6IY6j1XY9TPJ0uACiUioS0PVtd7OjXk5NExdJuX0jkujQVG3Tn6vLp8/PmCWYJJrBh7/8yDU+fvxcrqrd7fr0oenGsa7706klxkepj925n8aom2iUgFwkESilAYjR7CcXDBmCnKZWIgI103DRQxJFVTENI+zy5G69frjbS5FGEwlG63Ibcz5OI8eIczqfmka162LFqGGoNusy5vF5pF6NjEVpkfTdQBokY8TZhKpthgRThkxEYr9PBBfn+syBxnGAAUBimuZFmfMkyzhuJi2nKc25QnV4PnVtVxabOMqyMs2K4nw8t/Upy2OWcAGi5KJthq6t+3HIynRbFqv1Ls7SNErr+gKASjIRpVVX66aP+BRHSZ5GERVNPVSXftS026RaTmPTRBEvijhlou5g1F2i+jzGGNs408WqANRC8Ofz9NNT89wxzHYQZyzJOaqhbu62aTp03+zidYl1U4s8mvqo6fUgtSbiQnDGgYGSUmvNY4EAgIy4WWKiSWmt5STnvQykVFIrG46YtyFBO5OYd0YmRYohAwCNynqJkUCjWRvmtH8opAHYt+uQlw4gP412ngz0oOA/krVgPoKvJdO8by20aaxPMnZa/LoSWrTaaNjQ4XHdz+v6gxJpYQIBLE7zsSij8V53F18R03XI470Q3cB8PIX2/iCLWqz5MbPERXwgeHK2Mw5i+Ra6Vtl+2GxIsxGbU3OzgnTJI2BBB2lrL01ACbUJubkMJdsocttQmm4tHWCGhuFIWMjp0guCUTAWIczeXObrGPzOEeZlYe6OOevFIsdFpoaPhBEB4LywMkDE5P8G4NVfs3A6YCqXsgtg/FUGN1gkBARB62zkYI7WLYbb70QTMFMQcobwY1AwgfWa2EcZhtvneaRiMZiFcl8q1bMXzSnWM1JHQmJBWwJga30bDNCtYltOZ1zRIVyzo+pKmnnQUdcnvrwqxr7gAY3VBMFUJWhCMFBATo/N9A4dSKGTZBZtt88ZzMeUBtjMuYBM05eVvVYAVyNL4OJHARXQv4hBaWGMy7vsnWZwrnfyfOxmPraYq759iayBlnOLAb+sysjMmDRc0RtRSMa4iGMeC80B9TRJrUkpCQq4iDWjQWlFVJ8vny91kog8S1DrrhkUAOM4jkpEcRSJqWtOQzNNY9d2PBLR+QwcpkGBojgSRZ6Ofd98+syB4STlzx8+1VWSiaHpm0ujCKu2h1hAFE1adk2DkqZhShpRNsfjuT5dKsRIaUaIo1QTTMhQDZIUMMaRiEVcSQmohOBaKqnnI6tAaq2UihLOY6Y4P/V9/XN1X6ZMyjIRbZ5vsiJNY8EYkGIApBQCTePAGeZJVBaZ1iNHZMjyPNMd9rVUjKQaCbBvOo1KTn0a8125jjgHBqSknoapbUScRiyacIrztFilaZaAIAK5XqdjD6MaRYTlJhnHKImiYpWzRERRXG4LHsN+fwNITdMLEa02JdI00KhBa60nNaUsX5WrMs/rqqou1aRHkSUxMkB2Op04YRbFq1VargpkwNhIUm1WqUiZEDpSVMZpvNlvq3TEsbs0aZltN8X5dHl+vhzO/fuX5nDsWJwADFnK85j1kX53kxdSpDBM5267Wa3W28tw4pVSk2IiBcbFvNU2csE0ASkFBGrOslBaK6WU0pq0Uno+ncsJKkM2YxrS2k3zCYAzzghhPufLTv9s0iJcGXFybB6kiFIgsOFfZ/6sqbOC/ErWwheN0IRbb7wWR1fkohC8KvkLE0HTGYJrSLTQLoFwO2y3sGsQ6Ju5pte6w2hO8kMwTxVdH4wPGp3SRJNnswztWaI4ZOTQi9OeCP4Vm7ThDYbVb3NlC91nanT9IYOWmLWP1kaHubPzk+TpoMH00jsPDLXQnA5KLi3ImDvLSeGQuWZafGAV7mJoFt9+5WNUriGdr9haFEt5+8sNtnnbQrBrRrWGboZfoWmzMI8AfOrY/HhAKSBkiPakAlur6R6COV012PcBr1ltgVvRt9x7NPw1t18LQ7fvIhEzJwaaLflcJcZiBdITokuA8KsNONmJiA1EBsNpbjlnkCWJd24EC7hCIof23X4YmtQuG7YJGweLbs/S4SCco61/7rXmQZu1YtWbk0ADJRwcd4Ut1m+ammYiL3zCFCiOL3XM0sY5bhc4h66GY9HhRQ9gUWvAK4tl9pYgzm06s+eSlnjdRuufNOFysOK54G0Hbx3Dhq1GACDBOCYpZ8BUq8dRzdmnjAsgphRI0kwjEZ93ABu6sR4lRyACpYkR51k6Kd0NAynFEZETRBw4m6SUo2SEqGhUUz+NcSqU1OMgOeL7cxV/iIEDZzi1IxEqAJ6w+eQnrTUAcMZUD6zqJqlIM0YEXBOBJM2jRAimRzVJiQhcMNJay0kpCZGIRDQTUAMAI1BaDpIrShJUkxJabYrN7TZfJUz3l14N2WrNmVTTFCcijjST+uF2LYDdbUuRcc14UuRIka4H2bRFViKH8+WgScLYjVOruypJiigGrVSSxIxhfa6q7qKjocySzU2Z8BhQxqzrm1pKmSXlIOWlOiZ5lKTizcN6HW0Yg26sJUoBKk2oHy5N38h+mCa5Wm0364dBT8U640KxbpD9pRdcTWNTn6uq6YZhfbt/+OpWKXl8qiOFm82WCS6ZBqEjIBHFEoREJaVS3ZjGYp9RmRX1xOQmIiaenp9+ef9IIvn0+XQ89+us7MdBDdW+1LfrNd/ttptcV1P76ShinUSbn98/f3queZpxUoqhkjpPYgDdj70myVg0jBMBaVJSaU1Kzf9b5yRZ6wVAmpSRCbR/yaWIAiCiRgs+rHXyToylxrGS6yO9V1e82BqJm8sjJzlL03ct+AAwW06bq7tUR8ZTYqbTgXm5xlVXjnxrvJ2pXbbWgyPrwQIb9nF3ILTbruX2HwQ3R7r2eIdqxTSVZsthwk8hWLG3DckWZgoQ5o30kMwB3c5Kzg00WszgR6NZXVqSnf6b7VKYa5mhKQEQoD+x3HCLZYNgQZBRdy7RZ26jttE0MH9x3irEDu4cp6XZ1lrvPtmHF9aCiAAZmZGan8VFQtE1Mlp+yGFHh0XAYUkiG4YCgyUCG41u3G1mxaLUK88eWWt1Pere+oKzO5adPHwyL5uBd3ENNBjLOrwCnLjIn3VOC2e8HaNYVw2CCUHO8wELea3htNoAnSJfDvL8FFqrr9EkZzENes4swSD/l0zGi3b42c1UAmWBzoni8Dc51jcfDR5Me/DstAeA4x8M0J4Zc69YEACsjKAdLo+X7PTGNs65smxgy0m9HSErBYiu065Aw3NhVBLDsV5+MPgLQY8wDI06zbJQkIE2sJFpt8TAKcSg1CtIMg/xFTpyfvSlJrXqwV/2iir8AgFADXpox0MkaoQWRBQxJGLTqGQc8yziEXBFNCkihmMvFUkCIjYf7ktKKaWZksg4ztu4AGlJSEoDADLGGYJW8/54iIxAT+NEQCIVWsMw0TApmghAR4RccA2gRglaMiBNKIRAwQBokJIAELg0Q6t5wqKI00SCx1mer8s8jqmp6olSTTRNknGmSGsGjDMiQBIMSCDerIs3m+3Dav2ffv/VbZHEJDljWRTf7NerouBRxCPWt/1waJlWScSVGmUPxc0q3ebIRVSmIhJMs0TERSEIiTOtoey6lZxQaUjybLMuur5ZbdZfcez7C2hFw4gc666mVarV2Na16jXwdLfdJqnQeiSgVbbSEruqr84vXKBY5Y+Pj6fTsUzyKIl6Md3c7FD2cpiiKF3l62nULy8vl8NRyiEts91uG+flKBUjSuMkIlR66pquV1LkvMwihAgQRRKJNGHAdDe0pxfNBBOwKgup+NgeumZMN9n+fheX0+3+hhPW9XGV49v7fbbZSzU2Wo15pZlqJjo3YzfpvMwGNbb9AAQAQms1KSWVZIj9IIlprZWaD58Gq+eBEMhsCAewNLJWwIxGAxXscIvo9gR1ij7gdLKiFejjQPidhgpeJEKzTa3Xg7QUsaW8eCRgVZE9S9yWSkF93iyYk9LxSkDRHoV2tZrsVeTONTu0TRjYm1dNtcrSGGbr5jdzQUR7Oo/TVsauu3W21iYFkSmwyCJUWUb5WB1ke+4gmUtjdsrbdtwW6s6DA+eGCmq0dLe9sAeAWiPBrHl13gLj8vGWfREsmlcU2mbYY2VNrRZhACKSzfIK2MMeRWKDZdaQggc/SyJ9cXys5bheIzZfDzqI5PCZowRCcH7kF3W9JaAJgoV3Zjlyk2+bl2FiG6Fh+QKGc8bXwArDTRRABHTGzuKowDaFkxaHI5nZn8lmsno4C9YzZ2YVaG2YPXl5ll/DrtZgehYmF8OzQWB0rrHA7C41grnK/IID9JjB8SP5Di0/BK5OdHEZgxLcXwCvM6zYBx5hcoRCsBOJEIk5pYK+Tt98P5sgmm2uj7EtwMfrTi9Lc+JOV/dD0BtE1b0CDvU5eheh9fosIqhgIa4ZPQ3BpkTmtol2E4Zt8SgraO4CjRtagvV1BTrZplTZSZP4pow326IssjjKmrblnN/d7rM4KsuVJi2lkiROx0pPfde2EqYJNACdL/WgGBEfuoELJknWTR+leddLAJ3EYhoaYEyNjAmhGc0R13GUqCRDEYlIkdQgSWklCRWIWDARMZYgkJwUECipGcMiSjjjSgoueFTEWg67XVEmEY44SbG6efub333Lufr8/nN16UQaNX3dtE3TX46nyyRHUjpijAMwrW83q99+/eZvvn7zD999FStVn18A6e52vyrWcZxpgcfjCSSAFofHQyK43FJxm0dJDMC6rhUTZkyDnLrTgZhKs1WWpEqD7Jq2GZIs2W42COrleMizcr27zcd8XeT9S308t8/V8T65z9YrRqAGnossTmJi8qenz9MoYVeAwnHUXT8Wm3J7+xviVVbcwTRpkm07RUlLII+n41ffbVbrfdcN4/kQp6uUrZIsXW33UZGfjqfz4YBK6kGpUa02ZbbONfJBCkWCJVwkEecRdICkxnFiEcRJgRMbummzKu8f9Mu5227yXREXsb7f78cxHrrTwybDIr3UWuQrnbUfPj+LUfZSMJGcjrVUimlCzgFU33fDNGkE3U+DGq1Z1Xre05WAIUPGCLQJcKDRKGalgJMhn3FiHCOzJUKnBr70Wai0K91kVaF7lJwweOn9tYIDXGJCMaaKwN0a1g1GGq0v2isd7zSySImua/E1LcNk4aPX8yOnrCHQoy6jxulTa1/Ioh+LR5dKx5cZOjTmEtBoFQBwdsIoWVOUGVECBHO4qLPxaH0Y3ilhbbWhMM1rBgOsZL85Vx3ZxKE5a8YeS0E2mwDNynaE2U+htcbAC+EKNsk/DrUAuZ6RS7K21s65ETx5LYUNVLXK19phO8qvyEr+KXeeJdjNGBf42AKK8GUX4Q1qcKzg8WgwSi5O51GVBTGWcdA+RmbXAAAi20Zbs42AGmYim5cDrgHOKAVbzUFAYbKj4uCrlSSnDTzoJECzbI201tz2z9F5Bj62HLdU3nGht5DujyWc9/FYRlkOkhMdw4d+lA2OQVuRYWNGZi+nBawgIEQG3ptoKnNtM9HEL7pvcengM3gVHD/6IbckM7T02AMAFFqUS0FBhmKmxoCXrgmxcBs6/rdpakvYbD0sTqW45rlyl8jGC7LXnvYg+KCddsyccqNQiy5IblVEoF9duwIPktHI5FgZxP/j//Z/VUNfboo4Ll6eTmW5FoxzTrcPO63k5VwRS+pTrcc+ieNkFUuQbTfUbTcqzlny+dPntm4xYY+Hqu5JI2zXWZawrjpOUncdSWStbPpxiKN0HHXdNgiQxmnf98A0Y6hGJSKuSGoAzhMgVmQpQ5REALjOMyDIVrtyv+FJdD6dtvv8Yb2S5+7zU5vfP7z96m2SiSJf98dGCGSxvlSnl+PT508vXTccjsc8z+QwqKFDqWXbd1WjR52m2UXjuTqP47hetVm54nH0lz/9VQ3ym/tvtrcPU9dkeb7fbjIhur66HF+wY9BrPU6nw4tM4N3b35V5XrXTy7Gpm/Hd6mG3u22HdtC8bfrjzx/fvdkXqzJZb37+8OOnQ5W8fUjLbZmt1Gm4nJru88tE/VFW+Wr32PSHw+Xmfl8+3CuOvRA6y+IsBjlNXZdLutRtJ+Wx1msZDXWDMVKWlfkmS+Om7iYNkdSMNCitpDpfLpxFuzgpspLFSJpAQlv3oGVeMtI4jpoxiCFuq7EZW4jSrMi/+qZ897UA0oxTFGEe5U+Pw9CrrtdN334+Ph8v7cdPp+dTz880ke5HdT5X5apI85wJlOPY9+Mgp7TIurojBIYMZm8eMpyzE2GexJu99Yxlcxt0zVNqG5cwM8BgxrAASV8QWC8RRry8i4QW0uzAx9K6BOGGq5mETYuxdTtXATjpCqQRbQ1faluQFBPMSpaP2X57ZwJaG23Vu3vPq3hfnH8GrAvHWeXQ+fKqjeQsHS7aZYMCgSoBsItImCdbMEq2jeiIT86BMNthc3SiNV7zH09RB4FNweYNB6BmO2g4ZT4jZV4V75PP5xptUGnRSgxs2HzNPofeKWQHzfObBQs+F81Tyuvk5Sz3S595cJ1L0zOOU8sQMr97yxMIXg1eWKcffUc98BB44V00Q+OGxd6YBxctBchOmB2mIieoM/1cUc7rEXIqC7Y2RAS7+NnAF5f85tAk2pGznkt7NosdOTf8swfIAIBXbgAIBtK022a/2WZaKOY3o4AvvO6hkSkE3ZdwvJ3zyoP7qywYI8QeBQbxnasxC3aNvHIJ27FznBO6agOdYP7aE8RCkL1UiAHHB3LhYm1E4IGjdzDbKpxA2tkqekXjPGgeI1nND46bcFGd99VZtAvgHEhfUpmWYKHzPJDfOYGeDJcGkBMBSPwf//7vz8/Pg5qO52ZTFIxlx6fLehtzwc+n4+f3H4t8ncWRRtymyc1+q7j68OEjRx1l5Xq9/q5MmqajSLxfVz99PG5vV795uFmlLE1xHKlq9bHpLl0l1chFpDWr24ZzliRp3TQiidM0QYIk5kPfdP3I4oRHWcq5ltOg5CQpZti3E4l4c3eHafwcxdOo1MCHVhac4fHxU/VptdsURZoL2bf9Jsl3ZXJDq7+73Q8K/9u/ft+MY7K7Geo6jZLq3P6in7f55nfffC1Z2kzYn4aqOWRFe397t9vuPn86nOvu7f0bnSRcAKpJ9mfZt/J42ZZfdVxexhHzTbIS0Xor8o0eFOUTwXAYdP/+U1aWHS9/+fj5h7++75FNLBKS/VJ3Hc9+OIyX+Pz13Q1n7FAd6kvX983t798W93ePj82nCc7H/iHf61H+8Y8/KU23tzcMeXWe9uvtS9M3ivPi7l9/OCjd/uEfviWR0iD18TIO42oa7hklEdtv133bMY4sFoRTczmNbcOBAaHUKt/lVVV1xy6Lo2K/miCpx6lFDahxGohAsKjISib4S3W4xDAl2RmzD3/69FSNn8+H50PdjGq12+YgAGSWsN3vHlZ5cT7Xx8ux19hPk0TWSkWcMWRERNroQysqs+FTgdjPURmG85FjYPZNmYXCzAEhYOcvmW0vtt6EOsmep0ChExgJtIM7XxKl69CS9WBb8ILkxdpZU3IKDb1VJwiftEbJFuqdDmGvLFxwdjTAAq4oHzRyujuwl06FhFmTjkZowZVRRvZHoDHM3N6llpsSrQfIWGiDMgG8ZjRKFgG1Kdh5mIye9DbfhpCsnUMwXgbyk1oylZM5+cmrYDNS82YLdnZHAG6/QfAWC/0bQQ+/MPIBvPCGdMENYYq7NZ6e6u6ZqyuvqiF8veeQcw65hiw8hM5lZpNDlv3x/BxAx8VWn841ENg5+3PRhwX/0+Jx99N7Gh1bBnI6H3vGfCkY/EFP0sCzoq1AEDpbOd8w9aE1sOAcbfOZGM5IemThgmGBhAcyauhFpC3im2ng++2FBoMxMad1GuIuZkG+JvOS8/Asu2975cgY5HgBeExtGwngkucCmLIcf/uLADCM2C2G2v6Dy3f8rysnsCWmnY3N3l7XiKCrBlgslSlZEpCnt1M7djwWBYHtPgX0CidXsJz5uRENVCLYxEQXfSOHj9EROVTHCCj+7b/8V9T94/PhUDUsyQnKr3/z7apcTZdRaExi3nd1Ge/y1bqvm7+eDlHKJMqhabtpKBiu04RHopOSxo6mPtIJ9k3ExLdff9V208fp3OgR2n69yQiZBrZe3cihi0S8iuPVZrPeb4s8Rj2dX17GaSq2+/X+hqb+cjooUpfLoIcRNrzuZIQqixnL4qf6XLd1yvDrd3vQsm0vZY5v36ynZjgfNMOhKJPbeFcUu5eqPm3K50u9v78rvnmTMs0GhRrbvpOkivX6XZyUacFJIQzrIrvd7fb7OzUg45xjTDCeLid96pBYxPJy80aKSY1cgup0T900oP5Qq++fG6VZ3A/j82Oxrptu+NOHw4hRC2mlo+ZYtyLpQX/86XNyeB7+lm5EcSZGaZEUhU5WPzyens7dU9s3L5f0eNlsV10/MR4/j1EUC5D8px8/180lWpXbOH/+cJz6lnbHJI8vz1XEGU1QpnoQYxEjTXxSXGoWk6i6XnbDcGqAaL3dbPdr0OJ8qjgXI2J1OFWt5nFe3qx5Kk6X6nJqYpHWuWya7lBdWJm2vfrwy4uS7NOheqqqepA8ztKN0CwWANt9sd+vkPTj88vhdKYooThSRFJOEeNEegZACARIGrTxLKBzJ8w7PQeLUQmttHv8EHDrcrYcTBTcI2htHlmbbcV1AYgC7neYaekiCvXAQi+4VQa+YqO+MRDLoL34ugxX8OJnoNac/QztKAZiS7YmhIU9NtAFrV8t1KnuSqBKA1USWLIrpUJ2tj0784wOJSIHT02YPkR6lgJoLXZoaAIKkE0W8MbDKX6w8+h5vZadW5v6rJtgzoFFPWcmhiEC52D8FbDjPt6AkCePZ7YgoWoJO2aFO3+/8vpbiIXXRPFI0SaJzzoZg+oNP9r6wVbunv5CB15fWmI3yzIhTJk7F1Rh/p35J7RDV+Ve2aRF73yfwOJaa/jMLec9IAuCg6YiwJzObCARAgdGpO0CNJMwxIxVm6dQpraFL/GV4FnvF6K17DaLy1PeuUEoeA3Ai5KTMtNZH4ZbEtpAGLKFmpIwrIB56bTt8WWEag8R3QnOzgG29HWhIU6wmsBSdZ4kuLmMm4wsxm2JiHyc1J0DaNkdbMKWlVsyL4BVriZcNQuHUSxOdIPGWoq4i5bI1wrdyqPnWXfZqIMF4b0msbUg+jTsK3UOhCBGmpTsRjXGIpoGKXK22685iDxN99v1Os9fXs6CMOJxr/v2MsUqznbb/UPZVa0C3fXyfB4wT9LtqhxHYJDkMSJN3TQ2Xd81VXN+OVzO4xSt0n4c8yxuz6eIizwukySrT1XXQ/V8evn4GTi+/VpnScpRlrHIitU6V+2lKZI8zVfAI4V0v1rtovR8ON3uNn//h9+ssripTutdvi4LNY5t1/RdnSUZqOjwcpFN9T//zVcSkUXxtkzyiCcsmiTkq7xYF1pO283u3fZWqHEaTuPQtN25SBKK0rbuScnttmy7SWseRYWk6P3z5SLxOES1gvfHc3wYvnobf66mHxucRirTiBR7t97VwB6lRhax27e3//B39PPjvz/916en53qovy7vX8apHmpMUk0yTTgX+XkYP3dTFyWN5MdKT2ksRAEML8e2bbqbm83x5SJJvrlfjT1+OPWo2Ph52D2kxwZpJM7iXMV/PpyTGG6KNB6n2yzbrm+YoMPhqZMSATEWUZSgwvTmdrXO+rp9/OnDpZnyLZM16oZpJor1vdb48XA6nS9xkbeV+ssP79tOFeV2AJFsV1kUAfDqUn/+6WMc45t+9/z8NI3y0g1VPyVRJngspzFOeN8PEWMMGaGecz2NExfmjRG5MZdmuuICC4ThrNHmrwF4O7+0ZAvWvxIuq9BC2bblBWLgzQwt/DrLWl4ZH5t38soEgANfC3/Mq0KXrXWNtFDMb5QyPxZslh827MpXFaw38dWG6sbPZpcq2/VvMUsOwmbkuhogFW0mwWB9Yq5ZBECk5oXNIaUtcAGHUBw1rQfAeI8AAIERwJyvbSyPhWng9LHvq7d7gQK1ChrA69BXH9+MYJxfxVK8qQtyESgo40qFv97pwJN2lgjPPghENkYcNPy1Ob5qsW/cXOPVYAeUAgtsfoUXg1GyRhacuVnMGeC1nXKXnXckyMGwQ+I4L4j3BNW45qI/BhWdmJmx48jIrhCcD3xCm+OCLvPeTPoXCP816VzkNnAPGD5ypPORIE9HtGDVvAtWg4WPmgdtkrlFKd6Y2/BdQBk07wQUNTjGhH4C1GWbDVaW0FKAgsQ2cCAbwXpz0FDM3v2SQnBMHvAw2UJsjpdztrn8fdsmMjSybALOh+3YyHr7cFElACEQ0XxsawBkZnkM8oZm7eHXdToiOAkkR0E3AH5S7YYIAQDE6u7m7du/ZZKOn6rTpY63Gz12I7AozYexY4yVq+L0dNKT/uabr377+99e2nM7jZjw3e4WJ/384TACrIvyH//wmzffnPpLvY7S6VIfXqpilX71m7eQxUpSLalqu24cIgHldhMLUSRllqd936EiznG9KwGj3WavJnU6XRipWKRlnuWxiJHd3a7TOD5dLiue3K/enU+bse8irvKIiBNvu3ydJtu0S5UuIGapwrg6n2Ohb7OSRVyNumC0K9OIi2HS09idfrkMst9vbmtkKYO2OjWXs0JSUUSYPz+fsiT7w9/8rWjzpj0hyz788vzL8x8h3Yw6vsjh8dDlK7F+l8k8zm/54VPV9PD1N2//7p/+D9//9Y/jv/7LNDUv3fDx3Hx4POuooKy/u795882DyNLD02Gsh7vNdv/moZXD4dBcLn20Wmd5AVyDzhiP66kZRll3ff1xnMYpTiPJ4kvVREWBwAYdPR4HTZFUkgF9+HTspzFiep/UNwlL84cpWmeZiAe5y6Kmqo6X+tD1ZbL+/d/9JlkXCkS57Vg6AhdK6+PlpFDsdm+GQR8v9blp11wwIQSL+rZr6mO5KbScZNcyxrnSec6jKDqdzsCAiWQC5HmqOeuHKYoiIGI4C55mzCfvkdt5BRCB+Y1eyOOFa/3spN6GzwKg8IVPiHTCj4/72KcWiMa+E5TranFP4KJgskJpJc++YUx0iExC342x+9fOdmebA30RmNf56pVBvTKNfpLn5tWBSjb2kJxdcJnlBGh29UOzij2ggJ25ITIw66e8rmEI5BZV4WJs5kiBC0kE0y808a5gNr0YOUAit2SdAJBwPp0cnEMNbH+8cg7LIv8ELCDPAjXg1e9Xn1cT5SDly+tux1NWRy9qWH7Q5cmEeD40tN6UUkhNZ3Lnbn5hN2HXZrOe3AMVRyfja/tV2Xl1y0pcUNKvPeob6jnZ/nShKNcQsLtZWnN2DaTAPwzBgQzzXwYGPXjd4VHLUiDC0qwJ96DTYgIPe+e2+PArOTBo33WbMaIPtiHYLH9brWurE0gwYIKC7TO8EAQqYhnluebQV9RxesJWYYUdDYkCn6V1v1sgQO780eXAuYoWA+6650Jl6LRg2Fqb8DArlzA/0BWHhn7BGDmM64Lq1mRY7jOwCRBIa0SzBsLdcBVYugQUtQR7lVdudKZYr294XLbNGSD69ttvJCoAvS3yrjtX1SWKYhZH6TpeRVmeR5yzSBTpKCiJgfOXzwfiqEidjs/bm9V39/dNnD6//0RSn89VuY6/uttu8nQdxZ8v1Z8fn8ZOrbPV7dsbIoxFpCfJNQOaNtsC8ux8GUWUxmlGWGsloRuZVFkU1afzse6zhA1DN45TuipvV8kZ4HJ4VifkSrGE9RdSo8izDHhSXTrF5aSm86nhcXJ7v7nZipTpMuaCIQwDde1wrhKmkzSN5KA5P5xbOfFis4KIiaTsn+u6Hr9/PCkunw91VkT/+vzyLz/88t3v/nG/3ozPZ4G42RS3b7bj4VL/dBKo+DRBlzXHj3VzqqqqG6pfPn94OjymMn/z8NXEo93t9vbtbRZp1arn8+Nf//pjzEChbuuLVtN2u+5H6Pvm/HIkpmtZ50UWCV7XdZzEY9c//fJ+tV4zgVqDVtNQ9UnMH26253PNgRgCiyJerM9D/+8v8oz1JtObWL67Xe8L1u+3lWY///LS/vmn+ze3EQAgX5fJZreeBDAmf/lw+P7zH5VkWPD72zUphaT/4ds3mzytaomoU0bFzUpKOl6606UfuoklDJjgjAMKwWJJGjmQlowLzjgCeoSOCKiROCIzKTmIQCbZZ+bbWT+zkD0t4xpLvZC6Lxivhc4JWd1tEhoou6t6whlvoO2/hKaCytGI0Cy+NJ9z9AU3AwU1GYdJIKxgdJN7kZwutvkP898ry+d0FiJ6iIBGr6JdD4WuA2bORWAPMDI1WZ1o+mz0P1ms5q+SVdBkCoGAnkG2DYHx5M1RCoMHLWBDh/fIPW+BFc6BUncGgDYEnrWqi0TYisDMZo3qtIE871r6krvfj8n1r8WTSwVqFLSb9YajcEUEzyAWxDio6sCP5epFjUsLMX/zs1bvA3jVIwyeJrvgjhwe8uT61Y8FBE68fHjINm3Bey6BOaCSs8G2rHk2jxjILgCgC2a5lwNPpiEVBvnaDNlsCOcNomZlYA8wCegWcPnMgleunZDCZA0uLJy+Njl6gaTm8UZAYMDIC2EIF5bHE1+Nj8PK7jwYT8nXXxbfTZTVwGsXdA0fNs2bg08AACaAaFChDz+jq9p4Xyhoypd4w/lWrqGk/dcA6zB0G0L1WWrRDpoTMqtGlnUtugOLyHjIPgSIjMJs6ABEOi0VzB5pWbAtCWdzgwAgQPLD++7Pf/mFNPxjngIN3/3uYbo0bdeXWZatN0mxZsAP7z/98v49aN01NQiR7m9OdXepmv12d5sWnx8//Os///O7r9+C1DTp33zzGzmNDDrdD/s8W//+m99jtP3p/b/++SeGiON0qRopVZ5lclKbMuPAAalvmvc//rLf3yQ8fri/yRmcnp60EFMvP780MWf3725iMVSniiVT3/XDMEarzbu7O4FKCBCgcZwEcRplP8oyzr9587XibL0rEq0iNT7cPmy3m8vxfHo5yu1tUea7u4eiWHdKH4aepNrvb3s1xeVmW6uff/70v//zvz18dVPXXS7jl6ZRcawittqsEq64eCjWG6HHVYQP201XHVkURZH68P6vn54OE4Ai/v79JwK9iXfnyzQRru/vR81018VJlOXZxx9/+vmnn7/5m+/+8IffPD43g1Rv3tyrSZ6Gqm3aQXWapruHuzgX0yDHfhjHvmsZp+R06UTMys2quwwv3bPSMhN8s17nq5Lz5OnzoTq2jeYJ1O/WFOO6RFauynHQdd29VONjLVdZel8WdxlneSoAyiwrs6Q5nqXCh/27fF1252aa+nffvrm5vz2eqvZ0bFrFOBtQTzHTWSJBrG62JKLnYzP0E0ujiHOlpZQjIrjljFaV++3HnHqxPGtNGbtKXDVc6xCGlcUQo3wZCYHVv4HchKER/4qd0r22kcuZQiBDQbUI4A+K9PWR16mBTXDhpMBR6yp7FaiDoMwgy8eCHgMjjJ0IPMNgo1Rks0wwLNJaAxuRdOnm4NtkAAV6O4Qmo5mYq8Rpl7mBcK1uyOSeh0ZoYePAUwIcvHB4eEZv3rDRbDCvVP8iEwvIoB2yxDaU/R/6vIYUIQyBAEZcP2sDNRhaJtOiqyWLzjSERHC85LwTSyAUkmDhSAutu3da+IiTS52FRSmLlvvRCsJn5Pc8tJbEGk7vHQmpY5ofnrVq7jDmTy9xVsrNxAOYYUXcOsnChBgAu4rH98vecEbfNRP+g483kx6TWLcDeJNu+mEdQpY4ZNWKo3NoWwOEa/+dRZUMreeB8gzzWnkFxdhZH4RYwfHYq356n6rp1X9AAPCjjE5Qv1Dm/KDlbfDK6RVjmelNoK1m2PJlxG2KCZUwLIbaerDxdcSWri9ce9MdUoSFZIXq1bvO7F/x8/vn1fq2gribuh+O1S5lH378OHV1uSoGrau2E0VJRFXdXi7tuigjkRLnVdU/PV2SPMMoXqeFYOLjx/f1qSuKNC9KBlgUqZL68PiyWxe7m9V+lUb86/tVqVn88dPndqyAEKVQg2KbGFGs1nmel4gRaNZdelmNY8Q48pu7HY/Sj+9f6kvXqnSQUpSbpMhGqs7V2CiYoriuTqe2u78vnl+OuYjLcptSfsOjr97wx6r+4w/f//zDz4UglqbFfgtCZWlEcYxJVA/TqXt+7ptzV8VKNRVrlBRKP18ul3Ea++5O0T4vD8eXkvF//N1v9/e7vn4qY0wYz9gYDeff3dx/t159+PhXyVDkxcuxP/cVCl6UazkoJvDTy8sv3Xl1e78bBn48w3hkTcNI/5/+L//r27t9sskYl9tN/ce/fPzpz/8WRUmWqL6Vb29u6rE7n49ZmYOg1b5M1xkpKJLNSGLoh7ruj8/PSvd5zMq8TKJNEWfjNAxDKzW7DIPu68tzff502if0P/3Dd1JOnGBUOCje9/HTsVolw2/VneBsqrv9frfd3nQDvX98eXk6TUo1dd1q2G13U31unh+3u2x/tyeR3rXT07l5PLRtP+oIx0FpDZyYlkobjwUp0gDAmNsJxuAb8pbRi4L1i8/6iVx0w6kAp+uXJvDaGP/6B68Ehayys8eKLR8J7PmX6sLQ0s7ILIRoELj1HSjxjmOLumA5mUOE0L9jS7MC7dozz/XQqTBE9FEGi1fIPa/93tm+Z87UekQW1BLqcQs4TS4nARJp49aeKWYViWuiRSoGlCGhns8K8DnWEJaOMCMFr9rIcINLrzTWDS28I1LeEPmUEvIa07wR2p7/4LOEUeafxSzfeWuWhc3McJ0G6+l4tavb4k1nJmzVZDND/FDbL47e2hRPxtfnW46vXnJeCbIeu7Bqy8qzWGkrhpY5PVAjgCBTBH3/XvcoDN9YeGA8hjPPzgdHWB/KPFEKvQPLsKynUHDqyExVQxa7D6M3Z0sDSWDT9DxlKBwtR4LFxzgtKLgdjqN3X9qSF6APHIksJDfyaP0uVyNPFmUZiUTbSC/FEGziaGsyOmwWQrQ9X7TH5rL7zoJDdB6dI9rp6QJvOXKFY30VsXR9M4lHdtYRKlv6Mo1DLevSymevDKJ1WjkcPrOGb54Vb+utXGiteZdXNDoeA5ZZjpD7K1Qu/tsvf5HE6m6qpV7ztBuHYl0wzsZqiLNV04/1uX3uuraf1jfF7mbXDcPYyXJdTmN/Ob6I7bTOk/TrN+WqyItSjuPx6XkY2pvdNo3zvmpfpm416u36Zv+7vci2sSShdTepuhujJG2ONWZ8V+xXea4Uz5LyII/V4Zjeb96+vdnuiiQr16vy5x8fz23XtPU+3YkoeXhbai3qS/3XHz/Q0JBsOb9HSUkuGIo4jUQk4jjjCfvrTzAM0zjInz4+d+PUt5UadFbsZUStfOn77lJfkMZEj90obx7eAU9aKT+9vPzt73/78PA2HpuIKMvLd3/zh2roW61iJD0MYzfG2/2+jDKeJmp3mPqK4Nxcnp8fh+qyz4vdtlSkPncXlULVV0+HZ41Fwabp3PRt88233xY3N5+OH6ivmsuQJXSLKWPRw2Z1U5aKIB/h0jdMT93Qj12Tr1JgApHt99u+7Q7PL/3YCqGZSAjV4flpGPp8vWV80oo+HRoOQyKn06n59qa4v0hGigtRnbvLZZBYd5c61eMvn4+/+e7tOotSxmmkfgIF0UiqGeRff3ka4qQnNjZdM0yZyuuRxnE41EM3jprpU91MMBITHAWR0jQBas4YAmrQdjpglY/PMKYF+wVMOTstADA499jhklAQ3df/wLZ5BRHiDGetrxxETv84FeKmU4G+tyZ+NtoOs4TgxCq7oA3OnNp1sbjsuE2GcWYn7Om1qXFozVHMfkH3c6lV7RNoibmgYGA+rrJ6gwc8RTUylxANxslNdp5oFVKA4xCcmyokYVCq3fzVtIyuqG2tuLkHlkUCPDJ3FAGt7abrAfnvQKCF4X5FgAAqkPVOOm5C/4+JaXkWmnWz0/8B5MVlmyioZ0EfQ875K1nOeZ3fEFwgcMEj760BDNCS4/vAjqHnM3ff5JE58BcYq2sGdv/atoZH8M6Tebu4/fpN77Vwgufn8a5FtrQvqYtFDMeaQrv4CL48/K9ibi6EE+gmGzh3AZVFcrFpEEOal3ORf9tBDu9/tY2fGWVJ/fDfq04GzbJtnfe5grmcEKcvUAb6cfPvLu67ljiQ/jqyFpIUrM9rMQLmOjqSXOl0mte14HJ8nJBZbTwXQ25h3HJmOMvFwq9uxZ/sJmfo53XXwx1o+FdMiwAE4ufHjz/8/CFJi+bS/6f/6Xf3b77+6jZjMPaXM8vVoOLzcao6OkzwWPf903E3pZzrtMzEpOqXQ7bNMuQJH1drlmUURToqi5vb4vn4nCbxOll1p5c04+V2PSqiCbRu32zjbbodBnmupk7B8/miST4/foyimCB6c//Vd7+9l3dJmmrUfV2f2ikus+3NTSQ62u9v6mE8Pr+kWZImrEeYumG32ibROmL55qbIk2SSY9u+lOs8j+ONiP7x77653awYi9q+/dMPH2olO4oOP/YdcIjjqap/+/X9LuVjf8nWb/a33zweL4dLNXG1u9mVcS7UdP/VNy3RZWypq9/cbkDpceqejgd+qfr1WVLd102Zl1U3tJe6Oz1vGP7ju4dv3j3UQ/OnmH2ux6dj9cNf/v1y2t7v1mzin1/08M9/+X3Xyu64IupeLoPSt1895NlqVZb5t8l//c//vFtFdHN7kv3UVS/Huk4SHiXH5iXLSyQtYFilIk/Fb777Vkr18njsWq2wUWoCpadRsTJTed5cWqGSzYW+vbv55g+3avP8n//lp5+fXphIdsVmquj4/WWzKTmbijw7H2sgGAZdN9PqN39oefLTi5waEmxVHXX/9DKg7qVGVEpRqzRwyNJ0GAYEYICxEHKaUGsGhEYtaATmA9FeUmkhWk5roJ3+kE1/sSbWrbQMOPuVtXa3ArUY2rcvvYHLryZ3wf6y+txZpoXHFdxMxmu/UNTQRvAQIAjHu554TU+B8VyQZWEuLIkCRU8wn3nudRi5h2bfdhAjC03XlQr+EvpBZ8lsv5ya036s/Ju2dO+z0wTkDz4BAON7t6rbOIbmxBW3gle7zepd8AsRCDRotC9qCo+OMhBjgbMWWj0gpKext75hmIOsjTF+loARlmUwX8980fkJjE+LEJGWFprsg5b9aUF4m0QflktBIBhDK/3KtPtgJBm0BWasPIrTAcctAJdl0RmFGOtq5YDZpXmmaVYKwnm5+3hbheQDQbh88ou2/ospW2QHJlAajn8sC4YeEieEHrstg8xOrpeOkwVcAK9syFLHvWLfAAACPW8I4Xb+MTUgwuyC9T3+VUkLII5l/Fd0MHJiCW/svR2lKy1GEIJasAMcAt1ZKyHZgZ2LtYK8YEo3Bo40ZtWZ0ykhsDDafFnSlbZZjsY8QDMDkpXHRf3uOW8SFq0DGzQDuyParK1oOSJkwwsBtVBojUik5Lgu40RQxDFiIo6EyuTL0/H5dKr6vh9lO0wUix8+vG+GzW5fiDTmkUiLNMuzJBZKjuNEZZb3bd117e7Nfnez6ev25fis+xYgmp7pXA9Ssf1qi9DcbjMWRQ+S1a36St72Y/+XH/+SZBFAVDWndRYXCZa50GokHtVdL2W3u19nUxZH8ftPL4+HY92OMUviiMVxtLvZ5WlUxFGxShBU37THy7HqLoxFxWp7u98IwO1m34zjyDQ0TddMPz8/dhLffvdtO8rjy+nv/+kf7vO3+zIDKceuVm091KexradhlTLGgGjs5FinGoQcmqoi0pnWqjq///HfqovO0nKfrTVFSlEZ82/f3P9v//DbN3fbahiyPHrfyj/9+KmXCqbpcmyFiEikl356ObRf72/+4av7evP8408/fP7pZxDimzfv4vXuNw/79aYQRVqRLOLoj82IbZsUXOlJDXXbdDzmq7JYrcv1dt+2XbnDvp8mJYkhRFiwWEo1AeNZXin9rz9+Hsbum7d7zniRJ5ttNGqBWa5Jn9uhh1aOkugkJ5WmfOyGdpj2hdCdmiYpe8m11lpPBAMpYBgJNvRjlGYoYqkUMJjUIDgzegY0vAIKIRKxDE9LUQnEy78WuuI9t3u2h//BDy6/k4sf2Wqd7yYwoojBDMV59V1x9rl5HxoiBibFeymhc48Rlujtqj1Bz/0XYyztRbTV+XcMWDST1C/ZjtmQhQrW5oKbPjv99YW2hR4m2w+f2GA9PoZIQQ6yJbHtsjZKzZx0QaStex4dVRZOLNt5f/aIzdYyPp35UDC6optRy55DTIAQ3BliEIaGIOBEtCZtDouGzn5vIO0oWFcMBIx95UawFLKtcGNmn7EAODjJwER/F+NnTTUzFfwHS8CAmJ1KBFVZ1GTMZQhXvQliLpBqggdoaGGRhl76WogC+GCR/TIvdW6z2ULGuMP8nu9gY7Ue5XkoYj6+eSG+WUp92Izg/sxcvhBc4qcvp7x496i3qYvWeAL6V8iQjqykBrcCBQPMlUY+k8X1MCTE1a3gvvtrhnKhhsBTONBZvmQyNEEIkBM4J21Yi+X+AKuE+MXK0axz0DXFXL/KWfS0Cz9W2kLazqPMgvz3129YIzIf4kjIbDq+S+XEmcAegC0KQnA6xk2Sxa7M5X4dReL3797umD788j07l0UefX55/vhcfXputBCjVCRwVRYwTchAaV3XreynUcGp6YmUQLlblSQYKP38+HS8nEQWxVGiJL18PuGbm/0209X0+PkRNeU54qQFIx5FcRoJYLt4nedRkud9hx8/Pv3p3/50f5t989V+s8pEzKNcA2VaCYb49HjRioosy7dFHCcvHx+llMTlBHpUxHvFmAImkzyTSlWyh6Ee+iYVOpLtTRL9zVc3q1Mkf/z03TZXUXr3sLn93TfD8yPVh3K97U6HetIg4c06HtoIhpqj3O52MPXHTz/whCdCsLGNSArO7h/usm3x4fkwMC2S9allf/1QPVcySdK/+fbd335zy/p+U0T0dr+VQrfTL09HnmWkuRy14CKPsyIuv3v3200u8luVMv1vf/nTc3W5vLy8K9bf3N8jDKtd+o9v392XZTboNMmzVXnph/fPT0+D0jwSSUYoXi6X4/lEiimp+35Awcax14DTOPWjKsuCx3E9Dv/1z58fn7L7220sZMymvh9apeIkTpJ4kCMTQk0aIz4pmrTOi0JOWirN4wgjUBMqpvpx1EB5lmnSGGkFSk8daeDIhYgUjXKcBBNA8/6dmgCQMbJpJOisgpNzWrBoGLuYzbsX7aUkXNu9V/L1qx8HTRB89sw1AjOiY5U8Ic7KEL118FMl85rxUBhVi1faMGx5+DPoXGCV/QP+DfrVnpL1QFuzhsb2ezJ5J7d+1Szj4ApjedfVzOmwDhHah9wbQQNC5Y0BKCB33lPg354HY16xYszq/I8LOiw0obXBfgz8ut8QK3quMhthUqCXyaE9BCBkjPzOkRC4UCwKmAnsl9UERECCed9yv/vuwjbiDOCQ2eCY8e44GBVUNVPZmWpPY3vbQ6HrEbSgBpFZTx/Z7aK9AQpSf5x9XC4qRBb2cEHIJQQxtbpEYL/Bpt/CxxpXZsswlpIhODcoAsyYGBA1aQbowspkw2iWlh4shmCeWadbkDEfugUDHECLddeedf01W+rMogFhXHXuh/tufCAmwugF0JWGS9Lhsl0Q1hw0wcKgEPfYnSpCiHL9lv3XRsdmJeAnRjOlLFydh4EteHJGrovWLSvysNLnHkEYbPfkMsxG8OuQ3dHTsUqoAZ2kLUt2l/z4LjQrXufeEQKjILvOwb35q+gv59/+5kEO6mG/ERrPVfPSTy8kP7w8vpzbTsJqtwVSapBJkb37++84QN93l3P19OkZlLrdraIojpmgpBB5Hid6HPvj+TJhjDzWWilG7TB9s94Nmld1U2zKLOHtcNFTx3kvRAaAHNM3d/vDseIkGEya1KhVXOTEoJVDU7VyaM7HrulUO47bm02aR8j05fzS9225XomcM2SHw0V+rvJMrNdZsc4ZF1EWDbLVekCtpo76VjE97bL03W613T+UDw+tpJePjwwGLVGObcwpYZRm/Pe/uUtXbLNK16t0v9+psS0ek1N1LIqyXJVvHx4AQDC22t1sVm8/Hdqo2P7XH3/69Mv708vpYbXeFpka2ghHlLDmegL4+nY1DmOPPMrLrlEohOAoR3k+1R///HMkh9999/Z//T//L+8/PX1+/3y+1O251tTfsX2UpOPpsk2jb756d/f12x8/f7q0ZyZ2KiqrqqW++3R8qZqWiyLJMh4l3dDXl15LmWaxAOjqOtluBymHbur6fpKyLIubMp36+tScNRRRvhpH0MOUFZmWahwnHqdcsK7rCVF2gyad5ilDxoGAaJgmYEgMtNaMMUTQpDhDksh5NNtam7FgYrSvVM6VGLzyjIRTii+/BOET/wEGWgQtFuWRk5yF2zcQcOsy9YI1G+XlnMjt5+vWSyw7gw5UeW1CThf5RE5zlQx68guYQw0GLvp1XYFVd7SM2Hlfhi/H9DmwJF5BfUk12+76jA2HhezIUkhfe8ZDkG9kQvhWeS9o6knqKvZlewMQ+PrdBdNwbY2Km86ipZv56+2iqZXNDXOrjdCRxv2yxzB5S6RdZ2E2AAwClOGQKvoywB62YHOCLQ8EswIPg1yuPyxaA4EhC50HRsyYHy7mhtr1JOi0MRzW1eKabSMZ87MMg8R58lJswZPhNsu39lUEs+DLUsyh1RkemIEm1wTXOESwC5LtXvEh3CYP8ZZroGxVc3McsrWxwnDbF8+ufjSWaHZuamiCXf5tQMHgi+m9czeS1QBeqqyggWcbuiokuBRoBjO2aNYcMCs+XvKXPz3DeF8YOvaeqUJurNHWHc79MGDhQL0EsDKsDJ3aC3KfLQfNBgA9RPmybg7QDZnwld/L20sFAgCyUPMErfPKegGGFntFmii65ffl8AAgoLjbrrRWURRV56Y6VUrT3e2m6dtmokmzYpPe3W3apm/aOmYy4wqUrpqqryshomyzyTYlL/JY8E7FnRbrBIsylyBJRHV9GbohXxcK4PHzY7Fd7e42CESKaNKkx7hIBTARc9UNU4fxqA+PT835vN2U5SoTUZSvoh9/+KU/1atyh6quHo9xmumO3n71e57EP56r5lTFcao0Hc7PQrFhaBlLtpiTVKgJGY1dTxL1pChih+MT8ghIrNKESdE+nv7bX3788PH9fp1v/uHveoXvvvpNTHIcujidsrLgScoiPYwdV3JVlnEaQ8yJM4UyEhEw3qhhpInpgcluHYmbPBF3u//07e6bh9tuOoGYyrjIES5NE8l+n8a1ZsQx2sSCR1Pffn7/0+MP32dM325Xmzfjm4f19s29pKir+l8+H9q27Vepil8+PT433fD4cmB5FkVxmkSSNCRxc6wTTsPQ5wBSjUlUVk3f912R5kpODBAZDdN4qVvSGjGOsgR4isgzRreriLRu+1qNEUOclB66UWvNkUk1Df1AoDVi1w1pGrdNRZqIcWBMaSKaopijQASmSQMjqRUyjsg1SZPLPytEpxCuEj8hYF3L5oapDYu7XT6/JDyvvvjizLdfSX/1Ewe0agmNIcIgpGK1qRVv68u2ysWYDAAC1DZ2w4xZXSAkCkTdN8HKqsu0oNAzzpw5QW9PLWSDqxkdeCNtHAAhZrNS7k3Xsgm2TVYbewd8gEKXbm1r2pzFcbjKGj6bSuLil3NngYBMZphbNzdrMZvlYjmCvGlC22TLSDMoDLZ00gRk8cHcePs22hW6i/7aQAw4Vgjsq2cZ59QxbgubXOACaNZjxHwz7fuzPwBt6tpV/MaNEHnsQovRArImxEGieXSRoTNWYUqSXaZH9runvId280POEhpSMgbznnhm7LUDFmgZCzFspTGujDFX0hK4kZUXg3YsC/lhQL99MNqBY7g4nGuWRzuiCHZ2YUCeHWgfbXcjSQDzCe1ovRQWWBmHYOgoDFSPFS+wVLryK8DiqzlbxmqH+X+6egiAsXnTmtBEe14IBj18y0ENYoxbmGxZJwhgz2Pz2tfsZjfG4+ohnmc9NDWbiRPYbrjnbRsdt3lFFDTWSf91x5e4zj4dPhOAuVn1zGR0fbA6fJlatagpcPGFnXct91obFx7u5RuC1DgOMoqo7qfnp5d8s348nkYpRZK+291EMeph3OTxm7t3WZoOQ/v09Pz0eOBx/ubdW5FkbdsM5+6bd/ftMP344/Mm4wnTJPKXU11duqwotGRN07x0w65aZ2l+eDkyJferIhblKt1KBeeXCxHSKCc1cSEe7t88Ph+mUVenRk1wPtWx4iLKd3crwfcIfP+wK0TR91PGs4f7u/39g9R0PtfbbPXb3/2ha6u2p0SThqk+VXmWrVbrtumGcUzzMs/zKEpvNG8G/v7lVArMU5bkSa+mj4eqWG32MYtBJJxlGpSC5niBegI1IuG3X3/b6fHpcDifT2mSpnmOI9bnc3Nq46F7d3/zn/DN6VL97dvN7Uq8PI2DlN+8u82I2KUeR7y9iX55qX85VljkUk1RxKaYteOUpeX+3Vf5eiNYtNtwRnCA88dPh+d+5M/nyziMXd918sPzj3/59PTdH75lPJJjc3z8hSG/XRUPq4dj2394rIauHSbFIlzvtnmSNk3d98OktZ4nAwrlRM+fDqoQb27K9S5NOWskYcZ6qQkmkqSlZlEkBGcc5DQiwmZTkNLDqETECYQmEnGkCQE0IgOt50N7GGM0r082UMDpWrJ4gRZsbK2nUXOz4rbTpOu5Ely/R7AQJvQ3PWsHzoProsK1KBjYVgeDQiG36XQwH0ZNy07AHN2fO2k8REaJ+YUmwUzSwavAGLhpotV/iwb4PBkMfgYNDFQJLi+5SZXDEy6Fc6E5Qki2qNmhH/eCw3PO/Q0uxGTsZqg9g8IW02njbbO6imAGEt574nIhrz9G7du356RHF/4jBEDNiNn2GW2M86lGsxU09PfcaVpEIVkCz4/xzrOQM6398M8BWnoZy2BrDsKHlht9ZpvZkckBbddFD6DnYs3Ja3PRGICtxUzasKIjHoINxM04xdaOBhChNW1u9BzaYKEb0gkLEV7jxFfM4y8502u+zEUv030wtGNGhJw8mn8CkO2mLACkjefpVUTIXrFuJwppDjZOGDCUJVZY7RXvLRWSwVCLcNfCvofICcFqidcfK0x2ghjilSU0CgQZLIQN2uuUX0CLZSpMoFisasRXGWULnw2B9V0F8MFeMVxvHC5O2TruRVNjMHNxdAnkxHAsIrNvzSUwbV2wcKWXgqZqIk+JYM5pedv1NHQ8L8wEAIj6dHr35i0iombR128mBpeqGeS0ykTCUWiFjJjqdT0wpE1U1KxeFatkvR2k/HD41FYtJxQK10UiiYZKp4nQEf/w3GmMRiqmcax77I/1W0xXGa/OFfQT8Jzh9DI+9/2EgJvdRiOc6kuc5dubfTGqH/78fSYiLUXf43p311FUDVNarLI4i+LseGw+f34ex3G9KtZxfGlHlOJ8bB8eMNls+nPHiTFQgmfI4+OpadshL/KsKESSZEUhRBZ3UzP2//T3v/32t1+/XOqfHw9DO/aSvtqV+zyP06zt1dPTYyZivV7JsY1jzpGt8u0w6nFop6HrK7mLs+3NfRWdu6nXWD2s8SZNv9rGMeghzyKeiHi3S7Moadert5du1Pj+PMkujdteAVGUpzkHEUfFKlutsizmaujisVkx+Wa/HoB/fumeLu16szn24/tfPsVJDEWZZ1HMeSSn3Ub87iG7vd2e2un73fmPn4+91hpAyU6lICIqkyJep904wkhTN3Ct9TCsb7OHXY4gE4Ck3EgWdxPVK7p00/Hc9Krjad63o1RjmiVRLJhmWV5MapSSNMAkJ00akJC0nxcQ4LzDB/iAg42LszC1IlgJa6XAIoyrFCAvvkuF5GLW9tbCTDot9oVA+dICO9ertzJGU9lVM07QjOJ2cwovWE7wwvYvBM3ZyEVKk5/f2DQVH7Ymt5crWXPvDlumsFjz02biuutXWX7uUeeHJ4dNF03GcOmIb6vdrWVpMSwKAN+3WadaD+DypjPn8+sMEJARkSbNHEZY6sfrBAJLZ6t6XXssd7mBcIyFhiCzKWfI9Ksz2H22rEU0tpPz+7OVmK8wF+Y0Hg2crSwFrjpLSPttbq5zqZge2EoNLLFrHn0DwrExtLPXGS5uzCevm+3snKi4toElhvFKITC7B4x/2Lt87GvOktqMnHkoXUdnv4brm+18AFSCkQsEbeYmcIbSjtxcrIbXkAK9BGn3Dea+BBu8uEG/MrVo7bwL+zqT7qgYYpeFe9KZ6dfoBxaXlh+H9sILgXP1GiOahlu4YN5khubhFMOMC1nHmvFmvpJaI3boeuB1jvErG6mYWxMMSTjBMbfR35y/uRKMAyzsp1PefuACUgaZXY60bqyc1gdEsJt9L58xYxGM8tILhH5WZbUFLijwhUrFd+/e3ZTlpWnrbszLNC7Lcl08vZzyJOOccYDdftOfL0+Pny+HY1nsUNPb2/t4tfp0OOmxjwQnxb7/4cPbh93NplytEhXxp8OFRFrXw4+ffoiSuNgUkK+mJPn5ePz8+XMpspf+I6GOs6goilQkXduTplrBeDj96fElT9Nku1U8USCS4kbx/Fj1T8djlqy+ui1I6UM7/Px4ioSIsuJcVSJJb/e3//7H7/+//+Xf/uf/7Z9GoT788nmdx/vdaprYIGlQmIu0mbqxr3eo95sEtMw4fHu/5+XquW7/3//lX4+qBmTNMPb9mBZD3VTvPz69uXu4vy9ZEvVt9XKqV3uWZkm5zrtz9fTx8WbPi3ylxpawp2i6RxTrouDQnBomISuyrmsHPVV1RYQxYEpjrGTTiXEgCYCI3aC7rvnp06es4CzZZpGIs1SPeLNPRp7L50OjOyJBIKI0H4b25x9/eXu33pbF5u2eT+NtHv3TP3x36rRK3h8APvzLT5OUXdNFVbparcp1ycYhi2M5DUhyt0q2m92bmywW4sOHx3Yavt1tt2VWrLdVB+8/H6Qc+1M/9ANjiJpLpae+Y8QZwDRNel62g343e0BiyLSNoGAwKbZmwq1otMqdrGHzHG+fDsLJIWd76Qv519m6QAUT0BwwtrweKC77NZjrOlgWTCIWST9zJb6QYHm8U1tosRFYkQuVhX/r6rLXuU75OGuA4bLx4L1XAMvdsDLuiRpOh75Exf/Bj6eye9MZaecZunJFh7kFs5mk1203asrNfcl1wA3qXKC1gpY6bsjMXQgGwqve2U5oQyWj97XZ8A1spbbhboSN7p+NhI8fIgHQvOk3AmpjHqx5gdekJt8jwz8E85YQZjGOQyMUvh+mvroUZYfM4GroAr+SDWGG0R3bBq//wTdnFkL04wXWLrryZoNB2po6Dxp8mxecuRQ289tmWRmvjzdCRm6cyTRNCaHJwpcBgA76IQAQ87gg7OHMLXY64Xs/++I8mwVMbc2427XJ5psFpF58cDkWZLFjGGwNMZPXNwupXsbKfdBnobJ80g4Gr6Fli9CbbZtqgYz9Goyd613QBfdtXkFmAWmAKI2gBivrbI34Gk98kWKOanAlcpbhnFZ11LLlOIKQ7VXYisWzdEVlXKiigDw+JY8Ixe12P9ZNdbw07SjiiCHEEdsVpVZ0OFacY1zkxWq9k/JweHp5+pSk+e32Jk4zuVbTOImoGBQ7Hi8j489tx7bJAFqmMaeofTpxzpEJFmUk9PuXS13Vjy8yFlLEEhilEn9zU5yl/PMPn/Sk4lQgg+rSrDL4zdu7FqOEZRTjXz8eMU8HlrU9jVW1S/aNiNm7O5LwJOnjh8e3b+54nL5593Vdn15emnaSj9XUU/48dH3X3N1td+W2k8Q4l6OsmyqNk7qrpuGoesanc6ThD/eZeijWZdm17aWpQaLI0my7qQb4eBzynIs4r8YB2wYZaqmlpChJNNDx9HS5PE96yHm5TlLU8nw4dW2fZWs1Npexg4gdz5e27h/evMuYXIFuRy3bSSQZRowYDbJ/ukzJ46UjvcsEV1ifhuNzNU1sn+eRBNX1JfJ0t9/dfNueXrCvhaD9uiyTbJUl0zS1/fj8/HK5VBpIa5iIphGnVtb6LLv+4XZb5PEw1Dcx/OO3D/ub/KkdP7fq5TI18ctu3b4Z9LkaznXX9a3SGpRCLhhjmlBrmLTiCIwz9KmKWlv/s3Yb5xv5Qmu/vP/VrEiy8GAhKMEPM6+bFTFzCZNepjE0hlZ4AiE10mGnBkbaQ3Gbn0UgAj3bJKdMIJwh2ToDrW+F0KI7W68zcEGfrqXOi2wAWa5VhAtIsEDev/zBwNS7K4CBobK2GREB9NWpXVcq9ssVXFfmGsncKULokQ9ZMgZL061qfp23bZ8ktNoIWQA0vaZ3I01WO7oSvK/B/m89Rr4IBjivdkHGNWhAAGSgFQIi50Qwn1lGqJEhaFBack5I8wkn2mYWqZmemhEhEmq7wh8MvW1LAitgiYAeKMxGFxFgXjiGYXTAtTxwcwGBcZU567cgz1zR3PEFEpmfst6lBWuaFZoGTcyjOO+oZFxrRABkVzPOXEVetHwL3MjNvfF5YRB0i2xSmrvkmdBW4tnUTqPCQV6aVTSAwJI+4AcPJdClYwNgyA0Ei8KDNw2djKkPcd7r1B3/jFvEELiRnYuKPOwggHnHeQQ0q7kW2sJSZlY+zHGycRuimz944AlmYChUqlaPuQLN4IEltHUMe4JZElukYHydtuV2SK9bax0w1gFnEPRyROALPviwdcGs8WpcXmmlYKpnwKpDZzZ8YG8FL82ZbWakXB2hE8pQ7f/1//y/c8SuHbpu4Cm/fXs7wYSKaQ2HY53keRSz281qnSZaTj/89SfBoiIv4zLXEavaPklXPE6bcez7ru+abJ1UlwZR7NbbCHg/aZamA8lPz8/PL4dhHAVLCESS5QoUS5EL1jVde2lULwH1/cNdnKaFiBKkLGF3u3IY1eFQldvdpa0eDydF+uHdm93t/nw6DVUriKirH+63u80mZ4kcunGculEhjzGKn07Hx8+P63V5ty0i0H/47dsiZefDS5mVWZT29eX56ZNUOklLiBJNmJUpCVEPfbnexHH29Hz84798fzrXv/v263/8T79fpQmTbdNc+qZN4nSz3cZZjiTHse2HTku5ysuYRafLOcmy9f7m5XSq++bu4UETPn54ZCi6Ub/0/MeL+vfHk05K4GLse0Yqi4WmAal/sy/KOJH1RJ0q0mh9s2mH/pdfPjbH+t3b+3/6X/6xPhxOzx/zGN/c7pOEKz1Gq/yXQ/W///MP/58fX6TId9ut0uzSjApJU49K/vbd3ZZHiVZf3+W//WrX9v1/+3j6918Ol2ZIsyiJcJ2ll6qbgHWSjZoB54hMKoWCETIiYqhhDh5Y54Q51Bu91icIvLg+nAPWXxpoli99PPqxEhD6UuiVnFxNwsKCv2Bsrx/SXqhcdrazncjCwtE9aoUOnGINKljMUwLQFj7m67y6bihgFVkIK/wTrmBvNa1rQFnnRIDBgonS7DAP7eaXzOlybEKakbWHGFbNwr6D04SLRXUAQDr0oZnXA78ZEQExewzuUjXBIj3CQlRfDl5544nmZb3ImHFHogaaLykkBFRKCYGMUCnNhCANWuokjYkUSYkCgQMSgZwXzoJARqAINBBTDAmRkIg0M3aDMZqjfeRjc6ZRbi1c4KA0nKbJx5iMArdzBCTwrDJnnbmwT+D5/8KHDIUADKT00xI0165gMwZ5T7aZvhD3pmcDAxFMrtxVpWDFYymZtpyw3cYNRgujfd0xNAMeuHiAIbsqeh53tCu/EEGTObTuyo9qeuDRmRN7W58HMADmGJkrUGEaQsFzDgBd5ak4PzfBfJ7rqx03/HOeZOaEdrJhTZO4TV8edgzSkLz2CNEiBIM912ZGyHmbbEYPhn3xYxqMGRBqMPk+doplNZ2b9zoNg4G+AwvHPRu5MUWAUBoWetTTG19dsNCTSC+RVlDlgsym2WRVopEUJPH8crq7u8nLIo6irqlSot0qq47tuWpTwdbbshvlU9VgkmSrQtzst6uyFAkKtd2X4zheDhXnUEak82iYcs3F2DRayrt1mkWi7fvP55e+6VYRK97sP3x4TPN4c3t7PjcvxzZjye72prqcJzkyjhqhnmo29pRmkMUI4ufDC0CkeNKeh1PdtJPsh6Yc1nGfPp2Px8cDTdPtOhdD251oxTKhp02WJXHUK/10etIE5c3m8/P5+5/e5wJRRPssvrxc3r6Lv/r9b7tozVkGEcZx3jTDqKc4j1EkmCT9NPTNUMbJb756m4infJUgsq5vE5wiBhjzPBURw35ot7t9vlo3Xdu34wTARJztU5GITrNss8t3N1maoebjipCJlLTu9ffHX/r2JY05Qs7UROOodTRqeXw5NYfL/ZublKWyG4qSr3J9V2a3eDfepG++uXnYciju+ociilnEoWkrpeJIZFN7QYrzZDPxrCw209ipbooixjVmBf8q67/apvc393VTHdvmT7+8/PGx6yGHvOyRmnH63PZccI1cEhc8VUoSaBFFGhSbjxkmy3KoZw09Hz5M9hBIsBLlhHzmaXMWj5nKXItUCBNmHeKAfuAtdzzvLaIVNR9W18uiw18+AGeKsa5mdLJlWhBmwXpxNdYarI71KYBXfnLXnVfXreGzou01AMI1OvCA6HXB/m1Hw1l5OZTgXnI/KUgvCu+6Ri2uvQKqbixnEGQ2MwQW6jdnX+3j1kFyncXsvII+nUpb1f5ax5N5xXdn/icok7m5nzvWjYxZRwLNGOMAgKiABBM4+z/kqKTiyACJlMqSeKpOWcKmcdLEJSZRlIyjjFFwzpQaGUPQDJDN7kUGoG3CPgPmw6QzO9o/zrfv2RXB7G9uMrCI2fQqKyDMjICeIYyNDDiV7umzsBXBPWYAgXVbLhAMAL4mMJAlrLWDXjIC8AZOwsEMlh1dtLbbVOgQnGWn0AsDACaTyBLG8zUsWY+CilwzPKeYKhgaTeSnTohElkEdeWyeNy3F9ovCFyCuL/kwrnAMesKGlnhmQ3L/zR7PIKHKj4BjBn/J4zw3nbxSKRZ1+d9k2+7l1QMSn6Zg8xgCBWde9HNX++zcCzc0xEzs1jRsvkAukovO9+bnktYT5hvqYJFNB0M/nh4p2wmBJ7GlFNl0N5y3hrd6zNke22M/NgQ2xdoxgieJ+O3ffqs10ESbzZrpNcCwK3I2ctkDL/NylZQqOR5Pl8v5dKGm7+/f3GqpOKksEes8TomqSx0D8kiIdUFRkSbZ6XBKmFrlUZaKON48gpo0rTbbTRw9nS5MdjebWHYRQ4w03G23X93f50Xejf379x8Oj8e7327zvGRCHQ/NapVd6vZ07gc9pHn8hz/8XZknfdunaTZpJOLxasujtG7Gc/sSoY7epA93az51/RhFmu63Nwzg+/NZJGk7KuoaTtDW/YdPH6MkmVJBAHESv9ntq+Z8OV7q9hwV0eXzsam724e7/W6TZ9n2bnd4fj69PL25We+LLE/yPE9FxPph6MY2L3eQpERsmiRLI0BSHDVBHMcRE33T9+3QtF1aFErA8+XpdPjUXJ6jNBcJjfVxqur1m/u7+902RUHjKotPh6o/12NBTGW7vNjfZLSSTHSyesmSkidckWrbVk1jVpT3b7+qxuixwpM+dSBgmgqOd28393f7jE1JLFMYYwQW4+OH+jjIz5U8dhSvs2HUQIQiVsilGpExFDEQY1xokLN2IuUtjpuwWj5Dm3Nmv5h3wHMXemlaivDrK1ZmnWP5WuAtWgl0TPCinTw7O+zUhJMo8FKPhPNWjU7Fk4vloZVSpzqs3LiWYCDGQXWvfB1XT1x3yXq5XiM9ixLCoKExJ8Gj4MeC4Mq16wns9cEX27Ucoms3nR9yi4XmvvulSM6IeU/NPIwuw8ONgbfktvawbV+YIFulZ0c/VOy2oehMN5p8ZYYMQZNJLScGjLQmUgIg0jpLY5FAxCMWiaatspQpKd7erPtpeOra09hJpbOk4IRApAkZQwJN9myXmbNn9wCRmjOBWIikTTvQG2pHskXXGLq+BXBitueGS9H+Ma8EXrPQMxZQ0JhYxwAB3TEYS7AjRuHwek+DhejO9roAR9BPAM8D5iL5WjH4Yn2ohGaaMbuQXGsIjGl2qiYYd9dF8mYSg4YgglkrbTc4QJ97ZB6gkAE9vnG6xNd7Fd7yPO0t59U4ou03Odm11JibHXiSgvmWZej5ITu7Mq/Z9YGO4nauZzGWywYIQN7czMDCv1Y4tuJZAZLvsKuMwexGAw9ODUgHzy1203/yw+pF1OouXIqr6Vog4VZVOxbwjbx+IpQtQ0izQsGEx8n+BM/N1yl+xjPotdYMTMVmWz4/ncZJRim7vdl2l8Pzx8csSb775p7nOYtTztn9Omq7gZD/Mk7vv//xm7dvCfW5at/c3m1WSYRJlieK1P+Psf9qkiTJ0UVBAEqMOQ2WkZnFuqd75sxcInLl7svu/3/ch727ImfOnTnd1VWVLIiHE3NjSoB9MOIWUXXurkt3VoSHESVQ4MMHKPT5tEtNdrPMyLdKhSTDlVkWGYa2AY0fP9wdr4rrl8QzOuFVegOiD+fKcnTnhmNIsuRf/vxPL8VJk6nrNs2VNalrfdM0LCyKiu12tV4nWpWn+nxq1puta91iebtIDSj/9fS1i/DUdWurlLZXN8skSxarVUGgXH37/maR5qqLC7vSEtuu9aF73j2RhtVf/4lsl3rWRWZilCBqsfjWtLuHXRt3geV8riV0GHWil00doxabECqVJTl76Jo2yTJGsoUoo2NwXV1bk7q27brQlk1T10IqsHp62j0/PrBzCRmLWGhJUkqS/Kf3q3fvt1Hy2NUSsSQV0kWRYmg8FmpVLD35LrTiXNntA+Nms7E64RgY4GX34rsusTpPDIm62q62mV5adXu9XhUpUvz557//8nyoXrpfHve70kdIGU2I0jmvtdIEBohFCZBgDDEmxgSJggIcZZD1AVzM9EgvUnPectIBQ0oH4u9FW2a//qFFHtyIt7Z/vHxGvc6W2wxLjNb2TYrIpJ4GhwwBcCwhN763X04XsvZVkHpUT6+gytwzw8vL5+8drcYUrrqo3j/o3mtQOVw3go83AzKhrslWvSXhZRZWu8CU6Z/L02d26w366RW+0MivwMXtHx3BS+jnQuDJ7GVT2H7MeO6vfGUKRuGZfwOvLxgvmprdQ4/+14E/HJiC8eQNBOj3sKEmijGAiBG4X66vV6tlkVNqD4fd7uvXjz+8+9effnQx/O3h6b99/npsvZIYYuQoRMTC1Gek9RofeRSePjzBINSn3jNwn2k7BuRGuCRjkuxk1nCY/36++1HsYc3ECI3GYopfolykAGcDhjBagt6wDQGF6e5JnAcR48E2zJI2XlvfcdKwX/owmrTL9MP09Iutn6+DV0jr8iccpQR7W4QjZMHxDeOvk8wPjxzB4zjFkzMwk5thbfXDinhZdBOaeTUME2MwrraJU5GxMNJ8Qc0W3yzEP4pfj/ZHFTGEghGkJwvHJtJsHc5uv6xCmfie0Wm4TNBF9sebLkOE86kYJeEt/Bk7Mlx1UThD74Y8vFfAdFRowxruYRMOJUEnxdgjqhFy4DS4Q6MmzSmzvs4aLRPjdRGAUd7mHtkk7v2K4eGqkW+9hN8vC2cQfeBhC+cr2zE8ST/89lA1TQTIl4mPkUW8ixrjemUNaojeqgSVUsbWLibadI3rGq8UPn3bp6bIdVqdG6O0gHArHXba2NQqju75aZco6zoOdZMXGTiXE96sM88YWGxWfP28a9hvrleozbfHp/PT8frj9/u6abvm7uP1cpF11hxfSgT3w/fvGI3KdLl/qSSC9+BaJOTOV8fTdXpTFIX+7r0Pnox8e3ykrlUQr6+36Xr7fruJH955heeq2S5WSZ4VVi+K7Lw/qKhSa3zlns4VMIODLEu0UhrparHoWL3UjY+8LpJFturqLs9s8OFwPIBSqg1pbhGII/uuZY02pdxoB6gTaxS251CdKqstJEmAkBkxgcOpul9tE7s5Nl2e6NvN8v5qcXe9XqSKherIjXfL9SK7W6ISlSFofTp3roomTfJiLYCKFS2uzoeXMoR27/eHz4+n8tRCi3DuXOqtYs+ezNIemsp17m+fX37+9OyTtAxUNmgTSDRE5wZjxDEGDxxQaQGOKCwAHBnjjNgdFuO46IbVhpPMzTIURt00qzc3X+wXof/jz/SEN5eP75rd+4rcGRsEo0bBMf4wYpDprj9WDK9bCQObf1m7v9NbOGqOaYm+QkjzDsEU9sDXX083zzJA57zvTKlNEOe1BgOcbhaRua6fTO3Fke2nBl+XFpsPMv1+bJBmuu7SltntE15FQJY4MM19f4Uv1n5USRe8dakw9Oq9w5/H4f9dcuVgIS7gd5BOGjW39BLDIBwiKVCEGMQoyInQB/DeAq/yJJGNf9xdF8XNMleJSZb5vqyregcSCVhQUJEQRh4Cvtz3lYCAOETBHmVGACBCkqmU8TCxMsMzOBpGIBz2Vl0YniF8zD20etXf6Xi5/4F8jYM0vGhEHXMrAq/mCy+wQPg1VXAhri7iNbPDQ0Y2IMrr0zovnv8F4V3m7/etvbg3/W84ArjxBX2bRkgmrwTwlWlHeIPdJsnrmz3mlwx6aw4ZLyvp8tO45odezgHiqz7MxnJ242U4prgiAACwMF3qOM0/A/KUsemzlcEw1W8Yu/Vq3V26MqHWNwP36jPXUfP7ZdzCBrORvSyuXoJmJ26NGqrPvZu99tVUv33ZRaNeYAlM/qKMEzX6DHONLXCRDJwGl+ePnbDiTN8jzGTygttxUo8yXqeNMofnBzTqu5++A2OayGm+UaQ7R4tlgRifnnZkrHPhZV+SMUWxaJqwLPLcpBTt14fH02HfdUFZJWSzpMiKtCiy0/HQVi0BGJHtIgfB825vCptqSIg2mysAlYSQivcxBNddW97YdKX5fp0U+TJfZWVzJnbrtY6iN7kKwlV7PO2OqTbbq9Xq4/bXf3y7zbMUwv7hc2v1x4/XabLcPe+r/fn0cpLA7HGdbw3C9aZ4PlX7zjXxUPvuZlHky2K1XQuLAvZnd6zKJM3attksFq6pq7rcbpbX7+7rOhzK42KRBd+FujmWdb5cYopsiVCi93mWaYV1V1fH0hjJ390VSV4F1x4aEcwMJYlqm/Zcn/JMv3/3bl961KuPmH95ej6dDtvNZrtcrbM8T0GpmGqD60RR0VSurNugDKDe77vj0emN2W7FixwOjTqEp5eXc+NrH788Hc6u00nSAdSVezyVVsJ6ldLTc1dHBCmr5qUijTaCUtb0212QWBEyd8BCyCzCzKAJlHhwPR0kiEzCCASIMkvqnMOOKe7bJ2LAZA57RvqyDHBSS28X7uuF+nq9wggPLtp0ZBEuynLMQpocpYntebMyZ87E4Pf9Dtj0QGV81aCMZk2dQgzTgvoDVXTpx/j1hb4fmnbRZvjq7t/rrreRrT8YtlFZvc3HxDdXy6CE5mzWoIP/UG0OI31RkVMjZ0y/jEpnqrEzAb3fm9/pTzN+4+27L4p85Oou8Zc53hw/g+4e6k4hIgBzREEkUkZHiSAxzXChaWWS2FQv1fn07fO797epSTaZweg/f/olK/JD1cTqjC6KAVIEJAwMiKCGvgkgAxNAFCZCjhFIIQ0xMB5hxKSGBYAIEYZ4K+K4axIJBrM3HCOFE9IYBJAnUHqZuzE+O03b2PlxbOYu9uju4vjQmcgxjBbiIlHzu8ZRvUjJBQeNVOll9HFK3b48cYTgMzGBcU4HKN+zxWPH51JwWZSjuSXoMcFMqF4TshdBmFbv5W8CfTB07j/IaObxYjqnv4xDP+LvYVENNOCclniNqOYvnJbVuGNAZqhhBmUu8H7ipgZC41UnZjBjWkGveo9vl8V4/9TTV5rwMoyvoc/04P7/Y2IdTtMur/XPBZr0em2UWRzrdE/dHlouhJPPdOnX0P0J48w8whkjPr67H9CB6R0xk4xtHzs7sZggOGJ3hmnvKfZpA6iRfWZ17dzjl69XV2tNdrVca2UB4svxjMAmXaAyVXPSNjHGmixlF9frzd3VJrJPM4Nq6byHwMv1UicWiaw2m+WWlmRRN83ZR+c8m8xQqpQh7wMEbxO9TK263QACEJrEIOmqdu9Wi7rqbE5FmjNlNreblQLPu93xdrX4/s8fd4+7VQKLbWHcNk8LEto9vSSZyg0sMpPeb8P1+snkBFQskrosjXDgbpElDpO///rls3vKkA5/Pv9P//oXyLP9brcslsX66ub2mjnWZXmqOrAJZVmSJtroEEvxNUjQJjJzlLBYL60yRpElZZXmGMGzq9pA3i2WxMRtC5ERyNo0OF9XVVWVR6Pf3f/wv/6XfzpWPskWyyJ+/tRt1wnG7rg70zbVlrdXV0bb8qWtg9MqEVSt97pIDakzdfvnlybwl8/n08kFlP3Jq8zuTy0gJxKCiPMCHAmlKtvuxUMka3SIJFnGOhEBrVFxABFCUCQxRkAkJCSIAASEBBzDoHQGN28MFSHAvCzeBRK8WhJTgH7MApoWyqgpx19///kdABizbkcFKRNnMHl9E5aQCxa6KIs/5ntwBEkXGDSiKZrRNDhDPvjq5tdPe/Nzv8m5X36XBo9fXIzAePWl3RdwJfiHIyRvfpSZxph7wpM+koF3gOntdBm5kav5HVU3zujw3yEoOapIlLGgzjhKIwaaQhmvWjsHiDCbZIE5kX7p3OzRo7GZ0VpjK0YHTkQACca3g0ifcYOkiDRzRAbgACCJTVaLJFsuTru9a9qubSypRV4AwrenvTkcuyAKcLvadFY5Dl0IiP3pWAJ93c8hSoWIBMJaGQZgEGYZ9xwJIAnzPEFnPLFBeNz+1Xu7Q5fH0M+IcATG1wjAlFOKAjAeYTbZ27eSNxdNfP0tzr+9yORr5DE+Ycqhkfmf56ZylAx4NVfjC8eVPoc286SfkUeYw98/ss6TwPTocQY6xv3/Myww10Gz3y5A8I0EXnia+VczB2562e+H94/V19vP28HtmzPytW/m5M3IXFLCBh779Qp9BVv/Lz5D72RSNZeXjQR538TZ80fFdFEPMDq0o1YAuKhXnFbe5YXTquShV6M0EpLwq+m6eMV4ifbiwFW/vmygoIa5QpiFvwQAew9k1CrTjThWNJ0KEwywCPpAteau+fBuc3bet3W9D7dXd0W26Jx/ejlWdWsL++FPP2mT7b8d2MMPd9s0VQSCEEP73HXNdptpe/18Kk9N64m/Pj8y+6vNapEuiNVudzzXpWg0mRGLMQR2wWrNbVuW56Zs1ptVvswlRkIkAsXeG6VBeW5IiU70amm2y1tidVilNk0R6XahN+uFZ3edXW8Wi1RnDw9F3dauOjfCeZ5age/vV1mSiYLIoT2eEXG7WNjc1K381799/uXxcIzmEBKDmKKOmU0MH9rGGJVfX0taHE+nGuHYdlY4OkdKrdarNE8ji1higeZ0rKMUeR5DOJeNd51KkiwvhHV1dnXtQGhZFNqkrTvmi7UAIpDrKgbKiMG1W+vyH7bKKN+11XH/8gzF7Soxt1UN//m3B0P27vuP+Uo3TVVzZ9LCSP5QV0/P+7LmymMV48mLVgDakuYYkAWMtSAqxNi5qJMCRWKMSDrTmgFc9ISAClnESyA0pFTkiJGIDCKAKAIRGbIcRJiGfTqDDPZac77oJrszyTJcPM5R81zu/v+hOF4/WbDf+AqDF4swctSXa6dnv1Imff7roDimrMBX+mJYA73NmQj9Mc9voD3+uL2z3KPxm3lw+fXozHr2Bhf8zoTNsQG+HsM/GJ83DYbXRPHFEg2/jHplIOvmV75xHt8an95fZ+bZJpFXBqzXikOeSl9iYKbRoNfms/M0YGzC3JpPpuzVaE21FkeFNQG9UUuPphVHsCCChMMZoYLiAwaXWclFbAxKgklsWiTLdbG921pjTs/7UEYWdFVrTLK62lqVfdufOh+QSFBkSlaGoUACA6CQUkhCEQSGQ71GpQyIpPqW9ApXpC+7gAjSn205dViGINQIhmAQzLHw3ECQzDnIOeKYicwF9f5OauZTO4tLz2fjLSi4gN3hJrzkes2AyxuZubx0yPKi+SIdd/0IjMUyBoEc5OptqOvS5unH0XGA3xnIy39wcj6mzyX9/HeQYZAymOkVfIVMXuGCeR/76y81h8YI1uwzwNuZLzPzBSZ6fOKZYJRkmUKTswsvN06CNn/i/x9IaCYnA8Cj4Tg6np4hs2KheJGNwcMZ3k8j7BHom0IEY2SKZcDqwxmuCLOz9AZdRYMQzTSmCF+CahNWnvd8ENBL1QGAQVCHhdAf0zItVhk899Ef48uFAyfbK37R13fb5WKhEkPAdVmXx/bx6zeyBgm6zh3b8+r+3ooySdo631S1xaxqzkF8252tkltzo1LKV8arGIP3TRM4VFpnac7SvRxeznV58+EmWSadb4/Hk0a6utoapbomkIbInqPr2qZrvVHKB06zFJZ291Jqq682xXq7bJv2+HRcpQQQNeH6eo0I7uQN8jLRVtM6NxoyUkogxrpLbGJSU9fnJjpjrAvROVdk8f3NbbpYRdKtD//56eFhf7p/d329Xj7VrUIuUn19u0nTcDqUbVvl1rgQV5rSPLWJJUXLZMUgnkPnvBNwnWtAcYLHUynCm3SdJAsg21X1uWyU0tp0BpEVbG62m/WybVvfBR9dkpkgDOKsTsumFgkIyAIB6Hjuvv3j6R+//Pr+w/t7o0ySk+auddX5XKw3K8zsY7XMcHWVfTqcWh19DCECcdS9aYsYmEGT1iSRIwuSUkMKJ2sURCGkCCSEcVj5REAIhNLzxDKsCgEC6qXod6k8/TqY7dWaGfMLNdQL+yt99H+BgaZUnZlixylydFnFv4MM05vnz5IxZWl87uTsvroXkWaZPpP+mlj+N429wKvXbbhw7gJvsJCMYGamTWfGavwH3urs6YXyR6P2tl1vtte+/dOYGDQokN/17Q3smP8Jx7sm6wiXzNjhxKhZYyfrOG/siHHkMkpzCDMlucjsjjl67c32ZTZnY4VT1AZpVI8IQEQ+MAhDBMOw0GptVU4iTdNFBmSd2ABcl8eHh0dbpJTYb9+erjbLzbXtzmd3OhtNDDGAkNEsAsBTrqtWKrjIGENkVoRERCbGCCAAhLOGArDwkEUlwn0VRbhMtMCwNseoQz8KPO4rG1X9UEtJXgN9RJDxqMhR7w+Ovcxl540VlwnaD6lHUzR5gP0yNWVMbRnsoAgNUAWndS74Orl7RnzSPCMKJsGY3jaQk6/su7yRhEuyUG+5LkZ5ytcZYQZMv+JIIcBbWDJfIRd64xUtMv44wgUYU1cuHRnePOWsvHnBBaGM84oAY5L7+Ow5KOoVb4+Rx80Cs5I8AG/dvle9gDHa+Ad/eP39pS3DWDLLGNd8xawj0ngaNQoLEA2Le4TKr3ajXl4jRD1QJhlUoZAMsbB+r4BI72DTgKD4IhI48py9OBGS8BA4HhjEwduTkUIFRBAekhpHndL/j4aOAY4n4VKfj8hjTqQaSi6hNsLrwubLXIJA41UuaZFFo5oOy0OUAP54iGW1sirNDSEDybGsz64qVkmS6nNXu6M31mYCjrnYrpRJqrp7fDoqArJqna4WyyzPEt0BZ9nxcPz665eP9/er9aJu6rZpOtcCclXWeVZwhCxbXF9tVpt113VpkRDZri0///JbkiT3H7/jCOeqDD4oZTTZ86lzzbk81Wm2uH533YdvskVW7qq6K4/n5v7jZrO8qqtysV1drXJVVR8XuvuwrsuX0/mAmT75RrwsiwWwLI+OSB2PL119Tli+v9v+9cd3N6t0BUisXBPBO02SGpOu127BHDGC2FQjULZYmiRTBIpAE4rE1lUeO5VoSpU2KSt9POyjQJGmxuJL5b8+HR5eTtdX2+viJskosanUhoJdZMs2tOfYBA9dfQLi1abAhLyHf/5wFVVaATbivz19DYha9XUKY59LQEigMHivEZVWkZmFECBGBsAIEiITkSCyBEBW0odTA/eHCvVLlzBe6pzOocHop02G5w0WGHE64hC9Gt2vi1YdVc8MKA0GDkfhvFhouihAuRj6+fK7KImhBVNsq2/LLOtt0s+T7obpvumJUwdnOGZmdd4qlUGdDD0azDOODsyk8i4Pn7f8YqcmdTm6WRMqGR/waqDnIHGwWG9aNdAkciGI+ko2r8AoXnI7fqcp51C0V51Dn4bBIRl0Yt/y+c6vPzS90wiMb53HRGavlrFlk/mZboQpJ3QYkUH7jy3ufUwWQGYERAZWAJssvy1onSD6NnRdatOYKO+73b5r6q5sOqOAhJvO+xCJJNGwyS0YOlZ1DMwSlIbAHAFBhIRMFMLoXUuEGBFECQsgCUiMUSER0mAFGUX6moh9BEEU9WlAMJifgRjifvN+jEERDvq7dx5YZFgFgqiGXKL+eNbJYI/mEd8M+WTEx9wvGfndgXwZIelo+BEAQYa62DCD84NAX+K2r+QQx4U0TetU2RJgCp/yFOedrYcR/vUGcD7VM3GBGY541fEBPfT6CC5QDGBkOeewe3b3q7ZNGGNaC5P84zh+0yKalNm4q1Hm3+LwahwaNltCE8k36Dd5dW4V8kyShxXVU+CzdfTmH5iNzZtPL31T2b+Zepj9KoLIMkbCmCFKMMogkfNOk+6HIyIbZWKMkWNiDBI55zQRKYVACMgcWSIzk6K+DCmAIKrAvdz3mVu9ZSGRKGMnCRUQk6Lgg1L96acUYwRgItVXOFREgMQs2KdqIERhRUpYWJghUr+WRAtEQaChXq/qZUNYEEGRZuaRlhzc/n40BEVv19kiJ/ZddWyr8uyasN6ua3Kn0y5J6N39HSra756vV9tNkejE5EmSLtKmjqIM2jRbpr6pzvtytVhqwnJfVu1L1NRy8B1j5MXCtq1FxVm2MGRfHg5N3XY3kZ2ruq5t2+Vmba1OipUShYLnpjq3ZyBBpVAjAHSNW242Vqf5Yl1WZVuF26vrxWIZvaBACEdQjjFW1blYZTpRTVO/vLy42K6WeWKTtLAhGhA5Hh7Zx3dFpj/chc4/d53Ttq7PSitR8XSqn3Z70rRcJgJQt21Z1T5Ili+sVbEJrnJdVSYWszwzRQ5Guta3ZY0KsixFRO+8BGGBxXZBRjnnUUGaGwUAFKM4IVHKKJMlic2W8vKP/bfdmVVxe7Mp1hkChwDvb++NwMkdy9Pz2RnXupTMokjrQ9nV1f3te1us//btObWwWacvx0YrBMAYABWB9BEuIMIQAoDqC4UhAqJMsk4DhugxOSCOPGa/bEgi9vGOoVbJfCG/cjYmmHHh6CdN09fpnXkxlxU4aJ5R6045moPBQxijBq8QQ//rfO/6a8drAPyDCzXqsN7hubSif/2gsecad8R4OJqG/imXU3BeKbk/0Dfjf0bwNOZ2zPTOrNWDFZr3cM4B/wGigWmML19drnkV3+/L50/Bgsk+TfzxJRQyc6Pfvq9v7GXycVLOl3t4fideLOREWcPvOglw8W7HwXrVszG6P9mfcaz+gMVDnOwNTp1BREBjbOtaC6KRM2Ms4alqvXebmytWxF3bNr4pWzTUNU66brHIrNbEvFlmt9vFuWy2hdnXfl+VWZG1wfvAMTC7qAVWV3lgk6Y2OPeyL9suqDSLiAD9+TEQY9CkAIWIOIggMrAxRjhoRGBRygQJnqPSOrJXhByj1YZAeDhqhphZETJgiEEhSQ9NxmnBAYGOh8bQOOOvJA5hNNAjp3b5pg9QjAgIx3GehnucjN6QyoinUaEMNYH7lcF9w8ZA84ylmuDuRVpHt6QHFvOVNTJEOBNmnGGai2jPlAwMjZiy4UaFcllxs1WOr1fQXApHoZ0J1iiP8wbI7NZJ1i/vf3XVq2bDyJXi7Msxag1AdMmI4gERjsBuGtR+oofZnOmQS7/wj5TINNdT01GQcYpI9u9FsDoBESLSSiultdZt27KgD9EYIyGIILtolO5PMWYIrvNWGW01aS0iIQaOvgf6hhSRYo59AF0QNFG4ULkiIEQEIoQwSDhHrVTwTIjMIiAsDAjMLFEQiBQhoXOdUZoArE1iDCAYhUMI2iqlNbAEZkFgFOp330WPwITKB0YiIsLxRBiOQSurIvumCbtjBSbJ0lXDADlF9MqozXahISEgo/XV9UoTuc5ZBItyOpyc69ardbHMWjxZ1NG3oWuevj507N//8P32evP4+Pzty0OM8e7uSnMbWljohRh8+LJTSQIoQOp07G5uVvkif/z8pakrBAk+kMZslYnIrj4jy3axTNPCe8cQizy1qY3EYLHcnyPD/bv3TVc27blYmEyZwB3HEwW3WlyRr5vTGdnHIIfyqNFcrW63q5ssVecY0C72p5e6aVSa7BfJr3//DIJ/ubu3hAblal3kidYgqTKlO5/KY1XXivSVSrZLUx6Pru200cZCapX4tj77JLM2USYxggAppUVmDAlLaFoIbZbZJC/SrCBQy1w+fHj/5em8O5y/PL94WRG43NhFtrq93fC+Ox9flE9VujhVzaeHXdN2eZq2niv3a+ll93nXll2iEiUgolBrRokc+/KYKKIQCVWPegCBNDGwCJIIskC/b2ZY39AfIQDIIMggjEIACHRRS+NCn5bS5M3MFc2Q84tzCz6t8cEwzp4x8zwnpmiggvt1fAk2jVpmCJKPFnau1BBm6bqDsZ9bzAn7yHB65PDuAVhMinUI7Y3uIV6M9Kyzc5Unl/8PFniWwTPjZ4ag+NhChLGp/dvkonOnM4aG/k1vmKm/SXe91uo414ivQRRe7p35njDgysE9evW8ywhe/N3h7/1OooG0mxIvJjUrl37jOOwXcejH76LU+1kb/r00eMj4GbCNjDb8NVojmvT4WBcYQ4wGg0JUGpWmugm16+rKJ6mtOr9cpMsk2T/tCdRqsXJt51yXpza1qjnui6LNVovlyhTbdePk+ZCRNoECELmq+/brtzxLP3x3YxeLLElCVf38y6enfdsINFEYIdUYOYiic1kWi5Ui1YVOG+uQWh9SjdEHBIzeo7GijItode66hhAZmSUiQQwhTRZI3LaNMlZrE2MYz8fDYbcNTIsG+mNWR4kcJXkCNCMLIiDTmhK4iPaYsSyEY6Xg/noWFo4AgqCQFECE2O+DG9caARIr1b+SmPt6wWPwR0ZnY2pOD6JnsnkBuVOpHpxdPhPaV8sYRJjG4NTQo5FRmYJb/IqBnUOWUX39nv8d1rxcnvbmkknAB5nEAdBdGjAC8RHgDdIOCAiMs4Sjqc4OCM5LUOA8+M8ANPGio57BN1ho/NvAQU9DNanXeSKCoFxWMvYpOgAAzMLM3gVUSmIwoDxTmuYxBkYEBYJgrI0uxBAjOq1NkiYgEIVZeq8VCBURIqrJAyMkARBmVIAAhMQiESIKxAj9BsuBMmW2NhFmrXUMzAIAzBwRlfTBsz4TEaFznSYNogGgc62xSZqnXqIHkRDJalBEHNlHBUwgwBBDNNZEZgHoySlmVkj6ZXeqKtPGULacL5Z2kXWxgsYVaUJiNGFubP7uHkmMImA+1R1FSUW1jG3Z7Z7KzWbpnKpPZ4jRJPn77388d11arAKLFzTF2i6uyzo+PD5BJBCsGjmdz6grrdVyvTx+3f/Hf34q8oRdpxT9+N1HQ5Qt0myRtG3z7fOThPDu9p1jYaWYJV/lT4c9CIdO6mNrtFmslqkqCpMZbdy5a8tzomixXKw3C7L6XNXLxVJQ9m1rSGx31souUrjOFsvtTcCr46nsotR3nHlumub763WeWoWyXa9D6/b76tunx/p8rKpmsdqsFquIpmmjQtPWZZZLanVXt0VRaJ1orbUhAmqbLltmBpS44H0jLhpNikxCWjGh0kC67VzVdh248Onr47FMCT68u0rSdeVhd2yqut7c5eli+eV0/u3Ly/Xt9fb9h5//+y8Pzwc2aVm23jMYQtbQ0+RIY9phv94UChACAwKDKIE+H40RRGjcUoq9C4mE0q95Hskb6H++6NNJ+15W1VutMMM1M+gyaIQeseDkW04Apl85c6wDY3BlfOjg2cFMbV3cnIunOSnv0Zb3/x+fMFNJkx4b9cek5wbNMG4pGNHVCAUHp+2Vw/f6M/isAwybVPyk17D/abyfJpcbhC/ob3r7PM9qPuB4SfeQP2rNK19//sMAOGaIDy5/uWDVC7B9ddHFJAyoo9dSMy95QryTlX6NWGAcwVGPj+ZwZJAmPT/mfIwWZhCDIXyAfdB2NikTXjRGAYpBck1bdkEYY+N8JGWyqg5WB9e27blVRQ6MGjQSL5JME9bNWWGsJF5frZZmsUpthgsmpXOzvtocH465C8Uy3a5XYBLX1LfLLPn+/TKtPj+f28P57m6TJSYKW2vx9h2A9t4nN0bnyZeX56eHlyxNui4SUWA57I+r661Nk7o8LoqFUsoH513T5xl59hTEGuuYFSpC6nn7keqYaB0cU7AHmZmtmklgRgZivGyKMI4xqOERDIJ93cs+GZZGzI4YogcBIRAkAJw5ID2kl+Gs2OFwtHkI+QLJX/k0ozTIKFKE00QCzLDaRVfMPjiQB5OekPklswgUjjgM57TOW1h1ee4YRf/DNQWDAAJMaBLHXACZFvp82Gdgb0RrF3KTcVQ4lyy3+WqWP+j4tDYAJi5V5v2Y64t5B+fdGcdi4EthlAxCMoiASEppTUZZ0iQMTd0YrZQm7wMhJWlKWoXAwszAMix/ISRjNCHFEKNEiTI9XVgAhCX2MWBhJqWIMEah3pGK3HtAClR/DwEKKkLQ2vQQSkBQoQLFilBB51pEQBRrNCN0XewxMYGgMAiH4DRBbq1VtnNCiTmfz4LRc0RF4CMRaB8EAz0f25en0pg6y43E8/39Va5zH6mtu8X1MjGGEKLEpnPpIkEI15vVd0hfnl92D7umjVolh+em7aq7j++uPt5L675+e3r4+thE/+GHHw5gvv76zTftarFc5EXpAbRVRrnOvbxUj0/75+fd/Xf3795dZzZBk2qlgtD57JQ2d/cfyv2BwZRlu9xeLdfLzrsksa711uiD756f9+W5vbneXF+vUPj49NSW59vtzdXtNWsE4iJfC6tzVWX5CkUa30rsNCkDiusGDRqQc1VmZvHTh9sYXKFjbE+kdVMqYPVyOB+PJSgMNnOidJJki0VEpS1oTfXp3CGE2KWJzoqi7VwXeLnMF3kanK+aum7OXddo0Emak4HIDTI68LvdYbc7n2r3UndnMKWIYXhuus/lGaI67trI0J78STXPNXQmT67vvV36YmXEBmWg2UdX9ymUCCIcEBUCgyALDod2I4Cw9A4+DrEu6rHS6HThwPzMONZXYYkxqfGNUYQ3q07m626mPS7O6KDULvURB75oyg3E6WqRC9c0evfjH+cvveizYf0OfWABxov+xOno6d46jh3FsbsD3BhIpkvi54ir3nZl1CxTAuYIOacQ0wAc+wcJSF8jGFCAh8TeS9BwiP7jWG5kJDomd3YaG5j6OA6AwMTdTOM+4p5LCGyco4uvOg6EwEjfD2/tD3ubv0OmV73JNsCBtRrzWF5p3vl/ZkEQkd9fNMJagUscZorWjVZcsB8pwkkyxg71kdYhTjEkFmFERmEFglQFFiCllAg3EguTPO5P4nxS5G3grum0YG6SxNgo/vru7up6ZQTKl0MMj2lq66ZNs6Ks5HwsxcHt1VYkVE8vVVm9PD1+//27ZL1OEjIW7++ul+vlZpn3Z5D98P33j18Pz8+PP/z0nc7zq81mt9i57lwi51lWtV5rSBKq60px5Oi7rgve21ShRgT0rbeIWhnPnUAkIBpqUF3SWwZwKIOQDme9X4ZmhgDGgRpNJxD0PAAjIg9pOIolouollQiICBkkgogwCSkEQi1ISAhxzGxCBGBhHsESAk5JsjyuuksAd1IvAvN1NxC7o8APQnOBNm8/Az8rc2A/F65ZSAwmACWz58zdupGgnCGY3vej37Vk+OfyVhk2HMLlAhxg/AAxLs5bv8JhLHY/kuF9TgrCUGASxx2oAiQkEzyZHj/TwkNi/PyrV4M0CMBcT499mRwGJGSWMUcGjDGoUJOJwXd1l2aJVVhWVbFZcAgMGASISIlBwgiMCEYbVCiBo8QAARiZWSlSoCJHQGBgIOo1HUskGmJsMDqkSpGPPZgC6M8gEBERqy3L4FISYZ+ZpqziCNEHFs6zNAaOwQcGFFFao0hoO6OUQVgYo1luitX9/bvH50NAwuCrqjRG5Xl6ejksEqt/+tMPVd2+nBpBeNrt4hd3/+Fa61WxKELrFUP18hKUsla37FWRpIlSYgnJ5Lk5nb88PIeHw/c//qkG9WV3qoke6/rL48vpVBujj2X9cPhvJkvL08mA+v5jyobLIFantkgEm7YNN99///1/+ctms+7qzjXtr0/76+uNNTawXy0WV9sfzGK9yFaH08kzJdkSVFNsFi/Pp7oOJ8+PtfuyO0eldZosF/mhDAlmAbNTG8VgV3fLZeK6rj63abJFBR78YlMklOy+PlQPj6SwC2zyLMY2IURtVIi5Tc91s3v4TUGi8yTJsi4EMng4nVSiMpM67/ePX7TyqyxPE8vsqqrzDlRmQgiH/TlNjFZQ1TUqjB5YBI0kBl0IzpVdxKY8p5bub9ZhVzZto3N79vHr7iXdvRBqSzqxuHvYdw+n7e27hvRvT4ev+zIAHtvgo7iARieRQWkSisC9/6RAhHDgdwTCFMgZuRsZqZU+ciGjCcex/nyPl165Xm8+o1J9jQsGTDF32nq9Ijg3wvOFOirpXr55tHmveKUZ2hmRFE6KZMwBvexhmOLoF/0vk7s2KOxegY0qoB8XuXwD06NgSlQYjc6rjMpJp/9O5Uwe9QVnTQTVpHbggvwGyzZgp8kpG8m2SaG/mQoce0B9/ge9HrkL0wYwUVZTNGQ+sGPAYp5jc8n+GZ/yBrPI2In5V/A7ZTy53DAO+5vPax92HIxxBKZBvNjvEZIijMh9sqTjQNNw1AKBsg6i0Zoleh9DE/OlamPMtAGWIF1XN4VNioQIYpZn2+t1lmahazsXtdarTR5FtbXbH2u0evPupjy2+8eXPE1C3WRiXFm7EJxgkikl6tOvX9p32+Uiq54P5e4AIbZV+Qjd9v72fr2UI7Eq/u3HD4JyKM/n2h2O55empSxx7DRxxc43qJOEtE61IYkokprUxzAg2kvSy4hr5jj5IoPjjrHRwIypXhMd0a+iHqn0pSZIGIhIEEJkBCEEBSTCjEJISiEKK8AQ+403oxyL0JAyNyzOMR1rWpY4NEVovj4mORlN/B/xMxfR+Z3YTPpjEs1JD8kfPOF1hPatCAKM++lGmSO4bI+bPed/wPz2Gqx/gwz/zFTQpXU4raxXXN34P5ktWQCQi1/wqkM4Le9R5mHU3bNeCgr1pxJNQzN4R4PoDFLUczCKArNElsgSOKCPXQsu5kVqrW4J1kZ1LqLV5bn2QVSxUKk12sTAwwCQUgIhRg5RG0VGIxF2fTopaqPG7qLRuo9vxRhBJLJoY5FEG4WoBAIBgAYlmkgBc+ddrxWREAljiBx5KPuiSEL0rSNtrDHRRyWQoApNp62+uV4vbFJk+TI1vE5/+/osvlum6bt3t2lm26xoq1Jn2rJub28Lr/yxrkSS6+9+Wly90xw0eatRfBvqjr2iZRIxRo+iVdM2XMVOK8xz17lv+52PzhRWJ2Z/3D/tn0NQ3f5grFWoXna73b7UxkZt75Qqq/q4q27fba+uV4urbaLV8XjsXvYcoWudd7GBbr1J6so/d1WRx6ZuzZ45ROZ4co9oGF/2ruWvD/tfvj55VJvF5iTWlsGLqNVd8OHTvjn++nVzd61QH9qqPO19193e3tdt+3x4+i//619fuvrn375YgLvb66vr7Xq1rJvuS/n068+f81X+l3/+p0WaHauSYrvd5E/H7svnR1Z4PlbV7iX5J3Ctf9m9LFf58vqjR+rcmRiybIOaEczx5Vhim2UKIN5d3xd5aGPshB9O5flwut9utze3RV3db7Nl/sO7m/qXl8OXQ7mvGiFt2hA5EjpDoJTxyEfYN+35+diAIpWY07Fpm0BkTWIIKEZPShGJSC/rTNhjGBTu852BSDFKH6YlIETos8wYhJB68yoYL55L7w0MedPz9Tsum1d2//cgYBZ0wldqaHa1TP8Oi3s8rWW4T0YdOt75yiD3mEZG1QEy+sETKTNdKrMHkFwI/yklcUIZl7twUi1D01/7XDDpxdGojIrlomzfOoUyHgt08eeGm2QsZyEAKDTjvGePldezACNcksG49bnbM905wggYKJXxgf0ICIwFOsYiIPNQ26QrLxGXObCZujhiM4BprzAO8zlSXK+HcZw5eP2ZJ27KaDpxQtGDERhSoJBHKuuyC1x6DggBQGjY7sbCiNbGKE5pCW0ABcqUHhmS1gX2EYkAJEUmI64+p5r2Xx8fQlCklVEdYoc6WeVVs++gXl+tzar4+98enr68/Ou//XWdL7+/2RB1p6YU75S2z2fvpf36/ITqvqzr5ny+WiTcHA9fnlOo5Fgcf/18fXO3Ta+zpf3h/Qo8/R//x39dcFKslqjlcK5OTdifu6r1hqwi4RhDcEolComHWRtO8urnZORzBnphEssRao9zMcn/iCARh91g2Fe76Is0EiBSFBEgAGZm5ki90VGAIlFiEGZAiQgEBCTca5qBR6UefWDEcW1e0pIuC23gC2XK88NJovqA8GU9wx9//lDIX/15zkhOsvcHX86kco6P+rjiH73+7ROmNJsR/E9jPamdqfsweYkX7HNREsNKmq+0/koc3ROY/+WCcC/v7T2SWRNx1qtR346wDmF27IqAMBhUZLTEwL41WicIKtW3yyRP0iv1IdPaWC1affryULugrWaFLkQJzABKayQSAUJQRiFA9BFJBPvMMtUnjA2eDRJCcM5HH43Wmoh9ABEiFGIgYGAUVEjOBwDgAKT6ugrDBkhFoJUChW3jFJJNLZLSRvsQow+3VyuNiyLXmdKbYpHYpDntfXP25QsEWW2v3q3X62XepfbhW6ersuy6OlXm3c11jOQdrpcr17Wn4167Lk/1aply9ILsfddwbbPcasOKlZbrm+U/6R9/+fzoKm6aLtVwe71ZhPT2u+/LY3d+PlijldJfdzutTJAYuTufj9oqUOFQHjCJZ3cs98fj08u72/uP77+z6YJ0+PL4/Ou3R22AATnKarsKLjbl2ZgkhLBcW0XUnF3VuqdTy9raDL7sysfHfab13ftb37SE1DlsXyrnnXgp8gyFzp9fTmX55eHLycUff3wPSe666CQ1xbb20bPyTMe6LaO/aZrb26vvfvzeHU+JUrk1t7fbuul0kC664/mYZrldZo7h5XzeXq0cU3dqWr9LE6UU6jxzdXU6NctVHjxom6Qo4iVyVXe+bJsFh+V6pdPuL+vbf8Pk//Xzb/K3X8qua6NkWSaCXRu8QKINJWZXnhWgV4yA0IZOUIwBIiBSPdvc2wAGACAAliggKIoBiFBBX6sEESFEBoUiEEUERYgiA/WVFBAAgEQhIkMcqBGcLd75Sv1j7XBZ9mMeMVxiXlOU+9VjZi7RtLABYOZ+vdI2wzvmsAj7mlZy4XHmSmWw3jKQ9TL6wW+c0EEdzdTGK5yGbyDfq7I7k2UeDdF0EcBUnnSMEo1gYdDyiADj2VwXrv3tqPeGbAJa0x9fZUFOr37LZfWwbwrLDYcSDa7h5SnjsE6kOsCQaTKWAXo1b5ehGX8Zqb7X185/uADScbynlHgZ9f9l5C4jPn+cDE2cYpk4XjEEAxn77IHIpA0yKiRhEEAhHUGfKk+AElAiUBCDgIaiALPsdvumblDpuw/vRKn96VxHvrt734GUdatb3z0ez63PlmsGEqs7xetFsTKqfN7Vhyp4WG9Xp3PjHfuOb65XP7y/wrpgqdMEg2tXWbos7OPnz013/v6njwuda/ZFYv7y/b2LtTW83SZ213z69hI6bwsrETnGEJ2ydhQtHER8DLxemJgJEF9GW+ZzMUrMwMv2c8cCgAwIwoLQl7sk6tMsYlSaUJAlRgEFhKgZBIFIE/aVrcco11D8nC6i129mmk3hGFu+GOhXsnyZ6sma//4zxTyH/snv0U8vTn+Mf/Dyd5jh8Ll8zvAi/PHTYdRr45PGRo2q6wJieldxPCloXMYzFfoqdDw5G5Piwp6jG5s9ZWReWtW/RsYCgBeQM6FKmbUSYfQZWJgQSDQIAHAEwYiMoJWCKIs02+Z5ZlRT1sb5d+9ut9/dly/7RZGDMpZjRFU2vmM+xbYF6CLH4EArgZ4RRFKEiN6HPqt+dFKQCIkUIpBC8pDkBTAba9q2C94jEWgQAmEhIkDCGABAa0WEPZxCYCTgCBwZURMpIhRmjlGRShRFxIzMx/vN9c2iPtWJNtbqtgrn0zFJDCgCF5tDRa3j0CzSVFf1maNbXN8X1pSn+tRWj7/8w2iVJWqdZcdTUzVdUWRpbquq4gzXV2tD+elUFVbbNOvWXNdL+35Zn8rzcRd9c7Pd5Nsb+s5s0sRX53/897/nJv/xfh0FHQgYxcw586ms5Fwt311tPrxb2ERq6c5NkmVVc267pjp70iRGESk5d1VVladzcMIRVs1yvVntDk1gMOtVsVgJwMPL4Xw6FUV6ILnZrpY2q6v26dOXb4+PH+7v7yz5LtSnDgXqDr59O3z87od8eXuO1d+/Hf7bpycFmGbJcrP64X/5nw7lvuRAVemPpauqd7m9v7+7u1blS9VU56iFU6rarvVVfezKslpfLfNFpiPtHkul4/39FSEGF4o0E7CnsjUpLpdrlem6cCICBioATLWEBmO7WaZ//riNBoxVP395qVsHJtMmEY7BC0BIjCXEGNl3URtlSTNKH7AHAEEWUiQkKMh9+ljk6BMygtZ7p4zxPmCEAJ40CkcA1XNDiAopMkYCIOiz8YX6GlkQYfATLqphZoP+Bwhopm76zJQR3FwoBnyjZ1B6Y9xrbpnDg6GsnIxaBwB6Az6zwOPBjIwz1wf75SYzl2syBhfPEmeqRHBMhZm04wVNDNDhdQRnbt973TYpwwFY4GUcxhHsOSqZdrRBH8URkMvGkwEL0DhS0h99M1VUvZiIOUjA+bzMtPjY0ykNYdCIQ2hSLk+hUY/PB3eGyC5jNxoTuWRnjcntNErJYCNk1hqZWjppahwTscZjIEalPej6Xt/3zZ0ZdxQZa+gA91GcsTeEEoVRtFKAEGKIkbXREmOibXCBFVuljLYMGLvGKIyizh2xp9BErZPVKtdp0rRt28aOvZN9U50q75KuIxeU0ZvVunOucrtDBd/dvUsBT4f66dvLvg0dUO1is/MYnA7uaql/uruqSimPhzy/Wm2u9sfz88PjapM3VfO0ezyUO8Ll7vF5e52enp+rTtcdsQtAxJGJUJFiACGR2Ndnn0ROAHBI9hxZ2zEORf25ZOM8iAzJwv3ADX+S3jOnIeN5mHMRGgNXpJX0m/1I9xCaQACGE0GAAElziEgypJ32HyDmidYZnJNBrEQIp7LgMDQbR0Z5IKYuKfOz/H1443C8vWCGqgcBwREdT0nHOL91XBTzXy9QHmbi/gZJTeBkTPq74LV+FoY9i4Jzeed59tVl9c3pq4Ee7uUdAYSGKZ4i2T2QGnXm0CdiYJwoU0JgnlYsjgdyCYCwKKUGrSPc69AorJAQlYCIsFIKORKEhc1/uLu9WmcvD8+dqwsNmeJWutPTcb3Zfn+1OnddBqDT9GEHJ+lOofOC1pggIsDBBQEJIj6wtUoB9LvuIQoBgUCMUQQASBsNSqq60YrUWEELFGlriHR0IcQQY7AmSYwV4CABSfVqk0HEOxERVKF1yogpjKvqREja2pWAK7pe58iKQYw1eVacmzKzdvf1hTo+Jnh7u7SZ1iazEHVq02xdPGXF8bE81iet6bt//ecit8fj6Vg2Zd3e27u8WFNqFmbdVY469OhjPNenkp2cuubhaQ8Q20PTgnmfFB/eLTOEVtF6lQVolMk327vsalm25/JQ0/19de5c4M31lbA8SHLCswLUKIZgu8qXOe5fTkmaoqL947MLLkYmUUWRW6VP+z1773wIAVOrrTVJSuWJy3N5I2vP4bfffitfDqDlT3/6wXXh86evSZYKK430/Y/f5YV9fjmFGL2PtQ/lqa6rOsnNd1rneba6/+Bi9213PnzZcXTemPskl47RJrlARI+ZWazX3sfy5fNhXzN0PiyJwTchTW3TxiwxIqC0LopV09bioDo3zrMGutmudWbEGiCltY6eW39epfS//fXH2+sr8//8P//914dW0CQJe++7DkRYRCstCKS084EQATGEiApD8IIYGBBFAQEEEB62JUOAKIk27D2JWA0qMERk7gt5IGpCITWoyNgvK+Q+dDYWDseLEhB4CwveWjV8G2ifMdSv2IKZRZx0HL6KwcMIGMYrBWisXTVpyMmqDxdN9M8UMsfx3OA5BY8TvJhQzWgeRh0ns6aO6kSI5+71qLRHYDVF7xHGGtm9jhtqFA93jEM1tGzabzJmIw1xOfwdkw0Dbw0TgsC5XzlDqnIxF2MtgEv8DAdDM3fP5RVmwss0j5M/jfGUcjKlL40oBS4vxfkszo3HpYHTXEzKffxzL0AysUE4mM8BnE76f0h9nlhFBOYIQGrK5UAlIhCjJSQJiGC1hgh9kXQhBZohahfYiQKhzgVNOgrUgVTr6qZVyipKHx7LLtTZIvPa1Memajwqn1g8N63VILtzofWxidokmejtYsOCD1+evv/wfpmTtqZlRFU87b+6x89NFJXa++/fH3cvv/767Z//+uef/uWfgqdP//j17//9Z+f4eXfYVaEDvLq9jRARQGmttPYc+/yHOawZ90xRH9sZLT7BsD98Gk9BBERkYRwj2jgc6TcEsEAjM3AMSmkk8Z1DBK118AGISBMARQBAVKQwitbKOe+9s6llYRwq18iwnpAQYo/phwlTYzHSUSYFcCzy19/IMGS8jUyFzJXM9POIPy46QN4ogXE9jZFlGJwhHpP+4c1nWvSzLxBmonVpxOA/jBhlWHgj2JtA//S4YRHioJFwJvpTDtAQ0JQxejz2bkrX7FP8RSFF5PG5OGlkGlWf9ENMNBJOwxgAgTD3jB0AKEUxDpW7CYEQBUEheR9Qq9SaFHSqta+bFiNGt0iMBnZdVdancn9crYvb65sN8/FYl2V1k6fbRb4v60haLNWNK89ljB5RozLeMyCiRkUmuIjQHxIjEmPwnhCa8pytUkvU1R0osNYIoXPBKGIOUVhpQ0jG2s4HH502SilFWlEIHDxCFM+bdV62XWr1VZ7vT01CqijSqjw/fQ0//PgxtF3XhUTp9+/f73a1a0JR5FpRV3dt60iTztICIkcXXO2zpFgs1ip1OlXZdgHeZcsUCNvO+4Db6yttjA4KxG6LtSgMoDK9lBb+3//+t2N0d+9vSStgCY/Pnz990lHeXd8KmsAqS/LFcsmAoevu7q7ur951TfP14dG7GANeZ9nyRmtNm+stZu/atnNtrO82TKpumszVKs1tmllKuqZbbpaCUjbN4XTqmu46t+t14Z2+MnIuz0sI7wpbNlkWeLlZ/PTXH46H8m//8TMg3f/0IXZeEywW2elc7fbHAIasufnu4/6wP5Tlf/37z+vl6k9//jH4+OW3nXh2jne/7HdBoUeuZGE1SEydXL3Lt9sb5Ui8TwuVZslhfyibk+dsHdYcQ3s+ZIliXFZVXZ5Pt7e3iTVKRGLnAmab7XKxIUWHl+fd07c0y5eJ/dOmePlwU1bNb8fgAndtF6NHUAIQgyhrGaAPpgIAamKIpEmRQSGFRIwCzOwZOU0y7lzXtmmSGpH1Ml/n1seu8f5UtpEZSfW+wXiKI2okESHqa8/yiD4GrDDsV56s7BDymZy1wQ6+4Yzx4kHJYIdHrnZidhCQhSdNhEOO54AkJguIkxUcNJ5Mrx3VHM6JjNH1UYDIEseLep0y7q3oKQwEFNXbyymPtm83IQIzwlDwDxEFhXvWn5RE6ANvRBQ5DPCEBmZeAQpzf8BsjOPmMoTeBR+MeB9LEwAQTQqERTCO8QRAYRSNasAXKABA2JdgnkZMUBBmgHUYoaFreOFQJqwJgn2V4THTC3pPfVDrA6Bi5lk1lFmTZ17w65T2cer/yMpcrMIM/bw2FpPt68+LEJn2fPWcAQ9OcZ+igtgfmD7QFyTIAAwQvLdICBSBgSMxJEYzB0EG9kmiRICRfGQgEmVASR2l8ZHQgtESsTyGI3sinSjrm3ioXWRpSe3aChmsXhw6ia0PYsnx5+eXZZ4gx5v7d8tIx5cqt/b6p+9/+PO75Tp93j8/lmVzro9Ah+r0/HLKV0V6VVQcUpuneWaNPbzsFptlTPD50yNlua8PKs8qbiMzQdSkDSpEEvaglAxnF+CUWT/KsEzBrXF++t3cAjCUYOl3jAcOgmLQ9u5JQAkcbZLEyMJRkwhHq0RrpQkjYNe51FhAdBKdE7RJdA4ZlTJpYkGDr70yCAq9F6MIBQiQmQHFB2+tYRbmwZIzCwkSUeRpymUAMcMJCSgjrp/J0SAikyM2fDuowunC8YeZahqgtIz0yWvJxDc/zQQSR3Q/vApw/vso8pc6jSORNZ4uMTSsJ2IIxhYpIAFhQRr27PW4pVdI2M8hIUnk/mnAADjuIUUco/nSl2gbSVuQnpdjIKVAIEpEhYD9g0kQnO+U1gDY+ZDoxHPUiEQGEPrJSlODIBw9KVVk1iAfH59Ox/2f/vpTsSzOTaWLxTbLqhgeTi/LYoEgmuD+emkSe7fOy6axRX6qmkfonKMASi82+6r2ECnRDAIswqK0MppC0xFhkaTEKktSr7q98+fWRcuKiCJT5KZ1gWW9vQreI4BiiaK0NqSASIBjgrxOcpXCapGlrmu7ZpOYq5/ev3x9BuE8L3zn9k/H6lBJlOV2adP06vaKBe9v78T5L58+HV6ONks0ASmjqqptu8hRrq+2ZMAU2iqJLNvb7fWdqeqOUJ2rdlGQuMguWmWTIkvXVyvPKj38t1+/IOY//tNfWnDBnb4+vhwfHlJlzzV+/Phh++FPXdP++3/+TJbW21WM+PDt6fHb13PV5GkRGnncPbet++u//fTdnz4eTi/NqVzmxf3tlQB8+/xlpTa3H+6SbNWc2/3zfnOz2dxsO+93z7vzscqXC5GoIV1+975umyTXxDpdxLVNitVqY4v8yqh/CmfvlSZFVJV1/VTXXagdL66WZNSpaY7ntosYwJw6/vRtH2LclV1VldropTHV50NsfWzjIkkSa/HldNe2GtmgWm+W61VmDUXH4Uo6xqpuRavlcpFltjqfy6qqarfyYhMtEoVVYlOrbHOsuq477J9eXnY2zcqyy/L13WZ9vT4818cQQ0rsQxBAm2V1F5z3pJRJtERBIkIKMSoczvDSOCg4UMZxq6LH6BaJylNKCH/8cP3+5spL+OXhqWufzi6AUSggws63iTFEmoQAOLJH1CJIiFN5hyHUMRpTuLjd01cjwzBBnGnDwcjFzNXHTA9NAW8Zdk/M6tz1W9nHQNoQGMHRUPfwYfT0BvXWE+wkKP1BZkiIKEQ8hkumDW40cM4gEBEBCfqzupUiZu4j2cAIAv1Q60S7EJUhHwMgKNS9O6aUAgEU0JqYOTJzZK1UX7cLCb33qLTSCiUKCCBFZkIgUggozAhA0scy+tO1eoTWF3rvtz4o6I94GIGMTCzNKze1PxmnH5y3MGSElb1ZnKdLQ79xZcjRHqHN6OTKpMXHKCX2B+sMfvY802T+kXFGZ6IzauvBn5aLY33hqOZwrCeDGISZNSFCf04WCYBEBiJmVgqjj6S0VcYH0Rajj6BM41yRWMQYmIVj4MAKEq2EhVG0UZE5RgSFHTNE5MA6BiLDYMCpCJ2CLrBEVNokVdt2URbFOkvTGHzTRdDWO1+1vg7tdmkDwCJNlwvQIB9ut+u19eCedi9Pz0dr8yaSB7W62RprnnflIs9Jp18+P6DE3a5MkhyztHHQBtjcXNUclbVWkXhXn2sBANKkxlrLo3W9rJ9h+gZADDAEknBMYiGlfPCKlFJakeqnPsYIAtYYASFmRCCrY9ulpNaLfJmlEKFr2yryYmGVNqeqqqNgjF2MInJ9tWKObdchxtC5oACVIW1RyDsnzNrqxKi2aVGRthoAow+KiBTFEAEIiUSwz7bWpAavaFa/dCSQhx4NwaVhAHhSKpMcgiBMVZFGQDOqjpGLmsvp72H6279ODt0luWnabTH6Zz10w5FSHpo0p9wIKMpQEUBY+p0pNBbplxHCwlhSFIVVn5YpChF99AKs1RBjFIG+ZqFWqEaPLfBwzm5fOpmUAgQB9sGlJkWg1Gaeg4gYrQHEDNR/BOxTaCJpDcJNXWuTuC6mRbawyWF/evi8Cwyn7syIV5tV17Z+f2YHilTnQtccjdUMUJVlntqbdWGJ0yxtO/GYKOGX8gwRRCtRwftOMCJqJSKOV4vsarlcrfNTecS2wyCZ1kpTGRprDGnlo4DvMERDKksSpzFbpiJSl2d03jK8u16u8qw5lzbP9sHHqtncXHVJkmd2s1wen3a+iewhRH84HMPprG2qSB+P+64sXVulqUVCHdnbNOXS1/XZ6IyjK4o0zRRhy1qMsZldJIv825eH4/7ortaWVHBBJ3ZRpITx+fjN++Z//uutI7PbPTwcTomhRCXCi9LFFx/5VJpa1VXz+PCUL/L3Jv+6+9LWze7xCZV6/0EHHx+rqu3cpnHh7788P31tyvZqe3uLiMwQvYVAvgECadtcRenO4awWeZJd5WfFXeha5662y02h94GRw2JRWM/O82q7yhWaEK8Lbbp4bGsP+FxX56prnVibcFUnmYnOd023O5RN8CLw/HxKizT60HpgH+0y6SLUjeOIX88V4NlY+a09d+1pYZP3V3dX1TLXap2l3/3lpvG+OpzFx/VmvV4t6qpxXZstF8/H8+O+1IZu7tZ31/e+dcen3X5/ogSKxYZRMWid5sp74IDi75ZFcZM357qs2ANFUkqxQNQILnqrLSCE1vnIpJUMIq+s0V3dKgqJ4XyBN5vN9c0WuvDT9+80xNM5gmsJotGKtALEELw2KRL4GDw7hcgSNSUKMYIHgLEwxWuVMYKaWT7KwPVADyouiSUyoBCAIZJ/8eYuGGikFxBAaERRfTpCT5m88txwAkI9eyIwUhF9cdiB72E0ykbmKFEpqwazEKFHigw0hNdFkBx7Ya9UQqiISJC7tkPBPMlNkgbPuU2btmMWg2CJBFjYg1CSZG3nhdlY63wNIDpNlFYcIhJpYziyIkGC0LXMEQlIqQFDCik1nDkiLECKgFhYQ3+Cm1eKQFCRiIS+xKWI8CX61Icy+kEeCXTCMaA1lVzCC58/JmbIiGRHSzHsT+5BFYsIRxi21SNOFBJgX2OJRBPpIaaAI2yZXGScPOjR5Fxg2wiVRssyt1MyGAPuN+5yjEqbIFErq5QG9ggcmbWxbd0qIKOIAXzkEIVImIPzTMowEmryXliRMGtCsokOWkhiv/8oQpAoBEIQInMfg1HcBI8cFFqFxjOKBBBCQFJaug4Fu66tCRKtrVWRiExi0qVilxbgoq+lJQMxhNKfjp++Nd59e36pqrAg07goSq83iyRNXee9iI/87eszO5/nSxdg923vRXWBSStCFQMziEQ2NiGtfYhWm6FGyuiAjAW0BkcA+vMpCKU/fGDISAZCCsFrMlppF7wiZY2NHIdNNQENaAjBaE0sCikz+t366nazyJRxdbs/7jc3iyS13x6eUOn9sXmqK2X1DzerPEueHp53L03jHRrbxuC6Dk2CmeGAjQ8KmYwGotp7pSlJDQl0bZOYRJHpnA/MRmujLEsAhJ4hYI5DPs1FfORCyMwC4BP7ciG+RPqdHwNWlAlw43T6wYh0LrH5GTLCUSO94YouATyYmjEyPdj7J5ecm8Gp688jUqQZmUUUkkBURKRV611//rQixREAhYTHGJn0oJBIBWajDAFprRExiGcAYFBKERAChOHUB4Wgtdadc9poAHbBKaUYwJisY98X1CFlOQIpJczQUzIY+x2TxhDHSABaJ6hMF2Vftd2xPJ794/O3FiXqIGSqshOWxCRC1nWhKpvzqfLBAwJLQKNv3l19+Hi7WS984x8eTrTOqOuayEErFyJy1AwJmnSVgbbbPL1bWQVtvtDGZVeZtVkuyM4apY0HYU2CVO7PhBhj5BA3JiWFWNViiTrJUN0ti5K9Z51ZfarqXftQLLPFclEeqrYL26ssRx3FRYjRCyGU+0NXV4vCfvzhNoRQnSvdOheFy6oSQY3xdHxRZpEuloiYLZYeQFAykxWndLFYoKK27ZTGYNEpbsvnjpvFQv2Xxce2VZ9ejplJBXm1XBU6/4///qsYe2rbw/PRmjTa/Bzx//z52+d//LZY5VfXm9a5/d8/LYq1pLnJsp+/7v7+y9dFrq3Sf/vH16+Ph+8+3KbaBIdPD4/Xt+8225UU7GNom1KTLKwlmx27koxNjUHGc9kEiHm+2Wy3CnV5LvfVC0kI0XP0dd1CmovRh+pE2lpjGu/35XFTLLNsYSp/ajwQHeu2icF1LaJioe7z83K51MaQVWlaVOcKFJcOTseu1Oy4/vStW1r655+ukhU0Lniguu72h2a9yiNAVmQdSxe7bw8vnfM/8MdidaUliIi1WqxarwqyaTA6yVcUD6tNehuyzWq1TUy3SOqWHg7nk2rtMg8hKktti9paAKVcG/ra84q0QqVwkeuWlNF6mdIP39/FNvzzv3xv0B52h18/fXncHb69nCrHKluQxj6UICwy6E1ApbS2IKhEscQ+yNBjmVFtyEUfzJOOR29tHhWZJRAOPtxF91zM4/TEEUmNDNDIP4x/v1j90db2ycIX/nvYyiaCSilhUEqxiCYtIMxMICLch6CIiGGofI0AGomMDjF2rtVaa6WtsZpIJFZNR6KM0UqBTXXT1EqRUj1GYZuYtuuIAIUNKaWViITgUUBprRQRYGpN5GAVRo4CQtTXy4AYo3cdACmtUClCioGFxSgkQ4q1Ju1ZOMY4JKQrIkUKmYdcV5p4s97S4WAUx2TqXs1POcUjwBn81/7aga9jEY79CSk9aTfEJUVEkYYxE0oYx03M0KeRyPiGOQs02h0ZWJyBt6chTjDzz8ewBE4yIGM5c6VUCEFQQoxA5NpOK1RE7blKs5RYuq5mUWmRJsusq9voG4oBXUJArgmp1TEEiNGLNlqDIpHgYjRKoXAvCf1JeMwQhZU1whFBi2BkUaREgWs9MVVnz9yfGcBi2EWnNbIHhsgs1jBZCshlaP25TZTq9jWqtvWOldapbhwzKiF1OFW66YzW4MUqXSiNBtLlsgniuREkY3UQIBTXdDq1BORj4PDqwLXBwxjCgKMDMExFfyAGXUACIxAo0gq1894ao7Tx3sUYBdAoDSyqRx5KJIRMUaZVV57VIjWAHEMKkjAstTLXm9V68/XbfpsVUXht9TI1HQRbJFJk6XrxWLYPp7p1bZrk5zYgsFKkkQBR60RAggtaobVp8MELk1KJNhzZcwCOxloi6NOMRgZrhCQ4geph8U/pPaPyGHcaXMLjg9iP0i9zj+vClU267BUt/QfkEM7+/7srLqmPo9LrETwbUgLY+c4miTWJd23nOhKllSFC9jEy9/n8A6TtF3Ef0YL+VCMiNT4cAUQUKRwyvwBJMUelFQBFjkYb5x0iKFEkaLQWQKW1CAfnEcFq01PO3J9JStQvBIU6QrTWRghV07FEihjObRuiyTPH0DW+WKdd3b08Ho1WgNg2QYBejmV1rrc322KZP+0OgQNA6M6nzBjD/jbTvMqaEIOx4DtMi6tNgSwcwmZzza0/7ndX64yQl5l+9+7aB0aAxCY+MKS6bDtQVAIGH4/7Mjf6tsiUBjxrbYzymBpCYhbfta0xZFAIIU/S2HYvLy9JmkbE1jnnOkZugzT7ip3TBCiQJokqUtcdtNY2ggiBQsyK5OOPHzy057a5Wm/z5ZJTXR7PImG1XfvON53TmSWixWaNVp2barVYbhZr4ETYfvzpz7vD4Xze5zbtbrfEgQ0srzbK09PzUWeJDzHEYBeFi/L0UkdkJhYO7ampmkq0/fj+/d47cpGVPpeN3p9+ur9Jt5q5s+uNyZfQRQyhaaq/f3pMSN1ub5dX74/n876Mz7EqQdXnVp4O7+/uILTfnh6EO5SgEsvGhAia9WZ5fchi7fyhbAKw955JXW1v3hfr5HyqXdOd66ZqBJVr3TJbWIWJkcgBSfJshTG2vkkXyWLxMUZwDiSyr/zfvz53wlVVCUftIKKIwSJL8uXGSDw9P5+bM5I+VO1//vp1m6kMZblZBQxZklGRHzl44uUqWRfmIy5++vjhLjXudGic/PotHlqdrxZkTOu7iGhManT68nxQhOeqBOTlqiAgY22ib7XW3el4XSQVRht91XVfH56eTudv++rsIaAWQQmRkIILpDHGqJRWygBpVNS1XV/UdahIPnO/cFbUEEeM8loh4OR4yXgoKY7YZgyUvfKvBkJnIob6nbkyRtHGvVL9Nop58sPrTWmDfmOQPkTCwIASQjRGC4AAMyCRgoEF6C8AEVGgAFBYEWqrtdYYmTWZGD0CaKOBoWrOWiljrO8QhBVpFGKQ4L3RmjmwRKMNADsXCAAQXdcNwyKtQrKJVUTe+xAF++17o4+OINQfkwNASqHqO6uEEYSJFAAyCyAwRwKiwUNlFkZAvvA6Q7bBBXEMbMs4PQiCffoXisT+fE1F1HvOOJzjRsygwGglwoEQ+7PNBftim9SP8BCJYJq2+YzptRP/N0sYG8oVypgEOhT1GeXnEtSRPmMcQQQ4CgJqZWPkfi66pl2tlpEjREYARQoEkaNrK67r60WyuF4i4tOuLDvZXC1c5WrfegmMRilUfeCPgAiBCQWiMABEQRDFHhUqTVoNQhkVoibVOSZRxhgfQgjoAimF7bkVFh+YQHRGDWjSFAL6hs+KV2udF0WobZLZ7qWCQEmSl+fgXZS2yxeUFcn+3OjFMk3Tr6fKA5hVlnSuDU1oQ/COQGxKSqMmChwJVL+YEHpXQBhAEeHA3UUcymT3uWCqT81HBoA+mK2AEBhjRFQQGQILIRpjQuclOJuSUei7SAIJmlBV5U49nquuaTvfHk/F/fur7XrdHktflgmo/b70Rntxlt3VerFYLrf3N1/3dfLbt6/7E3pvI6tUKSLXubZxSZoqa2xqQCC6iIiotVIaUQl4BYiiJsAycoMz9+p1fPWSljbg/AvDOMZ5J+UyxuNHCN9fNQPrI7c5S1+csNdEWv8BIJoeNqVgz7ThmM8MiAqJNBgWabpOYhQkUoYvZ//gRR/itFQVojAjiu4TEWNkBgZETdgvW88BAay2WpOLEUkISABE6z5rXaKPwkMkLYjpi/MIhBi1UaRI+hKWLIASImulCCAIm0xbqxtXp6le2s16swixa3et1arIc7xahC4+fX40abK9uVouFyZJ1tfrfJl8/fXr7vnlsD9srop1nmkwFCHhuFnnZrHMtDDyu7s1gpxP5+p83L8cz8cyxPdZkaLSHjjPsrasvCvbul7drrdG2dwk3kYHxnml5V1uRTwW2iTGKnM+NLvnpiqPVd3evb+7vVmnJosCbdfleWIS3bZN3XRPX59FQQDaPe+3q+Lqalmdu/3zcbnMNJFO07xp66IorNVplmqjqho8t6KhdZ3NTLIsyt1eXNzvji5ysV4nSgNRU9Xl6XSzucEOjscXUTrfbNYZKaetgs1m8b/8y3cthGJzU5isaXzrw3c/fO8k/Mu/5v/n/+e//fr5S0C5vr9WJvXSVm2M5L++HI5Pu2WWGqsJ+BqWz8eTwXh/f53kq+f9UQufj+XhVD0/H9IsfX6pl8vVvjyX3ZmUWW5WrYfnX74cyqZILQBcX1+RcJJasbnXzckFcKjTpDlVZduQ1mRw19ReHazNQBFppY1OEmMS01n3w/vv7u+ukeLuef/8fDi7o+vcsSpBL4tMHw6lBLhZbhMwQbBhbFG1vlMhNseuie6fvrvn4LrYGqvWq8KY4u7dOxAo66YBrlu/Wi2poOh8DIEdl3XlmloFKbS+WmZ1d6LofrxfL84tWb1cLfalMKrV5mpRrB4TlaXm+YlE4vvv7stzna8XJIpD/HI6Hvf7YrWo2/bLt+PPv35pIjtQOk0Eicdc1yRNFGEEDsACEGLACHpIvUBhQBpphCnDZq42YNIAY/B+wC19hPyyGerVLVPEalItiP3G3VF7yPi03hMUoH4Tx4xvGomkIejSMwiDRsLAUREGDgwBUQtKjEzQx4f6supDogH1+YnMCKSAjE1c2yBF7zxSX2AACSlEjsCajbaao4QY+3aG4ETY+2CMbl2XJDZJU+89x0hKEZEPIUYfCH0btVaxPzaLhRQp0sPGHoDIAkigFIt0MSpEBg7BI6BC1R9swsKESAQANOz16/mcC7d/CUkCjsciCAv2Se1jQgQzIiIpFBgLvqHCPieBGMD0mAipTzEWGvJpxyeMm3UB+eJrz8i+gQ6ag9whK3ua4QvjN8xnD+AGR156IKsGKIQgSlNqUsozZUgZHQPEpk2sChzb8lg1J3LuX9//l48f7qqm7o6n1Np3t4ta10+uqz1jv90XpC9PEiMYNAAiMfRd04q6xqGgMkhGO+eIQLGyJkXgxKg0pdPpWDdN1YYsy2KIseu0JmuVJhDPkVXbBULddR2W0jkkpRRgYMms1kpZm5o0Q5R8mZOWKO5YtS7BiIoxJohKU5rZxSKPQdqmdRzZA2CfpzHtKhcggHghLwSGmItAn3OmXhEZCMBCSN47FtEaJAajlTIEgKTJRI2ERsHNdh2yrN2f8iRZrjIOwUfIt0upKAL5iAz48vx82J12+3PrYpbZRGeb9fJqvcjXi7Swd0j7fXI6SteGbWpNbjvnjCUKFEKHCEjCUThGZrFak4LQOVKEoFDQeUeELEKEg8S8Ahs4ShrMfbCLuE8/jwmBiCNnArP96tO4TMzQbOnI4Ne9gUl9EBhefS5s9yVpaS71AsIIAjwk40QRDHmehC6GEGKMibGK+n3fwgM0v7y0X22EJCiBGViUpRgjAPrgCVGTEgEXIggYa/pD1G2SKKN8411oIDoUiCIxAABZa1HrGINJDQqE4BWp/nBsCDKc7k6gjOnqCqJfpUkQEaFAAKLu799drQqrtSuW1bE97Ms0zVRUtzfXAbjpWmFIs6ytm7JstVb+HDbLBQWs2zpJlYXiKjdElLIUy1x7Pj29OFfXTfPwcrhW2yxNnYvLXJ2b2iApYx6+PGVFahvbNS7Plu/vNq5roKuBOVEqtTY49sG5iJFUkmYkpASjDyGya/z11bYT11V1ZpOb65soUnVNm6Xe+abqttuVNlnbBiStn3c7m5gkS4ClblsrZrnIbbqqW8fMGClTybE7YEwQs7qpOm7S1DYdnMuT926hHNbHw2nfhrhyTZ8SrIHBNx83qSmsF+1Te7reNhG0Tk/H4yJVmc0WJju7ikAWReGaWJ7b8tCU+y/XV0tEHZmapvvt85O/Wi2MJinrVk6nPftus1mrzCRF7jz+7bdvgb9JolRKSYaPn3bAXFdnJvPx3Tslwphni+Rqu+7ExOOXf//Pv5+rru68D8zBa1KGVNf5x+oxL4qiyHJjXBJWywRJ2hpXy3SxNE3b3b5bXF8XD4/HpjHFelWW50NZQYjbZfbj3TrR6lCdDuXhZbfnCNbo7XJZo/775y83C5sa9eH79wubvTydckBQUNZd7Z3DVKs0+qekSIrl6tvLy/PxfHwu24Df0m9rXBsITVNuPtw6CG3TodeWfQS/zdV+97V+/rb9cHtT0NPu+PLlWwf+7vur3/7xrT21++NJJapiMD48H+pT7aqAlKTaWGAUGvJxjcXgfQQAwsiMgChMgH3Z2SkNVWSibCYqFmgsty990AKHChNDph6MD5jtFJus5GSwcVJiokbd01/XQxzp9/yPBNGYJzkEckQEFKmJPpJxSyxHVkYxBwBhiQJACFqp8eQcEkGWYd8tCRApYfDBIXvX1cZijw6aziN6rRKlDCO0IWAU4SjApCwQxBiDj1prVBhDbKOXACCotOnxjSajlGFmIAGl9KApiQBFhCXGwEorAGTsmWkhwsCslTakWKIAa0WAxHFUw/12tUH5EgIJxh5BjkEx6tM+h91UkwkZ0qxAJIJQBEAQjkwDb0RAokkN2VjAffBz2IIFQkgwRLyGsNZsSw5dcA2OMObiik+zN2W6wpTbOtqfPmI2bu7tA3HMIXoPERxcX221Up3vrEqpkVP1cpVkCUYfutDUiYKr5eLH23dPz9/adZptrn748b69an9W8Hg4mzRhi9W5OTcNJRkwtZ6J0PuIRBJ9aiwa7MORESUChChWI4pHdm1Zujo07fl8OiPluNjYJMlTMkqMkSRFINN5yJI0hhhYn/cdacmW1iYALMIhW6Ym0YfylGSpNqrvbUCIZESp86ltOza5tqnJkwwYOfjQBe7v7hem6k+c6A0j8bBTcCTVEEBEDfwsD4h0PM1BUECBIYMKnXNaa+pxB1GQADGutsV2uWBrXs4tMILSdeXEpqZYFCZvm+bsoXk6laf2+uZ+fW+fd8/PL8d8ZdebhVkU+7rKEwQ0qyy9yYqXsn1/exsx2GR7bqpj0gjqznUuOKs1EzWdd3WVZDlECSGQUkqDUv3hppfzXCY6Z4ouzbEHTN/JK/A/UTrjasG+gMLEGOFMG/W6hIYExNF7m7iiEfjQRKAOwjw+Y3pW/w9Nh4KAgBCq3jsCpDxNfAy+C0SoSRH15QB7b6RHsYT9/b1nRwgMoFQQEQAiEgZm0YqU1kCI2B/3KaSIlA7MSNp71zYeAycJkcYiSyUQA9adZ4EQOIggKkFBrVFRbDsC0AoFoAmOKSEAbRPgAGRIqyQx2hjoQGkWEWCAIJlNtj9ty7Iqz9X6am0UxahSldxc3eZJjgTWUntuysZ3TXsqq1PX3oVorJLg62MM3cp7TtNktVgZykDppnLtuW2NOT3viTDbXEsMyoSqcvuXfZ5nOskMUePamp1zvD+e80UAJOfRpulmu46uA5bD8eS6wAJRYLFeEIFOaJUVJHiuqnfvropF+vjwrDRd314lmT4979u21k9PD/f37zSlRNCGqI22SYoISZKIMRDF1c6I1mm6KPjXL1+7XQcMt/f3gHzenx4cvn93tygWFDqEKN6hj4BkjYkxhMorw+sM/+1PH375uvvbL7/s6/rz3//zLz999927fyu76vlYuqrZrlYGaWFO2sQ///BdcKFu26q1h93ua1P/9S9/3h3Ojy9Ha0krEFSLxYow3b2UoNAFv8gWrBkSvXt82j8ebu+u77//KTX62y+/nI+nm7v1t2+PPtJ/fPp62L+c2/juw3fex/O5VtokuYW2Cb4yRi0WuUZ9ckEJAwsB/vqP3/7jv/77Yp38yz//pS3P7nzKsgJJGWdsaldLnVv68/vruut++/rp0LWLYnF6Pi0WlK6uytNh9/LSrrN/+vG9VenVmkLN5cuLSUx7rj347c219/Hbl283t+u/Xt9+qmstfHu9aZwsbJKbFAicHE6VO5TN+XDqHKdFbq2tqmq3e+nVbuN9ee6+PpxW15vDvnx62rkq6DRzHP7xH59UaoJA3YYmUGJIWq+10qjr1pHCtnEiXoCFlJDSqcGIwTlQBEQkg9/er2sadkX3emPYXQpDbi2NO4wmj+tSoGUIjAwe12ARL1Hz3szOvT4ZWI0LpSSoxvIWQw2RvjQbTBvAe9KpJ5yEcQisESJgRFQ9QFMIzALIgKjmtVIEEERJkMZfLWyaaK1103XQ1QxAABpJpzrGICLOdUpBaqwP0Xcu0Xq7WXSuJY8h+MjBRRGtg5AggaBRhADBS+x3iyAgwqhOoggFH0mRhB6gUPQxyRJCJcwinkVCZOn9SegLpAr1HEmPaQSkryIvggqGeJ8ICgFzXwI8sshQhg4YQABZIjMT9K7kACARELinjfr8A2ABVH2iFLBM9dwGeDpYDehbPsQlXzvbF3sw7sIZ4fRktHCsriLjDngEAOAQEQRiLFKFRNxVAaGpm9qpwuR1eSoSLjK12pj9vuHAoT4orjMdCyubjO8K8Cbhbr1a2mK9RKu/fXv5+nCsgnhQDBiCEKWIohOdGBNV8BEDYYjBsVdEqUb2bVPtXP18rvZdUyNhXmx8KxAXmBgwSuvUORAUk6Q+hBA8aaSokYCUARFmicL9IiqyTFsdPQsLRyiyJQO0dRsDiwB2UCxTJGmbGsCnCakka7yPHfjoFQw5e8OqImLuwyITT9bbeJ6W15CDRRg5IoBShIhI6FyHJIQogRd53p1cXTcv+yN3rmo7z3w8d3XdktEdqCCe2e0fznmWQeRA6u7uRqzClCi1p7pNVsXuWLYiP/z4w5+S3CTZZnfWWjHi1WYdt8tz3UWW4/FYnutitXLBN8GfTzULe4Q2eEZGVsro/sDwIStxDnBG/DyBjwHzwHjcmMAr9DNcIRPQhjlJOTkEMuzuGpTViHlg3KA+u/jyX5njqlewbEy+GzZ3Df6HUoSoXNshoWvbJEsESBECUGQBGSuT9nlMb+pO0HCwszKGY1BaARIDK4J+zfRcrO8CIRglEBzXTaLNTb7arG/WeRZar2z26dvTt/0BSAtgVTdpmmokjKwZDJFBChiFOXatNgYgIkBZVonS2d01Eh7PZewcb9erNZbnyupU96fAMxDpvEiZ0PlumeUxKKVVmmeh4/JcRw6kVNPFz18eraEiSxObvDyWQLJeLVaLdduFqnPHsnx+eEqTpGua9x8/fP70tWnb7XZltE6z1c3NNcRw2h9idNbkSmlE/bI7FUXRti4EUf0WQgjWqsTasqw655+eHm7fX5skbev6fD6SUkZTkuirm3Wepc532jDHyCLapknXtqXgoshTo9u2c85leZZmOQt0dS1OFqkNPvquNoor32yWm6LQ3jfasgvnpskWZmGIXNugxFiHzvtsuTCZtjYJCMXKWh/eLcAt1W2x/NvPj++W/OOP1y9lsn0xz8/NuT6vrfzv//e/blb203/+evP+Tie3zy/7T8A+eE0sFrqqW+cbBP7y5dvV1U1iU2vx/maV5cvkavHl8clJ3CzS6lkSY7x3+7p03jVNoxWsiux0qquX/bubLZ3d/ffvm8bj475qWga6vrtbBa+IJKguhhiY2S9XuUQ5VVXbRSnd588PhmVZZNdXSyUSlbtbF+8/XvnoDy/7h5fjue3qLq5W6foqWyzTCOpURx811mCfamUP6yxZrJbOtVop4ezl2NblWZFlVBzUaXfSHK8WyccP71vHBtUqX3z+ciob/sf+y6dvz+DxvV5IV1f1s02TyKJV/vXnfXk+bLZrhYtd2Z7+6y/eu5SsgCrPrQc8n+u6DqTTZb6IQSIwEiDEdaa7plUQ09QohQHgFMS7QERK6yiMBDCsT7xAFgFA4J6Hn6mSyBGGOA0Ph1YP2GdM0UUcFBKigPQk03D8Kk0hHIR+owsxAqEgAvbV7YT7iEyfO9JDGBgAwaAPB9BEIsKikBQpCUykEJEAWTgGj4gxBFIaFQEqpRURAUtwHcSwSEye0Z+/f1ekmY+hdt1v/Fg1Pki43m60Vo9fvxZ5Imgkxu0i71r/df90fXf9/d3mVJa4WXTev+z2bdeBhCTLIpEP4n20aRJBMUGM4tsWhY1CRagAQEHkoIRYMEQAIkQMIZAGJAIg1afpQo9AGIAJSQSIiISicJTYB7AisICAEAuLgCLkoUjCSOuLCIAiEuEQhZCIFNI4a8NesH4XHSoAAGFkQh2Eqbe1AAgESCzck/8ogDgyQn2krPencQyHyXAQBVzslAzs1RCzBJah4sFIKhKKWGUIQoxdiqwIfdV417hzY9VS0hDb06dfHvNc5RnV+4ccojv+dv5Gn758+tvPvy032yLzq821xWa7wPv7ZVEs3hfpjdG/PB6/7lukFEwaJbJEZVUf4WNm0kqDRB81ssHIqqvb5/3Lt647rxZ5vl42dVc3x9tFARDqs+uakBcLlVBXVV3bsUCSZFmeKas1CseQZJnSquk4MXq7WXMITePaziXGEtD5XHedWyxybXTnm851mIjWUGRWaW2y7NwFIQxVDCxaI0fpU8mNNsxeGICEaMxtmY+uCCH1GzD7kwI5BBc8IWTGAjCIEEjdVFpB8GG3O5wPZfReANM8y/OMhZ72h+WqAKSIlK2Xx5fDv//n3x4PB7tIipvVseuk9bvyS14Yw/Hx+Sk0HhmsEktcn+uHw8v/7f/xvx2P1bdvj+fz6bvlJlsWrCAqcNdh93Qu666WGEgEOfIIS3o0PygdmftQgz6RqQDEyBgOemh0x17h78G/6ZPmlFYcedrUKCPlIwDAPNI/A7sK07Mnd2380Hiux4RVpoz+/l5C5D5eHCJixBit0SpRILHzXSSldCIiGocDXKTnf/o4JgBSn+IlijQlRgCRSDh41xFEZCRUhAqRvPOJMakmxSG1WlF6e7XdLourzarQZG7p28thT23KHZAO1jIQCYPzKvr75Ro5huhVmh3LMwMbYN9FpXC13vjanXbl+XwiiSGEw7G+ebcFAl/WVxGUEGZpI0JMPkjXuFg3zB6MdhyD71wIeZHZbdJ5L8JRgWSFyhcv3x6Znc2z1Oo8TfIsS40KVU1ARV4cj+e6btabTYhKAJfLpQvKt+2p7K62hdE2Rn97f9U2PjK/7PanQ/nxu49pZskAEW22iyRTu5eSYyRB73x9qooiE+H90zMgGqOC685NCyExCaK2+u7unp3z9Bjr4wABAABJREFUzlXlWWsTENNlUjXVsTykeZGmqVXGe+86TxTfv7+5vtrmRa4z23qd5KkOEj2fyjNqFBSJFINv244yu1yu0iIvT8emrpxzN+v8x/v/uercJpf1Jk1tBFd/f3+dQv2f//0375vr5P33N0VyvjZapakpwuLmLz/YZdoBHOs6L5Kr7ao8ns7nuD/sM536qvru7vr+w8dDe5aw3Z/KJOf8Lz8w6E+ffsuyJEnM1dX23dX64+1t03WLq6vnpgq8P++eGIikvbkqvEB0HQA7F9Pl8nSsy8Px5np9td7oG/J3/Os/flMKFrnefX1IbJLdrD9utiHBQtHG6Me2+/Tl+W9fd5zm6+UqdsIs/Y5bH7iNnAKVjfv5t8f3V8v3d1dXtxthPjcHo4kl1s05yTNbZE1ba2HpulTB1fW2PlUvD7vTvmTHsfVGKR9g93IKEp6fDyrRxWLVNUeTF4vNNWh7Lsun55JVtJoyE42BNkhWrLhu8zRqba01MXLVtOJZp2qzWLVBNml2vVklabpvul92x5e6RWsI2BhdO2eM1gJxUAUcRRSCCGit+jODUEHgSKQgRK1UlKg0ASFH7nfy9BF9BERAESFFg4MEoECBiCBzr4uHtNl+B4Qwxt7h1aSRFAgGERGJHPuihMoqpbXEGD0TgUIKnkkDowAgoUoS2/kuhABkeuuuFGGMaZJ474V7ax00kVGYWfR1vC0WP1yv/vm7D0WaPb0c6uDj6fyl3onSP94s2cdo1SLV1+sNe79ertvG66paZuY+TzYEq/WyaZsvHAFVUSQepOy6p5djEzm3WqeFj7GuGjYquphoLNLMkPKtA6NX61UAfHo6NG1XrBad74CFRZDIOQ8giTWAINBX7BUkEsIQ+36IMZYlAEhkjsLGGGQQEa0oBhEUJBJmjox9JiRLagwHlhiDCChkAQWglQIkwWG7PSCygHAkRcBMiFH6LcrcRz551PQ0GIO+VhH227B7r5t6d7iPq6L0RSgZRAGqMQYGhKEvCRmZhgK1pIQTBTbX17f55mr1699+fXnqlkYpIoOyzOyXb4+kbJ6mhrg9HH/9x9/Jn//x6dfPn56zxRqScP/x/e6xJJuEUN3d3SaS/PThRlDtjr/50CZZcipbHzqkRJOyBggBTYzACgUhunZXn3fn0+Pu5VuRJ+vrhYiQOK1TZGeTFIXSNM+LIkBwbaMsZmlidOLqID5G4SRVSZ4yg28lsxojgQOISKCjl44doGiNPY5XCCgQY0itCSBKKWuV8T5V2BH2EaIo3BdGkuisNsw8JmAxEPgQtEaA/hAFHCaDdIgxhJimqUGKHFwMwBEBFos0eO66DhJyre9iCCEgKoqSkjLaIBKRsdZIknTe2yRlVT0djgUuzqF1rVOgMk1l3Ty9HLbbJQqllNZdq/JcG7N/3v/8H79WbVdVZ+9DeSrLql5dL8nod5utO9RZkdLV8tDUlXOH2qsk6TpnrUXCyMIce75QjYFwAVSIgsTMRNQXyOjDQEO24Ijm+3pRzEyIpHBI2iOKPcrpCVQYw/cwZOiTop6BGgReEBBZpI9ZD4CMBpZzSgwYU+KEiLgv60UYOWqtOAThqAiyxCyLDDE7nuoYGtSolbgmMFCSmigSWUJgren/S9NfbduypVea4GAynLhgwwGXuytcUpQys9VNvf9ttWipikhJLj+wadEkw8FQF9vjJX4b1uHrhOKScs6gIJhTQahQBBGCVpucA0mxb1XJKcUMMALoe52lIICBd7vjbqfEYdPUXLp1mW6zEAynLGDZ1kJut1mpcViDtSkXFPNd31AA9LqIpsYursZIRNimgQRLoRy067rsN1sl+HW4DbdxXk23aykk2nsYofdu0EYpg1B2s8E5ARgpRRZabbzziUuZcnHGAQT7w4ZQdr0Oq7EY5uvlBlIRjD2+f8gJHw9bzqqY0/kyqKZp+9ZqN85rBiWnstyG4rOzucDiTZCENo263gaEUdu1jLEUk2i78Xq5XUdVyaZVBQKjtZ4MiKCrOeXI2PVyu6UMMcL7bZdcEDXPIRKQixCcYBhMCCnUux4iOOulgFQpwAgqwVunY0xK0V50mDJjzOodYwQLxkvxOngXi4d1J5q6KgJV3gdcYojBGkYRbiucm2xLV/Htpo1p9dlTCHabimDKO6UVG2ZdnEap+/gP9351wUUGfbfjx8e7IYQv5zyOYB6utWokpm/Pr9flDEpwKAVF95ta4pp4G1AJGVwX93p+pUJsZC2FLJj6kjMMx0NF50IoHpYAIE0AZhON8wXkcR4gBMftJirmVskA54xiWpbrRYDwcNj9+MP9f66zMbYiUFEwpnBdzE2bs44XnRaPeSUEV9GGy+nk1mV32COKiGQuBBMQoXAY567lom6s1dfrZXs4CtWQELjkGWdE4HGzsSGEdQGMCwRv1yEZc2ibum832s2T1donzIYy68nLFkMGXEo4eu/9OK8+o5QBJAQX4mzAnAouMOXRObc4N0wA5k5RxbAUGBfTK/huq37+eB9C+v01vuXIIMSEgByjj4wKiEFMMRUQUoLo++fqO0eHQIhyATZ6zHlMGaRMEUClQARDShCAkjLEEGP8PXNccoEIlgK/n6qcEywZgYIAACUhjGABKafvigHBpJScYSGExpAwwBmkAvD3DCBFKEWfbLJ+ZpKHAhnlCJEcIgAQfEdypJRiAQjFDGIMdV2VmHApy7LWiqMCKKd60aLiMLiK0EYxUXcf73YPm3pf0fH8tmNEgGIERjWv+u6xrzIoP7/77yG4pFc/p63ESLH79ufz9YaWG/V+t+X1XbtHqet3McUIc6T4y9Pb+TZfbwu0EMX0/v4QgxvH8fHd4X53Z4ZlOF1kxT/8/DEU8Jv8er1em77R3s2LpoxP2i2l+BhsjJBAgkmCMAOASskZlVyUqr03sZSUghIsxoQAyCnBAktCBQBMqPMek4S/y2kIppQRoS54nDLFGFMWYQkxIgQKhgDi7w5Nzoki8t1D+TvyEUBcaAE55FAARJAgglNO34ki6O8hCAi+pzoBAKXEHCHEGGAIIYCx5IxQyRDm+PcFtJQjRqSkhBlJpSCMUAEUU4yQXy/LcnvcyQoJEQswgaZScdk0G0yZsVcu0XAbo9bBR6Pd3769nMbrbR6NThuhfv307d/+8/fos1DV29v1v/3xT+/v3sGEUQzJmKbreUWcLaXk/a4uwWdrIPIghxxsWCdrF+CtmadsJhimdQG//zISSPq+V0plN7nsGK02rWJcDmamHGNKECQEoYRBjBFkj5CM3jsXMBHOpWJLjtH6kEv5vgmASc4pOBsxlFzQArO3MZOSYiSoxGKyC61kBAIIUYzBpiAEgxiHBEBBLuQQE0QglYQIAhjG7/oEwRAikFEqJQOYIS4YQspRQRlCSkiJCaFifcQYJwQAIlISCEqmRNaVahsAkNdecFYyGK9riI5XtKokk9LFVCj3APqSCUKKy+hdsH74fEEIHQ4769xk3bvjg+jTabTzOscYparHaZ2naeutEGx6uZp53vW7nz5+fB5u52GCxXmMSy65/L3/TTkvAOYCUowYIkJQKSXFlGEGCOQYEIIQIoBASvHvDliGCEL0dy82wwIQhCkmUACm2LmIEEII2+CF4KAgHxwu36XIjBFKMSD8XWouMQUAEKKMEhpSKgV+769hgktJAJS/g3MwyTnnEhGjJeXv7YeUImckGl8JHqymIH/YbTadggWeS3q2Ixe07ttLnlKBkGITEuSMMppjdMaUnAAlOWUEAUYAltQwVqbIKSaE/HB3Vyt5u44uZhcitiEYRwXHGVaYSYxIDtFH55eYHeX1lrKM0DaXwfjbcMMuunXpmoZElozdbbpjJTAheLFnEzZVw2uhvUtOKwhyAdkFRFkl+DVl651KscSiFyOZCjG5YImiYXHrbWmUZIwDBIVkGeCUjTOGCVJVapqWZVg9jeN5AilLxY1JGGUh2fXyVhJoRZVSWVdLMPbRXy6n4IN3iWJS8mKtZwDq1a+rpxSyGAoowZqqkYJLUJA3YZ7WlMD5NCsdGSM+eVBAjAkmPIxjv6vavo4ge1+ii4zQFOI6WoAAwYjEGEsphBDCKCF4NaaSlay5FCKGYI2J3kGAEEBOOyEQioAByKWMPq3TlGPiXBKIaAbJ+VJgSS756HJIjiICOZcEoWEdrdEIY6/N8f5Y1fWAp7eXE3Tlp3d7wA6yFavzAjOmqKoEJ6iUBGEp0Vccs009jxCC0jRVr35Ski3j9Xx6y2GtSYVDdBxNLgeK8a6+LhfnzetiIEYhhtuVVxwdtv2Hh+0uwOfXOSWgYD7fjEt6c9gce4wQZdFjv7asMBSKNcCXGsFqXzcCtpT9f/6v//NyvnBGbpfJxaRz0aO5ehCoqo9Utm0J6bpeCimDme1r2GzazW5nb0OCqGASSi4ZglhAibUUFRd10z5slHNeD3MuRVW1hGBY1/l2TSakYBRHD++PpKmn1U3DYk3QwRfjXodJwJJInvS6nBIqcLisq4/tZgNTXvVaSpaFV1VNYF6N2VdM7urr5cZgfGi73b4hlDS1RCGa4RKsl5h0lVhKHI0j+LsxhVxwOXopa4q5945RikoBJRu9YogQxgCBjCCGpOGVWRaIsV01rRWCMFhLMfUuYkYxRjmlkvJ3MhgCBCJcYM6pgAwhwbkAUDKi9PsbKOUCAcQIx5gwwTF6xhgTvETsrVMUC8olpTnRq109xt5FDwhnHCAQfAje1xVhIJboaA6MMhoiTEkwdHy/QymXmEvJ21apWiYX+podNm0txbapeCnX88VM8267UQQ/7reHTS8bhTCWTS1q4WNch2GlSDGaAiiYYgLXec4xEwhhCpJCAhNgpW5qTBnJsBOVhKd5dYDhP73bWG3mmt4/7BRliwHdsWt3TdfJkAp5v1+3glISYhqGmVA5rV77cJknH6OOzgZLFbc2AsQE44AAjArI2UbHKXYuIAgZxqkUTKlNEQFg51UoQhEKxitOVm8RJzEVzjkKJaWYcoEUYwKzjwkkgBIqGCOCKC8g5xAJITH677xbikguCRCUc4EQhBggRn//pc4JAQz+d7MMQZRAJJjAAjPIKaXvKaEYU4GAIYoRLTFxSlNJoJQUYwIlhkQLEpSV4s+X56ff/za2bF//H3eb9uG+lwJWsmeySzCza8nFXi8nr4QzBsE4hHg7ae00AgyFkK35/OmppHJ3uGcIo5jWy2RWj4TyZmQVDUsgwAnooR/8Os6XKyTJRz2v8zyPVmuY/LbtJaMEwFwSzAkLFKNdl5tnwfqEIY/eU1olUPr9xjk/LFOjGilbJAQsEeNijE0hAIDWEBNmnDEfTE5JVrSUEKyFEHCuMEEYgpBy9DHEVEoqGBhjBSUNryWmMfhMQKKIMsqlcjGdzoMgCMSMKXUuphi5pDGmAkDJEX3HHX2nuUMkCMnegRRhjNH7FFMlGYYwh8gAqrjEIBcXHIgpRAhK8iE5DzGKLphVO28xq0PIBQDOOCgIZMRJVWLSa+JMAIKd8d57VnkIoVk0JmOOyRnrfGBSiG5DZHu5TX/7r08PD3tBcMVEMObp02+JlkNfA0a+nEcAYUqZMFpK9s5CiEDOMINcsAMJEQQRTDkTCDmnKeXvViwm6LsJ9b0eFWOKIIFSCKHBW0opxMRay6jCCHlrKSzR6lywkhIjpNeVCYIQDD7nlBmhGGPBqr9PlAMISyYIVw0PLuaUck4ApJri6L2AJKSsammTLQgAADIIEEGBQSaoYRRUqkQrYdnVIofgGcTbru32Vdc2EOoYJhu4JFAQZwP4fiExVErMw4IxlhiCkGnJx7aWnDEI94Lvd52CyLg4LmuxNhK8O24IKOs4kIS9ATnH4/2h7TeMCl981UiWgbPuMg8UUY5yo6iiFLmUoxNKpeAUzXd9BUDK6yo54p1cJwskfTmdjVmqphKUMMFQydbY6LN2wadYKAieOu1jyHqNSjYUoRxzDJlQprUpsGx3fV0L74KzKfoAC8ghibrGFLjgKYawwHWeIGQphE2nzjcTgoshnN4GApCzNDon+w0VYp7W82XYJtX3NeWorVtrwngZ19mkmARnhJAC8Tgt3tl+21ZS6MkNtyFnuzn0fdsizFLIybplWqx17bYjsqpeXl6Ct5zRWrICkaoV5TTnrLVRSuaQvXZt1+UCpnHM1gNSAMwVqXUI6zB6G+o2NnWdfF7XyTpTCqi7pmLCOZ89cD67DOb1hhARlcIogxCSttAFxWjBBG5QQokpBnPxi+GqkrWAFZzMetNrSqllAlS0qav5akqMhCEs4FYeAKWlRJ8zp2BX415uYNUYSBPBt8UQyK1xPhcdUsqhcg7xXLPq2IhkPJXgcb9LaOdcRAQc7o5fPn3zp/mHx/uqrSFAteRs363LrN2Sg+7qnWfs85dvq3Ht43YJaIjOYqqd55VkggQQrJskI4iQ5F1J3lmDKQYYrsZijufVV0zkXFqhcIgoOkl4snEd51sIPgbBeMzRWQ1dgNBhAJGbqcg7jroee1G8h+LDbrxrPACzd+S+ryo5jcMXHKznTVtBgMeirfMkpI/Ho6Lit2V6PNY//Pyol8PTr58PLfnDx6PLJcFSklivN17R4Wm4vN1MYkw1ITrBpbFRKI4wdd4VACnBCKFp1FIyxiqQcwYFI6S1gSET6rxPqmraTkxu/n6eIiyI84ywD5ETRmmJ3qIEIIg+Foi/g48hQgUhBAuKpWSI/t7VAgUhjAFMKYfgMUrD5SIpJhAgl3/4cPzj/XHXVf/x22/nVb8Mi07IJ4sRhcHR5H9o+1ryZ3c+G90rXktaAmgq/uHDkSOix/X89Hq83+12LSbQLkslRb/vpFLZh8GZ+z+9d9pdX6+NrBtBuGAQAmtGY7VoqqqWCJPbdVp1Ok8T4VJt9kn7375emoZ57xoA+uNusras9u5w11a9YmKaNCK5RpEg122kH69v+gsFeNO1AoXz19+mSVdVtRW4FMdq2eEGFc7vHo0Lb+NQde3o1t+/PS1WmwJDBClYwkWKvlHCuIJRJpBYszpfKCMwZgoBh5hzvO8UJ+RkT7u2eTtrqYQueVkMTLAgkkrOETKICEYwJoIgKIhS7EtGGGPgUY6SUFRKziklm3LAmOcCMoA5FwIBygB/r+WD/H2QCyICIP77vhHENmiECCMMIOBjDDF4lxjBOZWESi7f/R6MSsE4oxDX+fb6/OX55Xc9XjvZ+6hzXCqas2Lb44a23WJNe6kpLYIDOw3RO87w9eqYkC4iWEAcVpcspaSq5K7rCAW/fvrly++fBVMffvqD5AAlPb4+2+hnPb99CSVZlzTERa/zOC05J++8FIgg6HXiVDSbqt+0GaZlMqfbzYdbKAkl8vLtFWF2ON5RDDIkJSSrNQGSccgZySlyxiCGLoaYAEEI+JJKhBhiigAqMWRMseokjNg5k1NCBaVUEMCEMkQRBGCdLIGFE0AZ4ZxhCjMsBKQVJYjQ9tBliLWli9aMkJhyDgFTQmAJOWQAci4llX7TZB8pw2Y2KcZcYE9l21TBZ+uzmU1GmSAIOOOVVJwnGKELbtElFwxhU1WCKBgxpdyFaG+z90VyiSF0OWloMYOQMsFpSBkj6Hz+9dfPCEAqEeZkWVyEoCJcNSoVRziXSlScoxCu19P9+zuMcna6eAsArasKUxycLxlgWBAGlCMIcULQBI8wAiYCQACCMSaMSSoZAIwxySFlUEpJkCAKCcM0xQxw8tYSSlBOJRghOcO531TWunlyrcA+5YCh96EACAjhnK3jRAnCqGBEBBegpBQSiE6KFqPknG8UBwXcH3YgxsvL6XHfV7WMUN6uo6orY4LWpuZEVZUeVsUJUjwla9cVFUBJ+ef/9qcYcs4ZKKJDISUt3mebGCQFogzzZr+VVUN8csY2GAUfFYLHh4PERI/j9evz8nYStRKcD3YVqFSbmlOQbAAYyFqu84IRxlQlBJ/OLyH7zW6vpNiGNhiPOXfeLfONbnqMQAxa21Ry4gSwCkNGIEZYcFhgRJlU+APfL6thnOJDCzBs68YirrEFoBTKjLVunnBhqGSEIIZ0ntZ5GXJJshEFgGXRVSVLKV6bru5IXV3OQ4SYETrrOZdYSGEQIYgxBrJiJfnNphrHiFP653/8OcaotU8xjcNUOlgwzghrExCdMYElpHWacw5NK5yJerHH9x3FxFlLOW1ahQCINnibnTcpqugjYQUBfL4NEAFZCaEkuZxverWQQIYQJqzEhHBONhvnKaeNUn/XE0NWdZ1r6K2HBRLEpuvonCUIZYJu50t06f5uQzIOPmJCEEAlgIoLAOA4zZiQu+Mhl8KVWMbl2+dPhNGm65pWEiJNdJdxgTq1sg5r1GbiEK16fns7Rx8RhvvNbne/SYwKav/2v/4LUfT0NG22G23dskzeu33NBEXdfp95d/aR0xvFBRYaYixEmJSnVRcMDqipOTTLWDH+sO8Lwt1hM82rNmsNCk9xq9j/+d//kTBxG296nNZRpxhqLpZxffn86mN+eRsAp+t5vi1ryKiQPK2WRGe8FlxsNr3Vc1Mp2hBv/G2+bvoqE3CblsBZsn6Z15aRiuDsA6Xm9EkjLimh47R8+/YipKCEbPpWimaCNz2Nn37/VXSqrqu2ahgqKbqtgo/3R5dhZPjw8EgoOj2//Hy3gZiFgMzitYkuBpfN465uRKXsg1RkJ+ljLR8qxhlqKv52G3/95XcbSq04Y9zolZJy3LZA1edTgDmhnFBCyVqScwL5+xb6pmtDCBlkSgmI0Zl1q0jwBlrX8jpZBwqNqwGYYEERRsEHiAuD0E0zUaXFOKeEAJpdFE2VSzHeEkwAKJhi5yNEEJScYyYIUY5yjBRCJgjDQCTAaamU8PNqlyW7fid3//2nD7dl/dvX17fVG5+p4DfjhGQ/7/pjv1EuAr3UDG87mSzBEBQXZKtUh2hwfSN6Srgga4hCiVpxguASfbfd1F23ri/aW+99HeVBbnMMxQeMcXFBe/P6ertc5wBJoYR3DZXV10//FZflj3/6KJoGcu5DkW1tZnM+n3PMp9e3lEq/a9Zpjt4c7xrYyNpKXIok1Bo7X4dvn1/rutrft0JxQuDtckuedPs0a3Mbh6aR//B4Lwtwzl+n6fPXV5NyJSoLSt3UjGC9LpRggKgUBBGgV0MRFZBsDv2xbw6b9o0zZ8zm4UgUH7y9JXi5joBLSUUuIKw2xXDoKoFZTCiC4H3KBArOC8gloe8o+uRDwd/zogARxAktMRGEYQIAogwK+Du8BKScMoggQwQTwqgA6EAoMaWcEIack5JTSvnvq7sIwpJxBhwRSMD4ej4/f13msYSwLusvv/w63W7eBsplBFgEhzjBJCvJKAIJ5LZR1poQik+acooxSjmaxR23u1ooCOOyrLfhGky6O9xhAj4cNwb4337/ehlu12mcp0lwUHChjGUfQ0gFQB9C8NmbG0iYMSKbDABimOZs5lFrlwrOMKPiF4y5kGq8DQ8P7ygCy+LWtE7TzDCEEGwPLYaw5FRgsW7xJpSSpeApISWZX7PXLlU1zMRq8z2pQzDhnBBMS0bWxJADBhlXWBBEISAQxuxJihVFTPBmW6+r41RIDnIsMVDZsM2uDy6cL9cMAEQIE3zX1zgDmIHFqBJKVC0XDMQ4DtOCQ3HFaM2UaFTDBJeUZQTTCpboSoaEoqptq6ZaFl0AcNE5H3OA0SfBGCKIMORySMEzCrGiIGUYCsq4gMgIZ4KFXKZhuJmoFLt/fGxqiVLWs76/65pGSi4IZxVeNzW/LoHkQDJkGPXHXStViRFmr6RyJS3RK1mPt3m8LQUCggFmNAMIMIo+5lJSCIVAhlkKCRaIYu5knbnkAgfntNEour5m9zul1N23z6dM2GxcpDjqICuJCAExM4CKD5jBrqoIIimk7tCbaSneVBgTDGhJlBJFSCWlebtUGMkCVNvgGBmX0BempOAiu7jpuvePBxdW51YbrF5tsDHFNA0jgbDmhFPMBRtXo53ngkNAWKhBSLyUQ18bhCSmY1hxToJQihAoZVmWmPwW7GXMFCFSiVrKFAJE4P3P7ykhyZeqlsNtQgjodcUIwpQJhEqIx+PB+Ty4kDHDGSJQgg9zjpxRpTinlHBWIJwX/fL2lhMSSm13m37bXy9XAkpdqfcPx+DSOmvMMSTgdD6Nw+oNKJJVUobo52UZxhEThDnKMa3LqrhACEYfKWaEMwSXmMu6GONNKP62xE41LOOUFlHR7aZtOtUoEWzChL08n9Z5kqoqAEzrChFkFYvRLqM5HPcYgpR8Tqnf7sAGvz5frPURZyZ5cGmeVqW4VEJwgvn3OFfOOU3XMWR72GybrvUxk/E2TNNUN3Wz39WNsvMancsQFIhzhPPiEOGQ0NmumPGqrinxlHLM6NPz12WaEWSUYReyaBSWAqTEVa2kJJSFWISgWhs9ayHYtu0iSCk4gnJOPtkIlSwMQcWFIj2pgc5JG+QdggB6G4zJ2qGC1svQU4Gcs96gAu72G23cch2ePr3pGHIKDVNTMpumAgBrY8/jPA7L5TprnTPiNq5VRRFC5rTM2m6rKlrdffhhu9kty/zyfLLaY4yXqEEsnImXby+qr41z2jjnPBN8nu08a9W2VHFki43h9jYBjLjiy+oQQt76DFOlZL/pZpRjTIILQYiqpZC05CQEWu1qtQ0hP3RNdzwQDK1NcbWbQ903vbEhlRIzDCH1SCwhG08x31UVgRQWRCCpuMRPz39bVrPjtGR8f3igOdhhpV4/dpVqu5yA0xYD5mPUWVdtzQF/rD4Ow5Unz2jmO3F9nb99fkOCrJNzERobHt+3//Qvf9lN64rJ022SOOUEMsjAWpFDUzNExBRDBAXjEkMOwYKIaoKVwH/4cNdLmky4TettjaMN7/aHbr97eXmCEEuJjHUYZFHCHWZ/+vFdjuXXv/66r+W7f3j37fn0ZjRDNOSSY0CoZFAILCFFCjFwvuFcMSoIa2vZNFVOoaDiTTudbv/f//E/z9++/vmPH491LX8mcyZ//fUJFHA4bCsBPvbqbltVYcfSlDmXHLoC9Wpvb+eKURhDDDZ5Mic/Xtz9w1Ep5pZ5jSnm0vWbdTRStnePYJmnWIpxvvgkmIQQucWNt8HORkg1XmYHfCH8OujzbZIATtrSRiXIrsNabjNjLNhozPpv//4fGPP/o/vXijdSNYXVvCabYwVzceMyzW+SV4fd0VhHeXP/7l2G6DzG0S3/9T//12TWEOK3r0/bvnrYHt7fHQ+CkHVKBEdOT1NKxle84oSZZe3q6o8/vi8gPT095RDy6h+76thV7/ft+4p8/e0LVzxD+KET6UH8+uVtDmBYdcy54Rii9ENfPx53KZVv55M5j9oFxFTMKMYEQd5tNooKn+I0D6vVhGLwHaMMUYIZQZALKKgUUAqMEcTv8k+GASFcck4pg5QRQgghgHAumXAKCoIIAlIACCBHiGPx1ixDjoZCZAJ6erqZedruOoRQv9m6DNPXv8mKvj69rterX2YhOaUUE6KNBqAICjiG0QfFGEMwRnv69mKdhwUopgiBZr2KOi/r/Pr8+TzbxaVlddRkjLFUTElFEIIF5GJ98IspEBQdgj9dIIadquzks0sVpgUBwmgSMEZYcKKCppLmZQ0GBAsKADpGyrAQJIKIKMjJ51wKCjlEQrA1s9YBw+iNu70WylWMGWaMAc1/hzoBTJiQDEGQoyMUhOBgzm3DK0YZQt9NyWA1w4gLsqEbO1mT1vf3m/vD3mrXYTAMc92qrmsFpZJRu6xJwN3uIETNBZtuZ6ADwQU3bIS23zWl4GXVp+EilcCsUA6oEM2mjxFqb2MJsURVCxxiztCtKRbPmaACggRLzDCluBZF5L5t6JabdfJpRaFUQoRUrA6JCowZYyIbbbyfbmvd1LMOW1Ufj/fxOizrm57mrmlqJd/12/d3+/l2vb09i6A3jaq295TKT9ZJQ0mlFuvGWYdcqqauNpuU0jhcIC4EIws9yjmm/Lh/kEpEbwHMq1nNOgmUeoHf3/fEutfbGglsun6cbYxAKRWd/fHd3TqOlAKBMfCxEPrT+3uzzHrRIcUJJYggY4TAIjhsWzFe31IlS6k6IZbFSAx4246TMYtWO5lSUlUNUIFZFbjq+fr7p6+N4DEDTmjXto/7bpjX6+lWiUovFgvnS8njVEvZburkgikpaH05vUUXYClNv80g2xBT9v2uG4fp6fM3wTgo4PP8RDlFFCEXx+t129WCULeu5nrjGUBfeEEQYUl5VVWE0NPTW4ax6xrtE2ClQARNstrehgFCzBhLMVttMIZmGqXgXSNBCneHuxu5iFrEHIUkm05fTrP1KXsQowt+idEiTHP0KQTJsJ7XnLJS9fW6AAgxo5TgVeuCUg4JFDjdVpBAyoEYIBuO5kww4oTMk6GEVrUyztUVp1SkEEsKlKCKS5TKvE56WlJCw7xSwUhFACgph3lYQIo5JUooTAXkyISILkupjPU+OikYKNmu66I9icnlEmOM66IZIykEwRmXYtE2uBBCYAQ3TRtKiCWghJkSKaV1GQDMVaUAQk/fnptu1203IYdhXUrOvaoYJ/O4vLy+1ZVCEA7DSCgrIAEIEIZ1U1FESsnTMMgSeSUUJwAAc1oxxpRRADHn8v379844TgjI+HS61Id+maZU0t3DoWmr57fLT4d9dPbt6RlBXBN+WfUcyuvpOi1mNn5aI5dsPI9qpV3PMCx+8tbmmjNb6NXY2zhM8ypEhSk5jzPmikRwm/XrPK7aPNw/EoQhI7jg+ToTwkpBCbHFu4SpqmpQQIoOwIIy5JhG6wCAbV0nE6IOikqBMYHYBQ9hQgQZG2efdoDdbMC41JVgTA23sek6KQSv6nGeIELjaKdhohz/+OFdzrGA6IKxKaRSZNcFCIdphhnF372s6nWdpmlou81ucxQV0zB7bSku7abmSkmirqdLtoYKKhh5en49vS3r6qGlDw8Px+PDy/XMq+ru/kgr/W9/+80Nt0pgUHiZTfROUfiH+0O33fz169PXy5xhIBhRhIO2oFZ1pSQk/+9/+W84u0+/P/3y5QYuy7/8X/8KGZ5fX1IKSknso6D4sN3++cP9++3mv/76V5aXv/zph81d765Xj8u2q1yM1rv93c5aF0teJi0Ei94fd92ubfwyb/v6xz/9ZKy5TcPp5fo6r6fXC6dIfnk+7tSPf/jwrt4UH5yJFAK7TMswCQQZyu+P28yYdZEQcnj/DiJsjZ3HSc8rgujhYS+rxppYV9BMayixqtrL8zmk9PDuYy0bJZRd9TItIOe357OQUsoquVRJhUQ1TX66jivGCWZMEEFkHJbF+P1hl0IcrremrVNMMfjj40Mu2LmUYmo6NawmjBbDy91uf3m+6cUSDH/6wx+G262knGLqdpv7d4+r+6K12e76mMLr78/r7QKNedjImrH3+7Y7HIaQGb5OEaaSq237rGcGUKvIYXc41Pzl69NtvQgQolnsAh6Om7Jugo9M0N39AXElIXobzYWSl9P57n6za6tdVT0etxQiDO3kzNsSMaWckEyCWVdU4H5/8DGM84ABxgWn/L2TDzNACf3vwj0oJSVcACYI5BJiyilzSgFA37UjDEuwNoUQfS4FZJByCqk4uy6l+OTs7e3Fm6XklGKIIV/W6OGCQFlc0s4vw4WwYhbvfIkpoxQxobFkgJHTNpUARSIQYIScc5CAUIA2mVMiq4oy9PnrL19fkXbucn7zhQeXMQQIYEEERnCZTUoAAQQgLIAiAkAGIQVjyzhpu3izBsokJhgT0vWtcW5ZdN3wXMLry7NxuZItgRlTnkMRkr08P/OKUUW8922rMkN6sPNsx1nHFEBJIIS+21btBkCqRIMwyBGggmLIkjPOGEQZAixpgRFFq6WsOCNCKinWy22MwXMlC8gg+FbgjLMZB6c4BhClhBHgjEvBvbYleJgjAPH09lrSy/3driTXKdxzSar7VbuUwaotTA4DCiFQdU0QyhDVFbc6Xp4vqpa5ZGdsVVec15anxeiIcoKk7VsQOfIWWC8Rfvf4qKrq+emr9YAwkjIKlLOWC6lQwQQz3pJiHUE02DwvCwL48O7hkLM39nybeiUkJWGZFgzcMs7n80LKz/XPeZxv5txShGtxXSYGoIRRMqJwPrZCa/Pww71xzsdkrMMAMSYQCJ1qLmYEBErJCJIsxWjd7fQKo8XJdZK3uw5nEEIBORKQekFb3lECp9crQaXvehJCx2lNmrfTWWLc7zdSVTGk2/WGMX738GGcbvNoCM/WRSZEDCUn4Jw/v53G61tVC07Z3f1j327m1/Xh7n0t2Pn1tC6OqMoPk7YWA6hv03ibKcYfPzz+/vVLWGZCyDJP266Zp/Xt+W2Zl67f7HaSMjbfTsGP3vsYfbQBUlFieXl9iyXtj3sAEBdqXR0GAIR8er5gSKz2pWAqVMWlcbYArI0DqBzu1LrMt2GOVdajXqaVUfb4cM+knPXyX3/75XsD7u7uDhV0ej7Z1Y7jkEB6/PG9EnKeVsLQplLL5Ka3s6o5ZZ21JgcHMrA2MFoIZefLgIkBADBG5H4TgxacgQK1tRixAmF2vhR4ertcMigpb9pNSQhj3HSNv0xMiEqq4pzVsa0rxsAyz8OwcsodyrdhwIy1u5ZAtI6L1X7Ttf2uzSmM4wyyTyUaHxmj47hQTiBCRluHnKgl2d3tq67JJafkxsulpET6hlNWUhlvA4D5sNsRTkLIxphAI0vRej+NY9c0rKHGur/88z/HBKZpRBDknGGBL99eKUPBR1BK0zQFgapuCKHzYrVZ67oSQgqhXPDFu+ICIDRqb61DCIu2AQSamKmom7ouOSGOS8JCKsq4UhJDU5ClomyPbUEQEYo4JY20BGGKX2/jGlMiLJYgK8WkYBxjAILNUKDbYmDFSiFPN01W/fJ0UpXMCF0XvWiHISoQSymen67WWNHYHNP4ehJCdvcPJqZxHLXxANOmrjGi57frMlsIASWoYqpWDIQ03SacCoeEYVAzYswKomcEGedjTKs1FztPdlKcbmPdKNL3jYsJIjQPF0ZxSeB6fvn8+bnbbBkilAFGQYzOm2mz2W7v74is7aIZouN0YyDVm37Vdp7ty/OZYIRKwBD4FISCcc222HVd275RjcgYOO/btt4fKwjLpt8QSq7X8Pb5t+H0FhBJ3grOQ4ZmCcFakqPi+OeHbd/XX764sCxiKyBCgvNayOTtsM7/97+/NiL+04/Hn9/3p2/PmgcW5tPTtcnm+HD3djrV2e7rZleRhgAcFz0/ITAlO9gJ3/e04/eUCcqYNuvj47HAhCi/3uZxGCGoPry739Tq819vZb6WecMhAsvMQvjp4/vdbq+H+TYZqYhedBgX4k1Vtcb7jMB//vr58xf008eHXCBNBAYPk6M4TOP8P//tP6tt//Off1rH+a+/fPvp43u3rgkghGAjGg6YMXq6Xvy8Nm1Xd703fhxWJfkwabTY9x+VrBSmDBH+sN+1TfP4w+Pr2/NrCYoLycX5Ov7611+dc8f9DgL49vQCQfnHf/2naTZff/+cYvzh54+85fO0zuP6//sf/3m8Ox7vdm5evr08H/d98Pry+nQbrgXRppaP7+5uw9A09SjZh/vj/X4LCTo8HOttV3Vt76Ji8Mvr9XSbzetc9Czb2lzeoMTvmro67p6sqwmQFQK0uBRFKztaYQhBgNGtd5Lddf3T6bLl8HjXPt7vFFMwB1LyD8fWlcJviy4oZhBgdsFdn79CHwpjznmIKYAYgoLQ99Ui+B3n/31QDBUIAEAZhOApQgjBEl303lsdvbfrYq0DqHjvnLE+OoRKysFp7YIruVjjSo6cMYaBYJxJgjD2zq7Ge39ZxqGg5Exu2x4Qbqz1sSBMSoaAioyKdaitOSRscT7YMhtvQzYuMOYARtbNIbp1NSkExRWXxPpCGROChZJyLhjCElPBqG2rAkCKMSQAYHExF5wxE8mXabGQeioZyIViZNflnPJmc+yrNrrMaywlizYvw82skwkwXCNAOaYqemfnZZoW4xIiaBlXiZDiRFWM0MrME0wFYUKIQBiFYHN2lZSYQucMLKHe1K6UFIJQgGHMAcKgQOOts4wziDCDkVKqrZ7mdVr9oN2X67cffoYEZJSjXeZNpwRh6zSJAdYV3x06RBimoqLEWoNCZK2kd5vX07WtOM3RuoiMobFspag4BxR4TyKIJZqKc0Lk6PQ03khpKoayDxQBTjCGuWG4+eldBN04Ttebudv242CWRROk7LpqZ9dJbz40TdXcTtdvvz4hUNpNt1cVK4BLQiAI6zAk87DfNeon5w2nBKBix2G72dW7uu8rEyLGOOUUnD/W7M0MAlBSYiSgqmmtWlFVf/33v77qCVJsdCCCe+M4pxRzECEugOMsFLG3KzZaUrWY1Rv99b/Gh/f3mRLOMAYAAThdhtvpjRJynYb9/SFZN3u/rk5rvd8eEa0gieuywlACALN3Qpama8frUEJRogImgZLDotNqN22fUnYuTZMb59ESHFFZ9coKdYOdrtNu3wtCG8FfX14y5aRADArGmBK+20tE8DQvjLJSsLXx6dtps+mafsMpZZhCiJ+fXszq+g3yIUzD3NaVYNz5eLsZAonWukpIGwsg1G4YbyOX3DpXEBzPi1k9BiDmnH349PV5c9gRQglW0zAxyUPECWQfy+U8DMMoBLm+3gBAxjpYyHRdhmGulOr6ZlmG28WnnObR5Aic9ikjIrl3I8SgpfV1OGNQQFEIQwqJYCKHkFMhGc3jgjEnmD6/jVVVVU01TToWvGofTeQ4QxDX2WtYYg4Ioa7vXC6vp3MwRjlVANY6UCmqtskZjbPhtdxu9sGZy/jmHOFCGOOwIG3X6HWZp4WkkJngzlhnLGIipzxN2ro8r6vWuqrr4LMNszZrrWqCibOGC9E3LaNUNbIUhDEy1l5Ob8fj8f54N43TNAzWxkrVUslpnhkVQnKIIEKIYBp8orQgjCpage/CeCx+jV7bfrNXjUqkGG1LTi5azgghEFIaUoyT7to2K/F6OmvntS9vw8C4LKz+chrJ6KkQX55ui4sJcMwkZiznkkFBEEDCIoTdXUcBvtzG629fmlZYHQYfuUnzNBdQvPVM0B0lNqNRh18+P3FCp3kS0m232Lo4LxogFnPKPsbkIEVtXZWUGMcoRpqpYAxwGYxXnMGSlvG6v9umLI1xGlOgIGd0NY5iBBHyAAyrVy0qJXvnxuvAGNltdoTQfr893N/dhhmTdLdrOSKCYQwKyEnVou06nHBBaDFz39Sbw4NZ7Dhpsyx1TY93u+/x85gdJZxVLKYEKaGIHI8HxipOOCJFSfXyfGrrxoXy7e161Y72dd+3yxrMNJcc2kZ+fLcvMdjhRqPFJRS3+lQoZt46523dcePDb5+ejhXtpZCYfDweeI5xGT4cu+OxUdjf3/+5Uvzbr19++evfTg2BHP7xz39su0brcaO2D7vWhrDotebk8vTtcNztt1uBiB0mqZjA+PTtuYQYQ76db+2mk1zwQy2a3Zfnt1Mpu2PX9woAPJxOKSIkmm+fPrviMSUFIetLU6lN38Kc9Ly8fn42NoECcgaUyml80eOop/mw7TEsbVshhikiNVeaGrNajLS1YVpWwliIOQMEIVoXCylUnLV9XXddiPFwv2fZ7RQjWECMrfVWe161TV1hkBnCuSSzzG4xeh5LRt++Pu0e94hjhOHb6znkVDUSQTBMYwFBMCIEVVwSzhkXOQeUSk75/bvH9+/u9n0bvJ2NtsHfvkybfrsR0ggOVTjdxgrCx02/qSSKXrGK1W37E61qziqMGUEA077JCWaXS0q3y6mU0oqqpZjvmqZmFUYYxHke+rbate1m9AsL7rZ4HznB24rp4JKecuIIAABz8I4SDEpOOUP0v5nUsJSSEEIpxRgCBCXFmCEoMU7X2+Xlxbs1hXVeTCoJERCDTylySiCEwXnnY4YgFUgIhhAQgjgXCIMYk2CyritCoFlmlwtiFABUEsgxgVQKR4xzBJDT1sfsWYHFX4fJxxhBwYjBDMdh1mYmPGOYOKKik12/y6DM62JTcMannIXABGMEsfOpgAgBzNE7pxFGs49KSsVoBtDGaIxZ3cIgqqQE19LvSM1Fs2nfXk7zeFnXmzf62+enza4NKQ/TGFN4eo4YFm/tMhlMGSEUIewDvJ4vlFAhs3ewpIIJIxhs9r0ddcKQYoByWucRQ7Db9yXm6TYSgAjEkjOMaPQJhowSaATb1nvMqDbeOY8wxBiu6/z6/FpiEIyU4EBJj3fHfrtBFC3G2RgrpSCwl8tFCqYIOnRbIrjXJvlQMYYTcOO6P+w/7nd6GdptE2Iel+W2unnVhDCBQbfrJCLz5bzpakGIXvXpdKIgAeCrhlIECSicE40zQZkRSCGanV3m9dvL65/+0G4O2/E2WW28M9YmCApOcbfr6a41y+yd3fS9B3Kal3WZCaWEUITR3eMxljINU90osy4YlTDN53HcHg/7w532Nsdop6lYE0puNj2SRLXN8zQv3v50/75vavXIPn3+3fowz3Ne3RoMoaSiRDvjtRMbblKIsQiiQMEAkhAAJQIjhiBZjfU+xQhu07ROHkBYNxsu2DiNwzgiWIqKOJfdrv34+JhctM7ACJ1zy6y/PZ845aBA5/Mvf/vS7FufAnKWJQIh9i59/u2bCwYBxAmJpUzjMs2GCMEwsSYEHyiNtVKRBucdRohAtE4rbpqqUsfjHSRoWaz3DhBsY/IhYsIyplI23pe3twuAECB4HaZYMoXw9HaVNSOceuc33QYBNtxGY8bVuv3h2Pc7ydW4zK9vZ855UwsIC0HMLD74q6prKsQ8r+fLzRjnnffO5WILyHYxJWdC6LK6kEutqKoEZCDDNM0GZRByVlJiiNd5id6DHFEE6TsZvxKQ4NX4kMswzAUAWNA4zY0gh2Prrb9chq5vNrstxKQSdLeN07KYZQGAzPNKCR6nKca4rIsSardtlVL74z5HkBIIoTBZOZ+XxXtvCUawqhqU4eK9auuSirPWuhBD3O222/3h9eUEIcCIMSokVwhYRggWJcZg1kwQJgRiBCopGcVC8vPJp5I2+01b9wjBaZ4ByrfrbbwNTd8yxnz0IcWYEopFj8syTd12U1WNZLIAkCGABMqGRp8BLtqsmECn7TRZWVeMce9XDMvd8e5vX86n60AkkrV802X4duFSDYsGGTMJCKcxJ2NtCQEhYJ3ndcUiDNGtwRMIsSshIUbpvIR5CQAhiCiAePUZUolYMLawTvQ7YVb79nILKSGMKUYxZq2nEFwl5K7rKILBaxitJEpRLHfNOqwpeCYQBKjkEHyAADVNlUsRtQApeWN8StZHlMp//MdvvCaEACkYpjTmTCS5a48AQ0ALE9QayyRplFSKaz0XACNxNsBJ698/P8XPT/1mu91sCUTFW0dQFEQ1tSzQWj9M8+G4ySCZZcUwKo6SN06vlOHrMiGMVdOkW5gNXUvK1rM0AYB2u07VsqlZc98DSkAOLRc7FTOiq9Wk5GWZOKebuo5crNZ9ehqmSnLZvPv4AxR4vl2cWyTP/69/+QMCyJvsfPryequs/Od//XPf9eP1Nq9TX+PH9+8mZ2sTnDPPX7/8+sun33770rTdMt0A7BBhdb+Poax6+eXXb7uDhgh6g57/7evXb9/qWigEKoQoRADynNOymnlZp3Wt677tNykjQhkj5P54wJCfh5t1y8efP+4eHgkkCCBVVRQhWckCkLExhYGCBBPqu64B28t4G5ZRNrLf7JdpbvqWc6rXVUCiF6sE4awaTm/69K1p1OG4NzbPzm3qShCyvdv7YKdhfHd/RzgRlaSQxr1fVxtzKMljQN9evy7rrdvI8XrOJd4u18sZbLbtx4/vUipFu+JdjfGff/pAOZ/XxXszLVNdVRniFMs4LCDS3Wbz0+OP7x/zb79/1dbeH/Z9p1pJkM/DZagqtql5KtGsOpSCqISQar0ygm7Dgiipt2C7bYzVwZibv5ZCtNERYskVK0Rm5M8jwuD9Tw8EtRPBrGpAVf3t64sOwYXy/d0DIPo7eRoACPD/hsUBgFLJwBtDKbR6TV47vwznU90QgMJ0WwACuGQhGfxOf4YY4xJDJBRTggkhRkfjdPAGgrDbbbwlOgTvc8oIE25Wn0NEEHDBcsE+AoQJEaJCJEfvICJM+rjCkmgBghGMire2FCBbKQnnRAiGMCVSgus4R+sIBLigqLOoOedkGJdMQE7emSA5oxxFH3z2iDLKaAbJWmeTJYQgBJd5vlxeq47FOLx8e8WMeBde3l4Xc/XJQwIYY+M0Mcl8iIu1aba1Ul3f6NXcBsgFr0KChYCcQIZmvoCsMSUZoGkJKQSlCGOEUYFwGe3JLZ5VVSUlpwLk0tXKmrWrRdOoxdmYwnbTXq8Lg2jX1m0l3r6NgOMffnxvZv3ly/n+bgcxBoimiMzVoOyCd4LykhAACAH0/vGdsT6lrNfVrfpxU6uKv4ZrQ1LV17uWDKs9X9bFJlXo4biPIbEU2qZq+/r5y+s4D4IWBKI1NMQYbOI1bDq5u982dXN5OxcfqlZQRlazCEUJ7pXilKIZ6tXqthF9X2NQYPS30/nbl69M1ZjSdQnH4wFSgSkYLleuuNf62/kCQS6xCCaGOKNCmqptqu7b569Pz88UEYaImefjh4evX5+Xy5xD/iJO7i6///Ed4rVfrkrUtdhGnyCBVNDVuoTAt69v4zhtmp7SiDNsN3cxhJrgAIK1cZotJlSqDmHsrE8hb6oqFzANa/BBSgpyEVwBAH0IgrK6rn1wTqfFRJdAwXDT7S6TOY+LBYgrWlxmgtd9SwjWPkKIIGbDZMZppYxBiChlBDOEmJSAMWqNXbUuOcbkjS1Gm5SiFBLhAkCex3VcJoiL9zG40DTV4Qisy8G61diu71Isdd0QwTIqMSWtQ4oRF7KMNsacMkCQeZ9XYwUXBWOMWAHI+CgL4ZwB7BetSYQBWGiC84EwziIwq0EACkWRlLfTWCAUinGE3bQa7xjLDFNnvLcu+Dj4pW0agWiyCeRcV4Ixmbwf52UYV9XWnNFhmbwPJUOKGecCYLjYBAEJgF7HKCokKIneUQQYws55iAGh2LkwjEtVCclVieH2etttG06FTmG11idwuy4UE0QJQ5xUXaXHdbyNTV+zSgpRmUVjCO/oERE4LZoyTiiGAIWYsQsxxpxj8CGlEGPq+g0jZL/rKUXeea+Xu0Mf+goTyijOJR+PO2209W4xq2hU9sU4WyAQSrnVLOto3EodU00DCLgOJ5Vku60gAIxzyphHJSUSrN/0jepqvc7LMldds9v0OpL//PV8Og9dQRFQE4l3cLWAU1BTmgjwNtZ1jSGM3kNYMEZ6mKfbtcCy321jLBASCKizBmOuaoUpjCB6H2PKjMlYCkAME4BR1HaJAHS1gqAQDBiGFGAKS62YpGQZHcJAMoxhyTn54kKwgDGl5OvlnHLZ7+9KRN4FSgjmxFsbU75eR0rxNN7YirZ9t323q1Q1nq+LXg73x5xywdCGNMzLBeVMUQ8Jgnie1mE+G59mnwcPrrdhTaje7mQje45D8LdpzaUIwq0Jiw7zp2/9tuGM2NU4vSaXKWIulPO0jNqPLv36ZbjZxLeN9VrPM4SgrkvJ5cun59vr0z++O/7lw+NWVT9s6WLDP338OcVwu1WR0us8IUJsDC/DSllVU8aYWOaBwrx5v+l21eXy9Pt//I4Aj4BTIWLChDc+xvPpxCAmmL2d367TsN0euOC73eF2HVQtqq4NJf/1P3+NBTzePcwmnM+Dd9b5ICQrmVi7qlr0m9ob++3pBaM7gtC3b19FVf/5z39atZ3nFQFAMV3mdbmOm32LKHTR0YodDncQoXW+/fzz++Sj5KzmGH4n0+U8X88EYdXw0/ny9dvzbRof3h+3u71qlY9+nTRTmFBktH5+fs4hXy8XAsGPP/1IkRzWZU2RMlRVXddVy5wjQ/u+7zdbV5xTYV9307AMdmr6TilpD8tetv22pxSer5emVZIroVjK4Le//a4UP+53YTWrvtV9RwVpmq2UYrpdKyH32/2+P0yXWzJO1gJlwFF6+PiIEEo+JIbncfn27aVuGZc4ZXcdRtG0TOF+24yn68u3K8YcYPrp6XW37y6ny3Qbdrv9ZruvW+JDTsA2jepd+qd//EPb10xhZ9e9wLvD/eD8l19/h5BghDKITAirA6Iolgy+D8xCmEuBGMIIYgyMYkoRFuKuqyUtLyU5vwop6wKXScecYy4lZO9sSTGWhCCK3udEI8ylAO8dRqWpFcNgvl58DimVHKCgAiAUS24lqwTKIJmYVm0BAlkJhIBxBhNIcBEAK0FRKTEmwYgQLEeoU4rRFgSB8z7nAkhdKwgKSgBLomoVUiwBTy5CCCqO901LKE4JxFgwLJKSEgjjpKnVdlNba8bbTTCasxmnKadQPDpdRpsd0GldFwjTZtNLwRdtnU8hlZyBj2m4zgwCJsW6alBK07bBLsFH65xxc7/daGszxozQj++PFODoQrDWag8anAvwLhgduq7hSkAMAUrW6nWdhRDb7bYStbFxMhZh1FLKBT3eH2Y+Oe2buhaMxFQAQJNeOQYf3n1AkH59eh7Muun7uu4qQUEpjSQ3EFOwwafdoasqoZq6QU2tQyXW22gv4+ImAxHcbJrjbocIWjs1pxBc4oxpE6630dsQU9rdbau6Pb9erm+vGJaH+wPhWNsVQSQZDyHWVQ9q2m03osHLcMMI1U0NM7TrCwKMU6X2XYn5crp0mxqV/Pb6UtU1hHkeFy7k+48flGp+/+0TAOjh8YFAsG1bQpgLntcc55KsA8EDX96enna77vnrt6dvT3oxIOLt5u77no616XadfAw2OK09KnMBMPt0PNzFnK8vt7pXBRXnQjGxqrB3LrgAMjDTTBlRApcIOIANI/XdnmMCcmICghy0Xs/DpRDgXRxv12Xx5+sUYdHaO+e3XRtzgQggiqQUmADz5nzIAKICIGEUYTguc86w79uU8zzPLjkKoXch+sgl0zpOy41TQiix1kOIYgggZ4jA2+ttWfzD/QPGJRNifMYQcy4BARAUprizrvhgjJ6MR5hKpZpGQIwQgNO8zPNCOUeIxFxMStF6lzJvamf9Oiwhpm7Xy4pnX6qt2GxaRMBtPAulllk757ngTeKX4eoj4YbGkIKPOReQMEJ4MJFjRiElPFeQylokRJ2LIadoU/bp+1Kb1UYJXgAKsaScmKxyKtp4HxzMMYTgbEAYE0ZpSM4HRGlbN5QQimGOfpzm1ZrrMDFeEcaWaV7n9fGHY9N35PXp5LTxzoVsCwYNhjouKOYU2W0Ynp9e9rt7VVfO+c2mQxkGHTOIBONSYIxJG40QYoIjDNteSSGnaYIIYQS1HhHBVSu1Ttt9xxiJJXnrc8o5BKc1F+Rw3DtXuRjH+QohNOOUgi7JEk5V3wMArTOllKYVXbtBEDIcc7Qgp5ICzmnTqNfb6fR65Y1q2y1ANCXAJYA4aG1tKYWgileCS6/XdZoVpTgVyiiCIDjLGNPz6qxnjDJKIS7e+VUvKZQUQclwgovi1KzGey+bWjAOS8oRSaUwSFWjdk2DEwx0dT6O15kxEgAoBFuQ11FfZ5NKevfusd72by+v8zyl5Nu+rhtVYjLzCguq61Zx3lV9AcxFgJXEKZnVHu72TdeertfLebKrvcVL2zmQgfU+5PT6ckkId/vt5k5SCpybs8gMIe2Xl5fbl1BgQt7ngrA27t2H+z/+5WdY0dPzlAHaHfrZmKe1fPpydhksPmVE6rYnXuppXVd9eR37VpEIkjPBufE2bVXdSjSt8z//5SNl+Nu3F4vQ//Nf6XUa5EYsq11L8vPyb//r33NYN3f1z3/8oYB4eXuWkuYEUSYP+0PIUQ830jI7XRYfN0377du3p5cXLtX9+3dKyM1mE2JACBMhEoTPr29fP331OtRS1HVlnfbBHffHf/jjx5BCo0QKPgZLK/o9kFtgvH/cgYSc8W/PJylZjv7l9Tzruek31gfVt0LiYLUoFrrUcOH0oHXmgpOqNi7M2ulF2wimccolvXv3kKK/vDwpJTnEVMlQwvk0MU4dCOfTGQOw2R+HYX0+DR5l0XYMsXVchuu1bgTOJWlNNy3lGCQr+64RXGnCJaeU/euf/7yMq6plBrEVsmqbfrMFoCzTdHm6LPPy48cPXdf/j//xP6f16S//+o/9rkUgvX2ZXj+n48M9o5xCeL28wQHexsGH2PctpHQcx9stZx8dyG6w4mWmtIQIP2z3OcHh+TScr8MwNdvtOrnfPz398ON7KgCWDSIy5Ny0PJa4WjNcdIygVeJ+t13TkmwRlHQcS8r+8a4bTVp9QQ0DhLyFMUHkcvIhEo5zSRCAGAOEkFDkV+OMhzm3st1vNkXr5zd/Pk+r9wBhgnLOOQcHSgIlI4Do97HsDBgmqSRa8H7fdx2P1u1qISo1r6seHQRYEARE+vDQdo0qIA2LfrmY2+KCXkOKjMGKVXfNrhYSAeCc9SGGGHwICYKYwFRKB5CPeVpWSGDNsMKoZuyw21aNGqcxWEIwtQYKJf77n35WVfP128tqvHYRYBgpLiVXgmyrJjJRUUFgOX15KhhKxcd5nqY5A1YAwAQRBDjnxnmUCwOIMQwZAhmU6EjFXTSlBGACRBFmZLWPMSMOzNNitM2YVELtBJcbPOZzcI4S5kJEPoGCQ4xR6+12yxX3y3y9nFIJW6kYALtG4l7EDMfLRWez3bdtrbC1DhSao5+0NpZLyXAhEEcPZC8Jr1DJVd2Nww2CnGKuldLrGkKgzZEwHCGeXOzvto0C0cEc0TovyzptjxuI4HQ5M8b3m1YylC2ws73cboQyyvG06h3YIhCEgD/84Z4hhBD1xWdICWWQkNt5XK3GGN8/3G2a7bfrtHiz2WzFsYGI5wzmSRu/WG28scsy/vgP77kXAJV3P77To319ebtdL5TS/W4rBAYxNpW4P95JIa/zDSCYSvzjj+9OjHjt94eeAnd7fo3WmdkM1/XX316YkMeHOy7oPGrn7fauV4LlGO08g4ytscu8Xq7DYrSqvkdR0XC7IQiO+z1nFBZQNw3aNufTue8rnINSqmnbYOw4XEpKriQmUPDxcr2cL0MtWgCBqDkGKbvASQe8WydbaolACikYbSllXKnzefLzujkyyvk8rsuqEYDGBMFl39cAQOe81SFnDCjBFDvjnPNdXzd1QzC21i+zjSVhQRmhpoTFpWUe9Dx3fb1/6FFKFCHEiB7Hgkq37eu28S4abSGAISRrrPdpAZrX1fpyDi5gAiEoVlsiSIbZmLUwDmACoOScUsy365wzLAVr7SQEJVkBisgAucwIipSs2oWYLTDLpCtRSSn9kMfV7h72XKlEfNDaGy8Q7dsuxWC0Ni4iIhnmOReEEMZltWuwLsZQ1woQOi8a2UAF67ctBHCYJliKlCxFX1KOOUBYqoYTjP0CT3q2plOqIiCB4DznVFt9vlxmZ7xxMHhCoF6tsdZYAwnKCRhr27qGEDjjcaWEUISxVPJiTV71dr+hFGlrp3kpJbdtyxkHCBvr9/u9i8HZCGPkDaOYWm2m69huGs4Zw/V4vSZv2qZVdacayQVGCM2XESIYUoEFqU0XikMFMkopYdNipNAw2MdDB5C4aFMI8b5kAEHNEXQAR4wSisWtoxsmQRlDUIIkC95u+3bTrslPs4YIZlScd8bbWa9SMQCLs04yiSDIBBaQGFPtcT9OU4hBT5MSjIFcVVWKQTGavLM2rOvqnYsEIwK77Y43KoR0u95KKYBAiFDOyQcXc9AmlZKaWlJKhBKKqxSiEvJwvNfrerpem15SRG6XW1Wp7W5PhZBdMy5O57Jch3lcV2NDztoYLDiqKwqh87GaCIwOgxxi1vO6rq6VvdX+9XT98NPHpmnncXLBLOsaEhysHyaz+AKbdjmPCdHdfgcxBCVLToGnmNEf3t9RdBCq+GG8Dtcf7h/7pprWzJGmWGy2yiOyP7Tn6caZMAa83GboC3SOgZhwuBv2TOCmbrf/0P/2ywsSjZBNiJbgfNjswocP8zhu+ta79Pj4kEoBOelVO+eeX15ezhem1OOP77lgn/79t1LApt8eD9tpuVqnN11Tt40JhlHKmUo5gARSLD/96eeU0jRNJZXk0rqMnLRc8KprSEVTKZAQu5qn5bPipGskTGA8X+263u03BJFlXG/jorWJIYaSMiqbXffjP3zQ0/L67ZVCWDdtjNlbEGySUpRcQMZds2FUrlabEGyKvkySsvUyarNK8W7XdX42b5+/dMduWacxLFXTAghiiCCDRjWjv803+/DhvlFVQZhzsS5LCKlpm5yz0SmLXNeN6ioKyZe//lpK4oRM4+R82PSbqAMhmDAGQLHOfvn89f7jO4TwMC6KcdXVwcXZBFlIXbU5IZCynV1KhTPJiIwixpx9TptuT0IJLry+nQDZypYXAGwMIYOvvz///un3uw+7u+MBs6Kd4QT+/HjUHk6rSQSGgqByASAX0xQjJgBjYoxxyTvvCUUpmPF6y84Ta9/fb6rHdxUXOb+YL29UIsVISs45wysupDQuzDeTIXr3/pFzloJPyW1arpfROf3Tzz8+3D8M0zRc5svpWkv07rjbNPSP//AjxeiXT5/c+jX6bEKqKhWjKdkzIisljNZSUM7pbfDOOyTpamwqaDmdMaUxJpSgRJBx1rV1WwkMc/SaA3hou5VWjMDj8f7+7p4haqx/uwxfXt4YIjknPa9vMVVKNnUVY6QMxxzHy83GXLVNAQxEh6VgHBcAtPbJJ0oIY5hxHmNOGWFGV+2yyvM4vp4DQwQVXKkaFOldBrlY67KJemfIBhcbYYGY0dtlmLnutn0CeZ6WAHNVCeh9LDBF6Eww61uMuVG1krUkGVK0qaVftb6NgrNtV6VIKQWqaphkwZh5mAqlXHBOWds2DMNlnU4vl3mem6bebveQotvt2m07Z+ZRL23VeG2Ddoqw9rhXG+ltXExEpSTnCcKFg3EIGaD9Ya8qPo1jjskbvd1UOcXoUkhBCr7Z1d/3/+ysb68XKXlwvR7miktUstO6rrlzphTsnblcr23dVrUy67LOWrWq5FIgdN5Ot0GvtK5qIVlybjydmOCiA4IVTlLMZdP3GGHqCyzwcNdfzhecylY1JNMYy/XzaTVud7dTsu67Zp4AAQhRhhkNLhYEKYGMkqrmpZScQ80VJShr1rX1+/cPCJRlWja15ALXFMTgr+erwpiUfBuGdZn2h72khHEPta67ClHet9u6krnEy/mcM04+CIIiBimFZV7n2djg+03fdN2qg/Nj8EFIzjnBGDgXXAgQE58KRcjFNE7Ghyxr6glyqwUF1BligrfbHcXifLlqqzMqKUNIiF7MME05ehHoqtcGCI4JgWjTtKLibd/HlIdhGG4zhpRLAUApECKMfQzeh3Geck6Kc4gBzAlhlHKKKdhg9ep9skIKo502zvtQSgh+6Su+u98RSHIBiIAIyimPs/EpxKpROZUACkbwcr2NZm1aWVJuNw1nDCXMmcgIxeQBAR7k8e1MCMUIOmerWmJCAIAJ4gKh8ZkwCEuuhcyxrMuUvBNqBwis61bUYllWu66qbZu2btoaQeCcJe1GKkVKQdxWgJCm2ZAeeD07s+76fXmEECGEvk9XgtWsIQcIIWZU1Aoj5GPyMa7LCiBJBc3rMk2WErLb11igAlEo2UZQCpNVW1KkuEjGXpbFrNY52x2OLoG3KUICaSsphZdR74jqa4FicXZFCDabLQTwfL5BTBiWGTEukZ4nBsoPW/7T4+G0zi/X8eVlvU5aENL2XSpeSeVTSda661rs8v5h11RN0WHb1bvH/W+vbzFqDxzmRLQylxJ8XIODEGSf25qrmsSUEC1NwxWiMAfrsA9OEIypcEZnUKwFBpjbdXTGccx8zFII6y1NVDKeVBVC5Irp65iWlYLU11VMKYUUUwnBNHWdIbCrq7i8nq6gFD3Mwc4YZATKeB1SKoTR/aYDCVBGYgiUMjgtT6/n7cNdu6liiLfLjCHabLdvk5UMPhwf2vZAMatE9fLy1O6quw/3SuKXr59BykrQkumX5+FvX098f8/7JjE/XhZ/uVVZSEYAygXlTasU8LteHI79GRVr7Xk4g2KUQtN6LpbPNn97ni6DtjYDHUIsbnXJZRADLwmcFvzXLw+PO794c7W30Ryag2gaaNFmJ3bvHijl6zhxWskm/+HDX7S2RuvxOtyMX24aEre5Z7s72bSdPkzJpHeP97uu3XYyFUsRhtntWokFG6fbMq21bEsqJedKynmcx2FaZ2u19TkKyamgRLLpOklCnfF21c1xK3jtdF7ncbvdNttNStDq0RorpSR9K9sKoFKSz84wUrbbriD49nbSxh2Odw/vPmitMcw///jHvupcsIiznonz9fZ8ernm9MP9Y5Obtm32/XaMl3G6TpfSHNvTYL6dX2OBTV0vw8mvn9+eXpQSXHLEkDHBGJsjSDEhgiihby8X710lGfFx+Pq2TDPldLs70i3yPiyLR6lsj5tVW4SFc+tshvpu52a7aFPVdV3zFDMFtO/qWokCQYxBSZUCUirXfb9jeF5119fR2BiSN95HO86zg9EaG3NGSHLent5Ou0eEKUs5nG/nw6bFBDMXW1w2xw0VfCvhMNkE0I0W2XJrXJatg+l0GbSx6+oaJg739w/7/f2+YwGUP4F/+On0//z7b1wJIeIyDMnbdts0mzaj9PztZhY0zzEVuNuz+4dOMfi3v/7X6+l5WbyeNA6pIai628ua3e2bZFdUUKMqTnElSM4qQoy5csneput1nhY7w5J71XPKN20nlfz68hJcgSQjiGEu5Ludl2EChDBpQ/DLqrVFhXAqAIHB+G9fh2mwDOd3h2MrVViXxRrKZII556KtCwCVDEIEMeYCWUEgJ1gSzBFCjErCqw2wUAxpiTnBElBOCELKiJTR+JSRscmsBkOwbXtZK73qWjVUieV8uY2317fhL3/+l1ZRH7yLPgSz2DnBstl20Jfnb29CsIqz9TZRjLrdIVkzjkO0Ptc+B1Ni0uMcEmibhjEOEC6EYiZXlzIqQgjKcwqRI+SNefqkd8dt2/eUiet1YEJQJlywerJ6te2uI5lE6FGBSrDg7en85mK1PR62mw9vL+d1XmSlPAysFn+8P5SUg7eolOwDptjc5mWa9OKYoI8/vN933bIs07TuNy3L0Fs7na7r22mzqTkBxZrbYq/Pr0r1nLG2aXabHefk7a2MtxExRAC5vFwur2dKGCbs99+/uuC3fSM5RytEJTlnAMmikk6DWm4aVROMSYCSYNQ329094uz3z8+7zWGcVyVgX/FOHNL9RhtrjS0FQIxFxfpNpRQjOC3zvN/2rRJWr9taHrquItTYObr5dnaMoaqp7Oxi8NH75y/P6zK/+/DAlRyXdZ5XY93d/uh8Hm+TQwXikoKvpOScJ+9kJQXn6+xSBEJJUVcpZUaR4gzmYFcbfEweZ4gIhtbEnM3d3Y6xQpHDFGYfpsUhRAECL+dzjIFg7Jy/nm8xxYKBT8VYXxKgFDNZCcaAAxln3jEh1dP4AgQMzseUm7r2NhvjY0pcCm1TiVGQilFWN40PTioOUnaLrtqKE0ohdghSxXktEUL9pg/+Mi1XynKtSMvRHz8e27Zzzp9O1wzQtm4uk3m9jq4kKFFGeXGriw7ZopOXjFSwMzF471bLpeIEiRDDsOjoUpiWrqsBAsb6ftNHF4xPMWVAcSipIiqE5K2LKZcCx3Hp9k1z7EWlsFLgjWjnqRTH+wOEwPtIkrdNowSrISQhZcaVUjw2yjndtBvr/bKsMYVaiZiSNS6XrLqKcgYALCmVmDjhqCEQIGd8SXCz2WJEAaQ+xZQcwsTZQBgFGWBMFMcwpK6tGSIBwARIRuh8HXwpPpJj16/jKgVvJFpnKzgDOIEYsWJU8FRQRpRJWry5vVxLsnXb3u86ABFKtGObT1+GKaafPhym2+08Dsdto2CjOQ9G3++qh7stjoUiQBU0PXeRPV9W521dCVTAzeq748Z775DLfk2AIAg2TcNRur6eGCF3m3ZdUQpOcg4RzACWmEx0KQfGMENESsUlGcaJEtK1Tdd2znlVcb8udlk3m6aq6gzAMMzJesoJJSTEhCmlUg7ToiQjDMdoZS2jTwAAQjBjJDnLYSw+7PquECaULBi5HJuucdYHG6PJn7+8tTXd9iojstk0isnz22tds/c//QkgbBaNcnHG81ZASmLwx4fD76/j/OVJ1RImb8ZVyUZVNccYENYrtmvErq+2tdz+8ePlOv3H//3X5PU//uUnSMrTy/XlvD69zZfRWV8AT8EmImgBoADiUgqFXM56uM0U4mBShGxYneiBTzkDfDqNp+dTdH4aXm0MYtsukw7Wa+NTAn3XY8IOm37X9H23tbvFGS8EJwiGnIO1izF1U/ebJiFgrc8ZhQimYdWLlkrmnLQJ2gYqxGVaw/my221kVMtourpWrdAAgpjdal2IQjFCyLwYAKA1OuhQy3q/3wkpGsUpBIJAva5B61AiRIVLQhmrqipnMExDrYgJfhxnn9z9Y1NVchv6plb3ux0CBdMyjcP5cprn8SAfMBVCgdX663kcJ22XdbwuFWMA0V9++axq1e6719NpnV3TNFVdC06tN85FirHkhFJcKVkgLghVVZ3H+fL2JqWyz9fz+cKEON49/Prpl/FyAxE4a0OIQlWMAEYYpTQncLtNbcvuP+zE2by8Xed5bLruYd+JSlhjrQtCyobWyzhZH5y312Hd9uLh/r7r+q6Xy7Qs03h7u4yvw08//rg/boxZ9LI0pBw2VcWos7FCNa8xbIVUdd1vXy631/PtP//6y+vb7ceHw08fPwCbqCwff/7wpz/+9OPjo6iqquPD2zXopdnU/bu9qOhv//Hp89/OL883lzPj+e7YoOyX7RalLImgBe+6DVAZMlpQvry8Bb+UkABI4zpJqepGjIv/9nYOIBhrM8Uh5pIixYLLiiBMMjp0xyZG4x2hknCRcjFWAwxm59+GiaBs9UwQ8SEVaxPC0zy51R52/cPdnmJ63G7th8eYEiLY5JgKulym1XvKBaHMzIuUbCP4ZViNcbwSlMNGyZTQ+TSKSlVKAZZ0sOOypghAxikC7V1Td/vNHoEsKZWcrrO+Xl5/+vmPP/7w+OmXrxgCTjCFOaUgMGQElgQEJhTAxflN17Z9M7xdjQkR4etp7PuWUZlyAQCUAqRS1vimaTGjPiRrDBGswLLOix7n/b6TUiAMKcKvy+KdEZK2+7raKMrIMujnp2+ykrAA6/xwGZtKLbe1kS2hlBDS1E3b1Nu21au9nt4AQD/88MFkp9dvzmlU0DzMXV83tcK5ZJR32w3K46JXM69XfHLW3a43LgQhyKQcYfQx4sViXDJG3gVtNUCs4g2kZNRLi1QBeZ1XLshm06+rSQVSpZwNiFBKyOZwZ9f1cr70mz5DZGZDGIMwr3oGCJxvF1rgZlOBnOfxwtu6bviPP/7rOCwhGUbQ+fVk5vlwuFsRe346L2aFpdFiOt4dotUwOkVIJVTQLkS9arOuWuuFc+xzjIFIpXIuTdtARDJwddfHBO1kEihNVUFCZdUgzD+nr84ZiGHb1oILQmlM2XufYvYuSsVV06VUbtOtxIAR8FYXUDAm1lgmJcHIGoswG4dV1fz+7hBDMtZqanyIEEHv9Ol68d4kn/RihOSyUQgCZw3I8PF4rJUiEGCCBSfJ5q/X12VdV+uPlGLOrHWcK0yltX7Vy6qNFMKtRtVKNI1zrOSgZ10r0VQy+5ScO263qpIuWGcdZ6xq6uBsDvq47499wzmpKiElKyFBRDKEKZd11cEm62ws4DqskvJKSWD9tm6BD+ttTAhnjLQXhEKIMcLM+wljUFLinKqqjrEsq7PaMEYwQc74pIrkPMIUgkEFxpxfXy4ZwLrvcobn22yt2fY9wjx452MgGMKSIoaJIBiNW5YlO0EEgqiU7HMJEEeKSi4hpQQwSCBTznJJdnWcIMEZQJkwAkq2qwa5SM4RwLfTqeqUc6HkLITwJjjvEYIMSVFJFX1Vt1jy0YT1dN126su3tzf77KZZCHq5TgQSmMl4WvqdFIhqaxAlTdWlgKbbFGzUzhu9Yi7neSQi//hxk3TZMPjpdGnivN2IntQQp7u+rd5thunGFekF7aTKyUeYIasA8CjFSQfjNMjph73YdmK4OXKsQUHWWYTgnmOYc6GpqcX+WIcgL2+XaN3DpiWMZwSfXl4Q413XMSoLBBnmAlTwgSAguioG6Y1lCFe1PPQtZWJaNcmFC9ltN5fhNsxDpZrzeFvm5Ui3Td8Q1FZSJB8owbWQKTrsDcsWEVYzkgk0HBIUrtfxFSHZ1jFl6+04jJ+df9jvokP3+w3D8Pr6ratJ00CpasTR8dA7HTmrIWGHnREh54QHAlUtnMDOmR/umh8/3CvKcUrbukMg5mKTXa12bnbHu7vtflPvjqtdFnd7u64REfT/J+m/lmzbEuw4cGq15FYhjroiVQEkQSPYT6T11/cHkDCCKFQh86qjImKrpaZW/ZBfMcyGmbtzsOtaFyNKhWRMKQG05ACmZTUeeWNrhafTE+fN17flpiOqURubvZsuVyboZZpDLFNMrVJ+8SWUoOPx8CS5wDUTV9LiOCSVldt1vvhLjhaREr3drJ9NgJRBStv+oFf7dt0AxHez3e93xqjifDzs9MtlWn3O6zNvVDtCSAjBTQdyCpyTdpSgpBTBdZoZIZIT2AlJEIwhlkwZ4pxiVIXESpJtc/u2k23PGklI1au9fv/++vmb6loqOELwfnuroOxb8Xg81pIoQSUkvS6b0ZCQ7rCDAHeyRSfSj7uX77fbdRoPp59/+MFZ9/r26rSlQ396/0HMDmN4vi3RTcF6JQWTqiMUUvQwjrlWxEgM2m63bbk7ayHk2iWf7Y/H48P+WGxQokmERWNx20ZvS/Xr61Vwprd7Lj3vKWqIaFjKkdP66fmACVo0Omc39CMm5Hq+VF8fn0+w0vPLNyXap+dHUlMIriXMIDbdF/3Om5wQwi4UnsHQtbBsfl5RcEmXTx8/7IcdRHjHDs9KHDD8Mr5+et79y48PYQ3n14u/X5WgH0aGGSGE8LGRT1xwDEmKxn8Yxek/vrc/PvmQhEJSoahtU7F7+sQZVyPv2zaGhIXQ2/x/3/W372+3SROKASIEElExBrjh+OV251I+nI7rtsXofYbX1a4mSC66YYizLq6aAFslCAcC1RTWEPK6QSVYSqDCmgFKANZSOaccMSman37804enx/V+3nVt142Qsim4DMkw2HlZ+sPezttb+nY6DR8+vFs28/n3zwCW08O4HwaM6D/+xx+c8ecPjza5xZrrsn35enEmphBi8KrljDNQMsg12cAwtM6+fP79/U8/vHve/+//+a8f3+9AMHPZqOCSDda6thcIFzKoSnD1Vt+uLUaC4Y6QtOkSSzP0PlUEBFfDuurbvD4+jqqF1meEStdwFKPXDsaAGaCIgJqHXpVM1mUiErddU0quOUXvUwqy4SiT83n64/evx4dHKXe3y91Z0++6CmDwSYkWARxybNoGBdg3KrtAKRWKIYLnWTdSSKowyod3p7HsS63RBQLg2PWrdvf7AhEahoMxGouOUnibNxsDlGKLwW06xJhCSSFE51NKy7TmmK1znHXR58s8tePQdP286Zevb7DWy+yaVgJaXICqgKYRr6/X67q2UuqXt+gMYRS7hSoZkoGwMIqCs+t6n6dN8kbP1huNMUQUCSWt1pSjh8cHb9KXL+eUEhPc5eJNcDqJZmgbFlK4LY5wvk0LIHB8etKb+ePlrJR8en/KMS3LRlk+9LIc+/M1Qk6jYtuqN10EIaUAbzylhHNOMNrcpo3mkCKCCCJ912FGltlY60vMilPCISUAwYoQZBRFiBmmWpvgQ9NxSlGupe1aBJCznlTS9z1FvJTa9T2GsKaICKkJbNZbkwpAjPN5tVkHiEjOQBuXc4IUA1SN1SBBiiDmoiWk3fXXXJRgHGDAkM1xbBSX/Hb5FlwAldVaIaX73dPj83E/cgxrIohSMqDdctVucwrTXScho9d1BilxgjmjUgiMacMFJbCVfPMhxhBzwYxQhrt+QAXoaXabgYCXVEOqLkSEMecCgAKEqABZHW+XNYc49Kptm/s8LbPRNi2LgRByoV7fJlgKhqDpJIGgwlr1tmCI9WZLQd6a8ThUUHXSvFWsG3JOwTkMkWyllLBpulKLXTfn3GYMwmjYj4ggBIs1FpTEKIegIFwQKBVXShBIWXLmo085UoohBLXWBDPnjBEqKDsed95mjAnGOOa0WEcBtC5TkytcA6jH988EU7NsZl2Z5P04MsFP756NXiRihCLGYCurqNZP8d2PP3eMXM6vfr7+/Kc/7zr25e2LxwW0pNZQUlQQjhguAPRdy44spvDp4wcE0e+lJFDbfpi21VkHjH739PS3dw/euabrCaEdRve3O6cUUwwp9p3iGJ8eDiGUy/3mYhQNp5SlWm10NYHgfSMYrKnENOzVcp9rTP04Phx30zKlGAGCGZZY02RXtVc5lWjdru/tug0A1gKGru/7jgp5vc+wlh+eH6Xkh3EKubqQs3UQJCmZKcBDdF/tspqGM0nRvDr5dv/wUTLCGGMUc84lJvx//U9/u9zXPyFibYzBGb1pu757d3wcx7aRMebo3DIvgmLGeTApx/z8+Pjw/DTP021bQSWcKuuKbCRpunRbIUwwF844JihTGDJyzsSKICRX7akvEID1YkBM3jhOUE4o+YIFqzm8vd1sG3DEY98zzCgRGLMUNrNaUGFIcVl0SUAyAQFqRcNZc71fb/czV2r/9BgjeHmb5tVyIay12jhCCSLYGEsFG3Y7hknOANSMCWBCJFictcHHppWYkjX7imBIpWVCjQpCaDcrlHA+AtgIge+3FVYwdmPT9moYTAzzfJu3SbTsftfzuhzUUXbKOpdSkIzfztcUE4JgN7RcytPjE2VcNa1su3WxiuMKPMGk6wbBxaINLKhUsM0bE7Ife8Lp/Ta5GG/T3W72dNidyO483fZjJ6CQDccIlWhz8kTgpmu75oDOd203UOvpuHfWDN1w2A2xRKMXBCoiRHDcdYrSMk13IqhUPRVwEB0E8Ha9/DOf1ClJQJkvEwRg6Ian4zsl+mzL0PUfHvYmbSanXnUCCSmkczbDyqXgI7/Ns9cW1Jyi7ztpg72eLzXEdV0RQn2337c8HzvFcA2+k+Re8+e//9p19LA/aGPtavtWCAQaTrV1t7clpdTwXu56RDDjhSFURRrksVVDLXWLa4yZK3V6/+42zYvxv39+Kbg8vH8uua73xXp3PI7/6T//h83Zz2/fm7b5/vW8zlvM6XydMuSU4ft9nae7z9mkmjHY9S0u0Rujmvbduw+MshL9/fKy3OdPTx+en95hhBhhDw+PgxpyQo0aj7vofZFNVzGdrX96fHw8PUCMvGiPTTvu1d/+/OcU8r8y6azZ7wbKSNPLp/FgneeCrFp/fHjYoicJ/Pb5dfMx53S7Lt5GySmOuQr+cBobRq7n6/Z6Vn1PYLLbXTJyPO4IQbWi6b5Y55kU/dgjxldtPr5/aqX0xmEMMWa1ICnbmuO2rC/nC4QAQnC+3tuGCsmVkpyJrNoU/TQtZtlCjgXgvm8pppwmp503bl2WoEPT9VxxTFFYdS0gJZQyvk3z+fW15OSigxCs8/q3v/7L89Oz83a6Xlywfacy48usH5+etHav1ws67lGFby9fh93w/PEdo0wvep1X4/xtWl8u96bpZBusTTbeT4+jT3XeXM7JmZjvmnEuhaRMUAhDwNHHu1254lKpeTMA4GXSMdV5nm7zwgh5fbsMsROMmslZb6Ral800/cA5//f/57/hmv/6L38SLZnN9uv/+O+Xt7nU/Pz4gBHqug5C2A0docSnDAiEtS7zAiEEGG7GzvOCEY4pHj59qHEFEkBIjfXWmVoql2zTRjWtUup8uTpvIADbvIXgBaPJ+fvlgkFFsBKCY4jbvGFE2DAyJvXsUqmIcr9sm9UYYSp5K8Q/K3vOW0zwYT/mUp31GVTEoPd+dSGn1AyKIAxKAbVwTHe7rhFqUJ1RZrpNGBOQK2fU+3i5XEMIFGMEoRICY1Yw8y7o66r6XuyY92G+ryEETDECudRaauaUeWejC/ux45R8fH66Xi921UqJVkmGcY4RZsAI8bF471atT48jbVjI1SdPZeRycFGvJpQMECS04o+Pu35oz5c7hmSetXf+OPQA4sPhQLmo15stCDFqrM2ZShFRrQzB43HMuSybywDVCjDBCGNYUcbA+QRSyKkACEJKzidCKEDYmLBumjGuN2M320jV920pkDRNU3PeVgMACDGLpiGIYEopQc7ZHAOljGKaYUAEM8YZJs5a71xJmSLoQwkhMGsAsOsyccb7nWr71hgLa+U9Q4gkn9uGYIRcqBUVY6z2W8oVRIKAfDg+eVc2m97/5QEidHm7QooJZ8UlyjmoaL5p0TXeBGv9dJvtZvaHPWPNatZm3GeESU9R01o9V0g61SBE9DxZbWgpqILX129CSoYAQHn1W/S+FjA2+0+nTqIuVcgY5pQqyXMu5DS6GJhkA1VftyV4P1DUEEIZaSkkBKBRlUVrs+nJqbaVGFhYYoomxGlbrA/cS4JJDIlQKBijDGUAvXEU1XfvnzAsqNYSU83hw/sj49DHChnJDL3OS6J0NwyggLBYBuj3y9YKfNqNpZTVrufr9Z8mrj1vT58OgNA/vr/Y+xYrajrVSEg4R0pRBmPwDMKQyfXquyb0g4gZXJcLhvDD8/PpcGxkq11gj4M17PXF1t3QNLQm/fZ9qpi75J2xo+jW2Vxud4hxJ/3XX3/59ZdfmnE4nh6sreffXxOpGICUYiM4IRiiAkCBpFJOMqK5ZkJowXW1OnknCWtYR3ErBSUDiMHhjDvVci4wwSBhVLFqh2jT6/eL82vb830ZS62h5AIggjXnVHxUQrBmCGbbnDdfXwm/r6txwQMEMUXj2B9PY98oBOs8r4AjRrHZVu9d3zUAJkGltvl8/vLTnz8NO/Xl5Tqtehj6rmExlMvt5r3bPewpp1G7vPr5ukpEhkYmkxd/l50QSqkYIePNuPvtjy+vtxtqmFJN2KpPcFvXrmn6rosAOW8woZgxY9y0rilU1sjXb696s4fdzrsQgz8dTilF70MFcF60NT44b71DHAsosMDX+zlobewGINjlhqBaYug6ATginOcaMQN5cdFpLpjeYs5hGPoMiDY5RU8FFYxLxYhoY42U8hJj9tZEX0sFsGACmRCUMrMaWuPjceBcJGcoLGMjuo5xlETPW8XSmhpFeXsqFIcYU05eb7UA4/1+N3ZtCyBsSkII+BRnawnAw4hLrdZplcjt9gpsiN6PHRvGph/akkOPSaeIMcvmPKSM89a57aqNavHutGeMMgRjMMB7Y69dq7APGeTj7hngullTMfj404fNmZRzBQHQ2HTy/Z/e/a//03+wzq7/v7fb5RXlwAnMppBcD/vu3dOpOGEakkFKBewPj4+no9PX339NPnFnMmjR0B9zzvO0fno4/n/+t/9UILxebk+PTzBhvepPHz7su+H7y1sFsNsfhLWi7YJ3y216OnTiaZ8rFLSBGD2cnrdlFYwDikXTvXs+2lV/+fYbgejD4wlTcn85O7tpb3AkjKl+2AFQUnaACq6GH54f4J/z6WEPKa6g3O6vbdPsulEvW0kFY0wBwqUMXcObRkgeewlLZYxIJWOK8S24dQW1LPMKIGjahlB8vxmYWwqxiXatc9s1BeZFr4w32ZZvX88x1NOulYSGEBDCJQSMoWg4E/J6ucVcD4fjfvcca7lNU0UIQmp9LjkSzK7XW8ohBv/5t7sxW9ePTIjzbSKNhJRSIX1IORXtin2bAFN9P26rnxYbU4CyJW29a48WwyEEJl6vSwjOuigUxwyv92Vd7DjCTjUNFQIR6/WyzESK+7RpbxijhHFMyeF0JJiUGJWSGOOUSkqlFna7rs2uP5xO62wAEowhrhqMYly1XYNblgJgOZSua2/3OWVPIC+5pBC3afVuzSUhTIbdHjFUEawViEZdr/dt2Sgjl+l2etg3lCzTfL/MAMP5voXwxzxNqlF9003X+3qf+66jhG6bBhCDTKbzmmHFhUBIK8KqaZ1L1rpNO4gAozyXDDGJENdS13lxdmtbhQUqNYXgrfXEOcpoTqWAAkCRlPZKVUkfH/ZUEJCKM1pQejrufPDabDEnpqiPKZRkk3ch4BW1/U5wEggoGdoU5le7aUMFizWG2TSSccU5aWilNWYAaijher70smGYbtZr4wil95uuuFCuWtnEAkQzCsGHVjVc1pLMas5h2TR0Pt18lJwfDjvZtD47TiiHnNFrimHZ5lpiGnrpVK6AEkqYiBXM1naS+m0tPnJGT8e9dR5gkiG63eZ1XXKJKRaMSS2AYNQMMjq/bS6VKjuSUoIIqkY6E7Z1Q5A0fbs/7aJzBECiFzPd1lhiAeDIBFZsWrZOyRgqRNla40OgFIKKfFiYEvN9e3t7a1X7dDqdjsPqFqONErJpBKww+VBrRrT6zYlGwFqt1oUzTkiKFlKYSwG4Csan2wJAlLRtpQz9MLadzx5jAAHAmGRcbQxMUdH1sm3WaVv1Nk8TI7yWUlIoyet5ZoxJ1hLEMQ+8TX8Z97fz/dvnb4zi53cPmDJnNCz1YX+qMJcKnLMUU5QRRbgRbNs2Whmq9fpyzbmMfc/2XQZl3vxMoIeUgLrep83MJXaHw7FkTxmQlXKO275jrSwvL+fLGXMpBfM+5JhSzMYYTonYYYih0ZZi3HRNDvG03zNIckzz9fof//P/0o3Dv/6//xZsEBynBKbrnRBktS0uD6rBpb5/3JWQIIG7Q//x48fb7X49XwXhT8/vYIUdIs/7PUEYUXqbzZe3i3Vu2Am/6ursrutO/bg5tDu1MAQfMiJlNksFOVi/rRYjzIU6nXaEyVzD18/frE3Pn/5E2m7RX3/5fI4migYf9+2y3u/buTmo8TgwQTArlKbVGEix5AQWSDDarAEIIAErAjFn5z0rgAhUYbTGUAbGY/v8cPDWYAIpQ8BkTGHbyexzLNlpByBY1u0630Pwq1ttDW3fFowulzuEC5fssmyCUoxgSkFvOtcFUdJ2HWMYlKwaJXbtftcTAFJ0P/7wPvo4Xa+sEyk13ntAYAQ51FwIpqq5TotxERO2GUexRgmsxmmjE0Y//vnTpu3LyxuBGEl6WX1KjlD4JFjb8Fa21t65YJzJxZhtc4HmnHO2HlckKsJNs7nt7XwDoDJKu75xLkghFm19CFzxpm+kUrUAwugwDELJxSzBx2Vaxl3fjo2QDUIoBUtrTZxzTmoCb9+vMdq24e3QVkKu0+JtiaEISZkktRauRChhM1vXy+OhM47GXLVxzgTGGSIs+JyTs5vuhxEggghiBK/3LdiNIEQowRQXGOftLflSS7GbnkBqRsYE4S1igIh+VyApMG736W2z++OjNWE17uP7x3Vb2q5rVWO0UU233KeC0PHxgSgiFEYx3a+TVN1Pf/oTpvV6mVz0IUajE4FVUCwQOrUNyTnLfBx53zPEWS7AmKQ3B2IgBAGKAUI2+9/+31///fffP3/7fFkmSGsOBaPQDvLDhw/PH06X+7e9bN+dWn2/3ecZE/Xp+fn08NANh+fHB0kqQNE540zYn54+ffphuX3/v/7L//XHl/nL6+RjkVSMw+OP/+enXT8qLn1KMGc7rcf+hFXftEMrWdM2833GDA/7nQnR1lwkZyCjCBAS27TlVKVQQpCcgYnZJ5QACqk6W0pF3mUS4di0f/nxw+PDs83Zpzyv27a6nCLAbT/sHp/fjVIcdx2kDEB8eX1dVj1fdI5FCP7wcMCp5JTtumEMGYLGbhSRp+dDyNFeVsbhOmtjHeVyvx8QRjmnvm0phLfrbZ2nlLdPPz1j3tgcMGlkr9hNFoArpD543rJWyW2dtAvaaCiodr5RPcYMU+ZC8FwkjDCEEIIQcdf3l8v16+fPztsP7z90w84ZZ53X2v7yy5fDac/bJvpgjCsYh5ReztevL5eSQUqJK65a2WRwvS3bpmmjIKzOJesjwFg2HSbRaGdjKClvi7YEKE5iqgCSlKox2gfPlWoapRpVa0El5xCkEN1uSC7F6CEAglMlu+BSDLkdu+jMfVkUAcmlUbXdxzEVWDJYtbtNy/O7NpZivS8FehcQhYhAyhiCGKEsJcOYIFzn++yd71mHEE25CsEIoVyCpmmDj9++vjSq4Uz44GMKqlElg4IqAGSaVkBBSbnk2jUdpTSFEngaDrt8vW/zxjluFTufrzY4oUSw0W4WY8SYJISHlAkmoHpQIYIEUhBTrBVSgsdOEQIVYxjjmMOml443FNOckjWaN6ptugJQBsAGnxEwwfttahKP3oNceYguRWOtgKrWCkqClY3DyChBEcAMmcAYgnVZNmMJRgBhymWM8evLCxN0f9wXiDCAu67nBCPgORe78fBWX3/5x+98AbSXzWknuSqZ2jInnxQXQIJ5xqf97r6t5/vVBAcw4IzFFFsl12nhglCGkvGC09PQk1oJgASBigChlElRQC0pSsm9jT7FlsgKgYuBYxFyMrPmUmBMAERCCEIYRHCe5q6V5OXrtREcYZycadrmsBt8DJfrggAVjXS5RJ9iiKDiGn2toMSSfIQAhZQut7tMCnOKsISVEginab1fNr053rEQfAClxBqcTylvKdpku3Foh52QrdVBkKyt+/L5V0roT+8/GW+W65WC6s2mOZ+XxRhbBD5IZUN0zlvrEKYIQbOtFEOYrb2nfjzwrFAulGHHcIEIINB0qu+64+kJYnSrNXonmKBShBQb1UnCt3UNMboQ3i7X5w/vhmG43d4ArBVJn3MGNZfy8ccPerP36wQRYEwgQkywEUTSUDm0+/EghKy4nNfr59eFQdi1DacsJxBjVJI4ZyFBEMLDaYQpSM7GoW0fxa2R379/g7hyRlqGBkkgFjbmanylOK1mW+Ya6iDkfhhxri9fvx3fHaUS/dj3h/0yLct1vV6uhCCc3LtDpxqOMO0UNW76+nrzhizG29V8+iiagzibiN4mRkrbDgBUbQCjxMZgM3Sb7gD59PSuVGa2+XrdVCu6Y7+YcJu363VmmPODLASllE7vxg8fPzbd7u3tftg3Pp/oebExMSbWyWRYGEUxlxBSrTWWFEoMW2orqLVgkDmrx5GLmmr0jDE5yJy0TyXFdLvcCEQpQLO5EJJsZDf003bTIbh5SiFrY0EtPnHGuF603pbo3G7sd8eDMUavsyCkadu+4zGGFFyKscLUiAcPqkYoeUs5DwEt2iBIsKBj387W+JiwEgjA4OPLdW64Yt1QGasYWButSzkjwvnbbGoFhFMci/78OvQyOHe9T0p0x8NJNG5bzNt2ZornXHPIl1lrUCnDDuAai7aOUAkqCbmqvmWgXG6TT0BKEV1c1k1xXiGKMcYQCIYUgeAMIRhTNN1vtMDjbmilZIi+XV61WT9+fFaJMcL6BrKxBYBkGCEqXadYZPfbtEVDIowxMyYJJ9ftPl+XYehiCl8/v8lGEkp62mSMv76+phhopdt52+/7x30nJUkwpOwl6aJHn798vy4WKeaTK8EzoY5UWhtCcj2jYL+zIV7Pl+vb7f52P77bp1K/f/s+Dt3Th3cuhu/nt8fTcew6jmBMTspOtfst1Nv51azahXp9W0qo7x6PjDBCWCcljgmB3HEA/Ow08IX+/sfLEsPp8fEc0tv1jhvx97///svf/33d5u9vL//3f/sv3V79+P75uGuU4DpMv/xxr9797enn5/EAPkBRBVPN+8f3P/744/OHnxlhXSsaKe7Xt8+vr/3u4d3zjxyif/lZH/q1V99++/q9aP3w8f3z49PtNv/rf//3f/mPf/v04bnG6vPmAHy9f6M1H8eBnYa3t3vKeDN26ORBtTFs3kaCqRQIVoiqq4QUis1sjdb/9noPzlcEuWzf7luKngrxHz+8G8bROPPl68vL2+U7ql+3TYL6MPbvT6ewzL/+27/98Oef++Ojbfp5OUNI+t3YNAozJiAxdrXOMkesdcFq0bfBbj4mby3EiLUkFtR2knIcQiq1UEqSt9M0wZpaJVrBsGBj316nm2wH1sjrutngvV8/fHqq0EUQAAzbMq3GqqanhE93XcBCBWu40CVDACgjnFJj9LTMt2khlFMx8JbnOluthVCbttNtLqUq1bpUEwC8aWwK66IhQoxQv26bdRkWQUGJrlbWj41znlAaUpqnhTOGYFEKnx77YMO6agQbJQWhFCCYvc2lgFKn2x1jIAQTnN71IiSjDCMEgC/n1xulDM5bDHeIgF3m2+WKQD7uO4QZwpTzxvn0+naOsDKubM5KyGYcGBWyV7frBUPWd71e9LzMnFLGCAa1UZxgQAnCqF5eXjHGAAEEkbcRgEoQ4ZS71a56aTp5fDqBiEOIdrVLMMmld4dHRiiAqNT88vYWoumPe8RBAakUYM0GYAIZRRuST1xw1Sjn07bdCkxD23XjmEpOITvvUkjzdUG9EoSAWAiAXduEQLyzxpsYE6iIMrLbjRDjElMOvmGiadTr5Trf7rVVjFOQK0CAIcy6FgAQYsghApo4ZjmlmJKUgkkGYlFNX0tOpWREEoIJwVgBFxwJ7lzY7mv0MecoFO33ibCsLahYoEb5DIAvVJBtXb9/P3eKUcq3xcQQh76XY+vAl+tt5lK9//hOErosMwBFSEYIVoMiuTyfOqXEbTXXeVptJJQ3wxBiIjwRhFMC1rn7tGIM232HGU0htm0PEHDGBeOl5ON+gLAu95lxSBolBGMxSMFZ3/cpBB88RPA2TWCBORZUS9t3gnNE2e18M7PePzxK0Vxvty+/fW53/dPHdwgBbx1EuBZQSt3uq2ofBSd6096GTjbeOO9MTI4rBTGRpAUl5IiX5cVq2+yEXm9v2xxjIAgaa+d1uk53jGgq1SQPbDZ6YUIM467UBDCQgnE2hBD9ts01N4c9xlg0crttFYLnD4+CSWM3a83l7Qxr0mbrxk51LUYIY6TtWgBQqtnt+25sKMXHhwNECCKAKIE1iwpSqjH5ab6///h+v99ps2m9MiEODwOilBJOGZ/XiSL604ePqdLVeEKxdYYxKrr22/eg502MO4QghEAKlTMIPobgpZBY8LdvX43ejrth3D3Ms3a3xYXw/PjUNyK5st/vd32XNr0/nYQS07oMu0G2HLIBFIABEhJtc73dJ4jC8/t33a7nDX3/frGhvN63z5+/R5AWu27L8sdvqevw/tASSjmTKREhxrY93qZbRXDdzJcvf3jr9ZY2u5E/vhRMM+KVCV/g62VZ9NZI9H4cLvcpA+w3NzT9usSNRreuCfu+l8uyMcYoAtO2QQQIQAQiRGCnOKh1SwnUUJPt+/bYjSF5zqllJJg1IwBi7E4Dqmy+6HYYIMSYUldMBkEbDSoUg7hfJreE05M87U/5qwMgdl3z/HTatvX1+xsoSHLaSG5h5RQzhl9fXv/bf/mv7TDkVPVqCUshpIKr6niGQPswWQMJkEIs07asi5JtyzmCKHvnfLhcVirYsD+EkIMJpWTChDVxep29S9G7mAoncBx7gOh9WkKKDCnB2VXf1ujoVbZ9AzGmiBkffSgQwNWYLdRpm1drctz6sUcQLvetUUpJqVo1LXM3qPv1tpnt+JgJRl4bImQM3gNAICCMtKgntIGIYYJAjt1utM7rZW1HDuE/Uw+l73trDMOYC8KpDP4SY5JNY68+hNLvZAXl9z/+6I877bTWduCdD8kY74Prdi3D2FoYQ3QeVogAQs5VAGIwWtjy1fySSyo5jv2u4eq+XLd1qrWsm1arwKno230QmKTEIPLGnV/fOikSY954UHnO8OvXr29v35qm4bIhGFuQYqqz1tGbLlaQAKglgnSb52kzLtPJmiW4ytB5mv7t1188rMu86O029m3JiTeUCdz2ba357fx9XeZo7Kkfm4A7KYv3nImu6XrFBAGDoDml6e2tKGWXKWwLHHt9n4I2grCd6g+9vt/Xcdx9ev7w8PAQTNLONKx9fNzNy+3r1zdAmAmmeEco6YQglGufQQGggnaQqLL7ZbpNMxWg75WL+W2aeNM0Am/zlmIsJbOGipbFEFOsp+Px6bCjBDa0Of7Ln/Pf/vTt9fzL79+apv3p44fn01NS6nr+fr/dNpsQ5MeHh64fJJfbugSQx2MnI6cUw1STqyACRYXVVrXt4bj//Me33eEw7Mb7ZTmfzwjRCuq6rJLRXAFn4vndE+MESzUAViCzsfgY5m1+vfq+lZtxjDVd02cetIuvt4VgZdNkjPExUc92uzHnnHyUcic4PZ/P1vr96YlzuYU4nS3MUciGMEhZc7lfjHNdBgACF7zxIYaICW6UCs7lnL3ZRMMfH8bkc9c1fT+UNCvZUI6XZd70iinMscQYmk6VEjnnbdfFlP/5N2MMQc2gAqt13yvYyFLah8eTcz7GRBgdxmHbrNba6A2jCmvAJG1mFUooIW6Lid6mmOd1ZV2DMTnfbpRurNCaZwjqtumybRWBUqt3oYSKIR72LWO01uq8N3Yupez3J4Sw3vQ0a4IwqOB2m2TDmJBcdQXhCPJqzF3PAaTdOCKMm07lkDYTSs21VOv0+XauKY/9vhm6tpPLuhgbvQsQY4QQRCiEiCmEhGKCEUIpplIqADWnjDCGBUBQCYE1pRISqCmm7GPZDXsIUM3VeVtz5oR1XUcFz7FQiDGCjJBSa6MURlA2PJe6bnrJCxfsdr1CiCjDCCNjdTCxUU0/9Na61a2zsUIw0TaEi5RrrjDlChE6HR9VIy6X+eu3KyNcDQMASGs7221eLMUwAuQzChWHDEqBIIPn5yeqxNcv3wWVSsnqowIFAHA533Apcmgaycy65eDn1ThrYwIp5lgAZiSlZHxCCKWUF+92xx1VAiEMIS6gBh9qBVxKxghBOKVAKN60JYeH0WsvJGeUpJiXZc2gYMK1NavWjDG7aT4tORxawQVlqzXT5fbh00dOSLAGIPTHL185wzXncT9gjJUYYvDRJsxoChUhOt8MhEB0g0QKYDxvbmg6QljOhhD2sH8AOBeUVae0QWPTsE7Kpu13/fl8jsndrqFTElF6eDyqtlnmOaPia+gE54yvmykxoBwIUZhyOlBPGMxAG/368j2XiAsstRiru7Hr+kbfZ20XCEunmsPpxGZGMLpc37q2yRVovbZiGJreYBtjibnIvjvuDxDBvPhofYkFFGY3E8It5qJX8/jw/J/+509fP399fXkFmNShxQwjTimEy6ajdYvxHz49ikZhLr5++/7y/eV4PIacz799Jgg+PjwxQh66Abz7sOrl5x/eORhevt9ijrfp3Enx7t2zMdt6nbdlUQ2PKbWyPY0nwihjfPUacyw6Mfbj0LOfwj5n+PuXsyhbhbiX+Krny9u118qBdNrvBEVffv/++PwIcHIhO++dSd++XrfVvr1ciMK1a9Ru6Hd7CMS26ejt68VgDM4323Ak1RUlBCH+9nZDWDJCM0BM8JFRGzyGqBOKcOKRwzRKKTupxkMHETDbPaRp0WlsBMUobE6BpFMkAXeSjL1Qsj80vaDNy8v5cr80FOkQSa4AY8YYZ+x+ntpue3oY3z89EIgJho3iY9fSSpwxzhhNYNc3rRL6NkUTckHTpBMkWqfpy6Xv5Kc/fUilbusEIeRS3K73O4RSyrbrN61t9GPfkyTm87Yu5+PxhBAQjXp6ety21QefUnEunsN8PO0Ir7mg33/9stm5IvD0eBJK1VzF+8f7fZ6Xewim77tUgPP+ep33+10M8Hw+Q4YIp5AU71IIESCUUDXRwUTatrV6s9oQADsmIAD900PXNmbRxlmm2OndY80FVrDprayREvnt98/fvn55fveQSP7y/ev+eHzeH8/nmzGBcYp57giBAPd9BwAklD5+OAEAp9syTcu0rHxQD4+jIoKmZOb19bPm7EG1/H5bptk7SzcdBOcVEMEhQsqa8O2PX9qGf/zwjjL8crtDWJ/fPWHGCcU1ejvNAtRiJnd7UYg8H0e9ubjFgovWVvW9iymnyqk87MfgEwIRwXxb3maYQanNbSMQClTen8YM6NttZq06PO2vv3/+5fdfF6tj0kbr3/7+D0yQIAjj+uHhxBrSKO7tfdM6JpQ8me/62twMJ6/3aTK5i+vpqHCNaT7f5+v37zdGqU9u1poJfPrpuBuo2wDrG/qXn55+/BFzvpMtw/Tx9IQpoZTlmn10BEGpWtE0djXGF78Z1fUCB4BwDi4493TYswL0vFzPrwDsaCNGfIAI6ml93g/ivZqX5fX1qninjsN8ve13DaxpPs+1oqfn58PD7rgb//TTTxVhDLN3V1rqX3/682VZLi+X/en08PyBMGacrbhiCKfb0rdS0GbR63zXoIQb0f1hNCaHnPaHY8qxAhBTBAhLJa2LZgtOR4pJgfT1ttRrkMNICCeIZ28IxuOuu06VtRJSeruvp74vwLcPTQbT9fVWShYdV5TdlxURGHO+Xe632/bwsKOUE8wRJhDBXJLWBuaMWxJC0dZr7TIEq9aqUz4mJTkqeBx6BIAgTdvLkFOp6XR6CNbTSqJLf/3Lz6XkZbl5Xe/Gqq4dHveMCUoQAMVo7UNoGlkR3O/3gtN5nmtJjBC/6n8y/6UCo/26LofDQSpZATJ6C85ygiiCT6eDaFrI6eptAnm1Rq9u3lagF9E3shHWOTdpuwUAQK4FEZxwySVzzIRoptVWQqTgIVZjvPFJKUUIxwRVqK1xUv6TGHA+5oaLCsDr23meF05YBZlR1nWdtVuYza4bqWAZwbZvQgoUombXPj4/vHt+CsZ+e3v5/nadpxVUhGgrlKwOlloXbc26cs5ABVwJWCEgUVBGYRGco5qzs8vlHpzuhrFtuLEeQIJQ9SkQIrggMWfg08fn54/PD9u6RB+CjSX43eOBt7JWVApYlzWkIBrJBUcVGe31tmGMC0IJQEoIZhRW5FOiFUPrU8oE4na3F5KrRoKS8jw77aAk1sVSIGBE8CZnIIWUPdj0IjKg7dATuht7TsSO57oPb5frv/6X/yqIeHp+5JLlVM8vF1Ir7ZvzvAEIABOyaYMJOWS7WsJICjHm2HUNRKXmsqyr874fRm/sMi0E46Fvm1ZiCJxzVm9CMsoo+X6+csozQGbdKGbb5njLD/u+7Vrj3LTOToNa4u18RbuxVU3fjz6my/VMKIYgWW1cqCUjjPE0TcfDoxRtifnt25uL8fR8xJhOyxKCP+Bd05GUspmWEigG7O3tMt2vh8OeQTh0/Sj45T7XWBhkFONMCUG0prgtWzRsf9gRWJ1eBYWoIIiBi9FsNsXCEM+5+HWJudQCISiEIAQzBhUj9PT8kEtOoHR9X2JOOWljOBch5VxLLtnOxmjTKpVSQhgRQgRhAYWCAaxVUl5LIYRI1aQQSyp///d/x4x34/6//+sv3W7/0099CvH1yxe7bbvToR17KoSruRt++vLl7euXV0po2/Uvb9cMyst8v2oXyeqS55xQBKdNQ0Q6KhknB9ZLzkqq49heJv36drFdAwnBGIeYkg3GmnEYCWI+pGCL9/Hh8QGiWlLx1tTkcAotV3/78ExrKqUCygWhNaWma47jyDBxxt9u67LZWErBpSLYiA4QRgVK6IYQnectAAhhrJkASAuMFbJN+xLhetWpTF3bhpAno0+nvmKoN2tCVp0EEBhnWtl2sr3ZqLBomGib9i9/+rmRbNnefv3Xf/3997//4uLjwwlAvBsPHPO318vuYbfeFrSDisuuwcHJ+y2BWnEGu76LuWJC+/cfScKdUDAmgYlgLKe83uaua/u2BTlrbfTmIUSggugTwVxwFhHgQnLVqq4nuGrtQ4wpVUpRBbXm2vRt3w/zNG+LgeDGOCeUAoQzqKlkvWz5dn1+/wggoJQEH1x0iOAC0f12z7nWko+HHWMk5TC0CkPy7eWtxEQgwhh7F6KLlBJAiHaBMCrbJpZQc04pO5+YFBjDdVpySmBfBOclRoJRw7kgBFYgJAvOlpy6oaWcr5t1zoNaMKIlRcGztx4ixDkDuQomptuE4PL5y8vD+w+H44O39vvyQikTLeecc04vlzOljDMKaqkpP+x3XLHpbXbeUoaGcay13K9TiVDKPpQsEfv+9cV6+/Q0pmD1vDDMKGtTRtuy5RCEFF0rCeWp5OuyeG0edk0raYyec84ZWXMKNg39ACA6ny+ybaVSh3FsOOUILZy6zUOCK8FG6/v8qu/r+6cdgDWWspjAKRoYOuyG4KwA5U/vnk4Px7/88P63Pz7PywoplEJRimPKxgZG20Y2AW8wbX3ff3g8Ac6nLy+upPuyuVN6ffm2LOdGDs/vnqbp5tyczQyjvr9+v52vXf/wfHo6YT47vd6n10UP7cAQTNGmCLtGoFyn2RaPFGc6upQiE7zBdL7eMYiLDw/dsB/7ZTdc79dWCCy7BILgikHeEExgBoqix93p+TGUHFYWXd7ve1LouhqzWYCydrYgRijzfr1bcxqOw/6YEJt1mJdtsf+DMFYBev/umUDkgyWU3m73ZVpDCl4vGeZ2323ber1dh3GACLdtU/f45eVyfrtRITBj+r7ZkgqozkdGUQJOCHC73o0LREq9GbMZpUT0JZlyS9vpuIOISikRuqeUOOmwYG/n83LLfT8oyb99fQUoPb17Ily8vl4hgo/PDxXAmOv38z2GkkupmFhjJEaYEEqZ0RaknBiXgr97elBKJlQKzCUDV1JMebqu0en37x77Vt1uoGtb1bRciFJg8H5d5xwiRgRj9PDuRBGJMUrJnY7B2el6xUSkku/3FRIIILpc71zI+22KznNKMIbZe1gxQiSkuGq73PV0XwSTom03q631bddUnAGqlCFK6LAbY46lprZrvQur2VIoFSIrYnSRYKEUdz5cp4kQXGFtuh4B5GM+nE7OO+sCkSwXYLQFErRdmxb99nKGsAx9f5226b4yLmLMoEICMcGk5Bq8rSWhWnNKlBHVd7KV3nuzbpRxrhAV0FnzT8QXMdQ1Y9eoEgOGIPkYkq8V9O2wHw82lW/fLwBjQkWMnlDWUjr2fQi+5Sx413JeKN2KgRJ2u844v8xLzHE4DjlliAGAxbngbMgVEkJShqv2Xc9KRTnlFAtrRUpFbzPnvH1siSCxRL2uxnrWqIqxnixARAnOMEoxQYwhxloHSvxuGDrOfUx+WQRHglBB6WwXm7xq5YgHyhCGommUdb7GkksmkEAqVNMQltfVEoAQxoTAlGMFFVLkrMMUr9tcYimgGmcJwRAjDKvTtpbsjG2GllwvdwgxBkRb3Xb9/sPTdp9vt/uH9+9byVvJJIGw1MeHI8HE2mxT4EIMp35dLpAkiej+oe+HZpkWay0XKJeozUwxoIxKgmouqIbb5QWTTPCoo0+Qts3BBzMt18vtkkp6fjpCVAit+6GNNuqt3L9fqBQM4hTDh6dHb00NrjrLKFFKUEq9dcaYeV1zQi2l2rppnlGB9J8yLMEEo4f9CEBBBArWYEErKMZZSFA3jBiR+zSvq77fJwwBRRhB0EgRIhKEowpAyq9fv9yuU6O6FOw4jkPbZe9yqW0rT0/Pwdeha3e7cdHL+fVlWw3DlPyzV7rp1+kKIY4JPr1/9+2Pby8vl5zcr7/+yjoJFP3715cc0w8/vqsYv016WnQnVXExhnC1dnc6QMpcWdeY/vjHl++X7d2HJ0KgWX3by1M7FCDnKazL5OJKMTk9jYLy29s9BlNSeDrxQXV/+fRUQsCEvt+P7/ctxFQJ4oxlRK735Y8vXwlToSa1a4edbChIaX5+fp62Zd38eVrvN9O3ey77knKpgMiet8rOi97WGriP/rwmrGKO0fuSSlq04y3NMTcURZ3t3VWAGFGq7VKIaicJkL+l+P3lFRRM+kEIWRbjY0IEp5RySbcXPSFwowpX/vDQhZzT2R/a0QQPMSWQfXr/vt9Jq6d1meT+yDB02uhSnYlECCIqYsRnYC9bK9jj+/feha9vF5Brvxs54zn74D2X/J8ntqQcMxJ9uLxcQvSgAr1u87wwypz1hFBMsE/xdp1iyePYSiEwxpijEOKsN0DRtNxBLUzQ5/ZACnSbZUS0VMEOEMYggfO6LGbNpQjVNKWrZROMN40CtaxrRKiMnSil+KVCUKLVp7F//9e//PLvf0e1cASHvrHOphhPh6Ed+pTLtujr5RpS2h2OGKPz95e+bf/yt79ClBlFJSg33Ra9Nq0isKCazLqFkE4PpxDi/X4PyaUQO9m2bccola067Pcpx9SIuG45Fir5sq3em4enD6WKry+/h5yHYycFS7UaXwukqt8VjLFS0/UMIeKIBLMB5JRSaOwanA/jMByamIs2sabaN6qoknKqqOaSGUcMF4ZhsUYy/jh0AlLRSsjQ5Xa9ww2izsD0bVlirWdrituG4+HD06OslcCH48NeB+O2Zlub1/OLMV72Tcn4Nvt1qbVUJTNDBGHCBfvw4R07jHT/Ttuodfyv//b7TuJWwg+fDl3DqpeXiu0yX16/TvfFaJ/Tdr3++vn8eng4eBtLTKdhsHYhrgBAekUlxNW76LIiIqeKOiJZxRALgpbJiaEFAKqm6caukrrb7bHolu369cvldNzf9cJg6Fshm3abplygJBIRdnz6CCKYbndv5xRSjSUU612MIWIifEWbS4Sqfjy8vl38oh/fP0mpQALGW4LxH39845gCAruuoahwybd/9owbFa3vu7H6vE1LjnmdtxYRoRQkKDgwr7ZRsu2bmMpyvm2bBRDd12uK0azrZ72SDARjZt5Krc3Q5ZgP+xEAWAqYlq2WEn0oMSnFH59PIeWXlwtXgimujft+vqaUai0EM0Aw59Kvi4+Jg8IoZePw+mVrOReUdoKDlPbDeJlvoucIw9eXz/quawY1R1QrEwgUwJl4fb381I8xxfVyM1rvjwNGmFDIGZOML0ualrXm3DQCIsC5tNZ772UruZDWhdt1WlcDSmFEKtWybr+uW6mcCQJWF2IJuSglHh8eptvy8vo9+/juw6NreuArBvDp3aNP9n6/iFZan9b7VgjOOViXrHGccIDBqlcAStu2IeZSagrJOsc5hxhqba0P/djuDocQA6SYSeaMKxFokwqA82qJJVTQtlUEBG/Ml99+B9Eqya/Xmza2QEAoqSkGvcHsB9WqRi0p8JY8PT2CWufkOIXL7ZpjOp1OTdtavQ1SCiEwptFtjLN26GIEl9tb27QPx31wWiBmptV5zyjJpVrnu0ObEbje7+eXK2tU0yvGaEzBrhusOKUcQowhDocdxOhyvgQXQrAYQs4opRhBtM0bAajftaXUy/maIWIElVQSQsE7iBGTNFhLQI0utk0HKr7cZ8H5stwIrmMvKOXH3bFT4/U2my3UtFDJxdA04wBr/eOXLy56CWHUvh1GRCDnmDNOsNDWLutGMKoIglKV4iXVf5ZV/2neCd7H4CnEjLMYonWBwFou5xsmnCuxakeYTTFPt0lwvuu7FKyUjGJAOUGIcMyRhEo2Xd8u5ib6psGyH3ZEUsZlBZVAFkxp2m4cOqnEuqyxpr5p/bBHAHsbKaNdOzhjbte79x4RmkqtBG1Wu/tZipYiiQEqoYYaMICci4fd6CTr21Y10lrjVwMkxxUxwoRQpUAlFQIIA9QoKRjT66InxwjhBAWf7KarqrAEY4yQTdM0ggmCMIDQOZdDQBi1uwGUgjH0s0NghapJIcJS+7Y97PcuRK3XEQ81l6HvT6d3Psarm3/++Yc1pLfbXXChDrtB8ONhREIs59d1XYyziEqEhHH264v7+edPeJkrAAXCiECu6NffXtuRHw+71YT7vHVS5Qxe3m7floVytjifEcKCa+ev10lJskzTNC8UC0nFcjG3241K9Lc//bysqRaDAHZLEpxtk7aLRjUPHe9HJbRHqakVEQJwe4BEQgSN8wFgUjJCCECACJFdh2koFF3m+7Z6AOC2bdaDvuuY4jHW632RjFAlfS42ZMy5zxEByJUEPqQaY0oQwHXdKi9MShfcbdqwYNEu33+Lh4OCiBHRLpv7+x+vbSeAL95HUAtj7MOnkzfaO92qvka0f3jox11nvTcx5WTt5l3c7Q9CSKMXggnGhGIMBYQAeR9DqS6kpA3jHBRYU5FCtUPf+fiPX37f1u3Pf/qJ8zGlXFDFFOdc3r6duaQg5nVZVdM8HI4pA2tcQAEikHK4XG8V1KZvAIA5VwBgKaXruqZpECbGWtHIdVk2beZNUoJQKUhRQjABIIVAEYshhZhSKcVbQHEOqaIiKFum2Xs/9C2BKKYydG1OiVOya9vdMOYPH9dlapTEEEYXBGOSS7faQggAiPGGclBKzSnGXJwPFcICAKJUMLpu5vEoCYOIklILxMA59/3lDSHkfQAgHQ5HThgEcBjGppE1lpwSABlhSAlnXJRQUAEulGW+aaMRFQ+Hg3N2M6FRTeFUO49auVqvg08+Wm0Phx3jdL7f1m3lHBdGHCCh5gKLbBola0rBhgAJYZJ3vRKEEhCmyxKQqwlKjne7rkKkl4XsRvVT9+3t1ZoIECSSb3r78v0VArSsW8cwBeXlj8+//tu///H6Nt1nNbQY0xDi11++bdoRxh4eRppDMdPv8nu2bs0pyZ1N8PL9Wkz824/PiLXfL9cMwrYsudSXz+fz2b179+njh79Ni/nHr7+9XS5t33389FOwvgJ4OJywRPNkNAinw/HDx8fl5lGtilPV8FqSMy4Gv9vtP3143g2t925zjnJpNt/iXlKFkH15uREISA2n/QFU8P32Qhhrm177sG6GUdH07b5TwenAYqWsMqa1TiUiTDfr18XY4FvV7rjY93su2HS7L9MsBEUARICkYJ1qGEeYEilFKfm431ttjXG38xRyiSFSTvqxnVcNGcaVQlgzQtdlSyE65yFEnBMIUE6laRqEkQ/J+ggLtK+XzlslRM0AIRxzRAgq0d5uN+feTseTFBKE0A1jxmCx1novIAgpggILK6pRFaMMARMspHi73Tmhkkkl5ePT42k3mm37+7//Y3Xr+z8/5ZKdNQjD3e4AM46xFAAIljqszvgvv30+PBwQxIIriljXt8ba+b6tYD6fz1pbRuh+t1NSEcIIiVyGlEtFkJASfB6Gsda83GYM2djzthuHYTdva7KJICQYd9beLne96mAsrij5DAuQjagxrvPFR49KbWWz2zW6MdbYr19e2mbgnM3TkkJECGKCAAZm0jFlBACo8Hq97U97Jvjteq+gHo57KRUAmTPmNxt9EhylmhHBy7SeHvaKsnZ/+P79CyXQaedMAIUedscAKoLQrrqkOPbtw74XTDUEW2t4zoyx9vH08vmr0w5horU9nR5yKqkmwoRzfrqvKVeAkFT0+d2TFDyHYFfNe4IQdM6FiLEkgEFtXL3NKYVSstMa1NQ3UiKIEUaY1RJAiQXUnGvJ0YVQai4VAgC9C4woBCAs0GgDQHXOA4S4UvO8IkS7XoUY53nmlkvJY0iYEtm3MdTz91dn3hgDp8OodVy3qW8HIdp+QMu6JgAF5bmW631+enyslBJCRaP8oudlkUJQyjjnsJYccykFYcg4b9oGFJBCzjmrVimlOGM5pOgikVwICioqGJB+6KZZh+AP7ehs/P0fvzRKNU2TMnQuXc6z89vzu4dl3rYQIWUlo2nWqaZUwLDby4JK8C/TuRI2jsdcYEagInKblybH89vN2GXXjz/99Qcfo9VaMCEIvU3btk2iFRWT/WG/Px4BTm/nl/m8Mq4gQIRiHyMEABO4ThNGoJUSVei0XfWGMH18fO77kQlVYWWUplI4QUqwUkrJiSCoGg4R1BAiTJhg67ptt0U9yWT96pyUkhLocu77BgEwjl2poOQMAai1VlAxQo2SSqqxGzdrVrPUEgQjsBYM6ny5Mcq8T7dp3kp+UDJTdLOaOv7x/dNfng50UK9vL/dZv3y5mJj3zS5D8uOf/jRv91ArAOjybbLGt6CxLlHGCEKuQIDJzU7Tt9euV+PDkUjUIlRNmC8XTUE3ylzg//jlH23Tc9ktIKfZP8fCYqWoHIYh4EgAePt2zTkNg5SdmvV2vVxArghgRtV4aFLFvH9CFPsKP39/e7vcvn3+Tnkz7Mbsk7XBbQkmzDEkmCGCKEPxnxHt5J1PEEEISEW1aRQTDFZEMFGjSjFZr2OIIUUk6NB3UOtlW6fJGBiTmwF4pHR3ekS+vL1O17ftbo2NIdRYCMI3PQmGS0lDButkX43+9DGVApebxghZ63zwPqcAs5Rsf3pumoYCWHO+LwtmJEOAKbarX+Y7grBrWimcaNSwGx5PewyrW9bMI2VEOxtDYAQLxnqlQCmcUwjROB5SqW/nc631cNqXkpd5E4KdHvbbord1m6cZIbQ/HLqmdT4QgmNOm7a383xf9LhrW9lUBOfLBGtFBKWSm0bFnF2MLodff/vFOscoF1wQTLqmSQit1j/sjq1U27KaVX/5/Qv8CHaHHahl3czNOy44YfLL55dNGyLYsNv9+POn3379Y77fjDFt1xJGv379qlqCyd5lu5j5z3/5UzvIkGKIUZWsta01C8GJIOt9ne7b6TDqdd1et59+/Cga/vb2+vZ6LQlI1bSxyGHvF/J6WbfFeld6LkCGxlsfHEKQIJhKRgxPy1IBgoTxRszr6i92c8a6gCB2gBwxAxCWADCsZllyjN3Qyhb7mHKMKWbrLMAwlUoIYoykEGqFihI+SNY2m18zXNbVvZzPmzHTrO83F5dtr0SM4HJfbQCx8v7wyFtuvNvWLdqMMsOVxYhzBbASjBtB+rf767rcF13ebktySapGqNb8/jbNsyK8Gx4mA/7x5Wul/f7hZ7Rlqbr/4//7P3XjiDCjPGo9/3G+i45hBlFJtA8DrqVmo02/a8Zjo32CwQlJKSbWWV/Ydb5nSrphjKtPrjAscSX3ebMhkOL/9HM7jq16vTnrt3lbtPlKCONyaNtRCWPjMs3t/sAVBZSZ1QuJC6yhJFAAQbhRouR4v64l58NxKCUrqT7/8W3eCnr/rt33GCIEUTB2WTRIBQPMOccFTrNGqDaKrZv2ORZUueAJFuedMcZZ38hGUDWMHai1Yvj4/smaMN2XblBDr/Q6peg5baOP1/uFK6GaVjbttulV21oq4SQmT2gnZDMg6r1Zpg0ACIyZtkVIwQgFqOacnLGQlcfjCYJirItdNtrP01pgWqct5syIwBRTKmLO22aOTw9CsJSQWn1JOceEMGSYAgTmZYUY+uTtrJfJjPtBUf727XI4HsQoSs3WxZjjsNsDCLu+yaXUjLQJ9+vnoe8P+zHH7IOBIYxN0yoRKpBCPT2cpnG436da4P7QY4a3Zb2ft3/uyHTRbUsp5QnXtukIQj7EWqrq2m7oGeXOWIIJpSyFFFPmjDVcVs6X+xSD1XpjlDpnawEpJCqYavm6aWvN0/PpsB8QKAiBYejaTurZQcQwU0PfJgTmZZ7vL00jFBcgFdUggZSfpmWzu8MBUEIo/fEv72ou820+v76UWjZt78uyblsFZNVODlm1fY+R5DTbYCqYbtM/TbxYUMgQoijF5K3pVZPbaIxhpXSYdo0sDbCxppAJxt3YMynv0xSip5jJpsEEMylzBSnmduiUEsGHVItU0rl0vy674wERwjiPzueStXXOhGE/WK3XzcQcIUbOR4AYpJAWZFKNtRRA2mFXEbDWYgR4w//+yxebw/6wxwQDWK1xXAjB2TQv3jpQAYbEGaeU5AD5GKLVbdNgjGspJRdEqOza5KP1eV206CSRgj+/e1yWLTiPAN4Po5CNVIJgGmOqFeQCGBW7h+Py+evL23ezBLelh7fD44dDhpgJtNwuX769ZEimve3GnkJhN+vsdr5P022Z5yv8GY3vTsUjF6zethQhqFUqVhBhkrRdBwACBcAKQwjOeR+L6kZIqOSsZh9DEF0zz7NgPMZsrc/FybbDlAAIGaM553VZQnCBEQBABRkSngsgCDElYAGCC4QxQBAhuC6LT6FtG4pwrbFtOEb//EEgBHB/2EGMQQUVJOs1QjUoAWCmGHHGGGF6Xd/mrwhiQfl11ZTj5fV2Pt8fHvbRus26qMR4PHTjgBFg8GquVq83QQkqxc6aICDbphEKBLDNNtgUw/bw7sCkeP16diH6GJmUTDR9229mu66TqLChVDZs13cAgvt1qRAkVFe3vn65IYT+8ucftHav53OrqKgIUNy0QnYqQ1BSRARAWFupSgXb/c7ahjL6/DhYn9cJ33KY56VAOd+XTXuIEGE0psgYxhhTRgQlpGBYAMZFax99VopyIb3zNaVcgXOWVxZjXledUmq4WozpKc0MMMlrqQhzpUYIJaZIdugRUN53X77/XgFQSjJMgk168+pxX0H+/PUcQ/EFimYSVAEMQYW7cUAEvc3X8+Xtx0+fVNOkUmotJaaUM+FMCWGdx5SqVP7pE2Kcex83u+53DQgpWB9chBAFmJkQ7a45HQ7LbRJCPb9/rgjEWOZZE4YZZ23bAlAQQoRga/3by5v/J7ovxXyfS4oI42m5l5RyTtobZLhsJEYerzDmHJzvd3079LlkhEmF8PvltdaEYAUlO6OVlBBI513T90oJlFJw1hoDcv7++sIZN9oCUCGs3gUTl/t9TbmglH2ut3nW1vgYtNVSSs5Zcg4jEX3EBAOCbcoNYxBUPW/rsj2+f9KTadrW5fj7r9+DtRjjmnJM8Xq5d6k1mw0xcia1D7/+9vXwfNiMvbxNGFKIGCjAahNzhoDEXCpCzqXv36/v3j9gTEAqhDG3mcv1pnbN88OHZdL3+8bkBhAKxueY9TIjVAGmDRK1VgBqBXXddNMLQbiUKqVqli1Yp9cNFUAp3Q9dgdWFWDCqGFsfz+fpf/nb30bJ7ueXrj18/EQt/p7vd7uYUoObl5YIMfZUCkgIBpQz/qcff/4P758zhH+cbx5WjEhlZHbl9b4e2+bL55vk5G9//Y/vPg1rIjfrFusqhE3b7vYHpvi8rlwq7Om86Pu2daNiAs02luJyyZXRTEjIKKPa9V2N4PvX82ruzY6akmgjEedH1eur/f7la63oMPZvlxuTctYOMTIe9i9fvm3b0rTtdLuJpqWEBGPevr3EEE6Uw+jP97tPRYoAa0GIiIbVDIIrtaQSa0qZdk2tWVsLEbzf5nHciV4VUM2y2E371Y99N/Z9LWVdTasoogLk0rU8Bl8AxATXWhFGmCAmBGGMEjGM7f7hFBOIJRWQMMGME4BACKmRyvlkjA+pCkJZ03jjfEjbopWUwSelICrVGZNKhRUCiGIIMeVcSq65f3xSUjhnQEpd1/V956yd59Vbp5eNUdqodr070YrHx6fgo57sttp11pCwh3fHWkHTSNEwwREn3DofUsq5kop2StSQVCP7vh9U9/mP76t22r/NyzbN6+P7B0oJAExJfrvcIcZMcRcD4OT19bquy9PTruuU80lx2TdcCBVNFIwNbafadugHZ3TXdzVlShmiRG8mhTyMA0VoGLrr5ZpiHpqm23VcipxLKPlw3DnjA0q7XvZjk2LIOY5D54KN3tpt9c5jwrhglAvjNEJFSto0HGOEQC01/+VffnbGlbwSqrQNt/tMJEkpUSGOD48Ul2VZBabWWqe9pKzkpPV6ejiIRuaUG1hut5k13KRgrfcxN63YHw+cilrqNN1fjTuMI6Vs3uZ21wopbYxOGwhgI+WgGgwh6jItQHL+0A+tlBnULfwTuU8EQSnpuiEpheSKUBJzrhDEnDDnVDBEaLbe25xKqJhQxmFFNUPVtBTh4P39svgc36ZLtxsqhrmmcRhKjsumKWObtjllWKCQfBg7LrmjbF0mH7IPyfsYQ8YQUy6g0Tlmnc0yr7Xm/W6kjDLKN7NZbXb7saaSY3LWrdpAiNu+l0L4kG73W9epeZ2IW9yuG7quDdFzwlrROh3Pt/vbtoqGFIQata9FlsLaZtdu0ZH7H18/f3+7/iX/aTzs0H4Xg2Co8zHPtxlA2AhAGE0W3u4LBFi1YwBwWlaKcErJOp8KKQjFlKd5PRwfnNVf1gsngBMijur799fV+kxF07W8U27LhGEulTE6pUQw4VKamO9aWx8IwrvDjnHKOM/J11JjiNfLnHIhlIBadvudwHRZt+Pjabff55hqhdBjwYTkjDMyz3MFlTAMIEAYc6lCDBDiChKlVBur2lALWLaNMdaoFiFYk9vvHufVKsEihqNS/89vv9YCcwnnMl9irCC/P4xPY3+QSvz4Q0cEYVTAOhubQJFNSzkZhtbcda7FubRNOoUQgrPaY0IeHh7atgnGFhcaShrMHne73VF1rYzet4zMKbmUGQPdgWcWf/32x3yZBSE//vD08d3x9LA/dF3NHoKECW77HgJEEWeYppJ8Dua+oIJryE97Vfzh5Txf5+CMQYg0Yx8zIIIhWDijOYOSS8kAVph8BpBADGuthOCCSY6p1KqN3azFjBjnrbUIkVBAqAkgVEo9tOMoVXTb9a455T6EVinVyegtQoUzjhHKKWEEm67RzmyLqwA0XZ9qSTDtht16n1Wruq5Dot7mOTh7v5ZkA6cYQDCvW9O12jiXIhNccGyNTbVmDLTVCFSCKmZ0N+6EarT1i11l2/b9yDEhEEKIGJOhpm2eSs4AAmssBIBgVHKOpUAAmk7RzBDCOaZaMqglhni/XJloPv7w0RhDKAU5IwTMuvV9W2FMIMTiY8zbYjDBnRSfnp5hhcfDyWm9LHPXNyXnXklQ4jTdjTXDrt8fxts0/eO3P5hQj+8eIYTX6V5SFpxLqbwPX15eNq1/+umnx+OumTtUUYwFVEQx55xDWMdde71dV7e1bbM5p4Of/vhGAAaEaRtcBAXwzYPdbgTBfj5f2bI2DT+dnijhIZW36+23f3xeXdgcGMZRCuZTcrMVHSOM5AzMbHNIKfh+51XDaq3L223Xd+9/+IFKymnDSHObbkbrGEuORXCBWROCX03EgjVKAia8ifund4gC72OpxWw++YQgyhncrvctWDk0ApOxH//6t2bRZrstOGHRNG3f7o5jzLmev/1Nqvfrus73P/74dff82A87HWpCuGDkZ79X3fNx/PC0m+edc6YReH96WkO5X40LVfQNVZISsuVEMTscT7JrVCsCzouOX77+ATmuCJ12QEny04/Pq3WrDdsUeQdDLLigVva65OvrBfO0340ZpopS3/eUSQYCwgwhmIAr0Lhw5aof+v3h4QOVWG/bNJmnwwHBh2VZECFUk2bom1a5xWDMWC+FUrM2t/PEhKLon2WaqLho2hYTIhqVc5jv85fPb5jCWgqC6HQ6Uk70pkspOSZESLtjBGFrTAyhlKA4ZVyY+5xrobVCyriQKcdofQm5E7JpVQF5c0Z2XYA1pqqDn9dpW65cUJDzctu8yYQToYQ22zD2nJIUI+VENtxa7324z8t0nwjjUslWNpHwVEEqSTbSx/B4PDJGso8V1Nv1RiDyxt8vV0qJs1Zbq43dHfvh5w9dw2EBm9YQwXmdtl9WVMthN6pGOq8JwcO+SyU7GzmhOZZcctNJRKDPod23y7SGFLkShJFl2ZQSsGZUS99IgDFhDFOipFiCZ61grRr5ztmUSuGK5ZIIRw0fXK9M9Of7JYf0fDxWgiOsg5Sl1qfnp7bppvluXcEYIYAYIRwjO88l5xLLZn2jGikZw4xTYrclRF8hiD5ywX/4y48pxq9fvu93e0Dwtm3zsiJeC85i5BTDl68vl9uVIAIJ0takim/Tsn6dCaFt29zu0zgqobgvycUq27ZvG+e9MZ5qr30mCJZaAaXLaiFG7WEQKd9vi+ACe/T29pprBAltJkpOhuOIGGh6BZ33AeEKBCHHrhOE9UQoRDCCHWcoxQLAh6fHXLJxGoAcrCGwVooIBQBk77QOsVFSSRlCKTlY60rOKFcfbal1muYKC6MU1JxyEooySKfPU27q86dHEApBCIBqtLXWAFAQRpQz50K6Tc9PD4wxgtk8bxhjXOl8XVLbGGeCd1spBBMlWc2l5IgQ4RIzuTebMSZAgPVqAAYploIrjn7etNk0AkUoYqwhnOBWUUjIpiOsGYGCMYK16nWBWHEmMKCrNuEl9WP/4d1HQvlycS7EnCoGEFScahG82e2H2S/OpxjXGON90ddJj924G4+I0y1EArPxOSbAGmas1S5cp3sGsFWqZs+GtlGdj4lS0nYUIJhTMHYLyUFAv31/8d48PT42TTe2QoHqnKsxG2MZJ017ZFzVHPSyQYQQwXrTbvE1V6Eka5kP3jnXNAojUgDPpRYAMMWICKK1MXZdVylFiQFhBCHOJSolXYzLtAIIEkgxRa03DBGAgCAoOAZYpEVDysUP7yigi7Gx4lzy5fVN623A0EN8HHoqsO9brhTlBPXdbZntsnKlBEfjTlVIz+d7SSW4yBg/HE4hRVjh/XYzm6YEK0GPh30rBatIAHgYegKgPt8YQn/58VOFOMM8LcuywVyrLzGTwqUANeUSQIgIkYoAkxRnSDCJNiNIJBV2Xkpwu77b/fXj88PD79+m19WtPjdNa3xI2TvrAQA5VYhgTQgiJJlABWlvnbXJB0QQZ7QASEmElKiuKSnnVIKPSjEAAMMEYMi5ZFLeb9d5nfa7seRknRGN4IRyxmSjYoiV5K5rcyqSo+fnD7DC3X503nrr+chg3zijG8U7qVKIOcRUEKMUY+h9qDnrbduMo4LvD7u2aRUjt8v08vIqOM3Rd5yPbSeUkqoxPtYCrbVN2+kYK4JC8Gmevnx7yTXv9wdQQUoJQRRiul3vmKDj8fjhwwdt3XRboGC7XUcJnqelazuISE2l69t11XpaxaNgnG5auxQTqCpns22v398QhqeHw8P+WHNpOGOwlhhxBSmk8+vbJlVJiStZALxvxqQw6xU5vwV/ejoljACqk9U8+lprLBni6oI7iEOPsdMm5IRyeXl5I+LJu2C8jTl3GG/6vG1Wr2v2hVEeSw2p5lJyLohRzGi0y9v1omQj5DNXrFaSYUZMvvxxBZzZUNK8DJwed8O6uIgzo3y7bSmmh8f9sBs37bbNSEkAwBkRTul8X1gDpGxY32/zGpzvmpYwnirolWAU5ZhjTjGlbXPjbkAUb4txs0s2w1iHtj0895e37yFXhmjN2Vjb93tjA6ig7VSI5svL9MMPH7uxHao9kj0steH0v//3d9+/f/eg/PB0igBO8xqlODXq8elD1++fn0wCrGAmjx+mHH/55WuH0PHQ1hiV6iDE66wJoYKLTZuW03G3n0x01qWScQH7oeeUNn0PrrO9Tue3qW8LiMDJfDh1tYJaagoplYQJ2Y17yrgCTQHVTEsmoIIsOKYM1eolb2QjhcAU1mHXNi2RLXM2Hk4nrjpvkyVR7UYAQSgVIPTp40cpVapZW+v9lEC96bWVCmDIKOZM6S3CDDEmCNSnhwdE0Bb1Os+HwyHHGHzkii33jVHICMaIYEpzLG5du7YthJdaGMYQFghBSjHnHED4+uvNxCT7zi4+lgSj6zhFGTLKFu2d9aiwAuGqF0rYu8dHJeXtcpvzygTbNr2YDcIaQ4AQMkoIxj7mVqiKynKfQSkMEUEpRvT8em6aJofY9gMXTK+bj0G1Sq/ml3//5cefPhAMKCGnp0NFdduMIGIYRyrA9f4dAKhySzmHoDYtDzEZ73LKoVTJhNHWODsMI0Bg3A/rsry9vpacQM5KNkM34BRyyd+/v0IAmBDGp4pxP/YpRGs27y2u4On5KeQSztcQsmwUwqQbhlwSJIhxPoy7kKILbl23kqFUimMctI/eNaqhBGrtMMYV1GWepeRNI1hAy7JKJo6H3Q+fPq7zOt230/OT9a6C+vb2mko+vXsYx2Gdb7f5Ypw+7I8Q0ZgjoaRtm3VbCMWYwLeXs1TPTaOcL91uxKis98X7CDA7X+/WhWEYhBIxZ+uCaFRIxRoXQhSNQgT7EEotrRAIY0yZVMRs2tnQ9a0Mab7cjDaBUNXAVvDQNK/fX1EtgiLtokvAGKtahQW/r5v3IaYSfAQQYQRLKd56WGDbNDlXRFg7stu03Ne1AlRKzqjAAjAEfd/sDrsQ0p///JcYM4qwH/p13VxwBWWXQqm1bVtCeAVwmddSXsddF1IKObdCSoKWZdlery54KRjhJPqw6Q0jGNbENj76nVCN825bNoqRkFwqNexxgnXe1usyv7299Z28zXdKMel3Tal+Pk/bpqNNTbsf9/vjqSc8q14q1dyv66onJg4YIOsXhOv//p//51iKDWsp9nZ5LT41vG3b3sL8+z/+HmuhqsmQlnb3j7f5CdARgPh2342d5BKRcp3N5lyqRcgeQkaZQpmUAipAnPH9YbcZy6QqqSTnpKAlpdWshOKEaiWAc8wQhikyQZPAlAHnNyl4KyVMGWHStOPxuWqtY3C7XVNTYgKmuIIMUUXZe++d9whiwihhQlLGEQQAluQjKpAwujpjrfMhtH0rG0Vy5nKx3lljMQRS8EWvomk+fDjmis7nqf/5eXPepeRT/PXzy3erWQXJeHFAx6F9ehq195QyZ5Q6w1iLC3GdllYwxJRQyiYfYyQcVwRFI412m7aCsYfHo3Nm9Xq3byAE2zRnhCRjokS7bmPzzBpZGRgH0XJmVh+DMXp9idFNN0XA0Kph16qhYxAhDIJ3JRcqRN/00TjrtPdmv2/GdiRUbL/8cZ7uqYKQi17WWqDVsSLYjEw1TBKKAFhNrSXZmEutTtsKYAEAVNhKxRBXXIBaEEScERhR9LHpGqv1/Xo2eiUY+xgYwyGU7XKLqZacC4oxFghBXbyzPhfPKGWYYghQBTnEbV36RnodzbrlClNMTErVNSiXHMN+1x8Pw6ZNyV4phoJPtQhST/smFRBSDAndN+9sNaH0YwIErN4u5/Xtei0pN60qGRrrMii7x0NONcSUU/325Y0LjjEtpby+Xf705x9Z9pQUWKGzLlOcQam1NFJQzrVzD8dT7MboPRE8IpRjghmmUAjDbScYw2PfIEw2s03aQgyVkpizAuAyLfOqu66FnFHJIcHrzWUA53VRoPa+X5ZFKZlKziERhLiipcbXlzcbPCOEYCQIZwiGGF8v1xDTdF8Y5xXgeZpzrqVkimnX99u2+pCEoLyjGBW9Tus2AwAwps4m42NMBWFy2wziTabIbHeFokfYJ1xgrJUabVPKCGNEaAY1RVBhNXfNKVvnNwBTqXnc70woNmafEMQsFghjLilxhRlC63zXGrqUcsX3xfRje7ssEMKm6XKOdxNOx273/MkER6iI9o7R/5+l/9ayJEvTLMGDoaALVNXUzFGAiqzKrmqq13D97kMNMcPMmu5aiSMj3M1M0QWCDkZDeL2AcEKI/PvbW0dbiqt+c5+OZ91xa/PXt99+kD8jjqWQf/nhz35Zjv/H4fb+dt3uYJCi6+f7TQPMMSoJ/Pa2pKwH9fTphy/D5x/e16uA8KfzgxDw3//jP3azUshOh3G5u+vLjQje//T5D3/8Yy44g/K3X391e0gCLHaD1A5ak/PBxqg5wxRv82r36+kslRAlZMnVhtxudiGI98Y7C2DlfccYeXo6h4KsT3a5HkCaDgPjeF5vbt+nYRr0mDIIKTrn19X46CmlICWpmARECYKEYpwCjCACJoZ13S6X2+l0EIJDRvfd9X1HCU4FLNf7vN8xBBgurZRtdWlKAuNaq2BccK712PU5pgQaLCV7Z0uOAlM+TVSqVAFoiXKCQP3268vH+/zlp89/+Pz5y3l8fjyX2F6+fez7nkD7uN8ZodHl+bZSQjhh1nhGKaE45Xg8nksoxtqKYEgx5Yoab6AxAFDKMYeGCRR6PJ4grFwyF71dAyV46EYCUCt8GkSLyTlTc8CcEcUahNXX799f9n1++nIe+yF4KwhlEG/zjBk/PZ0ul5kqZXZ3ud5Oj0cb7dvr26fnJ4Trti2n00kwNd+2mO6PTw/6UXdahWBzig2gUqDbtxzSvi4xhpSKdYkrjTH+5aefWqktJjFNIeXL5ZpB++vLNwxRKdnnDCBsrTDGgnW9klLyBnErrcQMAIw+lVzOx7Pze/CeUU4Rff/t5b7e7TJ/fBf9MGZXUCOcsZzbvppkU8c7RFHJif7en4KlU+LhdNCDsLv58uOT6tmyzrihCgChyLfqS0YIGV9jqQrBmmLJFRFcSs2x7LtFGPddzxnTXeeCs8GVBjBDpJKGSI7V3k0Kydx3AuqMbma9U6Fv2/71ft1SOPTcuDinbGMmTBNYvU8FIMZlzaVV0CktWPbWOuchQAjhXHPKZXOOMDpOB0JIA2XbtlZbjDmX2nUdxPDycd+WtZbkgq+18E50pF+X7Xq/dd0wTEMo0YXAkwy5lgYAxp1UmLGXlzfRabvvNgSM4W4cIlAqlWNbvn+HiLRaGWMSE8F4LBViWgFwIX3M98VtjRQGkMaSWB9qSc766BJB1HtrLJJanc4TQC3GgHHVWgxag5Y5gWzsz4en3Ops2L7M19dbL/sK4be3l9ntmFIXgts3X0Am9Ov767otP30+UVxLLpxhWOHtY2G6l5p0uhNCEkIBAB9vl926H376hDNJMXoT+14rIWMMzu6EkvPTk+pUBtWvNqV0mAZGSPh97o9BDkES0SkZU+Fcas4p5RAkTnFJHhMBSs0xQQBTDiklCEnJraCGMUMYME68dQRByqQPydkIIJ6miRJMCEQYS8lNyAji88Mxprgb44vvcuBchPUquHo+dMYHSLtBic8PU6+6h25Qkp/OfSMY76t3/uFpHI/68nG7XdZ348anvjtMl9uecqSC+hjfXl+oYKBiABCXiivOO7rN8/v75cfzFGMYxqPSetjXmtvAxfE4mRxIgOrp/JLego+44ctlnt8+FKPhCDPkhcPbtnnrJZPTOLac425ha4hgzGhCRTH09OlBvL756IJLMTbFJRMsl2pzSCXmQmwpLafgHQGQU0IYoRSBBgBonBLcQDQWltJihoyg1loKne4JBDn6koKUrNUCEa4NVACk1JzX+b4VmPpDjzCMe6gNAUhDSLF5CCGiiHJ6nxeMoGQspdQQ4kwQRlOtOYSaEiH4dDxAgNZtTSHcPz601r+fNlEDqabamvMBCkRz3t/fG2qr2WqN+2ZDiLvbD9ORcEIAhrmi1g6Hfr2vybZOKUTgtm1CieU2N1AhhN64kjM/jUxQ70nLBbPWK8WVBAo4YymhlTdCeQOFEIox7X/qMECc05STECz5lEAtoKEKpNIQkRhSCMFc7+16Y4wBDCEmqtOfnz9FF3JIoYLz06mkZNaFQCgpmc0aDEJcsF4hBKyxCIFaQI5VcBV9+vqfL12vMELB+f6kOy2DMxXDTkmheEnZuVAb6A8jJ2zZtt1FphnjfDHG+1QrAQRSjiEG1plaQSsFFMC5kEKU3Hz00TvdqQrgfV3d7s/HkQt1u+1MVDkMIcWWK8cYUKwGzSiaL5fr7SI6OT08NMy+f33NtVlflNaEK++3ZVlig+PQISKu1zXnxnFnvJeyU8Nh2YzSvB97601IgTNRMsRQbNvl73/7VXP46fjQf3qoAke3PnTT5+PTtq3LshM5oCTnBUw/C0Xw52lQmAxK/Pzj54+LCTZJqVtl05GKXpccKeXdIEtLf/+PVH3KLkWXSIX6pM/H48ftalZLMDObCWF/OP2kZBesySF+en6yJtw+FoQBIVz3IsWwmpUx0UntwpxCZkwyxpf7/de//Y0hVAsjNFkbYgE+5IpQKG3e5ukwpN3YVOdrefryOA1jha20QiVhGG2rTyWyJgCGsZT7vH16PCGEIQBa6OBNtJErChB2Joqx23eHRkoguuxbbm1zLmYTWovOHQ8jbFV18vTwzPW4rrdJymWzcUtGpU51X54/PY3qfDjl1EqFo+8aApyzBiBEBFYAapGKQQQABJ8+Peqh2zY7Tpphct82UGtrKZfGCddDdzwcnLFmt6WWw3QoNe/WhFLv97sS4lnSUisoicKuhNJqK6Ws6z6JQ0rB7o4zpqTmSCaXMEK4tbePj2VdDqfjY99xIUsupTUiuOrHYG2DIATf91oI2intXAIQYcpcCKfzERK47+B+u1ljMAARg+SjVApjFuKybFvdtuPTQ2vAOpeM053ad5dig7Tdb9fn52eMhO67bTUuRC1FLo1wVBpsEDYI7vf5eDr8l3/4Q8yxEchUp/pgdvP16zsErWGQSlvXPVV4n21KoJZyvy2CE3tdhuEACDC7BaBQSmMIpQFMUApBKdENXUgRAPa7fhq0FlNCiCJYU4LeF+cLRKDEJDRDmOQYMGGM0lJaqUUoEWPKtfgYl82suxvHjhEaffAmSCEPQ4dYW81u7tfbaiJGiZK1gIKJkKplN68Gemx9Vp3uuq7mEnwquRGEmeAxtm03tTWIQAWIMAYgIoQKyZ3zAGBEIBXChpyqLSXt+xZtXO4z5XQ6T1KpbA2AIMSIo4cbQgwN3dgQbASVgG7zBhCsrSFKXAzv16v3XvUqg8Ya65Vyxt6vt9pAa0BqfRqmEE3NezdOqaZ1XYzbXHA5pj/8/AMojaRYx34UTF7bLLiUoywtSy5ijDkngvDpMEjdBR8Rqoeu23e3rBcbHRW8mwYAEYdst3EPhnOuRy02W1pbnf31+9uxpw/H8fL2fRw0qrWTx5SSdx5zIXhXYvJuhzUnF66X9YDGECtCVDIJMGSQmfvGOe4oBxgIipb53mBjECOIUogcEU6ImIYGmzMWEpVi2rYtV4ASWeaZIsiPoxQcIwARjCGEkCBCUgpCOGWklIJAwYwQglKM3oVhnGpppdbpOBGKk/M5uFRS9r7v1DAcCCUCdJjzj+tbbW3bN6V5y0VwPI7nbdsjzP/9T19Oj4/Jpdvbe3rx08ORchgLiMAzzkYtOcKtVqqlPnRm35fZxZKJIIJjCBvCINf8/fXNRjtM0tzvrsLq7OHQG0427ysV04OknN1vF0QwyaBY/zwO5OGEKLEZHj6LUuo9w+9/X9lHhKTUmn/+rOzHHuarlqgflOBUnfqKqG0xI3CZ5+t9EWoklNdcIW2lBKV5BmU1aw0ZltIrOU1jSsk6yxQtuVAspJCUUrMbQQVFGDOCEYS8Dp3AmFhXIMBcCohgjgkiQBGTTJZSpWiQYogoxBDiJrWMIdpoKUWxoupTSq0msGwRj9KFHHLimnkXoS2SslrxvPpcZkqo0gOAoNZMGC0VLB83iIkQHLUKMQAIYEEJhPu6aMkP04PZ9vv1tm7b9OOXBuF8XVLbhOA1pFGyTrAYI8cS9ZoxWgFgnMMGYG1SSYxwdEFyOmiNELQ+hJSVVoqzmKI1jjHGtdxXU0p6fvqEIFy3zTsPGximMZZ8vd4wisfTkfXMYr8Zk1JKIQcaH57OvRIQgUlL0ndWyRTiKFWjGQVPAOiH06fjcV7W43GSnbK7L6VAgFPISkgp9P222M0MuheCvqfEMKoxlBgZRmMnAIAv8y3FCBEurcaac2ulFYjIbjezL69v1wxBdxyeH75wAEpMEOOQKqmYIkIJBRVghHJu6+qEFBni7ngQ/QAhDGH1Jqz2erleEMLoE26wNYhLTD5UgtXQHZ7Ozy5nf4w5A4gbYWTe9gYb6/Rs9tpAJ7V3pZZyfHzy+TZ/zIwP9/WOV09VR1gHAOt0d32d/+nf/lpTfL2sx76rjNDIMkAm4J1lm+pucohN92oQw3/+9v0//p//r8eRn4/dOq/f//7349PDNJ6LRi/f3xOon384lVqwYB5EECus6XSQY6f2NU3jqKYBETivi9tttOX9ftucmw4DBJJx1Wm13laA4DovKdTGAEhIDH1tdd9SLrEfCURC9X2C7L6FeY3GgjWG6/L3fuhqgyHlbpxkJ7M139+u13n5819+pgRHs63b/jxM5+mwb/tRkdSrN/IBGrZmY4z3HRecA5jm5dppARD1DmGMp/Oklb+93efFVFBJA6s187IbG779+t2F8OXnn3Moz1xlb9brPKrjeXwItW3efZkG9Zc/9eLbOHCNS3Trv/zrh56OsutjCWbdeiXXdT0c+5Tq9rYE79vv4tlWHw8DzNmZAErrtBh4l0qKKXLGDsMw9Vow7PbN+3XfKRbscr0dj8fSgNnNb1/fPp+OLefffnvPLYwnrcf+ejfv71fn46QPFBGCMaMqe3edb1oqRglF5PZxo5Rhyt9eP7ppqg3++rdvz08PwzAAACHAQzdY47wPp4cTBPg+r85FH60WXErtvQuxFJQYpZSxXothPL0vVxsi5vr9crf7RipZFl9yVlIKSXezpugwplzwkEouJQDgc3OLGw5smKa82loBgLC17J1VnfQ++1gLJLHFedliqqrrZjN3NoFWBZPGmegLaggQWiHJpRCpAWbbfM85SyE5FjG5gmvJTQglBX79/rps+zBOkqt92wlh3UFRSUtrbrcYorhUAAAmROu+5upsYIwKJlrfQIMQopxqzgk2hDFqKRMAMaEFMqaFUvL67TUixjomDlPysdRkMgCM00pjjq21nLO3oZZSawMN+5BC8hmkBlstjWCCIG6lMEpLzt7UZV28dwhCRBCsoLWaU8oucsYqbAihfTOX+50wTBGGtdllC9YTzpZljSkzQkEF0cVlXZQSuabdOhPisu6mZdXrdd18y3Y3LUQIYMpFx9hpiVqb9Dj08vVjvX581JowAkqw6ANpiAAAQcPGxUowkjzkWkpTAiNAr68XjNH58RhxWJdFCXmcTh76dTc+x1JbaQBiYmwIKXe9Gg9HLruzyy4YF92oFFdiGsfr27G2Kpg4Hg/vb2/PPz5woQGsqQW/WVh7UOD504lr9v5xk4p1Q2/uNsWCGqKICkZdMvu6hpSJ4LzTfdczRpJ3NSTMyL7t3lt2ktu8m91UCCXUtUSIOQTAWx+8Z5I30GoBlIrf351c67rvwZmul41JZ0MpNcWEIMCt1ZgxxgXVGFxOmWKstaYE3273hgFXggspO51jCc0lkEvwWHCBocKNgkwAaBiVUn/31fKBE44IxtklkFsv9J//0N3nza17z0k+KB9TyGn8dBJc1gSXeb9tBoI2CEX7GraVacn64V9f3lXXkwpJg27d921VWlNKCIBadbXW23WVWhMpYozB579++8gt/5d//JkJaQu4Xt7f/v5vPz5OP9LP00MPUKu1INA+3j/er9dQskL4fDysN2Ocra24NVLNc8jZp44pQQXHpBdyVOq+394u83E4Pjw9Y4JgSrE2SkTMCZTMGRWUQARdKxRDiiDlbI/V2wABDaGknDAlhLOccnIBZJQboISPPWsglxJLbQBCyigmzPi0W5daDi0RSijlFFehhDf2Oq9aq65TCKH77RZzJRivm4EE19qUloSznMGy7RjBFCLBsISkKOuen/P5JBE6PJxOY//27RXn+nCYMIS7dXRiDUDnw/1+J5xrwaBgFDcEQE1REgoR6jvdSrW7NW4HpWBO7tfZh/Dlyw+Sqou7LsucQhRStZrHvmupwFpbzpJSpVUpeZ53630pdRxGpVSKHjbAKUcAwloE55mg4iuqjVPKpqPi7Hw+rZtRTA7j0GADrI2fNca4NUApa7UwgX7+4w+Ccc7ZDz9+Cd6nmFADoFROGECAUQJRw4TdrjOAeJhGAIEJvrQqJJWK7DFwRghCgnIqdUjZ2+CCFbjEXCkjhCOEsbE+lap7BWozzjUIYy45lhQThLjrp9LQspr5Fo9jj6g+j6fT4zFmuG8RYm62nVC2bW7ZtuP5gIVQhGDCLre11nQ6TQVU7+IwjqfHxx9hzckZa2DLKZQc29vb+99398OX5//2v/+PZN19W/Zvb6dPTz8//amF/fv395CSMWaxRXdTrGm5257wFdVgY/Zkm2uBTumBSQ1h8Tkt88Il00MvGUq2HR4mDOhdBdZ3BNNlvXq/5RzH4/F6Xbdt1736uF5lhyXHADVjtsv7Jfj6yz/+GWG6blZT1qnperuviwkZVErWdXFuG6b+/PR5v28hBIS47rp8n+d5SbnUWhqqpVWMyGE6RE4xBN45ypkStJUSNmPmVQ5DLjnaopSKIRrjtRRDp/uuOx6mdV6vb9eaGyU4lxr/13hwvlyvwZcKISCEcCJw9/L2LjBkGF/fb/vmAAjRe49oqVFoIgSqIMdUc0itlMeHw3J9WW933ffbunoXx+nkXCw5nM8HKvh+nwPBwZptdoTx55+fiSCX682ZRikmuO37ui7rZteUquy6mkOnpd13jCCj1K4OIEwper28np8OTAhMsFb0clmWeT/oA+XU7AYv7fE4bjsLIQollNQdIRRQ0BAm9H6bcwHO+TvnT5+el/n+7eVDitk7WypQopO6KyXb3cQStNJ913Epl9tqYhh67UO2JB4fHkTscrMNlOvHhRJ2fjpu9z34PecCMu2Ufnt5k10HIIMYE4hKBd1pmj9u27arbhRCqj7Umt/fb6kkxNi62N16LgWirEHCJA4xwwZyThCA1qAQqmZQcWsFrrsRvVCyv73f7/f1cDwKpVNMIXi7OdCQhspal3Lu+l4PfWm57sjFQCSrDZacQQNMMmd98EkpiZSSWiIEcyw5ZudiLk13UmjpXNzntTXACEGgLbtdXXgSZ8wZIooKiAkFmG3OBOuwS1IICFAplQlWW7nN1xwLIVRrBTHKvljvpZT9ICllrUIUQkoJNGB266yNJcKGwLb3Xc+F6PrebbtdLYCgErDP6225j1P3488/yR/U7Xq/3mfgbC6l1Kq4aBUiAAmlDQGKKcFYauVTaqUa67bdXG+XoeueHx/tvtnrEkJcbnetBNCDs3t0DoBEEX7+8Q9Dp/dlF4KT2NLfv79swQDcGiMI05RbnK1EtFYSXFiood5nkOKcvEkAYcm7rpeNwNt9TaDs3kQbVCdSsJJpSel8WSFI//DzJ8ZYA/DT9Mv1eqNUEEx++fmHWIL1MaUICdX9hEIrsCnNbQzGmQp0JSzGgmClGDPKz+dDrt3qXIx7zWDZDOICCpYBii5jX2oEBLD77e6MU0IjSCDC/dBjhJZlSyGGYNFOte4Z55RQ1AooFZQGawON7IvfgccYE0hLqa1kIYjgGKNWUkK1DV0neDObXe5z8KlgXNbtdDr14yHs8eW392AtFTSUepgOw/lgnF/2JYVcQe2UhrW0mIWWpSICGVaiplZBS7Esy01q9ePTAyTIxxRjPBymlmF5ePjbt+8N1z/84Zfry+u15B9//MnTdrnNYHWy0tvHZZz6ECuM2/k0jljcbzZ6V2o1bRddHwHYQgCcPB0PP//4Y83p/n4LZhNTd/rTT5XQAggrpGZAiMhp9w1CJh8fn7WUzvvkGkLIzJtIWTAmhRx7jUBbbvfz+XieDqDVb/61dLmC0nIFoNWQEMBT17UWW80lueCDt3uqBbRKKW41280STBDBrRYIG6ogl5xiJECA3+0tBEPICCO4QoIhLNAHTyAdng4+hn1ZpJaUsZR/H7NQyTkm1LrknN2WLdVCCK4tt1QQxj3vMKMFVu+8N0Zzjhsy97mTYjpOh8Oj945D5J0nOZ+O03SYEISSUR/jZlwK3juLglecaClcrNbY8/kk1fn17XK7XLuh04OCBAQfWwyE4FEMSoiaMqg5urADgyCVggrGQrT7sgnFPj0clRzu+wJRTSWknEplUh2GTlljFOO11PW239IVwMoo25Y1UCyF9K58+/WCMXw6PXjrnbcPp2k6jiXn2+12v320CvppIopvq9ntrrUilCUfc2khhG/f3h6eTo+PTxnU2lqprdQqOC0lEQQgRGMnBXvaXcwAGLOxHlMiIUAQNkyacQ74ME2TWyMVlCuBKXYh+t1B1BqCAECCiB4HACChPJScc0gpAEdxRgkQMIfLck+51FbnedO9LrXm1lZjSy5K6hDCvG4QlgKrHvV47CAhsdYGK2a0Zpp9mW+7t2nbbXK+1NqfOi/wYjbUQMflcepu3zIThTIUq3v//vZv//pXxPnzj78cP326Xj58hI/TZ8oIB7m58Hg6IE0LqMu+XuaN90PDAOO631xLTvUjxrXE5fOnkf/x4d//7VuF+OF5ctmv++zS1o28U2ydL1JwgCEkiIiOEHrfdk7ReDwBwsxijLetln2bb/ePrv+H4TQJLqOPECDGBSHker2VmCAGf/jlixQctQJqIgSYxa73BYCSap4OBzVqysR83x8+PVsbYYNKqWEag3Gb9UpxTGBK3lnbqX4c1G1eXy6v3dgLzgmmEdR/+K//ABDklNQUr5d34xIbpm0zIaWHh0Hrx8ttxpT96S9/CcHHUnoubN5Jisvbd4abUup6uzuQd2/qDCgtJUUl2DCO3ttlXu7X6zAdIWK3j6sc5fvL2+PDIcb413/5z+EwxRxTq7yT42H4eP9Arc0f15RKA2gc+lwbQOD06Wk8DKfTEYAKwA0jTAkybq+g+uwVEnvKBWHGeANYyH44jLW1XOrDw+PH5dowmOf19f3j4fGMCSeEhJi5lKDC2+V+BIggJIZxMcbGbG8rJghxQVBdTQg2UEpsTMa5dV3BBVDKAaabM5hRzoUPASCISAMVg0IqRNvuo4211W4UuWUU08flA9aGCFoWwxiRg7A+hlwzACmGmFLMGdcmO00ZCcZRSjGn1nhzuQ6jIgiFEApCOe+LWQtsiNICcK4JYtKJsev0umyvH+9S62HqfXbGOkRQLW1d9pwSAI1QQijrRyZlhg3AUglvKcb7fUmtpFJgQ2UzSFJAUUYQNFARaADmBksqH8uGKEmlMsERZGbzIcRSQIqx1ooRKqViSHxwMRWMSYEttIwLBBgKwTFEpRRCACKYAgIwKqCmnAmjsKKaKmggxlRbLbwRToVW67Kh2mSne1BiKdtuu77ruuF6n1trlJEaIuO0lIYAHMZeKZVjWJetxgoqAACut6VhQAgbjud+OrRSe5X7rlOCcYqStymCXsn/+pe/7C703YExdEOz4JhQwVooMYLbZbGx/fLnP8FYvn+/gthaik/n83A+pmprsiGE3SyUigPTsMACABFyW/b7GlAtrLTSmnFmWcz75c4IQJgwQhHGmECQS7BrZUx2ksJ66EVKaJoEgOjrv3211iMM9NDrSSRvnbXjdBJMYgggaAA3zmjaFh+830wIMcbQPj3WmOMeWin9oCiVv9+ST8cpA9BK5ZLVUpyxgjPWDw0hQihBpNXinA3BS9kxRrque/n22g1936n75brvm2AcYYgQiMHfbzPn+PR4bja4D293fzqdGqG3dWFMUEQLqbrTIUSEKUQEItwKbLGiCmuuuRQuBcE1xZzSakw8Ds8I8+t8dSls3n1clhNEz8djqRlymKxLxv38009m9y4MkCFQIoFlGvpK4N9eP67WVpirRffbxm0YT32yYQdrR2LcfUtx6CVNbd0txsTkoqfxxx8+g1Lmy9XM86nXT08/PD09YQijXe0SfKi0l+t1Bb7VUGpuoCJQGmOEK5FTqb4wgEelKEQxBNhAjtG7iCAUgrh9f/3tm+w1xgjBCgActQgVloKX2xJiyCW3BlPN87q8vl1aBVp1uNQGGqgAl4Ya4kQgyCgVvzeEuSAIkRBarbmBtm1WKHF4OFUIAVxhAxTA3JpZTddrRkjOZd83a6yQDOYUfIQADOdBK+mch5hyIUBpuEFN6ekwCYL9tnnrIyMIVW/W16+/YQCGjhFUfUgFlNvt7nJGjPaHg922FBISopYqFe072Wpd59vmfIKp6zVluJYWYtadFpxHH67X+3rfGKWHwyilSCneb3fBSK0ZY1lKMftGMDqdT7rvX95evLO394/Hx/PpcKg5L/c1Ot8NklBkvVu2RXKZK/TG+z1wRlLJSvMG68vrtxDNMPTrfI/BTdMpJPfx/VpaaxXel5UzOuieCbkbk/JWXtKPf/gJQmCdVUqXXHLMhOLH8ymk+nG7UcKOo8wVYEZKKffrXAEchlHLg91NrlVIeb3O2xqUYqjWFFMDjSBkrWuwcS5YYTFEYz/6aUAY5gbe7jODdLP+9Xo1wff9wIQEiIaYuWLAQee90t26GWdCzUlJtrvAe60EBwDudr/cr32nUW1m8Ydp2vcNIDacOizV97dryl5OY03Nri75vaT96XxogvJZe4duiwshYc4jQG/rzgn2BZjbduh5jjm4S/fQyaF7OJ8R2b0Lry4cjv1tjQRiwFK8W8nyp6eu65SU/OVtPj4dGiXfXy8NQACFHkazbRDg8+NDTGBb9xhjK8nYBBSBBMmuA5hhyUCLDYwlp5JKA9A6v+8OQQgxkEJyivtJH0+nFKNZNwwBl+r6dtvWnVHSQIUTxAAfDgeIHYREd+L6dlFaEgRjys7mvhcVUszZ49MDLMgYl3L88YcfgvcAwj//4Y/OBkoooiglP06dksyuNod8X+597Sg9pxQRolL3T48Pt9tt/fiAVHxc79u+H8ZBd10OPqfYDYN18XA6DErf77dlWZdlJwSEFBEhIUVEybYsq5ntumatBKPHcSSUAVg7pYdh9PtefQghwgZga1pLQpF1NoYgBVdRAFAxhsH5mMJw6IzxMVpCScXVeGNceFk+Pv/wpR+7j/uCMDyeJgLYAR5/+/aNMooQfn+/ck4//fQZNjh2yll/fbmA2oa+x4R93G6Lma2xUsmHx0cIkU8FczYdD2Y3226N9a3Vpy+D9/7ras7nExPMx2h8RqhwoSGm1lhnLEKw5LStiRCshMyllhQxwhXCUMry/Sq17KYjgeg+L6HEiiEAIKUMAWgAUE4gxC56a12GRSvhnbch9MMAMBZK5VJ3G3LKgvOuU73WwQeEUEzRmL1BCCqgnCCA9t0IziEEzltQK2UMQxRDcM6l6GvJMfqKm1QKQ55yNsZBhDClpWTEKUakIWj23b7fMSNCKEooALDmprsONuCtzzk10AjBMcQcK2NCaNlASTmX0hBBtYDgvbOFiUAp+1+BegSl4ig2ACjpGCYo+LguKxO0pSq5HKap1JJrnQ7n0nLIGTrvjcOUSs13a5y1IFcIUaclbDWH2EoZ+15w0W9djIFRwjSHGHRCcsrOD+ep6wRhT08nKfnb19fN7j98/pEKAa63nDJF9NPTg5aMUMGPXBRBZpvf7q789dUFty1GMq0Zf9ts6wQkedv2Qz8qTpbZ7i8fmCLEyHXbU0UJ4BSzwgJ3433d3/YtYLL4sL+tKfjpMD4/n0KKft0wBhCfDo8PFVRvLOG4AsCVQIQ9fvoUc4I4SCIzLhC23e8QwdpSXu3YaX3oxdRbm24fF7uuC8ZaawABoVhKyTmFoHZaFtCMMbG2kzpj3IZpGCYdXcSMQ4Td5pN3NYYYk5TNWZ9SOT0dlFBmXa+Xi+q0eNSY8FIRpkwobp253WaI2ThOfQeGwzHlLDsppYh+985iWo7noT9MmJDgbbAG1IoaKBW6BL69zVpTTGDwNqdG4L67+1//9hsgtCK8xIosoHtoJW3L0kpqEHz/9rXmJCiklEbnJee91i4FH7K52UZAKcS3FnJEpdSGLh8zylARJhn+eL1LyUsujCIhaIvh19++XxlKwXMAMcTeeHvbh77fZvtxvXRKHlmnIFAQsNbcsnFGIGm0YYWpejx544pPNYYGGsag7zSFyJt9W+6kNICbdzuXBFZCcGs1L8sVSmKdLxiISbOirLEuuvuyfP/+CgH66ctPQzfmUiBEQsnaWoqpFYgAFhwzhgVDAJJW07r7HCsV2vrw/eWt75WgBFVAAIII+RzMsjQpIEKgFUbI+XisLa/rWgHqdQdQBaBSAGAqyXjOeWlg2ffACGFkcebj9v7l04NQ4vHx9PLt5ev3b9N0SA38+9fvpaHYmuCMSiURvVwu87owTh4Ow7btl7ebsw4iGHwMKaEG+3FMzTkbGCGgAAAaaEAJ1SlZam41FwSp0IzxXNruNmes6OR0PHWqqynfrpcUbasJoWaNx4icH0+6kw00LvXvphBAGRIUlFwwmMNeaIkpQAgAQ/d1ntf5y+cvD0+fbfTwfi+1hpReX2+bNVp33TA00LZ9DyXft81ZG0LkXLRWnXMkYc5kr4brdY12n05HIiUi5PZx2bcFYCQVJ1gxSbNzt/k+r6tzDpxHRmgMUQjOGC+gWWN/F30FH263e25VdgoAkGJanOWUYQJTLlR3oNXUqvcBMAgwDCGRWFwoNuS+79WkSkrGlfv9SjkhGAkqok2tVkL1YjJXIwH5MA5UqPn3/JksDPFl+/B27jvElTp2nRL9dChfGk0FiJ6btIbq7ZIEYXbZ1p2cj+PL95dzSgIxXPOp1w3idTa//u19OIycCxeKccnuFqCvWs2dlOfzOVTUH45jBTHlijhC3eH0XJNzPuWasrExJqV5zGB++2g1HftjPx4ggwg/TUlDCHWn1tURxrhqKeeu706P3G0LgghW0GslGSIEFV8wp8PDQYreB4uEqA1TSE8Tv2/O+FBa/e3Xb7VWKbiW4tvX93GSp4dTNH6+3Y21VPDj8XSZbzFFinEEbb68TaeD3/eaolQawJZL0kPvcvzbt6+dkt4GH0JJ1jnrd+cWu2ye8d5F+PGfrw+Pj42ywujDo0YxU8Y7Pb28vFrjAKyfPn8SilyX5e36K2yFYzJ1I8rweBjJSFe7c0FkyaWkYPKXp08hpdf3d4jhNB4xxcu2WreX5A+d2K6XUmpLJZpQYSMUK8UxJft2p5gC0GoDL99ejR0oZwTSt7dbg4ALoUQ39AdK2XKdc0xMckzwvK2wIaoYwDjl+nF9KyWWGAlGbjd3fEOIAIh012WITEi5QT1MSrChG5ayWrOvxgkBgRCllRJzsNHcVkowgqTXCkPggxdadF0PKtjWLZWqtF43c7nNXSuVygYgaKgWqPQAACg5x5hBATHWfZt3Y4SUDcBl3RCCHPNaYU41OI8RL63kkhvAZVmDC6U0jGiICWOsOu198DbX0qZxFILXmgnF87wyIbpONwBiiq1RBIDuFGZYdwNjOqZsvWsNwBaty+uylVra79utlllhwaaxH1N2peRukKABynFOCSKEMS0lIYwYRQjUkJMzplMaQ1QqhAChBkCFyacQPJdCCJ5T1UIhgghhDVUAWgg4eO9tyLkorZ0PLkahBIBwWWZrLGOs6xTnMpWKsdm2bex7jEEODoRsrZFCjof+PE0xeMh+WrYltcyF6LVe7wuBuNM6htwyzLmV1KyPzRVUIWiAYDKOB1AK0UpRxofpiAn/n//XX19e3gEEDaFGkTqO14+P21+X08OEMP7+vgii5tlc74scOFPclUy5olJusykfc6bk43p9/7gJobQUm/fbfY21QYIka0yqoVPnh8/btocYiq8lFj1O59NT8JkAsq0LpHGcOljQasz79dpKeXg4IERrSoenh9OnxxgKKnm73yColBNGuJKMcpZTghCEEBqqnBFSQY1pPA6c1VYyQBVzVCIArcLWSq6tgZRCqYVTSDAKwe5uBbj1Q686BRBAGLaWte5KA4hRRrliEgDsvA8pSSVKjs773377TWh5fHhsEBvje6UfT/11vv/1P/7Oux4R8u2375SB43E6HUbA0W723Ubv7VbSpy8/qWn47fvL4lcuGMiFUiwBrJg6527rEnxqpTw9PB2nA0XwNMGPe3i7G0xZKjWkVOedKeZzTXt0MAmOKcA+Gq3EboLdLUVQYoYblVRFa1/e74dp6PtWi319295vpteV12v06XGaINEpgPv1TlhrrbaSEQKMkMYgBEApQSmppWKMc8ol5qfzIyAwxsQojTF3nUopG+dTDpu1ISQueDdoRPE2u9ePj81vsJGGqh4UYfJ3D6EPEXKQE6i5MEYYQbBVhCCnDABEKWUMOWv3eSWwcYw6JSki1qdovJCslZpCYpT2fZdS5JJ1w1BKc7vbnSMUDMchhFxbnZcZAphroRSPg0KgYkLV4dCr7n77Twi5dbHCJUPkYkScb7tdowcVDUIudisxPT4cSwXr6nbjAPg9SEZjyogQ51ODwHoXQng6PwzTQCjd121dluPp0E/dutrdZ8FZqdmnYnxINXPOEawdZ1VrgBrHJJmw7avUWikVSkGoqV5XCLbdVwR138mhh7AqzmArqFal2MPDo9nMK35HggFKOJS9LpuxMUSIqGAy5EZKFborDaQSrfUf75dSwTgiSlAFcDM25sZVIAT/9MvP9/ti7gvE2BtXK6AYG2MwxrVWs+8h5AYLxFAp3Xf6/fVt300uhUiCKCGMEIaXzedW9t1gRjFGhOGUi/VBaoYodt7tmyklAdAgBpRTUshyX9dlp4S3VnNtAKFtt/u6PTw9dEpDRIINAACtJQDYBdsAtiFyIRBlAKBcamvJeVcBgBH+87//Rv7+q+LyePqSG/mYV4Bw16mnT6ePb++L3bQWJbaQIeMSAuoWuxqTIZR9RyEtIW5ruFcLAJ76qe719WUfB6h74mO1OWSAMAQ5uHVeNGMElpTz9bY6l4UeGBOU8piLjZkREivw+5pRJqilAijFxod9d5TJfjw6HxCCoGZjHDC5V3LspoL47WPe140K3g89wszfw28vHw+nE+OYMBr8HHxsoMlegVYFZ85aBPJE++vtZlbDEEOUMCGu80woJZRZay+X69Dp0/lAKFru23x/OYyT7vuPyx0SzERHORdClpQ/Xt6Hseu64dvX18dPn58eHtd5LgWsu929Cy0DcI0+ffr07E2AiHKBpOb9ONAK7tv++vY2ajGdH0fdK0Y6Loy1JYbNrBk2s9s//fLnh9P5er1CBKfTKDlPucScECO91hTj97c3ziWjHAFSUiWcM8JLyzXnxbjT6VHp/vvXV+ey0DrGerveAEaHw4gwjaFEb9Zlo5SIXW7GwJYOhyMjdFs2H2JM4XgcGxitd8bYvutqQ5frrZQaQlyWGSJcSu2UtDYggodDl0qdt41zjgiqGDgXfIic6eNBIYT3dYUIKdW3CndjbvMKIBj6HiDa9RPFyBqTC6ygDUMPIPydC44ur8sSS3HOgQZzzgCBUuGh7/qhN7ub19XuLkagus45t2+ZIaSU7LuuHw7YO0Elghg0WHKmnGFCQvSEYEZpZKzU6nwgGPVjDxu0xpWURiWVFJSrYmwplRAshUgp282klAFoSklKSIihQRijz6U2UHdjOGMNtgZBCDmlWksDAHLBIYbbHnMuvxvghmmIPkWfxmkCtc7rjBAgCBKOAQAIANRaiqXm/PB4WJc1+HC5X8F8132PCI45llJjjOu+C8EgBEJJwaWSelAdxbiGDAgZDz2otZSak++6HqEKMfCEccJ037fW+q4rIXkTPYrTMP38yx9yq96GlCtCqNbWKjS7V1IQ2fFpHOweHwb1fB6WJQgpMii5NmPm+3oxxm3GT9PoVpfSnAuAmLQKN+sJo/u8+zDjRuzdBjRzxYXSJcTudGTDyKnAkLhQKRdCMsSEjy2G8vr9fZoUJ9RtFiEYN3P/+soEC8CGFCnTBWLKJQaAc5G8W801gtwPmkB+niZcYsrFBYMRrSXLWkqK+212296N/TD2wzAgjIJZAUzeOCpINJVgMXTSmjLfd+tcAU0Pehy1Mdu2bq2kh0/HrpcQl1STXVwIiTMqVNcw9jEqQlvJKWxKSUba5TYTRh4+fwohAUhjSCU3wXUvdErY2e8F+wTR809ftvVeQOWK367Lt2/vp9PT6Tg+KSI6Wf3Knzs1asjZ28eScr1/e2fDWZ8/71f/t799ozh67zpJ1XQ8664X+jVtu984F6jhVmt2UWCGSPPGpVB++PJcY0IUEcxQbaBkH9I0DhBBSJtNIe4OvN21EH9/ux0eP/36/TsgkjD65//2l0++/PP//R/X+U56KXoZcqy+9KpTYx+cLyB3TJjdrXElAAnF+75LOeWcfLaxtLQDiFFoJZZqgo0+hZSWfc2wXbd5izEDyAgECDJKEa5ccGOtczuEpNXadR2hIEXrW62wQoQw424P+zqXnCGBpSFC+ba7Q8c5pR5hhkivZGnVeF9L29adZjYeDi3n4P28bLoT1gXB1DChy8cVY0wIu14v6751Wvz88482g/vbbQsViw5haGO+241KuRjfIKql3S/vC8TTNDDBsGB7DJTR7nxYt72UxqQGrGzzFue9n3SFBQAYa962DZTy8Gny3oXk/RITaMtmYozToaeMdtNhuVzvb1eSKidklBxTKAVeFgdxA6ituzHe11q4lFRQzGlKBSLYaV1TwRC0Bqah77vO20AF/y///b9BCDezOOPXxeyb26ytGEulnIspFYJRLQ1AmlKpDQktKoSb9Q0AQImvxVvbSgO7d6Zsu9W9FExKoRGEpQGzu9pKSUkrSQXVBXRaC8qUEK4F1CAoTQlRc9uWPadMGGkQ5loQwd56WKFgHAMoOG+lpZRSCJST6EPwXiiJGaKMEkwE5+t9LzlJLbXuawY+JoBQqjV4TwjCGOXgc6k5eK0EZrifhhiS875ilAG8rDZ5Jyn6/CT3zTvnGWUYop4L/vTIcgsxScq3Jf369u2H50lLVVJoe4KI7nYTfacov1zWxjFTavO5Jcj5gLppq+B1vdVWOt3BGM11Bi4I3KTA6zavq2sFQWQA4JABX3MmgHH6er1EaxEHjNAQkgu+66xgEtSAjaeUWONKChgSDLHdg8ChtLSZmAGqAFKEEIRIKXvdvr68n47jtn00CE/TuFsTchZCn6axtZxzCN4exklz/duvX5UabAyX+caZ6HTvjbc29v3kQ5ZSB990N/xeLKeMNQQKgCFXRaHqRG1HySUidDoXiNFtXay3rFcxphKzd3ZZVqH6622GGPFOstwox5f5JnXPGAMJdLr/L//wFwoQrsHtN9RAsdv2diGKd0zinN16p6gcp84HRzEz+y6FEIxrxnJMAIGQIqxAMD6O4r6tr2+XftAA4tpSbkUQMh7GCiGAOITAOMMIt1i3fXfGM8YYo0oJivDpeLhfL253/DC4EFIO3aB1L0OKLbT+MCiljQmEEojgOPQYNuPccl/dto5TL7WuoC3LGlLmTHDFUg6gNERRzOGhOxJMckoxpmVeGoC73WLOoKF13bu+H46D9zbGYF2EGEmBAIA+e9RQikkqrrQWTGzWMCGZ4K3WBsvvhTWlFYZYa8EE3m0ErcUCcAIwhAYKwfR2WwuopTWIca3ZbDaYgACkjMaYQyxSA8JgU4IAlAG0IefrQgjGJt22ZTeOIIIoRoRgQjFlQjJKCOO0a33wASMAEAgxp5wAQBQjoIHdQwyRS44w9j4TihoAuTYXk+xRgcjGRBkttXHKxsOUYiAYodbMvpVSu77re8Xw73An6pTed+dTBMQ67wkmQ98TjDhjrULvko8JNCCEejgea0rB71pLDCFlqIZUAVr2ZV231iqTIsXsP+7TYRJSpAaNL4xyynmDWHApeR9yfH959z5QWikke47k+/cXSsB82/22/fzTD6/vWwW1tLosm48OUVxaMc7WCjo1NFQ5of04Ngrv+z2kkEvKMaeWvItUsuPpk8Rsn+cUkuQKY5ZzGX4PaOeSjbnv7na9pprT7olLuWYpWYwx1yoQggWZ2XYHudvAmJj6joBmQ0gJXd7ugn3rtEYFKC6udo45H54eQkrLsgpKEcFSKc5Jy3Wf1wprLh7QPPQ9guV2XTiR5+NjirlV0Ped1pxgBFqhGHOCkWCttZw85RSBVlPKMXJOpe5aqwXmBoELztg9hnA8nwRnPkWuuwLg7X5VqieMrcbnWHOrP//xl3/6t38T09CPWnKSS4AAYAgYxYdp6pQ0aecUnw5dUokKsdj440+f59lsu99DmjeLpf5//J//Z3Hr5fXlb9++82V/3dO82PEwHoRety1lFGPknGKIfM4pBs7I+9tl6HUuqe9kTSmGkGOaDgNkrFFCCQaw3Tfz228vjBN1nJZ/+/fNpr/8/OX8y9M//c//gGUfFf785YFq8f31/Xq79VJgitziUQWwNGt8hUApFXNN6w4xjADmUjfr7DZXADHHkMN12WrOWksI4byt675RhqTs4u6iM7flLbcsuaRM5hIxbIxS1DKsNTjTINi9x4y0Vtf71Tt3PhzHQ08J7gVLPsNWlRTi6QRAoxhjCK0H67ZxSe/LsllDuQg+Hx+O27p8+/4+HYZx6MfDFFJEBItOb8vmLrPqx9bwuq5mNoxQKfl92RdvAc6xtn7oQGmoAirI4XCI3jvnY8BStugCxLTrtbFhs8Z5n0JqGA6DJpj+9tu3XNI49ADCfbcpp5ga76TPJZe67k4LSUrFiHSiIxVyjFqDoMAcs+Bss9aYjUkZS9yW7YBxzIVyjgB2JpTYMGjzdcaw/eM//hkj+vXrN4Dgn/7hT6nm2VxeXt8xZIAwn41UQnajd36+3VprXSdyLps1mDMqRQjpvu6UU8pwzaWAVEtbdtMaQhjprk8pwAYwJcn7lKI1trUCMOKMZ1jNvjUuuk53uisZNAQIxda43duWAYLw/HignAabWoMIAMaR1gpjBEpDrZYYWimwEdBgSQW2yhjmjFGOJGAECwCA8WZd/LJCLphQHERgrAW1Egp1r1NK93mRSkAEci7W+8PhCIl23M0XUAECROYGESXZmW0ux7HTjI59d1tWn3JspXs4YKVDrAzgH375Kfr0t28v18vt4csz9eTubSXU2DC/vz09HOjYLh/Xy/U6Tt1xYoQwBOmybhiTh9O0rtHaJJW2Lt3mjffy+PTQ9/L99W27b6AUVvC+3kJKGFGf6KBhKzXVhjFIMSrB+k4xBFJqt3nZ7dIIe3h8iDUt+ya4RJjUBmKIl4/FOjcdpgYBpvz2fmXU1BT7QcbgOSUIoo/L5XadDw+PFEls9pBiWRYpdT8Ot9sCCRpGCTAstRrr3j4+pBT9OLZSN7vjnp9PY6f0x/u1E3I6TC/fXkOOlBFMCKRUQDDP8zT24/l8uc3Laj4/PzLJjTPrMgvj1/vy+dP5v//jf/vh8w8t+de//TXFNHSjouzxdCgA/PjjT2+vH/u6csXssgJOakutgnU1p9ORcQpi/OmXPxqTKKbd0F0/PnwIIfjHx3NIyYe62tB/OlCfrrf75X7/+cefCRm9j0oJY33KRXf8fDo20P7zP/42nkbO1evrh/WBYBxzvc+bz4kq2jAJsUKQEMKfnj/HEI01DVYXbG1FC971vVTqOs/WOkAwFSzE6J1DAHRKWRfuq+m19qlUAECt1rmUkh77FKt3gZWKIEipWeNKBX2vUqkpJWuMEpJiRhiDGGKKdaetCw3CTktGZS45g1gLRAQJJSECmMGcWmsgpBS3WGuBsJVcU61cCkpgKrXUAnErqZCKGCWEUEpJztkZdzgcNEa5JO/c2/tFSh1SsvteW+vGkREilaCEIIoghAC2VjNouQLEKIuxlFJDDJwyACFCCBGcQSMQQgBDTAAAzjFoLcYAIQQQhRBqaYkzSgmmJMXot50Q0GshKGUQVQxNTBSjTomH8zEBYK1LDUvKFKdjJzij224llwQgTDAXlBPSEJzGB7Pv1/t9txujzOVkjaOEdbovsLVcIYSEUlCb8z7mBEL7+EitNanl48NjKTWl3CoADXjnY47k5eut5cqZsLZgDpiS14/5+HAaj08hux8J/Nt//jtteNKHEKvxoUEgBKU9e7u9rMuGAVScMYIMaDQ7GhJEODO2ue39+gFiff78zCjGpAXnkvMQiAhB5Oy6hmAcIvCHnz8NDwPvEke4BdDxLiRwfb8hQgQTElPCFchp3cyvv75NQ1dMkIJTxqbTETP69vVl3/bTw2liEmEqlWCYbeu+u4VLCmo10ByO0zSM2+ze3t6N8etmKMVaMwJR9rnk2kBjlEGIUs7Be4wpwpgxTijllNVWF+9jrLghjEUu5fJxy7VxJeb7bduN9yHlotSw7suvt7uQney6GEvcFgTBcew5RdE73YmH8wmAqpXkgPKhOz6NxWUAYL/7zdslRtrycrtcb7MeDroNVHR4OHzc3qK7fuw+NsYGJXq+2oVU3DBO0fucISmY1uAdQyhF710I1mjFEQSE0ft9y50iuBKIKCGbsX///vV//I//ze6m1bzdLv/5Pw0CbuLgH//rsw+JK4IIJo9T2xeYA8iVYuqCDSHaPfTHMWOyZr/eFirY6ekcgvtYLgiiWhqGrcVsdyMo4lgKxnzEt7tzLlJBrDE+u1pySh7WMuhejYN3KZccfWWUKsF9SVqJUjLCiMNKaP35eXp6eigpluAPn54Ikd++fffOff78BGCllOWStm11xTMCjXEppNIaJx1scHUGSwwwFErlmNfb0vVdzuXbb9/55fr71j3EJADa7ktICVP2cbk11LTgBNJpGJTWFJPY6rrOFNPr5eqcH4bxSOj1cnUpTOdjU/V+uXrvAIDRRYzR9Tqv8/L06QwR/P7yHpeix34YRYxpmefm/afT+PnHsyT4frlvm9Od5pQjzHJri9kBqFpKyVhDqObGhaSEEkIppsG6XFpr8K//9g1hAEC1zjmXaMdsjLOLWglMSGig+qxSbg0WAFNKwAbCMEC4QRJTgxirXlNGnXPzsgCEtFK8EzkUTnmrNcVYa+FY2uSul1sM/tPnZ4iJs6G2jFgNtWKEOBeckZxb2F30nqCGOI2llhA4xS0nCjGCjRGSU0qhSs67ThKC7W4JQqqTwUfnfM2lIQiyIKgRAHMuirPWmnUuWEcxPh5HUJrbbatFcNZq242NuRxPQ4ixNbg7J7WSumsQL9ftbiOgogHEpaql/us//4cWhFOWY/u4zcPprLR6+7juH7dp4N3pqI79KfmP63y5XiBGDKG3ry/zvDCK9m3//vpBGHHOBxujq8fTw+MPP377+v26+gyXnDPnPZVq33wI1Wdby1VpXSPiXKXgQ8iYco5ZSpVJcVv2rtMN4dt8H4YeIPpxnQfJhaDGZy4lwvT19SJ6UXL9+vo1pfL4+BBD8j41Sl+utyMEmBCpdLDuelm3ZWMEHw/D7X2xmx/7CTZ4GMbayjIvlAgIEMoYcJhjfv9+6ZQ+HA/OOITr6XiAkIYQuk5DmNd5Hse+08KbvdQCQPHGrHs7nQ9Kqn1dfPD9qCGspaSS022eESX92AOD7/N9vc1D1537kUFYKT6ejxLR7HKI/tPTCRNOGXr8dNqshwhxIjezn0fSaMlMEIStdcPYu9oyZrHBfdkvtzm1rDXf1rVWhKiMBX19eS8hrZsBAF2v63gYECb3eWNCKFlqg95nLsV4OiKCRdd1U0a4UUqM9c66zXjZSyYEaHherZYytxhj2NYVIcCEFEJF55bdUCkwIwhDiDBjnFGOAYSgYUIBxPNm7/d9XY1Q4vQ4cATqDn5HSxHEECCKMYK+NQggWDYjlIohQcAQYEr1Prl13ySXIURr3JFzJUX0oZSMEYGMcK4BwCkmxkUDKdmcYcQEl1yYoJiT6J0PPldECeKYqY633CjCQgkIUS5l200ILqdIEMIQAYgqhIjRHGODQErJOa+5oFajdxJxAIFdHaiNMdZKyzbAVGuIsZSIPSG0Vqh7jQgpuRAMYkrW+dYahqh41zCSjFRKKgCbt/5qleBKilqBM4EzxgTdd3O7z5hgLgUlmJ6ET6nlKkc6TV1rzQdHCWQEKskHJTEkoLX1fm+tRs6MNdfrjAiafnouoIUyx5jvi0u5UY67QXifovXeWUIIQiiF5IMvrQguQIOdVhSRXPO+bphCgrG8vO390GBDX//+tVLCuAQNCMXNbffOcM4fpsNpPL+/397vNxejcY4KFJNjjHdMHAYlCdy5IJgqTBtGiTLrd2eWUQ1jpxlB0dtk/Ok4ISLjjD7ut2W3wXgEoOgW/EgZgqUk5yOOAEACIXYueh+Z4pfb4pOFlCAqcgYpV3tdzw9nDMly3bzxjIrWcMzVb5txRgsdXci5TQcFULnfbhjRXk4tgdXspTWAoNnNfCUPjxMgdLnN27YeDvXh02O1Lodksw8+KqWzrxb5Bsp6XUFr58NxGIbk4/V6bwiqrlNCW+sxxIKzwzT6UN4vt1YyQ+D85eF6u863G0xeUCgezk8PTxztf/vP35QSrOMs477rKmI5pADrZV4FBKGWr7/+ikQHXPrnf/3PUnMDpdW87j6BhjkPyc3f12A9g4RAEJwjDGnNKMh7NqBlhBjBoObSGuj7vuXqXYg+lBKkZKfj0QRPhbA+qL48Pj6k27zO8/XtbTyPx0lTIp5/+aVB+D//f/+8DT1EEjZUUsmhlJK55K01a21DzSdvkueDirVASjBEOftgQ86RYDh08jgOz58+fSrPuYZ/+qd/9Q5QyjulH08PwbvoPAiZMF6jjyHyTkshco7VJkwAo0Qyqp+eYEs/PJw5IbnlXHANLsYcg40xBueFJGOvMcEQgJDDbV46IRhjXIkYS9/r2KqxrtaWa3PG5pRKyillIsiyrjEkoYRSOpaSAdCHCWKwB3N5f7O7fX545ohBCAlABBLYcKkttxZbuSzz5l2qdZomQshuF+dsrYUJTjiFrZrVHg/Dw8NjiH5wbrceY9hqLTWnGDBolDIIYAPA5xQbyJtnQvYaKE4JHqgQ82bv95sPiUkRU8ylMgByrbWW0/mMAfx4e2+gSikxlR/XpdwbUwJSulgTfbI+NB8AwqjCkjMisCDgrM85kdIwxqU2LqQQIqWCCQUI1lYhal0nMSSMYgSEdT6lUGpa91VplWpTCOWaso+j6oXkwbiCMoSoleKdD95zTmSnNrvlmNxuW22cCs5ZDNG72EohE+mUEkxknzHEOeRWCkZQdkowkVO01kWXdKfHcSCY5JLXfW+tjkNPMXFSpJys9ZfLrZSiOl0rrBXnUvxiXAhcCIxoBdD4CKFpJVOGYgjX93dKwDhNiPHUgIv+9/ynSZ5G+Ha/f3qcVCe6IEItou+IJSmWVgqT3Oxmc3Zgg1Aim5BjiTmnmgmjzuWYCmHEhlAIxATLTsUYUoiJcAgBI1QK7qJrEBLKrAkY05ztvjtMMOcCIhJSMrtzuzude8n5uri+J5Ty95cbRrBkCBtGgABUQoo+Butjl8B5HCHAoMKx0ym4HOO2GMnEYTo577yNXEVKiNY6pVxzcTHYzZbCBKcAoOttYYL//PNPFPPv3958CCV1nNTL6zYN/WE6U0wqbIxRQmiIcTU211YRKLmsy6L7TithNnu73bpx+OHnXygh/9//z/+bIigZvb29m+3+9Hg+nc5pdz4EQJGx5vTU3+6r1n2ne607rcZ/+pd/QZUMWtTmnAvO2vfrMp5Gpvrr9X673EpyFGaOCYRkejjvPrz/9g229vh4pFJIKS73y+52rbSPYZompoSz9vuLGaaRSx5zbggzze26hhAIp5rQXCpCDCNmXTCb23aHEJSaQ8JySq0WLVUuNjpLV1ZBgwDlnGsFCEGISAwheC80LzU762uruSRrHYAwpIgJlVpjRCHGzkfnIsQE1FxyjTGXCmEFlAnOhfGuNZhzTTEhBBEE3rjr7ZJT0t3IhWy1AtAAQJTyBmFyJaWCGGGKwwpzTqXVmlstEHIqGVJK1JhLSr8HTIOz3pkGW4gRUs45RQwBDH1MIUTGuFQKQpBiDNaBVjGuSsiWcy7l8eEEACi5ZN64oKmUGFJphXDGKKkV+ORzahA2TiljFAFgdx92Nx5OmDLjPGwxpJBLJBQJLdebq7kGG4LzhFAmuTUuxiQ6mVIiGAqtp2EI3jmzSs668wMj/H+dZTDGsJVWvDeY4KdPj4gyKXSFlX0WzlizWZSSFEwpAUDzpSJECGVaqYgKpQKS5pzPKXdKM0YoQJIdfImEdwNudZ13CNph6qDBa6gAAQAASURBVFxO/dTlXP/6r//y68vXnBtjPOz1dneqk6fn07LtdvX7dT89nRiXP35+HqgoMcAvmHFudnO93jvJlHroFB3lYOd78STn2CnNmbhvbl63aRi7bry9XddtDyHd59kZk2xGEIBSdN83xjWljNJc8rpbl+z58awPoyTYAZTL7mK8rxZRejyertd5va30OBSCgvfGhBx//4uAUUMYSm9L2GcfitJdKrkCmEOsGaZYQQ0llugTqCjl1gCmjCFaAECMMh9izaWWonWfWtyc5YRQjJTWLmYfSzfox0+Py30mBIKWgveQkI/b/bfX1xyDYEJx0XJ1PqYhEYRLScv9tt0hEfgzeqakmd3a1S7XLcX09PiFSfW+bCFmW0wo1bpABAYYXIxprYkMcOHOOAIgoxCWylvtJEekFVi1JFoxKVjlJBoPcwWllJTdbghGCDQ+ifs8x+D7rk8p3O4XhOEPf/7Dly/nZbm5vfS67/tTjXS+34orx/EMkHx7X91iS8kQYqmUD3HdVxvsuu6xZD6I3Xlrdpib825ftpLr+dChAxNCP5yeh5w/Dd/tk2kUjtM0jSPmhDcGfL2/31JujEkp5WEYCILztrFW3W5FryfV96dzLxWGcF1mAOvpfPr6/du313cmlOzVfVlUEofjww9ffuqGnnb03/75381m991RCGfrmBDDMFwuN1Ahw9SlCgsoKVOKp2mIMaUWYQZ+C8bYYZzmj9XurpbG+ICpgliUYiGAEBBKRdePLnrNhZ6mX79+vd/2cRoBrAgCY1zM0ef4+TB0SsMGO90/Pz+s1nz77VfjDGVMyJFSDlrLLKIGEMLWOo8R5jLZsFzvmzGfziMhGFHaceFM2Jc9xGxNoIJ/+uEZgDbPMwIQaE0RmZ4eSi0l1dJKRiTXSBDa9j2GnHOJKRLMcomowVQS+X1RGSsiWHXaWu9coJx0/TBMUwHAO4dxo4S0nCFBSnPUhNa9y9G3BjHejFmN7YUYlJr0yIVKOZsYbIy1gFpqbZkJBiEwxjhvS64++JSy5Ep4DhvCFDPJSy3v7zcI2rZuXIp9N4wzQjBVlHPmQ0AIllpd8G0tYz8KSjzBJcXL6ztnnDLMGbPOUYr7Qa+bfX29IYj6vvculFzc5ks1XMpOa8FYsq74ZI2NqcTcUIrHaTgQvM5bDZFzDAaBEfn4+KjZMkIaLgjUbO0k9fm/nBti316+fytRIPr8+RModXm9EQCMWXzOUivVa4IhgCCE1YfY990wdVoKwdm2rn/72xtC+Ph4VEws6w4RPJ6nEAKV1FpXfRuG3nrrnYkh1JQTyIPSpWSfKpNMDYdxGpZl9da9f8wZJABazFkIrrVspWCEpBAAwmEck/e1JEJxbeVwmAAiwYd131MuznmMKQQAEdB1qtY637ePy60f1c9/+NJAPXyarq/Xbd1bx+2eSlqFHGM0mzVCdt3Uffz22+53/eNPhFNKaQq51KwlB6ARjCgh3759LbV8+fFnjsAoVa7h+u1VYQxceP3+GkoqDX76/AwoD61tlytjfBinwzScjkeCaW7ovq2p1fs2v72+iRdJlNj3/eW3ly/PD5Kz80EppUMpIYV5+9h3A2B5OD9ks0EMIQahBB/d1+8b5yzXkko2H7tUqoI226XTOia/rfvvBufaUCx125z1HkLIKK+1tcJKbvPqQvanE+kO51ry/Xe+RAiYknN7rc16b3aLIRoxYIwhDHvRYYys8T57t1mhJWKs1mI2BxoQvXbOtFw5RAhToZhdXYOwIAgxww3GXCCEWkqGiN1MDB5BWnJ11sWQhRKUkwKr8yG3AhEsLbcCnXHeO0QIpYRSijBsoMYYSkg5Rkzgtrnd2pgi5TznFmGhlLYCUy21Vi44gqiC1kIGrWGECMKMcsFEUbnBpgZZQ4qwDYPKuZkQ5mUPZsUQJAiXdbHW9J0WUkjJD4djyxWW++H0oHR/n1ez3wUX06Ffb4t1xpcWgt82BCEx1hUAYmsQAyzJdVmWecGU1FKdEK2UVgAnvFNda+S+rRBkrTijyv0vCpDlClOp87ys+y6EkEIMQ88EpQi53WKMHx/OtdZSQLA7IWgYOizYPK8heEbp1PWUk5JTMIV8XGaOYDCeUXocu09Pz5RKu4fL5Xu09nA6jd2BC+pyfHmdiVK+NBMyxhwx3gCw6zYc6OF4dCVZs7++vzsbz4/ieDpwwXEBYd2LKxijqR9LrmbfKaGaK4hInXKpeZqG68fH5eMCGsGMggYSpEOvKQSlAuv3hhqlGEJQSzWlGpfkMFAhI4AcYbt7Y/cSc22175UapvWy+gCowACLUhPEAgIaQ+RCplKu9+W2zFPXqU7nVJ1ZWiufP3/mnLl9L6CM4wFiQamwm+m0FkrHGAiv981/vL1roT8/P/ejlLWZYGNKTHDB+Lbu67JfbnuoqMFmg13n9YdPz48PJ1yrs3sp6eXte63gy0/Pl7drqyVt7ua9CTamInVXMLHedsN4Pj99XOd1tw0T3Sku5ep2CHGOvqHAOaOcMYx6pmBrxkAOMWGEiLrGIggeO5VimnfPCJVMNFoUo1JwiFEM3oekpGQU15R9Ts/PT8fHo+oGoZRdFi109u5f/u//y5j9cHp8+Pzl29tHq/4Pv/wAIH55e605UNQ4aoCiQBrlZBqE2bf5clFCnKbp6Xjc5pnDNjIhEf/49gZaeehH8ce/9OOgTuO2LXa9a6EQp8nCCsrT+SyEYBTV2rquS8mBkhXlisuO644Js65+2aUiDFOASINQCsk5N3Hfrfn7r19fPt7P53E8np8fHz7qxa724+26+thjLAQ9HfTpeJRMRGOqLVqKruPzvj8+nkNMzlkXojF7LAlCeLvdtex//PJlGoZ1XiEAnNJ924igiFJv9lwKk3ze1m3bDqeDMTtsvye1i3H+2/dvf/z5D0PfZUy+fXvFBDQIKCX90IHaIAKlROc8rA2cUYW4Qnzd18uyxZxAxqG0cez2bX359VfK5ekwxVorQBXCnGJDyCUfQnIxMMyVFLkUpVTJ2MdcQG02/j4OarAwQSiioFVCaUzAuwgEYpKj/7XjyLVVAGBtECPCKGu5MIYIQr97I/d1m3QHSsUIglbHw/Dr339b9r0O4ygUxri2dFvmfV1Aa7WhVgEXNLeSUskl1ZZrbarvOMEppJwKo1xziSCMPi77WnPmjIbgSs0xgQrI7TpvzOpeMUblo7rd1934bhjOnx6RYN+/frvfbgDCcRw44wAA0EDJteZijYEASc6nsXfeGeuoEBCRVhFsWHJpYyGAatkhjoXSuTQIMCf0cOhribNzQ68GxXIIuaFxmqxxy7x33fQwnu7GYFyfHo/9MHz+9Oz2Ld23oeszBcA7ikiDKJcIUTueDylXJqhQgjHaYE05YgoIQcEb1ffjOOZSMcYYE6klRBA2ABEMPgUXU04QAB8KIRkhFEwYuOCUX+6Lc7bT0vmQS00xIoTHaaQYLfdVaE44dtYTijCjbnGEkhAj7TTnNO1usREj0iBNpY6D5pw1AG63O5cKMRJyqQ1CBHWnrLLX7WIM0P3QdSq2etu3AsGgFQguhcAYxwCUXLppIK1mnwponHGIybevXxtE4+H4P/77f2O1jkpt9w8OG0FtXdfUCqRUCJ5bAQidnx7+/p/fc4i/vrxCVLmSDZJfv/5221aAYS4VIvTy+q57/fh4Ov33v4R9Ox8OP//0s+y1MZvzLqeUU0SIIkwBKKfzpLW+3W4h+JQK4cSHWEspoL3+/dfhMHVD9/r9P1rNoLZSoZKaC14L8C7FlM7nI+fUWne7LQVU411OKcVCJ5Gbs8YTCvu+x5is27qsu/O+otYgjaHUHDBEnPNaa60txRJDBigCuLYCQsxa6eHYVViaLZRQwnmDUEoeY17mHREcoo0+Uoa5YBCBnKOSCkAEACillFac9wByRGEtFVOCGoQIpRhTKb8DOVwqwTgGDTcMSqslYwyt87t3DUFCGWG01ux92XLECDfUdN9JhO1unfEEYQAg5wxDiBqw1uquOz6cEIGLud4v9zRkzmXKyXmba8GQQgRzLq02iDFlFFMiuw41uG2mNYAQaq1hgmMKDaGu16C1Vks/DaC0BhvlLDqPASCU1Rzv62ydbRaV0jopBSMI05pLLTVmF71trWEEMEYhV0Cp99EYX1sTShCMf3+4UJwAQCFkncYYCclyrinXTorWspYSUppSFUoexpEzkXK83fbcErnfbyUk3WvV9y7V+HH59Pj4eBzYP/yJw0oAe/j02CBYovtbjnfntgD+4+tb36nTn38BOb2/3lgGziybd6u1i3Hets2Xo49SMBzKMBxqjkorCBEhCFOMUt2XfV62+3zf7Np3giF66KfW8M2sv4cwRS9RKm8f114zRTnj+jAMo+wu8xxBRbXm6OPmQC2gFsko4qykOF+S52xdN2tSI4TcVwRLTd5HAip4vy+7M4iSru+F0hUARokzgVCiBM81b8sdEswpw4z7lCECGMOUvA++tvb+9vHt5WXqj9PxrJXGAA9cItJCdJyxzIqPcei6jCgS4tOPX6J1GLSQvJR06PrTw9HcN865/vxpGg/OGm+3+zzLTn5+/MRl/9vb5bePi7/PBYvh0KfaQqop+FILaGCQfWxgEOrT6VhBZQR3WCbnsmQVFoCB7qHCMOUGQiQNnqZeSIFrdd71ne56mXJ2JnZanE5TS8lu66HrWWm319fiLcWglDxo5czu9uXx4fzl5+fvr6/z7Vvf6dNpQIICnu/vV5DK05fH4TAYY1brGmHs+ZkViDGahlEI4kdNSv7l518O/fH9/aVEc+6U+v1TpaWUE8LwfBhADyXBIeXTpNfNvC+77vtWW4iVEE4ISyHd7Ps9Z1Ra9IYQ9vryijD54y9/tiZCjImsb9/f74tJKf/05TG7TAjtuJ6OZX+76l5gQmCtU6c4aAet+z/9/Pb+4WPgjE5aKiHxcPA+zetqFptr7sfeGxuDRbDWHB+O0/EwzdfrslxTxam13e7Lvo3jFGtsuDFJl5ePg1C/PD/zBt9v15TSb1//ThChiLbYxoOGqFEhmJatoLfXD+9cjkUpEXKad+tzer9dVuc6PRw/P2khtNIleKyE7qbhcAytptpcjNfb3XiLKMWV3ZYdI8ct89YxxkoFJUfGqQkOU0Y4zCkjiHXfEUxLyYjgkksuBTSEGduWLYPU94NSyhnzu6rHx7htSWuJEC6xoObjHgqsBTXUai9kDJFRMp2OlFHnTGu5Fo8wCCE1hCpCzqTgQzdpxtl222NMbBg45zm74GIrwBkjOKcUIQgQId3QQQh13+ecd2uNMVwIiBEArQFnfBCdWmxazXuOkTJNMAgh1YxtjP2oj6e+lAIh2uwOKjDGxOhqKQgCCHKr6OP9iiuUgk6jGmhPIlbHETBkNlt2N3ZyEMKb/NOnx6fnczfI++0eTMFYMIX9ZZ7vd4LAt7dXl/x4OnaS2fvl7ev3Gs3x9AVr8e31xe3W2IAw5JxBQrRS674F653dMUGMkqcfP+MG12UFrXVa5gJ+ZxBrq4yw1kBKCSEkO40iKylDjAuEBYCQi3m7zeu+m5VgjNgnqhVpDccAKkgJ3O/GOtsw4hxXBI2LtUQfQoKASGrvKyP+utycjw8Pjwjn7b7UumPYtGCIYp/ydD4+Pj4h3JblAlCDAEKEKef92A1jRyhzNdkY3y+XfbmfR931w3q7Bx8OU386HEorv377aq1zLsBcIQGlxJdvL4qh6OQff/rhfBprin/76685pR9++KPU/cflcr/enr48n57OL98/vv7t1+HQ/fj8Zdn3+3af7/N0nHqlc0igwL/8459+fH6uOb+/fOuU6pRMKZYSx050ShhrPz1/GsbJWVNrq6BJKVJWFHPGKIHWGI9Q41KM4zRNg9kW2IigDGJGMYEQx5C0ph2EWqkGQEzJGks57bSquaJW5uslBMc4E5KA2jAGGCPCIC2YM15ToxAzSlPKMaYYQwiBIPLw9FRqiTGknGNMAIJt461m/ztzwzqCGaf/f5r+Y9myZMmyxdQ4WWSzQ5wFybxJKkvqvQYgghb+v4MGBJCqVylJbsSNCHc/ZLPFjJsaGpH4A2tOUx06B+aQpeYhpGmapRC97ZgQW9i4Eog15pRjkNpIJRs2xhjW0lmbYsXaCKeCEmUsIc2nWBBba1xwxqk1uggWY9zWrUHrxh0QRgUliJiwFARFlFQApJaKFQFIykUKSRkTguZSsNZxN3DFS66xlEph2fwWcqpZa3N4eCCMeheUUoQSxkWuCKK5FDClabvf51W+3wkjSltKARrjvEXnCcGu06Q2BowiCZhccAc9Si72+73qTC5tsF0F4nNFzkDqLZfkNyFpLjXGIqQSuquNxFyCT8bI436fSm6tttJayoRzySXltAHmkLdlaxzMMOQM79e5YNPWkEbP06xVitGlHBpkjpSo3hApzsukhWIbtlLqPnZa/uXnn96/v3WKU6FDK08Px3C+v0+z7vVW0l9//fXjbjxKuW0uxOZScrU0yjKm+/k6rdPTw8POWq5kP+6GfRdiWt3qNr9tQVhrOnnfCDac7vOnp6dPHz6GXPH793mbY8khJas0MEoJs5rv9jslZNhyQ9IAXt/fGeOUEgrt84fHndWA7XqbXt7eL7kAJSFXlaLYHEAdrEEKWLFR5mLqpDL9oLQqDRtBIQUXyod0X67buhyPD7fLxJXUfaekcG7bvKuIh+Pp4XhEhL/98lXp33/48qURMnTdtkbKwHYDJare59NgGjdbSkiQGbFcb7wRfRi6UVIOSktglEsuCU2l+Mu5IJWyM+NO6N798frbH9/vLh8//hBTLa0RTu/Xe21oOquUsGO/7+yusz54wAaseu+kZJxSSmkDsFyFVkpMu/1BSuG8m273zXlGKRfcRyeVIAS2ZcNcWm4UeAx1naflvh4Pg5D85ev77XKV2hyOB8Ryub3VlmnJv/7yCzVc7wxhQBrvO9tJhSlt6LZpVVL9/OlzPw73+z0Ht+utlYxgTW7DFI6H4248fPv2/b7dSCG0UWttw2ZtF0KmMZ/PL5fLlLAV0lptJSbO6LysJRdSUlrXL5+eH8djrDHW0nWjkTbO12WZ7XGkWkzTsu920MT57fqw32nBJWP742iGnlAS3RrdtvmiQH38+CSe6fv15pwHpMhhPw5Wkhrxv//zv2DLLjpS6zKvnVElRNCdluJ4PIS4xFJqSSWlTpufvnympGzO+ftMCh6G7mG/O1j7cN/98fritrQGl2qlhEaSGKcVa5NysDZ4j1j7wRKAy20W2jcKCRpVAhG5EIXg+X5JfuttF5MrQITSMaTpdl/n1UXfH0ZgjQiSEZPfOCdbWGOs49Ab0zXE2qqUjFFaa9NGY8aKRDJuDypspWZsHKXimomus0Ky22VqpBHGGqG51tKAIuHSFMSak9BcK5nWFL3rjCLAhm5QWiYfEKnVSgoRdVlT9KtfF59KLDRLqWJN0zQ1CrtxbNBYow1qLgmxGFBCKcpobpVTLiSjnLGYG8SUciyFMnK/L7lWV9LmE+Y6dObT87NR2m8xxqi0pKx5H4Vk43GopOQQnbsdT3vTax8zIgBFpgjJpJFWCnJOqJSxZMQWQiQVS4Vl9aw13RmpdKzQhFrdzfvlNk2McGW7zQUfEqUUcru+njGHFFMG8v3t/PjlIwMaXKqF9MNACayLU7kl50vN99tkh74ztAdW/rzbXkIrrALZtrA5TykrpW1bKKkwyqyVnPMGGGtJHksqVBBCiJ83LKgNWdeNEaKU0FZr0dVUzu8XF7d12/aHvVR8c76kQCl1WxaUF8wpbss8xxhTgc6oCrBuwW2z1fzp8aEWqjqtDU85fPv+SigYYR8+fswxxdoQ4P1yvtxvyuhUWspFM8mAccZd3WLKjZCUC2Xsy4+fvQ/b5rcQGgFOYV1nKGHdBkGoMbbf9TEkwBpj+Pjh2acUYyw5TMvN5yDR3LbNJbd/PKQcAZqU4vPHT//9v4/70xiXTUpyOh1u77dl/WvIoR+6ftjv9wcmdGes4HzK8fz2prU67nZG2ofTY4wxxqJUI5SyIzvs90bLXTe2Wjvb/WkJDC4qJW1n/8ygrYGUQoidlEIqiRWxVe+9D3437nKu83Jp2FprlFMhuJJKGHk47imhl+vlOl0Y49BActF3Q86x5twYr6yVUpd104pjwVDC05PsbT9Pa8RKCE015ZoqFh2VMUZbW1vGgCQzqZjSEqhoDShjwUUkmFIJIVLG+73lVLSGNJfb7d66KndjyW1rgRGIqcRcCWWMioytlioZk0YyLoXiAODmrbTadR3jMvogBNdaGikb4ua279/fbtsqlFrvi3cBGyGEAAHBlUJoWFMKDUBKmUpJOdMct83XlH1IKUXBipCqI+bzl4+A8PWPv6XoPzw/1lYZp61Bq0RLrbqeAmDFcbeTKd6nmVKSGiYfueCE0fU+Q8NhNBwhh1qRUETGOKWs663RknNojcaYcyytgegUl6ak+n55z1gAkFBYQgyluDWUkrAiYUR3thYM0WHNjADffzy1jM4lt4U2sMdhfH+7/fu//vtx3z0+PBljlez2DycP+TrdRAptnYiLRouwTlFz8+HAkaybyyCI5r3UOa8ptE5ao7pxf6g5XsMW1tpaez2/A6XD2FHFhRJ2kH/7nUIjhbTVbw3Yp4+Ph7rzfgslMAbASEipk11K8Pb2Fmvs9pZQhg1ZA6VUg+qjN5Luh722Y4jFu8Q1NaU0QCoAG9zW2SgVvAdCP/z0w32etrApzZBSXzOTMoR8uU1S8ePxA+OKMEqBQKqqkzUhgSolFQL2u0Eo5ZfMgL6/vxJCLy9ND3r/cHy/Xrc1fv39m1D6889/LwX99a+/u3ltJR/2IwOafSopQAUsLAPZXJ7mJTeakZ/vcWqvenCX+7ZtmUk1re7l7co4H/Zjd+j86gALlKYEp41s3iGBl6+vgCA4wVq10UPfCyo4JTnE3XE3Dnaa1vv1Jph4eDxxzq6Xu9Fy2PWCMULpuriKfE24HzTv2rptFT02zCE3yLXmSMXhsFf2tKMjVuKru9/nxSVKSE319XL/+v1luk3OhX4YU1m4NvthEJTGgoxxJuj1dv4++4xp2O0blU1IY0fTm5iKD35bJiR3bQwAy6UiASr5fZkF50YZQmFdl1qLVYJZQwfz+OULJrivM9bGgDwdDwAQQnz++DgMA6tECFpjuF8SUEgpYs2GDz4GTuj+4bkV8Ku/vU9933eyzwk2t7CCYfMpRJ7Lw+HYjd23l++90urvpF+chzov9+enp2HYf4B6uZ/BwfNxp63ZKTH8/NN9vv3yb3992u3Qby9/W//5n/9y3H2SrAo5vN23/8+///sfL69yUvv9SLH2h8NhGDurrdH74bgs27RM0+a7oWeUWS1G3YV18zWQHHmFbfMBw25/HA4P27zFNWqlGtC41UpIqVAKEqj78eA2JzQYbTjjygrKG5CaCyGEZx/8FlLOgjPBtRSkAmVAus5oJSrWGENOTmqjuMTS+gdLCCm50taic52Wu6FTncklE7FnjGNpx12POZbsUJJSCCVSKxMzyX7NMWNr831N5cYFTSm5deFQjbGm6ziljHBolHIGlAJnq/ch+GEcxn6URsLS0p+DfSDamub9unrZ9bVhwnadlmFsXW+34DslU/DX860fLJaSnWtQ+07+/OOztN1ff/v9/fXy4fNPh52BTAhtwfst+W1bmReNtpILKeDf5y8fn3xM99v7bYndoQ8hff39VUrpfDXWsG7HoJlQQwgp4OZDKbmzI2Ptl5fLuwtWqlJVYwR4Z40idIvBtYrQqNIdZXpZg//bm2Qsh9QqLCxLa5GRbhgJEzHEBtn0OqW8uFxK5IpJLUstCXNekjWKcy6UOOwHwSiWIpiUlGvBZ+dbQ6xAOMsNMGMM2WgN0HKs223tho4w0vV9A1iWtcTICOmsFlJra4AyhOym+8ph9VM/WMJ4SQ0J48bMy1Qxn6/vnMt491Kr4+4ggTAqeK9CdLd1Mr5bttnudofHJ7FulK9cxtYKR3oYH3d7c79eOt01qXvbWaH97T6e9hpM3+9mvzKAT5+f2fX27dvrL//+x4cfn//hn/7ueNzfL7daQEs2WhWn9fvLd9Mp2+ktuhC8EIoTlXMLMR2Ox9rKdL8Gv+VSNOoQct/32+K/fvumjNJSpRgf9ofRmBzzqLvW6ul07MaBMf72ep7XqetECPlynihjQirCSCk1u00pyQRTzWAjIedpumGr0IAzyjm3thNc9F0vhUg5NlJry2M30EZTSNfXM+e05twoNcYwLoyxRkmMVQrWd0PJ+Xa7Ym2rc6nWmL33IWE0nZaKB/dfeLJUihAWUwVofvG1Yc6llBJ8orRywYBmrIUQwrgAAjHGXLBVpIzUhhlAUPanIhQBT4ed6ARlhBISQ9qWTVojhaakpJhyyTSTmDIDIJSnEt11UTqVkpcYc8Zx6CrW5LZUqhSqkcaoANpKSTllRYXgwqcKyA/7nktRUirJv/z+h998Sl4pGV1glMZWcqlAwRiNQJdpyjkXSrZ1e/njK+P88fmDNFp1hnLJBN+2TSTVdZ3f1vly0Vr1QweASvHOGr+tznljBybFukRgxXQ05ryF0ihIw5Z5aQRCLJTz0nBeZyD4oFhM+Xo/e+8Fpfz7200pmWLNDVWBt5cLlhxiWVcv2f0vf/ePteBvv/0tQ/pwOI79Dhr7z/B1CX7/aA6jlozQBrU0u7PUsLEbemHPlGulPz09q07dLmFb/eVyPhwPBOjT01PDtoa11rQ/dIz/NN82UqmPodt1j88PPsfLBG7zl+sdQ+mVvF4XY4facHPbWtOH58ePX768/PFye5/6vX17vd7P83/7b8M4jB8+fjbK+Li8nl99SOu6ciUqYljmbdmOx4OxNsbkt/VWat/JLCht0CpLuQ37cfdwyqkgNAHEbTPUqow4qH2uOTgnpC0hPzw8Hvf7LczrvFJKAOB+u7st3O6TC8HfZqbM4WEnGWWdHbu+teqm7eFxhyXV1lKp79++3e5uvz/Rfk9Ffr/N0+tFaK3N2O1Ot3n1flaKcSWw5K63oz3GzZeUMtbKudva4rfSaq6ITFBOfa7U5f3OAEXCaIwphSQY45QJzrSUDerpdMixpFDVILFgq2SdXQilAmO0JWwppW2JWPHxuM9lfbtulZiuUzlVqdWPPz3w11fngxTKQ5inNSbfgKqu50ojzbmU9/PZ9ub0fBCc1VqQssX5Wsu31/O8pTUsRinKJQeyTCtByCXlnPbj/rDbCamm4Fz0FbPRB8ag5cQYs30vBVtDPE/3wfR+3RjQvrdEZG3RuxLWuhuGtIXz2+WHzx8Vg+v5zfb6sDtdl7WWNnbDx8cPwfsXF5d53VyY/YaMplwOB0MpAyTzbW4Nu07/+Pnzb1//UEr3qn9L742Q4HOtzvvECN8P48PxcL1c/bR8/HQ6jZ2qKAhrSLHVv/7tt3/+H//83/7Hf8fKhsX96+9/c8lHUuMVNaev7+dO65RDN2ip5Y5zn2PcKuOiUxoQOCVuWRrUw2gF0NttyrWqVE2pQgpjbczFahFSSTVbrdfVcc7Ln82EQoQtZchSUALkT9MpQq4FY/Q+eMRC2dGajjQgBKHBPG/YMOXEmag5L74CY3JQAMAI5pAplY2CsaYRihW3efv4/KFlXKe5Yjw9HP7rmoO1WELJqbOm5hRiZVK2Uozg+5OpOQsCRnItGcUGWuRUMeeKkHyptXgfsbVWSQjBh4AA6+prw91xbxoJoQQXGCUxb9ToGkOlzCg1XW/Wis5qLeVxf6gpbG55OO0fTsdc2qiHG5ne3267EWrCXJKxGgFSqVrI6boAASWNMfa2etaQcfk+bW/rlkpVtrf9jndlmtbfvp+HwbiM8+yGfafsUEMAY4WiItbFx5QCI4JKGWpluQLjqeB93ZRSwPkWUy2F5mKUUtJgqcviyurkIKXRUDHFQoUUWlaEikgYZYxzKTnyVqHWEkLuLBOcF5+lZZ3RRsqwhfk65VwYJeNgpdUF2/U2MSDYqpRc9QZCTj5UQGholGzYAJFyMQwjZ0xIXgvJqZbop1sDhoJxwsTml2V5f3o+lVznnMfhcDgdXr7fLq/np+N4enzox2FaJrXJCO18X4TgjYvz7ZaCw1JLiZwyAuTp6RlISsF1487Ny7Jsh91u7PrZrdPt7sLbtE5iv//04VOs7Y/f37RUycXvv387HXfGyPm2JSzRacLobuyl5NknxeXucey6QyP06+vbfN8a8N0QQgib81Koru+wtHUNghdCGGfKWmON5YKty1pSHMZuXdZpmrvR2t6SS52XKcQw7vdEtHVdRc5SyZhSq5hzZlwIIQml2CpjnDQWQ8SGx8fDhw8fw+Lv9znFeL6+AcNxsOOo/RLGzrqQvI9SSWCcSiG4xNpiyKTRrusUU3ELtVZOKaG80WZ7E3OsWOd5sZ2uiNigILAKOQUfIjZMPkstuKA5FsH50I9Iasr5zwsIrXT3pyErV8QCSCinjPM/mbFcq5S8YLtPc8lFSgENuBI5p/s0m04Bb9HnnBMicsr7zg7jsPmNMkFqQ8K5JkRJy+R8vpTs+MBsp5WUIceUU0OkwAVTUjZoTBvTD31wfp6mZZnXZTNGdl0XY8opEdqwgdCCcxFjCj5s2yY7m2MArNBYLUVwBgAAwKSQzRAuty2s62qMGsZeKh6CU0oKTp0ruSBLKYQaQoy5IJKu092+v13v6InpupILZ0JIodR+txvnZeZM9Ic+5xhDrBX5+TJHH3KpttdGdiUVQdmnn/5hpwRhlVq+rdvb+2up6R//6R8/dWOnhx8fP29xZaZ8+vC01/u339/YyFUvAmYo7tDr5s26bgTSOq/36/l42M1z5hVP/ThoRTmlNE/zQgt+OB5l5TEkt64zFMqBUWFBDWP3dXm5rJOPAQsYhG7sMyfr7Bhfj4fediOxhAsWfT7f1v/87XtvlxD9T58+1Yqn0zHmGFPB1rQybnO5LBUhrj66DVMinG3b4gAO454L3lJ8fT8TKbdtbQUfDseUaq2ZCiakACTbPDt/GYbdz1++3O+TNvp42Cmr79Ntmtfn54fDaf/1j5fpvo6D1Uo+fjzt7CCpjj4QWnMIMXoksIbCmZqX6+v19/vqbD8ggSXEz6dnPe46H+Yla4O5hRq8C4ljpko/n04EyDrNOVXMdblvBQs3SnbGWo2ImqrNhxiC7o2W2scgBR/HXnLRW5tKFkot0+a887G3RrfWGpJt840AZSSl1A2mO+1FY7fbnHJ67I/TtE7TygibV9elRAjhnFOgKRVkwLQssXIhQiVM2aHTteZScwMILkQXoRFuBtGaVt2yrM4t0FcpZINGarNaJlqndU1aa6EAK4Hm4rbel53shqFvpVaouSaltV/XX84XzRU0GLueWWUVyZVR1nPe74/94pbvtCUoRnfHxydK2uF4Gof9y9v7crkKBEoghk0rjRRjjKk1QujmQvSllgJcxFKW1RGGUgpCaK0NpJRMMqm/vXybpuuHj0+PpyNiEUQxAo/7/WHfffr4mBJ+f3n/5W/f//rHOXS7/eOOt3q9XN39Ut1GOfGpLYu/3c735T5qi40JtaNIXcjeZ92DJlQy4dfVLWvXaU5ViGFysRuGyuTrZT6cjly3+3LljElOBVdIiNrJUiOlYIyJPpVUgMGGFaE20hrUWkEqhY0oaazV427Agik6Tvl/gTuAQJhUBoBmgo2QbfHG9pRxwgEEEk5XF4wxVltK2aEfovfbPTNKSqpGd0rqP375Oq9Lv+sHqcXQTa0ywR72z4wSSprtNDTUWtdUMCOlXHERU/HRlYYVq2CUE3q7nlfnEai2RnY6hritKwPEEqzsio8M0Yj8eNqnNUotU2puWR4fT4IrzrjgEnLLoby/Xa6X+XJZpNCZiHlyWHFdNm38bj9qPaRcGpUpplzSsH9qWAtSOxhJ6beX7xnLP/z8U8sk5Dm05qd59p5VoELHTKw2DGhC4FLYodfFBL+GmFrBSmFe1xwiIwSbqMBqqyGmWlLNFQkI1fmYlxCIoGmre6MItEYaIZBzsb3piNq2FQAAGyFMSonYMUq73tLaWgUOrMa6+LViDcFJIRgXuRTeKuG0QlkW9/njAyXtfj1TYFKIp8cdQHt5ednWubO63w25xJRz2OLnjx9KrnrH123qx26+LylUqDSE/PItC84ogy+PPyJkwZlg/HZftTQPHz4yI3/9+rd5da8vv59Ouy8/aec3ySjk4pZZCPHx+QEIvV62YdyZYSeNzYyDULHgfYudpcb2L+9vN/9KqeyN+eGHL0A445wLEreQfVRCe++DS49PB8XofL3fr7ctxUYlkfVyOX9/fTHGzvd12TtGaUpIVWtICQPnolZEd13GhkApJ7m2aVoYJZzn232Wkr2f+bfv36/TLRckBJdpU1pyxikTiA1AEcYAyBZCmFYCRGnOFZuWbZpnJoX20YYUY7gv28vrG2PQIO+HYb3NBGg3jsfTw/ly5Z3wIUlrl2X584zAWkWATMu0rptgUhtFpABCtbdW9xUxJ8wChRSENgDqQ9zWjVAiBO97TSk0rKyBlvzhtCvQzrcrYg3RAaVIjBZKMlFLLqUQAoCtVmyUdH1nrZFcrPOy+RBTNkoRgBBSTCVlVWqF1qRSOf1ZHy05wLKs0iAhrWEN3rea+34wWpZcak0lES45JSA5ywnWZd2WrSACEsaIVlIIprROKT4+Pw19j7VuIZmuzznlGFkljDJCiA9h2HUxZaPEw2mknEEOZSNAYN5W5zZhdGrUe+fSJuROdYYSoEWklBUvKRVC2H1ag8+cc0aJD4tSjLTWWVUaMkJLKdZKa4wUXFByHHtjLaUseoel5lR4P+wu73cESiCt1v3Dj5/XeUolbaSW7NkbUcoSylokl5cLgUkY/ZcfPubiXLo/jqNmZhZASBOi+tmf3677/iQIlZQv0z2XSAGNEYodBLAYI4F62I3Hw3C/3WJCJcwC2211tSJFklNikg968CFKLpTWIZZuHB6enyrWJYZak09pWfzQd5jrsm4hV+fT9TqXArWU6/UueNnvBiXlAlsDwrlsBZ8eHxlh8zTHLUrOD+MBSQk5c2mD92+XS3ApV2ScSc7fz1cuWNrcvLmHx2fBiHdlXTMjRZnoYyg+dp2hnEkpleSMkYfjIzbS98u475VU2ETfaU4NtHq73UuMu3FIuTBo3bDr1P18e/vj5VXbSShJgKWalnmmBL788JxTOt9exaD6T8/eBSnlvu+wND+t99sdBAFoWFvJxXlPOMFcU42DHTLWuBY2suA9ljp0XUmlyJpCOr9fXfRQqXcRAKwy3W4At9WGpUIFEhI2yK3GWAthogJPKQQXu96GEK/zIpUQUqVaQ4yxln7sUllfL2cA9vj0pK2absG7KJUgDZAA40wy8fz42Nv+/fy6uW26bzEVpQQlZHM+REeA+pAXnyvWRqERkmtx3jHGFreF4KdlHbuO8bZtC630w+OHmOt9XdXIWGcfh6HFmpaptbQ79C8vl3l1p/2BI07Tdjwdvnz4/Nfll5evf9hOWWOG3dCdjma/u89bJjBPy9vl0hk9jj0lkFIpJWbIGbfreUoRP376QgQnjFMmUqopF9IIAUEJbUhTKq2R8bibfHib/vf//uU/f/n+/Z//5ed9T7fZjb1+2PeJM+TgKmyL+/ry5oZBm27YH4vP8zITStd1y4wfx1FxGSjdnJtXSyllUhEmEFjI+XZbnPPORylk11suGGLLaduW1XQ6uODXxAWXUpaUM9baCqXUWpsLlkrof71ZIMlUCEoYZcQwmnNMpayz41waawhhwcfoguk04yS4vMw55vj8xCWTEVP20QiuOKsFBFWn04Ngov0Ae+8aVEaZliznaDt9OO2m251RctrvGlattV99pVlIZWy/hURduNzm0goltLOiAcvz0ijrh9H2XYjhfluUAM7IrrcgFKSoKbGMUQ7fzzcmmDSaU5ZSBNoACKF0vrtSz5uLpZAGPCEyQigVRtuci3cxpQKUGGtrwYptXd1gLQK6UIBTKg2vbZr9fZpTydCAS0aEbLRVLOuyLS7YnWVAkk8hZUppAxZSYAJCii7EltFoJW1HRcupIYJQGmi+rT7WiTXKpOCSUcGF1EIpLjC6UGoRSkGrjAmtZcll21xrIKXpOsM5C8vGKUWEhlByqTVzQjprBRep5kopZXR3GLGhNIKUJpUcdzs3+2max/2olNYqaKUpMAqUUp5zwAaEsJzLeNhjra2RijgOY8Yl50SJpIysbi65SK1Ozw+///rb+Xop/xqfPz7tx91t9aYz8+L/7d9/qTX1Vj8fj7a3rUCr9HbbYmrxslRgu93QmHQpvb28rt4/C/Px89OHGP/29dt8u1Flw+o/fPoynnbbPLll1cIM/a5iicG7de2tVlxY0xGpW2O3aYopf/r4w+vrS9+NpSBwOowjAb76KBXjkiOA5GydF+/90/NDrRUBtFYuxooodQdAU0FEBg2FlAC0FBRCpFS21VEuuJDYWsUKBIC2EIM2Qhu9LMu6zN9+xxJTb2ypedyPQrDff/vFrU5z2QBCrlaLT3/3xe7s5XJ9+fbCGDkdDppJv4Xr9bq6wChVUlLCaqnaKHM87IYhlTLd523b6tSU0rLjraDUmlBouQJDRilhgvWMc64Vz60Jzr3zjFC3bkoK0VPFea21FKS0NaBKy1Rqra1UVIoZ0+VcGkBpQAEY44xTQhjWDKQxLggQAEUo8yEg1lySVJoL5ly5TbeS0vPDiXEWXWTQKjIiGGLDginHmCoAkZwjylQiIATvbGeHfiglO+d8CBWrMYoLPvSdc36aJs5pjvkw7hhjVunNOWE5E4KQJiWvTeVak9ucj7FiBfAhCU4AgBJWKo7juPpAI3LeGGNaKdPpBogNpdFp2a73O4PGuckQLy8vUukPnz50uvv++ma11p+eL29XXmOzynKtHw5jyfHl/KIke/9+77UipRitnIutktzQhcAoAaiT86U6IjG7iA1icKX60+NBm75XPke2revqtlLj4/N+vzOUVEKwxrzNsx05gaKIeBjH89ucbiukwhoMtje9llrmlG/u9vpyBkKMtMByvx9CjffL5JeNM+KdW6dpv98ty4ZYjRTdOAqpKCGH07HUsi7r9f2uOxWS7/u+f+wZJawRzsVyn63unx4erdZTuDFp74u/387eJyFELhlYM91unReSacm5QZGDa7muPgDl59v9Mi9cS1LxnZ13hzFlX2ta5ptPEUiTvBW3aUq15Ov1SgjH0q7vZ4T26cuXnnM2b87FLx+etFFPz4frMp3P90bo/fLSMim59NqM3Xj88mOpKYagrWJcJbcSIikhBCC4OBxHrmUjZNtcnB1jdJsDJkI4UVYSQpfFMUK7jjSEP35/AQKpRC7FuB8YZ+vsOBPCiE70FZD8WWNT8/08Y8UGcDztb6tjFIgUERpR0lJdcloXl2IijHVdp7WuDd8vl1pKriWnlGvenMfWcipWy84aybkQbA2rrylhbaT5UhJmwUTYXC6l3+9cIze3ckEht3XLIcPdRdWPoFUMkQF7u83LujTAh+MD1T0SuLlEKSWcHLg8//b7db7KXZ8ZW5xLqbmEHWfac23U2B92+yG4WQr+/OFR255I8fz80PW9K6Vi/f3rH1zy/eNjTQFbNX0X11vOWQpFSQPWXHTDaccUjz5cJyeFWBdXS4k1y4kIA09Wg+T9OHJG376/KIr/8t9++sd/+sd/+R//46+/fr1O7n26XKfrC7w31qaw/f7+gkgGbRqglmq5L1Wp5+PpcDhore7XK2fcdrYS2HwK10kZOy3bsmwNG2CmMYnG+s6ywKASqJBTDjFgZhZAasEoo4iYKjTCGAcgq1u9DzkXyllrjQruXFKGca2iqykXAA4AWqvOGp9SirG0yDTlRHMp7/MqCcFQEg0UdW/32kjKdKt19duw65lkm1saQj8OSFrXmYYVSx7H3khVUsRUHk9HTqjgcllcAMI5cd4RQozthDBCUb0tBUvO8fzycrudS0J93CkjlRKPHz9U52p0l7erlCoFH+b489//RCjZ4na7XxGhArTWwhywUSmN8znUqrVWhJqugy2sS4w57Q49EKI67X2Y5mnbVqkFyVigDvtRSHG5LdvmTGeYoDE4ArTmgrXklKCRWFEqIY1BID4EKJVxIaRMuRLCu52lFDAH52KDJowQUgls8Tb7kqwxRlttrLJKWduApBhqA2jU+aQ43Z8OktHgU/AppSy11ErnHAtiwypQW6O54tF5wIyIFUrMeYtpOOxbw9YypcgVD5FsW5iXNWUvtBVaK2MqQAhZj7rv2f1y+/7y+uXHj8sSl80ZpXf7fcmT2yKn7PSwJ4BYi9uWUqpQdnFr462xVmqRQj4/f7yu8b4EbvjHnz7/57/9dU3lx93O0FZ9uc+rlQUItoov39+/fvteSRMMXYj9eJx8+tvLN0pgfzxypSrw08PD/Tb98fUbYumteT49UMKBopIyB+cb9EPPuSyENMK3lOmJd0PXWn4/n7d57na9FDIGVzPmezmdjkKQZfMNMOWyBX853wlitx8AmjZWSk0ZF1xxVpBRrKCNwIhCyBAy5Yww8MF5F7XRne2c34KPQFB1ZnfY5dJqw5iD0ZIImkqKtQHn0+bFTsdc3eXCevPUP0KDFNy2zFp3l7fr2O2UtuuWgMB+7IER7/y8bnb0T49PgODWNZfknMcKUppaUQg57AbAdjufa82DNZzzWlrK6e31XKAhYmfMhgWIyDEXWRgnfgshBGO1EBJojaWGEHPNrYFRWiiVUgwhUABllFaKEO6cK7VW05RSDVtOOaUilNRKEco6bSTnDRslSCgIyfa7B2v06rbrsoQQKCe9GQbCCSXQaq11XRZozQXPMnGbr6XYTu9O+1ZrqaXkvK2L4IJxaqxppXXGDuPw9PH57e2y+MUHn7wb9ntMZF3X1jCmWltNmO7rQlrbj2O/27Vag/eAtevlQA0BwpksWDbvGwFsuKxLSvH58VEyNs1TjgkrXl/f2TNRnJXESy2nw55Dix+eB6m7sTfR03m+2sedFExIwY1dQgo5E6DL5e7G/OnTh0L5cptTXI0VUsfDrtPWUCYYAUsZalU4h5qRKG3Fp0+PgkNKcbpNCd3psRsGfrt8F1RwKrZtu91dRn582D98eAYK7+fz15c/AGgpRUqttNqPe6HU7T6FbcHapNbQWiN4uZ6FkErJYRikYH4NQmLGiik1IDEXmmmtrRFkFJgW3gFh5PHpMZc0Hnbe+YJNSp5jKlh3x93QDc5tDYAS0hpxmyMMpNGvb+9udZxJF+K6hcfTSWJjQHZUMsIEE8hpTrnVRDmTmkMGTgjmvC1rStlY+/h0+vb+9p9//PXL5x82dwtL2HX7h+MXatT36/mP31+v09QoHZ/298u8XO+spC/j53WDNQTb9SHGHILpd8fHgxTceUcVN13nvPeAQz9qrV/8+x/fvna9/ekvP2plhFmT88uyGSsrbQ2RMmY6o4wqOa9uSxX3p5Fx3rDVWoHhMs0NIJdKCWsMfEhQatf3wUelJACkWkNKWKsQzBjVECmjp8cTlqa1WheXU/2TJVSmc1NgLe92clrXFMO2+lphOBwKYPCOcGKOO5HaZV6ITJdpTjloKdZ5vd8X0jgzMpVUSIutzttyvl6hMaH3b9P8NJr9OBSeo1tWmkwnmZeltBjz0O9ShdUFohWVsMXq4mVel+PpuBt7Jfm0XF/fzkRq4JKbrhHy9OHpsDsxwUNp821SkVJSO6V++vJcCnm9XN/vb6fj07A/5HIFrhrnlUSXgq0gOo20TrethPQPP/94HPYv318FJR+fHn/6/EOve0utz/X18v7vv/76+vvZ50CFyP6SXXk8HLSUnFEp2OEw7oaOM3Y8HQ/Hvds8UppyDilxqXxOWBsCEMaAM59yqqURUmrlguVUoBUhxeJ8KlkX/WcVYfDZhzSOvZCSBFGxbTGwTLEiGsi5IEFjOaPMdEJyTQgtuXAla4pu3ZDWCs1o0xBzSLE2zRg0SDkYI6XgCNmHOE0zUGjQcs5YCBCeUlUGWkWtVGvol1VwWnKuSirVl1wut/Pm6z1EYFxJ1ZlBcCUkPx6O93ma5+l+nxhlu93+z9ZNwjhWpBRCqT5lVZAJUWIMNVWKa3B+DUKIUIq1OibIuSaIPmcAUkrhlDcAJK3WAoANslK6NIoNc06E6pgxx1JbxYlQQqERpVXXW4TiXLleZslFN3SEKczNOU8YaNo1bMFHTlo/9Fqp8+VeUmpaIQIhBCv8qaOCRijhh+Nx80FLIxkVUjImWoMQ/DTdcsrDOAKBVNAyWWqhTPRd70hoDfzmUvKUQYr5tswFtGSkYOVAWiMupMvtlnINKfsc13m+a2W1Op/PpQCjQmudYq4lDravWNzmGKVai4q5ksqkQAK3+9x9GoZhACrD4rFUrRTjhAuac7ndpvv1fZpWCphrxsJrKUarzioh4dvLa8U6Dt3Q9YwJo7nLDlutAOf3y243CKPu1yXGxHiWyvhS3Lp9+/79xx8+aSErgTUEoGTb1teXF8qY/eEHH3PMpebYWUUJK7W1mE1nTN934/6vf/vj7XIOYesH7bF3wZVaaq2McyUleIgxaCsZUsIBG5unuRFsDNd1oQQabT7EmGtrjTFBWcsFJTZKWEqFMT6M2nuvJcPSjFFK6ei3hlgyqlIptKFTjDNSslvnXOrtemeMMMpSzt/f37txDD69vr0iJibott6M5pTA/TolX/uxNkIJtIKVVshYUypkDTd6Q8zTfBdK7ccRG1BgBKngnDaQSn78+AyIpNV5XjYfsFQX/pzBD8baMiNn4k+TaykFG3LBGGPQWgwJoDFGS6o15yYlF6K1BgiIFbH5EGqDWBKnlDJKGQspxBCANK2UUTqEWErR2upeh20ppQguuqErMdWCJUYEJI2IP+OSlAA43+/rfRKCMQI111yyFIICaMlLJvdlxZoFow+nB+62+T6bzlIgbtv6405YGdby6+/fhdaFcue2aZ44F1wwKDhNk5JJCUV2DKFtPlzOVyGo0pJTorRuFUOI8zJzoRrB2uq4G4dxF9zKOO8Op5qS5DKHqBgDJXPlwAh/ONj75YykVVkPu+5h9ykGP/QWAZlVf/v2vdv1QvKltul8f10Daaw1aDX99NOHuqaX6fdDL3ujvdvCco2+6q77+cvpH7tPS5hymQUzvZatl2DYx49Pi19TLJy0EpMQyA2d1q3v9zHHkBy2qDQTRO/GXYWqrRr2PWJj2cA41opD13FOGrZU08PTg9v8/X4PEcb9cDjt3X3rjXg8PZZYasmlpW6ngdYY0vG4zwnnZWWMfP3+R2vl+flhfzz97de/daYbH0ZjrO4MY6whlUILIXOOgonbtgKhjYubv7sQf+gHLmhxyftwOg60SaBWaJB9r6wN3sXV55RTTD7E/8IFtCZCpBYJx4huWm6c0mHfg4RdJ3b/9OMWggvZdsftFP/2n3+NYZUU/vEffr7Ny9fv3+dlCaXYw2gHpSlNSW3Rr9PdBx/XqRhh9+Pp6bBs27yu315eO20IAyHZdL3naCiju/2+YlG9FkbFlIXiiNW7RGkJMRBAQkBLZazdtuB9dGsAbMknBFaxXu+z4JRRopWoiAAQfaCMphA6ayiwWiGFvEyz0ir6zDnlXAmlvIulRixJcJU4LEuINW/ePX56iLXO9+16neyub0hqYQhNSqV0LgTX6H1ywYd8vcQcqGRS6MpwWu9W5iez01TSSH58+ggVuOou0/3U7RMj367X1BAF40O/VrxfrvP1/tPnT4Tr1/frfZ2V1iGXy/u9Uc6tPh5PfTdc7vdlXa6XN0Hblw9PxlhOmZDMSO1jvFyuUtrKqMeyLHH1znufLtgkpSF/f/l+Gru///T0f/tv/9yALuvs0/o4jAd7EqXG4n/+0P/85ZFl/N///utWcyN4vpxj9gK4Nj9/+vzxw9OptvDb1wvn+nh62FK5vs8+uEZAWEso836rUI3WlFOsEDBss8eUtRRWaMRGGKut3ufV+41y1vcDpTzlOi3OGq2tIg20FbXWuEX0izE6RV8rYYzYrtOc11i3zXlKgDYuoCBuzl/OZ0LZ6eGpt8OoldE8+JURWG8TEpSdMUatziEhubaU6+X26oOnSpz2u904rss158CJ6ozJMd5iro1UhJxrSDXVNliTS73dF2Mlp2KwY4ghqEyAjftD8MG7uq4ub46UDLUpaUIlhXNi7BwKbLEgFdZKLqkxVLKaQ645Y02lAWkMOFBoAJQBF8AYqZiWNeValRTjMHDBQwi1phzzcr+WVIZ+xzhNiXR9dzzt54akAcHGCPHBu20znQje11IAEAAIaSnnFEMpeZvulPKhM0YJaAjYYvYp16EfrdZSMgYtpbAsSwVkkiJmIbmQrFXEhtfLjdGmleGcGSVLyn7bSokPT0eHLQS/LIE2ajtrjEbC3l8uSIAw4lbHuOzNAJVFj6kAALVKAZD5Np9O4363v1wvtWZoNcVKFeyOdgvb9TZti9tc6Pq9EIoNota8+q2UvNv3tYIynSslN2ytqoZE8hh8CE7yphQoSTulPn54rq1uy5I9Y5whh/fpHhq4edEpFSTPX37025UyYvvOe4eMv98WJqC0AlTmgqY3u8PYD30uaVqWrrcNW0y1s6rWdr3etQ9DwVRhXZeSE9RaWhVCHOyRM86ZIEBu11spceh1qdm7rettwIKtjbs+hHCf7+N+gAbz4oBywTkhhHLKqQgpBx9DDoQyqWUplRGqtBxGS4nou75iFYqXmLOPrKGRKqcUfKqItUbvU0XgWoUtLjkLQa3jt0s1WjVEJZQxY0MaYokxPT491pxSDDFWIrgdOyjonW9QlFBWW0pJLtmtkSrBANdpxVZPhx0h9Dbfb5epItiuU4PcptmlTFXhQgBAxZJT5kA4p4xxTig2ZAQaNM4FZxxIi9ExKm1ns+K14J8EBZNMakWw5ZQ4ZVgaUNIZXWutuTBCay5ZFpYj1oI1lVT++PWr805w3lmrNXEuBucBmqKEM84JcAqcMG0NY6QVIIQEF27haqyG1rTWp9NDzqVhBYAYQwkBW4nZu5zf397++PY6HPYNOGklx2ptLyj1YaKEGiWpaNfb+X6/MimJEaHUFDLnMOc5hcgIrdAIoJZKMN73/bzM9/vlsN8LY6gnjZFUMgZEqBUBGuXv54tidBwGrViKGbAGF6RSNVbbqWE3AOEUuN718919v97nxQ3DwCj6X39/PO1q8m8cPjzsrNYMRDd087q4P9b909EnP93uD8dTry1pOPT97XrnvTCmdzcnhHh4GJiJmd5j8ts6X6+XYeg/Pj6Mw2Hx7tvLa5rDus2Uwn63342dW72Wou/tdJ+MlEYIj6vbVmUtYRRbk0barkMghJNaK6Ggtc4xdbZLuV5ul+t07Tq7zoFQ6HfH5etLyIlLkTN++HgoOcWQ5st8Oj00zDkF54LiWvW2AFV2JVzFghlrK+l6yYISQpACsV0flrDrjwjN5+B9XJYVG7G93baQCtq+M8z2/WCETsYyRrZtqQ5jdJ0ddp1OOccUYmm74yOBgStNpAYeK/A1RZcifv26G5bn0yMwmnNx29YAtNA55lTzuB9Oz8eXb+8xxRKj4HIcNPSGsz+BymqHLmNZN786h4CEs1hTWFKp2VpFEPquV9q2JhApJRQ4IIN5WwklBUv0KDhVVv+ZETcXlJFcKr+5kms/jLpT00ymaT6duBQaKOWEUk5MJ5d5BkqkkSFFt27Lsqkriym8fL1wLpSW//D3PxPC72/fmOLKSoBGKAC0x+fT+/d3AMEYe3h64Ey46NdAfAz7wWohlFYEpN3CFkOjIKTgghurU62XeR06SEAKYd/eLlRIlxs2rsxQSZG63ueVN5Cymye3LBsVjAtFCrbCFbN+yRkDo7RT3fk23dGPh8Nyn9fFYc05RV8SlaSTnCIEF/28HOyoB+sjkFBS8JH6ljOU8Pj49Onzzy2TD4+Pb/fp129ff/XfVh9qLg/z7cOXp9nNcd3u14lzE0slXN7mhUooMaVL7faDCz6sARuRWuZaVr9KISVjyuiH44NkYl633CpbV+8DbUII0Q/DMk9h89AK5wwYNEpqwUYaE4ww0gD+jMKNQMGCFWvJlTTTScVNTDymeo03H1M/7MaPX/ZGMdZycpQ3IaEC0YYzxSrU0hqXLFyX8+1CAAilQz9YJTWF6f4uOB/s4Jzbou92R6BcWTJy8R+//F4LrPNcchFa2N52fUcoszHfb9PtdhdC3O5TRRyNYgRaI4mUmjBXLIgimxITYxxTYRT0aLYQS6mEQsWWaymllgwUmVQaCCAggRZ8XL1LKR8Oj0abBq3mmmPmTABQgoQSkkOOW9RSailhGILzWLFiraX+Ofi8nM+q76ThJeZ5WkJIlMC461vFGHLDRglwRitizjmGRIENQy8YazXnkGL0q3P90O92A2fCBxe20HW25FIJAEJNueYK0FqtlDJGqVJUCDOvi5By8av3m9Em1TQv67qtnMlPHz/td0ehFCfsUBvn0i2b86s2KqXyx9ev27bu97txP/joRRS1FR9noE1Ke7vPtdGSQCguKLiUKrbt9c4EOx6O/UhjBR88kxKJ8j5zimmJoxmGfzqQyjkXDEUgKZeUcoylEMKQQYgZBJNCcMkk2lpLyKkCKUBumzdGMiGgQUzxsDudHh8po9N1phQ5F1yrHNNl2rDWzfvJba/Xcz8eV+eBgbKa1IxLTK5oTYVkYfMhxhh8Q3x4OBFKNu+3zVHOuOeMM0o5/MmGEKi1+JC0El1vASDl7GN0wTVEERRlVEnJKM0pay200amUza0MUApBqeSEES4rIgIeHw+//fpHDHlZHaV8fn/vrHmwnWJCciW44UKVQrpulLI2QpXhTVAqSIihtdawAVRENvQ9l6zkGFKIsQDwFKLkggLcp3tJXuku10o4NVwWLPMaS82iMUJpPwwpJ8CaUwb6p6mdc8ZTzJQQQTgXohGI0cXQdntFGCkJG6WpZCaYVOrPWq9t21IsnNOus0rw8+VCCBm6/nQ4xJZzCIBZCe5zXp2L+b86TrlUnPNl88mFRAiRAlPRQu7GUUgVnC81930nKdlWJxjfDb0QXErx/v4evOOM15Rbg/HYM87SPN/mGyic/dQa7KwZur631q+eM7Hfj9pYF8LmHWP8cDpSzrBUbEBIc84v06yllEJsy1pzHQ/D7Jaw+lyK84EwxkgLq7NW11xW77kU3dDx+3n++acvu/HBdvY+Tf/5b/8hGf3hx8PxUd/u9+NhB0T+8svfGGeYqhYKBlYJjIehpbTMk6I0ZJjX6kI0ikEvr67e54uZF9tpSURK+Lbc5+kupQLCzL4LLmmlBdDLyw0J6bWlRqYsEPKPP/7oZk8pHB46l4bL7b6sPsfUkBhrDoc9bex+vWcXtRFxWlVjzw8PRHLJFSFU9Srm9PrLaynJDmoY+7fX+7gfh8MJY/Nb7Yfd6+X1+/Vyua9/+3b94cNzP0jOKS359Y8/OqP+7T//s+uPuuui25QgT08f6P3+7eU9VLS6+/LpsTV8f3nJwR12u8v1Hpw7HY6tsdogx+9CyZjhMm3YCCDcLlttCAT7Y396ON2vixD68cm0XLG0cRg1lyEEyuHl6/f3Kd42fDidxlH56H/7j39fVodAMhVU0FLZvEap3DLNyYdccOjGYaDTsr2/3m1vjdYfPz5JK6FUt4bOGIKEUXo6HkqtGRMBWLfNuTWFxISUxhBOOVdS9YB4nz1ZipRSSqsMY5wyybd5gwZ2Z/0WasPVb9ZaQVljfHWp1kyAKG1Cig2J7rpKqOj00A0kI2s1hKDtjjLFjBaC5etNKf2Xx6fdqO/v7+wInJJxJ//Pv/t4OD3+6/8VX85vdDTLsrpt/rsfPjEpRCoUWj92EUvMdb5PGDdG2G6wkgKjZ613oUET8r55d5+k1v2wZww271/f3kstwYWlAVFXyVXIzZ9nZToqDeElV5ILArSYA8nMqCFj8qHd7hshtNSsrSopUUKk4EqKjdKUAiNkHIZuHIzlh6Fv0Wvaztel4OvuYQBAUtp0vZWI5/N5WWfQ46N9OB37/8f/8c9r3P79P3vL4d/++KPQ+uu3t8bUh8f9YCwVcrc7KmWpYNaq+3TnQoaU67RVhMbYFsNtXYCAT/50PPRjH1OYtuXxeBRK1GuljBtjVGfH41hSiSlQDghYkLSCKZUGDQgUaIoxYVTYEtYyzYsAboXoRp1rag05I3rsUy5PT0+X67ll792EidYUrNXR+d1uREAmhBWCAFljUEozIpZlXtclRne/X9h+Pwy73ljvtpLr4XjsG+px9/Z2Ac6ndW4EuqHbjbtlmoEgYTSWtG1ucxti8d5LKQmQ4KIkTGnTCHWuMgpACTS6zFvXmRCiW/x98WbTtWFpKLkklNBCMcYtBGh0x3lFbIRaqREdaUIwWSKk0LiAvh8IsBhjfxgBQVIhpWzQ7u8TtKo145wxJmOKu323Px5u083fry2CQMEo5JoBcNztHp8eK7QYQ8k5usIYZVJqbUII0EgrqSasKZcUFadUK82YolCybzlqSVN0KWfb2ZBcXFytqLUQDFKKl/c3YwWW6tZNqVIYkAYVYAthWbY/Xr9paR4eP1Ilt+xKiIxybRWBxngj0FxwyzJhLYj9/XpDip8/fb5e30NwRnUtwTwtTGplhsVt2zIRDqVi9tlYK7ivraQYGKGp1N+/vfIPTz9+erycb6yQ8XCshTTKlTbC1OCmbVlLxV03gktdtzdWA7Z18ZSAsjak7FMkgkcfknPPHz4wwS6X27p8++Gnz/2h1/uuZSyIqfxpNGPLulVom/cNq7RjSD4DNsYrtlTaMjlylMHfbtcLAFDGEMm6eWM7732utfgguNh3o/d4fr9SKoQQhDECpGDdNldyzqUgVimUsR2lxIeojEkxzNMKTZWC8+yxQr+3nNMSs9YaCF2dy1ASJB9jCuk2XRq0bbmFYHZa9NZSKo3sjOmWxWPJ3oVY0u2OtjOEQcNGOcklQSoNYL83gtHgakXkUjAqORHRxdVviC3log1VRhFGSsRlnmIIUmurNRaspCFirZUB+ZOTbpTFXJ0PiIUrzplMuSzLCoRWAoyxRohWxvnYoE7bOoyj5JCx1hRoIVxwQlo/9NGHklKvOgZ8i4ExrqRoGYiigquHhxOjLMRICQgGhEJJqeXUKcm06U3PGYdYQdPB2iJFpxUCCTH4zQnGOGM1FWmk7sx+PJjRzG5etvU+r1sKCfDuNyQPn3afthhiyoeHp8Nhh4irS4vzQCBiMX23OTff13EcgRFle9vpEqOL4Xa7Las5HPdKCmME1ppS6oxkpK3Rl1xAUiLZvKz86eOz8/k/fvnKGIQYr7dp3/WUspSDVjKGEpKXhKRUrNF912EDqtTu1N3f3tbLWXbdfr9PJV6nBcsd2iszMtd2/X79p3/6+Ycff0rRfX356zwtzsWG7PT09Pj8FCq5r2G9T5TD588fxqH//vbWUo6LKyltKZmmx7EDRvPbWQnRdZ3t+pLL5e2aYzHShBCEyJ3tYs1amW7oWyvzZS4hMMIJZVIaKfTl9cy5nOVaPGqtffTRleu0XleXK9dmYfIAqeScuwe7LWvDdr5ez+fbYex//vJBaQGU9WPfc04AOLRGoR/0ikkoQZXYdw9KGCDsdrss68vudFydM32njZ1v89u370+PD0Lx+30BQk77gTHRWq0A/TgY1bHMBBON01Lw9f3tvJaX9/O468b9cJ/d5nxtGGORSmjbaW2vt3meJwZAGsnYwpZ8iNWHmOO4H4/HfUm1tNhpfTvfx92+VYyhSC2xQqmVICGNKWu11cb087S5kALPnJBSMaaASxxHY0fV/uQXNG8VS6mEUcl4LehDEbKzow4+uG2lDAgFBQxZM33fWcEIjJ34+x9/KCF9//Y91bIbzP5xL7W6dyy64fn5w/4wzJen5FMtCSFxEizNf/fDEyHx7bKVKBjTHITfQj/0LdWcqrIaeUAO52l16VunxPPpINUO76kRoJJNm0cGh35glKcaKKMpY0VMFY3SIZOC6B1mdF2hwijOVS4VESrm1sD7QIAYKV1MFbHrNCVsXsLr5Sq07vaKSVqxUkqGzp6OB8pZwVxq7Y1xtwlL60pLGbGgW3LOoZQWY0oIoSRK62nQl2XuGP+Xv/xlPIzk/0X+9dffY87/8ctvrYH+YiXjwEgD9FukABSAC6qUbMCkFKWDeZlD9LlmrRUhpGBJMb0sLwRRKdMAS6njbmCC15Q7o3E3Bu+NVTlXtwVCGGHE+ySwcSFDiJvznLMqZaqFGEo4A0ZjzFCqJJkysjuO27Y4t/zy61/HYVSSx1Z5BW1ACMGIEIQZThgzXJnD7iHX8G//uvh1iVpGLZ92IwUlBHPzxrhijG3b9nJ+m5b0cr5J03VdRxFqtoRCY+i9R0RKKONMKUUYG062xjJvkaemteFMNiAVKwVsDVzwWFtpLXofYjaDppxVbEIqagWhJLkIAOvmuJR91y/LOt0nIbXtekZoCF43gdhIo4Rw57M1hjJOKPWbCzFgLRW5Ugoh5VSMFZSRUlFoyQSl0DSX48OQSzmdHh6fnxvA5e319eXt+HDwKSyz44wrKaEBBYwuAFRlGKNMKV5zdevGBZOcppRjCD6kkqOQorRUShVIJOe11ljC5tC7DSjNtXb7jnNZsf3J5wnOl239/vIH4TWVuE7zw+MT48xaeziM9+s1pWCNVlKFGKdpAtqAwvl86TqzBX8536bbKm1HuPztt6/zPLVWmRCKqa7bx5jv6/12uwlOPz49hepu89p3Wg1WUVYiHI6HVIsw8nafpzkIqRVt022zXWetpRR8CoJxaERyVQuTwqhO69j/+ssf0/rbOJrWYNmWmJLFVrFBw7BF57yxxhojlE3bSohgXCitd4xe7tO6bvPsCuLT8wdj9fn1LddGCVBKqBA+58vX7wSAMqqMYlzc7/P1eg0pSKW4kEppYwxpNOfs/VawSKkVU4wyzmgiqZTcGgrB1/UOwNZtMdYSLqVSQjbTadLA5VBC8d4rKUoptWGuuUDZ3LY4F3LZadUonaclprIs7jYtFdB0cnVbKbW3HaNNSxFyIaS11rRWhMD79ZZzpoY3gqoTLtMSKhOMUGhAQi5/JjZCARowSmOMBCu2mksRlJFGKEXSyraF2iojJMbcsGFrMUYuxP0+ccmA0NttSsFrKbgUOQTVSSBYStVU1wbKGCVENmme5/s0U1prq1wIJjgX2AoMfff0cHIubJurUAglQjLaiNFKKVkjCqE4A2uUlB2hxPnEOGOUNFdzCowO42AIlhSzVh2XIoaYYxrH4cuHx/KStxxLQc5aq6URbrtx3O+FlCWXw2FQln7/9rbM95B8riXnPM+z7q02el2WsG6MghAkOF+Hzg5mnWfvPaMieskljyEXQMEYFhKd448fnu+36fdv71hiq2U/aEbS19/+ox/M6fT4+fHD779/rT48PT8LJlpB3VmiZa3FCtGUMEoeDzsfXC3ptqzO54fug5Aml0q5rAVe36f7Eivw8WHXCOkPh2n1i/PDMCRg0/n28eMnSSjGkGb/df29ADYgNvfjw353OKQMjLY/t8urj9d1tXqQwy5OMG2JcpFTaat/ODwo2ZXV38N0fNwPuzHmVLAND8fvL+/X8zR24zxPu/3ueHz+Ulr6/dX5kCW/xTT0Ayhhdo/z7e3Dx5/fr9P768uPP3xE2n79+tvX18vjh+fD4agpI4jeO6sORvHgY1rT58+fvUvz5RZS4Jr7FKZ12WKSNuRYl+Dy68vTh8fDcUcIJUAll1tYOBdaGUKJc67rbSb4/PH5FvPX//XX2+Quq6Kv1Nj++n5lghyOB4Di3D1H71wSSvXDuK2rSzHGzJgYB0Mp48gslyGFZXEIEGOOMRupr5e5G3tjFQWijakNWoOKkFMtseQQKIHGiTS0UZJ8cy4w2ShnOUcCRCqdY8Vaa65ScMF4AyCUcaMGSTCmFsLz54f9aYzO1xIFE4fT+PHTyBg7HNV8n7d1OZ6MtRqfJFY8jEfCySyTYJIw+rfXr4Q1pDnXrIz5+Gn3l388+gj/63/+X/flPvZd3/Wm10IJlrZ2ok6lbXFbAl/YLaRx38UQp9u1kBZD+f793HW2YikNSOMUqFIw7AZKeCqlQCtI5i1YQgmjmPPb+Uw5wYZICEEAzgiB2FrLRSnlciFKplrqPFNGtRWAttOKYPbzSigkIE4JoXstFQjx7WVOqfBGNl8eNfnyl79sblFKTLfrcruvq2uEPX78fPh4jJh/++P7nHKBcrvdO64+f3x+u7wrxne7ve0EErssG2FKa2uUJJynsL259Xq/7vb7ztq1YkuZkXa/3/qh/ukAx4rHQ2c7rbgczMk5F3xQhipugdCYU0qwLnMpKaWyrcvnTx+l0t7Fm3dFsG7UCdH5sL5Ol/f30/EkhKKcU04yNALAGzOdSZkAITmnYehIo7zVUXcx1U6qj08P1tphsELSBiXFUnPtbJ9SbTTf73e3OKyk7zrVDcuytIa1FiMNEwJCVEZzrW63OTfWKyu6joqMPDLClTaU8Jwy1uqTBwLDMFRslAttOeNcKJFTLrm2GvqhM7KfsN6u19ZQW1uTrYhAkDHMecutNU8aWkp5zSXHVBCxFpQy3XLYfDf2UinvNl+qUCK1VJxPJTUgT4/PLmxYytBbY00qSKFty0IazJepxCSVqK1yxmKKWmnBRMu55oytMCH/dN1vfos5K6WZ4MlH512KSfCxIZSaKKNA2mW6+c0zya7X27xMp+OBc1EIDt0olG6kFWw+lZub8PtfMysfnp+YFEjb+/UqxXraj9LK63QBaEJpKsX31/Ntun399np4PFVIFTEjMsmvl+t0X19f3yjn2mjKeDeOQqmElTK+6w9C0Ybw+Pjw9bffEerPf/8zMfjyx7u1WQj2x19/a1QwqRvjFCshlRG63KZ1W6lgHz88x1ymeSOEC2VygZgqZXJa50bIOOjhsCs1i0YIF/d59S7EkISQqMm42zMqHHXGyq7vZUq5AlCy3z8s6+adq7nsDntmxHybhZaEU4I4rxMB6DqrlWQcttmVmkhrMQbEwhkNDlqujFIgKJnojC4Vl2lihBBOo89aCcFojjFVrw1b3Zyy74Z+/7BnLZ+/veYUS8n+Pj8/PCzOcW0Slm1VjNDx6RGUmON2XxYOQglhrA6pLNtWS2OcCCqpEM6t2UfGuVIyRUyxMsoBoZZyv9y7sS8UiYRutCXn9/d3YVSqxa9eCt6LngsBKdNSGlYuWW2tpMQoKZW0RqUVQtrswzKvAEgYZZKmkhCgNRCMLfPEKexOeyYY1CYZl5b+uRNnjFxvd0qJpCJnjDFJQUsrXEkfc0WotdSSYnCUE8LoNidhpNYqxaB72yoAb9O2QC2UtMW1XIu2Zl1cKtFo9fR86nsjKJeUTfdJcFpzPF/ORNBDP/7lw+dTPxZouSQjJZemNLydlz9+mU3X7fc7I0X2zQoeW2GkScuhNc7EYIym3EcnoHXa0M4itg8fPoTNW61LzNGHlrMdjBCsNXBrKGWrKXDJRMPGKN2d9p2SkIJfbm51lKE1/UomSsiH5+cKLeccfPx+ft89Hnf7kVGqtGlEXBffderzDz99eG5vl3vAwrjoKHt9u0pubotffLKd/vjxS641l3qZly2mQilgAy6v80Zpw4qms6SxtHrV6ZzL9XxjWjfAbXUuhtIaAlW223y8/e03ybmgqLRU2kghSi4tZcnE0/OTUV1O5e39wqQ4no4+ZFBsmrZcSsp1S2XdfAN8/viktF22LdfGyP63768t+153SpmUCmITUqXbApQWxGle3je3783YWUbY5ZZXt3IlL/d78fVyvtnOnHZjpdC38tf//I1K+Ze//OPfDX9/OZ8JYSlEStrlevVurTkPdk+pTDES0t7e32OpgzU/f/l8vwX3VBPmEMLj04EGb6345//+l1Ly+/v7umxh9cY+9Tsd4pZjPh52DWC3H9Z1LSUSaENva8qX2/Sn3q+1SjkttcTQpBRGSUS83ed1dZ22p+O+NyKmLDhQBULwANWHnBPtlcyBNARpLAPEwkopnHPJJebiSy4pH3aaUqkH/eOX593YQc6UQs3Vp+L8Ou7G3a5TnAAmglVwkFoxyjkhjPPDcceInN1GGCslnK9nIOTLDz8g9m+vUwxeSXPcUa2U1YY2qLEqYHp3ChovdC6lINdrqG0L0HBeQ465NZJ8WVfPlWRCMCa04jHyRqmLMacCALo3tWDMMefig9u8z7kcTnsz6uRyLKXrZQp5dcGnHGNCUrFiI9AaWiNY0yQVBDiMvTJS6867SATv9ge/+VwJEMqEkg1y4SGQWsV0cXNbMSVKFVISS8YKJVXGWV4coWy+L3F3TLVwzowxSotR2c4qxSRW6PqhVFyXtUIVktvOPD4+Dp2FUqWQVkvn1pfXV9v3u/0giBCUSUo5QMmlhgQl7/Y9ZSbG7DJPBWPKFaFgZpJxQRrUlEJBxLUlCJfz2c3ObxtrVH5Unz5+LNG75BnliouGTShldc8ZDc5fznfBgVHil6026I39x7//e855Sr7msm2eM3WfVkKoNKZgrRUYF33X95xWYDEErEUr1XU21UIZp0BYa7vdriIwSqL3tRRjjVHGz4G0rJRslCOolFNKSUhZsNTalFaScbvTJSREbFhba7mEXGNKJeTMldTWIqQQAwNKCUBjuQrFGKWEUwLQKEAMERGY4qlmv8UcQyqFsNV2JqWEBbgUnTn2Q7fc7n5xBND5FFySWgku12VLMbhl5VxYo5VSrbYUI2BljJVUlzlIzXIpKacYc6pNG5UwhxQoEEZJa41LXmLJNTUCSEitLQNuISy///7w8FAQEcmeUca4tub503N+zff7jRCitOqNRaycUe/W1xwOu13KeV2XECMC/fr6erlfL7f7P+v+cHgoOVBN4c/PR0nPzx8TVkKokPz0dLzf76+v37WWh92+GwZM5fv72+S2fd2FnCnhgrOvf3wbdl30HmlNgFJ2nRIo2LrOlNBSU6vterkAJbURrnSFsrmQEaVRB3my1oy9oqRySqIPOSe3hpzqw/MjVigZOWtMMGWk6WxK2XtPCDDGhVallul2K7JIwxklXAmpxDB0wfvDcVy3bd7meVnGbcilSiXtqGLOFBrnNAZHGxgzSKmhNQoEa2WECCGl5oQRRkjYfGtVSK5bK1hz8vMShWGIZl43DEkZ/vnTp67vF+9iSQ3A/vgzZVQpZZRJ0ZdQOyuAUEbZuOsJoyklRjlnNMVUUiOUcc4JQEplnlYuCNaSY8itUjPGnFa3Gi03t5VcB8mFEIVnykjfWwASXdCCc65zKyml2qqLvmIVUmrDS82FNKJYI6SUQgC0kbW2ksv+NB77nRRiGExKKYWorMCChNAKGKN3zteKvbZ91+12u/v9HHzKCOO+L6W6zQcfOCdUyPt9i60a1QGF+zy11h4eHlMJy7pizpwR29mSai6pQsWG1trdvqcEai5AgUsplRRCUsEBCG98b8eff/p5fzx9//41uZCwrsW5yUOphvPj2ClKFR2sEptbxuOJcHG9zSHmhkhqtVqJ3jzsj6WU+7wwJHELlJP9fsy6AIA2qmDmjGLOfluDc/x6vYTglCRa8uenh+y2zNk42ut6v8zXX3//7Tg+fPnhx8t0f7u/18bfbvesJTFiud2ub6+MGS67Ya9/+Pw8mp5ofj9fBJeSyRrL7y/v1g77hyfS6rpsjbTN+/1x3zeyzHMuxR6GrZbr168N42BHw+SHcU84WdIyLTOGMN+3nHKBVrAOx70U8nqbl8UZLTlF3Um7O0y35XabcwpKiR9++phKXdcNgFMqXt8uqTUoObQsJLuuy3/87be723bH449ffoghpOBX52/3G8Hy4bA/9uVyvTbK73Mc+mLU+HAy93ldpvecXPv8Ifj4/e1NGPnp02cQfL4vhJDdcVzm+XK77h8OrVXGqFR8HLpcQs75/fXlcNjNE5YcU4ifPny0Zvf2em5YDodDysWHrRf7nVL/z//7/7mF2Bosbj497P0PXxDjTz//mGs9Px2u0/q//ucvBKthfOiVb6AYQ2jXt3OKSSrunVNSAmnaqkF2BOifsiS3uFJh3x8377IPnZGckL7r/+Wf/v76/u5DoLTpgyRUvn+bLtf1cNyZ3hAkKdVt8QSYsT1lhECVlEoOglFQYj+asG59J3otjKBD33NOp3mpkIwAUoPzS07Y9YOyBgRzqXS9SAC39zOWaoxNuRx2Rx+26+WimDz0jy6x5f7t28vbcXdkjATv3Oq39S41Hw4GsAUXpGJUssm5jG32UUlGCFeKNIBtDWFz3WEnmeCUSaNyrdO0AmkNG+W001xR5oPPKQFtxhoaUwPIFUPJmEuBwjmtWGMIKWaAxjippdYSCVJFqbRGK2GMBkoYA2Bwu085ZsoYEwIIo5SMprtfzv/x1ykhMiCHfUdyzsGHHH47vyFlL+e7S6VCQywDR8Eb53Tc73glW/QZU2/Mw+F4vt6XZcXWUo1/7kiElFYrTlnXG6skI1BLjDErIQ7WhtXHbWMNfcVtczmEvre0EAoEC5SEnHEqeA5ZCN53VnBhO9tKy7lIpUrIDJvgtHL9dDp++fx5N+6X+d4AKaPJx/m+Zh/wwwcj9Hxfbu+vD8f90+Mj1pZStLobhh4Brzdc5lWKZixrTN/ut55QwmnAhlQ2oJxzLYSULIWkhKSN5JgpUCE1ASKEzrUiIGmNAoUCSIuyklEGQPIaYk4ImHJplEotlZKMkZLynzYGxkiM0cfQoI3DWCo0ClJLLXgrChoYpQkQLMgpFYwQygnBUnDcW2gs1bJsayixYikYUowF2+InrMUI3fV9JXAY95Dg/du3LXvCSEOSXELROKeUaDc5oVhpDbC5NaSKnTXS2EZFqZlzUhEAihCNcWqUpABFaMGFNl3F1krpdoIyAtC09iHHhPG23HMojVOh5bDbHQ+P3gc9tI/2A+PsP0Oe1vnt7a3uj7kWzZUxJviYch7GsdaqbZcKCKvzVOe4RaymH0pkvZKnA3Xe+RiYEpvz58t7I42Q4sO2xbVxIwLTSTDGM2mnp2PN8fXbNy0NAZJTBoLHh/H1Mq1r0JY+HAYGNefABSW0Ci4QawwVKTVShZQJpyS3ihVrKYWVTK0VJcUUUi6RAAjJKSEhBiFEjJhT4pzGEEMIpVZCaK1YsWEu+/2A0Ob7VGrihAnKjdSCMcqoVOZ8u12W28v3KwV26A+P8tgILRV9SGFLgtMOKSFcG6mNHmoJPnoXsFTFBNZCScsxciaMkT6tL5eXkpPzi9Y95sQqDMKcjsfBjpzdpvVue3PcH6HRbYuckFCx5JSyW5eVc6GNtJ1oLft1qTlTKTprjTW15tqq0lIaxQiQlQgt1il8//adK0GAzEvwzkuhFZPGWoKQcsbWhmEwSsfoBRMMcym1Mt4AQvQh+GW+CyEoFzknRsnYj5wRSln0Se17I+SwG5Xgf0a7SlpykTEuFS+lxVwYYaozALjFrWDyIZSKjBIkLdZSCaGUhZSzjxlrKGGagHFw0dWaG4FtcTlERolS8tBpQql3/v9/QHDDkpkUwQegAgtwZEro4+64+S3ESGjrtW0h01yfTvv7tpStfHg6QaNGaVYLB/j4cJjWGYo7dGo8nmgjby9n5+P4YTf2FgpKKqbVPQwdlMgooYRrpXtLrDWcsre3923xHTNZxAKex+CcmxnjrRQAPB6Pw+PT8bR/Ob/8v//n/7cBCiWp1KzT82++MkaNWJwjd+q9e7lNTITDSX//5dsa02ncb2kNOWODw/5EKHVrcN63UmvKG4Z+tEzwUnI/7gmQ+zy/T1PBklOI8/rDj3zfCVKmh8fDfvdAlEipuDnGWvvRKiuRwdvLxaeEFAij42Gn+oEwDpSmmitQTPV82xihQz90O3G935mQXOf3t8vQd7Lbnd8vLkRCiRJ6us05OSk4Ary/T60UDNn8PDTgw87GhL/+7eV43JeGbnWU0f3+eL9tK3HeZ2F7bXqQZJpWbI1xTjlDaDUnAng67bp+kIxO97U3ejfuOKP/P5r+a+eyHT20BPnRk9Mt87uIbTJTUko6qiNUNdBX/fgNFFAv0FVHR5nK3CYifrPMdPSuLqL6ASbmHUF+HBzjdrsyTp+fXzqld2caQVzKWFI/joeHw+Xjbu7b6fTAORFa/PgySEHFp/O23J4fRtkN/sfPr283ZNHrdWa5fjodd2pbgZQTlRw6IQS3xkGpT88PQsqG2nJfukHdPy6Swvk4vXx+XPf97XJbrXv+8fnl+enz0+FxFKnkGCIdaIyFRsyJAEZpReOgEaL7ajDl/diXUuxuc47Hvn86jVoyiqpljAkMpUlGtRKtIUDQDepw6pPzOVpK9eP5kRF1m2923xkFhHBtjQCy28ak+PT8fL/cf/mP35Jq83XxCb6/ZsQUC0lqI9frVmJ4fDm//PT08XH/+vWCGOO6sya+rZen5wcUUS1x7DsE4EOuIeZSavDQgCpKJaumcckIxrWW/8dSGjxqVWtJCc+13u5Ltb6gWlJJW+l7xRgjjbYGqBVKibPufrkLxsa+Gx+PQ99v8xJLvMfVhLgvxkjd9X3JiWsqGScVmVTu67JaKxX7z999tCsHpDSRQ3e72S+v19wAJMG1CMFqLjXX4FNq2OyG4FbHFly6Xe8V4aeXZ0373Yfr7TYM2hqLa3uYPh2G8frxAQ0+PT32/aG1BrnUUnLKZjMA8N06k2OONriYU22EENzQ9XLpe6VOahr6p8fzKLSzMdeaUz7rQWnlXGil9JKjFAUjgo0YwGHidudivMwLR7u1u43+iKkYxlJTQggw8iFQyVJBLiEam88uVTyeH2JO3gSXckg5h01UOR05IRQayqnEZIP1tQHmDQCjWikD1GjwgRCMoZWS+35ACKKPgFEpBQNghmspXEklOGo1FeeMBwRMcgRQS6WEqr7DwAqqpaTsvWJUcswZbxkyLgxjVEqppdWIWmklY4xbKxiQEBxjVij2BJyPxruUc0lJd9KZHRW0flyX+a4OSlJZEQKorWbCGKGQYszNp1SijzEUwnhtgnPFhMQYco65VMYyalhp0Xc6MEYwIZhRJpJ1BDBjjGFaahayppbHYfr8CUJ0KURr3Q+fFUJtW+eY4/F48F1/nA4ppRKydx7Vpg6SESYGnnwEgGk8IIoblKHrOCFKqWHq9vWeoj/3j4dx6ga92X0zOxdEDep+vf7lbzdC8TBo1ana0PvH7enl4c//7V/+/h//uRnPBUfNOhO6YeJM2LC2WjHgFFOKIRXPBAYonLEYC8WNUoqFAEwI5yn5hpGzdl/XbtSdfgJMWyu72SklQgqMiTeWYCIUzzErLVttrVbKGGWUcoYaOOuU4F0nvQ81N1SQEGwaBpSQMx4wcC6en59ZJ3/9/df1upjFGLNRKvpO951iguQYL7cPQihq8PBw7PuOMEYI9j60mnWvEAbNqegEwXDfr1Sy3GotQAmjlJGCGJNS6FKaswE3aKV66wEoBkwREUSxTuTvl82lhOgJpTVnQlAKBWeMESIEYsghhIYaIsAlqbTFmL++fgslnJ8fBZccMCVUSTn1A6XEI4i5ASI15xhdSel7hY0RPI5diGHd7tu2M8oIIUBwre3h6bGbNFnBrfuotehky6XE4KNHrSIotZTdBso5IcAYZ4wSSiilZttyzmsIXFBCMKPE7S6GwgQXjMecfIyI0+2yLbe5m0TKCdU63+/OeE5ZP06MUmMsxbiUtG+RUQoYuBDG2HleEWGd1inX3di+66Tqvn756q3/8ttXBKjVVJJFGB21/OnTCzSy3rb77cYk2W83s5unw0lTtV1m3tD5dJoO9Xw4kFbvy91nU3NpmKhe8EfpfAwhCtYJzBCqh7Gfup5QSinGCFMtSbTUWk+1JAi2zdxzyARUP/3w+Yd5vh0ejyan3y/Xv3/9NvaTHjqzGdUpqtSnn38OKdsYDYIvd/8+v3cD67Xsxik3gIpabT7YfV+D9Y8Pj4jCHowP2ZjcCN5DeP24WR+0ll033bawhitCzVH0Ip66YRgrhDVxovvjkCFs1sQUrLWEsf4wnR/OUvLdrKrXXMkYkg9hdQE3yA0IxcaZ6XgQXDYEi7EJoAAmnGIQwaZvv/71MHaUVa5kr5WxOxHcp0S1lFIygVkDjHGJ0Vubc5KP55ja5p3UAjX4y99/VR3XWptgCaF6HAmtlFJK4KcfP2vd3663g+57JnLJZt9TyaRJTNhu/du3DybZ48NDq3W53lCtKSbJJCltmkbRy8aKkvz16zeEW6yFNkQq1pi/nIZhkGo4hhiRTQ0jMXaH86mi+vrtjQ9SKVXCfjiPlNPs9vXy8TAN6okfxu6HHx6NH4aOb7sfDsOPn54GIS9he3roQwyJlCLwWb/41IyLwUXMuLGpPUyloILAOUeItFvINaCWGGAt+NPxE9VsXzdjjN82ylUjFDNkfYScD8MRKm8h7d7FbY27uWePJZ+mURIyX+81Jb9u5rbSRgWW2337+nZZ541JSUjTWrTsJccvT8//+q//0PU9FPj6+m58UpRB17l9LzkSzEpt990ILqjksqKUGmkZobbvhjHccKOEKCVjiCWXbdkopymV1hBWDAHCGEshSq0Jp9ZQbYApQ7UxDhg3QFUphQEYk6XhlHFrlKtuX4IPqTXAhMWcm/EpJZoIgGWCxwZI6H1eX5fly5cvDQWG4HSQ09SZPdy3raJCCEGAhrE/no8YEXO3m/WA0WkcvcvbvC3LJrQEilMpuzHW2Z9//PF0PAfrPl5vpBGKKaOMEoIRAsDTMMWcQoxMKaFljtkETxhjQiDAijLR97Wiv7vfEm7iWUgpUaoHPfS83eaZEPT4cBqHPsQw3z9wi/u2EEKk4AQIlt3jAwmlploWs+Ycx3FKCL8vM+PYhZhbAQzxlvZlrwjPuw0hEcZ6rVJqu0kIMOdaEsIlJ5gj1BgjOYdaMmBaU0oxMd4wNFQQ4bQSUluRgjEiUki1VGstUNz1upZGGam5eu8J4BxiKolQTBDBCOfWAAFCKMVEOQHUcGucEsGYC9YHQzALIUaMgDQCpLZSatmXjWBWUINWJZOC04QxabXTaqrj9XpHrQoG2Zl5t37fai0lpUpw8jnlQhmTqqOcNFxqqYwy1nMAhzByxpSch2HEiG7r7pwXknHGtJYYY0IaY7wVMKutrTBCzbIRRjnjORW/Bz3qH37st3X97ZdfPuaFEtIrZfddSSmOp1M/xONTjJ4LGXOsuQz9CBUt8yI4w4CzDxWKj+nxfNrtw+vbl335OPcqJvvl7Zfr/DEc+pCyDzbX2g96N9vXb98AI9Xp0lDO6ePt+vZ2e/60J+9wzmfKEYFSg1K6AayrRQ06JRER67L5sFPanp6e5NDZJUDDqRYAwBgIwXZ1raGcMxNCSsUZawCIkuW+UcrOjyelxLqaYRwJodd9DikeTwdGcV223RiqRHKpoBZrhoAIJkqqnBqnWlAdY9h3E3xUneymDlO8b+v9/Zayc++OAH98PDaYpr7nXKQQN7N4F0I0L5+eleyA4dMP5+7QtYp8jCKV4Pz1/UNi8Y8//TNhsjYkhKgpo9wYZ7ngFJPkPWEaWINGMZDaqjFOq55SZnYbcMEEeRdazFrJ6dQln70LSnDJWKXE+5RLnTfLQS9+/7jeXpdrLFlNp9Nh7ATHCUkmS/DBVZSzZCQ5t3qbg0eoCamCs1TImrKzFtWqpCSMWuNpo0JKBGRffI0ZA8YNcIFuGJw1KXgpGAAqtRJOUmtuj0qC7mQtRUmOkc4pWaicU+/9vuyEEalVy9XnSBme98WHmGNuqJg1cs5011PMK6+Mca01huaN4UIfh8E523UKExKDb61KyTHhWvHg7bpE9HgGwMAZgYo57zu9LLfbfNWSPj09agZ2D0oQ9fKUs3//9tpyGbuulGZmA1xyzrUQlLGWY4VGKHl6OnkbcmwJ5VqrFkoy6syWQyQYjqdzLm3QHeOCDmOvOL9cbkPfMcLv19u397eb9f/yz/80vXxafPzl9e2ymC2EfhifzudSEgNIxmECn16euVBf3m/putiQY0gmk1Ck7kfaWnIxu8gong6HKGNM+euX1+lhOBwO72+zTZFrSRjNm6+FHB6fjd0rx8G49W9fXt/vf/rhBcXknSfAl+vdF485wYABAGEQUsSck4nzfW45d13nfQwhAsK4VuPcNA3T8QykMS5kp9d9zxX5FGMqvVZDP2SXOaE5e8EFQq1VZH36dr0hwBTQn/7wcjg/rOuWSjw/nNd1eXt9J8A7raPzTLBv374RRn/66QdAOKTYMDKrw61prTCqgjMtpXcupwIEAya1IOvc68d7K4AISbl+F3d+/fYNVTgMh0baYuzh4UAoCinc/fLx8dZNHQsmIiQKT8kdJvXAJizU+3V5PE2cslgSrpEz+ngYjbOtJGschXaaBreu+/WqKTuNmlNSQjgfJ87p7b4JKWkr3izbcsvZns4HhjHWjJO+FLoav68GM1XyyhVzLlzva6vtMOpRsex3Z43GlUjCGTRc7Lal4pwNqh8fPj8cpsmHWGPpVDd/bG9f31Gpp+NJMm6NpQhF6ZjgGKOW0/3jI4b88PBAKA0u5RBS8rJnp5eRMjpviSk6HYZWy7puzvuH46kvUIFSJp4xijl+34LkXHJtnHGhCAfgglrn120BwEKylDOOkRCCAHOpGKc5t5xq5YhQppVGgMZhcNblVmtt67bnHAmAUoJhwijTWk39hAnc5vWX375QgigjjDEheS5oX20uXmoZYtrM2gBNh7ESRAW310uppQGSms/Gz6vrOsk1xzuNzkNtfT+O05Fjfnebc5ELRhgbxolg0TBNLV2X2zyvv//++zgMz59+GPvx5uPlcpNC/PTjp2DMsqzOZi6EkMLHlEtDmMSUjTU5Zi111/VSV+9zDQla+fTycD49fP78kn26LPepH4VUneoAAQa0zvfWaj/0Sgtn43rfLKVKawQUCCW4xVhjqoRIPU2bc++/3JTkSstUi7N+X6wQYjodg43LYhpBISQpRM5FSjYdHpkQFZUQg3MeAxBMZad4Ts46BKjk3FptDXCpGFCrjRJCMHy834DglJKQknH6veDYWomx1by53WEALqjSHDEWQyg1Q20ppmaD1nrslBAkx5RDSjkT2qy1OWcm6DSMnZIxpZobY4wCsjF4b6EKwA0QFlz2Qro9tJJaqTmlihDhVDWJMQAgJiEs2dVUKeDGSk4M8OGhz6mE701Un6x1gDEGWOY7YNyPeuiH4F2BlFJupXhXUEUvn5+Cc8scCMGn0/m7GJlgTIB8/vSplvT3v/3dmG0c9PnhNPVDa0VS9vnTc0zROs8bH6Zp2zfcsHc+xfBwOquhwxSvZsMYY9xqSUqwwzRQht++XjazLeYmlWqIxBijq847wBghJIRogEMMxuwx5N2443HopbzN2+dPD9OZp1qh0r4/ttbmzRACKWeEKePM2iA6qXptjTOrFz2aDn3LTQoVvX96eqSYdFoinO22UYpVp6Hh2mA3FkFLOW77vqwzQqB6xUVXWo0pxXnDCFptt+ssOz50Q2uACXU+4G0vKaOKGeOUMmeDjwFaU0rIKgDTlCpgWisihOpeoCSHYcgpW7u9v7913aCHDiuKHG4VxxxKiG4zzoXj4fh4/kSY2vc1hdQoAwqMc9RI38ta07rcs89PjyfKxMf7x2ZsSu00HRnnQsqYQ6mIC8aVqAhjSoVoWgnOREpBKplbxATnHI3ZXl+/uWiH7nAcTy+PnztOqw8l123dSq2EEFQboSil1Pe67/tt3/uuY1zGHEvKkvNYSs5ZSk4p6/q+xtKAckZbq/u2xhQAkDUOodxabq0CZUM3ZITXuLTaJBcY4YaKZKJgkIykGH1rOSat5NQNwboAGSiknJIPz8+PSuv79dJaVUJIrgQlpbR93ZRk49ArzBnFx2PfWq2pvr5eXYqPLyfKRc7Z7z6mfL1dc8191z8dns7nI2rZeaO6XgqcUl7vM8G8lXY8HID0Zt3XfTPGxlhDita6PYbxOB2G4TgMnz596qUigGay3NfF2fj4/KKkzMkFmwFDSnlbln4cD9Nh3la67uZ8moQ167JK1e0hrCEzTH+5r8H4/+uv3769f6zWfHp+/n/967/8+HBc75fL5erchhgIOJ4GKcWzVuL1vn273Ge7X+dLreXHx8flY0Gx9UP3j3/+oyBkX7Z9W4WkAGXQEoVmvTtOhxZJQ/j99ZIg5bW02qA076po11FwlCrlAJzfrrMAPYy99ck6/+3bF60UoCqlbATn1rhWIef31+tx1OPDyCSdt/nt7RVjyjjv+77Wigl5eHx8OB9RwqyhWpJU4+6sd/FwfEgNfdzeWy2swd9+qe/v9+v68c//8I/n6YD2nVGGUtOSn398BM5CTjGn0qpd7fV2O51PlMFtnj/ppwZoWRdrnTU2hAwUj6fhwKZ5Wed5fXx8KaWUVr5HpG2I5+k8HU5vb2/eutTCy48P1m7GWNGPx+dPFaPVbqLyXKJULES33ueS6+fnZ9kJG9267JLR0/T4/n7dFvPp+fzp4Xw4TmHdFikg504poXiGShUTRRwOiDFWYqIU1KhLyt+NkT4G563uhk8PD/+1unU3DbV9371xOTghhIBKKabTRFvmgjSo1+vVeM+oUPpIBPiYKgiEZGuw2X3eb+vd3Oel11r2gkQoLhvrlv1ymoZjfwilpBpTCKSxFH1B5eWnKbMoDkoODCiWU0eVPJxO275/e31rjXRqRLndd0MoHg/TanZMCZc8pxJ9TqWKTlCKa64EkJKcEKp71TJKsZjohRC14WW2QgitpdaCACYAOZeWk1Y812Z9SDG54CkhmBDeCQwQcnTRY0zMbpfFUI6pIKhYqTWmJJZagrMxYUoRZrWlgtC67sG7WrNSgsu+6zUqdd03LIWbF2djbo0gFGK+37fis7GOUFoRrPsiBMGEPD09+hTe75eKKiZ46Dq77fPbBaDJXvmcP+4rB0CYV4K/Xe6AMeOUCxasDz6UXKRmsSXjfE6RECiplGQfH7uHU9cpYk0OqdpYgTQA4mJYTAjBY4z7scuNY9YViA0AI7qtxljfTYN1oTQy9sdQ8Zazz3lfIveeKZ5T9blmlHtCgHPgpLUaSkIJdUMvuEAIm91e7h+Y4O/oKiFYcEYZrbXUVhGCZdsAYwaMUiIE8y61GnKKDIlBjynnHHIuGRfAGBpCtSKhpdn2UjOnBKNGaasVt1pRqzGGwghnQ0l5XtdcCqUipIwp79UACDBRnCugOQafS0kleetSTokHpaTSGoCE3U99B6gE7xe3DYeRSv4dWi61NYwilFprq7GGWEKSmJidpZS27V4aqq21hu7LhXPeTzKnXFIM3u7LCq2N04HgqgQnmKzzXmoVulNKW59246RSQnDdq1Ljw+HhXb2abds2Nb18TjHe1msuUeuOcelz9DHJYUAI7c4whoMPMccfzp+2fa+tBO+O0/jv/+3fEULzuqKKMMJQEEFEMsWU3K0Ly5ZTE1JJKZ2Py2pTjI1iTvh3haYeNGbMpsyJiD4qIHsoqMG82NbM6Tydz0+lhMv1gtf9NB5LrUwTyum27rEVDI1gPHSaYiwVwYRtJQ79oE4jNDDGbNtGMDPrDQgITp3xy2VFBYAwoboQCjDYV5NR260PqX7+6ce8uG1eSUidlgPpW62b3edlBtYYIi+PL4xwPQ4ArJUCuAKAswFy64ZeKuG8v5t5ti5+S1LpvteoIW8dRVhxoYQGIJRQ3GrNcV9WyrjSCqOGEZJCXK+bM05oKWRHqeRip96nkHdjMSG1tQaYa6mUZkzkUoyxgDJaqxQ6Bt9qBQyd1q4Es6+thKfp+Pnxx5dx1AQGpSqhMUWEIaRcU20x6q5zFk/HE8XY7O74eOJcrttSGwo5sZK3Zd/tPh0E4O/d0DKorgIJLtXWrPWUs1LR7j2CMkpJgLSMGOCpHw56cN6v277uq1IcWsMYKcag4k4wQaFRaAiMd4DK43n68x//RKlQmMboJKUpuOACwayUalIkrVKJABEcCyOsHweE8Zevr5xSjJD19nwYMSObtWF2uBVK6/399evv33IrgxaCdWZ3pYaX5xdO8bzcVK+6qc8Ebdbniiptt8st5IwpHpTCCMUSGsHWhwpxmKTSWgvpNuO96fuuH/X1cm24NZIJAMOIvl6u932zm/XW24J+f58dhrSbL/f57dffP769MsH7Tj0N48M0jErulyIBzuczYjjt9prfRddDSQRQbWXzHpVyve8C6Kj0t8tro3h3gR1G1smB4Rj8fFlyrUrx6XzAhMUt+JAw1JADk3SdnV38+XhuiCFEuCDTNCSUttiHVGIujFFWSIgeWiWYdH2XM1SEORdMxPEwSsEYY/dlKaXkXErNqlPrtjLKDofpcJxSjJf3K0FYSjUvswuOSamHIbTSVggmd/3wcZt37VPNxufjgXCpp3HQXFq7A2sAhXOcC4LWAFAuJcbYDyNnsqFmjX37dm2l6U4BYGtMBTQeh+lwuN9XILTVmku9b1uKgXIBhPqUieQoRxOD99EZT6mYjk8vn3/2MV7evt1vM8rIroYQHGJAmACqNUUtaOIE1coI1pJrwYUUjBRUfK/4n/7046BH3asGRXYCoyIY4IoBlSbxeOoPp8Pt/dZqo1RkGy4fl4dCUK9SLS4YIOL6vkTvu15rxVsMOaXj03HoB7vdgy9+d9aHTy/TMI6pARFkN/u7D0SQZd0oo1wKLghATsU1XBDJzu+7XVErrYLi6u39si5uGCYbbSylPw7jQ0876bKJvvCOy56lGtd9v99WKQcuIdbsQ8w2M04ppxjTklAIqVXkU8YE19Kc8SllzlmrFTUotdxvS6s18FRK9T4yyjmXOZWMcq0thoig5RwbxgU1IE0qKbgQQiAMrUFMNS0LJTTXQhjtpwEBmm83n9Z+GClntaFWG0DjktYKMbhOyxBMK3kce9XJ2lDDLaV6C1twoZTSILXW1mXmmENG27ZxIVRTbjfz7d73w88//iR62VYUU1BaEUxScN57RikfORFs2zfBCMX0er3lUmtBIcKBHwCThkBKdT4dAKN9s7Xk55eH6MPYT0wSgiEGXxGqCLkQAROCUSnFOdcIQtDW3ebWBOeVwroZlmojeLbmanbB+bYZH7OQvKIsJI/O7rtRUFslLoa4ff9WhBgBKiaACa+tAoEQw/1+W9cVAfT9QAhBGPkYUy45ZwTQUEsxNUDj2HEqS0kEs33fT6eDYIoxNq+z9RETklMCaJRzhJGzoQL+PrHIKcpeEMJTrD4HQgC3GqwvtTgbCqqM1FIQ46wbh5arcyGXIjseUtqXrdQCGBGMAeEQUq2NEAYIMcZKqrWhUtu67lxKCoQAjj7e15lJrg9DybWkTDButV3eb0KKkqG2Shh13m77djod+/40WxeMzz4IzmrOBBAg0lADqJRihikXPOW07856RxlG0JBtqNVhGv/9f/vfvvz298v79XqfAaH77UoJaRgUblgRznCpSCslpES54GEUUoSU1317fX0nGB6fH5XuYkxmd9u61QzH4/n0cC6lrtakWBhlggshpO60tRYhRBklRDBMHh4fPr88l5CVVp3WtUJx++U2Ox/2dQeMc8qnh5PS/f3urQtC8GXbCCGEcUKY3c1mNqmEIAyVSglpuaZYOe4YHgjmMQZKWD9O+7J1fV9LNs5RzmII22a4koQwSlsutTUke+WDdzGtu8GUqaHrBOeUNCjrvvoUUk5KyPNxlH2HGiGMIYRySrmEaJx3Lnhv7M65AIp1r7/8/nWzFhOMAZeSSymKyE+Pz9MfjqfzwYbNGe+9Ky1ijEuOWFIu4Xa75JTH45Fzbp0r2RFCum4kmFRoxpjbPAMGyijnLEZkzWp301CB4WCM89YSgU/nY3TZ2K3G/Keffuq7Qy81Qy17X7goMWFoh1N/v2+b9eeHU0M1ZT7PWy5FcFq/8wkIS8ZaLQgBZ7iW6qwjGAvRSq6RE0nZ+eFgXcilCC0Z5RXjnH2qCVJsuQlGleQYkNm22+1WW8GASkyHY6eVYqxqLSlGOYd9WX3NlBDOqRSk71Ryw7I0VCoqBRCCWoZe55r2zUWXleCt1ONp6gZCAHeqU0xwQVErQHjDUEqhlNVa5uvdG5dStsYqzrlUOVdSyHozhMBmzevlozv0rFNv93UPIbW8eyOl6jqhtJiX2/X6wb+hYeiZoMMwUq3ssr+/vZeSlJKEEN0p64JxIafs7E6n4zmkACwcnh8u83Zx5rJ5/+VV9WL/+Og4/n//9395nqYag2QolgRCDgeiqYwpbN6Y4PO8bD7OW3h9fZ+d++Of/vTw02ctuKL0+XMtNX7Mb7HF7BID4qxjUqIcOy3Op0NpmXw+r9ueSMa7p4L2L6ePekUlrPMtAjpO+qefHzHTHtLHfbEmDcPw+fNnpZQP5na7z7elNbTj/TBOKfmW0/mnZ630er8HH8/HUy6VYjoOo9k3b/coabC+1pQTMibsdqMCIHoopabgd7/eDW6UYPzt29d//+9/xqj85S9/nfqegBISsBDvl1uKqbQWrN+XfToM52lknAyd8t5c3t731eybG/QoT0dKKWNk864mzRiTUs7L2lBjnJaC9t1/nxqW1irU8TSOvYZGGJHHw1FJXULsO7Ur9WV/vX7cg8v//K//jEI227ouBqEsNCWMxZCdc9CQ7jWldJ5njJtg9PnxQas+ljjPdwAJSOKKRCs5JcQoAVRqLrl4F/QwFIRXU1bz3g/Oed+JPjUglCgppeC90vY+k5Z7DoPAxNJt2xmBTtN1eQv2igkZj1NP2bIudskUmubMba6U4DL69bdf+kEwQUOyqdbNp9/f/qKE9iYyyirHy+Iu95sy+3h+wIQtl9WFSACizZ1gKBWqtYnFzfdYAaFWG1pX01AbpxGAmM2VnJXsSkKNIKm00lBKWZfd2RkAeee7roshad2VXAmlSop925y1jGLOWUoZNfJ9pNAryZRCgPfNmC0MY4cwKqVyQhnHudZaq1CKcc44p0yUimpLCDUgKOcUUxiGjlEqhToejy54t/uu16znnRHfvt6klMOgYsKtZrtvuR/Hro+F5pgpwQVgXXfjguz60+OZcnGf733XHYex13rqR7vbFGLfacJJDMElW0qUUiDM9s3uq6GEApBu6lTXOetCjM663bjT4TCMB6VEjGHftoYJYEgx7iV75zBuXSeUlq1AyrWWvCwmhkgYcm5zMdUaUirWrsuyvr9+fTifGCcPzw9asi2FaA3nShBizD7H2o+6tCSVbAjFlDHQVLMLMdWEMWaM1lLNbiilresaajm3XFMpxXunu44AxBj2baWYYcCPT6ecm3FGKoZpawi5mr0PhBBCcMkxhqgUxwKiy861fugpJSWjRgoXwnpTcq6lAiaEUqFYqxBCQKgau9ubOxwnTFoqkTHOFbPGu90wRpEDIRmjpLWaU0opAkbOOmMDAcooB4CGGOWdtzF6p7jSQqWQMCMvL5/e0YfzgTJqXaQMAabBJoIIENwyagxhTNZlFZyXCiGGYZz00AFQDFQpDSus+7YZgxroXqosEMKCTRVtv79euOImuKHTAyM25sboOPYUcYJpLYV3SnHpjPv1t1cuiJAdBhwzoNxCrIhw2U+t4tPTp+PxeLlcbtevMQbOxflwBEz2xXBg//hPfyQUL/MtOdsLOigWEETnoCEA1lAz1uRWh+OEASMAG8N1ninB/dghaM54BIQLKRSTQuVchr7XUhLApeacknexNZyTqXWL0Z2OE+UcM9YQlArBFy7ZOPYxpZqKkoxg9Pp2qahp1XPBfCzrtlMuCMGbs8EZzmiMuVVgXBIqun5USivZmd04uytJcsWiU52Uy7Ld73MubZiGFAADra0h1HLJzrpSW2x1GjLCdNvtvK3Zp2mYfnx6KKmWVBjBGBogQIBLApdSqd44I4XqeiUEcz4g1FKKglNAYM1WU/HRoNY4Yw0KEXi97shjqfvr5S2V8Hz6/Kc//CMQsq53VEpF7TavJUZKsUat1ggYpVwAg7HGO59zPkxDCkEwCtBqKbiBxALptq9bCSEzCq1yzne7e0wU5xWjUmvIMdn89vHBGH75/NwwLOumBN/t6ty27GvwXnY6xgIIx4Q4IYyxmuG2LfNt6YZOMrheIqfYm83M8++/f7MmPD0/jofjAJBTKbkyrQkt18v9Y7WKy4x9SFdAseZs1n34dIZBXt7XzTjeyel8Yhj2xVDMjueOUUkYa631Sgcb7/f7sq6E0yXuNJhW0JfXCxkVItjmnHY7bHYXs122GAxXuoTUavKEDIrnEEoMtTS/2/cYdrcDZUiQaHyriQ56UNClBtdluWz7HsOyLanW82n88R/++KD4//rnP+Vtn4s1+1Z6HAm5z4ukUXCSK2kAWnd7mCnFw6gShRjj6/u7+PyYs+cdD4tDwcucrQve+pzz+Tw1wNseavxQkkpS+SSRJodj9/XbOxD6+Hi8XlYXHKLUpbi6/Wk6a6fcl1djHZuE4DzltG8muhhcUJ0a+h5KIxUBVEYIaggVJAmvsQjOzueHVGIwBlDFqAnBpOQFw25XQuk0dJRiu2++ZMqp7PTbx9wPnOv+tljnyvUy/+EzWY1/vy/H03g8PkDOOccab60UJdTUMT1q1UnUcjCeEvry/BxcMrs9HY99L4HiUnKpeN9tiGU8jEzwdV1l13kT5nWfhrEB9imLmGtoydfAS0N2mdfpYVqWxdtkbawZmd2V0jCipZRSEhP0cOxgIDW3OeTkIhso1IZqTSkzwq6XSyopp3T3aZyqYIRBTTHXAsvNzvf1ft0AEFNrqeh0mP7yl9+uH/PTy9M4HTbrn8+PGOrtctnT+jAOwdR9WQeJKWmUAVVq2+1mHMomhSg+rk+fn4a+f3+7Ig6olY/3t23fOdW//v7GFOo0n/dtOj4wJt5f3wHo6fFlWc11879/+fZxvUwPpz9w1QHLPmXngo8YsYyQNW7zaTOJcSGkVLpDzhvjY4qEWMpZzhkQxhTX2kqujTWlxXdOJMZACBFcEkz7Y08IoxhTQryzpXzftWDKaC4IoBECnDNMcMMQUkateudLLofjKLXGmFgfQgwxRUzpNE1MiPm+btvmQ+x6nWKK0cfktRQYAQZ8Pj3c7vfdmRCzkHroD6tciORPfU8Z9tYs7/O2bX2vT8eDc0kPA2M8xmTMNm/zHuzf//7Xb1+//cuf//l4OCCEWkFSCowB1ZpqAQItN9nJkpvglDGWUmSMMkZKruu211JKa7sxDYBwllpzzpWSow+UC0xoQcUYV3IeBwUYp1AIoaUU53wqiXJGES/FCMYYo2U1oQYqaa+7buxi8GY3nRaME+9c9JlS8fL5uTVoqH5/i8AY45yZ3WxmQxU4p3ToBZf7ZnIplBJACCFgXESbUkxdr3NKwXnMEGUEpdKgoVYIheg947RTorWGa2u1IIxyzqWWVJJxTnQcC/ZdKEcwZYy0BoBbidl6L4SinDrvSqvRp1QKFzTkEKLzgUktpFY55RjS93RUyoVxllJOMdZSMAbAmFDQRC3rHmsmnJVSYsrI7N7tNWV9lp3UAbJU8nQ4Q8PzPDPOMYbd78MwlJgZ5URgDLi1hlqtpXofpFLD0AXrcikpZTX0x+lAMNRWY/x+RZjX+55SVJ06PZ7+8p//6W4RQ62tIaB910GsEN3L8+Ss39dtmka/e4Lxuq56UJ8//bCvmx76nHPOZZh6AjjnBoBu15kA+fHzT/f71fuAMqIc+k5JLQWhWktO0P1SOMaQ69j1DsJ9XmtB/TjovrM2KKkaQiF4b+3xMOSSUsrWGsE1VKitlVIp45xLQohUCgPa1hhjbg1iSiUDAOTaNmtFERjY9bLkkgnBJTfrfKuVMhxSCzGlkkstOaVa8rYu3XCYl1unVLTe2o0SKhiTQn2vnbaGW0YlVoLI+XRCuLp9I4ygimqp+24II8a694/rd1qun7pc287WmBKulCoRapY5c84JwkKIsRtQ+17AzSXW2ordTU5tOhxqCYBQCIEJ1qBerteGcT8NneQANcXicpZMYAKUk1wTQVR04u16r9++3u9vx8P0w8sPY6d9TkJI78y+rUp2jLGa0z7vmMJ06GKubjXeudbqNI215X03mbHDYaKEEFwQYErwcZx8ChhjIQQGFFxwpXxfF5gQztp5Xu73K5NMdXrsh8NpogjlGEIODaruNGWccoIB55RCiABId9KFWAAagLcuhcj4dJlv1/drKiUWtFo7PZ5KqYCRi7HFFFJMNZZaG0WF1MWaGmw/6ILgPm8V59oqAGZEAsLRR6VlqSjGLKSkDJvdPR4Oiuv79VZqIYTUmjBRu48mhbT4VGurFTWybFsrpaagJONSYEattzHvyzV44wmjSlIp5bIvr6/vcprWsJecOMF0dtt12+8mfL1c5nnNoZJSn87D/+d/+ac/vZzyfAe7zZc3k1Jjwjb87bKYzSnOFIhOj4eh77ReQzhSPJyGb/P++6/vH79/WS6vP//xhxLzerk9nk7T8XE4H7mydnWXy5ZrxKWOUj0eOgogFT4cxkZISeU2G0S5HjUg9A//9s+HUfll/c+//WJtgoIYIma1Jb75YM22vnz69MPnT62gw9ClkN7fv5WYLu8XzRVF6Hw+pZhqrbwhguGHlwfACGPcAE7Hg1k94GPXd1oyrsj79epnKxh7N8uX98sn9fzyw/PV+XBdt/uKhcCktZg3v56f/vsw9JwQLfTl7S2afXo8cwxmXoXQL5+mmqrmgnFmjQk5xOQ5IT7mikAqpTqKMHr/+JjX9eHh7KMPMQGhgOt8XVosp36KoV7e5+HYI1JqTdZFSujp+BBsfv12Y4J9/vzYdbLkwAi43fZaMQLjwKVSBbe6JdQiIYARxJCAEj0cjbMmlpyqxNAwx0yFhOclxcQaSpfrNo5TCxWF2ihOCb2/310IWrPoPRTUWq0NpQwYMUY5YqihaAJCrE+Y1BqlHLwzxsehByZ4xsXbsO47odxndNkL9XjerS9O9lGmAojmiAoRv8+Xy239/e31Ot/7Zflm/MPh3DMydgpD01ous7neFip1aYggRDjFhDDOdaexx60BwXQYRsYE5zR470MQwCFGTIjqFBcIEEgloDVKacqZMFRb3E1w3tdaK4hcaIxpXfa+707nEQBMsKjkTivJRQwJEK6puuCWZcm5cM5TClyrzczLNgefAFMEDWNgnKaCrXGCV8GkUgoDK5cP4/bbdQZUj4cDIgQR3vddVoFmYdz+cb0rLRpgCIbVPJu11eST3ZfLvM5d3wstjHM5p+ijFkpInlLMOeeSVSdLqdbamFPOVXCBCYiO11zn5V5bxQSrvseE7rvfd98PSnBGBRNctoZSckBapzvKCaYUvucSGjabT5AehgEaTilzBoQTQcVtBlnFy/PT8Xx4+/a273sqmHMqmigFDbrv+x4B2fc9hCA1l0LkmGsttSKtBeO0VRCcFS1STZRh58zuPKEUtbJtK5eklHZfbowTQmkrpWWwxgnJCCUp11RLbiUFDwxccCEExhhjyLttvjfOCSHAGMqAYgmoNNwYpYyxArgBrqWVnHJKGQC32jinUo2MMVRaq8j5yBgRUjIuEAIuRIreGVNrwQSEYqoTGGOfnPdhd/d9t86GbugeH85CCElYbRgzKoRoqXBKBCWCYHGaVKKE4tVGZ1w/9RVaCKlTSnUKN6gl11aFZPu+vb9dnl4eBkkFxr3ghbNSmrMZWuOM5JRzzMGH3ZlSM6YEKvHGT/2BMHx/uzBKGYbtPufSGCGUk5qzd5Yysi6LlEJw2nLOCOVcS0rrZk6no9aCkSdrbYyeMdJqQahBzqShjnf8TAgqrSCKmRTofJ4QYjkVJRAqNQaTUoneC8Vwy7WlWrI1DgHrOim0XK0lhBrnU6m6m3Lw19tCKYGGABDCqT9M93uKtUCurdaKUAMghALGweVUYjfi5OJm7Xeuy0VmzXb9uOVSqRTO2RxjK4VL1emBc9mpUlutqbnko2+6l33fl5oRajkF731BhVIcY/I5ppwbNKU0I4ISVGUhyKfSrvOVCTr985+Ph8M6L+u+Eqic8tpqrXibN6CISzwdekJZXA2GRiW53D9yLpvZz08vz5+ecco5+X6gP4geA/rlt7+nGA6nsdXGPE7F/OcvvyjK/vyHPw6K399/8yGNp4cI1eVwVseDHlMIl/scfZJcxVpbLYCa5vzpODlnIiBKaac0IiCEJJSv60oZ270LMSEENWWMCBBcSiGUMEFi8tasOfqGc06RMjodD7Sh6G2ITDdoDXkfaq2NtN1Z7wNCzZeECT4+ne/XW4yWCpxbgYYrpQ1wynHxlr1fGWUYM2vDvm8VMmWk6xXCySfLCfMxbpfw44+fXC7zvmAgVIrdrCmm6EPfDyml4KLknEuVStq9UUoSDWd92qzFmANXH+/LxRjrHWWsldZa9rWGVhjCsYIvZjyP/fRQclvvc02REwICVZQ+//iZCL54d/9YbfCMYvr3b69fPm6+4ogq1RIH88Pj6c//8Onng/7j0xgkvn571xxjrhvly7r5FPggY8z7vCGuz3qYt20zttWkx+koVTx0Z6Wng+a4uRwJwT7EZVkJ9l2niCBuDqnk8zRNhwmVnGNESgEi3x8Hdqp+zCaVNozDamPDzcyrX3cMpJeKIBJrRjWjXA7DOOn+PE0plhLDoe/2heXMGQZc87HvcU5QUq+kYnj3WXHGJFtm40OgVFjnxsPxfD6XHEPytTQlBJHyr//15brO9YMffvjMufxY3pZlMTmNo8K5XZY5Vfj0/HDoelIa5R3gJGQHFd6/3QDm8XxUShI1cM5yS8XVbY1McAxtWTYbQwMMFAADquj6fpsOPSoteEc5RQiAkIyASplD+u2315/++EwJj2HHgIdeSt5CiIfz2HVqnDoAfX19v7y9no+HTiuh1OE4FCjeziHs/XgKLutRcdkRwiuC0Fyq1a9OT51kYluMc0Z2075nszjVT7fLDQN0WkS7z7ctpTBNOkT/+PiIC1reb30vxpNqKFtrf/39vUk1Ppw3m2rM02OHIJeKL7cFKIopmX1NtRBGL3ezxthRnWK+3hZKaG1EdYP35eNy+/Ll9fU+f8yXWMJ+2+7bwoC8HE+fHk5j39UTpAbACCIgJJdSodqsMQi+j2rgewVoGHpKaa2lMoYJkZI1VJx3UgrdD253Xa/WZdvMhhBSigspa2mxpBxyRZVyAhjKXBGFBiiX6INHCEkuOcVKiFZRiCFEj6AxTpQWmIAP9nb9aAhLxTGmrbVSWy65tZpSLqkdDiNqoIQ+nx7xjC8fV63ZoZ8awalgTuR4nDiW7++v83q93D4QwDgd+mmK1UcXfvv9K2WEc3k+nafDscQyzxuqNaUUb1FK9fzyVFKe7ysXshFkjKkZaSW1lt+x0/fLm9K6H3rZacoYBsYVB1Ryrv0wdVrHnJfdIIKJYCmXfVsP0/F0PKSQVmdSyg1QySnFgBEwqgYtvWO5kqHrpJBCSkAgJcs5cspEpyTXqNRUIsWIaIlas7sjCIQQBBMumPfOuWAx4wyUYBU1F521O+OcUEC43i4LEbxhmSuilDEALqSPrrSCCEopOutt8AxjIDjEYO12PD5047At67YtrVXOWQwJY44xoNKIRpJzwen3synnJJfGOsa5qC1Dw1zSEHxwvrZKCRJC9F2HAddWa20YRKs1pYgAccYEYzkXyTkjxMUIqHhvuICh+5EJAbmVmqRShJJlWazbUc0xFqBISp5yTCWEHNu2EUZKaTgRhLGU0joHuJ4OBw1abjyXdL1coKHUqpSyNVxzrinWVlLJ3hjOKE24xpZL2a3BGQmQTNOAHR00xggYTikQQTHFOSRnPWXErHt0Xmi+rXMtRUh1Oj5wLnLO8/0+9kOnheAYA7RaMCGUUgoEYTIcei34ssy7NUrpp9PJh/j166sPgVJWK2DUCMY1xRjcNPbrsiLUnPdS97UWZy1heJomQvDtdkvBG+c4Z/0goaJca2k5t9ZyWdcLAXh6eaSEBm9TydFHLgQXYt/33VrO+DCOKcd9swAQUwRG1utCACQXp+NRyw4DSTnllEtpAAgw5FzmZW+oUoIJCIILJlT1Oi07JWQYRoTQ4XxknHoftRA55926nJM1299/+a/z6QEjhCos24YqiiGNp6my5p1lhDBOMYaCorFrMiW2crlejfW+lsNpgJRjTp8/P/z848+//e2vHOPpdP78h8+tlfK3Un4Lu10+/eGffvj0Ywx5nZeYHGdMcE5OFDiJKeUYESqCkBqyM4Yx+PT8VEJw+wqonQ/DcJz22aRYj9OBMb5tMyGgpKwNmd2llAA1LaVSOudk991sO6WAMUDFgkvFhdnWEhNjtBVMGMEEnLfbtgOQXFKF2mozznHBwQcx9nFLX3/95nN+fHwAyey8mhC4krt3jBYM2YUYU1KaE4IIrUzw2+UuuKAIm93dtm3qO+MLxq3nMrWSWw2lvv/yO+f0MI3jedrXPRa/zDMiKNU4Tsfk8W783X77+HiryT0Puuuls+46m2W5Bmen8Vh77Jxxl1owccau9ztHVFBikzUhyuMgx+7r9aNC+vrxKpmm//k//gpSMSWHbug4Pz6Tl0m/nMajZHF3gurPLz9ooSKmt9g25w99x5jwxs9bfH3/utlFEJxD4oBGIQbdnzibdP/8fPq4fXyrt8fxVEoz963UZm2/u72gejwcz08PAkgHzWz33Yf4sTRSS2shho/3y8e6/9v/8m9//euvNZmpk5rgf/zxD8F4CdhEBxh/enjBANbY+6UQSqWglLXn59OP4iXH3Amuhfjy62+9pufHoUFtNqJKJOm2auxmYtkJZs65Zd0aKm9v76+Xd0qJ8XEYh+nUr9vyH/+//zj28jbPtbU9J7fmElP24ZfX2/Pj6fPT49R1h6F/Oh1/fb0rwYHLbd94SkSQr2+vgtGUYsl1GEcuxG25N5Qwbq3Vx4cH7z1GLYfMgSIKfaeBkByLcSGmmlNGuV0+Pjy4l0+POWVrfamo6/rjYz92guBy/3hDqJjd5FQwloTolKEgvO17KCWh0twabMKYaoVbsrjsLcTQmts2G8yY3DzvIRmcSYxh2T2By2ZdbgWVIjk6dNQZz3nsNft0EsVGYss0cGfWL1+vJdbb/aqng73j7T5bazuZOQGK+92uxjsfwvV+8wmlEq6rXZwPtVIoKaF9j/1QEDAf7cXs3lvcMm+Nc9EICjEtYd/2dbfrjy+fCR+fn5/76VxyK/8P5xujj4RzQqkUPMcENadoaiUx5oawVLLTnUveb1uuwHUtrRjncisNAKABIbWhBo0QTAgprQJBgEB0PGR/uYaKcs6VEsZI9t4DAiC45FJzE5RjggWnBLdWK8W41CY4iakARt6HmELOkQAlwNZ5xzSIjnVdn1JuFaOWAKESc6kl40q57AScDrmROq9l2de81N2b4FNOjcSMKe5UB4Ss264kraSV2pZl23YzHQ86hlpzqUVyPig9lw2gLqspqEktNrMhgBQTZyyntK7rNB3H89gApRBdKX7fYkmzNyGGPkVOiTPOp+JzLSX7lqXqnA/W7K3mQWiMcE6516o1VFPa7gsqRXKWQzLOCc6VALtbu+0NoX7spZKooVZiq4gLxiglgL9vEiMKOTWNNKaY0joMHIDWkjFUwkgI8XAeFOcpRiBIdgzhGosrCFIODQpnlJLvqEEOLi1tE52orXJOa6u5ptf3106O09RzxlBNBCjh4EIusZKGEBApZa4l+jAOw9B3e0ukEdRobYgyTKARgoyNDTfOOICCgHPOFaEYUill6DspdE71oMdJ31ortaZOHwhm3vqCkwk52BijE5Sw/39wLsSACfSjrrmmnFst65I2QmWnYgwAiCoFuMleN0AxlWVeCkKfPj8dDweG0fzrlVCsFB17XdujDt3tfs01GL8pJDBFhEOsUVQGAJIzRtQwDinkQtn54cEYm0vNKadUawXG5dD1BAHnLJS2+XhLd0ZASoUaGqdTQyiXsux7Bcwee6ZGZGKp/vj4Yynxt19+XdeZYErpdwODsLvFtEYf38K79TsXgAA3VH1y46gwgBTUGvP69XWY+n5SpbSYMsaNMbYsS0O4VqitEEqNs4TRGIKLvtXCMbXeX67Xddum6ah7TQBarZjgaRx9Sq0hxoTWPcYspEygNAS615QJQOB9jCGudkeAOq0ZpUJ1qjVn4+PzI+N0mbfgQ42ZSaGnKSm17SsXvLZ8u11++fW2LvPD+fEwnbpRp1BqK2bfci615RBtKH46jBUSMBR99Cnsfp23ZTEzSu7l6TSdTw3SX//yf/3Xf/xPyfjP//rnhuB6uZGKB9H3ajxOj0L3cbcp18161rnTcGCMpJS3+0f1UQj69PSAKfPFA8FDrzIBZwygKjmvMd1vt9pQP6ha6rJeYypARGsNIUANf7/Z75WcZ4dQI4Q+PD5Rrisiw3jgjN/er+u6aKUZk6XkblKltpgLZxRjSmtVg8YU7vO8bGt/nL7d7l+vy3W33z5mQqhUXHQKUwwExRyDMzGVYRhyCiEGqXgtGXB13tjdYcyWdW+oRkgllNpQP3QpW8xYrDWGNFKeCY2oXe8LtMpHHUqx9/m+mdsyxxgEkD/98Kd//2//JLh4//rxer992P3r+8dtWy7r3GlZLuW3r7+lGDuhXp6ePdToQrVO7Q+KKdF3699NyRBbohRhikWnhp9++FExVtd5UB3Kdf+YyWFAHeaYtUZiyNvq19WOx0OpVemOcvXl/dv7t9fT0D9Ox+PQn84HLvkuNSf4uVckyGQ1Yl1MEQkggs/GmW3vBv30eNz3JQOcnh9KZaHkh+eHYRx++e2XebtVFDst/+d//E/VdwBFSdFR+v5++XQ6/eGn5+tyud6WgfOYMmoNECo5JVLvy+10PJymaZ3nGqPQ4tOnE8K1VV9bY7S1WnFpo+ws94PgqZT7soSYMMHrbudlE4LlVp21WqkI8PbtrZ4GLqjzSWpVc2G9jJTf7lubl9gyw4hj+nI8TaMWhKBaoYG0dnoY7tf7fQ5D13GmEGatgdL6hWum5LZbs+2otZeHh33ZYyiyU5Rgzhg7TB/Xm4/B23A6THrq3j6updXT6cilQAik5JKRloOJfr0vCAGjvFOaEMq58iX+/u19d1uMgXJiwk4orj5u80YJaa24kCnhPobt417LuRFeWjXOZAyNt/fbLW5OSyoUplD7jmihu1FoLbSA2qBNgrFignO74bz7/Pkll4xRlLxcL/Pl0n7+6SfBxb4Wu7uKsc/l17ePfS/AdKro2E0PhxHKueSQSssp+xA4Yy/PTy8Y3283Jqno5Gbsdb44k3qtx9OBK1FaZaQ+PJxSKPO6e+9LKSgXxhjBGBj23uXd19YaAKGMcmK98cnnEkvO+0asdVLKaZoIBuddK9la45NrtZVWUqjX6FpDFSFUa0oRCB6nCWOyz0vNFVXEOEMN1Zwaagxo9D5nDKhiVGPOASEEpDWECUYZAaBWCxGi1BJsKsAw9bXWw+l4//gIJeechOy07GptQLDWnRh/mE7D799+//LlCyEUE1IKYExQBEDodm/Xy/swdiVV1JDzKaNsgnn7+Gg5E4wx55LJWFNOBWNou1m2taDGtSw5G+cAoX3fgfF4a5RT1Kozdt/X+7JUQPu6aa0/fXqOMf/y5YuQXxo0LujL82PafAzxPB36acyhZhe5UFKJFFP0Hre2r7txVmpFCDG7CT6lkKSUGAChhjERgsVUUslAoLUGGPpBVVS9222w1WWpdTd0KecYcsopRCekbg0TRkOIuSEfk1KEEBxCsc5iCpSyVltIETVQUl7vFzSjvtPnx5PS8na7E4JzCbVoNSnNGSrFex+cI1RwKQfZEcatdViqoe8kFx4oZkgrWVrbdmPWlXAafEaAaE9SjNaanHKOUKQkFJOKGRHT0GEESgjGKFdS675VCMbb3QCG3EoqqeSsBRKc5VQRwlp0lFMACD7a4PbdbvONBTkMAwJkvMkh2X3nnEmFiZYEgEshOLeYlFKHQye0YFpOp9Pr5e1yfffBAYCQcjoNQzekmAoUySUVnFJaasGUUMalViHmfhh88M55qbquk51SwQezG6X0Yejv8wIEN1oxZSElY1zO2QYfYnY+beOaUsKExpQ/Pj5u1xkAUc5dyJwQJfl0mKTmX3///b5dGSOPD48FSCPEbJZPUmruvLXOKM0ZZxXVkKI3HtUyHcaGcIZWcgvJb3sw3uVaCCaY4obqsqyEkRACl9I6n0v79NPz8XhY9x0DQTWPw2HoB8mFszHEKKgYDyPnkjOWUkENQkgIGkJ1M9s4jhRjZ7zzDqgmmSmhBRfWWkGF1noO2buEGQZolBNny9v7a4ylNSykQBWFlAilMRchaW45lWKdU5zrodOH4Xq70ZlRSnMuxmyMPVFov/3XX/bZoFwrovNlLq1ty0oAP52eTsfzH37+U/AeAP3w48/s/XVdbYNbNw4pJWucYkypnjEZoi8pB5dayp1WUulWS0zJb3su2bnw9voulagVlVaDMylVJsThOBGEMKrJh1qq6ETDDAtxZIoxQSn11qXocy4pV6lJjDH4hDAmlEolY/KdltNhqqiGGKoxwRguuK/p8r50Wj2dz0IJpRXnHBCpJSOMpaSAUU6x4eqspRRaLQSzzTrdk7fb/eN+45q1VBRLuzEpZyHk4TyVVIQUmGBMUE6pH3s1dC2Qy3X+5dtX5OIPD+d/+ed//Xx+eHk8tlx/GB/36P/n7794a25uM8ajFhBAcFFJFUu+LLOSKpdUc7ne7y1ft3klCP7086dlXumff/4cKmmMS4IBVePcL/v2ch4eRmU2lyvLxb6+fVxu67clLCGeEgZGDsM0Df1TOl9joLF0FJ+PGmosJr+czhRVFDYFaQKY5/l8Gk+nI5Pq76/vYWdDL1rYzf1WOfZnKQ/spA8//fCpNZgPwz/90x+ensO8hm21mDMhSHau1kSYKJBoLX/84enhNM5Xt1wWZ2w/di6Ey+UuGTr2Oq1bdTs0BCW/vBwJhftyz7VOh6O3cVB9HfA46krIr1+/EYJS9p3oAaoQIHk7Pzx3xrdlhnX/4fz448vzvi/bvjvjD8Pwp3/8h20zv/72FeNSCzIxVNLerzdEq5acIBRN/LhcjTVMklaq7rtS6uvrdRh018vh2Pf90Ct/aa2UpBCeHh5siJf73Tvzw+fP49hhAl+/vmolptPQTTr9FirBhUCve9Rajfn6flGMQGsdV0CIsTalvGzLGlw3Ddf5WlBTWvmc3ea4INmlsHsleT+q0hotLcXovUmxGx6P9xDm3e0u2xgYJp1khLToDNPSZ0dJ08ORtLbc7rhkjFEredKy//EPKSEm6OX+fje7UiA0w4JXjF2IteTnhxNVYvP7umzO1+cfTkxKKfDz00QAfby+rdvmvHfOqV7//PkHLqR5fCgoC86dD+bxIcSEGwzDgTHi3Z4Zb6mlVI1zCLVhFAhYQ63VlHNI0acQMf1O/JDot2V2uaaKGgGRYiDQkvNLyZTi0nKt2ThTcs05M85TSDE4xjnhdLd7y6nvemg5h1RzyjFzxiVnrSFKcEPte2+iISQUE4jnXFPOtRVcCSZYMEqFYISUhGotTGCES0qhInyfl9u8E4J6JQnjBRVn02421CLXoIR6OD5us1nNVltpCKHaUowYtwYlp7I5O4wj49RmH310wUnJUvA1t2W3AIAJziEfjsfH6QGj6vctmBBcuN5u54djxvX9egnvFTEoNUVro7frvjEhvPNsZyZ6hNB8nQEDZ2wax04LyUg/KKnFZt2+byVUllXMrbXCBOWMYBcoE1IqRhhheJx4+c5UYFwx8tF572qtUunN+uhDSbHrtBBUKPndlcI4RaiG6BFB03EsUEtB276jVqTk9bsWMRefvFD94XiIMVprQ4ghpVwqZiA7RTA7nQ/jeUKo6q63zs7rjVJyOE8IoCDEqeA9x4ykVCjB0FDfKUI6hJoxuzUet8opw4RQzCqUGjPnOOWyr/uybdY5TEhIJOQ2TFo27Lbg97xvllLSa8WY2O77tlhvLROEKtoISlC889Y7Spjouq4fCID3jgume4EpqxkEZYThktNwGK3xpdSKcUKNAlDFlZJA2W3Z3j8+KoF5W7usuZLTMMaanx6evHMxxb7rgeJUciONSgGU7j5wBhQoBmxWEzJQigmnuu9CzhUhDCyHLLkouXBBJCcE45KzkIpLYUJYty3XLIY+x/D69ma2TTDGKP+L+wugOnVjznm3MZfGGIk59VrxBIDEMJwIQUJq570xS8rpy9dNCD6MB6VFydHZnVJWW8k5YIxcsCnVZTcISG2FMba5bTdbSeV0OlLGfEwUQTcc+67bNwvQtvtOKTsdjmY3IUUl+1obAMUEY2hS69Zgvu9MUCU4o6TvpQ+7954L0Wp2oXjvW6nLdZEyS6lzTinW2rCS07WtgIggVGjVKXVn+v39slqj9hV/0FZRMPZ4PslOlZgZk4RSwjjXerd78qFT/dPxIflUc52GUXBVQiWAtVScsJrK/HHpp2EaumVZBeXPp3Ho1D7vCJDqB6kna2vYbA2pNqQ7PQ0jaej97VpKTCHuxu/IPjxipWVwAUzlglHOk3HW+W7sOcZmjs6HVJKAgjAGBDWWEiNheNu2WIpfKiVsOh7MFnCupWTBtdJd1w9CiJgiNHQ6Hxhh0QOliBIUU+mU4Jw7767zjFrNpLqaTIoHyhqB2HKwlhLGOJWMQy1dJynDPnqzuxgLIo33/XXZRNflFJAtiot9i3bblOSff3g6H6cUUwqL30uKRmmea9qN8a19bOts7aOSnx4f/vg4PZzE9ct/2mUZ9HgYpz8dpP18/vWK/ma2bFPFFWNaCvau2RCBLKUW2qA76G1eUkjDgY+HLnlL/9d//6fY0G+vt/vHu5CiQOGaR8q2jDbreuDAuCvQsEgoBKiz2R+fnipBudXT8XTU0i6LUNLFEEKoqcVQp0EVv3rvUCuotppb36vaQBHy8nDougEjOB/6HN3XL99Oj0Op+f/4P/731vB4mh6Op0GjxxP62y+/hZxRLQjjfppOx2OnhUkmLagbxnbg//GXX6yP+dsrUwIoSCVyitd1gVan08AkeLfrXp8ejt4Ft5vinW+bVH3J4e3jbqwVkmMmKefDODCOP39+eHr+9Ov75a//3/99vb7//M//Okoh6dRJvrPtdDq9nE4CYT/1teZO6+eXh8fTAZfSSmwoKyG322aMO46T0HRbNreawoqUqja878HHnHIRjH96fqo1c0o5FfOye+caRr1WlNLDOOSUvA1226lgP/z02QVPMK211pSzC8l6rvWgpdY61+yDXZa9YQSZ22CXfWsAPmRA+Pp2TTELzlPISpeMSfJBQcghcsZqyvt8+fj6xUZSGr/d7k+Pj0+fntePt/lmSup1x0/HvtbkN+e3ADnpjkkqpZRTf/z27ZvZr1RCtTjVhCkBhKGhb1++3O+vp9NpOJ667vT5hz8uu8WMnZ9Odt12uwsmEKGUKZwa5RVVRIFIzkuRCFBJRUvddd22GedcilEpRQn3Lr0u33ZrKWMPp+PpeECYxZLNttVSOGfe2RwTZghIzbUYO6dUBeOql1CrtzaGGIOPKUynkXNqzV5KZYSY4KxxzlnBxenxiKFiTimB6A3BtKQAgBkjtRSMCWcMYZRSDD61gnJIAJgSUlpBCAEABhBMKsmV4DnW3VgTDNOCYRpzbKg1QKpTutOM8dqgQWuohRgRxpyxw/H8c4Vvb2/X6wUowtCoIIBrCK611oDe1msOGSEgGDDgdZ1RqzFE7z8QYC4kwZwqNZUUfJiXJcbovXNmn9cZAfYhZYxTq7XG7D3GqLXivZVSpuyv19ecSkWt1RojHTrpnVNk0EJSwu/X67bvBJFtj5RiPUgFVAhKOZS9zNf1fD6oQbaKUimllhhqTRUIsc6WUmQnKlSXXAoJKI0p1lpDygzR+2JKqyEGyujQD8fz6bdff6OUUQyYMAyAGk2xtUYIZogSylSuEHzGDQnOVCe54PtqckolZaXl8/PD4dD99S9/9dGt61qU4oT2VDJGY4o2+JjvCAHg7/+AlHJMESqq6660ZIww1qVchJIhhLf3a0qJMyqF4EJgimuqVBDJeAip77uSc/AJAU4xemuiD0xozigiDBqChrxJtVWaS0mJSdFK2ZfQdZ1iEgZcayAM11wbINIgpayVBISgNEZJ9nHNayuoYWiArAs+pqm2fugP/fgPP/0BtTYvi7F2WVaMqZScCUkIKwRvq1VCBB+DD9Z6qWU/qb6XulPBlxgrFdTsYTOmtkYwNsamkEVIB3wAjLAkmsuQsvOu1mLdDkiWlIPzUtBOy1qq3R2mlFIIMTlvZ7wILvux37bVxWisKbVigoCgbTcZoaHrXYioVi64oNxsKObcUjLGzdvaEFAMWmutFOg+p8wZi6kyyoXU/XCQQsaQQ/BKCB+ysabWkmJKfq0DqrVxwhFGDTUEzQdfKoHWOOdC8pwJwmCd9d7XgmtpAERyjirC0GpthFKtNcZACem7rh87KRlA47LTurc+xhDfPj4AAUpIqG4Ypsbquq4x5XE8Y0zn29dc8vl41qzrWNcf+j/8/EcA1MnucOwlUyjV++12ud689YSxGDPnwm62pjodp/u8br8aysh4PuXoQoyp5IOYSkOAkC8Ro6a6LqBmjb0vi4+BYKwIw5QknzCB0tpmXG4lpfgdeAKoyzKTVnEFQURDjWAGqKFSbNjNl/3T01MvJOUKEJdKoNYQaiklACSVKDEziktJ949bKjm3igjklHNMXFDZKCXfR7PJGV9ySCFp1WcgJcap77XuoSHAtDb49vG1AMGSmuD5oedCbvPirMOV1pxkx2NK67yn4nNMV3SRSlTUru+3hNtq3W3f93l5UTp4+/76dbu1j69f3LY8P3164iVmP2n1A35EmP32+kolE1IxprfVrmb7vlwGn9Z1bwgwpzmV2+uSQqT/8ocfbuuCSf367WZtllL2xwFh/rG7HLxGjTLSncann37O//V7/PjWT+rzH19iKLePu8Tk2PfHR7WbbTYeE0IIub5dyEd7mkROxVSUO2kIfLneSkip1mmcAFEt1fl8fPv6xWxrSfXydvvlb79/+vyJYFoTzgV/+f394/UVC5Jx6rrBx3rbbcGAm1u/vp9PT95DpUA7sVl37GSnO0qhtUYwQ63U1MxqXTVdTj/+9CNC5O9/+ZtdzPFYYk6/f/l6WXakJTBxOB/eP67XZfn55x//+d/+7XL5uL2/p2Vevr3ddd9jOD889FIeu14LoRDow8iz35b16en8L3/+h6eHE9Rq16W0wjlP5xxT/OnHH3x0q1QlV0IYU7JUWOatNbxtu0HwcD7kmpzdDnLy1uBWOeXVR2MtFfw8ju/uFmPItSHacKu41uTjft+C8y+Pj0M/1Bj3de863gsWJcfQOKcFsF32Zdml7oxxqIHUenp++Hi7fHu9FcAMg9l2yHEcWA7p4/Yxv76XJmV/UriFfbte3lpONdUQcjfw6K2/R2s8k32u1bn4+XBCjH3MrzGvJUfvU0MlhtB1jEL5r//xf+67UX335fXqfn01Fd2X/brsNly+fHv99OlTqWureBz64XA+HvG63mqNWo0toX2JISUheH/oQgzbGnwIusPBJTIwwARjihABDJSAYLhhYuweU8IUI4yYFPuyrst8OA0IQ/Q+phI2g1LmXEdvS0UYqlJUcLhfPr7rMQkG70NO3gdr3B6yRRgNfYdS3HIhQIXsaikxBiwwYEwJYYxSDKgVhBBqtbUGCGHUOCWik622nDwgQjACiqQgMbMcCuG405KJQvBYa0nZl5oJlYzyXveMNEwbIbQhPPaHlFspyCeTk2+lhJABoCFoObVWcYNWW8FYcHa/3wghmEBusWXABFGB5+u72WbnnGBMqw4w+OyX96UhDAhSrQiAS0oQsiZwyVBtztecM6UME4wxstZkwPcrE8B6rrbNrsatZk6h9moUnCHc7OagyZzyvvtSCgWaQ3bYreu67abUyjXniuVWSoktl4/rR0x5N4ZRgQLNIZZcgBDd6RiCDW7s+hTyHO+IwOHQY0wooai0VMrqtrHva23bbLFgXafPZ00xRy0DlJQ9ZGicSEpIqcEY4OJ7iSXXtm8WVWhKQc3IRYDWMLLWEYxzKpxR2QvGGSbKmRBqCnvWnZZcMEpaQRhhTomiVHdaaym1iDmbzUQfzofjNAyllBhjykkpyRiGXDzBnLJj12NGPdeOxSiLkhzVtG1ry37QOuVCGR2nwfrw8WERAi0VBtAHebnc/OqU4GqQuNYQUiWx1Nag6U775D6uH2Zd13ne1uXhPP3pn/5h7Ie3yyXmHHMMAVkbGFG1QkXNGJtToQT6USBUvNtr9aW22sAlnwolmCBG9uByTMHG6HyrsO5bd+wSxJiStf6yvJllH5Wqh+NpOqKKcy4hNOdiSaFB5oKjjLbdelTz0LVYfA7Gb3Y1w+E4TqOM6Xq9eeujS5wxIflt31ezB2tjjo8vzxWjCsApwRVRwFrJaRilVAjBthoALKRCuazuHp1nlOhOh2RzTowJlnOKjRIoKd7XdToOMSHKJOWFcNj9igI5ng4Vw7baEFJtVUjVya4iEp3nklaEMODjYaIUfLSqE0LwFEMInlBSS+p7KbX6uFznZaWEHrsjpfh6uQAgaLiUZlZHCSkeUSYBUy71dDz/9ONPQ9/f7zeD7DB2jTclleBy390879PhkHKuCdWaCKHGGLPv27L3fX86PXDWdyNwyWtBpbb5Pmdvnl8eKzDsfcNgvW2onU8HrZTZ1m3ZEQAizbjdu7jtKxAyTgep+LZtIYQWa+SFMsKVZlTlbfUpBB8wQoSg1gohpRa/+d0YA0AY47Px0FrXc4yAAFQEOZWcmmDseJgWNy/bPcVwzyEnp+WPnPLh3KdQcyzR+JySkpwQVhHMNmwxEsHmj8u+W4PsNA4pegrYpQwI6+OxMXHdN2s2CpgSGnKiiEgp7Hzzt22S4vj8Mkr5+PgcW/n6+2WfTQgWDsnO5rKt96vtu+PLU4+Fnh4OiDLncopfgretZsk5DGK9Xk5PD5SJFoOJQSlNe0ETRqjr5Cd+X/0eU0oNCYS4KLnMi6MMR90qVkSQYVD9oGqKzoYQQ8g1xtRJ4V0I3gnBtFI+Rk4JFdq6sDvvGmG5CE6it86nlBZM+fl8mqDnomOcci5QJmN/lnychvO678u2pRQOh4ErRjtGgF3f7x9vb3/44w//+KfPv/z975v52vXnSunb+xUwwLxSMhy6Q9cNL5+ONefd3HezgcTeu29fX521JdV+Gs6PD+m7NLobQMvNxts2//bl11//+nsubRqn//g//8f72+XHlx9+/umnp+Px+eUJGEu53j7ubrdO7C/nB8l+WIceap1v9+ytoEQyjnJBUP7hjz+XXFOMHJPz8VBrKw1xLXdjdr8IpE7Hk9n21/cPyto4dKW1Uss833Ms7hQwI1xwROh8veeafvj5B0xwrQXVlkrywcccjbO44V7ynHKr7PnhpBRPtYyHU2lYC/b711cXc62lESglLct9d1vDGZHKuKRNSaI7xQFllevzI9r2hKAdeu1TWef70HdcMmfMNZvp50+UsI/L74v7XUnVcw3AyR/POYVUAuNEA9H99PQo/vbLr8UnjLDuutPDy2rjx/rNlowAuBCuxALEhIiAAFASEuOt1hpCVUqhArsxzqaUC5Cyb55ydnw8xxhQrc5FYwNgJpg4nnTJoaJ6X26pwP265FY5oxVKLRGhjGomqAIiBCECLZdktiXwUFJSXccEB4BtWa01mOJmGyqtYSAUhKDzsoawSy0kAy6lELxVXGpGgGurpRRMSEO1tdpaTSlVBITghlCFVlttAIBbydm7AA1xSglgjDGjPPtIGCgpEMUUV7OZWirnlHHBqEJVWY9jsjGUEJxzsRV0mA4F9Lbc1i01hFqpgCnjNKdSYsEYCMa1oZxzKaWhBhhhQnyMMedWWkmZEKpfHh8expSr98YnX0sVnAGCilBOuWIstcAADVqtFQAaKgghjDDnTEnBGAOMd+Puy9oAKck73QsulFIhJJNyqSXHllKupXLNBBetIiaERNWF4HM0q3Xel5opbg1BjMk5VzMa/2+a/qNrsiTLrgTvFS7ymKp+zIh7REYSVHWjaq2u//8HetaDRgEJIDM9ItzN7KOqjwonPTD08M3lrXVF7jl7j3eKq1pLjGndjr7vp/EsubLHVqB2Wnd355JrTgUqdzGU1pTW7tj3bWVB9mbUQmfTEyjYSkxs7Hp6z3NBH7y3OzVACT2NJwBU3HS6yzX7zdZcxtPAGaeUlZQ4ZQQbEGhYYiu7t7UWrdVxuBx/Un+oUXqces55ySWFn3Gvhq3E4Jb5qqQ6DtegaS1rjdFbbHWY9OXhgkgO63PINVdt1NDJfMQIiQIySKVmyDXuzcdQcqJAtewGbYK3QTmSQHLeSc0YVarY4KL1QEEoIQTzzsLPJzbrveL7beGMX8ZTzPU4bGml5eoOL7lUQqaa1KAoItSaUnDeEcq6flDa+Orn45BSlBz2bUcALaTuNGEUBS0/uT4hQANjOAFNgDTSgIEWQjASQ445ckUJp947ApVKzAUq1gqNCj7P87FbFIJrbZ3PtbZaQwyHBcqwAizr1rDWnAFBKDkBktYIoFEagZRclFSccUJoiqm1uq/7flhKyMPjHZRGARnSVptSUnBgjHDGlvnIlSvBfD6sc+hIjLlU2I59X3fvHKPMGFNSLqxOwymJEFJouY7jIJVIMa3brAejO91Kmdc5xADYBKeNUMbYaZwk0+fpbIy2u00xMY4hpdtt7ox5fPpUaq6xBJ+0VKRCjoFhc87+9d/+qrTspHK7+6kBZowxRtZtR9pqzfu6OWtzrjFDzMVwqrgghL68vCWohFCgZLOe66a0QNI7awmhCBCCW9attKyk4pyWAjnlWn+ONS3GVGsptQGCDQEj0pjMuQeCIQRgEEta95RS5FTovisZKGecy+ijtTamaB2ZpqE3xiCZt62mqHvTGD25q4tTKy2WfOzry/PzebooeQEA6x3kAli9dy7lRunmbWaw2TVAnu1SWKKtSMoZF975BpByWeMx365Y26mfhmFwdkZKf/n09TKe12G7f7gHAqlmZIIxMlxaN/T7dk3ACR+ooh5SRzWnber6TnaZ4LEELcTw9MQYPN6dKaMvL+9CG+/r+e5cL/j2MjOj2ef//c/Pb2v+7Y12WnH+sfuS6tD35/OplVxy+vH97fntP0oKgrOeie3tuhy+ZnTOLbBNw2CMpCBqqYTQy+U0dEYqqUxiqZLSZKdYp5bdPs/LEX3IVb2/fn54GLRKdnt6elBmINxuNo4FkHHddX/5l3/JKYfoiALn4nFbg60pRQD2z//pP1vnbMT3H29v89YZoRWTXBhldms3rjrd8a5/PJ24YO/vr9//eOaMKtmPUy+0CTElIImQlMsW/fp+9MPw+OnhOLa3t6sy/eUeS2mE4efPD1rLP368HtbHkFNJ9XpLqQzdoPtpW+e3bX69Zb/sX54eSwrD0EstBWfHuseYpmmknHhnN7eoUf/ylwet+vV2+By6wTAlXG4h+oRNmwE1qM68X6/oHQCWUrBBpzRjjFJ62CPF43QaG5Bj24/D/vLpUSkOCM45QalgZJBUKH2Z5NjzbQ8u5OU41n1zdotuCTkeK1MPj9wwQIyMlYz9+dPj51+Pw+/WFwI2xhSDloo0XOxOUe/Wv63LHB0zCqUKsf54eYsYKJQSDiM4o+08XQqVpGU5qC9fv0YAnxrWhQgxsr4SPBNuSwkl2t2nVE7TSIDYw0Ufl3VnK5A655KAUKFV8P5wx3R35koypCnGSloMoaaCHRNCGNMrjh+3BZACIjbMMeQUgz36Xg560IIxzkktTSvQJbccC4ScVrezyDijy7IKzkw3lJRcdgXKTxMDpZQCP5thlF0nlR6098X6VFsB2iqpsQTvPKWYc3LBtgpSKiF4aSkkVwoCFEooxZZjDC4opQkgp8h7xQVRSjDBlQDyMKTYYmiAjFKZYwJQBIrNvpbSWjZanuVYsWouGBPbvvsWfMwcGiGUakEAckzQGuUC8Oc7VKOMYoWSM0HCJYVaS/CS4+dPny7n4X/8+398+/YSQy1QgdOGmFtNqbZSKBKshFDMrdWcOKVc8BAKQ2BMMq64UMGHydxpM+bkCaKQtDWVS0bSlBYBCSBwyUKISFAoGaBst2NZrg2aVooIGkIwxhBgt3lJKd2f7xpCDIkQNozD5XIHtXHKSi7TMPaTarWGkJJvnAqtNacYCCjJpZCklHR4RURnBBJw/uCKK2GczdfrewRfYlTGSNMjUkoZpxhcqrUwyXIpnDKpeJM0hhRD2K8Lk0wOHTfc75kwyCGt20aRDNNgOs04C3FptQmpS2n/i57aDzH549hSLg1aSCK8OalEqZVGNIcKKYecEGhN8bYv+0e9GHp/NpRLAshbimH3fm+Ag+SIVHKRUnh/e5eMPfz511pbSplzZhQztUsvL9btmOKoxJeny75vzi52PpoPvBEquQ+JctENgxnuUimtgeCUINtjbqkUaKkEykAIzrgkyJwP87aWWpAWAGjYWoPdu6nvzndn2ev1tpIMFzMxQu+6LjdURnOhSo45plyCczbklHOlnC0fx8+T0BrQlvZjO5zfjgOg7fvRkBJGa2tIkDBi9z0diQvOBckZLo+P2nQllG7qSq61ZspoSKXErIzttJGS1ZxzzkhAKo4VGCCntFOm5BpLC8HlHENqQCWR0LCEGJy1R7CCcka59+F6vR6HY5Q+PDyO0+SPkEvlXAz9cBwHE3A6jTml9Zi5ZIBkXna7LX53uSYzGMEYUl5k7e7Gy3hPkfvo+h7t4REI1IwABOHx4T6k8OPluUElBOfbPPZGG5kQfPAEcFvXY3dK6WEcleyQQsXm3J5zabUxwnQnhTElQyxxMMInux1LyKA6gy03e4yCDr3qtYhG1oYxhtXawx5IsEANLhZoVPFenbZte3l/qyVLxQgjjJPscsrlWIP0mwv+drt1pl+PQ0uOpTFCWiPSCNN1+2aXbS21MEZiLTaGCsA5r0ikURXqui4t1qfzp/N5yi3/67/+68f1I6dMKBVKx5IprU3Q27zuziUAnxLQZg+LDKRk2ceIfrrrsAFFRjmtJXnnXt/ftZC/fP6MUI/loBP/8suXZEN+jNNpDN7Py/L99a0fun/6y1/u+tP79e3bx6sxPRCxdUeIbt8c5fT2thDFKdbz2N+fp9PUf7q/AMA/fDliLseeADxhvGOapQzeJgj5bBSDYIwUSv724+V6WGkUQeKdB8K0MS3h16cHo9XLx9x8QCAIJQZnBR2nTkiOuQy9yan44CQn0pgRGomRC2Z3B4hDN1Albvv+Pi8uRpLbaER/d7/ZY4+JFfz++n6+jI1gzIFxypF4e2zXeTDqbjx3g963o1Y4XPrxvgIR091jTuFy99SZ8fVttuv6Ll4/Pz1yho+P985ZABRcj+NAmbiu24t9f73NP16vmeDbvORSTsPwcHcZ/3l4fX7d5l1rLXh6vb0R2l5YKiVte0DkXIlYyvv728fbx+PT03Sarh+3WNzDw30E+nrdzpNJrf14eR16M9+WWhtX+tQNmlR33VomD/eXY4/LMhPKLw+PPrq//sffw+6nYfj09Yvi0rugfECG3sWnz5/HvssxrsuaYiylxFLHU9+PEyMkhRhytjas0KbJ9Ean5GG53XOSopekiklydQrp8uPt3R5eKvLy/l6Sh5xCLqvPVPDS2uVCjOhPoqdiXf1mKH9bV875eZim4RdseV0WF71UhgpOKP/Yb6/PLw/z9OnTQy3pI9m+k43u0Cxiq7nNx469fjuWt2UphHIupnEAJoZSrsvNL/bnra7v++DiMm+7PXLwnAjBhe6F1CJs/v06HzE+fv3cKmybLSlryYXRrUBrre/6kg5o0HUmxhxToEhDLXrqpskIIaJPXHLFBRKChBzRWhcqlG0PPx3IUGqnh9Oo7V5r4yFVb+3hrFb6cj59fbrjDRpUWpvmDCqUhkIJROpCyDkL+ZNIJL3zVBKkWH1rUHNpSJrWklNecq0FAIAxxlsFBE5JS7mU0mkmJUND9yOnXBs0RqhUHYymVPiY523fS62AwAUR9EFJtff2tq37cVjrgTRoBVqtORVotQnkDBBbqS3lBthaJbX1WnRafXq464wclOiU3OYt2vh+W1qrpSRCkTCaYoJWagPSGCGCCua99zHXxiDVToFQcjiNFPHYD6kEpTWEPM/bdO77XjoHhBDBRTVtHAcAiLmk5AkjnTGHdTthUqu78wVb3XF9vH+SXPztb383pr+/nEupKSbddUopSgkgyGmSQnBOG1QXIwISisbo0zS4YyekTZPhVLUcQYBSuh8GACitBJ9StLUhF4xxFsJBqe9M12o6th0BfUg5ZUJNShCSo4Iw9tNzfnDFhZSttNZqbunYS8n1OAIjTBq1rMs8L9HHy/k8jJO1O8sCCVRsMcecc6MQXMg5pRhd9FzLfT2OkEotKUUltRIKSso19N3D4+Md41JSAaW+PD+7kJTpfSxHCMFuFaqPEYSEhkqJw+6bjd3UdeeRc0L3KpWSyjCOx9j//tvfZKeV1EppaVQKc0tNMtFrk1qJMXAOg+l6Y5brQhkVsm+sHodb5t3ZjSmeWuScMkZraYSwzuiSfhp5l77kGtMgu/N4MlrbY2+EDk+nDPX5+/OybXZfl+sMCHb3ZupjKCVnrZQ0MrYMFUtrjPPampTdOJ2QIm57Sbkzuu9770PK0TrHKe1NF3Z/mU5adaUW65w7XGtNG0mQlJw4p4wiEtahblulSKCVkhNB0qBRDpCby97nVta5YSMWeYrH5ipWpiUSKSU9jtQaUIJaCiOVltodh7NHzamUOJqTcy7XnCB/bLfjNdZSojt4I0M/ns93gtFWgVEhmNZcUcacOwQXdGRQYOyHWhKh4O0OjHLOe9LlGHLIMQatmCDs9PVJMLq83yJLhJDaqo+OUcooqaW6FKWUSLAWaEAIZ5CKW22AoLWE2HIujFNgFGpJzgXvheRGqUhk8PF8f48E3t/e133jShAuUqnLur9dPwhDIaiSjCGpuYWU9uDhBqkWzmmI6eM2351PmsmQyvX7q+rEMPbLchzBKq1O95eac47ptq4xlm7ok0vbPrtgOfLT+XT3cMktvT7/+PiYd2vVvstadrdjzbclbbvNrebWMrbSao6JFhCccmCCcAaUMaEuPZestWrdQRhlnAMlXEphdCXw4/U97lZwKhU3xmzbQrDWnLTUl/P9vK4uVbSx78z5NL293WptRikbEiP0cpm82xnFkvLtYx6Uuh9GxtksDmeF6s39+cL2kGuKjLOxU0Iq2ukzNB/tf/uv/06l5Ep4n4GJceobFs6IEuTr/bnjyrrgYlg9IYJijZQyytAHm2MuOefkz9OoFS81H3YruY7dcOmnhHlz4Zu8Xpft5Xr7OGjVP5QQrWQOFSPWJecUfHaC817qbANPjTYctIFKXn68HftREUuD55f3jCzF+N/+9ffXU/f580Uok3JY54VBef/xvWB6+vLYn6Zld0e0W0z/5b//9rZuBUiKQQrWWqakasm0EFpSf8wl+MMfRtPTZZACjy3/5ZdfYq6pljMbFrV6F1KO//Y//91Z9/TlUeiOoEyHB6Kmu4djXfb3W8oFG/z27fvZjl+/PE6X8zJfvQ85obfHcaToS+OwrkeOmXBhksuk2mibIPO8am2oYNLI5dt127djs6YzlPHr6wwVTKf3HGNOh/PBhwjktviULKWtElJL9nbvuk4K2hn19es9ZezX4+lvf//DOSso9bUcJczXOcTskqsUNNHe2euy7tu+XJeXt7fHu7v//V/+Yne3LLfxcn//OISYDutrLT7l949N65FRkn3bnVN96zuOVHzc9t9f/8amvhEOhaphiDbvNumeG26gwzo2wqgSsqa6rbuzliKYsZNCAAAyEmNq2AgjuaR1WwkhyXusjQiOUBCBINvWJQUXU9I1I+YUXSOgJOOcDV3XdZ1zwXlHCEopkLCUY3cxl/P5+4/XP7592+3MGZtOqibXSjAc705nQdpvv63F29E8dlpgaQj/C6AxaEWVzEBdLCGlXDNF1Fpl3xRRrZR122vJjDKCTKmhH8bWmvcWMmBtlFPaqLUuxioZE5TXVlsqTPFRs5jQh1RY4UJxJkqj1vlt3Ski45QzRhvhg7ib7j/l+P7x+vLxGoNngEKwmlKIEahASoGQjKFCyxUqQE6JSDmZcTADlLZeZ0rYnz8/DUL/7cePfd9TS1yyn4uzTmnnPEE69BOlZF23mBOllFHgzJQYaklASKnZugO8rSUDwXldem2k5KW2lJKUMubYGggjC2mH3WutgzHk7l5pcz5P9thjDFKKu8sdI6RhbTU665SURlLBqA++AkipkOJ2bEgxxuKdp4SNXVdyRFoRGwDUUkpttbSWkCWZY5nnvQHEEksqDBtgRQAfE6WhhBBT6jvDOToXMOD5cnI2rqslBJG0Shog2Xe3rhsyEoO3tZ7GaRgYNIRS5tstxDT0Yynw/PKeauKSC8k2a49lFUL8xEn3vcih5dQCSRHJ+7rFEFprD/eGI8nQpJCyH01/oZL3Wp26Xgn5/fnl7v7u4zq3lmJNISbKwEX7/S0JyUqKztpYfKkJUhqNGcdh3bdedlobv/v9cKdh6s9npcwwnAjlhKD3lktOasneo+F3l1OJ3qXoco457u643m7b6mSntBG9njrd1wqci+wjJaQbFLSyvs8UcRqnp9Od0BxyAkqitZs9Xp6ft2N3/rjuCwDW3KrnggkKvCEFYAjCGEUZTyE7G4RUYz/6EIwyhVWlOCKRMlCKt9sCCCXkmqGUmkslAFKKkkrJWWsDDbbtqK1IzWutBEnOKeUiOXoHMeVt3SoFYFBJCT6+v1+VUrfbqjrFiRzMyIlmRAghxz5jrZxRJRlltVRgjNyu85tzQjM9iY+3DxTw/eX528uLjx4IaalOcrj/9LUf7rJ33u+KCkG5QGQMjRR+91xxrphS8tj3nNPz2w8mlZJSS+Ot3crhvGdQHu8vSlK3Oyao6lSMdZ6XXJsUvOR67A5IE0o1Qo7dR6A5hp40RVROGStwRoILxx75ZSo5b/t6bEfXd93QWx9dKBxoKXG27ogFq1uWt1hyaHXedyaojAg2Fx+gQkMaS24AjPGTHAu0j2V2MXVCUWQN8dvrC2WUMCKlKNhg/kCoUPGwrgHWQNfb7Xp7U1JczufTOCUXS0unbtiWfd6P1/mDrLS2grV6d1jvuJDASAWotQHUVkFrdTddDDctVcaIMgoZzOt6XW6UMt3JkDMyHgms+/rxf//f2QctRML6p1//PFwunyVjBCuUP56//cdf/5aCF2ak0J4uFy27kEOMSYh0uZyNEretBe9LqdH5SigttURfQ+y0HoZLg8a+v10vvRyV6AbdCcmUDA3iP36O/rgthzL9DPYI2e7bZGRNmQPcX853w+njunzc5qGT5mRSLDml4ANBMoxjTCnXnAGMloBAGToXsDQhcOq702Aup+nb+1Ib/vHy8tuP56HXmLJmtLYz5X2r1XmXfCQZz92gOTPaSNFt3s6uCslzKwPn3cBDboyS6/WDiWp2dhm7zuiYM2W877Wvlkudcn69frze9td5++NtfV1mbPRyHn/99XMJvqQEpXDKuvNZUSVFvx1zw3w+DYLTdEnn6exSvc63Bu3T3SWXlmL7o77UsZ3PJ8U0mPqx2t366HMubVuPRnFetpLLvG4x5K7nrTROOUckBe28e5vMeZCcPT4+aaPmZXPSS85/jjWlQU4plZBbOZ0mJeU0nQHg9jG3nI3g0Gnr/f39ZdusGQdB8fXHcezu9rFNJ6N1Dw2jD4pyAYi1Dlx8vpxzGHKC39dnf2zB+4rch/B2/WCNQ67bdjjn7x4eQvRC85Tjth+AlFGqRMdoa5U+3J0bkMOGl5dlHHvFaaplDeVIds/4vG6/Pb+oY//66et0uqScfYg1Y04FuiqFHLsBCNSUffTW+QY49JNSWFLOqQCSShE46cchlbLOW63NcC6FqK263edUhcrn0wiNr/s+L7NUvNacKqhOxZA2G5Czj+tt3w6lNBBBGEo9aGNKKVLPhEOthXNptJxO49PnJ+9SaSXEcjpbSlCaDpEOo5aCOZe2zdbWsg8hNyJEg7zu63YUitBq7XQXY5qvi9HyfLkMRguGglQhlJY0+JhcicdBJZUCU0ahlKKcI2BN2cVCUoLirRdaEiwE4Djcepu9tf3QX6YTIci5aK1JJWOODKHkmHN4uJzP47Rc5xgrIGOK55b3bfMxFMCScwn10/3ly6fHTumSUo6FSXIezqzJvhvmdU01m0GGGEynO2Xm6yKFPE2XFNO6roigtAnBhVBKheOwucRWW3SBS9F1quXiQ4yUKi33eXUuCClLyUBpN3Tzus632Rh5f38vOfchRh+gQW9GbOiO43w6Mcbmj6tgTCtJkQIUaDnE4NwOiME7oZXpRgCMOaUSrU8pepfCulstNReCQbOHP7IjQH1ygM1Zm0upJSFpjAFjNEONpSAipXgyQ9eZXKuUrFbqS40pHd7N80oaJYQyxjpjtNQ/DV0/G3+c/1yZgfM25fpxvTbM43k8nUdseBzRuSSVVErEnHfnUq2sKsbF6e4MrUJtp9Op5eK85chjaSFGd7u95/zp8WG53ebbmnJxMez7zrVKMQrFIRNrg9+dEkwa6byPbxGhjl2XQtiWVXU6tYKSadY1TudwgHOXYbw/dQjt9m1GaXQv/eH3fckpvV8/5m1PUCttKcXVHo1AKREba7XmWDgXFFmqiQvBRQ3OU8YlU5zLAm2+ztZaqeS2u7f54/rx4WMqNSmlu67rul5wwYCXmFoDQpjgfOw6xtnWHDQiBffHUWo1WkHDnEprrRXgUt5d7jjn72/XkuK+Hs5GwRkCMILGdK20bdtSiMDAR0cQETEmG2wiUCgBH2KIoXH8GYMLyVl/5JZrLj6mp7vu7u5JK+mOkGLAhkqroddSisNu+2GhNOcPG7zpzz74XOPb99dvz8/zsSFtALRlkkjJqaaUodVWayqJEwmt1pQkp5evdz7mfT1275WRhMJ1ntNin54ehNFEqehC9TmGiK2WmNZll1IgECStYsutHLNDJEBJbSXXikgq1HVdXQPo1anTgCT4mABLTjFGznjKeZ5XgBpq9uvNxbxuMbcaY9jdUVutOe2bJYJuzgICQC1Akw923xEbZao2yjlFBLtvoEwt2e5HHs9390+15uU4vD+QQj8YQJJyoEiUUACUS4H7HKxzMeZaTyPerqs9dm34eTqtx2FrDiVjzp2WRhqjOC40xkKAlFIAWgOoDYVQRved0Me8e++XbS8t2hCsd5TSt49CKKsUl3n2LjBBk08IzZGUCPn66Z5r6b17W9fjajfrtdEpppDD+f5uYErk4g/LCArKSkjQKKXicrlXBEejlJTrbSuttVZ9KlpJ9l//7bf/13/+R86oz3uN9ql7ErVIiP/yl4ePDwmoOqn+/v1NCHF3d560rFC5JKfTpIXEmiiFcdKpwM3aBQlhnBtDAEspR8k1l2EcBjodq22pdVK0aD8/3IUKmrRyjNnvR8m1ZckJY4Ry0Ea3XCAVTlFLus03QRC07HqmTz0ql2LZtr0U+D//5ZfdpX2zN0UIhR/P34T8InlfYjjdX87jhAIQGzby51+/pvrt9TZzWi5a7/NxUfxhMn3/sM0H1NYPOmw2BHseT1KMlON56ltJFi3k+MvjZ8khlTRN07bs7+/z//6XX6XSjDMX3baunRIlp21ez5eRIHzsNyJZQXrbw/t//fdO0l++fPqX/+3P59NJyRO2311wtEGlpKXgbEFSKJNCiolQRPLxfs0p1prG3vRnIwyXjGgue0kop4xRdTq3j/lYbQrV7od+mPq+W1P5+FhThVYa5/zzL5+UHPd1eX390Vozuvv69JVwUkokUGJpKFSldLH72+ubFoYL1ml19ziN05dxNDTXVpLhJCbXa6pl95pdYuTp4fJx297flpQLYuWSXZclIf7HHz/+59//vu3ui9ScCVbR2tR1WhJhfVgXC2AJAULQxZxyVpJo3ZuukwJqTNDw8On7y1uFMk0nIukf355TaqOZgBLkyDmFkCs2H6KWUmpVSelPJ6H19Xr10Hwp6Yi7L/O6U0oZ5ZvPlJN+6m2A5CMj4vPj54e7OwTUus9NxCJiIyFGpocvv0okyI0BKfR0YpQyjdyk3TlrXWnB7ce2bSH4Wnx0dr0tw3ROWJPLw/j1108PvRZ2X/PuRT9wzhuHEhsCU1pxNeaKDAmm6vadkdJqaQRzK4xTxqnkklLOMJ+niXLGhdBKKyVLSYRQZWScPRf066+fjTC/fvlyGYaPl49ts5RxQqn1xzHtsRafYkOAApdhmvpechZDPLbNbvaKs1JdZwQ0qnrDBDYoxnTrvPZmMNIIIlqthsuh73WnvXel1iOk948l1zIMo2TCWVczaa0SSpnkTHCgNbeUfUo5W5/K62vIvuQk5SXHUFoiWGL0xhilVAguxdBdLkZ3x7JHkqTSuaZ9D7kkwkiFShkpPu1HsPYgKHMpIdinx0uBZq1rBSihRFIpCcWaki2p/Cy0I4GSsssh1yyFOHddbgiS11L26ApWKXgvFKEATeTWofdv1+v3tx85V2OGu/PDqORp7CnF4FMpLadaaioVamspxtKKViQXbDGQkqNvtQIS5EJJo1qrhGE+XCwekE/jpJVe5sXHxCkpBK/ziqXk4Bk2v7nlus63awYonHqfDp+xHLEUIZTkomLLKSJpOZfG8LrcsJVack7Ze39Yt4UDGdFj35De9o0gcobGiZJzqT76mlrD1vawzdv24/UdKSmkJZ9TypwTwbgSSnJSk9+XRJFZlyhjDdS8bCnawUyEytW69P0ZsVJO9hg+ruuyHiW3kmrf9ULpcRi6zmhtsGJO0TtXM0glpOAp5dbKNPRCckaRUhZcrKUMfQeAlrBSSgg5hBh8KLlQ1JKxVluO+XQaxmF0wQVrTScJJ7mk23xDxNISkhpztP6ARk1nCqnrutbSWqmcN7vPWkvBB2M0Iawkqs3AOQ/eM1aF4g3r7rZ5mUmjMZZh6DnndjsAABsyShglnEGtiIKP06ClUFLosUtKhZC6vuOMtdo0l6VVKZm8O23rSqD2xhgpP/bVrtupl0oyo/iyzV0vAVvOkTFMITRCqKJK6+Nj87V0gwouLLeDUH6+O/VjMhWCC6vdrquQRiBtUCpnlCDY4AjUI6VhNJXCsm6xlfdtO7w9DltKklrSisrwArXmgIwGF4vgDZoZulars4VRIrkg2EoK9ihKCCHFeOmZwddv85FchWr3bXe71JIx0lrd7IZApVLQWs45xjz1o4sFWqacAWAtlKBsqEL1l9F8uXt8uvvUSvv27fvbbUWBIfhlX5A0IMSnHEpWtRKKzoV5W5C3nwT2EHxOyf79NzX2uVRpJBMilLzux/bHH2oaKq+cihJzrDaVSJVwIWzWFoKzbw2o1mrspk6JFNN+rICsH40Zh+LCZkvIyZd2pIKtVthLimxO8b//8fuXaZr6jjP5+9//9ssvTwQiael+6g5byKStHTI0CuhidNtWcru/EKhVa4Ul90x4mo6AnRKE68N6KrX32dktSXoeBq0kA7pdF7/vn+4GCdBq1lD+/PmMFF/WLaQqKDmPXWf0Mm+XcSRCKEHdEaNPthabYiFgRkkZZYzGSHrdMaFjhXW187lb9v04iJTCuzAY40N+n1dtBCWUVNyORTH2f/3n/+Prsv3+tx/lXO4fR4nAGo66F0zEchz7nlzq+m6cxk7LGGMp4Th2gqwbBkrQh/zx8fHxfmutns7nx/uHGIN9XmqOfaec9eu6PD3dqbvLEa0xIzD2+nx9/vF+bdXHqsYJkRPCPz0+Bu+2YzuC3dOSau2nye0OYuNCkAaMUM4Z4yLmshyHFiLl7LZdIPaD7vvuCI7WyGrqJWcUo/fnu1NrsC+bOzKXFFN9+f5uO0+g2d1569QndTmdKCNdpz893HfjHTf9sm1/++P3nRy5Fqw0pPC23Aore9wgN7uH7WPhksLHG6nX15e367IUxmMufJCv1/dSyulusG/u+/vH7Ozt8EYNneyjq2jI5TSmVCTTSKjz4f39nWCVRvZdp7Uigv0sknMmQqrWe+vdvNwop6brWinBR8pZzplQSZmgCCVnaz0BwhkprRzuoAdPMX7MV2uV0opzOGLMgAgEqSCE5QRuj4yxhlSqXirdoFJKASghYpntflihFKGacsw5rPtBGSRSnY0lwTidRTfE52c3L965FtNk5Gm4eG8/pBLC7MFTwz5/fnq4v0AMEQphpWaLIKUw4qSB8JIiIAxTjwU+Xj5utxuDqo0UWpTaUqpSkpJKyaG1rJVggsRanbMp+VrrclsJh/3YfYxffn16vH/qtckRBj0p3qWUS6utlIChP0/bftRWtNJY2+16E5R9/fJl6sbf/vpXH6LSxjtPGZNSIG2IvObmnLe7banRngI0JGQ/LGGUUBpL5pwBVkLo3eWeEhJCdN7lFAokM+pY0hHsdqyEchfCPK8xR90ryQShmEsuOUNrgrKaq7Ou5IicWWePw83LvMz77pySYl13MyohBeNMSuEOrAW8c4QVwXnJNcTAKFFKOhuR0gZYcpOcY66ktUqAUGCGC0nwaKutDTCnzJnoxynH5PY1LBu2cjpNWivvI6fsPI7zujCCsWXvbYwWaWtQg49SKQLUe+8Oty674HwYOi4o4KmWnErOKZfctDFM8NPdvenkOi/T+dR1nXfe+vj9jz+U4Mdx3K63L18+NcRYyrrb14/baTKp5VowEYi5IheD7htj7x9vqWag2E8asC3eHi5a75ELG0ItmRDGGU+tbMuWajk/npRglbBS1b4dsRXX0sf7+7ff/0DW7i7nViCXgsg4F7HlUkotRWmJBQTjvVGS85Si3fdaAZCnkg7nfHDe7ilULnTKlVByOY85J6wQY4bGFTecqvNp1L0puUCFkrOWAhurTAAFqTjUVnI2Rp6mkRECrbZW/9eKMCbOuFRqd8e+7YfdW20Pl/uuN0LwGILsjVaSEmK0qVMJ0ddWU4g5JSRYa2nQiMDcGsH28Pj49vZBkTPSlOpPFKR0UOtpmpRS+7pJoR4fHwvHFLuYAKHtu52XtdRaKvRTPw6jVKLkXI/Ume7p4UEquW0Lk0LL8XK+dL2eOtN3fZJyP6zdXWGsttYNxu0OoXZD14+9O1bnDsCmjaQEvfcxtGWbKYUGrTYI3hFKc27H4ahiheLbxzsi41q5VEKpuSIS5JSGFGNwWCETlIQIrWpIghDv/dvbW231cLvHmK9p3VaXoo/ZRR9iVFISxNN0Iog+OCNlrCWW4l3mgvV6wNo6SQkhtWTGaIaWYmKcPzzclRaff3xf9q1gTpAqtkaaUtIYnUtettW7Y7UbZ1xrrXsVYihQz3dnKIEiuJA44y03Ukinuk8Pn74+fsUCrNCp2yttlZaP+e22rg2x5lhay9CIoOBx6IdKGxJyuy21YSyp1nCUpIzhWu72iDHmVhvib3//A0oex8t5mlyMdt85475mM+gKeJtnaISLh27sGOB1Xr4/v0/nXnIRfXLWb7ctxdT1mhBMLkW3pk6xf/3rs3WnfT0epuGf//Gfhqnjip3vzqW8Q5ElpRii4mRet2tOpdVWS6lQgZaapRC9HnJrSkjJQ06t1mxva6OBcl59opJjg+KD3w+/Wwa4rlZwnkrOOUxGj2JPWvFLF22QhEpGU63OR6hIiAGgKEwp6Sjpx3U94aC1rDnHlG9u/vp1PI2dZuIyDhkhJFdLrrHRhqWU23LMrP3lz3+utfx4fuZK/vr0VUg16m4azus+//3bX40Ov379c855vR6VUv3QO0ruhqmQ9vvv392xYC41VSDCOudTUp1Gzj/ePhb7b7s9BOPrurbaaq5vz2+lJM7o6e6klNoOy5vhQjx++fLy7fm3H6+0M7d5Fcjux6nXCrEhaYVABtIagQZ+s0fZc8m0IeeMc9rqz0IpvYyX928vzh4ARQthOHGk9JN6fLwPJTFtcq1u3yQb7p8evbduddvtGux2/3A3jKNRWklxbMuR9sPOLqZ79YVLvi9p6sQ6ii2U13l5fnvvl8G8zPNty7VSJkrOuuPxf77WWFIKzkeqxHQ3ccHfDptzOVpZ9vX764/W8O708Hj/6fF86XQXYuKNCi5qKYpTqGwwyvkDSuakCdp8dLk1rkwBvB77t9+fYw6il13XI6MpBIIp2mCRcU0Pm0ostSZATCUdHlJJpdbN7u8v79Ye8tHEXNPqGiChnCkZcskUc6zrdjBBBOdAqjYSGhpjakEhdEyER2RMcEYoIcG3eV3mGoUkkMk6H531SqvD2eW2CkZGYe7vzw8PUylpvXs0egi1pJSnsSu5cIKfPn2SkqVQrI+NECCkQa01J1esjSWVnDMRDFqlWgJjtUH0ye6B87quWyOkIlTARtAeDrDmnD8+Pm7LrIy8u1wezncPlwsSun8c3hUhFOE5ZU+VlrnFWIOvlBLKBOTaWq6cHTl1XH3+8gVIo5zYYFMKx1alkqUBY4wim4aJUSwlCilCCrWVmILWJqW8rnsKsTVy/bjGFNZ5iTFQClTgsWsXwsv7ey4pl2atd94ZY4Z+Grt+GkfFZQhu27bjWATjQkrGCedyX4/DOne4mnJyAWupNUFSstdd38VYTtN9rXXfD0TSapnnW4x2HHokWGvbD3uS3B8WaiUNODKlBGLd9wCpSAKjFEBYi1UqToFQrtRZlujX5XbYgITOy0aJOJ0v99PdL/dft7C3Vu5OWvEW3W4PG5zquw5yqiVIDlpSLVgp9fBWK8Eo5AqX03ib99v1Y5p6ddd9d6tzzmitlC65+eDPp9M06efv7/P1Op7v2HRSjISSXz82RklOnnFONHOlKgqMS6TCH56Lnwn3XEspJR/OQsyNEMoVMYpx3rItWGpJNYYWJTIUjDOu5s03bp+v69saRMfTcmADb9PD08P5YXr+9uN2uw3DmHNjjSipx3FstbbSOC8NyThOqZRvfzzXBtpM2ozjdJdzYYI3ygUTweecse/GYRpizIJzxbQepI82+Zh9hIZCCsGZO3wIGQA0YxSpPY6UvDFaSCYkq4j28CHESorp9XAeWq0UKCKUnLtBY2vWWSk5aQitbfNaoZYWteSE0RBiKPHwPqTc9UPOdVud9+n+4SHU8e3GxDhOYzcOA0cefQFMt/kNCUjDMbDSyrIe+xFaK4LL2jCl2lrSWmhtUkrm/vFyf//j+4/9sI/3j5fp5Kx9fnm5nJMktKS83lYhOBIafSoVEJv3C+XIOVKKUjOERkk7tnXbjxDjdB65ktu+dUZTKpflbTk2DaZQoJyEEJd5y9C4klSKkmuO2R52363SiilhhpEG16gjjNBjs6v1MW1uj3M43J5qqdAQSYqRUUqRdKp7uLtnhLy+PGM/7tHVWmMrhBAGxHRGCBFCcLZyziiQlikCJ5Qtt/njuoAgjbSYc8FKEUNyNEOutZBSSS1QEWuqiTVGCTCFVCApglPChWwlI5Dd+pPQumH1gVYyST1oTQRppD2Mg02xtDIvcwWsrSEjDZAwihRTKim12jDmRDgiqYc7gncUCTRggK1Ua48f35+hUUH4HPbkwjAOopehlJwKV7wBKaW+vN5KycuyHC4qkSy1oKt3HgiUmr1193d32DFrvU+B3T4cy3h9fb9eLlT0pvs1ujx1ZycjgmAkLX88cwDJ+OFDIaiNsank29x1xidvzoYQKjk5mb6mfXOpphR805qexmkYJEW0x7F8LFihNPSpct1zCi4XrY0/VcDZnM6uc/6w2cfW8LbMnMl9PbpO913fd1NtGbGxxluCfbV+L1qo4EtJmz08AgKjNWUmeWb19rpIxhllFetyHCFE4IqL7vffn5fjGKYzQRp9ij77sJT6ewrhcFuBSqx9m5dUi9bqY16j33uhKGWpVtX1+7K83tZj2330jCKjvNV6rPZ0uSjZPX36UpL/uN58jOO5I7V9vL5++vKnvqsVMGYfcnr5+FCEcYKcj6kVG9wwngQT2+asc4yQh4c7aO3jemup7M6fziOUunwsvTLjNLzt+767ccy9MZ/uL0aqnxhQ1Y+79Z8/P3DB53khtZzPQ9drZLSfxuFLh1Def/x4ff22hb3UoJVAjOt6rNvtfV7e12WvcE3x+7JSZxkjORcf4nFEwanpFAGEVHutKmCrtTTAVDO2SuEICZB/efrVSH253LWKrYHPiUENKUU3A1Ah+dAN9/cPxyFaK5JKRvhtXl2JBtq27t+e/9iDvZzvHh8fhZA51SUH0+mmyPl0Ioweu221pBRKLpmm1mQhjWsZUvi4vafUxlMae1NbqaUipQ1pLvAT79GwBesDp4wxpCiVPqzPCRDj4TxSxrkSgikUjKON+7Jth3VKmhDzy3XpO11KSjlP3XQ5Dedp6JW2exukOZ/PCWBZV4ItxcA4o5QRZEhaqcXtPjcqlGyt+uBdKNaFru9033EKgrOYagNASgmjDeq6LdyoXFvIDQXd7bZvm/c+hBhd7DrTaaU4i9ZpY5TRyZWUghmVKo1LHYbz+/Vql01wqbigDFpuqabrvL7Hdwrt8fN9RUAKUKtPYdl3Qug4nZUxBFpK3jlLBD5+ftBKUyQppVxKA0BGbrf9x/OPze5GKaU1QK4lLct2frw7nc+HtdtxpJxKiYz2WunHh0ejNCeUItrdxRIKVKrp0Pd91yUXsDgCdBwHQMglGqW7rqOEpZCBECTcHiv9GVgsCQiUllx0hNBYcggVCWoj3b532vTTZVCGUuAI625pZpCS94V2MofkrCNIhr5T2qSYUgzb5n+qGxCJkfrXr1/NydjjyDn+1HVRzpx3ghFBqVGMdZoRLoXcd6+4vD9PXBK7HxR5M4a00kuhGQwK7fXY7fH4+PTlH3+ppUktuZRG9O9vV9Lg06fPJfr3t5fgw/kypVJiLufLxaeQS8EGjFEuOCW4b3suRWtNKOBOUs5Sq64fht4g1lpGezhogI21SjkKRjlo4UJIvuTcVD9cHsZj395f31sFORpY4fn1NQTHhbr0nWCiIdm2A2oVnJ/OJ2hNGVMKnCdPGUMkjEnvA+eiVXAu1lJCyEZroVVtNecjxmIMam26Tvt998GnlDljnMrQcs2ZMPQuftt+TyUKzpy103Q2Ha9AACiXPKRIaCSMxBBicFoNpdRt3QVjtZRlWVpp+3Gs2wrYkMIw9tpoKdKMy7rupdSGtJT33W4EWaeH5v1gJq3FMBglGZamBMaU1vXGOOeC1RJra0gJoSyldlh3HEctFRA+Pz395R/+hIRULFLLnIqSx9PDo5Dq7fXt+vLx0X/86Zevve7vHx58sCmWbbNCiW5U+3q0WKUAzuk4jerBUCSvL89hmVNNPvhh6KJPYD2StDvrUyCZAVIkLaVQClweH4w2gtEYIiMUCW2IuZTbvDAmYnQhe01VgZprdjlc9zXV6IOjlAjNW2uEEMpYPw7Teayt7YetDU3f5aPmWhmCMEoLjUhiise+ex8a6TvTN+Qx13k+SquUY6WVYCMUaoOckmvFx6Mh4UKY7ucfVHIuIPB8P3Jsdl+xtdEMp+msmETGL2Pqez0MfYr+etuh1X7sOy1zydPjQzcOx3G8L/NtXa5vN8JpBUgh51pSqowwwkmuFaC2BpyxWkquVXJBsZXSVK9zabm2nHPK1frgU+prV3KJMQ/TKKWMMcy3NUQvOOeC6E6lmJe0IzSpuVJCC9kPA+McCTncwab7ex/jZiMV7d/+7YcCshotJddqCDGmFC7j6e7uIQD8f//13zOlp8eHFOKx7cm6GrPf3KTl18/nx4f78/3j8+uHNqeColWS0qE4LSmR1hSXUkghBJdCaEMYe+SaMyn0OB3z6m1rfrt6LNCAEoQGuSLc9hUlPw8XTDl5//rtzTpHGfUxH9Qd8VVpJphglW7LMrvl8nBpFFfrCSTTGxvtLYeK1e4uX/eSkDKW0Ob2vO4zQwKEhpB9TLbmwx6HizGn37/98euf/2T3pYZYL3TqpW9ZE4GUlepDqp0Z7h8uOQZ72Ag5kWpr/OWf/hS3fb5eGYVR99fbrCmnpfh97iSe7865Frtubtvcvq/HWUq2Hy42Whvu1h+H45LfPT0ozoxS7y9vkrHJ9Nu2zteZc2a0Tq0JJYmWhVJOScwVoFFJtnmd7s6ffnny3kOJ3lYpJU/cxxSSn+SwfHz89td/fzjfKSFB9veP93d3dz8+bt9e48u+/Ze/Ps8hNCECB1JzuFkqSPTp2C0qKTtxPo+Sy84YqEgl51JGn758/bKu9nabGZUPd3dfPn2llP7x/dtmLUmJIskhUYIxFKSECim50FKH6AFJ34+uxOr3fd++f3/9+++/PX35/HB/OffTZrd1/kkxVt3UayH2w9FWQWAj1IfQoJHUqGC55Ntt2a1rFXKqxnSUsZILICKhOeTWKqGsYWWEl5IZxZBybbG2Gn1pPyGIjBeCVChKqsAyTSdCWEx5CyHE1A8jCAapTnfnx/vH89hl7+zuSi6kIdRaIBWMDHg/jZDL4fyy7HazFRqlAisml7hkgnHKFSE050IV9uOQYkwhOutDSOM4KCN62yPjH6t9vl6dd/u2EQqcMtOZp/tHrYSWcl3mwO2xrgRECplSchr7oZPQeMpYUrHbkWsK21FKagCMQElh3w9o1Yxa9z0wwpDZIy7bTgivSKWShGBNiSCpP4t2kmNtbj0YrffncToNWvOXt48YwGjWj0YLWSps9ljXnRAUQqncVrICwW3btF7v7s4u+nxEo9XnT19qhm1bkWL06eY++q4fx7HvOmP0YTfKaGnNBr+vdt9tP46lluv7nGO4f7jEUobzWWvh3RFdRKycQUkJkFcohBDT6WkYKKfTZZxCWubj+nYNds4BodDSkBJi970IWUtLsTrva0sMWfQ2pMAo3p/vdiaXdQkuCiof7k/eulai6Q0XY03ZrnFbNq10Z8a7aRSCLK3GkPXUfbmfTqdJCBj/9Ms/XB6W9egG9evXz9Pp9PZxfb+t9+fBzrOC2nG+WBds0sYgYIHGOI81QcPUsuaCMWK0pJSEFAlnnMsGbRrHUpErKaSKIdljLylO0wVGwhgjUjDVMZRGAxIMOUYXon9fbnMjxcbdHyEUZ4ze91VyjrQhEt0bf/ht2QjUaRiBM4K4O9fp7p//+R9jjOu2pVzcsScq+74rgCElJCi0yDWXWpGDELRA3vZ10Gbshk5367alUEgr42lQWsaUjt1yzoUQkrOaKwdmN4cEzvf3hJHfv3139ogpHLuFCjlnrpj3oVN66I07/LosiKiU8N6VXHNOgAo5VoDcko8xf7x3fRdTUILGGGutRkglRYnZp0gAur5H5GB0YxhcIBWmaeo1at01qD6479/+mNeZC57SZdsP544YE1mP4Hzfa8EplmakyTwTTpjmwziOQ7N29z51XaGM5JqE5IzT0zg4Z9dlqyMSxlZ/fCw3Z7dtV4CVoYjOSq0aQ8LpeqwhRR8iY3wcuqnTWquasxmMs7vMXAZhd/f8/BZ8JKwRikRQIuge/OJ3WzyQJozIIaWUOaOUYqst2LCx1RHnQ3DOV2zB+0oa77vU8LbvJaVaMiWtsRqTz2uGipKLWrMQTBm+HkdIEWrjBBEottoKME4VF1ppT8KePKnAEBii3Xe/Ha1W/ok9PXzmQrJOU0Gg1ev7R2vVFye5SDkCMKXo+XJqDVzJn09Tx2ne3W0/CJIKIITqerHsuwteCJ1yrKWEHFopAJCCN51urRIA5/1tWTmXg+lHNmz7sWy76RRXgiJibTF5H3bnHacDlFJqVIrZ3XJBa2tScG0kI+THHz/++Pajmwb2j//pl5jzy8s8XO5//Pg7+e/xl6l7errrdA4hAilPj1+Ry98/PnYfC2VdrLnVPQY7OyxVFJL67jx17OfdoVVBUU9DA3a9+vHU1+CR0c+/PJbUTudLIWXxS84wnM9USEMa0lRyTEhHre0RpFQFGpcSEF30w6iV5CHGbb7u+55TkVpJKWorNjggyuheE7kuG+NcKkWFfCdbqcSmXBX7j+fvLgS3Wgq8N6dhkPa2/Hh1nIFWSirddQPldLW3ZVn4drwvHy64VgtBkgk2IJXy9/WAsn36+vX08OisO/b9ep0ZRaHkQ9cxKax127FnZy93Z28PJeRpHNdt/3h9PT3cb4ettQ6dgpRuy2pjvN4AKWFa2HmNMT1+/iK7brf763w9SZ1T6rR6ujsbxh3A5TJIziBn0ykhWKl52RIneHd3Tzn33v5kwhqjOIG+04qLefcv8/Y//udfuWF/+cuv+7L+8XxF2t0/9iFlV8nV+b9+e/3//Jf//j/ebv/6x7PL1Rjdj5pRprTKOQvCPj/cf7pcvnx5UIJSQqERKaU0xoUSqNNjvxmXXUYknem7oS+pTqez9Tbnss5rKdX0xtdQU53XZTpNnEGw2a5z4zRByZCfX5//9uNvMXqtFEVEyC0nLK3vOs4ZJ4xTogWTnFRsWQhOZEjBp2i32Xp7OM84782gtUYgBGmBlmL+WeRBSiTnKXrZiVYYUtZyy6kCgpQypkQ5q6UBgUaxNkTkvRn6bsil/Xh9U6YxKYLzKaZOKNUZLqXd1sPa8+l8Pk1AEbCx00gaY8iYlqFhzkB5FQTP5ykmuN32GLMwrFYaKbGH7zsthSCA87w5G0qrzgfKGeM8xDwv87dvf7RWOROn0/nz09NlnCgh7jhKLsGFkrMRGqH2fSc4p1A4IynE6CIjcJrG99vHersCbf3Qi07XShry4ziW1W++hGhrSqVhaRB8YJwBQsqZNrycesnl8rG+/XiLMZSceqNPp+l8OvVancbhR/e+LltKcRhGQfh2HG/Pr0hRKJ5yjDG02nQnCWl///vf7GYl8l9//fWXz79QIhhj+7F761LyhNL7+7tt3Wy0IYdO9zWGt7eXRkhrzVkyjP3p1JfIKVSGoDgfjDGCrW0NUMa7KYVECKpOM0lK8iXRse8bkJwqZXmcTD+YSkAotW5rCjnntCyeEEoY09r8dPoe1grOgNC359faqjusc16e5ND1D5f7bb3WXFoBJjSTMM+7lhJbcXYrGb3bS8jn4dR1SpA8aCWmS+jLTW6+RmyZ1MBps+vy/D5XqDH6dZ5TykLwrjOAjTPOBIsxhcNrrXotuWDOWus80yLHHCpQQoauT6kAoy2nfdvW26KVPj2cxvGMlKVUWkUpJEMSS2gV+16nPOxu3w6rpEgppRz3IwklHu4epnFYl8WHgIit1k4JHwIVMgafUoURejPEmLx3MRYEyjudUjkOSwW9f3y4zR/JOSSkMx00TM6H3dcQ2eVMAHJO3sXOGEYp01JyLhk3vTw2yyidnqYYQrKHlIoCRh8Q69Ab7+k2bynG5+NgklFOWy3Be3sclJHzcCKApldXrHBdAAEAAElEQVQu2FzL28fHbu2ybgVqiElLynwEQKllLBkbCMZLTCUlIFUJziglwEtqPoQS23QepeooFcM4hXh8XIvgfByHbuzOd9PtNq/rUmqFBlwyQsvttgz9aDp9GidtDEF8u76Qhkaroe9yqT74Y/e84+fLXYkplxpiWL9vQPD99v48f3hrn85nQhgX2jubAaiSnDS3eB89o5QjVVKk6K9vH0Iw9unsQ6itKiURSA4lxTJ1vc8xxOxzOoK1x47YKKUNMiD8bNVRpAjNBYtrIUhDyT6mhlhTRmwQeEGI1mJtMXjOCKWkMGAUSiopR8K71NDHWEpttQlCJJNS8parEEJKxTUvuTBBqaYlZ0lZtAEaYG1GdrnAbV0bUj0Y06ttW0PKpSTdm0H3XPCYo+57aHise3TpNJpetvvzxbpSJRW6P40npeW3l5fXl3dqGo9sXWeleANEjqWUELwx3bbvRqmP68e2bl+/ftZS+hIRmTBm7Hu3Wu/ctmwpp3Ho+s5ga956gopxUVpdrTcAShdSs9CiH7tcEhNIQi7O19nGD7u1sjxOXwZDW3QtRyrp7pd1jf/6b393Oexbvi47ZaS0ZK1jSP7x66+PD4+A+PH2UVKePz6OVBLUlKEbNeMMQCAjWjJiaCM5lvjy8dIqAGeOuPXj2oqnBAcuzYO88U13WhjlfLDeSa2kqJxmKkgykkOihPaTYVz5EF3yyBljZNu33R+NNgDgXEil3O617DzE1jDmcv70mQH//vfX22FTjt4dpld3l9PQGkr+eLmXPZOMfb48vn+MjdRfPn/et/XjNmMBAoiMvt7etuClUiUXu+zz+/V0Hu/uL0oyLWQ43PvrSwmJ4kUJcTgrJOeB85IJASX4vKyS8Us39b/In+KE2DJwVL2uuTKGLgTn3KevjzlXQsmnh4fLMMRg76deGS61YoQ/v7xv68IJ9v3gS35dbkgYYJZI9vcft+0tQ0m5TONjRvXf/vjt//1f/+Z9/H/MSXfcJnp8m9nzfmTb8G+l5X//6x//8fvf3o64pUYp6sog8VKBEZy63kg9GP2nL0/3l6mWXGIG5ExKaIRIwNLiFiGWp8s9V1wodRxeCK47zaRYlxUohJCO67XUIpV6vV2fr693p3PJKaVosXSjyQB/fP9jO+yffvnT0J+9iwc5WgUuGBNccmmMxlq1FBXB+ehTFL2OW9mW67xc131DQu8vj5+ePguutn2PsbTWcqqmM1opgpQxCsgpRaGYPVJJVQgipEBGqaAxJ0BoWGJKOUe/b4LUrlMEoEJlUhAk1rnb/PHl4Ykoak6DdVvcvBSKcWaDbdi0FK2hP1xrWEpLAYXQxgitNGXReepzTTFAo5KToVctpWQDUiQIXAhFGeXCu7Cu+/cfP16u12jt+Xz605/+4dOnJ6OVIJwylJLHmBBbq2083WmmtNRYYV3nfV8FE+vqD+uVlHfn6TQwl47g477nXJs/srPVxywUy9lzQillRvPKGqmNAhImoDRtDGckkRrcnlOVUhrZcypIBSMl5+Q4/Lpu7gi7WAmQFJ2RknKWcwprIBWG8XQaBkZFTnXqR8VlrfX5/XnszoBIBBvNFIIMOb0vN+ftsa1I2mK3fd+8C+fzRSnFqfjy+BkACOSP1/cjhLQvldFeKzFMliVCCEiyLIsZFOXg/ZY7WiNb9uP5/a0iF3K6XC6Z1Pf3d++OVqFhK7UyJrSShKFWuuU6b7OQmhDc7eacL7lIxnMO4XBGyrv7h+ttds5zJLvztUFDYqPfrDtfemS0umQPl0LojBSiHVt1ewQChJF53eZl3q3d9m3Zt80GpV3Ite8HZVQpxRjJGEQfcyy6kzmkj+uNMdKwIsNSi7OR9FoPGhtGX1L0hBHJ2DD0jBFGidIyptJKQQBsNMV4vX0c3qWaBSN353Gc5N9/99tRkZIKDaClnHd/vF7fS86n8Xx3PqtOtVwpIy22GMJ2bPUVtu3IKXMutVKUovf2ODYmhVQKsKUcCaOa6FpqTjG54KF6LRAgec+5IBRjdK0UxighxTv30x98HAfUZrQ+359ra+8fK5Q6mmHoB2/DsduUYmmFAsFW921ZlvV8nlw4Sk4h+lxKxWZDuM7zcdhagUutFQGkw6nvxyGnDBW10ilhrFly2fUDYyLXRpBgBWiwztbZNE0T59Sux/x6azlrwTshEaA2QGTK8FpqqcnuUUx9KilGe378Mg7j799/365XxenTp8dE5b57OajxYSjQcinHtv/4/iPngJzOt/XH+9sRMzJlhjupBkpZRXr4yABjjD5EyqiSRlETfIohxxhDcDE6xlEo3XedkTU4r4TSvXKLf1/ml/eXZb1aa6kSkgvGRcScc2WSQkNCqaQ0xhj8XpEgYQ2aEIxWaDVTQjgSQsH0XUoJKU25hRRyKdCar15yTikShprJQXejGShBhmQYhhAzk3S+LYhFdhobCM4RCeVCCXU532mpt2OLPkvbxzAUrP10qbFKLggQpDRn3Gy1doeSjZmQcIZwNz4Qql/erpSL+7sLILQCkrLtOFDX+2FordjjOPyBCAlrxep98iEKprbDppIIYCxxGE8x5W0cJOU55HnekJLPXz6dTqdam3MhQmutqr7jvM8pv6ybIAdtMF2GbVlYK/F2fd+2A1rNtXZdb4wGKGYc8lGux/buwx4ySPYwnD/+9bdSSz91lAqWs2SMCQIMXE7MVsGo1MI2Z/3hYwnVxajPfU8pjTEAgk1rqDHnxAhf53nbrd9WBqiUvL97PJzXWsecaGEpxVRTLTW8++LiWfeX86CeTkhAKImEWhdWF3br3j4+QsyZVKRkOex8+I/rDI10SLDi3eUynk53d5++f3sFSplWNRFC6hYDHFuoaduP9Tge7k+My/vhrLkM0Z1NP0pDGyu5TmZIUPtO//1vv8ecGGG/fPr1n//lX7w7Wq6EIEU4Tf1yXSnD9/eP82kYpwEoEsl6PizzGmJmlEWfupNBgFYyAbxMXYYKCPPH7fbx7mO0+zF/XC/jUEKoQpWcOEHBWa805WzdHWmNUya5Ekrt8/LbX39PtQyDGZVy7hh6o412KTV6LK7+/vL+EbzdAvmffwyTvL/0QdT/+q//+nJdF+cbpUpwM3YDqaIQRtlp7AVlgBRbFZT1Wg+mr7HtixtGM5yGXGipIAjTprfGvl2vWAhniksRfm50SrzNN0QaYySUDZPwITYCWpsYvN0Pk7XgvNVWsVDOSQkuHHfn859//UfN5bze9n3rzZBTTjGLiacYWi0EWarJO+tCVp0hFCvUwzkfQtf1jPFS2hGOWqCUQijTUlNCAfHnCeoGDgjOpn2zJVV+5kLw7ThiTiFGJnnH+xT2ddn3beekPv9wLsTKGxWSMbHv+3ydR90JJVFQM/UEaz/1NZR1XQgh0AylPIZyWNcaAYBEABCFyFSQflS4Ex8d5WxUpgCx+7Fvq4shVeiGTpuBUHq9vv14ffv+/L1W+PPXz4/3D58/f7p/uKu5Bh8RaW966DF4ZzcfXZK9zLmmmN/elxTs49O9SzGXwjCPk04R0hIza7UB1hRCjKl2UpHWBmWmoVdSBO98KNAYF8L0upUGuSHFrusE8lIK5+wyDVRQ647jujQCrTalu/1jfXv9MFp3nfnl119yzvP1llMZTt3Yj0rI3gxSSM65syFGt1xvwWUk4KIjlOYUjv3gWiC2EN39/aXlQgh++nRvVJdimnpDIAMAQlaKEUKvb28Wd5rb3f39ZaS3dRGIKQgAUFLejSfNuXPRWgsVBWc5+NeX50zLj+cX75xS2nSqHwynAqDlUmqrQvJ6YMhFCEYoZZRe7k6C0OOw+7JQBK7kT6Lgcbj36zXHck/Pw9Bz0Xe9wlqjjHZ2y3psu60Mts26PT09Pel+2KNzi7c2cM71qX/3jkB1MdLg+l61VKE1zmgoLYWAwFrD6+sHl0xraXrTasXapFSCK4Y155aO3HJTXHDCYgwA4Lbtdt2EFOMwcIr74TknLGOwKcU4Xvr78+P3H99jirRWwZl1zrsXpXhMkRKKlFDGc0xGqZIzIirDZS8JI8rokpvggjFGCFJKG0HrHF6v3aQpYSnldd2889l5RQU09C4SBCEE19pbW3KSgtjd+lQY44wxIfjuYmdMDPG2rJ3pKOPpODxGqeXlfFHCcMFSDqV4qHUvvoE/HKTqSy0fb++lNalFrRhjag0bkgYIDVqD1jDG6H0ijUgpamlQCWcSCtluDhC16hiVOc215Nv1VkvFVlMJnDPOaM6lpDxfr5Sr6TQq3aUcn398hwbj2LdSoBFsUHLBXIzknVa0tePY5/0QxWstmJI2u8O6EiuXkkkiJSUMWitI8Aj+x+szIjjrcqt1w5RjcN5odRpMb4bocy5lGqbovcuhAjDZamnYABFzi+u+Wedu++39+pZypKTcj9Pj3ROlsKzbvNhSWkM0UjFsrAEUApQO4+hcYNAYQcaZ7gwFKihVgu/HgZTaVN4/5t25mEKMqZXKOWGcl9wSqU03xrgS0vQ6vM8xJGit5GKU7LSERmqDbhiHfrrc3QUbvLOc05by9fVDSHm5O6PAVsE773P4GRt3h6UNp1Fzxrb9aLX2WoVhBKSSckZJlBqGQRF2OU9MkHm55RJt8Nf5eqRweM85jzGmHLpTV0vdd5drTrml0HLK4zBALMhJCvH28X4a+1KqjW5Z95TyKY2qVwit+kgBOSNacCooe3//2NZbC74b1HgZ/unT4+M06V7IXpQIe8qN8ErY/cPpNlvF+f39kxm7za2CIeOw7B+cpLu+55QTZfRpTEJc193H5FMiQIzURLEQQgp+2yyhqBXXXNeKr7cNGvBByq4LWFNrH/MacoR5LlAIpdPpXGJ+//GRB/d4HnszmKGrBK0LGYBynvJhXcilESFTLrfFxRCXeWeM6n3tp46LQUpjbYJU709n1nEksLn9ersB4mqPHPLHvOzr8XB3B2nJzh/zLW7h69cvl35Y1s3OCzI8admePn9cb1Lrr79+Hcfh9vHmtx0jqIGLXvdcHLvdlz3ndlv28a6XQ/fjj+d53ktq/dgpSn/8eI3BS8b/9KdfhqGf52Xft04oRfjUDZdhqqXUlJRhKblcmGEgiQi7XY6jNXYaT/fn+0qwliqFeLg8rsdRY32Z1+v1/ZcvX5gYK5D/9m+///vvL//jt7+FUs4Pl5ZKDnHoh08PZ5Lb3XX/7//2G3D+f/4f/8/TpJZj//F6zbUJLZggreKxWKwwjj2tNMVaFTgfSyqAFCr0p8EIFnzllAojS4Xbth7eyk5ZG47FhZwYY+N4VkYVKIyzmMLffnvf15UxppTKMQAl+7a/XJ9zKUJQJC3lHFMu2IxslLKU47atx+aGsSeEhuxDcFIY72MtrZRWazNSScqhtvl6AySd6fqxk1IwyoIP1v7/e0xLQkoYwdqqUCzFuG1zzJFJ6n0glby/fIMGt4+NEqI09zGlGJXS7nBzuM3z1bmjlLiuV8ZKyUEY1Qj2Y9eFPqVcKwEAqWQujRJWaz2Og4lyJE8zYVjNwETug8sl1QylkFwwxxxtyCQXl+u6Lb9/+/uPH38YKf/pH375p7/8A2TkBEnMlBCXUi5Fa1NLywUAcF72Y3OC8lLQHUWrHlFwgUKwEOOy7hQgx0ap5IwH78YeL6MYx44zKhneX07TaNx2rKujTHZDF3OChvt+pBylIv2pz6mklGNKnID1/rrshFMQco/xZbmVlp7q6TINAGXbl+eXZ9119/f30zB2UgjKcwgEqq8JCRBCckmHPZZlzSUBlhzL2MZpHIdz9+nuoeXyMF2mYbjdbpiLZBjtFkNghDACslP7VdjVCsJY49ro2kou6TRNy7GHI5YOt+xzCAi868ZUWk3ZBweEDMZIRkuuSjBOkZDqQ3LOxeRrg/frVUttlJaMDEMvOBfIAo2t5pzT9cc1BHt6OF8/Pp7fvlMijuP05eleD9K5I7hAGiFKUyDOh4+9Nq6LYa82aMm4FOPDLyak1R52W/7ldA/QWshYK/DW9SK7fMy21kYJRp8r4jhNnHNtFCFtm2fBkVHw1lMgplON0n3dcm0ApdaSYwy1cYbDaBggaU1wxmWnOz2EPuSUW/64zo0SLkTONZUKCA2K962T+nx3ubs8Tt1QoyO11gbJemU0o5QLRgT1PgefUsr92HXKVGzrtpaaU0qCScZZa+1IKefWBKkUXc6MImFIIYdog7XD1/tK0IW1ptizgWDVoymNlEJS5kA0UFeB+pxp03f3j+dz+3h/Q1a46kv0pe9z9KWUYz+AQ64ZoJUEUsrR6CxQ6I5JXmMpOVFaKYKUlCBhDIHAMNwRpLXUGDJjjUthuh6Rv7+9dH1vnf0Zt8opeOfGcailLHY+X+76rmecLMsyX98enx6lZC1xwZEC5mixhE9Pl05r74O1eyrO7cfhuJam7yeGqLi4XCbCWor2PHbrsaWarVsWLEKIlFPMebMOELRWQmvVawKEUOikOg93u/W3bc8t5FCNIaZXSNqyztmWTPK+3fZlQ9bO93f/+A//dDfcz+vcKuV02HYPBHrBKdburCXXraHqjeBqeV9azneXoTOGNGKMwla5EEqrPaTfv7+8vL3N27LvM5CaW865hpRsCkdx53FgQD6W9+iS7iQgKTmVQgElRcwhEwTAGpMrJRBSJOVKCiQk5wYh1wpCKX7qUgoIoKXAkEr+OdkBIRBKjDFpBhSQlTydJsZarUlx9unxYu1B+4FwKNh6o1bnfry9z9tOAUsMNTEGtOskNM2YnM5jp032IceojNCC1xzm29thj4+Pa6EkZDIvK+PYTVpxcT5NvtTicrCWCUUJFEngYvg//enxHz89/KcvD7pjv7983w5ruktsLIcYXPx4/+iNEoyTBpBriZEhYYS02gSTPkZf9rtPn3hD/36NJZ3Pd9oMy3pQ7CnQmpvikjESnQMiemO+Pj36ELkRueZlWWNuttQCWFKtrfzy9QkbKTn3XZ9j2veDkLZZBxR3H5bFxlD12J3vTjG39XC1YUOUytzfcedsbaW2UmL2YYfGFOEZIwOUShDWCPnJFUtr2EuD620vGVe6sFr9sX28XY3U03mgtZWS784X05tLH3ougfGnh7vzNChslgtOWS9VCEenRfSOEKSUNEZv+46cuhxzq904zMt+ueeh5ONw8iSdD2Pte6NJKZJxwWUteRjHZVsqlL7XaXc22NNwQYBjs+u6V6Ax14enJ6V0KkkBijv5+evXdVvfXz6kFFLp28fysS17ituxcU7c+zv69J/+/Msvvz7en4Yvj0933XDs6V/++T/52FpLf/7zQ2k4qT9ut7URyjWPJRYLlCAFgUiG00lrGn2w0Suh3GYZVMGVC857J0VPKE05hRAbIZJLrXSxVWtNCKm5cSk4p87alFLOZV2PbdtqqTaG9vZ+226M61Labb6OetT9YIRSTAC0WuuxH857wunPT6Xl+Ty9fazrcuOcDachWq+k7oxpgKU2JphRkkvhnU8l5lRzjgR5jElpJThDxEYKMOJCWLZbyiGnXBoAgtGdkIwzITjrnu59rhUqo37b1n1dhaCK0+vbW/GHlvI0TVyw3KDrh1yzD3HbN65UrqURTCVXbIQzwljNOZXChCDQENu6bpuzKYfxrhvvTmU5Xj9uH7/99WO7bft2N53+r//8f/z5y0NLuaVGgHdcVahZycP7EHyuzVnPKGkNrPWgCSX8dJ66Tt/muWHTRiCSEtthPTDOKUNAJvW5G43Rd3djq7XlohTvtdSInVBCdRWqD1CxcdYta5WSt9KQgtvd4SvjNOYUcw4+xGZ9CITDuhxvOWMrZuo2uxNOmGRIKuNEKnZ7eScAMaaQC5cSCbpwxOCNllz0hLTko1b60/2DllIwHrLvu8HIznHHCcsx5RyVkneX87attdZPT5eSkRK2bIvPDkhtrTUoKcXnHz9qylqJkpJRhkvekJRaKaVCCsO0tXtFNEZhg5RyyZGQ5o691FZz2HykhGLjgKg7xhlHwJxzSTH4o0DO0Xu31ZYV06mVxW9r2LdtiT5LJsduYkqfLkNMaTgP23q8fH/71BkquHOFABFCn3usWJ13AQOh2FJBxinQGEqOGUkbhgEoNdowzimj63613rKItRFng1K6mwZELLW1nFuJrRVKEX+aXmo9vE2l1FqEYoQzSnmNcZ3X5+v7Oq+tAiA0BCiNcqKlujtdnh4eH54+Kyr8tuYQuGRcipiq8ymWKpUGhFwLZwwpKdiGaQKCt3WmkXdGUSr9YaGAFEwpziTNMR+HU4rL88QFPdZodwucF1KY4NywEHJqTTB1vjxIpW7z4lwchkkojoCUMndslBJspIREheBCTqeTDcFaW2r99Pnz0He322z3gyIdT2M3jKnl4ELJBVoDUvveUEKw1Jyq4IRR6UOSkvW9pIQRQpRW58vp+fm7tRuXnPOeMvrzlUsIEYN39ihTH3N8/vH9Or9ThufT/a+//APNOXp7nWet5WF9LuXHj5dYy3AakdOcmj8sRa6YHIcBEQAqY4wzoiSHEJACEbQfB3tYu8wh+wY4nc+d7oKNQnGj1f+Ppf/a1W1L0mux6N4M+5s553LbZZYlWboTcARd6skF6EKCAB2eIlgkqzJzu2Wm+c2w3Rtd7PMKHR2BwBcRrWndCMYwYKAMcLHbpBqllIwpQsUIQ3TO24AAKcZ/+u7HH7/7niC2Gc8VHo+qnU2F0iomBBr7QQq5rbYAGobxKHsEqNFMclFLzjHlGLWUD+eHd4Qd+2H99OE63WOOq10/f/vsYnAp3pdpj65sxa5GKS4432erm6ZytAVHE6c4x5zmdQkhAMpSMEDF2V0LXTO0jaIM77srhUHCGBAXhAtOBnx9vRljSUP+T/ZSLozQoVG5VI6gezoiyPu2JxeP4xg77Z03ITye32lrCJPw5cXavRkPUGvfNE3bOOMJ5sfzmVMRfagqElQJB0ax2bd5ma3ZkWYu5ugqJxRBySoyRiGV9b5F7+jI6QxAAM6d5gzsus2LWJf05cvXb5d7BEWaDhBdN7OtK6pMsRhDbLTWDKdgGsZwLNNt6brmNk3XzQjdCMFLrVAyxnietmT9d+/OknKpuQ8+e7vva6ub7358NMbFFLZ1ff52ebnvrnI1dqXERjTWWbcat9hOtVJyROXu8vJ2SyVRITDmPtpsKsEkATbWat1SxgTlxccLhJDdZTLOeIVk3x8ezwcp2eY2SQljvEYaoLRNl0Kab6s8NLppOQJBcN83btutc8JyxvhhGHrd1JSf2m78QWSAXhBew1GpA+UYo3VbonEoZ0QykMKV6M/jZb4t+/bw7gHqfV13l9Pz9Xp6OrAa1dhUhKbbPPa6V00jZLAeE9ZzHjAWSshGTsmXUu7O2m1HGDcPp5//+lu+L66U8TDUWu1moo+YE8Jpf9SdeoBUb9ONb9By8s8/fXr/6d2gJMro+6eD5jV7E9YVSvbbqphijH79+rb3/PHx8cMw9IgmTF6utxTD4TAGH/fNq0ZmghEmUvOaSHIRY7zvjok1plBrsc6kUhHURikuBOOCMppShoRiDQWlkki0JMdyPJ774ZBr+vLta4qpMjrPd+P3dw8fHs4PNdcQfc0BcikiMUwJ4U2LMKWlVCGlEJRLllJBqB76cTIbwiSXOox9o9pUcqoZ0wo4EwJKiZhjCtE7n4sllLhYmGiVZi4YLCiC3B3Uly/T5fq2bjvl/O//9I8//vQDpdzNawpeNRIhVBFgjErJnLCcPMqxuIAIgRBzDAWxgsB6H3KsBEIOPqcUrDW2ltIPDaciE5pDCrE6G6x1hJKc0rJvlVeumsVs3y7Pby9vjPHv33/6+x9/+vMPP0iOpuutaRqGhG4lxQQQApStiyUDKpUySjCrCVSjKaMY4QKVcgYEEcZLqcYGa13ftZJKSomUxFvLEJACjAtf3bZtwWyaCyjk5etbhio1xQRKrkKwddvW1QAiMWZARQqZUDHRUUaiizG6VgjU9+syfb06tNIKlQD+dnt+2o6ckRz2UpOW2hprnSWEnk/n2zShCufTqe2aktM2rwThd4dTKXmZl1xgMps1uRTEhb5dbyG4fjg2fe9DDD72p7FEmJYplhSNy7kAwizwHDLFLKXqXERQU4Ecsou5FpCSS8kq5EixdSEnNg6D293b5Q2gEoyAVIJrqHHeZkc1oCI7/Xg+xhCulzdnNqbw0PVK6X7o5n1/OL8/nh5qIbvdvA0EcYQopoRzBoRQwblU2ITuMMimnZft9nw9Hw+PT08PH95hKK+vL9dr8Mbb1bJCgo+MMi1a66w1oe3blOK2baXkArlt+5wjQlgqGVN0LjAuMEbLMjcNb4fWB19pJZjtW7YmMCGA4N3EUgJAjSHnVKMPWiqMqXWOUORdKLlqoR8fzq2UmhLFOck6cxFTwpym4uZpRQR6TAETYFj1bUFo9ybGyAlXSjOOU4yQEUZUKVVRKbVE7wCVUsK+OilF2yipm3U1oeT7upyfThVn721KSfE2+7qum/Pu6d37cRx2uxGCg7X7vDCGU4pa6QzYhT1jBRRsMCXX9+/Ox9ORie7z778DoFZrXAohSLTSbNZZyzhBUAXjhdQY07zfFdd9e+yaLudggqkoAmTn1phcyiE6r1uWckQIYgxKy77v5nX7+vwNYWyDzai+TbfzOn0olqAa8lqwY337y89fSqmvb5em0/rQC4I4ZX4xbtufvjtFTl/enqnAzvsYciMVwTSX7FNyMW7OXaa7T6HVHcGUY5FjAoX7fkRQ13XCgPq2iSinSle/z/sWQoqAKibz6qzLFNOPD+//05/+8XR4fH2+HrpOw1hLpcAgFymo1mzoO8gQcNyMeTPPT4+PSnWMkFogV0e5SClP90VzeXp8OHS94lQJjBlK+eHc9cZb6/23+2uhYI37tseKSELVeDcHTzHOKc/BHvsxudgCpoTWkmokDCjXct99ruXwODCMIDPrNqCMK0GZYEJJDmazwVk6dFK0ksmQcvROMoQZIATRmOTtOHZcKet8Lhgqjy5KrUetoHDTxIsDDqIb1NPTSUmxr3splaJKEKi+qTX73aYQMRQpxOl8ZkIESIjY+3JnWvUaOKvrywsXAlDkDFFVyKfhIB/5f/mnT5Kw119+/v99/QvUItu+b8Zv9326P4um5UJILubbvuPl6cMTEySGUCu4zVJE1KHRXb/F+B8//+3Dd5/6XhezT7frfJu9S/xwvM8LLrGkJCQdDz1GIBiRGPNGxIwppK7hs3Eh5mWeorNolM3Qa0ERZ1Cz947gvmlETh4zzJhQTauVsMH6FIwLzkfZaNnwHApiQAWZ9g0RSCkWJggjMYYYPSoFcnp4GCRD87TFXDSX5ECHrtNaS4K1ZDWGvu/ePz3lmLx3jdbbvJUc2kd1GAaf4nK9Pru9b4ZOtlABclGcAaBxGI/HJ4IFlVJK8ccWpG7U9TYt26Y67X2SSjPOmKRuN8tSFOOiF4JSJfgfSo2+74iimMC0TNO+xRgPh4NQ7ftP31tnr/N8vU6n09h1LUZ4XmdeKdddRZBr7rqBC0k0FlruMX//7p01rlE6xeBjZIiaEJZ5WdZn74FSfr8uteJGNsnFLbixVT1q9piSi5ThXNI6L+AZo6jGklNmlCLEYiiEcN3gdQ8+RakVZTzHBLVQhFut2qYTWgbnC5RcS4ieIMS1TDkxyoNPOZdakeB6GI9d23vntnXdrcEVKaka2XRtzygVSnrvY0wVEhOUMdb1HRX88j+n+9t8Po99P6SUd2sKFAF8X2stlXFFEOGUY4R9DLVEBFBrYFyVinFNY98QhihGOTtjTU4RIaCM90MvCI7BA6bOWrPtKWXKiQs2hgC5CspJJX5zc0Gqa/fdzsuqtRZSrutGCaulllqEEISxbbe55ppzDCmEkEvRQhAiAe3Ttq+vry+vr8uyd7r9808/vX/3oVH8Pt1SCqRiSguV5HZdMEUxJQRISYljRRVRLggmGCNMEMYFoDAmz6ejcYFyhhBQSjEh1njOlOR0vi1KccbothvYgVLIIZJOCiUv3+7PL7NsNWEaI8SFyDGm4kxKJQcpFRU8prruO2AspBSqKTErLSin9/lunbHRT9vsQ3bRG7ff7pdRt6dhPI0nQhiaJyol45wzJjRv2xYDpJQIBk6wt9Zaa3crVIMQeXl+STk1WnMuSsrTtDRKcSa8Ta+vd2ctIDieeiGEtd6F4K2VTPzzP/+j88E7gzDkWvZ1rwhjQCwjKMTsNoRAKa0VSiFMKIyJc0Y3SkhurIubvdwmRkQ/jM4HhMi8LAXqYeybXjFBS0an43Fz4Ycfvv/w8Dhd3+boBaN9f6aU5RQRQtb47tDmkKDUtm1XY1yMvNGUCQR/yK3JeDykFPe6+v1q9qCUwhxpqZpee2trzeuybduG/zBpMYoQJZjUmr0LqZqOcUCVc8o4SyXHlIILAIgSzrlinDkfKiBGmXV23Wyp6DCMiKGMsI9+ut9DuNVcU0wYkUZrlLNd1xhCq9tGKCwEZm73Yd+3t9dr07W6a33w0fmUQ8r53fmDbpsYXfa5AlQMGGOEEYKMEWBMJBfeBm89BuRD8s77HGLw8zwTRitkLihnaJ9nu+2Ysxi989ZZV0sO1pYS59m8e3/68P7jsoeE8rKt0zTlkAARa4JvEmfyfHpglEpGckxM0QKAAW2rSz5nV4w3gHGOKdaCAcfk7pMPwclOZF9fXy8+WMxwdbVppXU2WM84V1po1Uxh9iGElDDBgBFiJNf09eUrgvLQd0LgkNx//7f//tvXF8CsQJncaoPtGvVweMAAnCDBSMkk11Jrdd7nUvuuQ9t2mxcfbtN9CikaZyrCfT9+9+k7kgDVgisqpXpnrdlzyXmfbXaVlBRzDAUj7IO/v0632z3E2Hf9x6f3g+4oRpqLoesz0NUbKR8EJfNtMvvuTOCUtW3b9m30ttWyZAgpl5xzSc3Y9kOXYzocTwgIZG9246yliYyHQXxSIaVUyo/1T7yV07T89T/+aty+uXUj2/02uQqYQM4FE4oyYELHoWOc921LAfs9LstOOYve6L5/fDxP940okTGEEOO6NZw3jfa+KskJ4D/8vDEXQWnJmVJkdquUEkwAQM4FAfpjNk0pXzeT9tjKRr2XlBDVMkF5sCGnjDA2616qUVpBrSUlgknMlQM+jOM4Hja37WYfhYZacKmtbBRvT6dBNnR6vdPHVoyop7x2NP/4w/cfxu7/+N//P5iiVje6PxPh/O9fvHNto8+noZZSkndm02KQSmOIiYDkkkvmQkglD32vJS85lxS9sRjRph/ag17XBeXIxEA4VYI2UpYY9vVKAAEgUeun47FR3WXZvr3dcMOGhmlax8MYh3p7m310lNZGcsUO49jXinwMmnWAu8Xt6fWlIDpNl5g9BsIQYpyc+JhLsniPzs3rLLkmDClGCaSw7i2T+kH5lDmXMeTjePDOTfOWO11zRRUNp+yjN8ueC9RYUEGLdci5nNPL21uIIT9i7yNGuGuVEr0zPmOSSm3aJpdqd8sZYYCTD0PfTfPurJtv9/PjwVlXYhIUV4xs8Ldl7pS0884w9iF+/faiWjWcxqE/4rKRlgkpcqnj6UA25mISgh8+nlvZdEpRhlINxtj1vt+WOcUsuXgUx67v8jKPvTgNreINp/rlep2WuZRyOJ5iJvN6w7neV7IHGLtivF3nRSkNCCkmSM9WZwEKwzS4+HafMSWtVqnC+TQy2Wx2Wza3bM4FdzwdMMGMiVorCfnQdbrVjLEsRSpxM3utiVECGPV6+PF78suvv8aUtW6VkAxTby0A/GE+R4BySuu+I0wlF6X+IfNOSgsRCtRko9umm/GGcayUqChXhAoUQChXSDUbY1msgrLz47HWNE23nCJmRDKUnNGSDUPHKHN2f+wP/Me/01z//vnzNs1vzy/Je0ZQzYkQLATPpVhvcskpeB98LglqhYp25xbv0LrGmAEDSwQjWkOUDWec8HHQXceV+PL7N+N2KRihCAF4nwpgV+K8u7f5bbULKnDuxu+ePn3/7hMTzGx7SLFAZYQVwM6H69vdeS8b2XZaaMEkBeK23XKKOaUIlZyyDyFgB5XMq1GNPoxj03ZvtyvkejofrXfLuoXEZau8DfM8Nw3/8OE0ngeciC93qmSl+LIsuRYqaM4FESa1fnt7mxZzfDgQ9McnJ20zaqkkZmPXCMHW47BblzC63O7zYuZ9LdFerzPDtO0zMHJ6esqMztv+y+ffnd3eP70vJV+nay0putDqZtt3az0gIAxBxhUg5+JDeP/xgzOmlIgxQQAFcMqQMmCCSyaMctqxDiOKWPSJAGRcNucQJRVTnxITHBOSofhSKmPW+uh803MWcgmRUR6w50w2bYswfX5+Q7iOp+G7T98dTsfLdJ+WuSDAjDOpEIFS87qvqEYKkVTn7d0u16eH46mXGJNccM7Axy7kYBZTEw4xZIob3dCG2W25rpetmooxJez8/vuhs4SJFFLTyH1Zrd+VlrqV1nou2EkdU0rrapZ1EUqNB+Z9SClWirdtrbUiDLlkVIAyXDHiVGqpCRUIEReCEoJzEWIwzkvFD4cRKEqACy7bZjCmpWbKaanVem+NpRVyrFroRkmgRGQ6DO22byFH2PdcyrqulOC+71qtKUcEakVU9w2g6o1jGDDFNSXOSM4JJDRdDT7cp9m5gCkuCKdc52lhjCtBJadKsuqzkkOu4MMuAmUEf/36jRJoGsEUUIps3OZtMWYxdosxSSUYk3b3E0xSCUl58CEDNK1mjOQMctQIzfOy5zw3WgFAjrlp2rbVxk77apq+oRmv6/LL579ppY7Ho9TMGeOdDzFyRsbxIKW6XG+UMd0q50OqEGuFUi/TLeVY8+PDqQ/VXe9vyz57AMwow2QLe7cITtjH06PA6Pnrr6/zdNumSuq31xfC+UkdD6djQmhapmWZMcGEEEy5UEI3imWMSk0xOxdNjK5EZ+1i1lBsSFFrmVMuGSWfrNmhZiXk3//wd3/33Z8ko25dizec4VSCqEEQoaUougEAKiihTDJBUEVSIIxM8ftmQyqcEUIoV3oL9vPXawyx4oJYQVwhSjJwoVjdDcbp1B8AYxYhv3tvvHXOTcvMEpu2ZfN7pvW6rrhWnyKTlAqqG9kMQ6nQHyTnLAbvg0MYA0ne1Qgo1WStXWs5NK3iLFi7b/ttmn2sIeUydozhtkWM8+D8/bpsZtNdgzDBEh3GgXPeKI0QdLtBlFIKzpvdbBUKIACEC6DdOuMTo7RtFdfCGntdZia5ZIIkMgjdjv2+7be37fL1/vjxHSJQYtRS0H/68zuW87RMkO22T0y0/9v/7f9xnV4vlxdjdi3Ujx8/vtzuFIPS0uz0/ras9/J47h4ezsaLZV9LLPO+vc1TKfnd40PXtvu+9lqPsjkMJyYl5YRChZJ020rBOcXRuWgNRqjp+gI1odK9O/0gu9fr/NB1utNCkWit1NyuXpND07U5R4pSpaWEvZGKAyRKhnGYjXTejSP7698+b8vcSN0OPSai6xopxeVy+fVvXyuuTDCBGSopGqsJH/px3jbrg2RCMRi7NlLyvM3z/SaVDrH8f//3/6q1pohsxh2HkSBsQi4plpRqphijEsGjzDmKJUOsum//+3//nxXjx3O0zuUSqOCSCck5IuR4GFNO3aAo1Bh9DJ71LSIoF3S9LddyfzyPSun17q7Xu9x2hGg7NFppu/vnyxumhFK6rT6m1Oh2uqyv4YJKOp1HLkiphQv1eH5a1nnblp//dj+ejt3jaRz76TLvPhPNzLw/f33GFP/pz3//4eOfnl8uv33+kqGkjF9uC6HAVJNCrChnVCpCw9B1TZdC2KaZCYE5lW2LEEqY1JIX6xPGmDNM4G2anx5orxsKBGt0n6ZpuiGMlW4qZFQrZ3TbF8o5a+nxMM7T/XafG92eDkfOWIwh5qiVklwDQPCxolqhFqhc8JRTrqXpW8Do5fJqg3fep5ik4M6Y1Peq6TFn3oUKCBOKEPbGt0fZaF4TUacjJuC8y6nsxuaaxSgJoPtmEaDTcORErXezzyacHD0iZ8zt7cqUHoYhxuCdSzXHko3zhDGhFACeJzNti3F+GA7jYVw36zGWjHkXSq2YUrOYlEvK6Xq9YYzHc9d0LWPi29e317fbl+dvm1m7Q/fTjz+cu1FTLjhhhCLVSAy5gFKKUhJdIUoITjhnQmvGRcxZKl5qDdYDqULQnIo1IZSYUgnWCUGc22N0f5BzAWPOWXdovfPTulDKpm19vuyyY6xh++RWZ11KOTnAQBjdpj1XGA6CC0WJuMyvOZf379+N3VBR7ZuWAAiCJSaS0kgokopw0fA2P+HL7Xp5eUkxcsyC8c8vr6fHByD4y+u33758prVCrSk9xBgwQUAw4UxpVQBSisaakspx7BhjFYAiGPqWMFShzvNWATVNw4VIKfmYrYtcYElEI5Up5nJ9q7jklKBArkUKqbQgBOVajLFQUM1l23Zjw75YKJVLejo/lVJ9KMu8PT09CakE1zWX6XYjULmUEmHZqFRSTmW3/svXb+s8fffu4/0KIZiu1QThUhwAWpeVc93ppkSSY0KR4IJt9D744H0pUSRJnSFSDk8n0jbOOqlUxDFEl2sw+27tphuNCVFE5FoxJpi5tFeUcq4glFaq2ayd5vu+LQB1OAxt30HJJRQhpFQiJ4QwoowwzoTkupEE05RzBVxynpY51jTNE2UMCDk+HF0I25eFYDx2bSvbGGOKvqYwz4uN3noTUpqXO0W0lCSFOI99o0SJLmYshG4EL7UgVgpGtZZKgCLsvQOMuOLGWhdCxcinfHm75RqaXkz3W2l1cu7y5YUSLoUugCIUzGrOOSOHEXGpEAa/f/0tf8nLYrfNpFIrYKiVYOCcOmcBitlWsxrdiFoOlBKCWSrgQ4wxlVJCDEIowVk/Dl3bRMo45UzQl7fXz1++rOuqpEIER+dzzIIJDAghKLkaYyljAx8o57HsFSOoKBfAFBBUjDGnApV6HA6ViLdl3qOHUlNGEpOak1aMZni7367TZQ5m3dZpm9tuPBQkpWz79n6/AyDGGIIMCMcQ3p6fO644oU3X7z647H779qXkXFDJ4Jx3yzp54zCiFPNSsBTNn3/86Z/+8R8/fHwvCbnEt8nNW5qklgIDhhTs1nX8w/cfnA/bavbNRGc0R00jOKpKUVKAYppqDTEZ5y4vV+f8eOwe3z9ijADnlGouwbvonMk+5pJu95vbTdOq8TSch/Pj4fHr29tvz7+vdvcxUYR3a788v+6rQVBziijgUjMAYrzxId5uz8a6WDDTOufsjG0UD1woyqN3l+t1WXfKdM5g9iAEbxueUjB7SDGVSgihGEOKziTH6Ti0rRTicp83awAljEQKIaZUEaqAGSfFhuBCUbgTrGC8Oz/f78u+t1JJQh+PAylIU1777jbZb1/eIjk9nY+EEPo4cuy9mVIp+r/+t/++uPK//V//70SOm/9sl1Wo1HcDl4+zXRiGTvIkKeDIUIKSEGGVcpfMahezGi0kxwR8kpjSRo5tDxUt25YjkYrXgrd9rykCo9kYZ7YP373v+vY2TT5F2bVc0Mfj+P58TiXfl7dYCSWlOzX4zPfNvUz3rZbDeXh+eTsPB0oQAkx1NzL9n7770xyjmfdtT1KpodGx+Bzd4eFMoM73BSiLJZz7EZmwFX9qR1SR2/YQok8JEJTgT2OL6uF+nyjnjCFEGJGccr6u9uUvf3s4Dt837whlmirIdN33ddo//fQxlbDuJqfcNul0fNg3c3l+fXr/ME0WkdyPzW79cr19+vROtxpKqDHE6EsppeSXlxvDnCKaUjoCm1YHSAo1rMvStr5r+/W2Ohslldu2Z17ef3zgSvztL7/klB4ejsHm22WmGnHNP7w7HbrzuBw+f/7N2g0LpvUYa8TURpuvt0vObtSNaDopZN+0Wkkm8bztxoZ13aDgrte0gRDDvC4uRIbQoPWhbzWnopU5p5Iq5ex6v6+byVDa/rAaa4J1zlFOgUAjZcsUQDH7brzX2knJhRRaqtx1GYo3e/QBxSAxOrTq4ThwKu/LtF83DFg3bYXqfUgxCSG54gjhXEuGYoOnhBi3B5/6vnVun2YbYhpLwSVnVHdju7YlmFIMjENw+3TNDJN3j8eaS9hsjpVWFk1eboYy5PYUgydYHNrT3/3wD799/dIq/TCet22+Pr8t17tdt+BtzrnmShhNtbgYfYr7Zi63u41xtvtifELo1I2QAi402GicrYiEFIfT4Y/auhubUb2vhgjx/Pz8+29fY0pPj+++//HTu6cn+OPK0ydGNac8oSw4EVxAhZAtE1wgIbXUbQu15pJRrZTiygmmKIbgnC0pM84YYRQjpUgNe3Arx0iqFgjpTmNz0Pu65ZSYVFvw//6Xv/mc/zn8nZYKBKk5olwpZ5jifS8+V2StFE0FyqlilHZaE1LNtiXjQ4zZBk98SSXFGn3Zl7VrO8ZVVaF5IpwzxvCyLFvZycY371+X22W/CwzkBUmlP338QDmOMeCKYopc0LZR3niq8eEwEIJiChgVhOB2uxHOXIzBl6ZthRQcyRjCuhguEBsIEsX7jZDU6EYQWoGEBLEkzWkuxRjnrCeYQC2o1JxCxGCjRxa1XQuAby/3529fHo4Pp/GxAlxfXjBDrdLBp1qr0BKREkKcluV6uTDKKGGyk4AHs+xQsYvJebNOiyCm1YOkWFGKCQFEt+uy2q1CVY1AUJ01FKrZzLW8vX75rWfMbHtOjlHKOQ8+OO8ElzHGZd+lUk3X5gouBOMCZYQhkhM453MBxjDnLJfsrcshp5RDCM7VP8JTkokAyTjrh9b63dpgwn653aZlW9b1+HBEBbbNgkSpJIKoielwEJThbV0JpwRVhpBgdNtXGwzDTEtJUMElcig5BAKSZ6guVgwM45gg+FByyhjb3RRUKtYmmJA9YWxdt81utcZYXNNpvOdI2XKdCGFC6uC8y6FfO0TxboxdDMaYK5qjd8YRKp0NCJG2aZWSjOFGcygw3RbvHBMsh3x9vTWNVKrZjF+NKbgGH5z1jO5d25+O0VjXaqG0mufbfL8v09x1fdu2JablPnNCVd8Iwb3167JVAIQQ5zLWYoOPOXEuEKhONuehfzidnk5Py/XuZD6fP43b9B+//81tO8ZEKI5Rtdv6MBxOp+Ge7eu3ad43xEiqZTdbTGF122q2ioBjlGuBnJL38+2GdNtoRQTajX2+vb3er6pTGEH8AxNkYym50c1hPGrRd7r/6Ycfh+GEiCioViD9MCpBBSOAUcZo2zcqKUrBrNu+2m2xOUY+8JQD40QP3by66WpyrDG9cS4wQkqKViuKsLHGOkMQUVJzLkMI3ieMMAHGEC0uCi57pU9d20rZSvF2v/7+8roZQzndXNj2S0jxfp/fHx8ZIc5aLrgQGAAKQib7cN2cD7WUrvnIuGCccky6rsuYCdWXDCmEjKj1Zd1CKKDabtSaS4xr3qbJGAO56KYQTDHkEp1PDmE4nsZlNfdliTlVjDOAizGzelvBeTdP8zrPnDFJ2KnrxlE3w6GG1LdYcveXry8uFdb11s00xgWlwBXdS50X/+vzWzP++6fHR5+q96nVVROQnCrRIc47yVlFviRC6e785LxHeTZ+3gzK6SQ4BdRwGUKFDKSg3Zjnry9ECCYJEVgSWnMGSjkCRFms4HJOUGMpt/mufKTAEOY+eL8tQhFK0bJMIaJttsu2rdsmlHr/6fu0bjVXwUUOyeUcYmKUnZte45IrkFi88wmy3ZYS4/EwZoLv1zk5i5xnGJXgEaFSiMzIdrs5a0Pbtg8n+fDUCJULYUInRICgdd+X+xxL8jX7XATBTGkwQQjFOa8V62bwZiekUMo//fhxvs+1FqVkjI4yhkgtJXljMaUYVVST5IRTSjApCeNaGt0KzqECl6rTOnhPtWyH5v37M4Yqpeq6QUlpbOdjkIL+kfEo1RyOhxo7Y3Z9kERgzGiGfHg4MEmX+UopbVodcnl4JMu0eusem3Pz48h1++317S+//iWnRFXDFNeCx1JrLi5myanuGyLEr79+3V4nlCp9Om/b5kIwu80pq4Ne9n3zXjfNarbb/bJsW9u2bjeXFPM4VJmcM4TgRrcI4ZgSq3Qc+75vN7Pd73e7bwRor1uGcQyuVhxiyqnkVFKMpdSYcowR7VYKUaFa71wMiCIpJGFUE9Y0rdpXRFFG5XJ9I9dJNw1FuFONoDRYSzHmjGJACNUUE5SaQqm59l1TK2AElNBG6UAIpex4OACmy7bZfb/fbgSj0+G0WbtsK8aYUFxcZYJSRoxzL5fbNC8uuAo45WgWMwz9u+NRILlNMyrQNG1Mefd2mhbZygqYcuFS/Pb5c0ihZtBdOzbDh3dPx/PBbdZagxHJ94IQyzmXUlUjGWGlQog+hsg4p1Q4H1MMBVVvvXOREAQAPsScoVRUMqKUcol1q1LMre+4aAhnqYTr/Q1KphgzwZq+qRhN6/6XXz4/Pj68+5ePmgtjzbJM87JMtyXGgjCFVLa4lZz6XveDRlBSKIyQ6B3GqB+6mrNzrlQUXdKNPo0jI5wi8I0kGGOECKab27dte73fYnSC0Rx8TsAo50JwRihBfg8ueK2kYIw2iBJEEAAUZ/cYQjcOMcaYi5QyJ++9QxJKqTE6b31FnAumtbxdi+JsHFsfEgBzqV6ud7MZTHGOCaHKGWaY1AZSzlTQXMO0LotZzW5dDILJ0/F0PpytM4YzyqizYbpPiKAKAWEkpYRaCSMx5tfrDTMkCBnPTyn4imgoiAm5Ttsvv/5yOJ0IJjnVppWH2vtvlivZHVrjXckxODO/Fjam6OxmXQihlvyHHDRyDgRBRca66JMQSGuNKVvXzYUwzdP/aa8AMg6HRksukXfeWccIY5wjgisKIRZCCCUoJpdibFrZdPJ6u4aUnPfG7AhDDFEQnkJuH3sluPOeE2K9h5yycx1phl7rDKrVwzp+e/kafeaEdVoiqLVkLSXDghRwZpdtwyWVnBjIOSOEccycMCy0XPYVUwBUYnJCsxwKIXgYervukuFP332/rBvjjDAUjfd+izYbZ/bdcS4zcIKBMjEOB8tdCKFvdd83ACAUqxlHJTEAwohhDBUfDyeplB4ym9d52yxYwmCaL9ZtjRZSyqFtT8djcKGWfDweD4fT0I05eSUFVEghQQWoFWPMOA8hpJhc9Ms8r+t+HA/nw1lTcRq7YzdwzCmi7x/edY+Pcnl7vT37bccYayE5kBIypCwo7bumnZvd7pszKfr7fMeULHbfnRGc/xFdc45CcFWpXOO8uut+XY19W6ZMkvGQvC8hSIrHth3a8XR6evf+Y6e7thvXeVnnpUQXjHOrPQwdpnR3HhPkU045R5++XD7f551Q2bUdl4KgvO1XSuJD1xJMKoJU47qsja5aSsaoFtzvu9m2WmspiRZ8PI2cNt75kLLgopSUa3bOhOBjStbZoevPj2fM5S+//+ZijDlTSt7m2QfPmDi2HWbcxEilpFrgmvzqbrcJEdoIxSiDkmqq7ak7Qa14ZaqNKa33GGPejPEphZCkrErJWkKFigkQRnfnXLpBgX03PnkqaAy55Op9MNa5mAqA8z5DEozfpsl6671PqEDNYQuklvvcfXz/+P7jey309q//zgVaLm+XRkNC9K//41cp6A7wuvjrfTN7en2bGGNb8ELUQy86XYlAKVJXyWYiInT1O/GmBv+33774GLVuQQhCiI+RY3rsuxjwtC3Teo8JF8KeL3dEatuLf/nP/2ngIu97CYlwtixBKCBEYpwRg0rrui7BBEopw0RyaZK9zHtFoh3fW6QVGwJqRf+gVH99e10XM/lggrObG8aHUXQPvUilrvOMCZFNW7ybp1lK3R0PHEjZLOR8aDSuBRP48P4dbdTjsn779g0SPD+/SUEb0SrZVkDPb2+IkWJtTWE3m+rE63w99EPaZsKw5LLvO6l4jPF4OMQQcc3T9Y0LTinzwZwfD+u2e2+HvnmIx7frukxb13B5PrStCi5ySk8fxqEfSkxMENWo6KNxOxDoj5qQ6nfLOYaand+4Jmkry3TbnO0HqaSqIfZdoxsmG55KJLnk4FdnnPPJhxQjsw4z1XUDYzQ6a5Yt+W23y3S75RC8T4xRiZE3rubsot+NaxrZo0Yy9XB+WJYZF3j5+lxLYUq3sskl14qaVoHAy7wEX1PxCNdSA6DMqEQlm20htXRKCq2sTylnwbgSvJRiDTSSU+i9zLvzuZCY6OL2edsOpzNFOCXvjREUUcQopsEGG3zNpdYSQuCEaikRxoBAKi2VvC+TXZah7d+fz+8e3rW6ydEvwWOEx0NPACcXU8pSSqkURrTveuucDU7r5ngazW4LrhUDopBrevnyzZjt3dNZKNEK/e6Hp//xb/+LEMC4ppxCLrYWCnVPaTFbCiGnQDJlGBjBinP5KIzdc8yME8mV8b4S2K0Fhny01+kSnP/+43f/+R/+M8qgtAgu7OvuUxp63XXdttrkk9KSIKQlTyWHSGMMCBVj93nezW4wI13fqk653d3ve6OVkk2ifJ03R/L56ZgrtilkwDHnmjIqdZ4W74ySkhDy/PVrcGY8D6GkL2/PT9d3Y9ct27Ttq3XOGM+JFEymPSKKFaf7ZkuiKTjVNpzI4ELbakawNXuKASHSdlo3Tds0OZWyu1IcrjTkWnKCUrbVLOscjKUZGJHH4Xg8HLKPPiaCSisVlajk6PaVc1YLevn2bJ0LySHAMQEXLLhISGk7vm1m2fYY07atBBNgnQtu3XFModa47zshvOJKGdGNnOelRsCYaMHGtpNUxpiMc7vZtRj6vv39+fX57atW/ePh4ftP33e6YRRR+uiDN6vLsYk5llwQqpjW7GLIddq3f/2P/7jty/EwdKqBFDVXUrJmbFvepliEFLrt1nnb9q1rG38cYq4l1eC8ZAzh6vdli8FtK5et2U2uVWopBMWMIIqjzxUwE0IqiREBFBhnBcA7yyjNKSMof3AcoCBGiBhGxgQlLOfcdCy6AFBrSdb5+/1eEKaUEYJSzNZYhKCWvK374ePhT3/+aej7UrIPMdfiggs2aclDcJgTQnmrm4LINu93Mzdt+/HjO4oBIzwOJ4ooSpUzkkrqVMcIawQLKfjgmOikVrGW3jeUYh9CowWxRY/t4TjGmJtjo6VsVPP+3XeE4pTDvE+3+9ttujdSnfqzVr1Syu2x77u+bYxZr/c3DFUw5KyNJo7jiaAG38ty3yqlP/3wk+6Uix5QaXshFLFefvlmK44Z8GqnlFrJZU51W7dpup1O50PfDJ1OmaEK+7bGEAipWnKlm5RTcrFSpKUCQITw90+ffvruu2Q8zqkkyBkwoV0/NE1nsmmVek4ZMGuk1FK1jaacMkzP9JQQlVJ/fv68291nmytCnOhGp5RCSoRArTnnpBqBMVpWuwazmu22rJgSThTDmDLx/nz44dMnwRXD6v35sWnGkNO3dVOKK82McSlnl5DxaV1tBiw6cRyPgBGhtW2AEdYoXRkLKVnPEKTOQ6M79iSssQyAMzWOQy0IoVwg9J3CiE73bZnWUotSbFmW+7q5EADlmLySjFByv6/rtreHw0mrn77/2DXy+e3t5fVl3fZ2bEPNv7x+sfF8Pp2gJI7h58+/3u/3aV44k3/64U/Hrj/2Oux7qCSnlgvKKI7BMM4oh1LAWYNJ/fD+hDEuwTmzpZSUFozxZVp9ChghoTklHBMc7vu3l9fn1zdf/oCwVJeC1Eo3dJ2N25eUCqq1oJpKutnwty9FKNr0mglRaoDk/Xp/LVW2Lf3w3Yd+HP7f//W/Xd4uFPHHc//h8dgKFhh0SjZadJ0u2TmX1tv85fPr7NLzers5R6V+ub6uix2GA+N4lFJ2g5SslTIziCW8boY0anmLnkCqdb0vH7atNpnWxBlFqSBMXKqcCCpCd2gAUI5QcpWMl0wAI0SF6rpa1eH02J8fX1/fKINQKyFkj/n19Y0K9vD0jiY+rdu787vxcJznW1bkeHochmEP5na75ejNunBaK8PvHt6fhzHWfDcGKNKKEzagEqfX6X691pzePb37Y+Rk5rlAVX1zPrQxGEyKd24uAG2HM/KbCymf2SmERGnc1yV72yi+2y2GeH46V8iMkc1YzARlWEoGtQLgmPN4OIbdL9eFMwI1lxpzLcvqt92EGAutjIMiWAhKKQouFpSds1SwZmgfxTn5yIg4DGPXdamUb9+eN+sajT2t9/s9lyIESykl2JoGFVRS9iWnmNLrt+vbdU6Y9EN/Op8qLi56a828zITxbd9CCMb6cRg451pLilFwCRPSSw0EVwKxpgi5I00r1V/++ltFueklKghqRQilEBihznnOELIBE5JCqhp2a7Z9ne4TI0zJpusE381mLWBggj80T989fbh8+zbdjeRcCJ5SFUKHGNc1FqiKC4xQKTWnZIzBlNjkKwJjDc6FkuHQ98euowi/XS4c4cPxWErxNhCMtG66ru27we3OOuv9npJH0B7HB+fc9XZZljkALGa+zteCynDoKyMuBDU2mzUVVUTRbixe1n5bYoXber/fLwwjxfg4thxVty1yGBDGIYZpWhnnRNBWdW/327QvPoVYPGX8fDj/0z/84zj2frOM4Ioxw7Q79A9PD5ArLpi2mFBSat3MRjhNJRVcfIw+ZUA1l1Iz9iHmnKILMSYfE+McEUaYqKg4H5Z1dt6lmLxLSvH3j6fzSS3TNN9nbzOSpO9kO7Hr7N6ul//6r//tPA45Rcbw+49PneqzQzUBlhgRcMEO3ZOPoUJxzlXGVKtcDDGjXCrCRLeqAiz7ullba7lc32quQzfGXJdtrwSatmPbnGPAUMbu9On9x9NwUJKXkpNznJFGCefsumy1Fh+y874gpHRbanUhVltSzgUjhKsPjjKSsg/BQwWt5X2a59ucgpWcO5dyThUTrjXlXCrtrScUcUmFZL2S3vgcPRs005IwWin827/9N+C5axSB8vr8hTEmBfO7wQQdDn2IsdbMFMk136dpc/ue3Hp7XezWjw0FjEsdVPNuPPzz3//D4XSa7kvOhQvW9I27+hB9P7TbZq7Xa0GgBJNSopiz85AyoGqsKRWMkbnyUgsEQBVpLY3xwUdGeXQRA2hOSdehXCsHikl0UVBKgeRaOWGE0pz/ENtVAACoxtjd7T7amCsUZLzb9jVED6iiUhlH754eP3x4X3M2dleCRRekEhQJqKXpewBYlw0LjUvt266R7eEwdGMTracEAwFOMaOk0Xw3hmAQglZg1psQPJOYUhysV5yTiigGwUbnZNM2QqoYqpQKlYqBcimVEtbtyOAUc9+PWrZSKIIYRuzQyePpEIzpWk0Zev32HFPyMYQ9+pC7btBahpAR0FzKtpu//fJXF2wzNMOhLzWnHAhGghOEgHE6HkbCiI/BOVuhEAou7ATTplElBSkIozj6hAEQ1KZt2mGc1kVyfiDsw9P78+nxYr+WEqFCLbUdhka33uwkl1ZJigFizDEJwZXUKSFC8UEPuRCcEEPo1y+/+5JTjIIxgrCxeyolpZxj9IIb70xM19s9QE41CcFTLJTAd+/ePx3Pn54eG8m/fX51aUujt3WdllUI3PaaCU6lQIS6kryLhVEXMxRY98QxEoyRGOy+LfOSgWAumGSKifm6CCk5JXY1hJK2k5xB8mXbTUFJNVQKfiT9598/bza1x7OsgqUdS7Hss8ueAOGUFoYTVBeiDZFy9vT4qFstBH1+fZvmhQuSQrC72Yx9n8u6rtfpYs1mrTkOh08f3z+MB3BeE8RxcbsNGKtOuWkJmyMEoOZaIwbCCYVa9m1hDEOhdg1E0lwAUaxbTTkNOc/bOpvl+fL6cr0AqaXWkGNGhUi8u23b13VdGBMlpYoxAAKEv91u9W/Qdw3+VAkFzYmr5e3Ll/Z4oKo/fPjx0+O315KRlh1ltDvUjx/H8E5PlysWaA8uexN8+Pzll2W2lTWlpHW/a1qFYjHkaboxgt7/9OPx2GUUFjcJRAlllcLVLne7v91X3EhjHP/rl3eD7hkdpWqppFAzgEuhIvDWt7ptZcMrRYACWOP2Zjy8F92X5+mvv/31w8cPwyBvl8t6RRTTFIHrRnVtf3h6Dc/P316U7LnWIUch6dC2vVKUw9P5YEKyzobgT23/cB4G1RRKEGfLbrfrdV5X70KnWCtPwQcuCKCMcW4EY5w8vX/afN8I6WOklCDAFMPuzBZMMjjcitaKJZZrtcYNbeOdo5jvqyEcCyUwoT5mXGrfyMeHgwteNw3jTDF6//by/HU7PZ2Z4CnW2+0WQhzOB6loruBjhIQVZ/2D2qzdHTR9W0qWjLRdRwjzMS/7Zmx4e1uWbRcq5VqNNQXV0+mQIxi/3e+bj4Fy4p0DDKzrOsRfp+ltXn0lXDBjDMboD5hs36htNYRSY/1eDMpRMjKOrUL4cGhCLNO+AWRUM0ekOx6cMYsxGcE6Gxe9KjoTUlMSUlWEcikYYaV1qbAu+7pvJnjBMSEAtRZUicAu2pjzpw8/RGfNupACSmmKKRegJOdDm6NbtpVTSigNITjn9n33yU/bmlmpUEOK1oZgosRcMr5wgTASQgTrG6kIRgwxnDCgErwpyWtNDvp4GPoU/L7M63zvx6HtOz1o9zW/rgu/vSnfGbv/j7/9bZ4mxBGmHNGQa76+vL6Vb966CoUqLYUe+qHmui+7szamDBgVimyJBKp35tvb89vtDROsu+a7x3fHcYwAoZThdHj98sIY6Vt5PJ0EY6vZhCRCsJzLtm33+w0zCoBKKQgRKWUukXBaSo0h5j8aTUYIrtbs3vtSQXK+3u/GLPM8f/zwvn04UUIejoPg6NxIP465Jtmp67LgmrZt2/ftdxdqyR/fP2nJS64EE29d1+iu1867rhuIkLmg+T69frtpKZWO67x0nUK4jqfRFTRPy7ZuQgqCac4017rnyhgLgGOMSvIYi5CaM/b+8cPDw9kaqwWVlFhUUkox4VJLAXAhFwAiJGVUKlUq8t4tt4UQuN1nxqnWwlpXcpVSYoQZZSVDTIlTmXL1vsRcjN+5T/2hY4KVWlKO3vm1Ag7ZGWNd0G3z4eG9Tc6ZTWt+Pvf/+Pc/hn1/+fq14PT+3aPkFCOMEOGUhuyZYNu+pRxC9KXkisu03W2xGOHkgyR4msfxdDikPO0zjUwfGioIIWW9r1LKmkOOvhJSM1DEPjw91ZLtvlnjKK0+xlJjRTT4QCoMQ+92h0plmHLGYUc5x8PYI6jBBqX0H2KFtlXW7qiUmlIukDMghFNIMSXOcEwhOEcIxhwZ63azrOtcaiKUMi201oyg9X5XUvVS9UICAoyItWGZllxo04j7bfNmkbodmoEJMU1TqeXx3UPXKrftYTGSsKaVomHOekqos36e5t3s56cDygAZSALNeKNZRdlal1KBUI7dAWO6zkvIO2V4N9u6L6+vbwjY07v3rR6WaUmxCk640CVjHwtTknGt2wMhWCpu7O2+GiK7w+lEdONtTJAxAcSr2dY4B+d9Ljnn2LZto5taE2UgFGn6BgtSCIhWIUJ8CIpjqEgLmZIvJTVS1lp9CG3Xj31/m+41w7vT43E8SiJa1RZGheCY0KbrgvebWTEtx7bv22a6ziVlwZRZ/baZjOB0fngYj73QhMB9Wr7d3hDGmGAKgBCCWjEhBaqN/tvLC61oszuVEhPWc8Y0PfXHT08fH08P58M43+7323489AjScnl2xg3nUaAajAnJ+RBCSN7GZmhd8Os+t99/SjVdv742ggtGMVS7G0ihb8euYfvmG04Y5VYKY61Z506NsmMVwWq8NZ4RjEpk1bjNhR0pQYcOmxCud7e6nR/aUvFl2TIUyuptWaTgQ990Un33/oPgnOK6rIsvxQVXEcQcJeGcAgXUq6bTKnobDOukbDhngKZlu6xGdh2TfL/ccQHK8NALhAmBsm7r68vLw8NZtU3IwVuLOcWcAiMF0GbMt5eX3798nZbZZY8Acq2l5hDz/TYty5pCZJxRjHPBPmWECaYEMNz29T/+9msvm/cfHhSjblvW3fFG0P/1v34PGbpWyQ8PjdAxunV/zTv/6dM/TX0/3a/rskhOECJc1O+/e4fFAV34Na2EEd1IAjineBqGp8cHKZUx9vZ60aqhjF/m+5uxPnprbfbReT/31i3ruVG+aXfuVKPEGDlhdtvSfW1VbGRTM/HWlRQqhZhyqmjZzLeXC8bkdDyO4+h3twZnTFZyeHh8ipBM8ELJCPm3r5+D2Ye+EcIwASnltlHjSecM1liOcQhhg/1wOjydT4Jt9/m+o9or3rY91zIXKClLrrRSkvICSTLMRd80ugIOzvg9EM0zrjb7gL25bEKK/s9/4lqW0PhQZNNUAO+DFowg2o6t92kch82Et8vVO59yohQ1lFQM87wTrc+64UrWeUk1EiIeHx7jZqe3C0dIPBxzqoLx4TASQQlC2zxDzcvqPz+/7S5ZE0tEzkceIIbkU8CMWHMzu+eSUoK3bcOUEQYIQSu7VKCR3bytP//tN4JRP/YA0DadalTFeB9crrVCRYjlgIWkTdfSmCmqp8ehs+r1fgMMQrYh1bFtvfeZoCQFRiSlvAcruWw7hTDY3XsTRNvkVGJIBDPddCnnadkxslRQKNXuKwBEt1dEJJeEkbZtcko+OKip0c3D44BoKRVRwSrUfU+UEZfBBVdyIYAQQUIKQgihSAreKBVTKqmMY99oZTZXcrm8XUoJxm3H46AUZ1pQVOf5jhE8HE+P7x9CzaVkn31wLn+uulXeu9v1ppUSVCCMGRcFym5MLglSHfv+7/7058fjQw0Jp5RL9cZuwVElecNjguvzt9fXtz/IQKfDYej7YRwo5euyKiYFIu/ePeUY9s2UFN1enHe5JO+ZVEpIBZTlWlNOKeYYfUgFY0wIlYozTvd1td5KEErLkopzJpdMURPsRlD9+Hj+8HDqmkYo1miFSsqC1laafcOc0MNY/u6nl9vt8/Ory2Fe9+O5PJy7vmtJwQeROGG11sIZUOp9DDFzLj58+MAZTikO/TvKSI5JMbGtu98sFGCUH8bDw+k4L9ttWZbdXufp9eU15oAZ/vDhE6SitU4p3m/Xbbn3bQsQS8neRcYYYJJiTinFmgEgowAI7fuea6kVCBeqa2rOzkYfg1QCYyKbBlUSfcgxC8EJwpQTUpKPznpeK4r5j3fzwTnUFE4Jlyzncr2+JVxSiP+Xf/lPf/q7f3o8PTKgBMN9vlGMhkNPqCSY+eBu93tCmTJGOMeUclRKrZyyrmv7pq0h5eRbrRMGLJjoJcEEU9xqzd8/KMbfLpcQAmeECA611FxTyF3PtRy+2iAkF41knBGCKUE5JmsNJUxqCQi8jwAVck4hCEZKQFCKUhJjhDHilMVYoEJOOeZSKi4pUUoQFEKJ4FwoiQgilFzuNx9cRRUTQjGSnE23O0rl3fvHsTsqxnMpu8ve7z7mVOB4fMSI14oJ45+fnz//9nnbVt1q1QjGIHjPECqortuec8WIrLuxuyGM6UYLLhnjImYQQAmpJGMKfdMui5nvZr7Nh8O51U2suRvaeV733RDCh/Z47D7kXEsxJQfOBCaoYigEPz9fg9+50Cnl4/mcIl7tkqAkqAWBzx4RUFgQQiihCEFKyUdfCnTdKJV4e3nNsQghjLdf3p43H3Zrxj61h04zPr0uyzLnEgmp48O7ksq8TTZYNN/mZaKI9noklUqpvvv0CWKa51uIHozzxmJK+rZ/OvpGN5eXKyDQDaeFT2uINcdcl/ssJNNUaiUxxjlH7zzUWkrJKVNOCVBUcS7ZGh9S1O3h4fEBUlGEvHt8UlzZ3a/Yel90o54ezn/6/vvgwr7thdbF2mnevI+VYqEkQtQHj1DkgkAtJeeaK0J4GDvGmNtd8FFSjFFuOkEJBO8xQZJLDAhXpIVAqOxm3fcdQ4SUuoYe9UBxTMlv632xZt7mzftyZQSJ3fvoYwZQUqQcYrQYAaGo1frx4QEATesCGBvvynw/tJ3gemyH8+nxeDhE4xwVD4eRIZR8yLmWlF3wXIl+GKKzQjAtFeXcrO5+n+7TXCp8FPQP0D8VLJYSa8m1zOvy8vr6+fm5QM6QSyqAEGHkDxJYCllxBSjb3SKMmWC1AhRIqSBKv1zfut9+bhrdtF13ONxcuS6eLvP++ZffzwM7caJJrYRDhvvzM6sjUzSs29MwPjyNrjqXrdYftkgsMvevF+dTzgBQho7/+P27x+NRMrbt5u2+nInshSiJKtkMhyctptfrrCgbdOumNQaylDgXS5d9J7XrWrttmrCUa0mwrwZqHAfVjkei1e7zOJ6MKZfrnCvqtGBAvXeUcama2+WeUVkXQzEdT4dlnubp3pPB+ChcoIxyrkIqGBNKWSk1oJqD1bk5DJrjHqUgKAGMQikh5ViKlKoi7HPCnNYMX7+9dP1wfDwSjE3OTmY1tkwwRtDr5fL6+sKFYgw/nE65ZLtsJ3qotWIkKGkQwcZ6xnDX9a1A232jZeeEpRinfcda0KRdrpd5FcEhRnBF15dbjgVXsKs7jf3m4rabftQEYwzYeR9TMjF8eVte7+a6GrN6LRrVKSR4rQUBQZgUoLvb7vtOOQGogskYYvTu9bIyzgUXmLDHp/fWbNbE6EN/HPquIxR3XfPy+pZKoYxRKgglqwvEO4DU9Ord+4cIqeZyPLx/vd0OugsuuZSx5tZZbz3DOFO+G6ekYJxLxYVUmzOU0f4wBMj3+/Xb65em61jhwZvgd80Egdyq4ahHVEstJXjHBQZSEYKu04WkkGBfXUpRa1UBMa18ji65SB2p7NOnD/3Qxuz3PQ9dD6SUXClGpBLBZK3VG8cFlbrngrhgN7tyIgCoEhwIR6g+vz7//vmzC75iutndRwcIhOCoVmNM/kO/lHNGhRLEBBdN2/SD0u3qp1xLI5VbvY9xDb7saDPmfr/N09KJ9qcP379/ehKKBJ+klI+nc8kFIXzox21elrQ659quk1KsWzI2UCYIJRhqRcAITigH50qpbdsyzpSSpeZSUozxD0RO20ooyuzmfOwaeQ7OCE5aRaCYahCmqJE6Y/o2X+6Xqe27YexP//APq3WvL5d5N2/otWnV2CnJuUTkeBqW63afJ8I409TbNN0nwcnp8aiF9J4IxUqtCSqjRAmpuY4pckQ4wk2nhVDA6F9/+eW+TOs+xRKP78+6a94+P6MCDOFg7L5PwblmkLWC9YYLoRophZius4sZ0+p8Ns5abxilxRVKWaZ0mxcpeYkRExJ93Le9a9tUYvQh1Yw5KhkQqRjAxT3G6pwP3uSahqavUH30IcWKsJ3s5uzvX76Mp0EonnKCUk6nU87eB+us6XrJGE4Zc85L9tbHaTUJKidMUqG5eP/h6fH4gAFRKFzQrh8RAsaYFpIgAhlqqRUSJtB1/bunLtbiUywpGecJkYxgQqgSTXtoueQpRgw54ppTLghizN4bQi1hqAK4aDGCAjmXnFJhjGFKMEaCc8ZEyhWFtFtPKLSdKjmjGFlLMSMFVeIDpgQILjmVkigVSkgthFQ8xWD3nXcYIRJcWBeDgSndU6KGDhVcUimpBGMW522p6eXLc7SGYjx0bULFWEsJw7VO855rHo5to88YEVxRo6mUmWCSikc4U4Y51mF/W1cnmeiGk4sOsZpSuFxvkrecawRccnE60ZzsMKqCUShlMtPvv/xGCIyHw77u93V1zrhg0pKAwLZty7oShBHUfV+N2YUUXaPH48A4F0JRjsltmZc1/vrr1+vbZVmwEK+3OyB0Tkd6elCNWlbkF0cICIlLJpRjqGWZp21bHk4Pnz586nRTS5WyqcTr2DmHrA/LsgFOqpEIKCFMtW1I4e322umhPfdN16EC0+vbuuVC69B3etXz7VZ8IQQzRkopNVeMSKPbmjMg1rbtpw8/PTw9LdO9Bp8Snqw9nVUhmHByHseOC5r/MNPg4FywHlJhmFPF+0bWhN4uF+Ds/P7EsJivO28olmSLRmAmOj4+jtuyXa8rVTQla2YXK1JSxZA2awovZp+NWQCiWWcosWkoYfT1Ot0Xc1/dtJv77jMhk7EVKGCEEZm3zbiNUwylCM5SSkIKTGnb9aFUYy2m1Mc0bSvUej4/Hs5HQbnfrDXm9fU+dLqkdF+XpmkqR7f7VTIphawYNudISYAR5RxTsW77PG2n81FoaZ2blx1xmnP+8vXlMt8SToQgAiSHpKQK3kOtQspaISZHCa6lMEoA45JzTalTDSZk27d//Z//UYD8y9/9Y3c+6t1vMdHT44icS0v1BIiI7diNqvv88vVfv/4/MWLfvf/w3T//C9X47fVvmZNfXr6w5rhGU2qlhCCMsg9SyVTKdZ4spdu0VEKYUFTooT1wiLrR1eXpOjdN+3R8SLrXjNKcUwxVwOb2b5c3itCge37qTYbJeEbr+244nA+EsXxdGtUKbf7yy5f7sv/w6b0kHAtdoLzdJ4CCSO16jQDlEodD12pRc+YEN0ozIdy+X748Xy5XjMmnT9+Ph2Mw5rYslNH9vr1dbzEm2TTAyLzM82bars2+3O734hNnjDJq7tfNG4ZR3AxAwYINXa8YxwUHnzZjvn194VzyigkmX1/eTscTxXC53jPYkv04doIpFInA9CC748OpoPz69ppqKVQEzG6X2Zn18TTmELb5+vr61rb90OruMNp1LTHoRkQbUE4vl0stZfryOm05IWJDXkxARCpGFrPVkqXmMeZaEzBwLkiuZSMrpfvmc60hBFERlUoK1qp2HDpvfS6l1LzOc9s11u9QYg553RYMWEqGKyYpeuswobwZakbBpg0vKQSUyrEdC6W3dfU2xJy4Vjnn224OY9c0DSWEYJRLyiVVqLXCsprL9Z6hSs7/oOhqpQTBgmJFGZTqne0aIVSXoRSUsw2CUslZDnndCpeiFGjbIePy+etnxcR56L//8OF86HHKlOLx0FeU52l1xqZQGOOMksd3Z1RDrN4nm2PJAJuzADjHnCHZaD7/9tlYgwlGhFCCa8nRRYRqRahiqBhhgv7QvKOKcs7TPP/yy2+35pZSwAg3XOzrbsLufDA5pJQQQo+nx+9O7z4+vmu1qjUpSZVuGeWuJIqQsXtMQWvJOeeCUc4BM+tcyjCvW4wRYSyEKIVgTBnlGHDNxVuHcKGYtI1mDFOM+l4zAoKSVshGKZA8ehOdJRhczBTjTmlKBMes1U2jFFRkVvN0Ov343cf/8Ze/eOferheOiF3soBvIEEPwIXHCGAJKidZ829e3l9x1WkpxuyyEUEoJp7RrNMrVWltqjtYsKbqY7LbGHHKNQIARIrjY9n2zxvsQU2QYcco6BkQKhJA3aXe+Ytw0mnCagkMpAcK1FiFFKnk3/vbluematmlC3CkC51JJdbceEVxxjTWVWNIcagbVyJiz3Z0PqWaoUBGuwNDqrd13SrFuuhDT7TbrtpNS367Xa3xLJqCSvXcIZYwxIixM91ygG/r1Yq+36fJ2K6R0qnk4DoKyUTa84PNhfHw4ztsSoQRnUEWhhmVen5dnaxdOmeANY5pLBTECQrHU6KNbPWhKCDDGtWyFZtF5UipnHDLedmedCyFqiptmSNGHaAEDZST6GF2uEhCCkjMlmDEmtcDWE84JRaVkhJAQAlBdzb6Z7T7PPgYgKAfIUJSUT4/vjuMRQQ0+vJi35T53bR8TkpwzriqQv/38y7ZMmMMwHo7j6K1/e71RSgTiNRYicHDel5hiEQPLqezOWmepwG3XeedrrJzxnBHGhBJu7I4qJpiezw/nB9bowcUtQZou03W6VVQxxgjhHGvbNt3YE5QKtgnyfL/e5+tvX36mFL1enp3zpZaKK8I1l9xcdQjRel9TaVSjtZRClVIpYV3bU8JdCCF4JXVJJaTg1lRRDjFerma6X75q+ecf/9zLwfnAJVdS2OjH4fgOfRBK/vtffs6lns8Px8PJbNvtcnVDr6UQUrVaTcbcbtMyTbnEeVutj1zp+7b+/NsvHz98Oj/K4djkVN6eozMraaj/oxRUVKGmFGsFigjmBAMpuXDMHj4+vf/w6eH84fXlklxBuaSYmnYQjYw54lwayZnAX79+vd+Xedmp5ExLRhgTPKTiFyuF6JVkkh8aCYCDoNcllFyTYvO2c8KOB2R2N++OJaq0ZEoG630IkuJUyu023++XXCJXcHu9umC0ZQXXz98u826YbOfZ+gKYQSjJhrUCYIQxJjVlwXHXKGesd4FaijHOqSKCCKV2t02nS6nXaRmut063BFCOMee87vvbheNapBKKk8s8zfOm33UAeF6m3eyUsePhqJq+6wNClRC6rIt5eTYuEsGE1pfr9PNvn5ftlmhBmAMgwliBijAmBWouFWpJOecqOE+14JIB1ZRTjF4gXhC2Kf31yxfGBccUUzIITDs9nJ8+7bfbZXrRXBJJusP5PQ/3//p/rHfPHk81uv/49flff/lff/389vXZquPDl/kZI3LkGlKmAtdMv77enr/dTn3fSDEOfRV095YgzBKEZT53In//UDDCJQytapUQCKRkzdi9rW/zNu0mm8VhEI1sKkallNtuldXL2+vvn5+nzTtgzXisALvPkad5mvuhtz4ex7Zk358GKSQuudFS9X30DiPghDMqGQkY6L4GIVWuuCCaCbmvs8/Rr+7z19da8Pc/DKpVbVuNz+tqp/uaUqqlJCDebi767z99oCTv+15SRFK9V0NDm/cnwrX6+bffjXMhJReS4IwS2M02dF1MfprvghPOuN+9IPLY98duzFAqIwDoclveJmN8rQQghXYcDuOACaYVCcIxKtuySoKFVlBR9DGY2Krmvq6X64JFiwnBhKSaE+SXtxdn9kbrWBQgjCvGJL/7eNyN27Z1M2HZ1xRC1zTDocsl3O9rdKZvGi5ZycTHRCjZ1iXEEKyjjGkuY4xu94SwRqqU8rz668V4V5dpn5Y1lJILwZib3SHAWjUOe4RJrZUrBgiZ3YQwc8ERxwSTbZlfp/vr69u2bDGEw2EYx77Reui6UvO2TYVywSSqiRKKoYTic00oJ4GJVCqncp+n3dicCm91TOl2ux0a/TCcOibAe4pJ32gluEuWEoQZDSGa3Qx9V1HmvO7rNq/T8XA8j4dffvninKmlOm8rLru3hDEaI5McALKvhAAq+NC2XPNp2fYQqOAQiyAk5xJtvLy+XuAFSVYRzSFCTVD+4FHDYRgO3fjh4end+YFVQLXkWLVuINfoDCOUAPjdFMhMYcDV5whAQorr6hijKYF3RTey5OKtryU7azEgxkgoiVDECG50553NKf6hEtRK7ma73++KMylZo6SSAtVaERRKGOZt22gtKBe7M/f7BZX6z3/+MXrz87fXmOLL9ca50m1nMzAteM0pxc3tCKPh3EnN93WvpSJAGAgjtOsbwYRiVJJ+ZyTmQChNFWoK3hohKKaQanTesem+LKtzhhKaSuBUPDyeSCfX4GjFGEiMcTeVcZ5qTvGPez0hhOJCIELnacYZiUZIwdd1MSnMy865aCjxy4ZRQaVwRLwJGBHESEhhs9u67hhRoSUXPMS0bzvK9aAGzFhwKaWktGZUmt3nHN1iUC6oFkoRAHbevbxdcgGT0m+fv379+s1ZK7Qa2n7sBloxiqjiKqngRC7zF18iSbTvRshwv92W20oQ+vCn7ykWr5fby+UrxkUqoZkIua5mr1UQypRgkEq28Q9mP6ci+pRiyDlQxrTWbdvmyHZbCUFQit3XWFIJlTCdY86lSAUlxYorl+wP7GLT61LLNM3zsqxmm7Z5mZcUC0IEEcK5FFwprqGUEorZl4h8p4ZWqhqrj+n56+fk9+gNUEoYeff0CTKGgAmBH77/gBhYs6aYAYjgIoUCUCmn4Iuz+zLfzepKgqYZEEJpsVrREHNKKaUshRay2fb97f4qWuadn+4zo2Q4dEwwY8yymXbshl7l4vdgPv/2+edf/zbbO2DgQQIugDCqCArKMfo11lQJ5kLox6cPx2FwxjrvOZMp1FTttlvvnGyFanWp6fn11YdIGa0EVrvvfiuIHvRIEGpaIZl+nedMyGE8cC5dcLfbxQWzbPMyz9EFBsiZXSndaoEx5lKqpE3wX56f52n2NZXoVC3fffeJCzwvV+tjRJ5p5oq/3+d125mgpeTkM2WES55TZZjgDEM3fnz67nx8mi7zcrsfh/4wnJWW43C832/BuEGrRgoEJCTvrEeVSK4E48764KzqO1SyWQzGVRJyf35DBBCgrlO5QqHI2WpdXLY3H8LhccQEZ0KpYhIRwvBxbCki0W4Zsz3655dlNW4PLq17LHC5Ox8KXazznjGuCK41o1pzLiGHnAtjLAO2IRJACADlVFIuqXBKx6YlCKILBeOS8y+//15S6btOCiFUU0rEGUHOoeRvt9teEsbir799ZZhVyLlUVmqplHEitKQMhkPnrX27bCnjZhju0/b7t2cTAlAqFGJElAoxRcAo1VpzLuUPTTIAKYiwVAFDRalSxkotISZEcYzl9TYH/+/nofv44R0jmAJR025vZmWNfnz/8XBuHgb5Dz8+/vnjh//4jy/D8ePv0+3ffn/+f/3r/3q728d3f/r3r1+mMJ+HAwACQLXCtm/7uqMMBOPj4UAot24XVAihYvKbWazFXMjCyH2+8tM7QKggwJRAKcfu+OHRXF9vNdN5NTaUse9dTM/LHko1+3qfzde3qxxPeugooUAQUO7KFLeJ5DpN68N5UEprJdfb3XunKPHeEoQRl/f7bTX70HX/5b/858vtDhV++fnXmF2FLIXqhuPxVOzunQ8DG0+CC6U262rFjBKppDP+y7dna8O0rB/ePQQVGEJCaGtCLcF4Z51FFTdK51r2bUddQyhLNRdUKRfd4SAY4YL64GKJlFDZsJxLLLHTYto3uy+31TPFx1ZhjE6HA/RN9imZXCGFlFKoUjBA8Hq5l5JEJ5fdcqWZbtbNxhSbVkolakUxOpd8tVXrhnDSiY4Jtm0GCmq10p28XydAkFOkhBKCrTElxX7ooGKAKrVw1u2rCzk3UmlJcxbOekRI0zRaiK5RQumQUiFAOVOYAtB5988vL76Udhw6yb3zw9A3rTLbdr9eQwg8sn4c+rbZvbPGpuibVqWYSy6MsKHvtdI1Juf2GkMpSWteap6nzWfXdnrs+pwLInTDrtXN5fbVeO+K//3rV7PbD+eHn3788TyM6zQXymqpPgTnnVASSZJnsy4TYrC8roTWXIu1jvG4+evz2yshdBjH5Oz9Pl9uc8oJEwQll1y8dUKKx9Ppp+8/Ygr//tefd+cAY8bIx9NZSmF3l6J31gKnSMp9Q5CwqEgK0Sn96cOHse8boTQXBDBDgKRiGKdcoGZAlQmCMF6NCTZTwaDkbfOX12nbXNt2bdtzwZpWphgYIS77WkrwFhNBEIohNI2iBPsCpZSUghISlXLf7pxzoNj5yCilFHHGAWC67QhvGJU/EoLHw4m33W7t8XTijFH+P35/ud6nNaUvVAvEiBC0oBijwwl3Qy8UE5RTQjCgmpBWSmqhuEQAFSplCJNaYqwFKqKAUNtp2rHFziF4vJGYYk6ulIowIlxRSrkUALBtO5SqqeaKCikBAyJEaSWFYpwrgmWjOBeKsUPfVlRC9pjA2+UybRshPkLmEtcStRAVcwQQYkq7jSns1k3bDhnrUE5nDoCk0o3SDOGYs/VRNs31fq8ZYcxUI1SjKUI1RYyq1AoIyVBnsz/fpm8vz8u6SaGO4+np/J7jmn0EjEqpIeR9cwhIp5TAKsUCGRiRj4+60+3pcHLe5eRzjJnUskXeIaVlitmF2DBGEezzWkpEOBNKuFDOhRhiKYgAVAATLKqFMEoI8ruPOWbIlLBKECFMcgYEuRB9iAhhqAlI2c1eK1gTECJSabTv3qdagFCSQvau5AR/HCUorlEG5yzFtGvbHFPye8qx7zrct6FkH9PletWieTifAIpSopRw213KGUMtxROCpeaU4W7olCAxRustZIQI44KVWlcXEJQS87ruGO2A520zmCPM2/t8f728NF0TSjRuM3PChCCWct4KhM9ff/vLr/++bncuKCaQIVSUBRcEMYKoGBrnXY6VE3U+Pb17eicog4IrcIJwDlVwqiXnhBBB521KJVGEMKOYs647pDTe5uu279u8YkLExFZroSbjIpOaxbI6myATjLjEvHLKCBXMW2OMMUYgSijFw6Fd19X5UCtOsbRacSbsvnuzWcDTtpdcAPLmdxtMqSXFknMmBGEMkCC6rBrVCHkajkrKbd0+//5706gfv/vu0OsYMq24oQJp1khJEORCEGGNbh+Oauh7n/3zYlJMtWaEwDqnFG+0uvz2DAjacSCMhRCtCTFXrZW3jmsutUwp3Oc7BSSEpITmiq1zxlkiaPHl9XaPYDOOt2VJmdpYcqkueoQRxZByAgQY/7HKXTEGhErJOcdCMCaIMEAlFx8jp/TDuydAH37+9edtM4QSn/Pz7RJROtEDokiJphGy0/r3L59nt17XbVn2vhs5EVzIttNa80yqNfvuN5qgaQSXbDyMBehu3c+//vrL188uB8qBEc4YTyXFVFPIOSVcshSyUTIkv1lrdw+Mt40mDCXnM4IUEyKVUEC17usGkIAgJQTdgXz+/dfdrv/yj39/fPxxpCXtbzab7tSrKf7b17cgxp/v+X/+vkutb6sNMROMF7fgCWmlY8qlZMEJRUQpfjqdx7Y326WVclAn33SXqW7eNo+PhYlp/cvrdEEEsg8//zq/fzz/8MOPP7z77kEd19U8X1Zf0tXuy7a8F2eW8eHhQ2XyedkjxJqrNzsfuxCslNw7dz6faKkY0WDS9flLSTH1zdvbGye0FTqHW8rheDisxgFjmIwVYJldzllqQZngnA1tY+d9fnnjBFTLpaRIEt/pbd3dunRN/+npXT+4w6nTjc422d28TStBniG2bKtP9ngYRCNsCKhtUC2736cQgaL/P0v/sW1ZkqRngiLKdbNDLzNzFjQDmWC1umrSg+qH79WTBroKKAJkRLiHE2OXHLaZctIDw0Oo6BL5yff07mlg22icc8t1nqCWkmoXuoeHB4WSiqIl3TTtl8vy+eVFY1QkeTfnHGihRLHo4TqNUFFYvul0zpALXL5ckTOgdJnWlIABRYr73YaQIgQtUEqp021kQh7v72tFqbTUpNaaUrr/4w855pKi5F9bdqIPARsBiHEyaTYpVyGVtfk2mbv7g+7YV95tylbIRkmxzON4vSIgpQI5n721xYpGJB99DI1u+mFQWkkpp/FmvSFI2kZzSjhnPWtb3Xkfh92eU0pK7dpm0zW9ahGrcdzbaLzVHa+QUnRY06Zt27Y7X2/rPHGG/dAjwWVdzuNpdVZqeXd3t9seQvDWzJXL23i2p+Si011HGA0+cUkv0/VyuZVSKoFu0yXKlmX+8vba9f3m/iiHzo2XybmYcg6ZcJCKKjEcNsfff/v9n37/vbXT2+vrl9M5xtwL9Zdv3r9/urte13kZgdLKeSTK+uzGpRO0UaKT4u7uiJVM82RL6fth2AySornNw0bVWlbniSRISEwipDVDSclfbpfX29tqvE9eSrHbDyGunNPNXjWRRR9yyIwCF4wlwjijhLadJgglV0RkivebgTEOJZ9vV+PidgeCRkoIkrquM0WqmyZRaWKNLnKgUos/fvsDAjP2v4zL8+vVxX8N5ttv+r5tlNCcckZSCHMCRgQgDdZrRSspUHOuyVoTQ6RIcy0+xmg9IK0EU84E8H5zuLt7OF2vz5+fQwyUMqmkd977xKgoBQGYT14KEKqhhHoXnfUlp5KobpsC2U3zks45h65vkRJwtGu722R8vq3LbYkrl5Qx1g8INmAiwef/cXEo3hqLGUOuUvGhazdDzyhd5nldXUz5Ml6vt7EfNt2un5cZcjpsd7SwGMPsDBCKlMzL9Hy63MaZM3nY7b/79tsffvh2Po9zWZiQXDcuV2rDfvfYNF2OdZrnrm8Zo6qV2023TOO4viH1u50MMZnFhOiHfiN1Ttl9PQm6dYzZ910DuSSLgvDtZtt2EGKJIcdpoYyUEBkj1phaim5U0w5SS0podN6G6Go+TdfT6SxJ3W2HUqpgklCiRCMQ2DQhoV+984hCaBVrXoLrN10vOr8YrEULzlIRWDuN292dbvTldlMAPoRgVgV802hGSTL+7fxSEbRqUobkPZRiTKq5tH2z2Q7OhwLTOI9inXf7QXd6XVZAKqRKGQkBty5QQYkmp2K8Byn67UE2miEqBYwCRZezd9bO09n5qdF893hfMYXsQrK1AqmkVW3b9jEmbz0B0WlFEBEIo7zmeFsWxuj2/buW9sH7kF1OeZzGGEIj5WY7HI/HmqvSzcvr22jGlBMNxORAar5Oa6gEcr3cxmHbtj1nPNXFIFDGac08m+x9lJS64BjPpVYpZNc0eakS6W63r4VczyOVinM1melyvdzm62WekdSairNGa1kSJkidbg+b46C7pm9LTotduMROCcwpR28Xc365ApKH+/tcuTUrYzH7JBk2DRW8AELFXEnxKTStUp0GJCYkHwoCLUW65MfF5a+6KtZaYte2gtZaMqHV+8wFlgpvp4u1K9LUb5RuOZX1Os2EVd4S9KAAl9lTwqSUhEDwnlICUCBnLIWUVCsAQQqItRJCCBAAIIRWTg+PD3/+/b/pmt3//l/+N+sdU3SONpwTYaJfzb4TVCnW67XGD6/Pp3HyMWReBZPVlLuybzU/n1++vHwpOUjKQ7TbfoMEVSPebqdxudi4UsEoozmXWryPIdeEpTIESekPT/ePh10u4cvr6fm2TC4HFzkXlVAgJQZPK0DJUipf4mlZFl87Jdj/+//zvy3z5fCwOU/T+XZxfvHmk+xrv3lcAv0vf/vtry//NaA6PLy/ufNlPbetGuRmDfN1fJ1Gcr95+Od/+n0nuprL3eF4v7uDAiVwAqCUaje9VPh6vSRCjTfrOp9Po1nMcb+b5jW5dHe8Px63O929sdvqYlXsw+fTz7/+2g0tJMgl1VLvHx/10Nxuy5jnEGJJWSrRNw1FLgRBwr7aaKRi3vvV2L7Vu7vt+HrhjEvJKtHWRyw55SIlG/o7oThWCD4KKe4fjzWCkIIilpAEZ4dtqwUPPpQSvn3/qPrNZb6EGNSmtSFM08Ip9K30seRKGBXbYdulPONolhkoxpKdD6tdCLDgAlawwXu/7Hdb2SpApAQVgXf7zbv79+8u5n4YCE37w0ZwvppgnGmbLmOZpllwwZWarNOSEyJVw1DS22VaZiuU2nZtzDkHz5QYuuF6u+WYSogxEwJMSGmYDz41Sn1VW2yIKfqma1rdzXWxwa5mpRTtsqSQhVC77ZZq+eX0epvngbRd01izTvMlODc3jfcxhKi0WpYl5lwp5gpcSoEAiJSBM0uOHmuXQqglU0YOh6PW8jpOp/F2Gy/jeGuHjezaw6Hv254BLzETAoorimx00/ltYqy0QuwP9/vdfpnn2+2SS42E2tUoJayzLjrKSNtuN7v9x9cv48spOqOV3HpnQrbO8usFCNGq2W02waRxXZCxUjDxMFT0CSOwybhxNqnE8zStzseYGCUEQRH53bffPz2+u9/ddbqDlDjlBGoKidDSN/pu09NUO0n7zVb2w2TL+TxiN+w2mkKFlAfdpJQ9IU2rtrtWUEYIEsYIJaUWSiEGTyiXUogYF+tsCClHJgiPyAUSTCWH4GwK0DZaCoqFEskYZ1Br2zeEEoKoJI/RJx+yFExwropZ1lxKxGpXr7pChTydzoRUTilnBCmHih9/+RSDGza9cDSl8s3j+3/zh+UyTV8ur+drRizfvH9gZLdphr5pSSUpVUERCUXWUMpKibVCSskae7ut3dCHEIDWkIvzLsbogwesutHNZguJ4KEQSmLKSOtE1+vp5q3POrW6G7qNlkxznnNerXGraRqtlfTO5ZyQwryMX6e21opS1K2SkjOO1eV1dTRUxtCsY85QM+ZUUwVCEKGmXBjyxTg5zp1uBGcxpNvtNs5rrTAtKxCqWp1yHm8TwaJaTVK9nK82OMI4E+x0vV3nMebStF3bt1irWY1Q6pvdrtdtTSWE4HLQRKVUCKXIRKqka9tS0mIMldQlG5KRqlGNqKWEEBfnmGSQBaEsJWP9ShA5F23XATDnEs3FQyYUcqycUEbJebnkHAExxSAb9ZXMGn2y63q9jQHiZRynaWoFl5xtNkPXDrViLlAp6fueEqAUtJRdM3Rdn0tdjFmtG+Smb/sM+eHdg6I4mytVpN20MaZ5nfth0w+dmSznVDcyRj+Pc0pFtU3bdoQw49ZxvM23KeVUybHfDUxIJjiTNAS3WqASkNXb9aZ0p5t2MwzTbfbeS82BgdKq77r7h/u2GfxsEYmSLAXrVl8hc45PT0fV8KbpUgnWL2bFGGKtACSVEtpOCkZyICkEZ223b4XQgHQeVypwsxm6vnXOjPPVRnu9XVNMh+PDfrsnwBjnd1serC8x+RhSdcFZgLoup3ENjNLo3XZQzq2nt5e304ljI5iQhCPBWktJaZkXhCQkHzb9zSySy6Htd7s7zagzjlSWXLQhjIsdV2OsrYzkVKRiSKGW2rbDfnu37XaNFiWXy3Ib55VzxigaMzs/r/P6dUlYFtt19KtPkTPetTqWeLqNshXNVuXVlZSctW3bzPPy+bdP62xKxVgwQDHBMsYpZ6UWIGVdR0JzLllwJoSQTEKtKWXdNEpRwhMvgnDKJa8kayYCpJQiYkUsALlWjCEQJUupMSbOGVQaUsSKWJFzjoTkWgFQcJZCXJfl/rD7n/7tv0yX899/+TnEKDRLub6eryTRuA+CEahx23fvnh4Klss4Xk8npTUX8sPLp7f5ggA5hv1mI6E671NbtG6Aog3OR9f0OuXEBEfE4H3wPpfcNlpT9Tj0P9zf//n7bwQjv/afTsvy04eXL5fVRVugSM05p4CYCrhSQXLBaKk15MAoT9mu88leB7APHU0+xaQ2+1z7AMQD/+nXD7RRf/nLPwFrlnWSgjBBGW16LmqtbUeB2N3u7t3D+02zc2t4/vL5/PKcbPzc3t59+15xWjz89Pefbmbx2W+7fnfYMk6YZIyx6/WSguVAhdb7vru5RVAQjL68PX924en+cDzskKGUomubvmsub2fr7ddv11ufsLLNUAoQ5JCRVDzst1+hB7HWmMJBsIYr664lBYD67uG+InPBLZMtITIkUikhGRVMaO68lVoMm4Fz9enTp+v1pCWu5nY5vxYkzvqUMxESKFtTUEOXiy8ECaWa0WxUJSHkcny8KwRen7/MsxNMcS2kZD4Xam2b022e/Tx5c5Ncbjb0m7und0/3uZhaonNOEMIqQ4JYwTgvtG73/dvnL29nsxk22/3ApehSdS46Y6VGQvByPned7pp2o9ssi6gkAyE522VdJlNzZUDW6HOOWouS4zrfGs45hejW5fO10YIBB0ApWNc1iVRM9Xq+pBTZA9/dH6WQy3irWO4fH3LOwaWSUg5x6Lev54vzjgtekczjVGNe4uxXKySlTEilGGW1phydt0ZrfjnHmrygXVz95CDJyAULyTHKCUD0GRgzq2NbJhudcjldL8/Pr93QZ0LWacoxphgrVIRKKP728cP1rLtWAcPz+fzh9UIE77pWFJYKzj6+Xkdj1tWYZfW1ADux2zgBlnEZETD8+LOP4dPLi/cJkdRSlRTfPLzb621LG1qJc+E6jTFkhhSRcUo5ZTnkdVpyyZEFycKx6WBeC0uCZkIIcIasto3kcp9r3u60Hd2yep/cdJobLXMt42x1C0hpMBFyLS5tm25o2hhToxtSoUYrKCJB71wptZFN22trbU4ZsZRcci6sUcFFwDpQ4r131tUKAKRpWtozrpUNyfjICOpNs90Om77llNwddikGgjWEgLn2G/Vv/vADQvn//tf//bzMMa3ROU3l/f7usNsm4y/ni6ZVSoGEzYub56XrW8K0TxkkBclu40Q57bqNL+syGe+DlrwkrAEUKlklo+S4VR8/f6IInFO7GC+byopuJBFsmecYAyW837QEWAiJcSaUrDUzxoNPMcViy+hWglJpsR36nHyJRDaUc1JSZZRDIdHHgtA0Tc3VxESYIJQSgQkxRLC2hERUu7lebpvtXgiaQnp9eTVmXZflfL32XTsva8oFKK21XpYlQAWKQCHlEKN7+fRlt9veHTaCVZ89o8k5//njpPXQb7aIZLxO43UsKXKFQuK62kpoyEUJTljxwa/WCcVKjhUSENBNy5ho+x0B6pwHAAqAKZeU21a2jSo5OyVKZZRRF2gOIa6GaNnpHngYS+6kau8btzkISoeu3x93m+3BOXd6PTMtt5ueEiwxNi17Ou63mx0ViisRkZ6nJRfodkcTa62RNQypmHP89PHjy6fn3/+p+fb9U9u54lMswWQXaAHBJrtGSA8Pd4qSdS4l+3VZKcXjw6FrOq3ENCGhjAhJmSKsIjExud1+e3e/RZJPF5drXJflfHtGBIJAkMaYl9UKRlDAsswZYy5+30sqoUAgtOqmEVr6EO1qq6+VZBdtigVBaNUC1pRL10jJ1eF4ONztmq4ttVJGm64/VAg+mXHa9btOtMZGqfn9w50f52wCdMUnY50zxqaM8zoioQxpTPV6npIrUKqvPtdEufofFv6UciwxeqW11q2guj/e3+03BDnjrN0o2qgvn0+Xq7EhZ6QFESpUqFAwuNCI/ri7222PxQNFllIIKRsX8mwO/YYwtsyzc77pe8kaE0waw37YNW3nnDWpGhuss8dWm1im1UAFTjmGFKwx00IrEkLdbMSmYYyO82ij5Q9H1gosuRKsGaFkgpFJ7UxAII/3T7mYyZyn6yQo7fu2YLEhxBwBGVcqJ4ipICJhtFSoQJDwEAsC4UIhQq1ACEWEXDIgAJYU3Mfffvz5b98+Hu//5Y+/d8Y+X88++sowpPjbh4/j5WLt9dvHp6Fp//LD7zrVfnx+vc3Lat11nGzwsJC2bd8f7pFJYEK1SjRdRPz7z799PL+4EpFiTTWGQBkDgkLInIvi+tB17+8O9+22rZSl9O++fZx9PDDxo7j89Pl1qTW7UhAQCzJaCjCKUDLUBFyy/+lf/uLu7z+9fhik2GoFNjf9/XB4/+k6v02r6oa//PM/V5bvH3bl1b2+fYrOqka9e7w/bHY5pdv5+ts/frp8fFt/mB6P76Mr67wEFwmiC/7vP/39u8enYdhsupELWQg22/7wsK05aSFIyGZd1mnqpN4dEbJPZj1uOv2X3y/Ocq2VEpQSu9h1pLWibppt30Ouy2ys9SWlw2633ZH9YRethRygZMG5ktKHKBv9/PwmvlwOuwNDMMusu3a336/O2+SRU0EZJ9QatyTbYDNHn2JgSmDxLvhlutp1uV7OPpOvBVbOJSGUoOBDiT5ArVLTmOptWoK1NEM/DFrtAGKspRR2ncL1Otov/k//9D1vh3GZyOvlcX8XIjhPSqpSRpynkCxnpWJ21hNgDdevb+cE2DUtFwwBORdLXXOtzvkQU6Ob+yO5XkekrNQKtZ4v18v52iotuBy6ASib52laXa5IKTfGWLMQCm0nmqZRSBhSm6yWQlXSSMWZqEB9ztfxEksZ+raFZtj2itHt0DecUlI4E13XMsYXEyjhAMRYy+gkOCeMxZxqLowxRhhjtG07xngI/nK7EsxK6U3fUInv3v0HIbVb3OnlkpPFoWe89y4UDhyRUDJsO7ciZfzl9UwQ5nmpSHKpTd9qG+P1wjmtUJWUNcXr6WKVLGTHmahKQSwuxTjO2+2WUDrPZpkXY+dSSoxVK90Pupbkk++6jjPuQ7qOt9maUmqrVPYhsaxVp2RTYwrGSkoll43SkomEXArR6KYfenm5Ouuds5yx7bB7vN9eb685B85UrZXR0mtx9XNJKa5zzSnaNcVcCQPOw2JTyFmVYGJJRTBeWB22Q8oJKHAmfHApRAQqpMohl5r7odFKphhrTtG5XCoCKsU5Z5RgLdmuq3NxGDqp2lwLpZwL/vryqtp2O3RS8Fohhrx6o5VsdUOhMrZdV5dLOfSH//k/DofD7r/+9V//9tM/SkjH3U4jryZypEPTEgBOMKTojCk5IQCllDIKKS2zEUoSSudlyTnFGGOMjKAqtVE6Bg+llpi6TkvG5sUO22GcphwzrXB3dzjuh+3QXk63nIuUEisdpznNsevalJI1HgEwkwK1xiIa2jStXVdGaq/V/rhTUtWESukcyzJPupNa6WWe324TU4pLadeFE55TDT5yIQ53h1aqXDNBWNbVpYyASKh1nkkRanXRZw/B+wqZITApKCchJ5viplMFyun0FrwliPvtFpEYNxnrrbdNu8mlWuu8tZTkphH90FYBqw3OxOBiraCVSDmM41hLbIXUjdaqr0BiTt4FpJRL0VBcrSslpxgBqlIKoRDKoICL3sxGMLm92266HaNKKH443IcQUgk5ZURSS0kpGLMISGZZ7GIYoU+PD9998w2jilBaKYzXcbIXxfmGbUvOhaXD3SFRfr7ePnx5eXt91bvN/n5Hci45ViAZoy9h8WYapxjc6fqCkDjlm2233W+Q0JzDvEzjdRJC7R+3nPMUUgpeSeqsCW5cZxGiEYI0gwq31RsTcrLr0slu2PaaN8fjppIQcrRpqdVnsGaeCxKmFBIWUrZryLFqKRmlPkSCKDhjFEup1rrow+UyllKx1NvlOi1jSbHbdQSJpEwOm223EVSEnDjSTTsMTbeqVTYcSX9dx5S+ijqYcqlIuZKE8VorBQpIU82M86ZtXk6vq/cpJd1ogoQT9u233zTDIRoLJC+ra3slm4YJQTiPuYRUESiQygjLqQASQaUWzWG3h1wRMWRhQsyhhJRKqd66XApBzDlVngnJxjqtmmbbz+PFTwtjtBA2hzAuZjF2mefvv/1ONXqcJt01SijvE1dK7bppncdlns3cmfabdw9doyml6zxfThdv7TK5UqAmvLU358ZYjbNunQ2IghxSzrmUmHKplVCGBKKPgKTEAhUqICIjWEspiAUBay251FIyAhDEUrJ3Zl1Gfv9w3O7//MOfh+3pl+cPq10FFw7X6zQyXrCUu+HwJNT333z3+Pjtp+eXjx8/fnl9TjTaEIpSjW4IYafbLZMN0Glc5p9+/Xlap1gzKVBK9DEJqQhSShhirQVKhqHvOaHXt5vm+f7Y75jCu/tjf//+/umn6/mnT5+Nj4wTJICEUkJS9MGFmjP7p2/u0kb95S8Px33r5/GXT7/+4S///PLy+uPL+a+/fIpC/vCnPzw9PFzGy19//OnlSxY07+7AbKM3L1qIXvV5TafXk7m55/3bw/2TFmK329wd7s5Xc5mvldaU427Tf7fdFcafTy9mWp4e7x/3e3Mbg7UpRMapD4YL/P79Y7fbZYafXp5TTjVlQUBoXUJZvScAJRVGWErBulBqTrXMy8S27WbXB+cup7fdbgOExRpTJZTqefK0TozV7959Y3P+67/+zaZAqNBNh0IsLgTIi1uvyRmfBKVIaQxrrXVoB4p8WV0lXHX6uqxca0r4Mq4+5JzAx3DoNr7Cehu9sRLwsNvd3+9TWApAm3AM+efn8/ltVJvNbttFmwimu42gnHBJkEHm7Pnytoxjr1WtKeW02R4IsBRKAtxsN3rQhFEiSTc0TStTym410CEXYn/c2xCnyQAyQgoFrBVSypJLF9K6GuO8btpW6+Bs5BRoBUGVbIgLhFGl1ZO+01woIQAxF7guqwkmW98rbIcNpezDL7/9+jfbtWq73zKWx/FVN93qUvKVU329jZQxypj3gQvatVoJKTgPIRJC++12vF3maWqkaFUjkHGk+91Wqf41nnXTMMr7rmMEN10vlMRaCaGM0funu+iisSbnqJr2m0YD0O6wX2I2P5pSC0Oyb9pGy1zI6sPL64VJ9RUYfvl8CT6eb7OQgiBlBKSgwUfAer/rdsch2rRhut9shu32bbz+/OG3kANjiDURQrt2w6kQTHjrayz393fDof34+XMFiDUkoIudSz1utpvdgTEmcgIffIgBEA7bfd+2JSdSa3WGeL9r5eOgT5cr0aiPexTNy+l2uV6btk8xe+e0FoyzzdASQsbJ5JRbJQTXgbNagDPuUoFUIKeaaaOEoKTUGpyXWigpdsNQSl6WlVI47ndIqXNWa0UQzDz3m66mwhgVnLdaQqnLaud50b2QgkmWpW6tD7fpBoT86Xd/pFxdTiPmoglRBau1u8ejFHS8TG+nC6G0a3U/9JRTZ703fp1XqRvVNOfzeJtuSIBx2g87Umup+cPnX73zlBLCcJnWbtN9ul0yhcnMFGHbbQglKRUtSKOaeV5v55kQbqwttSoFSrXRV2csdIIiap46pV3wmlO92x13u7uHo+LdMrqQMpCqlRy2KqVUstuXRnV92w/L2Hgfo48AtdWN4jI3yji77fpvHh9//Pkft1T1vvE1CC2vi3E+eOcQaiNEu237TV8qSaWkAkwIwZVz3hjTSIWIx7t9LeXjz5+m6da2c7fZckGh0OhC8j4FEQvOa3DWcVK7TkKyyXtGagYKhAMw64IxPuWQXKZcbJTUSlYsIeR5XjinUIEyIZVAZMmVXGKj+t1w9/z6XCu8e3zHGb/6dV3GdTExJ6GlDXZcL9XAy9tzcEHp9uHw8P7pKfhyebsYb8frJYWkqay5KAaw47LV8zr9/ceff/70OTj78eMXyUFRIjgpQOZ1XYwFRsd1XpZ5slRwcjjs+m2jZbMsdp5uXHAqkAIA5FJgMfPp9RUwaSWsmU8l+Vi7vhcMnJm8tcigVp+L00ozQMJDgUR4rSGPy5xpWM1KGUXrg8su+OijlAJbsEthXCkpEWCZl1oS9ARKcc7ViuN1alrlvI3BM82NdZ9fPu9V//hPD3d3x9e306cvn15fXgQXj3d3XPKUPRfSh/o2TlCBcYqEllpiTkh1cHF2DgjXtG27Vq/6l08fBBX7w4YxWlPVTHZt89vLGzS05gAWNkLIpimny7wsoYaCBSowSjOWvhvePTw9vn8UjaqlxhCtDeM0TubKGCWQhWR93wQXQoyCFS5kYDyXdJ1uc/GZI5R8PY/x2R+Ou+b+yLqm2W1tzAFIq5RuO8IDJYQjKiX6tolzirF4ByWFSkqFQpXGwJLPUiomWS0QQyoElNSN0iavdnHRRwGMCAYpQCEVSKqQM9RakRAChDGKkEnNBEspSUsZfMi5ACAKgkAFb4yLt8kRJn74/fff4Q/9z8PPv/x0ud2YYjmU1YSXt1vw6DJ7fHz87vvv/vTHP/74t3/9T/85fnrxCioNdT5dCsK0mMlbQd+MX863UwhJSI6AAKCkpIzllFKKSBhjtEJ9O10CIyKnXrFacqMajfThafP9Dw/fnK40h5+fXyJChEopAQCohEmJDFnHK2iid/vHdw+fXz7Gz8+fTvPZu7/9/OU0r/94/UeK5fv3T+fbm7Hm3/7TO8E5ETz6YEOQUt49Pr2//+71y8t0mYNPwQcpZLfbIKPbw64wcD5Mt9UGuz0epOR933DJhrajWLvDPvjVrO58vhlv77ab++Nx2B/W4C78NRMqW00KtF1nVr8s9noe53VpdNdvt6dx2mw3um/HcfJu7f/wOyIYUVRu2gLkdDmXVLa7/Xy9vry+SYF//suf4nj78aefQoHD/T1IZab1drkRQqBWZMyG3Cn24fPbtpeMwtPju2Vxn768rN6l1dvZNsPW2WhcqEBTyRlgmlfVyhBiqZByvhjDbgyy2R33LobrbC7LcnXuHx9f+vPlsOtTmJU8DY12ziWIL8uKAIrz0QbvHBe8Y5RzLhrtlzWGIJNAAm3b0gqdbhCgtG2IKeZIqLBhHdeFABk2u0ZrhlhKCiUVyF3fRYKEIqOk2fYb7FKNSDG45G6rWTwhhDGCA00+MEKFlNv9ps2ddWY1a/DBJwcpclq7TiktCMVSyuvpPK3BTH5ewnDYE46zMVArp8gpZYg15xxjBagIjPK27Xd9e9gOkrNyBQyINGuO4rglSKNPwfq7u73UOoaIFb0PwacU87DZBBeYZEgwARgfLuP1fL065+62+4fdse91iMWG5CqsMeSUJzOH4Guu1jhAOO6PjWBYPaR26Pvf/e4HqLAsCxIqtAaAdZ4zSUwJAmVZzdO77/6f/6//9WF7ZBU+/uMfP//808vbl/1dn5yjBGou3vvX0/mw2232w8PjQ3Hw3/6Pv4/zb4zx492mlY1EXmpFSEBxaPhu2x/3u5TiVCZO8XQ+nV4uSGvXt957QjxB4JQxyqyxOSQueI2lEoJIgKIxLjgXQ4BaCA6UEMkppUxsB+cDlIoIiBUgS8a9tyHVEAtj7O5uKzi73W6cMa0F1LIaU1MFSoDgdVwIrd+9f085n97OX55fCsAjPGouv3l8LMlv+uawG05vbymGmkqpJfosNFNK51ysdbkWQqFpFefcGRuC2++GFJ0Q/N23TynG5+dXY1wqSWrFOL1dr9d1Wp1LxmAtXLKHd3d927vVFp+ttSllH0KOVighpNJKqaZRonHWcE4JrUgqQcRStJBaS0poctl6s5p1mgzU0vbidnbrap23IaRSoVF66LTBOjnzcNwc7o63y2iXJcYwPD7u9/u31zfF5fHx8WaX2U63m5njlEPotPjz9999+823olG3abne5lIxubQmIzilKBFFTLUgMMp1J2oBRqHmwHXTbFrPIQX/9noqhLuYgw+yEyUX45Zcq5SSUSmljjHO4+ysY5y3XUeFSLUyQvpOh1imMQkhCWNQCiIlDGTTiAa1blLOISQEopScp+vL2/M4LjHFkANMQDhRvXx7Oc3LyqW+O9w/3D8cj/vpvExIoguCMCEoVqS1umUWSnw5v3z6cv5v//2n6+XKBfHBX643yUp0NgNmgFxrTGVZ7DxPFbvt7j4leL2cS3yBVA/HIxOUMAwxvZ7OpRbrzJfnL4TAD7/7jghGFSeQQvLj2/j88nadVqC5eX2Z1pUgKRG4xFzi5TrGGK2zGXLMiZCUUg2u5hpLSrUh2c81lO2GyXaLlTFNQ8QcMyGUc1Fz/YpJJoQiISHEGHxwQW3kdtv/7ofv94fdvE5f3l43ux0i8ckyKnaDMj6tLpgYpRRQ0Bpzvt4E418rLWuGmBNyGnK8Tre7wx0hWKF676uPuneM08s4Usgus8GsMcZ5na2zRGIuGQsUJICEMY5IlnVOkFNIl8vl+fXVzIsLRlUGWJuulZwxzuo6+2iRMIqs1nS7XAJNheN8W379+DHlRDR7t38PlLzdbus4676/rrZQ0nBuZ7N6UwQKwTVTNcH1PBq7MMXvjnvOBW2lPrS1kJqTEGK3O07T1dewG44wsQocUKhW54yORu9SqkURCCmllClhbdtQ+lVXlVpyJBUR19XGnKy11jvGVAV6eptofu2bVra86fQ3d/dYQ/T+bbxAyQHSaJwNl9vsptVkSP+u/add0/zxm2+/eXhng/vl0we3rGuIq/ezWZFgrjGU/DWJllNijEqpCGG+1hRTzdkFDyn/NM93rbzrNRN9Qd7oDQnRT1N/3P9ut7N//IMQ4m+fPpvFME3wf/hWecyRPT3ekRJps6Nq2z2K7ypfVgvPZzcVc4uqNs1d9/nych1f/x//8h/+41/+/dvb+Xk8M8lD9FxgFmS7PSrZub1r241SupaaKTiSkRGpBSMs5Ox8+vj8aRi2SEnN9Xa+MIKQQ4khpRRLtKurMVvnt+NEOQWXtebvnp5qSjVUKEVyOo7rNK9CD6Riv9uooSW6yXZJiLMPZpnfTjeb8/v37zIhMZd5tYgkhNB1nU/JOrffH4AJPeyA0FwgFDDGdkOnmyZHM60Ok9tu227oiRIi4qbfZRzXENqmK7mmXAhl3icfQoiRCx1yGL1xxg2y+XK5PL9+rNH/7s9/fJvtf//Hry/LZHwi0wJFd40kFD98/Nh1KpdkojNr2G43jW6hlK9djh/e3u7vD8P9JkFZ7Hpbbvdwd9zt921PC8SQgGKaF5diCPFtvLoU99sjUBZqYVws0xJDbLqGCylyLBlCCn0/UEZjjinF1dsQyroaFwJSurExet+2rdKKaQYVGQAlglOQFNtvvmmHdnfcqa73JT2/Pa+wiCLOr2a1rq5zhPIVtUhM3fZ9zcX7WKEQwXKIJWXOqBKCVKKYut/uVKML1EwZZazptY/erZyRXFLwzscYgw/GMEqRc8YYy7m8vZ6B0S9v57/99tMaglT6T3/88x+/e389nbKZv717UIf9p7eXXz98gBwbyaQS+/397njYbXZuHmswfaMe7u+HYeOdr87XAr3UkwtusZwxiVhyqiwLzWNNVKtOqu64Ea/S2RVLM7RKSz7PISZASqmgSklr7PV5XMard1b0XBDBgdrR5OgbyRjD4/5493TQTXPY7lMob6dxXZwUbGi7tlON1ikG5xyljEuJhCjZIKF2jcDQ+lCgJp9rrlIKwrhzqeQEFJpWEcmAYIxxHJMQDJDEGCvSnEvO2Sxr2m2lFJzSWpJZF2dcdMEa3zSaUeKTR4qhojPrdZ5STLGmeZqFVu+eHt5evlxvt14Lm116O+VEci2b3RYIG6fFrCuldHu3RwDiLSNMCq41a9smRM844QRWa4I3fdvQrSixhuhdCp8/PzusuQIDQjiiBNFSPzrJeEk1x7rZDAiEcJJLmdfJONt3m3boEWvOqTjrTIghQQYhBEW+zMatFijph8YHZ4x1ztvocqmEUxKSnRaCNcWw6cVxv+36psY437h33luHub57uEPGd/cPze30f/zfb6VGQGRIn7aH//inP/3x93+4zubEb0PTnk/jeJ6mnIe+00oBoLXheh4bLZ7e35MCjHJKORJWaxW9ipFUUoBKjXQ1hpDKOUdgOTmsGUuCUgVXXASzupRA6bbpdcohhMAJIEUuGCVUShViMt6t3oQYpOAm2NN4QQ6KyufT8zJP07QgIUhIibC6mXDSovbBIMm7Q393f0gxT9Mt59w2Iri25Y1QXErWKdk2ZHTX0+vbx08fp/mmBG87eTxsN9vOreNqVmCCa2mNm8bVxWR8qIs5VKilPn9+WZfl6e5+IOHjT38LCakWMdYC6Fb7cp44Z/IyX9e1lpwzQCHzat8uF1doDOHvP3+gWCmjQAUhNYfgXBCCU0q991/b0rmUQqgUU8JYI0IlkAupJJhy2G+atnMhjbclWF8zaq2lYoQAoyRAraUQoPvtTikRvHk9fb5cr9N0M9YVnEqpIVnB6bAdNv0gL5cENcUghRCMny8X79xms+WikUrHVF4vJxMsYWiDXcySYwBaKeB8HQEKIRh8zpifX54v52VapoqZCpE9AgIllDJqjXt9ebuebt2hxVrH2+18vSASruVmGIDTyVgspZRUoXpfFnft9aYbOk1IzkvMcV7Oq7sa7zbTwM7crfb6dqHAv+k3gVZWIs2kEHTW2yXalGJI1oyxSYC1FMRKpdAhRkAaU8wxphS3+1Y1XSg5WdYJvu1JLrVWWoESSt3qXPBNq0qt43WilDy9v08h5ZS2u6Hm3DStc2F1jiu5GvuPX/7xdj3LZre5O/bbNjv/5flNS3a82/3x+28hJ/VF3Map5OJ9LIjrzS52SdlBDr3ku74/HB9CzL0efvn0KZzPiDHkALnmUiihnFMgWEoBqDEFSipFyrksUEIKPtuWsiaSe7XbPd7fHR82orPLLVjHSmkI+cPDHWMix/Q3/9HHWAlWKCUVSgjTusfkcq0hRABxuHunGoNVv7s3nOp///7+/R/f/18//58fP/+0adTLp9/+9uPfP5/Pd4/vt7u9NW4aP9pjOLaHbr+rGX3Ox7ujt9Y6IwXRfettIJxzIT58+aQu1+1+3zRq8iHGQKCUlChF1cjdcRtd+PLy9uV0+eF33wnBoGazTBTx+jZeLzMQhgCM82Vd2p4Iyb1zVvBU63S+IeM5p9H6gKj6lQBlWqZQSsn9bnt82AMiF+L+7p7JZnHe2gCEbrb7eL1lIKfT7TbN0bpeCePi3UHcbjOnqhKMMYeYcqmLWWOtbadLMZRqJfm7b+8j5Ns6p5yNtZte51wZEdOyXK7T7FYbAgre7zetVrkiU5wxErJvNu06BWz5xaxXY4/7Pc/V5wgl39bl8f5hOIB/S7fXG3km748PQ9Mst2ld53GcM+RIwfhyud0AWJuzJOT8ehGEIAPKcLZrSokJLjmL1t9uN6QABCkSgmR3PI7THCgCIQEhUWJKNusabwkJNpyVXLBC17VKqVJZLbRtehojALM21AxcSKHKNK1EMS4JAyKZwFQJw77TPiZChRD8ZG2BuoSVCaScd0wLJipU1g9fZeOmbYOU3oVpcae3c4zx4ekeciUEgzHdtq8FQ4zOmZ9/+/WXD5+Jlofj8f37d8fDURK62+xSrss0f/74YZmuh+2OSb7R/Tff/LDb70uqiRFIDSfETgZigVqxwG63ff/dt6P3r+vt759+hpg4FUyBNev/7z//p5/3P767e2oof3p8xyA9Pu6XZZVUQbYlIResbZU39vpynm/r0Pfb7fZwPGglXp9P6zhqKdXjgXIZA1wv5jZ6UhNUisibhvFaQ87zPDey2W62RhgmGaPICI01l5QIYo4VCxBCCCkxpRiR0pxSKTlWrCFGa+P9/R2KmmKyq3HBdq0ctgNlzZfn5/lyOQu23e/aRq3r6qxNMZZSvoYmaKMpoQXgdL7mBCmXbtMzwduuBUAlFKXs+fWZYFZaC85ySqnApmsB0bqFcqKVhFoqlpyLt+uw34bVF8icM8bwdh1vt5EiU1Ie7u+ii/OyLGFlUhbvci2SUcrQmLnhAgqhlPR9A0i55IyJmOM4TdauFcEY0zRN02pKyWKMd1YpkWK9nletACpYZ7f7zf3j/vx2fb7N82oqrVzxvusVYwSRIDBKsZYUnZsxuFBLpUBijD56pbSPaZ7G2/Xy9vx6m29Y693++Off/eH333y779vkcpIdpzSvwXO7hozAGt11XcM5QaxCUskbQVlOKaYMpQKjTHGaiNSsVj5Z51LllHaDQqDeixJpyQwLJYic865rCyASRKxIqrV2co4KHl0iGFMtKcO8GiKQKmadnz5+EvKilMzZE4qIRTUqppIRaU6rtWEOIQVjbclFNqrp1Lqa1y+5b5tGa/Gog4+ARQnWajZs5PwyrdaPt5UKdjjuBWO5Bp/9YtdQAkeyrOF0GVOqSJkQouR6erswitM85RSu49n8ND5/emNCo1DOZypYLTVhccb/47dPUF1KtgJBwmKmOWGlpCIJPnHOKqkFSnGp+AiElAwhxpILFCSUlUR8KLVQzsW2bbUSFOowDBR5raxUgoBccgIsZxSCU8oIRa004zTXQgnD3U4IfhnH1S1v5/NlHm2Ib9dbN/RKC+d9vFwrqVhrjnE1i94fpJAEknVusydIcFpnaw1SdMF9zcrkWgqAkirGvJqZcNENPcG+kBRymtfZBVdKQhCEYf1qgoZaCtjg5zTN6UKApBgzRoqcUUIIm4xrGisp8TF0/YahAkba3eF4fJqXydycW1YbbMIEtBq7Pj9/cdZPt0Uw3U3L9tAxTkJMNSYhJKONvVxu4xhjrRn6ocOK62RKUwmw62XuBi2ZsMauqy+ZCtbSRnOipZaMsVIIk3Kz3dhlNavRneKcL4sBrH3fACAhtObsVte0qrToU9zdHb8WdsecjAmX21RDTtGFFJAPhXDJeNcM3zyhluo2TkgdY9SRtMbpy7WGv5lt07dcGZ+/effun//y5+Pdw28vzz9++vn5/OyzT1AT5BIzJYwyWnIJKTKKnHJKECpBSiujOZeQct91++1WKDmO03KbtCCVkBR9r/U///E+MToF9+HlVAghCCEkqgT75be3RiLhPNElUca4POpNcy+P/+t+XVZPwnDXNc0fdzz4i5ueT3X05RKmcuv51kXnghcoGRGXcTw/XwiKf2b/cnc8Ms796n765RcgcLg/bprDaJ2ZzUGybtfZxd++GC4oMhZK1EIOh51b7GZ3ULqRDZtuNwLl7eUt+TSPxue6ORx3B5YoRWDROsEol9KPc04ZkM/GL3aNPleaf/n15bDdRRuup9PT/e54/w4YGG8YckZETtE6Y6xnslOSP9zdP7+9XM6XVDIihppvy6yv/FBLLebl5fT8+tptNlIKSiFXaJQgCCWXzaZf3UQZ20otM1OcN0Ip3Qxds7qVIO733WUevfeUVamZEhwVPn731ElljctMELMs06q55oQQwFBqDIGsVltnnUsATT90sl2vS7xNNaZoHalQCSGAOUfGGSIvOb/ersF7ilRJ0QyqVogxBuv7tpWcxRQIpYzxeVkp0nUxxgXWyKbvhOApB1Ixx+xjAoA1ldv1Fly8v69KiGWZd5er/vQMgDa45WqCzW3b6347eWvCyjloylkkEMtm12w2nfPZ2giUdI1MEIGWSovgpJhEU5FaUQo+JueiWRYkRGsN1TFCgZVGi5YLwfk0TpgjRdjvut8+fzFuziT7YMw8v335vJFCKSWk+PXjp//249/frqe26Z72h0E3ism77S77hLncb3eNVp8/fJiuI6uk37SUES1VqXWeF7OuJWdEBEqatuXAknEv5gv6/HR4HFSrFSdIKbK2bdm85BztYoKxpGB2sWFKSkU40Y0gjFRKRN9SylefgZcck4kh11xziBFcrICslhqcBxopoJa61co4E5KlyAWnKSOXEgiRJVsfc3KqkVJIguC9i7GmnKxLbSa3ccJSakmMAsdCa4l2qTzvN1rTXckhzBNljFMCmRNOdC8pYcEFzikQSDXF4HXTEdB2tSH4spZgwjyub2+XFMNw2GutK1PBrbF4G0yj5GbTKqEpo8+vb9fLFZD7GKdx9i6kVCgliBBSIVQNreKC1lAEY13XtLMetsNyiliAS5ZCgBjcOt0Nd5BiLbUdJGXMORuyl5rqJHMq67r60YXSYq0hBaA0FoipZBc5V0rJYmBalmaaSq1AqGpaRkF2fLc5cODrPJaahBJ2nV/f3o6bA1bKCKGcVYSYQwjx5e1t9fbldFrXJaWopPrdN99+//59ruW3337zLjddlw12UsJxnw9UtX3b6kZxv86sFJJTpxvFxfl2m42RXHCpM5SUv5b5OLdaQWunFSkJoHAUvhJKBUViVxOzhVo45zkZs7qcQyqRSsIET6k46yshgFS3ijIKDMZ4ex3fgIybYeCCsgxKS0CcbkvKmVBMsbjgVdaUiVJ9DCnmVEi23gvKuRLboaWIi5tsMGvC9XUeR7O66AtwpSnnPoXXX575JwI1k1p4ExcXljW07YYSzgRATufLVAGQISn07TymNw8AgrASc8oQPCIgp1xqUrOv2XPIX4mENKcEFAgrhRSMBBJFTrBmRCQUEbEWDpUJqbgiyClyRMGo2u33d3c7KTnUQijO49e8VGaUCSFjyaVm70KB2nSKcVZoqSEXUikVqdTLOCrFbQhUCJIxF2NdUK0EXt9up4q4GhNCSCk5a7fdsBv2zjjJpfX+w8cvjdRPT4+b7W6z2Tq7KKV2/Wa83T5++CylarWutBJOM8l2uhYsQIEJThlJmaScKKmdVsNhX1MZl4sPK9SKlDDJoJKCdRyXEvjQ9bzXFatLpe12xnkb63m8fnn98np+dtXHWrmQsmkqwHW8OhtSrqnCebps7xTlgmTY3h32h32oMAU//WYolUQK1baC0RRzSYlL2rQs50AoY4zkXNfF6k4P2zb4kHLhTLRtI5XMJSfCDvsdVzymfLzTXzP5lNJcsguZMsl4A4hcY9tvcl0328OwO3388PH59dlqTXIljCPR9pc356fo3Xar77YbhOLfXK2JCSiljNNlmaYXrjjjd+MUoPzw3fc//PC7u8d7qXnN7uPpJYXEOAXAUhKhhCAhhIVSck2cEE5Y17YEK4nxvpUdZxjcfI7rzUSbSiOIWV1wbcskIW27aZqukmuBgggIWKGyX3/+7XffP221vl5PkeF+eGg3m1a1K1/vDptIXaW57363pSiS8FP624+//Pb8ypoBGP/wFlKO235LAG/rbfFLdvD3f/3r+jgJQJIxBc+0yLVQEP1261xYzbpJg3FuXAxj9On9Mad4mU3Tdc3Q9U0/zzOvlVJaU3HGNbr79vu71+ttcVbpduib5Esl2LaNbrQPflkt5WFeVuM91JoLIUw+v5yji5wSn8tpnAkpNRdEUWo1xs63lTGeY5GK11oIVs7ItuuP90eoJa6rNWERq1nDaBafs65VqcaFaJc5WqYkY4Jjjp2QulU0VceD1BJK3vZ932hrlqfDQfWaUfbl5XI9XWSp4rinCU+XeSLLeLs1u2G72zWioRlbKb0N8zyJRjKuLtf5+noupWjGGOF+CT4ZJblSYtg1NsZQgHAVC4RYcknWW6zQNx0hQCsqJXmtJprs02bfFyy84Sa4FMN1XoXUIZf5bRly0o2MOSabsBAuKZfS2+gzVMZcAbOYdTa3cSw5McYp48A4l4IyBhWahqtmyCWRAjUlKuhXGb5tJSAJKQvJc/CUkhBdiYkl5ESsi3UpUM0opYxxZ8M8ncdpEpz2ra4uUiUIycEb61eupdJ8WhYfIxcMclGNJJwApYXQv/7r33/99GGap8P+8MP3v/vm6Wnbt1iheEi5CEa7tlNKDbtdJeTp6d1ut1nserndfv75w/P19PHLJx9jyIUDMs1aJe8f7na7XSdaLRoOhJYAuRKERklGEZGadTXz2rdt1yjBmmlevfdkpc3Qbg9bRCw5e+cvq+UU4+idcwiZS+VCqTUp3bRNUwlQZCkmF623tgIKLZiQzodUghCqpuK8RYpaC8FZSblQkhAAIOfqQpxuK4FCMCvBOIOc8/V8Bbxtt7v9dhCCX88Xs6xMiqbvUyolA+NSN01J2TkTbaRaLIthjCGhZlnM24UzJhhDJKuzL28n1bae5mVda86UEoipbVXf6ZIAcxWUM9norp2npes7AIgpXk5XQgkATSQPQx+cd+saQqC19o3EXBgCJSVYzxmTjKfglW450FZLwug0XWJMQBlF5JoR1jgXAZJxDisOmyHnYl0USqm2oZQIKZCiD4FycXd/x6UoORq/ruuabFzGOUc39B3jAAQp5cfNrhSA241SWgkpWBcz/+PTh7e3MxdcUnG/O2yGrmB+eX0eL9f94eHYdTHnvq9CKy473Q7OGWcXCkUL2UotifCLX2eTY0ECHJnPxbkcbUguEUKaTu6GrpSyrq5kQpnqu55hYQxIwFIAAdd1XczIBQWoXEoJNMbknXM+NF3fqNZ5X0P10RfMKcR5WY73O654Kvn0dvn8+UUI+fTNu8P9PZ0uCAhICOPex9eXKyl0vx3GbPwamRCN4j6Z2d5SLpiJjRkZq1iBlnWekFVkFAjJIQnJoCTIjkLydkUUhCCnJJfkfBCcdS1v2j4HpRvFmCBMMKZqRWc9I3QzdG3Dl/Faaxq2G84YY2IxOVYwZvFhiSWGCLHUkkunWiFETiHHuBuGzbClwGMsCEzrdrPdtF3rg7tdxpgSpRSAEsJEIwllOTpCIeVaAbwL2AgADCFKpbgoJYSMGAFCrVSIreqR0NUYSon3BRDmZQaoFJBT1jbd/eNjI7vxdH19fo01O+dpJVKK9+/en0+ndZyw50zJcZ5c8MPQc8FM8MG7kPz5dvHWE6Bt01QsFDHVyhl7uH867O/dYjmnl7H6GKhgEHMFpFLmlfqQ304nF7QPOZVFaGOm6/PLW0lpsdNil6ZvKgHVtm3TAdKMJiZSMDEquCBmWTS2j/ePmismuFC63ehYcy6x27ZN23IKjJMc87wYUhEBPUHKaEEUjeZSllIJYYJireB9KDkRAkKQVLJZM1cixRpTSD4JIZCAYEopoZsGCBprbqfrOE8EqNTt8e6OERSEkgxA2LpGRJsrMiI41UDTpi9mDYtZpeQPx+M4Xi+nERibTTDlJWJ5Ha/bZvNw3LcE3u23Prhym0OKTFKKmGMqFaBWwiijNOVIKHBOBKG77eaHh30N4fz2SiuhIAmjmVUbE2taW8o//vHjL2+n63xLmEquHAkCEkLZ4X7Xt+JuMyzrtCZHYgFXElQfI0IVHLEAhvTYt+/27zo2DJx3nHXHo/Fpnd9ITftBO+8Ewv12O56W559/q4v7/ptvUkzezCnqt5BiAUBSS5mmSTcKK1Fa2tVfz7ZpJaFoQ07gpnUdT7ea0/unRyzIKN/udoTx8HYa52VeLSI2Qt3f33HGkWAdmgIpWU9MJJCHbiOEbLSCUod+2O2HZbq9vV0kJUoIgOhzGqeVEia1sD6cXk3btZwSJVgjeckhp4JIuZLGe5dTYZVInivGBCnmmnIt4bDfaqlevrwG7wXUltLtpgsprtawrCAQUWst6Zvdrv0X/dvd248//zava0rQ9cPHT+doFynpN4CdLjyVbb/pG/26rGYefdRtO+QafEpDOzSCxpgKp22n2oanmCkpilO/uG2nQwyribdpZgQ61e52fYph07Z921qx8oqK8+Nu8CFYb3ou2WEvCKFcGB5cCafnt91+yzQzq2OExUxoSCWVnAthjGrFoIZczDQyJhcfFRGt0gDVG4OEEP71wFuSL1JI2UhjvQ22bftl8aVU5KRmcn4Z+1Ycd3tG6PV61br1MdWcur6hQLxNOSQtBeVkN2y0Vrm48TanFCpF70Ew5nyItSJhjFTCqc3+4/k1x/Tb6+vz9fbw7uHf/4d/93h4pAWCd4Cl1IqcVEK/XC6lZEqR992Ugr9NhKGp6TRdXq5vr29vGeBrfrjG0u/073/45rg7SqIZymQ9yY7yUkvuGsUo+cpzTRm8TZXUtmMyKZKDUpIAppK8TxWqcz6E0HTaWD+Pcze0Tdv44mLMRBBKGFZMOXvvYyylEEBAQRhnyZvFGFFSJYg0YyU5+lCS4ExpnmuutUpJscI43rDkRklSq6CCE0YURUq9t8HaTddJzp2LzvpckXJZCsTqi8nBOc0454oQkiBBRa3bFEKK8bDdVUo+v/Vv19PPH36thCreEEIf7u6EFnY2UKCVOfrsFrvpO933viTOaQG4nm6UUUaZ4IxSJriAUmpOwbqUM2GFQiVQEIFTxjnTutseD51oOJDsY69VJjVHl3xiUkcXSy2yFa1WhBEhBNTKBCsxqk5xLoBT673PCUoJF7/pt1I1QpCSSKrk5eV8e7khAOfoA2NMcSIIMkZp3zZC8ggJCGTI5/H2Np6vdtzB5runh7/8+Y/fPT01kkGMOdYMsNiYkSEX0bvqFq0lpTElB4BMcufjOlsCUAthKAXVXTOQHNfVEaalAiaZaDBGIIwR0WRXWt0PXVerA9awyHLClLINHiqhhAHBHHLEgAVzrhkSEBJDnMbJujUWXwHavlNaxpzczSzrMq+LsTZDHdc112SDXy+Tc75ph80wxIAFqNRN8Wla5mZphOpv821eln67SQyv421cl4KV1gJQO6W/fXqHhNrVdrqlmMw6lVStSTkTymjX/4+Fc7fbPj0dWq29cUqpmoEJDkhrgZyBIHat3m7a2+nk7doNTd83bdeHAJNxPnvr1pS8MXFdXYypabvd/oAlT+NICevbvtGypBJc+IrOy76UFGvylDAlda5YCcQKvFDVdqrWnLKPAQFqRUIZ54pQ0fcNliIb6pyLBUNITdvcHe/J7XT/7v7TB8e4zGVWSlvnhZDb/Q4pDTEWCokku1gKlDHSd31KeTbLGowKzfmny8dfPwjJuBJASIwp+uCyBwI5F0KJ1HxdllrhKwRDskbzQW06xtniTcgGACgVjHHBGtoLpZrZhiXMiKIQmu2Sc/LjBCXqVlCpkYmciuBSq61qtey8WpxZVsz56eHuOPS7tm2EXuZlne3x/dOw7Y/3u3lZb7erEiwxIlGkEIOLWulGNzVjyqntFCKGEAsFwSRjjFIsOUXvUo5tp7q+WYzPuUClNVXOmdaKM8EZVZytq5mWZZ6nBGVx62yXHGLf9XeHB1HZ6fVsliCE6Dd900gpaS15tSuhZL8nSk21hFao/kFz5NNsAqJP6flyPt3OfjS/f3h6d7/95rADpM7+egkpx8KlRE6d9xmypKKUnEIAKNMyMwBdK6cPgiPWwLhouw0KFryZQ9K6eRuv/9cvv3w8v73eJqQoGIeUSS2UAOv6tul0inG3HZhhxcUv588muoBxOGxYbRjCerq+vX00n2//9Id/8/27764XI6X83dOx1nLzS3vYuJTe3T0kU+o9pUCgFM7FfLtudNMMe1/rl9c3pVWjFWGUEUqAMUZTzsYYwEIZ8SGNt2kcb4IwycX5NLZKEaDz7CpxlNJGS2M8E0xrFUIgiM7Y57cXG7zum/1h0/midAtI5sXUWnJ0A9uITvsxzJPVx8YmP1prYi4V4+KdC4RTzulm6PtOW2Omy60S2rftbVpSCk3fikYTl1ZjBZcFAAG1FIoJLKXRsuaUXMgx8kZjCpIRJFVK3jT65fVZ17zdbEfd8AqTs+NstPc+BMxpqPrtdPUyHNuhvfsKhwUKJKVyvY4ZgQIrlfhQYw5dK1NF0WmFyCifR+cXZ5yntVKoMXiCVWhGWNVc6FYBQkyp5kwlxxp7LVjNhdTN8dgobb3vOiSUjpS2WjHBRE9DzLmmdVmEFIA1Jr/ME2c8pEAYoZQ1TPSbQfdtCqmwlEpMJZdcYgwIWAlQLnKB1cw+lpJJJQRyLbmWmLOvjWirjwWhYGGCrtZYRiACJfA1Feh8EJwPm36aU0HcHo5Cy9fr8tvL6W28uZiQEijp9XRal4kJqYXyPjKlCeXztNTwiRJMMQYfog2kkq7pC1RjDSNkd9hfzWxXC6mcp9PtNhZaj4dDGefbuiKlbaPev3votSzOVc767Q65ChaApQJRKc4p+lgLEsqVEBxrKTlLJQThQnCC1CdnrCkAUslUiw2ZyUY2mXBZKmGc5wLeesZZKdnZkFLigjPBQ/TeJ8oEl4JFTylhSgDW5COplRHgjAgpGKVjybpvogvrGkuuOWeo1fmUAdu2qRXG68wJVUJBBe+DD5mWKlT9alxwxoXoe6G0Vg1vVCOQUckaqJUK0FJypb/73fdfTq+rWV5e3jiV/W74rv2uazsQDUPUSuZoai3B+cPdEUIhrSylxlZbY58ejzGGWmvXNVBrAUKRcs2oULNeFOcmeLdaUYkxlhJ+uDtirHZepnnKkLEWzphSAnJdnSWVEkIBakWsUOGrOkwIYyTFWGsukM1qnLHOBikVpaTvGtUoLduVW86oFFQpRYA6l411Lr5Nk9nsN6WUy+12uV3Pt2vMiVN6t9//L//L//xv/unPnKIWjFT46e8/ffr8+TqazXYXUrLGxhDP12suiSL2TTevrqRMoDaNZJwnnzNgijmlkHJigulGIiSAVGopEUOo3mWGa+1lSN76JeVSM4MKjVJS3PVDU0pZFgtAiKRc6JgSpayUClAq1MP+ULagtKKUlZKNWZd1GTb919vh5XqxztzGG0LilO23h93+ySxZKxV9rrlUhKZrmr7d7vY+FZ/Tauzlen15efPR54SM891meHd/nzPQe3HY3GtOoUQsJficSh3nlfyPZ43bfS+lFJyb0ZAKnFPn/TSvBEnbD4SQnHMp5LC7I/u99asxkbBCiSCFDY1SXMXkFQ+KWucLk4qRplWcZGpNMEuGFA/bzWGQt+l2m0fKudJt02ofS4yFUeZT8NlXDm3TUqSJxJgLZ9goTQhAdSlBIcgIrQUJEVr3JducYbPtdK8bzXIGH0LOGaASBEQklGmlk8u11P1u/3DgCJhTjdGfz6fz6a3k5GMw3rsaaq4xZ1oKI4Q33a7bv15fp5upX3eaCgi15MKA73eHod+O4y34TCojyEJIfdtKqWslXTe0XRNsMNZW4LJpumGXfBgrz9kpLbgkNWcl2P3DQ9cOBYrKpW3CSM8lWkFEK5vD/o5k1B0CYCW4rsZlG4odpzdrx75p7+7vlFCEMaRMdV1OENclliI5zSWGEFARzpngAjhZky05psjABG8CVxJJLSUHn4LzbaMVl7xrc0wQM0WqlIZaz7fTdJv6zSBkK0AOe3F4Uvd3eyFYCj55n1JKlQvZbTYwXl4u5xe7xuNxeLx7VHJKSG7TQpClklOGWBIjcBiG82if7u+AkNEunAuCEFOUQqhGpRi9XWtKoVjnwy2V22V7eHjoZa+l3h6O2Iu///Xvz28X83J+Hq+/fP7sSqmENUpQQqOLTGRCkf39v/9j8x/+nNCP7kYJ89M833yqKPp+J7c9bwmp0KfnT8///ZePNwN3T9/tvn3fS7rpDiD5X3/76fPry+N33wouVpi/+/5375+++/Drb6fLidO6x93d49O02mBCwdrtNkwxAFgnAzUfdn3bt+NlvJ0XQVnM4XZdtNTq2JzOS+6JYGyez/2207IhlFEivgLZztMUfUg5nC5vjJKubQ7H/W02LmSgcF3HFNNizRTW427LKqRaZ7NelzFUgoolG6NLSJAwON1OSsrdsKdAAEgFwglL0U5ujRSk1LJRbrbOm5Ky4NKZ9Nsvz4ShVEwqCQW8tdY7ZMCFyKwmiqrryeUKSHNItIAkmpHwZsex3CoDWuF6Xi/r9M8//OGOydNttca2ejjuYYxOSJERs0/TONcYJUcgeTMoFmiv22EYlNysczDWNoJjsZxCKMUHxwPdbAZf8mm8rPOEqdQcCM3Hw05JMs1z22glaPBp0w+dEvH+zvowL7NouLE5pNpoJrXsN12MyfuQQmwUbzZdzsk5l5O3S02p5pSRomg0I1AszvPsl7lQUot3yyIFH/aHVOvrx2fMuVWCM4o5ApaYvCSi7XUhfpkmUknTa86VlIwbFIKkFFwyGRMwTaR6vnz864dfn8+XTDJURilfrZudg1o6qaQSlPC359fzl1dCCidUKoEVvXc5JsEVk5QxQangb1+MWfuuU1RUkpmku91uczj+9Nun//Nvf4/Osy3ZbvpeSIK01Wq76e1sbtfgwoikUEIYQZOSdYEyfv/unta6TLakVKAua0CEXBIjUCrkkNZ5pYIP24ElkVKya5BaICE5phBcDDGEQikDpBWhVCyAPmfnY60EKgTrvLUlZs4YclZycdb76JDlUjxThHJERrhioSTvI8a0hsgIK5UC48ZHM5vFmMoIrWW1LuUYc4Zac87RWjLS7bbvdwMDBoWGmirW1Rmac6qFcvH7P/25HdoPv3y83MYvr294rB3jgLhYE3Nstc5fa8vNSglptBa7/hSjwNJoIRjbHTalgtGuOCs02xw2yPDT9frzrx9NisnFz/r1/vExlMIJd6mY1XZt8+7d++CjUKrs4TaaVIp33hrTdE1M2SyzD64iCdEpoRkjBIFUIIAlVVtCiKHUqpsBgQFQgmIYhr7RMcXqPdHSfF1Sb7D49cPzp9nayRgE8u7u3R++//2+35WUzvPMECCXt9P5fLoOQx2GDaO07Vof4vl0San0m55p7XOJPmjFqWKa81Ksc1YEnkvM0ecYVEsoqdE7qaVuWt3KF3+lWKViySO4nFKM0TOimlYrJXSjY8pK9quxMea2oca5eV0JRak5493QDRUQCbRtRxAnzqMPLlhbHKeMUHK7TUBZRdjuD/ePT/d3P9RMgpm8maf5CiUXyPMyW2+XdRmX8cvz27QY5wwQQoEe9rv9dicIWRfbiLaV/abvEfK6zDmHWorWWEtqGkmYoIzZxUWKNbGYcs4wL9G6zCiay9y2mjIGXB92u5jd9Ol5Ni5gVQIS8JpZRSKEIiyFJKJZCAjvq7e+FoKU+xij8zxm3gghe2o844IJSXM14835gJyWWjJkHxENllxySYRR3Q5KNDEnwFRyNMFxigUYZZQzrhT4kKKPupXeOZ/CbZymeW4aXWqtpTjrCBKlaK0dAnRdL5kcL9Pr8zMgzNOtllSgrnad/KqLsN7v98f9YR9DWvyaQrB+Dd4DZOddhUoAtWz7botI5slczlPJEAMASq22XdeWVCihNRbOmax6XgOmrJTc3j09HJ4+f/p1WccKtRGaM1EjTRapEFhyCo4CxUJOn0+iwP3+rt9udmJfKxj0p9v5dDrVGpHn1QKSIlZRoSCK0ayhAmcsOJNK2O06wFxLcDbadWSEpxxDtIxQbIix82ztMAxKtynG5FJwwV3nkmEYurZvBEFUQjay6+Tn1w+SEE5IDhGkHo7bfr/tdUsrJVAEZUxQmxIA1OqfPw7GB+tuLmRGeN90wIDV6n1KiW726uG4LznmmEmtNRdrXQVABErJ0PcxxZoSlEQBeUWai2Sia9UyzaPUQVRI5TKNzXYIAa9r/u31dHLr4msBRCSE0AooWkUZ1lrYT798Hs/T/V1vw/ju3QMDRTXZbu/299/0m00Mi7Ezlrrf3n2ZbRS8P9x571hxyKEydl7Mv/744W0Nx/0uu0jxbbLx7//4yTnzcDgywdfgu07f7TYhZ902Lvrnl1NJsNsP280OGXLCKSFQS6PUbrvJqS6rlVwwpQjS1QWZyrDvWfCXyy2GqJWIOZ+vI6Wka7r741EJVX1RlBFWT+ONYaGKGV+my1nU2DIWOI5LcM6JdlBaOebnyVCCzrrVrnloOt0ySluhSy1d35WicaGxllKAUtYNPWbQQx99WqbZ+YULRmjHORWcif0uBKd7va7r5TL6kA/bg9TNYbvNtT4ed23Tf76c5U8/P1+vLrjgfa0l02aarmvTk1piwMe740GKcHnr+i5VNGUtNS1LyBXWlzmUXnSUMQmcu8Uwxu7vj92uf76exjRfZ2Oc40qv3gc7B2tjiAKJatrVenK5HbdDidHNi2p0kipFf3e4ty7ZlxcCWXDOqRrn1Git217o1sfw5dMzltJ2SnASYy2ZVCh2XczqUs66bXb7HVK085qDdyHF6AQlyVvjSABiYvjw6VNx/t3dcbfb21wQK21V5STmQCiRUkEBHwJg9daElGSn5mS/nG6AYCK4t+t/+9vff7u+LMFRSQlWBCK4QEI4J4MSgnFGpKJKMEqwckL6oddKQoEQvLG21iqlavseCSHIurbr+55TyCl0fb85HmMsf/3x76v3KXhWKymJYOk71Qg5p2U2S0yx0YQQJAilZut8TEUKhSUB2r5rkDG3rG8vL7VCv90ILW/TihQ4p7VAN7Q1A+TKKNWKRx9XUwBI06lSYV2sDR5qTUDysoYY20YDkGAtJ7Td9bVWY7xLzodQMA1Dl2MotTSdJBUBwLkIQAgDMzulBCUYjHcupxCNj9kXoQoTjBCAkLWWkGnJNfiYU15uUwi+7berNRUDJ/x2ufz1t59fzufDu/t5WZ9fXgiljJES/MAVI7gbht2wGTY9QBWcmoo1pHYjiyhw6LHCdte3TUMoGcepa8Vm08ScoSABpqWkjOZaI5TZmnlaXp7faoLswv64PR52KQaoaw6JS6EEH+cFUiZAGtUQTqxdxvE2L3Pb999/98Pdce9svJQzVmwbDYTKwiih3tmSvJKUEaabvh3amJKGvDvs2tQhFcb62ZpPX15cCaUUSfl377/7/ocf5mV5fvmcs+ecSy6tj5w3hIqSi9StVDzE1OoOKxGNqrVY65qh14pVxoVgMmFZXa0oBW8bHXMhDAlWBiyXCpVwLofNvuWUC04SR6SEFoEgpVRS5ZKNdTllIYRUMhcPiLnWEDzltO87VIhIKCXWeYKOM4ZA2qbZbjePD+9DLtdxnKfFXBfBydPD0+Pju4fjAwX+8VfvYXHee7t+/vK5lHAZz9dxuozT2/maa2GCRZsIoZuhb3WDgJwxUjDZcDKXeb7G4BAJ5QKRaqWTj8VZLmWNwDjrj71b3e16KxnapvvqLJFCbvfD/dORAzk/n2MulHKl+1ZrxknwkQneNAopNu1NiOv5dD7f1lKRC9K3qu0kIBoXgztxQpEp67wLudQKADkXQCAMMNda4mJCDAGh7o4HKUT0wTjrvE2plhQTIlLFK6kZEJBR7p33wefqggvehVqhlJpzFkxyJlPIXdN2urPW5ViAImNsHpdUIqXFBj89fzLOxlx63WWAWmujtM3mdj7drlfnrFTKBxtS5IxzyjkT3rglufF2K6Uo2aREm244Hu4IYECHiN76SklMxaw2pnL3b3eNbG7ed23DOGitc8jzZBqNtCHe++u0WGP6RupWl+gJVW+n8To7pQWTbPXLtMy1lkpqqnGjd0q2Kda38y2FChWFFFppQiqzmOKqte7azrtgrAkhmsUSwK5pmrZlnLJICtZUIyLoVrd9V2Na19UEA64yQm20NhmpRNd0d4cMVJRUSUvV0OYKt8lhIZKzoZGt3gTnQ/AVUKhedZvrdFvWG5bSabo9dtCq5GZEsu823373zX7bEAJ/2A+//af/jAJppgVKrVihVsjLskJFpZRCxFIfjneHTa8J8bVABDMvF+O0s3OsH95On0/nKBgRosZYazLLTBg/Ph2Qkuozmyist/nzeNsemp7I7WFPkeq7e313zwk38/Xl9QPMdhg2/+Hf/cfh7ni8e/z0/HG+2enk/8uPv/7nv/7445dz/XT97t3jbtv/+jouxn748pkW+scfvtcNbYT6d3/8p91hSClxpehaaclfdbh5nkMJD8f7998cl2W+nK7bTVeg5gIEMWDISIusrsYMNZccgqOUpOBryUywTreNkoft0Xtv7UoQWybJZjiPhUquOYOUWilozUwgo4RlogTpujZx2TJhvSspMkKj92+vz5KKoemG3Z5QEmOkm81s3WwsIBVSxBIlasoZUso4H4aubRulvo5IzjNPpTAhi3VmdfP1AxMkhhBDUJJv7oZNy2WOt4f9bNbXLy+M06fH3a7fDZozDkhwjZ4wFJ18vbzu93dNp91qpOSpZuvj+TrvD5sQy2+/ffaLJQgNlxUzV7jZdJnQ2+SQCR/rtCwlpO2w3QybRkm7jEiBctn1A2FUN83swzwvBW4+lct1gpIVo0Iq3FJA9DGkXIyzPliK3Ee/rj6lxAAp5ZoxqoRLQQoSzIxYk12z9VAKZUxKrjjLtaYcF7ue1zW6xFq3D76kRmpqSbmcX6sP22HDULkUrpcro4ikuBjelklsuiiY9+H88dfz+fTl7cXV0g5d9PGr963TzXbY3u13DaMMyW44bvtt1zZSMsmYUkowihVTiss6Rx9iiJVA03Z390/jtFYsUJNdl0HrjWpErZiiIkwrudkNm82wzvN0HcezO1/GXGF/d5CsbqZRcwVlDjGOy/z2eqrBCa2VVkO3DbKhNceUm7YtCJb5odVUcMYpAKSSBeelJGcTJYRxEgthlMecK8FcoWka3ejXl7eQ4mYz5BBjjF3XaK1DSIgJsBzut02jgnfTMkEtUvBgPQChlLiQGa0upnldBaUI2HctRYqU5FicC73gXdscdjustaRUUw4ykQp+WXNNfEMAS4Gi++a355d//PbbYt1PP/0sKZunqUBNKQoq8PjYCA4Euq6FEruu0apRUljnY4ze+0bK7bDhnAUfbuvNrHaz3x6Pex+yaJpt/v/T9B/t2uVYeh64Fjy2e81xn4nIiMzKKpYoinID/f9BD/rqFkVSrCqmDfuZY163DTwWehBqTDDDaA8WsO/nfmi32xG12pBrUTm7bVvfrVCQ1yYYr7XUWmvJ18uWUk65IsdpGrQvcfWiE5yzRpRzYghaCcmFsMJbva5bSVlbiVyyBn5be6sGa60ZBNchxpwS06IxnI4HX+m8fXlbb+dtMUZga0oawWQD3Lx/fb0A5LuHo1Wqn/ZcWqjgfJLGCGAtt6HrkLNcWyNEZIxLQJFSA8EIBCHfXJYShTBcCakUJV8btcKutxhzLRVIM74IF1KI1AgF58YoqeR6XkJIpRLnnDGhtDXWNs5LKQQgpeGcr+vKBW8FZr9KpYzS++mx67p+7Gtrf/nzn98d71tKDNtxPIgKLZUGSKlQKX1np71tnN6ul3l1N5fnmApnNROU1kqpop7fTu8eH/f7fW+oJnDb4rbg3DaMxhjVmMilhpRTCICAgnX9oKSMwccQpRTG7Ftrw9gPxyGFJIUgn9eUa8pdZ+Sox8MIFZTSve0AUAgeY1KoduMwn69IjSMigNLysNs1xBBy9pmACS0b5ymGkisgIyAkYMikZL9Bx9oIhmiUtFItbl2uVwLkQjDOS64pJg4cGiKB4kJIDMGnFIEa55whK6m0CkZ1vR2gcsUNAxxM712gBFJ01oybm3srlMLw9lpyNP203x+Vkt5vV8ASU04JWuOM15qpVs5Yw8aZAMDr7XK7uXVbpGY118EM7x7fjYfj7bLUnJhgyFWu2YeghDhOI8R4up5fT8/Q2nF3EKpza6zob9vGOW+tRLciNOAgjFF97xP96W+/xlxEx+XIY1xfTl8BCtTGkO93D+8+fNBabvNyPV1iiEwCRwnYcqmn6/qo3qNQTIrcAgEz1nbajGPPhRBS2qkHIbxPPgYhWt9pbQ0zLJYkRqWYCDefU/TBKyXvzWPM2EAwLqVS3NiasAbMBUPE25JezmcfnbUSQHf2jsvTsm01eqUs1QoNsKIAuZ8O94cnJtLlev18Ol3nOdTUgBnkKeeUc4UCDCkTABI1yfjhcHx6eLBW91LtpwkaXW7nl+v5l7e387r5mvfDrkFd50g1WaOVtUDUCKzV4vOWOta+e//AjOj3ez0YAP75+fPslp3pvvzyt5fPP+9s33UHyTjF+PzzT7O7VM4W5396e/3x+bVqFbfy09e31/Nl3A0u+pWSBPHj2y8S2zd3j/N2zT7kEB/ffzjsDvFd+fT5y+V0IWrE28PhjjFAaNfrJZequ85OfUylpeRdqK00zq6367bOVMs47RoA47i/33e6LyG/nM5ay8v5qoT8+O3urr8TUsRWOq2sEBpY18n944GgvTy/RZdIJaMVAw0ArVE/2VBScFsjttuNfWdro0Il+RJ9TqnUVlbnGGPAGGuAHA3qoe+9c6UUZWXwIYe03++UGRqgW10lkkycr9cYvLZ6vy8G8cPd/g/9e6nN89dnKfm7d3dUqRV+8/7Xl7fX260fbS357eVlWdePHz5IyeVxWretojWdcb7e5qCF8N5RqaW1gZXGUWvTVQaokSnGuem6wpLsjNCyMeh3o0YqlRAZITgfQ4jXebktvgJcrjettDFUsebWhOYl55CciwkAuWSIqLTJeQFEbG0a+6yUykkqlX0IwUvGp37YnFdC9abvx45Jtq7r6vw0dde2nt32f//5r4+PD8d9H9aFghcNcqqd2S3OvZ0v754eOWbnfQ7RsnZb1+cvz6fLKwPoO7UbRuDy9Ha+ec+Rj0P3dNwfpp3lXCD7+O5p7CZoVHM2WuyHngHEkDgXsu+r1inEVDMHKNs2X15TilJwKjlwfmmn9TYLxjqjjDaSy/3dMafy8vz2+jzHlB/fPypjBSvTbujHnr2dgGFKeXOeUel3u1hyzFFJ0Q9DpSqVzrkMY4chplwv50treNgfOOcxxJSDtbo1EpwzwbRSXBubstIKEPqx5yl671upWiml1LK4XIpQnAs8HO76wVyvp8Uv2JCIUi4AvOtMphRCoFZzLQyZ4DymoiQwzhVnDVrOJadsjckhAAFVYIzXXAGgs/busCfZfN5MbzPRurmK7fX09u3T+4/ffHw9nebb9uX5ZexG0x0ztPN88euqO9VLbjtbK13nzbmA2HFhVufmeS6QM2uR6jROtjGQMLWoJW+NGtXgclDq9fVNI99PR6N1KTX4UEohgkx53TaplDH6cNjRQJ+en93iqFHfd1zyu/vHVunL569UKKeEiLVSTElKISUvMRDQNB2M1iHE17dnH6MyGk3jXv/65ctff/j7z59/KZABhJJKWX26Xv70578oIwsUJZAAuBRjb/cHBAIsxDkDFEpi8MkFF1M1nW2ttEYxQE6l63oOuHlPiJIzYNhYI2KMmtsSctYK5oIxFY+EDCqCDzWnyKDmkrXWpSYukEtZSiUqqURMLNfCuKylhJClaFTBGMUZxVCogu1GJWQIYd1eEZpk/P3j09h1yLE3Q9h8UCsQ824RXEzj0I1aWeY/+dPp/OXlklttQNAaIJNKUCkhplRyykkArxlKilKo3ciHSfbTUJDNy+Y3N7s151SpWtsDtm1dSyx91w/jxBgyREGYATnjfo3eRSm7qTOms0QUYiCO424qiWohopZColQOh92423mXlZXTpKlURDYOHfQcEZAJH+M637y/Oh9zzsBQS4kAkjGtNONMMAa5Rhfd5lLM2srOyAJESKXmFEExKZFJqcygpeJ0ywhIVGupXHMpJOeCo8AmgkuCscGafn+3bBEYDOOuYTvsZdc/CiX5y1tGcTjsv//ue4q5uEBUCEouudaMwKjVUitnIKRgnM23JaXCBHrnW6HdoddStkxW6e5ORx9I0+wWY/R4Nz7c3T1/+vX58hyye7x/TMWHFJfVlRq5sKpT18vs/QxIOc2XCyHjQCx4H7YEBpltLbu0zJiICEEIO4z9tJum3lqLDWOOCK3UEpxHZEzwzQdolxBypdKgMWSoRFV43VYhmVWmxLis27p45OzqhVKCIaaSe951yoYUGACTQkuNQluUBEhUz28nlMbq3spea6WkWJZ586v3DtGMtpvu7/vL87KcK6Jz7jYTNoEcJeexxD//9QelKzfs88vXt/N5dnEYht/KZRs0zkXKOeYMABVAD1M/TQ8fnrQQksn9/b2xXfr04/nzp+fLxRVvBiU5izHU5oWkdw93dpw251eX0aJ4CfF+N6l3j53Ar5fzrqblbf23//pvgPX/+N//VylJKTUMowRQlMrZIeeK0svW/l//9U//6e+f5e6xt/bt6zkHF6nqlHhrj+POaI2tkA+9lNfLW02ZMl7n6zCyadqfnucS891xJyxf58t8faFah6m/riERpdvKhRimqXK2hTVCPt8uotHdcZ9LjK1M+z0K5V1ck++NXUJYgm91s9OwZ3i4v/vp118p54MZ9tZ8+4eP43GfSjFd9/LrS0q+1uJcirFIrVPN47gz1rBaCGnZ3PU6b8Gj4CiEIJV8EFoqrbjkHFnXa41CK7Fu2+3tmil2faeN9ClgYrXSME1ElGKECsOwA9YUl28vb7fZ3R8O3374tkMOrey05YLnjDGnkNN53nxJnVSSy23zp9tp7AbNFQreEp/2d11v59Vn73OMrbbrvOILjfuJMZO2Ml/nxpjuDOcstvr29rpcr++eHjojciG/uOv5anprh2nZXEpFd7rmAkIkgjUWCqFC6chKZWKunHFjZYyxQTkcJyElNoJCueTovbZqtxuJ2rYpH1LfdcPQp1i00n3XCYGsUd5Pxui//vDT15e3xc2n5TJZ/eHxbpACqTElXcou5W9///v3T/fz2wtRZbZba/r65evX569ai0Pf7/cHPeyXEObLpUQvmR2kGrQuISxUFBefP/369PhIrQbnr0L5GIxWwUUXXaeVaJhTBITg89vX8xyWruueHj46tzi/nq7X620WQiKrzrt/+9c/n19O1lgG0hqTc4k+3a63TqPgAltDbIRNGD3d7QQAKuFioAas0Nvrq5DSWiuUElKpxiokpQmZkEJRpRBKLsl0pu8H51OM2YUNkHElSikxRttb3SmoCNSEgK6z6+qxUtd3jRrnjGqtuUaXh7GTUjViKZVcCAGIMgDs9pMUstWWfARoMSVqTRnuUwJGy7pKLsZhp6zVUm3bwhoOQ2+tUVHmJi7neV5WQIbYetvfHQ/D1BPC1/yyBXeZ53cfPhBTr/N1uV23HKflppVSXE2HXWj1tgV2uW1x5oIra5b5Em/XkEqMOSafS4Zae6PXEArR6rZO23nz+13TvQjFza8OiWkpjVXW2t3Ul5K1bI3BNKg11JxKa1kqYbSFxtbbWnO1nTnsRwBExqUUSrImm/dbTmup4XQ6vZ5OUlrT6+DD+eX1x19+/uXTr+t6k1oRoRk6rTXnPMZ8WZbg49ApLlQ/DqWmwfT7aRqMyqFuLqzBgeAh59vsuAuMtXEaldEVwaVQSxYardRQaF7X2+Zs342dqrXVkKg2QCE4Gq2RQSl19cEvc4mbsWYcu0KVMd71AwhcF5+ulQhiqUpZjiymyAbU2nCmSo61NIRWSmNYQwzzfENs0zT0Q393f+RMhJhcDrUmrawU/Ond+939cLm8bWnWWimlGDKoBQVj2BA5UVPajPtjzmXbVo1KNNNbc/9wB1iX5RzcKrsekRpUFKCYMEoIalAy8GQsZ1DDNksrODDvaq4tSV0JtTYMWE1cjop4UTvLOJMKBGfR0WHfMVbWBYTgLsRusNNhyNvaoMbouCQEzhgrrVwv12VZb7dZKKmMKiUzBo2qEggta9kRtZpqhKiVPOwHwCJ55Yw1QmxSgRIMuZTKdEIiEyYGjchaa0JypUVOpTVGxEsFZLLvjOKohFCcSo7IYBi74/3w/uPjw7eP/9//8798+nwxVr//9rEXZrlcn78+02tNOTGBKLBVxjggYiUirEyB5DwsW4ibYlzyBjn5TMMwWKuXBrNbG9E0dcPQbWH5/Pq5YNkd9rmW8+0SY0RqOZRsFPJjyGnLDqExaIlCbYSIJQbWsGUoKVHymnOuu4YiMfF1vrjPTb3KllK8eWRYGnm3xuC10d3YracXjm8l1VKq7fpW8XWZ+ZnVkjkjKRjUhoL7WAsBADLDlRG1kiqb4irPG6uNCVVRya5jTLZCJfvUcuNSMtXJTkslGTakCNWFkLLwq9rcsvo11VwahRiF41oL1BqZDJRfbtf7wygYMFRTf2zoqdVcc46JECTnogk0yBmXgnfTOB6mbuwFolvd57e3VMoPP//wpx9+OV+uQgjNZAiOeDzej4ep/+bdx0KwrY4RW5dN3BYXQ47RfTjuTCvfPd2PSkP255fn9I/ff//v/vDX0+n8+nbsd5IJAMYQT5+//vXl7f/8T//tz8+3cdhbo/16O+77j/eHQei7abcbBq4UAFghRm2ul3MVUvfdPG+/fjkf7+6MUSD1bpqERJc2Kvjzl0/9fjcOA3LMiZwLJVIlSilpqXb742RUb/Wy3X59eY3Xy3Q4bsGtm6/Ujof9UKZffvhFPL+Oh/1yvRHRFtIn/3r4d/8AyLt+ECXxCyeiWmhz6+WycC5EFi6m3f3U9Z1E9CFcr25ZNoJmdkNrbdmCD15XKZVMMXFg2vLG+fU6hxBqKyklIcX+OLWGt+vMAIeR5ZAKlU7L3TTt9yPU6pbN+XS7zZw+++wktqUWZGDM0EpVWsmuUuNdP1itb+vSaiHKsYD3IYacUilEJTe3JaB2PO5Lza/PL43wf/gP31njPn366lPs8rCbhruH+9fnFxfcssxD9yCFdPMaS+m41LZLb1cudD8N+TrbzjCmXIghRG1k1zHOJCJHJIYIyFzw6SUPvR37YUtrSUFpKaxGJdziUqPbuoYYtdb9OEojTqcT5yAkYwgcWqfVcT81gcvm5TQYY0Rr0Grwfp1Xae3usIuxFKpcCLf603ypMY2me7g/3E3TNI0VhHeBQxOcQalUM+eolAq+VtYWv8Brm/YTCMxQn09vVitArLUg4GiMVOpw2L++nZfr3Bv9+z/87vHp3b/+3//iVn91Yd18Krk1cs5fLjOV+oc//MPHD9/Nu0U+v/kYz6dz29tYEjRCgEqweb+F0GuxLaHUGlLx83a7zF1nmxC8AXAeYk6lqq5T3Lgtrsuca5xGnXOllirVdducj5Wa1Gp/f1BahBByLoLzoe8FwxSrMZZzKYSSgrvNe9cqwLTfCy6AmJIALVElakkKZExYo/uuJ6KN8ehdrSnG6AMQb6VRDRkaStPLrg+NSDDBDUpxWefr7XKd51Sri44J1hr0U3c47GLISikhea5l9X71kSPU5GLJBurr+cIZO+yPUuJtddfTzeVCLDcg5QVgq1RvL89+czXHw2GnJBeCUatcs1ZbhVopr+tiNQDVt5dzo3Y8HMZp6jurrSRX5mWBBlywvrcZys9fP+VCj48flNHjNLbajsdDN/bIGFXKOcZ1uy1rTF4KocfBlZCRqOaK8Ho+/fTp0+l2qa121jDg+7G/P+wlsr4bxn6al2XjnFplvOUY7NCPg+k7pRmP5G7XU6lUiEkt7ahLzEKInJLUnKDmGDhDJlSt2Tn/9va2huhTCJu8ezgiwbauUmnGsEEpt3S5LYtztaRWCklE3zbnYspKac5lI2BCN4JCjQutlEotNQAhhfNuWddtdUJoxsThOHadXbeFMVYJGxWlVS5l3bZKxBgz2hyOh86aTndO6dtS73cPghlg8oeffiZGyBjnDAo9PD0e74776TAOneaGFWF0p4wCTiqbFANRpdq4FP3YC84G3TMG27os7iqE6PRYYmWe2d7kUIgYgKiEufrO9ilm/+Wtn5S2DAn82VMBjpJ8TTFprVrDWEkqFV0SjJnBaiNLqamUWvO6/eYpJAKUShmhUgoNM2PYamutxhAQBAcmBCdqlSMKoBZjaIJLiYIVYIVRBVAkAGst2ijGEKAKwQAaAkCD1po2BgByLlbJVCJRlYzt9lNpsbQ2bw4FcqG4YKfr9b/8138ZtPn2/XthNDWE1uC3wF4DZKy2EnJc1lWrYQthdStA01b1nU3Bh1wFkOY7oJR8EICS8Vbrti65hr4flFLBu1aLBIo55eCvpyKAlRyhFmSNSha89Va3RrMrMWbdS9Zyg0IAtbWGpeT85euPzydBgFhIkwAUFVtNiXPY0nK6VWSotWmFUiyMCSlUSqStlAo5UGuNAaPaamvAODCGDAgaAEitOGPVx5IyY5xrq61thI2Iasolo1SSa1655ExLqa2Kra7elVy1kCl6527YUqPErWjICEAoBkiJMgEjBo3END5+gJ6fXi+3t+gj51ByLqUAguJCCh5DOp8vP//6iTEYOhPWuLr0erk8v765lFAzIHDb1njpJvH48PTu3f3H9+9uZ/f1l+ccYjMgxmN3+fJ2uzxf36aPd/tD3z2+798/7L49qqdR6Zynvnu5nH/49VfT9cZYztjsFqL1H7+Z3n94vLxuu90ovj9k5z4ex//xn/7d3XDMwZdamRKPjw/bEsoWQkzWdud1ez295UbfPb1nwAr5u93j++7h9fX1TZ0oxPt3OyltTniiObsyr8viVvL1w3jQXFulUYzydLotfgsvmUo/jkQtN9K217bzIfz66fMWQwZyLigQv76ccyt66BiQv23R5cZYQ86lsl3nQ4wpL7eFIzNDN8c1UpaTrQgRKMeca0Skmsu2OCoFSqMuOcbWZUGG03FSSqScqJLggnOmlAw+tlKHfc9Zuy63aerGYXp6hJBbaTjHrVBgWhMDifxuv08V/vLla3Abci2R7+7HYdQxht9CmlLwKphbtsM4OOeCC/v97uHxkTMAqkPf55Cjd51VFQpQAaLBmjRN6zznlAQyrZRQ8un90+5wx7gchyG1GlPMOXOBpdZUslDSDh0RXC43H7yxVhvDmEjpVkrNDZ6vN4BGwG4u8lzhOp/OlxiD33wJubN28r7fjNaytXI5nYkoFuo6I7VYtk0Ow7v7u900btdz9Q4ryw64xPPbmSGKVkpu1/MtxXgc9k//8CQlUkqd7EIpNVfGpZTGCml1N0yT7a3cVAxRSdUY85S8C0BtW71Waj/txq4XtgOtrDSxlA8fP75/ev/5+bMQctpNf/j9d9fb/Pl8lj//GGItVIeBd9O4Px7vnh7VaDF421lg4OIaQiw1G6kUFwAYYrzelgVqLcAE3+0VCSHHDoW8Op/z2pARIudiEDbEcrnOwa99Z5FLH2KtgXEutNgbDcCRMys1MvA+eBcEF5IrErzkykRrtWWfQVMKkXHgUjCkbY1KmW4YaV5iiYILo7ntTGuQ4gaACAWhdZ3uRtUE5tau1y15XzMVjna9Gau1lnnzynOtbyH4lNJlnq+3GzJkDYL3XLDHp3sf41VflxCeTy/13+pu7AYjD+NArKWaWmrh9Oa39PnLCxCT1g6TTLnMt9UHf/f4yLS8fp6nyXajVbNgALVmDgoRiDJjlfHstmsjGvdGKJ1CnpfZue3T11BKMUoDAyIUUl5v87xsUuvaKrRqpCyQUw4aOiKKIVDOIQbnvHNrNwxaSt4PxYXr6k8//njz89cvL1Lw3xzqu934T7//7uFwTFs8v56n/f53f/ju9fXNxWAYspwlIAfKyedc1nVZ57M0XTeOBM1YmXN2zl/Pp9O1NqCus0jNb8xt3vsUYwLDQ/N+XipvQC3FhMVLo6pLVNLlsjQOTLTovMoydT0A+BCXdVPSDMOgBACCu3nvc7SdMmq5rV6k2/XCfqOEBK9Uok+uZgBoQKubt80B4DiMJddKjTGJiEKIl7e3dXObu6VY37/75rD3udWX1+fVe6k4Z8wqfRi7j093+3HkTCITxna1MlTGjMpl//by4t6uKKUwbFtXKEQd7bpWaskle+dhFFyJWAskJCIlFfIafJwXb4yd9mOl4oo3vRQSW2kcuBF4PV9KLX03UGuCMaBKSKllo42dTHChFYYFS3X9zroYMmUUDLABg1oa5cyQCcEZYxw5EpZaSgmxRIQMCIWQalJCsMZyKMibRjSMA2eRI2PYiBo0zhjTTAiuhRTIcyzZu5K5lqo1oaVe/O3Ly+fWovkqnAsuZWXU6e386cdfpeD/8d//+3cf38VSCZArUakREOMCKpNaw299GjFUqFJJ0/dK2RwKQi05MBp6LW/YtBCUcmokeBt6TS2tt1RCeP/4cJh2Kcfnz19qbQ+T2O0efvlVvL6+7nfHw3ESCtd1HZEXKow3ZUWhcJlv87pBRs4UEfBSGZeFAgOpVZ+pkmqd0bXlGBND7DUWBgzAuVXKHhjVnLqua7loxWupyQXkTDJhpG5E3vtWG6+KcSwhtJYBZc2+NCm4QoAaYysFisyIDaTsdGsyReZ8dM7lXIpU0GrLK8MkZMu5cJ6NNbWWkJIxpgI/X5fj/ng8PMku5kIxhpAXZFUQb9h+w8g455yzUtLXr18aRSV48vly8y6XWprthhZYWFxKYRzl093uu4/3w743FlPHWaOWqQkQv3v/1IG43W5S6ILisqXPb9ddN/z+4ZvDfhfSJjthcx9jLuvagLqu//D+/fFx/x//w/8s+8O2ptm73MLtfJWVOsiSQssh+42B8ReWC9sdJ1rWry+v87oOfWd7NR46xaX37raepbhTSozTmIIziFrISDDZwcXUcq0phwZvryeeixb3pab7487Y9vn52vXDw+O78+nkQ1CC7w57yRgXQjaBDGYXcko/f/pKVKT4YRrs9XSLIW0hFwRttbWGCRVi9ltQYsNaUk5KG1RyCyHFRFQZAkqpjdZSATXIBaARNW2NMnIchhDcui236+2wP3RdD63VnPqxuz/c1Za/fn6+nM6dssfDsQIs3qfgRzvcHfYK5XGaHh6PmUP+L/HTLz9Loe7H8f3jjhJwLlbn+36ntYxcNgDvnGC/CXBhW7dp6t+/f2+UjjHP800qbpqRWmoj13mhXATjgnO/rn4hIfh+f1+pXW9XQKDaNh8LNaIGiNroBogIIcbr5YrQGBNKa2PUUPvVb5fLJdbqgndb6IeeCzbPt5ATY4jQ+n2/G4bf2AVrldtSrpVx1vc98FZdRQDOQXA2dZ1q5eQclbIbBm2tVPpwOFxePoWUpJZ7LY5393cPh9fXr6lhZ3uFwF9enXfQWm/t8e7Y972UImIoOeecJYiQUgypVkLGGhcVsSCsOczbJrk67IfqXE2FCVUAv768CCmenh7NcfrPf/lTrLVyLA2dTyhELvB2Oju3Ca00gtC8M8z5VQlJtcaUCZFJUVyRWgqlgXOuFObSGOZY/v83Va4NB8BKtQIxzoWSnHOJinKMKVDDzgxDPyirSqZt840aAtRM3sVmNQK41TNEIWQjEooBb7UW7+I8+2mSSgE0Bg0QgTUwSpZKwa+pVIbcdIpxpFa4kSB5jMW7rbAWa4KExKlQyjkVEi7G+XaTgtdaGEJrLZWScvR+e7y7+/Du6Xq5rt4tfll/dU93xw8Pd1oIeVso1RJypXVeXc3Nmm6btxSaEGx32HMQ28WBAECYV9fNfjwe7x7u39YZOaslh+hfTs8leoXQdRa5aMA253Mu3kUhkCEaqWynUyGqcN3WLYRBydt89etCqbRS6hn5y1dUyrtYU5IMWinA8OrWy0t1lK9uPZ+XLbhSQ6EgitTKDN3w/cf3v//48TDua8hP004b8+7x4fE4ff7y/PL2ilIpwd3if337BZG0VMNkTd/XRsvmChERleS27ZqhaqMFNzGE6+oaICLfHcaq2G2+betaWzXKlEKsYKIsOU9UQEKt2W8hhKCq5Iwf9odxPORcAEBKCYgpJUBEhIbIuEg+NAStjdKqZPpNnJhLXdfNhbUbNCCEEHyIt3m2pru7f2RMXM/z+XLOOUFDIE4FqVAuVSAzWgPH3GrNWSq9GwfN+bZssbHg6dBN4+6wxnjell9++eWnH35IRNPx0I29XzfFecPGFWcodVNEzedglEHOQ0i2V9TK5tcQE1HxvnIJQjIX0uZQSQmIisvI8rKsyGAYBoEsxLzOW4PKGQgqpkiEtp/2nLFa2st5XtY5BO+DZgxyCTVnqFVIyRoWqoWAtVbr1iA3rCmXhk1wCdRCjbzUXMkIaQ1TCre15BQbViaRUoXWGEMGjbG2n4YU68vLFx/Sbjda2aUUz2+vr69fJYNo5eb96lMFZKh82ErI06dfHr99EkZt3hNrBA2RASAi51wiZzFFQJBaCCaRiYZ42E+NKmfMKC6EVUqvbj0v1xR8Yw0axeCCT4/Huz98+93vv/k2BfepH3zw03Q0eqCHtrN26HQ/9rVWg+pumJTmuURjVcH89fT606+f1tXth35/2O/GnRQ6+JUj7/ux1NqAjFHeu+vt0qAdD4ecSqnVuzhMO9t38+2mtYLahOC11OST1mLadYPtsWGIYV2Who1LUXLimiklfIxY0SjDOC+JhBI+5G3zUmotFPKGyGJvtqBizEYro+X1Kud19t4XImSMWmuFSq4Jgla2UIu5joJ3TVupjTaprDll5AyAIQBjDKh11rZMSmmCtmyrW8I8pwSNG8WQhRBRNsng+9+//1/+139SCk7n5xuUdUnRbwANgIl347QTdr4/phAvt+X5zz/+aNR/+P7j/b3pQZXmkYn9/kCc99347vF9r6dKbgmvKRMht4/vMucvt1f8h6cvP/7yl//8r0M3HvbT5hwlocPicl18DLGdljnkfP9wvH84Wqt7a1Pyt9P85cfPXCspxD/84XvGWU5ADILblNXTrjeDqLW66BtOh/1uvlazsxz9rY9C934L67rmHAfTf3h8Z5TMLZM4eErC9Le3a02VEN7eLufXE0NGBOvmKwOQIKsiQKBilX64e4QaU0yLcy2KJXiiNlgrDQ8pCWTWaCUUpcIBO22BtdZIKaU0IyhSaSWlD+Ht5U0pfZhGt3kfHG8spzKvi1UVoQEQIiGi1BKJu+peLjllrw0u8wlZVxGQ2vz11A1Dr41A7JRiVGNIUNPT054z7pb1en4VvGqlEQiodFr7kEJIgjGkBo0E57bvFWclRs5gHCeG8Ho+xZSZ1LWURjQMQ0xpczGEqLUl4rnGQoUxjMmztQmtEErNueSUcphvs/exYbHa9J3dq5ED58g/vPtgtAzBNWqCC86F1poo1wqhJmS8Qlvd5rbNcP707r3INfm0Hw5Ny9opj/GXz1+pxm+/+2a0u2EY5vW6rGvXddwqaLgu63y7MaU5okDcbrPtDFYSjXnvN78gE+N+QiFN1x12O8l4zPm6bQwhZ/r7p59Yq2M/DkNfDA8lQIrD0KFWiJmzIo1NqaRCDdXL62Vdlxh8pzvG+P3DziiWc9RG/9aJ6DZfU1aSdWNXCsQQOKIUyBnv9x0iS7nkQoyJ4DfvgjW6O+yk5FyAVaCSXJctpYoMhGDYUAhWa2kVrO4EV8ooIdE5H2Me+263H6BRrj7FmBNJxjnyFMvzcuK89Z0uBTgHIQQKYp5zakbrw36vtPR+W7Y1rM5yNpi+Id7d39dWc4wE0PU9NkgxldKQCgPotFVS+Uou+C9fvmCuCJJiAqJCGVoFwMFOUzc8HY5Pjw9vz6dffvpVZMAGB2v70V5vb5nKYd9/9+3T3/72w7r4WkOB+nq76qEjIOTYGjbGfCoqJMpXhVxtQWglO5uoLNvmXRCKtVparbYzpVAlyLW21lx0b+dXxVgtOaXsc1qdR6kBZCml6+S+H2JI4e1lS4VJzCkvWwBEKlUxse+HP373/e8+fhw7a7iquQohbdfHEE/nExN4Pp+9833fQaPVuZfn59bK/dPdbppqCdvma8k55FKLFOxu1zXOlDHT1F9ycdCE5F3fIeNbKZQrUQ3RIwNorALw1jgyQG6sQTA+iobIGG+c1daMtcfHvtbmQyqxKC2EppIZNMg+CM5arVLLnHLO1PfDMI21FGiMCLyLw9jtdpMQLsbcKkouGQJg40Jy+RtJU2NKf/nxB8KaStVCccXnxXNkk506PSRftpibtS4T25Id2Mun0/Pb2+eXX19PrwSlT+4Q75CalWoroYdcQwqBhNGq65WxiFBcSjG1WoEJZE3pxjgCJATJEUoqFRgg8yHMYfZuFYxZozprADK0XFPlUqw3Vzzb302SiVaKBKAYOZKSPKVAjSolhKYVZwxLrQwAWqu5cMaN4ZzzZcsNwVpJjULyUFAKK40kqn4Nzm2rm/+foxoR1JYJeE3rcj29Sj0YPVSWQOrLOs/n68vrVw3sm6en3XGsQJ9fXk/LuiyBsDXZYosuRJ9DaRUACYAxDsgYw0ZAFaQUtVCpDTkXSgrDW6vWCIbgwzJ0w8P9/VQHucjL7XK7XkuOObqWy2j00/4wCp45tuOUc09MLvP8/u5w/Kc/MCi1lNPp5q+3/X64O+43vyJvsrOC6/nmKLV3h4fffXx/3B+4YCk4AN51gzJSSJFzXubbshuQsV73m/PGGtN3Wtm+Hxa35hRzrrVUaCQls1LsRjuNgxJKKvX85dWnoIxorfZjxziGkCg1BORcaGW5km9v13lelTbX83WZr9M0jIfdurnn5zel1fFu5+6Pt3k+XS+fX54351sDJRVXPObqw6JN71NMKQnJD/ux0JGaP19dzRkY41z8NjAddztj9PFub3sz9INk5vx2+/MPf1v8Rg1ANC35cTp+8+HQd+zHX358ef70ePx4u4RtXax9mGsQ+44fe/kOx1zzp2f9Yw6/vryFbbE9l8PvHw67qTOb267rAqxQSw2rEMwKW4PD1tqWzK4bO3Vxlx8//fLL6fl303B++dJ4K7Gdf/m7S9Wl2g074HxeNnqr+/sp1/D8cskhMEHK8ErUoCmtmABqRUvOFVUKtuOTPfhQFMBut3t6914rFnP+4eevMUaXyuUy15KFwPdP93d3E6t0nl1p1PVda8iI5vN8vq1ZKmyt600hsGNXOKSSXPKNWCll6Oxu6DTvkRqRSw0YAdVmpRS9cjHGkErMrGGKSTDej4Pg/Ha9uuCnyd7f3xvbBR/n27KsqzXEuDhfb9fzZRr7Fmp9O0m8MiaEUbrraw7LeS6len9DgN3x4W48HMa7NaJUHQMcB9uAjrthnX3y22S6/btH3SGyuj/symH4/OuX5JfeaKi1hLQbBmDMh9QKcCY7rZ3zNebYiGnW7wZt1PV6W5a1G4Zu6hPk4hzkqoy6zWuD2pBCCA2w63tA4BylFFzgugVsdegseqgd7ccpuKVX8o//9Mda6vV01cpoIaBULQQirvMquein3TLPt3VhgnW6dzp8/fp8vc7rfPv26V5/9w9v57OS4uK2l9dnpuUcPZTShBged+fT5e8//bis8x1nP3z6Fbl8u82lMUbEBd+c88v29O5h7KfR9DHEy+XmfRrtKI1ljCHwBi1T8SEitBDT68tLq7UzNy55/0m/e38niLSWFeDtcpVaciWpNEJWsL1cL58/feLQOt3dPd4TwrKuxpjdOGqlSoYQ4jpv+9FGl1OuxuquG0Q3llwAAAikMbmU2trtPK/bNk1TrSylqgy3XAspjNUMS28NZyysfguuNbRacyaU0rrTKSfvvNSi6+0wdtuyJJ+QgxKcQOz2+rbMhVJtbRS6050SPIYYKRNDrgSXAhA6a6DmmhRWlFZz0CjFw/1dLcU5F2KOa5JSlFSstLtdZ42Zlz9RJakk1ZCjd+uNNzN2dh/HvFwSFClYP/RC8sv5FVuR3Hz4+GHabUTNWIuCLcG49fbzp5efv3758vVrTEVo3pDOPsFFXOaFCHKsKBlKqbpBIKYtlBopJwi+1BpDgkYlNCGZkCzklFNhQhFAzCmmTKVMYycFT624GFyMafNCGanl4rLb3DJvPifkqKRkiEQNGAI0ycX9w/3d3f0wDEj1+eUlxMy5YA0AKH4NDdq8bjHE07p8OZ2FlCnHklN6OyVsjLH5MnPOjNJSqUYkpUhEAEAVlVSHw44LhcDmbd38xpGGThttELDkoq1RSkHjWkoqSRvdK8OI1VoV75DZSrwW0aB5t82XWWnZdaZWKok6o6ddxwVPMXkipU3X2ZJyyYVxZq0uOddcd/ux77sYC2OKMXa9zVSL1EpZkWL4+vq8+mULC2ElaChYjbn6fDjunu6fervTSjVJOAzdyCYzSGaRF5+K8zHlQhCZwxSiEFwg25ZbTLHXdts2ADxKw2SVgmsj/OxrLX2nmOC1khTKdh015l3gXEghCXDb5uA91SKY8H5tlBpH24kqBUcmkGktFBM1eO9cK+Xh7mj77nxbFufWbS05McGrZFArVRKMccU4AjQEwQq21KBQbTlhpVwra0wKyxSsfk4xEIOaSkqRqDLGMpUU/K47KCFickzp3X4yQ79uty/Pf397fTlO/cN+9/vvPj49PYDAb79df3n78ve/ffrlc0gAyHHZtnm5pZIEyvZbwyY2aEStlJo4Z62BW508dEqa7LNAUp2lkkOIt0S5kOrs0He10fl0iil3Ux8XT5kur2/oXVpn05n7/eHr6+yWbRh2ndUlUy2NaoWCrSBUhAIpFi25Bq1R78zu8fA4mqm6KnQzTMdCMcSx7xnisswl1t7203igUrc5KCaP004Zm1PqpJpD9FuSkistGWep0Pm0ldR2u53p+q4fpJZCMoLSj33XGyp4fb5F54+Hse8PMRfaA+XGJNNKnmMUYtoPfU1ZMa4EV1zIYbw/Po5vJx+z85+XeTXajrsBS2tYC5YQ4+n01vW2M+L90z3ySjWfr1cCIKBCVXLOhdrtj13XjcPwzTcfo6+vX0/ZBYaVAEryh6fjf/iffv9P372fb9fbfOr67h//6X/4+uPr22cnp7vTyxdx6ERNiUuh9bBTchLs82Ccu/1w+tz+Vv+nf/rnu8d7I8i29eX5x7BeHu4/2q4HQi5sL3sOap1dCP6vf/31r59OfphehNyQB+/O59vb6VIaTofjmmNwfrks+vSmR5XzVryDWu+OD++/+e528+u6fvr66+GwowTK9o9P++u8Rqil5oYVGMtUX19eWg0hpnlZqbXbda2lai1NJ0uJlFOn1dTLL6fr5twWUmMcsV3OV9zvENrL7XJ/d2d2fWOwzCWkwJHt7ybM7Xo6fXi8+/Du6fgIq0/p7z+t2watWa06a0PKteYQU4ix1NqE6K1Zgk/elRLuj3vUrea8bdtut7u7u0OGUvN+NA1aDFkrBkAM2WEYus7Ol0sMCRAFSs7EoKf7w9PD/bv4Ns/rBrT7wx8+bssmlFUAbnUPx/777941lkJ2fS/03SCw3C7zYBUQLjXnXCXKThqfE0dOVAVnKIUAEKzVUqlQKbmUFEMAJbngXPJl3UxTINp+GlOiy/kqhNBGKyk7q/fTUEu5ni5Y6PFpV3dTTKXWen7Dd+/vvn/39PXr1ze/tRjDuqaQpkPfKrktTMPQjSN0LYYsrNLd2HXD7bx2elqW8N//+185Cmo0DH2I+XqdNyqBEhX6t7/9/NPnr9fbfDqfAOrz5RRT4VKfbjNyzlAIZSoAR8YQleSjnYqtjMSVzVrqcdzVWha3MCBE7K3JPiGX33/7zfV80Vr54E/nU6CNYZNcbameQihCxFTvhm7e1r/9+GMq1W3bruuaAN3b2qCWOgxm6K1R2pcshOj7znamFuCMr4tPvva2g0beh5qjMpozJqTsew1Ya0nXcyiF+qGjWrRVDEEZUWu9XM6/efEBodf9sBs459QaCMkYk5ITlBC2WjKVMtgOEFNtUhuu2LrOhLVCo5KJQHWWSM6XU1gd9E0LccnVGjlNu2FihVDc1tuyhGUTQhhtpdAOPWMgGQ4P3TQO/TD8/Olr+kvUU38/jd+8e3fsBsV75EIK5ZJLa7zOb1+ef/34+KBb/eWnn4dxf//wtJP7eV0/nZ+/vL1dbkvMOZXqo9uiq6VaqzhQJsaVCC4AY0hAtaIQLWVpNTeqEcVW5vO1Ui2ljMMopbRGScErUcDEhCpEKeVSc4W6rJtUChlDLplqnFVqDVpjnAUXiaGQUkhO1AiYVIIaMK1YpWVzf//hl19/+gWQcis5U0PeiGpNOUeuZEWxLT7XIp5fpZSH41RLbvPyw+sVgGqqgvO+t0ZLaFhSLpWM1XeHtuvsfhy0Mm4LPkcZ2m439oPhyFqGSrUUYCD6YY8I220uucjG9tpypUXXM9QxQC1pnHrGZKkNK4VQGzAuOBeMoA520Foz7mIspUQtjTKigWwugaicsRQL1WqM2t8dEfnlPK/bKqTkpl/W+TKfhZa60y8vr6vbpOLOh1QKNtGb3XF3rzvlckogXMwEJIy+e6eWMvt0CvGybh6ICFIIFQGD20rNd4djiCGluvjQd+aw301d11ozxg7DEFzKqTZA1jg2oJh9iCUpoSVBsVZ1duw6RY2SjyWTkLwB2q7vBys4o5qK94Kxh8MxNxxzsbb/8eef11JKztgKY0TIgIhSkwwQBONYWsk5JcoxJ4AqkQMDbFRy3LYSSkYu9GCRc2gcAFuDVgGBUWNcS9EZkMgkYw1LyOsS+qH7/e++29uOYjEolNYPd3d3Tzugdjo/lyXE4Of5GkNsQJUKAgMg1lhrjWquJYFS3i+r2x7uHh8OdxSLaGSk5cqmkLdlDT6r0RXethTnZZ3X7aCHFOl8WUqt4zQ2o6g1pbpOZw63ZV6+fP2yuaWk0nXj8emh5HRzwa2xUtMWOOmdPez6u3dP30IpuYZe2L4b5s2XWi9nf73NIUZphBIap6lhEKovxD//fLKj6YeuVjid3NvpMuy6fuypEtbmZyeE3x/S3ZxrqbYzYXE+rU/SZoASy08/v7plkd2YazxfLsjFdXbIcdztGAcuxJfPb5sLStpWYL44BnD/OB3G43G4u5r5xb1SQ6kl50IbWYg45tt8Wd1yPO6Hof/dx4+lpmV1qWbOGRJKaab9XmtLlbXKlpO7XC/X06m1VqmlVJ4ept992H98PE7T4PyqVf/w/pvp6YMWu7Cyz0upuYhGrYYcXYLeKmJ3o9mN3zeGp9vLf/vb3y/z+vz6+v13H3rbvfv47WHcH3b3hLjMLriQPGjZGEfeqOVUW75s2+tfndS8tXb1WwYkIebkeQ01ZOKQW329nmJcOFbBcInhsrnNFwSEHIddr7Xa3FwELxByo5LZ5XQzQozSfvr0lYpvjNnOOucZh2+e3pVStMHo3OfPv377/l4KfLw7fDmd/eoaY4fjLllzt3/wIYSSpNaVmg++1mqMaaW2UhghNqIStZI+57BtrFWjWI5hm6EfhtHamNm2+phzSAm2FQRWZNp2CBhC5MwHH7XSXWc7a9zmhZEH/dykNAABAABJREFUc9xmD5wrK6EStNbqbzGaFny0Y9/1d8PY7w53a8NpN20/v/z0y+fvj93T8Wl/txPMUG6/RZ9up1c7yvv7nbU657IbO82ZlnZdApVyWzxTZhh7DIKouS11Ro37obc9QgYkLvj93Z2L+bZujsiOdhxHF68uRKEEcgTWbG9jSufbRXDRJ5NyUlwqpRpATjXFhIz1Sk/ffjNO/fX17fp2wtKklgAIQmHFmmjXTw/3d2M31FwQUHLZdX0qdbc/fPO733Ws/vTzj865p6d3uutza6v3v7x8oRyXdeMoOIdKVTKprHTr4jZHhWUC4Fxpg1IxKTttlFaNKhcMGzCBOZVlXXRnAaHWwhmbpkEI4ZUXTIxTf51GqWSq5bbcIvlCNaV83tY1+FoqIBSqp+tpDaswWjE5TONhvx+GXlvNODEEbIRA0BpDHMZhN/W3eUs+3a4358I4DIfDBA2kMVwKzpEJPumd7gwA1tLc6pEzLkSKOdcopWpEKVVopCRHzhqrRAWRnA9cSdvZfjDX22Ve4m4Yl1vLueRSfMmmRxDAtUw5X9eZEkmhRjbO2/b8fIpuYw3ev39/f7ifr5fr9YZSCqVDjOuyEjUG2Bp2gz0e99NgU4w5l5LycptrrRyQERipx64bum4wYyptGgcr5JXwer39jf7++O74v/3H/4Uh/u1vP/zy/GkL7vnt7fV8/fxyasgqQKwlpig0V1y6WKiVlIqQAgm4kVKK6HLjFVojqshAGdNyUloKYRnnY99zwbEREdXcGBeAwAUXUkrBldS11tKopBpiyrnWQkLx3zyKpZZaS8uErXWdRuRMixgzNapYn6+vL3DujBQKgLFtCdRQyN+SQMRSJvjt/SA3DrHkdEoIgAg55FpJSFmoSiGMkoqLRrXkLLlcnDtOOy2lYAyA55qV1p2xve2MlErIbV3mq5dSjr91lc8oJGdccgatoQBWMpXcAApjaJU9Hg+5plpIKmW0rjlczmuueb/bNSwxbJkJY7XWApoqNbZUKJcCICTX2kippFK55GVdXHIyCSbw7vEIHG/zuTZqHEuj2iqTXClrup5rg1wiITTuU2jkh74qLR8fjr39425n/vLXv25+MYJLyWstnMHpcjqfbhUbARs7Zzjw9k0vBOM8RVrX2NueoSqlhpAb1ZiCj2HZNt2ZfrKHw05yjMEzKWSD5FLJYPvO9JYL/luUKuVipDJG+9XnnIVknCFDhEbUsFARShDUWlrxrRGzva2JnHcxh5CSFVJpmWIqIUHLvEnFODJeYkmEXCqGIpWguCSCyiEzSi2zFq9LDIv33v/xj394fNzzlGWjlipSqyFMT3t7eHz++lUwKsVH7/zmaqvIEJEYYANAIABCxAa11txa4wy1lFZZIVrctlKJa1mIgLNu7LbsL9fltq235QZAfvUlZZKUU8mJkFprjVrr+nGaQkwtxyK5ANaOhz1DPt/m+TbnRMiwNaSKjGQ/Drt+n4JrhRiKadzbbno7vXgfck4xxN1uv9vtS0q10P3hLqY4rwuwjBhaY6azR2Sm0znnWujp7iF3udYqtVi3JKUAJksB7+s6h21Jt9t2XZxEfb3FWn1IoeTmcx07+8033wmGyzr//Ye/51yHcVJKLvOcK7g1CqM+vPsIEhtvp/N1c85YyzDnaxjMBIXLCt6n6TCN1tpuEFLW1jjnjHMhTGcnY2xKIYZSdM0ppZitNXHLrbVvvrn/3/73P0qGfjljSgPa7OG//ct/lRkQyuX1dey1CL4xtD4ELpFz5BytVIfD4/3dg2j9v/3rX/7lX57/4//yz3/8/t3/+Ifvu+7Oee/8b6JdnMZdBH65flnDWyfgobOvb5cY3QrNdJY37Dv7cl1KdKxBry0yThKWGtdl227zOFhGFyqffKXe9h8fDz98+eX9472Q6uvrcy2Na2O1WYV8fX61KO//sAMu1s11Y9eMGnfj/d09Zzy4ec5lvp2+svzP//yP76eHp6fv/uUvfzlfr5LL99+/N2bMOeueh81frxtA3e8ma02NGWM5HgajGFBNIXz5/Pl03bSyWskYYwhOKyWZWq/ruqy+pMW78zKv4dBZezcMRjCOmGL23vWdLTGvy9xaU6gzFtObsOVl2RqVd0+PyvD5dFvcFnzYKMii2Mgti1xWRmm7XW+KvV53X85qdxgN1lzrbjd4t/063x4/HJQSQK3kkjbHoXHW7KCHXe9LTY2O9w82lfP1OvuViWFvRhJACYLz2xYOx+Nhf4ilRqCSW61VSamk4QzWbd5Wr7Vhkoe1FB9izj6U0XbWWm1Mzc1trpQM07TfDdGlZfbzeRuG3bQfNxcs4Lpu+/3h/u64GyeGLX3x6/WWS3Ip/vTp119++fU4Dg/fffgf/sd/vl5uSqtlW3/59OWHT7/6GEetrJKMi6G36xb6frg73i1u+fryZV5chYac2b7PtbqcDtOgjGaAwFqioo0ahiGUOt/Wad89PtxLxlurlGuvpJJC1vLt012OJQPtex0oEbIthlvK5XNkDIQQAMQFAq+t1nHa3R0Pkx1KqpmXySpecwqxllKpuBiu1yX5mEoVWt89PfYhAgBKIYW0VlNti1shp0aQS5ZSI+DifWvAteRCVCpQkVXou7G11g+GgFIM63xGhi7lfpxSrarWbXNCoKHoslvO67a5RKT6lQtBQIXKeltaaVTw+XzeQnp5fSnF19T6bt9Inl7f3Oa5UTGfT5dbipkL3fd9ztX5KDgwSm5blnWTQnCp5nmmWlOM19vNu7vH3V4rPQ22nyYX/Hl1aw5nn17X+W1Zagp/+vufvr6+nb1bXaiEPkZr+0YNqArGJDKjteAs5kQNWAMuBAFQIS6EUCq3NnvfKqmSKrXGGHL5mxextLqtC7XWCEolZByQ5ZKt0UoZRAwpLNtSC7X/px6h5UytEmdMMjFOw/1xNx3GZVmv87wfbWcM45BSSrVYI3Un3RYUsVILY4wzZqyqmUJMYHhEijEyzho0xjgCIWUrZGuEnEqOVWDCWmvdvK+E57j1p2eGyBpq0yvB7w/7vh+ktHf3d8f97u9//us1zX/4wx/3d4d5Xopb5+scUwWgvrNdr4JvilUzGkqet3LY97HKbXWct2FnJR/++pc/J8qNqlSSKWQIPqylRiqVKDFoSqn9YWd6CVwG551zjLdagnfx/v6g9GgGcz6f5tsaU6olp5SIiu274W5XjXhZNsaUHcfCpB3VYdBd3+Wa9nfq/bvv7h+OwMXnzz9HvyDW2fktRikVgCzQCHkLrXIOAErrmNIatlAraoOC1Updp1pO3DNtJNRErHDNtuhvp4t3/nC808qgMMYaZW2urVKLMXBWhVQo5ZriZb7N25Zr5YJb24WaIiUBrVBuVKEJBIwxN5FYayF5n7YSM++1AFZqbFRYY620IiTlFGMMUCtgLhWQN8DGRGMslmI5ct78vFwvb1Kqf/53//v9tP/5x78IZJIPm3eJnDxz2Zte6/v94Xy6QCUkwAZAv30trdYKrEEjAFZLyo21VrSQtYTb+e3QTznlt/NZW+VS5II3gd7l67qsaS2YtRBWmuHd/Yf7p66zb6+n+Xzqh6EUpvXUm4mKV0xrZTyF4rMQjSF2XYeAjDNrjQ+xVKJKyOD+7rgpWam41aeSo09S6senJwBx2B+ZYM9fnoe+m4Y+p2S0ccHPZ1ehDYdhdzxqo1OOMWcltFYm54gcayo+xnJp2kjLB7emVLJzaRiOQ99fl9Vvvt/1lUE3DqYbXCKjNDH7+OF3Qt+goepEoiaYZFxwKX733Tff/sNH06n/61/+S0qJaqpEkvHLdhbM7o/HEPI8+0mJ0og4AMPWMKckMBvd9cPYbqC17fbd6ymnFKVgSJRyYtC04dfTV3/atOh22saG53nGiGHN1/WaMQs79ZiRs64ftGAACFQohaS0/t233wHY569f//O//O3HH3+CkluK2bvL24vV/d37b1ACF+31759b9e+mvfwH1XXjX375+vU6M+Kt5i175NhyrUSeAJlotaZKUqHfQkiklA6+xlrnmECiz/G8XhHa4hJn8nB3f28HqVip5Tav12U5HgYN3ZITQ3x8uiNq3vvjdOCJaghDP+zvH5Y5/fjDFyqEjQnkbtuW2QGwmgtDJgWXUgsul/NslOat1ZJBS4IihWxYu9EIpnVnaikAYLRJoXq/xRSQM8DGFdu21WidcyGhSiWJGHwqOVlrlJBcs9ttqaWagYSUl7fZdCo2XKH+eHk5nS+cc3+OxPESlm+yD1sqFMa9IpEvfn5bdiSFFXS6XjWXWivvN3HbUKhlDc5tAvD9hzulVIpx3PXDflpyneeYU4rJx1JcTC9v53Ec379/p7X8+19/cCGNu72QMpfifbje5tXFp48fpFbb5hvEEBJBYaxxjoIrqW0lAOTGKLQ4TuO2bVqLlEqIQWqzOx5zLvO6zvOqpLDWCMkYw9rKy8urc27a9amVdbler5cQAyFpax7u9v/wD//u10+//tuf/vLXH35yKfeD+ed//IfDfty2wFFcbtswjY9PT1c3L97NW6g5KqWmwz6HeL7e9n2/+tApJUIsuXKh7u7vFudXtzmH024SyKNPSgojeQqeGozdpHbqclsqaANJaFMZvlyunFrLBblUku2GYei6w/7h/cO7yfS8MS6VVpj9xnjTSjKG1FrKcdscUhVKS/mbqYeVlIlKLoChVSIAgAYxJR8CZ6XWOi9LTrVCM0YoLew0ajRK6pgi47zvRfCwrtcGZO3w/PaaK61Bcy2vy/X59Pb69cV7L40VSvrzqdRaG7VakaC1Fl2qDX1ptVbGcV630+kSU6o1AWALZV62VEvF8vL2apyTUrVavGNWYYobIpNydMGFnIDDFlbGslDq6d2H4GptbHe3Pz492h9+CK3mWv/0t79eT9f1dj29PddCzPRcaIl86EdEbBVqlv04AvyG3zAtZABEarVhgZaJkLFYKlXPgUqMwgtpdaEWolvWLaZgOxW950JwJitRg0Kt5ZwRYTftueDZuxgDMMEZa7XmUKVk0zT03TD14+Ph8fF4FAq/vDwLzh8fHr//7qNkIvnIGbNWA6ALIaTovHM+lFQ5R2PF7TqnWhhn87KlRpwzhshazT5qpVPMxCm3mokYw1ahHzoXgneuFBBK5FzWi9NCBu8u58uHh8dMiTMulD48HMdpqJSV4ofjjiAvm4MmbG+MlQClG7W25nK9AW/TNDU29n2/+U1rDoTvP36slH6jS7TVgvNa6jxvCCCF6rpecF4L1dSAZS445yJ4F3xgiLYzuYa38/nHv//9ui25lJwqECmt7x/ejcdjZui2zWpQILjsDG9cYCaalznk5f54Z/vp4eGdUnzbztt862wXfWyI/TStwZ8u1wYZEXzYtuhrA5IsQE2cggtuXkmAFYwpjq303cCF0qoLOV6XdZtXIrE/8EqNC207Qa34EKIPWvLCiAgawpZCBcq1uhArNGAMARsQAANotRXREHnD37hjIKIKjEJwNeVaqwCG0LAxDgKRuBRQSi6ZqDHGEDlDZFyAYFqpmpPfbpyVqbcKihZttx81iO06367Lzb01oIf3Tx/u3//P/+F/up6XWGrOCRtgQwRGVKHBbwsZMiZ+M273XWckVwK05lR1qsSkIIWp5LfPv85ucWlLNQrOBmvf3R/f3717//AoC7jbLJXq+yHlQi1oo2tt2aeWWc71Gm+Vaq7p6enh4eGuVhJGNEAXgzISgKTmI5uS985tLgaA1g+GC2FMhwxDCqZTpeTrbRaC1UrQoOs74IiAQEVwo02nUvSz8y5RqXYwyCH5nGttXNdWc8yAfJz2veqMVihYw98CrMC5kEye3m61JG2U0mLc7+br7XpZWm0cIaUcgmOclJWdNcfd7na7IqJA4dYouMk1Ox85E2/nc8YCnCPjRJERlFzAoO3sh/cfz0prw7XVzodckuAiRd/1NO1AyCAHCi5p9Zs5iI3vn2Qz8/Nyif5vv/wqUsp1q0Yat27aKEAeKebtokonBP/D909//O7D3/7699Ppy3//y9/m8zwNw8N9D0y83j794/uuH+zxpdvbeyPksG0EGF3Mma4p3bZVGN31lrlWi8/ZlcoYiJybsdLYMYdUgErDgpwBc0TudHXzhXPIBFYYX9q6pFKKtqrf2duyVKrdNACI6/VWa5NatgInH4/jOHxnHh8P6+r+03/61/Npno73rYJocjktp8vVamuMGsaeLOOaSyEkQ6UkxFSJUs7QUmpVGXW/f1zW8Hp5lZIboWMKPibb63slGuf5LV9vy93dUSkegtcCuZShFMY5FkbQhOS2t1tIs79i7S5byFI1of8//+2vjbWffv2UcrZ2QInU8tfL6bTeaihXt4LlL/OsfoGHp/d7rj+/nq6XW8217/unxztzOCTAFHPMBQvtM3FDQiBXmKn5eX15fQ2hfH09CW1CSqWkSNkMxnAxTIPzgXCulVhjMW45lc7YnPLttizLTJxDazkVzaVQUunOSMUaKmkbtFLr0PdK25xiyU5oI02vO1yXJXrX92qYOmxQkv/px7M2ShmJsr1/eoeCnc7z5bqkVEzXrzHmt7e7Izut8aevp3lx/TA+7Y/v9ofDbqQBa6L78Xi4f7DjdPv7f9/C5qKnSpxxJUWDcj1fPz+/LstyGCcrV6vsOEwSBWJL0bdW/DAYZbGhkspaS9Tctl5Xd38wnEspWHFlP+4rggLGGnBE1oBCGQ/m3//7f7o/PrHMO2EVF1zIzd1yrXbstDVSSs4rESG0ftDAeKsl5lxzFlwIxozRiGxdFiKyXQcN/BZqzkrrw25faq2tbEtA1iECUd02l1K4XP1+1zFBZtQxhNP5/F//25/WUB7f3aNk19uZI5tvVx9TZ7PQanNbKolKUYJpLTQXuuOt8U4aH5IPXho5HnoheNqqd86FlKEQ4zFFRNZqy1Ud7/bH/cihbkvTRgy73uQ2nQf+hbMshv1xun8MwH56+3q5XpeSvjx/fb1eZW9bLfMtrNdfvPccYOjG+8en3oxa22mctnk2WqUUGOdKiErkY4rFIxISxtze1sttXVLNgEwpjVhbaw0wV1Ybw8YaVGQt54ZMCKa5EFRya0BUuZREsG1b3/etASDjXAjkpaLgbeq7bz58eHx4Gs2066dp6Nd1js53pvv44eO7xw9YWjVBKz4OfQ5RGxtScsnFXKDIGGI/8pQ2okpUc22odK4ZAHqjig+C8evtyjVnVr6cLtfrrRH+7g/f51p+/vHHUjJy7p07vc3ex9Wvb+fXXz798vPzr7//9ndTP9wd7l7mS6rpbn+w01gurz6ku4f7YTcFH0OOWEttjWPjgkEriiuQRipZa52vtxCT6Qwytnl3vV6jc3cPd5UIAe7vnkYzuGWb52VdXW2VOHIhjFHj1JeSb7c3v/nX59d1W53zgEwK1QjG4fDxw+8fHt+nBoBZ9rZCk8CI6m1ePGurD26NJa/aKECBTVu9mz7uGWthC601buVluTYofl05EFEmKiFlF9N13a5hhQY15m7fP9592B2nl9e3HIs1neTSbWvyTjCmFYdWSsrOMWRtm2dkYHqFUiKyLaR5WypWkKxWyEAFGkrWMhA0znlDYAwYQ4lCaUmZoP02e0NqlQgrtQpQJatIDLLkvOsVI87fsFIVQiAybA0qWN1Bw211zm3v7va7obtdPyGugEppy3Y8nYpSPefqMN035A+Hx7HfLc+vpVSqDRpjjDUiRAbAKgFjvBEQAgJqKbTiRnGlhVQShSYFlzwv2/XL6yfCClQkZ4fd+Lv3H479fpBqp/W6zVTT/cPh7u4h+nRdnerlMOrrNXAujdDbstaWhARjZW/tzS+ZkuB4f78DBO/WE0UE4RfXoGkluZBSNqIcw+x8jCkjIFXIVIEhApOSG62kkimGHNYim+KGUcKWFK8gkfNaCkmFXDLGSoqFMSa4tEoB1FqztSomHnywnQXC56+vnEu3ha7Tw2QF57VWvzkhOeWyLUsucV3PqmNQ/c6a6rVPsZSEAC5stp8I6eYXQWLHD8MwCMFrqwJZg0athugZ59balH2I0W2+Ukk+MZl/93745lE+HOT+eH823ACjRFtJspdhc/pB/C71qQ3Cb2tcYhR6C64BHR6OjDPJpEAWQwBkvbXf/+7d9989npbXH1+/4hvs3oaPd4ePf/gAWi7Rv1xmLvV1Ta/X+epSLFUITjHHlJhWrFUleSKWqHIhGgkiTpUVAKGs86FWYEoBsi1k1orPlRPWBjUHsW6cK87QDKax5pMDaHbajYcxErnb7Xq+CKatFE+H+8e7D9fbyxJcw2b6vhv6Xu60Usu2eBestAwwhFharVRQVcGZlFJIgbXu7npGZZz63aNJ0LYSbsvNdh0pwAYpF8a4MRoUH9KgO33/cB/X0IBSK/7mG4FRQklZSomxCF0ZoJRq2o1vl19Ot1vI+eXl9XS+cs2UkjdfKpVCcepUCJ61trpAuZZSg8/L6tc1uDXURj6F1fvxsJO2byWfXi4MCm/08vqmunfH4/Feq89fXi9/er68vDauGLbkg1ay1Fp9ezmdDtMEko92mnb7WuDnnz9lH/aHsevG27Kuy+xW34TQUgjGtJBKKSFEcp5zgePgoluW7XK7CSFYY8H7hvBgJ2VMD2C1REYAVFLVRnnnc8k7049Tl2sZd2OtTWuZSrhczh8e7lqjv/ztz3//25eXt/PxeH887t49HrrOTNOQQi1Q7qZRD+PVub/+7S+X6xU4s1IqhueXl8ao5Lg4F2PUwrImJVIMMbbgg+OCWSVLThmZVirE7FwIwbttCykjCIZcIWMoqYBL8Xqea6wceasgDb+/29+Nu16YnKuU3HCVK7VKiK1QqaUyRGiNWmvYckhKmWHqiIhID10vGJdS5lxqzLWRlhIRHu6P2LARKKmV0cs6X+eLlJxqXbaQYxFC3ubV9rLT+ny95ZTeXm+LW67L6rOvAEyQFDKV0gB9Srw1YE1JrqzSWlij7nb7w7j3IRYA5+LpfNlNXc4h51prRt64glQo1+KTV1q21IJbXNzmucdW1uUiROv6fjwcQfDSKJVy29b//N//+5/+/JfrbQ4pbjGW1CQXuWRgiIy1Rl3X/+F3v/93f/wnZDy6oI3eDXu3OmtUCP52nX9jlIdWQti6zgqmIjT+5deUM/lqpdpNO87hfDq7kBiB0lorXUppQlLxXHIpdWtUy2+OKmSMl1JP58ttmUtrKWXLFJOACJzLoRsHO2qhsbYc81zml5cvl/PFdBZyKj5Aq2673U7hLNkyL1ra3f5wfDjc3z3URNfrDSGbzmrDYswVODcm5myM7qzOa8TW+s4qK7mRXHC/Osb4tx+erLV34xBL5Eyuy/byen49nRtADP52nZ3f/vXP/yoav7u/00p3fff9x98pqVYfuVam71TXX26Lzz75ZLvueDyWRvPtJkVAzqW1tTEueJpjrcQUe3l5/vnXX1Jwb6eX493j4/2jkFJrhdQA8Xq9bM6lWg93ByGZ1Grzbnt5cZvLkCuC99F0RhtpUB/39x/evd8d728hYArKqFbSdX4BRC7ydHfHpSipeU+lxJKKX70Z5HgcawjLdS61ClaN1nd3h1PKvVDd0Fdozvvz9fZ8PleAw91htH2u2cWQg+da2WHHpcTWSq1Ka8HYYb+TSgMPBHVzs0uOC06ecixK6ZTisrnGiKD5VGprXEsjbYsVoRJCrpUqAdaGIAortbq0ubQBMg26YfttBGoMGwMqBQRD0bA0xPabRBGgUSOlFDTcFrfMjqN+OD5qhet2a60YfdhOfpldcNswGMWn5y/XnPN6i0aPu11mjCMiY0j02zwP0IAzDsgQGWecAHMthWoqefMOmRDAtuTn5fZ2OW1xUwJ3tuu77nh3/837dxZEL41kzWhUYui1gZq0Aebr5mcpJPLW2G9tnmR7a6yync41nl5fXfKcC23MbxxVzUCl5lSl5kpJgBqcF5ZTbcsyt4aM82GcyEdALhV33seSOzC1RsYbQEnR1ZJ3o22NUWspZ844aiCimLOQgjNRcs0ppphLLof7nbUKGSglgivOuUaglA7eIyv73SAYSCE4YzmFmCIwStHPy5rbbz+4GJBwWxBCHvYHLnXjoLQept1+v1/cTWvFGQNAIRkibevy+voS/ercwjjmkmPOoYRu0N//7uGP//iNlCJl6qa9aY232jUOWi6QfI0fvh0jHQSVwhjUmokyNNRcMqYICQRJgFJS3ELfmW7ox/17ZcS//OWv//rTTx+fHv+Y8s/P54bwf/2//+vj/cN4nL6ut/O6uWVplVKOkqkaiDE0qm+F4QQ+l/XkettLpWpMjREiM1o2BgxaCB5KklppI6FC9CGXUCkDMh9cy/Xj47tx2nEhhdBDv3v99Oydtxo7qa7XeTcNKcf5dtsdDlwmn/0wDk3U83puvB0f79RvmFWKXDDvMad4d3ccrIJK7Nbe3R/uDo9bxX/729++PL8AE4zL0hoQUWuUCwEhUW+7rrPWGtcwBJ9K2rYlxXw37qe+k6BqbpfT4kIAamFxRvLL6frldJ5TvK3r03hEzpFaaTkm9xoXt62CM2AcGSnNkNPp5W0Qaj90xug+duvmY4nzMlNN3jsoeZys7ozQSlpVGykGv3v/vtfTZQvvrb1cltW5bux/C0nMy5I3f/94p7SOlMdpqFAKIOfMajlYU1Ou1EajrRXzfOME+7FbWvbe3W70m2R1vs4l037cI2eI4N0So0shItSasuCs1tp1+O7DA1EBalQLQrtcTrmSC4tzPtVw//5wez35ZbGG/fH7j9p2ttNTr6Zpp5QqFG6XaxCxa+WvP/zwy88/t4rYgCNizZACsAa1LPNZCvn9N999/PYbThicDz60SuPQTePAGCOqJZdl9cEHwoYNFAkfaz/qNWaXIvrwdjl/fXuLqQqriBo2MFIPyu6m8ZLnFBIy2lw4n18QXMm6lMKEAMQQUklZcKat1FrUVFMlI5Q1pkGDWh/vj7qz67oyv07T1Pfjb894WhuruLWsQEao0HJDAsYf3x9ro8+fX7ctKiVTLTFHYpRrTlQkNMSKWCVjSop+sEJ0AtluMhzYNI3vnt4pqV5en330vTGsWcWxkV/W2Riz2w9dNfO63Vzoe01Uspsl09ZARfd2erucz52x2gW5btebyw2kND6Wf/nbX3gio8RgdSf0/m5vTff35y/neSmJGEelVN8P7999pNJ+vPw9lPB0tIeP9zGkGE+MZwCUkneG3R3vlNDnyywQxn5v9WXd3G9Mt1Ldw8N7QqwEDLib13VdkVWkChI5o5hSzgUZbw0EZ0yy2/mKnHEliJCIGAgBfOiHj+8/vrt/H308L7fBZKH46XI+L+cOh/PyancCsS7+6q4rMqil5Cp+t9NP44cK+fX2cr5dOGfQijUylar7QTfhU+JGLz5llynX1rioerlty+pCijmV08vbu3dP1ijwtB/27w+P7x8+vL2+AmFt+XadGyvOuZevby5sz2+vyujT9QbAOEMq7bys9/cP8+UKQE/v79+9f2qVKlGFulyvKadud3h6/804DsO4++nHn66Xy/PLl/P1rYSYUz7cPfRDH1b35iMQIEDfd/3YNS7sYEuKVEuhdLlenffEWoqJMSBsIeRpMh/fPe4GC7U0Sp0VEigkn1KKIele7nffS64EV+u25RCQmtQQS3h+WdbL2/X1TWszHg7D/pBLkcoIKQq0UnLK3vs1xo0bqa0axj7n9Onrp+U2v3v3UXfj5hyVKoR8enq0Ru2nI3DeNLrVEbVh1wFAI9o2t66b6bSx+jrfuGScs9ZaKbU2aoTtt1qrnKgWaEwIViM0IqBSa2lcJCBCaq1Cg1KzZpBzyqU0bI2wQmEciAqjJhhIznLwNx8k48fD/TQcOC/IQAubQ/r6+XS7bsmlh/v9bozPz9dcShWiIQPOYoyIIDgSNABExPb/7ByQAWBDKLX+/1j6ryXZuuxKE5tz6a1chDryl4nMKpToorGtLmi85It3m5HGZrU1urpQACqBzF+eE3EiwuVWS8/JiwN/BXfbvtcaY3xfTDkVcoQppvF4Htfp+fg8ryMStMrdb243fd93Q/UpQb7tOqjJNWK3f2hMG5ewprC96ZdQqRY76Frh+jozlkYZpdQyexAippxiNY1OpVauCtSwaSDTNF5Djl3f9Lthul7C6o12SslKwAJnv17GSVs9uIEUMFHigqIKAbGEy7iklLf9zqoOQV5PI1rY7TfrGs+n87DZSiO8X6GhduimcQolOKs1CuBSKSjDXLEbTCkx1yUWdg0AqWleTteL975tbIIyLVMoSRurrTWgwJfCaNteKXE8nwSgc6rmHJY1+JVL1cailUZrAZzXOUfPpeZSAUUmJBYgoTJcZn/xc2bhdFeFREmgUFTe7BstSJHZ3vyoXONIU1xTY5015v72dl6m0/kstbLOaCFzjDVCliycHrbbb7/90fU3h/P5f/27v08xVqrzedq/HO2mmbkUQIsyr2tltraNKXPBRKRko42a5yMCAnItFQERUAoBCCnltCbTaCsgrBGBrNFaYc1hHM8ScWiH7f5mt99y5XVZ6hrHy/j85Xmz72/ubyjn4+U87Lp+6OR4XVMpiq7zJV7i27fvP3z/8bdfPiurt30XcllPeZpmYnJWr95zLo3WHhLvMUc6XK5//ctPL4fLN99/7xp3fHkVDDf7G63NNK0gRCO1Uyb56JxNIYzTrJSiQkJg23dSyJzpfDrbxnRdoxE0cmslYqGapMCaYnfTC6CUSUg3TdMavRRaakPMrjEg8PlwHLqub5Q1pu8329sd5Xo5XRDIGL27u9nt+hLj46cv59PRKC1AOaWx8GBcs+0AOecoQQYfb3dNjZGRiWrwy/WyjNcLM5SaxulqrO3bziida2lcs932WuhNrzeb1ij1+HgsOd/dP9zb5nQ8cWWrtA/lejmHeLZGocAag5E49AOQAQAjJQkUAtY1NENTQrxerylTqvR6GT99firL+v6bd//zuw8hlS9fjlRKY6VgPB7Ph+thmpZbfRfj+adff/YxIkrB5X538/7tgwCc1vlwOnvvY6ycytC1grHEKBW2XWecMkamlGvKbLjUgojG2L5rG2cIeF79eJ5ZkR3q6TKdLmOmikQ1kRJComybtm1afW9fng7XebpOS0ypsVBqZeBaKzEpJa11u/1OKl0L+5hyiqVmrQahkJkAEIiIKjMBkFai7xwi5kBaadvuM6d59MVU06lKYHtTYim1Wtfsbu7Qtb+9vlxe5s707+7ualpzjlpZp7v9/q7tXfZBADRWKYm3+50DMV+vFAPmJCRqQTXldz98sw+bp6enFIJpOuNch3idxnkcRYUffvjw8PbNtPqSOWVqrYtcDq/H6boCS600SKgFhOG3b+9//PD+Zn/37s37cZwyU4px9YFRrKv/l7/8BUnc39wvsxcocirWYE40jV4bd7PfaoNcc8k15ZxTIpQKdGtaI3XJ2S/Lu4c3t7d38xq0MhLECz5rAKmhpFhqVkpDAdPZVGotVQstkPt+uL29I8HTvDATE/Wb7t3bN99+892HN9+M1+vn+vnh4U3Xd9fxjFJop3RnIqWUlzlPYKtAFBa2beO2uNL5Oo6n8RxL4cwoaGYhpBLCNlY46aRRfgnGOWVAS7UZ+joxV+777nQ4X46nxphYEhDmUE0rGuO++fghhsJM97f3SqucavybnEp5/PL6+fHxcr2s61pSulxGq+w333wjEJioyopa7nf70/HyfDhcp3G8TDf3b6SzVjfLMv/26Zenl8/aqr51Vcnbm5vtZmO1aRpXSwWgxjXWmn7YoFPjOl9PeX93azo3LXOeynUeay3W6ZgrcmmadrfdMGcgbqzotn1ZagrYdNYvawxQSm2d2e230sjjc/JroFpP0zEVH5dRKbXd3Wy2W0AZ15hqUUZel5VBrDEQonVOOd25Rglc5+l6Pc3jitKg0tFnqsUp3XR92zoSULlWJFTYGqMUMlGKKWAlAK2ts46outbGVKfrEtY1lkSUbGuEEoDIICRIwQIIBQgjtVa2AkpUX0Nrpkq1pkoM1YeY/CqkBiJgLqVII7TWfp2PDKXQm/v7/e1eGcccjWylUEtYUWI7NA8P9w93903vDuNlmtcIfDwc5zJuthtArkxEzMBICEIAMwALAQyUUyZpUoUqREE5LtPT45c5zCGtCmXXtB8fHnrjete1yoWrr0J451urbvabvm2bpgPE6RqlcVZCnCcgqFxBAQF6nzbDZvUxlSKlbjupjC5UEAEFMhBKMK0tJYGAWsm1TbzmNSTjGu9jKWVexsv10g59t2uVk9nnnGIOa9tpEMb7sK4h+Cp5saYJfrGoJJS2kVKjAFAgJDJy1Zpdp0FyppL8ClS1NQ2b5Eut0fZ6Pl+ny3J3u9UGTufXEBIjgwQiCjl57xFRCSGhOGeocImBCMO6lpi1FtmvPgWsLBARAQiMEkqAs1oiSeREhSoY29Rc294VEKNn3auX13Hr0BrMIoICxbIB0Umx0a3qnRJS1ZRKym3n7m7vas0lJatMzjxHL5G5ZEGFsdYstXbv7m5u9nc/vxz++z//8jqX19fzm9vtqtS0JBKgrDle5+RX40wtkEoZzysh3GxvN9hu7cCRc4iRq7MagFNJjJiJEpXqizBGK1NyLSlJCVrrJYwKwUrcDE3XGgn6fJoev7weTmfdips3t9uH3ZfPT8FPs59zkYQixHycr6nE+zdvrHWppG63eRkv2tm23zZLPJ/ODLTfbbUyTCyELKkcno8K1Tqtac6ClNbOmQ7wXKGi1tIY6wgRp3lNiw/Fb7YDEtcUh93Nph/6obOuQYZCiZGMU21rkbJT8PHdDYuEvz+10kCOXBZjrVFGyCKwCz5KqZq2LcQpZarMGkPJx+vUNfq+uddSppKExLRk6xoJhjLGmMfXkxJ8s91tNzfzdZ7HOVSSzjghbrZ9ytRtd1yqkVI2OqxTa0zb6S+PPmZwQxdKjWXtm74busX7WjhEappht+sRqoCgtZlzWlLa3N7pZfbrUgincXx9eUEUHz++bVqLVvadtUYiYS0siKRU2iijm8wsBLhmW1gnpX95fDH/+9/92+8/fv+HH4Kvn58+T9Pc921acU3zkibv42a77fvhX376/S+//JqhEoIgeHd//6c//LhMXp1PwGI1Hlg2jYnruukGqqXWpI01WuYciUhIZMhSgZLGtn3TNlLRuswl0xqibuXkp5fzcQ6BAagSExvniMXheAJhnW21NvO0VuBht2lMUZLOl0suORcyzg67QVtXGUpl5SwqWRgqYEp5mpeUK1ElroDCh1j4oIWqmeKaXeMEiBwLM5jWxcpz8JyQapZOGmvt0N60UhlZc/zu2zf/t//0H6+Hl+enT51pb27vu3Y7LsslZAXYyGYzNE7JuF4ul0uIkZiIiXIRSiMrAXWaw3meUV2lMlIZLXUuFYlyTSkmZjKNRaWv85o5n89jjkU0jmsBZmRomuaPP/74Nx+/Geyw6bo0Ljvr9k2bgq+lKK2v0/j5y2PX9Q9v3ipUx8Pp558/IYHR1rWuMx2onGpmphyyYOz6rmucAqg5HA5Hxbhru7vNdtdupuuaU3539/Dx4S1jqTWH4ENO87zs7vfTsj5++sxUWWDfdVrpAlVJmXKtRChl1/USVQqBqAghck6uufn47Yfzerh5u3v7/j7HdL5OGbJpbN83wJSS//z8L88HXaBiMagkMBinQ14hIV8rU3WuzSWXWK0zUkkpJSqplC0RawGpzDKt53Yy1r158643/eFwDCG1XStVo5QAIXLK1uLD3T6mhLXZNDcx+/N4XOYxpLD6sPhl8WtKdalljPm7H+GXX3/+6y+/Fa7LEvpxejy91Ficsb9/+i1E//3t9zfbbd91u93Nze2bodsAkR+X1jnbGCExpGUaw3G8SCWatvUhpFxjzOsStEYCKjnf3t69f/dxv70hZKlwaFtmMM4YpS6XtWta49qwBiOUFFVClkCdVfNlqcH3fduZxhjdulYIGaOHEgmyT6CNPq9jDBGNNtgAc42pAB4Px/PlWKt4evziml7pVki15ALGKJYgZOUCAoUVqFBLlULQQnbOEQlnHFOxSlnETKSFMIgskEFiqblySrmkagUiUBX4tX+TExMyFQaJXLnWigiFALkiVaav0zVWKFiqr7t675eUojGuxJByvsbZAMiC3sfxehVKbru+aze3Dze2l2PuEq01J6mqFRKQChVABGYEZGaJyAhMhAAIQFSIBCjMyMfx+vzl+XA8aq32/Xa/3Tzc3g6uLT4rEIpNrglBQEXObKXlxFc/L6Ve11KWkHMVVLQUyxpBQ2vb1hgplFY1xSQBaikk+WuRoXGtEWpaFmJqOgMi1wpMkGJaQzHOURVa2Nu92W67VDOlnInH04KMbYsp5lRYCO20pAQhxGqgaXTXyNbKZc2KQBAgs2RephEwoVSAKoWS/NJY1fQNQV2XCJlFZmdUyXEcjyFCSCsBoNKpZqbMpebooyRiXhePLIzWNc05keAMlefLCTgLKbWQSkoq9Ws2o7XqhjYELJziZa21usbEgswA2rxeVh1lyCKslzfv97ZvBJEppiFhJRjTGmdVzqGUpI3QRjbOFCpfn6UIENfQtto5k9ZFGd01bSiVUwKUjWtd1zcVb1gSpgRQEbU2fonTFJRUa6g1l1xyKJ4kuuy72kohNEqhQCklhaBKhSoIKQQIwcSUMwtEZQ1RVk4BcFjX3WZrrbtcL1KI/e1tLD4Xz5xvdg9C8uTHmH0s6TSNjRSzD2677yWfTtfK8vHl5ffPn0KqRjWActcOhUhpCQhKolYyr2G6TEaCk+I6zSXX+7ub+fPz9XRRUiqlUq6FKyUPCDmnUkKKKde8Ci+k7LveWtO2rUSROPnF+xRsZ+Ywj+tZECklb2+2gCAYzdD+/ttnP69aCamElKJr277vc+EQCwlIJQlCwLTmtIOBpRICoeTr8Ty0be/6HEvNJFENm00Iy3qduJPAAkAOu40/Xk6n8+5m23WuTl4qtY4LQukHM2yGkIJA0Q9tviaJymm5hJW4olY6w3SdpnFSSljNUsDhcs5Up2W5/DpF75dlmi7jrt3WWp3TSkhnJFLuOzMMTUmJuWop6CuNJetm6Nd58eu63fSboWcA0OLnx0dk3uwfSiqfvjwu8zg4s2+GYdje378x1g3bze+PX/7666/jsorG1Fruh+393f3N/t5qv8SkjKulKFSbflintdGWuACxYPx6KhACgUFqiYkAAJBDXKtPyDUXajcu5XR4PT6/vmQqQkoAsM4AAzGcTpMPtW16ylhKZQGxZClIIAghhTYoIzMQwrys8xqNNbv9FtnGkD9/+cLEAqESB++brun7Pia/rsEqS4kIoFaeg5+XRWq5hrzkqBtdkUKMp+NJCHEe55jjuq7a6sZag2iVuuk3QzPsh62WrqQ8EVIlt+123aax4sUHSahALrmgFFo3IPAyL+P5CiiAMOUMhZyTw7BFUPN8mZallqeQ0xrS4XikXKSRDFVpIKq55gqspFjn6XK+TNsdxXo5vL4cz41zd7ub63QNpbZtv/KaclJGf/vjN1jlP/7D/1iXWaLYdBuj1RymsK4SQWvVN51T1rWd0koiPz89TuKqWZY1j4ex7dpW68scaq7dfmjaQWlkhPP1st2kd9+898n7ab5O1+0wGGPP58taAiOkXJTUxMBA1+tlvo45JWA8HI+LX5Y4E/AyLY+//VY5h+Bd1zDyeb4gcInrZTqUVLvNdjPskWUMUWbUUkHGdVr8vA7Dxrqu0Y2VqCXGtARPTBmRY0zLsjZSAJEWetPsjHDL9OjXCKS2+8ZoR5Vn7wtVa2JOWSt9c7tv+w8svmWqa/RPX57++tefLz+NtmleT5dI/OnlZZwuy7QSMDPP/jrNlxxi37Uo+e7+7tvvv9v1265r37x507XDOvrnl2PJCaD1PkiNs1+uIZznMecYc1jnNaxx9R5AABCVYpR8c3v/8OYdCOnn6eb2zunW56yVEkQY06DF/m5jgMM8o8hQYmeF2rTL1BFj0zsUIpW0rv5wmJUQQpiua0NMqeSYcyqp6SQKIRhzrpFTiqGULJVLJTw/PwphbOOIYPJeGqucq0Sh5HValZD3uy2iMo3abu9yIh/ivKw5B2CVY9FCtq7V1ea8hrSuKYToqQBIAFCJyWjBJEqupdZiC0kNACVnVKBRQuWcslP6/vbm5XBCRmtdivFr1pEz+WVd3HS5HktZt33vwOSQibhiMkJd12OzqPvNfnPbVtwNNYzL7evlHGtlYASUQgJwzqUSfdWcMHwl+FQhiJHHZV2m9XA+EtU3m/37N2+2Q7vbbf3slTFcq59WJdXQ9W077JomrXWpl+vkfclzyQW0XwtC7fq21CwUKi2Ms+sa/Lo6Z9vWjQvnWqTmxppGqXUO4zSF7G0WIWHfWolKKilEldJYowUyYmUhSZmYyc8ZhWhds+0UYY7ExFIIjUq4RqBEFLUUHOfiY1l9XpfLZqhSyVzK+Tr2m8EotYZIKTujaiw5ppRzJeiwQSVRqBzXy7T4OOcMnCQRG6OUMUprFEiZck5CaGtdimldfM7krBYovoJFiKpE5Fpzoa8zba2VEF2l+nI45poqU6klJ7Uu2bWalQLFOfP5Ot02Q6utYtsYc9NbPfRz9Uo5GUOSBiuFl9ff797eJ158LBJM21iqNIXQdYNxnXXNejql9SxcJzNtrJg4zzmgqvMyhUwAqISy1gGKmCIDoABUukK+zBMkFChrJSEkggBAlFIJ9ZU0x4Wp1oiZQbASwBKKkMhSNwTaE/3y+Pn1eHhzeRAk9puuMWrozTievyI4KxNKlE5atkbrzHReptf/9o9o5eF0cW3X9WJ6+u1hsxW1bjZN1zUIoIXQ1sZ56YZ+2A5ai0i56Yxt8Hx5lQqBeTP0zKUfBsnq6fEx59QPg7Htsi5N2wpRUvKZwuwjAk7Too3e3ezinNZUAIlzVFHsb+/effw2lto0/T/+0z8uq5dKFGYWuNvdcC7n05dYqkC56ftxCeMSv33XPry5d1KEeXXWrUssHgSI+ztsm25N15QKKk1GTCkqZ8occk5937BEKLDf73JFZ+y6XGzT7G5u/LI8Pz8rLdrWIApg6pveNgpkLnXOac4Erh2UrRxCvJ4zCsRyeD1oFt99+641kmO93++GH94P3TBeTzGtN0PjGgO9QRYCVS40jYv6V5ydEI00XfPjDx///PPvx3leBf+Px6eq//EPHz92Q6e4tBa//fiGCKfreXfzEEL+l7/+9NuXVzS2cNlvtn/6wx//7d/+bdtsQjm6fsMh1GXSRlWq0zopIbBC17T7/TbnHEtpWzuNa/BBa1lzoRpSqjmFYdP3rdHWRiXmi88lgQAQQltjpU4px5wq8zgvMdZGtbmU0/lU0jo42G8aYJBGa6d8DIeXo7lHkCJTOp6OSCKFJEAMm23TtTFEUUoljrnEwqlQjElLjYhxDT7n1UeM4nS9zusiNHSbTY7h9fCaoi8VFx/G8UpEp+P5+fm5hLiMmVMkGrWKFajRTYZSKwrttNN9vwNjQs3xy0ForaXIsYTK1zUY12rBZfY+JFDFoDBNsx6OIUzexsvpoo1trEFrtjebrd9wyq/na0mZUUilUkqfn17vtjv7Roe0XqbR9X3fto21DAWFUEZPy/TLLz/1bbfptu3QDrveCq3AVMjT6I3WbeeEwEpZSEgxBM8pxLvbuzf3d7XWstYA4WbYD7eDU/Z8PNVcuIC2DgXuBmzfD7Z189MnKbBrmu+/+5YJxstVADOgEkJqEVL8/ffHpZ/3u40UonFd67qQ/OPj5yWMweN8ftGt2O4GrZqQ1iUsDMAVZs9rTEkFNWSlcsBYQ9q4TUl8Oo1cXm93m+/efXzo3JuNVVKcxoXqSNFjCdfDwaeI267rnFbSz+slrMsSSiViyLkgZm2kcUoQMtaut0J1p/N5vC6xzufT6TROh9fD6XyN2ZOCXOvlevUpxJS6tjFSERMVyrVIrWItQ9O+fftGS4xpzSUCc9+u02W6nufGuQB+2PZSQxpz5Xq9XA4vh3G8dH3X9I1SslGWSgLKN/vt/c19yfT7L08ScTu8naYyzuOm6wZrdkZO64jTqX/zEKmO40Ug7Ls2Sbf99z8eT9PxcKYKzByLv55moWS/3wzDbSqHTDUET5WkkkigdaMQmCqCMNqREInC48snztBtN6USs5rmZbMZSk5rmmvKRpoSq5FiGHqrZYpxmcaSo9W2dU4iLWvJBSsnBmQQzArBCUlCGmLMIISQJDSiAmIooISOlHMqRmhrLKMsPkqQQ9eeT9eaq1HaaiOVun1zdz6OlzguFAqmnCFF0TjNVIeNjXWV1qcY5yDEIRmntRXk+f3bO6HEL49fYkyMwMzAjIhERaBkBKoVAKRSTLDOS0mw+igU3HTbj28fvnl/V1OZp8s8rcN2p41KU1RKN01jTDP0+xLG4+E5xiSVMKn0vWuUPV8nH2LXy67VfeOMxMWntI5Dc7vrN0rwZbpQDusxrCxKRWuU7TcMOcb15Tj2baut2wwOGZQCv66Ln2wvlVTEVSp2VkpVpRJSYIo1p1yzMNpst4M2ehkvQpvrmuc5ZMSSU12mt2/vnRh8XEIpkrmUioyEkpgpV0F0sx+sECHlGEPJgUpgWgBEzVQrCNEKFG231U5aY7a7fUoFBE64LGsslQC0ta1rWh9WQKhMAACCY63T4l9Pl92w2W73Sj3GGOd50VoOfXt7c7fbtYny4XQZr8cT8PnYDpttq7e327aInNd5oqx8WUkVzpTzqqSuR77OI6JzWuZUYgr7YdjtNjGG8+Xow6KYGqt6wP22I6XO42SV1ErNx4NPESvcbO+0aZGKFEKjoUKUCGulkhg0EVElREJSQgoAKplAgABkIYhLKiJcg9aKwTmtgPh0uUzLuOu2fg0ploeb203bdfvNeJ1KzYJYK3kNYV2Dlg2RnKf0y2+ff//y5fnlsNlu26HPy/J6OWbv492bh5vNZrcdtoMSIFg2vR1r3W43w3bTDO1yOCROttVLCOfzZbcbUoxdN0AtwJyCB6Suc43rfYjM0DgnBVOJyXuqtWsba41CfLi7u4zj9Ty5trNGMuFuu/39t6fT4UKEuQIR20YrZ4RAgppqTKk2Tbesc1ojsrjd32z7jT+f4jwPfRdl8nPuW6eUKlReDq9L9H3fH67XSuPt9r4Qua5hFIfX0Vi53bdYue2b+/vdul6v42yNRCFiyG/evs8VX19OKNkYyQjd0BLIy3VEVUuNKSxScaNEFmazbTe7br5OCFVLaBppDUIND3fbYXgvpDyeTiHEYRisNlIRMg5D33c9TTlwdRq/eXv7H/70/f/xT/8yplqF+OvnJ678zdubt+8+fHh388O799d5+m//7R99jOdl+fW331JOoARXcXN7t9ntCPHXT7/+9vhlWVdG8PPEMS7b3a7fSLV3rgdmAVIrrLkiSKlMjpGQ+75jbXLJjFQZcvSqpljS6XSYl7mWKpXUVlGhdtNdxjnnKoXom6G2nEPys5eCJCqlFHKCVKAWISmnXHISQlEBEIpz8WushWzTxZSv1ymE1WiTa405rX7lCkoq70NMuRAv86y19DlWLpXLNF4FQM5Vade1znXtcTxBrTmnEENrnbttsaIUSkjcbW5xJ768Ps9h/ssvi8B6c7sBpaVSs0+QeXOzWcY1FoqlVuYQw7TOl3FS17EWVtogyEbbTdNs3rZ9v/E5brZD0xqqdD1fJD7Gx8cqlRAojSVApU3TdChx/vnTcVysU998+Hgal+fTUWqVQz6eDo+Pv6d92O33VraCMMcshNBKS6EQhNHah7IuPpUaYlyWSRu93QxEdeIJAax1bx4eNv3GSr36taS4AhlrtFJG6Z9++ut1On3+/Gm/31IpXGHoOwi8hmiNQaliysfDCVLJMRhrnE2NCymF6zjOYemHVhq1hpSO45LK5TpWKAByTRSgWNMYIaewWsHSiLZpFMg1hLH45L02nOJeCM45hJiP51diygzjdD5fztv73Xa/iynGTCWjkp1UsjLv9jsUVDhJUEwZoGjbaguzj6+HL6fT8XB9/vT0GBMX5phqPwwx5ViykeKrd0nIrypCYkSpFOUsgI02m93mdDpP16nf9KfjBQhLzFo2uN3f3uxd255P5/E8+Vohw9D1zmohoN30uRAqnC95s+8f3t7dP9wa4y6XpdHqer6a3da5RqHUjL1R2DnKaXw9orNaKNeYGnIM0ThxO/SaOESKVJxWWqhfP39KMUgN1trVryknZlomEixIkyA0VoNgAEox5iq+nnuv1yMgpsTXy0lpg8gAlYl2m71iHroupXx8HXPORGUY2n63MVqzLmZZL9O8Zl9LJRZKmVaqry5hBBQCmZgKCUIlrZQqpxJ9QpZK2k3XIxMk2vW9Rg2AlcEH37atc812uwu+XJd5Tel4vXZv7qUxQjttBItVa5Fj6DvTtS6FtK6r1KLv2r7phJSn0/Tb+pIhay2VRABkEgKFlJKYkEEKwSC9X1OpEtT97e79zf3tphOUlOZpnJVA2withDNNHEPKqRJVrgKgkUgopLDdzS6i3O1vwerKGTE6oxuroBBSdlZKUZ1VFR1DH2OIS/A+bu7uWQpWXJmuaxrHcQ7rbre10qaQwxpLzcrK+VrjKXe7DZO4znNY11Nrbu+3QloG9jllBhF9rxGkrAwhUyY2ncklXcdJW0slp5oh1BJIIPg15zzd3UllpTaaKq9leTm8xrS2jeo2Q6JyvlytkoAqE+fCyuoKnIgqYEiRkRHQNs6HJZUSC22Nk1IeTkcCICKpZar5PI6byzT0W8q8rnH1q5CMQjx9ei1cPny4v73db92dIEJIThiKdUoToR/X5HNMwOrp+elm12krlJCua15eDzlna7gx2ggQEoytTJ7IR4ol5dbo+5sbWe2XyT///nqZfHs3bDqzLOsaQyWY/NXWUnLsm26/2ck5SaGdNr1uqGIASLkAg0BUChMjF4KKxhipRc0ll0rMQkogTLFSzbkkrpYbqbSNpVaieZnv93dLXALV8Ppyvlymy1xqrm+/GTb3s0+H6/wyXk9hjLKYMOecUQIyGyHb1my5X3NRyFahFaAak7Fcw6p2fXu3yccvx8slxNq0G5Ris9n2TRv9ej6fwrqgFEYw51BjXGJQ0Fmrmbk1ttZ6u+sFoTEGhVpJSzBvbt81jXx9fX5+ehnnZbrGNWAs9O7t7duHvXFyXtfz9aJYEIACmaIPsw/j6JRohJStw+j86gXgzX7TtI6ZLtdzSlEaJZ25nE6lsnWttmowvc8UUshFAo3auATQGj2P67hc+77dbfe5YSGldW5t13Gdnz59MZ3uN22q65fjS34Knw1+fPfw43/4dpnz49//S1znm9vhbnd7eHkuIc3THP0ydG3T7pnZr8EvcVrmFKsALFAa03737YdpmQ7HzyGtUNLGtf/zf/xhDdf/9uefEsgC+X/89JfVP6CAZrDDPEuFbz+8iwUev7wcxokApRII4Ff/8y+/vLy8LOu6xpgSlUK1Rgop+dj/0DF8HZyVeV2lELVgLaUUQhCIUjdOugZyWKI/HM85eWCqwCGnUgsiGKOFksQUSjEl15Wbxt40DQosuWgp+tbebMyms3GNEkGAMMp2Xeeck1ahkiXl4KOzqt20nbVYKtSCxFRSTaAESK4+pSpkTsEvIZUKwFzqYCUjFIBaSQnVt+1mO9zsb5a4Pj7+xjX0bcuEWtm//dt/t+n7/+v//K8s6O37NzmV83Ie/XyepkrluFyMa4uA58tFGbuWFK7rOs79rs2R5mkWSgxNXws10iph392+vdvtd5tm23c1leP5pJxsjM4pkbKDNdu2m1LKuQoUIcWrX16v47LOvmZtzf2bu+1+98uvn78cXqhg37ZCQC6RuBDkkJbsC1R0TVsre7+kHPc3W60No5j9eh2vMYetHqQ228Yx8Rr85Jfrui7jtEyLQGFQKamURCYYr9fL6fB6fDZS7bc7qLRO66ZvhZWLf5Eod+0NDkC5NFojoV8zcSDG63RJiCtxmmMGJ7VZzos4ZZRYGGpNqdSqCBlLEiExATullBU+B58iI2tjbNurtilCPF9P4/UyTrNxlqRMAN1uo7WLKb0cnoHNpqPWck7Rr76UbBp5PR5rTkJRhXw8f0qpHF/Pj18O12kZ/XKZUyVsW4cKxmXhShIFcoUKVkuimksFwMokhTBaMpFATDlLo0HLXHm776jyvITFL0Ka/Zqo8Dp7Ik5z3g279raVTjw/PR+OB1RIlBTy29vbP/7hx4cPb1A1Qtu6+HkZsZb97U5q9stcvO8al3Ihhum6ameMwuwLJ3KtbVpnGaowbtM9PT72nb1cz+M6F0qbmwGYo/eVuFaSUpRKMSUAlgBOKWQqRFILbU3wMZYitVQaURSqpJQUKBnL6GcU4HNcYwwh6MZmS2WqSohSeIlr5sKCCVgbpRWmUnJEUCCVEBKYkCohgADkTAULgLS2a1zfdoMSQoDeb3trrWtaqdUavS7FoSgpSwCOJTAc66SFeXj/I4EN0xrmFU3adN2HN++aZu99/PXTLwzVPuxa5+5utj/88G4M4Tov67JKBTlnKWSuSSpRKyKgUvLr5ZBE6Fu733abjRWYl3lWiArKMPROQ8peSVCGcp5T1n6lBqhrVd9vl5lImYyQa+g25nydjUIAvF4nSinMsWnM0DU+TDGXYTMMYhuXdbxOIYbMNPppicslTDH5rmvLwpjLOs3z7JXW0uhQinbmGGY/eyYGxiWJlb3VvVVGKElI1zgv5CXUckqZOPgVBS3L4scokJVS2pndtqeSuWYlkXOJPiopAGoqwaeVhFSmS7m4rrt706NqfVisa9c1+zUoo9Zlvpy892vMCYVoXa+k0lrVWubVN0toGy2FZkYCRmCtJErBgLOPpZTJh8V7Rmp7G1P9/OmC6CS3mw7v2rvtrdlv20j5dDkLmRGKwCCI1dPh5eKbjXNGKb5Ma4yVC0xLLflu0xsEFHny5xB87wZhhDFKK71xDZRYuUglS6611K7pf9hsXl6eZ+9zJquUsVoqIVBYKaxEIUCirBoYpDa6sUooKMy5FGI02rTOkqFYKjN/LXWkmKhWo60QApBziV2/mefAgVrb5lLGdRnnpRQCpvPp/O7d95v97XH+tKw+pIRaMfLql5xISuGcRiUWH768Hn1MrTVIy2/T4/3t9vIypVJ/kGJztylCLqkQMwHlUkLKbS6l1OA9MhultEbBorFmXJZlXgS0xkitTeVQUrFCOCkAJGZSDI3RrZaK+PHpMVQUKJTQqLFv+tvdXqji5ylNsxXSOC1RIKqMatN1FgVWvttvOy1XX2qlHArVElOcTuPlemyHTjfdmw/Ny8tpXNcactdutLHGGiBcV49rPsRwPJxiXmIKRjfmtleax2muREYhlTSOo6rqMl1++/Tlt+OjX5cG+Xg5ZMh+zk/Pj23fMXBlcv2QVaBcjJZtP8RUY57WxQOgUGYNIa5hCf7h4T6WfD6fl2XuBhejDyl12v7pu299qv/8++fCwCgev7wCMwAw8ds3b/rdzS//8Oe//4d/CJRQghFSOhUXfwj+9fCKSgEA169VH9H2Xde3QorFz4DMxCxRoc6xllKEgq9Y1kosQHAFFvD8+jqPF62VVCoChZhYgJSCKyup2q7rt4PRdrPZDJuNLMi52kYOrdoNqrF4kUowSkCr9Gbb7ja91EoYw5VXOWllrLEEHFbfdsY5RSUTEiA0rQHBAKLvd28/WKnN9TLFMBsNxkpCipG0NLZpmOumt8xh0zfrMvZd8+H9GySMKY6XGnPc7Lchpct1jJxJgeeSahm/XEAKYpinedh8vXRP213Xto3V5rsPH6VEAOWahhjncUHE+9v9pncS4XydgEkgRj+Hac3BSwSUREyIiIjLsv7zLz+9HI5d6968ffjw8F4LseZojd4OwzQvuaYMdDkdN01/s99oi2nJiLrWGtcQc3Ruo6URkplpnsfT6ZWIGmu2u+Fmt7mcD6fT8eX1fB2vjbJOyfvb220/kIAlrUvwAovSyAS7zfZmv1NK3t3s2q47TdfD61Ep/eO332x3m3VcYojAEEJQ1mz3u3bTlefPV7+GEAERJayLd7ZJtWQoKEFKaJRotBBYc2Q/rV7q1iS/5OvsgaFvGmTOuU7zUlI6ny9aaCOUTznV6to2l/rzp98bI9+++egaWXOcl3G8Tk+PvykjDoeD64y2OC3j+Xq5XK6Hl9EnJgIWwljLDDmWUkgIQGREEsg511oBlKpMQiiAf62QMJVcovdL33W73Xa/v324f8OEvRuev5wAwTbNw8OttqICbbf69s3twuthPDKRn9fKtI7jvnPff3j77ds3qDGVeLfrRTd8ef4y5xjWuRe9n2anlXNDoYmYc44Edb/ppXNxnUsqrpVmGKoy3d32+elz8KsQWFIxnVIKrdF918UUoLARWoBSSvZdI7kkiUYrAiGNQimUlLpUZXTTtUJgSRmQUTBUgSKteabMqRYSVHKKx/F4kQJBgEZUshcNmHXJKAgEILJRVkuJwCwo50KBCL6a5gqS0FIYjUoSAAilbd9IrSt/9UZIJTUT5JheHp8k4W3XBijj5Uzrer+/a7XDwkbrfrCbrtXKjPNxnGZfFkAm2Cqnb5pGdU645vdPT7/+8ikknypJLaUyVEgbU2utuQIIIVAhGiGk+JokAFImIZkJiLDU5NcEFSr4GEtJ4oEHq4e2a+y26eToQ6J0vVwy0jSP1mpREYmzj0pJoQ1LOc3TvKzSaandQtlDPo6XNYcvh8NluZAqxqpIyxyUYswpZC41UF1RNQ6/8tWMVVKuq6+FqqT72ybXQJlt00qliYOQQCpSLYQhxogKup2pEJGLRmxaAWTGUyAgghJLVMahBOIsBPbDtuR8Oh7j4bJ/uDWuTaUQgTZKoGUAZsqUWQorGwAUUmilauUQKjP44Blr+YrWBqBaK6ZpGq/Xa600juPxcGCuUGvxoKT0CV4P03JeNg08vBsqb9vGgAYqJUXftO3QNyCqejxOcko3u7rpbFx9JoillhB8nAD3rZYsG422a9vWdmQIqJ7Pr1GPOVwl42bYCknjGlMtm7bftrdIE4mKRDWTXwKXKhklIgATV+bCxMBSIEiUEqUgBIGllJBYguiahojn1fsYpAAtERGccxW4Mi8pVQkGMeTIgsdxzMDvv33Xtp0/+ZRC8PPry+vxcPQhuI1TAiSDQsnMXGqlEiiJJOKVNIp5WcK8vs4bp1TOaebStN3z4cCoh32njAsxL8uXZbFtY2yjrd0qKaEUNHWza1PO2uiQC0qjmhZrjaUqA1qhs3bjNGUhyzyYzce7m+T9y2U0yINRRchC67wedkM3dLp3ghMZ53IByDh0zf3b227bbW9uKPl+2Lz7sE8+H18P5+u1UpFKhpzr4suXl9vbXb/Z/PKX35xRpu2McZvNhgsJEJfjlVI+B7+9HZq+7boupDit47oGSRIZu75huVvL+tunx7/88uvCaclZZJ815n/5CxRYsidf//rTXw79VkhpG8cZet12Rhkhr+fRL7M1hriiEO8+fhBC2M6M0wwCunbYdj0AEsjj6fTu/rbph+2w+Yd/+csMOZT0cjzWki6X82b/cH+3e3o9fHr+gtpihXdvbrabQaBIlENYAUWJRJW11lqqvm3f3t9ppZawdn3rmgaEjDExikpVK4MCQVDOab1cT6fzl+Pjr4+/Z+/fvXv48N2Hp8MxplRCZlNTztth2zTtdrvR2hpnKxOiME4bY3onBcacS0qxpAi5WORWouYqCJEyALdOaC2oZGB2RgllECHGeJ3HlKJxZtg7YBQIfeOU7WvNWibmBDUaI1xrGm21VpfrjElRCus0p5y1Uh8/fFRaKSnXJQ7bQWv9cj789vh88ePhcno9HOeQaqmbru9cM7Ttu4cHJQTU+t13HyjytuuYKKVgjeu3m/NlrMEDohQ1xjXHOC2TaQxzRSaAIrCm4HPOmauUBgAJ2a+hQX3TN29vbjdNd7keX16fNMrvP7779bdPp/NYSnkF3m6336pvuqahhkvmoWtLjspi37cgIHO5ztfzfJzXq0QxnsRP//Tn8W53uR5ez8/TnFDij998a61hqJkjs6pUl3X6/OXTr7//yoS7Ta9Q7re7b959RBTzv/yj0+puf/fdh3dO6dJuvV+JAIC1c+0wvByfPz89cqnWKKbifapUMuWvkYTWsu1028LQaSOZUkUPEllUCCcvibumxYLXw/mXtSy3i9GKK7XWWINjiKHGMYQUogCydiAqKS6bdrfpjL8WjgtKHePyenqZF3+ZpoqUShnnWKqwxhqpIBUuLFlrq6hmruysEhISVpAqsCiFBZNUkgsLIUFAojTN15JD1/Z93yqtSqK2a3a7rnG2GywiC4ltb7+K6J8/Pb0+PecUG6v9Ejnw7qZ/O2xbKU/n47ymh9s398NNjZ2cZimIMLOSqtlmacZ0LiVIgViiM1LbYTqda0iyVmf0VMs4TT4sl8tp9nNMWcy0SCQUQCxBaisNWi2VVdYoOTRNsXZZYwFgZB8iIhmNxKmkisCCiBlQMAOUghkEC2aBAKImFggkvsJ1BIFAKZSSoKmULFj8K26QgYEqMktCI3RjuIDQAg0KCUIAcVzTEmrKIZTolTDTMqdSQAgpJecki/3h7bumkWtYjpezICHj+Xqt1m6UHdBoUvRy/Hy4PvrgwZi22dredTfbmmudLwbyphW3O3ue4rpWAMXMUgohRSmlEguBlAubkrKfvZKCi1QSKBVCAklsBQqrqQAK9D7EBLoLaBxXJCraKMPGFEIPQmG/3RxO52ny79+9393s12k+hbUEXMJ4vlyDLmjVy+H1erpwreMyTmEFUZVgJRGoeu+pViHQWquUzrVKxdkXrUArsErIwZVSseTz8xNw6V1jzbBtdoDQb2wIeRzjzplYRN9voMpl9NZqrbHRWUmzXuoSZq2ENW7Tu7Yxx8NhvFwYVClwPo+r92sBiZhSJpoBWCIAANSooHwl8QKKUqqQ7FopJBIKlJxKibXkWpVAKbDkeHw9KFRLP5xOh/l6bq3uTGetLpUS6DmEp+v1IOpp9tfgY8r93iqhJFrNnQFTMak5AMYa0vwspppTZQRUpeRxWWr1H+8GY0rfKSwp5VGbhkmE5K/ng6hhMOJcAzOXFMZx8WNwxt3v3kzrdVnXnNEqKUChBtM0SppSSlritAbL1TVaS2GkdbauKa1ryBkB4EY7IaRASf+qdaG+s4A0LVMM5Zwvu+1u9+2bieJxXq8+xVrU6bpj4FK+vDytPk7LpRl0i4ZrxQI1ZUBJRBXq4XwsXN68ufM+XV7OqWSudc1x6Nri/fPxbExbBBKAcs5ICt7nlHych7bZuu7t/d1u2KYUfMq11qaxheoyr0wktQgpW9tlxiqkMnp3s8kUa40pr9aKbz++tY0jZHUoPiVZg19Ko2k/uO+/eXM5LyFUH4kyGlQxLOuyigdRKy45NEPe7rel5FgzA5acQJrTOC+HU//ktHJQWPd9ygVlrDUL5K7prbg7X84gBGE11qAEH1fvw3gdd9u91FJQlVWG2b+eTmuNVaJysoLwJS85D01ngC/ny/F//Lmxrms7FqiF2my2w+dm6DrOVHMBgLZtrTaucOOEj/k4jakkiexD2d/cA4rnlxPI+v729m5/e7fb/5f/87/+/uU5hvhS6+WyNJvbb7758Hg8olKIYtfbP37/zdu3b5n5qxyKWaxzLKX2Xde1VkphpCJiY7uu6400tXIosW177LlpdOUc45TyermGL68vn54+TdMVmGJKIaR1WnIMQohcUvBx32+tkgIwB++nGbqNFVYWFijJqXn2WlEpqaSSUoJarBBta3OqYV5iiiUm66yWRjeNbXWptZbqGpXZygTSaFCYc12XZbxeBZpcqhRYmWOIKtCHD/uPbz+M1zPicP9wD1aP8zIupTIP21306XQ85ZxyrX/++//+5fUlMrFSBarW8sYNVtmH/d3b23sutR9apgpE23bobjqoPI1XiSLncHxdxnn9OpnRSlgntdY3b+6YoaRVIMrGxOjFVzCXEDVXrZWScuj7b96/3ba91ZpK8d7XlDf7YbPfrvNyuVwr1VLq4Xx6fv0iHgQjp5zH6VJrIain86kenitk4qKVUBIlokKoKZWSnLOuNVOMx8updToMbSzLuLoMKLR4Ob1+fn26jNddvzPWWm0a6xrXppTWaZGMnbZ5WXTjbrYPuW2mdZFCNn1bqPp1ppIoJyEMM9RSCCGnYqy9vd/fPgzTdF7nS5L4cPf24ebBaiFAfP79C1CrtFaAuVJKcZwC4vTmzd2w3RotQApmUSvFGFOMjdJt07mmBZTEcHOzkwjD0AklN96/nsfHL8dIBY3wayAg5WSluvpENaeclRC9dbvdtm+bvrVKS2ZkIQ/j9MtvTzEWrSUrbl2jDBppgQRXcI0tpY7nM6BEhH7TaKGWeaSUM+VKxfu5UvbLahsrlRyPV1Xg7W777cP92/1OVBKhdNIolACsBamaMbO/5pLIr7nfdMs6awm7oVGAcbqyts6Y1qEATiH6FNf1GnJISKBkO7Rc13WcpbZSCmusM1Ybi4WpZAEKmJSSSgkG9jEVKoSUai41hcBKCiNRCVlqAYCSSqmUqTIAEyAK45Q2FlECiMrAAMYogQKRmevXLzcWrkRSIgohFbrOUWYhhFCAgisUrmnxxABpCVW3Sjc+xUqVEYUUxUfZdX/45v0PH94/Pz5N93O/3y4+PD69Bi5LnPJ1ScJBDUuZdauazjnXZK5rCePlvMbJGLi/GZTC/tJWEt7nCqxQCSEAoRIJKSpVgppiWBeBArquEQyUSBBHoqy4QhFEcY0hVKelUEYZV0s9jZMzVaKspQjBzup58a+HwzJ52XRg9dPxMF5P5qSu1/N8neQTgsTJz0RVo8wpkaSudc4ZAKhcU8kpZmWUAdm4xgD7daklSYnB+8AeAWsuBYRROGybfpDOcs1z2zqnNWduDW73vXMNE07Tqlhqo5izn88AKqVFyNoPzXbbGy2UQmQOq4+RSgXvwzIv9jpqo0tNJfkUvRDQuCbnyoQgEQQCIjHlWBm4EjNgLYW4EBUpmJgQJFdCBUZLibWxMirx7vb2b77/Xkmc1wiqeT4cf6PHdZ2Dr59+v8yXcHvftYN88zA0WkRfimA1Xct201fA03EsJQst29bVCst47UT99m236aXEacklFgm1bdzOKuUMP2yt6ey2U/PsQ2w666Y5IcgSCmQlpQEhYq6VhEJdQRNLn3KsQEpWwDWmmDMAIAhJUqGiWjOlJfih22pthIi5ZhSSSEafQwoxRIlyievvry+1Yik4F5jXev75S/P0urWub1pQMOzdd92DeZXrvIqKYE3MlLmGSnNcacYMJEiEZdVSSSkL8HVZl8tFoXz/ti+ljutKRFd9WadRSfXh/VtCkYhASJZStU1jtb9MjLXWEsNSsreNLrXOk+zbNoH0RGB1MwyjP0+fr4Ko67d/8/13dw+3nx9/Pl8u4zqaVjoJsuRdq1u7jZGvi3eNOB/GUhaUteR6HedxeU0lf/NOa6dJ4nWeXw7H18O5Mq01P768buzm3//bf7vptpWoHzbEdHl9Qazf/vDhbt3+5S+/9F3/8Yfvc8rPhy9t16dMPqVWy+N0/vT50/Pr80+//QaNKbUYo6uBaV6ZS+jBp7pEDLFKP3ehxpwEwO28cslGyL7r2q5FVGoJUqh/+vVRAnWtGboOKiBC2zRfzitzXdelluxm//bdu//X//M/v7vf/y//7//y6/PTWtKK8L/93d/993/8p2meqJCS5cdvvn9/d9NIGWO0yEKIXIRVWqPubbNru1xTY2w7dKVmZgDmmmvNNYdsnUYlqNaQQ4m51pTLXItvWk21lJqfPz+v61RKkdoIQIPCaeWEZJ9KjjmVhBolQIVMSiopct1umr6xRiollQDURg/D4JdIAFLIQCgIUQJwTYFCSrVWlDLG5EsWCv3kj8fL9XKBTEZaIQUCopRC47Z3yjUhkw9Zar0m8FG0/R0uXz49X/+3v/uvy3WO3gfvU06Pn5/meb67u9tvdzf7vVBCCmW1vt3tb3c3y+SXdSkixRSen19vtkUAplRa5yrXEL0UZuiNlKrrGuJUGZpWl0wt2lJToFJKNEZqpSERSGYiymCVevPmFopQqFprN01Xh/VmO9i2eRkGa2QhAEHX6fr5y7OSduO2DHQ6H5jIGMXEx+NrzP7hw/3b+9vqPTLutsP9w93+dhgXpZ+N1Po0n+efx/cP+2/fv99ub8YUx+M0T3MBttY5a/fbbaV6PJwFyZjjl6cv0/VS79+u8yIAYGCBEIJPIU7zJVM+Hl68X5mZgGqtAIDAUqA2SBQ5d70baqICUph7aR9qSatfn1/8dJ3u7m9BGQZW0pYcfUJfsPr4eJ5v9zsyztlu20PURjMZrdqhG4ZdZ4Zdv9nsbl8PL8vqrzFOKWeJIGXKpTJIqWqtXLIEgFpbp262m4/v3n3z/t1uGBprtNFSKKHUz58+jYfLMXstda1l07abm908eme777//0A1dSsTISoLVho2uqVKtQgoiPl4vcoJvvvnYb7swhXmK1/OlRfybH7/7T3/84dvbu6VgsoRtJ9tuLXE8j5yS06rmcr1ejud1d7czTjhnbjetluL15TxXvrl52DZWU5niCoA++MKMQrjGiZRz8MRVMlml+75XQlIGZhYCS0pzLpWqj6kAJCqFuVKptTKTFFJKrbVSWgpBlKsABTExC/qqOpUi5Rq8B0ShlJCKmUJYgVlIAYAAGEthRmAWAqRQQjrBSFAJkYEAiaFkSpULE3AqBdBoa7USUtZKEgQBcE6acWubQ6aNbe5vHiIVEOKwLllghTwnrwXbbtjvdpv9XmpbiC7z2cc1JN/17r69uc9vvryeYuW//vyJCwsjBAohZGECBKLKpUhrACgEX7BaZxlYMM0h+pVqLlSoRsqRWiduCslha4DSsmQGZZRfLrGG+fX4dDk9vj6VBHfr9fzT8fByUBaPj8fL5aqN/nohhgoRKlRgZpTMqpAUgpG4lgoEImRCVUVhQVwzSyW/2nZzqZWyYjJa7bbd7m7ou44En5bp8fSKv5BVzjUuprPES6055rjb7WzrYhLjdfRriTG7rrVbV5B+f/6cQ9LSbnbbaV6u40QQhcxUF4CmlFIKCDSIAKyMFQymUEVllNYVIa+BiAHINqg0FwKrBRVdS6klSwEKSUnY7wYl2Arxw8dv/vjdj9fjaXDU9TcbY2XN57OZ4pRzfXyev1wX25i719roK9doW6F6JynOqQqNSlsTk88h1ZKU1v1m2AxD02j99Q8t8RxXCqCb3W7Ttxt3V/QP378dQ1l8Po/p5XWcljiel9V7ARzXhZRFZqkEVACAUtnHKqRGobxPSoDSWiBqpaWSqYRKVCsBopAKEaXArjN935DPVIvqQCs1DG0BWEpZfAmBUsGY8risuSdjbaKkldxao/V9WGP2GQVkhqWE63VKsRCwn1dgdsY0xmijjJRhDQxlt9998/HNaZx8ieM8SVHDuvZNG/y82XTWuSXG+eX57s1NplqBCxXrhHEgheh7E32AEp0emPnp9QkRpVKsYI3Lel1vpfrYdXsLff99Kenp5VlKzjnM10vG3O8385IPl3Pfud1mc3OzC3F9fn30y3qexi+vx6fHo9Dyt8enVJgYPZFf1yXHUmtFYq5KCNs6Aq4CKoBPafbex6Caxpc6Lh6gVqZ5XVRrS65g8DJffv/ydLxcMwBQlQobZ0kxwsoCx3la18ogpcSh7x5ubolLzaXRFpikBGeMMlKATDkmjGFNUHPlRkkJBDFQrjStYVrGpjWl5JfzYZpH4L9pG/v/+M//6d+sP/yXv//vP396WWNdl8SiMNeH3e4//rs/PexvwxwISAmsiM4ZIgEadvtt35pSlVVWShV9zDmPfq4Vg48XvBLUtre2Ubn4kvIU1sV74+ym21Olvuu0Nh6ybVpgpFKda4Zue397LwGWGTNkCWiUBCFBcPBx25ibu10M3hhljd1uNih4HK8pVUZUxnQoqDIIBuZCJVGqmUrKl3HyJZpqvjy//Pr58zKH1jZcaZkWLVS/HbrNkEIL5TctP6/zlVgUtOMSC4umGw6n4//3//df8hpvNtvdftO69m//zZ8eHh6UVAKlsVIIiEuyre6dg5yXccw5Cy1yyNbqWrOQRiklpSqpamlaqzOB1gaA5tUT85qjQrkxioDPl+vqo7UOcBYoQQgqEFNGFlLo7cONyLLmuuk718uh36BUH96/uyzTT7/8qlyTmebofYm3rQEEXEgq0bSGiYfSra/TuizDZqOMUiiVEjH68zVfwzL7uVDJnLjieb7aozqN5+u6zlOQxjBB3w9vHu5vd3dAgMjzPE/TtdYite6GvmtbLXTOPnNOaS0lg7ClpJIj1GKUEIBCCKEVCBYKawlx4f7DN998+93q/Rzi+zcf26Z5/fz46ffj4byeD9dlyV3TamNzyqUWoXGJAZFySc9fjohyndbKohRa/Wyd297Ebqt8KevrIcT1p7/+NKX1eL28vBxn7wlACMlMWmnAWomsUs3Q3j3cfv/xm/u7223fW1RUSs3VtLppOqcMMmkJCrmU3HXWKXlc4/3+/u3bd0BUDDunpJBIrJTkihoUAJzPl9Ppstv1oGFdp/l4WcZZQN30w3/4Nz/+p7/9o9E2X4MTclq9VNIqrbSyGm9vdrVwjP54mUrxO7fru9ZIAVTDshQG41Tbu7p611iScEhXFky1RL+mSkooRKi5ROa2bVFIBAaopWQgmYiW4H1JsRYUslYmKLVkZDJGAbMAZiGsMlqhRtBYvvpPhJKZyHu/5pCpFMo5Z2YCZKWUkCillEKmnJhZSiUQEHLbKKilpCykaLRVAohRECislamWWrmIFiQiMqNAQEEIpCCU9PT8Mi6jas0cA2gbiNYYpTNSiZxiweqME+gEGMEIlGNIAoAKzXlR0oDQyMy1IH2tsRKCFEKgBEZgZAbWTqPGwjmHGkvUqI1ShYuPXiuNSnLmkNdxHBkRBL+7u3coBAHnEnKpwIwoleg6u0I8P7+kHPwa9g/br3uuShkIh34golxCykkpiSzCWlLIEpG5ohBCiJCTX3OYQ9s6Y7UWNqdcSkmp5pyRyUhd6WsLtqwxHi/n62WOa5Ggu67pOstcS4naIEupWmedbaklXnUrh77tegNAhMnnBQQbJ2hOJHPTqq7ttVOAhAhN23SuFVJcTtdcim2MpiqEQEZkASgBiaCknGLOxIKoIoKUAlggilrq+XiKq88pWe0kqLSkuPhUk1VNo9Vu6Fprr6ELoq4xnscrBfH865mAso/SkXp40CmkJZaUuGb++GabiV6eLiTqPM+//F6Z2n2PXetcVWvy03pgdxHbHVmRI0vR3W63m13rNnnYdojqy+Phn/77+Pg8EhHaxmgtq1alMgsuJZdMKWcprEBhDTPnWhAkIMPXD9cQ1mVZUwhCMGcwwpqNkTtdc1JSbvcbO2x//XL6/PrJ+5orASIUGpe4GaKYzqM/uNbe3r9TQz9e5lByFJxjcUE6lErp1jopmKkapWopCkhpUha/fb/7n/7dD//wz3/9/ek3yaQFtNt20w0KS16uFXmtoW37y+sxFlBGG2fiPDqD+33f9bZEISI0jrX0QnirXduZ3c1NLO7p+bAm/i//19/5ePnP//f/9G/++KfNbrtMx2W+GE42AlppbftyHKUytzd3fd8czk9Pn3/NoRSi4POTvi6pfDk+G2v6fmuUylLOc9QKpOWnl0+n84tubFXq+XipYR26Vv/007KEkkFq/edPv5XqAUIO5e7+Xik1P03//NefPn9+CQTSGqmla3TjLJJRaCtSCahVrczI9P5m/8cffyQuSKSF1gKbViupcixCGhQixmSMSatXEgGYMtWWd/sBtOpnK6WMKTy/fEkl/fWXn8bLfHe7+8//8d9u+u5/+d/+j18eXypJlMIZ+eP3P37zzUenpFW26TqYrjCtKBUKRcCoOdckBGsjK5HQKEGqChTIGpNzolpSirbRzOrzy8vn5yNIfP/ug7Huer1OIYbT6IMXQjJSiaSkaZr24e6+MWa+TrlkLmSUttoRVebSNISgKuBaorLy4d3OteZ0OtdKpBhYQsVSCbXQVuWSfEgCBIJkAGtNzjX4EEKKKadMzFCAAufpch5q9SGfT1clKCdfCrFq11QyJ210jGG/G95+vPv47u3Ht+8FMTLtdjtjzfl8macxl1xSajsd4ppzWcOqtXbOEPbOmqZxcU2V6xiWdV6Zqra2FE4pxhRTTrZtSwafou7A+/UyrUxo+lZJJWyNPguQQohMNcbS99uyxsvrMeWwvx2EECGk+5u7j++W43lcUibi4+F4f3OTb0Kl7FrVD71EmVNsyd3yfg3ry/OTX6677a7UdDwvxovjNF3HqaLU2hopY8yfnx4FiRiCazdKm9X7b968u7+/3wwbhZK5llxKLW3TKdfevH1z9+Z9XmMoKeW5bZTqbdvthJSqMWtJvkZEbLQ1RqAA5hrWFVEYbazqsHFAyeltY7tKp/M1TmsupI6nedRRaVtrlQpRi8M4IxJRLTkJENbapu0BMcZUj5cqP5+XVCtdz6NflnGcSMLq12meUKGSioGUFAqBqEol7u62Dw/3++3t7c2tFGoe54jS+znG1G+2Zp4Ox+O6RgCmHEWtgzNGQd+pttcxJylE01qrBCJeT2dj5NdyLbHwawAQPsS//o+fp2lkrM7hw8Pu+9u7j2/3m0FByqr4y5fPv7yev/kPf/r4p7/ZaDGeD0ImY21roZHl4ab98OG2NVrkuC4zRa+M9stlwaKVaHqHyM2oOmdSCPN11s52mw6A1tWDwDXENa9aSsFccm2bVisrJKSUpphKzpIFSKDKpRRbakOcMwmfm6ZVKLkSV8i5MjLKWolyplyET1AqASlEJKaUq1AkFGoUMSQAVhKlEsA5pgsKIVAqIRWi06pWACANAmT1kgUzUQkhSakqUWRioYrUSakAwFYvVKbDSyb926fX83Tu+s4qLBBkg7VrGMbEpBBzjDmXvu2lUPM0p3wiEMfrOC/LVw3GV2EFCpBSSCG+DvURsVaOOUolJSFxAqW41lyzappaACtDiUApxfH5+XcNYms3TDVED467273T++Mv06a3e21LWtbxcr+91ZXf7ba/PT6FdTZNk4IHgJh8rRVRG918NZSVXCoDYuWaK1UE8IGwkoCGUAQf58WnSlSp1FKISbAvWailllKpEJkYKaeyrIsdA0MFUba79nSdQqnWKKMVIzWu0Rpzmpy179/uyu0GKq5LGCdqCtw83DdO+xTGOQAILaTWIucS/BpjsOwYgWsSWuVcmKnkXBlKKulrZCS/gsAFCiNQVqDKEGKOMcYI6xjzTa21phBjWFNancTNdvPxm7dLTZd1eXkycfXCwRrTHLmkrL55b7kKHxKwAWGI+XKJeGtKzsGv88q/fbq+qrjfOqeGWGRIJcQyR3o+nUlIYezu/i3a9jiujd38zZ/+2HX299/+gs+VGaw1Q99QLUS5MsUYCqeSmaoUWjsEYqYKDBURkFALhYA5pJIicLVKOa2ReH+72fQupxBidNZYY6nU6EOuWCoLBClkKXy5TEq63bZVQopamEhAjutyWZfJL9GnRvXDph36XsocgndGAaFBRUlHi7d3w27f3t1trMYpxr7fNNYqrRjxdLn4yd/d3jCLpumMbvbbDVJ+Xc+LnzSJwUk3tBzhel3Gy6XtemtU64TtbCj86Tn99vTl+fNpt+tuPz8FpvPhMUzX3qqh75WWsnOJ1Ga7zZl3290wdKd8iOSlkQgqVDgvS0Gj+u3z6/Pj4WSEBABE3g6OKRcK0+V0+PU6hpIImCvXSlWAkNNlBkTtNGJtnbDanMazcc15mj+/HC9+UaZtXYvARJBjFQJBqbQGJsUAJSUjYDs07x5uS4mQqbGOuQx9S0y1VETpXLd6D4zFKkQWDM7apm0KkQ9ZKZBCIQ67zWZ/e5NjPLSHUsL5+Prv/90fWavwv/5/Pj3PteDbu+G77z7WnM7Xxeq2aVoXYzSJALFWrQRxCaVKRCLBzNO0CFTIQkjQWre9iTmyICakLKiqq09KK585ZH+6XHPJOZd5mnPK8K8/EEwFc4VWiGHonHOU6zotbdMqhQzFGiLEaV1Gv6Lr2rZlJZcamblWjr5Q4RDL5Feh0DZKKa1AcmGqRSiZKBaq4uvbtjXGmUpUSi65pJJJYKA4v55rrt1mAKK15AKUsfSt+/HHH//w7Xfv7u/2m+10vr48fVmmqWQzTRcm8Muy2W2lEMuyxpzbjWXCaV1QiTXGQpR8mOfZtjrmXGtlH01jEQUxCSGlFAIFKlqW6Xg8+0xKWykME0BJklkLI1EzSNf2KebL+Xg5H3NKucbLNJZUXdMZrduuOU+zsGoa/eenZ8nSCGmMBi1KKjGE8ToKg3Pw07qOlzExd64hIFx4nJcQE6EgFNLatmlao1rXMNdpXM6n03a72Q2DNSasixZSKlmpEuTK1TZWSwzRx3WlkhL5UrNWqiIYY0sJxIm5MmDb9W1jEQEF56aJMU+Hy5+v/zTPS62wTnPbtp8/f5pOpxqi0UZoTcQChTQSJcSSci0oJIFICQQySlQVJAILc1n88uunx+cXruxDSjFJidJg9FEACObGmq97LsmMwu22w9uHu7s3t4LleD2XVLhQY22lOns/l1xKeX59JRBCI9Rysx12Q6eN4sJG8Dpd27aJUEItIfh1nplqzWStRdCL98z5eDgD8/5mY6xTS9q+ufnDh7edk8+fPg/dcP+w//nz43UZ019+klpSqnG8GKdqhes8LdE/v772+25lzus6ncfzeYzMUeLpdNZS3N7u1pSn8xiWFQnbtnVtKyXUylJpZXQuJXgvGDQIhRIa0bQtahNrOV+nlJIAoa0lBgZRCq5TVrIScbDVKJNiKES1EMO/WvUAkEikWoRAAEHMBCyU5EprTEoUAEAGKSUTfG3JKIWmcY0VCjMwImAu4KwySsuqWtXqrul9uqyziJxLrqW6trv78GFo+8Dkx/NxnA7n5XKdWMoiFKd8PJ6GXXOzv9PK+Dk6rdIauqGtOSktdGOFUiV9DZeQgKUAAASAXAowMxEwE4OPialWyqqItrVSSKkgc11Wn4KXQjvjjFG7/ebh4WEYbqVQKZXL9bz4dffQ32ije/3N/ds/7D9sbPv3//W/qQz/07//D8KoP//0l0/lsxKylpIgAiIz5JxDjMFHY5xWxjqrgJipUCZm99W4SRiXLKTIqVJhJSUIBUKmCmOiVEKOExArrWLhQsgoQMjC4H0yFpVsuMh59OcUlcCbm12jXVyW8zJZbbabrXNt07atcyml7Tbtd3sh6enpNccJWE3z6v0lhlxqFUpf5+BjEFJKoRBRIBKzUqoWUlI710QqKWaq5LRu2oEYmqahUjMRFCiVtHL7/X2TFmNcLXHoOq0tosQEtorbYZtc0/c9VZr89fn5Re03oiTaDcpIJ3Uzzcu+a1Nqr+MsFfQbK/ICEq9roU3dPNxCxOfXeF3FT89ZtVo1+FonwPlynbU4EqntMHTd4LqBQA37m9aqFEOkmEpKVIkFSkRpUCrrWomQaxJSApOyqtRamZQSjbNaNJttp7VynVHWAWqCnDPk7PM55ZC4AhMZI/umMUKlKXgfCbtu2Ow2Q2vdcl3SvDYS9dBbgUFna4fNdquUXlYfQswpGSGFElrpzmlf859//vnlcGaQhcQ4hZSrklGiYKJLDox2f2d0D8UvanAY146TNXxjSovzMoawQiWtGldSohypzkZvnEIrwcd1Xr3tu788/v6PP/9zDeP7m5vh/VujdaBYCiWfcozep/PxopWRqISS1jSEckrTkr1yWghdE5/GC2LREqyRrd32/f5P/+bby3VMP1M8zTmWlPA6ehSy3XZFi5yC94uVYmhvm36YfLwex2uMITO6lgFXHwWilBBSQuSSC1fQUiafU8rCCiYKwS/jqEFyLkRFIgPgui41gzJjyDHl0hhrpLJKg4EUUyFqnZtfL1mIt2/fK7U2xjrUdZuvE78eXrNQX4f0CSoxCa5WViwxzBfoamEGAOvakKLQkLNP18VZB4CeUkypREJWUqI1zighlKBaC1FYcvLVh1RKHac55yQVxxgQBVVKOREysECpMso1lcP5jLBprLi9uRFFGmv6zYYoT9PJB69RMMXWoDAq5fJ0OB2vp7Ztq2CfI1aMNc15qaH0omnQpYIaBQLP0xwhF8qAsNn1bdMBihQTNqaUEhO/nF9rWEXFu9uHbtMJZeq8Tj6s8+o2SmuFkr58efzy+LtffC2kg/SPQTu9390In8JaYwwxZUIuZU0lp1JSLiWXvu+hMnONK1lr0Kh1iTUXZZRUAqlm7501CmrIMda85uRnT9dxWVYs1ChBKWbi19Pl5TpK1azrqqRs+kEpmX1OISGLxuh9NzzBIcQCRr2MlxDKpm36ruPjYV1WKnX1HgRmqkWAF7jMi1oWAWiNrpVYKEQWUGv2bMWm3ztrX14fr5fLzd3djz/+8O7u3a5vJBMSl1J9LSWvMV+03eZ5vPg1rB6AwGLKBZBgnbQQ4zxprE5DYYphqTVpLYzRjIAM03jJ4RS8b5pmfILkTJlGkZdWsLaGiEoppZZaSGopKhkGJZBBucZVKlhT9MwEXwUIhDxPSwxRoFBSSwE1JsG1a0Br7bRSylUQ0ae2tW/fPry5u+lsg6hLqaQRiKTAeZmYMKY0TtM4TdJJQGGM+tMf/4C5+HXaNYOSQuRIXqQYUwohRuN0ybSuYUlLLexs0/WKqowlERT2pZf43d3+Dx/fbfs2LIsc7Psfvnk4Xcpf/vnv/uEf/vzLbxKkU2J3symFfEpz8HQ9vYwj1ky5GGsr8HX2jyFY4k3b9E+GiDPXy7QIwL5pY0zjFCpTRWSfco4pBK2kk1oSInwNiEUOqcSKIFAqHzMRKSkYpRASCIEoxcolxxRrJWAEgK9HPCCmSgBfpQwoBKZaoAAgK2RgQuB/fZunqhAarZxT1mktMYZYQiEhUyHAutGuaczN9lZIc77MIlcsFQQqlCgVWgtdp27uBIjpen09HQsQs5xfvag1+Sg0xjW11goSWmAzdM6qHOqaorNoXOOcKKBOk9eXSIWIIFMhFAAgQQJCqiSoUk1cixCKuSqljTEooORUqEhQDKQbpRptu7ZxXVrDy8vLeL0IhcrW8yMOu+ab3c0fPvyNZHX9dNq73R++/UOo+dPnF+3aXDDEyLUarbXSEr62yxEESI0IEEMUiCklBiaGUsgY49oWiKJPQKC1RCkrQixlCSUw15gRWOevPmhAFtq2TWuZitTAxCmUpnX9tt/sBqsVl5xylqil0NO4LnNwLjjbIiopaFpXH8Lnp+P5MqWKpXAIJeVcKzFzrUUooYSkSsyslJbKxlKISCnJIIQw0mCJkaXUbUOVCdmHsK6rlmqO62kaS4pS8Zv3d28/vv3y5Wm8jnENlBJW2nRtY/dd72IMmyBv94O6XKacgzGgMLY9A6RN30rZta3JJSkFrd1tBs3sN0NjrT1dp+t1Uaa/f//xeLmez9Php0eltdFOofxL+evt/X4NSQhNKAiZhQAl0gqFUAhlDWRGKb5W9kFJgaSMVrWSdqrUknKy1nSd5cpd36WYauFx8iPNOfoUM1dg0H6NjXP6K1uUK1ewRkmlpyV8/nIMubbWQoKc2Tq73fXa2Mvsm74bdn3OmTwIpwUTMYhWISoqeVn8K1y+vJ7WkEoh4CQVK91UxEJkjUmUD8djiCsWvr4+DhJve7HrbIsk40o5LlNF0222GwLkktZpcQb6TWeE7tv24b3pN/sK8cvLi6L88c3bzWZvZDnMpxhTKYZiXSf/D8///Ounp+RnqPD27RvX9iHGwjn5WiIbpW5utkKSkkIoKsSzXwXyfrd58/Yhs8ynGThvh0H+/3n60x05kixNEP3OIqKqZu5OMpbMrOqqQs9gZh5h3v8l7lxcoKdryarMyIgg6e5mpqoicpb7QzybBAIEEXC6q6qpnPOtS10uy6enJy18e3/N5l9+/GF72s6vb7f99da7amUR90EJEAtxUnqmJ5SVmZWFlsocvY/7+/t+u69ai+i5HzHsyw9fVAszZRKIVGTZao44z151OW973cqXn374h/qP+36Y26+//O2Xv/xVWSLdMbTI//zX//mv//HLfr8xMtPJ7bjf+Q+fP396MuAc+/v9MAcpR8R+7tbGaPby+ZO5RwQrl1KUKWE9TIJZ/PnpwrL89T//9vr6te1vQO737oiIkKrpnuFCxBpQPY/7199/+8tTrfIP+sPL437/dH15+rS4H8M6yIidVy2XhYg4icD32/3sR2qOnsfZEGDhdVHiwkTeG0NkW9MRgm25bGH6fh+tDx+Z2Uf35r3ZsGjD7DxXraIUZr1Z2x/jbNn9cbu/v77tn1/8aI/3m5mXspQiy7IuSxnDhtnX1+/mzoJ6rWl+3/csQOLx2Nd1uayXInJ/v/c2Ltdl3ZbZMGWj16UULiJEUJaXy3mO396+vj8isxTVKuu2vr/t/djv7/e//e23nz5/vjxf6+WqrKWKu5+tMTMK//zzT9e//eX1b1/rdvFhr+frud+/vb0GfHSjJBbyCC06hnv6LI5V1adtK0inDHPiNBvdxrfbm75T62PZ1rpUdzM7H7tXikpStMrLpbzqeZzP16enbWXkufc2Du9myEhHilZp/dz3x2hnEO3WRFVUVJXBSykEEKzWuKz0fOFt4Ry8X9RR67q1czz2I3KAMsKIqWjVUsz8ab106+dxUFJ3K7VULbVWHz6rt2uVTFeRp8tlq6W3ET2f6hpc+tHDw46eI9fnTbhS1adPz5m57weVur44KTUzzxTQeZ5Pn18+vTx/rqXtt3Vdl8vzAEdyMhOvZdHMrEVAdN8fxLE9LWu9XLbL2c/H7ZG9P325/vTp8x8+//h0WaAwkX2MvZ+32+1+f3t/HMK81vLn3/8WHnVbSKiP9vXtG5lR0qcfPpHKvfX2/l3a+OHpSu7ruhDTsNDLhRntPM5zB1GPkCKcWVWUOM0CPFrzZQ2C9ZPCEpnkQiAkU7iPZiZSCLDejCw5SYRp1pqGW0QECQmQyISRiFAiMQXuRMxMYdH6sdVlW7cvn7d10aUKgSXPt9tplCmSId7jGOOop0haN0niIBgESd3vr2+llq+vr++P/TjbfrYRI8LdQ4KWqsd9/M//99+fn7Yvn5+r0HWVRXi7XN7fbucYP/wsn3/6w9FHRRaKFk7J6TltlYRgZve43+6XrV6vq6qAsvf2049fnl9+vr2+P+4PhDCx/x0v6vv+/bfXb19fhSGl3u7v+/1tUfnp82d8xZdPX66Xp0j+63/98np///333zzTMrsZhxOlMLEqgTyREW201no7DxXNdBIewwcsQaItPFob5p4NwaO5dbcxhhIBKUQU4RECQgYQLFSqjn5+/fVbKfLpy/NSqo1QobYfZuPT85N8vljv98d99G9aqhmOdjyO8/7Yb++7e4aUTHKP+f7PTHAWkVoUoMisi9Za3976eT5UmcEkmhmJsNEfj7cckR7D3Mw8/f14++W3X8LHWsvLty8//vh5q1f5oSThGOf393cPG9Z+++VVGC/Xl8+fXvToZQx9u53mQb9+B9qy3F+eP2VQ308hjCKPo2npw/p2nO9fb8ftBC8jl3Y/j96+fbuH48cfflyX9a9/+fbb9/cxjKT6OR63nfowH+McDmQwhDGcEkwY51GWhdNntQelhHu6g0Kkuvn9fT9bkyIiZGbn2Rhg4t77vbXtsrGq2chwCioqJHgcx6P170erRTWkksbr4b98tzQjLGd/30/v5m5LLZYZ5oEe0W5v73VbfvyRv9/6mVo+bYLexzjf9u7haZ8uz4Y3Tvz6PVrrNf2nRf+PP/348+dFRPPsb/v57XsvTx6LdHcORtgxHpfXGs3/+Y9/+Kd/firr9fb47o89bF8uSwhubT+PVpdrLdvn56fz4bSt//AP/5gjv//2LaO01h6P17S+6CX9pP64XuXTH350kvtjD/d7y//n//m3QH997N9+ez/upxBdS0VYHkOKXtdLiJ4cj2N/HO37220/Wu9uBUzpZqqsVcIiZkGDI4Bgj6RwIAKBy3oRYtu7ewDcz7G/H+c4tVSPUCVdVmX59v4mpFpKa30fR4qoUEbcznsbZ4zIUkiIWd73xy+//v7nv/zlfowqFyO83fb/8T/+vfD46YcXVu7Gx3nuzcsi9/14uz2G9cvmKKpSQgiC04/xODNCGLWKCmuBufd+OEYplOZFpYIhmsw9w5mSmUWZhSJv99d///cB38P/offHbf0t3NtxbGtlglDWIe+H9YY//nD56Yfntt/3A+PY3+7t/fGoKtu2fHq+Vi37+dj3Q7mQzCg7IdH7oz325mMMD1Fy99bNTstJE7BcqtA4Pn96fn7+8revv7/9/vWwTpSPb+/lf6v/9C9/+vbr779//S0imEUY/TxDfNu2c28YvZ1t2ZZlWczNEE+fn/7wx59fLp/Sop1HrcXdezOzkYCqPj1vy7oK6XnafuxPL8/XpyH0i/UQ1fW6ENPz9WVdttdXJqiC7m+3bSFPWVeOkSBK4iSqdfvppz/+8ec/fX99Z4oAQDncW1hSIsEkS2Fxch/WjSgI0FIXFTCEhYXMnB0EnH308V0IRZS1/Pr929v77ffPv75c6udtVRHVen16uj9uzBhur9+/Udr32+/DzNPNzcZow8u6juFAXp4uzW2MAdAs/UamsErm4W0RWmdm0zl636vSSCLksi7LWvuwx35YBBeppWZA2C7rusTCQVxUWpOiRVRZy6qJPI5jWKaNL5+f/tuf/vjTlx8psj3OTBqRbq23Fj5sjO+/v51H249WLxupoPCkewj0+u3WjlGI6+VyXS9C/Id/+DnG87dfv++Pfe+DZHGRkQ4ya23WQ/Y+aU5ctoDT8Tju3x+frss//emf/+Wf/rcff/rjeezOKy1bL3z5/LQsNTPBTsIQqkuJCJLsvWUYZTxdLwD6OGgwF7HT2ujjzS9raWd6t3VbOIwAlbysC5N4Ylkrwt2sCDMxEltdL5flHGNb6qeny9FbeABEqixEpMwkJEQwQ0YQF63lg88KdwlEgAGQhydSmCtxeMyzm0jWbYWn8vKHn3/69PL04w9PizARmOWxn9vv74/j4FrWpT4eX++3mxme1k/C9ecf/wApow/Y+GFdS2txe+3vr7//+Ze3338f+54MFoC8lrKVmuHvv9/P1xOdrstC1xorEQWyUjC5+G7n10f7vo/HOYxUK5MQOMMsPRGszCIRHFFSdFhvYzzO4/ny9LQ+Mcp+tLO3Y28X5/vrW1JT+L/880/Xp+tp/S+//vL717eFK+2g1/+4fXlvNPb98a//+e+v+7dv++v9/Tu0rHVhAhLu85IqE+DhnhEeicgUFmWuKu6j7Q/vnZg9nYjcwyOYsAhngB0ihWhuxkFMtaq7394eRGCoeUTS16+n2w30OwPrUrd1vd3e/uMvr+4OpsftYFFW7db2Rz96o6SllstyEQYQ8EAEgUpRXSqLtGH7ecQYfQQlmMS7WXqpUFViQaYfBzzdPCJZKGBn9HKtP37+g7X+l19++f7t+/PTVpfCqrUsLNKsn+d5Pu5/+PHHT58+Q1lfXv6pH3nQ7hnLpZSaQBfi7MlLdfdIPg5fqXx/PW96Dlct6/fvt8Me3XJ421Yyw7DDxzmGLWfd1rWAk1EyYj/Nhs4kqHClrIVXQQUujAUBpQijTPLMcdrZzuxWVaBt7wmU1JHRu0USQJnW2mAKCSqusGHWVct1uSAzFSMzej/7oOQH2D3O1qQKMY5zf7zf4LmWNYvDva5yf7/3MY7zwPlgUgeFH+IB7o/9zS1ZFRzueru9w3OpdaQz+PX9eH/Znp+W+0mtxdvdDoNnhvXmvqCkWbs/1kXqctm2p9P9uL9WiX/5b384Hjfr/X2/uR+dsNW6Lk9P5/EzLS+ffv6H//ZPTPz6+/fb7f3Xb//F8C9Pl6Ve4rq+rIrC9fKsy/Ly/NnHyP3+eJyqaWdQ8vPTszLMA6zGzoxzPwhZhN/f3iy8uy0lQAQJEUapVVchmA+iUElSFkjRYgPDRiFeBTke5NaP/XzcKZERo/WjHeu6aFFdxEWZrqXKcX+0cYjSspSvv/81w8P98nLdLqVwPfc9CZfr5f247Y/703XxgFwWG1xhmW0/b99fey3FqdR1+e319bf//Hq77aS11tJa//3r19Z7qct2WTIS7rXosshqJc1///p70e0828vzUuvn+77XQlWr1G0EzvboNqYccalrgTBoUYlor99/Px7f3YyVex/PT5uSMPD0/vjbX7+fZ4OP/fa27+/397dm+fDx/rgpcVm+EOd+7l9fv+33naHrfStlXeo63h9vrzfzWNaLMIiTRIfzuq6LlC+fvjxftutlUdhPP//8z//y3//yy29/+/X38zjrsizrep7jL3/57Xg8LPM4zhRYhLu9vHz6/PI0zHrvrBThIK1rGccZjucfPpn5b19/u73dnq9X1fK+3xEYYyxr/bQ+t3b07u2M5o5lOc2X7frl0+frp0uwW8SnHz9vy3r99eLmtdCxP46HKdHlemWImfcxwPRso9Tl5fn5p89fXt/fCKkqUB4OR6qUUgSRFmDCUiSTA1GZldOOR4oIjMzMg7VslxcW5BhhY4zW3ffHefZ2XfR1LSpMUK31/Tga8H6//7//8WfAmh8vz9fzbI/jEW4J9r15YHu6RCTAEQRCxHzv43E0WERGb9a+230/qhTLOMboI8b9IBZmGe7n2ZKy0DLNJgm0PiLDkIWgoukR7OYz0hys3M6+qEpd1sv16eXLquVR3vvow+3T5+fHjepadKv7Pv7zL7+cvclSPRFCpHS/P3J4O/Ywe365/uN/+9OqS2v9X//tvwrT+/f3r99eTx+nhZfS3RlO4QnUWrsNd0/iKcCXoBhQ4ftpf/n97fZor7dXF7p8erp8u//Hv//FDJfLNQXhqYXXbWWGhxOF91zK8vMPPybl/biP7gAuSxmRQrxdtnE2Fq5LRWRr57YswjKN7O5+nDsxFdVaKoEzct8fCTxftnVdj/N8HLvZ0KLEyiz4O5yjRCqSOSET4cKeYR+2p0SmO8ycAS11SNCgqtBSRMv103VbLz/++OOPXz6ti0oiQB7QUn/64+VT732MCLvf+BgReUasyPLy+afry7MPy3Z8ed7Ox/12/37c922Rz89XLdpsaGVm2pallplYMmB4etq2VbatKFMYRwBBdsbuhwZ9ur7885/QLI+ztzHA7J4RGJ4RWVWe6rKVwqRBMdL6236PVyb2SOv93E/rw8Dff/ttD/30dKkva+/Hr9++/eW3v7a9/+HzH8tlW16W08734/Z9f9t9P7OREAuxgIkzkpQtApFMySAiJiaQNIlSRMBLLUstrWcMowwlFlUzB1jAHxRkEoGYOWfjfVUhpgSDkJmZ4U4ggGxYRkYEATH6fj+RSBCIuEo/x7ISOTxnjUlRKU/r5eXpQuGjdYgVoXWpS11F1dz3s1dhsxzNKcBaLVmlLOuS4RNZW2pBoo0xzJsNz1yrXq/LZVveW4uM7v2xx+0IsCTC07fLZj5y17PF2/tZtkW/f3XvQSmAoBQIx2AIbeumF+7tjHOsS1ku6tHOcYTw8zOtG5sBzMNtP8/92BN8PPp5HM9P66L1eDdclueXJ4qx7/dM+MIdMECYF6HKutVCiREJQmYw50sph0bARUxUfBKSwn1050IsmQACa2HCsixE6J3NpJR6KdXMT6ojUoom87BIlUiMykyUHqK81pqWVaoKc9XlWvezoVb6fCVGLYLMaxaC1kX3GgStyyqlrFSO/THO8/n56fry/PVvv9fk9fOPUa/fjvE40GPR61J+eOZtoTYgBVaHWyC+vr3Ko4nUzHx5XtZCgyM8HseeMBTpFB791ve3dvhZH38+zQdZHLf799ev53F6jWGDU4iSibLHsBaR4zijNdtWUa3b9Xm9gDS9W++EEiWdgkDF0/Yz4ZH4pDWJISUJYfPBLgS0YweMmJhYdSlaPdx9rIV+elnyvMOtinWzUspl24hy2erL5+d13fbj6H2Mfq9Cnc28EQmiEMSHrWu9LszQHjbe9uM8Euei+Pnz09Pz9s//VKQUG6awrYqQH+1+u7slzOR+b19///UYQ7TWsmRyH/1+7ElxvVxUdCla19K+H6vWS1ltWIKq6raWy3p5Wlgo67Il1f0cCy9BVUTSY6mlsNRSVGipxcf+/Xa+v90+/fB5UDzGvq2rCr/t+9fb6/XH5yz573/+t2b73hqotMxkMvjj3PEt7vv+9durjSy01YNUbV3chg1L1YVlkyoOt+5BJLXU9fn68tOn52spbP3219+/fn177Meo29M//PeL9bw3+7f/+i/OPI593x/Mst6rR+z7Y7tsn768eDPr3d2ALKUm8vHY6du31/vt2Pf77dHbuNw3Jh5my7JkeL7Ht7fvHp6QBEP1t/fv/exOeP78rKscR8vE6MbR1rqk+P64u4/Wz36c2/UiuvhwM+vm9bcqTOe5V+Uvz09EACFEzHLYAEELMziKEqjI1NQPZICDMshyYyW1zkxF61qrltPvliMiCaxLCS23Mc7eamE3BFGwDlTzsPcbIrhyi7E/zgCJFCZC4hx2vD/GyBlF0VvYSMcE/iQ9Ae0e0Yze3pVYVIg4E+aeOedjbj4c2TPLiIhBQO8tkWbmXjl4NgyKqhR19wyUbXXz3uPX319fX0/vR9ggIJnP1pD52+v3W2uR5ebniNZeb+6RKkAe56lcMm0t8vTp+U9/+hPMv39/+/bat2UdmXfw97293Y9UHX0UpsKURFJGEALRjpbuwizQZVv3347W2//n//v/S7Pg1MsSohZ+3PfHceq1jLOz5NTpMgsRFVGpWGoBByKLKJRy2EVkVK2lLMLzxDMzUGRkmJcqSB/D9/0425kRQ2MXAxMsxujLWi7rKlKqahOZmuUPRbNHumW6kMRIMHk6kQEMwCOZggiUyRlFWJRYmJmFGSAtxQw+stP42y+/vL5+hUMnQpliNhBjWwozHef5eH9wliR53x8eeE4PQiYk7dHbn3/55f3+ziqX6/MPX35YWt/PgwupsDAnFJ7Mmmzt2M/dboUoySN7Zj/773/7ti5LeBOiP/zwaUS+3e7HKYlgKoEYlsNjqbIty7YWJMzsWrZPdX3W0sc4Hzs8V5KlylaquIXZ7a2bn7vb375/fz9PZu3pp7cjDgz79fvr9/aOK7c9gsqXH38cNjiyHScyq+qwoGRhEWVWAnJRysiqerlcmJkB8lSVuhRkukUmE4OJASRSRSdvjszwECLRIoWJOSJczCwYrFVUBIQwZ8DdmYhFtagn5CpaNSLb6E/rlYUkZV3quhZENOJML8RFVFLYsZByoZfLZVg+7odEbLLqS6laGdSOI5S3rV4v2zBv3Sxx2x9HP5cqre+//dZaa1WXWlmUkRkZkChgQnof1uxtPNL5Shf6v//lZyJZlYUZ4sxRKotoXaqyUjrMllprLZAcMBLedFm4rHVZLk9cS7fz0W6k4i00qYj8+tff//aX92T99MOnsHO/34lIi4wUAzHFIlFVK6kPHx5lXdwtvamKZxKjjc5a63ohUFqYG4iQcAtQKktRLaKEjMzjPIpIWvbew4JZSl2DcZxnlsIsfRh7wEOZhamUKqKs7OFc2DIhGelcaalURJS16sVGe7S7atG6BRgj98d9HO16ufzwp59/+/3rcTu+fP6ySAXn7f7WY1xertefnlzpfHQBScLaYMm//u03Inn58rkU/fK8bqI2evhYlxIxDGPbnpfl+X/8z3//1//8W63PItpaI3MK6uPo1kYPAoqUqrXWNaQEKMHhbse9VsqMnuRFSq0cHucQLSjkhESSg4ZbP5iwbRdWkWUZ8SHUUC6E9HYSz9S4qQtXqRXhlyqXreSw8zhFNIkyKRwRXraybEsyjW7DOrEUUqZINhuWCS21aCmlquhxHMdxgGi7bGc790c/I1Dq85cXG+PYd6VIj26Hp7dmZanhApRmdj+OfW+juTtYiVWkME1gPKIUbb0VliJ67A1M1+u6lkqOiL6ILOXSLN7vR5JJFWYhprqoJCEiM2opTBTh7RwvP34ZsDEGklQYLu+34+3+/sOn65entVvrw1NkRPRwQRQmgFsf+96ZauWqU9PGGsi9nW10Ft0uC5h7G+FOyYVLlSLIDHc7MtM8CZJSdKnmab17WKbnx0GR7rasKxEiU6tuy6qUx35GRim11HK2McbYtrW1sy5Vl3LuzUcIMxOrMjOnW++tlCplccLRBiIKa9Fqbsdo4BRRBa1rVabWejfjkufj5FLcyGwoqyWxgDMK09N2WTYtqiDpnsO9j9PM3B3JJCKkLErTyO5j9F6LXJdVRc6znyN268u6qpb2uPUxRFWkkHAymFKy+XCCjASVhUVoorzH5Fir905KtWCrlVmOw47eLCPDiy7CSiJjmKoERXgmMhDhjgwJLqK1Vq1iZqMbq5ZSuvWjHQFUVSQACDFovtyZwa315NBSpEhGEjEY+22/XLZFxS36eXJkWWUkRkQpoiURorqZ+/39PhkcXYoN2x/7sqzLWi51+ad//NOXTy/H7f716/cWrqpMsu/7++N+P86elpazOD5ViOAZHpbuYTN8UVlWeC7MC2P0k4XKtnnKeQ7hEIUz+tmqMBFIRESVS2RmhlAupSBQqyaoncMiQLktpTD3YaMHRD2hwjw7DNIj4jh7pAsxswYyCZSZ4euiRTQcNswiCDMXh4IFkeGeGZTIzKQkZiIQK6bhi6BEnB9976o0kYwEPNMiMyUS5qP1rgUUrKyckszEmdbXqkspvXWn5KWu2/p4nK+v93Wpdb1GUqG8rhJux/lQkbVeM2hYHP1wiloLgSLY3SKCPJXTemclYU4i5hqZAmIkEMtar09rBu3tcHcRJuFM7p4eIQxJKsrKgFlleXnahPi2P45uWhcqxSMLJFrTYCEmoSPj/Tw60txr2T5JfVkua5Xbcf52f2sYEAbL09PlPE/yjD6Ge12KRc4DkZkAjD6YKSKen5+WZbFhvfVEIINJhFCWkonMiEyPJCZlhUfvnQhVRFXARMzCAiLPjAxOYiYtoqIZCTcEpsqXmUGkS43IMczcuKgop2PeWQQA4sIiIkwc2fdmNjICTMP9OM5uRqVILUhKd+8NyLWWdVvD0fqQdXm/3Y7W/vCHH//4889kPMxqqZdtKVUyU0qRRX799ffH495aiwFmVqmyQr++NQILA0nhI9ClKpjATJjyehNKIWYVUiLimthIa611vWhRqDmbA4z404+fP9UXh367Hbdm9f5QjnRj0UR2J2cpQqvkolJJcna/n9182OhgcoCILRNsIoPmdhM+/5MZxAywihRhynRPi0GZSAjYLRatpSQk+zCjniARLkkxOgMMUrV5F/voUlRqGTlujxvV+Kd//HFb9eynROttND9JJPA4e7i7m0vHt9vj1QcVOcL3t1cfvl2W1tvezjocb7dmbVnWQsgxiuox7PvtCPDSc9mq/u31WpW8a2Ir9OV5ZcmV8+nzc2/+7fsDGFq0jyakz5dPzqUTqIDSkngflgV92HEamAooI/Z7t2Ed2YRYdcmkEaUuRt7dk0ggCzjN3P1+wilTaE77nAQIU3I4EElgYqKmRVk0hlUhFagQMR3HSIKoROR5jhnxzqplWU7rYSEZi2ikNxvDu2pZygowgT3aGP35ei1raac/9rOnb09P347jfr/d3+5LrdtlO89mGbos7W0fZ19WfbpcIzUwgjw1qXBRXbYqIvf7ft9PdyplicjjsLl3uMt9zF/taV0/P2334/F9vwOpu2otSamnUGD0Dk4mEpFAEMnj61tQ9H6GeyEBigVoKffWLHs7j2HpgQAgtNWaqiCKLFolBg3PZqcQc8mkdDtHP4mFaBAXN2emCBthProgLeO0M4DwFCahKn0AGRLDhrlnZilqZiM6R1m22h9Hs2bhRDTcuxm7Sxs2TFnOt5t5u+RWMs5xjuGqJT3RsKwlfPTeLkSc3s1aHyrKuqhSwoVCWGyMngHKRLbej7OLcq1ijMEYAIQyiIQKizLqJsxgYlZt1vb7I9NAyczu6eY9DMQgpId5mGUyXblsl0244mjHeVg71ypyWcrQbV2Xsg7rrbc+RrpRpnkGyO0UkVI10gguzMzBRTxcSIQp3AlZtHg3AiGBTHhQZph7OAmVqmEYMZhIiRkIhCc5whGZzqHhhBAiAJwZsz+TQCDyiMggoZlBnBGZ6RYkTCpnG2nOJLWuALrZyPRSuptkSOaSHcTGkpnWThkDyOEdI9bLcxvt7X57/f69H633kYx6WZ4/fVrrZbe2uFcuHMyEAI3MBHzEIiVZUyTDQRzu67IUVc4g8mZedFnrCjrdRqqPPtbLVZkoMVWUTuzICOx9NDNkrJkc3Ee00RMUQU+rgsTCmw2LXFRr0RkbMzI7CCxlFlf3LsxVq5CG+Wk23M2CSYPSyZ0oA//LIs6ZiaA56AhPi51HzNCXylQImekjpBIzItC6dXOClFqIUKooJYkIC5J6H+GpDLMIO8YYUBRBu0dmesatnRXCJIMp4MxJsrRht/0tQaRs3oVEnTIRyQEEwJwjHZV7JDy5yFLFxhjDEU4c1n08OidHRiB6z5mB4Exg9BZhJuBtrauyM+/DrfdbH2cf0U1rrUtdiPZH48Cl1uv1GmNEard+jt4tko/7cafw4X6E06JpsV3qeZ6jtxwxD8i9dVl0PvdIiYxEgogY+35E5hhjNnRmeKQxq/HEe8wpksAi6o50dxOAmcLgSBCENYmSiBicyWAbySOYgIiMhAWBQZwMnC0jzX1+alglIxEhCSFOZpoGv0xEeDNESCEAfVikD4rRez/ndyQI99Mex7mejVmToIwULGttvd/ut00vrffb4/F2Z5IYESLiiNfvbwgqa/Uxn7xm+9CnsqYDCiaywcFLD7MIZlGpnjGGA0HhFj0ohESMNKHCoNdkJBuQhiAevz7VP/7p5/DqVW/76K8PZRNOYg6EJWUwEa8sW5XKKghGjtu9+Qjw8LCY1iwhZSSlpZAMG+D0CCLGTBhnIQJZRCLIFFSFOcm7EbEUJaEIWMZwI4YmaUKYPFxIZ7oACalK64MFwWTn8Yd/+PHLp+f/+Lf//PbLO0F0LcnZhnmSZRYpG5bH4/Gtnz/++GO9bmb529e7Hu3503WIfnt7D8reB9N9IRFCejrRYaOH5+ujLvXz0/bdXMxojJdLLcw/fHoqvLz99joetpTt6FHqsmwrDJftErS8/+03ZqLI0U+zvB0+QN3dMzlTwsKtLguVMtyst05RIB5xtNa7JYtAHknkgwlxnpbuFGCuWoR1qn/IjGdoaSarVFUicvM0o3QRiKo5uQcIyExQESWigCdZCnwMsw5LIkqKSAd15MFSfBDgWvB+3iI9UyJpxNiI9+M8HgcFasPtEeYpRe3R23Ct1I7+djuQSmAVYaHevY+zmZVSzjbMKCPO0wgpJCyUFEFhlmcLChW9PL18aR7j/S1dkplCExFJiQyImc1edFYiwGHunmBQ9mHCpKV6eB/jcRjSiSSCAokMTqcoiRxmCYTBhmXGZa26lMy8Xtanp4sUZUZv7lWIKTzSYi1FwUZ55cvjPD2TwaxSVJlg7tMdGTFLA2QewyIiREGJpDYG11KKmLl5aFVNsgSLTgK+ritrZCYJuY1AsPCnz58qq6i0PooWKbqWVYsyZ+8jI5g5kSx8u+8WVtdinu/3s6x1vT4v2wVux+OwZimyvGxBMZrfxslFk5gE7bBho40RQRCOAIhExB1Aergwj+Ejopt7eGRY+G2PMAc4mTwybXi0RUV5IebH0dNjuBGynxHu5slwNmzLIszrolKotTMcwlxERBSAe7gHEX2ADXPoTyqs7mGZlBaH8ShJOeOCbYRP3QPNGc4ogUgSdjOzAMA8q9NEVdrZzZMBFmUiqVqYfYzRRwJERJRAihRNVpGzhbA43MwjQpVLVWT00UYbx/6IEYWLiJ528MFf31/n87rWCpCIMFGASySEzFSYMwIIBCJnjYssS0XYhbdkspHWhy6yrDrsrM81k5QVgGpGJqvkcLeRKUnCxOEfEhASIREqZblc092T3DwjzU2CmVVVwgdG72buJCIICIsWLaKYxJzZiRYELYWhCBuW4IwgELGAoUzwyDY80hIBIhUiIVYlgpkFXPARNU0KFQnH2Tsiy6JaeKlrRJo7kgrxWnSpJcyXzO2yJuPt7f12f5RaRQSUkaN17yOWwrOSzNwNKFLLrKjN9G4gWKanIyLG8DBiFZKIOPowD5hF5rYKMWsyT1LVbJblERjMSDTr1k21cEZaHH1cL1tG7n3srTkRWlv6Uks9jl2Cz9FvvY8ME9rHcba21CpFBWFnB3C6CScz2RgRdh6nJEWERXBRRFAkJZgdgLmzMzII1qZcvWh6EoEI/TzQOlG4OYoQExMJc3pkhEQkZSTO1jBNw6IJ8nTKICICmJgmfhSJnMcEs3CCMt0jIzMQUsQ9VVg+BNCZDBClO2VKUhGtVVlECkfGRzeFeQbXpQJI92z+aL1okSLRWvfBROfoj/NcdGln6zaIgoWGRySGeSCFF36fgvpwC+LQH9clA7KpMo/uzSyQlpGZQhKILATEJPj7GMJKypU5KM/eB2JYhqVuWjSTQQqPEeTJ5JYr63IhFSaOCKRTkiikUlZJFS7C+97Nh0qtRbuFeTYLSh6W7lmrZCELdwops2hXckJWs1w+cF1q2dZ+no84EwKRiATArBD1dOa5QYTH/CNtyuPozKOf56yG2Z433V5o/dLweg8jYJU10yy5rELEKpVlPfeHRLhkcn5/v70fR3E9wyz7/dg9MXowVKmQW1EeYVLUwwnc7Pz9sRfmTXVhNsPt1ot05UNEAUYw4JmRztbsr29/3c/90QaxUMbwBKSuegwnQQZmpHU/hxpIo4cxURY6R9eBTGMqmdwsAKR5VXV3qSLCyeSemRGBUqRnL8I2DASyBEBBQICgopb9vj+YRJKZ0oet16syJ/Fo3Xys27qU1bm+j7uwlLIsaz2tmwVLdYQZiS77sPfHXWTZ1i2I7g+zAZF1vda0dEuAenMQL6VkRDuHuUkhhEccTMKiERk0ah0EjuQYOcZgBmCZYCICIuBETLSPPLo3g3cCw4ERMaUEPgykAGWGgzLZ+mjNRUS1JFG3QBj1CILZoAxVZVaaLAq8I6x1MCI+lIE2RqTVldvo3m3bFq1al5oZvTU3K6ICSgIhzYdTImUVtcxpV6LIRFIkRTIIxAARs48QQWuNVZDpH52RKcyJSMTUigqzsjAxAUoshT0zRuDvr6Jl1XQcrblnZHp3sxMHCOFmw/p2XYUpBwUFUe6PPTIjYUczhzD7aL2bh+2MslAp8jiP231PVqBYH0CAeaSMCIRHuLJkIjwJiPTW240Azf1xDvMWHkG9tWgeyZ6EhShdMrdFnq/PHqGlfX+/g8k8gyKTiDVnmGqE6ORbSFhpYQ/fVEQlMt0cSSQ8+hgOUaHMWso8f5nJbDBBOBPpIBLK/HBAijCBgucsRB/3mBLIIBYmUWUWZoM7M8w9CDq9j5SlUGSke5FaL8/RfSY6tmMvTHCICLMsaxm9ZQQli0hYRpJnEMED7TzRUYoyoQ93SxAzCwiZIKGICFFkMhMiGaSSYd1GgHKcjZnDsx/DvE/2n5yQ3Dw9pgx5nkAI90QOsBLXy0IIbyOniSjFPBizcjSHj9E6RjhSixAzIZFu5oyy1SJEDA+LKvL8crXh4+wRvjxdtJTjbDZ2j4gIEU0gMgMUQBA5MiMJQWDlVJEiFBKIDAYopSoHrNnZujkIMWCe9ey7I8doGRBQeAWISS6X5fn55WiN6EYJogwzUU4bvXUWF2KoeNhMeGqteyxjRqy4MYsh2+iqMsMRvFsVCqSFJzMjPVyDLsoBDI8AVBeR8DQA84XhAVKdaSNnop3n4xzrunAtmpmB1ppIENuAG3nr6eeezLIslojkfW9RYillWdfRjJXdw8PzPJelSNH0bL17hAojwUzukW6q0s1ovuoADk1Po3QLFgLgEeGdCR/FasRwCnYzK3UNgBkR1ATh4d1EHUmBiEwiykwhcgsGewZTAgQkfaxwGN0hHGkCN8+FSiXJzGHD0pNEiMhDiBe49SyVLksVBFvhhIAsEQEpxRkGD842Tk3t7qwcoPfWdSn9eCVCeAiFCIdngoe5VEUGM2xErQx4WGhvzRNryQTMjCyFCRYgEKEoiZRhJxOvy8VrsAoCyuzkeGRRjCjjHE/P67KMl4t+ebl+/b7v59FGspQfvzz/4z9+7u3M7L0bEqobk4zeovXtWq/btq71ZTytl8tyWY/W395u+2lns6YJlv1o80AgJVB6eHr6cBFlgZC4xbLyDz89tV0sTiN4jMj0BGdQspkbBlEKCxciYRh18wACnjQxI60yHS6RRevzUzvGcGGElMJSEtnNzA4uXJTHcaTnfnaLjO5mo4/9cTQWWZeLlpVSxnkaUOoqTEutvQ0gEJSRICrLGoSvb/u+t96DQe/vN6JkwrE/kBQGszyH8coeTu5LrUSSijSkg4VYibIC5MYiZSmCDFB6jLCBBHMSg5Ui0tLJQcJgiBYLb70ry7Zul21dqoqgcwcQkUpUFxXGsi5brX20+76rlE/XF5UYzYL1sZ8OsiCkMcu6LghkUq11uywBjwPDzm4eIJSCUvsYpJV1QakRA2bbdpHCYeaZyyrW3Y6RBCAzUkSJVYq6WWSCaHhGxszkUiECRwSzEjwiLUGACrFqAG5+exy/yrd930HiGW6jR4BVBo02mECCiPm1MU0NbDkskGTh82ZNIiWBkU4xFQ7JCCawSCKISJUz0zIjcj97RhASQuIxDB7jcZxt9HRSLkwyCo3eApHEHhlARCSSiYF0cyAThACxJMGHaRFkEpGZEzOJCCeJUGSGdxsUUFYtBUmt9T4sCZnhzYhIK6d7ULrn4/5gEo9MkvA5eiHJPWz3rspVy7ZtpVSVHGFunuFTxoyIJJq8dgRdLk+edG9jjGTmJM300UYwJ1CKEpQx/4EASIiCcKZJa7u1o/XIzGBBTqQoSYJFiaK7B025m0USEycVJnxgwEQEM2eizMg53BSMDGvhEY5Awj0IRB83ECqFCCIKD1IRERsCnvMhZr5UJszcM3kaLwgEqkUDSUnCkQ6ApBBo7sNSkoTZw5aliDATXZ9W99j3ffQmKRXUKUmQlNAsLDkEADMjkkmXiy7Lkplu3s/BDCKWEJa6rbXUYqP3YwzPMJ/l6AEnIMNZhEiZRZBKEMRHy5DyeZwZweD5hHfvbqmqS6lcJDNjFodaJoKYZt2EZYBqgpxieI/M40xKJ2D0D5EyC39gn5xb2TYVYRpoVWlblw8NbLd54dd1fX5+cUIKCwnRyJlCEon0IPKca0F6JpgzExTmoZIejgQITCwCFp4hfmHJJLVIO4+gLKDRxvCR8ATYYec49gbw87hIVe9O0G3bWmRvnTVrrUT8/LI9X6rHGL3XugyL2/0Al3Bv3lOIVWqCiMpSRmvJYORHITlPYianfzCSurm5M3MyIwkEYvLhCTAxC/fej7NjDu5VQ9mGdU8kqei6LgSwkA0Pye4uTECaBatEJkCqtdQF1CtRd7PoGahlKaWMNiJjDM+ETNkfOCLAWlfxcBuZASbmQkmEiSAltIqbTwt9LapFwrL3rqLrUpE5vQIosj8OquHIHEnMUqaUDMgEBxKSBIJ8zOhJwcTEIBYeFjnbW7RcluoWc3pNViEhStX54DOpMmuMIeBVFkojpHKtdQmpuFzNxnEcyaIiLBIEbz2RjiRCZDBzgKVyJG3basN6N0QSc0QOs8zUNk6py3n2dp7ISCdVcQspzMSFdL7+mcjNMDcM4YCP6LowKNo5VLFtfF3KoskIBhUtTJ1g28qV7Txv7kNAkciEM7dxHvdH9zp6D29VaN3y80Weatmo9iHDa08alrc9PVK0sJTueY4Rgdv7nSmXtQCRhs+f5OkpC5h+ugTh9r7rsgboPM7Wz3UrRJoRrDyGw7pIXZZlfzxqlZ/++ONapPfTrK2Kp015tHa/vb4/alUhq1sVLBbGTIq8XPG0lYJ4f7ydZ0+SJBgsObkAOVnXkWkedlm3Ipph8NTEdtk4YaMXFjMzSh/jfbf7eUqGBS2XK5zP8yTh55eXiKQbsqYKR2tLXYm1Owh9f5xpY5Htct3A2/1xBmIM76NTUi0lM5Hk1CHsHgBIkwgJMw9mrqWEWFFei6hELaVWPZiPvSnoaV0vixSObdVFuIGv21KW9XpZRPLB7b3ZeZ73c3Rz4aSS+96elsvzWoYPIrHeCB4xhvVISuZ+P8OdKQHrbR82ilKtK+A+2g+fP1+u19v9CHu73XZSJgIoiZhTVIsSgbKPgczLZV1Kdc8RxsKknE7kwWARZkpkhiXgox+3u7dhScxMbhYRHmOpa5ADFBaRQQBRZtBaNgBujoSwOCInn0QUCETENHiCIlkIkUFMSehmESBICodlpFPivp8OLqWzZB9uwT5SOeBeaoQbC3taRII5fS4eETFrzOduyaIcCHOi8FqYE+akVIooZcBjLWUo24hABguEEzwsmyUTEVMkTba46NoHBdhSmdlidumRRzJRkiRnOspSt8uFQJEmVcJzKSpCLOxu1pAxMdWEsEewaFkWFhBkH6OPAc4MnwfqHCsjIhIEAEQCYplHr/lckQOUQmBEpnt6JsIxHv0YdxFqrTeLiGAmoZLz4iATOdwjjKUUiKVHhMHPs5OokNjUDhIRZUTQAJJCjCZm5JaUROQ5mbr5zSIYRAxkRLIKESVTRkKgyjGlckoZ6WERLiLCPHc0t5BaiEGZdS3QqwgnDNlHNxATxeyop0kxgEWYmGchIjOJksWIGI420+cyg5ikKiNAFEnyURVgmY5MEmIpTEk8T0hiQLUwgYUoZoZdWsISLCzJxBT4SLbL+iFzzASQPM91omWr3tw9ZMqKI4J8MiSpqiI1KjPVuiRQhExYhS+XCwkHaFh6H3vrF/DT05Vreb3du/UMMIsqmRkzJWg210KIEiycERlWqwgTMUeYh6myShHhYVFUwhBBRNxJtJRSl0g69kbEidk/CmSA6Bjj9f2uIhDKQUykKsggVi26LGVbNYHGUdeiHsN7BndQRBfRZVkpsTGxMG2XAAgYfbzfbmk+mzndE8qY+dUwD+SJjI+Gy9Z6ZDIzSHy28BAQ2LZLXZf38723zgwlVkImlVKSCBEkIaoRH89wpidxqRrpzCCmRUqOEOFai1tkwVYYrYWnloIgpE8cWVg5OT/gS5apsWYwM4HATDQiUpmWdREWy9G5M5OoulsG1qe15Erg+/5orWcEJwtTEoHgHpn+EZJOhCmDJlkvG4ukmfnA4RHOyMpYinRADGweAWJaalVh8pjN9aP3HJ0oKSERSBRJCUcEq3YzNytalrX21pGoItZNAB+2rksp6sM/6DkAGbokgSgg4Lpdug+9u8WRtQpNY6HOP5gTRloSCrHBR3hhCkPYOdyZkYzhzkV7hNmojUAwA74/7o9sZ3AyS/oYb9++n49bRnCpOTcTRPNxDjt6v93vRbDW4um31zcRElVhVS2b6P5o28uLlkVqtR7fbw9YuOAAC/PUri6bwH0cj+tTfXl5DsfzopfrczJ//fb10WjbngrX6Q+KYLM8z0ZuP3y6bFddxP/48+e6/bA/Hl9enhZPHmFHo4zWd0j20xZhKF2WUsjIW62rqNBoST2FpVYRBorduxDXSh5hYYWY4O08zRwJIuQDVdjH4AwX0aIodYz8dj8WkWWtPFfgUi3i0U5moDiRPz09yZNKKUS67+YZPshGrpt8frkMeLdxPBohGRDh58uFGASSIiNt348gEJUw51QmYSZKFKZtqch2PFy0ZCzH0Y6jV9GjjfTxvFBSuLRoI0acI9veR/THed6b3XZ3KCmtW2GeUnWz4d/fX6XXsiwpLFWU8zhH601FRXiYh1lgTmPYDxFQqfrDHz4r6f1+Mz+ZgwCLJEG4DxtFKzMxUVBqlWWtBJj1gAUlOQFBCp3xZYmIQIAAMFmkMPcxVDSYIlJZM2Ju6kLsHkQIH6rCzO42zyFiEpbInOCFKAEckUlJYGZimpq/nGEl83gmEiV198nFZfgYKaFu5AmAASWl/exVlZjDfLgVEhGJTJ+EOWaYHDNJgiKZGEW5FEEmECpaaoneAZdCROxQ0ukOIkIW+mgbUBEs2ZqVKuuyRMR5tu1yyZgYWUYCgWlkcg9iYQiB3WZ8c09KFmEGwSPc00stAjEbxHi7vXWzcTaikshIZ2HmSAkiIYYNY+LISADzB8Nc4j0TtdachQeUFEhiD2+tSSmkmpEPG2KkIktZPSZtA6JMBoNJeXSLzO5ewoebFKUQmryMiAb7iESSkCaCEOnzGEAkAHdj5iSKDBBr6PxuzYMIAJj+VxZuADlahDsLCwqATPIMpfn/hg1nkQAf3SI+2IFMBLmlIUhqgU+4hWf+bU7sz4hZMiLCR1ogDG7hYO5j8AT/GADMI+cAA1WRQAiL1hUiYSPSnYhFIn20MTNgIp0IkaA5bhBlBjIR9EFVAMwEld6MGVoLpkFnqRtR774utVa2qdz/0MYGqCLZI20iAh+F7TIfg7ONs3VOUANlMqsmeu/nBJFEQBDIBPMiqNRKzMTE8jEGT76ImDLJA+leuUR6ZIouQBCRaHl6lmSISKll9bWPoayiYBAiSRSsbQwLPx77GC6lgPB47KIdQvTwZtiuhSmbHd299YaIMdB7L1VBEzYwgmyXJ0zA0TsQER7hTgBxJEhWVhboMPcwAsUMdaQPjNk9MOkVoJTy8vx8uV760W73e4SH6Hn2UoWYJ9glFgS4mY1BwpExzI5+6mTwhWcYDaSYTcA6+ji7WxHNTAJFRGsniFXmdY45dBr5HDSJmAAiisyIJFW3IOXMYCI378fRe0fmshQizrA0U9AIJOJs57RAhsccezJzmKsIEW/bwgKmDEaBeNE+gtORPkYHEwmICIEEeWSGZbp8fDA7RajKROCZCBF9jDFGdDrbcfQzmaHkPoFEs2E+Ob/Bc6AHEZCIHDYCWUsRyLLWsihGaCulWYp7mC+1KmURAomTm6FFCmCepVDRmB05PT3H/EBBUwbkzB7HeQQ24ffz9jjz/TiH01aXTFq2F5HleDwGomX3OT+pXD5VG2YjwAW83vbYj7suvF0XYdXkDHgP1cWdvFnv9v52388OEZUSoPDMjPVSSaP5qW4+UiCLEqIBqGJYoogJSShYNVmHZ+8nLBaRRb2d9+eXPy2X9f396+vb9/vbo4/GSjWECx3RM72fjURQFvNYK4HDg0DYnmoxrFutIkRZC1GSlHIe7sFKwonHGN1MIMQ8zrOD0gbTdtHKkEy2jFQ6fYxmmj2Ju/nZ+9HfSXy7FIEPO1krUViMEWbmHsnCpbKyj96V/OmpevK5d2ZsVbWQKq3X7b6fSOciItrbSMv0NIvRmypva03v536cw7r52dJdLOO4PbbK2/pMZWnno52nuwTJQB5ux8DeogcFUJgTgUgtNKIfY3QOhiFrjIhkAFphLUpZmISoJMAKd0sfIPTRwfr12ytA3bqqRCFm9j7cgiAi/GHoAZdSWWBmzEg4cVAEAaqMzFpYtRDxGE6I1qaajSdZnpMhEiIWAhIcU1mszESTcwr/EK6qlrl7s0CIhIgqMtzd56JORO5mbsyTkpGBAFIZyqTLCuQ8NYkQkQQocrh5OIFqKSqckUIEEYSDiABJsDCDVJnAGWTpwloXKbUI0ejN4rAMbqEKVQlyd2cKFab/lR2X4TEsYlqImSFCzMnE4dM5lSo0hguTFilFWbi3ST2Ms9EEBZu3MYZSiigzafIcYjixVIUnabS+7+2s9aK6aBEGiMJ9RBilMCdlCtGU2ANhU7ig6uHEQsQ5dUYMFp0FGnBXkWBYeE7fJhGpgDkdSQkGiMOnwjSC0Gz4h4h7cqOT+mLPiIR+zGWRxBD1MFDSrO4mzoBP3YIFM0ViSran0VtUMgIZSRmRGRnpNqFA5swkOEVOeMsTbRgh3J2ZPQNONADi5JxdBxPmH+bDrEqdIl8gkyLczRxIqZqSLMyiIGEVGxY0AuHuiFl7TkKSTEHOlJEj3DkCXijczkEk4hzpYLiTu7uDiIQZSIbMYIuMSQRTeIaFA1mT2IXFMz1zRGakJzmLRwwbvQ91BxiI6g5gtC5EAJdq7nl7PMbwIgqGtwjPwOPs3TKgMtzTnQl/H4vp70o6+MhSlCg9xqQUJnJo7n0MZsqgmLl6wDxoz9HdOoMKczCEU4jDP45UDwvnonz2nplwnsCSmUWAWwaQ4srhPUbgHE4GTwJgFufZGRjWiWEepWhGmA1hCuHwEOa6LbWKVGHizJIJRCIYSFGFEZg+tDIiLAzPpZbr07aui4pQJDGJakTGlGUwECHzo5FgkWQI1/n2JoFFgHP0Zm5OLo2qljb68LmlIAnMEhmZmWk9nWYoIjAXgJhUO83nfI4ZyRzixEwzCTEjxtkyrEix42QtaU6eTKSiH0pERFpEprIAmEI0ykS69b4nZiJAUU53ZqqqYJ4uMSUuXFR0uheHW6TrFGZHVGFLp+RkDkTYhxabSJZlS5CIpGOpNZE2SCFRZkCVYXLekcyUhFIqMjlJVUQoR6Slhk6tWnCRLATl0EBQJHdYcyvgspFLpgyjMIrduvcotCy1sJbCkezdd+5Arel+dqQWB3rkGTZE6LKIRh+7PXrrURVP2/V6fWJiRcke/bSeNmxx9+McLMbGaURg2/fubpSeHESoJZxI2UcjgSpLVbDtY+95VlUJ6buffRiZB0JQ/FHJOYkggejUhxglZSFLHzH2cbx93//1z//1vD396Q//+DgOaH6+XOulnuO0brQwkjlBoqR67zF8jAyqLJ4UzlW01IXcxoj05GBKIorxIZcQVg93ItXyfL0yRh89xxhOSXC2fjRkF+7MMsydKUQyrYSVyhHmrDbsPMe+22PPNrIKuXnr57CW0SAVxCkZQe20qcDf98f9djPzl8sX1pqO7sPNxvBhIxftGWNYJIlKTBVM1ekqYsOj9coixpHKouBKkQSkgQQSpMKqRBS6sDC5RYuRCl1qEIGYwN5HBNJByWCeBBVlqpSyLttW+74/jsfez227FCoipRZExlJpAhNMkshpTVLVpBi9j9FF5rFNM9WMCaKkhTOZfZ73OsawkpVISx1mTDJVO/gw4SYiwJmeKgokCXGkqKpIZPYYGZkgXUspnI7IAFKViTh7ggYIInOrU0ISQyS0BE01Y4SZRwaYhHhYJNI8l22Rwu0cNqwUZuJtnbmFI9xZqKgSyehuZ/DH0gh3s7BhRgBpipTgSdmEp8dwmfrFgHlaupuP0ZVJhC08W6/rohsIOYaT0rJOr49ooUyoMhMVEaJkBYGqF7AsSyk6VYTOnEyalgwvypfL6vCPslVWIKemKjJhwUKiPFd8BE1PVqYTcdDMaaYpqvJEeCgnBWy4WwxhZJgNIqjKRN0SGQ5QSi9CbO74UELDHCAMG+7ugWkpjYzw8IgJszuMmdMxydB5wBDNiUQTSEyVVxKSRdw9ELA53EwV0xREzypGYsK8O0lBoMwIMySTIOnD/jZ7PwQfpxEBBHJ8PEvuRsIE9OFmA5FSWViFJDl46vQ9MAFLJq1gzwQLQ4UpgzhVQBJZEJQjAm4yEQAhKaLETuEjRzOECPO0xhAFQRKISPOcfKWN4eEZxsREnIhh3vtZljKpOhCFIz09DfyBISWIVRg0g4fdh7nFhCsBp2z9PIdFEAkzz9oMKyJICwst1SMxKNKRiKUyZZIpE4iJGDwJRwdkSpo+plOiyCDCdtnADKD3PrrLoqriiPCMTGYB/g7oMrFqTZytMxHntEpNK5JFED6eXwbg7ufZlNnDzIdnXNY6hdsA1VrNvFTd1knX0QdfTuIxEjPnF5HMjADcA5lEcPfWx+3+OI++HwcIzCoTtmJCEmZ7XyZAEaAp0yOidEdyZhKDAOZMRMy0vEy4KGuysCjLlPvodPohgWmhlpzTAYEEOZ/DpDmGCliISxGnlBAtvNQ6s8RYBEyFZ1CWRQQRC6W5i0qhSTpCVOHmw1nY3C3OSBdjN0ImVzF3KSFVkijN8fHFi5ONMJ9QWQYzO8gtM52YxxQMATPRFMGiQZQezmCZn1flynL2VpQ9c0ZjE7EQzyKQdVmFuVSxYUJFU0iE17WSZ2aQJKsICSwyemZgERQCQBNSVy5UmElCHdTNtLCqIgoRIiVSQChbGUcwgYBhuxQmSTF6KqvEzoxFbCkpKgsVWeROO5r3ogyxDDMUUinqI5pZD3ahED3GaL1noKhwpiYLF5ISlR9dyHxbxC2SaYi0cGMMz5ryJFKYtLKnjRh80cqbCe+9B+m3o0eklu3Ly48/fPl8u73v7c05ILzKeuTe7QxHVhjQoMxhHuFBYD98dB8WUu3sR6Znso0AZn2mohSVFCJOdQuolrXGcBvDbJqsaAT1QGbKx/wvDnLJomVESBA7jU5h2VueDd0mkYUphpxOYs9hlC2MjOHumac3CzvbwYS+71LCzFt3GxEARJvT98ehRLVc1rW652hdGC7sQY8wOVqEPNeKwhkpWoSIWzCRUtGlJLKW8nStyyb9PFo/A/J0WbnUx3HWsgqxWwMlgDGaZEEmMc2awwC7g0shWyLmekABsgwSqatGTNMiwpGZyXOrokgkMViIKhOcRlIG5fB0DIYAM0A2lWR6mgMxw06VMj6c2WDmmdeGea4xI5OZmSnmOR5hbqUKa5nOBp7KUdjUbE5XdRtGQkJMIBUiTY8BotkoFEgBFanM4p6ZKJXrUoqWzDS3TKjK9bohc9z7tItqKax6+r2NEwNlVK0eYW4jPt4R2WxQYitrqUsMeHgAOd8SIpLs5OGRzKQSnBEGJ5DPPjRwsgrlFOcFAsIfiEzCEy7CRTQjixYheMx9L8DzfeGQ0Mqrl1NFlIlSE+Fwp6J6qSUoI8ItmQgyO8MA8BwrmXmWVROSE55Owgl4ortJEFFGxmSt5kCNaSglcECZzYIJquIRKkJMH81YCU7KiMlSJGBp5OTpIjmTEDMCjAwQJxPy47uKnFqUKZzC1Hu5cAElsxAliBMZ7kQplExzoeWcubMUBlNWIc5EIJFOIZjyIiYWQkzogyavwcFJ6R8sW+Rw6Mf5Z2apHB6VxREeToxaSjgJE2WyCGuUyglEMhllRIIckTRVzsn64TcWLdbhMY3YE+mUTHiaZ9Jk6gGP6D1FhQnubulIT8qlFuEp/VcsREkkJCoqxSbc6VmURcqIYJZAgDITWks/R7dGWgurqIx2RjgBwioq4Y4PUZRlwo2DIDKjgXL2f0UOtkxNQYanxYhAZBDxdrler09ECstzb0hbllq17OdhZvTxS1jKjEqagvs56XAKJxLkPqFkdbE+MqdqJ5NVVQSGAEXAPETAAq0SBkweXZI4w20aJgJh7pmUc3EBEXFYhAUQBAYwbHx/exfw0QZYITJnkgwwc08P4MPqiflpIyKatewB8rSVF8qcxgK4T+cr8sMtN698mCMjJ81MINIgnjJDMCEAmpkDmDIYDzPjYYwAEiLMMgcOzF6XiCxFSJTYEhAlopWFM6aVbCLpSkkT0p5OkuRUEVUhoWmdmzh7Zh/hBFZkBJl7hBPYU0BkyT5338ygiY66MJGNCFjYpJCLDyWx4VqkVB42951klWG+FEHmbLux8KplmEREwFU4Sym1srUec2IHWIUIGppMXBlMxEhGePoM0lCODkQmBSVISMuGTEsKIAUMLFUuy1KEooV3H725jZen7fOn62N/R5iPh2qe58iApXNNGfCAoLhBSlUSIMWZzQ3RztbHtO4SB5RLkVJYwvM8bTCTcO+wbsKcJUPqaW49RDmLQNBgx+jNrG7XZdnOx3n0uG7XpG2M/enTl//9//o/r+v2X7/+PvB69t6RwiDJCDrbuO+vSVqXjXlmFFHCKbI1v+9dqiasLJwZwxykH+p9BBGxsnu6D6qc6LqSJ2dkt+BgLrUscLNZNjnM5saAAk9yZy/slulAiA0UXSsDowkVSgWGoZsPZ+dlLkwSzBnJRE9PfB7H6Jbp7glwluJmUrQPa2fbdKlValmO6JFBHzZbJWJzOi2XhYVpjMFsCRjCKXuGsPjwda3beoFYIhN02Z50XVyBow8LBkUkiFSKeQRssrkszJRm40hfKq9r9RHp0SfBl0lwpmlJtHBkUCLSQJlBDEcaLJMxO4NCK0UgwwnBCHIyS4/ITJq8zcTmBMhU4QQTT5gWoHRYRKYbi0z+Zq77MQUc4WdrC4ooSRGznFSIT9oAYjGYkPCl1lKVK83kzohgolqXosJU3U27uDkRIjyhBHJzy8FMkTlG7/0MC16XWosTzn46PIPgnkYgDwIrMbGoIBPTHkVcpXTieQITqNTCkgC5RKllXSrI+9jdeyk1I0Ux7VQMzpQIJ6H0cHcLT0oNSQoPZyEPi4SNMSx8BEvO59syHuf5OPa9twKUunq6hUPARFq1jc5EOe11xBHggHsSI2LWqk60NKffa4bmECUpuzuB6aP1gTOCRAAinsgCxzxgmDyzipIwC1lkpH0EtRH8g0JgxmwEK0wfEmSAMz9W9sz8AOrSiUW0guBwyg/lNihEGBkkM6uMBMyUOv9ycrQE4nlof/y8icjwmHFxIKQQPqKBiFKUkRSeWtTMEZEJgJhn7ycBnjOBJnm2FEMmgPKRjc8zk6USOJiYgkWVCSI8lSqR3kcqSymFCDkobV55RjARiwgB7o6pZYOwKDJIOME+fUcsmSAoSNwzLM3TI5m4cJm5Uxlm1hBIqgkkZxDMzc0sUtftI1dIKOBuEBLizMwIJwg+eK5MollLIkIMiArAI4alZaaDKACCp000aE4xH9eeaHKlzCwiYJ7q+7nPUFASJvQ7j2oiEhUpVQQxpiILSlKKtHZievvDI9NsQn+CmUimwsm58OkNU6/kTMLIWSbKhMgJ9RAJSWYKa9CYLDcSpS7h1scQZlZB+PyRhcgjRKfJkTNz+giEZOKFcydITmIRLX9fJgEVCM1ZoZSaPqOjZiB3TteeqIrMJloK90CO1ueszMQzYSmnISB8Rj8kPiBVRLRu3YbWsi4bJZHKMFPlTKhIcsKJGaMZEvwRbwii6W0lZmVREnCGebQ2tDARiah5DOv4oNZ9wLyHkjKrqLJQO1tipgnFwAeHOwEyD48GI895gWARGCNI2JprkVnyOvHQjDhbm94MD1MuYA4gWWfSHJGwk/e0lICACoGzTxjYDA4ijjSwsDIhDYMzCUwzFhXEosIFDmHp1qlFZgzvoC5luz5fdeX9fG/W2msrWJmkjaal1CWjBSLXqumWiFoKcWlvrbeexMIUQayikLXqukhRMAdlEuAWlsGFiLnoQqrjcbg3S7+fD2FSLW00DwqM43i933cJXLfVegv3Mdrv338/n56/7+c+iAvO/SQECbt7QoIJ4b23yoWYmKlbuIeZJzEP1Kr4gCWhoqJiI7vZdGYgUwsxd5YAMZRHd0MWBTCIvKhAxfpIkCrVtZSNSZPgfdjEv48+PFgY2b0wLnUpjDNFdBmjD3fR1IpCJMQRrFJKQQxyzxxpkR4pRS3CzGZUI7INxPFgXasKWzgLLcrCsggXZZALqS710Y7h/vTDy/svZ7MhIBbOipbNjtPDk4V1mvXOyBRKs+5pAiVQEiVnRmitRYXg4CCOSFdm4hgWETRzVhDUh9eiZVMb6ZbzQ9uzc0gCojPjPQPBU3Kf0xRCOXuKYgI2nJnuyFl5NP0AORklmp6FzIwZoEgIBBPN0BqeBYM5dxtLMHNhFib4bKlAkBCCallYCHAwHD6z3glRChGYIaKFIE4Uq/dBYeE+zHgqigJo7mc3IQnihgEfYy64FkySysSsInWdTmlTlbJQ+siZrBAQppIIZksHJyFFUBQSVJUKI4XNOTm7D8oZz6YsREkZDgrvkUjmeU0iYky8yj5StWSkJ8MpPQysE2d+PI6zWzC62zhPJJNQwCPJ2/lxpEOEOfB3qARJjDn5hLuNASIipEeYl1pK0ZwVi+6l1I98cojHNJh8DBYfCidi96jLR/y+KlobosIp4bN7IT/4A6RMEjZyanWJZghtZiY4ZxY6M00G74PRmH4CxYwQowR/ZM+TgOfANg8qJIihJElzncaHAZ8y4EiewqUMmjalyCSwMP39aJuYThIpQWnWGFG4O5FDdH65CcBkksVIBKvOsyYiMh0frDGLwICIAENUVCSntVC5SAGBGxI0g+UmSJEZwHQ1kgeYMH1wCYhO7phmWLPMK4okShESEhszHCsTI+A0YzqkZljC2+ieIOIwU9WIUNEg9jEmTkfETCgqyuIelEE58wtmT8bU0DOBE5z46DQR5ogw80S0XgvHVBknsrdeNFvvEUYk7hGUZv6heiFMCfxU7yZBVgknT0ukavn7B4F8+hvmZwJ//00Q0RmHMG89i4gIIjzC0nOKw2LeDmGS+YzNkbYUmZXS53EwC/29k8cj5kHKH7qcnAl8HyJldxDN29S7TbUcz6jTj46EOR7mVOl95K3UkgYbLsJ10VLXmWk+xogMZhljJHyqGqe5cipyhDkF6QjEjD1IMoiMCN9bMieHmYVTBnx23c/DiYiZ3WPO+kgwf1SrZsQEljIx3Ka/Mtzny3pirpPgTniyS7rF1FMjLdI8eersVYTTMzKIeYahzL3DzJBJ9OFWMXeaTzfPr4KMIOUEVIui0AyoXhZNsDsBsIygNAwh6T7gOfpgECUvZU0izxGE5BjDfTgFsU/NVoaBKWvhpDwfu9Z4eXoZ5t08nPbW1+GXyzVgX3//mg4uyYWBDLhW2aBpjJQeGOYzhZkLkc3EFhYVLeXcDxC5o6ZwIMz66T3cJSrYESCmRCHRdbPuZ7cIqxKMmfzhNlxYFtHe7PX1zdNtP/79z39eL5evb7ezExzCWSszS9EFQOuHJTwTyqQUESIipDT4OIdnaCqikKRoqPJSaotB7GEYTkvhVXKtSTrmmgHKGcmTEeaDiZYqzERmXHl6PknpbI/z0WQ6fAfFkMzgTL3qyIYEMIogpUgIKDmFiS1imHl6MLMUInJLGw75wC4yvHItvHJYtvDiX65rmt+PW+s9M0lVFmbB6J0lalGkkQYxEjl7eZZKIt7Hw6xlkgM2xoz3JWLRaSPPlARlRBOWUkU0S6HMdPLMxP+fqrddkiS5kQRVAZhHZFWTM3sr9/7Pd7c7O7Nkd2WEGwC9H7Ao7lEozZnurqrMDHczQD8vn2eXBmsn6JQBWbmr3H1dHpf2GJpH/GlrDD0edvmjemu2yzlHW9kJ7zHVjluEju7RejYAejB9tMzD3Q/ibR7hAXDfOX0wGHWrDWUBc4MOUWJuy4zwK1aEFSpzCx0rqN5zavYoWxNqNj1swecVJkAp3FGgOF1I17UK27z3fksW4RNXHIYV9GWqNNrX1wPsrZxLuhs2TmLSDKN6mUCRdQXJ7BQgWo4LF3APGjSyFXW3bCQFaIDuiyTUYPEjiHRaCxG8791dwHQNysi1Yt+VfZs727oqIqSac9D5sc2pZ1EyTUMRGi0KAGUYWTIxSH64iyCta8pMjeDINYf7kNpAwSI8qyLMAHPGY7lfFPe9s4m28QZChnOPfaKP1LMlg9NFRYilUmt2mFaCA4yLhknhLg3PqJNNP7oOmqwlwKZsyIju+SOGZmsDne1TuDRHdlU7KdnJjD7okIEoqau5QJNwjnH3EEjzsDEMw0PmBNWprtGSa6AUX96tzru6gmu+MAuL5QC6qkbRTQFNirSTejSYl/PgJZCEkLP5eK6qZE0bx9DFNgCUxqVJNtDQwFUIa/W97113oe1kDRjUZpT5XEAgfZm5teQz46p7tMaX0+bq92m2mpt1zAfqnpLa1/dLl6rLCExQtbsZ/cNoo9XdcJEj1iFY05POkI23fyORD1vrsSacdlWqocJU/Eo9KjaOiY54Ph+Pr+ta4W6NJmXopke4NIaLCeY9iRDzPeA4K0mz3DXzVc2uxomuONP5CJimdy3cPZxg7gZQ1eONLRHH3GcEPKAaIMq75ePjsKN0HmETMEpz7LwJmJmArp7gDPKgZXRzs+UBKFuDEDdbjszMfZsRZG33btD2e4d7dbsAoFtVxSldqXLRzAxmYFfuvSs1rVv3fRRjV4T5Y3TaYmfm3vm4Fn3yrcbciy7snSTCYyJ8zeKKVaWCiDbqiPYMBKpz1LgoUVzhpY4W9r4bDAQtSlLDl7tbmAPambnv8BV2KYEah6wXdt1Vp42GwhAJQouqzA3282Fff/yMWDtRiob/2vd6//L4wbTAgw/cm+/7vWIaOsrCuvF+9/vGu7qz4d5h/lyUXc8vGipzp8m7jPF4AOxCtaoB8/u7VJXv9pj2Mr/f73sXBRYey6kp5wgaLoc5//q+37VXxD/e+3/98z9er4p4vncpjNmXYbkRvNm0mnHT3Eu9lq8V9/buBPT1sMfDxsGxQiu6osIbCDfGxWV2PbgW74SszeRSZfUcMWhZu2F6rz8gt/Luvfv96gX+ePwsSFVubO13bnmIhe7AGv2qMazZd4t1Z+3mZRcV3++8syzIbnSa4MawZW2kVoCqv//9x/Mr/vm9398vAbYMxvuVrX73fvVd0P2Pf8SPQLJ2Xc7LILUZWqnG3pnzUSCqi8R6ri5MThJZ67HcwDi26DnUJMhgMZMPzay7h6LyOM89CVugGG5x1AFyh1RVN2WwIGgMOjssBDUzYeGDc3h3NXvWLKcJA8CemLwmpLXCh0wJjMhHt6rLfc6IodVmgKCXVU0XocxxRIluNK8UPbIKjQmbc3c1DmQ4iwhAd2kD5s6u/d6b0BWxwsKNjGtF3d3EWuZBdKo2XGBUV6mN1qSB1T02KxXUomNWPXOTWD1eXTNZoiTiZP/0cCKSSkA3JQuSE+9b1i2De5BW2k4bvmaYtolZK6A0MTYTrqNrPZ7X9b7v3HviC4Lj9m5SRqq7NiwckFK2jKCJ8yarq2qPhlgqQTHTDzGiLTfOWDsIynBa1YVqkm5w5/i9ImxE2bP3zxY+andyUvt7QvzNDm+1q2iCDeshCxvh2sTpHNpx+hJn+aZz1vjqVhlocDczsNQ5XxwGoTdqJqKuQ/20znSGjwhNwnCwx01H8rPfHzNRdzkAlZDmS+hJ6IRgZh8R97SYHRtQDx1s44wpSTPaWrg15lJTAxPeJ4wMX1JWnaDg5uMZsT6JQLem2879MQxLxAMnPVKVNZUyPqBVz58/IUYK54RQA5ro9vl52vxJk90/LBKa9FEnubmbG8mmCzCNQdRt8JexV3H04bHcI558ZiZGyZQJIiIiQkBXTR+OrAdW+YxF2HVHmIV1YQKOa5fUk9Ij9KR8lcrCYyIibKSBXTjEuRvJRRhwmrjMOU1CrbOGrVhN1eu+a8MUHIFhdZ/4Jw4qAzDoZSTjWuxWuxFZ25rdVd1EAAed0njuzYemT5UgFFpVfZ9qh/EO1IQ/kMbKqq5gDIlR0zVdeH49Vnh1FSUKToq12y06mkOwTeKSy5yF40KbICbxYHKOpcOHMcLVcA9VkpiaznPIGz6cOdFmaAuzCPQxP4IyI4f9Bpf7tRZU7nFdDwDv1/fYLCZ4aV2L1H1PxgLlPqS8WnHfN9Df98bNuB7resZXAOxbLY23zRDsqe1iprrqrp25926kR1yl3lldIuUAhSzE4vWIn//+E7S8S1Zq7Oy/vm8A2gVbauxSVVs8pDTqLX3v96935u1CwNhQ3lXQuq64wgJ462//9qP363rYDIU+QCy8s9Uyce/qlQnlft/KLjx8ATy2bKFaXZmlWCHwH9+3Gf/tjz/UIhQU4tg0GlVMqGk9kbzZt2utR4zBBOjrsqqbJ5wozdjo3fvulwUej2Xm17LgDEAm63uLDvQE6Amkh8u6pwAWoz1CbRmva6GUP59f//73v9+v/frz13WB1nFBfnbq5YzHsw1ZWbUt3JvvN1QN9tR6ge3mgJbFmhMDZvDrstrv9+v1+PF8PtfuQrl5PB7OEtZS9e5K1q50i2s93cMedMGXl0TYcxDol+pdtaczvkQ8f6zOvqssLifW8uvhre7UcfWoqIWRbm+RZtakua/ukkTKQHOMWcacbgJtjq+uPgB11TSeG2lma7Gbscx8XgVAOBVqHOnaCPwMbJVBIcGdo+Yxl2AU3E/+/yzlKED0EQMscQKpqVbe952ZcS21uXuru3wWbJGZu0pd6m60InytSyg4aEbn3reBcNlEYhi7CwRcscyCspYEtojXfleWREODMXWNmXX03G4MnOTGQhfMXaLBZcYc7ZJJ7EbN/zt6XckcCzZFczTSGjUmGnSn+4qw5+PamS0i2W2VXUXCH2t2eXNfStTuuXoB5d4Sxmwyf1fAIh6PZQvgvGuJNioAuQ3YPYMCBdeUNgx90TNInYZ2qS08K2UWZmLvfNsgKSMY6mmCHDoLZlP9ZtX7N4h1oBcwJo9HG6CPAYac0glJoix0IC0xq0dG3ypAbmfcGX7NaSuWgFLP2PSbSRmAwRzEqBl6bgthAgFAO5bE7iN3AQQ1pG7dqtLLIE9GRFd2jqVuihpN551o9/GY1/mUNTjliMVsZFgRI4tuGs3mLTOgLegNjCDEuZYZm84Ad6l3Ei6UqlFYHl2qUlbptzkMpNn83+52SjlBM8+dGgx2JjzN87qHGZzrXDy+MIfPzYh5nT4wDgjDkYpAqs6qnIjLjRsTSWwzg7S5PR7XisiuZPeoCFk9ae8QjNUd5r5sEqXJkewnbJSLNCc+c2UsU3XWxiheuv2Dgkk2tfdddexgE1LcdWd19rouzeg+eM9vlAiTX2bFppnVUKyY3WxCe+aqGf5tGH/MQ3Po6/l5q6XMzEyVyBlD5wOQu5+ZVAVYS3nyGThyhXG97b09TqVGdtFosu4eLMqIc/p202bmOfifNHsZbHIiTnj7FNdMn4QvD4T2O6syLl+IcWNUpiQPd3fISa5gF21Cg0h3A/jgpLrTDBZxPZcvGthtPWg+w9wiHJDbRWdX7ztjOWG7FNU65IPZ1CkHrXbVPSepAeeRSghyNou9MyEQYe6nzrfF4bQ1Wee2Hi7wXTvI6vQQyzq17/5l9X69au/LL6Nzxa0yR4EpvckX8cbQydw70WjUvlFktAl4fl2JhGvnhvnEojeYNRQiIArYuilb11Wqy80MhlIhp/ESTddCRwBQSqkdS0HrrEWtML8mG7KqGi43draPcqXu+663QLPHFRFh1lCeGHcNg3PD6Q+wm9bumAciwq+r9k0TrMjgWstAWQoVl3X1rnvvMl9sMvmI67F8BdYPV9rzj+jM6s0bpDexx3/cXXt3Fkzm8LBuTChtPOxSrBXmzqrMHrFxPK7reW3q3u/3P97hoMXXc63HJfXOfT0fRqXq/rUfaz2/vhyhoj9X3f3n6xsoLqzH41rIS/2r8s8tSF5+BSfLs+Hm6zJSpZa1DNmt0nWtCEOqEpUtlQh3vwIEOnt+h4kQM/z+eKXJh3GPa93v7C7s2ko3Y4853TyOD3JcESSrOW/pZHDRMDeSGUh01cTqaMgMMXP7cuK0hgmDAI3g0mEldGfn3CsSi2oAV8ukLgk1leHS7Jzk0BAj6ojLM8e1gcawBEdRN/zMupxG8jgnRqsyBZ/hkfP0n4g74PPdEmhVdmamyRYfOIQgYUvqktXdRsutw1iM1rf6pL4cfYyZoVtd1d2wWlKEdas1CuMjZBkZqoFkDCvfBWo6tM7som6IbmwZ0Nc1jeI13rVyjT3NQXebjCUaVU06P4JWQVUYgTndupvyrnEQO2f/wNhr6fOpyVqw+UJNgGxcWXKyK/uTRSODmXtuaahSwszcSScmtFvdjQgzjxPc0zWU2Cg3gm5kdykcQlg0pGJZj8vsc2dggjfnEgTZ1afVQ93oYMyFZCe2ipoW+sli6KY7idHoSjNB+uGJxtyoFjq7Jqy3bUKSwBwyd0zto2IZNfnhoufWL5WyQc19Q1jmJtrDl0d2ZCbMumU0g0GgceTXR7bS020d822gNY/xfE61R5yBUfHDTOrs0+hnpu6axmFIbrQpKyie7gXDHjO2OQ28JeF936XqVt39VplzpL+SzG2mrEaRMrMVC8S4qRsliKpu5hl8ADjH6B92ImQocEBPdpcdhNK7AWqQ5tkWRBvtdHZPJPRRlQHj5Aocd/vnL3Zk6PyM+TjarA/wR3fG5WrQiZ5poCWoUWiO48SIgTarRlFv5t1n7O7qCRXh3AqSHUJSRsis1dXt/S/V032/umWjFBh+c3yQ8zad7whCdw2aRBpVEET8HwdLH8/+zhzH3zQajTp75Jk2wT0TV+tOMwaPsJYI96Ym23NS8jGcHxVGVbXVySNxA4wOGkp5cg2KVT0oM9GkxfI1N9Batqs7a7f2PVmjIXXvXXmaitwIMbPMIlYIyN37PlnuDEKO1BDiBb5b/+vP71CzFIwZUt2+WvH9fb+3Hg8syhxVb7LWc8X1XE+zfndlNSbjlUDlzqxdo/18eltCuMsuAnx37pJAWGA2MedoER6P9cePP5yq+z0HQm+iwBVBmffz4aT++PkUw82cu1Xj7vNrEu4AqQcmheCgJ83yzV25C8vX88nnI8DM3SqYm5tbhDlLRVRmWUWZKWFsmtNpzsdz/VjXWqvZ7+/v150e8EVzf7+Q6L43yyLCgNe7LO6//Xxw8b5T3VUVHgMA312v77/UWPTrEdlHLj+tWIJIezzWzx+XM3Tnnb0LTRb16/3a+ZrC2NW9rueaENZSIc1oj+hbMrvCrrAwM7+y9Nd7v1+V+ZKTj1hGoNbi15dJBUrI3EbZYwWX01Dqrp4UfnRX1/2CYtq1F12nrUL57mKb0d3Hpz3eB5uADADVE69jAk/qFZpNHTkHSdjILzROjexqdQkmI3iBwIwpXQJ9knYz54AznxNijunhFMbqjBoj5/H9uCgvIKyrutHSWoYDg8fsQ+5gjCD3s7UYYf3lK3eHGayqujo9YoV3pyAP0SI8YD1jUTbVMqfqnCwTayahOzN7xSNiHaiDPS6H7JyWMbXVLZH73oLZifW0j75ToLpaldNXMJBhs7sFuKTSXZPI0iNbCpLhVoOhE2y5obPdfKg3j3Cz6oaJ7uExyYcRlnvXvNfhEU+PcaOMdnKZ2wx5gtwMsIHVJ+h7ihKq1Sli3HA+pQ2spmuChcO9buysEWHTQaOHYcIORmwwNwIZRomQdx/r2rkKpYn8acmCY7Mav4wOmzNqpCvcjdPtVpgPFa1BfygIJJrHsKNT00EjuYzVQo9xZ3ApEWvF3BOtQcEEyibY0TAnPzDznpEsDXrVshM1PXzCgHN0p2kwrclhyuxKO9VV88/N4AIlyMFpvTt+AtXzumJdHjbVd7m3G2jYw/7zms/IyTtL3mbhbhFW2RgJs3Q0gu+cexFHF1VVqdblMXKoVnUNtiBwhq0z/WgfOZfUWXsyt7sTR8/bQuUsLEeFEJX3vd8tC/d1LWIJU8A6A68EG33PmdkJkgaLFSNGxCyY2R7ubgPe2zwkUlVjcDU6iGJNfAf0SQcyAj7COOmk4c+PZcxr880NMqPPQcfD8UFCZY1dSaWqmu+aE6zVE8Jg50v4BGSpDsFKYLh4Au5OqliDkAOks7a6K6seWGZGBVmZbSxf3tYq7qzMIge1N2AcDyc2xOYn5qYPYDugFo5knqSZUepKXQ+sWHzErZxvo6t7Z88QRAOwlg846mZwL7aZzwgsna1V41PZaYNgQ07LOnBzq7tyoIfubljmlvh4XlF7Vp/la026FhtGd2K0KSZbsdQyTCpUV1Y3tHnyAa75KcDn9giUevfOX2XWrzcDDJoTUpsTb+Hed7Px+OsbZJn3rGk/HwuK1qTKWVbdd3qM8tB3VjBTkKn6DSVN7Vbq3dlSuF/hartRm5P9wZ9fz7//7QdUv3qDrFvZ6cvDHeT1NENK/fNHiFG5Bw2boPjudI8VHiRq1SmhTH+ExLLm8uVmwK17tZzM5q5JmvW11rIoZO49kbXvLRgaFaF99BD29Yyvr+f3969/7r9KANaP9SD1yvv9Sm0+bF3XVbvf9zt/zf++0Fxrof14DCyW2f1+i2xnFquns1w1ESpCuDW70Ut6/nj8Ebbv+vOv73fW9+uv13755T9+/IzFaux+1xvLAtRf91+W1iVzZNf9/fKfP9Yz8jtf36+dfb+qjeuf+84Ccy388beLQLZ29W3qd5pFc2h3knNbzf7TVYmboJnCzLCcOJcAnWHzBOAoZEHIZunJLamnubOHPaThqFcm2wUHMAIoVANzaUPhi/Au6SOL1pyq59fQzMIcbjy4/UcV2NZSJWRzOxpogCIiGsncuXnEozLAaGKCZfHpTDSZkVaQTPQVbi1o5wTtgtagiTW9DyOjBCn06FPdffTL859lsfU2Wpiva4WvSc4mSHgs23uf6UY1nhcV0egWqMr2oyvFUQyqu7R7P55mZvf97il8nT9XmCCs6gqLkUvSyBr9Z41OlJo+LQOPblEtM1vXImy253V5FQqbJvcg2Ojsd4uNriwrr0nBhEopNs/EBxobWivCfL+rMwH2WdtpETKEe4M1+QjdAgrlB3U4xhR0e9jRjhDDR8EbjZHcjrtpgF0zEjb+qBnEzcIMJx1JR6M7WQ2j0pFUaDMfYyZEsmeyoc26ZgYbT7hHCECNjUiCRik7F/I8/XSCoNPDwuZJY1e7OxAAM/f7vmW1rilg7A/IQluXCt15LsQGJ64NHAyJTTaGDrDR4/lh0wCiizwjKFSxxmqkUw877k3DCOlritLAdYFCeKjzDNmSudzo4XPXq9tAtYwu70YTpkmyGe6IcVAZCUA3sot0NvuDMxiNmqkQKoy1yH20Qxzkq7HRRofzGlytNSW+HNRm+KaZrbr6zO1m64rRk6HQ1UiM4dSNYEMmsFFk22eggLFPny9HX6+efG222QTck6CTdTTd83H2DGMTNqlTxuIxNnXNd1uqRs8hajagI7o6lgsyWv0LfJlk5w9x7LautZZn7u4DJANolropuZNmKBFOXrRTINonm3H+SHeLAfmmNZ6Gqvr9lcypMHyaPiHpn8dtzs7RuWtn7pz8pJOLcCCzLHfz5bn1cQeYHdB++EqNSWKUjs3efTtinhyaiydkVYSbGX0ru3teYZrF+7094t5trFimbPewhfzu+12lfj4Xj8T6KAcE3LkNSdn1+KKZWhjUGaBj0lIzm8Vue5dIhJcbqBpx0c6UZsAk1WFw+p+vsv3qYiZa2hOj3HSn+ycXAbz3tsbDP2L1kfh9mHU7etAGccUIbPv9/Xp9b3e/33m/dvMdcV2PlXebcf14AJX3myHZx/w57pXVdK/j7YgIO/teyy77YWvZVXkn9l2Nmte1J3UPULiVql21S9mUTRfR7uw9oVVNbrV13rmraA8Lc0eXu6/l3bRpKXJa+J27v/exRjZcF4oCyiuWr/W452MbpkXmsM7ublElbfWfqdsyr4iJ6bzfowYIvwzu7aHVxt23et+dNJRq99vB5YHCbfuBvO973ycW9/H1VdL9bpOur8jKeNrj8kt47V2W3cc4k52khTnmIh0I086sQJ68lCLGkLzCrzB17+rBjDgMkWzKk7srLAy2PFoNdxwYf2oQj3DUnXRbKxrKujN7egCF6jr+K/AUAoxgEbDPO+c1juv+7DI0SfPOulPZ6EGPOBAFwXtnVTmneSKrNzZOC5ubMaZq8zdcvKtbbVO4OMe0KHUNLJ/jnmHQ3V2myhz0x8w9rNM+u/6s6Y0erYCTsmXFnnzk+flImn80k9/IwIePmIMys8Pdsysrq2AKd19mzmbbYjCcMhHWEkrigjdAlppoiGbuzRTe7zssAJycIvW+08O/1mMtM8O77sF4iFmkUNWTb7vvjLVIqZoX1HLTCo8VsR6A9W4zK7FHB0Z5wEczLRmxNR9g0W3Fcgess/bRPZGcUBCGnaawPnQGjXNzVMtkPue39eTwlVSjzCUkO0xfZVKd01s+Y7XbkYoaobEo2wez7K4xxZPubkeDFDO4Q32caOq9K9w8Dgw1glOO9x4wE0dPYyZZjdpZCAsEBOx7x3Ru9KRmvwM+Cp+RylYXTogOaTCfWlZ3j5rIq11VTedrb72/79cdtp6PR7aqWd27NlBZlzsnuwtkeJD0CJqTsffd1RrJxJE0gWMn7CJkE4yRDZ+Hc9T61jqxW8PxmhAegPUHVwDoyzztzkFET/dc5gZlNokU1j0Sstx5Gzy7PH5LyziO0R6YGOjCmFoiDLTKSZ12O0Ak3AeuPFZ1lKWaXmaA3Oju51v8fFCgMMuVhxuZVfPuTWw5j7GSpA0JK6i7kkCZARY0R/fvhEXMAdKtrPp82zziu4MfnSG3lP37WDBa0IuYeQ2wQG8Y3CxOinoNcmXTGlSn7Ws0HgdbN5sJqkBxVETiIEy/r+X5OruK4oCWWW2Onalp5uMZziQ1T2usWzwixjlZo94diVDmKBgP5msnwbyrOTlewyOqa8sMcYW1qgrOuVbGhrgzY/KK1bjf1d15b1wScb/vym7Drg6OK68ytxoRYdPt2tnY7muCV7r0WxrW6s40W1M42913dwA07NLeOytN/lgrzCVm4q2U9nQzGQIyA4IGzW2x4EdeD3XQwmzBAqsp6oZql3YnUFBfbs/H43FF7fyf//M/a7dyLpLuouilekv9WNcVuSu1pTTJ589z9mWV1b17t2EGcKfkdpZQkvCWbaIdBEeCUu5GY/X93rX7RMObuy4xoUSLpaYUYcsXHe/83rUjnoMp7Nxo2SiwBsJ0W778sSyntlIYJNwbsokHtg40LC66V1VVhU8sCmuPqIWGoPSefzoDOCVgXQ8ynHRGyyQaVzjvybM/5nOHw4Om3vved71eMtPfnl9x+V33636Ty6YT8ZVihUcs++HxV+0pp5l4wZGKoSUVray1lq+4DmgLWCPaQKyAsVPVSrKP5XYGULA7Daaqd96tdPrAyLNxzCJ+9KcKguHuZlUt1C45dL+zalK6QLINwkw/aLGqMf2fmRL5uSzPgaXGga85ZwDFuSnm7ZvzLGzR4E5a0zI8gh3RGJC1VVkDjUfE5AGqdVJKxpR9QmLMGPrMKNLwJOW23L0qxgO9q5Rts/iSpfNx+hDpE8DTTUPQTg2CWdcclrSjiBoAqyuneqnthN4IlBMetsKEJuykro4j17jsUlCtzO7OGQmrSmB4eFiQAO6uSt17L2esuDvf+3WDHnFFuI0QmcCm0T3oE49NzeY0vxcJsKCq3PeGBPNUpzoCZgZld++SaHG50cLCF3Rm7JrqWUAeNvChqrrLzD2W8gBnNdG6Q5bNDAk53cKOTNZMZp2dJRtgAYaGSjSjOC1bcz9J5nSSMHSjps4dDLKFCJ8/ioCOMGWWBTBgcRz4RjkK8BG5A4wV17rM6ISyqm067CxYVSJ2VdZ+v7eaU0lSMVcPDvtUYHgYQWYpDEANlOjGuzuz5YbclalGXOE0eI8ey9zUqqxtt9S0XhHntrNyG87IK7vV1eXu9ny62SQNfvZr2uG/ZOYxe3P1PJqq0mkvMagGTyBO4YMTk9FcEAxjp/dZNnA0K85xhBqprDvVali7WlJlojYPaHCUxGhV7WoqzEYrOJbELkCATaDUSPAIxs672OZ0xKE8iblne+CBEeiuoJ1cyu4+CBDHA3WATncPs6ysSjJoPJpO0Nw+gBA4/X8aWeS48WcqNI4tq1XdAls5Wc8HwRlkFiXwfNOfFmRtpcTusAWpxpM3UCKRWYIeK8xZu1QlGyH4oJnog71A1ExgbXWSTsE4HtUZxsCHnZB/YDP3fVPmFoeBR/SdM8p15SShDBg7uQ0tEbyuJ1s0O0tndxhPc8BkWpqZByU7CXAdyr4LUBu5C8iibgC1j5T4vZWq5XYK8ySzDnOza+emdWvP5gFjddGK5+MkyabcZUQ1C0JpT7uBGLQy6iBraKirK9NOwQ3mC6b7SKfOUTQiRKMtJ83oYVrmL6E041ctt8vjERFm36/3r79+dU6Qijv9ui4a78wqYQvsSVUTy33y9n1OHPWspMen2Sr3fl4Pj8hTW5L7vgmYIxYRtmTVW3OAutGhlvKT4Xl+M4vl1vm81rWCjvc7A/z5eO6WdWk2LdplfltZz1lAMwdZh9SsGkhTAnRnaW8r+VrzQ9W/wM8j9YWggswkllDdRMUVyzww9DyyKrvMzRbDVzu+v1+UzPl4PJ7Xw1CVbzPuXbvaI54/r3DL11tHhceU5bssKO0VTuD5te67K3VNZ0v13tlV5vh6XmHh7kY7GcQNN7eLYbMGSaxlA++RRGb3xn6/BYRfWXnvt9HoIH3a70bboUZlQbKSGRFzWBkglfJ4dWGENeqkdtg5VWe1VFVVdY8V5PxMj5lnLGGDoZga7oP9z/k1EpIBbQ3hAGht1jQ2UoUxhX3+TXd4symkitC84CtW5Zg6JqlkhNByt+zOqqZdoj76Z5jGEGCffLD8TU8D7jJoBi4zc4uWypW3puTN3AC4onveaWVud7ueZjZKGZppWD/AMpsn52zUuwjK3cQhvIjwJRvX9rUiVjyuR6cqe2fte/sz3NxshokpCWepqoqG63F1dfhh0jpr3qBzYuzM7PudlSOoINpEsA6tA87EIlBsM/NWaYsmOoPep/mp1e2XjX1u9J7mXqo756c5B8L8nurTl+Ln03Zzd4i74KYIC1vuzNEwzix+3sejB4E6wgXhMuT0eobUI3E7NRlHgTiQJMxoNqjPJ3EQqNTepcJyfz4eP3/+9PB//uPP1683wG56HJ4FaIjjkBr3nySozNg1q8Kcpx4Rw9RXdyfodLqanSqVNavNbF0/ruXW6qz3vtu47Ch/zEZOAQLsljpvwtnqvneOsOX3MuM2Euu677tHztaCkJVrhYuVafAIq8+vlDAmFPOY5/a6Fo2CbMXqGv00hhs6YZUnbMTMjBrhYKmzRj1Tdc9OQsHt47YQJE7kVHep2t0Wj6tu4Fn6nAV+4MRqQGyUY3Oimec4lnWpoS4Z6eEr3Gh9zvLR9Rrtt01QRyQk9RT0VjfdSp/ECbiZhhJ1z12TGzL06O/HbZz9M1waTeajjJjfhsYR1GW2Su6GnkwFG3yuoUajfquZzdy8VVmqbm/kfGDTPBFmTmK+R41gzunmkLKqVE4bUcmo7TFWTskDzoBGznFlVVXd77q+1vwcBlJqGVo080ksE7u7OlsyWnDiQ6u6930gd40lfwQ9xvli55AfNG22kGRpkcruw/JqSv0kdW43mi1CWZtSPFY8HiRPQAR/nz6i5MsnyIbAp1twRtCk4KCoCBKdOXfLbNYmWLZwfqPZWcE65jwTW4aJuABlHHH3sngEbuB930C11OS+s9I6R82dfadAGY75mcquujuz1wPNDXYl1xSoEeaOOPV2e1dmp9IXltliBHkXukGGWfuqcPpQKDdEeizjnCOAmVxZyFv7zrVWwCQtt8tIl1/xutsRhqYxJ83fuGYUK7kDqD55eWcS//Ry4iRtkBtZJXQY/XK3iK5OFWy81SOh4wDOqBT74fbwEJSVtYsGM2MzzCKuEEyCaTgmwwmCEGOoWhrjCpvmPnZmn3e48f3XzuV1ySxUPT7Mr+dDxPv7vu8ttNl0SwRplZ27OjUEzcmmAO/7nb1huB7hx3vAYsGHbG5mK2UhcxDlZnQPsch910jWrOBhO8u8Wt2FOj1CgxqMx/s9sLxPVjHk440Sp8PhoCKalmVvyfwI9HSijZuYfgnrRhhnhZ20PNJLSZ1A9y5UiRpNTR0FxuD5M87gOEc9qCmekU0ZJ8CeLOrdcOXdKo3EWdljViV8JIBVRZ5YMgIxUQESeZzeRsR1dKmDVwIO9Di/rokXRA1FZW7z/XZ1ZY3Xd646SV2fDEzQJ6Fsoty6w83dBF7BNDweAaqrdqKk7jSBZga2lJW70mA+nqoJUnQrolRdSEyHJTN777zfTdhaoZ7DzXtk1ICNdsK11Xfes/Oa4/paAMkpuZebjUk7U4TNT+fA92wN9zoNB0dcytKEz87GOa2jxmXX87Hczfn+/qXvV3a3aqofQFtktQwfkqvkYTgnBVQ1qRYjcHbzqWy7s6iO5bGCY/fMme8771Zxmbs/Ho+HuZ0hslsCTUc6ApuSKZvGs98pw7TREcwZfmS4mmopcbXUDofCwKATpqat8LUMzLyrVFUas7tzxXKLoVjH2D7zWvWu3Jk9QOE84Rgv9wzQx445e5vcFgdco7sH6SDNAbM7a652N5J+v8e1KKcMXOFOyxxIk5PPNTzDjAf8rfUbbzq0Mx+Pp5kRqpq4CZImE9poaJT9Lgr0I4jJ6tGINdt4sBiDzaTRXYmUzg96rOoYHHRZjOWG00Tbpzj3GNlzIOyD/58PBeMbaEC7ZrYfzf9BctqoaptBx0eiV3uWnYl7h7vDzZ0kumv2pRPKuLwMTSknDJx5CjEabfQA0dVOukVit5KwWcDrBBFh4F3qpIyOIoCT5Y0GFXROdweJFGJIjoHcRoB2gKih2bLat/WondSYs/rsBxg4oWuwLXV3Mo+yT2PqnJrYgqpxcDENeAaKCJEW7M7ONtNEmqwIMd+/7jo1YMosLR822+yUksSK2Tq7WFVdBWrC4ed0xhFX+CDrIHqLxqD1x7PT0zBJjM01gtWpWb8P4TX6pQmaHiwjwq9xRKo5OK87L6DNBKegVAFlAvjj61mdv/TNEomcRuGjzoIaeZ8uOEagXGkiqqyEYpmrVfB0wAy7Xl3VSdF8UYRTtiSmREfAmNlolzi/7yecuHpvDQgDe73v+NuPy7gevqPy1ffeEUtoN4nMbprimuece7+zdXJCBvYdUJcG0TxAVE/CXq1rhUdLg+h85FMnFq27GGRILVYx3wOd4tRMyoSqfCf6Q0DY8UZlA51SKQuZ8tWuXg9fF/Hu3cVEPJxgvtnJShtEf8Qs930Pf/NYD3cYbL9zvyadyNQ2hDBTvaUoUXSLuGgIs1hhzkxt196VtWn24xHrQQfQymwEDR0R0cYiwvKWBDSzpyJ8cG1MP7B7jMuMeR5KmWyCxCgBNlWJPZlE87OXTcGte+ZNmZkicN76HtRtHlpWl9SLR2ab2dNmIOmziJ+JQijOXa9xQJwF0czUJ4FR0CTuGqOFrrzCc3wTwc6uW6TF5cuCoz27W20wmHHFJJkQqO4aQQB+8/wjSMIxoBB9PRzonbe6V4TZB9QuVKLbNbsrZonCJOPZwnSZh/dabghVryvMtO/MfIMRYTstd77faTHNAU4DrKs056nUpXSbsW8YKCJtGEK5hgPA2OnMIe5dIr1siXRFTLo1exIfsyvLzQK27xqpQRhXkCgai4SqekIloe5Y3m37/fa4eObgA2yMVtzcVXIG3NBY5svjirWuoPbed6cKTk5axckioNI9RHp7l+s301aavaqRGjW/Q2p34pyRY3wySarTQDkKXFCZ7eIV6/G4vl+/Jv6JnPph+bKu9nCw2UXaWsvMEm3WzQKUlZraGTVMzK5KwSIQK8IWXZME+L7fbXis+Pvf//vy5//+x5//+Z//e/QbOHUcvNZqobqMGmGyMY/T/mjZB3fp6pzkmPN8cqKWtacmxc1gdGPpfu118evr8bh+eFyv70RN8fYgtKKPirgwBmqWxjGKTw4Tjx5Zo2HkhHaruzK7simQy13dp+gD9Kqc0rohqVDqLNpIPjN6Sr0GcPOspg3lOb6uIwKbEfNTMOpV3VXq5hHP9vjhzlhKVutYos59OWFdBRMJDxoXJ7nBejxRY6ca+o4QOjUdLs7Tf+xzQKlVU9U7YrRTo4KBhT7nDU4/BsjKc7TxSI/st8gyPKApXDuz5aiUeG6lMsknX3k0gi3CVPgkE8zd1VOhqKb6gM3TEFw6d/b8ePpM7HB39xhZ3iyBR2xlkKyrSWj8nEeHPYWB1q0RRcSuwpFsy4Bwj8fSJqeTe2whdI0asxLsCA9n11bXWgf3yt2QLIyDzVCZOumfODETK0Iz+Ku7q7tJn59yN9w8zOwzFOsYhvQxKNQnxpDVdQxtNnLUet+ZYGt2BQCecKce13p8rUZVVScI60Z1T+LwaBB7FLhuou03a3cEeQZO+MJ6+rJ2o7vR9OveEh/+oJnYHhNg293hDNCy6v0SGpO5SZ+uE6DpZlfE47rqfgfdQIc1AO6q3STZAicATur1WPOgJCvrLAqQYWLmDRCzhhKMzqtR1JSwoKtyHM8I8GOWJlqNlLm7xYipw7yNcFR2ZWOR0t47dV8RA+RlNRIloK2ZO3vvWmuN+S7c3J15uoEkGEKbmepoD9GN0P3K7DLa9IOO164LfZyrzLs1KcXCGxWP6+vrAXSp7kSiQzat8Y/ng5uQfv68TMzM1/tudgFQU6ZTbk0a5nyFNG52Sga4oUWo0W1C0E8UKTGa+0l3xVG+ggQbPrWCRzcEjhBF4oGf5wweWRyqSi2YKttt+vqaRrcpEcfBZg97P1TvmUhG8t9CVefunnuzygyxvFM7W7LXOwEB/eBFCzK7c6Kb1cjcVWeJRDgOqmpTqjqDzrhDoQGB0FIdOSpa5WSEg+YR3WJTsqyq+k2TnGpSGnGYg+MjyKxw9gDwWx7W0K4Ks+vhDe3Me6eVGPKwU0IvjXOs1ZNZ3MI0EE6DOyGYTPj0mjLMORUlPaST8R4ncoCMgVs0qU3DG1snRNFk8HYRXdmEe5gKE0glHHuTxxqv9pxULWqsbigHglorOPOadt4WpMGHv68xURkEVG+hPWKtyz8RPGVzCY68pNH2gZk437xOz5EN7CSwN6BPQLoMNHRX9f2+H+ta14pYhAP6za9AXarwWCvI2pkDhs2yeuK5wUntC/e4HFCOLx1ws3Vd1xVwlLImWbn7x5f/t3//+3/7b//383/8x+v7/XrtnRXGamUleFzPgwrTfFoaWp1dRHWWJqtwGm7odvpONAhkZ4ty9yKrZ1Sqh8e//9vXv/3975l4re3qPRpuh6xygjTY0OnVHciM5Im3GCS3QVqQRqfQ1cdlNsnNvYEReMWKmBVoq700OSYSAIesq2s+hhXUCWIeYZL0ORA+jvYDS86gYah9cuHNUJWVxvDZo0YaZTjRycBov2a2GBEYVSZDZs46ZVMqB6mK5OO6eJ1vPUevZx9aBqijER8x9Rx09pmGZgjnRxhubg6wz30x68pRKY2Z14nmMa+R1OjxwfCorN0pKWIdoKHQ6Bwcwqw6cxem7KxPCsGgONVtB66wGSBHCzOf31jRaLC5Fk8TEk+EwMlLkQ1RyPMxYOJsCEExH9QEnsziOU23e9OdrnOWET6OiawiK8IBq7qlGm8EMQnWiOCpTQrYrnt3s2GEwcYiNTF0zZKo6Y1B5/hJSDlPJ9+MzLKjBK4ZgGCG7vq+++LzepzMki5Dh0UBy+VEVpn7iiZrLpfwgzLSTGWVXVnVG2hDiIM5n41qp0Z2YIvTiG1+0RHLzPADsXc5GctL2Luqyu2AoPXG+4XXq5UNA13qQvd1reVm41ZgGB7f75zq4bldd/d+73V5A3ufyDUkAa97uvzsXJ1jnpAIq+rKlsNKYYu+9n7PyTpHH42VpeIkpJxwYKVLFg7zI7g92w0bXapoGCJ8jbA9GxFxZHbdRh5tNAADTAaZU+6xNICKufUJ+2As0dmVZajdzcr9Ni23eD6XkrUlHqozt3QuOfPtI6OdnSa903M51grM/L7MjZ05eluanRjYamp9AMajzh8D1nI/uztUPHoWih4njSQecba3T9vDKEV1nEFj4B8VCjV/qVa3jR1IYLFagKMn6bqnWXCiHGcnmdS9AYeFgYq6G7SK5S1g1wgjM0tVM7v3B5yfdK5JGxMKaj74/Hq++/39/b0zrx2jyB5qbNCDzOlF7u7sasDMfdJDJ1WbBVHdJbW7LMLn53Xi+2W0LilnMnCSwqR1w8wD8EWG+6KdIJYaw66yo6YmhGuZ+6qSoMpWuMmtqQHfj2zUPmH9NeFomHi2PgYctSyas/Ji/v4AdJQOPVE5iF3PTU+4GYYMmjRwCsnuu+izj+mKFXQMhtDqavO41hJYnRpKR6NSHk8MwiPcHJSs+zQnPi63GQpzYqqYLUmx3Nd0Aw9B2UeUQOBAj0f9BlLqzAExckAOGrqMckidnHMMyGRUVVZFyGFount31e4GXOjOArCc7Pp0LOQuHo0C4ScDxdzWw325WqojWrJPdyxMgTBzt3KUpPv9fn1/X+vxxx9/2/d/vd93Xx+5D0VzfsT2ahiPrEKaBMcN0BaH9zrxNXODAcPZDS9W976z0E3087L/67/98eOP55//ePEr7vtRf/1SdTyiT655H6tCZ4Nnbj7wjT4gyxGhQBq7sdFMAq1Urc6smBACmLr5kdJ1VWbufZNhQEIN14wBRhoLfp6tgZpw/nOwGdlQZZCGp+LnajqiI9qwUDhJ3UcKJvmxn9FBhZubj0PWcsAPM0K0rna35/UId1Xv1Pb3nTU/k2PSQA8FAoDG2Rg/cQuDMg7R8IF7yLXW/ILjvO4CCPmxa9TQkAMDO2LGkxG8dXdPqaqAcM/GVEo05heWuwnIBqQTqwp0a2fZaFY+SqaD5GAMj5oiLJ1DY85D9hlxRgooSD3fVPcANBKyMjJzcito5oxwW+4r4rYcwWULVaPGsjEKNViF+z2qBQOQlqDMxEmNmLysTjdcy2An4lPZVUSZyQ0llRH26V6deNTRQNgYwaw/E9uJZCVGRl/uHINc3Uno5+N6xsPi2pXqO1yQrS8zKPcubfN4PGzgxAnGN5JuKBu6nZ8eTDNmc+8tAiqfIgT5RP3ObgTZ2KzeSTOvVG6VO6qV6A0lFy85hx3Pwih43ZZf1uKvv3K/9We++Mfjxx+xYoUDqD3FLSO7pamZu0lk5kzTp5EBk1anFlq/I/nzEZc7q+uuRKXRDsesajaPA2EyHlA7s2XXRMCZ05uCddegrPMIso454+NkqD5iPUjFHvmmKFHNvSsenjttBeDSUf3bycPB4xHutmt3bfD0dBZndIgWN1KlXQLwXM8q/fXr2x2xGDGQ1SxjXp1VReLd9fr16ubytdxRvfWm5rgNsWvwKPflPhc6rTORWUNpu5n7QS8Kfe9NwH1YW4CzhiGHm9DgR7NqsaZKW405DwQLhjnqBKSM1dwOEFLXCptE29rd1g3VZCbM6dgO64RQUl/XY4LujDa4S1fLRpsts5hqW8jWFbHWrLsluGQeRq69BJo7fUDsrZ7CHeeJuuM0+pnZzjQ0T7oGQY7QYRon5/Whsms2RZtwCtCkkX7OPjg+JBuiu2oa2XREmO5uDce6PLZLqPGlzjWkcf6CMOe0QiQHt8QEOB+PVTeEQpx+jIMangP7WOZ+A2w1EZ91sg9wIPo+SoXCkatPKJDSHeo2LoiyOgJHgJop9Xz4BEk/YRyHd5g7T2SbIZaty+/cIxaabbILnXgzUaa9ObjkLN7zBCEAAQAASURBVM12wj7MMIkBVdrVEM3XiNGyCoV58zu7C61S143s/Irnl8GVZxoc54+3ZTfkEV6lnbf1ARo1tUo2MjejYzKvzY0GNzdfs8pDrOr33jFufafUuVsv/Sf+/Mc/vv/2x99//nj+85/x3mNXP/8domn8Czo/sVFoQGrjxMsVaFVlNv0RB5gfNYjZQMUw2npe64Eff4R5f7/+fL2+V/y81vp2kyHcUtMIiKZ1E4UujObkwKwDAM2dNpRkEYAoOkeH1lTrNjnJqoEhKdEjAOycWZl7l6DdWCsea61lTlQXDWwO7Th/ysc0cQoxxil+dlQdut09Jl7V3VqiGXBk38P0fjRbdJggcxur/Ghcwt0sxsRwxhrg8bjM/P19V6efHIGZLZun+e482NDvL1EzCZ0NgeRUIJ9pX90No5kNNzr/yiH4aNUFKntTy+giTq389O4QpA/YcWKUWjD6tcwM1kJWNeyoqA5c1uNHm82nP2I1I9i/tZkz4/ATYD1U/eRPjGFigvc8zI4uUY1w86qpm29SY4G43H58rX/89WvcDrOYuvWy5c6WaTKvEersHuBDFohlIzgB+vH0VAVp7gIydb8nxr5N5jITKLoZK3NAZXwYCx1oW0c5pklan6VpQjHjuSy8hB9r/Xw+nuvp67H3/Xr9SdbjWs8fa1f++devX6lfVdeandS6LbvQJH0nc+8VcVLtyQj3oodISgPXGIFK1kZupGOZoeL+rqyOMLqrbL+lPRy0eoPEJ65yimGYGy9mm7fs+33frzu8v641txVJWhCdr8Em/aCm3RIzzczjCoFVQsOMbFQlzeKK+94US+pS18jem+prXWQg7K7dWdWjr/Swx+AZRxQ4/dFnu7bjQkbnzh5xAZmp0Y2Ee45vF6a2LuuceC1z89qT9juCvp7sTO12mZnWFfGwKFPF9Yjn0/edmt6pSc5AV6I2BCMcyL2riuG+wuIRtkbkn6WNyQ/cXSXTAiPMEVVtSvpaaKut7rRJuzDSCUeYk0U6wOfzel7L3aorc98JMu7audvdwgP0nDZyHoJghI0UBQ7T3SX38XlpYsAvWjf2UNcGGpe7wDCjWe6eFfN4SYQZD2y+vnPmqTJnBTgPwuTnmlMERnRgmQ0hwsMM1Z1lxDJ3M3PWYxHmK3ZtqRkUTD1DtqFR3RKNlrcqux0+eSoO2HgPp6gQo8EpVs9mumghM1iz20/+Rc0tAgnVHMl+Netk0brRUQWmrX5e1/P5uFMgVN04cBo4BQQ+Hkoz5C4ZCl3ZNo3yEMdvpOkgx8HHP6oECRxnDo/iv2qUMzy8D3rWVLMBVoNsGnbe4hzLNqVsA7QNAwVMHd1HgQn44mQOZSUbVWQ4iG7EWs/r+b4z96Zk9FKbhWi7tsOOFKx0LF6HpQDE6cNQyeaLbppDJQcbjbaa17yGIdG0Bph5+OpqnOFHPOGZHDm+Bgrq+VVGo2ZFEHiGIUzO3ESiubzJWcnMxi9Xj+cFMXfWToV/f7/2u953PdbDw6/npdngpoKJ7u5XxPDCVbIJfTG5GRm5U9SEoM+y+K82eyNJtygBRIQ9f66ff/i//dtjd/3551/17vXHz+fP5679zl01slCwj6H8FMKOW0IHBOpztoqTCXMi3UdHNepKdinCIOSuCXce1geSSWu5nE7sd6LptAgLHy5uj133UJeCTojmcDAz6Y64dpRJJ2yqqsbiZ2aqs/PPV5ZVmAqRyZYCTiQ6TwZSV6d6Lf5O4si9K/xQUafZVDjUfAuNIk865qw7mG12sq1niCKoIW1aze7KoWHmZvoN0hw6DAJJWXdNZrdaFscMkWV3bfDYEm0So9sNtE/mZiVp7cXBqTTqV0OX0NNJPPfxeP7PZTsoj87fOvP2Z3bD53vDwa4AEA1Vy9xC3aQGpJp3Yhmey23xWvHrndMw/H8AdGT7PDbze3eh1TQX8GmAIWj3nbawll/PaNb71mhq3QzZdXdmOc39cncJ2XPaqXrbiP2GgwDpQTIrC/DwWNGdZUq1iY0y2PPya3nFpVxu8W9/e/78+9f3/fr+/vXXX6+ysMtH5TD55TtzXcuEcPv6ekh6fb9jhS8Hea1r535976Llq1fQZ2vfYCCNVYF5vpq9q3bRuJxmdt96368jsZoOqpZZG6Hq2g3GTr3Sv2xQSKp1ugeyq8ovG75FJQJ7N2TjoMstsTl2HRvQmNWdmYRlllQjIFFL1HvvsJm1x6TT4eH0wdwHESw3xwTA4q7MrAcXxh4pjptUwp5lpTsb/GgjCHVXN80W+sbMgO6E553v9w3WVXw8JyUuZ3dcMNIej8vdqlpKtE03ac7l97u74n27+lrrclvGteDLhlWJWLOd5l2uC+VqqhHuVyy5LY9KCpscieNgt9WtDUnMdtJKaujrET9+/vH9/frP//rH6+5JPURP3JY+0Ygwt55cyeG/T+YFwycXR+6MsLmLc/csTAOmhpsgQmGUWRt8GDDiA8+S4RJnCNn13l1ku8UgIrZo9MfzqW675SRj+Hc+HnFd3iWDTjDYYNsWPuHLpdfre9ZJDqM1E0GxW2JXdVYvOo1rxboMpmnVbHUDTvpsWDGEhYA9f8YVDsQ+leKD9gxQU3Nm6WMbQ9DYbv64Lo9Y8QuarrQ2c9KQahXdDxg5gt/+RCH5aFeF1jRkkcaxaWcfjmbufKLU6rFPzL3WVTXIR6tOPmxDxhYhupkvgovEK9/qd8sB++gOipDz41aaJdbNfYKZKHSps4FUVrTKLCICwMRe0y1sha1hm8OvKS4uFWSToFpKGmnHOaW24JJUO7to87U0q+aXnHbLWJNjyqpRmMUJXpmaeeoTv2FmxI39ngC6BiY5FtI5EDDnfffuSjBoXchd973Xtaz72KOAOzdKK4IWBfzP//rnsl9XXNcVmRLOYxzuJ39LyvrYvGYIGLVE8fATtFaesF+YkTHVsqSpU/tkQxDVeZd21t71qPtxXWtd33vXlKkJPcvryKRm/rPPRwlRqsqDlLh4GjGPJLAAM3/GDxBqjGdTSHc3mVFX+NfPZ77vx9+/kPrHn+9du1NYV3Vmp0M14GPDNOqT2S/hPkIn2kR0tzSMj41SjMPhTtjXeN4AdhddbuvUOtMkOcehZE6THefCZCECrNb73vG+e+l978yU4OGSTRiiTz1iH2sBdRJg5wM6c6A+e3EXzA+sMsFgxFapzJ3DcOFArnBf8/nODWFjM6M5Jl3Lu7srh+q61ppI9RUXFjK9q/bO9+td3WEPozVyNC3zzJAj2AKOjn7YofGazfN+hqJD5YkjuiJtULffkFU0Gj3MfxtFaAV+PMyKwRE4zAnPVu/do/0+oWqC+VRy0sQ1l31ZJeiW1aa28MNroh+X5Fq++s3Krj1fLCJiXGKZKaJ7HHo+kIxNe+HI0dkfS1WpWh5Z/df3rlUtXX5L+vP7/Vj8udei+fO5bFW9U/RkVnWL3lm13/t+7/E/11Z1ZlZmfb/eajy/Iu/Ou2nQhv9YnEao1n7r1bm3GZdR2skzWQoMupu3X4vVo6XoKgPW2Flb4ctgaWwgcyvbxDBzqTK/vzdDe5/GNw9roe4clyxz7tPycNlpetORWs8B2tVa5td6tLoqjzjMrBiFHR5Gn9djzK9t7CIMbmx1tgrKFoeMHdaDXt1VpQZYLDxWgBSqT0KDhTllSsg6RSdLEOn2CONyTvFnlboLhms5pPu1v//63i8BngkncreEa13vu3Zn04CFSZwsYedEoAUZl61rdU/mhARlQt2+nFjmrNK+s7NGdzWFLcraSJA5RUGdqrLaP5/+WFG51KgN92WOrn3YqYJSNOsiBCclEfJxH+Ag7B4WYeazTgBW5uOKIYA7E6hwr5KZL3frhpon5YefpXTIOM3tcDDtPvuGmRkpMwsbpaIHr7XW5evyStlo106miNxcqMxdnVOyBVN3O5wWatsjaJ29sCXIVxwrjs9D1JM2Nk6c+WezA9bJziOsoanwmsFLKjaA+Ycn2E2V2eEr/LEef/z48d5AVe5tXJ1lJCOEE7nWlrlPd9S8XY6Z+nsCu8+QMNJCOxk/o+caP9EAg33Kx6zGuzxrnIEmd5vhfvZjrRHIwt2MUYehsLhCOpzMp09NeVQLNfWLgwuSnHzbe++smmi7qq6c8A+zT0m7pluIR8Q93bstZZcgH7X6OXR4IryrzU3oyurC8jBjmVSlhk1jDDBLl4WNo9DczyUxwoTmdLznRh+Jk611yaawgLLpFtMU5mUPhT+882f6aUxP0XIDGe7Xwq9fd2mvv621Fo+5vcZZ2FLnzuq8x3iIse7MezHr96BYU+bgYcOzDajQ3b4s6OIu3K/3bm6D19ZIoOxx2NjKMe2O2VWTf1+Vw4cfRMnm5T0NzfPMnw1xkI0qI81itKcGypCn6sq5ll/x48dPXdff/v7jy6//9V+//p//8R/fe/PGtNzAuvNMDpon6sACk5lgR89RH/9AH/vSv8aO0Qa2JrJmhqcWft+8xCHspo4YrcyStpvFZEcOBZrZZ08gDQcPcnZPBu5w38DhXASwqqd+auaSwaea3eIHhMYZMQc6siMSAml06ZQkmpl02v9GxjtY6/x1IzsbGNqOXRXL3OkuwNebtXfeySBAdxOOF+dMAppQp5zwyLPXTdmIzuc46+Ygf40eYelaa6a6qvYVYcbD13aCdMPD7WuZuR6Lh9DHZwsSAFV3TwYsjXnknARUuny5We18v150cQuVlSVLWHrgCns+TY9w4y/v+zWidTQJdDhrtzoFHJp9CHuKximEfCz/ej7eu8eVv1utrsZrvxybtNd7fz359XUz/OvxXI9H1q9f350LIO476ayqyjJThJlzm7JRNThH7n3f7zCE+dXDm7YPIIhG7t7V3b3Cu/u+3z3UtaFiPx70WM8v1h7AHa93AbDg5MIZTSUzSJ1TIs725WRnZc7bsGHkoolsMCGiILjmDAN2y8VGoT5PPFqaIClDfErTnWBVd2+CV6zZ5TXpkz02n5b65LvIBmlQY3edswnUXSMBhgQUCUQYbapJaYyYAphxdTO7ed8DpxKeWbu8irTAPsfC9yuDHb4qn5mtwhaM3dmUPb++7nxlyePqzntXW92JS7YupzWtzdHdVdh33besTe3drKx5nbu133W/K0B2X1+PFb5zjK6a8EE180YuS+F9533nvjPvuh6Xu93qqZmcuOeDhIAj7yHAHrlFSQhfc5RUH9+4uXsEPgU3A7KmcrBrFTLn0nE/XlBNulKe7iD3tTiBxUhiFo+5PBnOgbSOEqBaPenPNrT7igVXZWXedycoUh5OojL7xBXyrWOnHCEkyKwMsBvInvDrPimwgz56H5PXACri9KT+C044EmOoiwTUYgtd5YUjLgmfhgWPKRc7ghHtJEGh1SjUxER2cbKs6R917ChtesL1u5vnTynTIcNGKzDKbZAwlwSDx4h55cv8EO5DvpswUiY5bcWT6N7ZUu4kNV5lMwieus/3HqwEnEJVITwa2Fn3vjOTOJZjAJ091rbqMmOpocm5N9QkCJwLcT6I6V0hUMysOkGTh0nxcDdzFdyju81treUeFjFx6BHuYdk1uiKMmmYsXWNdbLJPHbkIo49AZSxYE+wyksl7JwFz2+8UkGGSNZS7WapHY2HkhhNA1zVBctiZPYZuTAh/Dg3LMElm5u6fD2h8ajQz2RRhoiWNtMVplBmLtucL42SdQJqOW3v+ePKvf2alE07AZwM9ara5uUvttKkQFqQzfdAIH9nymEuaSanublEMdzNb4VJVte58LAMqnOz69//+NyD+3//4X7vLkj+ei8SuxFi7WxIjQoeEgR0F2sFVerRzZnPPCud8nrDN4/NrwcYUbzNnAz2TQMNAG/tSY4qlLKtO1xsFTcz9PNuqEdzOVsKhAs+81ZM0Rp2C9xEsQccY1tSAKHYmOSOHMeNI6SS1Nbs7jxt/NGhqUT7b52iuUBDZUKqq78oIB5E7911r+Y8fT3w9J6K2Gq1toJvPG/qRHI00qCEcafXYto+MqWZp5cf+VapZzXYmAfehvD1o5os11hDJgefyP54Py1phvlwWRNPZUu0eR9NMWZPgSLqqjdQ0fI2EvkZGywI9rAFe/Hpef/xcK0LL9r19JVO19d57HsjldoVls0vHQ9Ld2u6+ws/mSb33q0q5b0ErnGFbqKYbw63or9f+/uu+7/zx4+lmaCi5WxbWZUY3eCmJqNtsxXeq1XQTDD3IhkmxC27w5bTOKjsFCSCdPgg/wx633rNAw8Lq3G02jybk9O7O3TTQYtZtA69laGOMOhVlYwvE0CtmE7F6H9XnzPwaXeAAL6A+sd+tEQaBMP6O/2mpJv1EksHDVgvDRRzG1Hh6fF0XHlU1k2d/3s8xHXR3ZsUyNM1c4p21jFWHGqJNMZsZg5RQ7zvn9JxUnSqiAjVkq1V3Vbrj59dyeb6/eyIoJAju3Hf2iI0NXVAr0xsNdh9A51+0b+WotkVK6n137W3ulGfBLEi7puigiWIXCmijiQKz9H7V3t2FsLXWQ733LpMyq/ABeE5u0G/6uwm14Ww0I29oNSiMxbcJTctg5vGba2RUKikrVYkJhfI1nzCnBHMSKd2DE0t5BDTHWSpVDQwCVfcEcUnVK8Lt7DoDC5uH+05USezlExll7c384N2Qjd7dzgq87xZ6rQm1PwLhGf8nRXZsp0e/iOHTgGltVAAg0I3W9Cid4NOdOQC2nUY0xPLrCqONKQmf053EUYsOK2OjE3VNVkdrUvNmb+MQZBxXg0c4bX6fWWdHtXCWCls8UZ80X1Pf1jtPyAbAyhonaniIJewBxswmXERNdqpbVWOrHrnrHMxG2kBiqSO5uK7H8/n1/c6tVg5GuObg1rB4JEK9a2QLIxMfhzxdyqxZWvogsof1HqSiNAPcfIgHLDxzXjweD+49vOIQ5Y3+/Vxl3gxEG4ytnBIe8/GlqEvDcY8VdfQI3aoutVe+OHl0HAk/62PMruqdOeBwVc3gO6jFrnk2zQ6Eh3ltoAONQLCwg89pZjBSPXN/swefS9DSR91jZjCPtWJF/Od/7H2bXxGB0u6hYkdnc7QhNRp7DVownJN9RJDaO8nBhQb9loSkHDFR5buSsJ31fr2fl+fedMHbDct8xYWj+ozTLjDR6oT6dzL8DN1HpdAz3dgnTfTADIQ+UMaxwY9YeQYiQXKT+uQ4j9jFPcacP7ExUlWpKrv7ROnUaM0OkHx2GmgQmqrJBG9J8HnzNCIhsI/kaPg5s6Daakx05pykrm6ryklqUZWEyR+pLS4/pgQgs7qUd1VqKhJjVXeGU6wfP68/fjzmtcBkSR5cDL9ZrpqLckRIZ4QbneRvZdD86xgLXrdoPlrqnlRPdLhVdZhBYu8DW7vj+fDnZe1cy34HUs3kh7AW2BPpAHSZRatx7BM9dWmI9mG/x3TRSwJ2Wn9BltVdm4HrJ+l4/epUG/BY63GF0b//wvuVmmfA1KqJnuX4OzBRC2wi+51vqe2xwq+Lrb2zqjA2KOr5uFb4dFWaId87jrsdYHMa47IHpjZBTDd//Phj3+/3fZtZPFzIqkHSbVDUTrBV2CZzi4Uft7ZU+6aqt21gbCENIRMSd9V6+KDtbq4CVD5pWOazusGsWxZjc1e3stMRV1zdXZ3D1Y4YYhTWJwJU58bhlMVVjxj63G0gGoV5OEEGoPHB4fOig5g01UkjmBwMzSI+IVpEtabPUkemSBytiz7sjJOGbhg6DwnvEe7g+B4ae58X0sKv9ViMjZuQ4Yh/q7Qr9505L+g9UpVTWPL6q+IWg/TxH8BAVFC/N13P786dVqOqhtu63IMytxkN7/du9pAlFLJa5L2/SP+6nj8e7z/jfWfVGcoGDebM9AA/usNJW0tK4eE2l/accYgwdLtz+tam+8XMJOusj+hFrZ4gp3GkY8xiA3sPqNo5YVjOsJPCzBG4Ct2VEru6qszgGYLv+05lqQp92fK19Pa5F7MxAbXn/p2k3GFVWujxiAtA7gQs1nA4PiLCowLE/PFGcIK5NeXlIzPsHu17N7t75+CIpAEygHk344L5fb+N11rTPwqPNbN+q3WMYMM3gRNQhpFwnYhcHo5/UEnMj85oRo6msDo16fi29HvOExykcS2LB82wa9TCRQZ6cB7tKoN1dVfq3JiY96hPIsf5KtSyEa0fhmmkO47hCmiP63GtRaE3ELSeGA6hAAfdlK1qaRrUx3WIyaGmhIHYhiADumqkyrPi1yBA1YnKzMx0+r5zM/dd51aYzNkx2AKg3I2afnRSNjG+qT7NM1BXZ5Z6YNQeScUZTWmDD9lc4/7RbI/oqjr3aJgss7oboAp9YA8bLH8YkSrxGJv78CgEnaNE0dHjssdrLHRphgbQ3vuOiRRhqOlmj2vFstM82gZpWcx5R/S7bhJdk7jjsNmXeNaX39UWQ9zOJX9Ql8l3sJNpbgSYuySLWB4A9Hj69Qj7TrOAaro13Kx7dW8BZz+DPval+Xbn4e3P0GMa4dzMCaPl/+39OutBq8rpVEl2bKhz6k2c3Ln+ZR4Dv5rZiDJsIuOGjjYCcGF8ajiudnSNsl8SJjPBJiRlQgJ4JphBQc0D0yowzBdVyu4ckHJo/5maQXk4NF5PVPW+d1V3SSl0VdGNr91t7VfQ8PxaXz/jH/871XE9HkNatQozFsyuUZyjSR+j1xwctHFRnviBVo+q7KxNh86aU8bCzTrbOE3bImFoR8eEFVYXK2uPDPlwfSTdCcEddO+Ec2oduyWUG9daz+sJiGqHdwcUedv3L1RvKCPsx8/gD75/Kv7rNvjjiiuC5tWZbS10thvMfdFWTFQmfbQRY9C4c3feVe6+DF3jGELtO5OqvsIu884Soqrv3F8rqgcjbKGMESssXMUc4N4pMlvFU06LOLFkIAmrsTDXzHpcywCXWFMDU7DRUjV0/NEkVWwri6nScz/zysS5gxEeJ+pVBm9lNebac7p7DI05QPakuI/IBP5RheHjUTxU/eg/CQRG4F8jL2YPLzEE0MnUatDe9w2causcidWwJofqtWrk5Ae6G4eRtdnW+Pu+MvYRr4OOUknI6l25JINVzWZFbdbi+659b464rVFbI+ELDwdyHHFFAdyiQ8UtuRjwvr3DcayUHT41Tl49FluoDE41aLCBcJolZmmChVptBDl6c1DyxbUs3F73FtxXuHtlVeVgChy0hB/1Fd0D044Y4b7MfYr2qm4OjF+jsp7J6eR9TNEOTnbUJBDa2WQ0p+FkQpRoCnOPRac58UGtP4kYGl23QRW1tatlwCCmQ73vO5uQs6u2mrITMtfpFrTpqhtowaQJAVKyaIypTDRRJxYHdbwjw0mNyhm98ZEIoIViV2fXwCrt8OGwZDtrTqHufnytK4KtyQ7oVg4+b5MPq8mmI2jmk814luITZWYT4YSPtIBEVWYn5i4BPjHfNWzaCo9rSMLm2F9Qxmq2j+pUPgVY786uPsNfD8jzO9Pl+EvmqAcIWKtyF3HX3RauQlcJcPe1fHKXTtlJU1OHInDWklYDlTXcv0q0hHru+M9DMT/eublPKNw8DDZmsq6u4gNDwbzu9+v9nsLRUWKRwweZCo1yMzOX1PuEq1a39nQMT3SEePIDwcm4OzPnXEdNATEbOGNFuOXOaiAl7NoF2CdmNo5t8gCow075uTKm82iuemkOwk7ZbFmje5zpGl0gQ6jBZajse9fOvPpaHgTzbjvtbqgjz/DrujLzU9l0Jmd8yJwTb2Rmto6Gdt7TcVuetRMEw/2+d1wR5mELqOtxrUfEZVW590aoU3CRHGrvg1wchBBARHxIqBNehY+Alx+d9ghPpt1vlDZSqSCHThowPk8gzKxhM/+4E1Kzh6IJ97WiVGb09qEOTsf7h3n+jF9NeqxYU6DEnKuERZ09ZL4q+wBY9S8SjQd4miTG33q4CQsArOuQx2GeaiOKu5U9RdQTnkPbVeHr6/H429++/vz11wBe805kFY8AaOTVn1fwIyT/jHF16vns84+BYa5JmHn3QY6yei2L2XKvWPcuoroS2mZlZVBX9kbPUWTHeXQEVRhplVEIgjMutDUJt5iPOztP2fGGGfPu+96wMmt3f3zFj5+PvHtZVcqQqG3wv/2kk+/d2UFnXLEcQN+7MjVU17HtkxFhi000YO5Zb9qVVXfu1/3OrLXWtJKSfLqH+95SazKO9r2/fjyOKWB6oML33lCfavFwu4ZnNNGquVXvVCWM83WJUOBMwRTVR1Y56Mm8Zyf87mxhmICD6t57iy1ych7rQPH41PWpukvv2Z4/2nUKKDUngHA8KDgfjFj6TPSEGRyNgiAHeK6FkSXwbNKSdQGOee8PK0w7PqJzw8z2XUN3VZUxTgTQRws3yOuoZOZiqO7stAkQh4eDZu6Brsz9/f26+e4q9zBaStlZ3WZhDKGCIdqsffQRdJ72tUULmDY26r031GBH4IprxZCzvl/MzKN3c0OhmpINCTNkIC1Ilfq973vf6xpMtMj5ckdKgsyk2RQ6nRGItGUma+2qwmABjXGrzmva3V3dRZ1+xAkEm32aZjHLfh+b+wFtfwMO6P4AzxOMOl1eGN/8fMIn3xaqqr3vEcC6L7d1sn/VWXnyHHku0jF9VqvqzhMUqkl3nK8vrrWCvibh28wm+yiGapprlwdpVxdQ1oIm9Gj+IrDNNO0PDsCdBLtUNVHKfMS6LjeHEqNO5mcqwcEt0NVwBKb3bYT1+JxrQ0vhd+LPOJv2vknzCCP+xZgOGC4NBlFdO2vKqiwmscJQ1g20dXUi3eyKS8LeGzIYJ4axPkmMZ4UQHKbuqjbaR+c1CcwawTodLSBVqtqFQ+UKgSMEoXVCv++SGhbkTFxnKh5LJqGu46Q+TFHOhwIjJ12kp6YNLaFOKaMZerKUOIeMidPTcqAZNWqCDwuC9djWdZJrZvCzg/jM8NDzmpsZZAMCz7dWXV0F2DkOPr/Fv8Y24RCamm/vDJJzlgCQOfoTPjav6kCAlCQnzDgZEPd973y7//x6Pj38+9dtFt3ZqoIZp8pLEiLWkKmjt8NREFCtyrbpXfvXxdk6tAaE2rvv3jTULhI7U8K+t6Dr8YyYqJcalHBS2aoSPZl+k1kzhlDjmZ9niT04iRUIMHiij0ax/MGDoObn4p0f45z6NjfLMJRoHqoabiZ6uEX4uBRPoExjNmm0gC7lcPbjOlTb84/Hjz9+5K7v79f7/ZpPexbgKVAeZdCctzTGhCnM7HYuljoj3cC1BI6YjK3muNUmUD75kXfrvNdQ1YZtj69w+GKmdWsas4YKlLoPvUz2UGAHDuBMTPjoI+bumO/8xIcdRdr0hZtZzJrY3WgwLMIjpph7wIUjxxkYTDD2+SLoM8Ta51unBuB0rmtV5vt+33tTjI3xmgkBo8WSuG/mpXvX44p//+8/VPj1z/v159su+/HzySj7tdVcz/BlrX18gKUuzrFYaJrCzFfMTuHuMqrb1ypZ6UQMPB7r+1d78DRt7Bpo8ETtI6tQtacXYggXg03Az7XC1uAhdbKyj1VxXh11a1zMIxQ5D+yMPmajDKaJ9CGDOQM6abTWHidRjDUBasjJ5Wskeq3qaoKG4bwnpAE4loT2nmDo+Q9HdaaPNogn8osai+LZXs9ycT64icA6jkV2zwXDw52hBxU32rCn7kGbm9W6W6e7a9iZ472gm9uU4TpAYxTV4ozezSYt4qrK/Tu2NaaraqJ2qrxKqRrLJYfXmzWfZj6R1sDOSpWEibOSmmhfRqLLfBnvt9TdVhMBlTgJbSQwLc40Y6kyK+/kT12PuJ5+l/xa3b07+ZvPbLH7RBtw7sAe4GeSICclb0hKCN2smnSNQzfOdDsorp09fi4BznJ1dl2KZKuPGYhoTd/iSPVGm32W8qmuPsQWjWZuMR1Px7FvpokRP1kO55jo0tg0TpbmuHXmj+jjCqez1Lm3B8KtsQb7nAls1AX1m5vAiW+DOElvzvgotegMqSsnI0YQPebrnMm+OefnIUlwPPD8DHufsfCs7mMAmwv9+F4FwoTwyEy1YC6hKZI+hKiY1T5ncram9sSMoxXl5YaNzJ0CRgsENmFTq/H54R/IXVTmceNDGPQoU0ZRJZ3qm/CjkTb3ziqCYHfPp3G+8GGnRmOjiV86lvMZQsasNMZAms35o+mSqDY/WUYGSp2zfkmDuRCQDDA31j6IU0tmNTzo/FawriM4MhqtbTIz/3VY8Nw3A/vgk0Q+H5cbpqd69CukdfUhIwYqmKv83FDzvUxEAQ+LMRetnaqH47I4f/DUDWiS241wD2fAuypz7wj/+fPn43r+o973u0opyMxkrNHOzlpEl+bFOVPI/PVwYWOyn++2MCLm+e6rOnOTJD3v/v5+//vfflZJ1SY8Ykld+9O6eBZgamhlc3AECZjdI9aotX4DbMcpdQbZ+ZE2/39PP0lMBMp5CubfH4yMQFVRXOt8Ey0zNwP9EDZz9vzOl5Eg1fk0xgI3kU0rljP2fW8eKzDsqLQJtjBK98xUt3ECF04Pm0bMd+Yr4hwpQjZBGO5fr5ZU89DRnNoNKbNjmTmr8/2+1fV4xOMR97dWRJdy9DqgwGH8JfXv4fxgdAyPnhONvxdJ8pPr9a9L78BIChIyVDbNQfE8ASJO/LK7o/vAAdLBHqQ5p8g13/vQcdWIGMi3du3aTTjRYgN9b4HwsljWr86676qvR4STDJlvmeRrXXzcfL/D5dZuvJZg6GaWZ/b9yp6apO7xWJyzno6I/K5Fl60SCTyfEc5JgTXXnL0AVO3Lmfu+34AZZaB7qDV1E0MCx/wVo9sVRMib1wRndKspoNCfA6LPXjgY3BhnAZLufpTC+I3kz9ZtdLM1Jc6sRYtRbDUkqw/1IMn6iOGaGC4fPG9pfwwipIWvs6ZLheMf4QmaxHk6cbRU4MgEZrk8h5Sb+eFNR1pGAk6MPhNQDrPdRzZtNGcMzAahCoCRCF+EEeawMUWgYQ73FeZo7bxnrVe5W7ivMw/gyIznJIWs1RInjWYEUp1qptQR/nw+97533d+vjJjrgbQ2Q2EeWg07P0aucaNOyqDRO1Fb3TD3rx+P4d/Cgxfr1a32iJw2Bp7bA4N2GJwWE+M9PZYf8I3DBe1GBzkBdMcnpZNBe3In53mcV+woJM1IuMekwsxHIPSEzY8WG3OFG8wu0sSk+ei+3MyD7uO1YdD7E8/cRz1NDZXCRbV9Nraz2c8F1RMxywM41gdEKQ1sDLB2VfXOHb7Okkg3sAc5m50Q6k6YS2z1hrLHvdVBPcKXx+vu38/hXLIkD8k4NkXWYeDPv3EO/lkdjzryjAik+bqOOr2lmu65uEiWdmb1Oe0ACsbZjFvlNpsiIYM0sTqnMhYNHFh3FtC5m6hRjzp0WIk5O0nL7Ko297WWW3Tuka+aW5doVlUSV1xmNufqPKofJrSlOFvRIW0GH5t6AX4miqnGNbOYouwebVrW/d4CBpwgUSWDdc+qoKMekSImdwcHRIDPtFfzpoAHv+FHN3Pgn4NaDuprNkU77HEC4gRZz1p1koV/40hk1eyONpAXm6Js3oFz0UyirvE4uklwHNUOs3OYMeiZ984byp/P59++fvxX/Lr3iKpg3eaa0+pkyEws5Gft7wZyUg/s9yihoyDQSf3TEB2wqQqg976rE87lj6z8ejx+/ngutyw+Hs/M2nuPmNhohvZTPNwzuI4AxU8OuyYzEKeLDQf/n2Hxw1I1ONl4RlJctkacNIPoJFuOfL46BTegu1WU2kxhRlpl0j9ews9nMZ+H5OOeuff+66+/QOacMjaTFA+qMuGOg2Of62PMxLOq/Ot/KYxR/LD1ZvveJEqZmYSH02kHj5JobhZkuRFt17W+vi43nGVzGAX7Hch65un/AxTj5y4bhv33k/Y5a3/XaHB4RrhZV4e5ZW51RxgPWilIPhowzBBpwOFv8fs3nk+oe3JKxekRO8YKGPqGWUxdw6yw2uDE0FhM5G6hVHo83IB7VzZ7C3++p3K1kU5aeFzuQaPv21+vQoCxMvnSrpwYakpojl+G+856LhWCeK4It3CbhKERB4h09+vx6K7SJsrdrohYK3djbosF5d5Z18PVY2AYASQ/tBNrLLSH6eQRb/JAjPMsdE/gMkYl80Hsf6f2w4CIcAvKhvLKOQOb5ma0lroLGEh78ODzQYyI7jisz+d+pl6Qo4bWGJ5mf/ud34BZLoevMvL80kPF85DWbuyBEfTZ6w3Q9L6dzJeRng3Ie7wWRjcvSTCVBmiF8dNONxn/3ZnzE5gfp9SEk2EUwZLE8xLN4lhdnPLaNnNYgCaPda15Wi81KlPdbpK12mhty0yc6M8znBDnMJozpiH4zr53VZa5P67L4q4sg020Nsfu9MEqgMkOoIVZfPbhSUxIAcSk3MLMXAf0n5/z57oGOUXkOE/v7P9nzzNNjrMz5od/vB+tqvmY5/Y+WO985N287+no8nPuoEcHUAAM/QkmNFp37dyPCDOKnDHa3BZt9JilRk14isyAatU85Ko8T0ud/d+kcwvTafCh3kZqLZyjh3aci9XI1uSXTDBmqw3Tez+w3OmpGHm+/94hDLNwfFQaIw751xN42AX3yp2Z7hOm0yoly8isljo8xt+mVBECM6sr3Yz03FmlcKo0to6e/qBRG/S8g/MJQkI39r2bUEqHfzwzenWRWBErlvFNEnTO6WA8fZOfa28qaD6D3fz3d0UBDjs9ip8zHn1knU2O388YEUaqpJHZQ1VnNaM8d+pY9gaVO4V0Bg4Te+KM5lo2L9W/WKs5PgaJmEvEANq4SJddhwnH7xmapB35FI+pf/yJEtzj9z4G/osLG5DpwwPXRHqOdmnen4n8GBHbh7JX7r3v/VjP5/PLLcjkKBuDc9zb2ACGpTMamdkao9RHRnOOzj5+twNpYBpvSX4QUZrIO+u+84+vpepw+/l8jl0WMHVWlbuPf3diFmYVMbejIKapR9I+4P+5JSdjz2zCj2fU/jgCzvVhY3fkZwWfOBqXj3/+oPp0qo0Ms8e6lJo45xPJMS8PzkM1w605u/R6v7K20XKO/Q/j3FX1UXH0R+VAHsUPjm/nRAR9zieoT8EzYTtvUDPuzmbyyW1X1aSKkIj5lMLj54+vK0K9K7dmOwCafXT0Y0Lvs8CMBXqAvGUjXfu9ZOLI6nGgtPkXQVQp9r3nUZpwnzlNDfCPQXvCk3rq03kew7kqjRMt+AntFmfhft/3/0fV3zRJkiTZgeB7zCJq5u6RmVXV6AZmMMAsDvMD5i/s/z/tYYn2skRDBFossF3dVRkRbqYqzPz2wGKejSJQF3UjM8LdTFWE+X1+gQldx2vToRrHtNE4PPsbqqXTFbWgWCcEj1Xreo7BeQwz2kx2DB4tMjL7ZDR1cgTsyh5fvJEHrTS5wExl1HRrB0Z21gI7ikVmHGMM9zmmogT0FiT2M8f29sNSYC69LJlWShU3rw1Stl/pr6V6v2raQ85r8ecueG4TYlsHGSAJdz+mu2NDHblvnz7oDdaNKg3yaAeoQa9uI7Ltltq7094ktNenakpee1ZuPGWPFfo3ozNfs8FO3stqqH7/XZGLhGF2jASAquhDbi9MTQuUWmP2lS/aNt3dLsQ2kQBVoUqEk+O4Dx/cjYxqrHKfltyX/caguhuqVksjDx/HON5uNxpWrA6LRyGUMs5hTt6OWY4M5FWp3O/C3tPrK4E+c1WOta6IeD/e7283/fX78zrhilw2es221xnd+ITTgNpZamj7R4MQ29RN44DX6izBDWmoN+Htkij18t6/OM21kYRmvBqZ997pVeg/fwP4UO+0Vd2ZgLXCLDOj1Iks0ffLmOOM2ORalblTrKyqiiy6vyjFF8Gx/6vQopm0vjqiv92QCp2r24NxQ/pmthVBggx0Ri3sCVekvVz8lLYMs742WxT2ItmVlZuQSK6qGnN2KFVfkF+joPXKtYd3ct/M6rLQOVyVYzjU7THVkXQsb2osg9rNE3tiSEXVUrKEc1Wzvblyw299xPci4/a1cmQU2vegvTsZCVj1iycN92OO4eyrTNUkHzsiAe0h34KtPh1a5NrUAhP1wpaadxXa7VkiOsypY7zcaGOMip1PYTakr2qk2q9n9vVIZYH9obfWmFJXLRIttmg6qmewjmD5+o/UthnuERfmdDcIJSVCStDbFYWGnF8IUN++vWhlE0D6mn8ah3pxPr19bfgHw9xG4/J9j1XWZTKp1orzPO/zfjturVXsfDy+JOSGfXn1xwS4FAS7GFcoZccHvaBbFUnHKMnsj4yiaqMg1QsWuTOR77dxTJ6Ra11rg8lGymSbrZdg2EYygmT1K/2C+3bWL+TDhln2CLbRGn6l8KGDnwHSimo3tsFkZkPt/lXuyATC5/T3t5uqel+lUblZyAYqv0YhvWo7KjrmSf1B63XsUmxIb63Fls+3g6yqr6T9XWkPfD1/mBFiKkXsDl5YZlhPvYChqYz82nwiE8BtHvfboE60YdnEFwTDPRBuSSS6RM8aj8qqIsxH/5OWECr30qS9YLYrrVCjFGaWrMwuTk+pzOmy4T0x5I693XhZfwvIKu0V7fVisBUuyAaaDCi425jug5n1kgyqiiWx00AMkRkrHGNMX3EVwu/28e12HEZnllSIS+usuKw0VlSuWtdSbGnXHF6CIqvgMDPf7dyqY4BDBVVEAx1ZIhEVurZoo5gdrHVdV6+5zSP6EDuktWg2W22z2usmI2Q9CQoEMstt9EDQeGq3ohTV1baVWU5Td55DFA1j+HGMMTq/joRlhHl/nraz6EG1d6S29FGFNoCX9DKDa09gPX7VblfYQsp+kM16xdlXXGPazR5U7yhGs7EN3gA1hpWYEa+h7mW2oUecNMwxfNs6d6+h2kL5pQ3rw3F6r1kkG0zoTm0ahvM2Z0mxvmww/WKSsh1Tp/2J09DN1iQqMzOEA+DzsSIEOWRy73jqYw4Ja6EqYK/lTr2FbwyhxzuVMpWRmUX69ClgrcvogI552/WllS+oQ7AXZ9WyvC/iazMVZoNuyGRm83b79e0RHDvUqHbkISDsUnERGd0A2lQnNxSe+0DcmG9vEUApIsLMVqR53ySSWkdJuoxGYZ2LpmGj5w8B7g7Chw9zybIHqZ7TjdrR53uM7nmtqjMRX+glRGKM19XRsTG5OkebG42mt2AFe2SPTSygUOZwE9ucTGqnMO8/b7gXzM33p9H30M6nh7fMjSxwe5gJUj5sHsPHbOTNScKzlEsGJMooJbIVac2VuQF1rVXrRdSaa5dk7kO8Oo4JX2BEO+myPSkvtzlKMqG6NymjusvavWGbzpvh6z9AawFLQh8nALttoz0n/dDsMqmNX0Ovu7C/hx3do/1GR8Xz+oxYww3mO111/0tuuw2ixV6wjtHaswc7PtdfKKV1hOCLa9BmYvfP9pVmRG3SvCTAjEwGpZ083vyXep7u+J3Xh4WtUWUCsn7iwB3I2aNGKrDznxzVO2oj1ciIlAhGxPNx/fqB23E7juPz+txyyx3/05hHpxyxEmADwAKsP4hEDW199+ZKelrygf3Wb5R6RbYeJKJK3UGk99vx8X77+fxEadiwyVBJneFc7u7z2NNA0z99OZqNOVToeiyl2tpvZpyjMsMrX0Xg2E9CbRYHcHpZY5PK6mN+Q80kfHjvPDsjYBitrFvzNpPzRwlxQcocc5Iwd3JPEtjsp14vwgvS208s9Ip2JAhnRxvsH7Wv+AZhtRXCe0+pHV5F11Zht3oV4jbJ533OY07s2mbNwzcyRxFUJTYA3neSc/sA9Jpqm7HZxvg91m9ufU9mRh+3MQSsviPRu2m7FprTxSbVNkesRlK+DmSSrfx48WptF90O/KqdKWOyRFXk6Lbo4RTMeH8bPhkBCofbAG90MW83fvyK9/sgeZ71+IxVqhgVHsEMdsprcfmwwTJkZCqtJFWOvgGqhDgOu9+HWXJ028TqaBdBWVnKQoGig6hhbu4rtDLdaOY0SyAVH8eEyIHF5wvmwwZ5xL03dVAB97sHbLzui6kohYRp093jGakSNNznGK2tUV8wZHMzPSeBhkLH/fcDuU/AHmPclK9fVxKqSY0eeQES3gtNv9Ubzd5vQB+nzcvga0YhTVXWxH51r/jObXP3/ncMY1tsXoh6v3vY4d3d5tjqIaPgThtwNwmRNXoT6qfHZe34sBf63a/nMJSUHaheApzm7rISEtC6zk/aGJ4rrrMM8umGw7YGro+OFjtsGzPx0kJtuqmxA6/EuqIyKQ3zYRw+uv6G1JiUduUmt5gARqaqgyxy64e3kJv7ekZBTcQIm37qb6FB2YiQaszh1kZFjOEwdmwB0gp7X9uIf+09eqcvAkbGdoE2Mucv4FdmO/aQfG7cTpm1Klq1X4U0b9dGk9r7nnC3VxbcHqDZsZ423KqXOQJgmdNsuFt0lQOs0a9UqFMkdl4ZAKtQZoYpkhF71HXnMbasq+VCbmNfWs1/TVfpBVa25dtWvJ7lVmS+POU+WsXpc9pxdJdCOnkct0h9/nzilIV6R26eg4T5IFzZ0F23fuycIQHmtr172peo9dvhjdyNfcODTR2yQRSpKiJWVg734zAz7SyFnm76m9KmySRtzdPX3rCZps6Qqb1S73cVr9e2d5facf+o7L80s6VkblZM7HChneASWybatweqklvn0TlM6GqQSpHe/9Am5rCHt00m7CmqQA334WbEqnKwMiU5ZeaQN4Sk6venTyBB1YH1LRkA9CWafp1GjTTvem3TS/XKnY35Asa4znWeVwlvb/f3j/vvnz9LsM1abtnKmD7gfcT2ofACYPqyb8xTBmZVr/2bxvuyzPYT25Rl8brWihErCHx83N/f7u4Pd7MxMhMr2hbuHdI9B4is4L/5/og2FmhnXbPAbncLc7MWGrw2J3UqrCRaSf4lycKG2UN7CUMnf5AdlW3kHN75TQ2lv+6CL12LQMFZ7NF/7CeDrMrGydx9DG9hPtk+uNUKfvcWALM3kNdPwdIfJRxgm8a4qYf9aNvr9GXLGwEoMtZa6/x4m/f7cbtNgGMOkHC0O+HfbgJfvSI9u27hSe/Qr4ylfuxz15q2UqN6exxzHNdaY/iKrXjrlX5tM1Hrv7TRSEHbBEqwZdzWa8VGz7JHPtiwCMAjUnnlFVfYAuXzGIN94/gB+DLztzcnbVQOq+M+5tthBnoJFSuvpbigxQpTeS4JNqe9zSNjXs+rZ1hsnIpSX7yWSEFjuhsMJWN3hRZkNuYwG57JIb+9zTkYZwocw/3M52dK5X5zUsprle7YqTLoN7lzpTYNQryiD7hdD43/UWQHir1eaGKXmZGMiIiEtr+pZ1ZqTy4qFdUJtlta2eEoe9LYf9F+HmojUU0SmxlomdH/lr5OLrwmt+4crhLg5rUFmH3Uvv45tUjUhu+ub8NLKlgwcxPZSoeojNxSDLLDjlt8isGG0rEzG3qU20GO/XZkRVNLRjaq1rY07BOqOoTF3Mecw01WkkVGVVTFtWplmQ1qSFQiWSv2i9bTAIRGHNuy1B9Do18QGweP1FopqOnXDvHx4dd1jdssJFwd0qsvM/QWxraY3YZvURhMmZHgy8pENggtOc3c5hikhY+s8DGGe7e/9S/d/PuXFHIznLux8cV/gx2m0G7hqpI4tsP/C28ibauhScL3QdHo/aCbKess0f0YPnKPhNXaGoH9hzWDQrR2Cj4NQFQZMRy0UapYJZS/zJEp2DB22LFoZsginWREphr/rzFsjME+04VGerYJaLNFQE9RBI1j+p4IBX+NolmbcTQbc/qYZsaUaoUZ374dt3nj8zLmmHBaAEiJym2HbiUjAA73OVulQZIdfChREdvYuctGRG8gwDIaj23u4EUikrVjnNNszDl6fqJbbwp/zOdQdXwCdkJdg7O9pveq+XqS+Vpq9hy+39JNW3Mj/DCzaXbGrhD7euX369BYVE9Me2dR5zJ4FchAY3lI06bs90W75a4NGXSR7w7ktVewYnen/E+mqo5o7Xe5Y3Wtp08Xqh1NG6NiQ727YwAgkG5bxL1Rqd5pOpAA8mEQVuS5VlbN2+1+OwaxXq4C7FNMIkomgF36TrkTMk/kmdhbGTeMppec6eVaQIvGabIygbTzWmvNnpZux63DUG3T662uotPmGPOY5t4rtzbJ+Pp9+8Tka2JRl7ck7cvbu5WBRu1BY6tAi3sZ62mixsYl9vPgZlbyYbf79MUN1DthDnXPyOt56oFAcvag1HT8ZmA3nwW4NczXl2xVuVwkzNy+TFn7niIAh2+YCF/u1f3sbw2dQOd+bgWpzIZgmXVdy2jzdrh7RN+VabtMujNVufMjSqCGdSNOtLl9A1v7se+Vpr6GpIZaM2Mcc6yr8zDGupa2DRbNAUXGiuhf/EVEbmywfWwqutPM4IKQPaqLRuvYXA4jmqcos+P2dsy7xpATdMAKKvO4H8c0WCY95p1zDnJE4fMRz8d6PojL6rJKa8OQ9XM4weGR1u1RRFuRG8UirBWL8OlmAqNiz8JRYV63m9/f357PE6h//Mc/Z+R3/Xheq6ufStG5XyhCMNl15TBCoqzJlJ4iem0CLTP5EtCAW2ujBPgyg285Ta+GSiUMWauqFFJWP5UkO5030TYKyDZ+IybE12Vg/dgRiKqsUKN3/fyRX+ds/xdfJ2htDcwXVoo+04GvfJNt4NRe7+x1JnzRu0qlm7HY1aqSSDOO4TMVekkl+GJeAZJopKSt9bQGPqnc6AXbOGeoell/1ZkP1f29IDi1BaxiQxDDR5/aNgxXxmpZozJdnQAFq+32xR+TweYftNUp2mh5RFbUMW+34/j5+UNyldxfdcssGzacBeaq5pJ2imNbBjmkjIqKoHVy2RYD7DHIaGZzjmMePkakX+dF0N0ra0U0Vtf7upk1lGBidRRG9S05aC0Z3lyJmUu1jzPbN3CPvGOMMcY8xvn8JDHM3NtMYmN41LNAZ0foJtjhCz0Wm7LITvBaoKVaQezDnORki62TSkBRabTeNf64xgZsq/sBVLJaTxeZWVWSmx/HNLPcMKS1elhVwwbtdSX2nbTv3IbZOiPUEukbeGqBUGWqilqL0py+zoH1vOJSpRPj7UhohVZ0Ny9ARqw9XxJGmY/jOHyYFOtaJbnXeb1QoN6h95dRrSwC0B0SEhJWUuXODXLn8eZuWlFImn8JU0Q4XopU7i2qpQo7jQLYy5UE45fGot8uNlTYVBQFN1fpOq9Yq7q+z/rx6OspCsW02nSddtRNioD76HUNLQCqDr/rA982FLIPAm3oh6WWZmx58hjuLeP2XQCsZlKENoHtPog/lrYNiPXntzG3nsd6ocZLviPtRCR9oWDbYL+zyGPlypzHcX97MyMTbq5++9ygfUfuJdCsZb/GAWekrkiSVfIdjrx/0T1u7MGrZbsOKiKvhUhFal1rjsPJyogVaKA3SyrebrAOzPYVq/Y51szt62MQ925pJpWxtU7WPoBmbHy4kT7cbcvo+wdyc3cHEJk7BsgBCS3HYmWFqobTB306jCwMG2h+rITqK8MhGUcz643v9V9T7bNpONa9IfVSWcn+MB9YtlhbW6btxp55bKe8cmPZLzxob6Ff0hp0nJDcvLp5FRqmyivDLwhmdQUN2/tcVQ19N4Fpe4xDl3C0UKR5ZW5yrDmsDY+j5xmMDouICAlRiuzuzxJJ71vGfVilhGqP4wawJNKUBTPtxtyOkTWj0TBmj8oyRxZv8/Z++JgFDzfAlIh2FY0j3oa5EEhJj8cCrWo+n3r+xHV6Xo6yVhzTqj/AXKkq74/cxzo7UpdVwmjlegGcY74dxzH9lM05x2RkVIZP82HzNmjK0nXVqmwDyHZYyzJePnTwdYUSsu68bSCXe2FrwWCvS1/gAvvDV0FW3iUG2EjwnhJIlfZW2ZCem233HmxjSR123NBlFmQwJ1uaIMiMtWWVPubw3jayCNvSVxi5rwiX72cBZQajuZu5lazDlbj7ndQqTu/0mZS228wqNy7aYHR7+41yH22/N3cAXWaJKANdvZIj+/cysJjt4EmB2+342nl3T/LLt2i+f05vOEGiSm5jGMbwtaIp2WYBUQBNyaKxDEBF758NtG8RAvCly+wLCBF5XSsibvf7MSekyrLBMZ2tRaGx8xRL9JYTVveek77NkoCEMWaHROEF4L8oF6n9jbkpkoggLDKxi4NDEIH7/dZBvdmPWKvANhNTGy4SlH2jtJJTyjLst1UvB0cnoPgwIbfcSPUKYanhYwxPVSi6EGMbrSEbtuPthilrL529CHeImFusVRUVaWIlVoX7xvZepxzNrLJIZQaBEtaKWCsyxhhzjjG9Eub/htslC9XxvHsoqG5J3gNcDxxVQu+1IoRSl+EYd/oCr1WqawyWMmrDCe5jI4wCnBCuam0HIcWqMTHm9NI8phsj16KlKlZWovo5J1Sv8gvuHyrRAj1VKV8+rOM2P97e522s6CjineMDVQfbd+MP97OZjcH2JIB+tfaN3Astv2a1fllas9CLeGQ9zsfj+QTsGKNr/Yye2eb3bBvHa4hj20tf0OMXUGq0lly8qLfW9O1JDSLMuO1T/WV3fbs7C2Br0fYV724Qq9MXCxKsw2j0Gm6/8PEv+lt4/cJ8/b8X3pR7291LiWDDK/Na8Xic7+9vbx93nyMjbAPONc3H8DGtChyoVFXBsorjcJrNaQ3pNkbfF2b/PAS+vE29QPZ1nZXX2dus1oqPj2/3t0NVz/MaB4TNNpAmmnuiDbItMGjxmluPtDTOOedtGC1yEZzHYWaBtKgxy8Q5h5n7tGlW3EGmZt6DUUnMjlCnXtk4oiJzratqHffbPMacCu28tkq2u26LNLQ5L0GGvgH2guyNOtG0RUba30Wvx33yfOm1X5Rc0wgN6LaJpwUB+wveKrcmRWqTmWCsHPeuVRAIG56VkRRy3jzV6fIiFPHyBGHDo+wa768DvfaQCLzMv1D7cHrwdjdC47y2HbDvhNyGkwAPmpsPFV7zII1eKLKdSjIY9va+GZve0tp+4o2KOmOl0cZxwRSrxuirU/PgmOTQlcuB92Pex/vP5/m8IrN7vf1GHz5OlCBzLWVV+ujooNY7VZXHhT0/dD3l9seqsu734/3jRlNGHuMYx6xLUi3Fevy4npf5uK6K0DqrFl7Wil7UENFzNTJko88dGq3N/xtRpggZXb7DO3tE2NIBw875qDJUSiYzWUNlKEZWtJGehAra12EP3r29bVf6HpSb3laPqQSttwC18cLZqoUr9nePPam1A9/opYoMsSDzQR8EaeqwAzlNpRZ5tsuyVJUJoiNP9OJA+wsH+x1QZVRFrmjy2sDa51ytS7l1FVSH1ZKZPWXBiKR8b7ZWezdsiR7h3te8YJmCshMfzXiM6bCFzjgpN0OH6sOgVnZn1/u9TJ34Yhi73/c1xXlmnZFXxLWut/f7cQwzrqyipcrbtmXKDXiAZoOo5FpJ0VSRl4QuH+B0As3Zc9Pv+6fIFMCKFJixVsQWNgE7BNy2zXLnDfU/LwqsjcmzxQq9cWnDkJt0F5u2yaokuzKR6AZ7U+4Y/E3SjjG+8JVmRDoBs08o34lYcJvlYmR3zmdmhxW5W5VHRFZs+KVR3WHugz2TlPKlY+k0tdKKrDNWZM6DY46+EM1cW4phO0eiR3cQzaMImdGNj6XWjXUAuQAM90567KCjl2IOz+vCWWMM0GKl1aJle1s6Fo80Y0EJOoRKW1XElYOz/LgNp1/X0pbQ97mCzADaByzzlvpbK2PpEBRZV8aqHHPe3++3+/z5SJDzdlh/lurHqftRNkwrqdjSui+1wz5mNtsl++IQ0OGG1K7hg1XV+Xyez2vOCTe+HFfm5ppqcBStFtzvYz8N+3frTC8fkmqMytUBEPa1Rxu32K1BnpdQm8LopLOQxB2Lv6EKI5Dt3g312tEQyMZ0iD9GH2ypU32Bzv0PC2pQgZ24Tco7fc2GQcrMa11VeTuO2/3247Gq0q2j2330QzZYTFUIKS0AwqCZD58FRrMfAmFfvcOAgN1h0tiFCGdea4ERuVZ2ALQPp1kFC5aRkQXlhQVyHX1+4IsXVBdaq0Fhp9vLAcoXOv7aNOhmNsZwd58+bAt8QapjKhsPaMwjXkMq9nBalV/UxIsfsCrrmIQ92ULKDfy0Xwdb9Fz7G24hQma84EoJQsejyNtIqEYUy3Yn2Z4Oic4Z38ipvgAfbIgGKr2Itv7B65VjPkeXPrKAbHeY9lNxrWXmLyCmAYVtshSw6Qvs5pqeU/qb7RlomFWiVKMAup3Pqw+7/r6rhNkoI1uVhe0A4u4zoqNvS1Vl7YkRlKq96j6cpM9Bhbklw00rV1RNG8fNjmnWSMRSoa4BZxrMNR3IM5Ywhtt090Hu7mUuS15jmm/c2URDUQkUOoLFBhurWBlgvd2P92MatCKPzFj7QSzo8fm4HmvOI8/Kjner/bK7wwba6GsOdeN6O+HZMJhpXyUt7ujHcc+zrzenA95fj+Q+0mzjhO12lK4rquVkHbZtiKwXt7+/cRpsVx75Kz+BtA34Y89+L9q7VQ399e8Vhn3imJOACSZuYSSUqmq1UJNQ1NccvRe+2hi1Upjino36ISugSsqWX64swRtBEvkakQX0Sd8voXWeq6DaMX9IpGBujR5nZRVZtg9ndCWqSQa3UpVWs4I5j+2/K9LcDSaK3SefX9Zio9MRCu18CO00Sai1ipW6VlwRK5ag+/3uZqyqQFI+WpdTbYs1o2M3OruRGhBVzMisatoLblK1Pn3DTgTAEjKrbCMW3R7Qx9luYqb5sIwu9OnKE+1no8VgEr13jn0gbUh3o4hVqBUZVbD0rnkgyb4/endXX2kFduwCzeYcXgT2b6qSzKuzRvtr6GNTtVqELGd3lr0og21RfF0UQPev9begTpOtKAKZEVmZZWa32824jeT7kPKtcOotoFGklgpU60+gquyDv2UXTh9zGhGBfHU0qu1pnZtt5WaRWbH6Lq/S6wIXZMNHg7gyVWldEQFQx7HjCLR/ip5JuNdd9Qpo2IMk9nXkLkVXuWeFmc05jxnZUS9q03txZyu8wBDg9RmQLa1oDK/XlwaB95S0v3q+7pIeLrOo2jgSoiWzfHnmCXbZMQ3kgEqZy93c/HVMvT6RIgom047axr+h6riFUNbTcvsTO21vyxf3OcQt81OTX/3vGkkH2YbtTUZ8XYVAG3JfY9+LK9kfNfu8UlGrtXpO0MesysgVlXP6x8f97z+eNBy3kVHtHt2FqlViubNk2/+KBAErMIWX4bG/zvoiwnrT60+6KPPhEde1IjLPFSndjtnITm7zVN/8LClWktGK4L6HmwKm+TxAuI8hoY2Dw9lYVGoTyRsD5360aKCjG0S1hTc9NX5NyW2Eb76gVqxWcEasxLAJvD5avGRDPQ2rUuaN/PRrhtdUvoH52kpXfXX2fn1J3I+upJe0usnclxijH7uvqRgb5339S7WfASjVTSM1h89h1wljt2+2Rt7aENQ/Wj+cteGX/YA1PLUfvlbHvGJlXtOhuQOOzo1Gd5Ft/Zr2eG7WrVueceF1gzYg2RSqtqJdneeBbcTH69dX5eIIY7rDx5jjLROpRaa1NEAyDRSvujJX3PLjfv8Y7zrPSOtpWyw/aDIjxwGOAShXUMPgJa+sXNVo9A55BSMzIgEdc/zycdwm7WmR0d+GuVnZy1/ZWG6bV9X8bJsRNiJqHVPSi6+qUqQ6fVNlTopugPds0xgdCHSx+h4TlNya4taw8AXG8FoZUWa+vfAG5asVYhtNy2iFGr7PxH6/GhJu+Lr9FnPMOQeNNGQmCsykW39lhErJTo516wzOknKHmvd20tmsqi6ZKjH7WPSNl/R0VZXYOvvaXFlmxW4q2Q3u3Z/mmTnk25VNog2MRpb1RYtWEZnZVkSqdkNVvt4/dMCPo4UH6JS+0tXOq2Me1pR0Z7yqbHRNekk65m3MuUsbkNqHW98LjZ30/IlrRURKahDoGVeVEFir+7sbLqL5kFglljnhPlFYpY7zTcizCEWqqkwvwciGlNW4Wot/rbLLEROVXL1eV8icmVlROzpkT1AdY9KDReueq0Emsw7A3irIxpqqU9es0wbNx5xj0BiKPnJ61jHrB9LMd1ttrNy3RZUPHz5QvZmVJHM0wWiv/lO8PAF8MQi59p33FVVoaKCKkEnMVEQBOo7pTl2dk7Gxv9Ghxt0Qtm+fBkXYj55t8BMNvvaR3Wmh3Dm/Ym6BivnYvda7rHs/tWDRXFXuA7SXhFDsc0xaEWvZGOOYx4pqH5e6q8H2n11oiKuIxmFbXGrmo4TrXNc6Id2OOeaZS4VKYdWVFfN1HfWRCrWmoE0RW0xKshHezoBsLeEObdtmiBbqGm1WnZKZz97Qs8qKX4t1v9p9jfrLndoRUNtbATTaXS8+rDex13augtB3EEXSzLIiM6DqTXUv4qNNrVTljtUB3LdfeC+uUmTBXnlfel2z/GMubcRFfXCBbqM1KK+/Zku/jcrK67riusbw4z7dcUV4tKxSKDF7WCun0Tu8lqQThMHdVH3soDMLX9ECry2pR/raFacCfMwCM3Q+F+Hvb2901gXSqxaMVHfIIysQGvJWZ0ZGnz09baEDaxXRdmiEm/cn2cEcm0E2MFFEV3uZdatB/7toaDa2kik7qqRZvGtFVnNwGYAXXo75qkpsoLX/q78L27PyJiL7mLHtiudetl9jnrJjCdR/LLVDWV7/Nl6DvbZrBPsl0ZegrO/L2iAksyqiKjV8juHgEnwTGe5mZhw0bzVhGxGghlJfARMQ6WhHQnHb2rf4CBDMWzqMMYdfa/U72HxAs2/GjiYoN4d7ZIGivqY3tlO6hyW1RVh0H5uVhqGACDuCRwHwOcbhdhlLaP0E1ZVRlSifIjS9pnv6/fb2eGYJxZS3aLdrqV3w6/NEtW14CoyMqFxXXusq0mSjQ59BVCKu97fxfh/+M2kjswrVFTPmk6XzVFn2OowtPTO1tb0bWnIznmWwUlUZTc3kGGBgZQuhuR15u8UaAMy0jSRluUG0V+QACaviihI45jQf9Gg+xPtPf00/r2ulhGJ/sXu8ppsDuDIqK1BmaYOxgmpfYu8c++HoPaB/UG7gsaNabe86PRxIIjJLWpuO2vO01WuVrEp3yhRS9hTf0T5oZ9iO1XLJfT++tocrKsvhKPaHp72+dMwHBY7jqKxauY8faaPSBhuk0zCrrCX33vFosEw1viLJzRvRbAE1QTMbbqkvGHWnYKMdm4CZXVfESgn32+04jvp+2bDMpecWPZkbzDIsoJQouQ1zl0G6uvzcYIQLJrRPLakW6bWLytCwgDrdD/lKi+jxwcy6X44w9w4gh6pKrXpO7R87YTDuerj2bMDQ5TMbSiipMMzdLF/7k7QfyQbDgUbVGUL/4RCHj0KtuPYQFHIbDUHWRvbc6IKhW07N48rO/XEzGNcKKSHxy+za030XM9FKOM9rZZhZ986SSvVLss0tKaoreV7txaXsmZVs9gdQRfuokq2tGDaaW11xofmY4Tv/5BUQ3BsdNvHXmrPdvNIXq7OTDHWdYTaGzzlinckv6Q0I0G0YrCqEnTZa6C+geom8Vpzn5WN8/On9bz8fn+dDAcJV9eKE0QrCXpndvaJezQwdhUPuPr7a+yetWykLGStsS9qH0SuRkSjArfXHL8txq+TR0eTegyj27Ct1v8qeadBzSxPnWy6n165d7cMhURkqMyIiIA0fbPZ/WEX1ACeg8uWKNaPgxqrWa9cYQ1UV1TwXhO1+ys4E30CiBBW3CWBfOewnP6t8+oqV6/r8+eO6fsFx+MA4lBWtLpQys7CLKMZOXLP92ZpxuMHnaUuldbXCbyPkDcCRrY8BqewylKw5xloZpbUSxPu39zkc0DAslG+0o+kIMLl2BZh12Gfteozq47l9ox0tVlljeu09RJXl5mOYlFlUtAd+w7T9Lb8Y9tW8gI3JnSg0qlDiHJPgHEN8ZfBIL7dU+/L26N7iDWzi+TUW91666fSvSPSGm7d/YfOFfa20I2xrpvb/wKuPae9z+GOeqKrK6tAOFTIqssY8fAwiCH8Jj1VV5mOMkZmEb+FoiW4bEyXIgWEviQb26m0bnfbhpAoGanCLuvpeV77Ij/4/l6qQNjAawML2iVXn77kpX2MyujG89//6/Lzu7/x4t/dv9/GGlde1zh/PpdMG6DdCFol21nLYcb+/vfnd4ZW5FgreiGhlVkBmfmRJibyYYTurMusKxVKsisj9bbU6gU4griuux23gmDwO65wiZVZql5KkjTE6TZdiDztZhI+XnTf7SWjRQ2a+OtVo3v3WyoiWmdIa9StRDja70UVor90YalbjJe28Uis7Z5xsG1hJG4iVEjCOFzUJsqpotQFwe01ZNKQqq2vac5/08mEZLczqIFhJKpQ15Em1Hs/dAVUG9r63tzQiqyqZzVbuM6Afoq81ov4Y9EtI5VcpQv9gPbhtJnCfpGrzCeidnduTgSKTAWCMad6C9/3voOSkDx+HH3Oa08jI7Z1rXi8zUpWJFQvFOY85hrbuuLJiu1PdKJS6h4Mtk2jbJ4RMXREljTnH9DEooUIc7SQ3gEjLij65zDpCKKoTgbcyVqg/hCU95HwRgrU1f6wdnKom6avK3QlvAVZP1LkULRpCx3Hum2gYOcxIVSJDVXsEL76GqooIkkLOecx5HHOeea2100Sq0kFUx4yxcp+lBMYYc87+4KOW22DfWCJMf/wO1cruzveA0TjbPW5VmGNEIL9qs4DujWuBfQqr4lzXigXqOMbwHlK9cd/VEKIC8h1j+wpGIGCkO30YiUrFWhUyOgfbYyAoVvtP5T6qVJ58HYQo3o4Zq5Vle50lmqkhgGGjv7O48qwcc7bgQM00GVD5yl9DZ7y1R8I2WLO356gMref1fPP7cfMx4YNmqiyic4EdAt029tKBe8PUu1Mv5fxao78slXsp6SmWbiV10QJpGRWRvq/e4g6ZBAhVhUTv52QTPW3uawSoP08wNuTxklhUfZ1hLQoTiDJFXPCSZlN2jWX24NQVl9ArFhZ9aFiWCCvBnPUqUXndisRLKPNCCvp2y5fQqPfaNp+i7Ug9fkFa13o+Pw3lpo/3SSVo5rZy13ea+SCarahUczpmGA4bhoXhMx2d6C7Bzfcv3eDmK8QU28zA61yP8zzXVVUf72/HbfLnarrTxoYiIrJDQDdmrN3nWm2R6D72jC4zqEqgyg30nVdUikzPwUGCmVG1VVx71IBoMLE7SVw7bqTNwG36p9kc090Tuwq5e230osz26OBAd/y+AsT5wtv+AAH7Zd7LM7Rz/l7XIrAHpSbS0Fgt0Db0Blc3Wfw/qSz6pzU0qlxRFRk2Jrtnuu84d9KEior+Y9tejQKs/GU+2nm/wB+pEmhQXGIR1jQFAUmjZa2h/eNlZo9qWZWQjJU56HYYaRWqq0kLvdLR+kXEZlPYraUhIYt+jG+/fMx3PuOz/v7z88fKBw47pg4OmjPFlbIsm8iDyypCcRbC3Gm0BWSEaBIzGFddDyh9nSUsSFdgPSuik7d6d3QKzkm4ZCb75e3jw8l1wmnm3dXJBBOHjTFHViTU0cwVrfCuw0cb2LLkbj6cRlSLdQmVu1mHaKlXfCHxxXCaubmXyhtcaSsZmJENn4laSAdW5XleGSFKhmoTKfGqpt3rEzh6IarXn4YERRvtL0BbgdYVNtgJt6hOSQegzGgh3x9sgsx2s3onfSE3ItpojQHI1eAWOvRtK+DQNHA//QRdsNrB9g1WubtRHeKizdhhM6adp7wCquxUd6jdTHuy7B1Xrx2/qhLZSM8cY/g43qZRGX7lFbl6g2Yr8QwrSqKU0hYdbkZvwxDtBeuduF25e5tXX70r1lo3n3POPpGPObQlH1RitZW/Nkq/qmtee4duXaAWynvSbdhjn+Tw4dkDzYtP7J/QrQOQLVO5ovp0K0Eyl7nNcfTXkLUq+x6lOVuyZB1Uq9bcs6S1Mo6YcxjpZtNn36+NUUlo7TlAyDKVbX6oRjQxSYLHOAw0DrU1WhSVVVlACZHtmmgswvbTaiVkZUV303spm6IqqTr1rypWxXKRJfqYx23O4WXm5rscF9rKOHWSJCSU0dkR2zuAw4iyvb4YBzm+qD2g/Y1onWdJVPngfkR38lY1Yaoqc6+tZZRQHQS7MlbktZbRMvvmS9JfzseW3Ms4YDK6oGmeWe4Oq2utz8f5+TjNXdQGG4Ci3Ky6vaX1N/tWaAC5quS2V+1+pPqJ5RZe9giKP9onoq61zvNSyX3sVIE9sey9a895DdU2mvrFQfRtRkBWUioMnXXQl5jwUqx2fBzbUp7bm+ljuPsYY7Q/btNtqv5BezJTf4tsZZf9GxfY/mv6i+k13fh1Nar2yND/6cNnX6+d5zhoHIl4tbssgrfjqECqo54tmhXadD9IKSS1jEw1y0JQ+eGenba2YYDO0SBbD8tkTXJVmlUpr6gfn58/z49nXLe34+0+ycuHD+9aYCPUmlQ0nraJKesjcrOxG3Pvv5dVGXEZzehjzlgx+klvrY8jrmiFLyCSahNf2eujtEbCzUkoU1k1fM7jBmOu5PAqaceaszJfBOzXoL0hn/3ha99DXXDWVC22PzNVG+jaJzaEr9BdqeuPJPSGYWbNadvrTujH2naZB+0VMR0rVqy3OY5Bk0iZNyrMvdIKnTpNE+plFO3Vs/7Ij9y52dyTYiFpWTtJyM0xeg5qxrkzwbZhxgSJVj7HlkpJRZTVtgGXDI6Sub9uk9brwaabMyKfZ1xnjtuYfhivg34BGZ7JOsa8m5llPmLlz6padTtMVcga5DRkYl2tsTaBGVwna1mlzkeWskoZymi/NN2nEUphdIKKgcdx/+WXb+Pj/d1nLLCq1g4HM7rPY84DtCExzhW52isKhcRKrbrEBA7nAWgHY6hMNNh0w7hNH1cuwJwsydAjlqeQymE+MEprjCGUm++bFqiIWrjO6/l8ns9LVUTOcQwzdgBDaaf2tLhBfXztibM5sEaP0JLZfgSSNki3bdynvYyCzf277QTyjsNQblVE4d+8AOjXwl4Carwkahtm3B5+A6WKzIoNkDhtzAG6BDr2ctnGnD7Rs5UjlZUwJwdff1lPfga0C6CXPBU7Hnt2rLnZVmD3i5CYd58+AaVHliqQ7RTtg6B1MO7EzqCTSSWWdWKnm2V0nllG2M/Pz5+fP29vb28f93HYufKYfq1l9IZv+3wcY1ZlRrJbvatNTHswLEacm7Qabr2CZ6QAsxYyZS8R3STfOat7lBhANIsKUG52u42P9zudkfF8VrB8YLiVajg6v/41eqlAFGJFrMS9Oe+kVTNwgLe4oYmPjOAmdWDaOQ7KipVmVs1iWRaE3N+vGSVTamVxX2GQVEjCAtk4ec91erlRC8pKYIvH3azTiGMFOOacdGKHdljLsEbjGf1w9oQlU22hWvMiYw7rIrnsqVfQDs/a/t49qhhtC5gz1t5JUFmrlU/uncLSx2G1TwduVaxiLQVTVTtTqsu5/EuhvT+FUu2A3oKb+WBlnI/r83Ee80DSxzBf18oMEjR3bbZSPR1W1d6XiRVBvVwJW7G02edXBljneVfEupA/vn+vzAxJMt/hN337ZBeA0c3xeiPULgBspePXfq/Gu3sm2wfCliL2uJzJHapL1OSYXXVkNsbhbiV1XFH21yB1l3ALaDoqRcp60VsbANgk6Ualvq7n14/Ug4O2zmBzLv1z9fG1g1+ej0es63mefCHq3TA4bLRFTlVZYfSKUgvTlBLd6vW5jnm4BFS9LP6kmdr5C+2NEjzcWyv2eFzP5+NPv/7y9t61zDJxjBZd0hodJLZpBUVaP6pOl/fcIR/mZipFxA68quxPx8gmG+KKXT6p6tl4U0kGiKIN68Gyhk8zKrmaAhDcfQ6D4HNeWgmL7Zz3rQGgv+wLhu1nb/X3xus7bPMrSNbMps1WpDerqCY5ta34X5Ae9nfZpJyXal9orffqwLO+JHr1UUXWuuLtzY4xm2ZxK5RRTFKRsuydlxug6nR7ZaX1UtFrjHp360ceuwdNZaPPBQwffj5Ochv/t384UyYSfjfur5wQijIXYbkyr0Z8ur37ZWWUzO1aYZU2LS778fuT42Ym13i70zIfP7JgJ9bnghCoPNyG7EzgMEhZOtwX6jzXWpnaordclgsKQMxlK/pQ8Fy90fVEoIhwjLKKiGeEHTa9btRNFavM4LpkTJpg60ob9ttffnEc1+N8XI/z87L0/eUZ03mmcp0AhnlmuJkNJ+C+ZeEotG2eoqpWZFGZaSKwxDI4ZJAD3ny/m5eFDS/FdcXzuc6VgsBqEXZVduiBcxiZm5ki9D89+Zu6a0qzE58LWUIyqvs9UClV9q3j5u3c6Orb/Q9TfY74MNUOGjEa2sTIPcL0RRlRxC6vAVBihNaVrb9zG7mx+i1bag5ocwqR2j4kFl7mJFDdZ22bcodeDnwylT2B2atdrFRx9soudUnbmLfbPdbZ+fVjdLjiDjQjMG87U6f5cjdYGWl7jmQH6/cORkmPz8f58XTaPMbKutaax3Dz6lb5VRkCdnn3Zj1rKybAzcI2yrpF5buomdLe2ltU6E4SFRV1VXIHE9XXQgGx0Uczpx8Wjz77mieVD0vwZiMTAl69Yk2RskoReV1XiZkJFEk3sEUYe4YtoBUj3t9YlZp0yYjMzKxIQCLL6J3w1E66HWAModutVRHZJ6P5aMEX95HaRoDao0iHKGdd53o8Tmt7IH1F+pQRxzHQ6mkVwcweqnqSxetC34dqS6LNDSRKUdU3P8yqojXyNHZ5Z/fewNC/boKEjHLznU6TLSfwLMVaguiGrsRKOL+cH1CIXlXKiJflpLNSACCLlhC1ViqZ1UZgK6GSw4eEWEHK/LVeVn5hpb3Zd0+hm/dvp+ahWlmySTAJoNvK+vn5VBXpgsY2aXmKsbFxNCu9VvaE15wiO0tT9jXqEJxj8gtR3FDIa0xp+ZmsqhGXAGZVtfB2juHuRaPSSBGOvlZNuacbvkxFm13jC/XdgqQXKyN09SbxspRt1CgN7ExlUmamQrFIX1d+//3n/XY8r+uqymhFYGtnnSK6ZUVm4FJkoSlqSdmdbplf2571CLOl5Ik9vvTtmErIaOT1vDLW8/msb++32yHkOtdtDjOqMiuv6xRszmnmmwULyTfw7Bw2tU+/rc1qBXQLBUu916JWBJp91v5E2lWVWeQrkLsn1813dvdtXdfKypaneqcYSATvx13idZ704UJVdQDUa/Tsm636pEZHWwOV1UFf7BwT7Hevv8X2vdNN2HpCfAnLNnQAoilYdeRgSyLw8q/3kR0r1hVufr8fUigAytpntANucqMYL26aHWBl8w+tCVplZ60t6TV4P+d7A6+xomAjMx0AmIVLGVW2g9/z/e3OgfMMSYfxoANcAYWZmCGyMbSXR8zkF40zVirw+fsV8TxumG6H3cZ94MLn82J5ZF7XMoFzHsUKSi4ygkEqmTEiLCKrKmNBrmSrKCsZRbNOtugcva0EI1DM5/W80skrn78f+fM//Gr/4Vf87bLjQHEEdD2V/eOS1+fpRs5jOp7PPhWVKilBHmMSPGx0j3BfxpvpYkXWWqtUw60qkdfbdDrXczk4homoRMmuVT0jj8NRVFkVA7iWHmdGiTR3VnWoZw/MfDGu25velSl8nbPNEO0P/wVBtmN4jg1iR6xV5W69FgBsN6PUAv4GmJgRUvuRG2uU7YL69g7WtvNsfngA6lz053lm61q2wELXGU3EmqF2e04rfNGksDrdegx2MtLL6dybY2dcVbUmzrbWgowUzrVW4o+SNY3hKIszz3WtFco9/Sj3zvil3pDUYXBf+ryOcRBF1/RxO96Og26x1rqua47x8Xa/rlxKnyTy8LEuxau8qfccdMYGtxYZO3uxIEyf+5faDvQNpbpZuzCHO8lkXCuypa9bY4Kd02o7zu1aF1PXtaI187B5O2wiU6pyerZujYZi+49LOp9Poo4jIlbnco3h20fvBvJ+H+ath6gS+uIHAFikVNyue/ZEloqdiNB0iImqtoNRAKdtkzOALThpkylp9DGMPubwF7dzndfPnw/DguTmpqDgtmOT3O0rzBEdxGkvvXzfhAWefU93uYq/ElVAekHQ7L/9dTopRR908+M4JPk0ZbYR0iTAirKXw9aGubyyYjXFbiTHbi57YRdQ92XWdnr7ZsGbReMArWeuAjMswmjDzLOq/d5NSe5bp40XZBsdWrPUjaLElsT1rNTn3h4KAZqq4vmo4XO4+22UJIVKc44xGncBwOM2djCM7elDapO8l2q33REv/9kmTvuX3SyEtcRtuFPY0hMQxzG7dDP3qFGE0ZGRJmiAzhYaOEYPc43OtqLWO6JzT/dNq+y/+gtKwM6TaA1Cl8eJ3aAnlfT5uK6VVRkFyejWeL6uqzNEjAaqIonqqK6GirRz6gt07he08fFOoClzMx8GgIOwZPvMOW9TquvxrIi3+33Acq1yRXIrFXwiAXRiNWmEW2YXAm+SHi2JJKuDnptx30FcRmAYG3jj18rFBsLQs0VD731hOA9vuYxiu3OvHD6qtBYSqfJjzJQAm7e7SFS7n7SJ1v4P4ezqC2xOvpJmrcztR7Ev/RIp1m4yAPQq7xD4FW/K/tm48+IhWVlH7ZvRrCFWELSxoouT+XY/jjGuMBSzVaY7+4qZXxmgvh0MBGF6XVSNzfJlHXhBUVtgkZLvIEnD44qEO14bENxoxzzux3iyYDYOA4ixFUZc5EEjcwUA0m0YzcwtrqUbnayQotZzVSlP8YP3X5zHgFn+PQUbVSmnTOnrYhrXChijlOtS0eiSxcJaJaEL73eCbmSZz0FsgIg9O5q3J01BrXqueqzn9xvO//Ufj2f98izasMdaz7POC5+yf/374/MR15U+yo+R7IgJczdmJyhojEF1CRxVBigQNE6zBtqddrvZ2/usM86F3365ffv148f3H4o47rconpfmZc/nFdkEiQqFlL3keBG9Hfuki8oIo7lP2qiMrFQS5i1kZj+iBVDDR+v1N4C9uds29OHr624cojIlfgnVq5QpdAOXpNfuNYiXK1Yb40pp62yYanXjmsfNzDJrRUrtLLMxRmZIqRDI1doYYpiXwtzH8P7T3czdmwns+75ZP+wJPetVD11Z1fteIrPNQGndcgGhcDHMqmcIwrubpLSjbgyWmZAa0FC9kigERaXKh81h7vZ2P95vo+JBcF2Xz/sYfhxj2gDi+TiFi3CSg5YSs3cxkaQ760tF8ZJa9SqytxrDLkbdG5bt8AliyDLqxay//kWVQ10rVhkJtkwH7eeb2PRQ68V7HTWjZysshcx8ZNCRUkdC+HBB3QnTd5lvZ12VaC1p7pQVGIExTGBFdnKAmcVWsG2bLdVgQLU7wrqYEDKyT9VmaUD6sDnncRyjs2tjdSPp4+c1vCLKaccxeyUUoQIdpLvJpl24tKGRnjqIQiFXXNvwW1rZmUvtkmITqm78w/ANIPoXaXUMBlzkbuZQdQwYNmlR6BY/I6RYCcJt9BBfXyMIXkm2neqE2kTwcKgy8zrj/Pxct4EydkhR7BQm1U5JITTdRG+LZanUwGe3wVW95q3NBXHrL/cKZKL5UC6S2jajApS1+rXuV8x2zyjbYPVi7/qZ3a9SqzP2B0hu9zG6q3KHIDYx5xwNrIxhGat9r+3hYdGH7a5hiTbcVG2Te4Uhc1iLRfZlz9FfbEFQkzI96fUvvwPtOvmwldwNNTbTQRuVZcOyIiOyivA5BwzdJ8ymFrKy2CJRa01QB620+0SqRq7NW3zceQjm8mYpa6nVkUb3MehYFdd6fOp8fg7iT79++/ZxPD5r0mqhSkENO+CKiIyWgcK9UCqQBXFLEfRygwpyA+Et8gOYKzJXaPUK2WTkFodREIYNvFxS5FA7a1GSYi0oXGlo/hjQEHaY637dX8OuSYJxl0C9zuK2qO0BunYIijYj8QdCuM0d+6bGjjxsPPwFau9A8Sr0R40+ZIxGd8CdmsesUgN2Uvz6fv/14/48aYefsZ4r0HMGObytJNk6wIZpO2UmlbTXHCeAcAPslTktGNtnjWFIVf/7MKULLLm50QxDxewcMwhyYpi7soaPLRYymNMGO7cW7m3a7p1MZopROqqi5NnuzWl2zOvEehST4ziq8PkAANu9yy2TLTdom2t83/SNyqCMNdym1TDLRCGvrJSGTxLDfEwbPuK81vPnr0f+00ce/8vMcfv+uf7bXx9ECvYoraizmKWIE+sULHMNDoPZNNhx2LA517ViZQljDFRez4tDx/043NycE+/v9u2Xd0tFzV9/uX+8ffw+dZ3n/X6PYtk4L/vb3z5//HhGhmWA01AGmViFK9vRTpokWrUyshxOWlTsGfzlRQdYVlkVkb3WVw8N+wpQJ8luJQ1htKiVqc2Dvc6X/U8CpWBrFY1jOKBzXQYMDh9WLGvRW4fUZA4ffTI+n6cB85iQrpXriqp6Weu3jURSQr1AVBGvrT6retvDRpdb3/TFuqt31NZ/sDq2bI/zFdXw0HVl1tN9aONruymmVb23415VXTyVewAqI813eCZYc8632/Bhv3y7vR0zF2gRa62oXBcyvHXIbue6WgYvoGUMbvZyr1Ou130jsekb7NdwE3576W4bRxSrNHy8iIWvFpR+F7wnzx5K0jp4fZq/gmQyW0gCQtlaDlbHloIgr5VC+IXtkoXU2UBu9N2qEdGL7A616SbxyDAbxuHutNaBtqy12HkDZmyovERnZUVlz5wDsy8kp2HoaioTPpz327jfhg1z8+tUFQVdETJ7rhVVUcoosMyb7BLbF/biSTfm0p9oKXOTpxuZaFJ4G9lBvEhTbbSupB2QnUpUZbSQWYAPh5ASXfUHNAySLmu8vW/LVjyM4T2tftE5Pcp8pdr04LtWVmBdV53POeb70Dl5VkLl7nDK2qxew0k3wQFmZCq7J7Q1TCoJHVrdW0lfGYQUlUqgNOeYZiUpA4VVa8VpRJfeunuLLqQaZgI7ErwzX1oruqE/sCdjbLRHoLpWqlkt885qR/9VV62be0bWikZwSAzfOkVaa+0SJRudfoJWrOzcr/0N1Y652P5o7eHMyKTYTJbAonVAvAgM98rqECA3jEEmC629M9Xqr8XJFWVdAGFWG4WdokC1XcNA5+gwCNsOW0Wefa2723D3MbOwSpFpaiFfgno+z+fzkXHdxhiEs27HiLSomHM2cKqMkoyeheh93ieqs+diq7KqNnM+rBPU9pPlKrQA2YhOHyBq+2HMBm108M0XPRqRXbgI2rpWxjVpJsX5PGPM+Z5VRZgVFNmGDjVv750Kvd8ybLGgKmgwuID23W9irI/zjUhh0wICdxqXlKvhINuK/iR3Wpt9KRvI/v8a05CblD+vdT4eg/VxJ4p+c3h2wQ2K9lrCJBPa+olUOW347Lx7KJRF6yREkCyo8SHzXeM4bsft58/PSpmz6yuO+9sYFrHWY+Eq6OqCERUyRjytnU1zTqGGV1SyBogrC9diQmeSNt2vK9aKyXk445k/9eCo66rzM1n3qc6zi+uqOOs4bjCvFOA9rHO0hA1uHCBLQpI6Dp827vfbtGOanZmP6/ye5zPahmOHD/M30pREMa7rx+9/ey7/Wdf/718ef/37eYV/Xvzb4lXyObFiRVZSSJiPcbRbp7VjjS+RNUbc5iDyl495m25W0zHNh8Fcb1O3t+Hjww3resRaKq6rJLx9vE1y3T1Pf/aOaGSRtJJW6udZUCk16F2eJxQS7St3s16MrfOMCaqx6iRhzjmHpBWb3enBNzIae9zMeqFKw7QFoCTBMWxrijcJxdmOp6pGv3unH6PbNwEmApCMFmv16HyeV2aaMRPZGOkqWL+RbSerrJxjdPtE3/Fbx6/qroSNbP0Rvr5tFNs9js5d6N/iJflqeqnq+TydMcYwB9xiZXaL95WUkb2v9xhQBOjABqd5+JgDx+BxuDMhjmkZyJVXrYi1rlNh8367397nvJ/nGWtVoao/WNs1Zjt6akM96FjvprhfWqeNI0tQy0hRsPJG9YzO4a5X3GqzrWgni8yKrQlq2gNUpIbTO6BSO+o0lRlFM3cTi7K+g+kda9C6qOwW0x4juJN7TC+rc9t1GolwP8wpSa6IQIFur6TmbOvXvjiHDw4fQ23OoNM4vEiNwdttzkkyq1IIMVPKKB/jyshSVkYESiRLRWAVALn3EODA9j43UumEGyury42kXRtixlIXl2zX8qsEvVlfmbn9EewOG041RlEc6jAiH8OcKqVJUsDc5e4QOifMO8/8D25YL2VMdesJgUm93cfbtN/ux29vx22OO96/HeN8RkTadLoXuFY9r7XVEAQK5RZtnyLHHEbrkJ6MUOtUG9UlqmrQOQyiv6gFgkYM0AIZ4e7YhjVFaOuZGinzrfoqqO0MXWjdjmRi2y5amee+aUbhKzEEXnUfx83sY9x/e/t43H/efPx8ruj+uSYbpMaZshJ7ftGOcEL2ymC24/QbFugZaO9oBqIZ2+oYvD84MnqZDydQY5gTRkatnuXcKKAzwuZwbhJfawUMsDDQvD80a9suzTKrqtwNgIWnUpBBw8xAGzTFnBrkQfKY0+cvH3Y/JhT3af/wl2+q36l8P0bYKOCqNOnwIyIjAi6CldhHOIHqhpC9PZHMJY6t/REFdKBiG/r6sQYJF1NeZdEiVHzBstlAvx0TO2tmfRz8X/5y+2///KMy8pJo1vSPWbOHqCh0qR4Jx0tioQ0RJV6JfNzxOxvC2fKyggwSc2UD291iiJLYnqr+xrYxuKHubd2oFVU2HKRQkRc187oQ8evb/A9/fj+/2TPSPjMej+Q8jje0/lU45iTZOZm96LrJfUalZBn5xaz2rpOG5gpTJWhklJvfb/csVoa6prLCYt0tfp2aE+MACQWKOFdemTTcDBjGTlnoLCtURU0cCbS6A8wx9TZxAHXmbdj723zkNVnHzeRHrNSw81lnhZvcFVKkUvLDUYIVgPvhHx9Hf0pCjqpf3o63+91gY4xV9f0hReBUdM4BIVnVWMvOk1n866f9139e//K8HoGIt4rxiHyspLthwCsKDtKGSPfZ5tlYq9Yjr4grv73zL7++vx3Dbby/zfe3W6zVrQ2b96lrfT7sfjuFnz/O80IVLgaotb5nwMFv9zEPrqWqkkuOKmbm8/PRYMd0l2DDJWv1naDhhDv4YmjZImUZmBmHeXUOqJKUDzYv3l4VMx8+trTY4WOQzAxIPpwvqJvmVTWm02xPBy8db9Mu3vN8wehzdiAKW04fcZnfBse4uTkej5MN2zSS03/UTtR4JUVi7/M9MohVCm4h0G4VeM1DHefZosl2HGxoMyJaKpNIAAOuVCi2+QuedWWurYlSl/y5E+4Uyocfx5yHDeNBmUVcGSfvxyA6VIkG+vTnWlj2dr/7bUrKapOK9W3aGTB6AXTauFcrZHZPhGRtztxgMEBzSVFZCwDNYG7m3kGdagyHPudAbGy7f393NxsN5gpUocJS0RIj29LmPrV6VlKherAQAWO7vtWttxgNnL0k2HCz2/BC6zXbbWtszzYMu09blSmV+zjGMGotddIajRmbLsbL/XrM43bMOT3zutaJFk0XqorFiIRgwxyjYptyK1oHX+nl5nbMTqppurYZRqPRCXLzV8JOZaNVCrmtKG156rth+mz7Y0VSE2RWfz2NWLgybdOrVkhvPdWAQHerNnZXNGTwikgBIESTtUGVm//y8f52s/sd3272269vv33cDqPdb+u3+nxc5woOwsYV+TjXzwcf1/W4Iqsa5DGDWNN99KADrIitsscXMtpXVHN01Q72faOBlTSOcZs7hLNdpYjSDmDs/JSOhFBTsh2K5VaboAAab+6KAJHmBq48K2M43+7H25jfPt7efP7Tn375d79+nD8+frndYyEq5WBz64XsyXpYZrdkFMltqO0Omey/ZG9mL8IFkGzn19FstBecvjvjRIzW5aC/Zbm3D4OxqbrNddqw6l5n8hj3ZtY6+7QK5pZiQiY0Qg6UoDnNC03JWY9gdR1ab/f551/+dBuTFe/3+e2X27ePgXzeTf/+L/dcz8dnkWmsSlpBsGOOYUpFe+TsZmrJjFBdx70jYQXVGKPf7uY+O7yx8bEGRSvKSXKQEnybtbLDLbAy9sxobgPnOr///Nt/+su3/+N/+9N/+NP47//y/P/89fn7s2SkTxMNc61oqY81xYetjNrJtr0smgMopVt3gauwoxSbzuq83zE63Aom6yVjp7Lanu/3vcBtrkHWHD78trSiVihgVbpi1W38+k9//vimX2Lx98fjn38/3o76+2de60nOPiY76AqmiIBxZUShF+A5IFVdUMmms/bRmkyGevMf8TgzyoxRRVZeEec5dH17G//7P9y/fUPeMW8wiZpVY6U/cp3XaUaZwbmk55nPMz9XRNR9HHO8+8w8I04O58fbNChX/fqntz//5e3798fn98cx7xF+raRxXfz7357PUwKeC+uC3G/HrLVEHoffj/F28zKa+1rPPK+b2SzFOgkd02+TY9CWOjQoM6oyAhErYqGQ4T9+Xr//rPH+Nub8jHWu8zbH/DYfZzwfl6Nox5heQsV6XKcU9/v485/ub+PDM77dxy/v4+1+i0gbNhw1/fFYz/Nq3jhX5VXKFYG8OG12pGgifnw+IBxvh5lNY0rr0t623ap0XUGgXnwE2XkZRWIeFqoG6rNqXz3axgHz4YOxrsgE2H3pmf3Wem29GOoVybCxTb6gbrc+Jky99Pe4I2krBjKzJIg721qkGYtNAztpMDtsDD9uU8VLSxA750HVGkNs/cF+C7o56LXIMvJ1owlm5ls23FPFVsVtGcBe+7ZEEzsNQ+4+WikKtECswbLph3pOMgx3guYabhRut/s4xpxjOKF0ZvvrYCLNaRlh5O1+BDOQ/VEQmmPWoVrrpQDR12gGFDcgvJMw+r5sJFovOSl7/tsmtapXfaBxFLNpnL6TDAOg06Uy8Ms+ar29WcfWVee2GbdP1Xx05EupaDaGuW/XA0Eb1g1HzfVXG/jpY/pmI03HMSFctdYZoeVWLw+dRNkGu7VlNkYTh+/gvVz9yFgPg7WBPb6sf93Czu5jFyJezfVjL/K2u67JjuRu8qoyagtz+NIl7OsNtAxVqiTSmzvZtCnk7tmwzdb2e6WqOi4cMEV2PUe3VUas7EBjs/7G+7ETiBUrM2JdbbnxcadGI3vtQRBkDhPf5vF+nx9v8xh1n5imvJ6XcPgYGKNSxJxTRIX4Wl06gmRV0w6tFbMrnj3/18sZALQFyrZS6yU7dbee2tPaNh80czvIXTgjAal+a4Dy4VXFV6ORjbEfYKpCpdhlE2MoyUaIUln7qVbZx/3923H89v72y/vtMOX5abjeDv9J3eYQ0a1AS4VXl23nEnTaA4sQWwqm3dFhsG2F6uFo7z6ttWtMXO0PBYgysjTNW65vqC7ZS3UwRU92Zd60DNrFkt1l0XG+gtEq8QKiYxjZjxjx8p3Z8EFaRiLz/j7+8uvHP/3pl18+vsXj4dTH+1vo8f/9H381jqoaZnN6lp7PkxzEgOCwMSCaeXfgMNb1+fnM2mIUdaGcKSOjQ78r6cONw5w7rx0pobYclh2s7qNxZQKBzEpya/kq3O+8Mh5rPa/1pzf/z//Hf/ovj/p//L/+6//1zz9+f3aimRE+CPjYh/DggL8osEqJhWGOsaNio1pL1HhQf60GAWzN9n7WmsfOLBN8uLjTG/vuQtNZBpohK7WON583grYU0srIyPx8fn//bZ4/Ln/GqPo45vNCXClrJ4qvNoU4TLjf3lS4rmjQ7jYPGVYkZLmirGqXHjmJWmvexvg2EW4kHueQrvuw99v8uOOf/uz/5d//0zOFD0MmrmU4xHmCP2P9/HxcV5wrbCKkxxnnyp/nWtf1fve//Pm3cfDz+/f1iDn9/W2SWI/45df3b9+Oz7vOb5bFkJ/LjPbzM47K51XPUxPi/QBcCR7DHGOaqtbz56T/8u2Xk/4ZFHFe1zoXBsyPJaUQ2p0Btcy18oLX7T7qRr6Tvwx/TsLGsyxVAG40WzkibnJoXKfiWu72NpiM+1H/23+4/+f/+E//+Oc/e9XP33+s83ld5yQ7eTZK8cwKZGRKtON2u0VkXss5xzjKJdi17DNOsNYZ5p5AZrZ3d4xRWaRFJrV1702f7FzfnQtVAlLVio3GlB3DjKWKWg3me2eBt93Wt2FGVat6ASMIWe37b0sjsqnFUkZGUSV1MDQMnUhXqQ6i2NeKbcvmMN5uc2dLdLS+aU5mbQ1j7KKWPsF6PFFqS/RppMnaWWOjmTluYqvzIKqTSl7mtsbCewuFdQP8S695mwPEWhd3D3zC90bZ6QB9XnTYzhhu1Gi3UqWUMJlbL9NGmVmZR4Qffpuz4bXqAehwHjOvbhmjKpt82reyrHe4PliMjcTvoCxVEexgOMjcJLWKM5sgaAGxYRQgoTtqSHo34cGyIpEZeTvu6jT9yqhUJeiUjWFtw4m1HGztAsDSeu3M3m2x/ZH6JF87XyhWrDk9ui9JPjhFALajcaWenjvXzWhKBTKVMJQqMohtR6iKXdZtjIjzIjD6S3DvDdAxLKNjy9IoDkWE2aAZxTG8x5TaqpDaa8EWm0tWkoxD6hgsbHV7M53aYnjzHuuTqYrmSVoURAQrowd5qasVMq6KKH+1AfZvXW28IceY3iybH8otRmkqQWJUQoDCFNPGoK7H+SN5WRE1vT1l6TYq70n+fMbjynV1S92WiQmaY0rdKLKaBaI7qHimsyOUUqCSnS7TpmuyRa32Si5mZAPBbeErWM+XaEFJRKjWGHO4u/kmXoFAj4cguyN2OND2aGWRhOavv7z/+n7/9nFHrEj87V8fxLWu8y+/3A1K04p8nGt1aZpY7MQbzjGqXCl3V3bOLUBHlmgwdIqTsnoQYZV3kL2N9nDQmZ0IDqjiirjNw8wjTppWNsLZR1lH2mx/MIE92XWObEpeo63RqB7MVqEy7seh7mRI0V7qU4mjBf1jmmvF+XxkXledofj++UNlGSLw8XG/kp/PtXHZaiBCGTWOeczDIB9m70fbX9rfCDFZay2+ismjCGHFNcxy5aSDPMwhuZuqsqusjVsryITJSas2nIyKVDHKfn88B+3tuyn5v//Dx58+3v/b3z7/5efjX//2eYbJrDV/Db/DO3Wb3RcvE41CC93dvFOqiW4dNhs2CG+R/LQ6pmXGdT47wogda2T0OTNqhUpwG23CmcM5BIKjmJfMDh8omc8fP8+36Zn5/fvjvPL92y8W+HH+xLvK+fPnmaHMiqzb+/Dh0JqWpZDxuB3/8Kdvv//9e64qhdAmmNVyODgJIWP8n//lzwqNaT8eIdWv7/af/nT/Zripfp32ZrI5srAyzuf62+PH94jfn4+VtQI/P0+Y7Bj0EQF85lTeD9wi8or8PCsoH3FVrXr8fp0/9f3jSqSUP34+V+Zxu6H88xGmug2qEKs1dxVZPuw+HYXH8/z8fHz7uM/J4rTKM6uXvGdJsc4omR/HrSLjytsch/jm+e0Y74fH55nX8/0+xjM+z8fnUwX++v7x9n6P8+nXNcfd7rcfj+vzcX7cxr//p9/u9z+brn/4y7c/f7u/eT6fj5//+v061+Nc8AGTDosTWccYUtR1LXOO95uwiqvTWWmsTEG32y0jUBTYWcL9xJXPQlkbewCj1yZcBQKjWgNeQFcgW2sw+zzcGYSVawM26s1QLUshyero1ex7wmA7MbKEpvA74LdyFxZGlHoA6OndqIKxSEQkJbOxA0OzsxAp0JyZEetswuUY3uI6RiB71tp9W8psKB7t2hMltcSErWxq9KfVLuj/2WASmxlp/SdMUEflttFLoGzQkxJux8ysLPUNBuPsWA4VMm0MGgRd57WeoGtMco6+RTqULDfsoPWIlSkhKzPg3nYqdt3B9gaiJX8NWaURO6he7eIwQweG90DasxBRap1pvQaLbahoZxY6sA6AofvhiUIngcmGRV2K8OFm8MlKM3A3flIGbXoTQPXoHJmN+i4B1rn6UBfJSSVaZnYxRUT6sDnmcRwSIjIjZRjTGrTITDeHM+LKwHFMM2bFGKORK8mYbIXroA/3SsWVYqkqnbPTbWE2vbLmcKCkNIMCNLj7YYyVa0XzOlWISAmZ6nb3l1OxKVxHoSq+HiADnQa88IJNhQH7bWOP6dYsk/WgtSfZTCnlvn3FnYrfBBPFDLj7cGS9vHvD5xwoHrqx8n5MUc+1MtIlkt3cczFWLCO9TPm8Uo+rVjGiU/f8GBi9opp1qUyNejwu0X0S4vDZlqpVmX1rk+Z0V4ZULW0GAJSRNtpJL6SyB8fO0TAzVRu2mMKAobTTYjrqEgM0Hz0AmSEpVZYP/jI/VPr14+PtNrOuyPP5s3gVhkh+vE9VrMpPVdsYJd3m4BiZ0ZL2jB0uHKhDzJ6RzOnegerRFGZ/veYpmYQIvdpVbbDNfMMI47lyONwcxmx0Fn6bE1THifU7lolMJOQw79BD77IgSZmqyHBzup3nmnOQnMNFZZbBIFLz+tT1rnNd5/P5+Pl5rbBzzfv4vKisDEyb85hTHt/eVlZnrHYwKelODGG4XWfhXMecZQYfUWVufvh5+flcbR4f0HA30gaqLCOmzaryMeYcVZGoVZCjelajYl2wQTgFZVTG4cxnPVg/za7n/8gr3o6PX25v858+fvk539x//3n9XHlljQGnjR27AJmmycGWfJkxi5HyYfJDKYxCZjMLSt3ejjE8r3U4x/3t9pe/bKiQXCujcinCMCaf56LrPkdVXY/nn3/7pTKOyffbTdPDnMR9EOP4XPm33x+///1z4u4Dz6tUfH+/y60CaXSbHIQXKg2JqPf7xBhFxqpJs/sNNp8RuK5hPOYc5nBeV5hj/N//z/9U51pxplDk+8dtKuLn3x+/X9fvf4eZ//AV+fi5/uX3679///nXx/X9cdIH5v35XFkx78ftzvNZcdb9mKv49++fZ5xXhPkxbunI63FezzV8+c1XLhs6V0gYEwavhGx06xVH/Hys80oj3/yIMpYAm7c576MUkUl3EY9nuI8fj6tMoEuicKPfDp+0qbqNISFPXT9LMRBy6cYc757Fw/luuP/2po+bVd1v7898++tff3//dvzTP37Q6u9/j8+/fs+fj+d1PR7PeII+BL+uWij9VKfw3TAfj3xea97t8/OStFYWCpVX1MoEOGx+ZcBXact8tTmXjFTBDTsxhaxi1A643q7gDnoiu+q9BWiZWytoZmJFpMqGjy3b1xebvscOyr64mBbiZGXzL9vHJN3mDdjMTm0RSHtcvPk3DqEbJYlaaaVkX83tZRegTkoZraelg5aVtFlZEdGaSpBSihZRtmlnNE6jrmxsyIRmPrJ2GN8eNZBoIcmOd6OqKjQG1Tka8IwWZNN9zNugeF4rV89tRihjvVAlK6377QZxxUoFrdpOtVauupYWCMkiOvAahGarqVaoR5f9lVZ/uj3ZjM5y2sKf/uHxijJBlVpG3UqO2/QxvE9idxiRietalQX4GO4Dcx4r6rquLXcv0MbhkwOGYTQ4tEklVaRx/+8qHOOgMTOzksgd3C5kpqDJY7hXjUazqnSuyxqnUbn39YSUotLpt+OQap3r/f52+Ox5NF9iZPYTmQXpmHOMFjjZta5KVioivWXN1rpvdDrf5LCbwTY8OR1zWHMZ5jPTM7KkiEZr0BdqZ0/nLo/cWtB+lKSirJVbyuyfg2jbm3ZiG9U54ESrO9kA3bBG89JYbnQbZh7XmnN2nBImYyUEHxxOnwcMWuv+Nt2QEWQdtzHnHH6LjCsCYxZ4ZV6RWYjQCmXHE5Ekd1IwFLpyQamP+9tWO2w3LkibvTbPLWLNSueIjJbZuw9aU8Vt3ASksWch2hilVNYxRkErMhEyRFy3eQP6ibbGhlNJ1IrVqtHbcbg7Tefj/ImMPN1hxtv9WObPz09mmPB+v99uhz89f34+n08HB71Vt5lhSOsRH0lizuHO80wz0pEhj4omn2wH/EA6hoMeQhOsNB9udV6pMrNdkLXKyZYsK7PBPoR8mmB5lQkd/tKWVIU6mtx8kOC4X+tq2s2tnB0QWITMppsJMsPn5/OfK99uc0UGta6ltX58/3mfx7TJm+I6CfOR4g5Hnk7eD5VBNumI8lbhLvmE3I5bB3TB3G9vHb9AtL2o6nk+AOmMtKCbvCTQ5KSsWtI7rGwMTR9+FCyuMMXN65f327c57oO18iQ/n+v74/fjOG/v9/f7/I//9Mtvj+v3x/p5YkVRmNMgRYRQh/E2XZmPzwdpww73sWQrakVO53Bq6XhzTAwDS0YEMGzOt3epzp/PYx4fHzMzLkSuc53xdht+m8cYiic+5tv7XYXfPm6//TLl/HHmj+/P61x54vuZf/0f388rjVgZcAOQV2yDjmM47/fjWo/Hz89ffrnf7seP3y9Q8zi06mYzVFdogLcxr+UqDhsmRZTDR33/Ph15PVeEzMqvz3OdPz5vt9v1OEnMu19VP37G3x75rz/zX3/Ec8knB3glI209kWAukv7j5zoXpXyua4xx3G0F1pnXKpgNTU87rxh3gkeWHk9BMY9pgwJyVdTODTf3MY4xPaNklWGCr6jHea0wzCEbSY9aETmGD/NQ780+6Nf1eV6qlVp5O3gf44b1f/unf1hlAT7PXKsUJ0L/7s+/vR3j8/Piyn94n/D4/Ns/R+bPM89r3b/dV+nH75f727Rhc0St59W20NW97ZfyWdfzEZ+Pp9NSgnlWnLuVygvBYivfW1+4405aPYKXoP6VB0qAryFje2CrshM1OslZtu0nL5pDkg3n3mvRILC1Txve+pWd17npsBY1qyrF6uQnkm5DUEckVrZPb+/L5sZWsJC3ezdeFztxsTFYZCLba90WExu7gGKOKShYZt1Eo8gqYPfndl0zOXffWSuJrfbnIjPt+BQwm7lDSywJuFCCHN4d5Sy5s0McjZzD2uRs8oCqYN362SKeIopzTsJYQOLKBL+CX2E+RpHeN26HEGOOMYfTuPrn6wQYlNIqMZ2hbEvOZiRfWbsvIsU2KWkwCS172DBXE+upnesZnTtSVS7A4M7bMbYyizvOjk2MslBAUULuJyCIlh6MHcCMzjELo/twEilEBILHPA47YkVzZVWZyDk056gSDSVkJGBurkw3/fL+4W5odKEVtUb0hTHYuQk2kJWR4cVa2ayuCiuioGkdWw9Sbjym+3CpohKUOSvryxE0hncawHRFB4KYR9YVC6rhNHpVefuH++MvCmhVaDeo9SS65b/a7Eb7vZXJLvBtx4GMZKwo1e2Y9+OWtT7eP759+1aqHz9+ED1WFrnxqAqZ9PP7j/v9cDChp5IYBVtLzzPGHGa+EOeVPg6/8dTaNTaFRBVLawFa19PHuM83t+NaIZT7HDay1CWvtPaMtQBVLcok2AY3g1WtJuZeK1D/Y44Ojqd8YMAdzMioOo6b0VpR3pE7VbiuTKBfokmr0rligp+P8/MT95t1K8vw+XyeP8/n+eO8z3m7vR3H+ODtEetxXWtdEMYYIuK87scE8Hj8rMz78f7Ltw+aP4/rx48H4dM456g5C1K0AQ2QWIwI1tXn5bjdRpU5ImtVtF9m3gyyMY6SrnWZATQh98KhajOVSnMc91Ypixk55+yNb2A+r8ftOI4xz8fZCmN322d1qQYT+Px8SnWMYfLrvFauz8eq4s1kdvcZlVUZRn//doeqLjtut+/fHz9+/1Tyl4/3+/2uOc4rbfq8Hz/Xo0T6cNrSIu2YQ5UmCbzfxjTHwTEPGc/r2q2dlJR17agjB49xt3FLaRSH+f3gDfk29Ze/fDDzuezNGJcKeD7O0jls3IfhbQyvx6nzubwxSIe7fbwd77dDFQ/D9cwxj5A/E48rDoK57sM4wDwl3QY4GBmfP6+/f//9509/ux++8PzE5Xx7u/32fltRb3/6Bvfvj8f7fb7f366fP7Lq/dffbKU/9f7LfLvN26WfqTeR8g+/3Q6l7G3e5m1WnhlXXCsKPg/lZT+v397GPOw//Ha/+fgf+ffg8euf/nQbZhWP8/mvv/8UOe7vj3NVcgo29Gbvz8c5vv/4jDiz6nEtm/Pn54NVUD3zcrvHKtfCsIs8szIxbByDIs7PJ8hfv30TbIy5Kig9av34/umHdfPD48dakTQTWQsnYptm08cYZrpqZVRBilyRLcgytsnOUrgSWbiks/T740ryugI5CJg8Ig0ctGPMSIrS8LPQ+TVv7/52s1E/Rz2P+PGnMVae1+JVGrKn6oz8+XgexxTe/vXHz3/9+985B0+uCPi049C8/XzESq2yM84DUOQzo1N7zIeAqDAzptO5In+u63a/E1iZlZrzQJFwujWrEiWOqQx1NKjaobNDgF8XJNtGDBO2+lNOAl0yaY6uweXsEiMzkrPr2ckqZGZaCqqMdq++PB3Yaf3VeVZlxlRapy0DHahdKbMdajwMLh5zuDuxo3igpJkfndJvaEFt55cAsKTS3XqFFqoy+tp3pwYjSgCysZAykDbYDhZuhWubrMcO4BbgYSzI3cjaPvjmOTq51WiGOR2l6c4pRhk6/LVEHLdxOdfKFkrA0Mbmt9ttuKvKnYHaIM9GTmDeP5faq5V79KIkZTN0aBYPxdSWfbOsehzBC/cBbXSbQWe5GL+6M1BVtaoEHce4DSdHqVYkkGxuvife0Jjux0wprtX5p62KrRJhvgfkZkbMzJ2766cUkRw+3a1qqjIzV0RXRRQqFGz/UWkO70wps8q8KtLmMD/m4SgaMAdbyXPFdV7n4dNsdGyRqvZAaKwqXf1/zO5hennNho8xzI1C6RgTQFZEto0RmZWVbj6sI2VwXdls7DEm5ERM8zlnDhmxVgIwd3TibSwz6/DzLAk5bLexNjpUzQyqOq9qmEP0eWBXZVGlhNxtHvdS+ZiwQaGSsRCZcx7b95WoSm+SNVVZmQjquN8q1hkVdRlTyIirHp9jHt3ujGJkXSvV0jF6w66ETffb/TAjxM/Pn9d1mfvtdmeb3+y4VlwrAQ3XyyHkbvThEfGSDqsqjN6hDN2vmRlSbB8gOMYQuCrMOY6xrnWelzkFuc0kRURKpduwKkTW/bAEQJMyVnSN3fl8/u2vP+Y85u3+eFx//fuP29vNBwd0pxvpY6ZoZm9v7kbK7H1Q+sd/9+ePt/nf/ut/v4G6z8/HCsBsjOECH/FA6f24f9zv78cdkI3KFe52rquRrZ/n8zMTMBXf3o/vf/99ldDCFGPUaqzb3I9jPh5XMaePIcaV5/mcc95ub9fKtfLt2+3Xb7++5/vPH9/P8/x4fx+3+VjPXHlMZipjxaXym4zuNsbQSlzp5D/86U+P5+O8nqX17ePtNuZ9jsocKqPG+/z4+GDV5+/fUfbL26+/3N6QWeI//+2f7Tr//HY8rjruM8DHk8/nteJ0cz8On245Yq377e3+dk926M5y+hwzyXOtNqI63EXIMs7r+amDv/3y7bePu9d1Pr/f5zgm1+J5rsoEdHu/rTjJQelm4E15Xdf58DHfbvdhHMZpZna8fZsf/+7jdtz+9i/fx7yvtY7bfL/P291v9FhXRn7786+3t/n7v/7tr//y++PKeZ/vH7eP+b6e19/+/re3j+Mf//G3nz/t5++P52f+4z/89v7t7fn586/f//6f//P/+h//03/+f/8//6/f//s//8Pxl//4j/9w3d9//vwsxBzzP3+8V7Y3ZL5/vKEiM37++P75+fx3//CPc7z//P5j3lzAb9+OP/367ed/vP71x/n+62/Dlc9Pc//x83Fd17zd6Tbs/vz5PNfzuN2feY6at+us5+fTjjfQYZz3Sdff/uX3qhOwylyf9TjzcRbob2/zIFcVIys1zFeEEhkLgAbWGdJBoDKzcGbEpeM4brcjKtNoPi7yip0EnlRlVepay48x6CJW5aWKhalB2BIWSgFb0emXdebV2yR0O27mR62retbwHDz//Cf/X349/jQ5aqHi4/2d9H/+2/W88krZPOZxPGoV+Bl5Pa4fqk/Deq45hh+3z58xouZ9ZPGCltWqvPLK1MqyOZgyN4E/P8PN53GrQsUy8+jix1bOvrLsuF3rqt5C7CVDftk9G5UpZVM6YO0oMt9eTdJ3SZ4QFXjl5lU2KN59aRsVACwjruuiYG7DZm+95Jat9MbeXFf7ddxGZr4ybmWESWNwmh9j3OcxhxuYVVGRMtG6rKCyMjN3xpn1b7rNIjKCWZWZZjbGAJk7Bb9TEjHgcxzoCvHdnODs9gwzG13jQ4BunbheO+ialZJ36olbVRKO0uhacB9uGmZW1Q1oq8RMui1HApYv1AsElSs7835bUZUNorg5WuYsurmPWaWqyMwuD90RYOqam+1PA9m1VYSbUx1sDMngr/aCSrHnyf1fxQ5XdCfJRLmO2y1W0loaNtzHnA6oMnpYdJuCFAGU7R8vIyo7sdkd5mDFlaxuQ10+h7lvHCTTOhhKpSgfLmtZi+aYADlYFGZCMGt6Ddlc4jEHzTgqrgAdluqGW1ApGgQ3ZkVGVaU4CHf3YVuBYVQnrvdQaRzXtTLP6WYc7WeMVmeUrivMeb+NjDyvpaIiaeF2TD/m4MpcV2d9C/3L1hL2g6+iMqnqkoPa4XxAAsTKdCMKa6VbdTNadQ6culmZWVLiktb3Hxnr7e2tC+QTvK5rOuzw+238/4n6jy1L1iRLExORnyk7eqiZOb0kbkZWZhF0FbAWeoQ3wQsDAzSpRnVlZMSNy5wYO1TJT0UwUM/C3Jf7wMyP6pG99/cZAFIAhbGAUabEwIVRa/hWeEcfsrGVMSYzp5xgMcL+2203LVRDXPTqC02AG6OMcaRVSrkwZ0Y0VmGJOQMAMBOBIsiJoXx74SYiUpRSXkhRirQ2mgAzYEmJlHAWxVAyL101BawFSSFaijFp57S1SiCEUFJRSNHPRlGlFZVUEi+Pf6Vx/3BALtNlgKLqriVjc4KYEEkoM6Fab3pRZpziMM05lrp20xysdXXTTddxGGPfdd9/fB8nf5vjTec5FmWtruw0zlonp/Xdbt9V9m67F2ZUvNn0283q6x9fz+dz01bny/U4DgUwF5HC/d1dThJCiSWRVSGWnJJCUkTaOigKFhA2s0EjKmuksnxrRRrHsMxCQMgYXVgUIAI5reuq8j6wluA9AO0O20pjnhNyNgRV2xhnG21TjKKFSJEyAJKCn683Z03TOc7xYb8/bO7Ol1tllNVKpAhi79x6U+taH28BdSVkKSMgIIpZ7qvJmxIpcfAj51xVtkFVSiFDtWtQW5/TcB1yiVqjUUpY2q5a1YosakLU6GytgUFYk7YKt5u2FBZhoxWXEn0sXIxRrTJG0PusncuFZz9PE8e6ql3llCVtK1N9vG92603ycbVqD3e7rq0hcxx98HG1XTWr+na6pixziN2qNZVBhujn08urYH77dp9j/PLl5XQem3W9O2yut0uT6P3h7c51l7prd/huf/fu3ZsS+dNvXzOU9x/fGkWc8jzPp9Ow2Wx227U29Pz48uXT4/s3751rHp9fmtY2Tfvp99/bXdut2zS8NmiswmrX7Hbr83EYbrfKuc12j0p/+fIVkDer7ZAmfRmiREisKGNljbaKlPJp8iERQMq5aIilRAZwWkpZmiiolCK0lRWgeRw9Fxax1mmNdeOUdiHFlAoZrYwqkJftxhLbgoIQQynyDUDJSARAopUxpKUIKbDGxFxyyiJg1BKDonZW6zoUn1jC7FERKp1ZgKlkCIWFi8XSOrlrzYet+2Ff9TXcpqEwxKJ9wW67Vhku4wxKASnm4pwlomFOTM5WWCRlAhZF1VIwUaUUpQ0DMWRGCSXFlDV840ouH6qQxWjBgowaSMryfNeKRJgxs+ScCNUSVAuz5GWXhEoZFCklf9uuQPkfsykEUaiWK8fy7RwElSIiDQAp55QyCP+b2TQjKGZZFC0AIAxKUeOq5UIgvFADcTlXFAYUUIpElos/xRTRqm9cIEBQAt/uCUohqYW1CwIsWAR5ASQSLH7JBVK4FFAQlziEhXKGhdsBgrz0Skoi1PCNbfatyURL5Xp5UiVYmM4inEKwzmoyhALfBpNLIli+QUC/7dEkl0gKNSKXhKgWiqsA0KLdABJSgMRY/s0AZBCIqBAuRzaOKeeYvwGplwsPEBIrRUovjOfCnIgQRTFxLizf3hOWOfgSEso3RK2ALEC5JXD5JklA/DbqXdArtIz7ndVImFLkb1seiamwJM4ZkYzWyMRL6LeQ1TN/sxyDaK0QaSkJAUARgFy+LcKXSKx8g9JzgW9cVi4AxAALR3kpybLIEpAKL0g8SrkAiLHWaQeEOQQ/DyiildbaAFEukpiACElbW7P8jwxsGZhBZtFK84ImU0opzf/GbyWGxYZa+FtWGktSpHJOIMt0z1jnECUjhxwZkAFcXdFS7PRJa8oCqUApxSAv/1dLLsgIJUvKbV1prQUkxcI5a2v61UorHIcBEZXWpXAqHGJJpQDp5WemCR2T0mi0AQSxOoQEzFar2jlhEUVNXeecwwyQCggyI5ISoRhYERqNxhkpQSHWzkXvpylSZW1ds7AikzEIC5ONGULMwrQ02QvL4v5yC1065egDa7zb75rN9nq+Nm3btM00zilmRB1K8SEB4L8x+ZNSFA1n5pwLAvR9SyjT5HNhQLJVw4DTbYYE7+8O601zejkD6Zh5mCZtXde47W7z+vKsmmaMafClFBAWLEwpW6WcpsqQNQpZi6aQeA5zs1ppayCRsNJUO9eYypXEOSfUVHihcpLVhvMEMRGqNCdO4lNUoAHVNMaXx8v7+3W/7ncrPI3++TSOKaUQFanDblMZW1e6ciqn+fXpGGKCHz9uVuvGtmxTrY2p+Mf370DRv/z3v9nW/tN/+ufhGv/4/cv5dlUac3HX28U6q4y9Tamw6rq1iJxfT3OcD7tms2797IXsLXoN2mTMzDlkt6pyDmUuhFIKRchIlXGOyJYst9PYHdau0lhAalLWosB+s82ZxxRm7+colXXdyhbnu7qa/HA8n/cb07ebUiXvI6O+nmdU+r/83/6v333YP399/PR8+v2Pp6ati9jdbt2vOoASpxsp0aqkgJ8fXwzqXbNCyDG5hMp7uM2j0rBCQxqMwqYio01hZtGZZPRhumZojAAGFqUZSTfOFS4lMRSxxmImlKSsrlxT6Tq2jEafz+OMkQWVaap+nUJ+Og/Nm+7j/cO+bcfraIyNY2LXchTASiszXsvTl699U1tbpyy97g3pzKGxZvvQddtm0/d5jnX+nHeJLDlnb6p9u3mo28aP/j/9+c9IMMzT9SXMt3g9527dZV9Nca6UNWwqpY6PU5nVdrOB1LVWFGyGazg++1V3cGYVw9c42OPLGaSV5E7XYbPtj695OEcQG1hNFguU03Far1dONyEWnRgLIJCaxlAIE2JKUXLhQkrrRaxVWccphVKkSEhBNBQurqoqY4HghJlLrmxtlRaQVV0tS8KC3zSwiJQ4B5+ES9VUqNU0eymIirQmECmJq0rXtUWieZ6LsHGaSKWyYFGAiJRWpHQBiEWERTkDgGScQAk+DuMkJRLwyqq9Md9t7Juu6p1NJV9mjKH4sShltcJIlNFkFi4lFkBSOcL1Ntu2EdRl8dwHb50pc+Q55MLGORFigJQ55CKkI4OAYBFB/PaFlzMUQVBSIAsTMqFeXlkEl1bjv41McOH9iNFm8TYQYOacCwMCCGjUXAoILZ/gnDMKKCQRVPjNnFeWWokAF1ZGp5iX0bUoWoYpxmoAiCkDiCJkFGYmpeAbbYRLKSgLVlWIqHI1gChlFmIhf4NqSS65JBQGBQQEi2enLCVJxQvx0+hvo3dGIcTCGHMiVEppQcgpa60INZQiBf/H9QaXDWvOztoUAxIZZZUCJCwi3+SyJacYnbPCLCVbZREhy4J4I5Blr8LGNloTcNGohUtiYWbSkAobUiDsCmttspTFooJASv4NUMvLd/siyEopYaH/Pz9QmLnkb10WDVpYisTIOTNyYRJkKUBEonDhQi6kGkBmQfWt/LNUspbeOS6POhQpmURpo42xWpEztnBafkNCTMwJQDSppeCB//azLiXGBEohIRCRFCiccmEuXDgT6CKiNGohhbCMyYmFlBLMBJAZSEAz5SwlsUIy2jKLZLHGKlIpp6UlwwWyZCLOmhUrzqBE1UYb62JeeEha/ge/SoDLNy3i8gYPgEqZZaiIgDmLACBCkZyL4HK3W176s2i7zONLzpkQUCujyShSWiuVCidh0pXmVHIIlbFNW2fmMXtCAVYSIKZMoDRZrZVgAcWb7cZaY43xISNpW7umqQ1RnHyMMYYgiIVlnKbbODWr1hiTvHfGrPuua+p5CrP3VFezD/MwNZVr61qYlVK7zdpo8/JyvN5GUDjFMKfsumoegxSIgeeSFfNmt3n/9g1kGH14uVxeb0flaDlfAtI0zYqURp1KXFopdhmbiwBgU1WSwQ++6eq392+Yc55kVa+6quvNWmlVV3VhvA1TLtlWGpYsqhQBSCXPsy+lNI3Vingt58sQEypnEanXaz+OP318dzis+TtEVJ8/Pz89vm52q826M44astqY5+sFYZp8BODKVoSmr9Su7/a7lkOOgW3TXSd/HqivrVwvxUfHxIVVKquVzkbNJYdxBsAsgpmpyMrovl87Wy/UHx9Dyfn93YFT1CIrW39887aw6MeX4TLfJn/zse66pq76ugrzLFBIo1MSUnn98qxi0UASyzjH2pn71ZYJ4tv3rqoatnVX432ulQKE7a47nY7DOHerfo5F0AzjLAC9ojDcHrar//yf//08+8+fj1+fj2RNv+pyzsrg8fg6h6npOqXoehtD/sZtJEILuLZq6+ySKRrjoojEFPxtDl5V1cNuF6bYde27N4c4T5rgcj5dh1vw03HKYc6uqjbt9mH74XodJdg3/Yce+zD9fW5KTtiq6k8//KhJ386X7Xdv/uFP7xHyX/77r2vT3d8f2rZJISjjbjH98fXl9+mpUvrPP37sKuOvl7qitquut+HL11cmpYkSsfrGBEdrrdY0X4ZSMjAqJA1VWzlLmoUdKlAU54mldI0tXOfE2822a7pbvIKm2lbINF3mw+6QMn95fHp9va761f3DW1Xxp98/f/r10/ffvZ2uTwAIRb2+PPfr7p//6c8cU/bpWobX15fbdfj48X3VVTFGQFXVzofAkPrVOgbvMZzOp+ma7x/erA+bT79/ff769NOfftxue/90Ga8ReVZQ26p5eLfVxo7Ta9uum3YzzfFw/77fHEh3h4eDceaP3z4lH47P17at15v1PIbTZaja5nD/Psfy5fOl6Zy+XOauaVBppSkXyl6O50khOWVSygRSVVURgZgrbZQj4QKEpmoAEVKKnKWUpnKb7QoDI9FqXXsfsAQsGRALGVZQlg9pAWZQoJWygoyICtSiLlFSnFagICUIU0ZFTpuF9YICIqCUKoVj8ZMPUkjrhVtaRAQKExRD2Bp1vzL3ja0JcpiPpyAARdAH4QhopKRpnGPMmAtmwJRJCeSQRp/QcRHJLJlRQIXAKeVcMhKh4sxcGApgYSWEXAQA9DdSMn7La4AYJKfCKEkKlCQAihSR/gb1om9PhwUxwlwW0A0XABBNxMvLSclKK8mSy0JSodpZUirGHHOJOS9Us1JAgGRpeaIqC8uLl+aKaI2IikgUIZGSmEEQWGml0KDKRXRRSi0nARHRSz+0LM+ysshTFRILA0rm4iMoBBQuwEVAKZ1yEcMKEfkb3JkLC2ARNkojLOgQWv4kQjFIRFgYBBbhNhGQMQpwSa8kSVlaq1xEay2omCOrvEiSipCAQgRtCAkZShHmzFopq/QyCkDCAvSNhZJzZbQU0CBNVVllKIKkUpbuPCzQ1G+8lOWBrTWVBfm5ECFhKZRLytFpZUgLsEg2AkYrJg0IuaB8yxwXtZksG338hlZccCrLMHupfC11DUK9RIBYuNByiUK1EIyYmZmM1qIgMxdGAlkUqoVL4SKMztplKl9ykVKMUlZZpYxdYglBY40UKKXkXBChqjWAlIWzjKYQs26qqiaUNKesUtPUzrl58oBsrMmlTGHKzFhIKTS2YrB91262m8t5vE4jGYgxpZyMJib8Vm6GZbdPAEUKC6ExhkXILHBzKbks7foF8L0gOlMutKyzlFXAzlijiICVZARY2do4o7SOU0ik7/a7h4eHy+vt8fmYuQhpQeUlEpnddts1XQ5Rg9Sts9YgImq7ORyyyDgMJKwamUfv53lhEmh1bVyzXq+ctSUVY912t92u+5z4cj7HUlgkhFC5uqnrnAqIPNwfnHX79WUc/evx6LoKCc/X8+vxlHIskAmgXa2ATF1vfvrTT66t/j//7/8l/5xyiQCsiEjpCBFY6romFknsqkoZnQUKA2nb9StCNVxGa61zewJo3h+6bgVcgveVc9vNWkRqdxsnr4xxzioEFkaUqnLn89nPEyFpo6xzm3Y4vp6ZkJSu647uHlZ1te62+7s7yVjrbtvtt7vtetPfrudGt6a29evzbj1fL7dxGFd11Tt7WLd97e4OfZrGEDKgmkNGc7/bd+fT6dNvv/d39/Pgm7aqumqDGEr2qVzOk0+5a5r9bi2etagffvweBadpupwvpcQ37+5KLuN1ut8/vH94PwzzdIv6O/ew858eX0uBN+vtm7f7+TooKrWrWmze7Ku6buIcKuPqzpyvx3Gafv/1+OHj/Z9//Gm8TpfHgaU4lO8Oh36zDinqiB3NJZcPd4eu727XYRynzeajIWgq+z/9h39fMv+1+3X4EESRSGnq+u7t3b/8t789n067h0PfdcDldL6cz5eqdtZiGsftutGIo58OTT+zvg4jpFCmaShhf7d6++HDH78+xpD86aoUoFZ9s7LaXadJU7vdtE3TPGzu/vzTv3t5Pg+nC8TaCtTYvdk9DMMIwHutmqahedKF7zY7ixAO08Oq++6Hj9ZWyDCnkgTfrL/+9PAeoXz3/qHvqvPzi0Zedc288fd6HTOqpi5aYo7j+eSsXnWND9MFLoUZCJXWqLSpTPCBWYw1iUUSzylUXeuMnceAkVHlBqjrul23LpEjUr+7y5miOM+h6hovNI3RrbbNJgWp6kO3225STCOrVjXZuPPt+vWXT01tfJo5wjaUGUNJidApqPxt4Kx++fkTc14/bA8HO9n44YcfE+S2Gf+YvyRRuuncqleqadum3fa325SGMZdbu2rumvbp5fL69Hp/ODw+HoX5cJC6cnf7g+Qc88ZVtqqb2+2P4+v5Xb368PHj09PrfL31mw3+P//Lw2rVkJBCJIWJk5/D7GdndKvdcmlPpYScUWkgjZZiTtrYEMv1NkXOkw9VbVerpiaNCLWzLDz5dL2lKUom8lIiCyr6xnIlxczBB0XU1jXnzCl2fSUlixRAymnRcOmyAFuVysxFChDlXLwPIqiV+Wa+KVJiwVIO6+7dttmvdc0p+1lSVIpQazQUc5GCpN0Q5nGaU0JEq7QrhZVWPoVYUtu3gGoYZyQ02qSQYoyolDVOROaYfM7aWgbOIiUVhaiNE4GS89JoWMD9C7U1p8IIgkSEWtuFxLNMCRAWuLsgSkoZEDSpxXsn31gjgIglF0XESQixaxptTEx5mkNapHpEMZblsJQLG2uWXRUSLvDmJcBedgpIKCy5iNJaaw0IC81WKcylpJwEwGqljOGcE+dSCorS2ijSC+BBRJBZK3CaNBEpLYIxJ1ECIqQAFrEwCylKqeDiGyoCqABVKWwVNc4gyvIOB6SWMfqyZTBas5SQ0pKeMKPWlpFzjhqwsZZFchJltDZIUpRCRk45l8KIiERWGWsdoCQuXDIVcYpqrdu66mrXuhoYxmmevBdEIYwl5Zw5C7JooxbtAyoUABEqAJkhLvJUKYoEEUhICFJOwsCMiIYUpZyXDE8WjAp+A9XmXITUEigukWT5dgVCjcootbzNwOI107ig+QiV1iRAyKg1FRDOKWVewiWllAiXwkjybeS8kLu5VMZWpnJVve5XVjuFyla2pDL7eRynnAtz1loppRVRVVVEhoWcrYl5uk0xhrZbOeuGaXbWdqsmpjhO0/lymbxHoM1mRYB93292/XiZj+fXkMN4GxlKU7vlN3+OYZo9GZW4ZMkAYkgpo0ospFERlbKQI3DBFosgAyTOC8DCKK0QmkpXVkvJS6MNBBrXNG2rtBFWYU7b7fbHH/8Ux/T49ek63LRz3XYdfC6M2822ca0fR6MEhUsqU4y2qjb7XeJ8OZ04lbquSRFnKcgKkCUDgZSiEJqqUs5Z2zpjoZTIcZz97TwSQdv3bd1FH+ZxtsbUdVU7Z6x2rrkNFx/988tz4CjAt+E2TXPV2eE41Lr67oePD4c7P46vz4/X26VAmUNgFte4w3aLAmGaDemmaZVRc8whFe0cWT37wAUIETPFOdSNvT8ctFa32y3nvDjPrTWkFAvayrZNA7BwXHG83oiwaZo5+FIYGFIpaFRKxdrazwFyfvhwCDFqMl3bBl9yylVdhzCeTmdlsNvUpZSXx6fj03Gz7nZtu27dpq4UJ8zROUfKBJ9MY/78D9+fT6f/9X/93/b7e+eq6/VyuLvPImOeQ5LPn16uw7jedB/evzPopOD9Ydd1bgoTiJBAjjOBug6RtCIyrnZkMDN4n8Y53Ea/2a3qyhFmEr6cb/M83+0fiMzXz89IeH/YA/LTy8unT59WfXvYbZqm4QwhhJh95ar93f71eB7nCTKXlD5+fPfh/cPxdJzG8eHh4IwmpDjFaZiX+vnsAxndrRoQ/vvPf1znVG1XH9+/rZU5vZ7Ol/Obt/v93eb6elQS4+wfn47r+zdZVU9PT1pSrYglN30TBX7++bcUMyqytQFFRTKABjII1eHuUFd165qmXeUEKgOkmQvfQpj8UFltFGqQH374LiX+299+3m77PPvHL1+0Vf16/f7te6Vo8v4yjfMwL9+G9+tVU9nkAwmsulaYh8tg6qbf78WST/F8fCWCrq5fn1+E0TV2oa3mnDPnwly5Slk9ztP1Nk7JV10NiM9Pr6Sr3WbNKXPiu+3BKnM+XrStnKtsXXXb9el8+fLp8/l8/fD+fVt343XoNytr9eOXR1eZ3Xb35Y8/mtrO15sP/s39fVevLpcjWXV/t/WDf/z89d2Ht3eHbQ4pcWwPnSLlp/zp0+c5+eAjMK02W0L68uXzuluvVqvT7RpD0NoOw/jm7dt+3T0/P788vT7c3znnfJiqqgreg8i6b3Ph4+tlGEZBMNp27bqu3PFyGW/j3d1WzzOHcGsaZxVY1JyyEWmbLkSfE5NSJUthMNp4TkBKaVeELqcBBEsG5yrSJgTvr9H1KCWfhwG1AlBGoUKYQ445kdOKIGUJIfkiWhtGskYhLeqWchtmLElr5ap22dxkplwkJuYiyumUoERWoN3C8kcQAWTRSrnKGISmdcaYFKVkmScpGa1TGjBM0cdsjFMVTBEja1ak0TLoxEWyDHMWgjSEqnGpFCWotFpyoqaquq71IftUpIAwitKCAAoBcUHkACokQiIpWJiRQIFGpUVhZlZEy6jr3zZY39A1JRcp8q0YxCIsSitUiFJKLojAAGrhL7OUzAg5x7ygO6x1AJB0EZGUi0a2xuRcnNZKaRYJPgpKKUUpUkoTYIGCC8yPhRQurlMQAinCBYRBSQoZBZGQgRZTpF7gGISLplhQSFHltEKdGUIMgsgIC7kAREgZIVQaOWXkb+cZbRSg7pr6zd2Wi1xv4/k2MUoqWQSsMcC8W69TipfrVQSQUAi0UXMEKEpbZ7VjZhKunUPJSktb2yI8jWPiYoxbTJRW2SIAKBlSLplJMZmUKRcdMkguMUYqRSskEUccCVjB4hhNOaGIURYU5cwgIIxWgJVCVFJyTClmL6C1straXL4ZS0mbnBeHMyHhYsUTAIWqCMI3LzsCLpolWBKyb6b3zFJEGVoG9LJ4Kr91ujIwiaAiBKJcMHNZNttIClByyQrJaA20kN50Vbm2bQ0Zq03lau1sUiklsUa04nEYmXRVNVXlXNWCQMiJtF05V+s6hly5xlVNVQVtTLdqYwybtRh6ug43Abnf7Y3SpFRt63pfN86dzscKjdLU9yulFAjnUh6fX5DQlzyHmEqAUpzVhRIhcmGfAhm9/E9YfISMZEHHlFDAGY2lUGEjaK3TpOZ5jiEap2qqNWlljFgDYo+Pw363ff/mfXO5kKG274wxSBoZvQ/ACYCqyl39NXs/X0dMuW7rzhqs6oV4mDEZa3NKRlsgCBxyygW/bc+M0T7nafRT8LdxyDkNw9iv1yJcUslFK41d45ra1tZOF5YY3+z3t/EaklfO3W+2TGCyO51Ozy9HKPx2v9P7/f12m6GMw/Tyctxstu/fviHE0/ORU66quqpdyvz88lqTdk2tt73RtsRyPd3OMcyX4ZVlve5B5Ha9jfMowOt+pbWKMdlUpRy8j6VwTElyWa1aMXkY/Rx8VVd13YBALlmDMMg4TfB8ypBjjArIkI4+N3WtNE3jLMvMD4EZ264zxpG2hLZk9Jd5u2r6Zq20NlsniOxVX+3+4bt/bOquWbXP6umwPbimOY1HRHq/Pnz59ETG/HD/oaqanCDMOfq8O2zvHu5Pn1+eP3169/Dwp+8P59spl9jWdQyjgNhdp7UdfbxcbrvNZnfXn59fvvqEzm1WNSm3IjoNt/l2dqZqlX53t7NtQ0hd1/Vth6Qv0/Dycv75l0/Gqq5ft1WTfRQBrc1utW5N1dq6rqp5nq7XQQEBQN/0TgU0CpifvzyL962zJcTnP76mKbw8vYQYb8db+P5DY8nfYkmx010L1Wp999CsIc5WKVcZZfXzy9G+I6VV09ZCkKTcpkmAXNf87V9///QvP//jP/0j4/z19TVlMNoNl9N2v9NN9/o8PuzXu93+/PpyHG6rbtXv1q/HE6fCpNv1do78118+bdcrUjKcL36cMYNGiKQqIWernPLlFojB1Z1WajpdQSFqdejWzIIMve0RadWvBMQaDSzn07nrV9vNNgufzmfZinLQ9s1wvX1W1cfvv3dVdbncFClAdbuNuFpxxhj88Xh6+f3ratvdrbs8jhjC+x8+nJzcrpcwiXDmjCl5bc3Xx9cC3K+3dnVv68pwCvM0DDOC2MrkFOdhRgDbWA7R1m7T2LHBXtT+Tx+61cb7/PR8Ktvu7fs3hfk6vHz38b5uqnGaKl1N42XX27vdx7qq5mHebw5K05evYyml0mqWrJWg5MPh0NT14W6HUST5xkDbWm10BzmLB9tpAvSj1whVZQryGMo0eyTq123dWGRznGa5Zq2QUrGu7usmSVRVO8wmzmEagtEkTP7qBZGVBlFWgzKaCVKMnBhKhlhyys5pJVJ8Uag5lxi8JkEQzpmTFBZlFAgnn7DSxMAplVRQGSWLB7YoQqupJm2QDKEtZTpfkmIALhlzKUlAJ4qpTDFjIpkzk+RUkEA0cMohZkaOhRXh7L/ZuRAICpXMwsCFkVEycxajVS4ZABmk5FxEtNaLuApESsrCIiUDIwMWZoX6G94cGKSgiCyc5UXNsPSHOXNBIvVNdbPESJyJAEpBQmc1CihgZs7FA4LWxtrFu/Ktb2otgZQi2RhTV1YItIa8rBydaZsWAebJlzGlxIwAAG3XGq1ZWBE6q41SRJgzG6NFax/D7IOw0JLr5My5AJExChhyliJ5aa8jLVAZWYZdIoVRSREDuqoqsECotLEKcd2vtuutRtW4rjLnUMowTSlzU1eEcNgcSsqYKZdsndHK2MpeRn+5jLW2h/UmhDT7uO5aKOyc6traaH1zt9s0Na5xVVNXLqSUciGlQorDMCKCtcQlDnO5jVG45JyVgGOwBkmZ2mkiDDEKsmIFCNZVAuAhckgGSSvFIsoqTsSxLFDGSjthKrkohYUXcLeUVBAI1UJ/WNpeYjQtlWqtNQAupA4uRaRwKihoiKzTSquSISUligmQRJXCJbI2qqmbUkqlKZXiI6ZcREAZYpBcBBRrQFIWhAGUCAlLnEOa0mw9EsWQl+F3CMn7JCGFkOqmoevso08xVba722xr44wyXdNXbYPjGOYw5ElbBSht3XZdG0KsTY2AwzDFOWy3a6srFLvqqu22t9rknDfbddu2XfV7Kjnm7EMa/ZhCtE5ZA1Xlgk/jOANBzil4L5Kr2mQRNHacJxFed63ErAA2q36z6rZ9n2I6v561dqv1puTsQwyxoMLhNltXYWKjTC7p9HxytWmabh7m8+mitVV1nyI3TatRBR8NgipslRVE7+NtmAS5cL5crkCy2WzqpjWm0mQl8ng7T+cbKJxnP+Msqkgpw3jzfm671W6767sOmS/n8+vTU2Wqw90eBK7Xs2ZiMKJbArXb371/+P7L41PdWkrleDxv+w6R2Pvd9q7v9j76y3ladR2RmX3McSLRBOJEqSg05eRjkEEKNM65+93peM1c/BxSSYSw6bsUY/JBDIHwcA3DqObJN33HLFw4JIbRD+NUuNRt6+cw3ial9LpfO+tyDNfbdbVr/XUeh7l1rTWWtEbCqqlDiqfzLeWkjW76FYHEwqKtcdb0VNXV7DmV8eGhRaC//e03kaI07XarXEBV9fky8mlkLJv9pt9tGtuGxNHzPA0hZGOtv11jmUuA5z8ey5ynmrvWPNzdoZRxGJ6eXmJOu90OynQ6nS7ncf3neiT1+Zen8TzvNl0NtnLVuq5WXf2Xf/n74/Opaav3b992q9Vuvzsdzyn5zEwIOYWvn76ut/3Dw9u27Y7z4/U6/v2vv+w267qqAGkpnr9999CvNnlOVVWlVI7HlxTDfrO9v9vOGV5PwzRHLuLqakzh598+v5yuP33/tq/dNKR2VQvz6flFGY05XKagFD3c3VuwK9v1Xd/1bdvUPsenl9frMJdJNtpl8RgTQFESCvLlfB5vQ9PYxPnr59/8sDLE0zjM023VdcMwTKOvXH33/k23WZ2eL7fbNMbQd12/3QmelVBXNVpQ2RoIxnmeY9xuNuiq19fj7TySprp2VVO1XYeAIUmY5+N5BIHNpkfg63mISZA1cwlzAMSdW+VTGJ7PLpMJfL0cS+F+v7vcpuvroG3V9TUgPMenl8dHa+Sf/sN/+vD24/H0mlMZr4OwbHabqks5c2JGq//xP/z7tu2mafJ+/vmPp+RnLMUYs930zufBB1Tz9XxFEjJ4d7+rtJ7nWNfKaM05H19f67rZbLfDMNardrvfaqdm75uqQoCnx6+rfrU/7F9fns6XS9usldJ129wf9n//7z9/fXx8+/79T//wIyo8Pp9yCZu++/jjfeH89PVFv13fqcyrvn54s9XK/Pa3Xy9PL7V0tukQgnG8Wa/H6zkMvm7rrYPj69UY3biKmbP3oGS4jBHER05AjTa2IqdN5myrSqECwuswBB+MIiyQs1QEqFCD1IqgsCYRJVoR5LJx2lU0lRxzwZwEkQ2hhpKCKpFQGQDOBYGdRmdo1bjGGIMKSgIU4bJMhpTWRMhcWClGQcKYODMrQ0UWGWdOiXPJWmujFSmIOUMR65RBUii8DKRTKTEAZ+Jl0STCbAABCguTgNVmWUilmAClqy0pTDGlWBQSKAUISlNRuAzjQcRpIkWcgUQQ9WJZIq0AkZGX9GnRiFqjK6MRkEtZhvIxZwHJ+ZvehgWMJQDxIRTOSorSViuSkgkzSK4cNTUQGS7JR8giWmlC1dV1t2qmcRTWrrJd22qt06LDVehjGEefZs+FZVF7W1Ko6rppa7eYsm1dVUMIKc7eA+AiW1GojXaAVNlqt1lbrYCFGRWRNRbFrfuuqbumqkbvHdkk0DZtv2qbpkkxScaSsnambWrn3GadT83VKXO33w7jfDpeDemqcZWrDrtt4+qhG55fj9ro7fbQVPVwGwB5tWpL5qfnx3EeXW2Y+XQ8Xa7XOXpU4Jx1Qipl1+jWtYACRRGBksJSSDdKKcBElEWEAULIIGiM7doaAEopdWO5SEyURVLmAoWBUyxEYkkpo6UYYSicjVG5lAVJh4QFuTADUSlMwCyFhAzoxlVscRj9HGIBcVatmt602jnb96t5mnLJzIXbMocweb/4VBdPFrAC1IqKUkqyxDkZpUE4M8eUZx/QGBYYpznmyEVsVqGkJUNBwVKKs6RWG+26guJ9mMc5p6StDrHYyjar1lqdck4+5JSYhQuNUwkxhoy1bbTpkCj66XwLgrV1vaTkalp12Hkf56A0HQ69s44ZbrdbCJ45pxAAmAjAqoIwBV+yGETdYNvWbdO2dX3Y7aVwU5+UNdaZx6ev/joCStu2KIYIhnkK89ytmr5tGSVMfp69VnrdrdabTfCBUJreNG9bo03wYZ699xEY6qZWWo3DRDIJsyHbdz2UYgXXq85qG0K6Xm9FAJRZtY0AjqMfB79E2iVnKWkeRilwO0/Pz6eYUt249999ME4TgeSitMrMD4f19XpDgcTl+XSdptRtVru+I5tfT6eU47uqCgima3Zd+2a3X686YR7H+fc/fj/fxoISSnGp6Vb99rBNOeeYcmGr8O5wqCqXQgKA23A734Z+u8s7rmqHqK7nqxTgwF3VChAmBQCVazQpjiCc1qu+XE7h5g3p7brfH+7maxpuXiEaa1KGyxCU0+u6C5jPjy+Q+XKZPhwOb/fbqZSSizXV42lIKT6/vr48Hd9/+NjfYynlOIRN392OZ0IgvEUXyKCU/OXL03WY67YzC5BYgiSw1s5T/vr58XYdqkaV6G/XcZjGzKiwM9bNUfb393Xb+Jj3D3ccH8frWLigRVKkq+bHnz4CilEIrF5fjmbbd1Y9Pr+Mc0oM1+sNSc9THqf48vLb0x9f3364V03N2t0mPl3Od4dN3/fWmL7feDWfXk5KK+Ncs66b2PpxtGARHByUdc2U4pen56enVwGxXbe/3zltY06pwMvpeBlvdVtxYY58DhlQFEPXEgi9fHoBFMvwcX+IOXQC//TDRyDwfuq0Hb23FreH3kCZx1tjsTZkiDbdipOkKd1OQ2EpSYIv8vmVUbS1T+erR7xex+PTebPZ6r7FlP3Na8Lb6AunqmQCTMbYda+1KsAXH4pSKefJz1rbwqKUGjndrrcU/fl5fL2eu1WfSqGihikMl0tJ0Vb2f/9f/lUUdNv116fhOs79ZtPUTchh3bZ/+uHDw74SUhh5vkyKiRO72jZ1O3l/HW6kNCSJMZWeU/Il+OF60sre//j9eBmeXl8eX6/LvNis7e7HH4fbMFyvr7cY58t4vaxXzW16Tjm/PJ7ff/hYEE6n63vXorafv7w47UpDxigGg6om01zH5+3dO+Pqv/3l74SilG223Z/3tdZ2moZ21X384f35dLnc5st1DvNktNHfb/cm5t27++///CckVXP9lX5TiqpVc9gWamzXNtNtuJxf2nWHhJ/kizNus6pvw+Xx9Zw0IJToZwQAwjnFgrqkhATZ+82qc8bUusvZidJz4Jw5zFPVuEVK55wBoBCNiBUu99uVc9X1Ns1T4EKBKTUGHKaSAGoQgoxShBDa2lYG21rXy5I8R8YEQtqR0pgjRJbrdUqldG0tQJdxyIW1NUDESDFmkGw0VrUjRSUnq6Ctq7qxBGBIYV9P42SNc3XtY7BGEidQOpUECEVIGLRSzhmttFZqnpEAmro2Ws9+llKQVGEBIiFERQCUcy6lWKsJSQpXRmtCH0LOhZRCrRgwl8JLzwOwqiyhWnxfpFUpZo5BvgVqi2WMKlcxSyxunrwxerVypJRzCAjzFIhw1dWEdsEMxVSMcU3dVNZWtSUQZm7aumnaumpK4ZAyEzjjKl0l55FFgVARoxWgtrZummaxkVpnrvUw3KbgQuI4zXMWdnW9bteVbQipqyurVc48TUGRarvaGVsSEujWtgqNRovWAmNbV1rpmPy663IqgORMVbtKGdasame6uoMi3OWcQJOtm9ZVNYgqMTeVtY1TRMfXk0jpuqqypqjSNM5Y1XRtTmUeozelsEaSrmtRJMUJdZ3B+DmEkJRRuZSc0orYWF1YKa1TzDElAKWUqV3V951kyCG3rUXEcR5jygv9Zw5+nqPWum0aow2RNpaUUsGHkKJ84/TKwpEW5BhTSbmUUtdV3/XaGO8DihEefQiWqk2/XzWdq+quqQkgBD97nzlO0+ydLyUDKmvdIvWIMYKwRtKImqh21hqbclKUiEwBZBHVmphTKckahSjWGGsNASo0ja20MqRonCZOnGIiRaRo+ZtjSd4TEnLKRLTerIm0CCIpozUiWeOIsKTby+V2Pl5yzErpuqmcrTrbiHV101gihSaUYMmQxqq2kpe2OwPR4MdV0xaB0+nMCCSmZLhcxtfna8oJRFztQOA2XgEkTRFo1pQFMYmAMbEwhLRadykXHicGyCJzmgHhdh0QgJxdrVeuckqbkE9K46pt53F21r19++Cstc46Q5OfRx8hpXdv31ijYpjW670vuRC4uo6bcrtNRTiHPIWIkHa7vjLuehlLEVO5FHOMM2gT57juutfX4+PnR20VkW6bqmm6y+XGCoZxPJ0vs599js7Zl9NFct6uum67rbq2322VgDG3YRwKwMOHN2D1MPrLMKZcbqMvXO4Oe6Ooqqr9fqsQIPHT0zMpdfdw363XMcaXp2O4zsbah7u7db/inF5eXoH03eFQUhqGyaey3a17Z6636+7trmROqRhLBb/F9RpLUsScK2HtjKxqP/qSS0ylMObED3cPbV2/PL8wZ1L2+5/+9PbdO0aZg99sdwXSENPp5dVVdrVu+01bAE55GiV+fhkux8uqcW/eHr7vurcP+6rqhss1Es/n+XI+pRSavqOCTy/H7f2h2a1F4TXOMcvL09N4u3Wm0kTX65UV7LRBpTbbdaXU8fn89Pn59PLy/U/fb1brypXfP385rNc/fvzh8+fPHGdIyVlad81uvbbKjMnfLpcS57r6zk/j4+cv0Uc/Ja30w4d7pTUjhetl1TY/Hj4K6NnHppTD4ZD/oeSScp6dwdLn86cvGZQQMML2/r5q60+//vF//OUv333//j/8879//fz4+fWrAUKAh8NDCOk2Xo2197v9NI06RxCFEr7/+L5r158+P/7x9PKf//EfH96+qXXNOXHm56fX6CpbV3MMl8vNWGtqV0qqahdjGIZhmmcgxcxN5SiV2hpG9Cl/en7ZsHAumnQG0MagM59P12EcV+vVtl8Bp+PLUSbmUpwzGtXr5TaU8vD2wWr3x++fpnHarzdjjLdpvn9zQKOfnp5F2x/evEHhz3+8sPBhs9rs9tGH5y+/Pz6fdvcHoKJQVlWVU2DvtW2crf0Qfv/1txT9m4eD0waU01qvuuZ6MT743W59vdy+PD3/0HRCZgwZtU4JlGtV1Z6vk/e+6zcpMaOsN+vT8VVraqvWz/Pf//b3t2/fbDe7z5+/nC9X56yzFZFt2va7H9+9fH304/XusMk5pSS///LZVQ2SqptmmkPK0m0a/V/+4R+mp6OyrU6qIN1v75yo0+moyVZOZ0hrqj9+9xDffl+1rSL10H7pqs6RjNP5S/tyS767P/icH1+PMcXT5Tj5cfTZF5+51MrpRlttCEAKtVWNwrqvq1ozl1R4kZC7XVMKF+BKa2v0pu2ZBQqdb3POrCoNCnCRLc+lJDFIq87WRhqrGqVSCqisa2skUVaq2kiiyxhON3MboqlaZ9sk+5fXF1c1WUiILrfxep2VttpY19SX8yVF7Lq6rg2UXFfWGT3W6FwlIjaattVAkFIhTTnnxUNQVU4tRBphb4QUtXXFwrvNyvtIpEJIAAgatTUAFFNKMdECNCTVdzUXnmfOmUARKc1ImYW5+JgUKVdXiCSlAGhrNUEVk83Lq1XhGJOx1lojgFrr15dj1TRGWx9zU7kFs7voKACkrp0xuhQ2xq26FRIxcxZOKYFWIRcJARcnwOLJVGSttUpVxrS2VtoURgCttUUARNFaqZVSoJTZlFyWY7ur6r5fO+1CmBc+kCCTAlLIDPMUhsRKoTWKVFV1DrUmxDjHy/lojCLUCsnUFYFOoYiIAZKYs0paGUJVtbaqHLFM14FZhstNSLRWt/E83sZ+3UpOL4+PpjKIoEgjAwrv+lXfNtfzYAwd3h4A8TZckLBkfh38dYxVZZEwJ/Y+TnMoRZxroi8hllXXtHWzWjWbzSaNOZmy369sVb08PQ/zXLeNVup6HafJV851q24RL3WrRhvz8vyiQ6rqWhmzcA5JYc4RBFLkFFLdNJt1j0CvxyPKxSibYq6qdtN0q7araicMddWS6JxAkabGWFMbY7S2zhqnLXOe5jnEaIxRSMystXZGpZSMDz0hCC6TPSAMYS6chdlVrqoqFE2ojf6GavI+Jp+QyFirSDFLjDGklHJuqmrVNUYZrYzSClDVVKGCeZqGaeDCIQdttNZquSpxLlSDMKcYHVuf5Pjlk1KqMlYpnWPGwk1TVdYKowKwxihrLNA4zZRQJM7BD4PPyKkUuFApuW4rY3U2cJlzmAbXhH7di4Jx8I0Vz5cUy/V2Cz5ep7n3q7qpM5ZxmF5/Hj89PlmrhWWhZ52vl5xzyunu7s45N4zX6zW3rpYCX78+Pz++kMK2qd+5at02p/O5ZK4rU/ftHPw4zSWGFFMytlK0XbekDYC6DfMwjUKYI3w+Pw9+BBQC1dRVVVlrbG1sLpmzvLyehjlokt16FWb/+PjlSyq38+mw3fH/N7Z1Y0grQ4e39370pjhFMofp+fX8+fGFibzAftu/XsZfP39RCHfbXY7pNoz5909vMhil11Ud+z6HJLebq+x61e7VQSu77ntSikjdxulyOm3ff+ASuq47n66l8Pbu7nobS8ndqruOl89/fDFOv3v/phS+bLfX66hJr/uuUhSi5CmEQn7y8+z3m33V2py9NvU8hS+n58swOmep7gbv5/OQlH6+nv/+6UmMPU/zy/MRmb+L/saCzm1t59ar48uJSDf3dzF6bSuN6vnr4+vTU7/qhvPNVrpbr75+PU6n+ePbVkTdIrx5/6bbrm/H0+nnT/v1OoZsXFM3lsjWlrDMfaUf3jzcvXm3cgthn9P95uHhkOb49OmTMbZzVDtnUD1+/XJ6Oa1WfbtaXS/XX/76q66MtmZ/t3bGXi5nYYo+zjms1v2m7l5fLpWBCrVZrW6r6zTFP//pz+v99vn16fPXz9fj0Y+DcUYq9d9+++s0TP/pf/qPGvWV09Pj1xT8x7fvn19OlbVlls2q+fDDG6tNXVX5cnvJ6e2qf7fbnZ6fIZS+aalvHMbD3T0jDdN4d3d3u02X8Vp39el0bvfbnbW361RLccCgBVRxzl79AIDnaTgdL/OYur4zRiljrTNuuztN4+XrI5JcL7eX59e6rv7003f9fqvWVUmxEF6mKRu1e/+usvXL1y93H9/uDn0qfPhwfxnDZZ6qyqqmPY3+dB0qUkYg+IBSaqfXTdXoDXLuK6vv7lzdZ5YcY9vdzeP1br821n39ev7jb3+/3277tlrV5uP7d+kQvz5+DdcrEE7jbbxe7+7uUhDGWghAydsfPkIqhNzU9devX9ZNsz/c/frLb+f0nKdgm4pL8uNgTff5j9+KYC4MwKvNGlGa3XbVb19eTr99PZowd5vVbrPFNj9++vT5+VW/vXt4vEVjO53AVOTudqjoy+Pr6eXp8HDY7DchSQz89sMHS9Wvf/9VS9O4rmvMuusatwkpfPfTT/Vq9enT4+n19PT0eA23UNLj8eU2j1Vdb/ZrPw6X64VQV6673YbzeF0fKuvIz/PsfSlsvRZCBj57ts4ZSywiWaYpiaBls5SOQZAjllyYkIYZHGJEMGC07LbNqrPzfEXNbYV21SGW2zCmFOaUjJqqtkYowU8ZKDNMtzHGbFCN49WG4H1kKbfhNnsUyXZWGinHpA0BYilMSinSwRftNIjkUpazTkZE4JRiStFonZNnFlOZGHJhzokBiQxSVAwSY2KRZQGvNApmKDAHn76toqgIsEARDiERofIWAKQUMsotYOOchUVZjULMhbl4z0VYaZVKwuCZi/eJ0FIsORWlgTlljspYpVApY40BBJbiUwg5llIkIUAJIVijSSCFUgpzKRwzaG1JIeASZcaQo09SwBoNlQFAa/Si+lq1HSkCQVWQIaXgwxRJK6W1UmStzan4OWkiVzfa6pBTCgFzNLVjYkRa9WsuHEPu+m4efA7Z1VY5NQ2DsaVy1mpjrevXffbRT7NzBolQoNZ29NOqs4fD1s9zzEUVLcB+9sP1YqxpqgpE8uy7vq20LlKctvM0pVyYxeiqrtuqMin6EMI4jsY6VKpIyCFhh7WrmqrBoiALFixRCVFJxFlL0cq4ukKlrDXGKOtz8FPIpShScU4lARhtbAUKCheFSKDrrmHh6JOzrtJ1yqk2lbhy2N4hoQgqIqM1AUzzPJzGEDnEZCy62gKDMNWuMkqjAAgpspqwsk1d25w4BK+V67o+hhxj5MKFxTlnnY0hhBSE2TrjrAPRzjphnsc5pexs3XfrhTNlnMm5MLAwWrTOOI1WGOY0KyRXt8rQHObL7RJjQCBXVetVv1qthGW43VLOaAiYc8jX4UqWWEnVurbpbGV4LsF7crrqWm2UnhShsraq6ybMwVqjlITgM7MYKsjPz6+n4+uq7+Ywa6tEaPIyZ48TLgW0+TLBINbajBIlZz9mYjUOuSTmgqhu/qY1Gq2NsckvCWBp2/ZyG3//7ZMyWDs3DdO6bbt1l1NCrTLJ4/mkB62JjFZ+jD5PwziEGLq26dfrGMJrCEYbVzdIevazn+a6qnb7za9/Pw/nYb1qP7x/pxSN0+iH+bDfrftOo/Fv42UYnl6eXWtlDQb5croQMGJ+enrSCvfrrTDcqzuDZrpcsrC/XrTizcqdx/Ff//J/5h8/xinkFJ11667dbdcpjc+PRz/M9/cP33/3fWPd0+OX6+kYZmfX7XrT1bbJKRHLw91ePzz8+isd7raQ8zjcTFu3q2612Q5tkznvD/vrpX23WilFq65VSvuYcsEsxftZIeBWpus8zeNus3n75n6z3/z2268p5LdvtzHw8fXaVPX7j+/r1j1+/Xq5no3SbVVt+q4oZRqDSl5fz6Hk2234y7/+9d3+zoieQ9je3YUQXq6jraSydd2tp+Cfno5+8kqDtm69Xre2O9+uQ5xcpX7//VOIiVgKy/P55gdPxvabLYEaryNwuev3jXbD88vKqFW/ctaUVJSSMfjO6v1+3/Ur0IRAGqlr28Nha6wtMT+/vs6XY9VUH767n4fpj19+RdJv3ryRlP/49e9KNOe86rv7n35omyblvFrvHu7eDXEYxvrd/ZvW1rvt5t37hziPptL7bkdG38bh09ffT8eTLrQ/3I0h1dERIOhKV908z18ef0PA9WYTJj9dxtcvr13t6vU6EBrBzlX7+/3Xz5/3VdWh2jXG1Y0tzD3C3d3lPPSbrmnq4/k8hwCaDnfrOcVhHK0zaEws6fHxqem69x/fvZ5Oz0/PUORw2HebNRBOwzROftWlUsSHmMLpfBl15TZtM4bAVt9i1LNHoiHMx9vtVsrd/UE5c7ndwjR2rt40K1UrFPCFydaa1NfPXwFlv78bh/jb739kLm/u3zTWGsTG1esmxmGCUtZVXVIKl+H7775rrBNUicv1MuaS+76/XmQcvLamqzeFEQlZ2LbV/ds3lbab7e6P3z/f3z+8efs2xPRwuN9tN7Ofn55fjDHW6r/813+tGtc29e08XU/zy8sZlfruxx9D9L/98jsgvhxfc0j6+fn2x6dnW48ftXbGCaq6bsUYz6Xf33//44+zH5OfYpzH+fT86dccS1d9V/qD2CqMQVs3DBH41kBRtbn74QMLdOt+ivnry8ttnrebDmK6no8E4Dk/d/Ff/vh5SmUWmby6jkhE2XtXGS45xaRiVsaw4DxNREoK6lgAF3szkiABGo1R4DrGzqra8sNdbRxlf+P5rBxKYB9x8OnL8XYamLSah6tClbJkIXIuC85zigmm4scpks8KUBlInA0TouRStIJSEFJOKSmjuWTAlDPDjNoYYVGKkjDnxFJYuHAmYhEGQZe/TcdDTKSUBEBTltcaQFCkhMXVqoxhMS9ElsKZEVNmYSgLGh/FORBgFKnYRp8JgRMDgLasSTNA5FyyxJBZSs7ZWjAGRIBIcko5F1cRqpxTUUpxAZGSifKUUy4hppjysk7TSKkUTZUAhsmDopySn+ekdS6JS2mqVoTClAsDCko2gAWEC6cYEiI1da2UCSHEMqaUELFqjDE2JxZgZzVaHUNExSl5bWptVGGVYoCkEaTrV021AoQJ5kV+qZ1umlobw1wEhTQ1TbWs8a02rBOCbNe9MLR13dVt1ThTOWcqa6vJzzkIAjV1jShcUgi+SBSpXh6fpjALwvVyS6UgoNN23ffrfhVTPJ/PIso5V7sqDLNwWSjYi+SDEI02forzGLlg07RceJo8KdQac4xcCrOQUjlyKCxijLHzVFL0xupFiwIoRDmXVFIRxpREEbXtqu02RltlMaUY8yxZgs8gWArUTat1jsmHUBYFdAi+WOsnP3mfcyZQw+CdM03dKE0xlcWNWwoUBgTKWZjzPM1VY5VFrbQIyDeZoHXOcWal1GrVAEAIEUWs0W3lGuuUUlxEI2lDLEprqmqnrMnJEwIAaq2drZTWAqCUatp6HCc/+8VwmzIrMZvdoWtWhFKEbWfYKF8YY4Y5gBTIcfapdq5vmqaqFIHabARAWQUobze7z18aH+LKuFxYO7duuuPxbICs0wIlEozTBALtui3A0+TjNHRtkzndrldrTKVdSaQ7vbhkU0rW1s2qR4XliikW7cg4lZ2qrDWlYgI/+7lEq4A8yi1oq7LwzYeYUtWhripjbErpdLm0QgRojN6v15zK9fhaG+2tlQSlsDFkjebM1+vVEjxsdm/f3s9hvW/dFOJq0//09qNCBcDX8+Xj7l2/Xm261e1yHoZb1zZVdTdNY2tVZinvaAzRp6gMvT69tt3eGbft2uR9GOZ9vy9Mk4//+3/7P+/2dx+/+1O4e3BW0KrbMJqNjSWeXo/Rx67taqMbMmLkdRxZxNOCYdLRz89fvoZx6lertq8lFPbZsWy7nsic5GWz76q6Pj7fvI/W2H6zSiVd2tXo5zjm/eaw6rY55fE2YMy71arWmjn/eP/ux/ffn6fpMg3Ddj+9DURsQGGBKc6Q1fk6fXq9Rp/G29D3m1XbEknX14fdh9fXc5HUb9bB+7M/vXl3byzdbpdpjI9fnpS2wUdhvj8clFW/f/q83693606xTvN8O5/D7EmjATJdA4W/fH3MnNabrdH2eDwOflSgulUHAF+/fln17apvm+7hdLmEGI5fX/quf/NwfznfJJW+rcM0gegE8Pp67tYnv4ovp2fbNn88/vr5y+d127/ZH97sD+fbgUlWq/X/5Z//o/ceABKQQrVZb+q6yRbnISUA5+x///yl/PHFGCUx73ZbczikVMi12zfv4jS+XIeUUsrlcr44a6fzML8MzjltzDwz+5yZH+7u77drrVgr6u36eL2mIg/bngG/Pr6EXHwul+uo1ytAGo5HZHaaWIrVVBksWjX9Sheezpf1blXb+vX1HDPPY7j99e8xhlXTFh9frkO/Wc1cJuF4G7yiyuprGm+324q5f/emsTa8XL7exsf/+t9zzrfL4JwdkhrO0+vx2lT2dh2I+HadN1wqa97e7UhJbSxnG2M+Ph5F0RRnFnxzdz/7SSMcNj0ye++nMD99idqaJOn5NmmtNdC//Pbp9PL64w8/gjXE5eFwf3e/H4Yxhdw0rancL3+fh9P5w9t31+n617/8HUk/vH9LqoyXS7jegMggVk2lxdqHHz+GKQPC8fH56+Pzanf4v//P/3PBoo25XM/Pp6fnT4/OkNY6cG665sM/fD/G7FP4/h9+ur2+fv377xL9frfWTouIRtvUrTIls/zHD29UKfN5uNWd1iqk9Oe2e/v27d8ff3+8HkummOYCjKh00dZYVCUXjkkxC7mOBUopPjAQEIGxhhAskWgVqMQYtNWVIzAWUSmgvu6alV3169tA0/Vl8MLkCK3SGEPMhUzdCFLwEVWFwFPICUgKWKWAgQwpo0tOAqD0whaTXHxmUNqQpiyZRYoQgBCSKAhJchRCHVNqGptLSjGl7K0xC5EOCHxIIqXw4hHRUhARuVAsokk5qyhzXP6ZQgCkSSljQMQqLVysM7VzKSYpUqgAIAJlBkLiTNFHIrPEbIQme0FE7TRCRoKURYEgSIlZBHMuIoygSgEQ0bhAEglAgLmEAMtAW2Ge8zjPnmiaZ6V1AbS6UlYrUTmkXLJKqA2hYMlsNEmRzBlAcknMXFXOOpsL55RJkSZyrpI1n46nkkoMwTUOibTSaY6ExCYqEs6S0hynWLs6ZY4pKadsY6P/ZoBTQMmHeQgI0G87QuBSkKB2DonmYSTSzCIJalutVysQLiUv/ta6Aj+H2ziWUpq2Wa3XKUYuoLSuXaW1RVBdUwgUKXLW9l2/6lZ3d/fWGCkcQ2yqllAJwDwHWSCgLD4GYXZWN01dVdWir6J/g0DmlINPSpFrTFmghKWkEBffmgiXnGzVKFKAoBSFEIIPnLPRtjJaVWq3dsZUpfD5+hqS10axCCKxAKECIOtsiSWEUKQgKcsq53w+XQtn59xqtTLWeh+m8Ra8L1CMMQSpqmtnzez9HD0RMUlO4XziqrYl8zRFV1fCopRWpEoMoaRVu2m7ehhuYZ5MsSRSV5UiTUoh4jz56TY5a5QhYJbIqLB2tfcRC2ggQonBj7fZOK0UhpSn6bLp1neHA4dyuV1TTKTgNBzbtq6aqq0clsKcTcq7qqW2H0cvQqvdWjn9yy+/DsOknfJ+QtLru4cY83a76Zru6eVlwYjXtt2v19fTRSF1TSeIkLkypnGVQlLMfp4hB2IwyI1zOfrTeJsn77qaC1R1Q1YHH6ZhtJXtt+tVpcdxjMDncdAilXNV2wBJKZzGvF51fpxGP7ZttetXt9v0+nzq103XOF07TmW6jV8mfzmdF614rZRmWTXNdrOZp3k6nQ/b9Xa7vZ0ube3utv3p5TSfLqWU7w4Pm82OUY3R16v2fLk8/D/umctvP/8xTwPZevdjs2q3McPXpycf532/uttvavsm+vH88hRCvo1jXVVt2w/DyAxaqdl77ydjbL/ZXOfhdD7fHR7u9ne/ffo1hXA6nvpV//BwcM7ZLL2pUk6d05VSrTV6vxpu09Pjy/nl6/2bh8N6XRlHjJWr7vadcHn6+hWJV939HMbnp+f77WG925+H6xQCEKGhaZ7n6xxzAiXH0zBM4zxFYTo83O82e6uUnyet7eV8vVwugHJ8ufTr1Wq1afve1lY712w259M1hQJaWePO01xuKdyGhNDt1jHE55dTTmGzWmGB/HKOqSii820KMYjoT388o6X1fqs0TdMUY8pZbtepqZu+65Dl6fEZQjx86Ler9XY1cCnVqjZohGn2w8tL/PTHr7v91lj75dPnzWZ/t3/w1/Hpy3Nd1Ubr/f3+++9/2PX9H79/Gm+39eH+sNmN02xbh4peXl4fry/r7SZnGMb55en1xx8/hnFGhfeHw6eX1xT97XxZ1e7d2zdsTSx8DV63bWuaErMgzD4obbumiT6VMbpKK8IUZw6x0tXD7kDK6kRMiFqHnHkpYOSMRNfbLcXYtq11NjSd5BJ91Na02pE2o56ayt2/f396PT0/vXg/931bQgoxdOuOKnW+3sbza3JO17bt25Tk0+PL3W7rVo0Gfvr6aKvq8PEtp/J8uk636cd/9+eHw/71y/P1NlWNPY9hu15fL5dxum1X60ab55dz/PIKShWCuzdvurrKKfpxtFb3XeuDvw63ylabtrlcx5cvX+u2STH5EPwwmdVKmMfr5c39w+vPg3YmAEIqb+/6P//TP3k/Wetqln/8p39KKY3z/Nsvv2+6fvf+bc4pSSnM+v7Du/32n8bjGKZJTtocbyRy167mHNjA//73v04xjmH++dfX9999d/f+/c9/+Tn/1//6/U/fSwzlMajEXW2jlM1m59o6M1+u0++PL8+vx8PbXbdykPmv//qv4To83N23q1Wz6/f7rjf6L7/pL0K+mpPELCy5oCZFyscoWZRVSLismoGLVspoba2WIjlnY4gQhXgKfrNpc8mXy2Vbq/3dfr1tIRWz7hRdfExDyo3FVddlk0Cw26yGMcxTyMCKcGHcCbDRBJwXQzpCAYAQZhBQaIzVogARl8sECOOiNf+37ABEkQFjLSCSMqXkxEE0clksS5BKRlDCi3VrQQFhCjFLUa1D1EZrBsQUERAVKkUIKMxaISpyTqEwlkIIxhoiEgU5lWUKr5XS2sSYNJAmVRY9ByiBklJybvmYxVwKoQLBElkpqowFJL8s/4WXF6NpSoCImvyQZu99ioCIhY21XQuVUG0VoaBgySVJJtEls7UupXSbRiQ0zpIyC60aORtnTKNAWFJiDE5RV9cxhpxLnKPSqiTmItZqzmk8n6118zCQUYWzD36cJjMoWzlQGGJMwqIxpciIiJgyaIU+pCwyeV9iSbmULNoYow0CoKCzVSqJudiqFTKnl5ebD845VbcrraSUUjinwCnNt3Ge5hhzYREFhcCYum7ruulyTsM0GFLCUlcOlUrsM8bMMs6+cNLaMioWBWgUamOQFCqlmCWhGCXGaG20iGEpYQ4xZlCqqhulKIXYOCPAKadp9CGG6LOAgEOqUIQVkCAiSr9ypFqjVAaJoVzPt8a4rq4BiUW0NbfrNfiIQKXE2zgIiLZKa6UVKQVFUuRwPl5BQFvdtm1XN/PorTarVUcGY0rCggmts5vVVgBv4TxOU9PUlXNSOMZggvJzvFyuMUdbGSR0qK3TxlhEyrmEEBi0saZyTe0aALleLlKKLlAmrwBqY1KMGYBz4lxW9/Vhv7+ebnMIMcRxukrJRYltnQgcH4/zNGqjOKbt3f7t7mBtPU0+lHDfNVurx9lbUrt39w/v357Ot/PlVgre9T0D55zbrv347v3z52cu+eOH9y9Pr5frZbNZW22mcZxv031T37+rbrcbiXSIaIzPrJTRoIKU+XorMYXJT37etjvVuNfnx+PpdNhuBNnfhq5prdUlszU2+TBMc86JEGNIlVGrttaVVYrm0RtFMeQE4CGNscQQOee6rlaZh2F8fnyUUuIcXp9ersfry9OTUvDhw/swz3/89odW+v7u7tDfna/DdbpKyv3KrZzmSCutV20HCFqrzaZPolaNLaVczufby/Pu7YdSWCH2+21hCEIZzcWPVb9pNv1Uyhyy93lTNYdd/+svv7y8vnz//Q8//PCnn//+11//+stqHLl2h71bVXUE8WFOMV+Pt8vxXNsqhRTnabgOVtv1dq1XNuYyDJcYfVdXb97uq8ppMH/85iUJB5jO03S5GWvbri6l+Itfk+3u919fnlWRD28ehttMZH784QeN9PT8FP1cUrbGWOVeX45lfiZQ0+B/+ctnsrTdr11tpinmGOq2+vjdewH13//lZy/0/OnlxZcY/DCMbV3du85VGkL528+/a1TrvtWuPhUImTd9V/c9I7x+fpKCtl5pRSFAGI/T7Yq5hNv0619/3d/f110dfQDhd28ehttgVYmxvo1Dt6r/4z/+45ffnj7//rS/r8map8/H1Tpvt+vgw/HxicfQa7vZHYAogbzIKaTUVM3d7g4YXVVvmiZ9eT48PBSjsKnGcfx//S//2zzMfdvu9mtg+/U2Xm7D7XpVX76+e3iTXc1WXS5X0miN3ez34/n2/HheSdNU9fWW56Gs18pPnMvMBYHRatrtt0abHFMpWWs9rdtpnp2tjbXK6lLKPM3DMBILcu6VVHX9cbveGN0ghhydNWzN/mEPCk+na5Gxc3a92UzJP09z8nkGdUUFwjnOxpFRInFuKxfH2PUaVPp6fPzy+gio1t2u69evSa4ZT0N5nc9/+vhu+92Hn//lb2me33/3dtXUCqmpqv1+M81ziEnZaru5r+r67v5uu7/f7i+3y3gp1/37tzHmp8ulcBpv0yl+JkXTNDdNs+nb29ekiqza9vMfX6qmvr+7DyH68OKMWq83jgiwMJTrNGv2YbpdY5xZ8v3dXWOq6+Xy8uXzbR7f/fTDP//DP88haKd/+e2P03j9++8//9d/+T+v89WuOy1y/PSkcv7u7kFZ62Nc390x4Oi51tx28Xq5/OW//eu7d28O796aN6CLIk1t1QHJxzfvhiH3/fbdwzt0OIbp8enL6XzyJWmAmEQI5zEAkdLYNC4nVqQIFZIIiPcZsBhrDVEMOTfaxxgrCxWzKpphniYBFsLJR+fqIkWAlVWmIpVQdFHKlCSaCECUcYoUFBEpLKCQEDmFyIU1sXZWEJhTShlQiZSUi9ZKEMo3o5aAVkrraZppmccoTahSKiknVIs12eT8zYlQMhcRZYkIfMhQyBqjAJVgBuaSuRREAhRiMBpFZPYhTR4VtE1bVQY1TZL9nFAJEoTsY8q0aEWWmGG58IB883wXACCyhAQpJCHQZAA4p7wYmhiZgbkUpamEPFxvMSbSRhmVSpi9B6CSRZg1GUlcisyhGELrNCmdpFyHKyrsaV272lhbOyeZSyqEUArHMF7Kte/72lmFmFJBIi6FiNrG5RBZIMcEIEaTEJeUkGUhJ5VQSJEo8LPXmlBUSUBIlbAmU1ii9yVEV1mlFUcmTabSYfK5AKAwS4gpcYk5klZV5bTRRbLkAiKohAoKC2mpaucqm5OElIg0EYaQTucLl5x8iCDZZB8CEMaUYomolK1tzorIKG0EKPiUOGlN1tkUck4x54wKSokqqWVdBShKkyLtjGFmREgpaKNEIKeSI5AyxummrrUm7/0YRpwHrZSrvlEFDGkGcUozFtdUiMpYUzVN33bD7eacncab1ZpINXXXNk3l7GrVNk19Ga54Oo/zGFJMtzzPsxTpqkYFXWJKISLiTJO1brPbWGNDilP0qNC5tVKYS/Y5bw47ILycL1ZZY4iLKNFWGaXUlPw8BDLZ9uuqqRSq2U+VNZqctYYLG6vNysSYgg/jNMc8zbfp829/DOMYUuIi3s+Vse2q3Ww3lukxpGmYF/dFv10xs7V2PA/Z+0bbpu9S4uRTs+p6szKdduhu8/R0fDG1DimR4HAeAbBpmqbuDjuAXMoYdKXerjZ2c7g/HJyx18v1drs1XdOtummcpslnhMs8HS+XDNyuey7JT8PtqMMwSAr+ejVd23V1DPPtllar3rm67Ts/BaWtJiRF7aYnUqlkXWk/+hiT0ppLqet61fc55tfH55DKWhnm8vr84oxe9+t58qo192/fhGkeh+lyPVtXo+Aw+MfH51z4er6Nw821bjqdldD58fj2zV3XdS9Pr8d41G1tSKbrbbpef/j4z1aZcBvTGO52B9u1r8cjAPW8U8ZdrmOYpqZyL8fr6+X/+O6n7+7v3pSUp9FXbbVZ3/3DP+kQw+PL8Xgd3+52eYhO0/bQB+/Pr8fa2XdvHv79v/t3wc/H81WjCtEfT6c5+91+e7lE6+1Ek2QJY+hst+l319t1vMwIoVa10qALOaXebA85x8t1KETvf/qxX29Or5fn10cC+Pj+zTx6AF71d3WlFepV03Aoq1WbIWuta+t+f/6lduY//Yd/Pp0u12Ha9qujwBDjZY63YVxv+9GHvz8/OUvAPF0HZNhOfV1Vja20yNOvn/72+StoiHNUrI3WbVPf7XdKOASpXQNkYqEp8vP5Ncyzc1XdBizcNt2fflxfhtP+7s2m2vw2f355ehnGcbdft6u6qisAfH1+jcNca2OVJgXD4Ouu/dP3P5wuZ9tU79+++/3TJ0bc7rfr9fZ2Hc+3wVizNtunry+uab7/6Udn9OV8vH75mkt8eXlVSrXb/vw4A6nbMG42fRxuj9drHMPl5XWzXX/34YOu+4YcKHO6eBaZfRqvNzToXg2CWKX6rqus9dcbIW3XXb1qZz/5OXW6ajdVTHkYLnfr/u7u3W9fvpBWH988+JxeHp+7uvnx/YeS81rVPZh5un337l0R+OxejpfRx9RW1ih1u2an9abtDGnvQ19Vxla342UuxXXNZRiff/m1rruubqxV3W5TUng6Xw7bzbvvPx6Px5h5nObL6YwKP9bvg0+X663v+4eHbfCBfWmaqlQch7Rbrb9///0cw88xo8IfP/5wvF2qzn19fJyn+evFv8xnTAkLToNXSt2dT1VV3y43jTj/8XmzWq3aOsZpTlETx09//RzmyTh69+b9btNZBWS0tYqC/+GwL4y3MNiP7z49G3WEf/zxT8aav/7lF2PU5XzJw5QK7rrVVEoCIiAW2e+3nMN//T9+HZpzpfTd3b5rqqc/Xl6O54zBR376cqyVvd8fmnVVrWsW+eXXn3/7/Y9620SOT19Oj6fj16fXRBhKnKZMijgzkChCAfI+MHItuOp05UhhdshNVdYN7DYm3bxht19XldaaUonzlAILO9XMPvgURERKQSRtAEExQGHWSAhYEqccEfJi1nSmBkshBxTWhAxQhHPikCKKKKW5CCGmlJUoKApIETIUmXxEgeWhq7UBksKCSAumDIRxqU8DM0VmyaGIMAikkEUpRNCKErIAhJClsAgbVKRk1VrrLEgebiOKlMK5LLcgYpTC33SrWpndrgk+QAaFanlQiYiypLXWWpdSUAARlVIFmEBAGWt0QZ7Qk9HtqsnMU2QNWgkhS0lJSCRLilm4BM6Nqoabn2O8zSOLTBydso1xLK1VJudcUslcrDFEOIyD1UYhGY1CkuZUmGfOICBSamtS9jFPyRdC1a0aEbXYorKPBQU4pSiotCBNcyJLBapMYoxFhQzgjKZOV5UpOU9+FgTlFAKIQPRpmmZDytSt0oRCy/UHGERYV5q0NqAAIGBOvGgrIIUIInVbIUjy0fsoGBnYWgtIIeXKVkWK934e56auV11rtE6lsI9WK6M1AqSUCkvgyMxVVWlrFIoiisuYKBeVqcHaaJdJFDKQELNCBBFFqGpLgCISQpzGOcbUuKau2qq2s/fFJ+sU5DxfblqpN3f3Rhvc7y7Xa06pso5jpsT9ZrOuV3216t1qnOfJT0oTIlhnL+cxzIEIldECMHn/erlc/ZileD8ZZYuSdM1WmcKR0tykypCq6jrFLMxV4wgpTiGl5EOw1rR9CyLn0yuKcC6c8ma9FrV4ZblaVZVTE7IhcZveWX0brpfzaYGJJ+ZpnA5vdomLInKrGhS2fb/a9La2T19f4TqFFPq+b9b31qgUwvOnlzIkqGXXb6tq1XPU1sYSYynH0+mUrqSJC75cr9u+O+DdfLz2dbPfbCsy9/1uv9nf+uk2Xt59fGeMOT4/X89nAUFrzuP45eUlcL7v++Px9Xx6/e7ucKv1dB1rosZVt1gS8DT7kI6uaUBhDNF7X0o55WSdLjE3XT3dRi7ZWYuEFSbd1Y1z/X6TcplL4ZKjgEKl2kpJycBt0zVtm7MHRU3V5DmPt8HPcX3YkFXz7FFEkZmG6XQ8tXXldM0iwU+ttYJY19W7d2+1Mk9fH1+/PqcYXuzzKuXTy7mq6sOb/TSML8+vS/xtXHW73r5+fnl4uMOCr49fxzAkLvdv3uz3D58en87XW5GXOPri43f6Q1NbqF0W8D4TJUZxzjZ1PU7xdh2HEL776SfOcHx+8sNkSVtjt/u7/Zu7bt3bup4nH0Eq5d59/GG7XY9xNs4d7ndziIRsrdrv+xLHGMJ+0+XGPX7+Iizv3/ZKVcNtfP9h13bdNEzTNCqCf/fTdxz5y99/J1JUREp82G2l5AzQ7rYxR1C48FoFFCg3hoChBFOO5xsUPp8u8zQlSKt103erNMz6BHfz0DaVJIaXsm5Xd28OEFh0VaxMOb38/txYYx7eoHLbzaG17ddfPp2+PNfaQubKVOt+U9fOz/N1nBtjqa0up3NOOcTUrHut7ThOTdNsN+tS0uV6KdG/vzsMTdM2lXEuhXLXb5SCj+/uQbLmNM+eqKm0HcZhvE5V7c7nk7b25fhKykzH0+0y5JhP3hel+rpz1s3HEXjqN2ug2m2ctjhONz9NbdsYwXkKKYkz/z+W/mPLtiTLssSEk8PPZUofMeLmHhkRGVkJNBL4dKCBBsZAo1BZVZlB3d3czB5T1UsPP8JF0DB8hIyxt+w118Teh7Gbhm5ABGPKOBdt0xCK6qochvl2PFORVc0GY5xnuRDMry6TbPf4vGPl68uXBrGyKu/zplv06/lSNfXdw2Ea+s9/+9tGZA/3D9eu8wHQTLxcL7rrQQKUUK+H0+3bIEhZl01RwuDWNSpC8ixjlCpl1tUMw5Dn+d5GG0E/zABiTniTZ9fLZfo8IIiM1oxzNw6Z4PtMUEwf7x6XTYM5fmjar19fFr2025pQ8vOf/wYZXrTVlxOm+Hw610VT5DnMxHBTt+OZcUau3a3rr1abvBCrVds6a7YbTEju3Pl01tPIhez7jkr+X//u72XVvJ37/+Of/3lc582+Gct6ulwRRtoZbRXlvKlqJriLIcvzH378waq1u3Tr2N/d7XQyi56lyggWyQdBSNJmsToTvK6qnmXy43d/+Me/owj/9rdfP3379tuXlzW4b7fjFFUAsZ/mSeuyLILzWpuEU/SApFCIbJvTuim3LWEoWjVjRLjEjGKB8baqYIIweEwjQmC4TasJBOAUUUqQY6js7zZL4IMXnAjGECEE+Ri1Ux44bUPy3m6aBgKkbZAZt85ra7xzGCZJGYIkQQhSFIxEANbVUEpLmS2zgTGhGGEMyYEUQYQEI/z7t0RyiXBaVaKQbBqn4AxKmCYsi9KEEAGAMCGUovUEIYxxxDjGlAB2MXEASQSVzACi1oeQECIYAOisj+D3SHbiXEiZw6hgiOh3hwckWBAAAIgQR5wJSSELIQAEfYopAUQQpzQRwDfcx8AkC957WWKECCKYYAhQiskGB2FEBFBEg/MgJm1XH6yxzngrECtEppQSlEkpQojKWqiWXIg8K5d19cERxjCji11TShRSEFNKPi4xz3PMqfE+BB9jtM5jiKWUzpngPaVwVYbg5BOIwCu9aqNS9GVdcEHNoo2LIIFoXAIQUhhDcs5zzihjNIQMFDEFRihlBGHknIvBpRiMtRgib11CQCnzez83phhhgiDAGGNEEUcxJOcNBBBTzHKGIlyG0Y5T8M55RwBhBFtLXNTWeIRIVWbi90scQiAFCBGlGGJEKQUYYkxWpVzwCOMYo3GGJhC9wwg4b5WNIXpGKUQIIexTctY67723KSACfV2SFB0KUXJOMFqViiECxgCjECWKEYVAK+1SiiasXgUXMpmVXHLMVq645ADEEEOCICMzQIBSsiwzAFFwlmU2L4vL9ZpAskGPi7deYIiss5iQDWgkFs4HE53MJRCUEWa1sU5BiiKIEKd1VeM4QpjKrIgQ3PohLzKIol+89lZwEZyTmfjw7p3g/NvxzcPkrMMEzdpczt3b+ZJAhBCN/RUnCCweTmq7a3uzBOeKvMCcY84oowCAIs9gxJumjgAbPcIQnu7387K8vL7pcWo2DSEUpBSccY4yzkAhKeZWu8fHu7Ioh/56utyIpKxg0zierifgfNs2mDLOuFrWrCqKur6cz/3YvX9+Op3P3a3jgkeYKlq4mC7DoKxjjCBKtNY+hmVdJrXuDxsM4eVytdpACH5fhEal0/WWMxF9cM6BZcYIAQgZhqszhLOxH423GKJMyACAtn67a3gh1aIiQnlVYcYIJxCAhMzu/t5F4GKomrqbRoBgUeQhBAhAfzuNt56SeDjsI4RqHnPJfAqfv36bhyWh9Pjw0LT1FuF1VTHZ660bLrcsF2WTA2PGfoCQbHeNjW6aFozQbVHh9VLmmWQ0w2R8eQvBIoT2h0N0fnYWCwlCVCYAAJSO3W05bDYhoVvfOxCbbZ21hfbO+2CcxRCO02i9NUrB5CRFlKJgTclk+f7ZeR99WIwCyTFMc8K0M94sMOQZxbzMgdMwJISZAoZQQhjZZKXICuNd8BYRvNvth3GknNxut2Gei6o6xRsh7PH5UUh+fDl67/f39/M4R+gRTUxy6820rPZ2Jh1GECMHXm/9p/Pp4ek+rwtvTHIGWmsY5XJK41RuigRI1/VlUZMsp1KUdcmFqKt8XeZ5mudJuxCM1kVeMJmHAE7H09D1yzh4Z7JSCgKNNavxRhmJoSREu/jx+eCMHY5niEEuxd3+EELsh3HN8oxLmQtBGM/F5TrkVblrN0d8XvVayMw5oxFClKxej8OiQdjsWsa4DZbI7LDbtE2dXPjtl18FYUzwX15eGecwIZASx8SsOiJkXdDWD/2IIQo2rPOS10WZyTzPzLo6tQz+Nt2meVp/Wz8/Ph0IlTCkXEpGMIoROiMQFBhLSnab3dv59uXzyxqN9z5aDwFsyjynhHJ6uL8vpIxGQxfKLAMAEowcBM7H+8eH/d0uBqCUlVlpTBjGlRBMhPDjSBEssnyeV6tVkckmz5OL168vDjhI8Wa/pfePr+djKXIhM/f4/uX1+Hz/rtq166rbamOUa5t2s91N3SAyVxSCeIg8IaSk7dNB43RepzwrptuQy3z2JjhTUwEgtTpiQO7KQ0Mqqg0rWbWpf/7bL8tuQxDuut5ou9ltnt9/QJB8e3k1wUKJ585stzVIaVWQF+3jc9NutkVW7vZ35+48DnN/u0EQnJrX6+Cit5cBM7KlvPnw3VO5SRC9XL7CDL3eLp9eT8OyJowXbT0ENpgQog/Z6RKw8Yc6v3YuhRjivN/ulDZvt1k7CADnskheAWytjmoJiDAhYIgJJxQhQdgDgH0AEFNKCUYQJFdlsqD5BMcAYKIEJE4JjZgDBFMKlEQKOBTAQ08xyYssuOiWtS5EnvF1yUBErCje0qQM88FSQdfVxIgxJdEhimnCCaIUklXacgzaPNs15a1fFxMZZzgkl1KMkRJAGKuECC4sxtoUx0E77V0VUoKUcIRZBJ5hgQh02lKCvAkewBCwDZEGKGTGEEwugAAQQr9XE2ntWMbrvM6ocV77EF0MKQKCGUOUEhqzYJ0jjGBKQgpGGwQhIhgkuK5rRAAhjBCqqiylpL1NOIIJggiN846EAIBPIGAEGEvWuWCjsRgCgOCyaO0jzyMMfl4mmFJFSu+CsRobU0MIAXAAEkL6WUshIIYQIYhwcJYCCiEEIVKIEcMpOOe90jpBn3vhrbc6xZQoY5QJQAAhCCD4e1sgQlhIAQFilHLOOeMwRQgigkBr7bxTq44AUgxCihjRPMtjAuM4rLMKATBOIIJMUkhQTMm76ENM1mntmqaW2w2IIfr0/9ehw2itHka3YgoxMtZDmJhgBJIIgFkVxpxCCASLwBNKogvG+hAiIaSUJYBxmIbgAqAAQmCtc9Ya60MIlGIuScZIigaDlAnKGcEIJy5FJrwzy7SAXPiUlnEyxgCAMyERiVZbghCGMNnAMaqkACB1fbcs8/Pjk3UWY4RTgBDwHbcuEMIykd26zjpHKKGczPOiF8Nh0lbrqJ0Li3fBTHVsBKTBGqs0CDH6OKkZc4oKTgkPAGnjrLFzclkuEYI4AWeMUWpY1WJd09YxJSpEVhR5nuWzAglSisd5Xlaj1RKsu6mlyIrFOyZIiJ7heF2Gr5eprcpSSi64oCyTzGjHUgoxkQQARm3GOgRKhrfbze9gArRW2xhDmNwit23i8dyfX79+NcYwKaf/dbyNN6NMU9S90VlRYEJZJquylTx3pc0yuS03+3rz9esn73xMoa5rmZc/f/5y6odmu8GU29u66unpsC+LCmM4jTPGsWrEqrQzhlKS5UI7ra0d+tFb09TVpq0TAv08AhirosiqPKU03CZj3PHtLcukdhpiRCgZ3UoChgBYo9dxxhByxhBETGZZnukUPYjH25ETCoyvynwjH5xa7x/uRJYrG2z0b9eb9w4z5GD6dj4HAhFAl8utqjKWUQMdS/jdw0OWy6Wf+3Eyq8VOOTUDJquqAhH2t3lEWHDmvSmLLEU4HK/q89e2blDNgl7+/PPf6rryySKOVNDGOqPUpb/e+zvOBWNEqYVgfr2er5fz/f2dkFj54J1ngjMc5+m23WyitXM/wAQlFVVdVnmh7Frlsq62ECCaEYbg7XKFjECYEkJV28aUQjBVkTftR6XXTLJDu7fekWA5gpiQ+z99r50DIBV59u7v/3Q8nZ0L7ffvCcWvp1fvXElZaEJC4HbuYkwJYW3dvBjzGtNrdN5SjErOSiYgk0xSM0GHSGLwfB2Viz+8e8aSzOtEVpyzbL/dnt/Ow23OqhwLGUJYtVZK29WQnKdgvUnA2UqKBNHSDf045o8PEgKRCbFt3s6XWz9bEYUorQnraCBAu3rTtsXT3W6cpneHe6MtwjhLaV2X/aaNISEMISUAmtt17vtQNlKpEWEAYcI0Lis2VulkjfPdVU3D0h42+/0OppQQ8ipc+ps2q0XJQ7i/u1uU9s6XuSBYJpgSiN11GKfVWu9jkJRdpgUh1y0rFiJibD59m/srCiG5MPaTBvDU387DTRbZdr9hTEjCQIzjbRC5eHh/75S9Hi8E0zwTRtngAmNECJznUjByu9yc03lVGBdOavrtr8fvv/t4+OH7qes4pjpBA0G5a4qqvB1vzliUkLM+rj6szq9hTiu0qM6qVc7bvDy0bZd60W7gjr59O6a8bsu6KbKqLgiRrNpURVHUdXF+O+pki7YFlM5qjiA1292m2SQMf/3bp64frm/Xp4fHtihYRhlEjeCNOAjGN0U1L7qp66oshnmZzfjp69fL+UYA2d0fmqogCCNImCTO+3mZ12V21rVtu9luCAMZy7ab/ZdfPv+P/8//2G7K+4eHqi2jSes6/927j81d202z+s/wPM6X2y0FdOlun1+/XsdOCC4oEtQtY4LJZ0VGeLFY2Q9xXWEM0PlASQIJUgBwCpUUmDJAwGyX4D3FLDnkQ5CQYUIJptM8EpK29e6hLGbRVveHhw/v+u76+Zevt8kQSm5dp7QqhCiLbFZKG1PdV3a2o1q2D8337x8lF5SIWdn+YJQxl9tNe+2quNgACDXaRW/nZQU4cU6TNgmFh/d3WSZLskzKduMKgk/Ar8pBhljOgU/RBhIAxdyHBGwEDhCMfEw+JasjAFZQTjxt64LVZFnMuBqAmEAYxggTRAgnAFCCDFGAEeRYiAxBimGEOBIUo9YxAoIwTgQBDBPMGSGc+BSddcClhAFECGGIIWaE5ELITGCIvffO+jarC1kpb6dxwZjURZUJ2WwaEFN3vXHChcju9ntrrLM+oOi8id46r6MPaAaQYO2NXoZZzZSQ6KMQWVPWLnmt7Go0QtDF4HUklDKGGeMgAGPiMitGmbdOxQhBEjIDIQII4++x7pggwsBDrbQzNoSQ5zmWkiCGEZOMcIIgSIZJYz1Fa0qgrTCixNoYkrfWZEJyxiCGKUZMeSaZi3ZZVfCOYJaLDANbyrypaq1WB62QHELkKYkpWed8cNZG70PwNiyRc5HlOQIIQEsDkZlMINngAEjGahiBYDyTEiOCEQUYggRTRNZYTAmiyYYQrU8hMUyAdcE5hFA0JgRFuYghKe3WZZGSJ5QAQpQxmWWEMAohSjDG6LxPKaYUu+stpDDNkxQ5JeRyPkspMi4QhBCiCFJ0/m63E4wbYwFMCUScIEVQCsGlmMbJOh1BCCldrkcYgHf29z2SIxoUBNaUbY1xskpHHCywxoIAI5cs6ggBNFoHF059V3SXuq4owtZbAKE2BhNMMPG/2/ck9zENyyLKvFczDYQiOJ+OjBJnjFFmlrKgXCAqZX53uGub+nxo8M4mAAEAAElEQVQ9jdM0X7tSiH/440+YUkqY8SARAm3CEY7WaKUIjAwht+h5mSHGkuEUgbOh3jSSS60cwJBgvN0009B//u3XdZ2rtv7w9PT6+uX122uZZw8P95yKjGVtWfoQtlWTEr5v2oySd+/fC86u16uLC8Q8l9kCcD8N2CeRkNc6ISAEXmxMwXGKqBAaRG+t0bpt6+AiwTCBVG8bZ83L+U0Zffdwt88Pi1ZqXY02el6KPH+6f0QQzkbPVtNcAh/sPFJMp3HMhNy07XVZrPabJvdB3fphHpfdZnf3IF+v57/9+ttt7hBASqk7u333dL/db6OzACFGBWnwopQL/ofvPvTDvw3d+O79B0J5d+2E4BADhDDOmDPu68tLwoBmHNg0LFMIIcEEYVrW5dr19893rOTexsSwiX5aVgihj2lc1LSYj1lZNxlMaJmXZGEiUU36Frvj11etzOP9U8ZLuwYvolG2aVuQoDVumRbvLIY4r4r7h/thni9dN46j0urucFfVFU6xO51j8ITSnDGUJYRJXdTGuVvXjacbwThZi2IqOA8gSMpoXlBJMcExAgZetLZ5VmRZFpObhpFQnBdi7nvgTURp0nNaPbyhsV2kFMMyryGebpc850vXKb7s69b5GAHkstju74ZhHIY+zzMh5T/843+WBRu629vLNXi/3VHKKUyYAhZMnFc1L2tRFsYma8G8LtZDjLCxTnKilEIwZrngmDdVfbP9si44hPtN+/3H91VVuRjO16v37v2Hh9P5erseMy7zXP7wd98zyv7jX/98vBwRxWo11WbDCr5YvcHAGTvNphL57M2k1/51edw/SkqmdeWcjd1QlHmCETFsYgScMMFoAATTxCminCHoUlyM8uNEQWKUWG/ndemVWdalKPKybrKqgBFQCJILFkNo3XTuQEw4gRicmtfgQ/Q+EzKAuK4z4WjRKmFggvUgDcvUDSM7y6aukg8uRQvSrPRlGCXjkzVWm91+SwkZut64sGl3X16+OhMfHx9/+uGP49SP134Zxlmpx3cf/MajlKSgjLJ1nsh4vXprNnXb1lu1LNa46MNmt5u6GxpXvbpfuk/O2aEfs1z89vU3Gwzn3J0dpdR7D31qH+pIg0rLOnWfP+t51sPlbJUyMQ56HoyCc9jUbXDm9O3Fey9lYYwJMH7/012z2U7LlGd5VkxVa7VRRbu7zobWm8m6YV42tE6WP2wPomqGee3608Nuuwz919eXb6+vWNByU+qpW4fX5w9bkaXL+UrzktGUk27D6YIwihFG35asOLRvXzoXVoBgSA4hiCmmgKgVQIA3Vbmpc6MEp+Sn90/C08GZw8OPP/74w9xfcidul3FStozo6E+7qtxu2gBABDErZZThFkKJBHNk07Tb3T4miBldJnU6X72zECOTIkAYEDxN49vLm/MWQ8AZZzQ9vzuUsogP8Hztr7dBGWOhs8EhRq21801RJBBLMpMYQ8qgNwokv28zG9AtKm3Btmzasn7YH+qyHG/9+XqxMBWbcuimVTleZNb5eVoR51UrYoxa2Vmp4CwlACPIEPYpIggII0wISABAIEZvFw1CwAh4Z633QsiqyFOSkvM8l86GZVkxpAXPyray3k/VUpV5csAoXQspmGAJGVtzQhjFTV5JJkelbt0tQXS4e1rUuqoZA8Ig1i7MdoIQueCpXgL0IXhnLEIoyzLGWNCWJ46JTBBQQkFMGuqsKCjDzhjGWYjJWAusKwqCIFrVarRJ4XdnGkAQM8+sMclHAKJdYsa5d97FRCllTETvuaRCyqGfF+UIhHVVUU6tc0arssrzTPRdH0yEFNdlixDWylRlmWdiJpP3llAMEiQFzoosxHi5XFZn1ap9xMM0xui0WZU12hjJRN22PvgQIicMQoQAMCZ044QwjjABAFyI1pgQY8bymOKqFwySgwQxogNggoKQkg/eemjcvGoIUgTwNkyYQJgQQsj7EL0FGApCMUYARBed8eb3dnIuCyZlP0+L1hCissyttd5YSghB0EwzBxGA5KxljBZ147M8K/Kyaa6X7u18mo1e1gURGLyz2hBCiiprqyb5kGIqZJkCmMYRUEgk8z7Y6NVstTYxJUyRzCQVfI4eeQtj9MbBriMIRe+1WossyzixLpIsl/s9gIBA7L3X0atldcbkuYwROrvEIvGaY4YTjKua9Dpxgh4fD4jSlOBi1raqUdMapay1EcCME53Jqijnfsxl1my3fTfY1X344T7LxDzPy7hABCmDU9ffLmZRSikFU8oypsO8mBlgBBABmMmyCDG8f3rYNFXXdyHGH5/3CN5jhFatd4I1D3eUMIIxwkBbzUWWMFydfj0dLcaHvSSEgFlxKbfbrVpV8oH4OPeDV0o2dUq0uw7Ntik37TCv/fxbP3aHw4EJPi3udHo5DR1lbLvfwYQk41yIaXUAsYjl52+303F8POxswP/+73/L66brl6/fTo21zbaVnN7d71/fXqlgm+190n7o5t1mQwn+9eXEjzeJOKacS/Hbr8cPz9/FCK6XLmK/KYp+6PNC1mXe327dMETjMKN6UQgThOjYL5sKJxyIoErb4/kaYkQUJ7nEBPvLDVh32O+QYKQQX06viTwDXECG53W+XC95zqw2KSXBedvU0zQP43g5dyF5iFaMwtvLsaoyxlHy1qqFQBABasrCW5tLmWV8Hqfr6aK1QQQKIdrNpsw5Y0yKPMW5ysr6vvQ+AAjyrPjy8nq+XZVVzXYDfIQI3R0eKJDX03XTNne7rVbLhV6yjDV1ORWNnkdCAQSIYXwZur/8+7++//hhs9/1n778v/6f/4/tbvP+8Qlv4WVJx7fb9Xa7O9zJdUGE1Zv2/n7LKS1leblef/v8ghDJ6/w26qqmD+/fwYg/f/k2qDAu7jzdqqZKCCec5lUBCAgEXGazMTZ55b3T4dbpeZmk5Mkj4KDTEVZYUCQxl5hn+zwTWbtrm7Ydr30GOQyJBNC93drN9h//+PcQ49e34zCNf/vXvyJCvI2M9Iik+7v9cLv6aLOiORxSf+sYYdM4U8GMWk2ykCNJebBBa327TbIsI8bjOM/T3OZSZoJTnFLSVsEQckY9jIIA7NR0G/2qCQSUskyWpp+JYM2mjClO/UIE/rB7bqraWNsPk4tBFoWep3GaMykpIxBhF9JqvRqXXIiybRgh524ehpd10ZSR6dJZbVII9aaxwVmIS5Fhyp1S3XFgkhLBgVe6X3MuCMEUIY7JZBy5vF2mbpCifPfu/f39w7/9y797+/r83UchJBf8r3/5ZRg7DOH9w0NWyP3hXlDW9VdM8f3d3TJNal7Nqq3R3phFL9LnVbW9IVwV2eH9488/f/4f/+N/bpvs44ePGZXzOlZ1vbk/pAiG4UYhYYRA7//9n/8ZJri72zw8P/gYv319YYLcPx3u77d6UsAHksDp6+vlel7Wm7CqzYqWsezpvr7bbQ7729tx6LY//PHD2+vraCilRS7gP34nKvmmIHU2uXW8u8s22+Y3/Prl61tK8MO7OwfTuDgAuVqB8+np8e7psNm3FeNUIr5e9Xj69vUvb9jiKsdP26cPu/dvp/OHu/tq939b1wmEuN1tMcWny1lZVWLqTeyuS3/Tr1+v98+HusrrvBBkJwgBEfoUGWPlrp6VPp8vZlbO+qqt4O9eeJAkzyq5e753ICWAIc9YiGmc5qFfnYvR27KSRhkAbPI2JX+43wMsj5fhel6aunl4uH98ehKYLZfb+Hi/qNU4p2kxr4ZI6UEYxtkYL4pcG4MiIIymlLRaEABlWzLGrI+QEiY4wth5a43JsgxBABMwxlnvhMzKokgpGaONDcE7712MUWJaZYVxFvqYUYoIZDDhGHPOY56PbiIA4gSj89u65ky4RUMKHx/urfX9ODhjQ54yJoZ5UkZzITHBRi8+eqdsBMA6zbmIIVFrlNLtBkkCCaZVWwUfEMV2XaOzMQCIcAzeOY8ZgQg5Z/SqRC4hQIxRANO6KiFCCCHaME5jDBEgjBESgqQYjTM+hHVdrLGMcwIxSoBhFBHBCQMHJOGwaECCkogsy1KeIEjQx0LKFJlSCiPQViUmFBOCU4oA3a7dopddu7HeAwS7offWBmeDMxih4B2AkFIBYtTrsq6LLCShxFmXUiKUAAxuw816G1IAGDhrwLIwwT2JBFIhmQfAaUcp5pzN6zwuC6NECC6lTBGM8wJASlmGMUYYUs4gQdYaLgtC2Ol44lIUZf77EEYp44xzxrxz67wCEGEMIESGcSZ4pFwKWcmCbDFKZDXae8clTd5frzeIwOF+n8tCL0twIRNFisnNarFGZCLB5GNc5iVgME0LchBE76nBEHqtOcXRhrIsOaHeR0Ywp8RqZ1fLhaSAppjKuoQQKLMaY6O286JXoKML2pi6rhwCv7x8Pr2+6mVt2021rQljf/nLLya6AODz3T3l7Ha+ghS//+FjQii68El9xogc9of7w8PpdDq9XrbbBhcIxmk1CthEED7fOkzwdttE5ysu/Lw2ZXn4+313vp3fjtfL+XB39+NPf8DX6y+//eKsuzvcAZgu14v1/vvvv2/beuzHZZozKQmpvfd/+NOfxmX5/2prQnh+fByuvVHz+6fnqire3i6v3148NfuqzYggnEkaP/znZyb4oCYMoNbaIpJRBkCE3uEUrVEJp2t/zUS2qMUeHQCQcDZNU7Th+eGpX1eZ55CzcZm1s5TRvh+sd7v9btPWKYa7wwH4oBdljF3mhRE8dp2aFIH84fn+7uF+4z2CyFqXcw4AbJoieROCPTT7igsJ6KQUpOj90/tms//v/9t/z3n2sD9gnM6XI3ARAqCThRiM43A+XhgjZjWAwDLPbXCfvn5btd1u9vOkpnkGIWCGyqYQJqeIOgJmZ3hZQIQj8HXdOG0JJVRwIcnpdVTLcj53PMvyokCEiiwv85oiY8vA2JoA2O42lLHj15N3MS9VVorvPrx7enpclf7n//N/Tv1o1ZqCxxCZeUmBcFzYRVttxmFy2kTn2rp8enhY5xG5sK1KR/G8TADE7z9+/Ah//Pz6uahzQlidFYzQuqibutLzejufR2Ner2/n7nrtDn/605+sMX/5219jCpzJZbZv05SLAkO6uW9tCNdrt0zrPK1MiO3z8+l4AVx8eP/sgr2du8vpnAn+6fUVQ/j87hlB+suXbxBjpdZ3j/eSsH5YMHpZp54xBBHeFsXb9Xq33f74hz8ptQoP+pcTY7SR+f/9n/6v87K2ImdCDKcLEFJ5nxBKJH799uWPf/+TKMWysG4eI4AxRYOStkqtalMIQvNlGnBAmSgRBtEHaz31zgc/zeMyq4wSummzXCbntLaEY5aA0ytKMNkIQ8yF5AxvN030adZwtWbsFCRoVkue5UJyKbkUnFF2GYbbfLvdbohgxss8ZVleQgC8XrOMSc7Kqsi4GPrxcrslgDjmyevz9ZpnGTYmxvTuu+8zIZwLzqfNfrvdb4Rg58ttWdbgbS4Kr+20KKMsqao2WbAu6nI6tU3dlk0/3m6XU5EXTVs9Pu/v4za6iAlhUmzvtsDFaRq4ZDxjhNQEYUZpXpayqlZnXfJNtdv/17vLPPzl069P+0OoNyDZRS9/+/zJavsQ7O7DexRBAOHby6c84yREgQDHsCxlRtNi48PTlmc8lxunfZ/OPriX1y8+IEz80l9flzVst8fTqbmrN1UetV66W0m562waUQE3IuUIou/fPzbte4dJiKA7XRC1j/cP95s/3e++zVo/v3tEKL69na+nDlS03W4wBvu6udtvISaccFikMPvrYqj3dnRVnu/aTZ3losx3T7t1nvysts1mWueKiH6dJlmdz/2X317m2T2/f9gCsGiFIFjnicmCYooiUNOi5ikgmHMuI6IVOdztCBVvp27Rqm5224PMitIbO88zQhGCBO69j8FYfzuf921pV3+7DTyX5bYpq1zIYh3n6/GKIMgokxRKBtpduVhqnYsxIoh9Si6GEJPS9u18sSANc6pzVrRtgPDL19dhmDZNvd+20zxPagrAOh2V0pQRwqiP4XeM3ypjEhQIw5RMDHpZKUURJUIQQRD4CJxnCITV5GUpa0owtdpO/awmVRX5brtNKVjnCiarspyW5fZ2bbabbV074zHGJGHgUskyLmleZs7bfhhnB0IKCCIfXQRAKcOoQYqFDCSrEYDRx6iDMUta0na7Z1Iu87wqU1LW1I1aF0YZhBBBxDnDDDsTVqUkT4iidV5BApgQEIFdAQQQAhhici4giDFEjBCQACKIFjiFZFcrqJRl6ZyHEKYYvHfOWEJICJEQ5GzADMcQbper96Eo87Ks8bbJFlqUpQ7WGFvJ7MYzpVXOJGccyBSDXxcVrKMQxAQICFoZn6IQgkvWz1M3DkIIWeQQxNnNkxqhhtxkhLK2bRxwWcG1MWY1xqhlUZxzkgkgaAzJr8BZ65cAUsyz/P7ugAFalQIQex8QIl67opQ4oWgjF4xSChOKEDAmCcUheKVU8MEqRzBWi/LxkgIqqOCQJhCyjCMEaplhDDbbJvqwOh9QqPIMIwydtiA2h8aHOI6TkjyCuMzzuioIAUjQGssFrmhuo91XFSPUIEwIzrj0kMKQYoJ6nCkXwYTT5ey8gQjkZR5izDPprI0x/fL528vxsqo1z8T+sOtWffumEcW/fPtWNM347e1tnCmBbtQwoQVhhCDywAd464bD7qEsixjSsi55Vjw9lM76t+MJY0Q4yrgQUnx490EQjkHq+y56G1AKyvjFuOiPAYYAh2VS2t3dPxEuAEaTO2ptkxC82Q5v589fvu63W5yg4JQjShK63+19SMjGDDOMBQdkn7ex9IvoWUJPh3uA0fF8pJR8eHoUQh4vx30muciMNQDDYegLDwEAMs9mo/p+KgTHmL3Ob1rpbVs3Tam1uo0XmpK1+u7p4E1YzJJl0jqHEwERea2TdbfjkWMKAIDRjZdRMMEJAYIhTBBA3jrBZHftKaeMcxU0kmT/vDWrggkUTLQfPhLO/uM//vL6yycO+D6v9lnRUBq8rSBttpvHp2eb4mzVanScFGNMbA822nVd5n4x2v325fXb8cqYBAiAGLGj9tQbu07dUI0TZcIO8+PDM+ekH2YcoRDidhuautkcnvq+hwmWeaa1ZpikkOZuXfSa51mVSW0sgVTSrCqKdVEkQtOvr+5zXUlng13m2+UWUvzw8AQQWK2iksYIb8fLbRgWPWqPPQ20FIWsSwAFwck5gMOmFpyTpto4EOu1wTgxxJ7vnnJW7vbbx/vD2+vL7XyNKT3dP0EAq7o8Ht9Op5MxygE4LToiZGM0+vi4rnXfBReXZTq/Xfa7rYh+OZ1jTGN0kbOiyj+9HC9vl3/8x7+7v3s4n07nRQsPDEIil0Kw67QyCN26IAxzKUhKUtCUollUjP3l7XQ7XYKz3lha1vuihSCtjBFj7u+3+//LP/Zquo3Lt28n42P9px9Fxv/tX/6tv9yqoj6LCVKMCB3HWUjGYpSIZmW9TPOXzyfJ+Ha7ff5QEQycCyShK7hljOdZlhXF6e14vtyYEFlVHtoNwyL5CAuxrcu2zjFKKXh/Oc5LP/Zzu603pSSAqHnur9e7w521US86F9m23WCCCinbqmh37TIMt8uNENI2xTwO19vFBceQP2wPhImu758f9nlerusqJBeCqUVF4wlETbsp64pRHKPnHOtF6WVijK3LhGAih/u7h7vDqoxZNdlsHx7vy5Ld+mEJcX94vH942Gy2MIJfP/3WL/PpfA7WGK0ySd++fWWMOxOct3f3j0VTX7rb6/mk5rk63B0atKzz5o/bZZiVXklGqqrt+m6Z1tfTiyDUOoMDmPoJRB98Mt4KbJbUR0LySvT9tEzrOA7BmLEbhMybu/3lqiAmhAtrIyMSRuqMX42eh3XQTq+Qcl42ctHrOmoiJWO1M3bTNtDhS39xln54fMdJM45acFkUvGZ3X9NXBOHT8x0CyKzrfFwBJGhDOYQ/fvz4Y15gir789i0lgCANRg96wIjkNUeEHz+/OWPv94enxw+XoX96dIfdY98viEAM+KauotF2sdep2zRNiLHv51PXwZzzogyL4YTYEIqynscJQZRmbZBDMcGA0GrVPGhvjDfGGp+iGufY35pmc393KPZ7RLi1zqh02N7dFZvudO4vt1s3Z5lo200l8znONrhNu4UAXS/XZlMjgissBrVs8sIhGAietcsZWQFwi46ZzhCgnMaQQgIpBDe7sqm1i+u6AoKi19OyOqfaukYQxOghZlmW29VAiIzWxpgQghDcWIcgBBRBBDAmRVls2rauap/sNC7eGM74PCvno9E2eA8SQBTDAEtRlk1RtZWPdhoH5EFGBEQIUYw5nvTa9QMAYFFKa6NWJzmnlAXnJCcIEB8TiQARQgAECDLBMcHrMjtn8zyDACllQggYEcwJhghTBBDEBCOIQIgQghQAALCq6pRiDBEAiAn0wTvnrLGCyYgTChAm5J23xsboCcEQIavsOvusEJu2wggxymEKMcIUAEoYRTL3CxFYUrFviyorbl0fvW+KkjO+TnOFRZ5LnkmlLJFinKfV6BAjTIkCkDFWZLJtGm2010Zb44wTIgRnLucLxgSIpJUOxhJKZZb54Kdx8iHmRZ6X+dD769BF713wTdtQSDGiPsZlWoMLzhhGGZXsdzWKyIQzPoQAIEgQQgBTAiAh56JzwYcIVs0Yx4AopValIPRlWZRVwSlR4xqcW6eVUVZmWZblCAHtLCMCUCgB9qGUmVDLOo0jgpBz6bzLy8JrN45TSQVCEFGKEeSM5kKABMdxpYxwTqahv10vCcSyKoqyiT764GJMjOI8L7y3bvGz0myaoI/R+7vnp7vH/W9fv2ofCCUxRTWtDLPsKy+LopZFzhlM6dPbV0EFBCkvsnGevQ8IoQigd8Fq8933P5ZlkTNe58X1crGTijHd5olS/scf3itn3s7n2+UWCXh+/rDdbS+3q1GWFdxE+3Y6ZWXeDf2iVeMDoXyc5//+f/4fxnkb/ND1Wun37963m43gQi3r0HUYobu7+yIv+6knEGVUAB+jNciFx812f7i/Xm7aamL83XPFOa+3zbzq1/NF5pkyNmh7tJdg/d39lqDtMs0g+k3TYIJAgIRjs/q6rjhnwVi3aGwhgVByJnKulxWaQBDYbhpn/TQp53TfdV3XhZRkyo23/dgH4Nq2Vlq/fn3lhN3v7qq2FVmxuv58OTkXYAzzMLabqshliO790wPPyrfzuet7+R3LZI4oOZ5fNVEtLyEEkaKQQErQOKW1QgwMYz+vY9+PndZN3Rrte/XXMs/auoIujcs0DpO1dn93yLJcCNG2TXABw4QZ+fbttZ8mwTmIwIMUKfERni998OHHHw6bpvrlt7/9/Oe/3t3dPb9/evf0PE3zD9//4Lx9vbwpo/ppNVZBkg6PuwghZsRFb6PLcmnX9Xa5Ypz+yz/9w3a3u16vry9flVKI4sFoq0NR5CAGAnHGs7po9nn2/O7ZeWet0ovOP4hhHGalKWfnW6eVKZr6Nl7/8vN/YAwgAc54CF1hShcDJeTTp6/WLPf39yH5za59eXvdJR9A/O3r56pp8jLPmyrG8Pb5G4wxZ3Q0LhAq6toa83Y9e0i7c/+3T//v3XZXyKzIckDpubt1l+vdw+HuaR+9M1aZad5VJQVY20CF7KZbxljx8Eg5n7Uap7HZtc1ddTqep5/n/XZT1yXjbLxNGP7+yBxOyFvzeLd/vr8fusFpO7gBJPC7KAYARDkPERrvrQvDqpp9rfSacdrUmxhS224IwVVRUiyci4OZhtM4TEsAaXe3l4QYa8JqAcfmMjAEn3d7xqlkYni7qnXJi/zd/v5wuLfemXW5f9j7CG+XMxOEUDisCwAJMn6Zust4KcusyKQoMkLo7dYhxnb3h3VZCfAWEpRlrGmqBOLQ915r6AOVIAZ3fHtbl3W722JKKEWc4JDobPtlmLtbDxAKKanVjqt9eHq4Xod1WEhI0PoEXI3xXVkqSnzMizr/4d37by8vf/n5Z6/W07rWddm2m1t3ncY+pZRh5oxvtlVVVz4Gi7xS6q7cZAfxF/fL27X726V/O1/Wuf+4f/77P767279XZjne9LpOu7sPPrm8YF7ZoeuznDdZPQ7L+XadxuH58SGlUGLAoxuPn+2kJJDYpegQTDLPthSHXb0ri/z184vWWhbbEMLiTV23kHEI4NPhcV7naViWcVnUolbT3m3tat5++VbXWdUeGlmVRX2+HjMKtQ5fv3y7fj2u5y4FWxV1wuzLebl03Wo14QQ4t76esPM8wRDdfu+CcVbZ/uXFWS/r/OnhMWN0WW+X42VWbloWbYw3oWkLQnKRY44ywaWKyzDMr6NKxs7dkjzRNkGKqHHIhtPLa9f117bLpOSYICPdFLYia4tiNuo2z6dx8OuS+fSU1RSQIkHBMlbklNBcZN21u9x6UZURobfzddY6OMA9AMYiF5ALBEAYAYQIMxJcUt65GEMAyadKCu+cWhXPRHu3q4o643Qc+m7uXIjK2YsabmqUUhInCCIYIypk3cQYAZeCM7H2Onlwv7uHCRpnZS6yXB6vnQD5qlaCaYLJJwdDJDSlEBhiAMJ1WQFCEQYbvVWziRbEuM4ThhhzCgIw1nvvpECEYAwxJWReVkJT3dacMasNAogRFkEKMcboY0CLsZigGGPwUXvttJcZJJQ4H7z3mCPAMCAIYOhCcC4EAGNAVbsJPi3rOi4qRK+stdrywNpGYoAEZiXPbDK1KDIpqYe0wvvDgUputLcg1k3dXa7zuACUmn0G7mDwHqTEGEdlFUIyxjPBYorWhRDS9dZFmChEBEFCsfmdN/EeEcQItcG6ZJVelFkBhHW1zaQIPillIAKYEOeDjQERgiD0LsxqicELyZVx67IwRh8eHgCEt2sPsIcIAYqs80tYPfUgxUQgxgRRGmxaV6WMgRjbGEUCnAtj3NrPQvBSiCyTGReKrorKLOdVXdvgQ4QwoWHo13UFEGSEWuugTxEExkjZZD4A731C8e5hB2CMPsRonfcoQpxSLqUQ3HmYl0UyVo0TDOGnn/7w/uP7ppDJudPtmhV5XpZKqevpnIKJgCEWT/PZGvs6X4wxwYbNZlvVpfsd1q0aDCAGcV9k47K8fXlt6kIti1H28f1T2AGn3W6/DSgRzhzwWV0cr9c//+U/Fj3HlCY1Ox/gFcZktFfNfpM3VdM0zpvbtR/n6TJcb32fiWyH427fhBhfutNkZkggFPCmurfjq6ACE6KcWfRsjBlvYB3X4/G0bVrqU864GlWkos4l3h5ciiUvSMIc8gRC1Carq2LbqnXBEEjOnY0gpKkfKaJNWbrkSF5U+4cEwbwsOcsf7g4gBGOsdxaCtN0WXIi+m97evtWbzb49IIO+nlY4oQjBqlW3LiHMZ61rM1LK+mBPr19BABjBIDeFaDPenr+9/s9//Zembs2qo/EloxyDlKIEoK3qx8eHEIKLFnNiXRzGOcSkvV4wDmWptrtZrVorkcnz23leuQNu6IcYLAZwuI1v3dt+t8uK4tPxS5EV87B4633w5a65GX2+dDb4nW6fnp5Rnel+uc4z4TghnCJQRouC68UQhoVgNSvLurwOHTmeixi4zGSVm+imedGLHtR0WfQ8dNPQU4bq87aH7uvXV+dM0TR9PxwvFwYpnZea53U2UkLv7++KoqjLfBzHfhwP+03Vlj//xWzKrN1tu2FOkNJMXG63T5Jbp+o6r8sKRQgAZoJdTtfdh8e8LChybUG//PJFsGwAyYPAKSYUrUH/8m9frDEAQorJjjYpwb/ehptPal7GYRZZ8bZ0t266+/CjqIp+6ievVjNfpx7k7IDvV6V++csv67I+PD5AigtKUQzKh3/6w0+H+0cH/OvbcVUaUjxM0835cZyjUjA9OO+ss5SQ/tZ7Y8pcdrfBai+onPsB4di05WbfFmX+cjxduusCXN9NZrVeewSBz0GwKsN4U2yr3UFILjhFIRFCCaJNvfnt198QAnkmGUjGOuQBwni8jW/Lqdo2u4eWAWR6XYv8fr9r203GM4TQ6/mtlZmEZNSrJEjEsJWMNNnvHs/zbcCUB0zPs+ouA+c8ioy1bbEp020k3mjJy7Ktq6oMPt3ON73Md48Pdd1ACAjGL99ejLZVU7e7+unpQc+LmmannBT80vWIEIDROK55uYpc0oUlmG5jN94uZVMgANptA3xYx7ltd21Rv3/3DhH0+vKmV/2qjtHEcRrfvX//8cMPqhvnxTCmMUEIpF3TNu0GYJydLuc//+3l1tWbptjdMS5Enu/2+xDNvE51LtuyFYUY5lu3nqd5Mlpveb7OeupmF1Iw6fHhnlBgjVLdQhETshJFbSFy0T59+DB1t+Nx6G9LzmWz3bCsTAiv0SOCrm9nFJNkor8NAILNfrsFOxd9dNE7n1UyAXC7DTqEbh4+f/nNWrfZ7hlicz/z7S6X7eHuCULwcj6q5I/DSDgNE/j2cjk0xYfH+/M4uwSqTLhgx3VyxucYxpcjjsFHEzDgtczaKiXgXcyrsthu8qJebkNnjoyz6PyijdGrpNn2YcuEiMFMYz+P51nPDkSA0f7uAH2axpWLPEIQE0CQQg9ExADzppJFVsYQZC6KXGY598ZFE3i5qWnOpIwQVEgEABKi07pGHL21/dALn0KMJZNI5vO8RggJYmuyEaQIEqTYWx1WxYWANGmvpmUauwEwrJwBEDbbJoRorE0IFJumaTdZlk3DOE+Ld44iIss24yIExwmRlEGHHupdmzXdMGFC6qaa53kcB620I7BiRQQQcxEg8DFpvU7rBFNECCQfKCYQJikymlE3h9swIYLvdluZSeN9DDGGiDCmjHsfAojeunVZEUI8Y8Y5khDnDCXmbXQpAKsLniOCMMZEkAjTNK8YIYDAvC7gChnnjBOQkHLOeScE51ISwvJcSiatstM0BefaqsYQrdPCKcMYztPMYwQIaa31ujCI9k0hKMsKSQlftDqfL4vT26LNszzEEHzAhPsYJrW+nM40p8B5q43XBiGU5zLP8xTCZRi0VgDEhIEPoZtGgDnAEMRIaCrKIvp4Pl/Gddltd+22TSFMWhlroA8IQcRZ1pSb+/00zf4WAQGUUoiR0TqAWNVVIXNOGcNYKz31I4Sp2JYIExUtMGqcJmcsRlAbSyhOMa7r6o2FCRCIo/PrslgX9ru9YMwpjRBgjAbGCKXzpJZ5oYwwgY11lAvrDGE4BJciQD4UeS6YjNGjGO42W/n4ICi1ixquN4FRRsjDZoP/7u++Hd98TB+/+85Z+/Xzl2We23bDOXs9gpmuhLPpdRrmyaXocfI+OuMmY2AMJKZbdyMIulkJxu7vH0jOznPftltM0b/87T+atv59arRWm3Wex74s86IqXt+CaMVmu5nGOcZYVy2gyEPQ3t2hTJpviTn1cb/PSxlQ6pZputyu53NTV86Hn799rqraY7w4R4xJDAfvFqNPlxtjzDm3Jdg7p4yd1nVWanu3Z0I6F7w3ApH3D/fWmNvtNqdUV2Ww7udffq3q/HD3dNjsM5qDBIJxGCYh2G5Tn67XdZ1YhkMUmczadjP2A4W4qAqKmVGmroq2qXZNs1re322rqnLeIeOqpl60Xb2PagFqGZcJ+CC4zEqpUbiuYy1FP0+na1fIDnmUSxlBqjZlVmUI43GcHx4hl2y+DsSium2aIlPWnc83msVt27aHXdf107IATE+Hq7LGB3cxqtnWm7qepskbK0sxjDejjfPa+9h3nUvhoi8A4xgBplj5+dJfjNLjtMxWLWqGMK5GdeOUb7J10mENlOb7/Y5QEgLgTNR1/nD3gBke1uWGui52q1KrWldrA4aM02FdX/7jL5NecpnNJ9P1QwKJCAJtVFr1/ZiVkmbCJT8vS9fdAEy3vldGF2WhlcqFEEwY5zEhmw/P3z/eD931br9t2nroZrWuVVXad98Z73/97RMj7Md//M//5cc/am0TgMqrfhkjhsf+RqgGMShrEWKzw+s6vhy/NmVRVhXw+HK+DdrQPJ+sASaNetLzUlYlqSsD4OeXU1FkkdFG7GMEdlqahztM6TRhFEEhpY225Pzdw2OM8ddff7P7O3h3//T0jgn2y6+/LGCAMe429fP7x+DCOIzOGLOah7vddtMselZGEUqtV9OywBwvy7hOKwQoJng8XyRH52509wABNH0aPnx8YpT2L51T/nrp87LI2qrdtnZVAcSiyva7vVrW260r66Ko83Vd53Xkkh/uDgiTrutBBGpRRZELQrP99sPTQwruerlA58K6eoJyTkWWc8qup+s0z6tRUoprNySYoHNkf/87i844RWuwMpd5VuwO7yJIzpinhycEIMdAMIhhWOYBhHS4O0Tnh2lQ3m32u7JpIUAQJwfA2+WYUrp/vseF5GVunO37rmy3mDKzRgT4h3ffueCCj69vby7F83hblCqN0wT20I6X220YhaSAMYXC66dLW+42+x1GJDn747vn7z88S0xAjCSuuRQUyiwTzoe3129jP1ZNc/fIPv/6Zf5yiineP7/f3h04pjgCmZE8i0FaKnLCCxt9NGtV8eABIfjl5RSi/1/+6e8WtSYIdoeDngOCECeQQhyG4e18opwWbSsZJwlN03A6nlJKlNK24Lwubl+/qjWtU7J2uX88vPvuh8N+t6tqIQiFmFMcUySIvVzOX6/X22y0ch5RCvGXt+GwrSFI3vusKGSR32y4Xs9KmbIqylYyQgnCWcWbtuGMpmglxk6t/eXEJMslhyhS5LyZMNGYACoS9XRXvUNExIgiz1AGEsEey1u3jPOcYASAvX//fSY4ibGuhRD8fOliSAACIPnb7fz29vr48ABd4oLvHp7KsuYy//L2InJunem62zovHnhIcICoZ4tNEQk2Tmo1igBQ1WUos+u1m68diYBLSgnYVJU2FsJ093DI6/JyvvW3PpM8k4RTVOcbs+gU57IsyyLzRkfr2rqiGEUbQowiy40LGWSY4aIqjJQj4wjClCL00YPU7u+Uc6fLmUSAQliWMdrQNCVEKDibMkEZdiAsVqUhQphABNMygQhQghhBgOC8rBiiPMt5xrTS/bASijBmAEREIU4wWLsqHYEVklEECQY2BIgSgAkRBCNc1kV7xYMgmJnoEkgQQUIIZRQhbIxftQIYIkAWtRjnnDFSSCnZPKgwDDKX07L01/5u17Z1QyFo8oLRbLrdCsEAiITxSoplGmMKuyYnXF7HAcZQbZp5nG7nKyGYMAoxzHKptHJmDd4iCAUXIAGWU5EzKSRIKWKk1KqU1m5NkExq0ic9DROmCGF0vt0wRVmeRYJu4zDNQz9eQYq7/d57ME8ThogAEmMcp76zBiVolUWEJuRphrpluc6z5JIUMjjnvMchzLfeG8t/14Asplv0sAwJQBtDiNF7mwkmJMEIl0UpKK5KsWpjvD/smojh2+tJa1WUBYIQ5znH1CuvVgNF8mAyjJTbDUK4t+7Lz59RgN99930prF30uqzp7qGU4q6qZ4h2dcuEKKlUTmNCdlnb9T2ljElmnV+xHuZJmbXmVdcNZZUddpvg4xD11I9jN+73h7qpEk7AqrHrp2l4fHjc7bdVUVBCmGAP2zvOaJ7ny7IcL9dE0Kr1p+vtL784AHEA4e/+4R8QJOfjqzFq9L6b+nN/W52LACUMIheU4uvl+nK9PjztpZCvl7PVbv+wz4r64oyNtuEC4oJyahlGGCJKxluv7Prx40cAAQSJcHh3d9/Wm+E6WKXvHw6M59fT2SgLIdZ6IQitalTLSHECMXaXTosF7TeU0cHYy9sZYARA3LVVVfEm50ZPbSGt0ijBVgoIuSJ6tX5elXaOQpTXRVlXVZ15q7rr5dsw9dc+r8qMVURynOfd0But3t/v1mF4Heb+n/+9anJvLQ7g3qaqKkwIeZbPwwQTOux2gtCSi1mpzXfvtTNKaZoSiOlhf9/89EdEEEJoHsZxuBVZEZL/8uXbOK/WWZpnjHJj7LSsp/k1wLQoD2JcCo5gVNM6T0uztJv7PWHksq6nv/6yrJMsJEyogXCTL2pZxmHIi5zw7LLqrN7EetNP42bX/vR3f3h9+TbOAwH4dusxTCkAmEBe5k6Zn799xoxUmxqmxDkPzntrEISI8Qjgb1/eZhUOd7t1WQAAz8/vEBN2WWGEFHKnr8O1i85ttlticV0Wssw+vn+WhFljhmlACCq1TOt8X2cBPkcPb0PvQ0CMXo7Xl6/nMbqyLoigw3n0zm02bded5wXlRZ4YOw8zQbCp5eCNmSORMnkgi6KkJWLMRLda+3q8LdoQQZx3RVaoRbUiv/+hpYI3mzZC6NelluKw29dNLXOZPATffbxk16Ko7g57Qkg/Xo1bORdVW1+HUVmLG2BFQRkd53npe1rlWhllNYL4eLpChAhDl9M1JeRiGkb/08P9GsHr5Xo+XoqyTEVTtdtdu4EpYEEZZkj5cVrc61U5dTndUISMs8eHBwgIY3TTtsvQZ5SbSQXnC1mYYLu3N8wY9L4tGBOZkML4oJY1aE0YF0WZWWf77nIbJsrZbnvvIxinoZJ5ApACZOaV7loc4PnbsdjU+SZf+xWM8PHpsdlusrIIMZ0v59Pt4oKPCRLGBKdtUycTnNGScyrk7TisapVJQgAlYRnPIUb9NIdlPt3e/tf/faEUbYpaa2ucffqwjSR9On5dZru/2+3uNu2h+ukPH7dlpZaxuwwIJIyQ134y8zyv19uNMJrlJRPlap0NVgrRNpuyrtUy/+0/fi6b8uOHj5ShYZpxUlRw421366+XMYZIuSAxeAuAR3pWX5ZP/Wr0ah7u7jFNK7Iff/jur3/5+S9//jnPs92+zjJZFoVSBkIYbQABS1l8eF/mWfl2OudSbDflOi9//fOfOcV/+P7jw36bFfn900Pz+Ut93ZzncR2WGKNHIXp/G2PVVg7AZez7ZfEuaGfyYqMBnE4XDAkAKWfS+vD4cBcXLRIgDMMlZUJSLvrTpJN9ezu5qPNC3j3ePzw+UZmP8/rrz791l9PDx3c6+mjCcbh+ez1KyksmH++fcs69mnFAFBHOmAvx29dX7TwiZHO4DxCt89pAjID1TPfX2/V4rDbF09O7u7JBGI9Tt8xLSDCHDBImqmw1Xjs9z7PgDFMsAh6GaZ+VWZ5ZajZP1Tyr8+2W5VlZNQ956x59iGGepjgrsZX3+0ZKLKnIBUcZq4qiqQsGcXftF70aF/xqnLPWppiCEGK73SAAl2myXm+aZr/dAkwyIaZlftgfQrDWaAjTvK4RAMq5ixGCyBkCIBjvkk04wSzLKKfzvCSYnA8ppmEcQUoI45iSwBRzHgFMINCMQArtNLloKSAw/Z6qY4wCZwJnACHkvF3MGhLIC1I11TRM2jiCA6U0OmfNuq4LE5QRFBNgnMAUpnUNIGKMQ4xaGW0N5mRdtcJKW4NcGIaX29Rvn+4gZtOy9m4YbrdoI4F0u2fAhU1RcUJ5VWUIMy5WrYZpWIah3W4yKeZ5FpnADL98fXXK4gYIjkFKyoMQgne2KnJCWZYz45wxkxl1VdVlycdxPA2dmnq73xdlXuf57XoxyyJEkTOJASApguSNVss0IYiKMl/H1XqCvaZcMJkNek4mQgAYo9EZvSg1z4WQRZaXXFBBsdfrqmalhWSQIIgQwWToB6NM1bQipZCGEBPHLK+L6PytGzIqqzLX8wp82LTtgBCGSGLqjV26AQKIEqKYggi7rj+dTtGEMivVNFcy++7dx3mcuu56vzu0ZfP526cir+42h+P5GAHwISKMjPe//PZ52zbfv/8w3jpl5t+vuzYYLElYUqeH60vX1rUNZpqHaRifHx9IiHmeMUzmVT3dPyCQQgyPHz5Kzt8u11GP0dlx6Iy1hLGpu4y3/vh2rOqqen5fb7c+JCkzUeX9OLwdjyF4Tqnz4bevXzebltX5aK4v51NZlAiiFMNq7TJNIuNlXRBAUkjLvK7rzE/HLJfaGoaICxFCVJZNTJYyebv1X76+1kVZ1rVxdtJqscrCVLbbZruJAFilbtdpHsdlnIfbQBitixIlDAy0sw0mzN10PQ2ZkHe7XVsXuMAmhpfLeVRqmhSjtCxkVRROU4eUmy2X0mi7WA0LOketge/7c3xF4zhexq6fpsU1WSYlouNqQ1rKuixy1l+YZPJf//d/uTvs7Wqmbowg5lVR5Xld5CCmTV1nMqva6nB/RzE5v75EF9+Or4KIomoRxD6maZ77fvj69nq5jXkuHva1XlZjNGeECIIcGZY53jCGlIDRGwdSIpIxis/Hy9qN0Xpn7PO7B0yIV4FnfH//UJQjJsTMblfvC5ZhDN89vpum4Xa9OeOEFKgoIoLa2wDjOE2xD7tN89vXb21dE8GHrrcx9cMoMlmWubP29fVlnZWU2f1d9enL19cvryAhpaZF+f1mX+TV9Xr9BfxSZ7mzNqSwaesyy6LVHtF6u7l/eDqdL87HoqnXVX/+9OXa3XiWLYupcs55hQkJ0WttAcaYk/HaQwgjAo+PB5hA9EH18+rs3cP25eXLtEy5KCIEX7+9/Ok//d27531/uRxf3ziiUOZjPyqtdw93+/s9J7QtK8aIU4ZiKjgv8nyzaZhgyzpThpv20FRbwtDb6TyOs2ucmnVWlsbZ0/GVc5JR7pQJMWW5mOclQZCVpSyKb6e3S3cOvyJCiHdeIb921/AJ7PdbGNPcD1WdP7x7ABRZH4bjKRG0f7hnWCAIRJ4v8/j57csX8fKw282rHSdVNtXd4dBPU3+brTL7ww5gPK9GUIaQ77oxOEcAgF8/vRi9pOCokD7hSc2b/WGZ4dTfgjFzN1mrgnnICulCHMclgpixPCvzum4TgPM6Y8YhI8abj3/4rsxKq8yyjl0YCsyjiy+/fSkPm7/99otdlk3dEkKqzWZbbS7jrW02758+6qi/fvpCESp4NvddxgVh1EWHEXp7+/r28tV59/zhqZDCRXedexV0gSoA4dhNal3uHu/XVc/L/Lc//40XORO0ljUCYJ6Hz18+BePPbydjTVU21oa//vmv7W773U/fTYs+nrpPv70ATP/+Tz/VeYYQarbtly/fXl5eMGIpJPHw7nI75VX1+HB/u/Qvb2+YEUJEU2/bctv3Q0pRED53i6S8KvK7w15yEJ2v2lJnBNg5Bns6fmtN8+7jh00jBAr/5U8/aYA+f/lyudwAiss6zfOyabYugOPraRpWnwKRzKdg1DqPYyZkJkTX98F7WciMkG5aSAJVVaoUL9e+nxWAaDHWKDuMFjGZZcU6Xd9O1/EyAQCV/fq7/Nm5oIx1JqEMvZ1OoS2ma/+bMoBgzKn1/nwbEkc//Keftpvd6dubQ+efbyecUD7w4L3R2g9pUT9vN1shsi+fXupc1lXtsEGE7MrGF1Fb6+smWG+9A1JvCPvw7n3ZNFpr6JyhfEsp4zTLcp4JCKFS5nQhAMJ602K674ZuHMeyypqmwghbF4SU6IFPL1/7VV/UbILHBCaYMEYG+uHWz/0EfQicCrUmEMuSR7sUTOz2zzHEaRqXZQkgGGu7cdxnmecCY8yZBAwXZbW720NGpnm2xjhnT+ezDs77gAmilE3KIGYgBmbVmRS7bVNUNcXEeT/NUwwx+AAQtMpSiPKsLHEmtPQpcM4Yo5zyaZyZIIySmIByaloX6mhVFEWRA4oYkR5A5XzGKSNsWbV2PsZokr9dewnApmwQxAngVbtAwGIMiAkLCWGwLhirMIhm7MeLq6qyziSXWcaFICwh0G7bW3dFUjLOEATfPT4O40yCVUOPEcyEfNjvo/MYpBR8AtHHlIG0rEtZVA+PD1++fv7t199s39O2bmhTtg1wWmv13fPH7cdaDUNKPqR0C4BEqKwBAFFCp36iGW0/tiHFYZq9DRAiuAJCcExBWT1b22LItlVelwUhHnQueMFYnhdr3/cvL/MwBReFPD48PFEi6jYTjEXt0+rS7PK8brO8Xy3LxHcf3vvkxn5CAA5dL5nkmYwRBhBFmXsAbEz1poUEBYizstk0m09fv/35rz9r7wmn1+sVQswo44QZYwUg3oaM0u/uHuu2ub8/vIRASYMAXNTqnA8UjHgxyqlVFbJ8Gy9NkT88P1plZt9jKbe73cPD0+8W29WYr58+vR7PCaGMcUrIti6WsSvLQkLrky4IwjCF6JvNJssLZ6w22q8GR+yNB4hgjEGKGLG6bszq1arUbDlneZmNy3I533jGcS6dM9dbRwkFKf3zz397//G5aav+1s2//C1YTQDJ8+L17TIZvdigzv15GAP1137gMqubZlXLy699nmd6Vmocnh8eD4+PdbtV8ywo3zRV1VbWueAijFgwVubZ0+EQVn0+Hn/46Q8M0y/no16MVsoZrWeIQqplSfdUUL4s2rlw7K5G2ZSgtdbZmOVFVlQYUUSZdsHDyCQNJvXHtb+cg/fWOUppd/0lK2SC+OvnN54Pm3azzna/2xSyuJzOp5c3DkgI8Xru+mvfj8N2t9219xBCCMC+2fVlJzl73CuCoSiza3c7H0+5yBKkmCKlnVt0pH71HsH0cPc0TxMm2Bh3nNV22+aZ/PLtDQIECPKr4X2/qYtlmodv3/Z3WzuM2qiPP3ys7w4SM+8cz3hVFt9/9/HS97NZkg9WW4TQP/7DPxqtu9sthlTVdXft0vE86eV2uRlldvuDaLf//V///OXr17pumk0zaT3PqrlnaoYvrzdMM2tjf+tknhmf+r6zqxlv09Mj2hSPyLGS85xkGId/+umHdX3oxvGYrshaKfN2t+2X+dvb29D3ZV0wRm6XjjN6OnaC0nWcJeeqGxBnytjBrJv9oWra47cjgpgzuSozLlMy8dWdVm3a+22+a6Zl/fbydnx9e//uOXowTpMyLufZ5e10wR5hCECCoNaLuV4uBJPnp3cggg7cGOf5rtlIRCllPPv8+dv1dn14ehAiAxAtxnx9fQEpCM7UNC1alXnpvQnOjT0kKDBK1TqnoFNyQz9Syn00jOR103gXLufTbbwF4IxzMJddsrdoz2bRC6oTKHbbH4rcGi0F9yEKYQEEgtIZjFZrInJ+vnXDOCAADnmZb1tjvDJKGX1+eQlOb9qDlI+//vpN/fvyx3/4u+7cWW/uDk9qMna91tt6seP983tMYPIPKLHDbq/m9XKlCAKI4eX4arx9X2ZlXY3awJAQRQig5/tngqkO+g9/+KOya3+8JBe8NuM40YYmALwPznnn3KapGG/asinzPCEkdckz2e53DAnZKOX0y+vReY8xuZ0v90XelFVZNeuyLkqfztfowrzqcXmLmBdlbRL4y8+/AIZElpV58dMf/5AApAgnF2FChHBBJUfMWPf8/EGrsC7OhDEtZLNpd4d9inHpx4XSzaaRjDltoQ2S07sPz0M3TtcbA2ia9U2bqsr/04//Sav57duL0W64jZfr0ajlD//lx2b7mCW0bjftpp4X/enrS7vdaxcLItdZO++wJHldvRxfxqGf1xkhQCl+OZ+UtU1VCIQoJK/DhDgLAYyTYowRLgEimOFuMvHzKwbp+NKFAAmXc7cs0Wy2u4pTSJK3UW7zwS7L22RXvcxqXhUVfHvY0raY9dLNIy+y3i6XZemnSc/rbrf5ww/fU4CDM/O4HK9Xrb5CkHb5JitLTEnfD8utY4JviiKCQAgfpjk4H0Gq8hwnALwN1kqMmv0uyzMfg9HGeV8J3nz8iDEqqhIi8Od1AhQXGBLnuuvZhCCaOhE6jeM8TwF4lywmIlEIKFimZbErYBAjOk0TILAs8ut50tMYYlDzUlUl5bQqcxs8JUQpU+W8atsQkzfO6ti07aZtq13tfehvw/l8UtMcfYASSSm0NfO8KK2FoIhg55PVgOUUREghzgSfl7kfRgBBLrMUgVpVXValzOZ1ccYiCBjDGEC3GgcQSCC6wCRBEEOIIcHO+BA8EWSdFNTWEm+cjSC54DhFWZE9te3j/V0563TCp3XU0SWS9tvDvt0G7Ybb9XK9ZpmQmSQExxD0qkECWV6WWY4ouV0v83VIIHJAiqoCLFHIvLN21Yjx/f2mLIqH/U4idDm9vb69Iow//PQHmReUsBAjcm7DM8GlkJxzutqZOPe4bR8PTcsrUIhcsuPbSXV9XjcRg66b7g479HB4eTt3x75sik3dRABd8OfXU0yBMAoI9D7NRp8vXfAAAbColWLkXQgkQUKscZQygoDIpLHGBY89Cs5TQoIPCERnFIZtVkgCsVZLu6+FYMs4G8NFxje7Ji/l6+tbCCFhRzi2BiKEtoddv0zny/U29C64aZla1myaJpOcY8IxRSTG4GEK23bD7u+/fPr66a+/eGd5U23bTfQBuJQxDnd3CGLGCEEIwrjOS3/r8rbd391llIEUCQIMESxETOF26cbbZbM/PO72SpsiI6CuDrtdSO6uaH/Dx8+3y9vr6wOiIMTT2xFD1GYVo7TICud9N3QxpH3dSipj1WjKgw1lXWCKUUzNH38QQixKZVk+zksmJUhgXuZrf52XVc2LXk1dShQJrSsA43mcdUo+2LAaUYr6fjdOy6fXF6cciejx/l7k2TQMX1/fvvv4fRJMK4AIbp7uCMfXl1P5uCfLdPn2VjTN9uGQtOmnoV9GSCkkBDG6an0+3k4+7Oo65IERWmUFI7xbJpBABKnMy+K+8M77GChjxjq/BohA9H7RS5YxBIEyi2Qi21RC8Ncvp6BVWVc//vFPq9Yhuuf372GKx9P5fDpRjP/1n/9l6EeIf0cZ8AbdvR2Pl/Mlev/weIcwUcMSgv3H//pfyqr+l//4NxB827aUcxfCNK0IYZ7RaZmcc3qdjsdjiuD9d99RSOZpVasuspILXrXVPE7H1zcMdoLSc9/dbifG2bKsyq5lUYYEqrLCFCecijwHBIEzbH/cbjeb4Dyl9Oe//NVoAzEklC6Ldj4q5ViWKx3fLt1i/fVy1cHGlR7HCyH84e7pf/sf/3q7Xfbb3fHaVUVVVA1jtJvmb69nSTkmdFn1t29H7cw4jiGGqsoohTEE732e59vdXilvrOWUPD4+DvPMBa8qTAnHGL98PTljIECEoOfnx9NtQjRAxj0G379/FyOc5/Hf/60/3U7Bx912F0PaYGKB64bJx8QK6da1H0et3e027Q4Hlsu31xdEYl0XEILXt+M0rWM/l3kumKSITdMQBi8Xsdm0dV2nBIsi8yHmWXl3f78syndXSVhVFvePj91tcNaUZT0u49h1IAKByXbX2kxej6fz65FknEhCAo0g/vWXn622Y99jhj/++AFx8nZ8vVwvRd1Uuy2BeJg18VZmXPBqGiZK8LvvnpdxvpwuD/fbPseE0bzZbkjGx346XeeKsgQTZeLl/Prt9O2nH39CVTNaf1u91npZHQCIQlaKPCy2v3azGrONnNcxY9m73ePczdfPL1mWF1yklDAJlGITIyH0cHcnCNWzXV3gNskUSQK6n8K4cJz+8HwffHDKp6YpilKta9f3t8vNJVdUzf3hzvgYERJZccD3AHrvfAxre19GFJdhZTEmAL9vqrIuKSPRaJSSYPSf/pf/AlL69vXby/HUm/G8DMY7kvNZ6WGYKMEfvv9YNy2FGIWolvnrtzeY4PZw4DLf7+58gKOaLrdbVpec0a4bUoxFIZxRy4iRT8iEepNJwWlMUHKIEOXtw+F+WeZ5nudFJYBsIpkoZbUBw+K8XoYV6CNZbRbDhuD9YcsAaLeHebEZhJSScZ7Ot27qhvf7+4fNbplmTlmA6dP6er0thEkFA+cwBWjMbL0v6qZbzHKe6jzLGY42un5JMSXMuBSncw9YRDQKmuqmkJKfL9dJzQhAbz3nlB3qNjbe+cvYK6XKXNpRfV4+HU9HrY1xVnnHiwJRuSwLY+Tw9JQJMU9TVeVlnicPKKU1It3lPE7TNC91W82LNi7UzXZZl+P5HGN8e3nbbNu2rIuscDFO05p8DCnlleBCTuM0xhmCRCMraLFc5951Msu2ZUWFnI0BWjNrDw977f31Osyn2wJvXPJd1RYyj8YP0xCCv16vDFOZFVqpVSkqqcfJBm9tmMYFU8myEktJAHBmwiBMlxNKBoTVWKdnBZXel/XT4RBAIoha78ZlXNWqxhlRxjKqFm2UwSEURabUGoMXjBLMyqx01imtYxgoJj744AACMGOiyMQ8jWZdU0opBs6wD55SGJ0HIUQXnDMh+GnSCGHOGaNUCiYSlkJmUi7zpKwiLELlY3B5VgpBKcUVF2adtEHeR4xJsSkwJkoZbUxKS1NWkmOBSJOVEKKqbRDFatGbvIkx9GnkhEmMw6rmy2X1HoaQY4o42VeVlLl1vp+nbZH//Xff51nx9eWLD24jD5zB1azj6wvkY5ln2i7Pu7bJ2TwtEMP0cECEKOdxiqv1mAssJcD4fDoHbWUmHh8fFj13lw6nAJztL2ej9bIuCAAKHoH3wSiUABXyhx/+4L1flSYMD904z6vRCoBIBaeMzYtKwDNKxn6c58F6n2WSZWReekZgW1fkfn88X+wUEYgCEh/jMk6Iotvp6ha1rzZ1Vjy0+xBDiCE5e2gbBKAxqmlagCGg6PUVmtUuVk1vyzgu8zB6lx6f7++b7f1uJyn761/+/bA/eFm+RtBU9X6zwwBfLhfnh91+gwnUwTHJ/9t/+2/OBK2dnwxW4N39x82mWY0B4fp0z2FedGrR82oWZZV+fnh8vnsshMyl6LrLhuO63VBGlVLtw8Foc7lcsozWbfV21EWd50X+L//8zWnelFlTtQihL3/7BeRyWrrFzEZHj6PMype//JUyTDAbutl7+/Bur6y/jucYo6Ai0bT066/fPldtM/TXtmrGoIduvFzOmchHryBOIYFJq/OpO84r6m7iz/9aZxLW2Yzh8Xo7XsdVh3nSwcOmLLKsDs4v6ywYV+MyT+Ph3eP2hwNIKEGwLPM4jItSEIIiL4yzo1qdRiCK4PX9fr9tNiEFTMiHjx+GsY8JehitD9pYREUmRNed50lnUsyrXozJC1pt6nGefv36yVrrfQgmHrtrUZXLvDDCraHTZGNEnEoCWCnLqq4ASgGkeRzeP98zyb5+fpFCKuUYoaJm0QRGuDY6QjiOU/AOYISo4LmAHVFmDRFgypbJOjctSnXj1O428RQ4pX03RAuenp7D6owxx/7b1N+StQ/vH8uqvt/vL9duVfN+f0/eo28vL0bph/02gIAJHYdgjH/58nkc1pigyIwxykMQYjR61Ub104Ir+t27dwnE6zxEAG7zjCl2C3z59qrWtaqL/eGuRHxR+ni5cJntHh4izY7HN4wQYcyuhiASQLh/fLDW9eP6tk5CoP2+csZ253PyZhknpdTQXQXLJecJ4kVrH1M/TlJIKSur/KmbZJ6xonQQ3WY1WQdjaIRklE6X66w0YRwx3i0zinDVi3W2oZibOH47zWoax1Fm9fF6U8ERhK/nC2f047sPP/3408u3VxhTXTefv3yamRBZ7mEoq4o0oCRMe8NyqY0HEvoICAkUE85ZnucooGXo1mFkhEvJCaYUwNPxTTtbbxspZX++pRC721gVRZ4VNpgYAZmGqa6rzX63bpbV6NOtSxEGNdgYds+Ps3P/8S//gpjQi7Z6+fnrV46Qmhcf8aasAWVFW9etvL5dQtHirDofT5fz8PDwUNaFsWt/6zBH22bbttsE4e16uw7DqlRIQFv99ddP67pKzO7u9hnNfLS7w+6wB6fz9fOvX1z0CSSGKUZUabuuBiFc14EQqI2algUCUDcbnsmqaV6/nEKIUkoI4PV0uRyvi1K7+8P+3YMPsaprzIQn4HS8rca9e/e4azbD+QpTIglxTIzWGMR1nW63vsyyosggxFqvZdnsdzuI0fl2llLkmRiH8Xo+SS7KoqzaKmZOMhJdvL5cIEHtbgs8nNbVGB881Ma45Bfv8wgBZHW59TYev129OhqzGL04ne6e7twcjuupKEv0/yPpP3ZtWxYEPS98DG+mXXab467LSmYxKRGgJEBdNQTomQWwIbBYTNbNvObcs+1y0w4/YoQPNeot/tb3az+0TVandLOeRLrZbZM4vZxP3lmIUE7TfpjSPDFaW29ZGvlFDdOkzFVLp6QxWmmf7ja1ccF5CxHUSlkIgAsUo3mYnUezkpfmao2jiGKEPIk4AYRQACDUgDNOMZmnqZ9GFkXbbdFeEWcxCPDaXeUiOcVRFCdFJpW01gutjHXN9Qq18wFoD8UgJqMXqXmSEGq/v74sRtbrekGgEdOszWB0FDGvDPTQGhtXJXRummZnDQQwjqI6K2UqnXdJFkVxZJ1ncHm32S259QCCDJaMN+duGMcY87vNbcT4MI7emwDCYv0qT9dpoZUwzgCMAMUQemscApAzTjBeJgEhcEaj4BCCcp5f5kkqRQnDiCZxgiHiSVSUFU943/fPL09nY8/XLjIwizMekTjPtdHTJIw1aRwTSkBAjEVK234arHZJliZlxpNYLdpYQxm2izXBeRic9sY4RXVwgEcUBKoXAyFECCEEIYIgBK8s4jSg0EyD19oEI51LojTKMhjQ1PTYOsdjgmEWJ9MikjSr1htrrFTGOh/kIggGwTtjyzRP81xbZ6TJkjRJkgB8lCTAe2uslYtqr1We5XEW0+RwOs/dslqtEMbaWG3kxIRTXkkTxTyJ0lgtz0/PPWzZ44fNZl0XKbQ2dTSuyqKuPIEAYszi1WrdDOPp0o6LVMYgreskXq2rn94/DF0XB0Qg4jELPphJRIikSbKpKhjCqemyOIUQXs6nvCgwQVpp59w8CcppgF45N1k7NA0l0GUA+6CmRWrN5olxDpwFbS9nLRaxSJlmuZVaKg05vl46hIHVNsL84fEeUmSs77peqgUDvNttOOeI4CjlbdudXq/KmqzMPQJN2/bzwAmNOEEAiHE6GQeCq+s6ilh1s4uTtJ8GC5CUputnMi2DmAnHLGGEsoQnh+t5mqc0ivM4VtI+PR+zqjAOhYBgwN76clXEm61cZJXkVZ5bqd6enoDTN7vV+x9/UNK8PL9EEXt3u9+vSqGWvMyH60UNU5XGdZ4KYYnHUDvCwP1+t9us9w+3//7rX56+HYZ+BAQH6KEncconNDmEoiiKKPXKKiPjGN9UuylZXo9vKLgff/hhHIfT5WishQgcm2M7NIj4KOKvp8ZDkpZ8UsOnF/Xu9pYTLsVynUUrxWpd8zzuL60JHnIKMKAchwCF0dpaY6yxZh7ntu+rVYkwYBFL0iSvilks1nq5SG1sEqeIMgu9XBRlLM+4x7BrWhdC30+L1HsALQiQ0WqzwhDSiCQAamPjhNoAFyVCCABBz2AvFhixdx8/Yoj++re/KC+FmDGBYpbLskSMaa1ozD6+f084fnt5yVnMH+4BJOMohn6qNgUlGDaQMOacoYzlZbQsEkJPYp6CnDEGA0CYcB45f5mm2flGabmq15REh8Ph+Hq5ub2FKDSXc16kMBAEaRJnRlkeMWtjGEAcJTerDQZgtdt0bdd1fYLwuEihNGdpPw3a6mpdYwRnOZ3ejjxhPKIBBQOch+HSt4Qwh5H1fh6nxVjjgNRWKePNMMgZMzJL2fz627jM2igxiSThRVrkWZYl2e5mJ5398uXbuR/IEHwIaZTb6WDmBfjAeFKVBCDc9Iu2Vlq9WAXHMctTDGA/zwBAEmfau+54iqNEWAu8HZXB2rbT7CFBhKkAj00HPUwSmhRlvt6cLu2nL58Ige/ef7AhvJ1P57bZ7tdFXTHMvQ6f//EPucg8yZrTubte0jTdbjaTWtI4ywhnDlyv5021HRdl5eVmv9nc7MdhBhBwSt5enofz+WGz39/cNGPvQojjZJYyODAMU3NtjFTB+Kkbk59/BJyLWYlJEsqZ0CInjBIKZ1nQjDCmHDIGCK8BtV9fnxGJ5WxnMSwYv7/fy6DdpUE48oQ2/Vxv1sGJtp+Hbvnb56/ewijPeMaM19roKIq2u5uq2gqhIIqU81LbgIAxClJU32wMARr69fqm7xuAMKWERIwRdLNdr5e11nqRSgp9d//gjP76t99iTlhEejETxot8o2flVZiHkbPY6aAXqQZtlQcOAgv+/G9/NdZWZRGVOae4qkPwwCoTYRLXG2u0Hpcvl09Ky7rKWUy2t2vkgbdhHnvERVbl5aocxGAXFWfFalsDYF6f+6KsYExwiiEIwyAiyimNjbPXSzcv+tL0iOL7D+84Q8LJkmFIWTtNSuqpV0opCBFEWAE+SlA75D0U45xmGaVYLkuRZ7frTYfbDMEcY5KmUi5RHP/0/nGSYhbLPEwBAsz508tJuAEiAmEQxnbLbKhHkgTjiA/QQrOYAKAUikcYYnQdpqYfpmVJsqTMCSZoGuYFzmVeMMbiLAUBT2K6Ht6klo9377bVihLcdz0MXi0i4hR79Pr9uTmc5CKUUrv7W+Xc16/PaZLe7PYGwEnM2LpxFvO1MdDNZrnb3fFqZTnrL43qh9KoLEuA8Wmcspge22vpqmK7lvPcXq/jPL17eFzfbcdpDiFoY4H3LIR9UUVpsailX/qaxw/5ChEUAFqEiChhcWzFZELY39cZoxWNkqpwzs1KSWAVjGyKVOGbYcaUYkK6rvfSguAJZ3mel+vaen89XsZ+hAhEUQS9sWqm2NHgq7TkJGIsJzyuV9UiJPQhSTkEaOx6Z6xDNipZnKaAkFmr/96cFKHFBwPCqOaEEZJHctEAAsZpRhinzBs/DgJCaK1mMQsYDv0cQMizGAWCITY+WABwxPSkA4BJGkutrdHAOzmNzHtnXdtcJ7E4EGQICCDKSEqy4LyF4NK18zBRSihjFFPGYx5z67y0iwkmeOctwsB7HziLfUDSmmvXI0xYlqc5zcv6cr68vB0wwQHDSZoxtsaG3c0jYyxb14AyFEfPf/86jv3j+0cLaN8OcZ6tqni72ymtM0rmrnPzXMXs/n672axy4Is02b9/tyhFkghAyCC11lZZtikKijEHYe7nJMkAQWM/aWvejuesyFFM22me5GKdK6FbrVfDNL0+PRMPkoTFWaK8j31gkPXSL1b2TeeMK8p9sS51d71erxHjccoRDjyhcRRbYJ13xjopDcK+mUZ7bYwxX748aS/P1zZK0yTLyqoUSkac1lmJHFytKyHE92/fAwA//PDx6ekbPrwkabwsUjw9V0VOi1iLxQFgF5Vzfnk7/R//21+3m81ut43iuBv7pr0Mcl7dbiahm2a89oNQivLk4798hMEfvr18/dxhHAgKu3W5iPnp29eyqoe2611wxgPol0kcXg/FusjLarPepnF1eLu0/dgdLwDaP/3y+9V6xXL2bn4XDBr6MUkjvo6CDN64D/e3+7t9WRZIuymuk4hRBjkjWvuSE0jJx59/Nj6cD4c4isdhaNvLjx/ecwq/f3/2wlSb7bpejdOkzICxv1zeJAyT8SrIURFj9HW5dqofoYA+MEhiFsfbknJwHvrRmGC98/7QNMM0CSETka5BQIhAzmU/AYt3mzKO8nGcrJYwYOCx0RYgHIILhFhsey3s7Dkk79699970Q488dFYKabOqyhGeZ+GDY4wD7zECzdAMfX98Oaxu1yEAqS2MkHbm+enJKlWt6n29nmf59a+fr+0Ql+Xdu/d5VfT9PIsleB8l9P3Hh0Usb89vUoiu66RWj493cZ7HUdJdmn29Xq/Xab4a51EoEebBORjFnMS8HWdhVBxFNE7EYrbbtRTy3//85+PhcHd/xxl7fXmmkH64v314vPHej2eVIfTw8IgipozpB6mM5nGMCR76XowTgmGZp5vtzbreDOMopcSUBBiuTSfEsttt6roCARCEOI8CgK/fzsa5oqyapmUR2+23Ax9CMFFMEUDTKD59/gJj3mpx0VYq3Rt/8/7HIqsX2VijrcaIZtWqppDOs8DezO3pfDqjts3SJE/yoiy0NE03iGVG04QISLNkXGRzvoppKrIKESKNl0I4623Ir738/tIotTR9t9uuSZKM/ewhBIxc+6F8t4p5dD2fvnz6QjB8vLuz3vfTjMaxVbLcldjw8XQ9Pn2fxiHhESYUesMIlPM0jUOeZgiCFKPbPL/Zb9e77W9f3GLdzcPD5nbfdNfXp2chpsfHexjC4+19ROnpcDx++1pv1uTp+bDaZox7b0IA2DnNHIowp5i+Pr9Uu6pcrZprjzmLo7oZRL3W690+RpGC8MuX71LOb6/P69Vqt9lPy+wInpQ59B3kJI5gnJf73Y4wejy9eQsQIevdfr0LH9+/E23LCC+rlccgIKgw6rWd5yFNo36ZCMardZ3b/Nqch3Yosvzm7nbqu6dPn1prH9/f1XW9LEYKZbX98vl7VuZxmo6TkPOSxjFlisexB2HqRhZFjHFg/TTM09B5o8bOiLzMWBKsX9TU9pN1jlHK0wohoIVRShFOjbWTmBGGeplvdqt1XQMXsjj56ecfkzKbxlHOSx5n12EALrx/986I+XA8kyhav9sopWlEeco5jspVqeZl7ifgLY7w2E4Ykfc/fnTezfM8z0u5yuI09ibkeelDcCaM3aiFRDxaF/kqT2cxxmnC42QSbACQCEU4ZVHqCgOlTfJi0vorOFwGZ52+Ng0AkEOcshgnXEnjEUScGwANAB7CALEHCGCCKKUeEQSTJCmKHGrXnLu5HbQQMHig7TJM3tpVWUEQ5nG03mNK9TwvwxAXaSDkfL2a4AOGEvjj2GtnAggxIZqgY9sMi3j4cH/z/jF4N57nc9sZbaIic0LKRabe5z622koPJinnYZrGwRrjT2+pzKy33lizqIjiVVWuVzVnXHPCCcxXZV3VEODPn7/89dtTfMN/uHvM83QxBqMQQfhhd7Oti3kcu2FwCJEkdpDMQn15PZ6aS0QZTjJHOUeQRtH+/oZQRhjdJMU4DR4B4IJcxPnlhTDKoiTlSZmV9w+PsxCUkRZ4uajVujJFCmHgnN8+3K03K630/O1bVucG+lktvrGUkHpTM0KMNvm20AEppyHnJEo443Pbj5OwziRFnCSptcZ1g5gXAtC6rpMoNkobDG3wFmFMoBBLc+0IgXmRUR4Fgo1UPsA0S4Vczi/H9XZT1RWGADOyTEJJOS4jkpBSsttsKGdKy1FMg5gWvXDG6rxgjBFIpNHD0M5SwIgiTBwGoxIGBRRh7FlwHgK8SLUYs1lV+90eIwKhu7bd4eVlGWceRwHTfprOlwu8ds55yrkSKo95fH+7LEuSRFkc5UmSp4lelvbac8JtAM6FD3e75tr3lyuQ8v7mrogTJ9SqSCEmz2+v1thVWXkMpFPTNM5WLkqFCAAMFjGLYUEeRILGYsmKLEoyD/H1ekUIbbcbinAzDXbwUkulLY8SD3CUJFaa74dTksdVXd6+zy6XqxDCY+ypX6Q4P58Iw0mWxHEuFzeKCXNSrCpvoRACDggAMGopxMKabHZL0KGioB8HpjVKYynFImVdpBDh6yReL23b9/c/f2B11nbt6+nFBuso+O3tdRISBCqDd8FJLYQQINhr2xCHkywlJNA4RhG7dC0g5Obhpjk3x+sBoQBAUNMkMPjphx+Lsp7aKaJsW9fd9RyAhy4s4yAtXFVF8vtfLqer8np/u1+G+fjyWiTkh3d3AMLvv37KCP/p4VbKeRhGaA0NLmF5EcU8S1NK1SxlN27T4q5eRZz0bydcb2/u39/dPXR9B6AZxgFpkJSFpeQ/fvutG7oQQJQQIZa2PVtj9GI22+2H6n2AUBm9v7kFNpzPx8v5op0BEI5KzeO03e8Yj3iSVkkqpVOp0xqM/TIPcmiGpMh4EgFtjBc8iZV17duxiDPCuIdW6YVTRtO0awfsSJISEkdVnkc8Bt5JKU5vBykVjZhRuqhqnDDow6INpzzNS7WYP/8ff+EcexOIRylNvHUOgf3tRozidDplxSbirGuap2/fg/NJFWOKZyG0tbPQy6L85cKzzFiHCLUCIEKbpjtqCwBYb/d5VUMAh8PFObu6oYtUr6frPKtaWp5keVUF46dZvr2dlnk8n05FWsY8xgwPXVfl2e/++K8B4q9fPg/nS5kkD//6r7MQRVbEUbIodTq+lavCAwQAHCZxs93C4J2zVuuxa3yAEQbeOY7Du/2aRxFmBKdaLZ6hgLEHOZHSzksXvGCxv06j98vLpfE2mEUA42KEGcAeoUDZ0o82OIAQJpRyHidFmmUIE7FMk9YBk0vTUo5XNzscp9Kcu25xjmfV+naz895dThejzfF0fnl+vrnfbfd3EIPntwMCGEbcEwwxnKxelB7m2WMwyfnp9Xl3f7e638/Tcm4bSzzCeOya5+PRGX1oLgGQgFE/Tc9/+wfhbL/dibZn0EOAFrH0fZ9mcQQJhJ4gCH1YVdXj/U0axVZqAkNd5Nh7LSaAMDleWsBxVuBys7LX5vLtGEyblSvGIxBQ044fP/6w3+k0SVvZ/6//3//fJKfHD4/Qg5zF17Yx8zR3DYV0t9p5BAMj3qPGmPnluN0URVmuo1KE+ev3TyyAslgBb9KiCgg64BD0Wi2sTC0m396Oh9Nlt9lf5+lwbrM0Ol7ORVokNK4ei6LMnV2MNpNctDYaoDyvpR1eXw/TNA/ztL3b5avVt9e38+n0w/uPs9Vy0VWyBjEhlKRxjDGOCQtKtkqv96u0zBKaWm+ndozqJMlzMYpfv3xf1bXT1vlwf3+jFt2L0TtFCby9e8CQXo5HZMzmdgcwOr70KOCqLDSwh+MFJhHmyPFAOWIxZQzELEzdxUOzquvg5eKmzXpbr1JvFUJks84XpaA33po4Lmhkj4eLM15qJdTitKWYWI8AJkmSeIyjJKKE6HMTlEE+tKdmtcHvb2/yiHMe8STZFeX340Egcx3746UhhJkcJEkGkyhg1FuHPXQBKo8Qi5UGh0MTMVLXpXXwdOmlNCzAYCzx4ePtu6qqeZQaY6WUacq7tpPTvHhHMCKI1vWaFwlR6ny5OBDiNNbWfnt+MsZRRtMiRRBHSUJZlLN8OHdaSz0rGCCCeBgEZVQbc307EEfWm9Vs/DIfpmnCFJVFHqRdsEnTxBP9fD6mKVvf3x/PDdSuKDIMsFv8WVzjOBXCyEV7C5wJEWWcMjENl/MFznKV/dO63HBCq9UaMX7t+s4PYV1F3i5W393tOKHeah+8k+PULOvdepMlGS0AASCg5zcFguU0WtW5d9bqueKEB6CULGKcx0kSkQX5KOVxmpWbCmCAKEgzLmbICPAOBKmSgr5fr22azsPEKA/cv52nQZglWpYo4ggnSdSPOvgQsxRGdorHqes1hlanGuNh7PsxZHnigDOzsSZo65UDHBKM2eXa6VlkPKqKommbPKII6GUavfOMErksIISsyDCBFthJCRpsP4xCLICgYIF2FpUIQQQR6IZ+mAbvQp4mAYJ5GbwHl+ulKLOYJ3axUihMEUTBWClmF/GIYgyCH8cFQgQo7pcFoIAiEmzQWiGC04QnLF+tVgaA9tLoccnjdJXlndRFlOCYk5Q31z5KGTZ6aQACnjMU8wi53IrJeZ9x8HBzo7z7+v2VQ/Tu7u7ct03bxYB6IYMy0FkAIYsi7935dL6erxzzRcmyLHdRdDqemuMlSmIacR3C97fj/v7O00Ro1bdtLPjWoXpdzQG24xJpt9tvMWXQk4SxqioBxsM42UWTGFlpsjgdvX16fpFStVMXs9hIs6rKJE0444xE3Th8efqupJRKf3572W5rzjiO0bufHwgj3TC8XY4W+bwqEGfL4eycSLM4AFBWcVVnQ98sQhDO0igTizo2jQn2408PGcx5yinCoAUxZXVVpXH8xXzuuubzX/7jZvfYnRsIUF6klLPn10Py8hLF+MMP76M4bpoDhBAE+OUfX+KY8zjSyn777ZsB9u3lJQExtJCyME4LjmiWVwTx49NrvVs358vTt+dgPTD+K/iy2eSrqsRQZDQeLmfjVJZmMWF5HO9X2yhZuclfojZmiYduFgMh0GgzjpOFfro2cRS9u/uZM349XY1Um7xkjFLC4jiRxlsIAIQehFGIeZ4cClkcY8ydMdOieJoH469dd2nOhDPKomHogQOnyxVgW1Z5meZikYfXI6b4/uE2S+Oubcos21Xrksc8ALgDTdccD28RhIzReZqUkD7K4jTtr935eLJWJozf7Hb5Ku+Gblbq5uaeFRDDLSf4+eu3YewwCgCgLI3KovI+LEa9nY7eg0mpZhojGi1qeXp+rqqCUYoRQQiE4KdpRAFjRox2v319cQHMGq0f388Iq2HK84RQ9HRsni+nj+/vy+1eDOK3T9+zMvE+xDESo1iUnIdhbFrO6X/65z9ppU9vR2fkz7/74cefH9+evkEAq+zWaAdCoAhzggEEnz9/arvuf/z9D8W6Dg4opaVYsjw9Y3AxqsiiclUa62YhhVH4TWGvVBzmcfzzv//Xb2mW8GS32rzbrLS3v377DCB6eX7Ny1RpFax93G7KurheLtdTQygXxo5yUSDMTav/8Wm9KhkGq3WJEPRWKD0yHudZ2jZ9XqQ//fT+Zr9Ns/jSXJvLpaxWAaC2Gap16YD3AUzD4mzI8hJjsoAQgHcIAIROx+sibNAm3WzmZTrNS0DEopAT1mldRvEo1fPrK4MQecCu9DZAiJCWc2gHa+0itfMmT1IjjZH6y8vBPKh1Xf3y+5/acSKER+dLB8kxYKy8X7wbut6RKC2zP/7x52+vzwQinPK0iDRyd/f30jupg1Kib/sf3r0jJvxws0MhfHt+noLq1XxqehDgdr0mkp7G8fly3d5W0gMXAJLq29MbZ62YRcqJWHQ/q9hoDeAwTSTiDrh+muI4Xa/KZVpSnqZpEYDX1ippL20DI+6cu1z7JK/KvBr7pRunOE26aSw2N2lVn/t+8U5BEBjzAKdZPjbDy+H8/vGhLjMfQrFe56tiHud5WpB3280WRxEk8HK69OP08O6RANT1XduPEaMIeAxIEicwoK5vp2lkjMcg8QGuys2yKLVYhGmUJ0KrbbWmEb9erqe/HW53qwSRse0dUNuiQN4hFFhM1mUdXJgHcXp9K+vq7mFzOJ6Ol2tAXjpNKO6bfl6WVVlu6i2j0el8LuuyvV6tDbvtjtOElhxhNioJGSrr3BotZpGW5cebmyqPUBwduuvfPn+5Dh0loO8bSClP4ubaWuudCwRDSgiwQItFRSQQQDxCAKlFrrMiwohTlqfZ3e2tC1AbGxC4XM7LMkcxBwiOfb9elUlVYEaF1UJp4wJUZlHLMI+cJ5gSYwywuioKignDZLi049ineVEWhbbOeEsZTmKumq6Xs59gVa8shg7DAEHTD0IZQOAwj967xWozmLfTqTmc7GLvtlvKqO/EME7KWQsBSeLFuNfTWz/3KeNpEq/X2+D98dLkab7MQlpojGua1niLGd6u6++vBy1tvsnb6yTnSU5jWRVhXhZhur63wIEAY8r++NPvd7e3jJNv374+n5/E2OVFliRxCMEar+cRQIi8E0P35e8LBOHh/f3D7c4tgxj97X6PHary/IfNHbD26N9sAHHB9CzbfqYE0gDrqghZRjgCMPx3hKJgvL69xZS44PqxE8sMfEizRCs7DnOWl2lGrHMAIWWVlMuyTHqcEkIe9vs0TqR3xntl1CKE1jrL07JcuWCsd4szSnsdLI4o5UwrI8XSDyNM0yyKHAGIMoA8jyMexUIuAZhFLkkWK6WHaUAAcUoRQu1wOc8qYtHNfgshIYy74MdRCnlM8ogQhDzsx2kY5+AsUMYZz9Kou7R6WlZJ1qne+7DdbBwADvhVng9jH1OyXa0IJ5vtOuFJyy9D1wIQSpClaR4IUkJJbavNOol4FWVRxELw8ZaHEMZp5DFHlL69HIZhigpa13nfdb/9+neOCU8YjpDyCiVYL+7p8ELoGSNqvXp9PX0/Hqq6ACiIfooZDRhGjOZ1uaoqAEDfDdp5nqTKKkzjvFpJ7YduRphsqzXwIYsSaACDjJOIEi1GcWm79WYFPB77mUzTpiYIIRDAYlQIASCc5AVjcTMOAeLVelMW1dD1zmhgQ9+24zTPo9xsvbWuaZq5u1LkH2/3ZZROw1jEMY0ZJuRy7qS23sGxW9T83M0zL7I8YY5iac3pen282+/q3aKkaAYAIQFQzUprk2Xpte1eTqcoSyHEPvjnrkHepVl2v98Xzk3X+dpcxlmcz5fz9Xx/+8hTqp3lLI0hcoYooY6no4VuvV5PSz/1fcRSjsttVic4ZpQHGOjtQ5ZGRptxmcZp1MZBhMoky/MqwzwjlGFMMU6itKxWl2l8Pr7OeoHB9cvkAtDWB4zL9YoTChEax8FIOc6iHaZyVQMQZm2U74uqnIRyizABaGMshR6GQSxC6WCdMa4qahCccT5mUcKj3Xb9h3/6g9D2CE4KK23c8/NBzoJGcRVVVikfYN+Oi9FRGnvvldLOOmG1khoA+OHDx2VZWEwQgZzH2MWjtLMQ/TJDhTYrFghiUaSMsdZnGS6KikeJVLLve5bG574bZxkg1k7TNNru68Pr2+vxUFWVmEe7SEQZ51hphTyKULXe1NbYf//rX8/XM8aIp7l3/vvTQap5bKcAwGzN7f0OM8YZE4s8vB42601R5Xma1EVZZMnb68u7x/dJngAI5aK6tk/jeJ3m16IkCSuqSizi7I+rNL6pK4dhJ+bPTy9Pr+eiLAgiEIV2uKhFDcMQZ+lqX0aUuXYxwQVnCApxzFhM+qGvd1uowNth0E6+Ht4YgzebDaUMwmCt/senX8dxWVUr5+D93U2ZZ4xh6zXoOwDRvCjMGaTkcm3FvCRRhClCEWdJuttvu2k6n65lUQSM5nFR1t1utqxIdOsNANovzbk/XhrESOzMMI+eoIAxIdQ60I4CETj3MyY4S4tJzNfLWRvz8HgrjQWEHY4NYVG1yqXuifYeojDO099//ce8yMks6/e7/f42ggRcwufZff/yYoAdp+nh7t2//A//8u355fn1Nc2jOONRFqWIEoqddpeu7+yc11nGoqHvL5eTsnqa57kfiy9JXpVJHEd0XCx0xiLAAoBxWTSXdrleFiEWK4vV6j/+y/+mrf6f//Vfk4gjBBlF/bW7tj2MUVXUcbG+p9Ff/vyXrp9/ZDSLk229mpX4+vr2j+cXHQgk3gD93/767wGAPM/W2/Wq3lzP7fPxOCulpGSM/fiHn2dtni6n5nAqCPlf/q//V0bT56c3McxZmiV5SgLqhvbp21fkwz//yz8TiJrT5eX5DQRPES6SVA/KI5BF2Szkb799qsqKIjC0lyJNKSVmlmBRuhWTg1WRYlZe3lqpVLqt+1lcrhPywCmTJjxOWd/N52OnQ3AhPL57ePz43sK/yOeXu/vb/WrjtJqHcRmwmZb+2hOLdrcPUZKyfB2yLEoZYtT3oDl2Gtr9zX4fF0kUfbhbPazKry+vnRiv/TAZqxfBgOMEKWcpgDGjFnkjNAoh5pQCbIzW1njkDUazN9+ubzOyIGAPgTDq3Pd5miZpbo2bzZBjHK9yLczUCKcshEFILY1Ewa3LbLVayUVarVd5TghsLg1EGAc3dZcoSogH2vr1alWkBUEc4QYh5L3DGCIEnXXAhU50XdesV2WWJjziWqin57eIEchZO4x5mUFCF2ffzmcYkdvHGxiIMsaGsBgNFCyKCkHUW993fd8P4HJ13jplPQSQIQfRtRdY+sUF4H1Vrx7fPXIMxqazzkY0aqdJaXVzu8miwkrttKaBJjwDMKQ8TeN4XVbjNDdN562NgEOUWa1DcEFKo1TB8Mft5oePP9XFauwm7oE3NgU+KdPNdvVuU3/99goxpQkPBDXLRABMk4QiZKTPozTJssmodhoYjeoqsVY6DwNAUZ5Mi4AQaS3nqY0TFhHKWEwjkMQYBuukDQRSyqjxxjgHofZeeNMNvXOexzGNKCSIYayd1Vq6oPtJe6tBKIPzaVFEjEUxIwgzjqWSIIDgwqxU241xzLMyiWM+L3a8zk6bjlPOE8RI340eeAo89dwq75XtR6GkdEYH4wjlUZYwjCJMT8djlrKIM2fcPE/O+8UYEABksCzTtCy1tV37Nve9N+b+/j3j0fPhWWt7s96EEOKE31Y/BgC7ppVK3N3tgwf9NEOKccQLwtu2zfIkiiKw21hjnHVN02RR7Ag5XButFUBhFMMiNWFkmkYtTS2KJE0wgEbK5dtcVhXH/NvxgCAU88I4106Pw+wwyssKUqT0ArSty/znH34kjJ6v1+vhDClywEEQyjJzVudJzBlLE84Ympd56HtESF2ttptUG9WPw/XaT4vYbNacsk1dKSGHvheLiJJEW/N2Oa3qOqtyN05TM50t7F5aoxRPOEn4peuEdhRiGuc8S1mSNnPbHZ9vaCBVnt1sMEWAICMWrxTSDiKSFUXymLXzHAiReD6Lro7iuq4gRAIh2c/zDPTbqzMWSGiCl+NA0vS+qLM0lUosASwZG/t+WmYEzWUUeVnE1dYzuii7aPf69tRe281mX2TZpWm8czGJnQkZTXcPa4zx598+XZ+f8vfkrqxKgo0yCU92253H8NId5dhCEG7WpcP1peuFWUSjgHE//fAjxOj560kuMkAYJ5nzYNb6Mo2cRTBh6apCBJ7aQSutlfbOWoKyJIsY74T6y5evyzKLYbip1ttVkWbF9dIFwsrVGhLknWuO12vbZjGp9pskSYHzl8vJwQACmAchlunp+RDFNCkSgqiHIErTtIyVNsMkECFJFpOIGucgxAGgarO5ebxnBF1fjz5YAENAThozSAm0BgQRihllSNrufKnyqCjyZZoDCDyLx3n6fjpmWQIRytPsbRpf+84YO4qxuba73fZ2f6PG8a9fP1PCNvW2vbTf/u3v3w+Hjx8eTS9e396+ffn+P/znxHPy/e3t/f6eYrzd7ZdFvL29rlarql7XdTV2IwA4SQuS0CIvxrbR43C/u9nf3+KYS2d/vLn/x/dXniQBoL7ppmmAzq/yhDDyx19+n8XJ6XI4ng8YGrCIx916k2fzIq9DSwIGeZYAsNvtAQjLuJgAbvZbTqn1UDsfMOymUb/qzWq7CIExmidxacY4dwlMr10r53m3XQdrCIJpnqRlERVpwTAciDGWEpykcZTELOZiHCIWsZg/vbxO7UQitr3fGi3HTuRptl7VWprz6Tq1zXa/oVXinD8PXTtPrMw2D3fah0kpnnCIyKHvZ+cGocjz20Xr6eHdA+eRkBIgcvP4blvv5tPZSiOk0shsbnZCu37sNru9tQYAjwJel7u5ke1wDnX1cH9Tr4r+MCSM3/5uf3g+vjVXD4AP4Hi8GFCtH+4+f/42Xfrfvf/p59/9nlLedVfKcZonnJVfPn2KOfPWIOASRqahT9muKPI8zcxsXl5fBr18/OHjj79svQnbu3dlGn/78sbJcbfZwUCP56t0ZhQzxqgfJsgQJtQj9Px6YIzlm/Vtll/Op09fv3FOaB6vNqs4TVbrFRjF89fnulrBYIH3h5dXbfU///FP67Iems5r//nXr0keDVN3er1kcZEw7n2f5UZqvVgl3CKds85TFmFCfPBaac74/Y87aLxW0kqn9fzyeixWq3erm3GeDy9fyrzY3t0NU3u5NE6DLE27YUyT6HF3mxL28f29msegfXtttRFaaWdBWRYRjsSs3p7fNnd7CYw0miNmgmdZsn24TeN4v7/xxpzeXtGCSx6/321v7Ubfh0Hrv//2LSdRVRRJEgWrMIUIoEVYjxHjEYd4nuZFyISxLMsC8N3UDbJflmWRmqRpVPPj4Xi5Hoo44RFqTpcI44TFyzBbCUhOyypLtbdSZ1EKrI8oT8tKLkvwAUOIfMgiPk0z0DZivKrz2GGkfRlFIU66YXAI51kubLDKlFURnIcoZGmCIJiXxRpXFEWSp9YYb/ShbbV10pvZK2IBZMwj3C8DjXnwoZkn4ezN3R7mrDm3z6eDmOYiL+rt2oFwbpoAIWBkXoTUJs+T2/1uvV0Tb9Q4i7mrynp/s1PKY0KPh9Ok5iiKnYOMsizPyzzFBEolGMFZHGFIbqotj5PT5dJ0l/btkOdJnWQVSXlAN5vVuiw//+PT9fSGQ7it9x8+PBZZm1PmPIAR7Wch5+HYtSmG//TP/wlDwFyYpun7WXRKUsoe7+4u59M0qZvbtTBCMDUNg9fT1LU52ezrmzjOVqt1kWVt2/fjoowxUhZlxlJ+aa4YE22UNbKfZix6xqO8yI0HYpycMUrpzWYdMJmmhXOe0IhQ5oxf1EwoIYBRaOdh0cYwSp0Pi9GcRwRFcVIYuTRNH6cuyQvEGQTBOhMQ5lE0mWEYZoZBgNAGzxjO62JVVkbL0/eXweAkTbTWYhTW2vVmwwnBBBb1Kiura3v59de/Nofzjz/+lFW1cZrHUZoQFABCkEJMCJJCIKNxcHqekigtk1hao6X60x9+Ph1PwZjNZgWsX8SSFfnr62s3z0lVJ1F8pBcP/DhOxeP92+HAQpTf7quykHLRUgIfIo4p8cfj6zgvUhtj7O39XZRwEOGX00koxQiGEaUJx3neKQEVnJTs58lDQOPYIkwIs043TZcXZUQjYK2SWiy67UeEGKZomqdhnITQwUOrrZyXNOIOUW9gzNOqqjDlk5KQkCzPWRRVeTEN/TjMmCGmInGyMvi4qAAhJCARwvl0fH49dmpU0G3Xu7IsOUEBwpen17kflFwI5k6bKEtSDwwMSZG761VIwxfjoQfeI2+786Ufxu12zZJYDVI4s65W3rnvp+d+6gmmrZXeyqVd9rs7UpWSIF4XOOftPHbzbKXO06zebgJA0ui5n40xRkmMwS+rnwnGzmpnlRBTe2mmeUrSuKzKfuiuQ+u0/PHDo5BKGGMplsuMCZFSLd00jsP9wz0kyARf5jUgaJxnY02aJhAio9XQO8LJ0I8QIYCgdfDcdGLRDw93vRSvp6OzVssFYrI44501+oVGcV7l9+/uPfAKORDRSYrL1N/VeRoXFcXT9+fn52NRFBjDrKiFGMbjtVytDEAAQDNBrdTl0iirq1WdFRmH0BjbX4fX55cPH+5/9/sfd6uqv7Z9N2mtIkY+PD4qq+d5GuiURpE2iQ8e++Csy9KUR5H1JkoTo91sDEHETbMH49CN1vpyXaR1PUppXg/BOgSCM8pajCEEGFIWvx5Or89vAUHMo9fT5dIMclnaXqAQ9CJ98BiB38fla/P1fDlhRAjh2ui6LrK0EFIO/Qz1kbIoW5VKaxpQnRcWoCSNnVQxo5vVhmAIIdyUeZWXFNqpvepledhs6s26n8ZZyjTmlEUAwN9++7y/uXHO9U2/WW3KLFFGZbfpapV/+vTFiLkZA8Zg6OZFiDQroixNinxe5lkswIMAICJ0HhZnZV7Tcz8us/DaWGUgAMH7jKdamGXR2/W2qiohdHcZd9vtH375w9D13759BS5MwxwgwJxqY5thWu/XTspFSx7HUcKVNcG6Xsy6bdarFYTk7drlRUKy3fpv//F2/G9/Xa/Xdw+3N9udnORL90115767Pr67AXHSC2kxNNhfujOArizi3aqus0RPwkjtlExT/C/3v2x3m5fXk5otZezh7nb3cHM+NcO5rfLs3e0tmNVB6nWVpoxkCaes7tsugEBIdPN4Pyvx7sOHoqxeXr7/8qffARP6pj+czhCgcl34ET99e+7HWRqfJUmVp52Yg7fagsPlXK5WD6uCJTGGsFqvnr89/fTzH5Ii+f70RIN9eLjnJE7T+v7hfp66oW+LPMnihOUQYrqqVlqp15cXOQsn9XTpnVSbemX29u3lpW0vx1bd3t3//E9/JJC8fHv6dPh2x+/u7u7hNL18PkktN7v9h/vHcRpPx3PfNVVZFNXGLMu1bV/eDsapWUgax4zGURwAwAhTHEfTVSujt9va63hfl3VVZhhgIW9phN7da+2afr60TZpnt7fboNRw6bO8QIh++u03YZf9480yL4iRtMzLYlVmJTBw1P2gNZYQAgQsXRdFUlTHrgESRJyg4N493lICpnGIWBQCOjddAJBTOk2ZsY7FPMnyLCIph9vdDgH0djguzkCCDAp2kUnMMEbeAaSlkFK72VFw7vqSlat6TUwIRl+v1xD8nCXWeTPL3WYdM44hyhIZRTFGZF7m8XLpgS+SbJ8lq5QHAJwLVcQ1RmWaOO+8MzFGwAdPGGZ4XeZREl+aZpoXYxzAaDHWBr8uS23csTn01+ZmvWcEzcvctcOil3pVW2u1V8rpdhlFG6wDp/OpWtcPNw9D08p5Gk7XM0J+mrHz93f7PC2attnFiSa2HUeEHLTeSGOBXbTxAaRFNk7L8XAgGG032yoqvA+YwOTmLiV0mLvb1a7KK7MYqczh5W3W4uXy1LRNWZZHOS2//QqE3pUbQpinLk8Q9uUuY1W1XsURT2lEsBOREg3R0bsPD2W94nbpAsgALJLyPF85j9/v1gQhjHwc88fH97e3jxizqrkWVd1Ow7lpr20njeIwrLN0v9l0afz09twPPYGeG74sum/6tCgmLdEsk7KKeYIhMsY645pzA0JIi8xbp5UWUuRFhhC59v3p2DmNYh7HrOCQD/1g7OQDQIT2wzTN06yWosj1LMd+qItkf7sPxstFRpxgBmflRLBCu4tehNGcx1Gad8BzZyKAMg/7YTwfL9MwpnHKMG+aiw2Gcw4cNNqAAOZ5FmK+Xs7GqLTIIZKEZ8dr+/R2gAz9j3m5yuvXb09XdU6iKC2Losp58hF4cjxd0yj+cLsPIMhF04Qf6pWY+x9/+ZEy/u3rt8vpwil+vL/ncfQZfxfaeISOzUUbCYSflbpcOv/9eb3bPNzdDNIcjhf55StwjhK622/TPP/67XkYxtv9HmI/zsq6yTvAIx6vbootnqfp16fvzjoIAMIEMZamkfJuUhJBNHUCeJjlWZGUcVbRqZ+HEVsbxdx6l9fVen+jgG2Gtp1GBeHYd2kcpTTq5+F8vki5YAeat1fVdnlSpNtVmsRtd728nQilSZkF7cyk9DKfhy5wlDGmFnFapDYKwbDfbAkhVVEqperVPo5jdXg9nS/j1Gqj0iz1MHz9/CvCwCxeA5jV9eH1OJupKIvmdA7aRFEUMy4gAiHMxrTjCAmGwJlFfX7+drPZsyTNKbMQn6bx0jS5zpT/ahYpjbi5ud3f3gZAlNPNOFjlFimmMNHE4uDVPN7d7h7uHo6Hcz/Pi5hW23WRxcZYuQhrNAAuoiTKUx/AtWnHedJaRxHzwfVthzGpyuIq5a8vh6oojdJ56teQXv78a9df67qEwM/DNC3aIBQl2TjMiNDHn39exrG9XopqBbGbL2rWJq5rMeunT98pxYwRFIix1ruACZp6IYaZQTBf2/PX5zSJkiTzKX/9fsnK/PZmo6W5BH9fl//9Nliu6sPpfLm2GJNNVXrn3KIFWHjCr9drM4myqsuyAAFSRhexTNMEEsgxARADAk5jwzBBCDbtOYoiY+1qvfVFsN7rxYjFarhM4zzNc5rGRZpP//h6ba/GqO12y7lzVpkxuDfcCzkZwBLydp0iaZVWFuLXc9u2PY/YZr3a7e7yJBXjUJcFcuj5y1NzvRihE5bAALu268dpFNPu9jaN8n7o/vU//xNnpG965vTDbjUNk5ym1arY3G9TAsZxjqLo2rYFzxnbvr1dummwTgltrfPe+dNlADsKMR0X/bdPn9I0nbuBQFRk6TR0wbl1VVPMvHXH4zGKkqqsd7uxyLOIUZjl22pljd7uNpSg18NBSB+wn4aWYsr/O8E/jb+eDu/fPSZ5fG4u2lmeZ974lKQEQlCsy64ZxaKmYXmzR7jfsYD+8es/tHf/+n/7v9uI/de//McsBID87XwyWlup0RZlVewYTjFKKEIY5El2v4v+8R+fSexWq5WB4PR0rKv6//P//n89H5+Wvvvnn395rDcxowQDjAMCEAToDQA6rPNVlqRFkq/+UK+rqsjy5tS018skRVHWd3d3mVRd0yPOvFaXtmc8mb0N1sjLdVyWX375abVb9+deKbkqcn9zs19vcUSO/DT0Y3O+aq239eZ/+s//+df/+PP1ejVlfbvZqoB5ln98fH8+noZR1PXNtIhFLUq6l8NpGoZxngAKMUnX1Y0JRmoJY0Jw6jC9TtO1uWrvsjzDhGprPUazEs3QY0qF1sF5H7D3AEO+X5cJT1+fXyY5C7EYbQ/nCwSeE3J6uSRxcnezI4h9/vzNGX1/f1undWsGYGfgaVWvszw7DkO/zIhzsYxv53NaJmWSO+h8AMssgrR+WpZ5afs+iqL7u3ul5MvLob12IBA/yxzTTV0i4AvGgzf9tIAYI4B8J7R32c3u4f5eK9U0F6DkvqzXaVpXNUUktrSb+qKsfq5v9Sw2m1WAXikdpcmsNYog7EYJoOgvHLhVnkMMrFqklFFEMCIeYyVVGkUIoIe7OwDgOAlr9DxPGBMfhTLNHfRt24lBQgizOEUeDt1k9JJQst9ui/v3RulFyqHpxLxo61kUARqCFEVRpmWmvW7bVorFVIYSTgjXfrqeGgJRmmWE8WLFLAg6WKm00RoCyBmp6+IoRkSQVVb0AgLvAiqrtV6sGmQ7doMQWZ4zFjkMh3Fys1jAAjzgnDvr2nMLHWI7Og4DwvDh/u72ZkfPISIsYal2cuym89thCYs0gkbUEzAu09h2FY5cUlKOg9NFFpFwAxzMytJI27VdiGmVJT88PN7Vm/t3jwAzFtyUZsFjC0B5SyAmWZ3vt7skSS+ntzzmsfVKzTkl0WpFgtfzNHkgjSvT/PH29ucfflRiySlr22a3v/nww09N3x+P50vTgADmebqczny7toumhMeUY4yNMtemqeqap7H2CmGkjZ7l7DwgmMMcV2kSGHUeaqultAGYYRoXJeVFD8PIKcMUExb5AJIsAwHN/cI467pROkc4G4ZZaHVXbaI8C8a8vJ78Imdt8qJYpIninDiwWq8QwufTyVkXx4mYliiOQAg4olGa2sn/+Lvf3dxsv33+bqwnhJzOl//9f/+vWZxAEyjKKOHeOmM0ghB6YKUyVj9s3wOIXscXP8lNnoA0+unhnXVOdXPJUozgzWZ1c3u7zetxFphR4/33l5dzcx3UMk3dPC3IKSNnpZa+62AALGKzVc9ny7pmGMdZCHQBm+2Kp/H5eLl2TbWu/uVf/6VM0qcvX87nZRpFluUIIWtUTLM8zc0srsNgtDVaz9fGYBTn2bzoazNQ5I1aetB/eHzI68ooobp21ma2ruvPeZrerDfWKGFcVdZlVVonumsbEZpEPIojnqbrzRoDnMYFi+JxEeOTEGOHXFSX9fPx5IL1zmGEvDY///hThPHx8Iq8udvfWmtenl84Ife7fVpmAYWEs6Zvohhdx+bL4SkAKO2yWTbIhWkebde8Na0IwXn79PLkvNLQVkUZMPp6PFyHKTgXELyer80wBEqr3Q5h0DWX4Nzl2vE0z/JMCXlXbwoaKa0iFkEIvz89UU73NzdCSjUNGLiHdb29vVmUfH0+QKDqTf3jzx+/fHl6PR7jKNrkKQXeO49CYJyZNJrGue+H7W633q8pYqvdeh7Fue2sUSwhBkNMqGF0nJfpt6+YUEhIFiWL1GLoFjFLF6KYZnUxS9X0ozHeYYIIVd5LrQexzFLfPdwTnmQlAkalcdxe2qdxYJzvb/f7250xTs5zmRUTxs6YarsyznltExZXeRDzMjUDpQQ6V+bxw7t3q7x8fn7Z7rY0YudTE4zN0hgjEEcpAIFShjG5tJeb7c6I5Xx63a3Wd3/ci0WfrmcPYJykxnuxyKTKHYEAwLfr1Wq132/yqmYxM84sWl/b5tvLi1ISuVDvboQDz99fESHGhUmbQCjCVCz60+cvwLuUc6sVDmhoB+9cFhWbqhbD0g2dRxAQfHm7dLhL4jgti4gTgYbmfElZEsdJnmSc8HVa7X+u1SKVWqqY15sVYfHX6u00tNLb07VRS8diwinSRhNCF6Wwx8hoB6FxlhodxQknaOqHPMsxQuMwf/36+e7uZrdeXU+Xz3//Nc/SLGFisEvf87q83WwwI56gT0/P4zwiF5x1Q9cBFyIaPT7uy/2q60bpgxK6Gxfyj7/9ev/h7g9/+meOydD3h5c3G3SapM9j76R9e7tu391vV5vrdRpE33XnVVmUZTEt8uV82Nf14+8eN1kBrD28Xvtp5hHa7jbldnPqz/Iwkiy921SX4zfRtrjY3d7djXN/Gi+hPznvOOK77W2epMC5YM2Xv/0jX688gE/PrwgAniWA02q93dab2plNWZiAnk+Xb99fpTc8ZkkWOxn6fhTXdp3QNcPnQbXX87v9dpXip5fvzMoEeNv3Idh4U/7y7n7N2W+//f3940OZlCehMYPDMo7LvNms69X69XSa5WydOR7P7eXCefT4/kdEsXTq6fVpHpYAIIujbpzfDqdLf/bO5zop0upJzl+fvzXXBmEaAKTk08PuttrsYEBxzH/304+LXf726R9vx+Nmv0EQPz+9/PjzD1GE+9Oisb0O8ywup/M5opQMM5oXqzWhrC4rAunczWKRi7Pt8/O5vULK0nUhJ71elazkX759XtrpNLzIWbrgHz68IyRSxijvZiULp7MIDZdRCbra78bFHF6f1SKkCcGFSUhlHK90fZsYEC7tEEXiDz//krJsHsdJjhzSgqYrmq/3JcOQcgwQQJgChuegq231bhCn87ntOwhgleba2LPzCY8f7u4DgEaq6+tFkWldr5ZpbvpeWYcijEHhETxq1VwaisHYD177MsuDDRCGdVlIhREE8zxxQmAAWizdtbEIRJxpZ4yyMYs5Y13b9WPvhcUBt00b8jxjEeSWEFDHidE2wYTGHFI0S70uyk1aTPN4eXvhlHKMUELiPCIQS6GaYcSMe4zGZb60rQMorqDSRltPGN9sd5jia3Ppum4aJgSQXLQwSjobbHhrLnM/zMMAA2aeIQDynCsbcZzcVx8JY9poa6QykzX2+e2ZZ8nd+/ssL6GZLm/n/jwUZQZcAIjyvLpLitP3t3GQNw9b4EPFU4LJouQsZ0QoL9IsIinHvdJz0xzHkWfpqt5C47g2uzjBq0LYpF7vNvW+pDks8rFqSpb98vs/fPzhR4/t59/+/unLJwLs6aAyRoizw9hDj02arDc7SDGNuHa2ubYy+PHSeOeGecSMNXMrjBgEj0kUcW50cN4Za9IsjdPYQz/PQhu33a61D7MwCKn1zbrvhi9fXn0AAVAPKOZxHmVGg9OlDc4IpcQ0zy+vDwBkeRIBbxc5SgWieLGu74fUuixNtbVimVZ1nVeFNaFv52ybX8XYzQOkRFn7ermkSfLu5i4uChbFjJPz8fz09L1ICsqYmpbXzy/W2u9P3/K6TLKkLlfTZb60F2Lcrqq6tjm/vK7TbJsnHLisTOt6dVdlX75+F0Z/3K6dD1GSMM4Ox7eJQohwWmTDMA3jpEQTjKIYYgos8LOeYYSyJJXT/Ot/+z9/ePceGUtDqLIkKqNjN57adjTLerMyo1zmCROGEPQ29G9vxVQqq2ctMQTaBBKgv16WiLM4ahdlfPAhOB+6fmIsVkZihB7ub9arkiJvdntvAKdUSlPf1HVZcRZZY8dpRgFtb9b1XdmM0+v5QnDY1DVB5O35GQCbpYRB+P/4X/6n8+u1f3u7qwokp0WnxXrtmccArX/5U9v1s1yubX9uztqbjx8/em9fnt7arlHKOAuacUjKzIUAsBu783EaGCdKyiSdKKGcEU74YnQS8aLM0zSxHjTny6xUL2Yd9ND00Jg0jquijDkvqjxCVkrJnfPO7HL+fruOohhjAtJ4Q9k4dnkW32+rGuG7IrXA9aMI221SFF0/aGNXcdGxbp6FFyrPk2GYGYb1qjhfLioYGEg3y0XIRSzausjDOAZ2Xs7nJo6YVSqOuFUCCgBgWKQ6XQcScZ4kUulh7pvzmTGeaXMUYrvfhSD1PKw3xX73sAjVX1seF7//p99LqS+nwySlckYrzWe5KKOcy/K8KFdCvDWn9u52u6kyay0y8sPDzf1+bZyLoqjK0mbou25YF2Ue58M4VquqXNd1kwFjtvv3//KnH/IsccaJWZAghlkB6FZFMk3SWxMBACGMqtSbqM5yQkh7OWOM4phPyg6z2O52IIBT22NGlXEIQIAIWxXTteMMy2CkFSlPoqrwlDrjPWNplBZxulltjDNxWR9OlySPMWJd37Ao/Pnf/2a0hgBd++nmHbrbb6ZuMFp2p46goNWiFsEIyginjP/hl4+/oz+Y4D5/+vRSMAdgFMXjLNtRAGiSNOM8mvtZzEsU8d39Bi5adVOnlIcAo+CMslImHM8MyqlHViOM5n66zmqZ5P7dDaJ8nEcaR5hHzcvZa7Mu6jzLFrEIqe/efczX86fv3+QgLteG7H+4vf/xAydZez11/QAg+vz1G6QYEkwi8no6iGCHeXRWzcsyLgKEgCCape5HjzF4/+4B83ic29fT28vbsczLm7s7HKFL72LCtBDEox8efjwcXpDzMWIzpsdrQxm42W85SgIK2minTNO05657u3T1pqrKhEUkq/P2dDXzDIsUmzBeOuWglRpC74yt7va729V47AYeWakShNOY9VeJvU4jtq7L/noaWnu/22x322EYaAhibN+/e3BaJJxfjoemb1iaDmJpmgY69tp1s1wQw3e7bRXA6Xgu0oRFMUb+2F2sDwDjrunmw2l7e/P+w2OxKd5en6dhkFKUda2NlHr58P728fbBaa+CvdvfjlOPI+5RUFIiDJIsun28t9Yb4DEmQzfRhBpnPn/9dmq7vM5//OWP3trn798TxpI4xd6enl/sahVxxgnr9ZQWOY0jCEN/OZGgclKvNytQrb7++bN1od7UgYSn43fjLctZVCTVahWssNZYj2Ypu7azANS7jXd+GiYSUZbEaZopZZQUVZUzRJFDcp6Px9dJaeMCAqHpQt+3ZZ5ECcUY5VnOSUoZ3mzqD7f38u7+cmmXRWJCmn5SN5oylgCsjUUQ7DY1DqBK01ks1gqlNaWRcRpgNEkpRpnGHGNKMEGY5GlSFKm1KvQ2BHA+Xa/nc5XnTgcYQp7lJI7mWRCEGSVDOwgr9Sw21coaK7Vy1nlk6yItizhhEcbMY6iMscDtVps4zbqm+8u/N+OiF07XmxqAMMgJJmmyyXRw574VyyzFguIIEXLs+2VZSMQ2q22VleM8fvr1175r4ihZr1ZRnEzDmOWpC84Fq71dlBlHEXMBfBjFvGidZOmqWGdZZozp28sonTGLsw4AaGxouyGNY+Ps4XCaxmlzs43SaDQGWmdwQM53bW/kAq3J64QR1HeNcjOL2PV0/vV4BtrWUeytt1LLcZ6WeXuz/1B/OB5PfT8SwqyYvvztr9qofu4XsXz669+Qs/u7NfZ2W+Twfv9uXTx++OHz1+8sgOCBD7C9Xj78/IEl0ZevX61dgld6mRgit6uS53E/TEZPi9eeaRpVkHoKECJ0d7PDCOlgXl9ez4drj9Hqw4e8Ks/H8/F0NUb3zVhUKxtccL7ertMs+/Lpy/Vy4ZQC4APygOPFG6iJBlAD+PlwSoYRYggocRAaEPppsEbZNkAHurH/8vT0YXhPUia8mmdVbld1taryYl1Wsh/+8eWzcQtNqccIRhFLuA3w+fiGKM1Xq7v97Wq7woi8Pb88PX+nFEVRBCFIs+RwOPOIG6WmaRbDEqfJ7Xbddt2PHx/X292l6aSY4uDzn35O02KS4ny+YowZ5ZDSf/vzX7pprLIs5QwBnMdxe270OOtpztK4zJNxWca+D8GCYBcxp9k9iqIXPY3LYI2L42Sz20CLToeLsst+v4PIj91gux6kMRrRsW2sA8YFzHgSZzzLkKWcUoDwovTidESY1Xq8dlrraZH37xyndJrm66WJkni93gIEvz69OWdXVVnkGQhgs1oVWXo4HFJKYoyRB9fjC7jC9aouCmZhmBYptdtv8w8PHw6nl9vNtt78z9MiRzG9HV7LOF2X1TQvUZwkaQowQBQfL6fLcGmHgRLCIg5dHCiEACIIWJYuy3I4nqq6DhjjKEo5Jxg9Pz857eZuuNntvXVd36VZAhFgjOX1CjB0OL4tk1yt1owxZ117ubKIvH98v8zD3W6b8OjwdiIxurm9SfLq29N3Y3xRVOf08vz6stluEQHIebmI69wbY602o1ZRxq12Ui4I46JMQYDDtRu7Nni/XtdFlUWMQwcWKUDwGAat1TCPyqpZCq2VB4A7gx111mtlAISBUkDY9mFbbzfTOPXLHJw7dc31eA3BeRuWrqecz0KiNM1i5gCkES/r+uZ28/z0/e31cHuPt9uby+WCASrTrLs0XmgLCE+KdVEMwxg8MEoFLU+L+vDhxqolSxOOorDbLtp6iABh1oG2aWcx50V+e3uPELoeT/MyO8Y98Lt6VaTp8XSuyxUkyAHoEZqaliCsrFXtcjichgj/4ZefHt49JiyuynTqx74fJ6uQZTmh0hqeRzAo6WzKCIAAIjR2U3NpLTRZWtSbLaFcGd+N09i3LSLB6mkasQeMMTG5cluvd2uGCQPgvsor/MhYAilrxumt75p2nKR2lPjggvd5VkCPjTSb7SqLUyHk8+shL9K6LNSylFkKETBSn88nBllepBHnVhlpjJIiYYTxWLVTgPTd4/0yjcMitJJOq75rpqbBIFgpCY5S6dy3r59fvn5d5vn9u48aoXHofrp7TCCD0A3j9evz93PfA863m+3cz8MokyRZV/ky2fOhuZjT3PVyWRiNqmolxNhduvPhLJ2lOAjoAcZplHAYoBJ6GvQy/fTzH3f7jVfg/Hbsr5NXEFBofBB6/N3uo5dSjXNU0yRiz4dnq+aIxEPTx0WxX6/meeZp+v7jw+V41PP0P/8v/xoxBJwBAESU/PLDj+u7xygt/vif/tN2s2+6fhymJMkTHh1OzdvrSc6zFMtolIGeGK2ce3l5UxbMi/Q+fPzpA5PjsLQ+Jk0/Ivx2f7tKI8bSrVikMkoHl1VJVmRrsmaQLHm/KmpGeYyjP/30p59+9/M8DN3UGoub9kRipKz8+6e/IQzLVZ2U5dhPLvgooiGYANzpdJ3nRQc7LjIqqbDLImeLdJJUBOJhmrwQUV0WSUruVmmVvF3b7f5mVxWhbefuDAi4/eFBTYpzdve4u/14f+zOw9KuV5s8ya5Nf7weyzQp6nU3DkJMCITtan1/dzPMcwBHziNKWYCwOR0v56NzbpWtl1kY6/pxcTikVa6FWozs+v71HN59uMPIz9OQ6bK42cWQ605iA0terTJojGWQ10XR9f009sFYEPx2VedZlif5fk/zKr62nQU+1WqYZqVEhjwPOOIUAjRNvTMLzxChGGEolwWCoLVT3gEIVbB6mWMICcNSTMjglNEsiePb+yxO1aL6ZRRycVKleRIWI6TdbLZZWVjnz9fLdL2aSS6zTOLIOm998AECb5WeYZmW65Ux9txdlmGihLoQLqcLZBhjApQOWpVxhJ2529Q5J9vVtqjy4+GyiBllHBFUVMWqWr3xN2P8YWilWIZRIAzZMGEH3j3cp2lMs2yVpWqWXdfIRV7eDsrJx/uHbF3eM/73P3869fN7agNEUzsmGFVVqdUyjZMzRluf5XlaVmiR3oZplpfLsKnXNCu1mLtxem37xWgVRfskDYjc3rybp/50PWhtXk8HGQzy4HxeGDNiXGFGnNX7VbWtPxTlKonYJDRBtL0Oz8dDxmnwjjn7cH/PKX777Ski9I//wx8V0N+/P2ltGOfeg6LMAyqby+AAiDkp8sw7A/UCliWKaRJFQi/nsX17OmRJnMUJIkD0S6+E8i6fZHNtrHFpnBqrjfVa2lkslvhFqHmatdJJEq3XNeNsmMX35xfvbZnnhANtlPauqMuYcURwGsceQERZUWZ5nFIAHPfWLdrpjx9+CggcXs9Tp4yxOgqb1Zoz+tqdOydSnjRzT9I4rwoAkZLLWzP8+vU1eB/FHAKUl8ntzQ0IVixh/t4Zw67XaxKxgq+QQdiTOOLvfni4rfZWWgsdMO5wvbA4dc6N0wic+fjxIY2ShBHvPb6/P54ux6bNCNm8XwGEgFTTtMzDhBHOk5hHTE3T1KtlnlnGlLMRw0sw10PXjD1i2GrrfJBCcx5T6EBEokDdop6f3rSSiKB1Xcc0stIYbZdzM2kdgocYhQAjB4Q9TcP4j0+fV5tNnlZeWQ9tmsYIYKdC1w/YwE29NQ4A77X0Qoz9PGpv0ySfxkkuGllHkC4oi2mk5rmIE59V1vqbD7cff3wPPPj29G1cRBVnM+68VxEmnJKYwJjg0/E8TmPKMzUv4zDd3u0TxrXUZpQMERCIc56XpfReGH1W8rgIxulmvWKLFHI+j4tejKX87v7+8Pr69Xiuy2LVDtfLcb8OQup+UFEUFVFFAX3cbymhEBEGDcfu9vEOI4ZhCAiMYnTeZWXx+fOTXlRVJAnD87iMpzMlbFWmHHkxjOssjr3b5PHjh8fjsfn+9TnOcwf916/fl2XZ5JlNYiV1RNC2zBgAgFLt/fPL+XruEIJVmRdZ+ud/+z+DNefrhZIIIDxJJYdJGgUcGI2qssJjpIL/cniDnIMog1l2HoRFnQ3BThLYMHaCM/7LTz9VRWWcrYwy1s9QHK9tnWW//fa5yPiH949lkd3e7aQws5A04wEir2dG3H672lbFLMaTGhIAb97fW+8QJps6Txjpu36/u8s3m/NwvXTX8+UUQsAY360rzhAnAAV1vTbfvwqjlLEhi9JhHLq+RwRs91sfXFzHz8cXMczBuYSnjz98qLc1QdQ6+/L2NM0TpYykuTH+2HWUxlWUEsxO/XyahIEY4zB315ihKi2qYouSdHsLiqF7en3+9PmrlnOa8CTiac6TOCaY1VG022x9AIQwGrHVqrZLSgFUauEpXqaoLldlVUc8BhQtTp9fXxHFxQ2/367ba7fIeRiGtM7yPDo+P01CyGEmlMaUkH/7L39O6iTmiZgl9Mg6ACEPjlqEAaEsZsrbbpqX4AmCRZ5rGwBCDiJMmdH2+7en5nSBATze3wPidNAJB29fzl+f3lBMJ+D/7R//2Kb5vt5hrfquPz8fvdDAhOARgHCR9vnlgjFZ3a4mY9t2vPadGpZxGKphYYwswceYrG/vNEJtN+7r1c8ff7o0169/+STnkTOOEO3Grj0dEsJiQjKWZnFuPMAQYRI9H3/7/nZ49/7D+/s7OQzLNK+rMmhLMOQRVUbLZZFWAcJ4EQ399Hw5aGTFMHKEIsCU0sB7jriHjnFerVaUM29dc7pkSfx4d6OLLCh3PZxu17vb+3dJFL1+f3p5eb00l6JYQQwpodDqJEnkovqhP5xOGOGqKG7v9sUqF2Ie5rmuq4e7nMZR25xf3144xDnJjJIUwX/60x94xKd5aM9Nq+Xf//FrP7TFH/+UUhoMjaJobsbrtYuzqF5VsxJS6bKq1uvN0A/t5Xo6nLMs22x2AMOUx8V6RzA22gXrIQw4InlenF+PYhxen96KPE+2kZRLnKS7u/2lbRilUUXncQl9gBCnaR6CEs2MKa830Br7/R9f1SIhJICExx8+1FX+9P17UHq72ijrAAjBe2h8xqO8ysoyvtsvatHW+67pXmlknc3KXBo9C90A0XdDkqH9dsMwcCDU65JwDhAceqGdkv2olaxXtdUaAHh/d0soZzF1xi/S8pjEeQWcV8boSXDGrPeEcCHGuV+aoSV8HkYxKpGXxWpdRxFGkHCG8zQHADVD93a50gBTSoy1UhtOcJZE2EPgwDRO5+PBabOtN6tqlaSJyJd6VRujpTNKyjjOWBxLOympjXFRFmOGmIdini7nE0ZrxkkSJ94FmiaLsSAAYMDpcCmLOkrTEOHn44m8sv3txmlxbHsr559/+AlE9DB2L28vq93mw48/OdJ/+vTFaG+AX4J9Hbpj3xojoyjxBDwdX1sxrIvqdn83Thfn7GZbt9PVzObnn36+3e4v57fXl9fbx7vz6ZJQuo2zr89/379//+7mvdEuYxdMAYJQWv3x9vZ2s6vS7Id0TQj68OOHt+Pbze8SiLD2dhxFmmUeQjfJduj12KOYFUk6EvzLD+92+7tLO/z2+cukl/V2vS6rOOLTMNKYABuOl+O3799BCFmS8TjCFhmnpNN+GL0dkjiFnEizOC1N0zAMrbbjNHHGyKIgwpyx/X7/sL2pq3jWgkDoQdtNom07OU5Bagwdi/i7u4/rzfbLt09fv3yhhAUEpTe72/tAwrG90LHb1WvjbbGuCCNpkSsR6RDGy5lhmnCGMb6Mg7SmyjME0D/+9tu//8df/vCn3/3y80/nw/Ev//G39a7O6mx3s1uV5b9/+fdZiIfbG8q48+FwPM/XsdpWP//yByfV4ek5ifm63EYsX29vOOP//TYjjbJeZiRKomS3X1OMx1FMfq7rXBvVHk80IZThKIrmcUYxzYosKOeClEZTo6/NlUCopgV4Z5RmnNOZkZqnVSXlMkz9cL4wQniaFGUxS/N2baRa6t2uKjfLtAg9eW8jQso6L7O8Th7zIjYm7N49AOPncZqX2VuXZdlqvQsAHc9n0bXQ2W/fX6rtDmAkZiGmubl21uokZsA50Q1Gym1V4t0N3IHNbq2svbatswYF55UqNzu2rq6XyziNCi0Mk0Va0qK8TAkhHvrD9TxMc5SnaRRttrXT+su3L8bruM48nIVSiBCPIYmpw+jry6tS8yx1gAgjjBEd2mG9KmJIpBiVtTEn2+0mOL/bb9Mo6qZezBNEMCtysLh5XOo6oxGbZtn0wyJUXZU2jpY0ud2tg3LEgQjSXbXS24UlMWOEGNOLaXe3QZS+vZyMNthqa+zYj4xHJgBvlZjE2PUfPj7EnEqjizTL8vzSdFqJAEFWxEM/f/3+tFmtMMJB6abrTs11f7PjCZezPHdNHMckogQjzPk0jJOYs7KIioTg+OvXl+fXN0rIeegRcjxN+8XkG84w7Y8vTy8vLOJFWZZlua43ixD/x3/9L4sUq6pK4riuq0Uub4djnMSP9/ePD4+MR50Q1/OZcWyNCSG8u9u/u71zRgux6F56bUQvtDVplte7dd8Ol6aZphnF/PZmq+TiA5JCZWnqvQ/OUIqjmA+TbbqeBrzZbDAmiBKPsCco2ZZVlB9e38a+18ZC66Q0wOKEhK7p4CTTzaqgcZVmNIChGymLtrutmpde2dtyJaV5Oxw9gHGaxEnKWRyT2CwKAcAoyeNsu9tneY4gdMF++fY9SGONBdpFhMY8abthf3NT1mlZVmLWeQpWq6q9dJwx8uGHj18//+qJeL+/p5g2wyBnNfXm13883d6u360+nE6NoTGJ8us49/KMgamy1Onlt9+6Tc5dlkit12WFKB6mrvl+/p/u6vV2ezh3nZVD02kL7dYhQMO8tMdGaugg++3T9+swZkU5GWMJMiBchWiW5dzP//7b0816OxrUH9qIExSz8v0Dzks/NWOzkLZNWKymfh66+4eHm7u7fp7PTaOMU1ZVd1tK0/YyRFUyafXaDKdZTj48na8GQob8tsjjopTWQmA2+53zzn76/P/8v/xrN4t5Mctev7welnYY2u7jD+/rvEDSjcOEAR7UHBhz2o2ToMqklLXTTJWt09RZl0C8utlut7u2b6sqF2rVTFPv9KXp4ygukmiUC5DL9Xru+2G/Xk9SEE45YxDRiMYP29vf//i7QYrX68sFBLWI3778nVP8y8efsiKdZyHkcnt3qy/nhFHo1evz57t6442vMbg2Tdf3HNJFLKOV3kHsWXPu387ncVoQZgRza72RmlEUeEIoGbr2dDiP84CaQW/U5XC1zuV5HWfx4XDACPzuP/0hxezct8fDaVvVFJK7/e1qVeV56hx1S7DOf/nHF+j92DXOOQehAo73KQSgH/pFyLLI44xbb7qmaZoLd8bpYrvbZfVaMmWluX0s3u82xpi8LIZpOp6v17yT1qZlFmEqg/cBpBDv1uthniScNkUptDHeS6kwxxnjDjjtxb//5TvFHEIojarWKyVkwqPb+zvr/es4PncDDdA6v1rvxSL74YQ4WOUpwR57H1GKeCr6cewGB/y2Xl0v10lI5a0wZrgKa/R2VQfgn1+/n49Hb0ORmqJYjbPIihxCAATohun4duZxnFcFj7kO2hlLAI44LeIogsx49Xo6zEIiRMQiKeerqthv19fj2zBO37+8IswChjfvb+rdRmltjU+i1Bvw298+G2tUCBo6R5Gy+tJd+6mP49xY++3t+eNPH/cf3o1dm+YJxRRBhCFuz9f/9eXAI5bXq5t3H/LN/unrt025W1e3b6+ndlgqC5VDSslZLBSHl3/8DTy8T7IC6ym2uu167fTt/iYLAM7zTZ0WZSm71lyb3XqDGG3EDGnEA8mSjD2+ez08E4bBIgAEsu1cIL/8VAaCo5cvzoQfH+82u80wD9fLmUTRw/392+E4dyKKoxDC8XAiFGnnjA86wLv9jTf2cjp3/bhar6/9IGdBCeYRz9OkqCuzSDH3m9sUYdO2PcQhwbCOY6PV2LawSGNCzOLTMl4VJZSeAbJf7QBFzTBIMWq9bNa32/WquVyen54ghMYZKSRh7OH+/t37d3EWK2kwRHIRWpneWB+sFEo6nabxYsSnr7+9vj6f2mNZp1PXP336enp8eD2+IsxBUk6jNsbAQJKsRDwWUodZNefWrcr19sHCcX93/8P7D9fL5e+//k1JsH7/7mG7Rh7vtqssiYdFfX5+WYzVSo7TNBuR0BiXpAsDpOhmtTc+MMS0ckWaZWkiJhEChAhRzhAjMujz3Hd6WZZlHodgfZbnRQLMMDtj27HjnN89PFjn5TizNEuTJGGUUxiAg9TzMrZSu2CcBzRPKbA3202cl9pZKS3mfFbaaOmXCRU5pKSfhA0uSWME4fXtQghKE5YxyhGtbu/SPNncbLUzf/3Lr13f3//8k1wUwhhRwjForp32cLfdEACDtUkUJYzFaWqscsFbZ6UY5EygAWPbYoJRhGAAYp6eX74rJauqKovKe0dTcj1fA0BVUXZqOl/e1k0GrTld3lRwv//Dn2iUPH3/yhH98PAuYfgvLy+P794Bh3/a3bN7xiKa5inidBTT6+up67u4zOrVD5xGUzPPw3z4/nZ/v/v54+3pchT99W6T7VEWpWm92jyu98fXo7WmrFfLRi1KUkKXWWDvAYBDPxSPtwTjmhCC0H6zmadpFosB4ACaiSfWeogCAHC3uxnmQSnjvD8fzyCAJI6NM9Y4DzxC4H/9L/9Wrn/b328RoeOgFUA0ztrxqtSiiHSJbn57tpNUQhmFzaxPzWW9qZM4HYV8G0YjdVTUVlnQjZOYhlm4AOzb+e7+zmjdt1e/GDPPqyqFAK3yLGY0EJhyhgOepzl7KLwHQz8/f3lpx5Yz/vPPv7TX5vXt5WZ/ixlnUZRlOYLgcupOhwYwXK5Xu919f26/fHmSWtSr1SLF9Tov3fj+/gONk8j518M5ifki1FXqtheMoIjxuL8gzmKM77Z7CJlzkJPIBmWdXrwEwB+ej9Mw//DDT4n3FriI8n7sg7NJnmZRNSsN2ZynydyNnKIfP75r+lHNIsmKKI2Zd7v3DygEhPHt/Y0QM4+jhHM7KfI//ssvqwQevh2J9XIRRqu8LjRDz68vZsDzy9PxeFFigogEENquTRgEwRBC21N7beEvHx/2N3tt4NvY+Qgtc/j0/JomOYnT/rUbxYQhyRjXsy7i5CqXJE3t6I7tNAaLhv5waJ1FeZ710yys9ik9dMO4mM1moxd5ubTlOhn10r08Pb28euctCAaErCwBxfOiD8eT8TYvy7vHx/Ph3C2yLLfzNMtWjVKd+pbVqZbjl+tJWPV4u8swfGsu46WhFH14fJ+mmRnFfrVeZ/bcDTxOuMcmuF1WTO0wGM8hCQpmPDm9nSYj69Vmt92Wda3ncZinb90gq3pV1CxiQ9fHcUIx5YTnedlMyzhPxnstxel6tlozHlGKHYQek7t3923XVXn1w8cfmsuVo1gOsxJ993zWrWRpHKJwe7u3CPzv//7flnnebbbSBSXkP/3pD8gDAkIAeDH228sb4TxKMo5pM8yLkat1RQiUUs+z9AjlZfHh40fC8H/8+S9imoIF1uqiTlc3K9TAfhi+/eNTXa2qvMyK4u31eRnFzd3ut98+JWUZZ0nwAQb8+HALPJjFpIREJCCO+27ompEgVBapde724dYA33a9EBPhWPTq8/dvH37+sJh5kEPM2Nvrm7ILxigQMo5C9SJL6N39HSWxsZbXdZ7mOzFrbYq6Or0eQFagNL/ZbOMsDlaFuoiLchSyn4Z5kdrh7aqCmHx5+8Y4nKehKou8KjwwxohezTHH1Wqrjb9cThzTsihs8Mq6clOxCKd5PvbtIsa6qLwOwzAUq9pDwFhECRPajFI2Qw9DoBByyq3ywTkLESBAg/B2udCYSiEYIwgirZ2U2gZAUp6tCsDQIlTT9QGYMo0ADCHAaZHnSzPPMq9yYnSRJdM0Q0xnIZU1BKLVZpVWBWXUG2TpkmWM/f9J+o9t27IDMbBbfm1vjr/u2YgAAkggySKLMg0NdfXL6kijahSpGsnKZBogEe69d+3x25vllxo1f2RC3NZDMw0Ww3fffTDW/uM//nfnHaIMc44dEM3UtvPDx3sLgLcmiROGkVXWcv7ry1NaFn/8+z/vbm6Mkcss10KLeYyjOI5ihsjvfv+5uVxpwG/ubttuTPMMYooRlGr69vXrarsMMB7b2mgJV8s0i40VUvbVGdAw8ASmaaCFw8j/8OH953d3jy/Pv/z8a1fVRZQai42Uizz9/v0HYFxA4uHUaCfvbzcAUo9gh1CwWqyXa2V017eYIGnN4XzV3RDwGHqrlU6iyBkNvGWEAeC1UlpprRSEsBvEl8fnNm+kGuIwLIql917M8yhGTFC2WRPMpLBDO1rbj/UQUI44g0ueF8VudVvGhVhOUzdJOzsH5CTjMGrb4e11/32SFknemm4cR+98UeTOOkowiHCgrEMQETJLhTnf3t09v+7DgBmjn/YvYRzmxdICMUydFPL27v3mYff1+dt/+2//ba7bDx/e4yh6OR+lUOfruek6ivAgxllMZVRs73b1W6WmuVgXeZYRSo6XaxomEEEFbdd3dd3GnKVlvlqutDIp4temL9J0s1o2rO0hmqaJUZjkmfbaAuOMBU4TTKTVTTO03RiEQRQy62xbNyey104RSEOUUgQxhf00jVXdRPHz+cqSsO8m0UlKMHAacCou5/3lWJSrPM6y1bJtr4wzbXUax4vF0kYCaB8FfLlYRBHvmqscB45AXmRSm+HaJEX6brcropjTwIZaGxPEcRaEKY8gwHe3d9A5LWQQRIwRQvH93V0QhOM0vb48DacmCiJiQcBYHmcC61FM8yQABt56Oc88YIRxytgs5CznNM7Gvns9nb7/7mNBwdvp+HY+x1GyW2/SOPn27cvx8iaE+O2XL7f3DwHjRqqkTFeLwkIAnN0uS+wcMD4LU044yxnQLohImvIkLSCYv1Rn68Fyt4uynCAqzMARDBj/eHfrATxdTmmcLMr1MPSn8xFCmIaxGKf6fL7ZrHZlQTYroZXQBlrgCOE8fnl545w83N324yDljDGCyxIhTBh9fXm1zoVJNE8jJJ7FrJ+6y6X2jpTF7nA+G2clcL89PR/P+9260JN0Gux2NywIMcLCuP5S//zbT9ky/e7HP3rvqkt1rPskjjwJT9VgTm0/isUy99Yvypwwcq1rHkVxmAY0dHZeL4qABc9Pr6OY86xgwDszB4vVZrON83y4XqkDm8VSqlliVF/O65vl9n5dn+tpHqExXut5bIFTSRRgBN/d3bZ1o4Se9LTKFpRnYp6VtyyNjHf12EcBXd7s5mHWQi22mzRK9QIjTAlFw6CddRZYh30temX10+trnCXb9SqL8+OlgsjiiOu2PR3PcRxsN0vGsFCSBbyEVEhhHfAYZsv85XjM0+Q0VKvVImA8iHgRRtf9mRz/8iVD0KZhQIP7h93ZjF8Ob63qKje016kzffd2CSH4/Pmz9r5BLmAcEjYIPVtwqQcF9jMIRCunebz5sIUQ1L8+QQ+6YRq1atoeaBMzEizXk9Wjc9MwzVJ5ghhjh/Pl56+PUVSG8xzFAUSOp7y5NlESXPpr13T16XJrt6v11VjFI14ku6ZqTkN1v3tgHv31b39rm6pcJh8/PYQhbvvTsVeH18Nms7y5312O56f9c2fN1/1+FPMwdXEe8zjAszZSq8m158ZJa7Xt2gFZhCZj5fD3v/secDR03S8//xLHsXVwGLs4yW4f7p+eXoEF2+2WRfFbN84eZHmKi/S1vlaX883m1lVnTNk8ibGf+rarhm51d+cpOr68eauLBcEMd2LsvnyxVt2tV6tPi4QFDCGkwdDU8zxknCcf3v32chiM+P36BlF4nbpRKjaM3emEGL1Z3WdxSTFS83i6Ph3fDqvtOs8X52EQRr572Akx9fuOEMKgm9ohKLMgDEYjhNcWAM9x042WgB9++MwY51E0R+N2sWIkuNSXvZJJHBRFemoqMLGiLGGK5n5umiENgrkfR6A3N4s4Dpu6gRR5hMvtjvPQU0C8NcpC74ZhTsr8cqlaIe4e3jtEq7fru3fvP3x6dzq9vb08QoCHquMI5WnGmX58fuFxeHf/znt7qJp4uVyEYYTKJE44ZYMcoTFIWiz1Lk8elgtl/OvbW55kPAwYQ4DA5nyFHkIEhNLFqrTWUedsWzfXemh6G0Sr7SpKU41Bfeo4DYxH0rvTqZlaFUdBmZeb9eZ4OraXqzJ6/3aUxuRZghEkHllh66FZrkrCqVBSQv16ObIg0NowipWUi6LMV1nXD5fLVTgLIcKYbjbbIMSzMNKYsRMsYMkiDdL09uY2YGFdH05fj2kaz85gThnlwHmnRN+38zDkQZyGYUAxhD5Zh8o6M43TNB9eXspyg0Pydto7D4SYvvz8izETxJ44SIz1Whmh0zhd5Imxur+c5u4KHAhxLKQMI15kESe7kHPKSXH3kERJlJU3n/4wjaNWOrOWdf3Nhw8QOMhDFqIEoXKzjMoFCvhCia7qEQJ5kdV92w8jwK6uKwhR14/WQ+BpwMLtx1sWkn7s1nkm2ikvYowNUyArsrJYOuCZEsD57z99Gsb5db9HnEjoGIWvp/PXr18gQe+2608f3smxhx4ELDy+neumYt4qMXmIZgvadlIYL5elp8GX11oDLa2nNEUw7EfFIKEAf3t+BcA9fXsKojjOs3iZL8uFFebwcmwuDQWkWG1YECIEOKVpnFpvKYBZksYYX7yb5ilMc6UN9K6qm3KZQ4is9hZ5ziJnZu8hY/zjDx8A8dM013XlIFik+YjI6bifrHw9vGLKQMAfj8e3vs7S9OXxlQXse+qhR09vr2qW+TDGadzt64f16nINwzjbrpfb9cYIE0dBM9Ythds09hhiSBhhPkChQyHhGAFqPbP2426TpCGGMEkzzHE3tMfTZR4lLrm0dr8/IERXq0VVnYm363W5W5dVVxVxHpBAOaPGQQs1TarvVFzq6vlZKuOkS6NoU+bn02WSo7fKyS5IksV2icz8/PxGGGd3iHMKKMEMQegwsQS5u9UNXRMInENwVBPAyEhjpPHKGSmNksv1arPbAYzPq8vb64scurzI5lk9vlyiOBZCLpbFbr29Wa59L6/qlAeJnwSC+N16R3jYiL4d++u17q+NS+Jot6yqWkgxDVPEgoAym5XWJihJyzgZLBqnCWFTeFRf665p+1Ymi3wSYl9fMcDeGI3MoGal9DjMcZisyvXYT307CyyN0ZAARHwYhsgzN+M8XBoIgMcU0epSvb3tldBJkoxNn8bJJknSJGHeRCEvb2870WGCpBa67yZKxiDwEE9CJHn+u88fD8eLVMrOg9CA45tkXVQnt1qVYfxh6AalDQdAChnFaZIlUolJjlmR3t/cHl5PY9+lYRAGybUxHJAk4tf9kTG2Xm2tN0M39t0YhSEA0Bo/tfMsVZiEs/ejVDRJcRg5pWmABimvX56CkG+269jgk27qa5ewfuhmoyY1q/vb2zxLnRZWdNsyvFl/iNM0DCLK6JIDDEkcRU1dFeullPP6ZsXTaJ0nBBDg7PV0DJdpWbwrt6tZOe+8KpfTLCRQWvVaa8ZYEMUAOEpwh8FivV5/fN9X7a///tvx+lMYRhxRMSqDbcx4L+fj2x5inBXFSObH17eVW2WrPMBmhkbOQhyPhCFNXVdXwSLNg3Q0czuMjHBEA+C9s7qbO4ipVtZoiRz69P49JF72Is8LUoZJHLJlki5Xu/ff//7sev1f/z8///Ivor+sF4vvN5twcZNS8vHj++rcXLMxzdMozo6nemHZhbV5EVDsFfdylI9fvi0WOcZwHmVaLCzBeJgsYS/nizI+z4pOqWkU2qsoCYn1k/YSQq1na9DYTmHEsnIrJ0mD4Hy6am0MAi/HI6T49n67LNcGwGN9bbtmUW6WN9uboQXQAavnYQJrn+eF8+3caeVcVfXzpFbLEsu5HNKA0TTmgKBZqTTg0YKGiIxSHr9dXvevQRB+vv2YxZl1JsB0moRSYr3ZEBpUTasBePfDDwwhqdz+fDqdL2EiHUaEc4tRK2UnxrgoVje3z/tnxoKQs+ViUXe9NiDlqcNut1qHjPCAI4KId1oopcS1u/z1578ywBbFYr1YeugizmAUKOtoNCAJqnFIy8hirJyrui7g4XqxWuVrD5AzVhmgjB8noQ6n46UBAKVpFETR/c3N/uX5sD/QILy7v6WMjn036BlzJGfw8nYIEsai8HxtmuuJEbbabMd+6u2EMbm9e7DGYsKLYhlE8TjN/dDLSQ3DWCYJZyQIOWcceJeEAaM0zfL1emOBO1/P1fF6e3e/XW6e344k5iyKjLWEMoCg8265XlSXy5cvX2jMl4vF1M7DONXdhKEw3gGtnx4flTHeuOp8AcZih7DHQ9sfrqflcl2k66qpkHZ5HCliGoo5Iqt8sVmvrufz6iYOaDCNk7a6yBPvQdt0g5hNGHJMAIJajRAEEJix7yiCwXpT5Nn6T8uxbZWYV6uyKFJjZP/2Mo0DpQhynhYpY4wCaKR1Rg/TZIBvh0mIJs2KZZ4ladZeKw+h8X6epNa66rp2mhhjSZgESZjnseiGfuy0dXb2ZRjfrBbL5RIgpFXc1O0ktbZOa0uJm6exb2ttdMQDFKCA0Tiim/UyKpcK+cvx8O23xyJe5kmBI9z0nXYWcT+0Q13VYcTyKE3CZJadltPmtrxZb/u5n/ru9eWNErJb33X9UC7yMKRJEI39+PpcFXkueD8NIw25M9oqraXiLPzhD3/467/9a932u3LBWYAAGro2iniR5XqSHlpEURDwcrVwzv7lf/z7t6/P5XK5vblZLtZD1wPv1CT6aw2sdcIs7+7yNBZGeedDivM8j//0h/pUwUmkGL7frnke8zROY+b09HrpAMF5Gm4WKcgDozSFHAj14f3Nw/v3s9LPb3uL6qpueympkO0wdf04K+GBL/OSxTELKNDOWDPNM2Ho9v0758GkpTa2aQY9X6GHUz9iCjHlgGDK+fVytc6maUoo09qKSYdhkKaphVB3w/myRwhjSHgYAgSPl4pizCjLF8s4Ccpy5aAd+rfLqVouFtub9Yt4e728wZBu1itjXBSn7di1bSemKV1kcRpdrtfm0sx64JR1XavkvF6WSovj4Vwu7WJVxlHS1e3h7cl666VclIskTRkNqktTVbWRkkOohep1HTC6W68Zw0ro7XJ19+HmfD5jA1vcJVkGCC/THCEccI6Nhd796U9/wBB6q/I4XywX1om+bW3iYkrOpw5DtMjSdhhb0WMMEUYUoNvdjjO4Xq7W5WrqJ5XmbqmNtdz7dVFGnGmrtZVi7KGR64cixFHfdhijIi3avj+cDudzhTxeL1dFGDGImQeQIDkPw9CJSQgjhFbt2CtrkyR+fHoe2+F2d9OPk7UWI7JcbaI4RogSToHG3TRjQmjAIPBj38tZJFmmrR9nQfuJYxbn5aStmIf/M7INUNDXUlOvlDcOjVIp4K7NBQDIKK73A6+qIAohBGK03uPLqeq6pihyzqlWE6wtBIhiNvQzRtE0Do3tpHDXupqESuI0jNNpmqauJhAcvj3W1fXDx0+r7dZqC7DGCISME4TkLAAg9bkeG8kirkY5TmOWJMPYPz4+/env/3j3/vb121P3pYfA3z08rJaLy7kyUi7yO++zfuju728nMc/VmPIkKxbzNEMj85t1XqbX45Ugjgm9NrXxzjgzzRPGeLksr9X1eDittiuHAGLs6e3ogYs5n8fBW+ONW62Xp2s1DpNxdpimf/33v8ZZtMhSeEYOYCOnrqkgAKv1BhvQjSdtjFY6L/LvPn7fXq/15RggcvPwHnA8C5Vm+apYTU2FtIyDYHd7Q9Ow7qa2HpaLyHo3je3b29swjctlHmepd55vuZSbfuwnJSwEsxDjMG5W2yBOXp73Qk0f7z+GH94fD6e6bQFBDPEsW5yry+F4NsYChpMkU8K0db/drYpyYQCYrSFh0PXt8dxQRnZ3N96a07mKi4wRD41pLs0JccLg5XSKopB8+vydmue3/YtySppunbLfLcvu7u7vtrvNdvd/+S//eVts9CQxAK/4eTRysVoUUYa+R093t9eu3TysRyN+e3x6BsZqu9tspDX7+eqcpyxOCqC1mrA7q6k+i76dgiCyzlqrRd3Vs+onFacMMKBmKZuZEQ6t2Z8OWpooiIusmOZxnMTxdH19uzRVI/W8LTeTNqY+Qux+/OH7mBNjVUiizafbU3P+13/966+PXz89fGSMNa8vNAj/+P5hGKc8i6WUzbnCizKmcSvN2/U6i7Hr5k2QaEYcJU7DX399qcaGxqSqOql9M7YAgd9eXxPKrHXzOM/7AyRX76CYhyiLRBR54JdFNnk5Gf1l//bD959X5frH5A+fRzn0s/XzH/7+DyEl10sDKcA3K0Ro27SX9vp8fHEeZ1P75fgWhkHAoq5rh2m+zGPbNZd//Mc0C/IsHea5YMm6yBKWKCFP1Rl66J3zHmVZPmuFKF0slti518eX/HehFPbt5Xz/8eHjj58gBKfTfmgazohg4MtvX4tFliXxPEzH10MWpzKxTd1CDzebzeb27vnp+XCoWBxoP53P1TiPWZlXXXc6n/Mk+fTx7nS8Tn0XxcHtbpOXhVL6+fnFCJkHsRomPfRJSJ5engljAKL/3//6v0HnUhL+yz/89812/bu/+3FQClmcr1YiFJNHL88v/djubm+6a2Oh/f67z6/ncx7EAaW//PwNYJeVRRhnlBFnDaVUjMNvj7/2fcuBT++20irT9VlaFEkRICbnqeDxzf2Nh/B4PpyruhcCYjgJaY308xh6d1uU/eEEsdtsNoto+fz0VtUXzGBe5O8IEd++tULW81wdK8wJBz5mATJ2HjRhFDPurR3ESHrKA1WNLSfU1lfvrbEKIggRVM7uD+eqbj9+vI84c8aGlK1WBcUgIl6PTT+OSk7bzaodu1GKaZwhRjGn0mjnAGLUE/B62N+sV4zGEFFtZ+/B3e5+vbjt5QAZGCdxPFcYs/VmvV6v1DwHlKZxHEI2QEQZu71/j0NyvLyNkyAIZ4us7pvT9Xh3s6OIjNMoRwGT3GjdnC9HyjBCs5D10F3qun15OdbXLM+t99eqqZqzmueb7RJ5qIy3Vh3Pp5u72zJfSqXef/9ZOGs9yspyc38bzV1b11oKPQxj00c8nLsOckw58RhhDI3SIQkUS6SYrPOL1WJzt4niKKAmxO5ST/tLExPCIUaUnOvx9fWgpI6iNA6ySdTNtVVS3t3uojh5fH48X06cBVEcK206Mdnal3kGnZ/rESCXRFG+XldNc2rOQIxBHDqpsyRxIeiG+fo83Nzd5WFYCynGcRJKaNNWtRjF/e2Oh0E1DJTTpCj6fiAAeQeOlwvwjmc5DwJrbTeOl7pNsxgiNs/6eq5jegBI390vo7Kw1j9+e+qrK4CII+Kg/e7zR+f9v/3zv47dcH9/t73bVsdzQNjNboutm9oeA399ez1I/X/2w0ESKS2mo6AX9u7dR6XM+Vr38wwIJhxRRuM07aXs3moxyXFWzvt5GLxy2CEjJGL24/0tANAqm354p7VcpxklGLn7abLemN16sS3TIs8u52v/Tkxa10P3sN1IaavLVfb9zYeHh/d3SszIA8ZocbPZLZfys3h9ecQEr29XURArpRF20IPnr1//8j/+WfY6TJJPP/weWnS8Nq+HSkq92y4VRozjGeh///pTmLDz6VQWxcRFGCe79aLsh/3LYTb62vWXrntpr01VU4xNGi6KQmrxdugl9KOSs1UBY7WY9TgCCsv1CiHWamu6GZOclQEEMMR8Fh2ywGtTnZuhFpwxnnCJ/SRE3fWYoiTNHUdtM+h5lIczDSjGGCE6D3IaZsnpKiwAwkj7cTbAaq1smWXKQ+1tO8sZoBmhgBEN4bWt+/q6LHLGqAvQy/VcazlJwRlfF0W+WFwPBynUD9//Lg6SX5+fnk6HNF/QJJ5niLyVAH57PeZFOnn3dr5ghHAQF9miugyM0Zcvb0aJJAu783noR1l1YZomHM+NJM6WSbRaljfrLUF8mmSYhAgh70F7bY6H4zj060WyKRJn5Nx1UjkEiVDuNHVyHlmIbm42nsJmHkPOC5ppbw79CSiwipYwoC+XY3OtrbU3N7e19qeXw+l8mvUEAPzh02cYJk17/eXpmWn4B54o6Nqhv73b9aPoz2fuAQTky29PGlrp/DArFofrxRoDNvai76dxFOlymYYZsPp6OI3TOEUDcJByel/eLlflNM1xhAtSrvMyzVKvdEAwj2KH8CDneRjMLIF1Xdff3m+TMIUezYOY3GSNXt9u5lkKKXFAHUKzNRYB7UE/z3EA7TR7RN5GDYDCCFEASVHGT+2xrs7azjxAt4v1Dc7+X//5/8GTlJd5ssowRO2sxropkijxbO4GQuNylbvd9v37m827ddt3d+vl6a6e+imM43aYkPD7qnWcYGCvQ8siIoyhiFoACIKI0FPdTAchjZmUssOIGaQIDf2IYM28WaZRlucBjkEUPbx/YIRX3eV8Pp0v54BzuCL91OPJeWOiPF1m2ePz1/3puLrd8TmAGBJKCOXzPGII7zYrTMO/nX5e7W4HND0dXgMWzsg0dV/XlbXqzz/+cbUoeiFO+/MiLzsxC6UnP1vsj6dKarler799e+IULdJyfXvfqbEfJ2f8YrXEEblc6v7aXq7V58+fYcCCJK2HafcQnU9P9eHCGd8s4gwS4sAmjgFE2SqjjJxpwAM+OXXp6tfDW99M24cbHobPzy9ykphQa3V1Hinc7JYlSuKYhmmWSaWeDsfeTITRvhm8w6vdchdFWZYHnMl+bKrT6+u+6zqt7TRMwPuxG8a2hxYiDbAHEadmkn07LLLy4f7d4XQczpdivbDGSuA5AsJ5QAmitK6bKA6iJBznCWKoneun0Vo79v3Q9x4B2vUIeExDTijlgCHAMGy7qZuGrmrz1cJjp4TcLIrbxWbuug/ff7e4Wz2/7p++fuMspiB+a64XMVwu5yDLSZx4o+p+uP90r5oJIhivU8povijrqpr7McviIs+u19PQ1RC4LI0RAshDysg89GM7pFm6XOdylvM80phZbN9/fLAGXK6Xyl6Nc3949/5395+EFG9vb5xz5G2WFvHvPz8/PQNn7+7vSiGNUQ4o19qn88W0MA9oul0SBEU/Z7xgHIMJSi2cd94Bypi1fugHAEwYhNv1qlgsr3XzcumAd2M/xKtlGEZmVnHMlZiUEDQiU99Zb4s40yAFoB6mmXFOGLAIEMZmZ7BRapyVvZ6qib8dSIA2m8W7Hz6d96fm69VrsMjzKIi1Nfcf3hVJdHh9g95JJbzzHqJmmAqjIg+DIPr+dz8YZYH3m5tN3w/G++vlOo4yWSziZQ4hHLvhcj475xxCs1b74/Hby9vNu9vi5t5B0ne9Rxpa9/JyzMsyjGOHgLPWSnfeH6UxQRD9x//wn87nM6VIyBkzVJaFN8YMUwhQGoVi6PvrGBYJDyKC0DDJse6ghxT7gNMQgvFyma7emfH97ubPP24v1Xi+nHebLUJAT/PMemgs0LI6Hizyq1WmZBiFkVTCiJETUKZxscz7sR+6WQozUsCDqFfCWM3L9N+fvgx9r4R0HuUUemdlVzFCLXIa2GNzMRgkq5JG/Ho870/nPE8xZ/vzdZwmi92H7z5nSSENOLztnbN5XvAk6ufJGOedNc7N2gAhhXa73Y0Yx2tdLTfFarticTyPwmy2zoGhFy4DhEKm/XK9gt/9cD1fbm5vdne3CeQIgDxOofeLoqQQHl/3r8+P5SrfPNyUd7upn05v57pt519+tRbN2nhMNfaQEq3sKkrLOIIejfP+1y9P58s5YFhKgzGe6iugiLM4ChPOEUFhU8vj4bRdrwLO2rZq6tMi+ZRlgZdys1yWBTxdqiJL0yLrhvEJw+pSFUVCoLcYNlUFofsPf/p7Bsg//cN/N3b+7g9/iItFV7Vte+GMpEmehplJTKX6MEt4GNZtM8xTuVlZB5S11snu2mcZG4Y2texmtVmub/qhnw1AFjCMrNb1pU3TNAj5ME1xnmKCJq+InL01Xdc3YlTOGeilmGU3ZoyvlyuM3fWwB1ZHCR/nDiGTJCEPaZln8zwzxKI4pihEEEXLyFDw27fn/bHPl8nn378Ls+Dt9W3/chjF6KUEFAmhYx7DkF3aTnuziKOQkkvTQQ+sdQr4KEmsVZ6iNA2rr/21rnHhnZZJHm/vtkma4kMwjtMgJ+usEabwaV6UU9dDiKZh0tYECQsBA9Q77ISaD5fjZr1u26aua0hAvl4TTDXA7TB7hJMkt9Y2dQOxm8Y2jKI4TS7XinJOEGaEAA/MpIVXYQAoxmkQG62jNNTj8OHhFgNMCfIAtNMYM4ahtx4mWTKPY4Os9xJCTzBKy/S7j98xzL69PLGAd7PoJx1wV7V9N07QY1C1dBqFlJ5QLUmSR0GefXl5e9k/zZMOIPqyf2NpJJQwx72Rrj9doLFBEMximmaRFkW6WmBjLvXYNrWHrtjdnOuhn76VaWqGUYhxsV5Rj4ZpzrPSWd/0ozaShbxM82Gef/365fC2X61X7z581A5Mry8PtzcYIQjBHESM8DLNp3aSUhCCJzHM02S8hwEJw8R7NCkjrYrylIYcO99dBkJ4FlGM0c3dVgNL/v2f//r8+KucBfQu56lsjR/x3e59VBYz9YOQVo3jOOZxWsTx4Xw8NBdP6AA9wCBk5Ldvj3IaHm7ud79fXA9n4MGHzWodxb8+vRz77k2Jxjkx6IHYchUxFpyvLQRuspOySkvLGAcejoPUYvbALiD44fvvVmFEOX962ndi9AEMgRqmvsjTh91u6gcxDkNH8yRfbrbWw9+eX1+e9ixA+WtOMb/b7rSyxihvbRZEMQ4YDd5vdqsoRc6HnI3jLIySzlgKCGUs4GWZN5d2mOa6ae7eb8M0e3p+iZLk8/ubslxKqZ4PL95jDRMcc0R83/Rd1UdpVLIQklZZ07S67rvlak2FGqX4l7/9Zer67tyEJKQYck/iiK23myhNIYLIAr6JojTyAW3m8d//7VeO5zLPu663Qmdx8u7+Xs/CKXG7W62XSxXLiCVlln97ebx0V77MZwRrYI2RcGafN4XHYpp7DNFiUUIIHPTlJs/y9O3p5bR/Q8R9+vDZI/S6P4h4QoRkSRbGIadUW1N1zfF68s6JVMWLZHm/AhDW17qu6k/vH4rl4mX/Ggb04/1dxBgGsFiVXdefDqe6aRd58vDuQxaHRqH2Wol5zPIsSoLVbjNKcW2bzaJYpEkWB3c3O4BAPzTTWA3j9bw/GIBObU0Y293u1pslD4LqeO6qJvj8EC9zMU7vd+8ccFqrNI/kOM1atWrmSfG7H/+MAVgsN5ixnMYEoN/+9tvQD7MYnS/atnk5vuSbpaOQhzl0KOBBEkTE+w/3HyEN9tWZB6RYrZM0JBiHjAWMREkWhUTJ/maRrPMfB6V+/vZ8OF7LMlltSmPcCV8RAsb4ACELcHWueSAIx9vtZrhc5Dh4pZ0QWMmbsiDOD/2sJtFdWyc1MK46Nd4rnKcxBpggjrjTdmwHZ0yUcIeMsFpLb2eTpLFHxls4N31IpT/btAiyLK6u1c8//VS3TRzncZTePtxOSgBtOKV3726bS1XXjdd+GoZL3Yxq9shSxsvlUgkhpUyzhATMGHvpuqodVgTJ81Vbo2cpRZ8laRjF1jlEURRHebaEPPj69np9O+y2y9ViIdteOJdHQZalYtRDO+3f9gj7u5vbMI2BnGbRazkYa8tyuShW9P6jFaLIIinU4XIhnEKE1Dj03YggtMa0l+vmdgXM+Pb2qpwqFpuk2PAFv1mG0MoQe6904MxumZk8YkkQMhhQEt4snXQQ+mnyfRZFd+tPn76HCD+9vFxhbZxL44RxLuLpehmvpwuknkJivA7CACNkvZsnKaE21gqpTtX10rXL1cZb02sxqwlMBGMCvVVaAY+rYYAsYEFIGMGIOeC0NdLo06nKi6xY5G+H0ySnLMs/PrxTYnp6+ra/Xh0mrurzOElplGYJWHoI/DB04zQkNv1us0ysDSDwXZ9hbIEfupYSPigRMO4pNtgDSsrFokiSZVI4Cdt+fNzvrUNxksR5rpAzSks1CTG5MPaQWoBoEExKV02LGVtvVwA5AwygvJ2GqroQhK7nyjvfT7M2ChK0WK0QpY9f3rq2W+9uV5t7SiKGEJTAjHMQ4CiiTV0ncbhYFXM/De1Q1W11PH17fIwibj2u6/bl6zc5Cx6xuu7ubu539w/tMFzqS9WfBzFEAcYB+/b8uj/sP3x6WBQLqecszzb54m53S4Mwz9N+kNfmTLV7f7MtslgbyynPOF9t16fTpe6qeLkMeKrmMbcsy3KWRfv9QbPwD58/bTera1P9/NuTmnScp8vFCiJwvJx++su/V+djkpefv/the7NBEElnqq6dJxXkOQvby3n4l//xt3IVI+AjEq7uCx6Rum8up9pbgzGuqlpPo0lDK0V7HXgQfv78Wc/i3PeznLNVlqYpBWDsO4HxzarIk+B2teacIGT++V9PYlZJnMZJmEVRTKKQRc6Z/fHtUl94xN/d3rb9fG2qNGLrIhnrenS+WOQUBDzg4yRHqaU0wLnYu9vbGxRT4GxdnUiSxOtlb+yoDIEYMhYlKYTw6fGxvg7rxYYyIsbZA4sx+Pzp02qz8MY+P75dq/put3MYvzy9Tm2Vp0kQ5Kf94fT49unTh7SM9DwXq/x2d9cOQ/v6crpcxCCVFdaaiJG6rjyw6/UqjRZRyDAnzoPzpT6f2yBgPE87KZdlGgbp/vUohEHQSimBUIghRaBDPop5309vj0dlzefvPuEsk8PcHarLy3ldZJ+/e488fPnyDTAaBMnheO7ltNysy7JopGmul6Hvr4NUsE1fjh4Cr/06XyAEaIAZx2EYY4c2y+XQN5ThTx9uLtd6VAJgaLwGiFwvF6Hl3fsHnkT18UoIohhtFnmUcUrYPLSknyXCwd27LQ3wPEvd9nPbYXKIjbIxwhG7296eLRpO1bkdCSYf7j/xIg2ymAasb6vf/ulX1XeJY8vt1mujpEhW8c2ygFbvVHkzLPLT5cvhoggGWgJEjBLOWwsUgv52uwYQT5O03nnG5TwyTL77/D4nFClweTyd6ubf9y/zPAec//HHv7u/ux+q6uvXb7IfSVGmUXI9V2/PB4IDAvTx9bAol2mcDmY6Hk4A2CSL82LBSKilBQ55A6IwFA50Qz/O4ma7LfPF6VLxOEDAa4KkAg5DHoSrzcpqIJW52e7ejueq6eI0VucLDiLAqLJ2mOau7cpFtt1sExp77TgLhBRCicPxLLRkhEKPPIE1sBTIflQTxktOo5DlAXfNaHqxKcvtZqM68/xyIAreFOvbcoccyJKYY7a7KYwSapZRwlkYX+pGW5svchyFzSTLPGurRo6jnCcnMZCaEIQJ1tY0fe+9Y4xqqzFnIWMUEBayh9tbDGjTtWM7IAA0pVmZa2hO365impu+xwznZUkwHudZKTV0Q5wk0MMsT99/vJ/a8Xy4SKfFJPOy3GzL49Pz6XxGkHhn6q6zDgRpHkXxZLTSo7dITfoqWuoJ5XEcpyFjEQ83m/WX9kXMKg2jJF8UeeGwF2ISYgwgPH19ur+74cxbN0FIri+HJI5vb+/2p2M/T3mcQkSzNOEh74d+mkbkICZke7O9VNfz6WycjYssCMLZzOf9gTMeRdFufdNeztX5khQlY3S7u0mLAgIz9Z0bp0WahDEHcmbQ3213RVpA6G/yxf5wDjgNo1AakwAqpMGYbUp/aqvX/bm5Xoo8u1kuVcRPj89qlHBSGWGL5ZI60PCQMQqME8ZSgvI84QH13gmhwyBW81TXVdd2xhthFcbEYSSd0tqa3i/pAiCgvWUUxXFggDud2tfn6nC5CqkIz4GQ/ePzqETTtOvtcne3maZxFBPQACIECOimse+HME6qdoriIIrDuhsARBjDYrH0lEVl3DTN29MbcG53s1rfbvt2qLpmtVrl5YoEwb//7d/O57MZlNSz81sgTT90sxK79RYCImeplGOYGgXEpAMWd33TdddJCoqCKMoxoQYrbX0Yx1uESBhIKa515ZwvikzOUkczcABj5B0ggD9s3w9Sf/3pZ0IpYqS/tM35Ogw9QTQgbLNYLbdrHLC27ffPb7McymXx+/efjbXrNCvK1U2xeXp6ezrunYVeu2WRrYvSO6e02G3vxnFsutZ5N6nJIxpG3EHQNp2VOg4Da2R9qYxRiIBmaEPKszQuFwtIcFVV1/Pl3f39d99911TV2+HNTiDLMxDg/fUyGOEB6Pt+1LbpBqvFOPVJmKK2Acadj9c0TrS1qzIPWHDaH7VS5/2xbrpxmsMoXAFIGZtno4w2VjT1tciLPE/Xdw+bzUoosz+cjLJDJykNAZosdAZBHGA3GQgARvjl6bWvOmdcHCeLRSGlPJ+PcRZjRrFjQRBFWawmfPrpKqXkjBVJwVgopMyTPObZ6+MBQ09o2LZD2/1GOU2DYBj6a1MjCjnjbd1HvM2SbLPYPT8+fvvtsW/rIIl5EP/lLz9XXRtgtlvtEAGn6xXRernEw6z6cR6GcxAFAEAlpFKa0whYEgSJk4YQHEaRVtpobb2fus5b8+HuHQ+DX375+eXlzVkQMhJBfFsuyih6uLmDCCFtnLa3t7fLm+2X4qua5J//8H3IyMueDf1oHVxk6YeHzTB0M0FgnL1JnTfz2JyvFgAsnDxfmzBOlfNKS2v1ty+/DV2+3a7jOHq4uymSpJ/GS3aVwnkPllHsnUkiNssxDEJMmfZykuPYzwihUDCFMUIAO4Q8YoghQwIU2knXL1UMI0Qw9jihiZoc5pbRwHvXdpWYpiRit4tVHEzOiKjMGURHdUUQZUFCGNfAeWfabpwniSFlLEyl1ABQTiYlDpdrviqlM30rkEdZEXmCAaZGu7puCOa7m91ym45jTyDghJ8PF29117TQgzyK0zJnzvZdn2RplMaPLGjq6mG7iqPwsj+pfo4XZRpEMSVWir6tHQJ924k0DcMAQ6Kdh85Y5PquARAiitK8mObh3NTrzfLa10abYR6E1MB5JXWSJDQOQxRq6+uuvR6u16qGhJ3P1ThPQKgoDGQ1eA8xZd74vhez6aJcowjPo3x6eZnkjDC8nC95ljy8f+eMeXp6VVquyhI4571JSQIBlFJO40QRLorUex+zwEaZVTZfltKDquukmDAhWuq63Vup4ziOEKWMaiWrqnIMkDgOP777T1EceSiNsRYZR9yxfktMz+fg5m7HAOBG//b1aRy7zz/+ePvxo6GIRgwhaOZos1yPnijhvaXlzZ02SkutnKYELqPo7t324+/fHZrub798u15aALHB2AKYxoH3Pg552w5G6tkBBYGG+NC0/+v/97/+7nb3p4ff/d//+PeLgO+v51FKS6AR9nK+7FaLu2lzbS7X45sxur22zaVLUv7x7z68PD1JJRgKh26ur00Qsc3tDYuTeZBVM/bjAAkKowQ7HfXUK53xYLMsXl4PP3/9FrLAKBWXYa0EUQIhBCny0vfN7AEMwhQQrJEfRMcsx9gnaRCHAWXQWJDFEcWk6drL80tSFIwzD2Ga5pDgWcurm1WnwaD5uVvP/Xabn40fmxZ79PjLo8eAOne3yIEF5WpdlGV9PnqlQwJV3R/PJ2VMlGWin/aHE4BguVk0TaeFZIjfpEWZxTHAhFFt0TDPx8s+yuPRWtnPK+uTLOTWWm3eqjMbyXqx/vj+3ePLV0yIFrpphjTP0iBel6uX6W3/cpKT2e22GOFZiN3tDWPh8Xo20pwPF9HPUcCTLOzHQWudRlHAw3K5noZpGHrtVJQm2IFz12Mpm76bhSiKkhEqJ9GPc9AP958eGMcyWzjjye/z15djGCVZueAJ++WXn/U0LbOkjAIzy7GudrcbGDBt/TyrYRB372IW8CgM1TSe3l5lFn0f/9jV9ddvX7DjSZzd3N4FeWK9ooxijKUSU9PN7VhkqZliJf31emaYxH2L4zBfZrJvL4fX+lxZoShH69UqLRIcRXESq1nNfZ1A/B9++N5aO0s1CqUyAQHYbbeIBr89P3Nnr9dqsygSgkcLyihOilWA6d1qE8WxqIfZzcg5SPBqtUqSeHu7CaJomsfT6dg2DYcAY0goEZ2clSI+iBnF1LZ9DwWkBMUhhwxNUjJG0zS9tN3lXBHKaJK1RiGortcKADRPYt7r0UnrLQSWAIysWxUlD4JJ60HMXgqachpFX3792rZtmkXb7eb72y3CkFPSXWqr7HqxWRZrpTwRk3Ca4vD4shd6CoCHEWUEWaWBB9rbQavBamfm0+GwXd5sVtvHx0dC0Lv3dyQKjz//JJ3txEiaGjvfXusyi0MWDNMUudx5MM46KxcAUxrw9X1CGc2SdDakqdp+nBUw49CFcbzIlv0ghHScx6tyGYcx4wRK66yIMdvd7MZp5FH48H6hhlFrmTGy2a2ptlqO7TzTgKZhuCgX29Xq6euXcrnUevmy33vvu2EcxikviyiN5U6mScIIPp9OgZTWBt6DMEiSMPLOWeuSPHVHdW2v7eW6f3yyyiinEEFkQfI8bbuu7vowToRx56dnzLAykiKwQgAKTiBo6m6NwLGunw/HzXLFk5hK/Pj6ikPeA9MN7QTh+mYjge/ELIQM4hjE8WC8A3zU/lgfpJF9MyRhjighIfPOIgoZI0rp0/6kpjlgrNYqDMIkCRklzpu8yCDGp/PFQr8Ol8fDVeoJMiZHs1guNjc3AaejFNbBa9W9Pb98/vwuK4pxHLuupwYz6FiA4yRUxo+zjuMCAXx6PYU0tNZdq3oY+83mxltYt9dj26Zhoo4nTKDz/vFl//XxLQnTaR5oxLQDl6YDAN0/fJrnGRDnkZ/GsTlOUDsrVBSFjAePry9hFu0276rLJYvC//jn3wMIu6qpjoc4CFflIvOI8SC+uXl7fJ3Ol9BDIoWRav/0UhQpw2Sd58CANEtD4DCF7z/dxj9+/+Xnn7t+GKUgBgtlhqGPw7jrm9O5Hro+DIPV3Q5Dh6DzVl2P+xTeFTSASSag9M59t/5MKU4zPqvJWDCJ+XyuZiVDwsQsh3YwyqVpHrDYOTtIkyTRoGavvVIQOJIkEeZMOdSdL+tiGad5XZ3zRUa4z+IYelskoVuvpLMfbm8jFkopIx5meXatGhyHwLqh7oQSEMDr9RyEaLUpDPBqmlyFtXGzlgTTQenn83WR5YAGPIoM9BYgTzmLAfa+E/JyOolx6tqWcT40dRZFt4ulL/N8UTjvIuOuUZRjvIiiaAGV1VD0uzgIP3349dvjxXTVMAZBbD0UzksxCGeiMHRW911PGTPaAQgJxd6aWUzEkr4f5nGMosh5MIs5SZOABX3bEYyRtgwD4A10oDq+YLf0QoZ5zmLSjN25arIkW2x2+9OpGcd0kWZ5VNed0sIK09QVcHa72VCMT/ujlKLpu+PxVJRZmMdhGO/3p/bcxmH43e8ekjAiAN3flgFNhmnywMQ82G423Tj+9vOvk1RZHC+TiAbsWF3nsXHW8ywmCSOLInEeOoTHsSchX2XZpT7srwfxPEs9d5e+6zqHPaKsavrp8QsOeLLMCCFWqs8fvzPLyWmn55lHCWRhkMY85oxxbfTd3YOl+OM8JhZe8w4R/jdINLDpKkOUDGLCWiEjA8paoSDwXo0EpKsyzyKyzJbL7H8+tjWgmMT06XB+enqpvjUIghH6cR6ave6bUU0qLLbGU8jjazfJqVmUG5olkMBRql8fv869Ou7PhMEwjeQotdV3u6330Bk/Vj1GcH++5GXhjB/rCQVrYn2AIMPk9u7OWn+tagghj6LJqqrtsAcYkjyLGCN6lsMgqMco4EpIxoI0ycI4OZ4qYwAhYJzkZIRJU+qcFkB+OwkxEwSRscgiqTR0Oi8LHoZxFnvvqvPZKZlHCYXo6en5VF1GLbYIWkwhp1LK87kOebBOeBhEy7KIGFNavr69no+1J8QxOM9zucxGjKQ2REph1fl8hAhiRKpuUkpFCVuWhejm0/k8Dv39h4e7u1sllXUQQNC1XcA5AABByDhFBigkq1M/tv39/S6MV4QH0zCdr9f98Xz//oYnadXPgNCwKOq689729bVqGsaCRRTGeTIP09h2wzTUlythwGoBPUzjrMj0arWU02ymiQJoHQ54xALuHQ5wgA1UkxqEYGGAEL02nYMm8H4WWsw65K5tWwhwEKZJnAELHp+flzcLRBmLeNs0VhtK6Ojt4e0tTpIwLVmSIO+iNLm0LaO0yHI9TWnMs+26a5rrtRJK7+7jquqGoZv6lkBEOCsXpbo0RgpiAYSQILwoF1JMcUCHboqTOF0UX7s6itn3Hz9gA+Q8qRk8vFtDDg+XizVwcbuMo2SoazENFgBgvTPeIp8VuTSOYgIQ1RZqjxBGCHmjzdD3nJEgYEMzDtO8g3Cc516IMopwwo/ns0fAAW+kIpzyNJ6N7vveeweU5xjTJAwBchiLQcxiRpiOvTqdT9XlKuYyYFGaJpwGRZw+3N1N3ZzxzEqzyLIkiyCjfdO3x6qpp5v7ze52642dxpEEdBjl6/E8TmJV5MVqgRm9VE03z33fA0ryItUQagcg45NSQ9M6o0OU9H2/fz3SoFqsF8p5cW3KcqGlJpRkq9RBDAlv+l45Uy5K40Db9zQMEA2293fD0EVZFieJkNPL43Pftd//7rs4ieM85UnMMJnrdq77i4MQgXmUESNZsaaMVte2Op++e7gFVn/5+dc4T52R1vko4uvNAiGslHUQ/fjd92kYPIdRynkSJ+fzJU7T9Wp7eDvOYv708eN37z99ffoqpbRinpwt83SxLC91pT1YLxcWEwsQxrM2Bgdku9spMQ/T1Jx/SZIUQgS6Jg3C0/l4Gfqbm42VkuZJGId2Jh6B46WutAAeS6XTLLOMGYIA8Mfj9eV8CCJmrbHaUQ6csR4hLaXzQM0aeOC0pQQtFgWwwHtAEDJaEYx2ux3ClPPAQhsyPnbzy/4VYBiE3AE4OTX2fTcNp6ZPwwQH0f5c4aHHBAKIGMKTFFmRfPjh0/5wHZVoujrgRIhpP+z7cchXq9nab4djmmbJavWwyF4eXx6fvmw3q3JRGG2HrnPOHw77aJEHcZCtCgpJFIUQWBwAHrA0Lw5t9/Z2BBbc3lIHlHXOKPvy8gqgfn97QzCECKYsJA5gANMwFEM3ja2DwCpz3B+lkAZZQunU9xAYB119vHTtcLvdrIpSzjzA5Ga5BA8PfT/08xzmCQujl7e3a9+HNKDAL+MwjbKbh43RUgtJIWKETH3dSTcrpZSWUiTB3R9++OPx+BgSvLu/GyfJHBVS8jBpuvZ5v6eEdH0jhEDAIwxWN4t9U0EIR2QP42AnsN6uGUYsjpSznMJDW02ncVmkMQp++faSZVm+KEVVW+3mce77/vbH3Wa7KvJ8mOeorptLN0MbcEo4MUDUdZNnydCM1ruH9w9S6r7v3/aHl7e3ZZFnYczCsGq7dpwWyyVCkGPaNL2YxkVRREl6PV/mWXz97TcEQRSG3pk0izlBEaNinF6GnhKujMGahQnfpeXxbR/d3bwjTAodZ/l1qJ+en7SSGkPKqbX2y29Pq806SzIAAKTOO8BZQAv+2s1WuU+fvnvngNF66MeIhctFWWTJplxuFtunl5e2qghB5f1WTBIhiD1/PVzBPdcIsDjsGtk2/WKRbzfbeZqGfiwXOWeBUpplfHW7ZWEAnHfWWG+kVt6Dtm0tsFKrw9vl0+f3UnujVRwlAKKhOkuoCaeuh0ZZYCx2HkPQ9j0DxFpEMHQekvfvbo0RWZohjEOGPCScxYf29OXl9Xg4jcYlYQWh+XD7oYDg2tSnLyceRx+Cz8m6vJ7HoRnLKBLj0OwH8aiSVVaulwgRCwAARI4mTZiR/kNZ3oQJwnQXUQc9IIgl8ajkPsvbtmFp7DD+6aefVNP+/cPuYVNYKLuhXZSbcplqPfCU/fzTv/7157+9jBPNc+mckELP+m6xCiER59rFZwDB+TJa6wWd0yixRj+9vk3zXGRFGFFKEMVodKpr22VZbDabeZCXy2Vse+iAc15Yo+WcTiIixEqTb3OITFuP58t5kNNQy9lbhyGBKKZxHDAr5NdfD5v1br1aaymWZRkliXNYaFlB+Pj1kTAaLzPovJrnNM3tqI/XalDD3/9Pfz+P/a8/PX7+/Hm9XOz3e4bsMLcIgDgOGKLCOINBulw4jvDYBlnAWRTFsRC6a3ujTZEvFvnSatcrHUSEBRQj6IFfr0qPkZV6mcVte6kaM4zzrCWLk5AFv1Xn8/58e7PO73ccoGyRpFG0yHNEMHx/u96Vjy+vwJK7m5t5nGQ/kwBmcf56eNFCOO/Ox6rvh+39lhE+z3IYxjAN15sti/m1rn1VdW13bepokfdqnKqz8vZuu4Lej2KehgEDv16lAWXIoK7r4oB7NTNoqktLnbcUff36fLNahoSEUCpxHedxnKditXYEPb69nc7X24c7QqgmpJ5kME9BHMZ5RjzFBDV1209dUiRxGGqrs7TgSQgcusqj8WCxXqI42D8/a2gAheM879Y3Wb7C3t/e3k2L+fntbZjHUZqoTPrLpRfCGPvL29uf//hHY3TfNoTgS1NjzhwgY99/3N7wB/6Xv/yb5uDv/vT56em1n7uERogiHjJK8HqRxnEgZhVzPLV1fT1qoxfr1SIvc7ab+t5ZiwFgjDLAlYHXdgJDDz2gCDuj67rhlFnjtJJve8siRig21oqxGUSvpYmiWGopLQg9DyCjjMzzTDDxALy8vK3W60WRc0r7Dou+n7vWSXW/293d7AhGL798XS7LKIy3edlBOraNdxIAkxZplAQ8iaeb9Xcf33kCpRKYgChiQRhAYPt2fHveA21W66UWep4VCWi3nw7nmsaRB2Qe+8dvT7f3u06N9bV7PlZhFDitU8Yo5R54pbQDbrFdch4g5JWcIXbLzRJ44DykYXC51upw3t7dOeDqeZr9uX/+Ng59ymNo4a8/P7OI3n68tcD8819+Mv0UBdHhdI0X6XK1cJO/nK6rzXbSqm+6b88v++ulavt3WXLqOuMdw4zFiVFymKfzyzFN4x8+vRdKcERiQk0WEYKLKHErPc5TSJEH8O///GdM8N/+/Z/naQwCSghNQtb1Uz3Pg3UQQ0LRsizzJCnyRPJgmvrrJIe+X92s53E082y8qceW9TwLeBzzvm3DKHGUQNTN8wwAkrPOs7Lv+peXlzQJrXHTNHETJGkKKD51HSbUAqu9Szk1xtSnimO8LIub3S3AZB4nKzUliFHqjAooWWWxxzCJopfxFSmNOVnkBedEDp2zxjh9qWvj7SpPLpejE44RlqcFsObl7fQAH8rbd0E691/a5lp5JzEBFJBZTIVHEOJLdW36tlgsFtuV8V4Cd+67a9/naRIHdJp6Y2QUsnKZG6msmCChyzQ2wDBPyjwf06ypmyRNgiKVs0rSLIyCYe6dNlOpwzjIo8JyB64tQnixu62a8+G8r6tuHg0M0+WHD8PYUOADiKy1xnsDAaDw0jRJukiDXE3Tt2/PQ3uN4uK7T594mgLtpASEtpvNtm3OYuq2m91qt63qprlWy9VCKf3LTz+1dY95oJS9XhspbBTE19MrpdjMkCfJ5w+/IxR5BMapLxfxME9tNz5WNU8CDc2//fQLQniWchRKaQAQnI5nAtH725tx7v7xb38lBA39pAGTbphGwVq9EkBrrdTYdnKc9ePbQTtbJiXDlHr06d1DO4lxnh8e7iAF1/MZehAlmfa+7tqAkiKJ6O3u62+P3aUOtiSIg1FMUs2X+vTw7l0SJoeXfRJHEnitNGQh4gHBuLpcT1UvjLtxgCEcpsk4D3XVBaF3Dnz58vX+4W672ZTlIgiC+4f3WikeRE/714yic1PvD+dZqWYYb3cPdS/PzSHPkjIJ66451RXngbZAtPOlaZI0HpvWKItCDoDvu/7aXJU2lNJiubKAzMZZCJ20GDjjwbfnF2edNAogxGnkDTHOqFmObZcnMeF8FGM39YsiT/JMCcED2DXt/vklCIKIM6GlEup0qgFEEEJo4apYeOjiLEjjQijTtz3yKqJws8yslB6QMEulpmPXK2nI45dvlCNOUBBS7IBx3hGfZGVali/74yTN3W0+zB3LooAShX1sYkQxdm7/5ak5V6u03L/tm0tFOE9WmZH26cvzYrlIolSo6dvPvxACsizPg3TWc13VKx4uVyXkdBRqAGz7MUHIhUlMOPvPHz/W5+P9blEsynGcvXNK99R4Z8S5PkIlCTbWCSf9ZG3Xd2JSbXMu4nSd593P4yRmaRVn5NBd1kkZUizUOA0jYEGR5aOcRDNaBGYI304XxkKrzCyktIbH4dv+gAO23SwgBrMSqh0YJjfr7SgnjyFi9NQ0vZTlsoiT0Dlgveu7VswiSxMecSFHo61SOko55Kgsy/P5AjxcZYsgJnIW06CmYQAMxmk6tOPxfLAYzN4e6vr5eErz+Ha5jnhAKRqHqaq6aRoXy3x1e7sLP3ZD37a9czCMImdc17WTnIen10t1dlZ9eHeb5cH3nz9qYx2BaZb0Te+g63wfBLwb50Eqa7rh7eycDinfny+bw/7D+g5THDCWh6GQcpFmSimGEWbMGWOVLtJkWRaYwDyKgzUB0A7dJDoBNAAIQ8ocmdppNMfT5XqRUgIMRy0GOQcoC6KgrZumaQhweZZSzqxVbd3HnIVl2FSX/bGmhJZlvt4sjPVvh8O1rTBh17ZdpUWlB6D1YlHmcaCF1UB3dT/289DPiClKOeG4ncRk3bGqzGySOPGUWSuVsmNzjdIou8uTOKUAxDxQ1kllxvHc9N3p0iCEAsKKPDcEdu0AzmfOufH+fGlHaYvNyBkbEeq6y+l4+RrFGAIK8GK15EnGw4hxNo/zL3/7JY0jo5QcJrwpF6tiqHtlzSLL8izVSsSMpTyWTBvn4iJMIz6MXRgEWcBRBNOICm0nq8xeqmmUFoIgxsqVcUQQnCbBMKOYemsIZWmeEEKejy9CKhThKAhJwJRWAQ+cd68v+3cf7stygXytBqm1KcvMOTuOMouTOAICThjAJIrLLMuiRBvplcOAEsr6se+HIclSDWxzrvuu+yH6Lg/D2/VqsVztq8v1cokiFofBarder1cxi0/7Yxzxm93ucrq2Q0sIX99s8ryoqhoCxCkT89w0TRinceqenw++6barRVLmeVkgDOq6ctpMwwAhEEoaqwjnd+/eO2/nXiRJxqJIaH24nrQ1DnjOYHvupnGkGDNElFWyF6e3I2LwfDzdrLdJUnTHcxYEJAoIp4TTa3Xx1v74u98Vq+VHYou608rkZRYkcV0358txGgfGebnM52n853/8H33XYEDOh/3Nw827dw+LxTYti5eX53/6x38GFP/w44/OKgTddx8+aGXiNIvi+Lffvti3/Xl/UN564Fd5ih24vOyLIv9w+y4kUd32GGBIWZakjNFxFt5DSjkBhGEGPVBCUcoI4d5Cg8X13CorZjn3/bhYFjyIjLXSGinmaZBhEMZZFHKKKO7nsRtar3WRpQDCoswh8Ndh1tqIea7r1jnDOKWMjFHc1nWZZWmeB2Gc5fkwj/3cCW/meTb+AqGxGFrrELGzFGKar1U1S83j5Hh5O56OSZjWdV+U6e3NjZBvnsDFstTGX5vzMDZbfsfCEBEspIbAFUWWJBHxHiL3cH9bLpbttW7Efh7bZbKVoznU+yRKaBiWFGd51nS90fr27hZ60FxrzMjxdIqSYJ7F+Vxdquru5nbU0kFEeYSY1IPxxksDLEBWyX4c8jRHhGZFiXlAGdfKdWIcu9p7g6EWYDq9HjTcD83goM+CGM06cD4OkxRzNwrZ9LIbZRgIqxCFNGBZnhLGozAa+/H/+D/+6buP7wJGLudrqi13zEEdp+EqTxi+PVXXiAdTP0qv15v145dnZfWsddW0UZqWRQmsl0r87defMELaqDzJkGbVOHhKozjuxlmcrjzg0PuwyA3256aZhVymrTJmFtoRLNTcT8Mgp4SF4zhhgNIin9r+6dtLloYf379DM7m/fYAAcE6N08v1qulahLD1zgEgjHVS0ChshmkeRsRJwHmUFYG1mPBZKAVcnEbl9v3Dp88Ikl9//VUac217FsTzrNuqo4hQyjrQxBz9P/+v/7dfn76qeX67XMtFoYxAhHNMeMil1ZfzWVrJEOWYYkyfnl+zOIbWS23AiOp+YBSer2drXVGWPAjafkyKjHF+7eu+6SBwjLKQhyzkRqs4TnkQPH/9Ar2z2gYsghRfm1pqZYyJ4wQ5p6Z+6Ptxmter7ccPnwmmXdM3Xff8ul9tV0YahxDC3kGzXZbru6Ltax7SOEowIxjA5XLtLayHvh5mqDQ5HQ73dzeH51dEPKbUwhCQMcvKv/vjnzEkECEW8hBmVdciBL0yZZp4qM9PL19++oKwv/sv/8UmQQZWi8UqWRW16OfTmbEwjpPz/nDavzlvd3d2u7vXGI1qpkEa8hhzdj0/T+O4Wq+zNIuzHDGyLheXLLZSbRc3cA2brhNtX51bxilj9E+/+36z3bweKxTSTohu6A/Hc9t2WZF9+vDQtM2///w2DHOQpRiD/ds3QMB1brWGE495N8WcaGukNnHIa6nU0wuybhICEowIkVIFCEzDkITUaNmOnTKyXJYowIjSqe+ncZ7UxDhJg3DU6nS5YKfyKBlnOYqDdxYAJMb5MvWI4GJd/KfFn8+vJ85olqSCBy/7QzMMm3W5flhbZQFGxTKXWjw+nuZ5DtKQJSHB9Hw+V5eKB9wAfR6aaJUnlB1P/cvLC2F8WRab1VoI8fy2V8psbxYMR6fqjbHbPM2KRW41FOO4ilMNLcYYBMR7em77eugPlyqPo3yXUgT3Lyc42qlu52rQwwgJZGHMCeNB0PdD33ZZFGe7JWbgej1lcXD7+b33oLo2FhKDbN11aZFHRaq9Ou0PbdcWRUkZCRxfLpa7xRpCiBXUzmFEMKKc4yBKA0JGqarHb8M4JXGqpHw7vLVjF8YhoiRLyyRJIIIAoyTLp7bhSZSVxTSpc3PFlG3vdiRgwzhYYxIYpSF/fX0Z2kkqheYpYEGaxlZbbZTp7evj4+9/+OFuuxI6rZv+cDlWfT9MshlG6NxQ90+vr+WijOPkOk7OmoAFYZa0fX+uq/WqxNQXWXpzs9NCvb3si2ThAE6KIk6ioRshhC+ve+DBu4/v0yQfJ1UWS2SQbCWnYZykQlGkg4CE59fDcK0+/vAxXz7MQlyqehr6MKLFIiVxYiJ2mobhWYpTF4VZVhabVQahO+3PAKCAR33XWGeKbCHkZJXzFKRRrq2FFiqjIYJKakSDazcKIan1WJs8jmPGlXWX07XjPYUwDLjSikCEMW7qzhjNg2gWctJ6HsUgBEzYMi/hyMZRPH97DXkgpQtYPAqpMSRx6IAbm/bT/f1DUl7XC2HVdlGoWR0O57qpHz7cL8vwtG/10CLg45ADD8uyKFZF109G6c1ukeShAwpawACou6Y+KUqZgS6MonK5bKq6XBc84FoZ49z5Wl+benezTbP08PampVouy6Ea1svloiwIJlEcXJtqtd3ubh4w5pm1UZZDwpbrTZqaummMNFmUylkgAJaL/JeffgGUrlbvMKH759cgioCHP/zww81qVx1PXZbtD3shlIdIe/d6fZVCvuxfXy8nnkT48dvp5aVMoixYKueTTULCOEryMp/WcjpeL5v1YrtaQA3mLIUUckLiODQaOA3CMFkuVxgTDDtgnZ4tjZKAoZfjAYQ0Tos4Ltq666dKOzdrPU5yvV4JZSny/diNaoyziEZEaQEHTxlruwYhCAnCgAmjHNBynvq+6YZ2FlNWZB5jiAiCpL5UL92TFPL9u4dlmjkHndZCzF0/nC9X57wR+nQ8B5wtlwvnzTTNZtbQIyutGCaOecDTLFtezIUlqSNUe3+trtv1pswK6ySOglnNxlpKWBLFUs2EIhqQnIdRFOVpvtvc7Za3h4gfX9+EmI/H86W5fvr4eblZWWuk1PvjEWNULhdeW0pZniRNWx32hxM6X64VYeGprns7p3HIkjgwxlRjP4z/9q9/3d4urZTV4Zz9cRMkCRXKz3pSalZiqIZ57u9utxi6cZyGa3Nuqq7t8jJ7d3/bT6e6usRp1lSjA7auKzWLrq1uP7///offV+e267okjB7++CCE/vVvPxMesjiAcobe7fdPQ98tl8Xd/b2YhWxlEMR/+uOfHATjNC7LYpxFwelysVBGeWsoIvEi17Poh361LC/nq5SaMD6JWVnTNJ2zAEEYZwmheJ4Gb4zSpumHvu0t8DSNDPA+gNf2uj+p9lozwupu8BAKZWbZAE/N7Fb5ssizaeqgMX0/CCWTNB7G4eXxVUwaQ6yFk/N8PV9nqVfbZRwFRmtKie1N3zTL5fJduFjtNofjeZrdNIJxbo1nWoihrx3EmGJv5fv7+zJIAoCLKNKZvXTjy+k1iJJluWjrGkMXRgERsMxyztjlfG1G6TGJwqiXSmmHHVjyVBAOkDu2faodpfjlciWESqUn5/Q05jkq8mgcpqHv3/YHFpJp6h9ubnkQnOrrrESYpDSKu0nUTZdHAQOe86gfVF2PeT4wRqMkWiVceDF7paA9n57zIl0tCov82+teTSaNCgNcM46b1cpAOE7jvqqmSUQ0IcVmcf/+5vXLS99N6+0aYtKJmUTR3W7HKTq8vQHntrvbtEggtFPdq741UmIDbjebIIritFhstzwMtTSjniMWfsjfYQCfvz1dD+fFoiScF8tNkKUsi+MsAcZ5zjzGmNAgCPKyWK13l0s91RX0Wg1aSjn0E+N06jqr5Wa3wRD1U7dMk4fd9odbGaWpsnaYh7YfhZL5okwjfric3i/X+8OVML7ZbmQ7I0ZbI6q5f7s0z8erAy6O47npYxZEjCRRRDDHGDAI9TjHSTxM43g4V22zWBQ0jDWAb5dqFqrq21nrdLH0E3XOHY/ncRLWujxkRVagELfNNI5TEIdCdqfLCSH3d7//XRqnAaMYOeBtFIVRwFXMWcC19dAjxEKAUTdNk1IAIeudMEpocWpqYRRALE5y4P3+UsNrf67abpR+EDd3O+8d56RYZPlilaWBUQqWOXSgbvpxUiFPoPVJGsVl/nQ4NFMfx8n7u/f+fAKU3ayXWZQ01Xme5Rk007VpLdDzvFjkUVJ8uH/gq+Qf/uF/dMOQF0sYsFaOdd9PEC2XS6NMksbSusfD9Vy1PI0+fPcBU6Qn4Y2OOU15sEwziHCSZNa64ANthwFiiDDum2GCcFUWUojz5RqFdJ2GSZK4qj6froihclmuVxtr7Ol6mZWCEbUzPg8tXeW8TGRzTFZZsSj3+7e+7yhn/Ty109i07XK5ydhyf7g4aEsW1Oe6q6siCYo8a+uagFI7YCzAhK63mxUkzTA+fXs0wGlrMabjPFkPEAAsiGgYUeCtlO0wrtbFw/v7xaK8nColjZjlr7/9ur3dAbYdxRBwfvdw31ZdwOOH9+860c7toPrJStu2XRiHiFPgsfZeGHWta/gVfCCQEAKB1VpFIFit1kFRCOgtUByDb+ppt1rc3d4kCScUff/utu/E6VTx7ZJQzIED0P+nP/3eAu8orK4Noeju471yrhvnp+PeKA0RTCj/43/8PXagnUbIaMhG6xzGmAesqqu3/R5DiiHCCA/zJJsmLpNFvlBeD9PAJ87TUEt1aVo9n5eLTdM2FimIwPVS3W9WTnnZjlGUIeO8MU/fvqTF6ma7gxgtFlkac7/MOfZCChaytCyFkg6A5SIf+p5xFoZxXVVde71dbW5vdy8vr8bI1c2Ntr5qu2kS1TBEPEQWDcPogV0usvvdDQsiYkF9PkGHPrz7kBeZVtI6gwkOwoiHoJ/mujkA7KaBxJyWaYJy+un9x+v5+t//939ox5oG6NN3nz48vJfajJd26rrbzfb29jaNUzPLseuSJBLzYLTJyxxA+Msvv/Tz7CywEMerJWXUAo8Z7cf5t6dHA8FrfX7/7t5bEybRyq3COFpvi8BjO5uH7S5M4+e3NzXPASWcBgiR5tzGSXyz2bRNI8d57PqmvTbdOSHLNNtYZz32SRk6702jCWXZIm+bRhkFvLPSqgGzgBtrezEa00qr8kW+LhcBwgSjUcv2NO5f9k3Xx2mK4zAoUuzRdrEKL8HXeSYQzFb182ikV41phl5YSSkrcwIcdM7QgBBGoSNQzXmWax5gCMoo8kGuNVDK5Msl5sFsHaC0G4Yym/O0FCJsp/n16xNBbLtaME7HEczD2EIQLAj0oK3qKIzSLPMQdt0ApVJGI4ytAx5RAICHJilzirGxRimlhZZKWqf7ceSUb9ZbwnndtIMcEN86gmclwyxmcQo9wogZYIQFzai2S4JCPhyFMRp7KoU23p2H0WvpndPGAMZZlkDKJqMJhcI5b7QlxFsTxxny0AjFIItZNDP5NhybfkQ07OoOBtQSJJxX1nutKYbAeecA8CAKI4J6b/xuuyQh++tf/4K9/3B7V64X/dA1TYsxSZMkZMHlfElY4KErkphk1EFEObPexSGjLCgW5cvrXkjvnFsUJaNkaHtIqLOaMEoptMYpJdumJojkUSyNGcZBGwOAPx/PAYtb34WcxjwIFwniSL9JN+sojiVnIQmlMofjMWRBlmcsCiHn16ZXs1ST2JQLysPffvl2OtZRFjddH7Bovbk9Xo6Xc/3wcHv/7jYJQ6d1dTr01/6f/uEfXi/7jzcPP/5Y/i//8L8jgu5uHxhB+5eXcpEtF3fdtXv3cB8y9u3x+di2JAyN9WkeaYAdBK/HA4QWGGutMmrmhAzT5BHmNISEWAQdhBb4SUzn5iJmaWpTLDJprPFimiehNImzNI7sNI5t44y62ayc9hbha9sOf/uZMbrbrfJVRiJ6udbGuK7vpBbO2UHMalbekGKxfnl7HvoRApyk7lKdazEigvp5IiRIZ+0hpbpzCDEWhxIiJ+2xefv2+IsHdrNeYQb2p9dNUW7WG8tjMU3Q+E+f0ijPRz1OqndQKKWlVCRgFNChrue2ZhDd7B6WuzuephrIw3VPY+ak+Xp8pZSGcZgEwSRkLzqA1eHtiSJyt9m6KDm9nbURwzxAAOL3y34a/ulf/8VZ+3D34fbuPVBk7kcPXABwmi92N7dWDHy5vinK67WdBrXMV1mYBkkCI3YcLv/LP/zD//t/+6/HqsrZzV2WqF4R5JxWQZloa14ORwsA52EvtbEOSGNZukxjPfbicY8JnLU21gWUUR4Aq6Zm6roxz+K77S6g7G1/JJzPWu9/OyECMcEU4L5pAo85QgB464SezCrPiyycjToc9uMgHcTGOaV1KfM+hwABAABJREFUFAbemrYfLtcro1ha7Si0BFpGEPD9LL1VDgEHEWNEWy3UFCWMcsQi0nZDXXVlkXBKpDZC+fN1QMCEZRgifK2at8MhjsskTCiqOMIc0ziKlIikmmYjlLdZlC5WawicnI13iMEwjIors98uDS7SMo4lIlKZf/vlq5rmosyTIvccK6jPb4e6b77//PFmvY0h1koUQbhaLL0Hp9NFG7PICm/sKCZtpHJKTLOUggU4zjLivdR6kae5sUJpxDDFIQIYMwQBkFp8eXsmGDszzW/PyKNeDFEUC6mM1WEUBEHkkD1fzsZZ5bSZHcPYaNk1NeBOIL+vB+3302yLuguSdBwnZ11AQJZGHPMTfAsI+/Pf/V25zH759SdkQZHnL6f9y/MBR+G7Tw8ZTYwxbdNGYbzdbsKIvz3vz29nKcQ8Tt6BNMtvtvfH9Eg4M1YxgH7+5dEIvShWbTNAAuJFeqma6tJyQpPVqp/l49uRYtI3vfEuSakx9Hw4MqX/eHOfaf+QpOViTQhOI845SYr8cu13ZczjUAlx2R9G7f7jn3/fj3M39wVBbT1QrWhIhTApx7uHW6aMH4YAmjwv1+vFuarybcyCoBunS3MFGFqEhDOU4IARAJjUgjrNEx7qgHpipZWz8M4RBPPlMi+Luqpq1UGKp3EaxvDzuwep7NPr/trWxtswypAncRbnrpwmrRJwc3+fxokYx2K9KNfLp6fD169fvZLQ2X7okzgOw5hiCDBYrErCSVe3POTNNDddFxWFsroZuxgx6E2AXByzAJhFGC3v31U8mKWwDgxDsz8d5SSSLM0XBUJoqI5tWy+KbNAiRn4Z3cp5aLvGGceYuym2UggG2DZfOe+FVEiIsWsmTmIEZT/9+vVLUzXAOwPcskgh8tYZY4332FnX9d04jevlMo1iMQz74xFRlLj8eCZxEAirh34OoxgaNo7z2HZRFN4t7xywr/t9ni8+vXt/eN3XVRcGJEkYRkXr/NjV1s5JhJmTfqi08XKYpbbS+CRLy8Vynqem7xjECAII0DwrhJmxgGLKGAMCGm0hIICgt/3x6fW1XBaDnLW18zxfqksQhhgiByxAYPvhg1S2rq/UOUyhFJonQRGUytq+6XabrbL6cD3WTQu9XwTJ+7v7KGRWzf3YqMFbK4WSaZoCYLWeEEMxToAHUz+oWepZTkbc3r3LwhRTlMZhX7d922GPnDGcYjUPkLC6qq5N6zHJ1guWxl0/XJtO6bnI89V2k8cxI6Suq/O5UkLGSSS0LYpktdxMUkghAfZzPykxKz3HURTweBgmrYTRWhv38vqKOESEAACDIOznHlEyDPP+t0vEuJACIRxmKQpDHwSDgXqaDQ+M92EUJZQBbcdJKTW+Pb8aaazxAIC67urmX4ZhUE7/Mfk982zsBitlFBCEYDvLqO0pxQBZMU1Pv03SyKaroUPYONF1TgqkLYE4pkESRMnNDbi9udandRkzyCzwlHJtbTt0i8XSI9xWF6VMli/jKELAZUFIKFZSWugt9GJWQcIzzqBy95s7gNDT67NDXsi5awcIKYthsoiyMIgisrldcOSmcdwtF5u0RIB2c//TT7038+e/+x5hKI12HAY0AkoBrxlDPIBFHgVJMM49Zf77hwf5l2EahiKL44ADa4FzUz9cT8csTwhC63IRb8r3N+uPt7efPn0euqqA9v37u4Az8l1we39PgX/YLV6Op3oc3s51LRSjxEMnhjqg6Ha7aeqraIZkvfQEzdpYLHkQ8jAYhkmML85qAnmSRTyiCPpm6Kx1hDLp4ePbwTw/pVFkjWqkVhoAD6TSBmKvLeb82g6dmISa5lkwFhbFYh6Gxy+PDrn7u3fvP3wQWsRd3DdNVdWT1ue+0QzmUdDXPZmFPl07473w4FDXN3mcpCkF7PXp57e31w8fPhMSqnGamm7fTcE7Dowx1nAesDC8Vtdfvv5irGKI7O7vAkJMP2JEiXEhYSyihISYcmXk6Xp4fn2ywIc8ePz6ZWr7H3/8kWPavrVVnSzyhRUKEMsYJyiQ0lnj0mRBGAaEpOXq+x//sH97sQDyMJq66ee//ey9stokedEc2/cfd5xSUfd4lr4fPAlxkKhh5MgvaPB5s/rT+9u7PPv+448/vHtnpDtfL/3U85K3czd2F+H95bRHcUIiJmf59vrWBXUW4cBhxpnDXuj5+Hxtxi5L44ynSRRxjNMkcsa8HS8aOESQ0BPU4O72drdaF3HEMZmtG6d5GnoH4KpcQACncXo7ngapAQvHYeYRyW2CrF/mybXvvNbzNCltpHc0jKZxupyuWZotVqtBqOPLPgzojz9+nsfpWjWwn7phGFoxCsk5ocCvlosg5H1T1WKc9q/7y1kaR4Ed57lqrqfLdR56/Pl7zkNEkBxmyHi8KMqbzeV4PFxOCrnrOCptcEAnLU99s9/vGYRJHAFnlTffnp7+p9v/khDPKKdcPT8/WTn95z/9h+1mM7Ytx1QL3fb96XiBGGMW9v3QDkO+KbEkQRyFYQKw++Hz77rqun97nbSmhAGCKONBEFrvtdSYk/4yHqsmjMIoiXTfG6WdNUrpOAoiFqcsL9cLxskiLaq2H6YJYICc6esWQb/cLhDDo1C9mt/q676pKGVFlmsxq/28WiyzNAceMszSMDGzWqQZIdwhAAkwQFuLjDGAOWvtPEmCcBgG3uj7zTbCnMVBHMT9NERxYI0u80w53dWNUdJpQymnLByG/nl/Wjh1rurXl9N2vdwtljTgOArmaa7nMWAhZcHUDdX1EDKmqQ0M/p///j9pqa/VBVlrhRftDJTdrsv1ammEYLM6TyowEEDoAV7evxtK2U79ZGXrTITh/bKYrw0I2Tz2xMDVdn2bl6+HczdO+/PpUB15FP3ww/fO+rquDQYOABIF56qZhC6yJCvTcZien94Ygj98/vTu7s5bNMuZAeEomIz8tj+QIIgcHOs+zuL729swSutrWzftOAzTNFsl0e2dV2a1XOdFqYXliGZRMkEKLDaj7i7N+sP7dL2sr9e2G/KynCfVVP2kFWcB8HicBiv1areEGF++nrqLmhvlP1CE0aiE1urt7TA7BSnR3lV9PwqZ55k2ljIahgEnFHvsha72b8+HN+VhwIP3H78z1qhRnU7nPE0XaT7W3enlKEeBDJymWU9ys1qLeZ7lRAEu0izk4fT4ChkZh1kOY1tVTurs46ckTTHEFpgopPM0iHmcpBLzLLqx319WiywJeNtc62tIEdgUcVqE9w/LkPo8Y90k2+p8e3N3t87fvrq2sx+K2zhOHfDCGITgqapnrYAJoFMYaAyM/v+z9J+7mmaJmZ65/Hq9+fx2sSMiI9JUFcnuVnerMYAkzAFIJy3MADMUu0WyWJVZGZlhtvn8683ya35wDuPCgwe3UUnIKEVKu+p6CeJwtSgxJAD6QYj96RhiOLadUFJ6AwAEBBGMOyHaYRbT/Bk+xVl8c3cDAFTWVG1npBbTmC8KHiVt2zZde/NwTz1BhJ3PFys1WcHZ6mWyshq9nA7Xrm/HWRlIeFAkfL/f8zjxENa9CLF1EDpgOWcUoL5rd/e7OA4pxMDYKIkA8GIYumGybjLekzCYpOqHqSjzSQ9Ki2Ecr/U1iH5arZZO22GepTWIUh6GWhvnkdbeOsB44LF3xk/D7InnIRzmse46oWUWJpRSbaQUkjOIALicL9bafLPynArvCcIGEs6YsFpNYpinZbGw2jgExn7gQRgsgkF0jgCvcVV3ELMsKyAmbd9PUtxsbygnbdMFcYwYbptZKB8GzHjnL4eiyIKQz0IKLfppiKLEaN93vWktYdgYa5R/7fePj3cPd7umrbtLHXCWlYX1LkoiB2Hf1l19ubm//+7tm89fXoxW9WV21n73/iGOwmno+64HkOx2y7vHe2vV06evFCIWBD989z5Mo9P1/LLfD6PEFDqgjcNG2YjG20Wp02y93LTNeNifaEg/vH9rjaEIaautMXd3u2kU3bWejUHWLjbLx7cPy/UiSpOqqT00ZZmnSaS1rMYBWIsh6IfBYvfw3XsIyLXreim2+ZJiSpUOANwty/vl9nK6bB8XxGqC0WaZh4ye6qqtu0M3CN8vFun7+00Rx99//0FNojl0eVlexv71fGmbzkudhIxloRIGYEYI8RCky2gchr6bKKfSzBrCS9WISZRZziPKEK76TivtPQijmEfB6v7WGvW6f27bqiwWynuMsSd4stpJczhdAXtJsswRHGRJN07XcVbY0iw4tpUaJenG1mErhVDemWGkpxNGkGCWpNEPP/wxL4rLad9VdZrns5j+8pd/IR4IMadxUffdtW5ez6diWZzPl0vVPtzssFE32zVHMOVMY4P8fLl8aZvWebhMsmtdP79+qS/V2HSH7LUoMqXkPKCZhywOLy+XT+ZbkS8gRZTGWZljhrU3UZT84cf/tF7cDG0HIZxV763AAJRl6RE7H653b++jIG37vbWOBSRKGA1A016P1Rch5xyh/+cffyA4eLj9brtYa2OGrj9fDjBwvZjexNF1nv6KD1+u7bFuHXIxxE6IZbJZloWFYBgnrayanRrhRUzRwyJIuRmm4/Gy2K1MGH553Q9aIIwIhGCWzBoE1DCJ5lzLUVBGHARHeaRh0Ctz7qWAblLtOM2+N4thWi/LlKB+Uth5ZYGxYOzGF7UfhnEYJmW9J9gAjUMCGRcaDsrvL8MoRBAzElEYknGSyNtQS+DhuekMArv7XZAnOFKYIzjoZZ50zSAnPfRjWaQUEKmdMEZSbzkFnKthHMd26Ecx9k4piOD5XJ+eDkkSlqtssyzDJGxPx5fXr4xRr1VAgh/e/5hn1HkltZdSPzcHRJhGutEiJMmha6ppqtrmtTn/wx/+lCexNSYusstYWWwlRcMwts0zg/j+5k7Iuemr1XottEKMFXFStfXhy5GHHCEsphla//buvkhyaxVHcJlmizC5JE07dNY6GZokjDzzEKAiS60yUhlIESFEjpNLQmOMktZ5oI2J4rjMC9FN3qtFkcdpcawvi6Lc/Ldd181CqqrqiixmlBltsAFEQ9UN2NgAk4hgQ+jUz1rKLI8STo0z/TgsVkUUZFU1dmLspl5RNwlBKD1dm37obx423qHX6/F4OmVBiq292W69MSHPLofD/nUfsDCK47HqGz0vtsuuGa+XbnW74SiA3rMwiNOsqVuMEQN0kZR3u/jaVqfqbCelm0ld2nWeJrsNsA5BRDzIwkhF+d+efhdzn8TRqtwFYfjt9FqLvtNCK5tm6ajMoXpJ4zg+cUYoJGSapufj693DLkuzJTL909SMwyR133cWkrtVafQENaIxJUng6h4AaLTp2z6Oo7Zrx6obhtFgJyZZV82/n+2B99fmiqDvulZrCQGaOjn2p6ZpZyEnIYM0uV4u3TyEQThbG2dpmi0u52Mn5NPp4AA4n89BEPSTjJJgd3cnlHo5HkajzdBHQegQ65VabbYRi6+XiweGINiP0iN+qusojlkUfvnrN34f5SFCkMVpOemp6gdgLPD+7m4LPZbjFMfBZrW9tBUjWCidpEk2pGW6yBd5GPM4DFSaHk+nvhvfvnvb9n031NvV1muNjE0DziilAWrOZ+j143KprD98e1qtVpz4dJKznEPqdoslnndJGP30n/4+zhd13YxD/8b5emyeT/vfPn3pLnPC+bt1XixLIySybpbm4AYD8SDkNDfaGOOhnmfCg0VRQggGI+pxnpRDaC7SBEMwayVnUc9DrwSDZJw6UpMwjiHBs3dP5/P+8DKOk/oFv3v/NkhiBCkheFa67ud84bRUOAxsOxjnpBRd26bxAhPUN40FpK6qMsse7+889cM0f/n6RRtdDVUcpQigh3eP3lkEEHTocDou7jZFufKXJrAWEmisdFJwgnAUJVkKja8v13EaXw+npu/KrKBBkCLMo0hY03UjAIAzZp2Z5slY7zQMoygtE11b7QzGvsxDO3SdrrFRXqlzVbGsiMpco0Y4s7nZaCHavnPeeuNGNd3f3tRNA0chBvHp/JvzpijyIM9nJZ5PZ94NddeM80wp+/79+0VZ/Ouf/6W5XnnAJzO1zfD2zeP24QYSNBs9idkH9Obd/cbB67Xav5zbpjVerTYLjGEcBNAAZczvX75M43A5XQPG1uUOA3fZX5er1SZfXdqrHEYGYYgwjYK2HY2yQqplvuAZnptRiSlZLLixXTsGiAg5K6kWm+26XAOAxknO5nxpK+N0EafQ6oeb2yQuxn6s9rXUehom07pskb59exum0aXrmmFWxkVZAjCsnk8BA+v1lkWw7a8IGk7QOPTFIlHazoNYLQotlB7F7e1jO7dRVEYslEp1fYc80GpWQ2+BccZ9+/xktf2l+8UhT2N6c7PFGBZR8vFuRwA6VHWO8Zsfvl9v1mW5CBCUNxJicu7qnJIX4wHwd3e77e2t1rrt2tenZ2/sh822ieLfRkVxIJGRw0QxJlmSLNNpmjwC7TgCD6Q2XvSFN7APvLPVNErlfDcK2RCGwphPxmqlrJxsVbnqKsbeCXGpal6mdd0QQSPGFTDkdK3+nWIGIYRIV49qatfrxd3Nm0mqp6cnzmmeZbNSk5hmYaIwaLvub9+ep1Eq7W7udh92bziNXr89vbzst0X66dcvaZZajyCCGcPKaKV0GAVxGGlp5mieg/n+h5vNdgug4zaIopgyGoShlHq/PyipPAD5soiyVHbqXJ+zPP748UMUhE+fvrVVO4luuVxwyqzxBpD7D/cewfOlurm7jxi1VkspMMZ3dzf//M/H16fn+9ubD/dvOOchpwwZOTeqrrkWQcC26+3dcntuh8hnEdv/dnwxTn+8uy3D8t397W69Us7uj6fPX1710sVFOkwSEzQPYxDTj28f4rJQSk1TjQbZz7PB+Levvzf19WaZpmEomxlDsEgKBJHQXmnTST0avW8q4S2iADpABeI9CQhapkmWZoGkxphpng77Q5gkYZZo7y7XymgFCRrm6ffPzxaY2RqLXN0NcRSGYYADjhGo2rFt277pRiVoyDFGCKF5FkKpOAzu1hvnPCcUWo88CnmIifEInbtuEkJ5P2pNGYMAOeu00gCSIk+A91ZIOU9WuiSKxTCj0C+LvJ+Utz5P0+ViNXXjRdUagKyIrZHI2efLGVJmvBu0LPIEeJiE8SjG//6P/9esZRwm2pjVeo38Yhq6/f5ACc3ybBgmp33IglkrpYxytq8aTBHHPOEBxsRba5V5+frilQIOXOtGWXl7c7t4XL8eXo/dRSqDrCbIx3mGwkDM8+39TcCYspbjACL48ObBAoCcCzmXs8ber8t8tV1/fvp2PF6YBYTgOM+BQ2rSh2+vuu4ogYS4JOF6ni/jHIVZ14weOq1hkpXW42mgUmgH/KzE8XwqVgvKwpQwhlh1qbyHEQ8oInEaJ2PSXbv69QggzJJky4LV5qbp2sP5sAAra401ZrlaGQm6Ss6tnEJhgaZpWIY77BB2cOhHKWbGiOwHNJt3uxs3inWW39xuozD0wJ9P50nKZbGMY8EJLuKUheHjw+No5Ct0eRpOkxinXkiBORrE2I8Tp7jMC2NMyKnh+LfX52U2K6WUcd9eD9e5j8JkkOLr6wlae24qT0maLa302gPrQbFeGw+bfsQQPO8Pg50Xy1UzjKEFRtt2GgnnSV7Ufdd2LXAoSTJMyOF0dQCkRTwr0fct55xhcjleZBzRLF6wW87YNIuoSCyGBoL1zc4aDTwMOF8vlqOSUqrLtaYUxzywBnhsq8uVMXizvSX9KD1QRo2V2K02mHJp9CQmTGBRpFg4bcSyKL01l+Npu9tudmuKUHuplZge73Y8Ls5NPY7jm5vHIGCjmiDwyYIR5Id+jgnbPLwD1nZd81/+83/OkrivKkZwHLDT65MY1M124wHu1HTc7xmh0HugbLU/Xp/2zjvMwsOpWlCGEhbBaJ6mPE3OF8ogKeO0TEMzk7c3d0WxBNJJZQ9Vc5Xj0/ncTP04zHdv33AEsDYf7+6TKBHYPJ/Pn758Gychxz5fZC5kQkwAIqvVZJRS2hNHNOOUVNfKaqO1BtDXdZVeEk5YHEZO64CHlLJxGrqmHWZBOM84n08H652xsGl6JTUJo7goWJz4MHyzXXz5/Lm+tgT5oe/Gad5st0IJNSkehFlR7o9nLZyQBgd0bAQyTs8qS5NpHDmlTulW1OfzKUtTHlDgvTE6jGKcQGPM+Vw3bcsYGpXUTlFOnYPXa5s4m5UFoUxLAxByxvTdsN3sgLMYAR5yb6GRdrfdeW2nee7bxhkdBYFzFhoXcL7bbh62N0qopqrPl+vr8RQEHBE09AMWklG6KpcQIiOsN2Bdrr+8PF27MyEUQKy1hQ6pWZ+up3mckyyTRjMeddNw7ptZin4cJYL3tztLCYK+m6e+qcOArm42SZCsbnZSSuF8mGY8ilkYvR73/Tgul0W+WK3X5tMvv43j/Pnr18e73e3NjVPGTOL0+anumyCJ8jR2kHhn5mF0BhjveRReX47zLPEtKZIUMGoBGKZxGmatXJwmURRjSpwB2KOURRLKrh40J0oJAFy52K63d90gzucTxXRW5nA4lusFDdhyu4AA2tHn5WKaB2Ulhni92w1mRJQA787nszQmzzOCyeH5dLNaTd0kjYhIVF2qIi0Z5g/b+5BnDH6mCIeeLqIkJvjLL7+KXpe7TRrHizSjd54QfLPbrG9vMGNtVS+DcBq7t5vbeWmhIUIpC8y2WKSL4ng6W68No0LNIWRSG4TgqFQzXNyzhB7ISWAIm04YAwLAtBfzPButDHIKwnmUTqs4DjQAQ9taDKw0GFGECQEh7ZU8N+Ppenq8v/n+9s5KEvEgosEoBEJYKbha36QQ1e3Ftk2xWBvKL7PEFINJSGRPVUUpIXGIKDeEX9uxBV2+WGZlNmEvtW3HqW37h7fx/c0bzqI8yT98+C5KUiFnaWZnrRRzFAWLdTZ1gnAiZjkOXcgYZwxr3+7rT+pnHCKHhDaes3CRrZar0gEzidlDez08LctVTEM1CwNd3bd4nLK09D6iQRokS6FI3fQknDe3WHpdD900DDHN87sVMK4Q8H/76U//849/+G3/DVP48e1dwEIKCaUUUdbfrZ8XJUD+4f3DpGzbjK9Pr3nK77ebum3j7fofNotGTM/H07lpIGFBGEJrGIe05Neq78+Hm/t7BfyXz19bMQkwSz0Yb7EjBDGEgNW6vtTYWg6hd26exDCMUltOsjAOnXddXWulsyR20LZDY4wmlFmAxn6SVimnOONpEhtlZq0QJ5jgeRwJhJMQ3SxnaKQUSRwv04Vz1hkFPAooWy2XQRTtD4fL/kgQXrMlJFh6M44CUbK7XYQE2VlygjF0HqPHP7y1VvX9gCCiGBhs/t0lGNMky1FIBzX30wQR9sBD7/M84xHLs/RQXV5evmVxSiE5n04kA/kqA1pmcSinfhj7MA7j7CYI+OevVd11QZrEWakB6sZTQMjD/ZtNXmBnkAF5uTBGXeuqvdanqqEhyfO0TFKK7DKOQA5PZzOPE0Du2lRzP4hpYhjHcUwQEkY97Z8QQ1D5dmjnvkc4jgMOUJDRWIcitPh8OS2WGx4E+6eX4/misyzNIsppkWUhRE3TEgQXy+x8vVSVICGP4ihK07brm/oi1QysgwDM45wmyWpX7tYFRqaIwsVyfbNZvyblL/Mvr1WrgPMUP12Od5v1dz/98eX4OlpF0oT6SCOCQ16sVlZJM89xHuSLYtKqvtSYMhrSvu3UKOdpzsKMB+zhdvf+xw8OWTPLLEjhYn2+Xr8cXzAicRGvo10apUkcIZo5PQqpz9c6MDBZFJ9fnqAzcZpSRq5DU/eTA/aNX/dSfn0+UsIvXX/oBsaDJEkZhk3T9OOg5XTth5vdTRImTdt3Tbfb3URxfDycF3nMM9ZPM+Tz5Ny3L9+iMJTaBpzxOMXIt5cLAiQo4HmsRmTErE8vXbleJGUBjY0wHoZOKJmuSsZDLVVX18Pcp3mURnkSZlbL8/lEOUIIUu+btu/7frkqvQXfvn4b4sgrkWarJCkPVbtcl0lW/PLpt1/rn0OeoIAM8wCBfXu/m0wyKrFIl7vF+suX36tzFZCgk2PX9IyyIIw2q6WzVhT529sVY9SiBUBAi8nU3TgNTJZZiv/07rt26GXfTsAg7DarpewGPxuv8Ny51XptISI08N53TX/dXzEFcRr9/ul34PDn3z+t7nd3b+6x9qfTkfCg39dUgnff3WyWiZlmJ2EMk9u7nbeqDF9q0d3k8beQffn27cOmiDl1Sn243SzLBc+CarjdBPzr03M/TTHGKkLYxkEYPry7N9KdTmchhDdWD5PVRk6zEnOaJW/fvrHGZhkPfPby9GK9ezk8/9ufz2kcBSE7VidLWZzGw9h/+q2bxokGQZKnHnjp1GzV+TJrKcs0JggGYQQxhtp01XWchdKmyDJEQde2o5SIQmusFvMiy8vFIs9zoUXAg2kWT//2Sx/1LKIB5cCB4/G4XJVSyMnMJGWzlAhigDjjyezl0E1uMjzxOAiqZs8AjDlZ727ePb4bx5FGET4dhrH3EJTl0hLTttM0dFoonvssTfQ47n//7eP3H9I4rqxCZeh8/NuXqhvaKIriOOZhlIQxpQEC0Dt72Z+LuLgp1f5ovQVBkNbH6tdZUo4H0TMWeCWb0zxMT6fr1SAIKNXAXpvBwRMBkBPqvdOzSKJgu1z22vzrp98Y58a45tsz9Ah4Ly02jgDAxCSjMgnj0HvoAIAYl4scKFufLs9Pz5CBt7ud826addN2apb1NHjpgYEOIoCxtb7IMopRVzfX6pKkaRRnoxCQEMrCWQl5vnqpGXAJAmaendFY6+p4LspcaNWMozO+ugx1W4dxijFt+iqkEcG07zutRJbEFPnXl6/n03lRLIMkkNbVTaUApEHA0+zb62W1KK0WFJAizqkn3z49Ww89wUM1i2lWo0p57ErVNX07iLNR2ntkYBlGcRj07ZQv7d1mVSTF1LVWiYCxgOCf3r1p26Yfu939drle/9//fZ6ncXm/M84AgCYhu2Fsh0lYneY5QrRp2rpqaRIgjNM0dMB0yDWtBM5qPWIE0zz2wDtnpJx5Glmrm1a4WZM4T4xDh/PTMIlhlsM8R1EcxPkkJfQo4kl7HXpQ3dzd+DCrr/3pdI7y5MN3H6IifX19uZzOn59+L5IkjHialSHnt0lSbBdBliIMsEN5mlNPh7p12gSMrpcLTACh2BjJAsxh2nedVcpDsLnfYki9An3XBwHP4thZnyeRc1b0g2rk7d0mywoPiDXQec85d153TRcyIsS8fz4orRfrJfL8crxUp5Yn6dvy42698d4pqCc5KynLvEi/D8/HIy1zwmPvJSdgGcZZmr2/XypnAooZZ/W1qvaHvCjXSYyKTM4id3C7KGxRrAgERmMxoaH58XZ1d//WIv58On55ftptNmEQ/PLzp26eDMf/Nn85XKvj8TwIeWkqGDChjPWOEgwxNtrN0gTMEUzqceynySoLHEAEGetN07NZCTmJec6ShEWRRejSXZ3zm91ubgahdMpCC3HV9U/7QxDQPE6TNE2y1EHfNP0sBcsyrWQ79xSaOI6cdcf9q9aK8YDxEFA1DJOwjiFyuDTOO+hxnuU84CmLi5CXNwnxrjlf4kX0/bvvrnUN4YVQHkVxN7d11VBL0zjHhA79dDifCaOA0iAIGQ/ENIcBL+P8Msh+mKFxy6LY/OlPlLFrVdXn6u3jw+1uc4IQYmiUEh4GQRAqHSdxEMWUYIoQQbDIUoyREpogki5yxFB1vaQQKYwg9e3YNz//xVqzXi0AQCEP3z2mwtuqaliUREGQ5pFHfujH5tBd6gpjkvBQjNMyy+RkP/31c5yV0ICIhI66MEjqqgtC0XatdS4osjCJm8u1rcftbkMZgcQDo51RTdMg4vMso5jHMdfG3z++C4uXf/2XP4/z9ObtY/HhuyLL9Nw3p7N3fvfw+O7+LdJosVysNhsr9bfnb2Iafvzhp+VuS0PsJn96fv31l09RkhFEPfDzKJx1RbHghADrjuc9hphDNkyjddZRhzBK4kR00/V6skbbxQZSQhkFAHAW3OxugHVKzDN0aRZv0uxi6vd3N+/vHxyDYhq2q+Xj28dpHp/3e0zwpWmaptqucjVLOc2U4DLjCQ/fLJY0IHnEPj+pERjMcDu0p3NlrHXajdO8XC7yIu/aKyYgzovD8Xi81IwFDqOp1/MoOb/s7krCmdfw+XU/2BlFRE7DJASZolUYW++EFgghwijjvB76qZ8gRUKoKMuVc/vzMY5DpbSYdZgECGKlNSQ4jVPgXDcOXV2XebpAJM6yIiuAAkkQUgT35zp5W1roT5czBSCLOSdEeSinCSEKPPTOK6XHceZRGLCgujbu+Zli/O5ml3ESRZyG4aU6X87ndZ4v0nQepOhHTxFHpGmavquBNb//+S9JEMc8CoLcedw1bT/WQksWcAzgZrPmISEh6YdO9kYqayYjO3n8tu/qa75Z5kkSAZRABCYVUQYIE1Xz2s0Ym4CjmyJf5skqCmIEYkajiHtKzCQm3CYRK3HwtlhnkFyHoRrnMGBpmFJGIxTghEDjh2EQo4zjIEszBsnpclRSEOOwR2PdBFG4Xm8stEM/eAR++uEHqcXL+Zlyul6sT/o49B3AgFDi5AwBNMbuvz6ljHttIhYsy0XIw3EaAURZmfv22h4voqq1UoTiPAqqS2uMWuVZQHl9uo5zXxS5dUg2w2a5ytKEhEwqaaWBAMzzZIzNFsmkVDP0ZZlrZcZp0lprZ6ZxTJK3kxgBQmGckZCe6k7K396/fyxX65frdZ6qqu0ul0sQMspwmsaLu1uOKXLu0DYRp/X5dPz2NM/z7v52sSj2p6txMM/y5SKHAHX94BxgmPazcNZSisMoiKMYI7zdrJWQ0zwEEadRMItZaw8AwpglaSa8maTS1kDCHICXa0UwzMpcqmmWvfPWKDPOolwsGA+GfopYyAOulXIAXKpKG4MOWFkdJQvk/Oly7bpBjaJrOyF1RMOv+7OympFAzGoUylPSteNrU2lowzCQSl2qap766/Gspbm9exME6fm3zxaiwPp+6oCzyyxnCBZ5giGpmmboBmVsUw/C2n7UUurOaBgGFqG+H8ZuhiVlBKhJMkYXxYJT+sun318OJ/IhJGGUJJnHSCpxqetJzqMVoKs2q+LuzcNuuagvHXDOapsmRZrG3ngeRF+/vMAvHiBtPJCTEMYBDxhEGMAkDqe6+zz8er4cLofD24c3i3x5ro7z0CNoAkpiSLiwmzDUlG4Xa4CQthYRTDAbBvF6PMdFlhX5y+v+d/ctLbKyzKxWYcTnWXx9OSrnFrsVQXjsp2kc+c36UldRnkorun46Xa4EGLnZ3cVJ0lat6sdfP3354ePHCbDD/pJHYcpCy6fAG2YkAwZoVfddq8btzS7PU+TvkAXzOALrAsaiNIiCqCgXySpHIUcEGWG9NOX6/7+sVKc9IaQ9HarDS5Kn6/VaSvX69Oqs8hTFi3S1zdprA7mBFHtq2rYiDKzWC2/DtmlShtMAa+t7PTeXDkMox+l6uYRZNOvBWhxni93NW2Bsdaq0kekyT5fLMIyhtXyxMcAwxodqmLvRSAuksFohDwGAX59fCT3my9JA99K2URTMczc0nRLyYK1U1ik4A/w2zqAFGGCrZmUlBjgkETQ4TIKiyNeivyvTVZ5HWl2rBkRh4Mm/2s+XcVSjoBFXhE5SG55YBHlIQ8qcgtdOjNwxhp0HwIE4CBLOzSiQtpeuqrshyRNCg303aSnmeUIej5fzNA6cEMK5h0yY8VhVhEKlFCIB17aXU3O9UEbvkpC5UExmnOZjXd1ubpe72+P55XKtpXGpyoZxjJIEItR2tdKmTLOsjIGFXukgzwIcOKXnUTrtD4ejhQBS4qGF0FKAkfNtU1spaRA2l8ZIG8dJNwqrHOQeGRthjKSMKbIhX5RJmUZ5unAOOG8W6wJT4JRlBEml26qmQYAJvru96ee+uhwoJrsyAda7aXQ89Mj3Rvx2eWUxd8BGYUIn67CzjIp58B4+XxrnvPO+yJLbPL9NsqpunbHr5cIxfETXp/agjXceilBDCx/LNVLyaX9KJsHD6PC69wABHhzqmgwIAEw4UdgDTgmPxql9fj1GSXyuKkIh5bgoUq+MnWUQcgIxi4K8yOLmBLzlGKchT1KaBvz59Xg6HR3Cy8V9QNPd6k45IJRVo9RSCyUOl9dZTrc3Wwjhp0+/zdokiyKNs2UUr/ISAPz09ZlFFAOMMZNaVFW9LtZpnl6q8wxEHMWH1/04DGHAr3WtlNq9e5tl2eX1NLad1eZ4Om1ud3GaTtOopz5ZLFfrXFmN//DeGv/45tEDe7lZ//Zt/9uXZ8LQh93dPHZD3d3ePI5ymJpml/GPH76vxppY047j9999FFL+/PMnrRW0KAhwGlOa5EfRTf1QTYdoUSZZ3HUjAg4CK2f1/OXV2DlgjJPAez8MUxAwBLHX7nq+NteWEJRFEfFIQMwoQHGElbXDIJU8HI5CCuv8zc2WRdQroIxrx8Egn6Wp1tIISzkV1ozWVWIOhjZflP0wHI7HYRySLA4i/rx/0cOwStLz5RxG/PV8ldIEQUQZv7nd5oty+CoOh+N2s5Vaff75081mGVLw9fialUlZrn75y8/G48d37/tpNE6P89y1s/Gmbpu8zAmD1ThDHiVJdNpfm35YF4s4ZtM0Ph1fkyL/8NOPcZJAhjbrm+rQAIgGOeeL0ikgBylH9R//6/+0y9dVdTpfnhAFyM1yaBrllFMff/jRaS/EyAh99/gWYrxY5k11+vr7p4AG7eVihCnTRbm5N/alGzUl0awVgwwoILXws0lpGEV0sSyzPMmTPI7Y/vk55izOk2kaIUA4ZJSRVZEqqVnE83TxD/g/aQMcwAACTmgUBkbr5nwUUlHM4ixNlyXBydh24yigJUW2wkFIA5Ih+HpuAaHa2HEQyrdluZz6No3jZZG12DnHiiwx2lIK/u67jzwIr3V1OU5W283NQtnJSK2EuV4vddUMQ2uc54SFYYCIg0Y2h3099EPfMxYwgoW0dXfWCOCQGmPzONFt3Q+NcuEyWsRBluXFMimVEFIZ793pWJt5jpOQEeo8zIrFNCsPIILEadO2ndTXKAkh8GKaL8MVQoQwKuIyW64Iwc45bfW5OVXj1IueBTwp8913j8Mwvr7sja49sMAaBP2/670Twjsgp+nf4691dZHGYMZISIZ+Oh1PjBHOg0lKCy0PuIXAGUURhAApocdx5oyriL6+vkpj0yiFzislZ6PbYazFFAac0RATfj43R6+sUNChfpYsziGhl2tL6GyhlVpAjtdlHhCOPIzzcu0xwIgFDHj47fXwfDjRiKdJdO77PIk09s3QxmEUJIQS0nTdtW6aoe/a4dMvn94o7ZF3ECAWzu14bbooZMmy4FlyHTrEkDCyuF/qSTsI//5/+ntn4PPz09fPX5I0RhRdqlYBxJOYRUwxmGwW6zRpr83Tt291c8EOyV7/7ZffelVbD4apT8PEStPpingvpa/OQ5QnbTvkWXb/7sYvgBPeeFvSCC+XgTOY0iAMgXfOgTiK0I5NWr95fMMJ+fr598s4F5vdTw8PPEwmM/3y+69MzuTt2zvMQojgy9f+/HxkGA3KXrp+GnojRBGncRaXcYgpvr5c5TwuykW0LMIk4B6H6YLfor6pOMHFcjkOAxAKOLg/7lESbG9vGI/rurq+7mU3UggppsbKUcwI4di5ACGl9Nx2UYSXq+1ZTD//9uvNamOhv3TV0A9904URTbN0GobzparaZrWaWRQ6SAAmUkhjHETocq4BYY/vv99sb8MkrK+nqMgiFpCABgTLeZyHoUizLF1O8/Db334978/FIg90Yqy7Wd2HYfYiTgHgJYnSPDKATF2vNVystkM1Vde6XK92Dw8GQyFVTKPVev38eWzqmfPw5fV8afrNw4NiMEhiGsZKmSDgZZ5n621RbtIoR1H07Xr5P//Hf3/pWmekAdJ7ZGdtjfCDgR7OiuAAKw0wxoAAojHDmPIgZmyGcNBSnU8hclrO2miKCRWMYhwmmbFaaDXMAvMAYTAoPT193lOURAwYC7QnRx4GgTPaG2csAIzkaVkPV+MbiFA/TMM4x5giArR1WhkPoDEGGG8RnoSQk5rHoe17CIAAHgfUQmikhMBRHvA0ccLRMPDeQ4yiJLLASa2cc1M3ZGmcJbFVpq7qaZ48sVEan65na1yWp8Uy81a3bSsYA8YjDxiECJFFki7y9Ou3J0poQAnhmEAYp9Gk1Ny1T6/PBvuQx6bTbdVFWfTD331fhpkch2norTNWaznidLONGIVCIwQXWYGiCAM2D8YT5CGpr5U37uVyjCi1WptxVHU7C4E4t9rP3nmhPrx9UHK61o31nkCEotA420t1fD1Qjj+8exeluRynLMkwpKpVzvr968vh8Lq52eVxWi5yoI0BKuQ8jSLRT69PL6vlrhvHpuumeSAOLMtyt1tKPQgtu2EQyqSblbpU5+sVQLRMU2GssfLzl09JGf7xj3/H8+zp2+e6rdMsW5e7Y3ORShdL5nq0e3Nf5vnpcGrbRk3jhMjPf/mlbeu3j2929w+znvp5eP/23Rdnvn76ta3Ot7d3ZRBFYcidzcocG4238CZdJMsMQnBUZnMX//2ffhpH8esvvwQEu1lyi396fK+MzYpcGomtr+u+aXvGEAJWClFkMfUAUvr2w/fVPP+//t//X2TtcrnsbCOlbpp+s15Z76SYyyz1zgMOJzpP0ww8powsV8upHdtqBpw+vHmwo5qGSeo5iGIMYJIm3vlRC2MNZ8G1aQH2N7udt2aaRm658X6WUhh3qK9FlmsITvV1NgYA1LRd27QRJevtJo8j7ZXcH74+v0ZJ8sNPfxTQhRgESWL8vp/HrMyGrrPWCG29Va8vr5dLPc8ijIsv374NUr598z7gTJ4O1/1ZyOHhdluW+Xa5mQcxjPPxfEYWRHEMDNIetG0npSiynL65BxoEhKwWxfF0Ig5yQv/4xz8AaYQaV8sUOk0YeXj3HiNdXc8Q6AhFuhHnZsQECikd8vcP96v1Enkv65ZT7j16+npA0O+Wa0xoFNB3j7d5uT7X/f51zxPCEO6rWmmd50l7PjeX/eObh91mHfNAitFqmYVhUw1dNxar4t3790PXdW2NEch4Usuhqas8SoNkgYGf55FYyP89yy7F0LXr7TZNUitcGIab1bLp59dv387tNeR4sVlfTqieRIBhHjJmQzVNQ8/CIPAOjOPsnScE923X1e31egEGrMoyIMho4LTR1iDnopDISQSclWmEKbYYMky1Es7oeZwbVAVoFaWJZdYDhBBcrhfOAkAQGXseBnEYTM1wlXadFWWRGS1//eVXjF0ZB2WSWeO6cWSUjMM8zrMMgyxJVmU+aUkD2rdt01098BCSLM7yvHw6vohZBJxLpYxTzvm+65mYKaNGhknAb1crDMG1ruvT+fH+brlaxFG0jpPmepr7MQ7jcBlq5y1G0ioxjd5DzvEsZusNxDgKgziOpJrncUDIT+M8zYYwbufRdVcPIYKo6kYtFQ3oqOQwzklZRnEyCY0AgtYYqYs8wwg34yzc8dq3p1MFMFrvVlGetvM0jiPUwHmX5cW7948I4+f9vhm6XkyX+ooFNb5wKJkvUxbFBvpTVRdZPEMPHbheautBmMTW+ZfXPUKoWBcUA6mlMiohYbiIr127/3UPnSmz4uZ2Z5Fv275AJo7Cycyb93fr7abu6tdmGGZB8zjMUk5DGASzNrMSxuvNbgst/nI8CK1Xu/TN+7c/Lv/DNIzd6UC1A5oiACgN20k4yhzCs1TYgZvdehwG0XVI63WWGA/EJLU13TBwHoWMaWPlMAGCAgyTgHghlotlnOQ83FDjlkFE1svNn//86/58HoYpyuPdbuWJlqoPAqpmdWkbyjBLoqltj+3VAn+3KDf3d13fdIdzyhNdtdenp+9/+pEx8vvpiIDdzGqQ06xNc6nv7t+cL+dPv3+Wo95s1zxEddtubm9DFlqrZqkwwYvVMomC3d2d7zp9fJ2msViUXIVPnw+YcW/pn//yMo4dIjhJIji4lJMkzfOYAKWdnNNlebmcNDCUOQ/nr1+fzodjSIO4LBEAuhutN1pra9w8jE1zxsivV4tytxjMNAwV2K7LMnv/4X0ztuEyRRglURSzwMCcMw5Br4wvyl222jZjM02y6uswoKO0x0v3xz++7ce2adt0ZbYP35XOU+33nz+fTpditYAkDJn/7na13C4/jCtdX56auprnr68vKOBRyvu+64w0FtAQYwgJdkpNotNEz5ZHl8PI4shj1187r+ZdHoSUrfNys1w4B6+Xah7H4/UCMDEAAkiKIvdiNsMQBcG73TYLsuv13PU9cXBdlsY6ykjVtNbpSaosyychj5czIpiyKEkDTkKL/Syk0Sbg3GDXzLOcVD+0Woko5sgJZFw/zPMogogXYRAQHjJqMRTCCOsGIXjCtLfWOwqRkGYY5TAMvVDKAyOcO1XUQgzQIJUjcLlI1tttRMOpGaM0gQi2be/VtN5tip/+0DTt0DaLPI+KyAGPJ2K16arGWrRIoxfxqs3MeDJPPeEBQfbxfpOlmVNAjLOYBEMYGB/EvEgywOiAxoiyScukTJsWHQ/H8/F4d7dbFLkSYhRTvigMAH03DfMEnFXO4yBQjXx+OURBOHQTxhRC0Emj+ilK2tWypIRp5wbZEUrTcgkI5DRACV7tdn3X9E/Xh912sVhgBPpZD0OnjR6mub+clZJpGN6/fUsCxDAq2IphwqUq//TdP/3zPJ8Fj/ls9Mvvvw7TIOXM0xsWMG+MVcJ4ORkhvQ3z5OXr8+Vy/eN//MN3372rj6dZjeMwfP30lQVR241hlO8eHvMyH1UHrU+TtCxW3+BLEOSz8v3QhaGM02Q2fh6Ul34RZevFWmnZwiMnLEQ0SoN+c3M6vf7jf/9HhMB/+rv/HMbxb59/7of+Jl/dbW/OTT3LGXiHvcMI5zcbwmIMELJuWRRW+yhIyRJZZ5M0oZgiAIH3DJG0yH797WvfT2lepHmBCGSMgdi50ch5UtOkpIQehIiWQRKseJimVdvtDycP/HKzTvLk9Xioum6Rp0EQQevnYYIE1XXdD8hhkOVlAApd1RhAxjAPubPAYZItVlLPxXLx9Hxs2vZp/y0aYmF1xKM3b99N/eAAWN1soyjiGEmjnJqXm02h7Zffvj7tX7a3d0mSFGlulDqfTmWc7bLlplhMSp50hTy8f7wf++nL/nWah5ubze13b4/fvh33r0rOxqj1estxOJxagNmn68+73WZ3s/76W/flrz8jbcrlYpPfABqSgDVN8/p8El4//fJvt3c36+Xycji35Bpi8PvPvxz3h3y9wDz+5fo78Pa1uQRhijBKWJCHSZymRsmqugZhyDg11lGEPcVKa+NNEDNnQysnLUxdDUbDkEUUh2rUepJWyNPw0rb9KKX1Pl+sy3wBjMqjiG9vpTF1X0spA05DhsNo4YVVYvj0y7/e3jwsM36tpTeQWFsksZfjapUt0kggUF/q/eESFZGyxkmNIXr3/i7kweVwps5Fcfjd460nKA4pFL4bp+2bd8ZJK+cojICHQqowTFEQNONE41BKIaTExPbDlRNGcTD2I6ZUGeUwYhEvyiQNAqptEDAEXcTo7Wo1XK9NW6VRyggnkESMW2MabyhBRZ4kYQyAXxLMA3YltLtcOQuiLDbWajud9oeu76GHxllOWRKFnBJvrJukuHSYIkZwGoQd6iCjScDV0IcQPKw3gdETIrfbmyhOAKaI06f987WqF8s1JPi3338Xk4iieHd3m+Tp5XzqII7jsGK1nE4xCxxE7dglaWqt6adWacVhgBjDGFFCtVbX4yGEJCQsiIIVj4rFUijxdDw0bdtPI43ZpOc8zIGwfdP0115btUSm0GvR6efTRSrRT6NyGhknlTLaRIw3be8dAB7MSi+KNKDcEsojTjydxgkgZL2fRnl9eZ3tbJ0fJvn0bQ+AVxr0zQAxI00LARBC1l++AOdYENxvdkEUJCDZ3mxQ3QAEEQDaqL/97W9gEknEHLB6GiFggjoaRqvNm6zYREVxHevjWJcoCqKojEJA6Dz3eZlCb69jlfPEejv28zTMyggL1PZ2aww8Xq7pIs3TspcicKS5XqzTlMAwCo30h6f97Q2JWf7x/k0ehUQI67TVk1ym2XfvP0JihRooIci7SYpuaMvVOvTwpao18OvdenOz8x60VWMmyTweukFoxaKg7+bZGujNqJV2YJRCV3Xdjafz6VzVQRQTMau2BtDtGIriYLq23167VblAlCkH+lFvylungDHCGNe28zCK1XoFHaqqq3Xubne/XC+lnLpuBAAHjCGr5TgESXz3+HYSg7X2eDicLxX02Dj/9ds3ihCGLs2SLFtRROrL5Xq5bNdbjNkgJWHQSvPy9ZjF4zRN0pj900tdXZMwuH1z7xAfBqGtWW1WYRx+e/lWt9flcuG8//mXXxmnH//wEXNc8JQyjLBXU1/Xo+6nsbq2bR8tc6Hm0/71+etTdT4+fvfhv/7xT7fHo3bwa75e7HaYo74f+m4aJ0kISfLYOHU+XwACwrtj1wonmlOrvQoDvMzSD6vVxzePjw/v3mxvXw/1//jzny+iBm0NGRql2u8rj+xdkd2XD//543d/9+OPnMTPry+/fvtUdYOYpQVeWsUJJoxAhKapq9seQUAg1ELSZZHkqdJKKU1DqqzxYibE9tNovDHQKSlrKYMs1tZLpCZthpOJGd3kRV0La0EjhnacEhwDgqUyhFNhrJ9GZbSGwGDUtp2FYJkXXtu679WLddYsF2VAGc1RluXWeWfBtbpUl2uclcZogjEPQogIJXjFk4zGEQo6oRDFN9vNmzf3lLP6WqNQRgElCOdpShkfuv6Xv/z69PoipnlRFCyOPURT23nr2rqX1mVpDG63chRxmsd5OgsxtvN4Evl2AZhvx17NEv7++3a39tAJa4A2GoHT5UQIAd4iirthxBgncQC84ZRsl1vjqQVmt7k51R1C2CpnNJBCjU46hyG0SmpjLYQgSTiBCYWo7Wo0gXc/vI/SrDmfZ2kmNWJMgzCWyhzG6/7wyhn9/uO75bpsm7Y6X6prnaRZsV4CjMZJSCGw86qdpmF02C1WZUjD+tqLSXz8+CHLC4B8O1VKiaEdxnYICP/jP/zDcrOtu3p/OV+bLurGt49vA5ZUbbVvX+vrtVxmIQmAAl9+/Sq1DpM4ifLPvz8D786Ha5bI5tDO0+gECkoHnEEWAONjHscJX5TL47n69Le/QcYWWSKksVZqqwgleZ5M/ay1ztIEIqzHmUOcBPGyKKM0GcXQdE1RpDEKMUHH/d5bsNvsQoKt0d7DqRvHYdBaE0qs0dYbHrLz5UgwvF2uAkQQQsM09kNfLspZqGJNCaUOwjDgSRoPY98O/cvpWDc1Z8x7uNltm7a3zjlrv315zss8i9PT9ToN0267wUJKggCG2Xb73U9/srPsm6mdBkpw017CkC/K5bpcYWuYx242ThoGGYm40V5r246Dp7BYlkUc62FY5EXMonqS3bXJE7jZbF4Pp7Zq53G8vb83FozdVIShnfTzpy9xHqW7NSKEBoQyNnRDc67utzcc4+pwAsrWxw4YFNKoVzpeZoQSkmbjpA7Hs7VuHOcgS42dq+YKeoIJYoy1UkRpGLign8Xz5aA6YWeJALTGawvDOAx4OE59db0gb8UsxnEiSaC1mcQMQcugjxiOo5hqQzBcblaEwqEfnNRGinnqkji5f7h5vdjlIh+lHLoGUIwoQgTxiCMIrlU9zDILy4DF9fkipaqqZne7ffzusYpCNaq2add3W4BhlmuAUZ6kSoD1blVk2WF/GoD/7uN7H8Q//+2TMfO6iJQOhBisdXmSnM4nYdQoZ4+pdgBBQDxiECar0mo3jl1IMYGwWKRFme7W267v5SS3u00w9lLqSc5D30LlEPCcklWWJ4yaYcaELXbLpm3mWWxWi9Ui76p+0rOaJUNRlEZWqbvlsizLS11JowkCIadhnol5GNveKXlbrtbl4qwUcg57L7Q0cp6GkWESME5CvlmtmkudJckmzyHAnUdFnGRJyhCJWRLF6TyLRZas12uh5Jfnp25oOcU8CQlEc99RDCmByEMLbDd0ddsqb/uhry41CxhPA6n10+u+bltCvTcmCmOv/LlpyJevlLPBi1mLVgkUB4hg6b2wlkMvjSaEhlHYd73tbMIiQMis9DyNaZwbABCGwySEccK6ruvZLAvosYfWgmKxCXjStpJQxHmAHGjPNROuTwdMiZSSUhLEfJjE6XBNgsgbpedZW+OBZZiWqzJlNAyiII462f/lH/+6f362Ui+//5HFYTfMZu52jze3j/dyFnIc62NlJ6uUEtPEYx5FQRCHOGK9HEY5I8oApsvlYprFtToNg7BKR0EURqG2RgmFkcPOker5kDMCypIApqu6F40F1iURAmB0PeBuscmzLJxEOjRXjBnCtOmbbmyBAaEWLqDx3WbEcBhlEMfzNLfaAgAv/WyHKYzCbpqVdRR4QqHVHlpNhOBBBoPo3J6H6dy1g7MqP1UPD+94FPfDPFkxK2gdmvoReFB3dRAGg+hsox0wQzu8vL5i5yOO5SzjMr99e28JNdZVXa0dLFdLo83h+Wjn6eF2laeJ96rrJyFHQplz4Nq0T6dz8bAhkPbtcD7VfXXd3twlYTY301SNwNNoEYlh7C5tFPKuq69t7z3YbVY8YdqaGEeb5QZ4T2iYZ+lsVXc9AcIhR+v7LSLYKxcHyXp9++Xr83UY76Av8mhsKPB49/0Pq+1mnMfyx6UD4MuXJ4bRzW4Fte66BnK8b9q/vjz30B+P1+Ph8Obx9j/88PExW22LxbJYrJLoljA6XGa6miExCHx9fvr/1P8dzMPD3e7v7t/8sHu8ScowTsooYND8n//XP/365UUBuNpuijhq9kc8yyIk2PLVYkFZ1IyT7HuhtFYy5DyMmAO+aVpEMEIYYOQ86mYzS021JQwbJ4222KIA077pgXGEM0u8ZaCVAmOijZkaZbVO8ghTMiOAKQ0onbVtxzkiFCDU9dOeQKG07yfiodBut7tNFuxQXa/HkztXwzDudsvrNJjRL8piXSbbYr1erF4u13NzzbJgtV613XA1ipKsXKyHQf7Lv3wiGPGQSuiPYhzGsTOumfVqUaZxvCgXk7Hnpn53//D2p3tKiFKqbq5KjAhYrawVk7NGzJ3WvhlaNrCQ036ejPNpkqzIMgjDMs+kmKexs0g3ndy33Ye3j1IoB1zVNFJrYPzLt6csy6IourT9SXYc0VnNzdCvd+uH2xsASqe8Frqra8IwkIBE3Mz6sr8qC0Iei9BaZ6w1lNIszr57/x4Cd3jeX6trde0pp8C5tm5FP0aUL7OEOjv1LSQ4oGGxzQIe9O2QFXGY8MPhW9u3jPG+m1/Gl9vdzZt3b4321bVHlFnj2mk6VdUuWz28ed//9d9mJck0zmKmlFxer4fj6fHNuzjNOMvncX45Vxp5EkQxYQb6pmswJQENuraXiKwfN0lSjML4FyhHRePQQ6mdkVqMnXGzwBgpNa2X69vb3Ty2cwPjMsMATPV1nEcFnFAzZyijiZ50nCaPu7skCOQ8Px8OVX01xmRZQhEWbTfPIuQ8L1KCkJSTdziOQmtMXmar1aLr+q+//Hq5XtquI4ullhp6CL2r2uZb0zw+vFnk5W67y/LCAssC/vp8GGfRJL0loBrb+td6lS4ABnmRxlls5AyNKYt02RdfX5+b4YoD+Gbz8HizNWI8HZ4uEK53N9W1Ol6rUcy7u7u/f/MfMAQUgrlr0ihalQtr3CTFtanxXRSXWbnbuCTouuZpf8ySiFCGWNAOUmkxGc0XO6AwnGESZ2gX/PVf/+33T5+igMRhsFqvjXFVXXnEgyD6sLshNIAe2GuttAHei2nqurqf57RIeufOwyiHUWmzsCUGfqrbLE+XZb5KEi+UUobygFLYtjUmdp5GRohxTiKggW2nPkOIBkQp4zyFbaOsgQSkxnjnuvo61AN0rlwufvq7nzwCTdVQiNfL5f7UCqNYlAgLX8+VFPIyjaOYMy2LkLMgQtyfm05DHOKOAKiUq/aXyzx5grRWSZxM4zS0LUcwZklfD33bjZsGRiKAIqVoub2DmAhngMd5ngac/uM//VNVN1GSMBoGhCWIl2EKoN9fj5UV304vVloG8D/89KcgDF4PL0PXUY7DML1d356ai/UCB8Ab25wPzNs0zR82m2GcM8iCpBzJtN4tKWbNpRZKTNPEKAoIRghslpvFehuH8efn5268AuwYowyheBdTTk/9ZZUmxpm6aethrMdhFPJUXRFiv33bp0VaFCmGAFqth7a6VE1bp2k6KTmO47JcRlFAsogyJqRoxfBYJiLl2oMgLzsqrrYLGJOUO2d5EBCC23l8PZ0gQQAgb6wFqBV6EOOp6+OABhEzLFTYy3kan54Zx0rJpu2UNjTkxpl2aMU0jFEEEQQAMSWHoZfTVMbZZr11DnRaj1PXj2MaRwD4tm8hgZCxZp7V1S6yfB4nXgaYBtM8Ce9nrwEAJEq8dl3XCyeudWMdMtAqqSc5JWG43W2HuhHDDBHFEQ+S0A6eYjT03Xjpz4dTRDJIEEuyKI9xEHijY0ZDioMwnTh8fXqZB5GEcWh1lIeLzcIhaLXEIRn6ua3UarmmPjYeeEKjPATaQ4+L9RJ6aD0Yrt31fCXYi80muykXSvhhUk1zFXryyochXd/sFoulkuZlv4cQrtY3nrBTWx/2L8fzGQLogQuTDHvQzFPIGRPcMFg13WzkrFScJbuHh8U8t1UNoMcQcggooaYfNA2d9VXbXruxzBacR7OyX74+Mx52csjXGQ+4824Yh+++e58W2W+/f/789fMk5XK7ztLMGns5HdOQ51nWXerRmDzP4ih9fHxzOJyMVhSTrEgHo9M8dx7tD/u2bXc3u2yz6vtRQMfz+PV8btoOWHe/3gEW0TDmNCjL1eVy3b/uV67knNGQNX03K5HlxWK1FkLyAPzn//JfprY/Hk9FkbXtkGTRPAw8z/JFYS0001guFrPQ1vr1Zvf/+F//10lMSRYyhvMygQbnaTFO/e1ueTi8SKPnvpqhK0t6ky+Y4carYF2Wq5xn5elYHQ77zWb13duHgjBRT/1xby82puEuIcFmWdw9doNInA/+k3Uefnzz5u36llr77ddfIEHvvvu4W2/yNF4V0WwchcbLDqmeWvPd7cfNYrFZb/pR/vXzl99eXtppsg4QSpQ1zrlhmgCGZVnOg2y60TpAOMMUG6uVVAhhD3zfDSiOnLXEO54wHBBrYNMPRiuPwDzOExCUEoRwQANKaT9OVjsThhA4yuh1Gqu2DQEo4lS1raY4yGKc8MPr1XiAMGuUlAj0dX98PZnv30X3vJvHqm1nJXlEkjhxBhRZXhZlHCRW2WtdqUkGEbl9f0+L6HS6zu10PDeUsrJchchHUb+E+buHR0bZpToCb5AHHNNwuZymSXYzj4IfPrwfZqGMlULmSRaGFkE8C4Wcj6JotV4dD4emG8ZhLrJMKN2PwoMBE9rULQ6YNub5eZ8vx48/fC+UqK9dwALrrIJeAyC0N1qqWXBCWRBopQ+vB2/g2Ixq1tU4W4KmWffjEHAexkmYhE3TplG4XCyddXXd9dP026cvi0UZMF4GSZGGURAnQeIo1r1pr/UsRgDAOAyE0iiIlRRBEGLPzvLa9t3ldFbON20zjPPhcsyy5Hw8YQveP354ePd21hMK/LmvZK+rpjMeVZPYNy2geLFdaWebfoAQR0XIYz7P0hrvAWjrFjnk5e+IEkpJwGjGglFP0kwB5ygKq+FqFZBaJ0l4s1llISc+ePfmVglXtYPzwDKMvLteL+luDbVK0zhJ40FMlBFACQmZPClrbV5kxINmFDd5udjcNG1tlFFWAEr7aRr6nodsHMXQD1LMTlvs0dANbdoapeMoKsvy8e6+yPIoCvt+uNa1ceZ6qY0xGOH7h/vz5SKMilgU57mz4LyvCQyW6eJ4fPUWBEnmEeVh7AD861/+bZ3kcuibql6tlhAi5zzEiEehkAoxHDEecsYxapRuq67uqmtzNdpZ4D1Gx/oSxomD8NI1APhwE2pkLbbL1Wqe50lM0Dkxj2LSz6dLM/fwaN7dPuTrxSznyQrIqdA2iiM92M7WyhoE4ZuPH7D3XsrPX67K6NXDPbWyHYdh6Kq2H6UI47CvrnXbKaXUOBHjpVAhYwhZ6dTx6SVkrIxyDcgotBNSGAm6Js0SwNBkZHPpplk5DIQHKUNN007DGBCWejwrK+Zu0nZWDjCflcV8qaZh0lgM3k7TJK1xwBwPJ61swOk8iFkoW7dZkkLrxCykmP3UegrCIDAIjO3YN1Urp3qSU9/OQ//t+etiu/B2psAwiIq8iIp86Iev374u1sVyvUAEGwccQE5bQihw+HzeU4on4/t5stKodn64u5PajMpUbT99+i2K0zBNgXPr9TqPEjGMp+H1l8v17uZWa1vVzbLIHu/vj+cTtj4gaJ3lWXnvoHt9flZabDabsRVt3TljvLNGaQ8cgnC124QsgABiDJr+CgNmLNBW130vjCE80Na3beeQS9M4jCOvjZqFFjIJwjiMtNYA+MNhHybRuzcPfVW3bYsweNhsrAXSu9X29mV/YsKsNxsAfTcN1jnGuTH2t6qLw6hY5E3btuOMsQFeAQfjMPfAdk07KyGUAgZFccAYMsoqLWlAOWEe2bkXxKMgZhCCtuus1ZRSwoiUwnmojayHVmg1iSEKOYB+nmYhJQ+ZgbAZZzEpjwYNsQFumAdrbRKFMeUYoHYYdKcnqZMs1cYNwxjxCAEihVRaQ4LSPFPKXC5NHIRBGFBIgEFFtFiWyyRLWER7IcKAm8m/vp5fL+fVwxpB7BCWzocYkiiACFtjs0VuBrO5Wefb9f71eNwfz7C+1NXqdv3djx/MKA/Pp3EWRZQBi8Rkr+eeAAecdXGULLN0FMZRrKGCAAg5jVI13572TyfjYLlcWe0c7FnXzfOAGAfABnmQpYnr2qmuFSJylgCiqrocq+ru4WG323FCCOM+jKQUxNhFXmBgnTbHl+duHI7DxUKyffNTwuOubUQ7DYOYlCAhpAHVUnsCtXckpIv1YpRjf6iaQeSb2zDhRMpJyWWWhlIThzECRo0UxKskNMYkaZxzvGcwToNRTYMWk7av5+YuSfkiE11noNtfjs/HC0MhCYsyS/fDKCDEyIdp/Pr6BDl89/5dEKbaufJmm6UZoRQ654xmAPbGnU6XcRiFEHEVQGwXLLCjDPLwuB/0KKIoePr0q3f2w0/fb98+XOsrY/G7jz/1VV9drofjxXN6OJzqthJSWuc3ux3eRNJWT19ecBCVu12JWBjHq9tdmheolZfhGvGQs6BpL8/VsaqajUSLCIaAPW5vI8yAx7cPSw68abuuOkMejNMtj7Mff/zhu7ffT0I9nb7kZU42y3VW3q03SRyvluun0/Hnz79KPQGKlPaT9qafrdZCGQMcJrMHQCplnQ9iHhACEMYeaK2BcZRgCCBGSEvpgQEYaeuVnrXWiCBEgNJy7Ls4CjmFyivv9TBLaywEHmLAGEDeWRwkEcyi8Do0erqericYkzRMu3YahOymASoDNNi/7r2wddN8O13bfnh83H74EDvtCECvT/s+GXiEA47f37/jQTh7cbve7ta7z799ex6fmqm/9DUiGFEUep6lWXW9fP7bZwhBWqbr9SakTCtxrWoLgQK+aXpCYRCx6+WMMY6jrKv6tqqudeeMYxEljDvllLE8iaM89x6+7PcewQAGzgOLQNN3L4eDFpP0WluUFGmGc+ngp+dDWx8x8m9vHyIeRJT3bYcRAgQKq5/Pr2GxFNaeuz7g+na7na358vXrn77/mIepz920kf00QAzmYQgJDxeJN7BtR56nQRpzyk/j2HZtmKRBxHmU5HlOMYHQ5QVVUs3zbIwK8+Ta22tzeXn5FrK35W7bD+3z/gtFBCILLNzubj/9+vnY9GGaXsQ0D8MmyRd57IHJ8lRJe27PZnRRkBhlqqpy1nvnj+dLeciWRblMYy3V9z99f7oeRzHzMLlESd+2f/8f/uH569Ph+VgdLyGnD3ePLAyKsdsfDzRgnvjLMYfGhEkcppkQqu37cWiMNd04tlPPg6gsCiQsz8Gbu9vt7f0vn36Z5FTkKwPUpGcD7Km6TlJRAN+9+RCm8fF8+fzlt/N+v16WJKSU+IAiCIwH2gFjvO7qlkASBrRYLJrjSU9zmWbOw9XtZpj6qrkcr2f+hV+ul5BHYZGuHncUY6X88Xg9fz3IceABfVcWvRgDTrfr9bmpmss1oIjebhnNlTF5WehJKmXCIF7cLYpVroBFEPz6139z0COIldQY0ShLcIYWWarEeN5/u73Zfnz//s9//vlcHS2Fm4c3hAbHpkqzfLXeXM7XumnErF73x3oawjyNk6wo05jRfp5nq413apo5dLdRzDNDtbbOQusoxU5ZM6sZWj3LYdbcG9lWDrtx6KmHozWTkOM8LcssiULiYFtX7TwA56IgVMY7g78eDm+2C0NQtloiB+pp+OW3L+v1VgHcz4rG+aRGCCyxNuJ4FtKOQ56nPmDaWS17I/3UjlESQ2LbqRubsZ+GKOKr9do61wrpAzN713vvnIZTzxAgaWAZYEEYBtHldNGz2PdP7Hyuuup4ODZVmm9WyKMkTjAL+n6chLaqrtpms1nfbHfRMKhZTkx+PRyTVERxivnAwqjrRdNOcR5jQKwFhAQkiNpholGSRoEmuJnnuBdamv46msQGnPfN1Mx9M05BwFwQzLU4fPkSR/HUT6Kfi1WeRKFWSvZDHIVRnFKWVPXpfKoAQTgKOYbQ6hAy412YhABDQjkkdlKWhgkjJAxjj2Y3DjRgLIwGYRELPJ6MNfPsMMIEwsD6FcXBKt5sIkppP7K+H4MwssAv0Lu8zNI8OZ4ux2szStnG3Bpwd7uTSpzPNdCOAkJDHgQBRJCntOqQNzBIIq/h8nZRFqmW89C0MULL9WZV5mYSXdNTystFMXtrvbuerth5RCDQXhmlZq20DKJYWSU7e7xeEYVxFimlIQJlUbSn+no6BmkYp9moXN1OzhPrfNs2zoRWG6ttEDnOQ+B8EqfI42mc1DCncRhShIBrq65qr8jDkPFRTE1f12LMs9IBhBlvx3lVZDEhsh0aORmob+9uo3LRHuvu2mDOx75L+5AjEi3J8eKO+/1Am+1qFS3iHbglclImThEhYRxKPxdFFkaBMurLl8+vL0fMiEWonefL05PVRkq93az+8KePehoJ8MvlYlGsb3Z3n3//fHh+VcqykGd56hjebHdCiOPpQCGGFlCMccjX620Wh31Vf/3yue7rzXoVFysW8k5Ol6blAGeLHGjWjSOeYLHMQsa9h8vVIgyjqq2tZ/uq/vL6kkSJAV4q9fpyXBdZvlwUeTY0bd+2BGE5Twh4Hkbr3WYQAkLAgqjAUV7mxugoDb/7/j2ksIeT9H6a/KXvi+XyOvbDPK6LOM/SZEyL5QJj2jYdorRcLAjC5/MlCiKt5MvryToDAFTaBFE8jTIIoddWdQOGzhkrxCSG/tNf/9bW12lq7969GcaJhWGaF019/fzlcz9MTdusVum7+/uxH4UyzJLD86GuqiDIMAn6U6f6SQkRxlFE+evX176pP/74flDTv/78q+zmIs7Hi/hi/2aJzzZFjNivv/zt9PTbjx8+7MoVW3gPbHt6Fp5liNx//07MMgnB7maLjSEApnGkhDm8Hp8v+7prCUGLtJAaDOPUN4ISHFCurJzGgTCOGQIWOg+8hxhiB8AwzEA55BxQbrdbYYK7YZhmBQh2ziEMo4BhQIDxg3DI+oQHxhg5e86ZNsZaSwOiZ50moUfYEcTjUEt/vB4mrSBjnRSvp1MUhFkaYecYJtLpduyf9sdWyjBPMKXH0xl5Txk7n+vz5bK7WS6L/N37d9b5f/qXf2m6Kc1zpRRkJMhCloaH/el42mulM5YorYZh9MCzKJiGiQQoT4tVubbena+1U0Yja411AFHEsjgd6rGuWuNd13Zc89VqiTzom45AqrTljGprZ6mjZRnjGL1ChGDbNMPUGu0ZCxWFy826q9r2WikxRgFtxhFClAXRIltKKau27YXkeRyVWUwoTSLnHE8D7iHRumu6YMmlkZix2+LBeS2EGpruy/NrEoYBZ/YVFMsSWWQ8AITzMOFBBDBgAYMINXVDgyCJ4jTKlouFxyikPE7CJI7fvLn/+P13T5/3fdcxhBxw+bL88cfvm2o6D+LlfNLH4+1mu9muF2nMMAqjWMXAQvX0+lqf6yiOT6frdr3NFnkaxdI5GvHMJlPb22leJtlmuSBBHPHoi9DIwZiHopkwpSFNpbCIOx7yoiwAhst1+f7ucf/7Szu222zZon5s+7GXyijPCONknCdldBmkzKJ1uQoJ/fD2TmrNWNROnTQKQaSsgcgzGgZxGIZRnIbb9UqLOU9TzLAU6tvlaxjw25tbjOm7N2/pW2qkOB7ORMO2HyYjsjgxDjVdb4HRyA7DHI4dSrjSHioptUSGGyLiJFJmDJJktSkdAseX02zV+vY2iqPj6+nly2cKvFl56Jy1zhlPESuWi7uHO8ZD4Uye5kmWhEkCAZqG6XA8hhGZ2m44XzbL0rQz2eByvfkL+X272xqIWRAGUTQNrXdut9sVRfLL38y5qj01+SJN8uL5+fXTbz+/fbi9WW/LLJ+lIN5vFqvwPjLAHerrv/36+evrKQnpT398t03zkOOmbYXzx65vro3yCnhnPayaSsy6yNI8iKHRlDAhpdVaKeMBeP/xIwL46evXl5dXTgkIYcgDxri2en84WAuSOHt93SunCEZZECzStPfABybCAUvCyWgDnFYyz3NG+SjkPIppEkJoHoYeYaPdMMp+vhhgu65LtMAQxYQEnAJKAWYeQKHBPM9t0wgp4iTabjaIUDWqcZiMQzyC8zjVY4e8A04jvEviBCHqEj9E86WqiNGLdJkuFmkUPtxnYp4B8t5A4ZSHLspSRMhiu4UAusv1dL1KoRmmcRBhyi513YuhGVvC0U24M9KmWT52k1JmmgVnAUd0bjsntJqFaDt2i8M4DsIoyRQPozhP96e96KaH27KIImU15RQASEKGDOAB9sY6BDClWVbc3d0RwsZhmOeREeIActYbK4xSLb4UaeQk6U7X9Xq1LXLmvTY2zbKC8TDkeZ6v4qQITnXXQLoGEOVZRjC7lM2Xp5dRiHcf3lBCD/sjDXmfZ4PWAEDK1N3talWW1fFcIpql8Xq3XJdFf22+yK+MR9//9INF/vnlQEYTp1G5zOuu+vzlqdNyNq7puigIjfez1BzgGCPC+SjVt/3ea6MwmMdJOBDHGUBYOxlA6KBXWkGAPAJNO+x2cbko4ihu2+rby7ep7W63W8541fXdMExiJhjDRQEh5kFQnzunQJGWEOFhHpar0iN3PjzPU0sDnsQxAsTNJoszQNmyzNu2++Uvf717t+OMBpS9Pj1v18uf/sNPry+vZFGWi7xQWn3ef67qDnns0hwSCi1er28Xu9Uwzb8/ffPYt9dq6Dstg7nu0ygOwsh4jsJks7nxPvAeGWhOl8vQTlEaTnr8699+mWe1SMvlYuW8OPf9YOT7Nw/OwsljQuMPb37cPbztpvG35y/Xoc3ikMEQUuScRcCv1+uQs+X2Nl+ULy97DDpMcdO3furLXJRJFEVcDxMrMw5hypJiu/DeVnU9SNeP3TieAcHTOFFOszwHUE/9VC7j5nAKowBH/G61env/7q9/+3q5NtLOl7kWbTeq5R++S3YPWwJBW1WX6oIJ+9tff7XaJlnGeXpq+m9fnxmFMeOr7T2gVDmvnbUQsoAEPIwzeT3uq+cTdK7McyvF9fnVATQP4+HlkGTZ7cPt09MrJezm7v3Nbjt3/TyJSU111Vb9tMyXWb4QcobQhmFCeTAO87W+9JeKhbQV/bfz3o+wLDfS67k6jloUcoIQDt20KLM8W1+aZv/lc56EAMPTpUWQzE1jPcyyLOP54fr0+vXbel3GRfJ6qn/59u1wqs5tF4wgXRaMkq5u7pbbMAqllZ2czmOnnTcSXoc5m2YWsmnuEABlGic0YJgkWeK9G+fJag2AwxgSQiPOQsS98UhaylHEGYpi72F17aXWQRyxOJx7AzCJypREvJ8mzhmDAbCzgejaVLMyAOg4hsDDrp8YZ2GYKAC0tWXCSUTPbW2cds44ZLWexdAXj7fGiJfL6dpVEIenqhNKBHlYbjc4jHo1130vpfj127f1ehWucmushr6f5u7akTeP94sVxwxqjKBrp3aW6nZ9gxDyFhZRsFuveBwkSWysNkKmSQhClif50NUwTbIym9v61F3FrKzVeVlCjKZq8JD2/QSm5tic+qohkNzf3MZJOGmlrufKwI9v32hpzlVVq7lVcyMMCShmZBwmMePdomQIVtdaDEIohTjlARlm7SkdrXMGJBH30ItxHDFkONDOe8wv3aSqmkdkXRbzKF4vZwLgxzff3T88QAbGcXxztwsTHhGyXa2TLNncburXU8KI85ZxXl8qOU8BowTCNC8pJkHMvNdjKzBCOAo/fv/x7ub+X//lX5XVf/jDB+jh6+v+7Hy5XCQRH+trCMjp+eS8X99skFe6n2JIVTvcbddFmBCCrDGTGGCI4kWOQqasSfKyDFbY0LA+7za7kMXNqXJA3797R5Lg9fnl29OrFT1aBlab6no6H14YR+ubnZDKavV4/+b+5k4qeaouddMcLntyxda65WLBMI7igDPetHV7aYSDENIAhxb41XYNvYmDCFh/4ZdfP/0eMb553AlnD1WjrB612J/Pm92SY3Q5naexC7frfuisM28+vr/ZbVjIxqFVL8/GaoxgmabPGMtJ9G3PKA8Dfni91pfzw+0mT9PD0/7x7buiKNtxxoSHYaqNPl+/teeura4JC4j2YNRausPX0+fXvfTzzW77cqh++fPfPr5/83C31eOkZW+NDDgWc+ed3u229bUdqyuDkCOUJizEq69fvgUI5VG+KPM4pDdlYtqaTP1ykf/Xj28f1jeME499J+XPv375ZyHO9XB7uyuK8rffv/huui8Xb+7ujTZG+7rrRqFWZby+WbZNdz1c27qOk2h3t7MYz87usjiJopenvXNoGruXpy9xka3WqygKrNBFkq2LxTSJTs0AwWGYCUOL3cJPTgmpnYPaxkGQFZkBsJmGuquVdhY5qYQSE/EA5JlQADFO2qauq+PTocgKHIeMoO3t7W59Y7Q+tXUnpnGeu3NXd40zMuZBzIOub6OECyG1Mlo5RolW6uVlTzAiHt0tklu2Gca5GdtvT98IIxD6KIsMcMf9+XS8hlFgEMYYOgZHIy5dO5tZWT112tjnr8/Pu/KuzMvT9TwIUTcDBn6Rpd/dv90/vbw8fWEWZIsyCWh6v6UklFKFwCWLIsNEaYmg81oMQocBj3mMKTpdz/qsGGGQYkYoo+QyjEPbAQ8Wy3K5WrZN7Z1F0CdZOitxPl+uTcdmoa3yBkGHlDBykjGPIx4S4LyZ83gJEQwQuFktHhar0Dnl5B//+D6i0W8Bb9omWJet0t0woXX58fvvxDCS9hqH+W536zBIEA/LklhPMEm9CxkPiiKZFeN0vSxUHm95eBqHP3/9WkutLUiLfHl7ezkcqnrEGGEEZ6mcN0ZrhBBGAOlZWem87EdpFVMhhx44axf5qrpc26ajPBhFJ4wAGEhjLkM9TZJg4p2WVlWVQYR44sdxjJKw6ZrruWmrGnG3DnjTX+KAZkkgu040As9uU6xm4BDUIQL9+TrloZ6kEvNqlTMOxqZTsyblYuGt3e/3T9UZehqicOwmwkOEyGZVLrfrhfTL5eraXc3trf9Rz/3opdk8rIMwOJ7PzbUqyyJNoyjk56bD0GdxRINoViqJQoopD3gYBw7avm6roc66pExWm/t3or1wlkDrp2EYu9F60ExjEEVpHCdBSCCIecAIDhmdp7lre6X1OE+Y0nyRbYoiC0KGcMaCjPFxmL+NT1mSEkK7vh/mOUmymPHff//CWQQRGPrZqxkBG1AXEBQgaJVbhrlHFCghh66+Muv1pEU1dE/7/VydsiD80x//Y54vv3z57eVlzxBDiPNIBnEcxJGapziKrbFK2a5tgQMIwTBgAaeyG7U0SRJ+//FdHKbKaAu1UPpwPGuIF6uthxQTFkRBnMfV9aKnOY7iYfCr3TZdFJRy7/zbxw9qGimmoxiv10sQcJUl0rpyvf0DZ2MleiFwxIMwRoP77fPvu83N//6//x/L9bK5nv7pH/92eP383ft3i8WyLDdG2d9+++YR+G//y/8ShsnlcKmrdrtaJUGcJ3pVlqu7m0GoXz89V8fjH//++//tv/3D089PRuvy5raWc/Ppb+M0AgvmWQ6iD/J4nidGYcJDxIlH6Dr1WuuqrSehsCWUU+BBP86Tk6ui3N5uEQXGAznMUmvKKU+iSUynyzkkbBhEHupaNuf5hCCUSkGCPEDQs+VywzBx1lFKCfeztse21dhDBsd5Rj0Io7CqLtB6ZxWLQ+PBMAvQ1y+nM2SUR+HQjh4CiCAAYJgG40wYhlEYQYgAgoQxaSYScgSgGFU/TJdzxRmdpqG/VtaKNIiLIIYU9W3/8d1jkaeXpoqiwBospn5o24gyDLz1moYMhTh0etayqi5hyFdlKbRKk8x6iGaJKIYIWqMpwRFn0DjvjNHWW6Cth5hESUxoYuvrp89PSutytWABq88DB55GibfKaQAZUVL//vWpWC2V972WFBNImdGibpskiZVXnZDXZrAAtG3lnP74/rskK0aH5r4vuyGbRyc0JYRiTCBYLgs1z0ZoKecsT1dR6Lx9Op+uTRcFISfDDx8/IIiMlJfDIdqu4jQKOUmLjHAuh5FhkMb5d9//+M///D8IQiykUs7/8s//kkb87376A3C+udSvL4cgDpI8Wfzw1jsPoQ9T7r2hgKtOeCfSZLNJy34anDNKDkkaKpkA7xiGRZLESfL49q1UQmY9f0fDKBymoWnaGQ9zO1AMDfJhklBot1kcxWk7j9rrc3X69vJMAdnstnGSpyHb3ay00mIclmUJMR0GMWPd1k0/tLvNNkqi7lpzgm82y+1m9+7D+2rqz5dzHHJjnRinvmUa4antAk4XZUEo7Yc53WyK2xuPwejl+v4uS+I8X5zO58WqYGiXZck09UpLBS3LkiDNjIcI0XlWs73IadTatFWzXC/KVS6Esh6RIBRyqMfx3cNjP3Se+tV6abVfZVl7uOyfX0PsvVLQyYfH2yzh7988ABoY43TT//Tm4d33H2Yz1tXl/fv3jFExqnnovlz3u0WxWC3ebNZZFAYh5xBNTdsouXvYbLOiT0vw+K5bbxarMi8L7nyTNn/66cNqs96/7C/n5uFm/fbxlgeBw4ZY57t5EUTG2zBk0IN5nLum6Zq6qbtFuUAYbW9vYMB3bx/9ONf7Y5Ykq92GKlW97ns9NfMEJk+Dax4k2lgeRySOOzF7QrX1/ShmabWyxbJIs3y4VsZC4xEhdBIGD+P+dDm3DYmSm/sbJYSAsBKjMUoCE+eZcl3d9crqIOBBmmVZ6qzthhEhMs0TCyOnkBBi6C/r5WK1Kpqu7XR9fD5Odj5fL4v1igdRP0/geOzHUXkXUkrjQBu1v5wpJhJaHocchM4ZpWVdX9OguLm9hQ1bb7eIsSzAP33/kWACrGYIymmUIb3dPGgHL9dr1zTLMCuKnGHagbFXk7K26ydsAYeMYGy0Hccp2cSEsaHtnLVT12VxRDEt0vj/R8J/bNuWJIiVncltW4sjr37K3SM8MgNAogrFQTbYIf+cHRbAyqysQAgXT1151NbCtBkb+RVrrM6EwGxWZRxFXd1MoyjXWxRGl+a8SLsqqzKrtJBiUSwIvEOUBlmRSJ8xxoBBWtlF8ohEm1U5Th2YOaRwV6QxgYiiFUwGTBYpSw9dEi4BHt7q1oIgSaAy1w/XfB6evnx7lvJf/unP2yjCVboIrpdxtV7dXP+5njig5Kntjs2EAODTaKRw2gGEcYA9dlyIKAyLPMOIQOuBswgC6IH1LgiotQYCBJGH0F/O51GKfJVuVlWCqZVqnBbESLoqKGfzOEsp4phpY5WyfNHt0gkhx2Vs+zAP1jRi6/W6SHMIsbSWUCy6yYd4GId1VV5d34EQny9fz239Tz99Mpb/9uuvUZqTy6nxzrwej4e2vr59F8Ux9L7tmmmZSEybMyzT3f3+XVJWSREXGTs8PnVvdVkyNc+6q1+PR+Lk+/v3acimgG62D4AEaVYqqz9//r1ruzCMsiJf5IKADQj2AJabNTDgRY3n/qycOD6/tqez0KJYl1GSUkyRQ86Z0+ESZ6FGcJr4zLlQYpmmOKAZDTZJFoWhVmoRXIxTEiSn+uWXv7dhHEabfFIiXRV31zfOa+gRBXjohziLnFXz0Of73W69D5P8y9Pz0/F1VaXd2DnDi7xYldmqzKlDY48MQRraOMnSNF2vVgyzoeu+PT7fvrv9+Z/+JDlHWkYRw1YFDZiG2dv4/HJ4/faV0jQlIU4JBoBRKuQ86mnm8ng+Fuv10+vX3z9/G0ZOLKjSUI18aIfVukrzZLtahWzlHZwWIZZpGDqhOMYgjOj9u3sckDhJoiRo6qNaVNuOl7r11D/8+M5hTynABJ7Pb03ztt2vy1WaFdnN5gZ4qrUNyvp0Pn35+vVcN2Ecfvr0gLEx83yzXmOKBAL5qvp4e/2//3//+10e3VWRKkPN0fvdWkGEjH58ORJCrDOt4vWy9AsftaWacKmUMT2XAEPrNKWBmaU6izBgaRIyQrmvKUQQAEopxRQgiEmgjeWLDCKWJNk0dN8fv+3LVQTJpa6V0kmZTcBCFCRRElAMgLVGowBLq7vLxQO4rlbKqKabyLjM85RnGWGJ0YoD8PnlsDLlJKWz3mtDsI/jSApVn0/aGKDNrtgA4I03CACCEGN06AcW0CgJLNCX+qiMDgIspdRSJmESYdp1w7iMWZmvrqpuadrmmOcZC2hXzyynxhrnXd33UZI57yFAUcA262pTVVwK4PU0y7vtTZrnw9QTBQkiWRx6rcp0TTDW2sZF2tTdpAR0QR7m76/vpmmp9pU2SkOYRKEQioXR5monrHqpj+0yhia3AA7LqLXEyEXYzV0LCEqKghtrAQzjEOFinscgYdLLVvFDfRFGt8u4KbPNajVPwyzmvMy35ToOGUH+dDnYJEUYTHxYb2+jKHprDvXhaKS5vd8TBItqlRFGAADaC8nlzLf79c3VB4ToqsjTkK2361nx5+e3OMpwEidhTMK0G3sYAlal29XGWnM6H6WRm9UKAsIX0dWNdvb67ppLzvmi2WK4Prw8nw9v17ur7aYU2vaXM8bo4/2HOE27qfnLX/4dIQcZsQmBlLRWlMXWN/ry8rLZbFnMbnabc10P09E46wmBBAopFZfLPIuZB5RCQoZ5mJaZTzyr0mleXp+fxr5fVdXtu7uyXAOECCLrrFgl5Szk49urnRWN431ZpUkUY8qSMIyCYW7/+ltrnDZWJ1H47t0ddOTxy/c4jLbb3dQPXTN4isrNumBrEifTvFiv//Hrr4TB9fX2/v5mHuYIkz++/3C924hFE4C1V2yTFbebDBS/ff3l9voOKjCnsgyDiQ9am6v9DnlXn7o4zcE6DeJss17ZT388v72++8NHi+yvv/4aszjdJ8fXw/dvX4e+DsA7SgmBYVYwktJBqqmb5LIEKbWnDiv/n374mSszqT4K2c8PD3NZbeIwBJpZgcWQl3GaFlGaQwpuVwW/uhGz6uYRRlg7e+Dn+nRMs7Qqc0pIFKYW0IaLz99fQ+isVuP5yIo8yDMOcTuagZuuaSdu4jihmAQML5yPy0jnyWg1LoLgkCWZ1sRby6LSQapRcL2/hdbMywwAoIQQgtM07T14uRy/vT1TRIIoRDSwEHtEWFxUVZ6lWRgFRsgwy43W08JF0xvrKQ3iOFxV1dV+N/fj18fPb8/PNKBFXt3uN0Ecfv39q+zmq/s7RNHYD8NYI4T6fojDkFBknV5lxbqq2r5bhkk783h4Ns7lVY4ZzkPGlezb48P7+5ub7cgnQkmSxMajeZnSZL9f7/mwyGXZlqtdvHMYnA6Xfh6NUQs3u9vdSlUfPr6jlE7d0Dctxb7MkiSKIAXT0mOEE0L0IhYuruM7FsehyfKyTMPUSKUByFdrvohzP4CIbq7ubh8+RmHSNW09d6e+CTCXVrYDd/pYFkmcZu8//QAR8sabkn9/fURa51V+ffvgNWEsXG1KbQzGwAHriMMIjXKZJtG0DcAgjjE3GsyiTJI/fXxvP//enmp5uYRpuMlCPQjo/fW2stCdmwYTiI2cpj4MI0ooBMg4ZYzlXLGQQAKWeUYOWWeAtwg4LVTvlnHog4jtt/ezNZemxg5GSWSc77qRT1xOr+ttHieRmBdgvNae0jRNtkrptq0JiQmlgMBhmRFGgGKWxpNYMCZlVZ7rhrCVM9YvIxnncZn5xGVclqxIOTdj13ddK6XcLtxZC7hX87wghVB1t383RMnL9Ph710JtjTRO2fZYI+nHeaSAFFF6+/4DRrRuG7HeraIkiqNZyHHsjOJy8RjgKHzlM6+PlzxJWBjFRZlKU59e8vU6yrLj06uY5oDiuZlh7e8dREEwa9PNC9dGKwMMYDhAAFtlm1NNoNv9tAHBZlYLCrGyiiUsCKNFSsjw3I4YoIlPLM7zVdG1524Yw7CV54u2LoliQ+GqXKRWUUgRRECb9Xr7/u7u8Pp26dpl5tM0l0V+tb05ni8z/04gjsMojkI+dMM4sogBBHFAoihCVkuhyzzNk+Lx6cvp+0sYNOWm0AC3/ewgElJRFEDCPDKcL8djsy2LOIoVVyhPlZBGmjCKJV/eXk7d0GhrqjJbV9u8TKM8RoRCAsI0piR0AE4zD+Pw5v19kq6O37//9a9/abs6jaJ3Dx/iOEKEeOTmaW4vXdP3Mx8e/+1LkqX/9T/9J0bp8fV5nuaPWR6TUM6DbPoEgT//+OnHHz69vT5jY4IAI6s/3b9L0/Aqy6IgDhh5as6/fH0sEVMGhgn2GPTzIrxVynI5IwAAQE77ehpDEUUBDUNsldbC5ml6u99D751wXIooCjGiznsI4TgvWZQ8fLr9w88/HQ/nry/fF7VYrK2zSRhlRcyVkAunNBBK0yAaZ660IhSPcp6WyXkYUaa5yLI0CYOum7phklwjOG136yiKldSXy0UKlcbZ5mYDALg0dde22SrHEF8u7bLM67KAW+SMlUquqny932ELkiQpi9xZV3fd8/NrXubA2aZrozDOWEwqGsURdt6ZZRqWedHnvjPWhoREJGAApuVaKUOc3G13Vith/Yfb6yjOCEIImJvN3jl/rs8LXyijm9UqjJI4TYXQr4cTywIpuKYzBiBI6HpbBhkVs/EITsv4cnhZ7/ZpkbWtCdMIKcmisB+nfhGQRfu7fRSE88SyMoEEHc6XfhokMPXYRQET84IgwRgyFkVBEpCQIpLHyT9OzVE8rXfr67v79W7/+cuvCQvYdsOl2O/XYpmncRKmjwJSUYQQwR5lUVGVOYTo7upm6qckSfKiSMKURRFAbtazgYYVUbmvQhZAFoSQVX4jZ664kmJK4sh69fz9qT7XDx8eKArGdmiPdd92YRxLrYU0bdtgSm4fHnarq4XPelzWefHxw6e3w6XcrNabYuhGp0EWZks3Xd7OLI9gxO72u6JY/fb3L8OpCa0j3sNl6fq+6+akSLNtCpx1As5S/OPXX4uyGIc+QFRoPUzzuem0Nz99+qkqKgrouMhlkU7bjCUB8kkceYjeDqd5Wbi0XAqIYF4WZZo9fz+ZRRzeDhix9tLP4wAxWmZRrSCEKEgSLkU/DO2l3l6trvdXBsDf51+b06FY58ij9lyTgJarMl2lo+XH0/PT06sS+t39Q8gI3pbirK3UHpOFL+dvj9V6l1ZbAESwA0EUjMD1x2O+Wa+S1eVQn49nzpc4Tq72+1WevBwPb5dOA7B5v7te79KE2oUThy+nNzGZmMacy3q8bHabJEzVqF4f31abMmVJFiZT3VnlExptyk3fnCil230Rj8GiVBiFgcFj291/eIdI8NuXL/0yd+N07jp/QvvtqozjMA4mPk5t8+Xb13aclVPLMgNnuBQ0xKqHYuYEmiig/TRPyidxQcPAeTWPM/JAYgSADgmFzgqxeKODgC1Cvb1eDLTTLPg8Q4jIyCHFi9AaAe9gnOUe+nlZMIBCKmus0poLHkdpGkUYo4gFBEEIgZQ8jqPdepvn64iEQsoAU48ghBgiNEzTxPn1zXW13SzD3F9GAHTEoijJ02JFAvaX/+vv4TiV5Up1czd0+Yd3OIoKiHZXe4rg2/GVi3noBhxGu6v9drftuqY7tDEIiiyleTzwKQzZIkQ7dt7Z7cdNuk0xRtaoACIEIMJkWiZpZFFkNCBy0XzmWummGyx9MxiwLCryCmrz+vKmjY3CeBbj6di/PX/905//Ob+7B8Zh4Ke+qy91GCUI4m6YmnN9db2/olG2ruI4FN3y2/PzOIwWOJKm1w8f17u7uW0ogrLvH78/URb9P//f/6+x68e27y6dBC5hUZ5X49R/PTz9+NPPMWXIupRSj+nV9VWCkS0EIXi7WSVZVjcXKeZJiiMAo1QeARYGLABzt0zDnGUba7SceYACQkEMsZ6WZpi9s0GEIYL15TSIRS4CWo8HRGiAIEEIK6NZEGZFigCkAAghqSMOsUnKdhRRSjGLQIjGbsEYgN6JL19ZHCnvojweLt3b+ZJlMTCK4JDw0dgggDBYFjf3rVKKrVf7KN1sr7FzRpjnb7+cmmMQRab5Fw3AOIju3Kx3WZ5noadGmS9fvxNGojgcmt6Kf8xtPzRtENJ3D++iPF+s2WxXb5fT0+NL1/Tz+A9jPcJUAgHbOUrjAYGRGz7rt+X0dj5a7Xfbq7CK+ubczZwA93i5CKU1wIBgSMJ+kmkCx2We+YihObeHzXr7489/xNDPfM7LPEmCw9vrzMUiVdv01pqrjw9BFoFxuDRD3y9Sydv7D4xkIaTbtf/+8tic2zQIURiAFcizFX0XGT4PXd92w83NbbnexEWx220lF+fH1zhNfACaoUcz6afZCAkJJQGOaRlk4azFW1cDhGbhLA9YngTVqogZwZSx5I9Z0bZdlidd28KQJkEZ4iBIw8O5zcsSR0gojTAKg3CTp976l68vahH5tnTIszQKovT0+vr87fnq6tY48O//9vfteptk2TQN3gOlfb8MEPtNuqv7y+PTM3JYCOGAX283CUuMdt54ABmg7HS5rFdbjODxchDCvLu7u7l6AA6LQUvNJzkBq+/KMr5TAWbW+5zBFcZS2jDOq+v1t5fnz0+PHKFuml+Pr0oraT1mweKk1XoyitA4jkKAdC8WdToGhEaQKqFNQNpjgzGIwqCM017qVptPH+92f/qY/Lb53//7/7jUtUBERJFFGSEUYOQxRJRop6dmnvmMKfTARWE4TDOHC0UECh77CDk0CbkIHhAWcr2ovu07LWWAAwdRzyeKEUsCqfwwTzPn4zw5640Hs5bjNFoPiGCrYrVbrSFECniWRWVeDssg+ZImCRfKE7LeXWdxKcVi5EST6HC5nJtWSqW1SasMWouhQ8DyboQAmXESC09pGOcpixLnPOdD07TjOIxjVx/9w93dviqVVMyYOI7Y7bUDBpW5GqdlnNb7vcX60pwmrvi8OAXGQTjbeIqjOF9trkJgL68v3gILLITOW7VMyhqzXe3CPFXAjPMU0uBqU2ID60O7Xu8wQoDa2Ll+7IDXYpyzJK1nLoVhJJHDYrlZJ2WxW1+6GmNAsR+Gpjs0ISF/CCKIUVN3AMLf5l9DGiZRljIy1j2g4OpqnZXZ5XI6HQ993eabanNVOeCPly4iNMCYAlqfzhMftuvNdrWBCFtvsjiZl+lyOBntUBz6hNXzfDocrZK319fNsT29nbq+DcPw4f6HZLOynkklAxAHTs3Nsrq6IiDq+tZYKFsOLKjC9Kpaz+Oop6ks8pTQVrtlmnBAQ+3ztAAeD8P0/eUJXt4+vXvvIOzNcn7s266NGavSvG8HFiQBizZp4bw9H45Wyx/KH5OqOnf92+vZGC+kEkIWq1mtV6ZZhqbBAd5db6MwnIYGB3hX7pum9g1IkyTNsgYeueYG2nEe68vl+PiEEQoYztfrn37+YZpnqeXr67PVaug6JfTh9dK18+3D/SikdFB7//xWV3mKgmCapqwonfS//p9/AZxHIZ6W5vX5KWT5cOlfn49hlnx89/5qe6X4ghcNmULOi0mHuxRD2I2NXOZlFPVxMIbQjAljrCcsyuIKtNO0aLcuKhbN2Mo0Jl5Op6/ty+MTi7P93QON4wRHZZatkkJux/V2M1tXN7lQ8v7m7uHmvm4aQAx0hpKAeKuXUfYN74Ygia+r6na/jZPQOTUvkiRRnuZZns3O/P792Ri/LqN1mfTjcHo5Auv4YL7zQXKDEMqSJAqjYRCPb3+10Hhv95uNUWYSIx8V56osyzROjocj8JYAH7FgmcY8y/Msy9JkXa0jFk7DcHh6BFrEcbJdbX3hf/6nn4dxbuqLkOL9h3ea+0vbH7taAY+h49qEAeRGOwgpjWalez5lUeotTNMsiOnQtySkYRyNXJWbEAfk+XyICTXSdJdBOh9VxS65aafl+eVNKbVdryFGdXN5ezscj2eHMKY4yXNKEEP+/PzU1fVuc40JZUlybrp5Hv7rf/3P1Wb39OXppe0whtmuAgSIrsdaccSmsW8PBxolT4/fsiQOEdaT1BN/+u3r69NbEEAXwu1mS8JoGpb17c4alZWV0uZf/4//I40ZQ8Gvv/9uIfKULV8ek7KLksRZe7k0fOb9MER58uMf/ghWwax1gjBkIUY4SjcaIBzreFUF2G1Xq6Geoyy/v9mmKIgwhQhmebpd77G1l8PzpW9fs/a16RbnwiiCzncGxmF6td0KsbSyS8O4yDPGQoiQ0UbKhWVk7Me341EhV1alFrpr2oCx1WbTzGIcevTq37HbJA1DhJD0alQvxyMg1ke0d5L3U931Duo0y+Is0x5yPk5iGYa+zDIXEG5937YEBXh1t10u3fnYaogBhGm52my321W1X62x9L/89W9tX3snnHTN8QyjyGMflYly+DjMeZQB52Yp84iRMHh5eZXznAZsbLssi7MkhwCvrndUSWgBdaTt+0t9EUKEadpMy2t/ZHFUX85z3Vut7m7uHEDa614s++0u4PP50siz6/nC0jimIQY4ShJpzdNvv2kpGITOqbdzw+LsZn/LMEzDCHoTescgMJSIQAECsrJIV4UxzjgsgRdC3N7ceowvXT0rDgnBEEip4qy6Xm+oJ06oPIyMtzaQq2rtEJbQY0IYo14rZA1BMEiT7e3+119/BcBDGgxCOS8ttOPxOC/iMI3SmIBFr8OAaXB9e7XfXXtt+cwpRB+ub3Z323/7//27GBVjISCITzIgLI7ix2+P9eF4f39XrcvmUudpEpOg6erXw2uUspv37/K0erh9N5xHIfQi1O9fv3yjXz+9f6g22zwvqiqXUjrrCaEeAMqCKi1wABDb3N3cl2kGnTNKrdZF37feg+1uZ61B0AtuEhbJZSqy5KeffuLLIs3y7etXr43RIo7Sze6qKookSygMnTHZpmDWpjg4tr2ON//Lh5/CMJikbodh5nwSfF5UlrOPn95P4/D582/CurzKQ0ydQaMSQQCU4AZbCS2l7Lfffh2X/uc//0l7T4PY+hZgJKyZuC6zMCuLrp/atkvLXDptCBiXJY5YETG5CG7s4tTAl1mIqixRwAKAAsraYRjGnqslwGRbRQ74um5pQLIqdtCN0zROnEVRHIabdUUYmbVo6k4IkaSpo9Ra461BzuOIhiDp+84Tf/3uFkGolKIVQTge7AwAVM5oZwEli1KLswq4pu2SSKVhbKxRggcBGeZlWniay7v390GITs9vTdcuy5iloQVunpf6fAIOFOtdvqqgRdAZ4CHLs81m3Yv+dKrHaSyKnAbh8XDGxq7XK5bQdZ6GCEGlFVdJGitt66bmku92V9v13gJtl+WqSkFVEIKdgasfSoBwPw7GySxJ4zS5XLpxaLM8u9rfdX0z9ENIAwxwEMe3V9cW2L5tqvUKAji1gnP+cj4Z5yDG42VUi3z/4WOSlIi4MAzDmKVB4o3VRg19M489xH6c+nhdLHyZuIswXoYZQQohrvvOALhabZZlNtq2dX/pexxGr+cmydJV6QfFbzfbMEmXaen7buxHvMIIIQLx7e3N+XQGxq3L0hoDAEjKxBHAosAa04+jdH5Vpl6JIk3zIlttVvlqp+xfej6zaUmrcp5na9xqtfLYY0raU2O9Xm92YRJN3fj89LosnIsDjaIwpIyRkc9G6bqbsu0miuI8zmYhgMfO+O48qFGD/R54tF9tsijsx/bqdn3uF64ElypNEgzgPEzKKJYFmJL20r4+vhCIrrY7wChFZL1dN+dWGcUXYUqbJdnqn1ZP31/Gcblcags9iaO+62ZP1usyLnLFlfceI9gMQ3u+/PzzRydMU1+KHGFM86LgVl4uZ6mW+9u7n//0z9t9I9SitFCccyG+Pj4awcsij4ts0su71S6DOSYIEZDnSfDje+8cZeTm3Z4gRDzk/dR3YxTEHiAhlzDMGKFOqXHoCPB6mYuieNjvoQLr7TbLk++P37W3aZIM3YVg/IeHe+zMqe6CKPnw8eP1bhNSNLaXaeJZnFblNs2rdu5uN3uAUFnmkg9Pz3b/8V2e5JBhC/3h5TL0A4QQAqitHqfJAJOmWduNCCEAHQtCglkUMIKhh+j56QVqk8Xxu4/vkzzXWk9tB6v1brsNEOnO9dPj08P9fRwxLqxygGUpGnqsrbFeGmWB9RB6gKXWXd8HmCqhtdTEWT+Cz1++7TdbI1UchVxyLkUeBwQAKZa+a/g48GHIw2RbrZK0XIZ+4fyX337Jq9JDBwlp5/lQN4gi67x1kDC6Xq/W220Wsqm5qGWZ+jFAUd2PkFHtPA6DSS2xTV/Pp74fb29uIQKynxmiaZR8//rl8HKs1itj9DRNxug//fTHd7f3ZVkKqZq6b5pzRDOk7a+//3Jp65u7m7xajVqFAC1Ne0EgYSkOQ4AgYmyZ+OsvnxFCN7d3xuM4qy51Xz+9/ff/8T9u3t/TKAwYE1wNw5DPY8ji24d3wzQB5KukXJd9uVrFEFVpnCfZMs/QW2c4A9hKGSF0V663q+2ifd12TV3v0vzHH3/YXK/fng9wclkavbt7iMLUet/PfdfXhMAgAagygMK8yDEivFw7BBRwIx4Jgcboru1iSjVB2GJG2eF0scCxdSqAOdfdOIxxFDrvhoVjjNumDWIGKbmMMwloFETGQpLlBcni3ti2GzyxURQPwwhbHzA0DzPvp65vJqHub253+62HwSxkmoQ4T19eT800Pcs3q/R2s2ZaN23rILx6eL8pqrHtoDFRUhSrNZ8053MVp9t8JZR+OTx/e34iLFg0OVxGalDFSFwVLCYoAATSWYhvr9+eXx+zJPRaD/OSb9aEkCLLnPFvh9eYBcM4IIjS1a7KiyhiBrDH52cCDPG2zGJifEzoPM5wlps0K7frw+MTJmiaZ84XiFAQpxCCYbxwI63Fiot3d+9CFBEXhB4xpQPvjt8ex0VgRjEBQqm5nerDa4BhkpA4hWkWe292qxVDjLDw0rWX9gIDnOarBYIGwefLJWDB3XqTEeyMCwB2xvXjMgt59eMqAOj9x1s1cj4sE58FF2EVJ3ncDfXCO4zvitUmTlIxjn3fTwOHGMtJd+dLla3jJLm5u359ORzfXqTonSEIuDxNtRJFnvYdgMAD5K01wHkMYFUWNI4JwfM0EuhiFjGUAudQEFgArSdhVEQUKS1++Z9/oQG9v70Pk+x8EZSECgqugdFmQ6M0i2nI5mH45Zf/qb/rKMyo9zHwq7J6//5ms0mVMnXbAgiEMi9vNaDgz//5n7GDf88ri+HV/S3G+HhojvUlr6rL5XS5nLM0auoaQ/Rht009ubTdJOTiMSFRXqTO47qbvLOcL2HEhFj6caJp6DGeuWKT1FpqbSD0VlnlXZhnzjgllFAKQcgVt94rY5z1LAissYsS/duIMYIIYUbjIIoIccY4BBkJICIj599eXs51I+bFO//x/fs8L7u6u4xTXiTbJPLGvr0+qYVvr9dcL8dLc6ybfLVWXIlFv9QLDcMky7ZXt9uVvzRt1zWLUe08D8O0Mnp9deUcNBYZh2AQs2SF2MoDJGErtZib+tj1qzR1UollKTcljdJ1GnPuNDpChDdJGhGKHYgJWJdRim0ShcGqXEaBEHNqkYswViMMA0q8NvssH6deCBH6yEHAGLLOKSuXYWxOXR5mFDGtLcsSFFALwTj3jTCMRUWY2dlusnWZFHEcTsswr2RT+7e6KTdFEjEDe0/QJETqJARunrlS2nsvgPIQYhQWZUAoNYt2lEcYXsbx2PUsCtdFxUj5/Px8OHf3d/cYIyH6cREG4W6c35qGDD0kJIgSCxGiNEjCxCUEYehBU589dCwM8pCEmMRxqI3um954QiLCAsbiGEF4qM9iGW+ut2VZLnw89/Vuf7O93n7/txdl7bmu67opq+K//a//5fOX34a2y6NYG83bwRrjjHt+e8Uh0R6HkM5SeaEt8tyoX75/fmtPXtsAoTJJcRbMnF/qGnhgtFxlCfJWq6Wr2yhL44BKI7SVZXVDCf7l+9fj8W29K4tVPg+DtbLKqt1qH5UJV3o8jt2xH/l88+4aAFykaRZH1OPH50N/qa8fbiCGUHBIw7EftJoRAH3fCaGHYRi4+u3psN2VOI9pHplmlEZqsfDGrxNGrAACrGIkAFIQCzkLvuRFMkEPKY6zBAWMhSGlqGsvs9NX212Izbk+Y0+TONHCdM2QJfn9w26cp1GNCPuIEGtdN7Rt2w1Nt+Gbn+IUSrOL45ISbNW73QpRlmXpb3wGyD5cbas4cAhpA2gYXO12ZZa8Uf+yPPlp8AFC1NNpeEhplBQsZJ3nuMrKrLi9eUhWufb2y+/f27YbuXg5nOq+086tdvsoj/pzN/fjzd1VUsbtoR6HESMspdhVq4jRoRtOx4u1nmCsjD+33Xq/S1Y5CZnshRQKszDOEq60EmIYhmWaD6cjo4wkcRCyWSo+iTzJ4ziRvG+HUWq5v15jCk/14XZ3SyB+OSwznxY+3l1dMQTG0xFYyyg2TrXTuC42P95d/ftf//3Y1D+vijTPW365zMPYj+t1hcIwiBOhlPWABaFWum47a/zu+rpvl6GbkrK4vr8JQnI+nceZ04hdrwqtrRK8O5+jILy9vv5f/2//7Xg4Hg6nYeH7hxvgoYHeU6Stk1IkCQujq04sL4+vh7c3ByEEGEN4Pp5EN66qvFhnEhqf4KEbL09jHEZCySRLwiwBEB1eXpUxBEDRTaqbSUC0UVM/jMPw6/j3Dx/eb1ZX//jHP87tWXBBA5ayEEow6KHM0iJPf/3bP36f/hZAxPlCaLC/uk0oCwhQaErKbRyGsbWx1zn1JsTQaNW1Ck7DPJ+7Oivial1N/VJA/LC/rzaVdoYA6BFs5FiGUdNOEIE0i3m/jJ3YX++yVVLPQz8MTs/CGS41iyKAUNO0XAg+L+v1WooFM0oZbfth8DOyjgAIoScRC5MkWZSe+EQYcQRcmubydDm+HtMsvtqus2RNMB0XLpZFQe8UgAFK86S9NMMyXId7ElIt+G63K4tVEsZXVzfe6HmcvfPAWrsIaQyOo5jQXVkgaFkYQoz4p3ebahtgcjo1n799M9YyyvJ95F/lMi+b9R5CAOtzHBJndX05siBQnCPvkjTxACRlcf3wIUnD12+f3759Txgtw8gJh0qmtItJlq5L46zirj13zdhdXV8FcaqUEs7ePzz4gP7ll7/945dfPYS767sQk7rtp6HxexNG4bkZLAJWmaFuFWRRECsP5SSd14vkt4wFIaMBiWgYpyWMk06Jc1tfJgHDWHhnKDRGz1Jeb64ZZQiigDIGgjBmSZJgi8s4sTTwWbXMy8zfnAMsSu7v7h+nEXofBjHGiM9TsVmt9vs4CsQ0/f718/9Z/+v9h/f9uBjjHADQoyzOECRt34x919cXRlmaRowF+921WvTT4/e8LHdJNrRtf6mrLEXrKs+KyMTG++7cCaG45MCCcRgudSO1eH08EByQIPjpn/642a+5mOWkln5Ww3y12jIIg5Be6npRjtBgVea31RYLLdtWzrMdZ8roLkvD6zX3NkV0lRT5H/9pmMcwjtc3Vw/rm7fX1/1me6w27X5YrfK67Y2S//znfzYONK8vzBlsNe8bCiTAgZHKaGudNVrFcbK/3lyGQShBPDJCQeidsTjAgKD/aJuWxhqrjXHWpFnEoiiizHgntaOE6nkZlCzKwljNtSbIOOOgh6sgDgms8rIxru2mxo1BQMIwOvdjx+Wprdu2b+UskUlYGCDCnfr8/evz22szz9K6VplF22GZRc+hEhWNzqiGFnAplTGLkphSiOC0LK9vBxZSB8D17a3H8HKqf/n9MwB+mnuCSegtw+HMFXJOWn9q+vD78+5mvV9vtFGH01lqEZIgpgwhJ4epm7hKpLdgWXhAoTWGkcB5z2fx9vp6u66ow2qUUszb+81ms1PCDVwKtRghrdXT1DtjpVRJjrS3i+JaqgCF2AIAgdESelOkmfN+7GdtrYHIOJekGbAgypOxnU+XC6R4u9oEcfT8+Ki+yyhPbu9vsmQVERrHYRynYpFD0x0Ox0vTBElqUQC8h5QpvXz58lgVxc39TbXajIs8Nv1qW2KIAQQIobYfMIZVXgQskIvMi9xbfzmegoAyhovdhlI4TfPp9BzEUVqsPQ4stN6ZiLEsTcqyihNmteDL8vXz7xOX+93OIw88Iutqt9/tqpW7vWvDiBG2zMvQ9+XVlfH+VJ8NAsBCTNGyLOPQOmWt9gx5MAxe2yJLgQfOOYuhj7GTdpaiKJJxEZeuI4T0A7dwCtJ4e7WnQbDIBULvgJVaQ4rDJL6/e1DcvJyOG7DBmLSn1nuAMI7CuG369nJ+f3Nb5iW4wafLcZXlaZKZQUplkHcEk3mah3FxxgtllLPDPO3ILi8YV3qRAmHkrVuVRURo83xcxEQCUmSV9bZvWuNRlOX5ap3Fgfeo7frj62G/X1tpZmVGMvR9LQxHLv79+8FahCFN4nW+2jmKTk/n0+V4Ohw5l2GclOvqPwZjbAYvVBlFIUbamiigWtv+0oYswBhMXR8AuN1u+24ZFRfLeJrH9tToUalJAuliEm2K4lAf23HBCKer+Gazo54i5+M4HMYhpfTq/YdRcGd1M4wLN9j5mAQ2Co3gSiwVjCkEwIMiiYJVWRTFNA7tqVFQOmswDdIyX5T87fOXPM1oFN0WaYgDZwHD1HuwaNULeWp6iEEVsMA77ZwF3hgvtYmyfFm08heDkXaeBCGhRBvjIYjjpNBCScUI88IYrbZXOwiQlGqcVDe+hh2bFmGs69pOadN2o+Iyy1IBvRZceH1qLlwtWZbmYTgOizVqvVmVZVWtdt3QR5QlSXg4vjbty2qz6bth4XOAqYfwfDo/JdH1bs2CMI4SZb2F1ljf9eOXr9/LNJVidtJebXcA4+Opvlrv4ySDFnTHWg5czhJvSZqnbTOMw0BDygWXRgWMWee4kNb7t8NBT2JbFUVaeOmEFF+/fXfOpnFWN/U08TLzWhjgCUaB1X4Z5c1+O3Td5eWSxBFxRHMNEQlIkmXFIlR7PHMldldXu7t929RPX7427YFQ6JT0Bp3FWVrPjUYMC84//16vomxdrmLMRD0KLVZltdpu4jLHNLy7I0MzaiFZAFhcvPv4sKglimg/AgAh9NhrHadBxILeahgFWRSmcdiP09z1cZnHEZ2npT135Ne/fzYIawz6ru/6Jd6syyo2mCzzrJDDUcwtwWE5A9AcLgElKKDj2CFCt7sVpkGWhE3CsirdbFdQOyfN4fn7arValj7AeGj6t2e12qypM3qYu7HWRnfzwKK4yNNisyFhyIIYWlcGSQLg2+kNIPzphx//+YcP4zjEaWSce45jrfxiTNMPCKK7h+vmVHO5GO2m8Ze6Pl3ttn3TGOCy9ZohOs4GUbdab1dxEgeY86Gfey6jTnYsZgGJX55e/vL3vxrkN9sbS5NeWRbTjg/7u91C7eHteH6aP374GNzshBBPX7+9HM4c008fPtIykSOAMVNWXvrRWCMWESUx50oCEJfb85enfh7KzbbalJSF8zivyjKMQqndy8tlk1UkDD1ww9KHNnx5eqQBub66zsM8LBiLgyJL+/NRzFN7eIuiZJz4+XKOsni9WQNgaIiRhU1dU0ItpcV61fSDte79hw+rVfn68igmjpn1UDavbwvnHz/9UGbliZ7DMAto8PbyNHdtSPypM6ehdkITiPfrqyRI1CLHcSKEvn//w6E+vbweAdaMiePpFOeMYqKcO729dXWHvLv79Ok//6f/rVq9XC5dUaQxC530SorQhM67S3vhpr3/EIVpDDGehZzOX+w4ff32DQTwv/zf/x8sKalFx9+eHfE5S6+qXRGlL1+/89MlTqObPPlP726zgJ26LosTvohZ+yzfVOuV1pzPoql77HwRxHEURhAjjLbl2gI7ztwBNy1CeR9EkbbQSGCMjbSFEVbaib512mini3XJrRybfuaLiBV1Qflu8/7dj8oK9PI9DsK6aZppYCyKi3zSYuzOQmqHUDNwFwx56lZFzrCfRnkapvPQ4zCQ4zJOC4TQW7eo5Xg69ac6ihLvvJCcpWEUM60TYdXT4cl7m4XZdXptkW/FNNQ9gThJYwfwInW8zgEDCAVGcz4Op+PBAxVAIvvRSR4FcZamURB3XX05XsIkcl2/zNIs9u7mPmJhtdpGXltoz80pdE4u2jkSBLk2AcBhkQeATlwPEKTrPGPES2PiLLLAng7Ph9OBBeHuKlfavR7fijSKCF6mziF0eH0dRmEQDLPceRL/hzswS6OtcOrSdwD4U9cqofZh2LWzlsoRzxjjs2iGtu1nabXCYOBLLBdntfNuXKTmPIhonMfSWZZEVZVPUt7e3zFCxTRbhIHzfdNrpTkXGNHVptJW05BB5C6nszV6XNpxaXJSRdFemfly6Yp88/79O/xK//H3X7bb6tP7h6r49Le//zXQ8OefP0EIm7oZhymmmDq1TWM0cojA7nbrb3flqqJxcmgup7b98vmpuzT5uhi61gKQb1dpwtS0sDDywJ/7llu3WKmdQcoHYeAYk9C/tWdvPAQQYYA5p2G8zLJKo812SwLKtZyGJYki7vTIl7GfZqNvrq+UN2WVEUXGadJGAmsvXbMroVHCSjl13fVmt9/sDsdjEkVhVtXnpm7qrMg3ceKdg84M3ThOE4sTxAiimEYBIMAoWWbpvEyHt1pr4CFuhwUn8diPlKI0v8poVB+P9emMtdzf3QOCj5e6vTTXV/s0y56eL0lWRUlazzOTA0uiKMyGfmy7wTifr/d5sSY0VMs0ta1SSyckSxIYMaGVWLQx5uH+Lo7Y0/M3JZTWCOEgzNJumPq6gcY6h7Nik22LYntNI0qE5O3krIcm0Ea/ng7xPC3EXI5nfuG2dAr5Mqt+/hR9eg+DkFln5iiekyRO46vr3RgXXd0hBDdX2025HobBa2eJc8C/Hk/WO0TwPItL22Pg31/fQBoYK99e39DQd2J569uTmIM4GOQIptZyjT3CmEqpL207GU4i4rUf+jEiVEesPbdxyLIkv76+rapViJiYxqZtlIGLlEIJoH03jIQTGoVIquOhXm2gdLbph0nJNdla67t5GvmioXlpDmCzCYpwmdQkloCyKAzQCOWyXN/tr26uvn77Ps/z+dIsfHHGYgxZFMxW/vsvf6U0xgFGFGmlAQLO27qrIbZZHBESSL7EMdnvSuspQAhgu0xLWFZwVW2uy6zKnIFeeY9RfF1xJZRSTlutpTUwi0sNpqoojNLTMnkAjLNZngMAaRg5RN6ay2DEer+nQVA3DWBUew8xOV+6KVhYlNx/KOIw5rMM09gTYDAM+FJG1dRPh+NLN9UWxoBiyXWSVEVVYu2hklmVNe1ZeBtucoDI79++UkiyLB+Q0LDtneinqVqtioAd3k5QLcW6VM2JMnq92QrhQZQaCNGx0bMpwiAPYu/0p0/vKSEvx7fv3x5XLAyz5Jv8xq0gM5+Pp8ZQJKzhGmCptNELn8d2CEmQZOk0iGEaEEukFDEMAkS088RB5BGUal1kH9/d933//cv3qiqBAgbAt3M99EOUMODAMs4K2NvbPYJ6HAQNCAKwPl9W610AWfN66dpeiCViEQtYkeUgImkVlyhd+qjrOu/sn3/8AwsiYf2vnx+FWvKUyb5fpHUQSMnFYZnnLk6iZRrhAfxw/xDkkYbAEiiBHbsuL+KMrcanZy7Nue2vt7tqtf329OXr9y8vx/Pxcnn3w8ciz5OIQkqDPNYX/HQ4ehbe3d046yzCLI6Ekl0/aqHEMDhfRDF9fnoOQhKzDEB6aZrXYewEhx4xEkDvoNY5Ic6B/li/290Sj4DVJMDKumUZLGDcOOMMMuzb16cgCstN4bR9ez28Ph26lrNglJ+/kCSbpP16+oa+fttnRUAYIHSz3VrvIQu+Pb04DDdXO5amcZKkcZQHbL9ZD00j5nEcu75rQ5a+e/9us9l33dkbUxZ5WiTcmUvdOiHjIGJhXNJw0bqZpqu7Tb5eoTRieSmNen56/Osvv3DDiyxvTs3cT0rZl7djvtlFRVau1gjj26urOAw///2r1lZjGq83N3FoMEyTJMAYQ9A3/fH7cxzgbFWA//BAJ+eFncfZYhvE4TL3CMGhHzSf//CHTw/b7Yd371/Ow2+P3/Ii51y9HjsN6e27mzCAl/P56y9fIAK3766dcUbo/X5bFeXheD53nUHgt6/ftTMBI95ZpaTmwmlBgGMIL0rPM3cQzF6GEVNeLHyJWXr7/m5/f8e1PJ5em6FJsxVh4T5P0yydpr6pa0iwVGbsp0VIDTwmgTHtMvCIMURDAOe2GYOIIQznedmsyqiMOHIOQhA46GA3iVjDMo3K2+24jK/PL0M7MBIOC2dJOHNebTZxEBOKDTDLwgc+OxRqoWbBgxDSiJ5PFzFyiHGUxpv1ushLLc3lJBFAaZ6MkkuruBT9OEKEHIYQYgBdd+ljhwJC4zhPszgpVh7SScpL374eT3kShxGjGBtnxWzapT3X9bAsGSD9NFkLpmagCG7LPM/SSU5tPw6zEtbnMMSoj+gcxixdlXEca6U+f/0+9IM1tixXNEvP/dDU5zSKRq2st/04eoQkgpoQD/C4LPM0UoC1M5DAMAzrc20DIAQPWRAlKXY0pCFJgA1cHFDN5WVsGA3CJIWQEuLLMofO9pfz2NbCzLv9OojzYlXN3ThPS5iYaRaYYGM0DYIoSoQQx7cjpoGcFhYzAH0QkKrIw4AWYZURMoxjsSujODMWYkZXphBc3Ky2KjNxlQAprTX3798JIXyal2ky9tOhbcdpAgQnWQYcFNZ9fzvQAA3LMrVzuSoZDF4+P2Z5dbXftFrEu30cRGkSXV7faoiE1CxOwnUxcFX/8vt2u6k2K9e3bT/QAO9324jSpu/mbrLOWwybeZTGaOssAFmSG+u10UmcvfvwiQasOx9//e0f4zRvklgZdbk093d7RKnyZnuzJ3H6fPwfX7+/pGWBwsiTYOaTbMX1dp2GGcbYQ+8h1EZLzduu54uaxiXN4/V6TaPicL5M0yysfv/pISzzmM/Vdp2XVZqkUkoluFwkIQGj4bluu/py9e4hjEM7izhLhDH74uoew+PhRIOIhbEUkuHg3d1dfT4pQAMW5Tc7lMaL0ixNtYZOmtenC4tYFCVG2Pb1ggFEzr08PluGyu324/s/lFXZj/3h9RlfrQSXLAiSPJ2S6Flr5+HterXfXeH7+/1++/vnz5fm4rRq2nZ/fVVV+TRM1mrnLaZoGWTTt5eX74aRUelFc84XrqnjMiNhjBnwkABwOLwt1lhrnPfjMCmhiiykAH64v/PI73ZXm/2WIDrUtJ/Hc9+9nc8AIUYYYBgE1HmgvHfAzYJzLoZlJtawqsAUa2/DLMrKeOTL99c37zUicLCS90OAhu1mV+23zvksSdI041xsd7thHF/fXr0D2bZAWXLsp2JFECSd4c3QY0LX6wI73E1zEDBM2eF4VrXKdxvt4dCPIQpub3bAuIkvCAE5CWBtgJCQZhzm3d0+DEJnwTJPCAR/+PlnvkzT0HApl8s08XlzvefaNG23Wa26aWm7Y92eBQLZaiUjLKzsX16tEsh5hEGSxNvdRho+8JFa8emn9/dZ0p4uwIFp6qeh2a6qm4ebfp7rYXGUSYBwTBkl1nkWhuXq4er2xk7q7C/G2tvVipKgmxZJvbH25ftTYLzToiqT7a6KsmSc58CD/bqShFEWVCFtjies9Y8P95SiOKJ8EasoLv/0T2mWk5B5JeCgyO7+enN79fdff+fcJat0WgSskTXKWoAhMEopo87HAwk3LCGnoZlGwaKEQj+cnw2f7u9uN+VVf3n7+vX55fWyWW+Kquz5NCDfC2G0BhBQLYfXAxdTHIWf9g95VvLTebIwNWA26vX1TUiFIE7SbP2wj3bZv37+a/962QV5niU4JgS6CKEAoQzjPEsDRq822zQryu0GYjAPE0Cubut57KdpaNp6VZQOuJfzW9MOkIC7D++sg6fFDBJOxwsmwf1+979u/8si5ufTSZsRucDrNNqUb8d2GlsLNMHw9eVlmqYiy8o8IwGJkjigeGjm4+EwdX1R5EJOP/78h/Vqczwdz7x/a4/nut1W1c8/PqR5ohehZh7nKeccelWUa0ZIEseO6ElPvVh2293mejONQi3G6GXuB+3l3ccftre31nkhedO010UerPKpqdWipO4jRjZl4Q081peceousMeZ87gkjTi1aiSKOPLTV1eb+43vpdERCsUgIgTO6LDJ1tYHOl1UVQQ9oeD6ev712v780afXqIR7brjXDveVGqyTJMxpP03I6H2drKXTnfsQQXf/hPefjL1/+FsVx3/cY0zNEYRhAKJ3nL5cuy5Lb+zsUkvbU8MlUWeGlnDnHrPzzf/sXBP3x9fT9t79TT6WU13dXm6vd6fJ2aWvnrEX41DbTPP7h53/elSu+zKtyFaXptrz848uXdUz/5eefv/7ySzT01/v9xz99XIQ8PB/u726Rx2Do9+GVpzR0tpXKR/T1eOguY5lluzyJg/D26ipg4e/fn76+PZ/PnSSIBq5IYhaE66wIEPrb3/76+fkXDkwUVzFL1+EWY7oIXjdtuVpDRKwHQinfdSGFWZomVawdMB6TgBUkgBCGzBFCnQPeY0hplCUAQGfd6npjtDbeIWe98kYa5DwCcOi62MXI2SQMyywXViglpZYOBmGGFAY9l1pwb1CAsbc4JAHFYT/pcTkoLpTkd3f7KIuWI0cEJVUkvWilv/TNNM+UBMTC1+VUllmWFWKZLXYU5Vr4p1P/+NqVudqsbiHDh3OvgFuUJmGcw0ArO3CjveXAAamIDq1W9TgZQkAMp3bkTeeMJM5nZWac47MUip+6yzzwMAoXIwfOhTULhMsiRtBpaIRUEIJ5WfppjLOMISKFBBSnRZSxuKzKL9++4ZhCQOZJ7K7KqqxOx1fJpbN2ppgFAQhIECdpUSgplJLTOAUEs4D5LGUmWK32NM+sA8Y5LmTbNN0wWaDX61UcxFM/WyPLvGr78e3lVOxWQZTtru+qsmAUmmm22rKAOYSEtwSzvu2mZgyt34RhUEXpJssxfPr6lS28KoogDChERZwkZcHO9fHSARc4BLqpbY/f0jjcFDkLA+20kz4Ko3VVrNJ0qE+nl+ckSqogO4xzELKqLDT0Ex/7fpKzYAkDwBFCIPTN6RITmu629aUV2qyu9yYNTlJ4jEwUPbWdQhhbizDsh8tvv/H39w9ZFN5e7ZQxHhPedEmeSWPzgIYxHRY5KimBG+VCQI4hgM7SKDDQtlpRo0DCtne3NGBvb6/n5lTEK8bY+XLG2F1dX41CD0PNuaA9efyOheYOmE1W5XGklgEBBJyjYZAlldd2tfZ6upCQxlkcYYwh5mJozs+3t9cYOr1op6UTc7HKobfImSRjEJNxaiEG0CArhNG6vtTEgTgOsQPAuRAQb6wGkGDgkQfWIDmLel7aWtYHjEmapGnA1DSAcVzHBGEEl+74dYaULZJTa+83V9t0VRcFZSFGnsRsXeyyLLKOY+ryPK7HNsZRkmVA1oJzSqw3MInYuiwwDIyxizHjMEdxRGIMZqCs7icT0wBiai1omloaEQT09Ho8Xo6LNrMUFkAc2CQqhNFtfVmGKYqCMEwoDQAi0yJe345ZkVoIV6tdkjFn5dv5JMZlta6sc854g1GzjKUpQK+GqdN8CjCJoogFLAjDS3M2yszLlCVxGJFx4Ke67sYxCMJyVQLgx34UQiKP5m7wELgwzatss64izAiCgNowzoKQzf20XFrNZbGuijyPoiiJUr7Mr+cTZmFUJBz53rtZm1n7Vtrz29lZO4+TcKBI4kHOs9TT4Yi7MckjyeXx8QVCn/6HjCzmTkiEgZEKAaCJrIpyWsbu0gQMX93cXm+2m6ttZWS+iEvXzyMXQxtTBrxlAVxl2W5d6dQ15x4Y46JAQ0yDBBNnjBb9Yr2PknxzfX3z4T2JWNQ3fHkCcnZc6BGu0uju073RBjjYda0TbBom69HN/W0YxZDCT3cPqzAhq/WGRVEzzuLliFgsNV+4GMaZEMK2sdbaYKcRaKeJKDAu0nsMPBjnkfez40IDpDwZZo7itF8WM/StkGESBlmMMBrrpu96YVXMmJIiT8L1fn+927Msa5rh3//6NzEPGJFys5rH+dx1tEpkAP/yf/2NXzq3fYctvFvfIgC+ffl8PNfDIFEAHh7efbj/KIwFBBarBHo4TUPOWEVCAnAYBpgiwRcchiRCzdBNX36fuSJBsLvbd8fT0HZus1rt1qmOJ6UGYV8Op+YyIkKVVZfLpUziar2mFPfDyFQAgVuEoEEIACAE53lOMCIBva5uGYkO59PhcmZRSAgJGNluqpvdPmIUJAaUvhv7dp6UttYZqXUEcLJKWhkMklfWP7+8Xs49YyGlwbJMkMAf0xxqRfNCDojz+m//+G1W9jwM62qdbbddfay/fk+SVGiDpVqvq6HpXl8a5yG7v0miUGl5aMX7Dx8Ro26Wgs/HQz0rlcTpfrVC2GslV5sNDllWdJKr02V+fHqJtXr/w/u5FdNLD6CjGPkVvL17uLrdc7Oczpe6bedhYlEU8VEsS9v0EEAIwW63//rbS9ddPr2/DQNitcQUoAhZa9u6GU/tG8IA4CQvgiwJk5wCGJIpoIwRBjAM4ujm9mbm49Pz83a3u727Px3fHt9ODf/X9eYKGDhceiOsmidsDOI68cE+ydDd3fX+LgtLoLoA0Pa1JphArRlmm3KTxvFL1wpn10GyR3kRRX/84T6Ootur22K9/vzu5bfn78eu+dff/jbMfbla32wqpDXFdn+zlvTd99Ph3DZ5pKZ5ipvQOBVEodBGG6O8DpKAEKK0Nc5ZZJdJ9sNoPajWJcZYaQ0gHLpxHEeKYBxHAHhrXMICOUvBR4Kg1iYKouqqXFdryQUkyISa83kRi0VOWTvOS2CtuliM0KKcVLpX4v7mlvqgri+zmVkQNKczAXiT5wgzo4FxYJoWAMECTUxz7vQseBHTarXifSeMCqFrm3Z5FTBPy81m0GrS1g7L97dDFYdKWwHsInUYRcbyy6kJlArCIF9XWi2DUofvLw777fU2hXB2XhtAYpaEzFlbn87WWgMNpfTDD9czF7OUpmkoo45iI0xzOuOIrDYrrdXQ8JkL42wZJWVZGiHiJEnCVGirrQsRK9drgluj9NPjt2UZMcacc8E5RGi1XhvoH09v1irs/Dj1hKBdVRESBjSigFFL2r6d+3G73YZpdj5fLm2TJyWEaF5mLW1WrAGij8/PSZlW6xJ7pyWHDraHw9QMgJDQGZbom11ucTK7GXk490N7qTG5W2WpSPIIknc3dx65OGRhkj0ez8ba+u0yDKMPEKU+jljMaJEkk5uk4JAEaZlNy1SkURImaRTc7raMBPDhIyLEUzxZMcs2CIkSYJ4na1TIWJpE/bl+fX6NCF34LKwLFm6tQARf724nKV4fHy/ny7ZMKQaKi74flBA3+6ssTRDG57ZPk4Qwdqlr0LYUFkd56TlnSYIDRlnAlWyOZ4ABDmg/LXzmTi5ZGCMA+5kraYqrjBHaXE5hwK73t6kV56E7ndppmRYuHDD73YZScnh6nPphc3UTJZlybpBqmoaQBe93H8I4hhDMM7dSIWfHpm0IHadZcTmPgkYMjlAKuQjjvUsiNA6D1bbIq99++xzQOC1KPswjV1lEuZSZcdv15v3DD8K4v3/7ZRgGbP089K8vLwjDJI0JZEAu2moCIJLeAd204zBw6500Nqny6901o4y7/dvx8PT4XJXVrsi1tlyqu+sbTIL1qsIkMgYUNLqcz1VZxEngrKWUrNcbbcBffvsVWF0GWV4VPKAQgnkYgIPd2MUsVEAf2vMwTHxecETHRXQTj/MkziOL/NQN4zzM0wRhxhcJiVfQ93yq5z66sP1mgzI0z4s2vOt6jDFXWjtTFSWBpGnbMEDv31+P9ThMUxQndl4MRBAjGjCjpNOul2MYp1Jbbb1HRGq1cJFnKQiDXgivnAeeRWzW0o/AG0sBSRgrizTNcws8QKpabxhmQmsPkRbmNF2WZW7GcTpfTosgWeoZlhS+nbthGlhIKYZS6lmILI3CkGV5wp3qhsaBxDmvgEEIOQwccdLZQ3tmQVAWmZTy6eXAuYIWXfoxYnSTF+0waYjKzToJ8UDn81TzhcPIUAL3u92qqOQsX84XCX1eliiOlDV93RkpCQFlVSQsXK/L1W4VFcUyKsW9nIwX3kiOCERpVOWruR+bc305HMMkvn3//nyqj89veZF/eP8QVxvKJfn+fL59uINhLIx3fJn4ghBCAemnWdY2DDANqSdwds5MZhQyjhKtlPHWUKIU7iEINIcBQmkYMNIMg1+mxMRFVQaEjZyPs0DWrR4KFtCpqz//+qscOaPJ4e30fHwrymKzWhlEHMH9tKSLqPI0S6tVuErSdcfF+I+vm6vVokwvRCcXq8zO6NI6IIbmcnZDtbu+L2mE4mR1xVZFVazXQz90bceSsB+n9nRa+KSMT9cbZxRBrsyjw/FZyE4b2y3S0ZAkpR9Fd2lIiKIgtogkSVrmaVZm87JoC1BAx3mxz8/Q23fv7uMgoAQVac5i8vTL711X36fvUxZcFmWE0Muy1DwJ49vre4zJqe/7qfbWUIQWwW8eHlabGwx9QGOEWVTll74/vL5Qit7dv/+3339b+BTRCNFQAnTpOoACSqnzmkQsLau6nhVUCKMvX14podoJaxTFiBBSrFcOeBwEBuOX46k+nOKALbO0Dk3TQJA3TiutAiE3aQKNudquECHFJkWUQuIJ9hI4rSHGtKlHb56E4l7JVV54jI4vp7ru+MKv7q5YFKmJV+UakdDDBSHqHIySLAiS1c1VXJXjMFSrbQSDb79/dd7/8IefLIBvj983xYpBvN9sRzV76F9PL+1wqary3bsPUVrurt6v9w/57vZ4OubZOg7D09vrty9fwjS+3W6RA//+7//qpLhd3ziN28s0a8uFr/vL7c1tmlWXt3MWLUUcmDDR3vwvP/3B/Bcju/l2twqCAHhKrf+0X72/Kcd52Ua0bs8f391/vH7Xd8PXX35d31/dv39/7mVtFBeaa06RX23WmC5vl3ZaJuJhlqVJHhOEx3luu44xZqDGkCzTTENinfFep2kIgWmaFhhXlgWC5PnpIIUMUICQr4r8+vYqIDTPsrEbjdZZFh3f6kVJFNNZip4v1JhAKiUV59opmcexJ4hLOfDRWZ1mqYIOIjpI9fhWJ1lkAQYk0FoFET63rZDCexjHofdWWyu8JVlQkKp/fOnq5rXrz+M4cp4odG7aAGXA2ZeXkwJouw+1w8b7nIUIAO9MwIjUqh9GC1y12wAPnDHeeRbizS6duxF7q4WO0zjM4iBmh7a9tGOSaABskWdKCcGnlKV5Gmsbz7OYhgFoY7REMfPA993Y2a6Ik4glTgG9qIBivsztuQ9TlhUJjYhpjbXeAOOIr5tayGWVlaHHXljv+ypPQ+TVIoosb2fRnZrVtqKUsJCtikoJ83Y47laFs6Ab5jik++0mYvjxH78xjNa7NSPYST1zTpMssGjuppkNcRxX6+rcOEQDKfVibLVZ3d6/wwCHQTaJXhpNjQ6AKQl6v84vHTDApEVSvL9TXBJKYhYAGhya/vv5ABGkCfvh7vbDzW0OWQBIlZTdOLycTzhEVVZp23LZAozSKh27nmiyWq+8MVEY3FxtuBDKzEM3DPOi+p5gGhKHoHfeKw2217eU4LZu664vksQoXTdNnJXIAuR9X/fM2Q/3D1jw1aq0zg7jMjadk8Z4sL+rkHPfn1+gh+u1T4ydtIAQUwLyiIIyW6/WSrtjXUtp0izv+NA1fR5HyFi5TC+H56EVGofZdiuUOb6+aikebq4LGmIPlBRWab3wrEi99cs8923nHGjHcZVfSYgHqS1ASZRY64Ayeua18y6gKCQKqMvcQo8MzNfrjUJk9AAiILwR0hAURNkqK9aeRpigoiyjgEVh3FzqkJLt1X0/9XV9effwIw3hv/3bvxErHe/TcFtGKVmX8+W8zbOH6+tZyrpF1Wq9rsq7/Yb3yzLzuyztb7csClhI22bUSr2/ukKEADHsQnJ7tQ2S5HA+99NsAJbanU51tasCZJu2X7j0ADgpT009cR7ITto5YEFz7ID12/V6d7Ud++FU1zgIDQQGwVmqhfO344uUC4Ko74er2ytIMbRgmGdoPQvYpPhvX78NY6u98YrbmSvnnAMWWKnNwMV6vTo1vVIGeEIxVVoPw0QpRUEQYGSo4xOPklgCuAyzXIRaRFWmoxL6eLTOpFlWhYWDdBgvbduCABIaGOs0Jp2dL80Jq1k423e9HHgckDJlMWPpZl2VJTEAGhuURYlhQPu0SDEOtvlKKsECQgmyWiutEKbWQ4+Yx86RgBACkqhpJ7FIYDQLg48/vCcsUOPIu957lG3im/3+9vZKW/23//nreRiDOA9Liot0fDs8Pn4nzt3fXmdZQhCmEaahq+snt4Du0ozDaLTGlOEo0CSYtO27ob5caBCu91cffv5DlB4+//IbnXuoecForRw5dPVx7Ds+d0IarYVRVZV7552Eo+STgtSRMk8Yptq6YRL9KOI0AhBSRD0LTu1gMImiUEk19AOAwFkHZ7WqCLaYQZoELE/zh/uPGMPTy/dpXr4+PcdBWg8DjBlI4m/HswcuRAFJ03K7dc5d729SGiY4AFJeLpd5llGerRGY0etVdRvFyevbs5gGI5TX8HpzWxUxFawThgIQhwzDMmJsGAfqyY/vPmigIYJ5VXXjIIoMW6CF2G52b8fTNA0SYq14WSSfPtwufDifGzFKg+Hdx/fT1CHvCGWgWjkLlm4C3iZxHIeh4MvxfFxv1h8ePnmET8djFNAsS50DXOn60DA2brbXcRxj5DmfOwjvb+7GYfr8y6/7q+swChmkm2qdOqsB/n46v7yeu0WX60rMU5Fk7x4+kojlZc5Yut3sSAilUZSxzfWurTvgfZ4lcuYY+N12G7OgazrOl9V+m0Zs4rLt53aSE7arVYUhvrTt09NjnMXLwsu6MQ8366oiDjuDqlWV5CkX3HEtuUniFEKELWibpmubu3d3Nw8PyhkxLE/PLywIsjQNo9AnaRBQox0JUUpymiQojsI4yJOK0pC7zi3yerebBzHyBeBAC/n196dz1mZJNhnx/XRw0Buh+dDvqvVPP/6IARR6IZimUZJ8/CC5EvM8zTNN2PbmShr39vb22g8JDcWoWRSkVV6tV+tNkaT0+v4+TuLz9vD9y+ebdPfheq+BKVeZNNaE8aaq1MwPh7dubK03V7dX73ZX6X/73/qhu729Zpg9wqcvv357/f5U3O2urnZvxzdswU8fPlRlXq7Xp+4yzcM4iFn6Wcl9gOI4FFZ2bUtZWBZFnqdKmdfDCUC3rorNetu3/TSM8ySAwZTgrh9oGFAKx3Hmi3j38dpIbax12noHnDCMhXGedssopEIBxgF2zhmtCABhHAUItpeTsV5DzTU3HIZp5D2cpBRdk5tEO2W0oyy2EE4TR8BBAMd59soAhD3CXCivhPF+mWaFgJDSaBnnVZREAaHaWqWk9L7tmqpa3d9dE0Kcscs0RRFLkzhN2DBMfd1sqlURRf00WimBMtC4JGJFlOKAeoznYUxjakE89WPAQkpItl47o4GxfByDKC2yVK930FtgXH2p4yQMYKi8wxgRgDifteLTPFbr6up2q4wGzmd5yqKgvYyUBDSmvnfDNFoD7vd7iMCi3Hy87Kp85iLN8yiMCCGH04UlOYSQMvL2dhBSX+92GEFMlAWgqsp5GZKAUIyOjy/3D7dBFMRZSqIkIIFYTNN2oZDjuHBpgjSp0kgDp5yhYWgWaeXS1xehOIZIKJ3GyZ//+MembbU3eZHf3t20dce17MeZJCELDwiJYZoPL48/3O8t5Ke2ucq2aZJ64IepX5ze5rl1Zoib1br46acPL1++PX97qor17cP91dXWatUP/biM8zKoZX59eipXm7xM4zCKgth5T3CQp2nM4uZ4OPTzNA7c2lkY68GyiE1V5fmKBCyJo2bol3lGEBZZkuxzFkYoxBa4Kc/bYe7mBbPAA4KJV0pPfiYYzuOkPajPJ2edA0hJGSfx3c1twrDgPM0KaWjd9ed+istMOVft9iSMORfTNHRNc71bEYKTIAIQIUz+Q2CV/dAvYlMWJM/ssiBCnRbLxDnnYVVkVYEReXs9GuSlFOOBS+TzLHn9epKLcs4lYbxabZzHi5L7u4e8ysMgHLo2TPMcAG/d9d1NNPSe4bv7B4Kh96itD9gjaE0eF8YUP3x4n8apFVpxHlLat23CCPFOdI1WfJVX9/v7du4cwCLEUcAocgjY99t1SfHN7W2UZBmlL4dDwZgQbpJLGOBpHLwzECIupYMeAmytnY2cn+Y8SxlABONtXjGEBmeU4EAbT2EYhUa7li94sUPf5GlmARgWYSFWSiMPkMfjLCbOndXWiCgMAwKch9MiEEIGmIkvk5CQhcBCCIADIGCh86Bues5lFEdZlkrr62XRAYGQ83mmlDhnlq6+8EkI4azZbLdToiU3TdNQjIEBSYFQFIzWLM6iEC3LyKVYhpl5tIrTnNAIkoftPk5iaKFgyflyDjDbf9qtr7bLuCyTUFogYOdhAkGoqEYBlVxfTvV2v1bavp0vSkrjfBwzygIP4evhwiLmKGRlqhbNuWEsjkJ2+PJ8fDv6gGltRj6WqpLaSKMRRgsXDhJp+PfDtzwPw4DK0TaXEQXhBMzrW3P1cJsl0bEd3p5fQoLWV9dpVXIps3W5v76Gioth6edx6TnpNW/Ofd1N1iOSRTihi1MYIMwQ5wogJ7w0s4UNSNLQeauVsYuL8wRjb60FEMGQGOLHUbbTEicRYxEmCBgDDbot1yArkizGCIVBVG1uF33QXtCKTd1ihLczfKvPfBFJkFR5djqflFooBes4TBAiKCze3bfL5IC3EFRVVZTF49vLPI1lVG2vr0OG1DL1erkcz9OkFqUmp6I4McocXo9WgzRPiyi+v7tlYdQvwzjPfT04b7O8tB4t1hAu8jB+2O2u1mvnVld50XdLkWdYSj9xU3c4jj790x/jNDu+Nd8ev//67ev+ajM18+l4/POfg9vbm4e7H7+Zrwraj3/6ERh3bEdhrMT+8+Hx4eZ6u95YD62Hz6dzc7mYxSyDrtKEJ6WHLkySqw1+PB5eDpfPzy/3BCQswBEuq5CS8nEcQujv9jsa0t8ff9VaPDxskgAf305JmLCYbPJdGqZzP33/+rVr2/t+ZmXU1i0Lw83V/vnbYy+Xn374A4vZeejfnl8wwHyWeRg54Y0FXgMxz+ssvrrax4CcTvWlqYdpvrt7wDi3zmnh5q6nAf50c7td5TQkLGRKCit0P/YQI62lEHqaQm91USaGzVQ7cxpF0w3KUgLCiCnrRiUOfV8grGjYSw3jgiC0yCardlmWimkhGM3dZejHcehWm+rwfJymGQYBJvRwOI1q+e0fvyDt//zHf4rS2AgOlXTDsE8zXxYIOuiANZaE9PbmjpGgmZqpHmZr0rLMt9sFN+7FmIULrU7gVLCSKrTLdnGYfP3tt7o+r1N2aFo/Rds0vynSP7378HB9pSSPw+Auf1cR8K/e/v7W9to9nvuATF7NTps8SIRGb+dBeWUAMsLgkYextg4RwpIwsVJP0xQEQZ5m2ph+GIxR3qs8T8Ighh55j8IoImHIjepn7oEPGc7jGFo4S4cZWBVJGofTMrfj5CkSVorFFBQAB71WeZgoL7q+m5XMVhW0xBgztt12u6I00NZCB8Winp8OwEhr3W6/EtaqU0eYX6Xp1ab8sN9A4Kvd9revX19PFwzddl0i4A1yxki+6HJ3td+stFigFmqao4DSsrTC1Kdms1ltiiJjgXeQa3Xhw9PLa8lgdVVaA9dZprTzBmqrJNfaTF3bsyi4u7te2vF8uWitExYmOIgIFvNszMLCmNKA4KDIc0S9c04oJaRKAhJgKmehuAAGGG0XLueRG2sxhtqDVZmO1iGMwyQRgzufLmmWjPNooY4zJo2exqXphzxNr3dXV/udU6q/tE55q10UB0UVTIt+/PI9TiMWpY+Px9fDG2T47uZ2laVcjjENQoz/9vvXrm/CjG3K9TjMcplCGl3f7Kr12mEPPaYwTCP76eMPh7fXeel9mW7ou8P58vz0KNvzFEHvXO8ZixKMydqXsVqKsnj/bnezyp+fX8Gs1lGE9+vt7iaOU2XVZlutV+WpPcRFePv+5nwZm5Z3yxhfx0WRKyEux7fmzTCKo4CGaXg4vRgUJHF4vJykVLdhunD9t7/+VpTx0HVt31ar9W61ytM0TRJuxamuA+Sud2vljAcujIMkTFs5GciQMtI6Mw4e+u2qOtf92I2EERYH282GLwNLYhQMTdMd6nrx/NOnnzfrq9Pb0/ntZJalbVrk3e12BzEpygoFDKbR3/7+m3bucq49QYwxpe15qrG2hFAIXdNcQBKGURrGDGK8aHO6nJupiwIaMEQ9ikO2znOlxKU/T8Ow312xnPaX9vhyMEIXZS6V/PLt9yxJpeL/n2/fsjT9+cefsceX0/l0aWdloijerq6UVs/Pjy+Pb3/840/bKu8ONYZ4UeZ87i79XBQ5Ddnu7trRcJn6b69PjLIIkyxK1KKzEO+LKsQ+jkMu9evl6DAxWVQP47dvR+ghZdHt1TqahmaoMQLO6Jvb64QQMfZZsl7lMQBl246DMsLDQehp4dDpVRbORntjp7cjpUFZlmVWWGUv59ojf3N3Zbw7T5wZmLE8rzYQurZvjXPGmufXN+igNYZFEQvDgMXLIruuRwSPhzcuzLyobphoSLwzZVWQAM2Cj0okcUQZ68ZBLBoj5ggyCOAQL87MzXTpu25ZduU+CRmuQZKgm/X6x/f3OWPQgyRNvEcW+Jn3YpooweuyxNq1x1pzWW2yAJGsxFGcOAKNs6e61ioDzvB55ONkrF9vVlWZxzRUTp1OR6xRFKU2TKa5ny5N1/7rp9sdgCrPQgXguT4KOVZZ6oG1CNTD0E1ivdsCYi+vL4zCq9urcVCTUFkYjAT02JqhDcXKWdMphYTLCQKIfP/2lKYxCYlYnDYmzuIrFpDH42WSy6I0pixwxgtFCHLWOuUIo5jiZeQjX5ACiII0S5wD2nlr3chnhGDI2Cy4HrWVOkrCgFFgnZGmOdU3V1fv7h8ChJuh+fLtaxBEWVl5jJS0r8eLEIpGQVYUizHL22sz1QA6esRGCUZJCFi+ST0i8zwBSE5v58nZpEj/5z/+UdeX692tJsxSyq249J23bmgXhJmzWLczmhc+iUvdAAcnvkRRlIZZkqrX1yeCg4TFL29vmLAkC8u0AJCFLIzD0Dkf00hhjhgkGrrZZGFKNnCWYm7HNCnuHm6lFr/87feu7aFDaZxqZV9e37J1nq+y19NbmhNtrXLyD//5Dywgn3/5LPj07sMHS8ki5OlQT4pv1jsaRuO0yF5GGc0xGbqOILjbbhMh8jSt0jSOA0LRw93teGwub5d+fb5+uL6+2n779vnpy7eyXH366b0Sum7OAQzW+QZlKMkKYxwNIgKZc5gr3XRdP47TIopqfXV1w7K06fsoim7vrwEiv/76JUqzgIZhRuIg8EpZIbySAURFlsdZXBZr7Ehzufz6l38kCfmv//Jfd8GqG3o+zjGhybp4fDt03YAosQC0/fD2NF1vN7rXVZZpLoij52NTT4MiWEDClcRJ6BjptTh17Xq7dtY7AKMoXm83IQTWGj4LjFEcxvVz47jdlBvMon6eT33rGaCUqpkTTNM8XaxVi7KUYWLFvNT9s9P20lzGeXjYXGdxOk+DA5gyprn6+v3L3HUew6yqmm+PTTs54fOiTIocjrCbp7ZrsyTGATl1fX847vLk5/cPWZoen5/xIn786WFXRkbrZfksmlZpHqUFtAElAfEKu3laVD30iAaE4LrlDgDNZRywMGDeOw8xDpgwRnAhrEUQC+siCJRYtAYIUzUMAACAgXHaeBN6Ar2HDkEAKYFRyOIoFlJa7TTwHkJr7DwtlFLk3aQWZbACBgRIe++UMk474IQ2JAwCiJ0y87RwxaMAx3EKvEce5nE8OQedd//BJilpIA5Y5KyTWngIpZTW2yiOnTfjPCVZ+s//8p/nZRYzl0pxyRFEYVgEYWw4n9W4qVZFWSa+DCMmZm6Ua4ZlbHtEgzSNjaKMUge908oDGAUhTDyXImaEMYqN916PS+8BvF5thDLO+XnmmHpvNIL4fnOb5nnTtN9eX7BH280KY2acDdNQGQ0gXIzOMDq1fRhg5ex2u5vnWQnJ50UK5QDqllEbx6I4q0oA0TJxxUVAw/3+epomLb2Hvm7afpxYHC5cTMsEIKiyMolia611zns09UPbtatwe13eE0LHYZ6HRVnrAbm53WerHAF0+H6Yhg5bQ7wJAbzOyvXHHwEJPn/91RkVMVqUOcMxxD5J4pDRrusoxg83d5tq0x7qvqkTQrfVel0WiAYzlDb0q3JNCrrlBmPwy++PdnnthQsxLZKUA7gQ2te9D9D1+/cIBUVZ4ijNqpWG3jkvFD+cm9v9br3dlutVej4574B1Yz+OQ7fZras8oySYjX87n53zkBIaxyFONmURQtRd6igIk7wAhDb9MI0DElgZLZSKs6ybJq01RAB6H5FgtSoAMkrLtu5jgiMWGe25lKifi9U2KfKGd0JK7XQ/LcuTJISyMATOr5N0U5Zi4UNzCBETwzJxTkIWhiFlgXEWUYwxJgBbZ2c15QnVizJGjkt/OZ+7Szd2gzWm7msS0NPpTCFaV7lYeNs2BGDGqFZy7PpuGKI8cg5mRam8xwEbRm7tSQgBA+whmIwj0Mq2E8v8cnhLshxCIJXBkERx3i/j5dxoZcoye3dzu9tvurE3XnfjvLna3e3gNtsJBN4u3dulTuOAsq132huz325yguGqur65pWk0LfPXL19/+fy9ngUG3gOlNQeeIkJYHE8TV87Ufb8IAT0EBBGKPQKYUT3N89LiNXv3/s4ZK4XsxxFisFjpjLPakTSBQTBLBSnNskQZM07LIozz2BlD48gD2AxjQLGHTixCalvkCYFkUYoQ6C1wzqU4UlyM4xwwFjufBNEqLyODowrnLFqlRUKo5PzyepZW397cv3v3XhnFlVr6eeZL37bA+ZTTkLHNeoURsRgIY8vSTFy0XQsRSstMSYNZYADsxLhwPiuVxpGybhgmoVSAkHF2lirLacbIwk3ENJ+nl++PiFBMkYVumnvQ4bv76/31FZ96D5CjmANjFQ+zaHWz6Yfx9fU1DkJDsRzEqenyVVU39bfH73maQW1YHP3zTx/qU02+XQ6IUueQGEcwT3kYJowhgh1A0ACgrV8shL7IY4qx0SbLM4tJP/bdMHngQ0YJpgHERZHHLLBcAe+QdcovIx8v/eABeH57OdSnLM33znjvtAXTwmmasJgBhKuydIIHG5aVVd9PwkHjUD2rJBEQ0GkSRotmHHf3D4uT9TjH2caRuIfq/0/Sf23bkiUGet70M3zE8tsekyczqwposAE22eQY0gvoRjd6aImuiW4AhUp33HbLh5/e6KKf4x/j/16//hqkKJOEsSTauKjz2fjxejVOrRZr2jTeB+Gc8Fa/Pdtp3L+8Zay62d7MSsdwFV0c+gEluQ/ubAZpbRpJ3/ZOGz2pjz9+vL15xIye2tPnL1+l8je7uyLJN+tV3152i9X6bqWl/v2X31e3u6RMotentwlGjDFeNdnNejef+tfnl7/Ov1y6btEsf/r5T6v1Zp7mZJmIiz4cTgXJ/vSf/qGcGgHFpx8+Kavb9oIQ2myXEYWE0//49395Lr5nzGfAsTS/sLSTg8lCUWcBqjhg4c3peoYWEIjfvXt3d38LIMry4nA+7Q/nbhZS2V8+f+07wZPIGSUAEky8BzzJUEQAxojitR8mMX759y/Qo2q54Qk/X7sQQJoldV6f/JuazTiPy3y9qhetQd6GhNY3N3T48hkQsNuucIB/XDttvTX2er1sFgtKqT4e1DUKZ9v92XjDs8xJfbg8vT3vH+f7u8db542PiTIyyTPIcLLKq7rSnbiCM14AnmSQpayeZ2Agxj98+mk8tARTZZQJGjmU5Y0B/vlpP/T9zc3SO305n3/92y/b7dZ5u9ls77c3nRz/+m//PszDp08/0iRlRTWOp24YeZrlFJhg6+VCK1Gk5S4p5r/99eV4eLi/F+PICAQ4tqfT/omxKv3hZpPR/KfjZX963exWu8U6BjtNg41Be/DbZ39qR4DJ+3cPHsBeOGXd5b8L0kV6GHrtDKPcERqDB3nmUy6GeZRCW6ulDsGtlg1BaBpnl/GoY5AROk8Jp5xgyllaYK6E0waAEAO0LvgIIdBWQx9XqxXQ5ny5xgghiEVTQ0Kks1mdB+JYcMUyr8rUGnu5XAnlRZHkRUYBOXX9l+4k5BwiqZab5fbOeTdINXZDmmXL1Wqap9+f3hinP//8Z4PT1/GihQ7GUgTzrHjbn86vrxVNpl24fUhAmtzfPDql94fTMBkFDMZos1phRFnG2rbFEZpZjf1c5GmepGaefSBlXVYZw4R4xJK6Hk7HWcyMU+ooDjHhcNHUZVb356vXsk5zRrPz5VI0WdmUwYd+HM/HK+O0vfYgeArg/S3VUtI0WS9Wwprz0DvY7m5u8qzAGB3Px/545Syt69p5Q5KU5eUsJEn43ccHCOG5PWs97Vb1Zrc2Sg1KRIwO5xbMYr3Z/PiXv/cQPr++aCWLuiKcGW199MPQT21/Ppy8ltHOaZbc3d1naYU5gxTFjx+VVohGzuj+6YAuAwyoLBue1j663789i1mtd3eLRc0QnObr9XKqm5pVpJv6kHBMiRwUmW2J6c8f7vpxhhgfXl8jcNt1/eO7e6UFY9Tb2JQFQNyrKWMwYvL0+0t/HW8f7hVGPEtv0gwhBAM4HI5W6rd9GwNAFOlpxi62XQsA6If57mad8DwmzGOY5mmZFYCSv/z8o/H2j+/fn59fnTXLZXU5td55FEGR5Yty4ZU6Dsd5mLI0TSjZrDbLqvRG++C0Vfp0mIYhLxhLmklo70IALjqz2dzEAF7b66ppPv788+vLy9T2AcK0KvOMG6lBjJ9+eE8wEpMKUVMOizzJ+fZFmGVZZIyGLLXTrEK8Xq9Zma+3u3EYhlFyTPIyC8RNSsHoIYmEoUkK4TTIsIEuX1ee4vM0TONoYkjLPN3UCEToYnc4qcP+P/0v/xPPMmGsCVFFyKqy0/OoRQGKbjTduL90514ogpNVvmzqImfoNI5GgG9DayHgdW7EWOa5EgMI4P3Dp4g4JtnDbrssVinih+PZIGiAO57PCEGA0SSVMM7GoK2khiCMEkKRR+ObQABAbROSnA+nf3U6L3NIUVoUb+dzrwVmLMvzV9Xb8ZIlaVQ2c2y3XQGlgAKM0ohg2/UIhaLKMMbaem3dNHXauoRyrx3j3FrLeGKDBzBCDMssL9M8w8yNokpSgglAqJunwQUzSymlBz4SXC/Xm368dNd+Gq9jRzOKIQAEmuCPp1YZHQlqVpvN7jYQYmPU0iZFkWSh64dZDFpKpXSScSVnraRRCsaYl9nDZrNalwjG4CNgpjBBDtNwvBSrerGu04TNw8R4UldFLMj3eby2nQUYUxxhFJPqrm1/7WIqTFVSTsmmNNReZaesmUdhtV/UzfOl1f8axDQRx5iPgVHkXNRSMRdXaV7XjbW2b+exmxECWUJzzpKEamkLllgUZwwA9AEEHWKSprvlOqF43TQ0kmCs00paMWn51y9/OOdnPQOCAsGXYUAQKSVCBAiyNCuyLKlBvqRJXuYy+P3xJI0JCE5OP58u/SgWy8U4jD5CRDC08d37dwQRqY2KeoquH0WnLE8sxaQ9nwMC59PeW/N3LL2928UIp3Hsx1FYGydJk9ID1ktV142UvRgFwKDJEp7mUouSsTTNAaPH02UU8ihkEhz3WAboIcrSrO+Gfu5pShds2aT1uln1qE0ZJSDcrtb1Mvv6+nx8bYHRp2+vzALgLAKRpWRNl9HjYANC5PW4H8S4rmuQUcxThIjSIlrbpDxdV9Q5YfR2uQYgfHv6WgN+u11qbY77p5hQZSVhFAF0bfvZTDRPkqpQxo/tOM8icBIZcUZhDBPOq6JAEPoIMMZlXUTgggvBgstlXCzqxXY7tANNE63V9fuTcdJ7y2nBeKqsvV6vQ9s+3N4lefrh00dMAU2TJM8IpEba/iwuxysrWcaI0MprN0rRi3mLd54QKQS1mhIaGVs/3HZGfv3+7Jy3IFBvoxXQi/5yXDcVI0jJue9BnuC7m/t8WUOM9ewBBQggnnPrQ7CKAJ9n+V/+8pf2cD2+vhyP/Y8/fMxoNooeMdI0VYgAEdIsFj7AduhxQhOedtOgvnxWxhz2h8mpvG0xgEVZaKm2u23TLKrFkiQ4L6oyz+dJZkX1H/7yD+8efjie9i8vz2n2cdUs58Pp+7ff/+5//KefP/3p/kbdlG+nqtjdbX7804/WqMP+1A0DRGyXVtb5iHg/TLMWP3zavJ2Ol2uf1WVS8OtVCaUiJXM0SkomeKBxHqd5EiY6oSREKAMh8XGeJIiR5QQGUOVZkaXKWGXGa9trbyCC02hmMTdFwhCmhORZXtcVYWQ+XS7HU5YXZVkF6Luxc856bYAPALjl7qHIUylmStA0jphyQhMTXLDROqeccwDASWDGQwzEB5xwae3r4dj3/TwLavH3l+fZy24coUfIBJYmEYZre6FZ4gE7daMMT9kizxLutRkG4XxYrddVVWspnfOEgGAU9K5M0wQjFHyZsFkphiAFhEGeJoQtqlnMh/NlGsXNzTbNU9FPYupS/GJKAX14d3ODIEGQEhBN9MC79bLJs3Sepuu1o4xiiDjCnz9/5REWDzeb7RokZP6qz+eLCyGvKzOrBGFOiTFmPF48sOubDQMRUMpSDhBEiKxWS4ojwWjoOq01y3Ll7d9++eWmbv7zf/pHkmd/++O3Xz9/4YzdrHer1YKzlDN+uR6/fv2ipNmu1umyskr3kzIGueAmOVkvy8VisVy/fHt6O5xrXhgdlIsPxaMS5uX5OQK4XC5Xy1Uk3iMnTP/68uKOjjXZMA8MJ1hBYjzGNERvotNCvjy/MYJ/+PA+4XESapkmu/X69t278+n8++ffEk4hZSlDxd1OzdPr85ylfL1YpDwzUkdrCYQJS40xQzvmKYs5mJWSUg39UOYJjvFNK+R0dLEoFnqWFtjNzUIHq7XZ70/zMHPGATTa6LouOEZyGLEPBKFISMKSNMuSLMVp4owZrp0JPkBf17WSerfbTLPChD1+/IgQ/vLrr87Z+/ePdZ5dX/cpIsWioWkKMYWbVbC+ZKnzelHl948/GKPMPGur9TR+G9sf4E/exLEbA8bv3r8nlEYIiywjIDKMyzqrypxTYib1+vziEXy4Wc9aH/aHYZrzYhGBm6walCIJ45zNxqpZLKvq7vHe68Vqs8YseTscu66HEeV5vr69ub+5Jyj+23/557fXvfPBAvif/tM/paQcDpcg5pqw26r88ebWIwQSKGjMsiTnKEj77csfAdOkyD99/MQZrsoiZ0mzWiUZb9uun+br0B/ay6DUeWg7p1NGE85A9EbOs7D3Nzfbmy2DKHpsrc84TZOUEyTlPKleDhMGLsmzCAEIBmM0DXOWMELoelkSTDsxIIeTNKvrCoNgjYUA5llOMQseEMryMs+zPEZwOV9nMZdlXmQZhgj7SAh11httVjfLwcr+3KUswZxcLr359ddJesJYtVr9+vmPQEDVFNPQX+apSDMxSWnU7cN9tVoHb4IxTVnOUBttEccuei0NAjFJWPBu7Po0L5IsiR5GhGXws7cYQ699e77oeV7W9Wa3rlYNTpJxHKdmLLMcR3huxxhAiKFp6rxupPOHtyMyflnUKafAuNFonEA4hQ5em6KKNry9vOVJhih5Opyi96Qbp6LIIcVRhoTzIs0zltKAKKJpU98tVtGFWfRiHEBgm2bVNIWw+nIxBHiEEUt4liUpp1F7Ncp6t0FpoiXVgwveK2u0s5ESSADizPjw8vpkpFlUzU1ZMMwYYNt6me/Y6Xz69vbU9ydrEYVYUIkxw3k2A6tp1KP613/5l/cf7reLxfXSzkNP8pwnqcc9yhKaF1Kat/7ME86rykkxyUlMGaF0FMP3t5c8S3++/Ridm6WCCZHAjUFnCb3ZbIssSTmdJ12ldL1dP5/a1/N5ivG//f756k2WpofXfZ7QpCnmQU5KFE1lNY6AAMCq5frDRy/FlLN0US+8izzkwLmE8cvp/Pz1W8Tw73/4x+Vqdz337TAABFmaHtq2WNTrdw96mv/3/+t/m6d+6iekw89//und7YNyalMu2+H69vr61OtVXQMAnLck5xDAssgRji/PL9Lpu4c7OSvlo0UOZvQixNPpZOWMnEt5tvnwQ4jxeD5hCv/00w/DrI6HNxQhJPj5csmpgAGMWi62ZQRwbPubzW1erRDPx9PeWzMN87as6mWKqrJYFoDDQGCAARJX5FhLG6VcpWnF02sn/+WXv05irpYNoCh4d3wbQgzDMKZF6f87GWAcA2jbVO/XdYMQIzyHsFnWCcGLpkQcSyUSm1MQvdOjbHEgPOfzMLlp3lVFtaxTCDTFSYrSuqYEjPPlfD7c3T1++vQRff+uxPTjp58+fPT/9su/D3ICCXt7/qoniykBKV5tt2nBpks7tmOapZiAqiqNkM7jzfqmYel/O/zL2+vT3//5P/zdn//yenp73n99//79Jt+Kfa+c2N59MBH17WuVpPntQ1akUNkE4ASgRZpvdnfbVV1lBWH518/f+qkv6/K5zr8+vxZ1XlZ1HkAn5aDV2F2VkpfrRVsVjPMhRIx0CCGETigegXSeApw0TZ3mBUuAt6e2lUo7awnFUgjZDy64kPIkzzDC1odz33KCUYSLPEcY4wA8DNpIJxUw2mlDkK8qHmMRdMiylBAqpI1WW6UIQ5/u74V1z6eTNCpJCCU4AkcIwBjt3/Zimtfr9Xq9EtoMXSdmuaiXacYohNqaGD1PC4q4llqer5mT3quxnyFjLC0CxNrZS3s9H0/3D7d1kScULTfLvMjkJMqyKBhDAGrlvp5fkzwPVp2766DkdRildYtpyhnLEXJaSz4RBHJMOWWMJ+tNcxXT8/6JzzjN8/u77R+/fW0Wuzwv5n4KwWRFZqwxVscAKOQgRKm0AePUTSiAh7sbVlE923GY2y/zQ7xJKHl9eZn7sV6U//B3f3+/+7nt+2/Pz2+vxzQri3UVoLfOhAj2p/3z23M3dRDTNMvzjFshnWbDOEltHaCtdOp8id69Hvt5Epjj+4f7u8Vaz+qf/3//HEG4udklNEUAdtfx27fPUkkrVVMvllmhRa+jUlIqba7tXGxyDlkcNKYoYzlN0snBPw77b/v9crs26cJEIEg+gNjK2Q3w5u5dmdVjP+QZrasVSTIzzEMncPRlkkQt979fOaKMpQTF1WL9+PDheDz8resXy6ZOyKikM2q5WGwXCwzBte+9UX0i/vblD4Dh9XJmGYcwMkKmWRoY3j3cSiuvv/4KjVuuFwSDqqzrPLfGMEqmUbzt3xZ1Thz22tKUVVXjCfr9989T16036yTNMgyHaSqzJAAGA0gR3dQ19sBCMI5ds1jeLhdG6jDLsb/6aFdlkhdZ243751c9Scwpi2RUIkuTJM+2m43Uqm1bPU8//Pynpi7HaeSIPdzeBR0oSRQ0eV0uDDBSa+3Gof/+/AwIDg6UHHNG5Syvx2MQ4t3N5u72EQcPvM8yftwfTrOG2+3Nw22eZ8EZxiDxvuBpJCQayzM6jnaa58V6/UP+cLN4qJrFrMZr9wohSDhp2/Z0Gg6nDiEgRPfly7Ft+0WxfLgrC05v3tUMoafn78N2RfO8k+KXXz+76Berpbf2tH8FIP7D//AfHm/vCcTzIC9tSxhPEn4Onm22uzJ3AQQIbYinU5tRtqhLw01dFtFFEClO0tFphmBRFxHCy/kiZ4EgogTlSZqmGQygqPL1ahU8kJPWRmOCm6oBIXrrMCH92AEapXNaqxl45VV/Hqdp8ufrRcy32513vlMjr9PJWgvwPE6jMXlelMus2dRZAo5P+/P374AwIbTynnhOKUkIIghqpy/d4D2gWZHxLLigtD11o4WGIjBdejmKMimWq21Z12mSjVL1w4hwDCDM3TxfZYqzLKM3N9vd9kbqkPtYENwsGkJxe2kv/UUZlWB+s10klDmpEkq70+nTzx9xXl6PV6LmGcUQrMUI11V1t7rNERXjFKMvy2JRL7x1PlozquCAUnaepQeRE04gkiY4FgMAsxDARjHJSapgXQjBBpNVRZ2Vwzgoa0N01hlKOUAIEgIJts6OQ4+dW7LMOq/HETqbMA48oJQkeTo746EXvcDOaSmIt1aakNrgnfMeQSCVMs5J56JVJloVHUFsfbspKKXWj+N4urbCSCEFJoRX2elwuPStAR5YOA7trmwwZVoaJSYxDWKaEU1P5+vQDzq4l/NpMPrx/lZaa5V6+vqS59w6+/sfn530N812HFRe8GkS7eVqI17dbOarXNTLetl4K4+vBxeh065vJ8or48IkVGQ4L+rXw+nUDQGi9nAw0/Bwc/vDp5/UNB5fT0VRlk2FXKQeFXk9yH7fD17Zusj//Ol9VtfDrF5e30IIwUWlrFRaaX2z2mZJcjwen/cH6AIOYbdiuzRXUl6P5wBsXhT1bgdTjkJU2hzbHrh2s16B4MVB8gynZVU3q2Z94xi56tGdQoTQR6CNnmaBGAnCD0NbVBkmvt6m0JdC6U2yhYh9PxzPc2sBcN4PRqcZ08ZN46SUwow3dX13s3PGlUX+cHOzacofNjshRIgoTbKyygmD+9eX/csvq83p7vGWQLBc1HMrv/722Ue7XW+yomkv/X5/KNKCQIwiPu73wZrdapuQDMd4t95oXVbl4nw9YULykuVVvr8cLtdLXTXv3r2vt02WJVGYy/PZRaD029ev3xGKZVH9x//wTwCi8TS1x/YP+Id4NN9fn1+fvycW+LWU04zSxBlwvLxeT8cyzZM02b+8fPn197oukzJP0rQ/XZQZP97eA8jv73ZJB5Z18/F29267OhxPdVn+6fb+0HZPpws08crmepkRBqd+CtTb4GFGpTHD5VCkCeEoejNPfZaR8zx446ZRpDxlaRqcl8oqZwICxgeIcICovV7GYb7bbn56fC/nqRvGiAkGkKcZ9AAgkpY0evN9/7bQDQcpQixGaAMo86SusmgtxLROa+nBy+GitZtnDaHnlCQJL7KMRtRkZZ0VjNrrMBgSpTbO+ypND+c2zxJtZwwEwjChFBCsdZyNw5hN4xC6oW5yMU9Kaj2r1c1OIkBABNEGZzCjnHMYoJwmo9Ttw53A3lqPCIrQX9uWU3L7YXmzaFiAfdsZ66oyX9Q5xEjDIPR0OJ32x+PtzS0mKM858N5oM84TBkADOEhZO7daNspoiqjFUUc/Ae9B3F9OhKI0K0jOx2k8d21TVNr5aVYIoXkSi7JhlCmnlVYR4l22bT79AIQ+Hk9j0IQk+WIxCWV8vLbD9XgKwZfLipMkan98ewXEf/jxnbLq+9tL2dSbu3sT4/F0+OVvv9eLMquq69xHF2YhJzGNs1KjegyoqGtt5Nv+NfiQs3K5ud3cLZoin/vBGstTCiM6X97G+TTpLou5gbq/dDHO727WJAY9ycPrm8qm8XpNAF3nBcsy/uGDtQESlJXs+PzyejgbTCiEeVmu6nJZZU7nTZl6pYs8aVLqZ3q7XGwWtbOGghUhCMB4PJ15ygGwEFKKYDuNEKF6WRNOoAcEI4gw8FEpQQllPPHeuGA5J1LD7jr+6adPi7r567/8G6KwvtnWy8pYm2AOjO8u136cg7OU4qlribXeh7Io365XF6wRwkcMfQQA4AC68/DFf354vFHDxAD99P7nZr0kjFbVMs3b/fH47csXyihwMaf5eB5kOyIC0u0qGp+SZFnVvZ1SyhebdZnlMfzL4Xr9/vKKGK3K2jo3DmOSJGmWaqHmXuD1tmDF7DwMJElToIOS6rw/KjEXnAEXbtabxWpJ0sQCfz6/Xdrz6dyKWeY0u929KxFw3jxs1tvtDcVMa3Xqr7/+/v3L09u3378GEJwx8zx+//x7TnFTpB9ubxNrl8vl7ePjZMyapLPS9zd3bdc+A7xeL+/vH6uy4pTHBhx4cuku4+HNXrp/+Onn3f2t8fHads8vBzqDNKV/9/6HhGGWsG4an19PSmvkNLSmSZYERIMigIERaoSUCCIIIYDdS7c/HhKe8SS5Lx8hhpBgo/T50vIsoRlvh256eqUJUVYZZb0HvMhzRjVwh/4UIZyDfn4+N9Vi0yxn76Z9W1Zqd7s4Ho7j015Oow9ACdVPc4CQuUA4oTlLCDOjdzEGgLTzcZ4jAErpfvaDhgwB7EBTVVlSGO9ejwf9Yrp+nKSomqJpGj1opV2VFWW1KMrKGu21i85xhKssZSkjGFNOQvQppwlnop+qovjx44fudFmVZVLy45cXwhnGwQHreEoQCH0/aMgwQSaC9nL5dr5UaUogZHlhrbuMat/O29tNWa+UhW6crI5K+QR4Sol1/vRy1EYiBPIqi2lKgw8RRx9iiAgmKctvdw9tf3XOt307DRGtNy86eCNckFma/PmnP6sAxnGWxjkfLsNYNLlH0EGfZ4my2vWdQyAy0k6TcZGn+TypfpwQgQzzgmWUoDThjMHDcThPg7WWepLTrBs7G600WncXzKjVqgX9ub1EbcZ+mJVM08TgIgC6W9+WAaRZfTpfTvvj/W6NjL48PcPNworpej4jkmjgv+/3ecmkkJwl51E8HX+L0b/7mBz7/jp10zinm60Yxr/9+kf6eiKMC6M8gsPQ8yQTxqjDaf/y2iSpR0kkScC2HYTS8XKdVutFviw+vv9zW/bWehgCjTgv7m7u7pfBeIC6aZZGUYaFti7GXsg4zsM81nXDslTN4tC20Yf+2l0v3SjnTpo//w8oy7Ovv3+V2pSLmjD8eun1LGN0797d3K/vIM+v3cCXxTiNvZx5yi3C+8uJItQdnfe2n4fNzerh9t5Fop1WUGYsyQjeVPz/8T/+4/fT5W9/fD6P4yZfTloFF5f1Ynu7QREjD1gJEQDcxIZUzS57fnkWswhCXaaxaDKOE6jg+dsxSnO7vdlV66fL0/P3p8hAtdyE6L+f9nKUGWoxw+luM85ztDa/y6ye99+vi2ZZEnZ8evm3v/2mUfzp739CHKc5ZxRTHEhwyDrZTvVi9fCeSKleXr+2x8unx0fq8Hm/3+0e7u8eIIHjOA+//e14Op7e9sz5+e0yTVOB198/f26Hi5okw4RlWVoU1+vVX4ZP221ZJf/3//l/TEMflMuW64CJcbAb591yVdD0YgOx/rZZFJiWAG/T3CP48Ok2Qv/1ty9qlghjj2I7Tr9+/pZXZb2sZCelkIfDXlttlUKYRkKm2Y7Oa0pFmltn5SRG73NCvVAc0bIsEUcJKYFQl3GIGJkQvQnBu08f7se+H/UkHYgEd+fJeVs1efrfSz1jk1IsAOdc9MEDK6wZx3G1LBbrerdez/04jVIKjTinPAU2tGOfZJRlNAAwW8siJAhbrUFVNpwRXwSstLGjmKUUAG8ywm+2O4bI9XwWYrq0kfEEACRtNMbWeV5WWZ3S1aKKeiqzlBKCdzBL80VdODFPHaizfBznWRiSpqd5nOe5F4NyLk2LvpfPz8dFXWxWKwAQQHi5WY7TdBj6BCM29J8Wq0+PHwuevV4OQZiEMK2Nsy4t8gj8OI1inmNwHGaL5aYpN07r83lU+sl4PXaSs/Rmt2MQJ5TShjGGC5xfxtGE6CGYrGYJ8QiNw0zzPKUMBZCQNG14WVQEJ8vNRiv9y7//dkhejBGIJBEm35+OATutbV01KM/nSYzGknGml45SHFA6TYOW4y5Jo4NK2m6YpmGI0SOC316/iPa6KbIygX7WYjp3QKwbVjEKYuyvJ2Q0CLZMEiemlNJNVUohffQMxDov4OPDYrHgnDlvEfan8/Pby2uWoGZZAoj+488/Xtd9CCGB0SFYNOWyaSBBIAYIASnzsm68x2/k0I69g2p/fYUmNFmWMZ5E0Av5Nk0BQYxJ1/Y3u11VlsHqWc3X8/Hzb7+wl+xeyKxIN6u1Fto6L6ZZy9lbCxjrwvn16dt2dVvUdVZV6to6FeegpmkskpyzbFFjjHE3SgfIcnVblQth1ND3u9ubark69cPxsE+SdN0s1SzarksyRhltvOuvl5frOMx9ILCqm2W+WFTVZrPVNq6qhQtxuVw9ve2lDbe322KxGPeXYZz6btru7gMOQy94mgk3SSepAmK8wmXNAMRVsbnbTt4Ab2OIaVZm2Xg9HqaIMkSuhzBqUd9ul1tKYJZSXhK9K6oh6dquxwQSYwgmoj/RlFXb93/8/q9SyFKtgvMeAKRlCVAFIeEULxd1kZNJHF6OWZZSjHMMAcXPby8Ukk2SbmgaGVwiwpStOeYEP64WZcoRgWFdbyi/SrEs6XUUNcPrpvlTU1wvFwBQWtSjtW+XswvQGNteh3oVb+syAnBpL1JIDFEIcBy1kopQxBKMHYg2BOcY46tlXVcVhlE6eW2HUc+TVCZ0AGLnzDCJoZsJDGzppfJGG+miBZDmidZSyAFbgmhJGY0gkkAwohyT4J12JsRonLaTxwjmJA0IT168nfsYozVO6SCE0ih6SnGkIE01Rkch55OW/Sh7IYTmLLueRpigsqmX27sQ3Tz2L/srcv7HH+62y3W7PzSLwnt7s14RzmiWJJxxECOFQCgh/EwY9QApa5SWo5gzxqoqi5SACGehhQk54zTJUgextUYayzEiZPJychIgyCgVzvtxcrqHHhQ8ratqU6+zNG2auqiS7nqVUk1a9kpZA/XQFind1YukakQMLsTz9eKg297cWGuFHjHjiBNDAM055/S6P8zKlWXjo3MxOOCxw02VcchEN2HrgfbTLDBEBNOccRJif+khAUmWCm989LwsPMRvlw5oPQ6TxyCm2f4ycM6rpilYlhSZs7Y/Xco0Z5x1+6MRelU3HuNOmv21tdqisuKLap5kgui5H4ehU8Dli/r75cUat+A1xOR4OIBrnxdFWmba+VmpiBElJIJQVzV07u14cFo1RUl4oq0R0+y9ft/8CDDGhJdVvVqvzCiOxzeSkqLMIIgAwmmal2mSpmU3Ho/HryCANGUICspjQukkp8pnm82aUHzqexPD4eWQ5wmCkXJ0Pp94Qi+Xq9YWxpAcWZ1kQNppmufv/tvp+Ha6PL6/n2EYh56G+P7mkTAOBgE1608mYnGd9gHabbNGmAEfutPlejgaOQVITm82ePe4uSEgBCVvb2+T7eZ8OGAUq4zjGLtL/+3XL8bY1WplvOvn8d3D+08//uXw8r197cMMMz6+vr4prcq8RogbF2iaZDz1o/bAEYo397enl8O35+cQvRMGRIIJOR1PEALKaFYWkKLNeluC3M2jOA0c05u7u+OpTdIUM1rJBQBxvd7cL28RARH71e0KpPH5+4tQU5ax9x/f1VmZJQXPc+Hi5Xz1wA39eDqd3v34w93NbZpQq1SWJAym/+t//n9+/fyHGAXP5c27j0Jl7eX6/PpihGQsUcI8ff3WFBWL/qbMWEL+9PE+LYqbJG/f9kWe582qG6b7chMxLhfVZX98PewdJWyxcF766Pp2avtWEDQb56wF0dM0nYUelKwpr8qFksMfT0OSF7FAYTDGOB3M9TKeY3RRR4BowZHzQvSDkBFCbLEbTNCmKcrRBozFLK32QTtvgNPeteN0E6CHABGCCTbWeOcD8AA6CAEgZHaWc6Sd08I2ixIT2o8TZam1flYKUGyhCwA4DyJDjGDKEAQhSbkyZpoF5TxKISbJMa1WpYv+Zf8iolNqVtanSfLu/SNDsJMaYxQhNjFaCEZjTocuAm+lxJTd3tyvF/D56cmqGAuU5pkyJkmTUU6TEgaht8ulzOr3u1uGcU4ZzFHKCjHrgGOzKkMIyHs9CwzJol4oJa7dZVHVTd0IOYbgqjxTUBVpwgi9nK7I+sd37yY5d33/eto7F2FAWZaghBcrEiGepOGELBc1zoCWOnpQVGXwcOpHLxxh0FhPfSCQTpOyEVAXhnGOiNc32TjJX789b7frd4937tm/fdtLbQnFINrz8QhBpBjThBVZdrOIOC/L5ZpH4KYpYUmZ5dT7YM08DTlPcEIhgA7hl9OxWSzypOiu5647Ikrf/fDAeY4Z1lLNg+jGVjmnhSKrmGdsmGYcA/A+OrdZL3KWARfO56MbZ4BAVpRZxIAyv1pab7VVb2/9/Xpb5rkYxkVV4xX9+vQkjG5WS56zfuooQWqeMIEMwvVuk2ZZTpgaFUMkLQpEKe9HBKNSqkjSlBMIQgCeEFTkPNpcCu0DIAhFFLKyKOsyYmCBHzsd9Kxd6OZRWFWv182yvH28idEXRWmUEUali4blWZlnPGXTNO5fX2Y1NpsNw1h04ywm7OyqzMHjexRJb0TJuTDaSLluSsV4lmdCm5fXt4gxoUjO9nxpg3f5p/eY0qyo1g+rfpgvwxAgNEE+PKxv07vlZnl4KlUvVPRCCkiR1er1++fN+laP8+WwZwT/8OHd6XKJEM7jKPQUA0yb8v1PP757ePz8+y/749XGeP/hcZCTnvX++EIwwgQrbbwPGIHL8RCCW6+a5Xrxj//xHw+H87dvT1IpAEHf9XlT/fT+ISfEDWJ4PeSLfHu/LX/68LI/PKDV8dL3fb9L8t3N3SnLeZLePrz7ejpGry7DDMsU4CiNuPZtdKHrr1LohKd5kfsArPc2OMIySjhP8+u5HdopWhADKPKk78bL5UqLnCrXtz20nlMKAQQxjtc5B4R4QDmflBJW8zKDjBkh9SQmLdK044gu66bKa+t1gGEyUSrLGKE0QQFAEPuxDyjMSgEMYAQBY5jzsxAKxnW1ZIy2VpjjGbUW2qAGlfOMYXTpeshgxLjIi2mexmkO0Zecu+CcsxDEvu+dtQ+Pd6RM6yxJyiKLzjJKnY3tpesnw8uyXDcFzNV1noXSQWNCGKcOuVGOPnrvHMMQOhhAmOUsjfYhBhYJZjhJrDHQOWcsBtBHhkCEwea8UspliOJqeYktZliBEKBHLA2AMVTzSGzUSox93xZ1Q1l2Oe+vbbesS5LX5XKxvls/7V9aORkDR3kK0WkhaUKqtIoAt8Oo1ZBlHAMYvEkJz1NWEB58sNoywpM0NQZOSgnjyiwDHEWEDGNpldKm3J9P8nXaLjdVtejn6bo/1FVZ5jWPAa/jZrFo1ktwfdOnoxZiGEeawPUtn7Uc5lkDJ4DqhDAIzWK2xuPIIYQhJ1IqTDNCwDiJScyUkhImCSQ0yymCGWfBqehZsazV7C6taF+vhoKkyo/7Q5aV3r6/7k+YRWuzb1+envdv2uh+mCkvF9uNQ0dhzd1mlzIydL3rhru727LMt5ttk+Sr5TI/HQ/tOaek4sm7zbqfpu/j1L0eEgoWi3wYpvF6Hut8cXMTgNtfrkcpnvtZPx8W6x0sc3Edz7Oo6oLnWQwhOtf37bm75Ks8pgnNF649PZ32/bW/b1ZZWY1Tb6JOY8w4m4dxZGj97mP1+DCIDmDTTZfn1xepTF7lxXI1qNl4145jwZMIEER0msXx3B4vF5wkq/XybrsUzp2P3lsfY3Q2IkRohmX00yyMc9vlbj8Nl0trrKGU53lmlOWArfIlS1ayu9I0qVY1xmhV1yFGqZSbhVVzBFYDYZVzLaxhvawbuzWnNt7e3BOOu8vZW8jyTBvzdtrzjLMq/+1fv/dqvtuumzwjRTKJQSnx0w8/LxabP37/fZzHsbuWTaNY0ut5td1uN+TzH78fjieMaMTUWge1f/321iyWepix9xmhi6xIEAM/fjIhFnV6xYQpefv+4f7DgzTDMPaX0/j17ThENyt9PZ+HrmsYvH1/l6bZy/dDcKBoGpLScRAMxmWWMgQghW8WHC6Ht/MrzDLoEjZRoj2jlFDytt9zTjbLhdC+u/behbJpSJ53Q6+88QTiJDleu+PbEYdIMS6SLAAEvGUY8oxN0+y8I2UGYAzRS220tWoW2jqWMKmlkyFwmBQZTRKEkbEmS0jG0qqsL0MbtaIUa6XyPHXRH85nYDVCWEaHIvLW9HLAETOMszL3PgzTjCgGPhy6i3Dzal03uyWnFPhAMG/yiqcUEjSJ6eXt0KwWUsppmDEA29X60l6m/uqDl1Inef74/v7b1+82uHVVGmvnrq/rar3ZNk0lRyRIS5BHyKYMW+1uVotXdezOZ5bcOOuAcc6Hw+H8/fl5nCdtfUqzWZoYo9SahxCM58SmDieQODtJqUNEFNO6qhAmLrhZjGYeUZ6aiHoxtmoahwFhnKaZFqq99If2aKFxTjsCDQiT0TFYkqSMk9PYoxHuNjf3d4kGBFBWUXpXLghmKEYGgvP6cu3+27//tdmuFze3YzecDtflbNe1wQGI0TDuG+MBdGIQszIAkWy5dSRx8XS5XDBE+/1bO0yYJ4l3+XK5Lerr8Xg5nObrKJSkt4h47BESMExCdWJKeb5cbnZVM45dViQhhLfjvu36/H3+sHqYriMjVFvZy+l+c3P7kFKEEIBJQiHGsxTaqKZOEQ3TjO9udlWW9l0bXaDAVUm63HAldUTY0eBx1HJCNpQsTzgVMvSXXmMpZ6WNuZ5OFMFFXifvyLW7Lm9uKaNdey7qnKXseumCtkVTFah4/PipqAotNQzWieH97e3Pj++DA8fu9CDqa9cJqd/++MqyxEb/dr48P78tt+tmuRKzpJx6gE2EdVmJAAykaVmNx2N37bSeKMTv3v9Y5Y2oemX84SrHcagrvmQV9poE4yAghPpgy7Sc6CyUvr97f/94P0rZDt1ljo+bh+WkR4UCCML65uZuGuauH1+eXhCi7x5vonfvbu9uP37o2q69HNykSVoEPAKKBQZFVXojD8P12PWPq2XD0sipCO40DmmegxgygO/KYpnwzXJthKQRlJT5uW9w+NPd5pqnz+3YXy/jIOauX69WJU3Ski2WCxDAMM8Mw2GWJjjISIK4Dc6F0A+zC5ASKLQSxkUzGi2jlh6Bcr1NskLMUmt9OJ2bslzVJXepigFDgjFy2nvjUAQ2gCwjj/fbPMnP13M79oQgY5S2htOqzNKgtVEKcpLkXAU7j8qqABgSWthgggspT60x8zSkWbLdrI0nDhDPiHQ6S9JunE6HdpIzz1ldFyxNDsfT0+fvwDiAYpnXG5qRhKZ1XpRFYoSSszTGYQgTzsuqaMoq+ACw8TyaYIw3wEEbrI/eeOtcADFaZ6RV2ENKuXbeWMsYBsFDCJwPaZ4nhFCIxnGax2Ea+2pRBQS09SFgnuZJxmIAGJHgaStmC9zslDWmqiqE6Ovr0+V8ncaJYHS/u9E2aGlO+zbhyaylUgpCADFI84zxpB977wyETguDIGCAbRZNnaYZYQml0nuhhbHOuDDMYpimsipW1ZKGSDMW08QAOBsrhKKs9wgcz5duuC7XjUdAWZcvmuV6A2BA1heYgQJpGSPAwUZnvFCS5Yz51ASPrCaEMYwSxgEAHnkHo4thlioETymlFMMICYRFXqzqqioy70xV59vNZurl6+Hc90MuB1ykCnjkzcv+9fXp7YePD4zyaRindtysdzwrhkmezudRiLTKV7s1g0hJBaFPE17l6TTOKWUII2Pl/e3u48cf5nGOIaxLlH38dCmPs5p4mt5vtvM4cYLrqmr7cTZaOAs5nLTYn/aLIg8QHfv+0F5TihPOYUIrtnTYD6r/8vnzh3cIMbrcrDlOm6qsy0KWmTKqrquUp7IsvRf7r9+d9gG5tMkpAQYgmhdFvRDWvp674P0wCiVmBuJ6sVqsGnDpSxiDD5QnAMN5mqMHajYp4QQTo2xWZ81quT8c5+B+P+zzuuzsPLRDRpJCGxVjUeZ1XmihMSH3794rLV6fX2elizJL0/Tdwx1ED1aqv/7663K5mmbbde1qszSzoIj+8NPPmII/jMMeRoykFN0sSopySutlA31o255BCLVux1kFT3lWL1fKmvPl6gEq87pIC6VmY0x0chCDD75eLgilwzh6b06vx+PT63DubrabxXJrtDm+7qdZOgQQcgnDu+Xqh+1dhpK8hLeLjd2Cdf4EGKYEX6+X15eXPGN/+rs/J1nz/f3xeO3TZYkpev7yTXbju93d3e1msWzG6zAq+dT2/+dvv3y5XNIiZyGo4coIq8uy73vp3P32do5BGh2dCQEMdp6VcM5mdS6DGfs2wYxjHAFIkgRAKKXWwdrgobPTrMo8W2yXWohZSaUFwHCRMZzSaRhlZ8q6ciEYE5U0IQZfRBSs8W4c54RzQghhWM6T0W7TNDzJrBIIghiVlPJ42BcpF2NHIS6yyrjQjZNChqTQQ5gWOYn49du+vwjt/O5+S3Aqhej73iizvl3JMpWjeN6/pZToWadZwRkrELZPL5fLJU342A4Rgqoo0rzIi0IpEVHYPezOh+P0bUhTXhdZnufNslHaKmEoZzRJbHCQIMIwAIFREhCQ1gTnlTMeAgLR3A1lmhb1Ukh5PFwRIUmWYka0dT74tCk9jJdhDDFKZyABk5wpwTylmCOAQze27XDJ0xQSMInp+9NTUecpTyAAVyFUL0Dkm/WG54l13k4qowwEACJcL1eIkOu1v14uOGXpeolSmpTp8XRUQv748b3p4uVwMi7U6630bhQGEQ6nUcsZGYc5vXbD6XrxgNAEUojay2An5bUklGZJxhmjkEYHJjl7Rggg3oaYBMZYVha84IfDm5gmAMJms8g5t0KVRVpUZb0opRLKm5SyYZi01OvlqqkW0yxOx3NRVyzhGU0pwDlPI1MhaOABwchjxAtMeGIJaKd+VNYptblZlYtFUlSXrBOj6IfZWifGqSW4SDKrbd+NaVLmReVjABCLWclhTghRw1xUeVU1sxbP318yzihgDOIyIVLoh9ttqZM0QcMgr4czxIDmVIUorHlXVZzxeZ6v7QA5qo0p8GIy7o8vTxyieZy0VGJW/z782nbq/uHu0Hb740XpMPSTktOiSGlZiHO/WtzExB8O32ehvVEQIwihdW4c2u+f/3j9/nX49KOzOs3TGGIwfr1rrDJSi1HOXT/xHN+u19bZ3c27oirm6fqvf/03gOlytV3vNgBBEwwv+Kim0/EcrSp++lTmNSso4VSM2jtvBmGMhxjRACEmhjEjtZzH5W6z+vCTDfDL21ueJKdhts7e3d1G7dtrW/Msz9Mu5ac2AqsABiw602scfZZTjNk8zT4GniQ+RCmGBIIPq+WirPKsTHhy8X5yuqnK5bKZxsm5AEMwUnkXvAcRo7xsEsoSSkOEk1LtOE1COQKv4+SDxwhzjLM0QZgaH0P0s5hM8AEABGHEKEIklDU6IAgQYYgxB6AGQFsdBFZSWhI55f04WOdoySHFBgI5C9GOBMA0T4dLN9hIEAzA+fbQZUmCIAEIZCXLiqJpmqrIrLI4E3PwHBLEWQBIS33tBsY1Y5Ri5IEbxqlosrwgxjmjVDAO+GisLvMc8wRhEH2Y5WydU9GW0WJCowbKAqtlBSDgCAMkjZjVWChGGIMIlXkmBu2kBNYXZYEQOB4P+vN8u10zjFZ5M2sffEgYDd5lWYIw6NspBkcprOsKABIN6lSknGRJwcsiGDNaN4k5gggjVjZCF4AS2PsksJAw7aJy3vgYCMtWq2WVjSnay9Edvicw5jTphHRaIBQKmiolizwvm7JMM7LBQuusyUY5PX19dtHfPdwiiMzsQIycsHJZWRvFKBLOl8sawjBfe0rTd4+7u93Ge3O+ziaEJM8hoKtmOc7jYrFc7ZYwpWpSl2PfyuH35+/K64Sjhw8P/Wy88wRj5QyFUAj9x+evmCBO6ep2AXns525/HSP0PEuHabTGTutxmueh65si+fHd48/vb3/77dcIwe37h+PpctofL+eLcEq5Wc0tAaYpCzVPnTNRRy1d9CHlBFKaLFarxUJE9fvXP778/v3l3dvm/oYw/Pjufh5GK8Vu0SQ5tyEgzjd3m+58fP31aRqUJ6FmOF/WMUuR9oNRVkhjA4JYOdB7Q2nYLki+zgFHyYJPo3YI//L83UbUbG6bKrSn4816vVxurfM5r5oqPl2+XuZxV2Zd8BpDkvI5xu75+eHdfT+L9nBcNeXu8V3b9t+/vQhjEUdplj3e3q0269P1ZLpLvVt54/pLSxF++vqlaCrkbFVVH9499OfLqRtGObeTDBQnRVmuVsuiwmmixXw5HIt6GZR+u5wDQk2zjh5Z77/+8b1M8rmfXg7P3dBrZXa7W4BIWlSOoGBtDGEeBmuBUOE0TIPo2747n1thNX6BPz4+5nn29W+/STGxRf74w48BE/rf/3j1wt++Hz98UlIRwnaLu483P+wPb8fu6r2CeTpK/fP9u/c/fOQpY3cgrdJjOyQUhb/9y9u1c4hFiidrg5SckV5bczrOs8AR2R5prwcxEoSDD/0kMKEg5QARTJmKcRajskZ542LADAspxTA56wjh4zTOYmaMRAQAgjzPzDgMaiYJ89F5gmQ0fSdHK6uyKIt0m1AMsVPOG2+NhhBgjnBCrAzntpVGMMatsa1S0zRwSpUDUihrHaKQRKS1FtZyAI+n9nzoAEK8SkISJiNZyu52W2MdCXFRldLbixi1jXiCaR5GgubX7zj4v//Ln/vr2I/jarNK8/xyunzpBkroarP0CAntpZbCeA2ZZwxEeu4nntNm0RjvIvTb5RqyRBprve/HjnGGEyyFghG46Jye4zkEF0yM0TspJ4iQEpIlrNmuhmm6XnofXMQgw0me5Smj62VFECkJ11IVjJIYCQCTUSMK6Sj9An8AAQAASURBVDpr9TgcRiWlHnUER639clWd+8s49CRGishmt6uKLCrNMX53d3P7cK+9V1oslymL4Xpq//jih/6qjZIU/nY8nS59vd5sbnev356DcZ8+PsweDHJUELE8Fz6sy8rH+OXb96Dl+4fH7d2jj5YFBLTzxuV1vd1t3O/mj2/fGSDKSEzB234vJ5Ew+sO7xyorn789BQISCFmWgiR7/v7qrXPaWGWli56nMM/zauFdMNIxQggAou/OL68kgNX6xlh7Ol4wguvttp/mw+XM6yxA8PTav2NVntZok72ZV0BwRMgaq/v5DE/n7nI6t5CmzW5TrNZeqm5SdVH0h+vh+2GxWNy+H6/j+fXtUCY5COHl6XhK21kpmqWY8wizZlO9/xlo57Y32+xj/vu//zoIMUiJOUvT6jy3z+eLBvB+u04p+u8+BKMUltWpvx6vZ14WkKfr3Q7CZKiuRs7DbLrz683KFdnydDi9Hl5hxuiyjgH/+v3Xv/7+L+M4jJd+0VQloUmWVVUZQ9wfjl+f3wCIwpm8KPpeKeHkpH/5/rfpellu1pSSzXoTWNaNw+m331arRYg+5RlJSke6fT/spnm32kTM86qe1dWAeO46xjLVC62+QBIwQxhTFx3op4es2SxXOAKOQtIsbAjRw+C8nCcEQJ7QiFavp+wlZYixxW596tqvL886Am01pGHZLGcpTSdw1B82N//4ww93293pOgzzSOqUWvF+u16tb/6v//qvp6mPnJjJCWtU8CY4Z90yTRHFXy8nF2M7dlrZgIGIFsQ4zpIizpIcMja1w6hmYSRJsI9Q9SLgwEqOEJknSTFOMwIxbIdOKOVNUM5CGPVsEZpdDAH6w/UKKFqtF6TMqAduNr1QEeBgFLHejvMEI85znHIejYYQMpokiCx4wXOcIXQ9AW1NpJQVeQTgcLhKpbIsy9IkIFQ2FYDQOZAlqdPWR2+cCT6GiBDGACIffEDQwyiNNkNPGCceS62lEtfukiyylHMoI/MoEJhiRBmzJiqly7wkhOvgMYPCKopQkWaL7fqXz1/kNOdlkSWpM0ZLg4jzwIEInI/G+YQyH/0oZxeDguHqVbD22p610Gmd1Yt68hZgBBB0LsxS/vffOowoTXOEsFASpXixWVxP12+vz02eMkh+bwVB8ccP95wjBGCIIS9LSiEj2YJUrMjCMUAAMER5Xkop53miGGe8oAw7q6Z5zihbNncABDsojCkjiTX+crkerpf9tRva2WkttHr3+G7TLKP2fpYvn7+KSTXloirTl9fnusg+ffqB83S5WhxOF9r7u+1H7f3nP77N0xgJprsKQRdRQBy+7l+qplFO//uvv56n8Yeff1QuvB7OWZJhECEhTVVRxPQwq2nG9zjNU8ZJwfGiru9vtinhKMCLHlBCUp7KeXo6HfOmdshfuxHThHPftVdIQLNesIKl+frydp6VhZT245guwupmI4XIqppl5WjV7MJ87g/nbhKSJ4RnGasrOUqMMczLae5fDwMheUIpQAThcL0MxbLQJkyXcZGVwTnGkPf65e01RqCd9wibCK79FAkOBDsECUQWAAuDt7b3ajrMiy/foteYsSavFLS9Gn/Ms7Jqfvn6S4geIoQJwYxobzyA13P//O2l7a8IwFPXf315vYyj0ppKHG3YrJb3N3c5J6d5xgkvmlIPcBznJBt+/PhT1ax++9tfjy8v/OHx/vbx6fXZ2LDb3adZ8fp2TOaxbMoYQ9cO7emCEVLW/Pbb5072VbVY77bn9uSDOR6OTgTqI3CApThKiCsaKByGHjiXEOyFlNeh60fu+f37xyjkfNprPX/YbrPHDwDRsTudXnvq43KzxVn+07uHL6f9fn8ublaDkPM8URoSTI1zU99rISkiASNptTImYdw7fz53YpZFwR1mLOVSmmEYKWdZWQRjrJbDPDhpAYDKeqUn6OI2X6V5PmvDEuQiQJRBhKZpDhQrqwIAykRm9GpRp3UWfJjhNE8iIjQJgccx8f7Ut6/nYwBhs93EBIEAgSGj1OfrAABKkiSrCmO1UaEfhZXD6ExMSJ6nKlh5abW1lDJEYQJQxTgiNE2K5+MxWxZCudf2ugKBcZqgjCfcGp3zBDuY03SM/dh2AGJnzHJTr2+XwYdzO6j2WtVlQODc9mSCBCAIvHfmbne7uYnfX/ZfX56FE1mZIQgJZghhMZsgnI/RaBtCzKpcO6utYIwggk9t34/dOImUU+giTdOb7Xa3WuRZooRck4wwmiRczCIwD7JQberVdvXHt6+H7jz2U51V+WpJ8/z5sP/68p1lfFGUAYLZ6FPfX87n6/7lw8PtTz98Onbd8DR4ZKsq765j1/eUs7rK0pSP0wUz3E394a8disFpB7+93CyrKs9YkQQE5Cy/fPmW8iQ6QyMIGEvnSEIAIUVR7RjdPdx1cqoP3ynBp/ZYFqm2mnOy3C6DDmo26xy9v7u9XC5e+073LkRjjDG2yPMkA6NQ31/fNrtNs15N7aAnUa/L3W7ltHx1ViuH51kYNypNCEmN7fpBjrMPTggpIIYROueSJGOME0ah0YumXheVdx7GyFN+aa8oZXmWHQ9HOUx6UXNKH3/6lKf56dJZ5NOq7K7jarkYhdDjgDNW0WK125YuHl7fqrSQSupRWqHlPE5Df3t7t12uOU8rXTy9vj1/mcXl8rC9xRpaZ4pVs6oX+39rL2P3MUurND+9vbCE3+U30zgAawwA65sdTxOWMUgg5jjlZfROSikmUeYVWVIMAGa0WS3adhj73oP49rpv6sX2/iYpkr/8/PP+aS96Ibrx9679h39KNutttb4dtb/867+9Ph/GYVos68XDBhJbLxbnl9fT6TJ3fZ6n3bbxAEtrJYbFohnU+W/fvycZqstis7vBEL++vgXnjBLT1BNrKghRls1C3tzdEYK6ru3PJzHON3m6+fgBM17f3OzbS4qog+Rt6Hotk5yHGGaOwuxWebLOs4qSPsQqSZZ5ngLUpGmGQcGxsAkukrM6eScjjBG6w+lpGJJNVTBGemkmqYMJlHNIKQwxQjhr7S6ts24W2nqblklAXlujg4sgQkS0t+M8E4AQzimn1toQIqZEWUMY5JgFBBwB86AQAPF4ccE3ZTUZZ7T2wBFMGYHkeLkUaZGnJc4zniZRKAQQjlgMsvVtxoidZc7YzWpF0gwlCUTEWjcL5UJse2mNL5d5XebRGIxB01Ra20lJba0bRsJYzlOKCcmS4Sw8QCmGJjiljVZKaiHmibuxKgoaE+tRURcWID0rgnlWVA4EC4GUEkVQFOUPtw9/enwnnQbxD+iCN85TTxNuxlkJTTAjnAgpu1HSqFKWZCW22LxNF6qZV8bqOUm5AVEYqZTAjvC8DBiA4I3UALkqy8olH4bh25dvvErSpkoolXG2PjKOLUEugNMoIKQ+Bh/j5XzFwCBni7qCcjy+vHptMKav+5Mxem6HPM10jEJboXXXT5bx0/HKOSVpkqbloOaX/Us39jjjwbn2188Igqpu3t/e3e12Us1y6DdFFZPq44efUOI+fzVVki3qOimLGMHddtlfTlWVszR5v6i/fH99PR5WVVnkGQrgCq6n14uNeHI+FMXZmQ0EdFVdnud//7afRB9AuF2BtQTOx81unZc5J9Vr2zrvt5vVh4dHApGRblNvDl37/fU5Qp9A/svXX5S8a5L6p/c/6GlgGBVFXi6XAKN2Fq2xx/GIjxAFf4ODlYJAsFoupHFag2karR1nY1qjgVVFAAiythsABQF6hqBw8evLOaMEw2CVVybYYUaU9dfL5fBaFOSPr/1ivcZJMk/qcLr07XWcB5BgyMgsZtFPPGJO8LVr8yxJCp5CfDi+6nm8e7zb7e6+H/bPh+f96VAvVw+723Z/fvr2dHOzVc4czidCWYDob19/hwQ0dfP1df/8dsiS7PHmLlo5nc67RVUmKYYh5Ynm7Nq3o1aH41GbcVnU3kUfbVqyrMy2D7frt+3iZvP3//A/XNrrL3/7ZT7M7x8eyqIIwRkjeZKwlAFCc+qrdbUp15vd5o+vv71939fV4sef/oJDjDCsm1XeLBkhv/3t3w7m2WsZfcAReR+tle21U1IZLScxK2ko5IPocB5R9OdD+/Z62jw+mlEAHQnOpjlI6YFDzoTLdQgo2mCt1RQSMwLMMEkTAIg1zkk9z1KZNE9S72LwXgpJnCtJYX0Qs4ABJCzRQsQQEQgxQBCw82BW0g7jJDQGGARgtekmY7y2zsey5JwcDifOU++D0gpjnHCeUaJCOO5P3TTM1iJMZu0GIWN0Sltn/WyV1b5CGIIIOOu69vXclXVtExQjwiW3BLTDMI7Tssgul+521Sy2OwjpEM1n/Wqh1CBKo65d/3GzWxflIPrVpt6tVhQQwojNC3h3O2uTZIxR7LQiSZJVqbJWB2NtABQlWRoB7IZ+UTXvbx8nbbrLhCESTkUBeJL4aGH0LEkssr3RhPFpltdLz0rmQOQRhAjncZ6EBADkZQFNgCYWNK1phkywwmaMbTdb5yNy0aUeBkAx0UpiDBfrBUQIIeJIRHlh58mliYawqkvA2AShVuNlvs5qHoW20maUNjxv29ESvNmuaEL0PBMcP354+NPHj8/H02Wcvnzfj+NUVNVyWT8+Ppp5LprMIzRcfn85HXzwf/7hJxrhNA+UoaHVZxCLsioXuQFxHMeKZx9ubqTVwHscY5Vmm/Wm6/rz2wEbsV2um6Z2EF4OR21NlqXL5aJZLgICl9NZGaOtCAjFaBOOU0yohxHCYlGPo/hyehUhNstttqhxWa85TjNyet1jKbfbVYqBQEiICRFYLXPrtTXq5u7Tqm7++V/+vRO9GKe3rxIiEmIgEZ+74Xa7zZs6SRIDrPFeGEETmmRJgBEERDm/2d1ttzs1icPXr9jYIOTp9UVqqY1arlZNndRVwy6QjA4sF8f9ae76nnOjg3ZmgvGBMpry9njtrkedpi/P37R0ZZY0ywJ7c3ezWtRZlacfPzxCKGDCcVa9tpdFvbxZv/vhh48owH/71/8qnBNWK6lgDMtllTOaMf7u4d6HMKo5lLk3dsUZRX5TFyCGz7//0goFfCiyNIaIADRWxgiLNKM3u5QS2fWmnzhLlnd3OvNw0H/946tUCuf4/v1DwWjAYVE2q6Yp65QgHIcAAQI2wGBs3++1gITO82SNOZ2Pjze3u8XSWANnueVZ/eOfHEHPw+X/+G//YvqhqiqRpOuy/vHd+2VZBWWCVtIKyngEMQSjhyGj6B9/+rPH4HdnkhbyPHfA7vf7FMNVwh1wwjkeoUVEKokZ0UpJGFJqqFXBRxtCDABqa5wyxlsfsjxBCEOICKNOWqlthqEzUWuPEAg+jEplwSV5Jo1DPMEBKGmGYequvXfeao8IzHgOpplcx94GjygftKoIRQgSgEggRovjdMUgKi2aKttuCpakOOFVmjdViTASykkhZqmRRE1d+hjVqMuypHkyKzMLCZElCLs8LFeljR4x5oEnhAMQr6KPwEcMeZ4SSrxDRquMp9I5O0cEoYc+SZicNMS4qEolRAiAZznEYG5nzGDdlN0knY9ZngUPfQDOO4AQxFAabQAECGGDIoM2xAhBpNE7LI2RSiUpb8pCC4NcqOoaxtife8JQWqScJurSni59au0CUhgRpwkiNABMOIMY9lJpacsidzH+/vVLkREKIB5GSKBUClF27cZDP6y2K5LmmLHrpY2YWOcQxJiSbuzUSSII4RqA6K+zmJx1o8GEFJytq6YpCgwx8NFpC0y8W2/LqsQYT3K6WS2bvKIIZilPkiRPuFkWSkgA4o8Pu4LyIuEPmx1jdOqGBJP7u10kZJfc3Dzo19Pp+eUZhkghmIXs+j5Ly9m62PdVkm7XC+eBsJIhxCDNSZojKmellS5Wq9he9ocDofh2vWWssB56AI0NENI8yzPOM56c5/HX374OWs/SRR/WZe5fY3AxTwgDiYzxOsp+EGW9Imm0sxzG0QZIkDMgTJMM3q1WeczpoM257QtKNss1TGEnxirPk8zL6c1BlyUVSzNAqRcqMoQ5xh5P81DgklJola2zDEWvhUgQwCGWVVbRdIbRe6iM1Vpdz9fn5Hm33iGE6no5TgJ6iCOancOIOOfka7veLI3vTkMvQ9jk6Z9//NFN0/O3793xmpNktWwIxG+HUy8l5nwcZY7V8fl07a5ZllRlHQI4Xw9VkRHCKIIxhhgChGAUU5nn6+0WhuhhyJpFWpVMtNDDS3clBEePxKCwHePHgAoqxNjKFnEGNMjLGgC7f5lnIxeLJce5JnjyltVFZbf9k/q3334r02y9Xv7n//Q/5Uny1//7X5QKjHGrFI9gmxee8m2R+WKepBbGS+0xDcZazLHz2lmU0kxqKbXCAAIIlQ2cw3acAQCYIWnldNFJlnGWLpoa+NheWsr5qm5gIM67WZpZqGs3AII5JhATnmXXk1DWQAQtgBbA78ejcd77yJNkuVgM2nhvnHOXrtfROY4QQJNxL4ezmDvnA8McEQATfBbj8WlCBDpjrQsKohCUjyEYCQzo52meJXBxmRR1Ve/qNYHJc3+u8vzlfDUQcIKBc5wSTujY90WaJ0nCOJ7ngXG0vV3aEIoql7O8HK7DLCwCl7bNykIr571LUDo7jRnnSfK2f6Ek5ZhWWe68syFEALRWjCd5WcirnbRmEEivXQjBQ4hgNyvjAYAAEoJiACAGH5QJbTcBHRiMBELk0TjM2rt27BFmlCc++OhiQtPmdrVsli/7/WkcAs8MBtV61fbdZeybRWOVhtZRysv1rQrk1+8vEIN+ksIYEti7u+0sBg0cRiRL0qppiiy/TkN08dffdML4ZtPkeYKsjVYvlwt5u1XRRkAjoUJqebqSPKNpMonp6+cvdZHdLdZiHhGkPzx+nLRQQgMQaSReunmSk1AJwMsFGqQcpkEq45ynlC6qMks5Tkhe8HGenTKymzPG8jLhCA/nth2vRhmIsHY2UEwzVjQlT3mZst2irtJ0uF4pRnWZf7i9u/bTdRpzkkK8wA4NYx+stUFaozBCRVlwxvtx3KxWIcTJCHEywfvFro7Bi9lkPGv72SGf5ZkzDvigh2Fse0IQzTNldAyeINhstkVRDF3nrb7dbB/vb+Zp/vb16fV41ErlZcVh0rV9mrHb29u+u/bXto9t210zXhFCur5f1wWECELog+WE7Fab09BNly5ItalXlGVdd373+P7TTx+1Fu3hSiK+2d0E6O9WKz3pqR+KqmoPVxjB/e6OhICAWdeL6zB2p/46j7u7x6peRgqM1J9/+0IYe/fh8Xa18P2UVPDTh0+3795ZBGCAv3/+/rZ/GZX4p3/8p7pakOinvrNUb3Y3VZkRTqSYu7432m7XjRqmL398G5Te3uzqRbPykJAEY9Ye21P3Uq7quw/v9+fjdDozH+ZZOQhKlvz87sPH20dmXIQuJ+x0Pp19l+YpSxIc8K5ZPtzdBAiiGDdJsdhsCSHj3fumrqs8ez3u97SPjF/n+fPLd29t0HqyyqZuUS8iRlKYYJxQ0TpDaZKWWbMqUQRqNh4AwIhF4HhpgYtKOAAApdjHMCkzKuNDLMoySzInpbVmGscQUVnVNCGYoEnOJFB8mYZIKRsSqw0DkEPCWZ4WmZOWQARjlAF2Qtt+zPIUeJdTGhhnNAERAoRXq63zUGg3tMMwK8q4sYGnKSEYgwiiGcZeKyeVyvPcWSjELK1VRvkQeUoRZQHT6NysbWZ1s6iMtEbZa9/lZYERQBEQiLx1l/ZiVUsR4pzEECBE2gQXZQg+KzM5zd00pzmneWaV7aWS3lCrXHDex5QmeZqUOQfW5Yzdflh7BwGKkxBKqjRPhJz3lysjyVWJSIgPoG0nQpCPIChjgA3WQwQZQgBC4sKg5jlYTijFfJqlQ74oKxSQU156JU1ICJ2N5mkmhEYO3G+3WcqNtUpIZe15aFlO+bLoL/YyjAHJh8XCIYA5O13PXXu6nk9qFIuqSRPmkCpSSkven7u/PT/9/A9/Kd+/2z+/EheN0mPf5Vn6frMpE669Nb0znaaANNuKJ2lZL1+vx8+//202gScJgohn+P7dhkDmgtyfZ3Z7o20MUI9ixoGUrBCdOOLzNInLNOBrOypBGK3SssyWVd7QNHEoXrqRRiRU36wKPdFD11kQTQQDsBZ4K8CsbSdklfOM56NSypksz2MM0zDYYCIEEUYHNclgsH6Wwg8OJSxNOUw5y1OaswSwZt10/ZgWfHfz46JMd6v1LMfP378cLp2jjBa5UyJGiADNOEuK9HazMsNsxEwBN/NomaXV+nG5ggGfTlc12FWxGjvxv/1//0uzqO8f3+WFq8sFpfy5vfoYz2PrjX3XfLxcWkwYpooyXKRJkTcVKd+uz/vnVy1nH8D+0gJKgxUBIuX81+9P7fny4f5hebPyap4O45ImIPj9r7/KGCjCrFoWZWWhz7NkEpImLKvrgKGa7bDvtVFFnXOe3t/dI+NTjiAFo1Sn7tvh7QIJfvj4HgDTtp2GGGXVsZuffvvbctF8eniXVGuWja4XOsayXq+bhxitBsQT283DOHVIDg8p+fkvP1Zloabh+XDqJqchAQV5fTtKbbtxsjAOgzTea2+D8wDiBEWlEHQuWg8RQIwABDJHoHPDVYGAPcIQYQNwXvCxneZ+hgj4aLWcZAScYUbwrA2AKLh4nWYT/DBO4zwnWe6FvEiJYuQUB29HNZsQXARJlkQLtMPzoBAlmjmlFYJIaWN9QIhwQgglom2NlRFHDSJFRFmLKAWURAZP17bidZ4wI8SyKXspu0mnWcYgghEoNQfnj6/nC7zyhBAO19tVd7kgQlLFUABFkkKDrvPklZdQE0YwTmehDqeDEeK6vGoh73d3y/X2fruhiMjgZm2DR5gyAMgk1CBkSqHFwTojOgkxlJMGwW0XS0xgiKEf5yLJAoytlpAT6oM31mqdDS3JiDSmSBZZnjEOl81iudoN/YA8Rbj98vb02rW32y3CyIcghQFoQhA6ZShAHBLrwnw404RO05SmKbTh9y9f9vun2/UqFvmvf3xdNau7ze2nh0eEcQR+mCYGo1XTsmCi1+PbfpGQP7//8NrOrZLOWYbxX59eCKG9mqWQ+ys4Xa91kTa8LFgmhY7aM4BSxEQnLqf+OgrCmKFslvNJjEWeYw2scUFZh0VaVJRwZ+z5OqhxXizToOyoR0uQGMeyrGyOmqiFsUDPUc0q2gAgRQnDFEMQrYtKy+5S5YX1/NIpxrgy8vvhedusiiJfLhaj1MvlMs8yhADCIS/TUYb22rWXqyU3jCfaGzUYTjlirBuHRV3OfRfGYRxmggjOkm2erW5uTseDC2a5rIfuwnB0Smya1SIpMoA5Qf00Vqvl2+GSEp6zdFks/pf/+T8/vXy/nK9lVtze3lJKru1lmOWiaiKEx8NBz4JiaCb1+fOXZrct6+Wghstw9d5sNyuGXO8sRlHLKWJo0wQS2o1Tr7WwjiOEEPLGAOC9czzjNzcbe8AszZp6STLWtpfz4Uw5HzsxXlpzuS7SfNE0aup+++3L7HV06vFmY02saDqMVwYRhRSY+PzHtyLPpNNCyfO5v/ZOWVSm5bsPP52nAad0MvYyiOs4ww81WS778+X4dpaISzV64e4XOzE/H17f1nW1ShI7iq9fvyU4Xd/ebCE0++PD7cftZousW5bWzWOS8Y+rhWvKlGdSqE/3D1nK14vlLaffMcnruh3lMliD0GUSp6HTyIcYpdZKGYwBACGA4FHkRaa0G65XLSwmHHImhQzeVGluAxCzIARWi5Qx0nattc5I7ZPKCxVKkmZ8mlUEIYTQD7I9t0RYk+Wsn4e0S0JuiQdlljkErXYgQq8dISQgKl1U2k5K4wRjzJIEEoQiwtYGOfUYAuBBXS8CDITznORSC6kkQRhhDBBy0dtgZyl9AELIgAAhRCs1daLI8jxNUQQg+FkpJIicJABwnmZhTJGnIQItFQaBXGBPUV1mEENMkPM+AEowMsGQ6DyK2ko/O4CwNhYEUCCOHHA+BGM5S7fNoq4K6DyHqKxKKa0Ollh2Ol8gQjxhVzGN08HH2JS1j9F6SxGBAIhZUEw5JSBCZb0DMSJlg7fRCeswSQQAk1Q+TSGEGjoXQjdOnJJo7XazQsrxlNVlSShGGFd1I+QcCRTOMF5AlnostZXf9kc9Swwhi8ELAUPgWSasfX07bW/qVVXVackgvrSnS3tK6+R0ukbhcQBKTSGEJC+t0MfzcbHepkny8vQ2jf1//l//55vbx2t75RAlVbbd7MZZIArLLBu6cZwmZ+Ln57cAIUaAc7JdrSgkcp6DdAxgb9zz6WnUOsmqdx8+3W7vn1+fDu2xSrOH3W48d2Kc9kNLj8e8zpO8UFjFYNrLMDsJVitKiNfmOhrpbFXlEaLT+dJ1LUhoUeUYM2cVYYRQ5ELQLkrjOQfRuv1+74W429137SidXq5Xd7eP0dnnw7FI2KJcj6O9CNEUifNNd+lyAx/vb8tVnTDqsgy7lRpnB+Wiapz3PGHAg0WZ0egZQtYoZ72dBHLx4WGbUoQpuNtteZEVSSq0fvr+Qigp0gRGf7PdinliPH748MhT//nrl+tVk6JaP95Cwtuuf/nyTeuwWzbVugnRY4QWy0YZdX47ZQnhlHTdEKRx0IciS2nGKa2qSnuvZxWjh8ot8lSicHd38/j+gzVR9FfO6eQEy5NhnP79j1+rRdEsC84wpSSN6STEf/nX/3qV/V/+9HdjNy0XjY/+5uYWWgchfnt5lXI6Ho6vh/1iuby/uVvVCxfCel3vNhuW4D9+/75/68vNltd5L1Q/y//9n/+503IK7vV8ijGgBGljpTRSjwSB6AOKgHDKEzbtB2hMRqhx0IL4ejhcF9WyLJQU86xYlgipCIWMkUvXOuMRhGVZTFKezleEYwBeTBoLiQm5zJBhWucZZcgQIJWz1gUIIgOcpQERSKiI7tx3EYbovdEuSwsVIII4yxJjrdSSMl5mOSDYhxgwEE6+XRyKLEuSa3cJwBV5Zh0KDvEiCSFgzFjGpl4EH6BCPGdjtBhBYuLh+2/Qu7ubm8fb3Spssst1kqaoKh/D99fnduyV0JCRlNJRyA0EZcrjsnIIXnp5HWbgkYuOUYxwtEZBDGmCKcRKqrJKOMYEAULRJJWcpQ4eQuzF7BNSMtzPnZjkAjarvNYAqHFaUvbu9kYqRQgO2hR5trvZfn196fsuSZLFstYhjNfuPk8SnolBDN2AAtis1kQ7LFFdlwaAvr8M18vtbi1tNEN/PBor3N//+HPCMfZuU+fB6Knr7lfNj+8fh/3l3//66yzl6uHd09vx0g/L7W42dmq7NOHDOIzjUFYZpdg5vX2/QRRhQrKsYIRizCAyhHDjfDurl8v10l/fjteHB143pR5kP0xaQaPG3f09cH6eJkLpH5+/RucTQuqqWC3qhOceWV6kw1FOXZ9RphM8Xcf5PHCECcZ3d3cBgvZ0rQPAAA3D2E5DDGa7WAJM8iS93e14N0cfTpcjBEFOJkaQ5nximDI4ddOPf7l3Wfn0+1fCWbUsz3v1x+9fF0VuQww+Xq59J9X6ZrNarLY3d5fTAUb07vFhuLQ0EtlN1jjkYZmmlBBtw26zMbmus3KZ15Mccpbi1RoH6JRxzjgQjodzkRUZb+frCEMss2ySZhKaK8srO4qeYBC8gsAmmLy724lhFuO8fn+/ubsd+/ntcrmeDkLrnKfy999/eveQ8awdRk1CURU7yCZlgHf9dTDWrndb4EPfXxmCy9VimeXPX7+aYIZh6KUK3t3udnlWXdorJvj2/n5V1FCb4XLZv719fX5Ksuzxhw9She/PT9vNcrFeQTUd9nvr4+vrW900hZiyomjudl+/fP385XNTFavFkmfFqb1qI9dlvl0uSQD9tVPcPHz6cZMwQPF6uaiLQo3j9dKJcYDQ1VWWYtSdD0WW9ZezzXmREcYCCzYJ9i/vbnMOEUuUB99Px8PUvV3b10kEI3mWJHnaT0EZMwxjlafBOQQCITBCjxGomqWahDMK4ogTijn3AAKIvdfWqoA4RTD4oKQOgFynqSiLiFAkkCjjGCcgBqVFkXIIqSOIpciE6IzV1oAQ6rICUkk5+xiWxTJvFmGenFLBOQaj7DqIwaJZr9e7YRxN8EWRUY6NttOsGMsymqAMM8amcTZKwuhTSllCEAlxtFbrOQCEUMLwKOWsdVnmnHJq/SwlQDQrMheUsXaYZ0MxolgIGSJGGAcYfTRKTZgERlGeYa2V9UA7ByPyntRFiUAQ47gsivv1qiwyq40Y5sPLXiqDksRCOBnrg89xDBRbBACEMjinjdVmuWqapiaGtW137WVd1at6OQ/D3HZpkVPKtHHGD7NSmKF2Grz3ATiaIu+Nsh4HMEtFMwIBGmaBMIQoMk595Dqac9sm1Apjh7lVTmeQR8JeT22d85TShPK8Limm3eVymhQdVZGtqnKxWG8jpYNSs5EpScdRnNuW2XkAYZxnhwglafAyK7Nu7I7nLq+Et25ZVHVZ//ThR8z4t6evAOj6ZnUd2PPb8bU9GQRqnny4226W1SLNL5crY+hms2Pf09f2XwAhedVMxnzdf5nVdD2fW0SVVYzQbhoJJl6MfO7rRQMJ45hNnYjOPz485nUdlZitYHl+7mY9jiAGjBHPkiTLMSDXi7LO0wRTjmOI0Hk/KjuJjIP+0odAkmrRSnF9egMo3T99Pu5f/j//r//37e07jDPw/QnnbFvUZ8g21eJ2+f8n6T93LrsWLEts+bXX9sd+NoJBBsl786atklSA3l2ABAFCN7q6q7Iy81qS4T5/3PbLG/3I15hzjjFXZVv4YADOts3m7e1wTNZMnYNYyY4lWJQFz91/+/F3h7e3t7fH3//8k9X+9Pipaqq8LO826/7S/3i7jxD/f/+3/58EkHJetTVK4PHtYSjy691uvW4eHuGil+128w8f/+Xh7e1t7K/uboKxr5e3f/z5D6u66ZUqQMvrFZzUa/d2td3neQWOfXC6YhzaiDG8ud4dD8fj168BeoEZgwwTUiBUEg4FXZbLv/3yl0nPnHFt1bRMwdvL4/O7u+vfv/v+bej/9O0TxpH4aJdpxlyNA47ubr/PWYm8/8uf/m2zXv3u+x8uXd+PPc/Y3fVts1p9+vLbag332917HYgGq5qvd4Uodz7CTZwfzyOqy3//y9+6cdxerRAh/TA9Pj5GACgnUkpr7VXb1JuKhnh7tRNl8fXp5XDsynWJEj4sSwSoU9ZDFJStEaQpuWlY16tuUpOZeyt9MFVRQIa8sz46SAgTLGLUT1I66SFAESTlMCLOSalNNCAhEFPCAHjnmzI3UjsLmroRjMfgU4jdpbPaQoAQwkqDpxf57mr3Np6Wx7mqKi5yjiJFdlpUzBjGqCgLghEhuOtHyEivl+ms1quaIWqdyzEBEGIEGIIcI5XS+XRerByngYr8/cffEwpxDPerjTXq5eErQFSULYM0+biYsa7zdzeb7By1MYjyCNFlHGBMq6ISnBV5LpWapQ0p2ZAcsGrR8tE3GfXObDYbsWqfTudc5Llgh77/9vS4KnJofcbJ+++/Qx7UeSu9H6c5pGCDdwichyH33sTgIPTBIy3v72/1pF8vXdu2pCoqhuqrKxTjeD6miE798PZ6rGsBE1j65XLoyBWijMNAORWUUBL8cLn03dFKb2uNGTfWccr26y1HWBmFESrz4unpOSVQ5mVeNJdleHx8q7IqIsiFyMrcJgdZBCw9vLyc+x57IDElya+b/Hqzf3d1ZZX+7beHp/P5/sN9vmr6bvBGIWk0tHlbffiupRBwTCa5jIN6OZ0SBH/39/+UNleX4yuGqE4kBW/kBKxbrdqyqjElWsmmKFNIz+czAKBsyxQBQsAser70ApEP93e1yJ/OnTY2s/FyvozzGEL4+uXxw/u7hFE3q6fT8TRN//AzLUVJAHVLOKnRaVczZKKZ5xlAICfDy1xrjTBsy4ZB8vr8EKK/2V2LQmRM9P1lkMNiVYTply9f+m642V+3TXOZ5JhSFEIBWBEMKY0marOsqoZFZOhIXAhK393ekrLozpOxzoYQUHq6HDmlLGO//+E7JmgEcbPJAFoo1uOp//z8td61WjkE8H6/yxkrOVmX+U27JZh0w/zcnaaHr+MwV0XJCWx40WZFXbDA4DzjLM84Y4yQ7XprXfg8T+M8iUpQBjOEKAL7/fq3z980SHffvffO1E31+vXxumlut1dfnx/rQqxXP2xXm6v9dVB6c7OjgCAUzdKvciyS/fWP/zqPktNqmqaQzGqzbpqG5xWMiVoHs3S28nK6nHoZcVbtUbupcpiBlFoaTzN7VxdfCvGXL98iRXlTLiEl64tcBGvrKt+UVVnk1pmkLcNUhagocYRc5qWbR8SIgwkRnEF8va6u1mtt7ePbUcdoQtR9RzlSSpG6qo2a2qZatTXDhOIMJWS188FGH5z3TgecOV5UGOZ6mc/HaZmd1JJTWud1QfIYPeeM8Qxj6nOGrUcANGUVjPfcZ5xjgNsyl1oBn4q8zIXwwXjgEULeRild8IBwjBAOMTrvkYSkZizj/ThBqeq2yYocBAZQGsbFxcQzHgFIKBmtvdWIQUIAZ4TBjFLqUkrSamUTTIxSBmEkmgAQtJv93HXDPC3Oe20tMpbkImGotEkKcpFjQY02wzwhAACIytoVoxgDffKTlqKsSMaQonpRUSmAYILA+Bggggi5EJyxEQSSME6YUJrnwoVgjaWEjdMSos+LrK5LTMncdW1dC06lNkUmCiSu2r3ARA1TSiGWwsXEYqGTHbV2MXp3uJw6aL0BfrddKROMceduSAnxdau9/uvnr5yL6+srUpbaOkTJNOvnl5MoG6XM3c0dpcwa2+ZiLUQI8MOH95OzNMv0l6fJ2DrLrXYppKpsZmmiU2VZXt++qz49EpQ22/Z0PB5en9dNkwkGIXp4eUYIC5a3RVWVfBiH5+ORi8r7iAAIEWSUAuutUhSiqqpjSstwSjbub69uf/fd6TS8PZ8pQrPRvGTbbetNwC4UkNy+u1utcmnUcVLPry9vpzNhaNusECA40L6XOc1WZTOv5Ol0TsF9v7u5v7pxzo2vF0QiwcxSFZwvReZQeOzP3Wt/t7tbrC8ZRowBnAjC0+kAEO7P8+XSr3Y7AtF4mYd+KjftTz9+/N/+j/9eNG29XvkQ5ayc9n/9/BsC5jgMHrh1hF8+ff7Tp19npQllGMC8LjFnl3lCwTeL/HBzO8plHM/GOpGLd+9urXU4pOHtHCq9v9muV+3Dw2M/THlRJOPlok+Hs7KBiuzx7eXrw5ONdt2u1KyMdeuypQFnkXz/8+/Ey7f//r/+x9V69+P7H9r1+ub65ssvvzEEP9xdN1k9DH13HK+3659+/ilg/P/6//y//+M//mSk2m+vkot91+WMQJfWRaEv43EZy6okPNuKIr8pVlf73IS30+XDx+/ev3s/T/Mf//gXIjJM4PPh7XDs727vfvrxQ5Pxtszqqng5nM6XgdetMe4wdP/6yy9/evzmaXQgYW+2260bfJ2xSZtlmkIyBGGCKBaMl1RZ51EEGM1qmcYJIIgFtTGG5IkLlCAHAkSYYMIJwzAVlIUQBc/qTdu0DcWEcQpQssFb63gmOOfeO4vARUnlI83wyziCYYoABwhWu4ZCvCzyxZub6z1keNQGxSCVUsoNWO83OasKEFI3L6OUkFATQbC+6y5LsKIsAgDSKhJR1PpMSJTLrA2EadbdcVwAIVkmVqtVQZGd+xxDzHMf0dzPddnc7XaCZ4gg53zOuOCZNDpEb5wLCa7KvMoFJKRfJkgI45xnVGudIAgp6lkyUlplYIJ3N1enaemHEUHY1BUC0HvvjaWENutaG2W9H+UcYlzm0eNEEoAJdErlgjlKU4qJ0seXYzlwlSxEjHCuTTifRj9Zt0ieFYKtXqcLJaQoGUEYIIghTD5u62YlMrmogjKSkDaL94Eyrsfu7fwGY6JURBjzQrTNKhOZj7quy0nKoR8oxDfv393uduPp9Ntvn9a7KyNtu14lQggTBsKzN1Il6FKMvmo2399/h1EaT93p7VQXObq7sclX+/qsLs+H14pQlohPseT5erO7vr3brNsU4tPnr15HOUgW0+72pl6vEIIpxfPh0BPBMPzh/rvHl+fnb88YkrqsPHSVKBDPCMEIQesT5bysqmmeXl9ebnY3MKZLf+6GM0W44e3t/tosphvPwTkp53Gam2bd7huz6JfXJ++tyPjqal+WtbPaJ393TSjBD9+eL4ssnUlGzXo5TKOMYTydIkOUAO+9sglDjAnBiBR1NUt9eD3+vL56d3v3+Pysgn13+91ffvlFa/3l5WW7W12zdbNetc26PU2X0+XBO+jS28MLL8qibM7HS3l/LaUc3g7h1v/48Yft1T4ycup7Zc009cDH+dz9MsqMo6outNFVXf3jH/4QAGCEYoI//vDBh2isjTFs99uqrh9eX//y+cvj61O7Xc/9eHp729TtbrN5f3cXvO0vl81627b15XjIMNtu1mPfJ+TzjE+Xo4XEzHoalvWHGwCTMgAQHClEgGzqZr3eaKefjs/d0GtvrQ/9MAESJzVM/Xkch7yu/suPH3frVVTqIHWEeNVWKXhgtJttVRcfrq6uV63T5u3bs7f244f3jkGD8F8/f/l2fNUyUpbVZbnm/MPd9v/+z/+lHxX/66/fzofzOKhlZogHZ0lwjmKUYV5nFSPU6aAmmUBCnGKEvDeLVIhhkYlp6jGGkKBFK2dCRkTO8qLNM0Yow/OyGO82qyZF6IJ3we02GxDBMqsiF03VCjWj5Ouq2O/3IaVh6TPFOWVDJyOAQnCEkHdRazmOi9IeAaCNUcaKqYAoYhS9i5NSFgGRgE3JhaCVQsBnkBc0L/IsOFdCRITouvl8HkRGGaOCUgRiDOly6mNK/TQ7EFnBTYT9uY/nziVHGaWUOuvGfjTeGWNRBARgRIjWVmstpQQwhRQnvQSakKAuxQiA0VpaQzOmdQQwQQi8S947DEKWCV6J4LyWynurrYkpUSgCAPOyMEw2VZ0RoWdtIeMZe7e/MmrRapRRLoMEEczelmVhYUQQBh+/fnrR08QKMUS0XVc4QMgpFbzermI3vvztIcUJiHL2b2HROqR6u2aFeD28BRTzVbOMy5fnh+ztKYOwyFhOKBfier9/Ofcvrxdb5S6Fw2VIg7ycz0EryoWhmHJqjQHW0RhKxrZ1izGc5kVwPs0ywbQtdsW6eRsuh/MlE8YZR2BaVfl8PPAqJ8A7m4LICg7PyRel+HB3wyiZQMxAsh6whLAF1MeC4zLhD9v6D7+7wwRexh5AaxcviUeY0GRvbm5KAH790//qVytOmHc2BR+ciwFoF2ejnl7OALqiLv/86ZvS5ncf3n386efw+kjFqSzXXz4/H0A8L/+RMff9/QfkHM/4bb4elnmRdrtaF+X66fCIq3y12X7//Y/fTq8Px9cEYbTQu/BwObVVsXv3PcIRUvbt11+9Cjji0+UCUry/ue61XA7nlSg+f/qmjC2bOrn48vTCsiwTNKM8p5TVhVb6cujazabMK+NCIPDx6aClRHUu+xOZ2TQtPgFelDjPo3FZVTXrFcLYOPPy9O0ynrerzc31h6zIvXeUoGA1pMmZ5el4nIchA2Se5r/99osP6f72/TCNs9TdX/76j3//hywidZmboiYlCQYnjBzk3SCnxberDXNgwzNHORw0W/v7ol793R+a9Vob/bzbf3s+CCFWkHMHbDf88ssv/Ty2q02b3Hc/fxyXpYFwzxkQPMUYvVutVyBiZ/1h6pd5YBqLIkcEz0oFDE2KxjvMqFdGSVmIrGbNFJRxdpADISymIGheiaxYrUBK1isXrHeBMBiiJQi064Zl5NL3mFIAsNXOag2rzEI0TXPwIXrgrIcY7m+2tCDTpfOIzYtfrCGMRwqlUf04hpiYYItW0RsKIYR47MbNdhdAklJlRbbMXlnHGDkfDs7ognE/zgSDSLn1YNHT4nSdtW1dl7lIWgatrTSiQHVVv9+0mKIiRRSs0iZoKTDK20KbzARfcKFm1Ypis2mDD9M4wORqRpuMl1seQExWA2MoR6MaXQiEYmdVnpEmz/KcFTkbx5mTjGdCKjUPBkSkpiWEmACcZ6mlAgmMi9ysVxQjJR3B4Xns/dFkZcXa1Y5TGEA/qf7S0wSuttdFWUlK73xAXExavl2OIFkQEApBILKqylxwnuV4u5vU8vnrw6WbWJHd3F0hAuJst+umFAyAtK5XZV09H15732U0q/ZtvVtrZcfprPwT5VUlioTx49vBK3DsOk7ZtmyRQ29PRzOMbZNP03I6vZVVfnfb8qJADEgpOQPWmLfjiXNaidIHNPZD3ZaQYijYdB7Hy6Wo8qgNTGB3tccQCswYoJyiRuR9zn/++H1br0PyhKBo7aIm791lHFLCKbqb7fZuf+0XLUdprVLOlHW5KhtKMaOorSvMUgV9pycBAysYyaiyalCzGaU3v+AE29Xm4ekhwnh7/x2DTC9GWfNyOvrwqpRhIk85QzGNs9TT1OYFiOAvf/rt/f39w+evL8+v61XbbHbj20kpIwh+d3O1vblTi/318y8oI5+fn7rh8t7eE0xRsG6e2jz73fffvXVnk8CqLb0Pl75HKWUJLUr/8unTar3CmKzbZpLjOE0QADXrJU6C8e40VG1+vd4ywj0E3TiGENbrbTf2p8PRetfUKwQ1IfQPv/+99X5V5MSHlweTYHDRj8M5z2kGiR5UaiuAXVGJtt5GLcfL5cOPP3/TSs363bsP7XrORWGC3K+2hKJpHOdhUOM4TzOiRC6qyKscN5zyoZ+LOk8Ayxi7YaFZtS23WVZklB2k/OX19PB6YZQiHPLVDiZoZkNrJJDQNEM0+26/37y/sRA2GV+X+bfjaXGxotnNumkzocaOePhh32Yc/ds0+BhhCIJiYpVuyqwp6pznFOGklffGx4QAABT7GF0K1tpLd+m7LhO8zERGs1Xd5DwDMXpnB7MQjIdpiCCJXDDKk49eO4ixMQYhWNZVinEcR60MIWpZJOUsBKBV8BG0q4ZxgQGIKRqtUQraYsJQcIESLHKRgrbaxRRijD4mbGECjglOMMEEM8oKxnJEK8xdgKwoMOfAQuiTEBkkSFsXE8yFCBFNy7xYy0phUtAhSKOMc3VbbFYryugwTs5YH0MI3rpY5iXL+DCO8zh662ACwdtpHD1ICFOa8ZDiNFyWZclCVq0bnnFrg+sXEAMhBEFklLHWQgxjBJCxGMPiNJTJaNtWOWfMzEtG8KauIAosRg+ByHmAZFLKGft2PgOC8yIHBE+LiphlzdpH++Xr8zgWv//4sS2rXs+XaelnORlNAD1dutdzH4yuykqs1qksvnx7BCjUlTJaKzlT5X64uauKpj921dWGQOykmqfpszaCccvT4Xya+/lq1V6G+Xm8BO+LLGcQf391Z5rNqm7KIlukeTkfUTwGEJyRfR+lVpQxnvE6L2GbWlEAY1I0nKEy48vU1Zvq/c21HJfXr1/reftuv99lm8P5ZFAY5PTcHWguMGZ1ib0c7n/+ubza0OPxx5+KL1+evrw+zmasMjErKdWIM8oJ65a5G6bNdlXe7T8f306HN4Z5TAFGoCA5jt2qG3bzwhkv8tJoW9fVMi8vr4eb2w3M6oAUKcSm3lTLcj5PUmltHM9ygElElFctW+ZeDYvR1+t1BO7h8LTd/cv9/XfRa2XVu5vb65AOw/jp5Uk53a7WizE0z2ywyMQvX79sNlvv4zhOSWn7rK72mz/8flc1N3JRp3N/PPbGSirIpORbNzhr1wHkFANCbAgs4/V6zTkNzpSIMUYIxQSA4XyQZvnDzz/3Z9lUZVWKr18+3+zXbZMzihdnAAjXN3eQs+eXV6n07f3t71f/qKXqz8dVuyEQnl7ens2zdwkgfP3+rlztV/fZO4DVsnx7+NUHXxT1+dTJ8d9//ukDivHp8+fVZnW9bq2z0zD0b2/DZRQ5kfPQDZe351PT1NiBdrP+sGkq8n213tT1+vHhmWXZ7ff3v/76afyf5++324znnGWAo8fj69PxpKyZlAre3+22eYQf390bZUiIA4j9InFMGKFM5AgRAFDCYOwVptC7CIH3QWvmkFcYYVaIGJMctTcegmStDwmZlM5Dz2lGEEYImuAnq2ajJNA5pbLrCOVZnS/a9VY7EyKCAEOCUlOUCsWQ4UEualHWR1ZVsu+sDXlgOKQ84yXLnNKDlvmm8RSmRK6aW0GFlsvMIEuR4Kxpcs65tW5dlTElOc7G2YgAipFEEKWnBEcQGSGAc2e91Z5QyCiR3bT0/a4qWUaoKOYJ9qiXzkOQAoB9N8hpblc1J6TiBaexoiVBhGf8Wb5kkZRVURTlOE7ZpvxPJy1EkGbYBx8Tcgl8ez0EAIJxRYg1BNL64IN2btuURvlOqShYBKDIi0RxP7llnBhmV1d7jHHN2XVTNUVBRWZjvIz8jbydvGvbq2LVzMOCMQ0+vDw88Jz97vd/iAg8PXy1al5XZfTh0+NXnKBoWqu1cdYBIIPvtXo+HGieDcYNg6qzXFr9+jrfXW95XtgE+mkkDJtg4gLbZlfym6fPr1o5SBAnhDN+Ol8uY8eqHEFgnJUg6GkInHOjpnG083x8fAYJ5KiMIdze3vz80yoXxdPzt64/391fubj+7dPnZdF1s7pvbyimIivHrj8fLxGEm/d3VZFv6yZIczy/gZjqXU2bvDCynOfpvDw9PixyBhgUVYkgHvqBEj5cRhvt1fV1sDZoB0DQTg/DrIy7KvKYgIuRYjwvZl2vq7wIAJ7Hfo4O1Vmn9Va70/lsrUsxUUKDD+u62a12XHBr9a+Pj/08xZgEIuPY+5Surne9WiiC33337vl0fvzyVGQZymixacfTGaCUi8ope3o7k4K1TaMITzauV6vL8TJMSgY/W4sZW7QOzsV4Ol+OxshqtS7yTA2X7Xbzw3c/Kqvf3l4dz65vbpdx+vbyrJapLESW0X4ahyPZ/nB3e3fNErwcu3Fa9DLf7W7Pl140rQnxPA+TVM36KgFojWOUd+fLX//0F8Tphx9/+PDdD8mm7tzpYSAI1bt2tWtXu+siyyFiOYe3m+tMKDU7BUee8R9/+oFTNvST/U8TB8b1qimyPBf5uiwpo3q7KyG9W199ez3N3eWqXHGI//Q//tW58NPf/2NTioxiw8jVZhPLQNqyWjf1+7t3dVZ5bVANyjLrx2XSi44kJZSJAlEWUxJ5DmNINjCGqowjCEYpx9lKJTMhnPcxJEQYBNG6uCw2xAQQwAxLa+ZxOvbn4IKyXilPBVPeSKMBRA6AhKjgFCVAUCpzfntzSzk5n8+Mcgih91qG6Hz0IRJKMcEIYWMtIgRjTihdr9Y1F6ofEQJUgKgdNG5dCczZMPVTPwqWCyFSDGc5Gh+ERiGFmGJZFWvO2qaqixIg4IIpq9xarzHyNPKcAZi0UjiBRtQUI8G4sW5WKlFSkFWMUXkPMHIhKm0xygjiMS1q0jCHjjs1y1ktLONCFBDTWc6ym/br1bpuQkin1/O2qer1apBDiCGYhTOSCQpJllfVMi92MgCCiEI3zcs8FiTbNNsY/eF4tj4o62ZpXo7HWelpno2zbVvvt003z72yx6kLcn4eRrks09hf32zvrnfEGqdssW7r613XH4CUDNBtue4KNxo1OYso8SDRjCWOL24c9BRBqDJ+td5uymK6jHWeXW9XJOPtM2fJC5GhjB360cqlqMtMZEpJK23OWNvmu1XBAiCJvn/f5nWRsUxK+enXv7l5ckS07QavVmfZr++v392uX75+q/MMEDBJfRolqdqq2BZZKbf27Xy+dP14XuZFXt/t6KruL/1jf+mmcaG2Atcz9m9jd3d1dXt1PXSSFdn6eu8B/PWXT9o7H71Renuzp1RoPWUsu3STmYcYVoRkEKdMwOPrm08wK8XXx+eL+oVgultvVqHKCPzw4Vabxcrl6bdfgpwScEVR7KrqOM0Zx2Uhls4iSmOITV0Bo8y0FCQjBCzIZ5sasNz1vU5QRs8J5s2a+TQdOsQYFTjK2QFvQXi5nMpKYIS/Pb0CBDc3O5xCNBLaVDbNbtOus/zQv0Xly03eT/Lt+Np35PJ6EIUos4oRst/dQJjystLG5USwHLe5yCmptqvtdjMeOx3tZR4Ph2O7XomqeDo/wgzc5PchhGWZXUrdYiAVltIQ0+79dzSFX/78Z6Umhss8E23ROBdsiAiCf/q//QRT+u3TZxddP8sAkbeBR1I4mptUAxi0BGNX03BXsexqfX21pxFChr414lu9+vXw8tvhLcQQnL+63v/h48f5vPz28OhjUtwDQhjNIOGD0k9vb4CAEAIIgFCyLvJFSzWqkEIu8rzIrTROB5RgDM7NLgJIOU+QIsqqqoARKG37cUQxUUwwRZThOfhpnmepFh9c8FHKRNCmLSJHs1SX47HKKpZxQGnAJBXZ0HfDadk3VZuVbSEGb0+DDppCxhOELoEU9Hm4zFo2RQm4yIqMUnp5PUaMgg/DJJ31RSkyxkyIY79YDCYtE0Kckss8SqUhiIwiDnAK8HS4IIzX1xtEoQ5umHR2tbZWTXpKwHNKM8ysdAmguig5psGHhmekrddNk+fFJDhkZJIaNl5pg0BCJOlF+ugdTJ9fX+5urhTyD7/9GgAkhIBoUvauZkxNx+fzC0pIWzc7p5Mb57mtWgvjYJbkdF3koJ/RvKyaBmonMLm53u/ubqgQSjof4vPlNBxPRcarusE4Yefeba+265VX+svXb5zwtmmyIo8Rzv0Eiixgqj3EhOtkDsdu0yRQbot2E4oVzkUZ0thfutG4yxiRFbxerzZqaz//9m0JYfvuu2Zbn6b+9XROy6C0Gc9TW9VVXhQ5X6zr/vZJDp2d56C9222qNkOCecJfzufT8QURCGAihOUi40V2/+57iuj4doJGVxmeSShEfn2zt94NsofOny5vl9NpJ69++vu/K3i+LAoEe3h9nubx6upm3+wQRhAm4y1ASGvdj100NseYI9wWVS2qWemX1zcXEyDElN5EBylxMU1GlbiqVmtWFdO4PIzHQrPr7TaH5Wno//b187raNEUNMXRGT1InAP/0t18/3t2JOp8Wcx7nflEQ4RBgURakoJOSw2Du766yihOMukt3PJ+Ol76mu4bV2bbwSjuCoeDL4r6dLhCl/f5qfXfVH89Sqqqproorn9A49iWD10VRifLTsX/6/AAEq9paO3sYBspoUTW3t+8qtSirTqfzqmxhAONiltkdng7vd1fX6+vXYfrt87clhKLKQ8SPjy8iZ+/fveecfXt8pgi2bbtq28PTa3c5YkKMHBfqeZZvr7cQgIfDs5Iyzws5zFy77zft7nZLYKDAVZvSVRmh3HjvPU+VOM/j+L96HILW8yZfvb/9cJs1h7r4/vZ2XZbnp6fFWqkVY+Ldu5s7sG/Kxs6KVHm5KldNXoEAJrlAmNq68hjpszMuIUJ4nnEmKEDFauOUQimJIgvRTVItSoUUrHOiKBjnlFCRF874sZ+Nt4TyvMhdcPMibQxcFImEGMC4LGFZEMeQEWvdJKVyrhAceBecpZiWMXkb1uvVbr3ph2kaE8zAPEeAUb1uUgDaueCCmheYIieUIIwSsiYilNSiE0QIAACAtdaHmCjWwD+8HlACEFPOmPcxJcAYDylkhNV5SSC69JfpPOKEduu1i74bJu+9t54TVlQtI4RzhiC69J33i/LKURx8XLxBAHi5dPPUNjoXuTE6xAARtM5JrV3wOFHtbYheWS2lNrnFDaIcY4ApLxDGxhitR+hivV6BAFIK13fXR3CZ7DRLGQgYp0X2C24xJjS4lBV50zSHc9d3RyYyxpgzXjBxdbW72W6KSmQZfjwMX19enXbXN3sX07QoxjJaNpMKl360ILy8vVxtfNWsbndXyqXD0gcYEGdVWy7DfFZT9NCCpILTl1ORiwxCBJOe5x6E67ubnNDruvnw4R0vmz99+pSCk9boaQrQz3IZKOMZJUVJLIA6bqq19w7gAGEsckEFQwDMU1/UguWroqknOcryQimChGd1+/rypj4/45TKurr0g1Sm66W1YX91jTLR6XlxGuUYWTjOXXc5EcabXQsJTQCHGJdxWW9WmyIPyyKl3mw2j8vz4e0MKbI+XvpR8BxBdDmPh7eOCry/3uzv94vxgzSHy+Wl76qyqOqCEQqjNctCMZXz1L+9/va3P93c3t7c3F7d3j4/f5mM+Ze//8NTd6EISSXZdg1hStYzJijl0tmiaSPkxFob4jBLmkvOolxkir6sS2nneZaIEgRRxHCUi1Vm1gulLPlIGc45N1ZmgjACg1dOaW/80E8+heHUVbm4ub2ZZ/XL3z5v2/p6s8cYG5s4L9oGn06Hz799TRA121Ui9NOff41eUYzLZv3T73+XoH95fb4cjuOxl9KyLGMF9yl++/bbZrN+/+59AGBVlB8//nQ+vLw9HzxEtKbJR8EYwBBzUlXV78ucUBKMG/tBSg09OL4cHtRXRBDAkXJ0fb1ryuLw/BYXmVEqON9//OH/+V/Xf314+u9/+/Ovb89qUXlR5j59/9PHBODbLxNGmBLGKI3BKjlZM/OEc0oDSDG6cey0sy4YpZR0qgKOeIQAghjFlKTWkzScZZgRQSMEwFgzLpN1TnDOcMCYMAKUs3O/mOCsdZgih8IwS4QhpixY18/LIm1T18V65WHw0Wvn9CxzynZNSgkynlHOl0UnF1NMx66LIJrFCJIFkAhGEUEBwKyNDgEjZBNMEFHOOaM+aA+ciyACzygTOTfaaGiC8Wn0N/u22TZOhUs3Ls4CBAOAMsbH41mqaXEmK4q8qjAkw6lPEMEIDYJyktYrb6ycprrIBSXW+ibj6+b2chkPh7MnftM0h8OF53mEQQEfEzTRYsJojodO/duf/nSz3ZRUAJMqlgvOn95OgcGffvdTQnCUs57mkbGQUuYSSqDkx8s0QMaqqtTakbxgXLy9Hc/DUK0aTsnLy6tXatM27777ruv7YZhiACr6sCxgkd4lwDAE0aWIBUUII4hQzpdoT9OkMA4w1K4AxvkEq7ws6WpRw7LoskzKuVHrBL1L0FgTQQoYP70eL2PXNGtK0jR2CsUQtqrrh/OpEtl+tyubWmq/XLrPy8MyGWtUljPgwmq3yRjLiuz++trMOrLhcHkLIKzrYpDy7eklyzOt5KZtRVnY15dlWYzULMuRg229Fr8rP336Yq1HOcMQny+HYLxSUkk9dsO6qNZNy/OsXa0gI2+no7V6CWaxvr9029WKNfkySDNL7V3dFrzI1TzJZfq+fCdtenx7GefxchmdBDc313f3t5Detdv68enxPPaU0evN1hHYL8olP52Hr18ftne7ZlU/zc8phtfD6XrTWOXHSc3GJUIHpWB35pxAEOdFy3kiBE/GKKXypoGczNqYRW22TbNe//bbp4eHbzerZp1vGLdmMSHG7nTJmiqvCoAQoaxq6rasKlP99vXXX//yN9PN3iel9d3uDic0jxOk+ng+XcZRpoTzLCFgjRUZQRAGH3a7a5YRIUrr/TDLWTvKknLm9eUVIvDD7z4SwoOzw/FiK7O9uYnBh8PRLXpxyhhbrzdZmXdD93I+Y4IACsC46a3blOWmyrdVtdvuyzy/3tcsowThu/v7l//zf/7lL396//3Pa9EkaEnAbbsiKIGMMyWlnMy5vyQMtPOUMowpDAFjxkm2aVdllifvSV1NU6+dWtQslYIQVXVVlKXgWQyxrEoAoU0pJhBcwghiiAOK1jpMyKpZY0C01tM8a2d5lpOMSX0xPoBg1Ky81TAkhpm2AYSw220KXlhlkwN1XiOAAgS5yK0Nk1QIwbptAIg4IqeMzwhlxDsnjU0Q5VmecFRKtvW6qfHleO66S8b4fr+z1o16LIqCEgpjitbN/QhSnKaeIbxeNwEA6EyRMSlj8JZkGWWUUZYgND64GBHDOCVv9bTIUaqYcEwhxZCUVN4lF+qqrNoGAYAISSmPEJ7GPqIUXWCEoYScswhxSvPDYJZpmFUHoUdYxGHAiVR5qY7zchmHaeqmifWsKiueVwmw11NnvWUZk8EGawJEu/0WhIQ8QBCu2nqz2lyJvcjZYhM5Hg2AxsZCVBnEQOpVyd2Evjw8yE/GBN/P8uP77wpK96ty1j30IcswzkordTfO51EVTWMRGvsRvz2PQ9fyDHnfL3SBYVaL87YV1Xazi9qtBe+H8SLl4FWWSHBxWez5vGzKBjv/p3/9D4BcIkiUBc8KRjIbHGZwu19Nh+Hw6+PrpY+IMFYC1OTFHqNJD29aqaHrnof+5dANSlXVGhBmI1BaBRcLVqMcyrmPk6J5anm+9PPTpNpNSymwauFVkbf1uqojw/fs3ePrm/YuX5c22FlNt23rTejl0LSr9va6XVXG2v7SjX6Qf5YxuOjDervJCIKQWKvzPHd5ubnZXF9d53Uxq/GHj7feo1mrVysBoIGjl8NhU1SYZFdX9/0wHy/qtFgkqNbST05p+35y19t2xdn9qr10h+PDE6GoLAufQFHkyzJba8tCZDxf+jHftJmooAPnS6cvlwIkxjLp/J/+57/l7crH6HzYX93miC8PT94MFAnO6Xa7z/LcOLAY93bpEgQBIuPM6Xxwxt6/v8lXhfZzI4rv7+7Grv/86QEQ+tPv/yFvaxndeepzSuqCfv71P14Tub36jmWVHvvPX76ZSe2229//9PvtfguIF1xQhL8+PPgQT6dzfxnXzboQZfKelzXJMM4zwRugopvU8XjsKdk07Y8/bfZVDXaqwr971xbfnp/bjG1oqoDDQWujlXEBAKvVuszfNyWrqtt9wzHuR3le5FM3TToiynZNk2V0miZtIyUMAhSTDwlAmAIIwTgNUw+DlGqWknKOcJDKWB8EZ4vW4zyijGCMQggQopgc9+48TDAABzBEYNIyLsRKeD6dlJIAgYgDyBApWJWxlQ92HLQNJthlljSjCUWp52lGu90GEDRrM1tr5mW1romgySHrHUQQoFgIkkFys1vzTPiUzpczQCkRYpI1EKmIImJQwNk55y3E1Dh5/vYsjcqLMq9rD/Gh69Q0CZEPalwWaZ1zQVtpswEGkBijSsrNbkMDKTK63zYxAgpAU4nzMJSrkiBsndtuNwSS4P3k0TwZWccA3H61gjpACFZ1hTgTosEV+/TwrXfusiy9ttsyJwDr7gQxrhA1wywvp71VyMHh0sXkmqbNqRjP575bYMpoNiYCebveVtUwjovWQz8QQkpWWzk9Pz1pZ6+2WwTTjKZFa+kWYFxJ+c3VXmDKIODe5+3men916S7/9ttvYz9KZ0VGFz1Oy9J3hwSx955xzqrMEuCihUNPk8M+ehh1TGy1YquV1Kob1HDuNqtNQfn5fLqQvixy4gO1vnt4VFLJeYkpQpiapjydT+eX1+3uBhNqbPQBrLf725uroLRWtoA4EaaZKJum78fFq2jj4XACPq03a5ihbhgJpCLjlLGr/a7MBUsufridvZtt+PXbi3WuWyaQkvF+OVxmra1/uwyXuqpZWT0eT58enjer1e3Nu4yxVZszGBgmH26uC86O3cU4/+18mJXRzkYUdtumzKiXEnufE8xXGcLw1HVDtxAhxKaxObsM/Th2nHFn3DJOnBPGaKSYMPb8+jb95VcQkpyXbpkA4T4l48PhMmbFYHEOGLn98M6/vbyeul1Vrgqh5sv5xINWKaZkHXCBYhyNLiHZ5nVCaRzPKjkLPK/pMEyHw3MBXIUJdOHbL784ra6vrkRVns5nXhaW4ny7Ox2OBSPBQhCNnTWtsnVTTYc3ENXV1Tpad+rP1nmMOULIhmQn+Xw6KKNvd9tts16W+Yx7Ubfr7R4y/DoeIMBeh0s3WOQiwlnZJgyTC+82e2snACDAiThj53mGCXntY0ogQWVt189a6apu6rys8ypDlGHMOJ+mQStrrEkgGusY4yAiTEgKIPqkZum89z5mjMOECGMQIEKo9d4bHwkWnGLGEMEIYAjRPC/GaMZxlnHvndUJIwghgRCnFPvLSCA32oToq6pZb8Wlv0zjEGJcNaX1FlPijAEu0Yz5FBGlMAbM6LjISZp2U+dlnecFhjTWMQXACFLKAJC2V3ujdD+MnFKCwKnrYAplmSOAUQJFUdBIXDTeeWPcCBYIsXUBQLBoPYyDTc6lgDCK0REKQ4wUAIIoSk5LSyDywQeQRJGTyJVctJbKLEKIjGcsI3mW6VlihB2Nl36cxmG9rVZtAZ0N1nFC5m4kWV6K4uV8nq2GzkdAW144n+ZgMEHGh+nY5YJuN3vn4DLPLiSU0vFtbOr+ux+uiyyHCWzaJuM+o2Qt+K4SBWTYB86ZrqAfw6z98nYR1eq2bkL0gpN5nrvXt/vbO55l80FP1iz9sCwzBmgwxvvQnS8/3N8Fyj49PxEGTLd8/vwFISwQ3AixzsUHzE5KnuX45fODU/L54QneQLi46XRC1N+/v3ME9P2pLdr1bs0KKpfFGLXMk9EmAJQJOIxyvwt5VXrjLv7y7fHTAKJnOM9aCOm5uxDWZojwImOIkWoV3XVwngWcEvY8m+bFDyMEyGh37ga+apr1ykO4OMM5Ox16XmR+MTnluiwQhuv9umgrTGm9XRtnuvGy39Qf39/+9//9X//up5+dVqv1hmdCdhON4Yfvfvq7n/++qfJI0tPrQ7YqEMn++Mc/ERcWKdfvazPLx2P/4e6uKivtIuXkNPX6rH20zkCE8EfBEARlga93K6m6RcrXS9fcXrVVrbSimNzf3acYx24cLgMBsC5LluVD1/VSiuC+/+GHoqzs21tUquumui1kjFnT8KaR4yxjCs5/eXxc79c0y1lTomkQRZYXAi7pww/vnYuMYKvMt98efv/zj/vdbjj1SmnRMEAIE3y33/3LP/+9HmbZjSiE3swg0tv3t7uwfj0conVN2+RF6bRdXdVFln/7dnn4+s04tyhjjN7sdhDjct226xXC8PXt+eHT13WeN+UqxGiU5aL21j9++jTM/aau6p9/98PtddB2zXNrFxBdwbHDLCv4dLrs+e6//eHvNiL//vZ2vWp++/b069PjXx/efnnrIwLfvb+rOf7822+HZRSlUN7MswkB5GXerltEUd/1YydTjIigCIGPURmnveeOamMDBBgCD4Iz3ljLKQVT6s5jkQkMYFmU3qhxHgel9bIgAnSw0tnTMKYISyoAZpzm1kgEUSYyJniKwUzKOWe1JoQsWksrpbLM8iLjkMFIkU3eWA1TbATPeR4SUGqhCM6ziQAmAqR1vz2+MsQIpda6ce4xQSzLtJ+0j8Fo/fbKKTJG+eAJTDGG2VpIYYgkIA8ZG7TJAcjK8tSNKY004zHFBIGS2nqrjfEnv960ZSa2dbOqWr3IEpKl1iwXVVViGN8ub7u6ub7eQ4INSl03IogwJjrZwRkjEwE4hQgSGNUyjrOeZu1cnQmAEYh4NDolZCOANBuVCZfL9mZDcqZ7HSDmRTm9HbBzgUAXo7MWgdiUBUiRQOhg1NYabZW2pMhrUaTge22Os76+2U/jNE694FmzWetZKaVtVA6kCKA2fjaallYUHGEiF/m2LFe7TdE2Yz9+fnyIBDtvjtMIE3AI0iKnoXYQnQ6XWlDttVpeL8Oog6csm6ZhCj4gEEJy2kGOTq8nbeVq1WaimMbx8npabXe0KJbgAvCYQKNNcCGvRJkV69UKMbzMi6CMQIhgmvu+Ynhb59FuCBMeE5rIt7ezM3pV1zh4kDGR8+n1ZJSRUP/Pf/0jLyjJsrKsm7Iehx4jfDqc5DLur7cCU5LQ4XjY399D5+bT2FTl+/t3m/Xm6eXp7fXVOVtmawjQpRsI4edhKrYrtqpzGIO2eVkcl+OwLFnIdkUNKW+aWjAKE3r4+lVN8zSN9Wpz//13iZOn3x5+/fr46eH5h59/xFmGKaUYt01d56I/n+Ui1ayUtj65q/v3V7fv5DRxSAEFMaWEUrta4Qje5KKPb2aSV3l2d38vp9FZU5clQ7y/jJdpmrWud9evfe9BogTRuoo6UcZE2fpgYEbHaXj8+qitJxlfNSsEkPMeZaQf5+D87e7qDz/+SDG21gCKu2V+//7+MveH88FpR3E26XmJuhD53//jH1jOc1a0We4UfXt5NsES61zfjxjhPM9yxkJCBFOUk1zkpcjbPM8FV7Pu5gWC5Jwz0mHGEUFFuUIIJR+ciUSAGJM1HgAAfMoEreocEQoRVV6TaKdBj+McQuKMEwwRhMs0TcsSo1tt1qtVo7QE1iOINqttwcU8TnKxs9SYkBjT2+lStaU01ljDGBW5EDCLISLKjFQIJ4gB9AhBprXx3mnnYxc5YwjhDPOcY7yulZRSGi4EQHCcZqkkbpuEwOJtUxZM5DgC79wyTwGBjApN3DLOkzYq+rpqRcEjQKp3/aWDCDRtsyrr7WbrnbdSEoIASIs0PjibjIkaBSQXfT6efLQZoff7m4KJYF10Xi/aSEkgohm4yq/2my2jCcNIgFu68e7dbVm1D2/PGWEcZ9K4FDHLihjsOE4YY21MnouQACG6d4uSi5E2xYSJWqK5qC4CQDmFIUEX765WH+82uzoHJjo5fX9z5xj68+PL89+eEBe/nIe3ricpCs6bmnKIZTdqo1wKxjrvE8uYnOSo9O79OzAtgHOSZST6YekIQb1Xvzx8LnmOEWqrulq3hVH1xLMYXl6P2gelx+4yaK339YavNhF6dTl7dcgy0q5veZHN84gzeJ2vfETSqpfHY3Tnd3d3u/37h0v/EsIYgmjbjAs1jMfTW7Tz/W4NILm52W3W++B9dzpbr3br9Wi0f43DovIyJwQ/nzpr3M9FG4Abx7GosnRKDw/PnJIPH767jJNgtMDi8PhitREF19q8Pb3JUbnZNEXRny7JmNu6KgjUbr5pq7vrD0qOajmvN2szTVmW0ZLlvNqU61XpzdBzgttdWVTE+GW9L3+E9+Vb1o3D8/FtkcsBgIenhzdn311v1vW63e6219dQ5LQs5kUeT2+Z4LfXNxjAFJKSMoa4aA0xCjTbX18Rq1HRtOv13xPy+PJ2fDsPffjy9HDz7p5UfOmOvz59bSsxDkM5NX//L//C6iJhuCwSRsQxvr+5xYzpRal5Nlo6Z+dx6fo+gDRJ+de//nHdrQnBNctcHK2x9zfX0zxrNyHvblf7+GNalLPGdmP39PVxv9/c3F3389C0JUW4KEut9Gq9z0RxPHfTMhYFT87Nc3d/vd/s9it7NZ0WzsjV7Z2cphBCIVYGI1AwL8Lp/EY5/cPvftIEP58ONzf3+kpeieqn/e1WFHuxy2kGr/1uLe6u1tn/+ms3jv90s9oW5T0E5/WcrVtDwh///LfH5xNyse9HWhUKoMk6r1XGCAYQIxRTSgmKlCGEjPP6vCSYMEYoJoKwRBoG0I9LLgRkBARLEw4JIEgyRoBH47hQiNViMkT0oiElPkXrXCZ4nuXeuYB9jCmkNM/zpRt8cDiDgAJltbW2yHhGKEQo4yIXeTD+eDqZ4CijHGHtvIteGQfwAiOECYcYE/R1VYZkRieHaSh8XmbZ29ubYDQrMu2jOg9ZnmGcGMZFVahFHZW+bVtImKVIzQuyGmKQUjLGz2rxLqYE9axFQIi6usbXq3WD4KnrUEZFnh/PBxfcICeec0FFI/JpntPsKl6VolZOT/NMMIUYLctMmYvATUbTWTFRREqjhW+nceEaR9iuNwj62cj+6+RAHMfx+vqWFSIQNElpYKCYMM4yxrrjhVLWliWFmHt3saPS5m24nJbJO1fzgvbTYGQuhHGmrCqKCErwcDkTAUlRHo/dbPVp6HWI6zYICG2/OJKauuIpyWU+H8/SyRB8kReEk1/f3rjIY4g73haEfXl44YLW++shod+eDsMwZozcXN8wDMvNlnJOEOyOg9b6/bsPZd2M3ai1nWbZZPk8jLe7Tc/GlOD23dU0DvNlUvOYYMzzAqZICBMcA2AOh5dpuHBCN6uSiQL8BCBM2pvbtgFNM/QDxqj8cH+eyt9+/Wa9vd/crZprDplzput7Y9T721sIkZstJjiLuGQ5cKHORVy1RZalGKaxj854bY0yY+y31TqE4LzKcvFyPqngkw3Qh3lRRZlVdW2cP1+GaZpXddm0hVfjhZC6aUUpopXBaZpzx+nUjTDFejrloAYpEYopZetquy23yqlfP395fDtnBd3sr2frAkaMUBmtC2b//oZVeZwWmCLFmJS5qMT+du/N6vj6llPBKHHSHw9HQCE282Ve+r4H97uWc71YGXzJSTdML4u0JsTjaZaLCzFvwKrM0jipYah5tuV5HmAW43k4/fbrn7QOQJtjf8jbbHqR59Nwf/sOM6YvXVOWt3fXNth5GCejSgKgncfLhYQUI4o6aGxBSiAAjAnLeIYhYRgm741crPNq1j46lnHCWd3UIs8RxinFeZqllNhCGEFW5AQTrUyIkSSAIPLJGesWZRyMi1MpgAQApdh775ytqhJCQAkLLmSM73Y7kCClLKZIGasQIwSLPI8xvh2PNrqUfFkWlBCjDSZEcF4VYoSDNgqitCjtQ/TOAwSLqtDGTZfL2A11WXHBIUIxJZLRCOM4zdLpRcvQx7rKszJDjBobUEpWG4SxKAXyAUEMMQrWa+dKlHxK8zQbYzBFeZZVRVnXdVlXBCIl57EfvfdVXk/LPC3y7XDI89wHr63OOG+rtuLlum31LLXUIstC9CEBZzwp0bhMCEbGIE0xy4p2vQ4hJQDrsjIQEe1sCIsxZcERZ845KphJburmWardem0h1CDFEDGCr5deeVW2ZQIYY9DkfNfm391uGsqWUWmc8ry2yHNOMMbSOZPC69gXiNzfXN3vdllCVs7R+qvdLvDh9TxyKvIVz4iYJ7nKuEeA5qJkpLdzYHCKTk3TLN3d1X7R9vL1W9HUv/vxx7apnQu9MRBnkOnk4mTsy+VS5jwCZFOyPuhJRmI4hb/78fu8XA3a/a//+I9JznwIdV5w3oxGzdZNRgeI5SSHyyV6Z6M/d/273Q0ThbEuo4gTFEMSjHoAnAuUZ0VdX47dskgQ0/l//z/u7vfLPBdtVRTi6XDMWP7+449mmo6vz3aYrLaUyKdfH3IhciQO8iiY2K13PFET9evzkxunq/WKN8W0zIfzBXrfH/px7gnM1+27q/aa+sQZ6Pse0rRZr0DEl/G8ZdufPnx3t7t+fXlt87JTCoKYgLfexQS0d6Kofve7v/vrX/86G5WcW+ZZa9m3XVlWoqzyshoOp244TWper3YfbtqKQowhLwtmDaLd6mqnjPn69HKeF8Epr0TBRYguMaKcscEjTpvV6uXp8Xg4r4pi1bS71bqtV8nG/nxcJtmfH7ULm/3exPT88no4HLbb9c3VnmF6993tx4/fv728Pj18IwTur/eTNd8e/vz58+d3d+9XqybPxKdfft3s11ftNli32+0XpaXU6+3mil19/vypELQSnF7dtKt1lmXr1eqn980wdE3bVHlZliWh/H/86d//9NsnZR2m4Mcf3//Xf/rDqt38X//2P7e73c0/3Q5vZzfLZbZfHi6QxOa6XG9yW2U/bJsTSmXwN2W5/v79sl62t7cpZ1eifLg+zin+5dsXCD1DIWhJUgzGYcICADoE5wJkEGEcU0wpRZAwhBEA7UIgmBPqbTDKpHFuak4zQWhAKWljY4qMcZ+gDkEpAyEEwUujlTEuRc4EJVwUCXifEowpuRiN8wnBEEKK0DoPUoo0VnlOWRYhstFIZQEElOI8pywkE9LstHTWWYMRSyhG4M5j77yXTlNCIAjBGWUopSRiEmCKBM1aA+vyghdFHrQxVvXjKISY54VTSgiFCC6z7McREZwJwQhGkBgbulGidKwFt1ZP8+wXcC0KyoTHaDBaHw5t1WwSNIv2yvMyq9bNsb8M3YQFzfI8YuR9DCCxWsCMjFrN0xxBBAnrZeGE8YxDEGartDWTXDDFvZyIs4hgRDBEGBOMHUwxEUwoQrumXVetT5Hht05OCYMIYyRoCYagUAUfrfbOn/rLtmhtCFap22a/OD3NI2ekKgu5SJvpuijzphUMgZgYY+vNpqezcdY4ZwEAAUxSue7CKEsISIXDssyHiXWjjOG8TNY7iOEwzxxDwZkPvi7KdrX59vD10vftpjU++ARPl44UeSEKOy0kpnrd3N3dTGXxGp6dMkbpZZJlVRrj+k4xFCpeJAulWtx8aNdru8gGZwUjAmGMkUEAxnh1e5Pned9Ps1xgDFnGCMBj37lkjQeL0hlhFNLh3O/a1X579Xw4TuNSUk4RUVIyRN5dvweRnI+n25v9/f0Vy/DXr8/OqiZn1MHnwyka125WKaG85GH0ITrCOID48HYczpciFx9u7tebjcdplPrb15d+kTb6nONuHGbnpNJzP35z8arZtm0DDd7tr2ZtXbDjvFyOZwjBum5KwfM88xG8fHv89eHr89NLXTS3NzdrIZZFN3Xzww8NC/F4OXsX87y0MJgYScaHeXnrWH51BRBT2j58e3x6e3k5nQGCg38buo4SgQGxZUYSIAje7PcM4DwT2AY9TjxRwohz5unh4Z/3/3x1fSNEXfBSHSXDOKPsfHw7nI4I4VS2gZD9uxuZDGFFFiAICRjvrPUxIYwyLgjGyLswLBPCiAnGSlLQfFkU54zneUigO18gBFLLFGJT18F6H0JIwMO0LGo2hjKdQBqWKWEYYXQgOe8ihBlmIsuadYswMlqnCBAmVZWnmLx2yywTglxk0UVrvNLKepdSMtZSClOALqQQbEjaZRElAglDMboYpLGLUnlZpBQRBAiSGFEiKMC0SGmM5YKHBKQxCaGAk01OjlqppSgKRQ2BDKUEU2rqitLcR0OoKEV0WYg4XbqeIJxciDbQRDb1qshLAiBLCAGMImaYE8REKSJEp2kehrEwKsso5rBqys1mz4WwxkWfMCR5lQ1qXrQxxnTzxCnOM+GCzQh5d3X79eUNwiTKbAVaS+C4HCIEk51YQapVPfY9ZUQqtRjjQahgBQROgSSScM5HOfbdcsWxtxYJ2NICJX8+nkYAQ4JZVTyPl2E41zy73zT/+suvOGMUIw+xAlEDhAPuxgUQcLXZkqqV6jP0abNtko3j5YKrfLNtrPUEEYz58fXQgf7+9hZl4OvhYI1O0V+769v7d6Voiqr52j9przFBq13rjRtHiTC2EQVjv3w79IehKhDnaHtfkpS0VoSJ+3ff//M//z7o6dS99cPAALpeb4yJi1rkvJS5III7gAIXJ2WG40NFoOo6BIMxZvQ+WKtsCCEY78ttKxiPUuVZ8V/+6b8uenJf4Wzden3168NDCOpyOpRU3F/d5py/fXr7/uP7WtQ4kXGcGSX/8IffbTebf/vX/+v1dKrrAjL0t8cvytirdvX4+qbVXK83yzgzBK42q82qcfeuGzrBifdAakVhuttd4TUypyPfr/Ntuyj78O0p25Rit38bZne6oBCJt0Cqq1Xj/PWf/vZXUb5dM4Igm0c5jrO3liIeXHo5PBc314jyrw8vT/35MIz9OMUUi0JIrZdxaKqCcmKUf35+8z4QXrab9fPr6yyXIs9WTUMAmM5nRiml9DJ0xuqQknRWYBoBwJgyhPb7axtciMkDeOrmp8Pxy9PLPJvbWfeLOp47a4IxPhP5ZrPqj6/MRW/c2/NbdxpdclLLsihuvv84XE4vX5+iM1dXGzWNXi3Fdl/nzajNt98+R4yxYDkVykU3O8F5sCYsxi1TQ2KbAOr76vb6ouan55fYtsFG7Zzkm9TFudfX5bqkleDYhyCN0nqautM/fPgv319fPT+/vRyO79s8Ffnb+fQAWSGY894DQArxdul7OWsXF2kxQwEDSEgk1HmjrSHR50kgAI1XQAdcrqaxt8ZrqSmlEAAfAsAIUKy1BTBpbRwICQRjjHXOW2et5Zwq7yGCgBInU4JAKgtCBAD8p5sfZ1mA5LXvnTYBI8qIA0nOKhdZWRfUsunlSSvTbDgTZTf04zjGFATlq7rNKQveKm2Nj0UOQAI4AZSAldYYCyLGEARrh8tgcmesQU0NUwQJBIYAw4SxtlkTggNIs9Hn7vR4OWOQEAIxphCCz0RdN6zeXLrLl9cT7+bd0AvCUHQZjFFLjkCeUWdN4LRpCivdYDTlDOO0mMV4b53JhRB1Lmd1lP1q3eRZM76+5G2NMDqe+izLIMIgolW74ZycD0eQICBIlMU0dYJwkZdBqTzHgFHtfTdPp9M5RWCdrssyZywhRLSK0a3WbdtuiJFtO4B5giQKRjhNAJib2+u6KOU4E0bfvX8HE57k9NfPn/q+y4Qw0F3kbLQflnFVZjTZjLFJDZdhXLS52u+vtvtknDfGAHCez/EqtWXdbFeDGh+PL1OQx6mDjLYwQuu8MtqYovBlXjftBgLy8u1BSn08DdqlH3//8/np5fx2AjuyKrZqiafT5ADs5gv0Ibnw+vhS1HlVlLt2fXNzR7Njr8fnx9cgLcgdb1i7bWKyetJfP39eN2W5v3VGRys4y+6vbi/zcOm6sV+qWlRFeb3Zlhn/JTiSIkXgxx++yxn/+viYFdn26vtPhPVdv73ahminSWNghcjLIpumUc3TfLxsqibjBYHYGjV34zJMVmrrTFXWhLLXl4P3QVob4vzr8zfw6LfbdVawpi7mJSEErPVSGqP87c3u7v67cTz+9uXTt4cX50NeQO+CZ+HQn0gursu17zszT7UQDqa/fP6NBM95VnLUXY4rIb672nuXusPbskgI8XmYAFoE5ZnIpJHj+bJtV6XI5CTrjH93e7/IEQO8qXY0yxJN67ZiNIMeOqkn7QSn2+a7XIjh0kftbIgT9Z2M/S9v2lriY0AUuOhxQhEkiAgjFAJotIY+UIJjCja4FMG06ARhleeIknEYzl3nrC0qcXNzW2W5c27oBmUURMDEAFCUyk7zrJTElBCGMQKRghBs8AgwkBII3icAYIogxGRdkZceIBRjApAw4lIIRmupjfN5LawynGUZz6ZhCjGGFJdRGqNFKazWPgZEadI2QUoYs1KDBKqqWjctALHv+lmqRasIIKAQYeKdTTAmGCNIGJMQk9JTsCEXooTQ+qCNTQDkpSCEm+CGYUg+tnUdjYMQcJ4hiJ3xh+WYUsQE51lugnXOJQgop0hD7V0ysSCcAkQxjN4Ok4QAQQijAto6E32AIYRA6wxxjByxIZ3naV5g0xQFwCmlFBMm2BkrjabLJHjWrNvD4RhiwAJrZ499V9ZFJABSEimyMKWUTv2QUYZhkNgep/FyfgVKrbfrLbk5jbM19qbdwXQKVouc56VACUljT9OwJHqeZ8Ixsi6ndNdUSiocQASJc2JdkMrhaIwxctIpoIRCXgpe5r/9+kU7vS6rUppPnz4BmJR2r8f+2Pcf7t69e383T6OS0zjK4JILUVkzzUu9kP22OY9K2fnz4TTNet2uYIJlXr29Hm+v96TIZHAmpL7rWJZBQhLGhItByUXb7vU1i6blrCoFpsjb4FMa5rl7fRVVXgjBdrv7u+vr3f5mvz2cPLQB+mi9+fNfnhY5FDwLOVw5rabZDHNZCkwQTNEbm5ciRYOA/+d/+K9/++ufZ+toiyyByqGF45GlSbo7Dg7j+XI6MAoRRe2qzWjRv70SDOuqLjCbz0N37KZxzGqx3+3O5w6ANM3zMM7zLC+vb25WV/vVh/v7UVsAwPZqjzN26XsMuJYGUdwWLUbAu6CkHi6dq8Tffvt28UaH0E1TXuar7WbT1GqaLq+vvdNVXt3f3bwej8/fHiBI1/vrC0YwxM12q409Pz0HEF2Cl0Ve3+zyQowPowUSIrxara93u5ub7dB3b+Pwy1//+o1+vnSX7nTKIDZKWeUBRGVT+RQ8SHldXd9c9cdzmeWZYN++PkmziIrN45Qzcb2/OT4+ZUVxeTtnpSqybMLi8HDspsEE28/KEfDDx5+vb25rUa3Xa6mWYT69PD113Rn4SBj78rfPD08vBSLr/b7reuTw6vp2HuX47RPAaRzlQEG12W6v7j6fz2rsx+fX/X7fIqww+X/8/u/27777/Om3R7Far9u8qSJnNC9eXt8+vz79n3/+y8PpZF2I0QelLQAwJQhTigmgRCnVKizOqrdjAoBRxhFBhHgXtNaYM+3t0A0hhQQSQBACwKosUTj0g1wMpbTdtpQQADEXGWLYxzD1Y5ZlosgTAKdhKMr8Ise5mwliAnFKqYsRA4BDhAkwTEyyOEEEAYIQY8IRW1fVpqgFplJK4IGFcFEqzzLKSYYYDkDLJTjPGaWYBO+Xaa7a0mg9mpHnGSaYM4YQBDhFnLQxLniVwmVaIEyrumaMepP6YZbG2+h8SpEQ6d1pkQWx2HnfdzmsAkqEEqetXhRMyWmTQhyHEYRSFAJTnBw0zvMsQAyNd8o7wRiCKP4nmELppm0RJq/W5IyuVuu2Xl3O52kcgjH71arKC0Loko0ABNHUOvoUos+1NNpoNQSP67qpKm1MwXlZFsuyjMtEGCQUQQcoI8bqVcFFzuu6LBgnnO62O4azx6cHwYQkmjBW8WxxVmlDM8qEKIi4u7uSykKMb3l2c3UbjbvMCyO4bmqAACJkmpaQYtOsIoQBkXy1ksa8HE8ly9wi66oAkDw9vu7u98Oy2JRQLmZzUOP0HiMN4GXWNp3HKrZlmVWZdA5QXK2KYZKnl6O2lu+zPMthTF5K5sPv795t19u+65wytx9uOKdf/vqJUqSkiQB8/8P3XAgTg3b+ervjnD88PSKMlZXeSbeMDefKmBQ9iPZqXbN0wzO6Wa+pNFPd3ry/X+xyPF3Ol+54Hk9vhwuCZVlSkUvnPz08ZDwzyUSMqrq2MWqPs7ykjFW5ELmI4GroL8fz6Xw8/Rjeb9otwgAi4JzjQijnjXcAYe+iN44Ccnt9dxoHuSxPRqf9rsyzRaoXedDHA2WUFcXb47fjZRA+brdYcDKeOpSC4Jnux+vt6v7+9rm7LObXRavt1WazXo39ORLoUzx3l+HSvbteg+tbEFJTFlfbPSEkIIRFZrQDPgyXnnFye32zqqsyz3NOuo4syk/DtLp7t1y6P//1G1HaSGUXspR5wQlflU1TCQjw4lVE3kXPKAMguBSlNxnPE4hD14cQm1VrrWWMhhAvfU8ZSwgCBAKCAcEAkvNGah19EBnP8wJikGIECaUAjDZymfMiL+vCG3c+nUeQbu9uOCEhGmND1AAjgjCkiGRFzgXXEDNEM8olVM4aiBFGBGGslF2kQhgRgjAhLkSaZ5CF4FyWMQChlEY7F0CKITofCyoYo84GirJmla9XTVEU58MpmABYSjQ4YF+P89APiBAmsqJgHBOKMGGEUbFe75y3UttumDGCzlsIYtNUAVJj9LQsCSNOCcZAG8VIURa5YNjqsZ+XFCAIqF61wQFlNCDI2oAxxTiLCcYEAoq9mSvBowyLk2ZxUirGCITIp3Q+ddGnlELG+X/WiJQR7W1QMJgAIkQIUgpjSt4HmYJaljOS15s11x6rSIRh4yKEgIA/vV2kc7vdlU8RI0wIOQ/dpAYWKAOE2vj2/CYyTqwWEASpUUbrbRt9GtRsjDsdjyXL3t/d3V+vREYvaslXQvaxV67x+vn0rKU6SWdTWnQEmIcAu2EahwsMCSNS1XW1Lp1yo1ZNVvUQDXZ5OJ+8jY9vL2bpfnp346ZptVrhOv/t64tSJhmnlRFFiXnmQDz2Jw5JjFZ7t/3xu13TRoSbIj/HyDGO0UzeAI8SAYtZXg7PAkGfLCOQY/r6+AQIBhEiQnFGTt1ZAJJl6NIfd5vNblUT8v08z4+fvySlNturIhda20k7XFXSX349X4xVwzyz1+P7W97J2UzLeRz//qefSQDd+WyU3mw3GS8/vX3+9dtnR1LmXR8eKIIQwRjN2J2yPCvyTFufYX6929NJ8suxZUjbuEySQ1OX5XV7xTH99PIFZWi7WeMEnp6+OjMxzHCWkSueEvTOUQgY46SsIbTf31y1+83T4fD8+CIy9OH9VV3Sr58evjw+rpsWtbQfl6fDMAf/+mW8u76VMJ1Ox5rn16ttilbrsa4zPeXzMGKM10WOdLltm+urLRok+AqtS6v7Tb6pLtMonTXR3G1vd7d7mtfn4ZJgmJWU/birVu9v33fn8+CmglCtbT+r19dToglT0E+XSUnO0e31TZ6JOi9ubq+V23/79tVI+/7dh3a9f3h7QBlNiL1cuqos/9vv/rC52iWYgoF//ONfSEZ5nhPOc1Fd374/Pz+eDqfL22Wepn6Wu/f3Jcnvm832e1RVnLKsvblGjKT3N3/+rS4S+PO3b2NwzgdOIcDxdDxPRpuYvDY+wmWSHkQgcEgp5yLDWFsLU7IuDK+vhKCMUAgARjglgBCWyj48vTqtiryAGI3jGEECMRFCCCbaW+N8QjYCEKI/nDt0gpSSgBLNoPI2EAQpnq2R1pWcZ5wTTDDG8zBrqSohmrLelVVBGLCurqu0XZ+MPI+DcYZiEBEmnGQgK+u8LStO2bxMCCOEwKJVtEF5m+VZRhhCSMrJeOucw4hiCgGDIMG8Kossl/OAEJRy6fq+bPO2yV2ICMFZakGINOb8rFieMcETAGpe+ktHMIYY5UJ4H63xiOAEgVQKwIQgQhCfzpdkgtdy3a42qzUCuCjKAGJcbeZ+IJi261VTV8fXF70s19sNgGkch+hDwUUpijwmssECk3FetFIQwrasMk5iChijy/l8OZ1tcFmdc5ZlAYzLggilIp+VTbavMwZAmoeJALX0Uy0qSqnSGlGxzttV2dzf3gCjgVHRuabIi+/eb7fXmMC//eVvRikisoR83VR6UcswYZhEIQBGr8eDN3FSC7CWRFBwWm1Wl2E8j+On5y/jJDORe0QMoUaZf/vlt2jUmKzSHuUZR4IV/O3xKS9zglF7tT310/PbAVCCBB3+/Mdh6PKM/fjzd01VL28v565bNRWn7IePP9RlvUxT8qndbTLOHp6f+stJ5CLP8Hc/3CKKOGaPT984AdurtfMBEThP43weV23bZjn1QCRYrNqP79/pFFbV5YF+08ZfxkEqwzj74f792PdPhxPAGAq822/atjTByM5o6ziyOee363VZ1i+cPb88VZXIShZRSggY6w7nC8U0QcAzFn2U05ys29Utq5q8O39+eBrG/kLw9e53yunTcIRO7ZubflkuVkfGRd2uVtuIQoA2ODUeT9iFZt3W24Lm9Hg5RGfbsswwdZjff9xRTM/H0zLPjkSPEil4qQkLdldVmGcxFxZHtcztqpFSni6XEF1VVB8/fJDb+eXt/PT6IseDaPH7H65JAiABqI3BGOOIow/B/ee8z4IUEcE4YyCB6AzBhFK8TEsMsa6rknNttHX2eHrTUme0yPKMZkw7b5x1wVMG2rqsinK/3zNGpmm01lDKnIlK2UVNVVU0VTPF8ayVT2DspqosYoByUUo5wlhRiLzIMePTOAdvIYzzkhCBlBLGWVGVlJNZKhddAHHRVikZpAS0iSHqRQMAjTLLvAAQ/zObyTLOOQUhMYzyphZ5nmVZd+m0tSxjGEPBeYRxMUuiiVAYvFuWsW7bpqkRxN55QFFIYJ6kd74q8wSiNiqNIMQUUpJaBQKlUVJKF3SGCYIIIqil0lohTDDiWhtEQ17l2nif4jwtjFMAwjiNmBPCsAkMeF9wwRC3IQAAueBBmvifh0QQUULKWtS8mKd50oaCOJxHADAXbNUWGGMTgjeLMZYy7DFabTdpViqBebEiYBCxVLKqS8Dw8XQxxo3TYoObpGaAbVabxFGMQHaT8woDmJWiqWsi2DgtL69vIIFoU7ChKcqiKIzRl8sk6mKNxeHxzaeYFeUwTLOxlPPVds3z/DKcp2l0PqEEtFI2RSwyiLGK4OH1EiBc5oUwbp2qm7aflsuxYwz35w7n4v7+Cr915/NFIRi9QxiCkBYpgRAIpXrd1Ntds24nuZy+vWWVuGoqD8M8jTfXe4Tht28Pc8aSNgiCbbvCPB/+/d8RQDffvRd5TjCauyGCUG822vpeS0opYgxgbH3qZ63ci9YGUOy8p4KZgz0Pkwlm0OPy2y/HaW5ywSicpOr7adPUSGTzPCK1bJ0PEIm6MlZ+eXvs/vinq/Vmv9+WVV1UZZ6LRtT5e2aXWSopjYQQTsNMRS6y3E1yHvrq7q4uyocD6oZpgHnVFpyQ33//QQP8eOkmZxYp3ZImnArIbjc7kZO7/a5YNTzLBc0O5+PL10dCscBkGuTup5/LDf/68jJYf3p7OQ1TURZMcKl1QXhVFF6bpUvVfrdpVxSSsshKUSxyiQA8fHuwEK5WdcKonyaAYQ8ph8lDPGjNfGy2249//we1zMN4+fT5k7PueHj1Idy++y4v82kYLMC4rgCDzqpivWa+BhBejud1sQIIOGedciUtNs2OMc4o3Wy2kZDoQk14I0oKoBnnrw9fLofDZr26+f5+vd0d3l7+x1//u5aj6xeO87v9jcW6qksC0eX5reBYFMJL1R/nsV9Yhq9369ui+q8fP2aEKAja1UoglGJ4O3fP58trP5zHmVBYYTLJGXC2KAOtRoxap0IEEUHlPPSJlOuMcZExTlhM8Xw6huAxTCxyApmWzlnHM1LlmQNJOgcoVc51wwhgmPRCMaPBI4hokYUQbYjeWeNssD6ttghjTojx1milJllsRJFlnJLoneC0rUppvZ+6BEIKoL/YiUyc8YoLyqjzhmDQNlVCcewnSggIMMRAEc6FABhMi5RSeeso9qIQbV0ThFOMfd/DFDDDIQQIoY+JcpZYNNa46BmhAUArg1PKp0g4AQ5OcmnbVmRis2kPb8dpnDCj3vsYYwQIUQIgsM5FY6pM7LfbjGaU0BjTPI5KLX0/XMax6RqeZUVVoxhBQuMwdcOYQgQITP1EGYvG04BLIvY36xSTMXo49fvtdtWsu+NJK5UVeYoggcgYzVHOCE0AHo+Xs4/7toUpTeOcfFJWVas1x2JZXue5Z4TWdQNtMItcNQWMSY0zpZwC1F364P26XVmtllmu1hu12GmURc61dsr3PiWTgomhqvI8y9Q4fH1+WTWr6/tr65ZZ69fz2UVYrCoWnLIKxZAIJhmvVhUS6KKH8zwNWl1lFLqAEfExQIYtSFN0l2lOoRz6CXkcPUw+Hl/PS7C37+58AiDDr49v878vv//4sa7LbjifjoeyLtv9NkHUNqsZwe58OpzOZVNdrZp5nF7nV2iJ2ObPp8fjpdte78ZTnwSvMpETJhAuebbbboq8gAi061Ve1Zepf3h5SxQzwkMIEMaU0jTNJMUB4V3b3mw3TkkmmXXB2jlGAChd5OLkXBbldrfBHH99+AzMcnNzU6xWozdFnnvnN6sNQvjb48PYjW0lxMpa4IWgN9frpqrXTZXxiGMAJqAAfvj+w+n1pR+Hcn91d7X32s7d5GdbZBR7wBG6vbpa6pznol/mYbgEvdy1q3VT+RAno6VXAMS6qi7DdOgP/TjeXt3meUZB9NY+fvtszPT9x+++398QknAmMoQxRhgmaKMbphEkwDjLcrEo1Y1LxhiCqMioYNxqxyhO1irnPIjKaIAw4Znx1kpHA7XGL3JinHEiikKsmrYpSpiSSgggTDFGBGKR5YImFKyW3ioCIEjAWm9cNM5jxiuRKam11iGFaT565zijWdNE4J1XlBNRkCwnMQGIAYRAKzlN2jvtfEADIpQGFCc5E0QAAozyvBQAJLUo4JO3llGUMVIXIkEIYSIUIQwxhiyjzlqIQlmJuqxQIsa66F1y0UY3SwkAVEanmNbrNSW4V9qHqJ2DWmc5xxke5lGqxTqTUoQJAoC8ixRCUZQJoRDBYeoSBJWv8rwQRTZ2AwAgxhhjktOEOJVaOa13q826znxK/TARSnjOGiE2u9ori0IsCC2YCEgHkqJHGcohJVQQqV0MdujHnAtCKQpxkSrHBENAOJu1gRDN85xAzHmuVcwZsS5CSmGKLsDFqTR2VDAYk+lUkdHr3QojpPoZSGyj88FrbVBMELNfHr5CEFfrVUpkOStn/b5tCUXWGmmMEEVBMaoyqYeQHIiuKsosy8/Ho7I6USjK/NJfVC8zwWGM61VTlkVGsnVeIitFQQTPVIxaahjT9X4jpASEliyL0dPNhhCi5LK+vWfN6uH81g2Xt/MRihwyTlGq84zBREFChJgULQIkwVIU17fv9aReDoeaZWUu5lnKZfHR04LFAH45HCBCBJJVXebbPWRMexcwLAQTJPWDJta1nD6deoiAx3EOBphUYkQRXoBrC7b74UdHxel8/Db1++sdTSodDKKUCGZCzIsGJ0QJx4K3tzc5psPl5XA+vI1dd7nIYWooE3lmJq9tsE7n2XpX1iXnq6ZxVn384ePtzb1OoXr8+sdffyEM/Pz+liAIliAoLziXw7Iojcr6+uree3A5noCN18363Wa/qUtjNbK+4aQgRHmQYcIAZAgVRV7UVbDWWzueF5ACQ3BZBkrix+9/eDuffvnyi4/4/uZdleePp7enb/2mWX387od6tT333cOvf4MJ/eR+vL3eI0ofnh4XKY1zCMJrTIwDpChsABKE7jzGaEuR7bb7klI1jN45rWTfXd4Ob5Rw59Lj22PWD7d3d+/vP1itr6o6zOrbr79dX+/tOGwKUew2Krlvn/4WtUuzoh5d379vm4YSSDmChBAa5+Xy+njikICYrm7//zT9166mSZamiZkWn/z1Vr7dPSI8IkVVZ1VXszg9qCFAkOAJ75kAMcQM0Jghm5WZlSKku2/f6pefNC14EOAl2Mkye5et9Ty3iZLp0mlhCskqhK5KZkC+3y5lhrWswvtvPz6fPj4+9npYr1tZihji5+fH73/+lBGUTXE4nbpOmZgIwRakTmnkfB1lQZOZB61HBEkla+ugiZMPWXDOpTBKK6WV95wLhJC1BoCEAIIIt+ult1EphwjWWmmjCSUgA+MNoyS4MGvloqvakjGaYlRaEQiFoD7H0YxD32nrqGDGWzf7xaJZb1vjzPHUI4CW69a7ACEuCoYqlBIMISntAIGEsSKXKqrgQsZ+uasoo+OojDGckmnSGOblspmc7ec5Y6SsoRgo51AEZSVnrYZ+FFWJKF6sl5vlqirrHGNVVylmiCCtmfVOBweCKyXPOVFG66pqippRoY1VVr2cDj5GzJgxrhvGMoJSFlXBj0Pfny4xJ1kIqx1wlgtOCN1dXYUQtVYQw1LKaR4xwot2YWe9u7oq68rEcDHz0J+td7RujfEx+uQC0wamMFiltc4AREYJFxlCCGBT1qtmMY2Xtmmvr7fz1B+en2IMBPJTdwE5sxI5B8ZZE6GJFPVysWzLHDNEoCwL68bD+bzc7epF03UnY8yk1de//bpMbBhnZ5wDYLls79c3yqrx1PG6EgDaeUTQRQR4VR4PXTr2jDEhi3/9l3810Shnq816UPYy6T//8vkfPnALkAMYhXg+jjE+eW9csN7ZbbXMEKzqpb2ynFFBWexVCrFqt3yxfn48QSJ1SKNyhBfXb7+5vF6eL93L6dgPQ5I0PKHLNGyrtkJwXRSHp+ftarFeNE9Pz4yx2+tbDMGXx6euG3NA0bnNakck89qyDGNMOMNtuwhaozM+92M/6fXNenu3m3/50qtz2VTjPD0/PORZf31zzak4Hy7dsROUi+3m/u1dsE4wYiRRMfzt4/eS0m+318fj+XLYjxRkFBdVjUv8/uZ+sWiHaXw5HY/mARGy3ayeH/aoLO93N7UQBBAAYQTkfDh+/PmXWek1rytUnwtl3XwY+pPWqCxFVQfGukssFyIw9PHpkzp2wcaCUYbIhorN9S252e4KIZq29TZY6zJILoYUE2QkuzDPRitdl1VbVwhCb4zgjFIKEQ4xhuBTzpQxRKia59loZFWKKXoHCJSsKUsRvN+/vOQUm7qMCXXDkFKmVIQYrTbWa2cNgBBTggjpusmlsNotKaM+gGlSUamcM4SZEG69SSHEEADL1hl9MhmAAIAyuh/GEAIhiGSIcsIwJwhijC6kQgrGGAQAQcgb4q2VpeCc5wxASFyKui7zmJ31IEPrvLXWOgcRBChDkCHMx/3ZOedDIIxiTJ2xdV0vFm0KURcy4+xTCCAqZwel5lk5736txIIX1oXOT42UTV1BTGdrfArWWO+D0UYwWdY1lTwFiBQmgGpnES2pLCdtGTP9PGtnJUUUZIpJURYeoKiMwGRR1ozQY9/PJiyvly4nFZTSWqkpBu8QFBW3xj6/7s/Ph7Yql4tWUnI4j05pLjF1ThsHIcAY4gwXTZMB8N2ojIvOYYIoxRFRWlQlY0M/jF0fIKCUexe9s5HAoqwu2p4/PV7d7AQX0czduSO4hqDUGSinmeBz1w+TZsG/f39fNJWdbbBCJBqjG7qQUW6qqrsMy7aiBIPgOcVCUpSpc+HuzSpABF+PuiiG0/luuaiX626eXMicslHpoqqM8a/7/Xn/5eXxudlunveHLFgMWRICXGQcXW03blTK2A9f3UfvwjR9ePuGZjgbvdxVHODL634c56ksl9vtuN+P/fS7b3+z3t4ZNT8+P9dVsWqbSsi5m47P+6YsEWcRo9M4ZQQ5Z5JQEFNI+dCdi7ZaL9asqYbHB3zpSVkc+0EZ/eb65p9+/wc3O0IoJezl5QV0WQjJEDJmPMzTxeiAYELIB88ijRD0/XQ6929v7oKPTjm4ggkTHVKCUDBacE4iKpp2s2w5Eydw/vnLZyEYx0R7/9U//kO7LFlZgBNIIZdNdbXbAIpfn8/960lycbVcv7m+XZT10J3e7ra1LLtLRyjyw9yduvWqXdRVsm4yQwbx9ubu8+ODNbHmhSzqyejPj4+vZn97/cYGP2mbiBjP/Y+/fIEEa21GY2RZrJft0+enHz99dtaLQl6/fzf7eDh3ZcWxj9TairNm0dphPh/2KWWjDFvIlFLf9ZdpqKp6u9v1xnrjjJq787kQ7Ha3y5BEzn74/PHjD79crTbrZpEBevvuHiH4+vI8zAOrapLTw6cvm7aNQoCQfYqrdlMJ6dR0GvvPn7+opK/fXwuUuU/Dy2MkggOwqWhd1O++ut+t1wLhH2R1TRoqeXO9mLS2Onaj+t/++B9fLifaFjrlHINHSasB5XB3e93KJvrYzYNx1iOYUIEo10M/qcmFQDCiAnPKIMQYE209AKgfxl8FPxAAxjgrqNLm3BlMUEbQxsARyii7aL2LFFPtLYMQI4QzgCG6WSOCuGCY4JzAbIxPKYN07gbOOaBIG8s5AwloaydtMcOL9RIRCiAAKel5NkpAkLlgEGE3G+d9IVgGOcQwTGOEUHlXCGa9YwjVbRVymnSvh361Wa/WGwIRpvBw7IjAZV1yyiIE3dyf1ZgTYAwThITghNLtbi2L9tPnh+406mAxprIseV2llBMAp773UaQUB2tciEkQVJDjqUuXtN1uMWUQQGt8BunqaosgDDGdz+dZz5vtmokCGM1yGKdx0rM3frveIIJBArN3epoATIRTBPCsg8AREsKlJJQiCDnl290GYWxs0j5gCIzTjJFZu8P5oowOCb9eRlkW23aRCcEQN4v649PDoTtDjLTScJ3bRfP06Qln0J/OhWCFkBST4Nzt7qoqCo6xCFk0C+jsy/MLhIv2ejPPkdfl8dwDCH/71Tdv3r17Pb38+W9/nb0tZeUBRIXwlGche+Mux3NRFP00KzNZa+tKiLIcholhQhlfLFYUQD2qiL0ZVUTZWg0gWrerz1++3N7fsbYYn56H09BslomBv+73NzAPh6Ov5z/8w+83IVavr86E7AGnousuwcWmad/c3nx+ee37oSnE27u7hODQX/xoKaEAomGcXYhVVZ8H5XS0xq9uyoSgT0AWJYRo0IqCvFiteMFd1yOKWtkqpS6nS12Xm82WcPlyOsYUqqL46v4NTfnw9BRGef/hbUYgaL9dLcqqEWXz9Le/40pCSPtx8Mi1vFbONkXBMBmGAaEcczp2HSEUSXnRev70hTPIBafAJetnazGG1bK5fnevbdB6WJfV588/ckoZp8OxXyw25P3NewxRs2gggLNS/TQqOyk7T6czSCCBKBiv6qKsCj0q7zwmEGEkBM8R6nlS1kgIICKzMdrpHCMnBIKcYrTaogySy846IVjTVIhi73yMOcTsU4o5ZYgywFzypm0wwi7PyYF+UnVdES6ADjFHSkDFaSH40A3euUIUKSU1KzUbRDEvixxTzpkgzAnLCDBCOaUogQCg4KIuS4wxzBlBMHZ98pFL6YyNMcWUjDfGeZCB92EeZwRRWUjCmPWh7ydGqJq1dSbFHLznjBWMyUKknJ01QjAp2aU7T3pCDGcAtFImOoAQokww3rTLmpdGae0D1pYwkHwmGRNROOeHcXDcQ4i6qeeCIkbdZEOGPuSirc2kj/3obaCMl3VltQ3JEIoFoXLRbBf1ZtmG3EAESD8gnKP1OHtOUIBYyKIoBWcUem+N0xnNx8upn+uqCMblGDd4CaLVznImMAAYY05oKctR+4BgN/aE4HXd8qa1AHqjJ6XnWRdNVZcCJBRoUS9bgvHo7DwMtOCSUaesD+E8KAOgziDAZNUEcyAw11wsBVu3pSugAPx0Gs3xSKRsa3F6OdRVKeUiGW3GXsBc0qWD6Hw617vm5v4uhgVwgUYHIZJcZK0eL4Ny8TSOV7dXUMeHv/3w22/eLuWyFk0n7OCc96FEHDk4vA6/+/ZDbu3+5Wnq+qvF2vaDMZYDGBGuuVyVTb8/j+d+KaqWF+uqoRHghLRWl9P+8eGjFCK/eQNXi6kfjTHRRxwBK/h1W4KQ526wSa8X7dSNx/15PI9CiH7s1DzjTJZlRQHCCZCMCspdNtYZiqnW+nI+q6l7/+F2GMePz4dMmWesWK9kJYOPgRJQyNdu+unLk8tgf+kP4/z2asdl+Pvnj5ThUzdfept7vV0P779qEyU/7p8Axm/fvc0E7IdLouCnjz+EybRlMxibur6sK4R4Xa4v8+xmv25XFWU3798jH7XW5+EMMljXS0pJFpCWDEN+Gc+DNbt6dX/7/nK65AhBBBUrKcLOmb//7S+E0QTgendNKHt9em26qizEpCfMcbUsm2Gxf34dlMFRw7mdQBid7Z5HgfBm2Xzz5m5VVUf44pW22paCS0IgxZVgF62MVuNlgDFfhvNwPhmjootjP2IuQ8oxg93tTSNqiuFy0ZRF+fj0cBovShvgQjeP5+O5ruuSE22HL58/eW8px0brizG/vByUNx6R6quF4MX5y6l3p3K3htAHYz79/GnBZEULrFzh8/Wuur5aF3WxrncfPz3sMJhSUiR///B8OJ+KkkfOg3b/9Xf/9Ob6uh+6P/78vXl80smehiFDNGmbEjDGcI5NxvPsCMGSYmtMTMFGY7RGCAvOjbbzrHPMiCKUE0UMIWStO/lzbJrkPMKQEASsv1vvrrfbctaXfowIYIFjDE/Pr9vVkpTcaPN6uTDByko67bDSMIPJGO09S1yaMsccXEgxlGWllBmmSVQlpHQyxmmLMaCMI0IyANq5fpyUQo0U1XLJZeETgHh02uSUKSLDpd+/zs6FcPGcsuurq+DDMIzBOS4EgHgYJ1wBGnPf9wkQY40JgUiRcwYYQoAQgkM/zMOM4bJqKiQpSnhwLph4midn7Gh0W5SllAwRgtH+cIQgNVUzT6q7DKfD4fbtfaJs0soaJ3m52e2ssU6buqxtyiZlyshmex19eDkewQls12tI8KXrjNa/BmXtVHc5ppjqoqJFXTEUTtDPQdRYhfR6emUpolI4nUomsjWTd5BgzkQGOXhLELnZXY+Xy/PTE0IJIGrUpGYDbTZ2PB+PjeT3NxvVj9Olv93eLK83z4+nw/mirKOUvRyOy7adx2ns+0Gp3CQIEG343l54XSyur0/daTA6xti0S+Zc0GYazVM4RBdlVWhnBOfVcsU5VdM86kvBM8ww6LldVLMeX58/z8ZdlD7H+Ki6YdKn4K+qcgj+9XLJiL775ttpdjHC66u70+ny/HKQZb1uV+OghmEgka5KSSjN4/ClP+OmOc39/vVwPvfL1SYD0DSlmvTzw4uUoq4rxtmsZ7loa8ZHZ6SeqqYul4vzOD8+Pn/+dHlzf1tUxaSVd74o6t31N6JdL3Zm2TYtL66alWylGQcA9TSnc38STXGcZxPyqGchOVk0Uwrff/5EAsgx3by5uru9F7LOhFRleXg9mHG+v7laLZfK6pQADLE/nlghYc7782kluGwXom7GfpSCDP14+PNfSFs3dVmE4K1PlLLleskN18YbbVNMohBSlhjhnAAhBAAwKUNcyBCHnKy1McYMck4pw5xzCtEjkDmllGHttDVWclm3FSOs64YEAeMihDDNOmVQ1IJBwhnFEAEEldEJZgChcSaMwRtnnA/eQYChpD4Fn2IMGRPCOUcQYUJnq7XRMeWqLDFCKEMIEaM4+JBCLIQQRZFi9s4IRhIEAADK2TzP8zxnAApQZg1cTJDiEOOsNAD513lqRKAOdlYKZcQoaVYtIdQ6mzPMAMQUtLUA5xA9ADDnHGNijMmilLgcx0kZB7kUspCyJJh4a2Zjw6RSylwIymiV4fl8cs7lnJXVi80CC+KnaL2zNljnoos55LIQUhSY4Jji3E2M0N3tblsVPEU9jUXbLNo6pHg8DeM0QgoZQbSpKMGF4Ixzj2mqYEL45eU4WTd5F72XBSsxgCnZkGK0ICbKMXQhAUgYTQAwykNwMaWEgE0xOzdrHVNOMcOEpCgSgACR8zSCFDEjozEpZ0YZw9iE0B1O682SwtBdRj2bq9Xm7XJ91SzXdcnLdiFENp+Op2FdSciKc9wTlDFMIAOcAM4gu2CNmWd1OB7Wu23BRSMlqMrg/XrVUoyisadZD/PsZ7Nale31dStrvqLPp2MhZcR4CjNKoGSylHTTLAiKyBkz6y4PUz+Os2ZlWTSNMobhSDC5v7t9f3tHhchr8+ST0aM2XXRxuVoRjKZpRCAt6/bN9fXj8TJOA12IFGN03nXjdrv++u5+atTxcPQmvDx9AiBtdmtE0MvLc7No2rqGAI792F26lHMKACEkSuFieHp+6dV0GAbIiv6iy1KKUgAInXMxRUKR0booCyLoqNRk3Hmch7FHFBX1enVz+/D54w+fPiPJLpOOkrmYPx4Oycfz7FaHw9OXZw7J7urG+fTl5fUGABAhRsRoV4nCTTMt+M3Vtns57i+XGEMhy+V6NczTx4fHedaypBGwp31nPJyMCRESioqySEOqy9IyrJQqYV1UZQjROJcAOF167z2GyGodjL+6vgIZ2f3+NA/h8TNA2CfHBb3ZblvBrdbldlu/e3d62VtuXLCCEoLkZrUkplgsmsvpBGN8/vSlKdj17e313fXT42Mw3mPiJ329WuYIvLYxBEwhwmS13GTY9bM6Hc6EMJ8yIWy13szd8PD5YbFoQ04qxdtv3v75P/76+Ok5Du5fvvttUZSQobqs60Xz/Y8/Pn/+8hFgeH3Tn892Go9P3rmhXbXNN+VGFP/6u98BIbto1s3yh+9/SDHefXsLffjd+3e/+eY3g1EqqC/nozcWE5QSkABJystauux6NU+z54LHHGOEzlqCQdFUMEGQgTYm+LBYrkIK0zy3CyEKeek6bUIMua5lJSVCiDIJuSCY1jVFjHXjOM5zyCHHHFKAKccYU8rBA+QJQCAE76zX3rqUQCAuxuSDc44AULVlhOl8OGiQRFG45BMEmBBEEMdMFlJNEWA4W9M2NaZ8sqabxphzWRQ5pe5yPu6P2sxcCGssquppnCDF1tgcs2AsxWisP7iLWK4fvjyh56OJIUBgnKcEj2ryPiGEvPecs7qqMME5gwyz/rXawBxB0s7BBFNMbVmmCI3WjFIMFBAixNRPs3t8dBlob+qmrqqmlEX0CUIfM2CSFwhCCIzzPgblXQ6Rs1kIUdSlty6H+NPnB+1mbWYUsxDlbCwhsmzqdl0fhuH4skclVyCe1DSmhGMuCgEQqJtmzGMK8fXlsKjr3dWuKYtgtQveWI0gIgh9/9e/A5gZ58umARkLLr795oOoq2BDinGcpogJIfjh8ZFDcHO92SyW3kXJOOXs+WlPxHB99xbXpe6P0zRxyndF2S6W4/4EAiCY1FWFKH5+7SjhoYnLRa2cPuyPVVW2TWtTLBbN4dJ1p14UZbEq//i3Hy/AV+uV8Sljch7Ul9fjer0tqKA1211tn56eQM4QwmGa2uWqXbSCMQnAeOwww85YAIBP8dj1T8dTcLFBSHvnbHDJI8EyRikn7327WLgcc7Cv/TGm8ParDwECa8wwTdY5F3ye5oeHL5jQRbVSSv/89KXEaNWuggt2NouqhJANw/By+uJyMCA+n06ICYAhwMiDYIwJRmOb1u1iMkEgJ0RBBJdVNc3TOE0XpZbaMlnElIELCFPvw+Pzc1nw5Dl8QqQsJQBFU78OL4+fPxMEo7Fj38/ew2pROeOijYJLkEEGgHPGuQwJaOcFF4BE67OLYHI2+AAA4JxHH3yylJIQiHXKxCQrQRgFGTLBmGQJgAQBgNg7TyhBhBCCEYIco5gDQogQGlP23sYUU04h+H7QalIAIMEY5OU4a4QRQIgKARlJEKQcIUFu8s47IflqtRRMBOMhgBDnaZxddpxhDPIwTSklNeeUEmeEUWKsDikBBCFGGJNpHJWaQo42OOuMTa4qCsQQzLCVleTSzirlKKsaezIMo7UGS+azm88jAqlZ1HVTpZQJoRmAhDJHvaJKcBFMiDRUTR2tmOfBmpARBpSkDDBImCAbLMTQxWSiCz5c5os3TpACJJBh9MbHHJhkRRQIIphwjsibqKEZ536cRtFVgOAE06xnbVRFC4owRkhyzhle1JXDNEEIGAMIPL0eLsNovKlwSaeeIowjgBiFmNVke2hFwSkl49SHqGc1wRgJgkaRkosAACKEEKpm7VNEnPnRdeNAECoEvZjBo6IRtYvxMg7Gmbqtq5LtVksrfS1rjrDXs+49dEUcXcvl9tt2d3t36edx02JCCMLFsihFoWb34w+fUbaUYkZYf5m7Qz93QyUYK4uqWSyvb1fb1dPLwXhLMdm19a5agGBg9sbpQXsoePauXq7u39yQEL0a1pulvLk5Hs/DZC7zfLpcrqpqVKMfzsAnrcdV3dpZUwTvt+ua858/Pkxmun/3/t3X7y/7w8cfvtdquN4sm8W2qOuPj1+UMmVVoroQu+WirBZCXi0X3769Pz4fvjBIKFnvrlyOr8f90+PL7dW2XSwghvEch34AGC2uWtgBAOL5svcgWevn/kKQVMoiPHBCYE7b1WKzXTJKrLXNshKSl3X5Olz+/tPP66vrNSkyI7CVJ2/+49PHDCmtKz3Nz+ej5Lymy+M4WgC11ic11kU5HfvjC7i7ubaMAJAgQhEmB12A2bngTSrKglFqghrDdBnnydjN9RJhgKfh1HVWzevlCrLU9Xun1df3bzDlL09Psi4J4zHBCUJr9OE1ogSkEMlFaHPblj0ZJOcrUiujQ8ogRipYWbJKsLE7q9VqXTbLqnk4XqZpImtKBcsZoAxAStM8Ru2GcZRihVnhCcwFlkTo43h6PNAEmRRKzRmlouHNqt6Jq3ZaH07n6GOzWgvJzue+YhwiWpVye3t37C/7Xz45ihClVdVyXr7/+tsf//6Xh4cH0o+04N749WJRyurjyzNpqjdXG2fsHGZiU0iorNv98/nx5y/ltn23WtI3N2qcbzetGUbpA5jGbJTwqcxgP6roUts0t29uv95sv3p/06npv/3lL3/9+RPwQI2xXq1ZLfpLZ5URnEMAQ4qYEe2sD96F0E39oq5kVTrlXAjauLZuMcbWOQehcz7niCihBQdOORu884fLmTFGKBZSlITYHL2x0YeUYkIAU5oQHPQUrM8pIYK7eYIc4VKY4E0/AJ8EYcM4upywYMYHylkYEmIUczla26kRxIQgqqpCMGq0Ct7llAnB5bolkPbDICrJGI0pOeU8iS6FlPOsteLaB+1BzgyDjCFC3jptHMxg2TYUUW0US6wqZD8pM2hZSpoIcFlwLhmVssAYB2Ovdlsh+ePDc4qhaKrJm4jwOA4+hrqpUIYY4qvr3TxpkCCCIKUcgj8cTy74aEJdFkzwAPJlntSk16sWUEKJAJjE2XibXl733ZkWTbnZNdb5YVYBgH6aheQ+R9OPfKZX2/VquZ47G1xSk6rK2vlQVtXq3V0E8dyNSutPHz+d5vP13V1drTqrp4/d7XLJGR2PexVcjqmsqpOeTXANZ6Kgq2XT9/Xc65oWvCl8joOaux9/sDEpN1tjdoX0MRRENE31drO7Xi+uViul5rYuu/P0l8+vnGPEoLd6vd4xIetCRgwKUtxe3YxKA2e/+fA+c3E8921bYu+1j8pGfOqSNQVnWeA4nDiKzc3VS9+/qBHFvOZlRcnjpy9TsFgQ0RRE8jkYUvJ6W52mvjODFGUlSlrQw+FkrRnHXgiaIZinKXaXlhUvXx6PXW8hIJTtrjbvv3rvvTldLvOsx67vD2fK0Tdv3tbl8nw+PT89z/2wXSyDi/08jymfxtnCTEAuqAARffn0VFcFJ5QQWq7Xk52fHh671/16s/jP/8f/cnO76Y6Hx9eXQemmlLKonvsR1aXR6nV/aEsprnaj1QjBcrXw3s9TD2Igk9EEAud8zDBnwIiYZy24KIuSccYFs8qBDGQlMMRBGUQpwcga55yjnDLBL5cugCglr+pqnPqEYkIAYCK5FILnlI0OIcCiEARA70IIHkIoBIUpBm0hRowxzGn03MVAAIA2GwekYILLui4JRs44RhmhDAIYY+7UnEF01gOQCCNcUk4JwSijDHICMSMQOSPO+CmoEAOi2GgbQgCoKGpZsRoQkkDKGM1W9ePQDWPGIKEcUkg2Awgk4G3TyLIws7bO+hAARkIIQolLFEA4GzWOA4p5vVhtV5u6rlPMxtpRKbERzjuYkJSirmoIUUgOAMQLkQDW2kZvCYLWW6VVRDFimGYAIY4oCy4W1VJwmUFSWltnbHSTnr1xOWWYYXfpoyHRzspMwc4J4AyQTxEgjAmu6+pXlVpTSApziCkBUC0kwniaVD9NMadu6lNOpRAScVYLBJBRHlNcNLWaZ2edmscQgkbzODOjEWhyhrkohAepH0cbApPS5zzME8EYkYJhNGgTInQ+T9YhAMZhqsSyKoqSo3FQz9PsLZ8Vzu5VO1eU8v76jhPx2r+uy6ZZtQAjRmkA9Phlr6f59nodYTA+n07D0+dnM0///J9+X5RSTUNFMMhJW1W2pXOuN53E+c1uy6Fcx+n46WO37wopiSABJaMnwaub97d+0k1Tv+yHyRmcyhfdf3p5nCb77dffLHe77ngOVl+pZcH5OHTQ21VR3a2vgPWMoq/e30sm6rYihEKM76+2EBJayU8Pn2vGUUjPj893dzerVasLfn293l7fjJN5+vKL0qoSFWMY5sQpv39z67Y7xkU/d5yxzaJZtuJwuVDenrtZ2wApAimq2WAAmoLB4Kd5gBBxjK7eXF3vbv7jrz8CgDIih76flWY8Y0JHpUMyIadjN86TolgslhsMAAIoWDsqnWKaZgMjvrunyjlldMZgt97EnIxVIVjJ6KJeUAaTdzDlclF13fTL52djLcZksWhJBJMNmPDD8VRKvlmv27Y1w2C9zwgzIReLdv96KMriarsB3hIEK87dpIbzGeX8zfv3ajbn49FzLyuJQIYANFU9nHvfKTdPWuvN1Xp9czOoLpEkSykln6epn8ZmUUNCTYo/PzwRmnZ3a29DKfk0jtdtxdfLQY1fvny5uX2TnYPetIz+13/+Q7u+fnj+4oxeSM4JrdrFerOZnC5Lvv/8eVlWv//wzTdv323Wq/NyU5/PZ909fnophPzNb353s9v+9e9/m+xcFQhxBBK87M//rv97U1b9ZXp4epZ6/PCP393fvzm/vqruorppr+Lhy1O5Wtyvdv/2hz8sHx9/+vK0lfxff//h6+3uN1+/z5g0RVsQ9svD02Fy3jgYMUjZOmOt4ZRwiDAAgjNMqM9hmiYKAWVMjSOCSPyK1kG4G1U/qIILgiBhOOMMMKJS9vPscPbZA2MnZwNI9lcvtHUEE8oZQmmaxmEaBeMMIALx7FyKIGGgrAnaF5hhADNEeuiBJtq7gECGGQI8axMYUcNQUE4hzCCqeVKzZpzIgoUQEaBFIYweussAMaiKMudsc0aMcExDBrwqaQKnbrA2AYIjzJhR7ENVFoWQVunLuV+tV8vVAmWUY6JSQgxmLsdxzhkQRmCGZVlQRq3SOaUEE6sKpGU3jfvDqawkYxSm5LQuCrlarbtLP41DjCHGNGsTYuAYV2WJCVazGdUcQqSKFiVPyi1XS7amSbnuMmKYa28JThDAsiiPz/vuNBCIVqvCEwhyAClNXc8JYowmkEZtrA6rtrwprmajtdXTPGFBbrdvCJMJg2kybuyNUjkE523Z1AkCSLEavQppdV0lAKdxYoRcX28JpMZHLlgaBhN8tVsXqDy9Hq2zwYfD82uFaP1WajU/Wm2MhgiHEKdJzRbIRhJEn/cnKgrM8jzMehgZQrvlGnH6drncn07D4VwLkSCJdYSMdX1fEDDr8Zf+9c037y52UmYGEAxdt6hrSjHCuKjrWcfJ29lb4owLgVEZc354fh7VsN3SSBK12cYwqhG8Bmu0KGTJadG033zz/njq9TxbCBEAKfsY/W61Yf/4jz9//CX5zEoJU3LWbLdXTVtf+tMw9ou2lk2N5/7z978MxhkfG4Gquu4PZ68tJ7xoipSxAWAKfnLmcD5Bkmc9F1UlF82g7b7vJ28KH78cX1UK6+0GYNT3Y8GmQtQJZjX3x5fTNKtVXZFJqZIXlDGKMSLIO++to5QumwoA7L2rq9JomwKwwY7TnHMWhDsfXYjNosEUt3Vlg8soYYKbtrXO+BBcCpKiGHMMEREcQuynCSGUE/DeI5RDSBTCHAFIgQJIMa4Kbh2mQhgvCcJkgauiwAj6EMpCciEyQMM4dtMAEdBKexfW60ZIDgEYxin78CuiYxpnTDFlNObkrdPWzGcNCCKMUBCO4wBg0sHnGOM8KqXnefYgWm0RwQDknIEJxg42pmSUMdpUskgZnvpLA1pIYArpdDqP88gFraWkDFNOGKUhpeQU8LmRlQEWQFBIaZTTVjmtU/KYce+98wFCEHKcjVJ+9iDYGPLYcckElQKKRdVsr25iipehH83oonntjkl5GKAUElWkqjgpi5jdbIyHybnAASUFBZwEAGFMjGCjdXJoGnVEqNqsYMqNLFbtwkTnor1MnQ1FySSkGGVoggYQkZl642IMTdmKSjofYkoIAR08jAk56gkwKSQIASEYZz8kqyMvOCtESOikdMiAl5JjNGqDDp1gwvs42wB9nENcLaVVKufcMvZymlE8T92FEEkTDCCNTs+zPU5j1TaxqYax3z8+trLOOYiymMZelPl83p+6l/1l+vvDE1+tDCbd/oS3ZHd91axX39aVJrT781+hFIOzP315qCkPY/7TL5+3RZms4zitlnI/XR6fTwmj6/ubq7udn0YPLC3KQjI/KN2f79bLD99+53N4fPkUfLza3Kx217RAKSZOeFPV6/VtImE8nw8vrxZGPWsPwmiNmiaEIONSnS+nyzlHcLe7ZZjiiN5c35dt5aL9n/+f/68ff/z7H37/T/fXd94vrxbbTMSnp+efvjxghjNIziE7a5YT9jrM3e3VLeVyMsZ2p99/dctZ3g9mzqDvukqyd2+uEEKP+7MOwYRsArAe9KNaL6qmaaLR62ULU+5od7bT0+Vkc4CCUkIE4XVVBO1BiFfb1XK1AjlEkCiTVdV+bz5/fHwIBF7mYUfZbrU4T30pCgcjNFYN01KW2flxGORqYQEEmNzc3siK7q6WQFuEAMMoxny7W16cLSCr62JJJRWElhTkSAKUskAZvD7v++7cLFu2rD3HnJXf/f5DRuj54UkytN20jLNmsQIMPj48MIyb7kwoWK7r0+U8qYFJbqK92m1WyzpPc+h9gdG2aYJxW8nq7aJiFCDQLtZamwql7+6vSponZTiwOMxPH/9+vV0A9u3D4fnr9+83zWaxWnz6/PM8D4O21hmvbMVpgdncXXAGvC55Uz+8vvDtUhAyaCMYZqyYTfTJFnx7v7terbcFqwtAK8kLEGuKfDdyIf4v//LPd7v1//rH//if//gXWBaEE5hC0IognE0IEchV0SyXwzAChQThgjA7KjuOAMMMc0SgKIs5Gm+cS55jDCwMKVDBKOU2RBM8+vWrImbvfFOXBCCfUkaJExJSnpXyNlRFsV4viJQZZG21Nc5FTzKklBFMzThnigDOyppBaZM8gXgYe8oI8KFtaxyAmi2jBGPinEsxCM4F51rplAIEGULEGMMEq2GAEFPJq6KcjM4ZBBBm4411ssCF4BAjwgihdI7TPGmEL4u2KZngOx4z1Mawuq7KSlvlrLfGbRbtcOnHoUeUpAxGPZvgDt2lUxNllCPGBO/Ol6GfykU7DOM4jEVZYIwTyClmWRei5D4Ebc3l3FdtMxsDCVCzEWURYcCcyLpM3mKKMcZx9hTCkvNSCuPj4TKm5CvCIGDLegHLBBA86ckm8PT6Otn65u5mmC4Pnz9pZddX27IoD+NZDxEDWFVif+l1N9ze3pKimM7daZonHxCBnbFfjmdnHM4QQ8QkIYS/fHnVSu/u35XbxdPza0qhVyMOoeEcZfr54+dlUxmrBjUAQKqy+fAPX2cCAUVfPn85PT8jSuWZT+PYdV1VLt5+8/WW0n//09+fj/tM8KN+XLcbLoQJfrVc3CzL8XxclOWbu7dB8C/HE5wNiqEpCknIerGqm7ax/U+PDw+PT2nIlODdpnAhRJIDBJMxk468ElTwplnCECEEwVhC6M12u160i2aRAXjuzodPh757oTkvf1fs2iW9T8baummMNdPQY5aaqg5ZZyICSw7ETqt+VoCQCLN1bp6nBCFmNIKMGUERHg9HNY/BO9FUkPGHwyvpzoDSq3dvT93Fe3WcT4BECnFRlVVZ/Xweng+HSU9FXWJKbt6+uX1z8/LpC/EuJAEJo96H83lIKTLGMUJGWc45AgAjYI0x1mptQsqylM7HDIGQglIqpSilGObp0l30bAgmWJYhxhDiNM0wZMaFZJwwMs8KAOitpxhLwXOMAEOEIAAQQOCtDzZE73lRMEoQxBgilEG0nlKUMvDOhpTnWU1KpRRDDBlklyLyLjkPEaIIOwBATjFHBIkQwucIrJ207lUfQWKCexCCDT7alEGwPucEEgQwY4wIwRBhUfIQQ0xRawMz0GDGmNRVzTmflT73fQjBBqNmM5vJWEQyCGU5DIPXHmY0Tzr//4+ECbbWHU7HWc2csaqSAACI4KJtYnQZhEnPyUOfYswxxxhMpqS83u3e3NxQIrphoBQ1vO46N1jtnStIoZwtgjfOYQYsADrEflYQAFYySolxzltHAXCE5BAEwSFkGzPenzNEEMJCCskYyRj+qm7VJmWAIfLOQgwhQpxSLgRGRIoSJm2DQQTFFBGAPkbjvfEBEsIxNM67EFOOw6QyhIRQNRvKGCs4K4s0m4sy5nABCDTbJZH4aPX+8YIzWq1rAML09ECil4Qg7y9fnsWiHK11AUROz1ZNx5hiUOPwZX+5XV9REKfnx00YIACE5vOsfYYIggRA3/W9lMPUJwp1CIUsZFH+9j/9w/718NOXp5bxZVuMdt6wWgC0rOq6WRC4zyFvr7a//d1vTD8du7OzuuvC/eoWMi9EsV5sC1l8evrSdwMlcui1DS9c4nrZcClKLte7zTwd73ZrnNP+0p8u/djBCWM7TZQgdNyfhzFGQBE081QAWO1uUMxJ++Ppdf/6PPfzy9Pzsq4l49vVmlBxPh9B8kbZqi4RhSEoFGEjhRBXv/vwHaHsv//xL93++G//0/9YVfJ/+X//hfByUdU0h3e7q5ji5TwNRkMCqeAJ4/3xBLNvSwlyDj6CmI0LEMJ9d2EArbfrsixAiAQSq3TwIWSUQEQQem03m9WKCmdCSJ4tq79/fOj6rlnVL33HLsO2bXJO/eXUUCoYx5jkCKtGuhQJhdNleIl5XVdVWUAANtt1URd0GPbHQWtze3W1WjchueANF/R0PGIEAc18VVkYffY0qLG/cC6Cj/O5R4QBgPp+vH5zTwo+zdN47g77093V9c3bu8nN/diHIVPOV82KU27zlGzAlFNKj+fLp9eHD999XQg+XE6X/ZkwWlDGOB9LNY/OahuUnoxv6xo4B2P86sO3ttdazbIoZdUsr0s3zM+H57pZvb9/o7XNBLOqbsz48cntH5+8tlUt3ty+C0QvmzWV+DQNp/OpkeV129LffHNzdcVipBn8+NcfKaVX794sWbmr2wUvulnbOQkEbleLbbNwOjjtAOPTuR+nMVv39u7uZr3mGVqjfn543M/D6/OeS04l01qF6BdVnWLWzhYYGq20N9Y7mFAMAQHkQrA+UkFFyUHOLgbvA0IYEeBjMjY418cUXHLGuRDjQlQAwbJuFk07mllHH8I0G50hYJKE4K11knNECIEwaCcElhUzZ2etb5cLALAxmnPOJL+Mo9ambEtIsFWaQNSn7AlnlGYEESXeGGiTlBxTnDLoxlEZLUoBMe4nJSh3MaQEUo5lVSTnCaHKzDgnbV2OERPMChkhHLru3Pc+5Xa14Jw7ayHITquQQQBQaZ1AnpRKOWOMCKMAgFnpGHNMERDgrPEhc0nLupzG2Ru3apZcUADipHU+JeNc31+26+X9+/fH8/Hh+SGDQJkUnK3bmmMKOGa2MgmeXw/n03GeRj/rZHwMMcUcUjqfhgBgs1qcpnnqRxAjHibH6RRDZjTMaR77q9VC5fjSdwXmtZALwY13KcQckxqHkL0Z+qAURbAUbNsuG1JghK11x0sXYIIAyAIyySHFLkVIKZbyaX+AwWMIttsNofJ8Pg7O7vcv2rlmtVDaPR+eGEMcod3XX2VCIOdEFk2zugGZUTlo8/34Y5p0dbMqBCskfdNe6WBO57NxLkUAEM4IIcogoQAihKA1ri7r6nq7bRbQezWMWZtkfQy+bhcfPnyVP4GuPxsFCUzD5RR4gXPEMMXgtVWHywlBOBsrhcg49tMwa6eneb1qVUany4kh7IPDDGNGlDPdMBWUO6XHYUAoLNbLN9dvEAav+9foYbVaeZTOajbWY8mC9f3Qr5erdtEAYwUTOQRIKeIimTnARDAi3qYEgA/JepdTEow7673zUhScs/4yOeswxgiTUrAMgFUGYSQ4TzHNSk3TNM+zUsp6AxDkTNRVlRPQkyYQIYQixpTTqqmOxwuCcLZKWVVw4RCKwVFKtHMQonFWKeXUj86HHBOCOPuEMYwhWu+t9zZ4E2xIeugHgFCGMF9SVRRNJZbLBUZovkwQZyYpwohwkgOMOc7W6Git9zSGhGAI0VnjvU8+CCbKoiiEhBkCACBBRVlY64dpggyDDCHCRVERyhChAFhrbYxJG+tTTDn74LRTp8tporopa0aESx4AdBpcirkoZYjBR08IKWVRFZUPoSyZKKTW06RmxkQFU1A5hsQ4ZYRIyggAQZsIQ7SawYQhgD7hTGRb1mVJMpncmAcDYJqsscYlG1NOU55WmxUvpFPK2OisQwhEhCPMOvrsVNu0yQLG8N31VcooE9idO5McwKkfhxQjJzyEBHMAgFBCG1nWQrjolNJq1owyUSA7exc9BFGZSVkvSply1MrGIXFBY4zTeYjBRhdwBilmFVJRFZgzBLIHSQdgJj2eYp3KaHxJ6LppcgjdOAI1ZoK5rAwEl24gmshSmgit9ebcSUJAspcclos6O4fqhpr05dMzh/l+t0behGl4eD38+LyfMYo+7fedCuli7DgbB3ICMMVcIsGaGrpUFOXbWzR7F4ZBQCQp9QkEHfp5JDhamB6HTh/pxdghEByTx6MMxj6Nb+7v1tuV0pOfJ5Ljtl5gSGcIn2fFqsIIcpl98MEOJxTS+/ff6e5ilKKLhuXUv+y5kHqcN4stRvzSja+vr7frzYQQ5s5YlzHuR619WLULISrGSiEXLZfWYDXZUtY0sscvn30KIgaSwttVA7SR0ROKVyydg6Ep80V7++bdummRN5NRLIFgvRTit7/99m+//PjT0y9f39xLLIyap67XigHnJKTDMH96fnr3/n7su8aomzdffbi/RlmbGOamPGljZh0hmLSqGfvw7VfZeu/8brtOGDqAaiEHNb65vorJz4ceOpAELFeFxfHx8NLNStkwTybvInRx//J83h9B9Lv7a86ZjbZZ1DDmqR+Oz88EArraXI6X2+v3keDT2I/d+PLw8OG7D7vFtsBliPmlM1TiYr1tKNHaO2V/+fuX4rtKkMIEcDhe/vJw8CRdhh6+lPAt+/T5SV2G3/z2u9ViZyAkleGLVG4qyCHNuN8fH374/vF4nPu5H4Z2vfznf/0vSJKf/vJjAdjvP3xY32yElDb2l2kw0zDPQ8HIuipmhG7e3CHMlDm/2cmb97e//K//j7477Npdvb5art6vFtvudOwu+8/P+6ppDvYnXhcg+uulBCetrKuaelGWb9rN3fWdmsLT+fDXl88nqxgA9+vlm9XqH7/9lgD03/77H09J/3/+40+dUpgS74PHaFATYTRj0I1jP/YuOEppTDHHBBGinGSQMwBMUmfdOM6IYB+CizFDsD8fEYI+eMLxr2EPRYAiWG+31ze36LQ3pxNAUHJOCC0EDyFOSrsY5llLSgGKo1FSFgmBADIWLMboY4IEWh8gBIQQHwLEIKU4TiNORSIRYwQw0SmZ4ELKZMar5ZJyPszDZZjbppBVaZObZ6Vml0JEFJ+73qUICYAQLdYLQZnTmhNBOVfeam8jSIhhzpigPOf8+vIqJb2/v3cRjuM86XmYJhM8J7wsORL0NA3zpNumaZZVfx7tpJfLlkruvc8J9GqCEMEUc8qztZij9c16tdwMw0yS+eZuNwxjLVkhsVUDRIyDAis1DV3bMJIYCn4lyn/4zW9++Pxp1orXLUEMQpox6/S5MxOOwEyXAXlECRAIkkwoVG5eVCJDanJyUeW5a5vm3Yev8MNTSvm6bq+r5hE+eReur9Yf3r5NUxjOx7HXL5fz9uqaCnbWw+V5YAS3y2XZFOfLBRBKQOSEv//6HWTs4eHp6elzWeKbuzuXU8judB6JhU0lX7rDMPQMQ4jY8/PRBQN1qBBfVBUrmSjYMBwaCVbFYpFTnSHMQMcwqFGldFbj7HQCoK3rqiyjD2aav7m+ud99dXp9NZeulAVDJDpPIVoI+c2b27KuCCJTP7qQtTKzMuUSXqwyEY82X4bDbr3GNCCUovcSIbZoz9ZyCEiOkorZOheiELKfh7OytRSMYEHFzeb62/dfT/MwHM5fXp988FhyAMjoFEOQYmLG6XUc06TXi5ZTFGLihD49Pfbno+oHwgjNGcyz0UaFEDijDvuUYl2WIKfgUwpeCp4AkLIQQk6TCixijBgjjNBxGkLwhGDGWAbZeIswQhhDiMqSS0FTCNF5BxFCRAqecgCQeucmPUvKKEEuJBJyTi5mQCgJMQEAOBcUY4QQQjn4pLW13iaQc0ohxowQQMBaA1BCOOfkU8qUIqNsCpEQwgTXp+Os9fFyMkFDhAkBCCOYgeAM5BR8FKKoZLVaLARjOSSQQdVWOWfPIkiQIhpDLGXZtJWUAiMSZY4pQZg458BBzlpCISUoxJSDzQowHCCExniMCCYYewIR5FxACEUhAYSykFLKX6kn3jhBuSgEpHiciCCkLERBC5DTMPQQorIqACS9HiWjbL2inAGY/ewxoYSzvusHpRDEjHLvjTZmmMaKwoxQTElyiSCwKYQMTc4sg26ajTbG2KauMaaQYNpitMHOqyNA06QwJhgRmBGnuJACAQAhzpDi7L2LhMCMMJESWhtTnGeNJeOCXy4Xm3zwERAAQCYMWaOPs6urAlEGKUk5ee09Str+elv5wQYFclGK2ZjRRwaxiz66LJtSq3mY59E4EgMpRMTkOJ57Za9W67auLCIfn/Yh+OXqOkXIEN5URU1pCXMrqlquD5M9X07DqOjpgjiFABlnY4YJ0dOg9nroRr1cLTzElPECQYE4hpBhVpVtWchqvSYoH7T925fP4PWlWS4X63acp9duv5JVK2mnzfD8NPQXHOD91XXB5Tzq4/lyGntNIA9hVkpN43gZP9y9/ebDu9CvutPrZrV4fX6GAL3/6htJ+KJqaCm1MgSx1WpnrfY+SC6YZL5Ps3LVYl02LZZFZuXo0rw/ohwFlxzQaewzBNtl+/nYFUWxvdpSG2gG7zabgPPfPj8OUz92x+w0chYHXxF63u9vbq7etPeUs8VmUTSVmtQ4dCDFYe4qKQ+X82q5Tpw+X87Zunme6+Wyrmsa0v7l9Xdfvz3M5senPc0IJFBJvmlKFtJuuwk5Iomn2Z0Op3pRr5bLru/GmC9dZ2KIJVXRfTkfYkLew2a7kHU9jtPry/F0OgejcS1///U/Rhc/fv+zgKQQgkFOAT48nqz3IY0Gkl6r5Wq9aJe6G54fX573F8gYomzW09XtZrvaYOLO434c+nma65slqovgw5dPrzYHAMDz6VLUrYd8UP7p6ZAIDQV1MFSbShtzNG5X1BBjRrmx7uOnj9ub7XK9ZJjdbjbD4kUCsVgsT2okQq7vdubRnx5OOcR1s7y7viacXV3dEYQ/KUVIrkT99vrtJ6cTBC6Gy/PLv//vf7RaYQQxIZkRB/LlfA4w13UdMrwMw5v7uzebqyXk//qHP6jB/umnvzps1DwRmEkODGVg9bJd/1//7b+OODhv/vzTzzbDqq6cNUFraAxEKIHsoocIMc4yyDADjFDOyToHM4gw+xgjzIThoetzhglkZ2zb1gmACEGCIAMYcpysnbw9z+Oo1KzGlFNVFBhhTqmDgbOUUpxnFSmVgiltI0RZ4ODBeVIIwITBpBTEiJcsA+RCiDEJKTihAmIMYErZOKtDdMZhTkCG3gdnQzcNVDIqhA5RacU4BQz54FOIw2Vw3tdNJbkglEFCTEwORBjDrNXxcrExQEa5lAigcZqKUho1719einoRUzDGzEoHlFGmNsZklE8WSuSzn8dZG8U4gTh3l0FNsxBCW+tDLkoGERiniQW6LoVz1qqZA7gompUoSykgAF03SEKYNy+n489fvpSL+mq5O5/7VV2UZXm13XVGHw4H5+NotMA5IRwyBBiSUiaErDYhRiY4JFg7180KVRUBwBnnM8BMCgoFJkyQBRPJRdKsy0XdXi+iCyE5SNForYk5QpRiGmZttK6bcnB+NvasVFtVX99dAxsmazgGvOAFFxij+9vrbjLKWbwhi6raLusUHAxwntS6Wg3z3J9OIMHAiI25kGXIuT+dGkxYRkD7Td0ya8/znILrhzFkhyiw3kJUcwTzZCuASgLub7bborlUz1VBgvfH0+l4Omvry0VdFbWztijKRb2Yun4YpmlWKth2uyqrxfd/+lt/GRaN+B/+h/8DJejvP/740+MjI+T3X3+dch76URuPCCpLCTI8jBNO5F9+/7uSSpxBdz55qzlAjSwzgADiYtGEcQwurKTgOGejF21zd3N9HoeYnCCE5nR2xhpHGOOQkqTtOAetFQACQlhXTVFKPU4JRMoIl3yeTVGInLPgLEOQY/LOo5QEpykxH2JZVTFDZbTzXtuwXjRt21AIUkzBB2v9bDVjDBBqlLHWMU55KTACKcQEs4sRIJAhcM7xgiOAtLOREIJRP8zDNPJKYASiB1WziBnP81zIqii50fp4POWcqrrCCIOUcwaMUuedMnoYprKu2rqBCAXvIEQoQwLpbl2vlkuOGAbQOydEAUEuRDFPM0W4LSuUAGRwsV4GH4z2dc055/OsrLGccllJXjBRcG9tDDEl4IwL0QrBQwoxpYKXMSfJCkoZyBmmlENCFBCMlNZ6VgmAsqogQilDyUoEgZC0ZJJlEmyIMRGGg/fTNKScZFFJWaWUbTRlUXAh4WQSMJhSwTlPvD9306h9glIKRllGJII8zwpRiBk/96NRhjAKE0qdkkyWhVg2LeM0pYoCuk/HmBKGsBCSEgwTmCeToo8xQwylkMY7OGomKKZkHm1CuZTUaO29jcETzgnFKGOYUlVKDLAUPIQUYiqZ0INWWoUcfIwpAUopJyxH0A9KYyopRwTyStoUtXY2xoyRC+l4GWKODkZjQ21du2yU9UZHkJLTpuQ8FlxQvFut1pUAGZRVtdtu90oXMQnBvM+NqAIUjBSUFd14UdoMxvXe79ZrilgydDJO61lZv1pvr2+ufg0ofArz87GbhxPI91UhN+2g1evr/n/8L/+ZLtq//u3P6tzdL69DBimFGJwzNqd8Og9AOQxjCQX3II1TGIZ1VS34m+T0cZxlIaO3BGUCAfAJEVC2i3Z90/fn5aIRbfs4dB/j3niXEIQIT2rqBEMRXJ73m0Xx3TfvEIyP+0NKULYLOFpEWLNoBEyLqpau1ARoE/78w8+H+ce8XnOC1u1iuWhzij99+uXpdd8sl79995Ug7KBfmrolDPSXjpWlMt4zcnWzG/t+fbV2RmkUK4TaZqEmY08WQ3S72nA8Aiq/ububD5er9zftqjyfR4l5s2uyjWY2e/WIKATB78/d/W41Jf/x5WXOqa7by9NRobglN6OzBtPl3TuQ3ZTT86lHOSsXPj8/tlX1b//yP0lM//u//29WO/PSTTlDgte/eV9UFfTGjl2Y+4XYDuPgrRlPU38cMUYkpFrw6XJ6Bma5Xe5++85A89f/+PH6+o5w/h9/+37JK1o2PsPT/gILfnN3Nejp4cvB5PT2D29RwJHSxEsm8d27d7urLclg2F+AdZiJ87Grts3VzRYkNHX9WFYhJSELNxoGMU8Z+UBddHq2Wjf1SvAGEGYD+Pjp08vj07dffeAlt1HxWpz19MOnjwZAi/HhPKpZNyqtd7e3tD4+vOKcawLfbVqrdjGk++vrm90m+tAdDov16qZuf//26+Pp8vPhyArhnHLBZohyhgkmISTnIuWUc0ISAJBzTt4b4xR1HCKUU56tSjASwlNOjFNMII7IWgcxDDFijClJL93h+fUFxeydMc6tFqsUAAGEUgYAGcdxGqfIWQKRMepzdD4EmI7nc1UXghEEAKE0AWCdMda6mDAllJBSlvMweBcgwgThUgiCQM7JO58BAAiCDDEmAAPnvUuxqmok0tSPRDCEMUogxzwOI+N00LO1JgM4G3XozoTxijIfoteKYwgB8C4eDhfYTZhSY/0064gzYpRDmVJOMeWcZhO18RnkBLKaDc4ZIRhzNC5HkAUWKIIAYLThcOz6y4AhrqhEAVdCSM7P/UVdht161TZlQNglXACRIO9nlxLcEJ5T5owCOI/TOBink/PBKWd363VZ1xgAPU3nvg8UUSnn2YKstLUMgorLZSm+PD/4SUlMlnWjL8Oqbq5ur7EkTBanuQM5RwynaG0OL8cDoQwgFBnVhB6Ol1EpYzTi0kICRO6iWQOZYorBSyFKUVK5+Pzlpcjk66vdNF2CM2VZuSkbrVNdZhIhZI/H02VSvfHLWgYfjI1fnl4CyG/u7lXI+PnRgkBabmmelZ3OEwmopUWzW66bQmJ0eHratNvtcjPMLyn7y+U4duN6d8tF6acwmbloq6KtGUOjVj8/H16H01spldGDHbmsORJ2NKurK5oI8HFRL4pmcTzs6wWviXw5nY5fjoniwTs9gskDhNL56REHvypLBsCb66uT9z8eDwYhHaILsSLVohQFJh/e3LaLhlK031+gC03FS048wURIzqSgnFsXvI8p5RgSgHCeZ2ss/zVJKytLoZS2xiOEq7okjInECAIxheg9yJBRhjhLKNvOC8kIJc5ahDFGKPqYQ8aIBB8IwBgjiBFjAiGCEAQEuRBiSiln55y3IUNAMDbGGACausKMyqoqGhmCd1EF52KIjPO7N9cgp3M6K2Oss904QgggAkZ7CABjNMOcEaSElrJAGA9dCD5qbxih6+V6u9rgjL01FkJGWIrJ6cAxCznCHBhhhBJGmFFOa+2sK2RRFmUpKsJQghFAmGOmkMmKpgQM8QQRTilBPKXEGEMI+xAE5xgilFIKXk3aaZ9BRpDkHJ3zECBORFO3EAGtVM6YFwUhQStnrEcIFKJKOWPEzGhThpxwbzyARBRFFWKGAGYEf/VsAIARAZkED8w8pRxDDAQSKaid3TDNlDFORMoAAiwE17PxxnLJJBOFlMY4CBFAMGUEUsgA2l+RIZQCDGFCPgYYoI/R5UQwVtqAGFBGTVVzwRmhKEAmSS15IYsU05zMetMQhPtZBxd4yTBMVifGuTMBYcJYkVMatRGSZe9DiMGnEBJGmEoOENJOM0kDCBCBEBLOsG6XwPuikHVZMIxWVXl1tWUgnPenzsVuHqlgLWvmaQYJVWUBC5hjnkcjqhILlmwEhGSMyrpKaXh4fOwv5zdXV+1ihRk/TWMI0YJ88/5dOLxoY5/Px9JVDqA5xV/2x866Q9ezCFyAPgBWi6vdzQeclze7P//w877vNnXxzf2bFZUMpoIRCmHbLMYZYkZzRofjqWoLgMGpOw/DbHzwCUzjtFm2leAiYdvPwzQMyyEV5dz1L4fjzW4rKtFb9fnw0tYyU3Hpxsvh8ThrMk/Zqdtde//12xLhWInVepsS+PL0spRyuVwIyZfr7Wq1/eOf/v31cESYFFTADEEMDNOqKRAkmLAMuLP+0+cn71VGiSGklLvA0epAMCOYlHUpox+Ol5vrq+vVMqvRaeNdkIXIGQCArtfrmMK5O5eLYt2uzuexvb2ZkHUhzcaP82s39XmGENOSl5bi3W5TCdGNx8upZxjFFEPMkDIqSm10uVzevKkBhM/d+fn18Pj4UnFWC7DcrIt22SzXKePX4/HlcOyHoRDyfrvaNbU3ajy7bXPLItw0y/u7N9ur6wwgsGG9WqpuyBCWZTWaWXf9drNGb+/NOF/6iUESMmzWy6IukvOff/lFLWc3GKW8M0NMODCIX/bLdlUVBcM4aLPcrIJNJRPz6TAPUzJhgvNPv/zUDeOs7PWbDS+b/nRZFs3XX39zmY5P+zFBUJaFoBwjXJXy+XEPYYTRPv78af3mXfdyiMbOacYILFhRXy3/83/65+hUnrTr1cvDl8baq9WqLGQMfp4CIzgHkhG0zkMAKaac0piic1YIkUP0wSOSg/tV0wRDSHoyOaOUgpQcQaStgwiABFJMCCEfQmenQY/Jx2XRyEJkRDFhm/WCQJgzBPOsJwUxBRho63yOGYKcYQaQMmxDDC4IJqjkxlvjg43ROUcBmNVslTKzxoRKUVBGgMsIZoiQT0EpE32QVGBMI0gIYZ+isRYgSDiFCWIKKEI5paEbiqaEnM7zOM9Gu0kZLSEuy1JwmQFmOSMEZVECY21K3nkXAxN0dnqaZkZphEhNs3e+kiUiyIVkR8XxfHO9Y1yM05xA4gVX2rjZxugxRgn4RHBbNF77/bG/2a5qyrIL3TjUi6pFiPNCVk0GaNIKhgQgrFNarleH8zmEkFEuKmm8u3SXhBLAKMUMc84ROuNNQBQQMxuKCfEZQIhK1F3OOGUAEsaYEEoJYZRQhqZhVtYgipMHs/YeIEDJcRgRplVTE8EfXg+TNsM8Mkqw4MdLH6zS2tQf2mHUhMrg8uePz81u9+b2toCQxRRGhXDmDKO2Ahkcz5eq4Ivl9qD9/tLNamYg79pVs178+7//fxebq2/e3ZgUQ3QYYZvAw/6pLRirV97GpaiulkuJQHe5uNEl6+uyFrIK0Qom1+uiqVaTUYMej5dLFXzTrOqi4LKYlVKzGfqh63vn/epuXTf15y8PMcW+7502y7ppFovheMGEfff7bz6/PP/tl5+PZiw4RCmfT3sraDect1Xz5v3bddscTv388gXnlJUVOROAkLPNquIW1Jhct+12vX4qz93lnLzd1jWLmEhGAQAQIso5ZXTs+8yjoiSnRBCBEHoflbLc518f0YiR4BMjtKwFxeR4OCQfJeWIMBeC1QYT+KszlWIUKYkhYoSrsgYQT3pEGEspMCEgw2kcUw7eO4AgQhhBBHIO3oEUEyXBWsJp0VaQkWRQgMD4oJ05dSdnfFGUetac8fV6K4qiH7rz5WKdxRRFFFJMOWWGSCFEVZScsRRSsD6DpIYJSGm0NkpxKsqybJpqHKbgo5AMI4hTsiEABKig3gdKCQASIQQhghClnDJAhNCQkpSIE+p19CktqlJwASFy3CKMIETB+WmanbKr1ZIxYX2MLkCaKeN1XVtnUwaQYIARzBjkzKmkmGDOKZeQuHGcgE9cFAhgY6x3sW1bWcjD4dXFKIWUotTa6eAxAdVyQSlPPjrlogsxBZ9igkkQBjOBgAhRQoRiAjmHRvAE4TQoa+amqaqqXC4aY1zMSWuVU+YMSy4pK/s+2mi8C0xyzOBsVd9fECEQgugjp0ywgnIihSCQcIQpgijGeRxDDEyKEAwV8upmHcLCRzc5TXA2xoUYq6ouCqmUScBnBGaljTaYUZgBhaiUEhEkOJ1GCAioCo5hxghyznEhjDfYwtV6CXxUyiWUfcr7/f7knEPAOYchxIw47TCCy+WCc44hADlGklbrhkuutBnNNOoxRg9iPF8O3//ydyRFwljHFAhKETjtfPDeOZyZ0+GH73+6utpJVjKGhmQ+nw8AJojQzW7xlbxtOf/x00PJ8e/vd1eLbc6AETp042iUdx5ilhkZgwEWyqb0n93l1P39r98jD/TYz30nW84x+OrqFiRmbWIttgW67I8+6m/v3xkfHvanRK943RoVX8Ynl1PytqiwZfRT3y9267v7ryhkhIoff/k5Be996odheX315urtH6D407//8Xw6HPfHu+1dxcXl3FHGMBXdZQwxWWNeHx+nceiO47dfffV83u8hXBULgEkiAIGAkru/XSLn9Pm8XBTG2efXJ1k0IEGB6NV2FZNF0CKMqSg4ozobmuLtYhEG98PHz0BAxOnT/pUSDgLggGvBREmaoiAA+G682m5EVfzphz/GYK93682qCd5V7S1HeZhVfxkUCrIURc11tFxwxtHt3Xa9rb21u+tFgZEFplrWjSjt7GUmd+tNTqFpmv/82/8KXBi67vhygChTimrJC4ZP3kSvuznWsmGCUgMJBNM4Pj4+H9fz7d2bEYQU3KJe95dBK4W/RrvtZjxfPnXdcDiu18tlyX/84Qet7GazVj6cXx7b1Roz+fHTl6Zd/qff/0NZFMoqj1Q5ixzDar34v//f/s/ep+8/fTS3m8PpQiYd6Pkvh9OH27dF05yeh3q3Xd2+NzZ8+v7j85df3uyuBKFPjy+rFJ6n6flpb7SFVOSYZVFhgqqUjLLRZhtshN7GACkFCMuqCN7lpBNIRjsIIGVSyoJJYbXNMSEIEcyFKDJIOSVnnYcx5ARh6tXoMri6uiGiIJxmH6wzhaCbRWu8jjkoZRIBXHKt7K/bD1YpSqnXU4QppGC8wYxwwDjn0ftz30suGGchRIYwQjnmYEPmmCUQCSeE4JQjgFmUPCg9zSOhJKeEIapEiRHWRiltk0GAIeWNjjYRWDYVIwXI0HmXoquaqmQsu1hUxWB0NyrIEIogBR+Cu0RPCP11GpowiiFInqhsXZyVn4AHLjhIEMjxVwRrDA4heHuzrQtRCtp/OWbrkhFB42BnpVU/zbXWGYJm0fjolTfzME16Lprier2ACBjjMsVlWwGlwyVmkIzTL89q1S6YlIxLC7wzZjxeqgzlbtFUZc1E1Pbw+nq1216/u0MhvxxOD49P29WyWRReh5fTBRKpfIKiQIREl2fnzocDoQRiDAiUpUAQuOCSJGo2dnIkfUIIAsrmeRpUlxCtK3a/XdaECQAej1+A9etm+fPfH4z17797I3PcXi0i9BQhScjddkVgOg+dRXhnBuNMtvqrt99hiqDtE0jXm+353HPG1o3Us7LJX87j6XL5/W9+f3W9OF/2UBIu5XnsTv0ZEkQx7w/TT+jjbr2MiJRt1cDovGeM3N1cLzZLytF53xkfM4hWm+50Wi0X21VbYvEPHz7cbOqK5Z8eH8um3Oy2w2XyyTLBIsYvfV+uFvX1pppOa0bfrRZcii8Pr00p10WRognWI+MkJ9eiqusUk7tqmn5liHHWemc8TDkmEEOMECKEEWUMZki5gBkkAKdZYUKatoEQhxj6YdAKCcFiiBAgAADMKVqHIcwI6nFGALGyMNo665erBWU8xAQh1sZBArng0YdxUCGFlCKhBBOAUQYxU4yF4JwyDEHGcJqmfpr6eXLBYQyNnq1RIMOUfHfqmrZtl41gYsaMMhpzyDljiDLMOWWIEWe8qevlYpFi9t4NQ08YAhj0fR+c3652VVnmHLUxEOGUwTzOdVsWZRFTtsZxjsq6ZpTnDPquG4bx1+aTLIWQvORF9imkQCAhkBJMMfrV9ZEoxTFla4x3oSzLggvOOYQwpUAwqZo6pGx9CCkora12mOCqLjih1iaEgIlh0MrNlgvDGcsxE4QEF4RgSmmIMcSIEKIEE06E4IwzCGGInnAEeXbOkRwQw0LwnEApq0VDMshdNySfAAQxRUxJgSpKGKMMEZQhUNY4bdWsAcxVVTZNjTiBNlBBKacZQq21iRZGqzUgmHEsZCmi85Ma6rKmFUMgWh/m2WYEMo02Rhvzum1JwYy2IGRZMO+Di1E7iwhGCMqqSDkbq3/tA0smOOUIQEFodqGmsirlommM0loZ7wPj2Bo16Xma5qz8uKpvt+sxxyh5vVjsnx8mo9plQzHSs3M+3Tf3RSnNPGOPXdQvLy9CiHGYvbfLpqJVSyi+dOdz15cIOYIO58EEHzPEADOMW1k0cjFC/PL0hHL68NWHgvBp7MbD5ZN9bQr+2zffrFdr5NO6LO08SYyvrjcQsE8/fz6dTxDDzfp6eVVchksMnkl58+EOcLreXZ/3l58//rRqi2mCOsDvvnr3zdvv/tuf//ynj59OzwfesIzQ/tKv2q4tpFL2eLpQY15O50iJMXrqJ0Lw6o1XL6+ztn/49rfIh5YVN+vd8XwwWp1Pqr6M221ebrbNonl9+aLVCJIvi0oro5SBnA7KDLN69+5t1SxPL0/LtkGZ6HmsK7693h7709PrI6RYcBZTOL0cDD9X9XeirodhUsbjTBZV8+nTFwCjKGkIaRovp74bnLn98P793b034DLOU/RYshAhIny3XcGUH573haS/+c07r10KiWJMMbHezvNsrHt+fQEp/va7315f74p+DtZ3516UEnLc7y+pGwCAvJDDNAKYM0OJsKbY7a62CZH+cPbW6dm8HPdv3t6tN4tF3dS47qf+8/H13Yev2qutKIv5x7/99a/fX9/f0Bs+6PnT85Nsyt9++2GV4cfPz6huwKKaLkMjWSnl/vGZPD2t16sEE5csRA8wKNoyYxQgOI3jOJvJOZuw9enL56ecHwTEV9dXOkw3V1fbq83L08t4ma+qdtQaW/NP332jbDgfThgizvD7r9+lkF/HS/CpxuwyHL7/298hSO9v7ouqwASbWal+XNetiyliPM2DHcar7bos2ZgAQmK5Xphofnl4SMpmTLLACDFCE8IAAhBiSBnRogAQYwYASAwCEEJKmXOeQqAlszle+guIHhNGKUUQeme7PgTnYkqUYswgASSFXFRFwgBiDDDSs4ohBhcA0IyykHKGycYITKy55IwhxgShVV3XTWsmM2ttgzXWJZ98CoQwwWRw8dBdeMEyggGkYZ45IZv1upIy2TxNylirrc0UBgeGcfAxCikxRCmm7tJBjECKMINQCBBTU9WYMMwDIkAZAwDEICXv8a8eR8x8DC5GLkVRFDaY1+Mphcw4xxCPFxViCNFDkAlAjFEQYzJ6u1suqxqDNGs9zRYRoT04dGOGQFacZjZNaor2cuwpJZzh2aiyrea+n8eRMrxaVNYZCZCsJQRJVgWbGZw9gWm9aGpZrprFsmmysuvletk0lLPVbn3ZX54u5+ky6xQ+LO8v03Qep4j85BNppE8eSz6Po0kOOIAJxoQgBECG/dBxGDbrFQUshmyzmyY1KoUw6YchGnS7qDDjgpO2aWXZQABBAj6kczccL8P6av3u7a1EUHeDV0a0xYfvfjMofbnsu0s3d8NVu91u1m0p9azn8zAcT+WiJm9uCyGIU59/+nlZl6dx8Nk97R+0cxGwL4+vRLDNZlM2pbq4H376eO77u+u31bJKOMWQJaO3VzfOKpfg7u7N7ds3t2+vF7vd/nX/8ulz27aS4bE/S4Ru10tJ2HLZfvjNd3/+219//PhLdDpi/MuPP4Mc3n91f7NaIqWzd+2ivipKgHF0UayXzofhcumOP2Qo3t69bVbbwY7T5ydyPPUg53q5JBCcToe6qdvVoi5rr43RFllXVYXAyMVgnJu1oozHFJP32nhE6qKSAKIMQPQRZVhy4YLzgAjBGCEJIlkUKedL38cMtNbOeUxxWSLKaNU2IYXgfAKJc4YBTt5TBAWlBGMLQfBu6IIJ3nk7qxmg6NSck+dUcMo5LQglOYIcEsgJpARTJpzkDCGEEEAAEgDJe+ucY5zVi7Ife4hQyMkEix0aphECQDDCGGtt+26smkpZZ60fpznmGAHkVUkEVbPS1oQYCCIEEpyRxExigTCUVKQMKGMxxGmeUgpGG4NgCDGDXJRFStE7SzEEOcUQuYCMcZwiADDbmHx01rSLVmABc87B99Ngo4cERhCGUXNKm6IphHBOxYgoRZiAGHyKmXMmpCQMOeOCDwyT9mqFMRmGXhkVYoQxEYQWbSuk9N4mZ533IWkQaFWXnJDgvQnBeDuMs88+QOBAMtYNzh7HgRCSUhKcB+dyTj4EIQtr3ay05AQSVJeFy1oZi5OHOdiUJm8hJ5TRiHACue+m7jJiCgGIjFIhcCF5SHk2kw2eEkop9cHbkBJAGSBMKZMcZhRMgD6VnK2aWkgRfAjTbEPox4AI8MHvTV+LIs7IoAgQgIwrP3VTJ+vCeAsxBBzkmJ/PezbQWhZFWUUf9y97SpQPkRCCsMAYI4YZwQtKMqUmBm2MDqGQVbuo6lK2tSwp2bBVASxjwFxOSJaYwvtv39VQ2OHSHedokB0UB8hngDBFmOxfDp8+fzR2fvvufbNZOWM+vz50xw4QtLzdtFVZfvj6M/t82L9s3rR2nNSs/7H8HYhwV5Dbkp6sHV7mkHK7vPKAYVY0kJp+fP7y2HkP66of59fDuRtmwPGmbKnOD/H7HIOOEcV0OnSRUVgI5fzD4+d4UcPpUAkxzcPPDz9LUhiQq6Ze3147yvrPj2c1t0VRbVcwZVFwkAqKEwFx2TT7bn/s+tzUxlhZLSkRvQbvdutCrKybtNK/PL90l6ltmrouIIwQwFlpo13og6wJRbSoCwghlYXRjhK427YSkUmPT/uT+bOvCC9RbgRfiBYv+f50fD2e59NUFqId5gUTyQUzjhVnm+WSr9pZhct5MsF8ej3kEBGF8/effvvNB7KoXi4GpPj54xfrIiKUSPnT56dR22ZVG618iBc150t399vfj0pdlE9MjMZ/eT4c+/5kfRVB51K93tJx+OXwWDWVMco/Pb/d7SZr7JcXLmqMWLvaIULK1TrKev3VW9INP/74i3Fhfb1xwRitCiEJwdqYn3/52aW54IIxxgJgLs3PJ445N4AwWLeL+Ty09fLdboMxwAlICud5AKMsIbzbrf7xn/5hUTbny/Ef/vHbz4/Pm7r4+t/+T//x4y+RwMWy/emHv7x/c7Vt6/PpTJn4+rvvjIt/+v6HL6fLj88v82QxgRBBQjCmmEKeIrIuGa1TDJSRBCBH2YeQAGCcAgCzj01VweRRzBiA5N1lmAtZkJK6FIyLGACQQUwZUgwJ8jl5AAAm2kWYAYGIMR5jUlYLKWEG3oSMc1GW9ebKpwAwaFaVPXlocTIZIOhCMCZY9Cs9ZCKGJZBDDj5HQTjnXPByNNNlGK01EAHooE3ezBpCVLZlVZfjPI1dDymq2vo0D8fLualrnXLOICEwTUopTTBimEkmhBSznvtZAQQhxpWomqqCDp+7cwxJgswhcz5YYwhEkrO6qoKPSel60eyuF5QybdykzBCBIahg+DzPap6rti6qEiEEUPLA2ejPw0QgXreVjfbh+cVpJDCqRfGbuzf/v5bea8ey7dqym94su324jMw8nuaw7i0jQY+CoC8XBEgoIxVvkYfksZnhI7ZbdnqjB2r8QX8cHR2tLXfL3z7f9XqIyWEMYEKbbVuzCkYMXF63bSlZwllZe3d/r7W3Gcw5nJN/VopVZYnR3d1ehej9PKq5lFIlDwXtugEiZLVv2qIpi2FWEoI/fPhqUS2N0ef+pLw1g8cANAJNxjwfT/M0zarfXF0tdzvT69//u2p06tx35+OZT1xShnKGLiOGMed/+NOfrHXO6xDM4fD2Muwd9KdhVJOZRv283zdzw24uyqIyIAKGM4KJwP35+LLfd7PWgOz7cc0vsrYuIA+jhwAyMrv+cHi+WF8DAA/Pj7FZHQ4vypni99KDhCO83F0xTN9e9+ehr9/X2js7jIKJ3397cbm5ygncrrZ+nFdCEsqsdSWH0/5QVXVud3f/+JRE/OKLd0a5fhwno1f1ghUMolOw3luXvPBTCDYTROnV1VVRFKe+k4KHEDCEEIEIs3E2gUQLGnw0zhhnjFGYiqqumGTJQS5kXVVCBufCNM0QQoAyJRhXBGESXQAEy5Ib45Wz2uoYIiWEMUoxIYQ0LXHBG22MMTEmxqlgMmjrvYvBhxh8iJgBQggXUjlttAYQcMaaqq3LBaFCSkkpwxhRPfz/CohCMMFcjGqcgzXzNGEAjXVVVc56VEbFHFEGPvqYec4QQFjUVXQpRpAg1M7005ByhBTmALS1cX8cuxFBRCldLhYEs6aqCUIpxmBj08iiaHIGk1LB+ehtBplgpK1FCLd1KzhPIQbnM8gxRkQQYzym1E+jNTbljBGsirJgDMZkrQk51FUpQNJOR+1jsIKzpiklZ9ZaayKgEMDsvUsAUsxCdG6KyfuqKCEiKQbGiCyY9zannFLOMQYfkQSc0KoqjbfzqJTTCWTJeXQBAei9TzFTQjBjKWftrHbGBMQZgxmGlHJKKUVMSFlXAE0+JM4YxiB4yzhmtI4xTkbpEFyMKTnqaVGVMQUXzLEfMMLLRYNA9CBUdbNgMg1wMkoH5042goQxZZRABK1xFKKKS2s9gdi52A1zEXNEgEoejMk5Y8IgIkSwtm6MHU5vbwBHndI8WTWr66rgghjrck7OubvP9wTT2+ur7WbDpCzblmKMIPLBd9MUrLvaLKq6ztn1atYxQoxIQkVVrJZLCfGuXTSc6GGUH945a/WovA3Vul2sVxXhr6q/u3tYLZeConnSKQNK2cNvj79++vx2PDMGtffjPAUfiBAB4ceXvY2mbGUhqlENouXFshzn8ThMv/x6X1eF4Pj33305pvDzp8dTpy5X613bkOTrquKLup6bNQIvwxBihwRTOf786Y7dfvFhvZvNELXKvDAZ9iGM80zryqXw+vrmurFqy2+++2Keh8PLHkG2udh+89WXgJO//O1/jOPp+fDojW+qclPVAGUSPQ3eJ79ebS/MJRUlo1Relu8ubwQXh9NeO/f+3ZU1xa+/fkKUXH+4AQnsX4+QhN99++3N7ftfPv3y8nhfVr1Wo5kGBUDLREzADlNX9KhuI0Q2xl5rD72oq6ub2+vr61Gp4zgGkALAkMlOu5eHN5aTRKhsmu3uyqCEIAIYvL6dT/14e/MOENidu7/++tu7y0saE85gsrZsFjll3x2x4KvLXcKp7w8xRlHT/dvLT3/72ziO53GKnAFZZMo8wu1uY1L8/Pa8KIp+mnz0lJEcY6eGHCPOkVEWU7ImwAwRIZDSl/3BpkSKYnQhA3BxcwUiOO/PMGNC8NXVFYBpmE4+GIIyp1QBxDHbbTeQoKfT3im/bRaXFzun5oeH+w83t7c3N2+vBwbB9998h/7wh3Jd3d99/vnvP33zzTe75VLo6Y/ffb1uF7O32+vd//L9dwVG0Oh5M/CybFYrUpSXu8u//PRbf1ZenzKMwQWEMKUYAOhhBiHSkFKMBAIIUIhRFgxTYp23PvgcOEEMUUoIhjAowxDhnMecMSY5JW99Atk5DwKkHMeYvAshJQQwIbiSRVkV3nufMqJUUEESoFQQLqmUY38eDodSyhATozSVchxHCGGOOcPMKPM5BuciijEBTIiy9tz1IMHzNFgQRFNwQa3TMIGmrRGmjFMbvA0u4gRi6vuOcpZSDmq00VPKQohqVs5YzigvxGLRAgBHNSqnM4QAIe29jgFiHBBIFIxqdjFIKZLJGULGOIDQGrepKkbYNI42h24y/WwGZ02I1DqM0KHvj+O4XK0YJRFmWkhelbPz2SpCAM9hUxT1asUQQTZsqyaHRDCMySmltPGSEtJQQgiCKPqUMugnFWIYlB7GUdZVtVomhEgh+1nVCO2Pp9loVMoQ3Gy1CT7nTGLmBbPGAZhSjJRQibAQwsWQYOSSUc9FKsrgCGGsoB6F0zwoBctKtJtFwYiPCUIvS2gdQ9tNSOF8OK6kFACv68q7EGjkDEdAGBM372+JYPv+ZEA2EDqKqt2WlOzT8yPMwGldVPVmt2V1EaLDsuqOg2XIENw5TTJPszd2xBSXRRWM5ghdbS66c08BXbVrCMCPv/z09vRcUs4Rvf90hzEOIZ7H7ubmmkqYMHTKWaTa98V4HpDxt7sN4dcAYcwQBOD507OKM0qIYxq0tcOcAPLOdn33xVdfbKt26madhv3Y2xRMCMYGIjiDMfbd8Xw8CU4mZ/tz571DFAMCIUHGWadtCC5FnzMEMVCKMUYxR5/CbFUKGWMKMfbOckkFZzlna2OwHiFojGecQ4Rj8hGCgvOqKjDhLgQbXM4ZIJhyUqNGCPKqBBZY46TgnFOAAEBQW+dtiDFLUTRlKRiXvORCxAgooZAg09t5NhlAKcRmtW2XKx/iy+PTjPqhH6x3YRp88rOeIggQJu88Y6Ao+KKtCl4EFwtZUsrD+eCNc8FmGG3vEgCcCYAwZaiUBULIGMu5aMoaITD0gzIagJBCyDBabeuqYKQ+nc45J44Ql7Kul5hgkCKMIacQY4QUJpinaTyez876QnIpGEXYG01EbgrBpUCU+hzPPfBsQlDIgtWLkgmSh+RGjwC2PkxacymstzjgGHzBCkaZ9/60P5W1pIxQjCDE2gWttVbaGN22dVVVUKO5V9a5cB57MCIE66oQpcCceB8zhFVBEKTWe0iwmmc1qxg9ozRDgAj1PlnjMACCouD169ssJccY6tlkggFhCGHnfYKZOmqsRig3bQUiKLggFIWQtfMZQYAgRNA6ZaLx3kNAVosl4TiHaLwhFHvvQYwIwsk4ZjUXnDLECS84TzkrbRPILkaV0nE02qkpeia5KMrX1261bmECyafkIQwwOPf28jZ2arluRV1mH4MP4zRTSlMGJqHk0nG23TQCjFIMMbiUXAiWVeVyUc3703q1ShXtzsPr9BhShBA8PT6ZfnTjPA6zg/hit2XtCqL08jbkACASQi5cNK/7YwQAguyTc8F5pQsJEEiud964dtcCxKvNptfm1/3LB/7OAeR9qBvxzVfvjm+D11OeAWEEJnhz8/FDVf35l5+Pn+5EIcqUur6jjF1dbiUjskSBpDGBwUVfiP3xjL3npSwgSjkiSJqq3G4WyszJoA+X7z6s15+f70mcLtf1nMrj65AyxJUco8fJMZjepolWi/Vy3dTt/u0VZWdNl6B8fXs79vtTd1wu2gBTu1jUyyaFrK1O0NbbxbJe/Hb3S04ziGjTCB+Wn9/68a2fQ2zWVaB4yi6SJBrJOI02nJVKCGUIjTP9NPR6GrX1CJFqMSotMWg4XQlpY/Teqb7HEGUEM4UOZ8KZgcAOY91WPMVobYIoeOV9jNFzTj/cXmZEvLX7130wWp+7vi4h4xBl5XSeCWkXopQxJqCNOg9QGztoxok+TEHb7fX75cUSe/1+fR216d7exnHMMC82y8nqjKEo60JWyph+0O/f3TLKT6ej9n52at0uJLvuuvNB9cH4YZzHWW3e3S6vLmFdzNrI7lwSDAoZgqGCXBQ71c1DP7JL3NarBBIEyRv3+vnx6npXIbj/5eevP37x86ff/MvrF998AUP4+48/Dd253e1enl6xlEhwEd2a41SJ0ZjZBUpRJUqE0ThOVSGXyzWBCXOyvbqce9UPQ7Gou3ncH47dNLocMWPqNF9vm8v1DiLIJHchGO9i9NoDF4PxFsAcEqKMliWf5kgQ5lz4GLtpyhBYlLQxEaOaySnYqXMnNbpognOUY2vdP+0fZp7LqmBcCCYhgF4yD5Jz3vogCp4ZmbyGM5ztzAq02ixD8LMaAQBlVaSETDAIIkpJ8txbnyAYJwUAUN7qYDGAGCJMcNWW9J8PtJTOWCK4iN6HYHxwKUaTMCJ61jkDgpAoZMzR50QpgoJECCKAPmRt/azVFExvjEkpIGJhejmcZSGQ4HpSTKsEi7pehxDvnt/qgi84rRIhMX55c/nxu2+BgbZTIIZBzwijgvOmrL0bCSY5gkgCJMRnd/c0OucwoYOai7KKgIKc29WaUuSdOZ378zBFBAhFOQLjHKUQ5CyIEKKoZSaY2nEuCd+1VSvo8XwGHjDCTIjKeRdjiBrmSCk0MPuQmCf61Jl06F7O4zBlHlhZUS7eHs41oduCQWf98GqyO46KFu3owdPTeXt7WS2awTy8dRNiUu621+vL2ahff/1ZD+ddsyixWDSrDNFRqTHlKYFezcY7dTIwxxLQoNXlxRZC4K1rq4ohgHJoFgvExGK9WvbLeRpfX+7Xzebh4bEqq0wggHk8T+Y4Liqpp3E4n9ZNLTif+gPmjIkCUtrUNYEIXWJl7JgmUaKqKl9PJ22Ti94G//z2IjMZY+hBJJy8juPYjaNWJMZ4Oh36oVdGcyEoxfM8+97ViwUrOKPUaeODzTlwSinhVd2UUszjnGIMPs7BEEqsj+M8a6WNx2VdxBS1sjFkgjHGOKXEKallaYxiFBGEc4re+VlrxCDIGfzzcs4xEUogBEwIQohIcdKzPg/noXfRL+t2vdgVUlJMY0wmGWuMcW4YBqNUjlEUVVstFtU6huQbIykmgIQcIEazNphwhIia5xgTxkgwASHQWllnnQ+LplkuF/4QSMbTPFtnMSZqdLRERb2UmBKEmUQQIhC9NSHnHHPsBtOfz5QhIahwOMVYCO58dMAzjHMMGQLGMOHYW8h4TARo7/4J53DeM0owIclFBDOjmBGKUorWuuAEp+2y7U45hNwNvXScYFS15TAqGwLAwHsHIaacMUpRgmrWACSEoTUWAEgI89bqWXsfCUbTrI1zXHBEMCsES8kYF2KKIRJCMeUgguBizoBysllsCCUJ5H4YjrDLOZZFARGKyc1q8soISqtCGq20NdqbmKLSBlImi0pwIaXINnVDJ0tRiCr46JRT2ookIMbnYVTOxBypZBjwbF1yCaNovXGRM86cC8e+wxFxwlIK2jgGWAESzYQTihFR06iVgmBOOUxaxYS0TYOx3KfEs1fGarteLqqiBihzyEGK1lgPzDSgYlEGE2L01aL1zkKIhkm7cepVp6KnnIAUYwLKmM/DI7ra/mZtGJTWxpfQhSwXTXc8HY8dgOD58wMB6N27Kwfyr0/P2/WKYAggLopSqQmz0IpKlnzWfhiH/elt/9aVhSxthjQjEKwFh9eRkeL65tqa8Onnp08Pr2UtA8hJaeBjLdigzOnt7ZsvP3718X1bFYCjdcF2TbnvVeDEcLxsGmctQGh2IXnfze61n/f7PWCECG6dL2XJeYkpKRctI2R7eXV87r0N/durG/tt1RQcJF4sxPLp+Y0xGUHsJiMp+vH56dfH1w/vbrbrdT/O43N3fNvbAHQI49yn4D9ev5OCz3MHki+q9uOHL0xQ524+Hs8xxcuLy2W15G2zvVCIffpvf/1NpURLcjqP/3h99cmvl8uiqiJ13dPpl093/dgpo1/2b7BgRV2dzwNXs/GOygKU5d8/3wOEx+44DuPy+rpZLA7zrJ2reCnL+tg/z7MqF9Vis9ofu5fT0TqfUlzXK61sCDN0AfsQRiMy2S42vK1fzt2pmypEZRXH2VhjCQTLQry7vr7dXj8/3bsQrj5+ZEV9PLwZ3W+K+t3uZu6GfuyMdrAbccHGSZ06fe4677y+uujP/Wax+NMfv++OHU75/tdfKaLDMFZ1tVosjDIQwOOx31xv2kXdNs2L9yhBWUilU4zx6up21axeHh4pQdmZ4F02/osPt96E4/EEcXY6GfuPx/v7bhzWdYVAGk4nq+3r2+HojHGBMeKs35Xl1eVOu9j1OhEsltVitbJG69Pp42J9c7ltNu1yuxk7/enXO4dSb+bPjD++PvezrkW73NRff/j4zYcv5mGc1FwsS0KpcfrT3aP2NhhtYWCcc17ADCiM1rgcHQDJW4cZDjlY60AImducs5p0SqmqCwQyY4wx7mLMOELCACab3cVuu4kufn68fz3ujTHOeowRE9xnMGvnc4Y5a2fUrLV3QgiQiZqnhEDbtpUUWVTzNPscefRKaUY5pdRZ56MvJSWUIEgiApM3p/0hgQAxRAmmnH3OMCZKMGNUTwowQhCgCHNKck4ZAMzZ1I1+mHxZMEHO8xw5SQCfjtOsLQRAaFGVRYRIGZcRQzZ0XXd8O9xcXpZXm5gAzRS55E5DXTY+p7f93qBICAteEcgKWXJOMsramWnsCyFABno0AEHChUqpezs4Y9br9v27a6v18dTFTBBDPmUXkjMBRlTXhUA02VRKiSFdLcSqbWpOQPCEM4RhSLHrx88vzx4ENdtS8NWyqCQvCO8H/fN0X5UcZ4AYNT6AADozd2r2iGyUrCE6Ht4gTjBQxCD04PTWOQD+w/W7UhZ991sm5qYqp3FWRqEEgIObZptd0JOeZrXfn6Ycz/M8pYAogilnH5v1OjLqtD3t+1UhMArLtrlYb1/2e8pBVbQbvXt6eBq1SfnMqgoKMWp1OpyqelkTquepZAyAPPXj9osFF/R0Pq3Wm/VmfT6dD+ehLKpqs14u24IA7ebuNDsPA0aIyYeHlzwGHbwl7OgdJ1zlcfaWABAzzJyRGCiDOELkGPUp55RADKOavTZNXW12W2usswHnmINHIGEI1TzFGIdxTAm6FENwWOPCG8Y5AIgJXnKGIDDaEIgoJzESaxxIAFOec4whhAyl4FJInHMMfjYKA0gZiwRBhiCEenT9MKQUJS3aes1pVRUlgmjsh3EYtdaEEue01ZpzWVdLrwFuecGwKxsKY/ZpNjMQ2BtrvWeEEMoQJQDhcZ4opIUoCEbGzLYQspRCs1Nvhn7gjAnORCnXzXKzXArKcgwRMkKJD3HS2scACQQQKBdkplUptAnG6JwSAIhQ7K2OMWJMvCcUI++9CU5r62POGUzT6JyXhUgREEIqKSEAalQxhESyizER6BNgVQMhNDF4NcGYnff9MCcMnHPexrZdCV5BiAlFMOfgIyUMIpQgyhkOoxonzQVnZYkg0Eaf36Zm0UAEtTZa20wRY9z4mGaVjJNCMEKjjz5ZAiEnpC0kw5gQBiEyRluXIZXNVtZ1CUBeLTfK+v35bIJVMSmlRPCVKEpvs01a6RVauwSsst5YTjhlAgOQYrLWJQYIRiiSqq1flbLe6iEmCotSopQZopww733KgXACMZq09eNEIZUAIwQII21VUUy9s7Myw6Qmq6Y5xaoGIVNCIIIox6YqGYIgJKVNSAFENxxdDsB4H0FXVXWFRU4RoMQqOel0HEYzaMJYrspgw+k88QhYzr/8/NuEfLvbVKQYXUzORe8SZ1yWYtE6a6dhcEbVhbi8unBGHQ9vk9br7S5DNln3cOxP06wwiohUgM2j05MGIWGQKDxcr7e3Fxcvd6+vr/tKNRBFAJINDmIMBYaBJAgpQ333dj4fk/G/u7qg6S2cZr5uKSQx488vh5uLhRT8+edff3l8e+mncrmqq2Ia1LgfcYCUYLHd31xdZMRHrX/46YfHX8LN5W5X1C/nsR/HZEwwyikLBTpOU3CmKkrb64Bx0W49YSERY0CE4E9/+v58eBkOb2VOu6IY/bi/v0OXl9vbrxBivz0+vL7u27LYvbtuitr4CF3SY4+yK6qCSQkYHqZJKRVshJeIMzx7dRwPAcwxJwucS9QF+Ho4zco5PdvLDSAwx/Dp7rUWGEHy6e5h7+2hG4feVJUGyTIA7+/vGXmHZTE6p7wnFNdFsdvtKET96dw/v0iM1uvterXd3XwwKUDEiJCHvg8IoAQoBKUsVm25qZtyK3iydw+P0+GIxahdb5T96Ye/C0qW71arj+t5to+Pb6uLDRmn16eDMeHiclO1clLnpM/v1pf1etWdjqdhkIvy44e1oCWKWBW8LMtlxe9/+0nNGkECIKoWzej04fUQA6CsIRAQxoK33csrL3k2hiEaBZ5NPJ7O220BIRmNK+o6hdh3xwwhluXB2aPRxpoqizzZRsjb9++sTXrnzvN8Nnrbtuxi+xZATfntat3UjT6pD3VTXV+MxhxGDOqmAQAxCTF3av7dx/dXq3UoinnsORftapFAXhLUjcMjg3fnbpjdoMZdu3h/824+D0ZpKXC1XRYF78/jPCtZ1Kv12sNwfDlprTGGNrjD/gVzTqVUIHbWG0w2hIl2jRIo5snu32IGCMDogvdp1LMbfdXUMCG1PwtGy0W7Wi+7QxdixJgBhDkRjKFalj5YpWYJISEEU24R0zHYEGIM3ivZFvp8RgimCJIL86wAI0JwQWUtK1SIk3Mphmx1DAGlkGNW86hnxSCmhJyVJolmISMC/Thp4yJIIQTjAxFCyjKlPMzKamVm09SrnIix6WrZNoROXX/306eiKBCCHjqb08PDuZscbepmVQZvZmuyj0ZpolS7aqMkKCJCyWytmed5HIwznPAU/DApnaKJSTRNggAiijFBAebZvX93XRbCTGa3WjJKzTSejyctxHq7BolNygPEQoKjN4ObWVtvFhuS4DCfX85d2zQfbt/hBrnz+e7p6BFMhYiQ7AfFqmJbNozDwTjlZknLi0WtjY3n7qYuTpt6VAGr3o4DgOGi5gGuW0JZwYe3l+vbdz8b/el47JyBgiKSQYiYoJurGxDc4/3n8zAk47fbjYmoKvjlqoY0m+gxpJCJ8zy3u5sKcDXrwUWL8H6am3fXUWtWVxyj89Dn31JKsF0tnTPn417PKlhjUwTJ5wzaUhrd5+RKWc0xv3TdopQeZliy/duhexq//+4Pq/fb/V/fSIqZS0YJYYxLKcdx1t4Bkl2wyaZgbQxBFtv1cjVPs2WWEQ4gwBgEn2PILjrjXIzApRBjEJi54Kw1BHNS4RBDTsHMBgCQhgByJphQliGIKSVMUAAJwIwhBDmbWRkMCcHYUSoY0HDozs7bEIIsiqKoORfW2q4PdVFJKWAHEYYZJowxAJkxwpho2gVntGQ0t01VsqauXk77t3NntY0xJkwIxTlCb0MUiTKyXi9yAkob550b/KxmF33OiRJyeXHZlm3BZCFkdH42WhvDOHEhWhe55CmnyZiYYtEsCRPT1M/KcM4wBt554zwDGQOfIrU2WOtciDb4kDNCGACAEKKEAgC5EJiQeRhjCO1iYZx21ngdAMcJwmmYY/IUZ2e00XbWmjLJhCiKsq7qxaLNIYEYGCGRhf48zUbJUjZN41NKMP9TpkgEozlqYzMAOWeIsShlWdeIEOBTzhEgyAQXjI3DNE+Tta5uygwypZQyYbU12kIAt+sLSglGkHG2udyOo6KifNi/nKcJABRy0kbF4JLPTrt4gMvlkhJGBYwhn+dJCFHVJamlsrMxxiiDSSYYZ0xSSgACZyzKULZFzmCedAiprEldFcM0TdOEAPZEFIJhgmVVMkwjQoO3OpiQA6EQEyIE211f0Ay0tpzSdrWqBJsG1Q+DtsZZi4VEDM3zHPoARVUK3jRVsgpbxQQ1s4OYzEpdbC4hBCZ4QikSHGXw+rb/NJjFalXWRUxeihoR8nI6CsloU07nrj9OFmaGeWf0uR+G6JfezdZamLAsFguWM4gSD+deT3Mty8urnVPnh18/LZZlwdExe2fM1dUu5fTr3Wci2O3HD6ofD/3w28N9mufT2xsv2u3N9XblDsPZxLRZLBbLZjz0hLOrd1dPbz0/Dsx5zlkM0Zg56NAUNWPi090DgGnTtrvt6tMPP57stF5vlusVn+Pbw6/K+aaqmrpktRzGrutsyGGM5qzU4EwkqFosKIAE54UQ77/7w3m1qRhxznTD1E/W77te/ZwIeB1OHkGdwH//yw91UW0urgarnw5n7WwiJE2T84wyvKBVsK4bTpWQTFJasARyvVwYBj697UcVGMVNUdS7Bed4GnsGwLsPv/vuq/dPD49vf/mLdbqUIhhPEbjaXVYUI2DrQuxfn+8entcXu6++/KrgnGagnbU52AQpZ4vV+vr2FuY8nHqCyWLdJDUZ7xCAsqpYVQIm7t/22dlK8uVmc9if7Hm+vN0uv1j99Od//Nf/+z//b//7/5oEeelP+/G0706yEAily93Fv/zHP1SteHt82j89HO+eLja7lKKQxXZ3eX17iSJ+un+Vpfziq1si2G/3+reffwUQf/zyC0yQGS0m1Fr7809/74/n7aL5+usvU2SH04lQglO0k7Ex765uLq6umrLJ0UuOSyn8jEMIL4djqKRRlnH+/e/+AAb18Pnen0ZtgguWpVSgdH59dCFm7QAjh7unQ7gbhr6t5OZiKQGWwb5rm01Tvf/qax/z69NLyzDy6uP1DufV8+MzcaZZLcWXHx8fnxgiKdG9UVDK95fri0Xr23Vy4eO7y91qYcbh+HKMKVftYn19gQR7fng57g8Bp+fTy4+ffu3PJ6xF5AiQOEz93cNdjJ5j8nJ4Q5RKLkOyIKN/WjtcCgBDZ+dZaUm5IJQC5K1FhBLKrQkaaSRFiglkYI1llHLGEkCirRqG7+8etJ5DSqQg3qVVXQebMwSllAFDzgspSk5ZNKGtmpT+ya+NjJAQotEWYewzhIzXQurgU4ouxxgSJBhmIBhHEBFGEsgA5gwzpuji8mK7XCbn5lkd+0Fu1qQsnp9eVAzVorAonAc1KKUsoLOWLccYKR9i8BHllJK2DkIspTiPUwSRc1qzZYpeB5djSAg6HxIhs1U55bap2roy/VwVheQC+HSx2cCU1aSCT6KsT8P5v/+PH3bbG8I5dXyYLZcMgAwwcjGN4zwOfXKBePd4eMOEDNM0eRsAqJdtSnH2zkSxvLhiHL98/vnhcFhurm6+eOe8pxgVXFxttvA8AEwziAQTzmWzKcNoIci//+5bgAHFuSrYkBktBEMIWldVhTOqoOLm5t3d4/3+eJxmPU/z7bYtCazbqrNh/3o6n6YIUoCYl+Xnx+fzOBWVLOraRwAIRlL4EO4fn9gb/uKrj4t2cTwdX94OVVVtdxun9NPz8/FwLstiUrPzMSfTuThM+vpi9+72w8+Pd9ZF5fz9y8u7bTFZTXzwFStgTjEBWZZIyDmF89TraaKElELKupR1PWtLCJdCZphCBMZYCHFVyZY3TPBhVEAbZ1JdFrIs1DARAjCK2rjgAmUUZmh1zBnwSgYAtLYAZimZMdYrTQnmhOCiSCD286S6vqwkZWQYewDSct1W5SIDGLz1VqsZQABXy3a72x66Q0oRqgkhiAmEKLdNjRA4nI8JWoASpLhp2re3c7IRYYByBil5Y+vrnCOkAAAl2UlEQVSqLoSwxr68vFBMU8o+5cGMr/sDooAwzCWnlFPGY0qTVtM4aa1CSqYzzsWmbuq25ZxwwYZ+yiBPWqngM8MGJO9sjAlSmKD1s4cKUgwhgJRyCGACSBZFU7fW2KoqMUAxp2Ga1TzLUmKGU4CEkhBDStGFOI1jgoFi4J3x3kGUOCOrxbIQVVVVnFNI8vk0T8MIcrbeW+cgRXAapGAZVdM4++DLWCIEEYbGmpgjJqjgolm0KcWxH6uqgDnHGI9914+js66AFYlFSkkpnbImFANCCcBSLAnBGSbK6aRdTJHkXGF6US21ryACnCCEU8rAFR7EnHzIGIcYXYhnpYrokkDOmLkfMkgYApjgsqwhJkzwnFP2CQPoR9tPOqVIGQEgIxAphBhACEHGOcDQaw3OqRAlFyIAn4CLQWFIQzDFuqWS+dmGnJNgc45qHKZuBCm54CFFTGIUkXBoHnod/fXug2yqNINOjZQXFZfdeQQhUJoQRrOz3XwmrOClPD6N3TiKpoxjgiBRzpSeUgzCi5wBorgfren6pqxmH+YEpnE2MG1264t2O85zP3bTNA79a3QBe7RdN1IgmMjw9iLS4qatUcw5068/3AaMHl5fz90oz33f98fXF5+uv7t9z0avTDyNGotie3Wlnb2+2i5rIRHABEux/PbbP50C4v0BEjKNk/UjQfjmertaL/v+ME3dx916dXPj92Om2RXlwaWHaXpV83Kxvrq4rApeN6Wr2zqm0aoRxdmOf/nlr0aN18v1Usqgp8+//OM//cv/dLn78NPPf384vCLC5OUXndPP/ZkJdDgeVst1RviXp70PL+9C1CCfY4yCnroDGo+rdnGzWVCCjqfeGJsp3d1cUEy68wnKEmNBAakYfv/xi4Wo1dwTmvtpTtF6350HcRw6StCurelWSMSrQgoECgovNpfd+ezsvCgktqA/dC9O71/3IKfF5mJ5+2VM7n4en//63z9cXECYKQzZurEfE8EYUcK9nmaijVfGDNP3v/u6+fChp9RN4+LmaldvsEZuPJIQtU7D29krBTGglG4Wi0o2F40kGOWisIx/frkPKP/xj9/vMD8P3efnffYJwhxRfjuf3r9///H9R6ejhdnF+PnTg/d+u6uRi93b2+H5JQ4NQyijdOzP33z/xwXhj//2F+Xi7ralArk4X+5WTg2vzw8Uo8vrd2yxzbUk90/zcF5LwQGxklGYyqp423szzcvL5Unb3379TAm+KOVooO66oPSSAWj4/nQMEH5x/YXOQJ/PTMrrTevU5KauuF6qTr1+vouM/K7+vl0ujvvzt9/svv8P/+nXx/vPd0/fXV1ertdBpzDr77/9etsuTo/3bwH5lJfb9ebiIkDQTHaEiBYsfLi9reo///hj5qwPGhrT6SmYouvfhvNkvBdVCSGMMUGMOeclIwUPlIGpG5O1jHIOYNJ26sdIGUqZMQIRGsah6wYYY4yRUeZtLpuKUJIZ8t5bp1OMwyE2zQIGb5XGhNRNE1JMCSYdlIkI5HaxJAhrpWKKlBNnfcg5gTTPmlESCOBcPL+8BZjKpsgABBUFZ7urbXD+eDhLRhkjFFJKM2UJURwDGtx83+UU4tHNaJiJ6jLM5352ATBWIpQkI4gwkLIxJsZIGaGYzKOKKc1GQYoJJxCB6NBbfwYgkoLsthejsvvjPlj37vpqtazOwWcMhnlmGHPgT6dxmqfVut2sdwaDx+cnVEtK6TifpnGkktdVkaJ7enp0xgals08wQAwgTpSvxLhX0TmQA6Vk6KeXjHc2BRv++nh4enu7Yuj25nqzXbrZ7z8djsPQa2ujCjBFmBGxmzWQApe1/PqPf9B6/oPr6+4cf/ylV7Yoq6JqBcHd6VRd3BbFctmYT68/6nluJD/DPAFkbNp8+JDv96fzmEl8fXsmCL/uX2IGy0VZNRJifNgP46hgjs+ve4qwXG2wbA1kJzUEHqG2ZjKnyX5+PV2/Ky5vv/Wnw9Pp8Hg6c8nqgrVNtZ5Wvz4dQIQvx7dBhaKVxDrnXGQUQ4Cm2dBCcMHzkFPONgYBMhN80mohyuB8dLGoC6VUyrFuSspZyrkpywwQwcxSIjkjAHBOpCwYoTannBCEkDJWVg1jzOfQn3tj56IsvPNWzRBAyUrKOK0qn6I2zpEwTXPOERFAEG0Xi2W78i5Y431wGMGYg9YGEwwBQAQTTqu2DMHG5KdpUNM8jX27LKpaxOgZYWVReh/LShCGplGxim03u4LJse9NAm3TIkK0UkqpED0CkGGoRqUXuihKgpDRdrYWEkwRNt4hjojgzlkIYtPWnLPj8ai0ARDQkjnnzt2Qc5KFRCgbZSghWMqqKDjhTnmMSdu0CSGlNEAQYwwhsMYCin2KwzQDBDChKaoQEgC5rCQhCObsEAU8YUybelE1TYoAxhittcZ6Y1NKIfiyrlabtVKT9YZyjgKEIDkfsMGM0RD9OI0EIymLoihhynqaBWOMMK2mcZyMcwEkyEhE0OcMIUgwaeM55HVRCUpDDBmkmOJslLXaGuO9E1JKWUFMOaOlpJiC2eqp1wRSgrGxZsoqZ084r5oyuDCeB29tXRbrdZtDJJhTzhMAOeTEQjA+xIgRKmspCwZj9tYxChdNNc3aeutixjCbveFyLuuqmweAUgYx+GT0HIOdhgElgBGMKXTjcHo7pJA4Y9MwYoHXFc8gE4QqIcqCwxjtNKm5kwwBgDszwhRAhmN3kuuFS25UpuRMFHW9XiSItNXGuZizBYkiNPYTOI9NW1NGACej85C42WkHYk6JQSAKCTF6O70M49k5oyYVXChZkVAAMArBOEXbzWJ9sWs3KgKCKVDOL5btMKu//+3vLjjG2BySh6jZbEM3HMdeNPX11WVOMSqlTn7RLlw/vjw8zsHGEL3xkcFJu5TxZnuxu74AKJWphNY83X26XW7//X/84+ziWetfDs//eHr0mARMumGcx3O/T9uq/XK5u3t7LHklq+LQH/p+bKvy3fXVFPSx7+6eXyllPz48Ppz2vKg+tBuNwc8Pj5UkMSjvw4d3X25vrh/fXh/O+8m4yACXBZ2VYGRXV19/fL9/e1YYrNbLy8uLRdO+3D91Q8e5XG+3xYcv+lO3khxaR0PCOTeU1U21f3n47fM/FqvrdtEeT0ej+6t3NxUnKLh/+d3X2/Xi3/76Y6/9Nx82xrjD8dDrYVbKWB8YX15etnUznePrL58kgk0hp2FIwReFiBAJxhkC/dB389iuW53s6zikqpi9swl0s4H+1LTVu4vWWadjDNo1bVOsSskZcogzyikZz6ccXFXIxWa1uN4tb2/64+k499N5JohyRgkE86HjdbNc1V9+/TEAPE7jv/31hxDT1fWGEcAL/fHLL0CId/f3mYHlboO5YGUhiuK3z499d9hu2svd7rpd4hSds6vddnt183W9wAX/f/J/vv9pnl9fACS3FxcX7z5Uzaaf9a+ffv3x8V6AdLVZaKXfnl+0KEqK17v1v/7Hfz2+Pe8Pf2Nla5XPCL4+PhRt9f2//un0kl9fjn//8cegwmTm6AnFBLi4WIj1dnl5dbOUeJHidlGsGzkDOyj3y9//OlTtrhKrgnfTNA8nzvJ57H762y8wxH//7/91fX0VlF6Vi5uvv/p///bnP//tLy3GxhlgGA2hP/d+0mXBGYMmB+sMwMAaPU9eMLSp1x+ubtuiTgAiCE/aQJA4x4QSY0ECMMHsvfcubVYLmPNpfxKtlJLHwKxSkrCr1apt2o5xZR1CpCDU2+C8DzlTwQERmGCSU/YuQ4g4jcqEFOumShn0syoETzljglNMKSYCYFGIUhZnfZqnMQkGUUEhGtUYgl1UFWQoAnSaJqWVcg645L3jUkSCQ0qMQCkJRiB6xxkWvEkAphBjiv/ckheFtN5BC4UQNrrZeEbxqmpzzjAnhjHAUBsdclMs5LAfMWFAkOfXl9n4WZukaeQES0kLqby14+CSWyybhIF1GqKkZ63/GQqEsxoXF0tAkNLzoJV1JoK0a1eIotfj+ae7O5v806k/O1+ELGbjzcGdp/Pb2/bqori4+rcff/z09OhjXO8uunlqK8EZG43lHF7tVpCi4dT/+NtjnOzq/ZZCRDCcbc9hWdf1areRkjdtY6YZAIYJKTihGFNGVAqfHx4IoRFDH1xGOeUcUO6U6o+nDFNTllXVdMZ2v/zcLFtaVW99f//2UjBOCCQlx3XVXN+eYVLHvXIWwejVPJwOglFOMMkggXx1+0FyRlKG5/NQSZkScLOrMfQxWG2c11wKxkhVVdFGjJFP3nmrDhZjslyuQc7KKB89AJACzKoqVyJ4463jjFFMokveBkQwBCClCHDMMATvfHAIIwiB0SbnLBiVQkghIELGuMvLq2Pfvbw+a2vaRb1oVpJJDGFGiAgBoNB6noZhHgaMiXUGEmSNpYRgxmPyYzc6ZznFDNG2WNblan84bTe7UtYx+KKmtagxJovFMvkMQyaE3N7cOOcRPPkUrHUxB84JzjDnNI59cJFRniFgQkjBGZcpQwyp1fPQnYZxIAzHGGMKmODko7c+p2iM9s4JKQhhgou6bqqi9KOrZME4RTnlkDghGWQmRQihKApGiVbzNA1Nu8CcOBdSTqzgTdvAnCHIuF0CABGikkuMoVHGG2tynieFMSoqiUAly0pISQg+DyGDVJaSMeKcD9E5MyOYMcw5BgyhmWYgBEeEEoYSqIoKAsTDP4tGSihx1jjtylpIgUEGEMaU4KQNkwRmYL1Teh6nGVMKGK5YVYqiLmkhSMoh2kQb0VSrnNM4DBzLSWsqaVlJM+tUeto0tSw5JbKkq/UaAHg696hAlJN50MbaZtXCDDAFRutxHDAmBBPOqHImRJ9Rss5lga0ae6sDwLJpso8AQqMN9qAQDENyfHrmpYAcTdYezzrFwCDh2qKcKASLZSMQeX59gRSPxkBGRSELSizEGabkwzgomEK7aqtlixHebpYgxdPx5EOCkKQpV2WFKP+njHc49UUhCEWD1hFlXDIIYEboOPTTPJzOp5ygFBXFwijX1NVk9GQsE5QVkpeVUl5NjgrSj6fTNCyXVXBrmIILsawKyfnL23GzWNXrZZxP0RmEkDVqOBxQ9vp0KqQ8n84WwXEcXl5eJkR8BhWXtFgchkGNnYQQOTuOc5lgbNypVybnaeoxANq7h6d7QWDF6UqIj+vt+82KZvftbVWum8/7p/MwgoxOpzOOiIrqOJ6maZiSQpI8H14tyJmAp5eHRVVsl4tKlO8udpebHcL5aXgZhqNNWRZt0y6Wbb1qWjso302XTVNXLbKhv3tx3SQhDWoirm4LWbcVBqlcVuJ6E32iCZWFeHj+pMwEQ2BCRuPGc6/bRcsEiODwfCAWVrz+/tt3rK4/ff4tBFWWOO0Wh7ejd0odX7KVw/mcQdTeIgNiCjCD293F7vLaTFN3OugwIGfn0ym70L29MJQxiLIgw3mYw8BD2pSiKFimDBCCEHQAT+eZRHwezDAMl5vV2Gk9+5v377dfvjv0Lz/8+S8JoUwpq8qnx6MQ9Ord7jj1h+7JjaqQKyGKjx8vtbEEA4zpYrPerjbe+Hx3xwp0+eHqdf90/GmgGV+09fHlTfkBV5tyUyWIVy1+9+4qQmRCdMfz7y42FyzPQ5+sXax2u92lrBpCerUUOK3G4Bypx1mZwRRFXRX1+5vbYTJCtt988Yffnl/fXo9FVV2trngl/Gzqsu3owgRYLhZfLC8hgHa2OWk36YP6fPp837aLP31433XH8fnobUQ+HV7fgpzpdk0IW65vHCaDnl3AX375e6/H47HzOd/urraLi6Jq2cfvFgk8718DIxqG13BsVxvACEApwzwFcNLKOh+MiV6vLi++vv3w8eJ6WbfGesnp3z59fu7O1syMMx8TRKSqFpHHHCKh1IdYVWXwgRPqKUWyaOt6t15hTIMoi6LklaQQjN24359zTojKSPJx7KdhzAhUVQkhmJX2KWScc8jBBeMcLThEMIaIEKgaKTm1s8ohUYzHYUop1XWVMjSTDhlKwoRAzlhrQ1m3EIJBTYCxQooYvJ/dbMLhdPA+VHVVVGWGKMSoJmOcx4z3szLawHHmnFGOcUaCMoip92keFSWUCc7LKkGYEaUFzwzsz+cUY9FWBZH9OPbjyDmljHTzbI1nnPG6sc7O0xxiwhD7CEzMZVVb53+6fyKEpJA4F4iXozLJnyqOV5taNjyqSDgvJT/r4E7nc4TcxN12+8fv/9jF9I+nRwNIIqhcLVeFfP78eVxe/Pnvf6tw5ARvaPPV7j2FjQ1wuW4qgaN25/54PD0DgHdXV5vLKwTj8PqIQypq8fhwH6PeXLa/PurZuKLAq+3VPPX9NN0/Pl1sdjADkCIi6Ob66v3727Eff/v5F+dc07bTPI/9sPnyIyPAhwqS+DI8n9TZJueT7/vxeJYFIZCVJMZaUL4s1+uL49uBEERSBM5HBCHl1PugptEapaYRpVjuLispXPJuttlHAIg1BjMElYUQuOAFJ8YFnyJFEIIEM6KEwQSmYbbaeR8o41UtgnfdQRFKiKQQ5+jTPCkMAOeCSwEgIozlDBhDvC5Czs65Wc1lUS9XK0ZENI4g3C7rFBHK2LpTigGgTCkzXuUcGaWCSwooI7QSBSWAMgRiSgimjCGii42Y+4Ex2tQ8+kgghgQBWRHKKOXeBs7Ioq4pwQEkWYgcAgTZaeesRwUhmBJMQUYAQGdcSh6ClCDS1mGfMcVlwTNI1nmCIEfYxpgABAkWdSm55EzCRNarMoeolRn1lGEmjGKM7ZxiygQTyaW3NiQXc9S99iGWteSCQwAQQjnmQhYQIJARRSSFkEMmEMUQCcKSCwzQPyGu1uhp6jGEmJCQAIKIUBK8jT4wTqHgOWZKcHAxE8AoQxkRhL33MEJJBEBYSp5Ays5HBIMLjOIEotXWA4QZMt7E4K0JxtqYgRSiakqYgNE6W2UpsM7MwTJZ7t8OAGDJcds0QkrnbdSeQNiUheBcCoEAbOuCIqK0ySFlgHIABGNGOZVMDeMwqRg8Y8h7P88GwoxQTjDNapq1UtFCQqyzhLKyEN54lCBMGAKgJ6VCRBi4ZG2Os0s+ZQwih9QYRxGsixICOCsbQv5niWtNitkQTEoptPMgIWd9wTjKNJqMsLfWOxWCTxAjlCGCKIEcARhHY521Wk1zX9QlgTTFRDApCulSOHZdd+6csXXdclEIkasGYAycCZOzRcF6n/lZ++nYdQOAiBYC5qTsKBD55uOXlLEUfafn06RCxmVZAkCC009vD964VVO27QJBPFtjg/MUpxhASt4psWhQjv1xf9pbSbFLaMXlstmSRLqX82QVlpImuKoKhsHJKBecAxhz7kN8fXkZuq5ewOZye7HayoIfX46n+6ePt7dXl6uM8mAVLUvgPUBwtHMpSiKQswbZfHW7XpYFJtSHa2XHczrilK12TbsSSCCPows1KbNJVs+E4LIoPnz7XYzx+fXR9P38dsAZVFXVrHaiauykcQA40y/ef9uaxWACYvL9+3dzs6SM7/dnCkDW3vRxdbFaFcK6uSLwct0SyWxwFWXeZk4ZcCD7oL379PiwXqy4KK+KBlOSu0mfOujTZbuhiLgQWMEKisw8TNYAgDhG2WXqgXflN+uPLoaESD9NXs04o8v1xo7z69sRJpRsQIjDxMb9bLIOCEzGHE/7euuO3RmFBCWVBB0fH6BJtx/p1XVVleU8Ta9PL6vNtqjq8zB5Gy6vrtfrepiG6dilBIUQVSGNLC/W64qL/nxGNBXVWs/69PZmtJa8EJJt2uVKlgCAaQq//PYrYlTklKwqGcIARIyatgl1UxeroMJ07E7jxBlPkO8WV5RITkVE3s3zy889BFASurzYbdZXhEiI09vj4+FwrIoWkHw67c+9poiClGLOCNLbm3dX63fj+QwAIBAxDHkloM/f/u4P28Xyz//lv5wPp0q2GcH7h9/g01OCfsXkxTe/a2+vXo77R/aQIMMFm62ZlLo/dsoEkPPVdldQ+tWHLz9sdxd1XQrRT/MwjDWmHUIhBT3pyYSyalHRtst1IVgwkzEKhKiUctalkOuqWa1W3sUEQbtoyqogFetPQ8pdAt654MccUTTKaKuYoBFlNUyjnnJOjFNE2WgGF3xZlpTRDBBCWFBulRn7WUhBKIYOWR/ypLkQXBYeYK/tOBuKcVFVRVXp2UDAEGKCS2Wj8xHkbEOGCI5qGmeFMUMMq9k650WJQgwhBxgz8gBTyRlFjPTDaJR1PhBKCIA5g5TgPJmUwahMSJFxMkxzDAlzGmL0IJIAXXDOBmTi8ewASin6qiAhx5BAtDEB64P3c+CUEQRdTNGFYLQmjKyXtClgQaPOWJDgzdvrffB2K9sv1+8uP3yAnB73r1Cim483goM//f7raeg//WTO8xmjZABd1OXHdyvfYBD5ZG1dNZyiYe44YE/7e6V1cAahRBkKyXDAZm1tTIjiaBIhhFZFJcvtYq0qeffpbsAaxQMGoK6XjJKcobGOUCKkOPfDOEwEo+1qdX1zPQ/dm9/7vptAnLXGmDBBjEnKJpcgcBYEn53Fgd7/9LOoWgIJaMsSITSOM8NUzaOe5rKUECfOWfDutD9SzCmRCKMQAgSkH3TXz0LSdlFQgo0LMWc1zxCkqi4IQmpUs7IxRsYpZURp46wlhFCOY/A++FnpGEJb1f+crY2zoYQhjGdtSCScsvVyKblAmCHEpn6GKQlOgvcE8VJyANpZqdlp7ebzeDZOl7IglOWcilJKxrUyx33/6t5EWwPGckZWubKSoiwKUUz9hAkvZclNnEZ999tL9LqoeFvWVV0iJoqi0EPnnLfOQ4icC6KRBKOgnZ71OA4hA0yILISQFIEIEQTZD6Ptp7mQnHPWwIU1XlJeSUEJyTkDCELM2QMACaHMhaC0T9mmlCGBVVVgTAopvMdGW2UMosSagBAtK4EhijlNg8kJSSkYQQgyynIILvgAIAoxp5gQSdM4TZMOMQQXEEuZYIgwBCBGmAASoqhr4kPSykGEIsgJ4ODT0I9KKx8857RdVMFCiIBgJEWSUlZKW+dTzozRSoicgveeUFLz0iVMMDezK6uykAVKUetxGGabQ54dowVhHBMqIKUIRwCNcQAgjFlwwMKEAYQNOp/GYdI+x6LkXnvrjFHOd31KLkYoOBeCaaVATj55LjkldDSzTckqjQjJIWOCUc4EI0wYJhxgnAOIACqtOUC0khQG12sYkmgwZTTFoHzQPicbS1kWpcxGG+18hAiRohHAh5gSQAAzYrR9fT4UHFVVGXKKCCllKMHruqSCepAABdobSHOIabSqKkvKCCXEJOdtFIwzWSLMICERI4RyCI7G3DRSW5VgS2X5+WGvTp11drXbVdVSEmheHud5WpaiKKmLgGQWjDsPXYZ5s1mkmM/nZ8LQ8uri6mqLCR3G8fXt1VmDGWwWpR51W9Uw2nnuIICcyJQh42Kzu1gUFUVYqO7z40OKjuV4vVu0eP30coreA06Vi+M0nU5DeO5/ethXV6vlrnIhvb4c2rJetIVPIQLAMC0IX9a0Wrar3eW6aH7581/0fjDL7i7/VLWL7FyR5bv15eTNyaYC04rSglIByKidmrXzSgheFCWTTNKSM3HuXg3SataD8tXsUIEn4/qHp5jCl9/9jst6GJ5xSDftclEtPj8+nV677WIhCOyVymc8j70yYya0LcT+3NsY63IRZeJE5JjReqO03Z+fKRt2ZVk3tRBs6kcYc10u9qeBQtGuiu3FjiP3enidtbc+D8qWRbnabigXj4cDocgnb4wOCJclX+/avFicXvfnbpi77v3tBUZJ27HXClDanTsLvRr2x/4QetWsJSJkMn5VLjSFb6oL1kRAxmliXI8qzON0sV3Ith2VmbQllKIIqSzqZdufu/XFGmRwPPWrbWND+re//hRnzTGaqCaFXG6vtpdXn3/95R8/fSJNs73airIgojTKQ8ba1YIulsGnqPzr8Wka7bpdUVlGkKm1wQdZoRRg8Onp8cXM+otvv8IQIRClJN3p6KZZj2qxXJdNbWL6yw8/pgS++uZDXRUoQZe85KxaLdM82hgef/5p0OqbP3yHiP/Hj3//6ZdfvvzwVd2u7p/vjHdjN0GUE8JX283F7n3fjZVHXJJvfven58P5h7/+7apo9TQflfmw3Ly/vPr6u68aJg6fnw6fftve3NxeXUyqxxKe+/E8jA4ggYqcMqaAUkShDM70/SRKCSAEMAOAvU8pJYwxwTiF9Hj/opTFiGBKvbbzqbfRQwwDTMn52A/WWQcSgQhRTAWVZRm8H+cZGcIYJZB4p733GQBICSSEUJJyyjlgAjIGIWWIsJnHpip89K8vT9oGiDCk0BpDKUEMOxMTZAB6ACLEiAlibbAhQoIyBBDDAJIQjFCCKc4E9tOMU6KUUIyNttrYYZzcxpVl5WavdYAIRBtjykqrMEWAYVGXnFIH0+Q0CBAAiAllBANCQgiZ4gTh6HQGKSFACOScTdoE63JyRdXAUnbGxNMZIxBQCskhkuzkYoXGaH95edbQ7IcOoFwWBHgznt/+8uNPb8dTVVQtlaQuYaZTrxghAuZIEs8hu3w6vi2Xq7a+mNWdVvPQn+tlY2YfvOei9gjMzo2zRowkmDMICYXFavn6cswJdMdT09RV2TCKZ2Venp+vL7bNojJO9/14sd1c3Fz1g3p6ONw/7MtVKRkAEFFBMoSYF7goM6MI5KIWLrq3uxcdwu13XxOMYUoRQGicHfQMYU45gBQZ4cnnaVIpwrrAESdCidUeU1QirvTkY3aBemeU8ykko2aEM2WAYQZAphySRDBCKceUY4aZl7xa1NMwIZgYSSFElKJTOlIiuYAIAAQJxf3QgZRijJySDIBRGkKIUB6GzhhbV8umKRPIzjs7KqXG/tglmKCLOELZsORdpjxDgBgBGfvgikJQBsbzBAEhBM8hZRCEkBBnwhATVM991XBRUmX9MMztgkRrMIECM+usd7reNIzTDFK9LCiHXILD/my1KQRBCSOMMKHOeB9T01YZhOhcWfL1qinLwrlIEIjeZgR9yoLJDBLENOnkk9d6jjlVvI45JESoYDFGhmEIUDAWfOQMEpKllM46Z11KMQOYMpZlhT0cR6utBhDMSpVVEU2ACLNC+DnEHDHClKCYQQA5oyxLDhFgjBOSnXGiYHo2CCJj7DipmBKEMWNivIJYFGVDAAUY9f1onQshMsEWyzqF4EKmhEspmcQJwKnXIEOQnfVIcjZ729s5RkcJEYJXFUcEGG+t8t5rxrAsxTxNwzAVuVg2zTCPCaCAcgLZBg1BRiRHYOdpCN5tdheb3SZHTxnGzExzxpCkkFGGdVlpbTFAQjJtvBrmGFPbMExQAplIFqyLHlEhqqIoIFoWZTATxSBYDSGZnSKACMaR5FSIRS2ptkobBDOEgMCMEZacJOe0MRlGQIjyxvpojE05yFKUjQSAhDgTDrvjzBgGABDEQow55uCCUTbGXN5crTar49teGRMywAiqcawFT4TlDE6vJ1gnH4HHTKzExddflIuFnQdWl+Zw/vTL3e5iVy3rpmmbpj08P0WvpmMezpMQknK03x+pFFdX16vLymF0+nw3DvOyqV1CyYRuPM3dcH15I1lRYUGLYpinSnLCWTSw2SzV237oBkzA7/7lXxbN7u7uV+PUPsN3F7deyL/821+pVf/uy2sMmJrs8nr7cj544MumoqKAAMIcUYx1Ib58d3tAz/SbLxsuMITnqX8+HTEtYkYIk+uLi2WC/UkRGAoOg3GQQJ+9KARn/HA8AgK+/fb328WlaPmP//jRhBit+1BxxtnL8+vD/a/NQv6x/fd8URoQn+5fX6dXCODxcMSERpgtSCm6MM/Z6Wk+UyETyE/Pb816cfv+w6+/3EeRLy43/WP31VcfdhetnXsAnFKT0dA6y0tKCwT6IAW5eX9VFFUO0xatEcGHtz7BSCBw1ueMUQYI52maq7qGhJwPr1rp2/dfpox++tvfuvPRANuqdbldugjH2c2zJgwvFisS8DE8T+PAZVlv1inm++en3Wb95Vdf8W5IOd89PFBeffHhPcz+t0/31+9vv/3XP/39p7/bbhzGASO42qzPw3Bzef3h+l0KWmn7euh2qzVneOg6PZuivTmN9udPd2/n/ZLSr7/8UhD42929zaCtqtsPH+XqQmvzX//P/+uXu18vt++++cPvF+uF8ubu7tM/fvj7W//wn/6n//nL1Vf8H+WPP/xAOF5vlimnH374AYaQU5zmuTsfbz9cLy+WZVO/vjztdsubdzcc83/8j78+PD99/8d/SZT89uMPv/z0I0Xk6vLyv/0f//np+dAuFmW93B+7YVJffP3Vr//49O7DZcxJ57D//AAmI0i083n/2x0ry8tVLb2BeLWgcVfQbSX14YQ4V/qMRLbJnie/qJsMYTAWLqqLyyokHFMyetBTv1ktscDLYokxIQoB5L32xsyhYjlmN3gX3L4fmrYNMAKKZCUCyDH4GHJwMaUIjUYEcc7bsqxKGVLinKKcrDM5pxgSxDlliDllnIUYEEZVU2IAIEAgQW9CThDkmGCyKQSdrbOEEkzwNI0g56oqAQSTGo21CMQQUtXUMYRZW0BIXdfROUwRQiB6R4VAAKYcM8gZ45BTjinn7LzNANrgodE++giS0UZwmgDwAEzG5BypZCRgO1vvnFWzt76ql9XFNmMYEgwwp5S8tc5aRGnJC62Mng3GIPmsJ3NM3UTgxW5LMbUA+QhWi81XH74aTsMM3MvYJ5YHrfTkT+duPB9yAENniqLtj3MvxgpzQljvvA32OA0JJh/96+GotP74u2++KOS7D5fG6JSRZLVJppsHppRPwJjgrPPOZwT2545CUt2u67odjgc99RnDulmnjLwPRU19hsp6ZTQTLKTcnUeQ4OuxsxBSgHyvE0DW+oZX5UpCAKwPMMXgU90uIsDHqWd18f8BnYsV3VySK3wAAAAASUVORK5CYII=",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "prompt = \"a beautiful photograph of Mt. Fuji during cherry blossom\"\n",
- "image = pipe(prompt).images[0]\n",
- "display(image)"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "id": "1b22dd3c",
- "metadata": {},
- "source": [
- "# Run Stable Diffusion with TensorRT"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "id": "709ed5d5",
- "metadata": {},
- "source": [
- "### Initialize TensorRT txt2img pipeline\n",
- "\n",
- "TensorRT pipeline initialization is similar to the native pipeline, with a single extra option to specify the path to a [python file containing the TensorRT implementation](https://github.com/huggingface/diffusers/blob/main/examples/community/stable_diffusion_tensorrt_txt2img.py) in diffusers.\n",
- "`custom_pipeline=\"stable_diffusion_tensorrt_txt2img\"`"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "id": "fbd7f7a8",
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/usr/local/lib/python3.8/dist-packages/huggingface_hub/file_download.py:649: FutureWarning: 'cached_download' is the legacy way to download files from the HF hub, please consider upgrading to 'hf_hub_download'\n",
- " warnings.warn(\n"
- ]
- }
- ],
- "source": [
- "pipe_trt = StableDiffusionPipeline.from_pretrained(\n",
- " \"stabilityai/stable-diffusion-2-1\",\n",
- " custom_pipeline=\"stable_diffusion_tensorrt_txt2img\",\n",
- " revision='fp16',\n",
- " torch_dtype=torch.float16,\n",
- " scheduler=scheduler,\n",
- " image_height=512,\n",
- " image_width=512)"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "id": "4e7e6c2e",
- "metadata": {},
- "source": [
- "### Specify cache folder name\n",
- "\n",
- "The ONNX models and TensorRT engines generated during the first inference run will be cached in this folder to speed up subsequent runs."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "id": "9d018680",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "b0caad71f89a45ceb6e6f790bfc28f71",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Fetching 16 files: 0%| | 0/16 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "pipe_trt.set_cached_folder(\"stabilityai/stable-diffusion-2-1\", revision='fp16')"
- ]
- },
- {
- "attachments": {},
- "cell_type": "markdown",
- "id": "aa7b0ede",
- "metadata": {},
- "source": [
- "### Build and load TensorRT engines\n",
- "\n",
- "The overloaded `to()` method builds the TensorRT engines and loads them up for inference.\n",
- "\n",
- "Note: ONNX export and TensorRT engine builds can take upto 20 minutes. Since the engines are cached, this latency is only observed on the first run below."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "id": "4761f142",
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Running inference on device: cuda:0\n",
- "Building Engines...\n",
- "Engine build can take a while to complete\n",
- "Exporting model: /root/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/f7f33030acc57428be85fbec092c37a78231d75a/onnx/clip.onnx\n",
- "/usr/local/lib/python3.8/dist-packages/transformers/models/clip/modeling_clip.py:759: TracerWarning: torch.tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect.\n",
- " mask.fill_(torch.tensor(torch.finfo(dtype).min))\n",
- "/usr/local/lib/python3.8/dist-packages/transformers/models/clip/modeling_clip.py:284: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
- " if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):\n",
- "/usr/local/lib/python3.8/dist-packages/transformers/models/clip/modeling_clip.py:292: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
- " if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):\n",
- "/usr/local/lib/python3.8/dist-packages/transformers/models/clip/modeling_clip.py:324: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
- " if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):\n",
- "/usr/local/lib/python3.8/dist-packages/torch/onnx/symbolic_opset9.py:5502: UserWarning: Exporting aten::index operator of advanced indexing in opset 17 is achieved by combination of multiple ONNX operators, including Reshape, Transpose, Concat, and Gather. If indices include negative values, the exported graph will produce incorrect results.\n",
- " warnings.warn(\n",
- "Generating optimizing model: /root/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/f7f33030acc57428be85fbec092c37a78231d75a/onnx/clip.opt.onnx\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "========== Diagnostic Run torch.onnx.export version 1.14.0a0+44dac51 ===========\n",
- "verbose: False, log level: Level.ERROR\n",
- "======================= 0 NONE 0 NOTE 0 WARNING 0 ERROR ========================\n",
- "\n",
- "[W] 'colored' module is not installed, will not use colors when logging. To enable colors, please install the 'colored' module: python3 -m pip install colored\n",
- "[I] Folding Constants | Pass 1\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "2023-05-03 04:33:51.406400843 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/Unsqueeze\n",
- "2023-05-03 04:33:51.406435531 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/Unsqueeze_3\n",
- "2023-05-03 04:33:51.406444151 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/Unsqueeze_2\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[I] Total Nodes | Original: 2984, After Folding: 1952 | 1032 Nodes Folded\n",
- "[I] Folding Constants | Pass 2\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "2023-05-03 04:33:52.696879372 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.22/self_attn/Unsqueeze_12\n",
- "2023-05-03 04:33:52.696910088 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.22/self_attn/Unsqueeze_9\n",
- "2023-05-03 04:33:52.696918469 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.22/self_attn/Unsqueeze_17\n",
- "2023-05-03 04:33:52.696926095 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.22/self_attn/Unsqueeze_16\n",
- "2023-05-03 04:33:52.696934158 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.22/self_attn/Unsqueeze_14\n",
- "2023-05-03 04:33:52.696942510 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.22/self_attn/Unsqueeze_11\n",
- "2023-05-03 04:33:52.696950232 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.22/self_attn/Unsqueeze_8\n",
- "2023-05-03 04:33:52.696958072 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.22/self_attn/Unsqueeze_3\n",
- "2023-05-03 04:33:52.696965180 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.21/self_attn/Unsqueeze_12\n",
- "2023-05-03 04:33:52.696973214 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.21/self_attn/Unsqueeze_9\n",
- "2023-05-03 04:33:52.696980375 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.21/self_attn/Unsqueeze_17\n",
- "2023-05-03 04:33:52.696987618 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.21/self_attn/Unsqueeze_16\n",
- "2023-05-03 04:33:52.696995459 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.21/self_attn/Unsqueeze_14\n",
- "2023-05-03 04:33:52.697004257 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.21/self_attn/Unsqueeze_11\n",
- "2023-05-03 04:33:52.697012159 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.21/self_attn/Unsqueeze_8\n",
- "2023-05-03 04:33:52.697019979 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.21/self_attn/Unsqueeze_3\n",
- "2023-05-03 04:33:52.697027040 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.20/self_attn/Unsqueeze_12\n",
- "2023-05-03 04:33:52.697035038 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.20/self_attn/Unsqueeze_9\n",
- "2023-05-03 04:33:52.697042100 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.20/self_attn/Unsqueeze_17\n",
- "2023-05-03 04:33:52.697049352 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.20/self_attn/Unsqueeze_16\n",
- "2023-05-03 04:33:52.697057307 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.20/self_attn/Unsqueeze_14\n",
- "2023-05-03 04:33:52.697065488 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.20/self_attn/Unsqueeze_11\n",
- "2023-05-03 04:33:52.697073272 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.20/self_attn/Unsqueeze_8\n",
- "2023-05-03 04:33:52.697081068 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.20/self_attn/Unsqueeze_3\n",
- "2023-05-03 04:33:52.697088186 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.19/self_attn/Unsqueeze_12\n",
- "2023-05-03 04:33:52.697098638 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.19/self_attn/Unsqueeze_9\n",
- "2023-05-03 04:33:52.697105869 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.19/self_attn/Unsqueeze_17\n",
- "2023-05-03 04:33:52.697113091 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.19/self_attn/Unsqueeze_16\n",
- "2023-05-03 04:33:52.697120929 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.19/self_attn/Unsqueeze_14\n",
- "2023-05-03 04:33:52.697129978 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.19/self_attn/Unsqueeze_11\n",
- "2023-05-03 04:33:52.697138083 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.19/self_attn/Unsqueeze_8\n",
- "2023-05-03 04:33:52.697145991 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.19/self_attn/Unsqueeze_3\n",
- "2023-05-03 04:33:52.697153267 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.18/self_attn/Unsqueeze_12\n",
- "2023-05-03 04:33:52.697161162 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.18/self_attn/Unsqueeze_9\n",
- "2023-05-03 04:33:52.697168356 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.18/self_attn/Unsqueeze_17\n",
- "2023-05-03 04:33:52.697175695 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.18/self_attn/Unsqueeze_16\n",
- "2023-05-03 04:33:52.697183855 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.18/self_attn/Unsqueeze_14\n",
- "2023-05-03 04:33:52.697192177 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.18/self_attn/Unsqueeze_11\n",
- "2023-05-03 04:33:52.697200276 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.18/self_attn/Unsqueeze_8\n",
- "2023-05-03 04:33:52.697208293 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.18/self_attn/Unsqueeze_3\n",
- "2023-05-03 04:33:52.697215648 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.17/self_attn/Unsqueeze_12\n",
- "2023-05-03 04:33:52.697223776 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.17/self_attn/Unsqueeze_9\n",
- "2023-05-03 04:33:52.697231416 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.17/self_attn/Unsqueeze_17\n",
- "2023-05-03 04:33:52.697239063 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.17/self_attn/Unsqueeze_16\n",
- "2023-05-03 04:33:52.697247190 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.17/self_attn/Unsqueeze_14\n",
- "2023-05-03 04:33:52.697255198 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.17/self_attn/Unsqueeze_11\n",
- "2023-05-03 04:33:52.697263097 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.17/self_attn/Unsqueeze_8\n",
- "2023-05-03 04:33:52.697271127 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.17/self_attn/Unsqueeze_3\n",
- "2023-05-03 04:33:52.697279108 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.16/self_attn/Unsqueeze_12\n",
- "2023-05-03 04:33:52.697287460 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.16/self_attn/Unsqueeze_9\n",
- "2023-05-03 04:33:52.697294912 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.16/self_attn/Unsqueeze_17\n",
- "2023-05-03 04:33:52.697302384 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.16/self_attn/Unsqueeze_16\n",
- "2023-05-03 04:33:52.697310386 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.16/self_attn/Unsqueeze_14\n",
- "2023-05-03 04:33:52.697318363 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.16/self_attn/Unsqueeze_11\n",
- "2023-05-03 04:33:52.697326285 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.16/self_attn/Unsqueeze_8\n",
- "2023-05-03 04:33:52.697334333 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.16/self_attn/Unsqueeze_3\n",
- "2023-05-03 04:33:52.697341645 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.15/self_attn/Unsqueeze_12\n",
- "2023-05-03 04:33:52.697349806 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.15/self_attn/Unsqueeze_9\n",
- "2023-05-03 04:33:52.697357245 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.15/self_attn/Unsqueeze_17\n",
- "2023-05-03 04:33:52.697366026 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.15/self_attn/Unsqueeze_16\n",
- "2023-05-03 04:33:52.697374221 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.15/self_attn/Unsqueeze_14\n",
- "2023-05-03 04:33:52.697382180 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.15/self_attn/Unsqueeze_11\n",
- "2023-05-03 04:33:52.697390024 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.15/self_attn/Unsqueeze_8\n",
- "2023-05-03 04:33:52.697397968 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.15/self_attn/Unsqueeze_3\n",
- "2023-05-03 04:33:52.697405246 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.14/self_attn/Unsqueeze_12\n",
- "2023-05-03 04:33:52.697413222 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.14/self_attn/Unsqueeze_9\n",
- "2023-05-03 04:33:52.697420545 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.14/self_attn/Unsqueeze_17\n",
- "2023-05-03 04:33:52.697428028 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.14/self_attn/Unsqueeze_16\n",
- "2023-05-03 04:33:52.697436037 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.14/self_attn/Unsqueeze_14\n",
- "2023-05-03 04:33:52.697444024 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.14/self_attn/Unsqueeze_11\n",
- "2023-05-03 04:33:52.697452014 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.14/self_attn/Unsqueeze_8\n",
- "2023-05-03 04:33:52.697460577 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.14/self_attn/Unsqueeze_3\n",
- "2023-05-03 04:33:52.697467959 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.13/self_attn/Unsqueeze_12\n",
- "2023-05-03 04:33:52.697475929 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.13/self_attn/Unsqueeze_9\n",
- "2023-05-03 04:33:52.697483044 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.13/self_attn/Unsqueeze_17\n",
- "2023-05-03 04:33:52.697490306 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.13/self_attn/Unsqueeze_16\n",
- "2023-05-03 04:33:52.697498342 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.13/self_attn/Unsqueeze_14\n",
- "2023-05-03 04:33:52.697506366 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.13/self_attn/Unsqueeze_11\n",
- "2023-05-03 04:33:52.697514334 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.13/self_attn/Unsqueeze_8\n",
- "2023-05-03 04:33:52.697522291 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.13/self_attn/Unsqueeze_3\n",
- "2023-05-03 04:33:52.697529593 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.12/self_attn/Unsqueeze_12\n",
- "2023-05-03 04:33:52.697537565 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.12/self_attn/Unsqueeze_9\n",
- "2023-05-03 04:33:52.697544812 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.12/self_attn/Unsqueeze_17\n",
- "2023-05-03 04:33:52.697552042 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.12/self_attn/Unsqueeze_16\n",
- "2023-05-03 04:33:52.697560183 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.12/self_attn/Unsqueeze_14\n",
- "2023-05-03 04:33:52.697567995 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.12/self_attn/Unsqueeze_11\n",
- "2023-05-03 04:33:52.697575812 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.12/self_attn/Unsqueeze_8\n",
- "2023-05-03 04:33:52.697583605 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.12/self_attn/Unsqueeze_3\n",
- "2023-05-03 04:33:52.697591077 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.11/self_attn/Unsqueeze_12\n",
- "2023-05-03 04:33:52.697599219 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.11/self_attn/Unsqueeze_9\n",
- "2023-05-03 04:33:52.697606357 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.11/self_attn/Unsqueeze_17\n",
- "2023-05-03 04:33:52.697613637 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.11/self_attn/Unsqueeze_16\n",
- "2023-05-03 04:33:52.697621600 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.11/self_attn/Unsqueeze_14\n",
- "2023-05-03 04:33:52.697629544 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.11/self_attn/Unsqueeze_11\n",
- "2023-05-03 04:33:52.697638262 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.11/self_attn/Unsqueeze_8\n",
- "2023-05-03 04:33:52.697646306 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.11/self_attn/Unsqueeze_3\n",
- "2023-05-03 04:33:52.697653469 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.10/self_attn/Unsqueeze_12\n",
- "2023-05-03 04:33:52.697661524 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.10/self_attn/Unsqueeze_9\n",
- "2023-05-03 04:33:52.697668673 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.10/self_attn/Unsqueeze_17\n",
- "2023-05-03 04:33:52.697675998 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.10/self_attn/Unsqueeze_16\n",
- "2023-05-03 04:33:52.697684020 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.10/self_attn/Unsqueeze_14\n",
- "2023-05-03 04:33:52.697691815 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.10/self_attn/Unsqueeze_11\n",
- "2023-05-03 04:33:52.697712938 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.10/self_attn/Unsqueeze_8\n",
- "2023-05-03 04:33:52.697722041 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.10/self_attn/Unsqueeze_3\n",
- "2023-05-03 04:33:52.697729341 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.9/self_attn/Unsqueeze_12\n",
- "2023-05-03 04:33:52.697737646 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.9/self_attn/Unsqueeze_9\n",
- "2023-05-03 04:33:52.697745086 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.9/self_attn/Unsqueeze_17\n",
- "2023-05-03 04:33:52.697752476 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.9/self_attn/Unsqueeze_16\n",
- "2023-05-03 04:33:52.697760702 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.9/self_attn/Unsqueeze_14\n",
- "2023-05-03 04:33:52.697768950 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.9/self_attn/Unsqueeze_11\n",
- "2023-05-03 04:33:52.697776922 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.9/self_attn/Unsqueeze_8\n",
- "2023-05-03 04:33:52.697784857 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.9/self_attn/Unsqueeze_3\n",
- "2023-05-03 04:33:52.697792275 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.8/self_attn/Unsqueeze_12\n",
- "2023-05-03 04:33:52.697800291 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.8/self_attn/Unsqueeze_9\n",
- "2023-05-03 04:33:52.697807601 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.8/self_attn/Unsqueeze_17\n",
- "2023-05-03 04:33:52.697814991 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.8/self_attn/Unsqueeze_16\n",
- "2023-05-03 04:33:52.697822961 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.8/self_attn/Unsqueeze_14\n",
- "2023-05-03 04:33:52.697831691 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.8/self_attn/Unsqueeze_11\n",
- "2023-05-03 04:33:52.697839756 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.8/self_attn/Unsqueeze_8\n",
- "2023-05-03 04:33:52.697847772 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.8/self_attn/Unsqueeze_3\n",
- "2023-05-03 04:33:52.697855185 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.7/self_attn/Unsqueeze_12\n",
- "2023-05-03 04:33:52.697863296 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.7/self_attn/Unsqueeze_9\n",
- "2023-05-03 04:33:52.697870474 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.7/self_attn/Unsqueeze_17\n",
- "2023-05-03 04:33:52.697877903 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.7/self_attn/Unsqueeze_16\n",
- "2023-05-03 04:33:52.697885902 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.7/self_attn/Unsqueeze_14\n",
- "2023-05-03 04:33:52.697893747 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.7/self_attn/Unsqueeze_11\n",
- "2023-05-03 04:33:52.697901474 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.7/self_attn/Unsqueeze_8\n",
- "2023-05-03 04:33:52.697919936 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.7/self_attn/Unsqueeze_3\n",
- "2023-05-03 04:33:52.697927886 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.6/self_attn/Unsqueeze_12\n",
- "2023-05-03 04:33:52.697935932 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.6/self_attn/Unsqueeze_9\n",
- "2023-05-03 04:33:52.697943245 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.6/self_attn/Unsqueeze_17\n",
- "2023-05-03 04:33:52.697950557 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.6/self_attn/Unsqueeze_16\n",
- "2023-05-03 04:33:52.697958510 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.6/self_attn/Unsqueeze_14\n",
- "2023-05-03 04:33:52.697966376 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.6/self_attn/Unsqueeze_11\n",
- "2023-05-03 04:33:52.697974155 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.6/self_attn/Unsqueeze_8\n",
- "2023-05-03 04:33:52.697982020 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.6/self_attn/Unsqueeze_3\n",
- "2023-05-03 04:33:52.697989103 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.5/self_attn/Unsqueeze_12\n",
- "2023-05-03 04:33:52.697996922 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.5/self_attn/Unsqueeze_9\n",
- "2023-05-03 04:33:52.698004204 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.5/self_attn/Unsqueeze_17\n",
- "2023-05-03 04:33:52.698011435 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.5/self_attn/Unsqueeze_16\n",
- "2023-05-03 04:33:52.698020339 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.5/self_attn/Unsqueeze_14\n",
- "2023-05-03 04:33:52.698028273 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.5/self_attn/Unsqueeze_11\n",
- "2023-05-03 04:33:52.698036196 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.5/self_attn/Unsqueeze_8\n",
- "2023-05-03 04:33:52.698044147 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.5/self_attn/Unsqueeze_3\n",
- "2023-05-03 04:33:52.698051325 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.4/self_attn/Unsqueeze_12\n",
- "2023-05-03 04:33:52.698059196 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.4/self_attn/Unsqueeze_9\n",
- "2023-05-03 04:33:52.698066535 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.4/self_attn/Unsqueeze_17\n",
- "2023-05-03 04:33:52.698073895 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.4/self_attn/Unsqueeze_16\n",
- "2023-05-03 04:33:52.698081837 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.4/self_attn/Unsqueeze_14\n",
- "2023-05-03 04:33:52.698089750 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.4/self_attn/Unsqueeze_11\n",
- "2023-05-03 04:33:52.698097637 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.4/self_attn/Unsqueeze_8\n",
- "2023-05-03 04:33:52.698105468 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.4/self_attn/Unsqueeze_3\n",
- "2023-05-03 04:33:52.698112647 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.3/self_attn/Unsqueeze_12\n",
- "2023-05-03 04:33:52.698120675 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.3/self_attn/Unsqueeze_9\n",
- "2023-05-03 04:33:52.698127779 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.3/self_attn/Unsqueeze_17\n",
- "2023-05-03 04:33:52.698135095 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.3/self_attn/Unsqueeze_16\n",
- "2023-05-03 04:33:52.698143121 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.3/self_attn/Unsqueeze_14\n",
- "2023-05-03 04:33:52.698151128 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.3/self_attn/Unsqueeze_11\n",
- "2023-05-03 04:33:52.698159112 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.3/self_attn/Unsqueeze_8\n",
- "2023-05-03 04:33:52.698167075 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.3/self_attn/Unsqueeze_3\n",
- "2023-05-03 04:33:52.698174339 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.2/self_attn/Unsqueeze_12\n",
- "2023-05-03 04:33:52.698182481 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.2/self_attn/Unsqueeze_9\n",
- "2023-05-03 04:33:52.698189698 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.2/self_attn/Unsqueeze_17\n",
- "2023-05-03 04:33:52.698197659 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.2/self_attn/Unsqueeze_16\n",
- "2023-05-03 04:33:52.698205605 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.2/self_attn/Unsqueeze_14\n",
- "2023-05-03 04:33:52.698213397 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.2/self_attn/Unsqueeze_11\n",
- "2023-05-03 04:33:52.698221193 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.2/self_attn/Unsqueeze_8\n",
- "2023-05-03 04:33:52.698228950 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.2/self_attn/Unsqueeze_3\n",
- "2023-05-03 04:33:52.698236066 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.1/self_attn/Unsqueeze_12\n",
- "2023-05-03 04:33:52.698243869 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.1/self_attn/Unsqueeze_9\n",
- "2023-05-03 04:33:52.698251059 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.1/self_attn/Unsqueeze_17\n",
- "2023-05-03 04:33:52.698258288 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.1/self_attn/Unsqueeze_16\n",
- "2023-05-03 04:33:52.698266113 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.1/self_attn/Unsqueeze_14\n",
- "2023-05-03 04:33:52.698273949 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.1/self_attn/Unsqueeze_11\n",
- "2023-05-03 04:33:52.698281751 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.1/self_attn/Unsqueeze_8\n",
- "2023-05-03 04:33:52.698289457 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.1/self_attn/Unsqueeze_3\n",
- "2023-05-03 04:33:52.698296612 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.0/self_attn/Unsqueeze_12\n",
- "2023-05-03 04:33:52.698304621 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.0/self_attn/Unsqueeze_9\n",
- "2023-05-03 04:33:52.698311814 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.0/self_attn/Unsqueeze_17\n",
- "2023-05-03 04:33:52.698318904 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.0/self_attn/Unsqueeze_16\n",
- "2023-05-03 04:33:52.698326954 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.0/self_attn/Unsqueeze_14\n",
- "2023-05-03 04:33:52.698334831 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.0/self_attn/Unsqueeze_11\n",
- "2023-05-03 04:33:52.698342564 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.0/self_attn/Unsqueeze_8\n",
- "2023-05-03 04:33:52.698350440 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/encoder/layers.0/self_attn/Unsqueeze_3\n",
- "2023-05-03 04:33:52.698357980 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /text_model/embeddings/Unsqueeze\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[I] Total Nodes | Original: 1952, After Folding: 1625 | 327 Nodes Folded\n",
- "[I] Folding Constants | Pass 3\n",
- "[I] Total Nodes | Original: 1625, After Folding: 1625 | 0 Nodes Folded\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Building Engines...\n",
- "Engine build can take a while to complete\n",
- "Exporting model: /root/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/f7f33030acc57428be85fbec092c37a78231d75a/onnx/unet.onnx\n",
- "/usr/local/lib/python3.8/dist-packages/diffusers/models/unet_2d_condition.py:650: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
- " if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):\n",
- "/usr/local/lib/python3.8/dist-packages/diffusers/models/resnet.py:200: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
- " assert hidden_states.shape[1] == self.channels\n",
- "/usr/local/lib/python3.8/dist-packages/diffusers/models/resnet.py:205: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
- " assert hidden_states.shape[1] == self.channels\n",
- "/usr/local/lib/python3.8/dist-packages/diffusers/models/resnet.py:127: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
- " assert hidden_states.shape[1] == self.channels\n",
- "/usr/local/lib/python3.8/dist-packages/diffusers/models/resnet.py:140: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
- " if hidden_states.shape[0] >= 64:\n",
- "/usr/local/lib/python3.8/dist-packages/diffusers/models/unet_2d_condition.py:793: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
- " if not return_dict:\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "========== Diagnostic Run torch.onnx.export version 1.14.0a0+44dac51 ===========\n",
- "verbose: False, log level: Level.ERROR\n",
- "======================= 0 NONE 0 NOTE 0 WARNING 0 ERROR ========================\n",
- "\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Generating optimizing model: /root/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/f7f33030acc57428be85fbec092c37a78231d75a/onnx/unet.opt.onnx\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[I] Folding Constants | Pass 1\n",
- "[I] Total Nodes | Original: 7757, After Folding: 5379 | 2378 Nodes Folded\n",
- "[I] Folding Constants | Pass 2\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "2023-05-03 04:35:05.063804462 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.3/attentions.2/transformer_blocks.0/attn2/Unsqueeze_23\n",
- "2023-05-03 04:35:05.063835442 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.3/attentions.2/transformer_blocks.0/attn1/Unsqueeze_23\n",
- "2023-05-03 04:35:05.063851254 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.3/attentions.2/Unsqueeze_6\n",
- "2023-05-03 04:35:05.063860151 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.3/attentions.2/Unsqueeze_2\n",
- "2023-05-03 04:35:05.063874574 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.3/attentions.1/transformer_blocks.0/attn2/Unsqueeze_23\n",
- "2023-05-03 04:35:05.063885250 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.3/attentions.1/transformer_blocks.0/attn1/Unsqueeze_23\n",
- "2023-05-03 04:35:05.063899247 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.3/attentions.1/Unsqueeze_6\n",
- "2023-05-03 04:35:05.063907147 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.3/attentions.1/Unsqueeze_2\n",
- "2023-05-03 04:35:05.063921177 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.3/attentions.0/transformer_blocks.0/attn2/Unsqueeze_23\n",
- "2023-05-03 04:35:05.063931750 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.3/attentions.0/transformer_blocks.0/attn1/Unsqueeze_23\n",
- "2023-05-03 04:35:05.063945862 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.3/attentions.0/Unsqueeze_6\n",
- "2023-05-03 04:35:05.063953915 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.3/attentions.0/Unsqueeze_2\n",
- "2023-05-03 04:35:05.063968177 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.2/attentions.2/transformer_blocks.0/attn2/Unsqueeze_23\n",
- "2023-05-03 04:35:05.063979539 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.2/attentions.2/transformer_blocks.0/attn1/Unsqueeze_23\n",
- "2023-05-03 04:35:05.063993087 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.2/attentions.2/Unsqueeze_6\n",
- "2023-05-03 04:35:05.064000857 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.2/attentions.2/Unsqueeze_2\n",
- "2023-05-03 04:35:05.064014245 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.2/attentions.1/transformer_blocks.0/attn2/Unsqueeze_23\n",
- "2023-05-03 04:35:05.064024708 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.2/attentions.1/transformer_blocks.0/attn1/Unsqueeze_23\n",
- "2023-05-03 04:35:05.064038411 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.2/attentions.1/Unsqueeze_6\n",
- "2023-05-03 04:35:05.064046432 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.2/attentions.1/Unsqueeze_2\n",
- "2023-05-03 04:35:05.064060263 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.2/attentions.0/transformer_blocks.0/attn2/Unsqueeze_23\n",
- "2023-05-03 04:35:05.064070926 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.2/attentions.0/transformer_blocks.0/attn1/Unsqueeze_23\n",
- "2023-05-03 04:35:05.064084326 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.2/attentions.0/Unsqueeze_6\n",
- "2023-05-03 04:35:05.064092365 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.2/attentions.0/Unsqueeze_2\n",
- "2023-05-03 04:35:05.064105810 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.1/attentions.2/transformer_blocks.0/attn2/Unsqueeze_23\n",
- "2023-05-03 04:35:05.064116164 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.1/attentions.2/transformer_blocks.0/attn1/Unsqueeze_23\n",
- "2023-05-03 04:35:05.064132918 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.1/attentions.2/Unsqueeze_6\n",
- "2023-05-03 04:35:05.064140796 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.1/attentions.2/Unsqueeze_2\n",
- "2023-05-03 04:35:05.064154446 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.1/attentions.1/transformer_blocks.0/attn2/Unsqueeze_23\n",
- "2023-05-03 04:35:05.064165905 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.1/attentions.1/transformer_blocks.0/attn1/Unsqueeze_23\n",
- "2023-05-03 04:35:05.064179209 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.1/attentions.1/Unsqueeze_6\n",
- "2023-05-03 04:35:05.064187342 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.1/attentions.1/Unsqueeze_2\n",
- "2023-05-03 04:35:05.064201199 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.1/attentions.0/transformer_blocks.0/attn2/Unsqueeze_23\n",
- "2023-05-03 04:35:05.064211740 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.1/attentions.0/transformer_blocks.0/attn1/Unsqueeze_23\n",
- "2023-05-03 04:35:05.064225424 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.1/attentions.0/Unsqueeze_6\n",
- "2023-05-03 04:35:05.064233327 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.1/attentions.0/Unsqueeze_2\n",
- "2023-05-03 04:35:05.064247287 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /mid_block/attentions.0/transformer_blocks.0/attn2/Unsqueeze_23\n",
- "2023-05-03 04:35:05.064257595 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /mid_block/attentions.0/transformer_blocks.0/attn1/Unsqueeze_23\n",
- "2023-05-03 04:35:05.064270903 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /mid_block/attentions.0/Unsqueeze_6\n",
- "2023-05-03 04:35:05.064279133 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /mid_block/attentions.0/Unsqueeze_2\n",
- "2023-05-03 04:35:05.064293283 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.2/attentions.1/transformer_blocks.0/attn2/Unsqueeze_23\n",
- "2023-05-03 04:35:05.064303776 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.2/attentions.1/transformer_blocks.0/attn1/Unsqueeze_23\n",
- "2023-05-03 04:35:05.064317285 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.2/attentions.1/Unsqueeze_6\n",
- "2023-05-03 04:35:05.064325039 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.2/attentions.1/Unsqueeze_2\n",
- "2023-05-03 04:35:05.064339012 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.2/attentions.0/transformer_blocks.0/attn2/Unsqueeze_23\n",
- "2023-05-03 04:35:05.064349129 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.2/attentions.0/transformer_blocks.0/attn1/Unsqueeze_23\n",
- "2023-05-03 04:35:05.064361976 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.2/attentions.0/Unsqueeze_6\n",
- "2023-05-03 04:35:05.064369583 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.2/attentions.0/Unsqueeze_2\n",
- "2023-05-03 04:35:05.064383610 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.1/attentions.1/transformer_blocks.0/attn2/Unsqueeze_23\n",
- "2023-05-03 04:35:05.064394922 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.1/attentions.1/transformer_blocks.0/attn1/Unsqueeze_23\n",
- "2023-05-03 04:35:05.064407734 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.1/attentions.1/Unsqueeze_6\n",
- "2023-05-03 04:35:05.064415531 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.1/attentions.1/Unsqueeze_2\n",
- "2023-05-03 04:35:05.064429270 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.1/attentions.0/transformer_blocks.0/attn2/Unsqueeze_23\n",
- "2023-05-03 04:35:05.064439251 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.1/attentions.0/transformer_blocks.0/attn1/Unsqueeze_23\n",
- "2023-05-03 04:35:05.064452187 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.1/attentions.0/Unsqueeze_6\n",
- "2023-05-03 04:35:05.064459693 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.1/attentions.0/Unsqueeze_2\n",
- "2023-05-03 04:35:05.064473401 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.0/attentions.1/transformer_blocks.0/attn2/Unsqueeze_23\n",
- "2023-05-03 04:35:05.064483399 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.0/attentions.1/transformer_blocks.0/attn1/Unsqueeze_23\n",
- "2023-05-03 04:35:05.064495818 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.0/attentions.1/Unsqueeze_6\n",
- "2023-05-03 04:35:05.064505291 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.0/attentions.1/Unsqueeze_2\n",
- "2023-05-03 04:35:05.064519225 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.0/attentions.0/transformer_blocks.0/attn2/Unsqueeze_23\n",
- "2023-05-03 04:35:05.064529037 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.0/attentions.0/transformer_blocks.0/attn1/Unsqueeze_23\n",
- "2023-05-03 04:35:05.064541710 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.0/attentions.0/Unsqueeze_6\n",
- "2023-05-03 04:35:05.064549728 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.0/attentions.0/Unsqueeze_2\n",
- "2023-05-03 04:35:05.064556692 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.3/attentions.2/transformer_blocks.0/attn2/Unsqueeze_20\n",
- "2023-05-03 04:35:05.064563536 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.3/attentions.1/transformer_blocks.0/attn2/Unsqueeze_20\n",
- "2023-05-03 04:35:05.064570257 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.3/attentions.0/transformer_blocks.0/attn2/Unsqueeze_20\n",
- "2023-05-03 04:35:05.064576986 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.2/attentions.2/transformer_blocks.0/attn2/Unsqueeze_20\n",
- "2023-05-03 04:35:05.064583887 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.2/attentions.1/transformer_blocks.0/attn2/Unsqueeze_20\n",
- "2023-05-03 04:35:05.064590714 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.2/attentions.0/transformer_blocks.0/attn2/Unsqueeze_20\n",
- "2023-05-03 04:35:05.064597349 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.1/attentions.2/transformer_blocks.0/attn2/Unsqueeze_20\n",
- "2023-05-03 04:35:05.064605340 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.1/attentions.1/transformer_blocks.0/attn2/Unsqueeze_20\n",
- "2023-05-03 04:35:05.064612284 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.1/attentions.0/transformer_blocks.0/attn2/Unsqueeze_20\n",
- "2023-05-03 04:35:05.064619173 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /mid_block/attentions.0/transformer_blocks.0/attn2/Unsqueeze_20\n",
- "2023-05-03 04:35:05.064626141 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.2/attentions.1/transformer_blocks.0/attn2/Unsqueeze_20\n",
- "2023-05-03 04:35:05.064633046 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.2/attentions.0/transformer_blocks.0/attn2/Unsqueeze_20\n",
- "2023-05-03 04:35:05.064639818 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.1/attentions.1/transformer_blocks.0/attn2/Unsqueeze_20\n",
- "2023-05-03 04:35:05.064646608 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.1/attentions.0/transformer_blocks.0/attn2/Unsqueeze_20\n",
- "2023-05-03 04:35:05.064653372 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.0/attentions.1/transformer_blocks.0/attn2/Unsqueeze_20\n",
- "2023-05-03 04:35:05.064660184 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.0/attentions.0/transformer_blocks.0/attn2/Unsqueeze_20\n",
- "2023-05-03 04:35:05.064719945 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.3/attentions.2/transformer_blocks.0/attn2/Unsqueeze_16\n",
- "2023-05-03 04:35:05.064730107 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.3/attentions.2/transformer_blocks.0/attn2/Unsqueeze_13\n",
- "2023-05-03 04:35:05.064737080 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.3/attentions.2/transformer_blocks.0/attn2/Unsqueeze_10\n",
- "2023-05-03 04:35:05.064744647 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.3/attentions.2/transformer_blocks.0/attn2/Unsqueeze_7\n",
- "2023-05-03 04:35:05.064751229 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.3/attentions.1/transformer_blocks.0/attn2/Unsqueeze_16\n",
- "2023-05-03 04:35:05.064758661 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.3/attentions.1/transformer_blocks.0/attn2/Unsqueeze_13\n",
- "2023-05-03 04:35:05.064765408 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.3/attentions.1/transformer_blocks.0/attn2/Unsqueeze_10\n",
- "2023-05-03 04:35:05.064772857 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.3/attentions.1/transformer_blocks.0/attn2/Unsqueeze_7\n",
- "2023-05-03 04:35:05.064779651 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.3/attentions.0/transformer_blocks.0/attn2/Unsqueeze_16\n",
- "2023-05-03 04:35:05.064787086 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.3/attentions.0/transformer_blocks.0/attn2/Unsqueeze_13\n",
- "2023-05-03 04:35:05.064793967 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.3/attentions.0/transformer_blocks.0/attn2/Unsqueeze_10\n",
- "2023-05-03 04:35:05.064801286 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.3/attentions.0/transformer_blocks.0/attn2/Unsqueeze_7\n",
- "2023-05-03 04:35:05.064808977 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.2/attentions.2/transformer_blocks.0/attn2/Unsqueeze_16\n",
- "2023-05-03 04:35:05.064816235 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.2/attentions.2/transformer_blocks.0/attn2/Unsqueeze_13\n",
- "2023-05-03 04:35:05.064822982 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.2/attentions.2/transformer_blocks.0/attn2/Unsqueeze_10\n",
- "2023-05-03 04:35:05.064830202 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.2/attentions.2/transformer_blocks.0/attn2/Unsqueeze_7\n",
- "2023-05-03 04:35:05.064836835 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.2/attentions.1/transformer_blocks.0/attn2/Unsqueeze_16\n",
- "2023-05-03 04:35:05.064844097 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.2/attentions.1/transformer_blocks.0/attn2/Unsqueeze_13\n",
- "2023-05-03 04:35:05.064850828 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.2/attentions.1/transformer_blocks.0/attn2/Unsqueeze_10\n",
- "2023-05-03 04:35:05.064858220 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.2/attentions.1/transformer_blocks.0/attn2/Unsqueeze_7\n",
- "2023-05-03 04:35:05.064864754 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.2/attentions.0/transformer_blocks.0/attn2/Unsqueeze_16\n",
- "2023-05-03 04:35:05.064872009 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.2/attentions.0/transformer_blocks.0/attn2/Unsqueeze_13\n",
- "2023-05-03 04:35:05.064878486 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.2/attentions.0/transformer_blocks.0/attn2/Unsqueeze_10\n",
- "2023-05-03 04:35:05.064885621 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.2/attentions.0/transformer_blocks.0/attn2/Unsqueeze_7\n",
- "2023-05-03 04:35:05.064892385 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.1/attentions.2/transformer_blocks.0/attn2/Unsqueeze_16\n",
- "2023-05-03 04:35:05.064899754 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.1/attentions.2/transformer_blocks.0/attn2/Unsqueeze_13\n",
- "2023-05-03 04:35:05.064906377 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.1/attentions.2/transformer_blocks.0/attn2/Unsqueeze_10\n",
- "2023-05-03 04:35:05.064913714 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.1/attentions.2/transformer_blocks.0/attn2/Unsqueeze_7\n",
- "2023-05-03 04:35:05.064920540 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.1/attentions.1/transformer_blocks.0/attn2/Unsqueeze_16\n",
- "2023-05-03 04:35:05.064927841 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.1/attentions.1/transformer_blocks.0/attn2/Unsqueeze_13\n",
- "2023-05-03 04:35:05.064934645 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.1/attentions.1/transformer_blocks.0/attn2/Unsqueeze_10\n",
- "2023-05-03 04:35:05.064941859 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.1/attentions.1/transformer_blocks.0/attn2/Unsqueeze_7\n",
- "2023-05-03 04:35:05.064948485 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.1/attentions.0/transformer_blocks.0/attn2/Unsqueeze_16\n",
- "2023-05-03 04:35:05.064956392 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.1/attentions.0/transformer_blocks.0/attn2/Unsqueeze_13\n",
- "2023-05-03 04:35:05.064963043 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.1/attentions.0/transformer_blocks.0/attn2/Unsqueeze_10\n",
- "2023-05-03 04:35:05.064970411 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /up_blocks.1/attentions.0/transformer_blocks.0/attn2/Unsqueeze_7\n",
- "2023-05-03 04:35:05.064977125 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /mid_block/attentions.0/transformer_blocks.0/attn2/Unsqueeze_16\n",
- "2023-05-03 04:35:05.064984371 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /mid_block/attentions.0/transformer_blocks.0/attn2/Unsqueeze_13\n",
- "2023-05-03 04:35:05.064990976 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /mid_block/attentions.0/transformer_blocks.0/attn2/Unsqueeze_10\n",
- "2023-05-03 04:35:05.064998100 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /mid_block/attentions.0/transformer_blocks.0/attn2/Unsqueeze_7\n",
- "2023-05-03 04:35:05.065005010 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.2/attentions.1/transformer_blocks.0/attn2/Unsqueeze_16\n",
- "2023-05-03 04:35:05.065012308 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.2/attentions.1/transformer_blocks.0/attn2/Unsqueeze_13\n",
- "2023-05-03 04:35:05.065018874 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.2/attentions.1/transformer_blocks.0/attn2/Unsqueeze_10\n",
- "2023-05-03 04:35:05.065026019 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.2/attentions.1/transformer_blocks.0/attn2/Unsqueeze_7\n",
- "2023-05-03 04:35:05.065032681 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.2/attentions.0/transformer_blocks.0/attn2/Unsqueeze_16\n",
- "2023-05-03 04:35:05.065039872 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.2/attentions.0/transformer_blocks.0/attn2/Unsqueeze_13\n",
- "2023-05-03 04:35:05.065046731 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.2/attentions.0/transformer_blocks.0/attn2/Unsqueeze_10\n",
- "2023-05-03 04:35:05.065086682 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.2/attentions.0/transformer_blocks.0/attn2/Unsqueeze_7\n",
- "2023-05-03 04:35:05.065095119 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.1/attentions.1/transformer_blocks.0/attn2/Unsqueeze_16\n",
- "2023-05-03 04:35:05.065102513 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.1/attentions.1/transformer_blocks.0/attn2/Unsqueeze_13\n",
- "2023-05-03 04:35:05.065109193 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.1/attentions.1/transformer_blocks.0/attn2/Unsqueeze_10\n",
- "2023-05-03 04:35:05.065116469 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.1/attentions.1/transformer_blocks.0/attn2/Unsqueeze_7\n",
- "2023-05-03 04:35:05.065123211 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.1/attentions.0/transformer_blocks.0/attn2/Unsqueeze_16\n",
- "2023-05-03 04:35:05.065130426 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.1/attentions.0/transformer_blocks.0/attn2/Unsqueeze_13\n",
- "2023-05-03 04:35:05.065138081 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.1/attentions.0/transformer_blocks.0/attn2/Unsqueeze_10\n",
- "2023-05-03 04:35:05.065145644 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.1/attentions.0/transformer_blocks.0/attn2/Unsqueeze_7\n",
- "2023-05-03 04:35:05.065152308 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.0/attentions.1/transformer_blocks.0/attn2/Unsqueeze_16\n",
- "2023-05-03 04:35:05.065159575 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.0/attentions.1/transformer_blocks.0/attn2/Unsqueeze_13\n",
- "2023-05-03 04:35:05.065166147 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.0/attentions.1/transformer_blocks.0/attn2/Unsqueeze_10\n",
- "2023-05-03 04:35:05.065173277 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.0/attentions.1/transformer_blocks.0/attn2/Unsqueeze_7\n",
- "2023-05-03 04:35:05.065179792 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.0/attentions.0/transformer_blocks.0/attn2/Unsqueeze_16\n",
- "2023-05-03 04:35:05.065187044 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.0/attentions.0/transformer_blocks.0/attn2/Unsqueeze_13\n",
- "2023-05-03 04:35:05.065193654 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.0/attentions.0/transformer_blocks.0/attn2/Unsqueeze_10\n",
- "2023-05-03 04:35:05.065200911 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /down_blocks.0/attentions.0/transformer_blocks.0/attn2/Unsqueeze_7\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[I] Total Nodes | Original: 5379, After Folding: 4208 | 1171 Nodes Folded\n",
- "[I] Folding Constants | Pass 3\n",
- "[I] Total Nodes | Original: 4208, After Folding: 4208 | 0 Nodes Folded\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Building Engines...\n",
- "Engine build can take a while to complete\n",
- "Exporting model: /root/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/f7f33030acc57428be85fbec092c37a78231d75a/onnx/vae.onnx\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "========== Diagnostic Run torch.onnx.export version 1.14.0a0+44dac51 ===========\n",
- "verbose: False, log level: Level.ERROR\n",
- "======================= 0 NONE 0 NOTE 0 WARNING 0 ERROR ========================\n",
- "\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Generating optimizing model: /root/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/f7f33030acc57428be85fbec092c37a78231d75a/onnx/vae.opt.onnx\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[I] Folding Constants | Pass 1\n",
- "[I] Total Nodes | Original: 671, After Folding: 500 | 171 Nodes Folded\n",
- "[I] Folding Constants | Pass 2\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "2023-05-03 04:35:36.443555280 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /decoder/mid_block/attentions.0/Unsqueeze_29\n",
- "2023-05-03 04:35:36.443582656 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /decoder/mid_block/attentions.0/Unsqueeze_26\n",
- "2023-05-03 04:35:36.443597966 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /decoder/mid_block/attentions.0/Unsqueeze_31\n",
- "2023-05-03 04:35:36.443606789 [W:onnxruntime:, unsqueeze_elimination.cc:20 Apply] UnsqueezeElimination cannot remove node /decoder/mid_block/attentions.0/Unsqueeze_1\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[I] Total Nodes | Original: 500, After Folding: 471 | 29 Nodes Folded\n",
- "[I] Folding Constants | Pass 3\n",
- "[I] Total Nodes | Original: 471, After Folding: 471 | 0 Nodes Folded\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Building TensorRT engine for /root/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/f7f33030acc57428be85fbec092c37a78231d75a/onnx/clip.opt.onnx: /root/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/f7f33030acc57428be85fbec092c37a78231d75a/engine/clip.plan\n",
- "[libprotobuf WARNING google/protobuf/io/coded_stream.cc:604] Reading dangerously large protocol message. If the message turns out to be larger than 2147483647 bytes, parsing will be halted for security reasons. To increase the limit (or to disable these warnings), see CodedInputStream::SetTotalBytesLimit() in google/protobuf/io/coded_stream.h.\n",
- "[libprotobuf WARNING google/protobuf/io/coded_stream.cc:81] The total number of bytes read was 681566094\n",
- "[libprotobuf WARNING google/protobuf/io/coded_stream.cc:604] Reading dangerously large protocol message. If the message turns out to be larger than 2147483647 bytes, parsing will be halted for security reasons. To increase the limit (or to disable these warnings), see CodedInputStream::SetTotalBytesLimit() in google/protobuf/io/coded_stream.h.\n",
- "[libprotobuf WARNING google/protobuf/io/coded_stream.cc:81] The total number of bytes read was 681566094\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[W] onnx2trt_utils.cpp:374: Your ONNX model has been generated with INT64 weights, while TensorRT does not natively support INT64. Attempting to cast down to INT32.\n",
- "[I] Configuring with profiles: [Profile().add('input_ids', min=(1, 77), opt=(1, 77), max=(4, 77))]\n",
- "[I] Loading tactic timing cache from /root/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/f7f33030acc57428be85fbec092c37a78231d75a/timing_cache\n",
- "[W] Timing cache file /root/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/f7f33030acc57428be85fbec092c37a78231d75a/timing_cache not found, falling back to empty timing cache.\n",
- "[I] Building engine with configuration:\n",
- " Flags | [FP16]\n",
- " Engine Capability | EngineCapability.DEFAULT\n",
- " Memory Pools | [WORKSPACE: 40535.88 MiB, TACTIC_DRAM: 40535.88 MiB]\n",
- " Tactic Sources | []\n",
- " Profiling Verbosity | ProfilingVerbosity.DETAILED\n",
- " Preview Features | [DISABLE_EXTERNAL_TACTIC_SOURCES_FOR_CORE_0805]\n",
- "[W] kFASTER_DYNAMIC_SHAPES_0805 preview feature is disabled.\n",
- "[W] TensorRT encountered issues when converting weights between types and that could affect accuracy.\n",
- "[W] If this is not the desired behavior, please modify the weights or retrain with regularization to adjust the magnitude of the weights.\n",
- "[W] Check verbose logs for the list of affected weights.\n",
- "[W] - 225 weights are affected by this issue: Detected subnormal FP16 values.\n",
- "[I] Finished engine building in 146.532 seconds\n",
- "[I] Saving tactic timing cache to /root/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/f7f33030acc57428be85fbec092c37a78231d75a/timing_cache\n",
- "[I] Saving engine to /root/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/f7f33030acc57428be85fbec092c37a78231d75a/engine/clip.plan\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Building TensorRT engine for /root/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/f7f33030acc57428be85fbec092c37a78231d75a/onnx/unet.opt.onnx: /root/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/f7f33030acc57428be85fbec092c37a78231d75a/engine/unet.plan\n",
- "[libprotobuf WARNING google/protobuf/io/coded_stream.cc:604] Reading dangerously large protocol message. If the message turns out to be larger than 2147483647 bytes, parsing will be halted for security reasons. To increase the limit (or to disable these warnings), see CodedInputStream::SetTotalBytesLimit() in google/protobuf/io/coded_stream.h.\n",
- "[libprotobuf WARNING google/protobuf/io/coded_stream.cc:81] The total number of bytes read was 1733934759\n",
- "[libprotobuf WARNING google/protobuf/io/coded_stream.cc:604] Reading dangerously large protocol message. If the message turns out to be larger than 2147483647 bytes, parsing will be halted for security reasons. To increase the limit (or to disable these warnings), see CodedInputStream::SetTotalBytesLimit() in google/protobuf/io/coded_stream.h.\n",
- "[libprotobuf WARNING google/protobuf/io/coded_stream.cc:81] The total number of bytes read was 1733934759\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[W] onnx2trt_utils.cpp:400: One or more weights outside the range of INT32 was clamped\n",
- "[I] Configuring with profiles: [Profile().add('sample', min=(2, 4, 96, 96), opt=(2, 4, 96, 96), max=(8, 4, 96, 96)).add('encoder_hidden_states', min=(2, 77, 1024), opt=(2, 77, 1024), max=(8, 77, 1024)).add('timestep', min=[1], opt=[1], max=[1])]\n",
- "[I] Loading tactic timing cache from /root/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/f7f33030acc57428be85fbec092c37a78231d75a/timing_cache\n",
- "[I] Building engine with configuration:\n",
- " Flags | [FP16]\n",
- " Engine Capability | EngineCapability.DEFAULT\n",
- " Memory Pools | [WORKSPACE: 40535.88 MiB, TACTIC_DRAM: 40535.88 MiB]\n",
- " Tactic Sources | []\n",
- " Profiling Verbosity | ProfilingVerbosity.DETAILED\n",
- " Preview Features | [DISABLE_EXTERNAL_TACTIC_SOURCES_FOR_CORE_0805]\n",
- "[W] - 272 weights are affected by this issue: Detected subnormal FP16 values.\n",
- "[I] Finished engine building in 1032.233 seconds\n",
- "[I] Saving tactic timing cache to /root/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/f7f33030acc57428be85fbec092c37a78231d75a/timing_cache\n",
- "[I] Saving engine to /root/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/f7f33030acc57428be85fbec092c37a78231d75a/engine/unet.plan\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Building TensorRT engine for /root/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/f7f33030acc57428be85fbec092c37a78231d75a/onnx/vae.opt.onnx: /root/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/f7f33030acc57428be85fbec092c37a78231d75a/engine/vae.plan\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[I] Configuring with profiles: [Profile().add('latent', min=(1, 4, 96, 96), opt=(1, 4, 96, 96), max=(4, 4, 96, 96))]\n",
- "[I] Loading tactic timing cache from /root/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/f7f33030acc57428be85fbec092c37a78231d75a/timing_cache\n",
- "[I] Building engine with configuration:\n",
- " Flags | [FP16]\n",
- " Engine Capability | EngineCapability.DEFAULT\n",
- " Memory Pools | [WORKSPACE: 40535.88 MiB, TACTIC_DRAM: 40535.88 MiB]\n",
- " Tactic Sources | []\n",
- " Profiling Verbosity | ProfilingVerbosity.DETAILED\n",
- " Preview Features | [DISABLE_EXTERNAL_TACTIC_SOURCES_FOR_CORE_0805]\n",
- "[W] - 4 weights are affected by this issue: Detected subnormal FP16 values.\n",
- "[I] Finished engine building in 204.808 seconds\n",
- "[I] Saving tactic timing cache to /root/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/f7f33030acc57428be85fbec092c37a78231d75a/timing_cache\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Loading TensorRT engine: /root/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/f7f33030acc57428be85fbec092c37a78231d75a/engine/clip.plan\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[I] Saving engine to /root/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/f7f33030acc57428be85fbec092c37a78231d75a/engine/vae.plan\n",
- "[I] Loading bytes from /root/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/f7f33030acc57428be85fbec092c37a78231d75a/engine/clip.plan\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Loading TensorRT engine: /root/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/f7f33030acc57428be85fbec092c37a78231d75a/engine/unet.plan\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[I] Loading bytes from /root/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/f7f33030acc57428be85fbec092c37a78231d75a/engine/unet.plan\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Loading TensorRT engine: /root/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/f7f33030acc57428be85fbec092c37a78231d75a/engine/vae.plan\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[I] Loading bytes from /root/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/f7f33030acc57428be85fbec092c37a78231d75a/engine/vae.plan\n"
- ]
- }
- ],
- "source": [
- "pipe_trt = pipe_trt.to(\"cuda\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "id": "c7defb86",
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Running inference on device: cuda:0\n",
- "Loading TensorRT engine: /root/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/f7f33030acc57428be85fbec092c37a78231d75a/engine/clip.plan\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[I] Loading bytes from /root/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/f7f33030acc57428be85fbec092c37a78231d75a/engine/clip.plan\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Loading TensorRT engine: /root/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/f7f33030acc57428be85fbec092c37a78231d75a/engine/unet.plan\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[I] Loading bytes from /root/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/f7f33030acc57428be85fbec092c37a78231d75a/engine/unet.plan\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Loading TensorRT engine: /root/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/f7f33030acc57428be85fbec092c37a78231d75a/engine/vae.plan\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[I] Loading bytes from /root/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/f7f33030acc57428be85fbec092c37a78231d75a/engine/vae.plan\n"
- ]
- }
- ],
- "source": [
- "pipe_trt = pipe_trt.to(\"cuda\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "2bdd0eaa",
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/root/.cache/huggingface/modules/diffusers_modules/git/stable_diffusion_tensorrt_txt2img.py:907: FutureWarning: Accessing config attribute `in_channels` directly via 'UNet2DConditionModel' object attribute is deprecated. Please access 'in_channels' over 'UNet2DConditionModel's config object instead, e.g. 'unet.config.in_channels'.\n",
- " num_channels_latents = self.unet.in_channels\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwAAAAMACAIAAAAc45fZAAEAAElEQVR4nFz9x5YkWbIligk5RIkxdw8PlpmVVbeqmqBfd+MO0Hj4KUzxBfg1LAwANC7w+q2L15cUSRIRzowpOUREMFAzj6geZLqFEdVDVFX22XuLHPy//p//L6qcszo2MDRDUVIg3zShaUottRaVhKjEJMRMjqsGAkWrFKrrzv4mNXfJr4tfJQVmclYaJ52T3nQNtiJ1ZbLxoPNB06ClkInkolXEctVScjEzMa2qCqZYyQCQ0FCqalFEREQXmB0BI7JXA3aOkck5Ip9yqVJTns+nfZoSEDjPtcrj4+P+sJ/mmR3f3t3evbkLoQlN73yH6IA9gqMYsWlyyk+Pj/N0fHz45bB/ouhudjf/4T/+5zf3H8F151HMewUXXVNEjsNknuKmMaI8pj5w6yw9H2Ue+lVY7fq51joLaB2Px+j8ZrUJzFXyeNxP51PTNiZaFZ1v+tV6njMiv/v+h8OQHh4HantpmkHYQhPXG3BBHYv3w1hKVXRekUVQFAANEYkIwAwA2dDA1AgRCcHM1AAQEMDIDNAMAQANwMAMCNGWfyzvGnx9gWaAX98DMFquj+UXBnj5wGB5eflry/vLMQABDMDMlrMgghksBwe8ntIAcfkdghmgfT0gAuDybwQwhG+af2nA5ZuGgIa2nAoRAcwUvn7DDAwRDdDMDAxw6QpeD2N27cjXNr32yuD1z/LX4PWHy7tfh9BgaR8SEgGCIRgigZmoGSIsk3Dp63Uovjb08tH1XMuQ2rdduTZtGbdvOgi4nAAAQK+TA4jLiUDBwBCvHbycC5dzGRgQmpmiLpNwGWpA1OXCIaDl+6ImgGJgJgDIoEhgiCZSgASoAqBjDj6wEQpwVa+Z0tmXfeeqDqNVdc2qcBDqnA83b7o6nfPhc35+CHlsvHTeeXZSM5ERWNBy0zZ9jB17rZZSTVVWt7thnsSYXFDit7/5TXeza3arijyNJQTO53F4ejg9fwmqIWBOJkKnIU05ddvtNOuUxzGNp+MRSB0JqILJMo5mgIoEaMa1gipWEXRMjrxnzwxSS5oJqliWOk3DKZe6266jjwDgiJ1z85hdcP26IzAyGU8TueC7lblVct2z9oPbnbCdzF36udzGgEKkCGoAqLbc15eLENCQLlP49TZEIFADsGW2zRCILnNsYAiKAKCoBgqAYAyKUtTQE5O3AlgqSLYyW06mQBhjjE0TvNX5+IR5+ND779bNbQBMcx3Hm7t1v2o15/Pz081ufRpkcu1J3Rz6XxJ8yTD7ppJPYhVADY08IgNU0KqliBQga5z7sOnvIq2t/nbb3zY8P3+Cefx4u75d+64Pq9X2l0+/Pr3sV7vbkkoA+/7tbYAyvzx7xszykOifXuS//jT8lOgEfUKnYDWJGbB31bAqALIjMBEzMzLT6mrdNXizaVF0mGdr+0KhACqjqKkqICKaqBkYMqASGIMSiqGpoRqYkqoBIiMRGICYmRkQEhtSoSpSGTF63/kVCpVaTBPndNuG77p2C7Obnr7b+W1jj59+Hs7n1eamCprK7c2u1HLeP683je+7VHTYDzYlB2Kqf/iP/7Yg//L59E+/nlJzM3NzmOGUda6liZE9es8ICU0C8jq6YKWcDu/frPqOn3794gN4jwg8nFOe4e7NPRk2wX18t6UpPfz6l+H02DXcBnqz3dxsNmmamP2q7x+/PHSrtmlo1RJaRSIkaJuVVnr+vG9DiGCd4/lwrsXMqzqdazbUd+/ekospF9d2KUvbx3/+7//0D//wD+f9+Mc//viHP/x2s32DJlZLHkc0AOSci5oJc+x7F/vnw/55/zTNU8mplpqmWuYSWt7utkhUpoRim82a2Y/jTIRdF7QqoI3DENs4zbnkXFOK0YsUB7ratu16NY6DY2AzIEIzIGRRQGJHpGYpZ0Lk5V8qakZMzBTISZKCPNcoYQ3djfiuoBfnVFHBxNgMUBmsilpmXPumWUXiTuAlpwOjxLYpKZWkisCRTQ1UTZVAlRyqEhAaEqghICIiMBMyoiMjcs6rGgCx84Subf04z07Mu04jhyZ0TStqje9i6J73nx8fHvcE4zh4H2/fvHV+vbtdM1rOGVSgGLtwd/eO7e1ufTfPh2HaPz48/Ol/+6fPvzy8++7HZn3fNXGc0jwewUduvTDMIj5QWPk05zoU72h9s4GahtMZPStISTMTqtTpuIemZUeO0CPEwONQQmiavp/nkqZ5s93meT7tT4jGKDknEWpWrfNaqFaT8TxXI3ZBVIFQRRWAmWgJ5IRmqoIA5pgQ4PIER7wGU0NExAvMWLCEGixju0Tw5VdwwS2Al8fxFQWgIVxhyuUQdAUGdv38FRHh8uISnq9h316P/hqeDfByGDSwJcS+PrcvEGBpGeK3WAvhKyq4wqTLL8zs2i99RRsIqHaBExd4Bwj09SjLOLxGmQu2wWsDLoDj9WhXNIQXJHOBemAI9HqWBUkCoYEuw6dmSHhFJmgKSPa3PQV7jWuvfy7dNjBA+tq8y/deO49my0DhBdFdmoALzLJLwy+TjBfgRMvAorzC1EvDDenbQV9AJBiqAZqRigJiESFkz2RWBZVMTQxAGalUUwKw2npgA1LQ2aSM3kotOuuI60jRb+5vuEW1okev4FzsV8E2kWuZTtMJHLVd6GNjgnnMnqtIHc/JdW3bcM4IYsHzmOV8OnDjs0rY7t59d19yPqUxRpYYdJwZsGlozlRL3d7ubu/vh6l++vLlab83RGYyVQBEwypLIAM2NCBTREADRTQwAQBVMCYiI1ApBYOO03A6HDa32/F8PtXz7ZtbUz0fT76JRlZVHds8Tia5qiQhakMOrTk2CgZOwalZreKcM0QD0AWjIwASgCpeoPRyzyzXNyCB6fXW0derExcsC7I8OI1AbbkGzBAUkcgVrcZEHquZqRECOaxG6FyMqHOZkxAI1gHrSHYKUH73/bt/9/a2k3r48mVfk3fERFUpFxqP2fm43a63ze5R/NP+hCkx2lSyAglBNRUD0OoICYEcATkFQW9a5/14lpx593G33SVpzmlYN34VEEqZp2kckmPfNd1xOooZmJV5zqecRW5/80H75ud6Ik5SgTzFNg5zKmCINuckRgIEYA6xCa5hUCtoZuP+x+/f3t80wyl9Svr8cuw/vEPTuRRmRhNVIyJEFDMtCgyXFRaj6WXZYGBGKKpkSAZmiohEKAqqYgAVIERnoLUMrMzOhei5CEie5tThfN/Ix00bYBqwZKsNSdx1w3E8Hx6B3O5mYybjcfBd13fxeDrc7Fbr7U0a8y8PJ/TN/Zubv+zFSItIqRkYZxkY+XTOXetWq0jkTlOCeVg7XHXtrnPb33xcrcLj559fng6991j105/+pWmbD+/ux714qQ70drftWufJSpLxNN7cbaHaab9vIm9uGsfkoKbTtN71qz7mNI6zkZV5TBzcMFYVff/999N8/vnhZyEIISiglMreEcNPf/nXYZwevnxad/GHj+/fv70HNbBqanmaEdk1TYwtD/PL/jSNcwWqQ3o5H55e9ggag/McoGoeqqPYtU3XNSnOksQ5VhGpRZnYd3kanKcYnGoh1rblh+exJPfmfrvetuk8peMUIjtCcqQKiECGzORUDRFMzUAxMAGDBbHsPHNkIqZCyl7Aq+sKrwrFjL6QqwpCaACEDhQJwIDENIHORivXozPXQhXUOpkmpSrEqkbs0JDNUE2sMAi6ywKUHGpVFSUAJHaO2bMAIDMhmigYECEhOaRqiABo6F30oYFcN9sdMTtCUwSs5/NZ7ZxyXm/vug77FYcYzuM81/nm5q6Jbc11099u1qtcbrebt+fz8fnhoVa5uRu/Dz+ufSM+nLJalRB8aEIBUa2mhp7Xm1VDVnMqZRIrolVV2YxUDEySOQgetKJpzgBKjGhaUwKpaRyRPEANwYskKbNzcR1hdRvE08PTeJ5mdI13AUxLrmRABAwEwEBogBckBICmAEvguobMCxpZgrZeCAz7Cn3gGu2vQfcS0PEVU1xhC14YlK8w4QqJvtIYf8PMfHtssyvMeEUudgVMZlfAcWWJFnDxFZ4sJ3sN0QZfP/zKzODX0y2DcT30K6CxS5dem3GBAfi6lAb72vC/gVl/0/RvjvAK8y7fQbhyVtf2KF4gpH0diAV0XAmgK6WFAIBIV3Ls2/P/Del05dcWSudrY679uAS8axMWguw6UF95oguHtLRtGUGCC0eAl87gws8tsMxACQ0BxIwQwdCRE7OqgqaMGJhZkYjA1AwVgaJTE6nKZIEZJvGoZvU8VReb7f3d6qYBArDajJt8OKbpNEyp6JjOL4jl9nazck0XgudgKUmZpWTHhlbqPDcxYpV5OqdseHTOU9Nv2q7PwyhVGDUwFURuPJrNSRDtzceb0HW+DdvQnoeTcwiAjqmqiArocl0tVCcCEBMiEiAY4UKmmFop5nDB64JWrGaZcxpGQmJyZIZaqM6syBjTNJ3TTFojIQFWEa3VNey8k6JGRo5NlVEJrJoqACAvi5aFP8XrhKHiFfxeSTq73t9XnhUAL3znshgwIAQDo+WWQDJVJComUhQZHdmq8VQlSS215PPJ5lKLWsK4Dr3X25uwBv+xxaZMQWvQYdNjcCg5VbP1zZ2NcxrL3Z1jz4epNAR9oFJTZM9gDGIEhUTNETAaAhGBgpkrKaK/i3TXNi6dppfkNe16qPmUnAPG51+eXvbnttkeXsZxyK2nzw+Pa0/MFH0MYVMTjdPZN6u2goW2EHtfrCJUJRBBrQRgxMBoaGaWjndB/s3f3fz9H+7ubldfntL/axoMkVFAqmkVKwYm6BBNwBCUCAxMUQAIAYGWO0kAFQGJCFEBkAgB0MyYwSkYSBvYZG4QGyRG04pm4h2ipVrKauPe9LQLijn98G59f9MNp9PKhfVtM0+ZOErF55djAWnbxjckDUaHOqepSIXqvVuvNrEcx3n0BOvWDKxWNc3vPtyyc9Ochlw1SzDXb1qruv/y+O/++KGPdse3f63zlKTrOL1M6xg9aZ7OTeNWqxAZvfNIIlDJhZIVVLz3ZpWMGh8b5yPmXRcagOfT0SW9aZqX05wTz8dzDDF0rkJo2/ZYJo5NUnh+fBLTn//60//nv/7DerX+/b/5u3/7v/u3ZGCiq80KGPOcqlmpEiKIwDjmaU7AsH96OU+zORxP527dI7F3HlsOGG7f3TZN0JJXTeDWGdI4lRCrc857Z11UrYaY59o2wXs6Ng4UtKhWZOdURZM6QiJiNECHyC5nK2oAxmToAEyZyGC5ZA3RgKwCifPKK/O9hq5SnBWr52QmIOy9CgBSAjMwQSWCDJClOoxtAL8CyQ4qVxXVCMJAwOQR0NRUimhRVfIEoFYMUIGVDJxjdEjOqSoCA6MZLnSkmhFQjFGscyGQ86ronGfwTawfvv/QruLL8VnAjsfzYf9ScgaZdrdvfFwBtp7ieHhxW1PBYZrjym9v7+/u3x6eXz7zz+fT6dfTP6XT/rsffhf7XXCxMrAZSyGCorBwZNOYXNeGpifHczrrNDtHkYmEoFYEIa1pmudhwJoUiZwjIE8gtaQBSjV1yLEFY8sFpFId36zua+Tjc3Y2ayVXq1WDqkQgAFaU2AOzAgPQEspEYKFmrpKXob1CmYv0A18X9t9G9AULvEIg1Is6ZfA/fPMrU/I/HgReBRb85puXo1y5kldUszypL1H5W1bnIk3Z3xz+G45kecpfnvBXcLN0+QK24BI6/sdWI3xt1dc3/4ZwueKur5DkeoLrma6Y7W8GDOgqNr0Kh1cQcuWlAPH1d19x1nVqrsjpQiR9O57fjuW1xWaGl0m3b8b8Kmjh9dB4peReEdUV4n6jvtmCDC9y6SvH9ZUQu5BgiKiLsGqAhiqGCKQLNhAC9QBOjdQQOYMKIUWCCirCaoHAIXlRBKNaPKl3SmS+axwRzTJ8fprTft6/cDpSPt/cNL3HyBCDX61W6Uzj81Brjj4O03w6Hda7O0JLKTNFq3U4nA+H4Tyn+w8fbt/uKPiKICmbSmCHUn0Tdve3x2k6nQ5ts4qBG4dTEQZnAFXArvgYEYiIEVGBAB25KgURgaxoBUUjM1BiBBCASqyH/UuIcbe5UalqxkR1SlUki5yPZwZZxehC47oOEMSsVjUABRRbaDxQMAMyADX9SiUaLCwv6kLcXW4NxAu1c50kVDAA0+WG+wZEL9QqGRCQAZkaoAmQkQFCYIyEIEIATXQinKYpEIDJSuBt3363bb7r2zeNyy/7bJlL3vYdd3GYsyjs1juj+eXpef/5U+HnL4OWpvc+sgGAemZUqKoIZFIRiJABEUmtCuSZNb+/2f3hfnsTlDS12B7H8eXhuf/Nh1z18/OhViAP+8cXycVt+8K2utl6buqY0mTnKU+p7g9jWN2dKyCjZypmhICAi6fCqgSHgYghO9QPbfz7H9/+p+92MVA9jSu0jWNDylWCSVEVAl3WloaLecDwshxEAwJEAzFgJDFDJlUgA0K+0LOGZICADqmosoFHaACLFJXaMHqqrgw99zfR33UMGHfRVbRPOjLVbnObgp5O05QyVUA0K7ldBVg3BDBPCXu36TcFvHns12Gs2YeoYiq1oK1u71a3N1MpQ6pjzoTBTA0jMZQ5nz4/ttvwZuX8/e1hKAX4tu+btm3b1TydGkZiA1U0yLPmWXarnpDHdA7OzeNM+7EBBA89hRXx+LJP+5P3bYw8Aj3vj2Uuu/v7c05ZRBCk2lzS40/P//rPfxrH4Xg4zvP843ff//Dh+998/5vD/nkeJlQzIzAczqkInOah1rNnMhfGaTydpykl3/puvW5XUcaSa+6aNvR9H4JHymAkQGShi46DQ6il6izBh2kS5/x6E2IMweO792/zlGLbzlNxTFpA1JyZkQETITIAOQYFqFIAjNBMMc/ZTL3nJsQ514Jo5DR02O8qNDOEDM5crIYCppdLAIG9gmXVbAKmDiAZRQ4GFBEdIRRnAoBEIoQAwIQEoqAzEgOrohGhmpLqVUARABRZIgkQETAhIiCaGhH6GA3NS42xQyJHjkwBFDDE6Nuuado2hKfT8Vjy9PhlHofTenu3uXm7WvuubQjFtx0xFMCSzbdxu711RC/hy9PDl4dffnJgN/ffxd19ZA81r1ddbOPhcMq15lxfzvPL42nVxq73aI7NRW+9dx5Ac6kpoarmWXKSkoB8F1ofTAlD36Vc5jSUGVpkxx7TnOU879342DU36xXr2WScRu86rihVfHBTmaaaQ98hBRUxcmYERGaqakYOCAwMdSFVAI3MZLENLSt6XIjbVzhzgSqvqsplAbo8TPUaHa844m+MKdff4SsegSuEwG8Jla9MhSHSFeh8JW++ikuX8y4Pero4h0DxEsuvUMWufphr3LLrb17ZDvgG/F2dQnCFB99igis2+Rux7opf4MpVfW3zRV2kK0vyipgWZxUtwi0AgC5wh66w83reb0Di38KbBcDgt6YeeKWyFvCj31Bgl+bpZQZfhT27EkX4TSj8Br1egdJV81qavcBnu7yvhkYXRdFU5YLiHLIoOHCKaiyoxRNbLgHVSY2hCW04i56lQkE2dSJerEFiwhYZHKpjbKjz2DXORZeLmfPBRwvx9rvv7tvv8+ER6hBc8MwENg7n8Xg8Hg6Ng6ZrZZbD4QQUQ9NsN2sKkWOsivNpevzpkyduPDqzQM7UDs9H7zBGv2k3XRtejoeaJQPXOWsqViqxIwO2RY4lQCNGRERdRCRhZo8IagJKBLDcZyrsAIEJoNRca4khOEfBexJVBc1iRSVNJrVISWA+9t2qKxCSqJLqRalmMEWk16t3GXlYBMfFGYRAiqgXGud6d+EixVw5u+sS44KCL8DodVWwYFqtJmbA1raxlESlWhZf5aZv+3Vfzi4Hf3o+37+5v990ayrfrd13fbsJsD/DbnMzTs3LPIhklVrnepR9AC11ogmzS8F397s+cIRkJ7G5CiIoKFTzHMkIAIkIhMioM9wB7sTg5SX71DW8urvJXTumPLrYbbd3vhtOkyUgSKopTaf79Wa37V4Ovz49PWyaZpzh6eFxPE3c32oRZG6YgDlncewo4liLY26dax1F51ZN93ETNgRwPp9rGj4d7lftkEtRaUWdmDmcQWetBRCJEIGMBC708YXkMV1GEAnNCC+SO5kBmDpjDwgKDXBmR6isSBV8yps+vL/vqUyH41Pdl9v3v7nrun/6//1L27rdxzdysz3NhbKy8XAYa5HbbV+1SC5pqG3fNhz1XIacC4ICuBz1eIxFYucZgRwUz+wUajq9HBHIt21ORab6p7/+1HzowzTVwSco44ybEN59d/Ply8v3N9tapUqKEaY0OXamNA3TeB4JCRDZR9FxToKGL78+8PkU7jeV7DCcX758AcCbVUvePXz6NKt9+P43ftf/8vyQ8/zpl7/+8uuvKaeqcj4e371//z//z/8Hmep2vXEEn376ay7zcBrevL2/e/fu009f0KjvwuPxnKtOzKfzaKrqMca25OIIZcpM0LfRmUFKqrZ998ZvV6oiagYAUjzAOEzHaR/bhp1btau4itM8zmNu2ngh6VSnWbwLq03npCgCknMmZqqIyAQGLCJSKxMCSC0lJ6s1F8AaOl43hbrs2hHjDL46L8wKtDycxZSM6uIpooVwhwImyMVAzRoKjYNIjoHJN1SKI2AkFNWSAbDmhKzMCGDOgVZ59fcRYdUCakjMzi1kJDGLVXLMzoUQsTIxEzESMVLbtVVy45vYRGKHwEx8PO4Z7HzYn4chldzEANE7R/N8KgoQGmBXjBAcu2azuQWD0/Hl4cvnl+Pw9of8uz/+26br5pyHz+cYAjELVCQa5lwtC0AbgJDLPKUq4FmkSC2Ixg69ZwBQA8/siYQ0xhC903GQrFrmQBzYTtMg80nT6LWPoH2EMswwnRsfBRRzlvkgmpVqaHpQEnPsAgADUwFTE1NahE0VIEAkQ6OvcfHysFyW/kuQpmvwvaw8AV4ftUvw1GvYttf3rhHcrozGV2Lj1TEDdn0sX7HN14f0wvu9xunrT+31kIsQg6imgAh6wUJor6tjfKV1bPF6whI8vvIxdrH8LCd9lfD+lsZaznnhqV6xyDcdXEbuKkF8A9IuAAyviOKKz8wQDNTMwBTU0DlbXD+qV75nIWjwOjKvHNUVqNjXAbs0RK/2paW9/yOd9QrjvgWeFyLomxZfrWHX16800fJyGVNVNTAzJaQFaBLBcvWaKhPXUpgITEHEkVpN6XQwqXG1biIbollNY3aOfC2RFEuq01CwrvpmHThpbdCC6enxJZ1yT263WRdNa8xdBMpDTbWqzqlM+ZDHfHjemyRtYzQh78YxP+1futW2Xa+ZyBE3MSLS4/N+OBzPq6ZhrmkG05pzSZWwrWlOw+CYNtsWwQ9sjGa1SCZTJWIgEjNiJDYEBFMAQSRCMKu1VsPStMEQSxLAalIBJATvnTPTrm3Wq75tGiiiwEBKHp1Hdmxaowv9ekXOAzhkb8xwXYQgUhFFWob4Cn+Wa/IyLWh6yQBQhMW+doGqBgJGAGaqrzfndZGwQCwxUVAEYCBy4BynWmlOUbKXuorR0uiwvLm5be9uws2qvpnfbLfr1tXzU6szl3TYH6HWvludhyFN07DfN6vNZtepsqnBusXWE/joell3lIFKXjnHYLMqKCpQKsWIEMFUUHKLtgnu3/3m7R92XUh7sjKfj6VvOXgh/+nl/GFzG9Y3k7KxmpR23dCc1Gx/OH7ePxeCLobzeXgZB2h4ngZUbrFBxNWmSZ5zLsM4rBhIoFH3dtN+9/FNyMM7V30pmiyNA6Z026+OpzqWaToet6tV03eHWj6fkzIoOGBWAhAkQgZCVAMDBiISQ+TFKW3M3hGASMmZiRvnEdCDbNarJGk6nOo4xjzv7m7/y7//u+H56efpeTWPj7/+davbNI4sPL14IvRCDz99Ok/Z2PWrVWzDechpzrmIWMdrBy3W0zSc9vMsPOzLOTPQsN+/ub3tu3iYy8PDA3RpTJLJr9bdUFK7bmIqn3766WMXtrv1m3WA8SzjzDF2ID1CUoFAszlJann2Lkw1r5rQdB0gKAAG1iwxNuPhef/y3JDebnux0qzXRFQJUpkt8N/9/g8///o5n/A8Hf7yr//69OXx6eGhb5uPH9/f32x+/OE3//v/9B/n8/zl85dhGGaStu9vPnxMUv7xv/3jNOd+tfr585dPL/umWw8po3dd15U0Y6ls2MQQve/7Bhl0Kn27YrT5PIC2TdP2Xdgf9iAao2ekUqpBurnto+/IcBzm4XyQWmLwyzJRCdttG9rgCABMHBl7n8pi72NkJiKAUkuepmme5jSXzXZH3QbjRprbGdrE7YS+klfyQggGRMsqERAMzBRkiagEHsnULBOjsZpT50WbYE10GThVFCKzUtQYkb1vqiRyBiYIRs6DAKIt2U6SAVGImdktVDUiqSkBEhMHB1dXhJlUNfLOe/DB+RhK1bbv7m7vHh4+H1+ewOzldHp++oyoN7u3d2/edetbhOD7XtEPYy5pDkQu9Lf3/uZm9/Mvv/zy+VMF2G5W33//w9qzWp2HXABAcLNddzeupAKSEaDhUHKaxzSbWC3R4ZRTG1yIscxJVMmRqeY0E5hzIQTOtZJVj9o3bipu3bXv3tzt7u5V+Onh6KFCOkJpIvH+dKCo9zdrNanzESo7H5suzrXmrOg9EhqIKhLTYhICACIyU/vKhiAs4fRV9vlG7rjmRS1x84JPEL56gb+Rl/BbJehbNgNehZQrzLi+eHXdfCWdYPHYGiEALLlIywGuMhJ+5ZCWl1eB50JjvPqTrk/9a7euHVjS2K6ci11MOVdEsyCXC/tidu3tJdC8kmFfG3PxUl8ahK/DtZCSFwii5giBWExU1NSY6TqaV57qikK/BV7fylr4le25YL4rQYRwxTYX9ucranplu+xy/FfIurBVV+7n4oCyy017BUzXZoACQVWlJVaDGhgomqqhsgMHxmiIwjVTnQJKmU4E4lehorVmZEJJG9SGDDSrZBfQOwTCkvP08Ni3XQQMhBFUGdjB06+fTzo3UMiSAIylIGoeyzCNkqeSE8eGfQh9BHLmgB22TWjbiMYauGEa9vsXhib46XQu49BtIpgnhfF4zqKzAcaiylILmpKq1iJqCkTMS3oLICxwghkYzIGK1XnYcwS3YiC2alokp0QkCNj2bdCw2qxi1+ASJxWaGHxwLFRNVDD4FtCrMYfoOAA4A0ImBTBCANKLUxkQX3M7cfHukBIZXgxagPo3V4cBoILZ18yFV67xcjECkLKZChp5YlNxtdbT+c2qv+tbm4cmigfZyfR+t11znK1GGO5Wu4l8GdJ5HMfTdHN786+fnw6PRx8jVvEYcgG/6qTpzhhHZ+ckgr7M+Xicxqk2XROM0pyxVBeCOCqanQuEwFoj1ZXCCvRdG27fvsv55V/+5fj5p89z4WGy4+Ph6fiXqUro4rppz4d021EA7zlKgbi9bbqg3XZ6ztA2LJhyul1tmkagVKfKa97vh8aVVd/Np/Fu13z40G861Cp4Hn765eUU9WbXt45Ap9tG6/P+LevdZnvzdvucyjT8aqqyyB0AesGgSogCRpeUEtOKHtk5KtOMjIGh9RadoqQ5F3IBwHkEBFWbGkzvt/FN8N5BeH9bv5QuWmzdj3/88fz0VEXO50kUHYh3VqUA5POYxpRXu41v4jRnc77v1hxa70/Hpz1BfvPD/dMw7vfzdx/exL5/+dPPz/uzChTXoPOu5PvANE1//P0PdopbFDatuTjD/cuha8K7tztPvoTQ7FZh3fzy6+dPf33wCNCFGBsKDUdSFkWZ8uxDs96u815Lttu37z2XcThOKZ+kzqY33338y6df/+//t/+HC84F0FLM4I9/98ff/+439zfbkmZEGZ+fSqlOy8c3t4TgXBjPw5fHp9NcqA1/+fz5p5++uK7LaZzFNrsVN6HWmse0iuHt3dsmuGEcypi6Jt6+eQein//68zCk737sD/vz88vBt3G16qbz7LwTsdWqa7vmPB6n8+hdyCnPU3HBlVRKql3TlSKu6xsURXYhemC1otUAAGIT57FIrVXqXOe5Ks5yc3vjN+9TfzsXGtBXF4wcoANTAkAgQFBVMrzc0WZoF+wsYMBOtM5EaizOjIJpCa6wlSIFLSM4qA5EQoiGGVRAFRHAIREsaZwBsdbCTM55QlJQUUMiQFRARGa6SB5EjAjkIGfNqbKjfrXOKXftOvjoySM5RRrG8enhyzxNIvIxBAwbRuhXfQyWU1vmJDUxc7fa/Nj3ruueHh7/8f/7X59+/ekPf/i9D92Y5ylVajoijdGhVgZ2IJF9bLo0yZzKql/1XTg+PuRSfYiumhkiMRI551JOuVQga6Jz3jOYSSE0raUmqbPM51mmjCLD+ZzRb7br8fzSNutVE0zk5XgEZTZwkiyVSyzmxSdudnFNqgEK6IVKAaDF7/oVhnwFC6+45Gp8vTLpuAhn15BPYHpNzromGF1R0jfRGuxVi/nb+Hz53xVU4FVxW06NXxmKC2TjCzTTqzZnX+U1fBXILgjC4FUAACOkCzS6poFfIv5XQeq1SVcM9KoafeMxuh7vmhNnF37sSkp903MFQFRVQgjBI2LSuYq8qooXTgouKpcCXRktvGC+C5yzKzbFK4P1TXi7zNhVdbsCs9cB/xt+bOn+63y90n144aL0Fb2+gla7msZAL7e44XVoUU2W3zk0D+JBGMRDKVQ4H+vRfIyiJqUE5wOb1eK1xjY2DkzFRLHo8OVht1uXaih8GId8Ppbh5bx/WjWU0+icYlFiYDCtWlRUNFU9nId+w8QIZiXlGhL1EplrUUu5byOXWoZZpqmmSUoGguCYCadpGg5HaqOxA3TjOIHUwA6IAFQVVA29u6gdDMRGYA7AKQjUlAZUDRGbdoUmVgqoEKFkCS6GJrZtq7WkKpKVFAA9O2YjRkxFHBsQh7bLGIAZFE1NAQxNTIlYL6loy2SDfiVPAa/uAr2gZ/vmNrpcGAvQ+ea2wosN0IAJi+FyTRZRR+BNNk1833ff3fbpUOfTcbdqfnizOj18/vTzL7d9H+5Xw9nAclWZJHe3N9K1+8dn3/WtBwRBKYE9A5Jn8uE4pYdZhEpExxx71l5LTYKgIxpIhiaUYgAOAVGqI9mt/G/ebm5bXlHZp6mPfJwqqDUhjFXnaTjP8113P59Hk9rF9cft+q71nWPwfmS3z+VQStisfAJn+t3726dffrmJ8aaPptW5PLras5Ro73dh7bKO4/n5oc7TSvRf/vzXv//7f3/bd/uU+KaZz/u4aj7cNsFpPk23jFVwrmoOxQw8VRFWVEIEqqYgxoROlLXakHu2tfeRkMgcQ5qrsKrK6XhovWuYwHvP+Xw6/7//n/8wvPzaSv79u91vf3MPafArX/fOx7aOU9uv3v5wk0F/+usncJyG6fbN7ubuzfPhIFVQiYG261VDyGlSsW0byly3v71f3b95nPML+XOIQCFnve2IysjptCG8bzj2N3LaPz88vOSpzqeP795XRFEdTnswNWdKdbtqplVzeD4EIgZBna3UklTnGaV6R6DOvO9Wa/ZN6LuMYHoqJqb0p7/+5efPn//668+M9MN3H3/zw3eB/Q8f3727v3EIxlRTOT2/HA8HRt60HQJpyZqLY//uw+1+GilnavxYUh7HYri+3TpyhV3bNw2H4TxmJgAJoeUYjtO4ajoMvkpJIvtxoCYkqTqNzaqFcU5JVquekL58eui7LnbRB69awSAPGQHznNCRW/WrkuaU6jylaqgAUg3ZEbEZNH2HwSVRan3s30C/G7EZNQyAE3rwfqHicSkhYgYAZEjXW/KSZ2y2MEsCAOiJnUitaNVJR7HWHLTUlELTMFTMyVI2KI4jarJ6SfSCJf8CKgcjQkRgYiQEAwXFZVVtwIgUGJGI2czMdM6TVI0xElOaCyjFNsIK6IPzoTVzRPs0z/MwPj78CoT373/br3bRMQKKSNytzydKJQO4bnfz3ozVvnz+yy9/PuxWze3N2zZ27ap/PiWQAml0WiNbRGCT7Wa1L7Nzdnu7MSkuuDzlJaHfgS/VjGTJbKtSRYSIGJRMyMQDlvP8/OlxHOXXXz+Px30tVsfZuTAec/B6u+ucial0DnOux6cHM1FySO4i94ARMaAykZkJoJoRuSVR2y6Shl3NHq+MjsFi5cGvFAjAlU7Bq+Hgyq+r/U3gfRWLXkHD60d44TzsGnS/PsAXXv/ivYWlftHlyW0XPyNdgNRCs+CyFrYrD/QNi3IFMXDBEfotoQX4N9Hj9Zt/A4Gu3btqdn8DkC65UK+S2GX46OvQXdCcmenyJeYF+amKMrGqLk7K5fcL3lm6ZMuvXqEXXP+7pvjZhdy6jMUCp/AbxAJXvPl1Gq5S4wW6XefFXvmtKza8zt43BN7luljGUA34MiUAiMAIqsVUyNRBaSkzzGU6eJkcKJwT5IAKLWGDkbLkaYyN8wzs0bRKrjYVBz49Pi5O0no+59OhjKfohb1M4zjlAqhaiyfumtbHxpjArKpO0xxiEwOj1fl0mtltmtYZ1XHK8+ycN5DD+ay1NJHiqq0l11LHNA/z7KUXoGIGiN4zkTMjrIvKtPSb2DOAQFUijNGx1P3hnPIZq6ZI0QdWgCqRHZJ55513vomOXEkVxRx6YChavToRtQqOPLJnH9j5Wi1XEVQFUzBFE7NlsYev190CYMDUdGH8DF/9fJd1iZpe8hkuvNE3d+wreNfr0xh5wVEVsiMInt623e/f3m+8Pj7lkoab96tt8A+H03a7+fDhA3obpnMaT7mW7eZNt9kNeYq7je4PzmOnVFLq11tu3VTzRmV2cQz8yzEV4BXSmvBt5NW2z44fpumvx2Fkq0BqQAps6BS2bWihcio6DzYc3t2tNt4dzhW535znl2HcrVcmiYE2u+i9breNn2aoxaQWD4ckx1Sx7X0AJ2WexvlwuP3N9++7SIY3zfbnT7nt3UksmGCeCaWkqWP37//zHx82HbO3LDinMk7vNrFKbW2uh/n85889tWsXJnInEXRUoTpHoIrkEREUEWrHjHVyJXnLa8KPN23XxPM0fv78hMSeogtOpeo4l5wsV/bh8WXY//qip8fbYP/px+/QINdSBLTxj6djUrOSYRx9E1SqqtzuNuhcmScHGhDqOM6nQay8ub3p23g8HstwaoLjVfzl5eWfX8YvAPN6K4C3m5WvBcdzyKd395u3HR2fj3U4rBqmGML2vt12U04iaTocz8f9v/sP/34dtmme73bNKmBN9XQ8RR8lp5QqnMdt37FNKZ/GcZ9vutM4vJwTOa0A05x//vzpf/lv/8vL4dS04f/4f/ovv/v4m8CkKWtN+6eXTdcHR13bPT/tazEgGE9TCKFM9eV4DpuVd57QrbabH1etD92Xx+fDMJScJNZ39/fj8fjlr59O7G62m/W69y5KhfP5/Fj2tc79qnseB3+7NtNyHpPWMoxkGFfRN77mGrwLjmNg8t08TsNp2N2sDTGNsxZw7z6+T8N4OA6n46BV0BMQoENFbNYrBfUu3r7vw+YmQ1/9bnLNPmuioM4ZMi6Y4/rgX/hZWuhBAwEwuixMLnZcWsqxkBgosRA0joqQ8ygOAgqz8y7WPBFXZwRYTBQYAaHWKlqjC+TZrF6jDuLrMh+IDQmB2TH7KpLrnHNFQMceCR0HKWk8zc653e7OuZjmGmMcz8dhOk/n8y/5J+aGKRAA+c5KFYzkEIyAXRVabXcRFOvw+PTlpz//q1Z99/2PsfMCCJ5UhT1QqU7EMazaUFovZg3bMGXJWaqAkSP2bUfkSqneOe99Vch5QhAMSh4az8jtmMuXXz7h0/HL04uagFqw6kmj4zQlTHOM8XQ8U6oyzoeHl65vvG8UKntXllqSiIjIpgqEZMVMTBZz7sXkYQvSILvAna86ySVI4tV//Bokv6GJvkZZvCKcbzgYBLyU/rs8gb8hLF75mcsMXs/0qnstv7hU3jO8FB26hIVFJ7iuja9q2ld66ds8rmvFjtdLBRarL1zD/qUc4qWCzldKBV59Ul+b+w3Qe01fQ7gadPDaa9HLbaBqBiUX5wjVTBWIccnxMVq8HFdPk+oFjrwqXl9zn1/Dol2kwW/KHCw069/MzOsEXrrxjZj5jWX2NSP/ArbwK7eFeMkcRENAVUI0MAaDJSl40WDYoSGQVqwJ6yj1jOPRy3yza4OzeZ5PxzMCNF1jeTBVrKUKqipBu1o1lksuM0XANOSc8pwZCucxOPWbbp5OziET1wo5mQ/kvQ/OVaTFR1WLgCQWC12jUg/PT56J2ZkWAnHAoWuk+LEWLXUchvF8AtBURUQJUjE7Tym2kclUxcwYORBVpKoQgouNryWXvIhUpNmG4axQ2+C05jwOwbfB8SIINhwNjcAxIDEjglvGiTDXnOYChoCsiy5aailSkdWr4YUGWlQzBnplfC6pH8sUEopd7lYAUyJVM9QrhL5cI4v1bcnfVDMytMVgDapmRCQKQMCBwMQxRc95HNwmfnz/RspTbNo0lw/f/xBDNLAqqWnXac5zrTTXilOFiirnadYKd33XtuTaMGo5n5Nka5r1juLzMY9PT5tV05jcr/t3mzgio6XTCKXWgL6YkDqoiiSkWlPiyMPTc9vY6nabvCecD4OE4NxMKaWSddW3aKqCh8MzilZE4TDN6TSTsjMKjBjbcn55fLfpexQe9u9u16MGfrMdsoyq5/2z1c4RtYY3676M4+5m8/HNzdPPn2yeVtHffnj7j//rP2aAccw2HLt1CDV7JkcuEJkZaHGIppkRPWB0wPNg59N3t/1vP/yw6wOKPh/2Og8ljdWFZr1SADYCIEIC36CHSYUqdq5b9X7cn+fGtGRCrqDP+3Pbt+dxztVub28aH9u2czE8Pr80vVKR+XgYzGrRm/vbGENuApxRGdp2da7y8HI6zYYhupzKcXRmLWhrcysZz8fTw09NQPPgPWxXt+tNL2k+PT2PltN40lrLnLwZIlbm1aYjojaCqY5DOR1PKmXV7Krkx8+fji/7ftV9/OG702nIeahSfvr5p59//Vlr+e79+/u7d//Tv/k3b+/ejPvTw+nX4/5wc7NZbXbTeJ7OE7nw5v7t4ekwTKlU2R9PsV+rYUnCyOPh0G575/zdbteteu9C4xsTE4G7t/erppVSj+M8SjGzKaVckiMbS+mk68BMhB3lyVJeeAF62u83q9V6sxIpzGDApRYi8iEaU5rzcDq7plu3zapdp6Y7HE+jOku1ipjzgXx7HqcKZf3mpn/z/vOhnGc4VcGmZY5JARWADAFJgJEMoRro4gJCFYKCpmRggHyhIsCQEZFADGZgARL0ZOSQGaRBbTxFy5FI6ujJUJFRzTOws5yIGRjIiklBNAIwqcymiAKoQAxAdElpU4BaCjERQErZ+xB8I8XAqimosPfNx+9+eHz4HJw31VTmYTz96Z//cTqfsKa7d9/tuvXxPJc5N03o2gho8/mUxrHv+vOxPR6PQj+da32fv2/6NWTumkZzUinBAZa8//xr46BKPn8+jVMq55mYiRwgsxEpoevYuSp1mkvKxaE6ykoeCVjRAaRx2j8clKhtfK5jGgfLiFitwNOvn8bTQIJ9038+HPro2+iMiNFVFYAKilDBoJoZsEPv8FrZbnng0mWReKU9FlnGEIAM9Fpv7yJ2Ay4aE71G2K/+F/j64hWILL4cwm9gBNgl/pohIl3QyBVWvDpQcCnaBABCwKJq1xx5VSWkqwXmIiCp6SsGWUq1AMJSy9Uuqo4BISGCLEZ9eA0ZtiQG49eefGPyuSAovH75b3p4hRjwiuQMDYwQdalaBwaGImIi3pEKgAHztQbipccKCGZk17rNtqSgX+SLV6bMFC7l1wCWHilcpatvmKKv9uyrzraQBUt0XPgAvSJc/B9m78rSGVzUxyvoRBMAWyRsQ1NzCmjmmdiM0AgUc5LxmPLR8slrdsyeGR0kGeuU6uxCiADShKhzHaYZAG5u18LQYHYmoXIez/P+bDm1ju7ub9q2OXBmqoiUZ+XKbcOeSEVUxMBU0TljUK1pOlV2Ls2zgnarVdM2XQiE3ju/6lpPNE/ncThP48Cea1E0QhI0hZqtkpGBqYmaKaJHACRsgkcxEnEEbDqPM4h4x10b2+gRodZMyEgmRS9Tp+YcemYDrVlUxQgQqGSqVZCc5GRS52kkjmDBNZ1b1HoF5EV0paWwAwICsqG+ov+lFreaECEZXkoFXdANAVnVSkDAgAAqBZGASUEBkQxBjcFEcmA2AFUVKWOe9prweNjd/HD/7k03Pp1zxXm+fftmOKYvnz69uV29v9nFrp/+8ufHx5euzevtyoEnDqdhYOC3d3dJ4fF0eprKi9BkGPrb73b90/lwZ+mW6rao22cxaw3vm5Anm1OpAAjgyLSKmBWwsZYQ2IHCPPcu3Dbt+Xh+ejjMgKdBDLBDbNoepZ6Oo0r2zHF3PxUZillsVYhNOzaU9D/99u/s5UGPj8JzCH7t9XgaXcCay7Q/bYJ/0/ht5Kdffnl/s2kbd3Ozns6HNjY+VZ9LBBlr2m1bu+3P57IvtvKOyJPUnIrWyg6b6BqDkKfbhrnoj9v4+3drSeWYp8PL/pwKOFfUynEIjQaC4Ih8oyApl1JyH6hbb7d9yCk9fx6261BVjs+n/f7MoW3azsQOz6fowt1uN04jztmITGqZ56q62m66GD5/+pRKsRAlBvVuSDKlFCjkae6mua95V/Ft5zvP3kHny+np0+2P3237W83Zex6Ox1zGXKZN1/j1xlw6Hw4PP6MjGs5n0bLbboPCcJ4d4Ie3uymVwKC1zudxPB2fHj6djx+n8fSP/+2/nYcDO+p98/6P7+/u3ux2N5DTy6fPRLjZrXxwu80utM2nz1+G0zBOQ3BxOExNbDa71Xd/93eP+8PL8bRZUQhuxeH0+Sg0zlKoDau7XqrWXP0qvLm9Px/Pp+eXnOc6VTNr+pZX/TSeD49P3TTuUun7HqZ63B9ZldFsTDnLar1SsJSTyySiaLja7kz1fJpSVfTeddtVJJQiPnjD54K1Q5jmooqA7Di2fY+hfznnc677nKxrFdRU3LVqr4qBXTdVWBY0AEvK7+WByrB8LHXZ1IKcsRkakQKlqo5dVkGQAiDEHBtLc+NjqeajNwXqGnUeq+h8NKigzMpoYibMBKBmqqWagWMmQAOoKmrVu6AAUjIhMiERY9vkUkuR4H0IoW0bR3g4BCl5mLmoDKfDJ5El8Xd7957ABweOALRUFDVF9r7tvv/xx8P59OXp+U9//pcs5f27jzG2zkRyytPA0TmTw/m06oLWfNofpqn4tmtig8QpFZmzkGBsEDGlknIGABc8MguIMyJAzdmgRqYkedqfUhrG8XQe59j13W7L55jO5912Z56ozCH2q8hCfJ4ymCIDIwBoKTWX7LsOMRK5CqZLyUm1i0sL0MCIcMGtcMERF4xzARxAS4aVgSHS8mu8pEx/I7foktx+ddhct52AixplcN1cwy7+oouOhHS5eMwUDC+7SBgrKCmqqhGoXbgPuhapVgRZPNMEZrZUsWNg0Av1hUALryQAZugJUAEM9JIttqya4eqsufTlGzxw0Qm/MdIszYW/EfCWv9fc9MVnTQhmKlLR7FqR7oJcdEE6ZrCkzZoBwZIstrR4aZTAt2dYZmpxXOnVwH75hqFe0I29KnpLHbwlUF5mDQAuesmrtehbVGf4inrNFtnF0IwXDg1QzaqAc1zVAhpCJc0NFA9ZddQ6eJwQpzIP55cMfQOijIVlJvQeEUxJwDtWB6iljINJYhYCnfePINVByvVM2JAmSUpmTdOIIHnh3gil5FyriGpoXAyRAEw1ZzGsLBqaOGnVlJvVqu0adD4nbfqWCGtNlKhtGzBDqwhMQCLWOB8cLxehXirRZ+ZAQN7ATADRe09gpeSUZnLs1ZuYqmEA0VqKqAICSREAAK8IunjdqlRmUsOa8pKlYWaSc6bRkce4YQOHEIhATEyAgMChIaIsGtdycZAaIgioXbA+KRgQkBLU6pw3U1EDRAFjRDVd3ACqqgSCQGIRjRRQAVXV4XJjFwBr/FzkcZ7kAMnF0fTp5fzfv+y//+67AQPNGubUed9vdqWQd94MnXfbm9sco5hWDlJznmYTi+TOhwfKaQNuteH7Nd86vnNa55d5nOPm7t16O0N9mcZiYo7BcxV63A+fO6Yh3/nSscynCWZLEEXhMMw1BItdLQVj061WDYEr83x4LgBodJzSYZDRGTkftZDVrqWbBrv77Zfnn+twMg3DNDpwd3frecicZRv4zbrxrN0qrKMfX/ZgNXhHVg9fPu/6dtX4VDyBG6HersKY+eSxjDPU0tYSHUCV1tdN8JDzb3c3ceVaXx/+9K+P+6O1zdN5nNFJiCYGWSzPvm8cYzVLYkmUQkDTJBP40G06zEetNeX6vD9khMOUplyj86u22ew2281qvYoO5PHpRXPqmtBtNrub2/1+fzydbu7fF+Sn41BnPCQZnp+SQCC3RrrZtu9uurWDBq3h3Xw61lrLPDtsUXEexueHRzBZNZHJxzYKMqieDyctefGOPn36ErwDrSE27z9+h9799PNP81zevL97ev7857/8xTk+nA6PD1+C9//mj3/crbc++LZrN5vVNM2b1SbG+PPPPwFYt1o9PD5PRdS700sez2dU+LDdnrN2VeN2u/Jeqw77k1XZdquX89h3TbtdT2Nu+n6YEhNNWseSn0/HNI6rzYrJTyUF8GJYDM7nybmQSj0fTnmc+ybe3mxWm23fdxh8s1nPtUxTUhVTPBzOuUoWNYJZzVXgTRvQ1ZLH25s+mWZVxfl0GACsCZE4DgUmlILgmwaaWIBM0ZyrgmaEV2rWkI20LmtQYjQDNVpCxjUJRRAMQBVYiRUA1TEiAjShqgJbG5thSl3fFKF8rg176IP1HTRNGc4GlTVpEceehRRcFQESdubQUJea2iaizETOe+d0BgJkRAJEtBB8rTUE7vsoVXPWVd+zQzR5fH5AZjBMNf/y6Scx/EH19s2HXb9CR6XMuSbJiV1QFYC62myO5/n4+PDy+Bg5fPzwzoGfhoNJtRCmlIbpfD7XyOSInbe+DSE4MZxrBQLJRWtRH8m7xntgDpEBTAWqFBVEqyi5ja4JAIFOhmWwVfBdGxqHqllLKSfNNW2j+QZsOBCFFug8WrsC9sigivUw7Z8//bnfbjcfPmZqM1FWMiJRc27JyVeFpVKQIiJd9g1aaqfBksSwlGMCMFqkGCIETqV4YgNgIlBBXIyyF8pIAJf9J77JN7MrU6EL2bTUA1rqjQGaVUNQFXXg2JiASi0IgGjEAQAl1eBYa0UiIygowBeahhgdM1uQaqZSJaMp82WXJOJgl3O+ghjE162xljYigC0j8dUEY/BaQ/my7YAuLNliJFeAZXWOujBJqoYOTQXEoFZCDAYEVhEASNEt1IuYAZAslfQIDFhVSNHEiBEAK6CZohkjkhVY6DcjINJX7ulCFBkh2sIHAJnZpUKJCqCiKQGAqZrJVf1cSuGBfltlCG3Z6OEi59GSu8yEDjWV7JjQkTnLKSMIldS4GnQKeSA9mL54mEsZ8vk4zOcgKwSTcewCtj2DlFqLZ/AMHBEhp8NeylRLziYlVzNtvWvWrUeXU2UKbbsq4wAAzlF0lOc55WoKTdOE1rPzTFRzGdMoaqt15/qtGFQXJAaLbVU95TSPk0OqCK6JwXmtMp4mU2BHIuKYpVZyTI4dqhWBS00ydUZGaGSAqEVVpJbK7MTgdB5C8Oi9ac1SAYAMRSszqZJWQiIEBYRaTaWYKhOoLuZk0TKaxC5sfGBBHBS8QQFMVZgc2bL/F4gtqjUSApmaVPPEiOi4FHHMBhZDZMMqFQmcd9UEAU0MxNTEmMAt/gNTEVNw3tl1SWKIyPR0OGkMvz7tz2lKaXw5nNi105C/HP+87ZtSq+Z8t2m98+v1SoqOhzmBrleta7o5DaNVgtI6NK27tlmLa3sX2na7udXxvHa6qnlfx47EezqXFFJaO6hIQ1UXnIB/Hodfnk7FZtv53/7wJgGORc4lP4z5LII+QOxpzkxxGPL9dx9Q8uzDPE+/nPOxaBEbzofYNy0b5ek2YAPTXd+UTbdetaWhT8fnrt0iU7fqoimdTiHBum19dDjN53mepsEHTyKkZdX4Mo/RQ2hDE5uc4OeXY7dxFatqum349393//TXT67RvsehlB2kj9/dPn5+eBmOs8jL4zRWJ8GnSgbWeYxoToqpmmGtlQkZoE5T0SGN2ty/udve1vGU8rS62TaxfXw45Jyx50WFPh8Om1W7bbsXeexjbJoOfGDiEOJ2A5vtJpP7cjxNw346zW44vPHhu7fvdm238vjx/baMJ8m178KJGsEIJmmcTi/7Ms5s1jZBpvRwPN/f7kDqeB4mR130TYgvh/00DX3bdut2u7kPkU/jeU7H0PDbD3d//kv7059/+pc///nDh/f/6T///Y/f/7Bqe5GU5rkmIdFV27YhnM/DeB6Bcb8/VLVixm3s7m5vvu/WTS+1ErM4wkCN62WuNqSub5uuMw7U+Eq02TUU48tpHE4TxSlZFcLqcMwZIZ+PZyYMrQdGdn6cEtdSTDf3N9G4KnD0oY/CBjGEdpXn4zgO45R80x6HYa4SGy+mbkp1XyvVseahb3nbb6eKTTv3/frz50cFm0vJwH7VdBVVcJrHxvvofGYaqmWtzISOwEhMFfRSMUQVFfwSP1QBdEk/UV2CDhECG3ikKoWcAhl5QsEiwmBNjPVlREUxZU81Mq7jLAWhh2xBC6kQs0gtoME5AImeyZCcq6k6jwigYATgHC8cARExURUhJiIUVdGa5pkYN+tVYGra5vHliZ07ns6l6vF4/PXTz7nKhw/fb/qbLgQ3wdnkfBi1Chh0/ertewOwaZ4OTy99E++2m7vdmhkI7VjS+Xg8PT/vNutN3zvvmQhUVZEdSZVLtbNaiQARl01y1KqKagVEYgJGAyxpSp6DR3hze9OuVuvN1gVXazmfx+NhmKVsd+ucJhspxHUV88oN9mS1YYdkQz4ffv6X+dB7B7y5d82uKAAhO2dXnwHQEsGN9aKCwTUdXK9KFhMrCAAikGgFgOC9qTGRmTIhCOJSop/AQOE1LwrBloKBZnyxsyjCJZDj9Zm8MCemwOQQUaQiOWZnTCkXsuqdj8GjqmfOIgvkVjCpAlUQwIAFBA3JMCybxzmoy0JaFYlQrpWR7aL9XbgcfOWoABcfxVcJya4AaOF5AFGX1GK+unb0UqPXdNn+FBEU1AQJHTKYWVUGWyrEEpDRcocIgqkpmJkpGjLgsg2fgTGhXFPuFmlsqQXzDfd0+RgvqhcC2AJyDEwFHINedlFY6KWLZqbLLhaLdveND+hSBABhCZkLO1gNUMURFTFFxWVrCKkElepo6QjzSc9P09OjgxIAGm8OjcTMFFSR0EoFAFDJ8wgxMjGzSZlAFZEWXqdtQwy+lGwKRkvVC2xcTDk5R2ZQnWPwgchHz45UDaSKVARij8ZQag1N23YNeT/nch6mcRzOx7OpBQKPGDwzQ79u81RLVUQzkapqKuSutYm1AqhDmMYz+bBwdVqqlOqZRRFCKM4Boi4IEhb1EhCWOnhWUgVGNa1VDE3FpAghMTARMgN7ZyZkEAiXIu4EZIre+1oEgQQAGAUMmAAAFUSNiAVBRB0YsgGZVgFDFXCOFbSUCkyGQM7jgnqJBK1IJUNBY08ZjZgIAZF0zlaqgRjjOaWxpCEN6sL5PEuBimKn8e7NOgBAmoAsAMU+jCLDeUDE/f4wTSfU8vFus7rbzcOccnm36W7ubygGF/ioA9akmqUkqxVqaaMFMBJgB+yIY0CEWufqfds3999vV7c9hvj0z3/dn3NSaNd9AhiOh01sdE5jrvvV0DVBXD+hTrUS4MqTVmhRtm1w1FCaXJ7YQd+42932rHnTxhpI0JjBq4KqJw1Wg2LNaTyd1MwFRiJ2LFprrS64tg3J02h15yTB5MCaBn+za/7Lb9/9imnKoznbR3i3dp2rJDk416+aL8OJXQQXZKw+BkJxACAFUU3AmRCCR3VQKE8y2zScMkUAI+/72EzgNre74XCuhopWao7IXdxEhq51Sl7Jn+Z8Ppx8E3ORPGcNtmmb+fSwIvnw2/vbdvX733zXOSzncx/LOc3YU5EMZSJ2Xb9OqaApgr59c2e15JwE8Lg/MEBgjm1jpj9/+ixQnaOMwNUeH59GSdM8FCnDfvjy9AgOfvz973bb2z/+4Q9djB/ev5VU/vl/+yXn9O7t2zTlbtWVUh4fHsZ59uxxiz6GDtancdre3RGTGp2HOde0420XVnOtuVTqG/PxmCUTOXLI3sX2MJxyrVOe2zxXrRXEQI+nA6GlOXvvgUTFiJDYHY4DIjQxIkFVPU3narldr5q25TakwYapGLqkep6SAJgDR+TOxWqWAII5NyH0IXSr2MRm6suQ8mks82GE2AYVqcZzgTR0N0yeZ3RKC4GvAmrsgFiXJRECC/BSQNawXmqHKCAjmZISyFLvXcCAUExQxIN2gLGUUGc5DL1KKYk9u9C62ya1EZjyAWUQVaNUrBYw8ez7VVDJdVYUYOcQmBlFqpSyRJclTJiB2LIjtoqaZhvOw/l0arvYcUfEb97du+jbpunb45jmcc5Pz1+Gcch5+h5/u725qWlGrcwwHIc0ZdR118a3tzefPqVf//Kn0/PDTd+9v78rKeU6z8eTTKPktH+peZw3263zgVENOXguaopI0ZsAEkYfDEVApWiecmDPjpgtLCbzGEoqjef1ze39u4/r1Q4dDKfTF/t1//iUyjyBiWiaZumqON9064aqSsWEBNboFOs0v5y//Ak3H+vqfXC8qqK6kGJXhWop9HJxr1zLIS9bMy6uEERc8t6RyASAljXqZa9wVEQgBgQwWQzPuGw/9LofxNUsDAbABshm1wo1pgZLFRMDAmIFEFM0Zc9AYNUMiyESOZMFhAmoOkdGDNVUFBWqVjIM7DwToy5M1LLbql1KmNkVL1z0uUvWz6uf2AAXYxtcHcNf/TSLrAdLvj4u4tPSSUAAI1C6fEHV1EyDD54YAEVV1ZANQAwU0YEhiDIaqZHCksNPBowmQBWQbMnxWdQtJMJFbYGlnMEFti2c1qIdXmVJJDQBUAK6lvi57JRJsHjNkS61gy7C9bdpcwgIao4ZjGoVEQEwTw4JSJWKRcOI3IBxmnU8yXiEaajTiKSuaxwFz9yvWhBBLdM0pHH0PsQmmGme5xgCkxep7KjxwaTWWpDIjBAcElQ1kuIB0MB7dJ5rseA9O1ygjyqAQi4VmWLfKEAtkufcxIaMapYqsn85LcVRoRiB1VKyM7pMGSw4e9mUwQgUVNWq1FpzNRWpKYmPzWJXNFHQGjzPGb13fdcUqWBKS/F6A0RmUu88MZRapQgAqiogaBVZ9oxF79h5F12IalirMKCqkoJb9rXxjASKWNHAmSAYKMqy/NBlpz9HxIAIqHMKAAFtmmbXNEbgggckUyEwk4IECCBqhOSdx1oF1BwZMdaiubDIdt1vnFv14fC8Pw/n0aRdrc23p8/PH3Y3d4FXHu5bd9fRPBynIc3PxZQbojqez0/PN7tuG50r03f3b+Pb+Pj58zwe+nwKfns+nvJ5f3h56Z03cvM0SMxkNSL2rRuAHHhER6yx7Vzwt+8225uWoB5eRkR4eXk+zOq63tXSqzSodUTL5eEz3r27r4qfng6MLjDdkGxa8L7erWJYtelYvKbplFCrQ8vj4MBMMjGpUp5SCMoNqeR5SOU8Eki7WSnhOY1pzrGJhjgNQ9s1HfsuTx8628u5Ub1t2u8j2C9/vrdBG62MYYXl8Pjz59x26+L942EkgL5vE8Sua4gBayo1M1UHxQM5UCp12wdMdrvrPr5ZSZpPMnuGeczQdOhQpcbWh+AUZZrHVdub02kYU04+cmw4VXceEyCVaZ7mOW5WrdU1abMLv/vh7S52LU/epPLA2Ta+sHeHU+UqpUpA8yH2b9+iSGAoswU06qNn1zQ+BH8+Hr98efar2IY+pfw8DXA6zdMUGvf9dx9qzQ+fPz8+P7159/E33//u9vZN16+Oj49fHh/G0+nzw2MMXkDJ6OHLU/TxdByI3O7NLsRQDAix5po5A6FzrulDPs3TPPoYAWESAc/P42hGIkhaY+Of9g8Pjw/sCdGm86lKZTLFajUh8WbT7O62OaXhNNWSYnQ399tc8mk6e+DgyJ5lteoU4Hg411yfng611s1uO8zZxRiYfHDBkXsuEI3WPqzDBhCnIWMWR34ap3bdzzryWCrCPM61Vh0TV+J8Iu8cMSv5a42uIlkV2fOSlMJmtKS6mBKaLj4IwMXdB7rkk5ihXvbxVGEDj9JYteFIqq3jOp6Sgq6JpZsH7Va7cy4mJY3ZStZqffCtx8Y5YTQp8zyhmWcvCqIqImZapS7wpy4reTMw0KrEqFYRgYi8cwgRUJrY2Q7YuziOYZjO4zSejj+VUkp6/+EDB9+0XeP5IFJSGo6o0tQqfdud+JDG6ac//ykNx5KS5Kmm0UyaJpyOx/F8NrCmb703MM/s2KNWtVq8DwamWtERI6WqWk0RADEGP+daUio5z2P2oXWEqBoC1VrPx+M0TghSUp3BQhPQXE0TkUEedYRUizA2kXU+3W/jl+ejHJ/rai39LXfO+7aC6bKCNbjYgS580GVTocuyFkFEVV/tIBUE3bLxlVQEUFFmttfKtYvX56sx+Vp1ZimXANdcqws2Wg6qaCgIahf/FjlaPK5SiwvBOay1mlRjW3ajWhzHgKCiXhHQIZoPwTOaFM1jmic14eDNRYodEasq0WIfuvh9rmlpi1H4giVQL4SPvQpm10qDS+4V6qJ/2WKYXTzPSyIkqKIKLwyZSmAfnBcV1QVPKRgtPh4wQxVCDWDBQEsFAEdggNkQyVfgJbwu9dlNl61LAPF1PO219MMizsGlVpCgCRMjKJp8UyURWMEIDB2oIX31sS9EHFwwrgAYoVczx4gUiBzUSqZsCkVbhh6xRcQqOqeo4phD1zcNr7sWRJsQiFHM2hC05vM8ZxVA8T4AEju2KvM4sSffr/u+T/M0ns4A6LxzzosYKJoTKYKMZZyYmRhNycxUxIBCcLikkwIwgvPMjKXW4/4wzlPsGueZzLUxBu9kHPdPjyUXIvJEuFQ6NNSiqmIMqiZmJgIgVYpUIXRSi2Zz7B0zo8Oqy60SoreMeikTgYaGCLQ0Ec3UpCoRsSNTqFrxYvMy55jIiaIQgojNU+VooITAxGOuLrCBKVi1Yh6XHabYnKgRM6v4EEqeKeeWrGVaecZdc871VItvQlEptVhJpGIgxp6CV6Oi5hnBKmiGKpREhmPfhI/rVeu9a+jlRWbRGkI2dIE361jOB4kOxa9v/JYV63iza6u2YwElfnp6CSSb3kUnNWeRqe2bD2+3//K//iXX1DSNpDkPk4pV73zf4jlPUkKePfneu6bSKddk5giYOQTHpOm4V8lTlrbx685//vLZpflmt9vdrB2iznXiSiC1lmqQc9r2vG3ZplxLwip9hRC8jzg9v4xz6mPMaczzCFrKnGXO5CMZNOu4UJOgVnMxFECdJQ1pZucpOCt5eDl3PkTBcjxzVhzzJjbf3+y+v+vk5WHcP9y+v3Vddy55nNL72/vudqePB67CUgJaLWUVYi1FVUpK6Aw8BjKs2YPe+rC6W79dua2rHfC2D6blcJrGwyFst21gNVIpoqrIovJyPI7nkzFgQEAMjfdF53GUmqc0KiRCWge7WYWtswam8WnvQLrGWREmmoc5kLvbrLIC5Lpet22M8/nw8MuXktLd/a2PvmRZ7zZiqiMJs3Pete2oOo4qc9o/753jtu2ZtOu6t4a/+/F3637LCFpz13elpOeXAwXXrrufP315++YNMM+5hKatIIZ0GqfYdsxus1lNKZNj33gT2O42bQjEpFnUbJjTVCV0qzwrKkCp42mqKa/7DbJN44Ae+94PiQLBZt32q16qYJXb27UqgKFjRvWVStPGNsY0DofDUdVK1nGacy5t02HorRgEF4LfbrbemXuo0Rsk5ArYIthQQKdV385jguirqTlC9ufj3Hbh5sZXsVmmPCIhefNVETmQi6g2lcyuFVFYvM5LuoGBEAChKixbAZuqqRqKAlwy1xFUFDS3jVuTVatBplVsudEBipWJhlMb0KYZUi1ZrZpDUjDJmR3bLAKlFFHAmktBATUmIKIqCwyypWC/qjJR8GGWqZRSamVH3vumiaoulUxYgm+0QTDXxr5rp6eXfS7l5eGLlbK92XXvYlBq2IXtOjgnpdY59333uz/87nQ6TNP08vgEak1k55zU2Tki4pITEYpUMFQVquwdIyECqSJ7D4gqVRRAjRCrCosCQc55GoYFIozDMI/jkzyWXBTtcDhM44hm0VPfh6ZpEHyRejo8A7OkrtTiG9+5jeWz0+TrpGh1/5jjhoH8mik0xbBeBCj4GlcXnoCWVCNAQCMjMGYkoSoCCE2Itcq17oEpCCLrsnEUGNriS756apcvvco1l3T0VxsLLPkvl0QkUyQg0IugKaWmGRDBioiIOQZkQg9YwSwbgkZiJhQpUItDqmWu45DmIaXMoW23NxwX/yjDtbrQIvlcpR+46mB4VZdeGatFJ7JL1WhDBKKLdfpSHWepvUJmHoykImQSrLVCBecjIYgtRnJdipkDmlpFAIfApr4mKjPWgiYEqEjeRYpdoVCNdGEsVM0UGAAZrjn8i05HQK8l8RbtC5fZW+qwmzkmRKoqqiaAl7oUdJHS7G+KRxoAL9l5piq1MrngndTZatFSo3eMGiW3aFvSWmcpae0geB/6mxh9dNEze8f75xeptfWe2s4BpFJUTKB0XeeYzBRM85QkNk3XtrE5HPZpzqEJTdPFEBCslCoiaCBZiHXBggRA7AAZgAhZTUXUe980PSBKLVmSpWxG3bo3ZCJarfrCmMsoaVKRVIVgcc2raWVHADSXScScIyZWK1YLERA5NfOGDpAAaqlQVUyJgIjREIyY0cwYHSGoqRYFg0umn6CpkAExg4Fz5IMDw5yFmiZXTcMgfQssTOiAodZFqyQ0IiugxkjAZIjAaGJSoUiLMpyff/j+/cfdlsbhw4f3//iXT0/JZpKxipfJmb6/a8nh47mcIe8nRQwiyJD7oB3Wzluz4e/f3rx9szucpqdhBAPfNqFf+eCdZNe7nZTblvsGAxuZvr29IYdVWU8TBdd1b37z410baB6Odc7zPB4U91++lJo48sP+6fk8THMRZo1tDa272QLQzXpHQqnSudhTqjlLRVQUT8RVA+v77XoG++vj43f365qTw/j9h/d9G8FKntPjcxltYh3nuXTR3mzDLvjYYRrKMI5BEbPTml6eP3ukj/e/McueYRVjKaWmSuyDd855RCy5OCBhyLnqMFVPvmF2bjyfNSVHwIA1z5onJ7b2utn4+22z2wTX3Ol8JBUqxebp493d+x8+fHl+xmm4jTiedT6+tLE7H45QahO9WnYKQTEwEZTWWYfz/br1dZqHcXO3bvvI3KRc5fmAKfcxnsbT8bBvg++QpuCQQAjb7ZpcqNXSPJeSVLRvI1qdzsfYhlXTtIQ6D2Hdru+3UvL5eHx5OqzWq/GcmrZzjg2MTTpUOZ8Onz6TlNt1hzXPeVrvtsHROBcR9TGkJMO4P47n1aq/f/OhCv7ux98wSBrPfXC36zcNxpcvz4Datm3bNdM0pXkuWj49PaZUKujd3Z1vXIzUej9Nc7dabbcrERvnFKc0pFFKHc7DZrNqYpunNB5OUrXt+5sPt2PW0JsDGl7203S+vVlv+3ZM4/PpaGht13pCT2ypcBTJ2VJSs3azMoXTeRjPU5HqmL0jUTkeBxXY7XbjlIw4rHojbxwUfDE2F4zMDX5Fgqfh5QjYMzjHTlUriYuicJ7KVEq/Wtuo2DQ3215K/fL0YjZq8YFbMlfmAlq2TbttV6dxRgNRAwpGUM0KmrKaGiOZysVEC1YNgJkJVMwjOsMAEFQbkNhFn7Kcn3u2LjSF3PFlxEhQnMtSU3XEbRN0OqU8ZvTocLZU1GSxqqqCKgB5z6SEQAjGzFKXkoouRF9qPh7P5+M5Rr/kYZmpcz6G6Mx79m3bmuk0TsH7cRinOZ1eXuqcSCDEDmqNMaxWfU6pa2MFrbWqiGpRhKaJv/3dD/P48vNfxiklIOtWXewaETMroqoZrGli2zZdh0jEpIAp11KzqZmA1CqlVs2lzt5x03Y0pVOZp2Eq2aZ5avsOEUTUzLo29G30PoChSCnTUQlLGozMQS8zQU3T8QAyM6JO5/nliwNuY1T2xBEMLtvcqC5lZ8VkKU6siIvDncAQ1BsjGEhy3rFkMBMFA2BkXQpNExmAXPLWAZbatXY1P192t76qLbA88FWXpTzSktSLBmhAqiTQdXFO9TwlIBTTXCo6Ty4iemZkRClKZhHVgSWQnKYyV1D1VoAR2HEIMXoBVDVkADX6WgNoYXQIbKmXgsvJ4VLpD3RpysU5rXYpD21oF2rGUAEY0ciUVSKIV/EooDLXAkqkAqqXBLfF82QCsmAqbT1RFaijno8RKqPZYg50nXfECElZEYCwKqiBqgBfktMXNnNJ1jO7upNMRc07BwQqlQjQ1DvHTFSsVFlKEOhCwH71P1/Qz8JLEfLFSwQAAGmaQOZggppablsHOqSA2emcz896fgnruGlD3zSEDIBtbEpOqJUBCLGLMQQcxrnk6oKP3oEoqHp2JrXWLOKdY8dOnHrngmPH7BwvCe+mhkSqKiJM7GJcLIYiWmohxOCDC2GpfDGnQs6hIzUtuVBkQmdAiLharwbTNM61Fh8YwapUNWmdI3R5EjL1FFXJoyuQpVZC9c57z6BWSy2SVauaFKmqBsSOybtLiXoTLbmqCYA55wCw5GKqhBScAzB0hESmxEQcY0LOoKICThxIJO0CL7ujOraKiCYGyEqWSxNcnWuQ3Bh4kMjwsXV//3fv8sPjbuPLXbtO9OmQ6/nw5na18fwf/u67pmv+++fnf3l6SoeDaxBVG5R753/Y3bzvuiB5t1sB4KR5Pp+rVBcjOR+YvKiXugv88X77rnMljRMiBlz5Ztt3AHoax3W/BtDjYZ/yCCbznHWmuVomOh2HdJwTInBUtGGaUY2ZwbgJoQrHWgJh2/oyZhOtVk7DOHdtXDddbJ2VYLkU+rjpPMXff7g3rU+PD0SVrBz3h4qWFRvPeTwNI9zd33CCooJpNudIpO+b2+2u7/vj8bCKMQIRlqnKLAY5Z5PQNCKQ5jynWkWhKjL4tk0pz/MYiW9utsysYNE7cMai2y5gnV8+p90qhNZrtWF/doCO6eXp4eHLZ1J4u1uP43xIM6GDOjFy67xvWrVa0uzE0LJXkfMsLNM8rFuXa/708Hx3dxtic7PDVPQ0nM/7o6Tc9F1N5enxOW/69Wodmi7Xej6dximbQQjeO+5jC1ra4CKhB2ORdBq73dq7uC8igBQ8B6tinpFVa03n5xerkqcxhNDECIhdE7a7Xc51PA1Sa9vGFtynT7+SWMOhpPLu3Ycfvv8BSj7un4fjCSoenp43u904TV8+ffGeC9QxTcM0Pr8cSympFPT+3e3btolFK/uw3mzQwDG3bYc+ysmeD/spVzmPp2EM6BA4eEcueOIynBB5e3czPmkbY9/EMuf5PNQ5ucC9D0pMnS4Co0qNztVUy5g4BEb2zocY0pTOh2MT3f+fqj9bciXJ0nSxNehkAwB330NEZlZWdR+eQxG2kCJ8/zehUJrsU51ZEbEHdwdgk6qugRfwqBbebcHFFrg7DKa21v9/X28SUxim4RA/ruu2yzAPn7/O43aq/Xh7W+RYw40yKDlNzWABiugMx8/r0W43NBVH4qk70zAuClEtkUVq7LV2Y+hTHNdVzNIQ2RSaNHFSpuYi5h5Ce4TgEcDMDYAdmcDAgBWczQtRQmKHCQD2DbjPCYcQzECPmjGpwXI9NLhXj5jkaEEag3nv2mpjraqCgilwiFyCNjXvZiICTBgTg7up9y6IHkCkPx6YLaWYS+HArXUHKMwhJpDu7Dln6cIjE2LiwHi7L7It1996m0+XaTzpUQ+EYSx5LPvRlm2NOS7LcXu/vjw9bfVwd46xye041pfnzymGGLCLmFlrqiZlyAQWQmwiTUTNQyDw4CLapLYKqI9Ksog4eCBU7Sknla4iiWMi7o/tFTgTEOI4xLGkve7rdQFC0o7S0DTFcA7jMF4slntb5P6DPz1hGcyAnIgYkcA+grAfrH0ABGc3Akft5JacHMykBVaQiv7IoyCG/GhLAYEawp9gTAL7zxrYn7Od/2x9Pygnpmb2aIqbB/RI5LVG8IiKpkkUrSN7A5PerEs3Y8FUQgBmAmezfefuMQCjzBPVQ+tRzd1Un84Tz5fdwNw5BhVlCo9u/2MF9eiE04PEaAAPTs5HO97/k3n0UWTzjx3TI5bzqIc9zOvknt2ztAl0jAoqN6noCRAEXQAcyQABFM0fU9AAlqQFa64HQLtELBGl4daP/dCUEzsCBGNyDwCg5A9czAPkjYRuf74xeqTLQc3JEdUQHM0RlNwyQQxMZmAK9vgjg/jHRg8fP/LHwvKxnDNTDcQxsImbCmp9ehpJOJr+8nR5319jvet+47oEa9HplOexlFpbq3U7WogcIqsz0+NwlkqCkiDk0PbeegXQGDinmQh7raA6DClGjiGGFB7nspSju5tZ107EcpigAVGI0VRqbWoSAqWcwKEeNeWUShYxcBRRaMLU5/OZU7hfawBgYncPMTCT1ANMSmZt9b5dEY0drbUYYxhKY+pigO6uKl16N1F64MsePXfzj4+xIyEhYhd9FN1DCDklADQxB4wxgBvRg+uAIcaQSsPgFCiWjsAEQwJVQacOTuzbdjD5MBAERCdDCNoT9q8vwwx+vL/Hws+hp/b6NAvUH78OxgR9Ecf+3349fRnjr4ONE+JTljWs1tb349dfPj8N5V+f5k8JP+dAanW93fa2rxtnjp6O7t6UAGFvo8PLNAbXWptbq8dxlvR8noboVK+lHSnQstf7z1cImOcCIamHTaF6luDrcVSwp6dnB5da+76oYChTXTfnISDovumBjBARQGTviPnFeXi/7+ZHMnftlyFfXi7nJNL9R6vddTu2+7KuBl9+/TXG0G730zjcb8v99ZZSEqnaOhJ9+fQcQ1z2tQxDTGnd2t5rieGf37+3djSi8ssLxbjWQ8wocDepS88iFEi8zfnpPM9Hq9uxDMMYibk1VGn7cuzb+o7eJKW8btUNCRnRhiEMEDrov34Zl+q19zm1HPN8ChQQQvztn+8ISCwoUvcKT8P5+YmsG8b7fTe8t7pd5gtpV9OU0uVyeX45g9nt/X257/XQYRz343h7f48p5xRr24/tlmKahhwAhshTCVbbz9tal20Yx9PzSxgnJJpDOfYWU5JlO9adplyPtmx7e7vtVV5eXrbb5kDLel/3fZwnYiKn//3f/u39/p5Tqr2XsbzfXp/m8+X5aZ6mdVnKkEUaWMsZa61NtfeOgH/9619iznVv72+383wxwOvt2nsPkVG0i7tzKFMVu229nE6v9/ux3/+3v/7989Pzj+ut7/X19o8f336YWJK/zyM9nb98/+3HttxrXdlgimnkgBxk2W5v7/3o0zwPY8lxjKEcu3DIZQrbtgXOp5fLMKS2b4Z4vS8Y4/l5Rg0E/vrt59vr4uhDZjMKqwOnGMO59mgI7t3EfK/YcMao0oli38SY1fHtfmDfsxq5RT8ocEICVmIYuf3zt99DLCEODdgoiXs3xUCPnjuK8SOqaYREBoDmSEgxqmuKCaQbQBPpBFNMnAcEiKkE4BHs2I8umGYSkb7e114LCgU/2mGqlHCMA8b8qJwYgHYFh1hyTrnXVvveWiVANyPoauLupZScM3N0cjMjYjcgtBjwIbvmwoGZkKR3Zt7W9Tjq6nfrEkJUy2rVQI/e1CTEQCHWLrf7+vvv36cMHIO5qbtoB4SQojp03c0kh6Da6oHqrubLbQkxzacTJCLo4GDakQmQ9+Noov5oYRHFGBwoMIZAJcd+MDqYqopwjIGgJO4dXbq4HWgpcsppHofWdRoHyPl436Qv3O5YS84n5iLmSMH/RNP8SV12dCe04BbQMnhbr6ISCBgCOjoHBIqU1EUgdndwBfq4LYD+OWT5s0P+cWb40wTqboQQGPVBGCIncOySXKI0bWtbtxEuhZgQXSSIPNK7CNBFAnFwJxAgo37UZelyjHPu+9r2BhAcA+GkXcSoeksxBSZyeEiz/QNi9aEYoI+F12On9chm/zkjeuSajRDA6T8HQo5OAApuhB7Rk/URZPY+SUNQw+7IRloJUEEZzQAE2SygJlQ2jdCidun7EP3TqWRSjRYXDy4oVTkRkzNWfyiqHEA+ANmPqpnjx9v7swwGRkxkruieYgB3F/EugZkCu6mZgpu5ItJHEw8euelHBpzwAZtxcHDVju6RPGL4fL7MJRzvryP3VTc4bsn3cSDmNGUuKZQctLVlP3JM5TQcB0SmwARA/rjWVd2cCbupu+WUS8nuKtLclZBKiSEEAJCumICJUozmbuYOrm6mBgc5stkH3QoRGFNO1HqTrqenSylJAfbamsJU8jBNMXAex/uPH/fbveScMltvZva4Bo3gPI8A3ns39QAo5jEmIO9d0V17b0dLOQJYjAHJvDnwozHppoZ/ZuVTCswB4HEm4pxTb2LqKQZiCCmoOxFTCJSGMlwCZ9AA6EyQU+xA7/drTCFhVzfUwKk0gIaG4HPh/9vff/0c+fof4frt9zPq8sd/bMdScorpUsB+PSdaeLD9RFR//lHf8Dw/P8HxlwFhnp7mmLT+/ZRK79sfv7nVeBqGYRi16PuaQ9bA4gCtDWATw8z4Mo9tf09j+fF+RYT3+7Kv2vsxlLhu121rzy/P93XfNgkJ5ahvy+HE89Mp8L1Li+OoKqYWzMDB2n4/FKenmMo0cKq9djfkcr78rNv/eN1fCs9W6/19zGEs/jTPMaMct6Magrjhsh9KHgMf2772dmJGg+vbDRymMu0HvN3eUgpIilHEkUo5ncfATGq19/MYjhi7WK27mvKQuwsnLilyp21bjmN/fnn69PKkXX6+vS31mM/I09hE3v7j22ke5zHW6mMaqpJ6WJfV/3i9vIwR+Dh25niJAY8jtHYqeDrFlKWZx7Hc4ADHcS7H1vWRqicT9UyBx/H7z+txLK/vSwyZQgS2mGPv6iZ5KNr7+9t7PdrRegg8zmW535f7YuoWh8tlPk1lHLL3Xtc955xyCSlzDNj7UZuo1aPVLozIMYSUOKbbsqzbsWz7r38r2/vtv//3/zHNw9dfPl+eL8e+v/74cXm6/Nf/8t/++3///z5dztu29na0mi6XkyS+L/c/vn2rtVKg2/u9dsHIIaZPv/5iDq1JrTLOc0jJENVdzNb9AJN1qYD5FIbv7+vS4Dh6Pj+Vl0/D5y9O8fjxDuD3nz+j9drrdvtRpvl//I8/fv/t2zROMXBOeSgZ0W/X63K/MyEkLkMexskBTtPE1Dzith4gPkzp+Xw5X07HvnTpIaWt9pITQdy3DYlCKr21+/0YSwoaEJGqsYehAymKKkDE+Wlc79fldhuSxZIIiIlEqB1ugsk1JBiz9PvbKSQ0qT+WoUuT43675ucXj8gpeVMwMLFABKIBSI2UzB7bBTJ3PhQVDcFTShxBq17rHoAj5AaGmFA0WZ8JJVFKjEK3qxJoSihdu/YQQ4gBidHc1NREVR2w9x4jpxCUsLUqreeceu/Hvj+/fDpf+PGtr27MBI6tdQAkDq02MwiBOXKMwRBEpPUjROZlrbXfbjWEEFsuLbd2CEJImTCGEOfTue31+/cf+4AAcr8vatL6cRz7MAza23pbTCwFWq63vVYK6XQ+cwipRGKUpgQ2j0OKtLUjRHDCfd/VvZQyDIUARLtWDyYlQGUw6a7p2KoE7SLbfSGE82V0oDKUYRhD5DGX42gGzujRm8uy//wPWXecXsrTL0SDiIdQPs4Y8Ph6V9PG7EgCvdZtI23H9XZ5OQcKZkCYlkMbhPHp0yNdI/oRxYWPe+jjdv0ne8/gI/gF5Gbg5qaA4OZIQI4JIBMUhAh2u173H9+T3IdpLvOli0TVcT45JGnoBqI9gaNUPe7t9nZs994OWCMmSO4UMqeyH9UoD+OJQxBzBkI3/F8Yx4/i+IfbCh8hnz8TwY+TEaJ/kOXwcYgDQEIidLLHGEsRHa0HkGJ9JrmQujeFZsQN1NApEGAwV0JltGg9akvQ2SpLTd6wH7YLRAwiXLcgaIjgTnHmlCkm1w+WhD4o3hAcEJABAQnMARyIiAgcVLRHxJyLi6t0cDElAGRX8sf/ZA7ghP7I9eJH///P3wMRg4O2drBjHuPff/3ryzS+/f7P/fUHsmY/AGqmFkjw0ehEZ6Jj26W3T58vCE4Ij8RyCKTwMNkgIIbCDwbGMAyEtB+bqceU2ewxCnQERxPtjyQ+Rw4SVJUJRbTWquCEoK5ACB8CEXf3fT9CzHkcnEhUuxx8FHOrVdZ1Xfatmfjh1+sq9YiMmSgTnz89/eWvf03j8O//4//89vtvaoIOYIQGUy4IqGKJg4G22s015OBoKuRIROjmqgIA2oWZY348RZiIfKQyAVIMnEjMAj/Ee/jy9JQun9+q6626O5madkrp17++tH37drv/2//lb+Pp/Hrf//Fz6YkphcHlBP3fXmYMn//n8T6xudT369un/+N/ExrifXuZCj3P3Lv3hqBuVvfXgfrXif7yL7+Uoaw/fvCxzHN5296q1HHA33/8xNPX3pqnFAIH9RPRU8oXaLCstdBYMhINT8+vP3/++vx0Op9Sjsv1fjv2ZpZzOA3Pcr+vtWqzNA1xHNR9O3RvPVw3JN/va4mBAAAklwCp3btFhWKwOVeR1xQ2nv/fO6b3+pdMJ35i0np7m7J122tvgCmEeLRDAEMaEHhfNqs1xbgJJtTLuQw5M9r97b1vFYLfX685xeHlBVUu51OK8bffv718fb5vy7Js5gZkTMyJxZQo5cgW4+U0MYf7cnUHjoFquF7XIAohisH9aMNpcvQf+27NcoyQaKt7WHFZbo6e49BlG1P4l//69fX7q7WllOnpMl3vt3/7Oi/bJrKbNQ94bKv0FhB77yUGDCTuR91KoiENgXJz7+sGJgwQAgPivu+PNMHb25s7xGEwkdqPt1slO7NDJHr+9FJyHHNSEdn3fr9LV3FSdR7Tuq1//PiZlxw5KtHp88v5/JTmaXDb2l7GUdV6bc9Pl/V6lVrfXt/maTqdz9b67XaN54uj1Hbclusf338gkyEw0zjOt9v9/Xq7bYeKhpRLzswxUE4xHWPL41hKaf2IE6d8qo4Vgoeyd9+w/+2//OVq+HpdG4a6rqI+DcNlmkBt+fm23q/TqVSpR4OpxGXb131bl5ualZi/fP06TxNxCCEc9ejHHjzKvj/N46en51/+8svnX57f3972fUfG17ebOY5TeX/fxjE/f/pyXe5vr28xcQAEgA4IVQEcIAZIM2GobXPfhJPCI4MYOBUEqM0EOBkhdO+Vepf9Ps7TvuzRKA/zcl/Hc0mRq7magQUH1NrJMSAwuKgLmAFgwMDYj03ccsk0jBFLCKgrXPsRDLvS7b5iO1KiPM7DmDCwxdBynFNk3SwFQgAkZ1ZzsK5d3AwQiZCQwV1VVQTNQ2AmBvXA7GYhsDuoKYCb2oPo8UD0wYN254SOZphiPp3Py0IhJma+vl3de+vV2Aw7Bh/mOaeg6jkyjkPmoL0uy4qoyCRN9+PYjq0cgypQYGZy9O3Y3t5vSCxu4ziXMpiadNEuuQxzOeHOBpJLKaXsRyUiRD+2XaV7jFgSgMaA/QBtnZjByc2kNyeYpqmMA8f0mLc4QE6xq8pRExlAxXoHsUTh9PQilNbuJoIU1R2JHmy9wBRRohtKbcfiemBfiw/RHZlb27jJlOfovT2yVvgoeeGfqZn/P8TOI0UMHwV7AzNE50d6VxWkEUBk4C6ge7b2MiaUhrJDYxRIGNmBQ8Apqzm5BDA2kX3d3n+27fZ0Kd5r3ZsTDJdP7ViPtqJDIqahMABxfPi1iREYxPVBDITHys79A1j+0Yn3P8HQH0tB+rM8T+4fjEh3diAz1h6sRejJ6pAczCrb2vbeNo6FjIEDApAbaw9SWVaoG9iRE0nd2LurtW5tWfd974YgQsQxD4Ht8D4wEQEDVFVnUFUzAgcgxgdemx7zoMfOiZEdwAMzBKr7bvXIJf+Z9kGkRxWe/xfR+oE7AgMgAlCVEKikRK6odv3+2n68rj9/g+Uaiw++yXqrvsuxorXgcV2zO+5HQyRVc3BmauC9KQIB4webm9DNh5yZOYbYWpeuql5ScjBVB7Auig5m3ntX1WCxSatHW7e11gqOSQqHAAT4iOEEJiLmYCqtd5ZE4bG7suW2vP18E2nbfa2t/vj+ygA5Oqh01fJ0Pl9Ov3z58ve//9UMbt9ff/jvvXfEAG45phAjOnbrBqAiHxhuAwROiSgEN2uHuDvx4yWKIXTp9nCn8UMeAhwiI5r3GCJAGIdxLkPfW6j9y5CdAgToaGXiz59P339fcKL/4+vl5dOn/9f/559H8INsq/u5xOPH779df/zr8+lvz1MZWSDSUZ+enjqWrdWUcmhjbzuoqfneD1VBtynizPAylwoXqm293YkpQnCzeRyspE+X84+GvTZQD5FPY5zcUY5ea77MR9tr12beAfajt63ue6MYjmPZvn27vHwKObYuRkAUhnk8Wk05OiIjOkDvrtKGkimEVIKTDAwvuay7RPJuoG6r4+8a/cd6H+nvQ2i9f41TE2/rpi7DlGtrt/sSU4KlrrdVu9hxhGn4ejmfcjn2+4Y0T+V8mt+u78SQcywlurbbjz+gH7FM51N6XzbvvR27qBOdY8SY874se+sJ/DLNOecu/f12M8BSJqD4et+kOwXK5wkA37emqi7+KP5RTq3tduwU+TTPdsj19W2ax8Q4lmCC2A9smEG6HoWtqXUyRxLpKtocmLhHBpWuUuvugWOMKUVXae0A1RRC763VVoZyfjovt3Vb1mEuHEJ3aF22ZUHpoPa3X3+dTycwVTUV27fjWGoehhgisqQY37fDQUQoxUDEKeT5aY4lx1rP57O73u9LziEPL7/89df9viFQO47y8sIOQ8iRQt2P2/2GkdI89Np665hTzGWc4HpbdT+mafr0+XPJOXB6f3uvvW69paFUd1UDzs34522/C3A5b8exrTVeK6Hbuk/Eyy6fP32+DMnacb3f+nGcz1NTX779FJUYcuDUj7ZtW055nKY8lDQUAzvqcbstBNiOatLTmJ8v58tYQtcCGIdCAdf35f2+bUcTg5RDHMKXp6+Y+ecffwQwR1Z1cPqznsOMkB00nCfEjr0LIuXAQyQL/dBmVuYMvjfr04j1/W7LtUjPyAxYeef1B5twGMGjAxiguLcOjhYCBQBDM1cQcKviUHu7tj3zeRhyyCOpb6unkBx5u98SsqHPgcyk7/d9qzlySuTCFCKF+EC3gJHro+zihBRzYARGcHdCjCnooW6WUlST49hTSsyB+fHgjGJqql2MCN3dTE1REQCBKBJpSgOggUPbq5pstR7rDjs4GcUABtKsN5nGkUq+vvejY+99r01MrNqwLqfz+XR+ymOu25ZzVjUA6Np+++23L19/GccpxXyaR8nujjGFVEKth5p+8JrFyMx61SYK3sGAjBkhsama6FgKAjBB6117d8vHstbWy5BDSEet9/v9aN0YQk6lDMk49qUcNx+SQDzc3P/kIoKRQgQvqBmN0AgkRnA22O7j82lfFzYo3TAgy2CEgaIDOBE9tkWAjg/0wH/GbAEdCAkQggMRogGKRIKIToggLRNG6NrqGPjy189dtKkdtQ1lKHkQZKAHEAXRvQSLBIJV21236+5LZERQR9/N1kabxjnGcj6Za/PujxQSoQH5BwzwPwc+8JF+/ihXI35Qkf4zLo0IRGZgEMgJAdDI7QP3oMrSAzb0ClWZnK3ZfqgxxZEgEgQAjC7RjqgrH+++3pkMBKnXkNG6t9725Sa9EyetWxjG7DVAQ45mDkRgbqaif1bzHvgkpI9f7UdCiZgDEZiaS2/10NYAPTIREzkCIjg/YIn4seN7sJI+yl9ERCGiCwKkR3Cm6VH3oDiPwwlbf99t2452mxLGgEdt+vYOFIGxVb1et3FMavbxXRIYCJmDg7kjBcQHm5SI0MHsEb9mDkzQpYMpERGhmZmbqKiKmDyKheCADEiI/JgkkYlpMAcgelB5vNZmqgjQjuP12+s45hjC/ejL9eagY8F5HnIMRCRdltvtj3/8w9xavZt0E5+eplBGUVcxV62tA2GKTJSI0T5agajmIs5IHEMIzMgPdqW4uwETmj8uJkRE5kDMiIzAQ8mFYAg4hJjPM8bpUIQweOD2/iPU2+cRi+31+z8/x5b/dv79bfl23z6fn77MJe9bvb3/er6MQ6AEQXq93jrt7XaDoLjJPJQ5T/dr2zaJzwnBdT+u//EtNUmRtfV12Qw4ZH55fv51Pu1UwknSvf3776+32338+unlefySA2w3tLZvdd+Pt59vf/vrVw7x7e32/v17DuHp+dzEfvt2Paqdv76UseCALt6PPRF9vVwMTB7ckxPetuWuOuasgRwthfoch5romdJh8t4hDNlT+HbX0HuUGguU56fEpq2XoWAK1dq6bSKOAPWo9TgKYxpSGVMkqqvVfZ+HcjmfxbR1+fTLOZfQ7lvb1h6JAFlrJpiGtC7ce5NezT7UIimGIBopeDfpDcRSGVLOnEhD6oDGwQAF9H5fu2hKEQjXZU2BUw4ppZISAazrbSg5IN1+vgMouWvXTod0OY2jMd/u2zCfFGDdam+C7qbeXMEUiZhY6r4toBzdzZumEBDBzEQ6QCbCmGgci5u37UDEeR6fznMkCox7XfGqARndjm1rte9HU6Suu7g97CjPl6fz5XS+nFrvKppSqNtWj021i/R5ms4v55Tz04VBgZG3+3Z/v0lrz+dTiuG27eiUc0lpR7D36+3n6ytzOl/O67p0sV++/DJOk7v2Vm/vNwE/xGFvqaphCEPqIK8VJE5i+eCoPP3jtQaS1Ppy3C+B85Bbr9tyP/quIgram+aIAIAKjMxDQpwfVAp12+rRel9vOzOmIROjuhGS9n5/u+aXyymnt/f3/WhPecQzve5tGAcKadl2Ow4xTSUHB9LHBuLRyfnzQT3FGMYhsvh6195D9BRQqnKMzcsC4iGzUAxKQ673q9YtAKu1KNKuGgkZwZRNM8XszPcmIoBGMQChOWhv7VGkDmpN+vd95eeLn6bk6LHEnNp298Gnc3LZ76I5SO2uroGxtj7mnAZT/xBxMKKbOykAEBNRCOTk0puGSEnCtixGyCEhoooYMzMRMiH9KeK2R1MdPthEbgYcAwBySENBkW7Zn14UAzaVZV8RYN827VLykEJCYKkHIZn21ttyX+/LPSQvJVe19TjS2IlAwZv0o1dgJKD7+/V8eTYzDjzPkzZb9733ToSPt4gCUy5CYo9mObiKMAMi9i7taNqNQzAzUzHpptL7sdxtX1cxZ3qJHHut99t13feQU7Exx1QStvfvK9DwhUO8cOBqiDGBA5ixS3QJ1iL14o5gw5S8suz3xr0vW0iJqmlvhJEGJx6I84dT6WGuRvhfRaOPSZQ/gjQEwMBqHbWT+DzkMpALuLY8RA8DdDbAPCTrQodxTGKeHpMUNXWTummrOSqjzEP88WO7rXUcqIwZwLd1h3zKPGRoJ1Znv21HJ3cKiiQqFCKgmwARubsT/qlz+c8KPLChmxM9pGIAKgkfqlghBwdl1OBO1sArW2Xu4KLaCYC9J1fVRihrB8Sm5tmOIHvsC9a71aWMab/eVDqehxBi3Q8zLzlxCEoE0LkvWANZis4cEyIB0dFdwQHN8U8bOJK5mT2cbQAA6rr3jq1qbaAtIIB25kBI4A98Iz3+RgT46Nk/MlqISIAMwIitNgclRgSeSkHrg3u0HiNLifvW8zyVxNuy7Uff9gORVbVLXzdZlyXGVMaSyuDugCSij4yVqTERAhBxCNF6bU1idEQ0dSSMMQKRiLI/HLhAhBxCQWDmmEuMWQ0+9pIOIgYOMaYQg6mCIzM/KJfS2unL0752k3a6DG+vrz++r61OL5d5cSS3/X798fs/n58vTOHpNK9Hz0NOJWl3GIM1PbZaWy0hU4ruFgI6IRiiiANyCDmVwNxqA3fpvbem5sD8+OSkGB8oLQ6JKYZUGDmA/fLryUScEQstuzbd1MLy/uOcKedJrj9r19b7+emTBIFonyK9zNm1tW3Hp+cYB/caH7hD1JHdWk0OvzxfzG1bD3VIQCXE1aXvS99L4YEIQTWEeLpMicLt7U3DqI3s6KAPPRIO4zQNCciu79/+47ffmLmUYZ7OiNoReDqnHNMw/vV0ztP55883VA3g0jsYjDmDymmKIvK6bE4xcgAItWvm3JHbvjLR4PsvKanTu7q22u1mloeS6nJduvKvp6O2aaBpPo1zubWdIp1e5v1tge7npxPReYhUCK7X9/J8efn0rMdxv19LSlMZQpSYkkhf9/2UUi5Je72/vUMsY87TNCpAbZ3ZU44phBw4h/DYI2y3HvOY5kEZ3SkNab/XJi2W3MSruzomzjFxR8XIjkZp2I6jgfKQz3koKda2cwguWkWObQfA0/PTWjuYZeZdupsEhoDx0bt8gO/zaarHXpcFQkwhkmOMlAJ306GUIedH1dBNwCilwMRDGS7ncwoBrN+vt2Pbh1KGIR9mGGksp+M4HL1Lzy4vTyczfX4+cYyBiGZ28/fXa5O2LEvO6Xyep2l6dFyBwNxzSe/v1/SB5lJXP53mnz9/gMPlfNm2+vb2Cm7MYZ7mbT+YvB679h5iCo/0XwwWg4V4dNBDJKYtpcr5Vk2cMVAy96PO0oNoHGPbj/vPHwZdrO1bvdddDRAhcnhA1ErOMca6y7YeRBH2KqIUgoF18a+fP09T70etvRGa6oQGKF5SOD+/PCPNh+wG3e19Od7f76kQOARCtsf4B52YUMG7uiMSp5CiRz281TrEIUVo1YaAFLIY3kUDBXBIufTlti07i4RAGAqxyZWjWOHklHKekUoIvsphTbMiBwOXYM0AfNtLGSBwP/rxboerPJpPhu9vd3J9+vU58Gjb0YEQIaK4NuneOyMPWuXRLCcysj/THQToKt1Mj147h4cnxB/P/MzB1M0e0yJ0dVVTEf8TgYcIyI9bg6EaIDJReKRoiVIO5igKMcZ936xrt8Nq11xO82Ti69H2duzHIaDmYE6G2EGXfZOfEJhEejva7XpFZOKQS4k5GhiiH/te97rvhzvHFB3V3VOIIYWlLiYyT4OkVGv980byocHKJao0As8pIUNKrNJdJadUckwRhxLnaVRTcwjm0ZTrZnVTCjZdcAhETMTuRk7knsBG19j2CHshd+wZ6GlKa131dhsJAri1vu0bhsQUUg5G0T6sDgAORuBoD+/Dn5ifh5PT0Qy4k2kiGgNNiQupAVcndxCIIQU1UzBFBLZWrcsRop3HIZVwbJtFBal+bLrfE+nLZdzuLUcP0I69ucAwlHI6g6x0/2n1kHvH6QXTCMQKToIP+yel0FyR8EO//gFsfOgoH5YyZ3B2ZZNgVkJAxi4VxBg8ETAIeA9eCQwAUk6RPPY+BBDbbHsbcEqRu3Y8rrHfQluxrQA1uh96aD3abh6CdmGEnHMgd8ImhyzGaDhMgbKhc5o5EKh1ww6gbh9QRnzQjMzN1ZUJHVRUoFcEDfAnowiA3OiDeWn24FEiBHTQR/mPCQjdrNaAnsHYe0E6DwVa7cdWBmTpeSBVgiHFGEIMFKNXqa0FLjGXkotIB8TaWszpcTkGRpOGD82bu7gxECAxRzYTOUQbY+DApeQYk6EjdGRExN574kCBEFOK0Yz4AYT+Ex/FzBwCIQEiIYfEis7qCSkxgTq6MsPpPNZjeX/9wQHI5Spgny8vp0mb2FiGMXz5+lT2vlXtrQ3jVPIoVd/f35elxRg4P2R1qGKRY+To7A8PDDP5Y/OE7uZgjuRECMRMkSmAY+R8vjwP8+wIFDSRxAF+/+Mff/mv/3vO/P3bLcb8+ZJSzszQ9m06l/tiVpcntDzTlxknln+8fRsw/1xu3+8/X55OMYUcIqeMg3jm+63DsS/3Reo+nYcAOAyFLxd0P00pBfKmYyAkep4m8b68vh+6X52/vS7VKBC76uuPn9PzPKPVfau1plzO4/j28/VWdwcZ5lO6nI10GvJfmXxdj9Y4BlSbxnE8T3VdvdeHi3s9tsZJxEPOyPF6u7f9fhnKhYenkUzhZYgTalxXUx9yjoVPagOTtGNDyKdZVI59m8YhzGcqY75Xp7gu94AemJBArAPFth/Lcn95fg4lU4q1tXVZTHQzLXtKMYtICA6qbd97PTilcS45BW1dpXdHihEAkaMSvd1WLhkp3pdj3VooRTuYYSoTBQ5A4FCmaGrb3olluy6J8ZTT4g0IHphyCqRqy+12Pp1d7ccffzSRVtvRdK9HSilNHIjW9UD1YR5LYVarqgEwMoMZA6AZI8QhDkN0ke26tV6fni+cgogz4X4sSvF8Pk3z+ef3b9085BSHwUyGMogBB8Z9f3p6msex9+qm1o5pmsswLOsWczDUlOIwlmEalvsdJwsUQghguB578z6XWdTqvpWSOQZGnHK6nM699+vr1UylyWmec8n7socQU4xDTjnFda9r69KFU8lTvndaTGserkY/vKtZFD2xx94D2Jfz5RI8kIQvT+/X1/UuXXsIlDgRsoIiaG99SKXEZNJabduyu0OI6TQPP1/fGlsehvly7vvRlu0B41+PbbmvTdrbbY/zdIT8j9/fbrXFaezuA2eHPZB+2AAeT2cMyR5ublFwD4YJHb3belcHqBSclVFyqm61d0Ac3YXHAyNoo1ZLtOGc0Jve3/JQiDJhw5BnyuS19YrdmJQYAogTtO0erI6nk0YGP+oC9973dSNgsGYiv/+cfvnbFxnCft/YPUVmytKsqeeUQiAM3pubdVDXLg91gBm0WnvbTTXGaCockJnM9LGRURcSAnwAUcz/7AaxAxIawAPf26vAg2P/mBgZEuQY8pDHFGNA3veNyN30WFZrrQxF1B20m1JI8+VkKOq2bjsyNVNGNNXb9XZ7v6Zcxvk0DBNHEhU1PWTbtk2aIbKZxBwQKcaAgJWZ0WMMgbG1fVt2NQVECnEcxnmaWjuAYBhy8ujgva4ph+fnS05BtMbELy/PgHS0PgxlTMmbXsaChUA27AvlzB4BIopmtJHsxErUdLlRoCANDy+EEAOZnOestSpUM+O+kp8D22M/5Yim8NCdPvru6PjA1xB+SMyRgAgxJXYL5IimKiZibkdVdQ+BS5oCObGGoPvRURuYxD4GaEWOcaR2+P19rfd33ZeXp2Eq3uuq0vq+moEeiYZB9npd7sqThREdhxdCLhFxbzWkJCJu4QF1dgf401X/EQlyJ0QDNdUAFlwLe2Ex19ZXMkpIGYGgcwAyANCQmEJk0Mghw/a+vLYq49NftOO2rLa9k60JKnkF6N7kNCViq3X3FlJKIZGbGKjroQqHEbtkdArOHBEAIfSPWQ24g4Ihobga0AOBCI+DDqDigz5DgTAClEgU+TCNjIpoDoQPTruBOxP86UgDV4+ImQnJxjA+nfJAcWv73/7ll0uQ+29XriqqD3y7uYeYWnfpmoMPU5nGcV03QLzfb+ZGxDEEIjJXUJcuqvrQ8T0OCzEGs1iPzYKHGJkDMQEAkbGDqvmfHKUYYghBFUxNmyFiSBxTTCUHjtJUVT09BrkmKsTs1tfbTeHIY+jNukrMgYjWbdW9TyX+61++XkpOhMe2xnE6XaYork4IpKrqkmKY5+nydHHyo1cVlarIiAjuJl0RECES0sOBkkJ0B2ZGIkd4rBSZUs7j86cvp/PZ3VTWPOQ50R+/t6cp5vkcVe9rT4X3uu+9j2O+zMNUgjvVLkvyU8ZjWWqrzbXYeT92YzpFSmJjRi3ZkKGJHpvUZRx5HFPXnkMuzzMZpkAmrdV9HGJrh/YjJDyNMVkxo8taUUCJCnnft3ds08s8TuMwzDESSI3Iy1GN4f26aMxfz8O6VbvfvdchD6chm8KQE/Te1qUeR56GnNLb9doDjHmgUwHDXrt1E6ip1HR4DMMvny5f5jL99oZTRsaS5wvZgMYMrdX73fTWD5UGXp3JYMjx5+vtx7dvpzF/+utfTjnpcVyXfXt/N9Pbuobenel6X4hgLsOxr1vrFLMThRilC4KHwOM4PJ3PbtLM2lHFQN0BA8S47kcVLSE7yd46Eo7jsHfb9yPOIwWGrnU9KEQxBYStd8zJHK7bsYMdPaJpTiHnqABOxDEyccmJAgFRLEGvTVrFkokQ1UKgocQUiYaUCNBwKNlEU4wIAIoqIntFREaIgQmhHS2GGEPY1024DdMQcnSibW9PzxxSqGvXve61s1jOJVKQo0lvb+/X+TI/Pedt2VvrYJBiPv8655QJUaVv65JT5kA/fryu+ya9/3h9dTMO/PXzS2AeU5Eu27L01n/9y6+n87n3LmoxJc5UjyMwSWtlGMI5cO2vt83FANXVFPC2bT87rOqEnNz0OGB5z9PweXr+dMq362vK4/V2q03G0+zmojBMBQD3fZX+EGSGGEzFKYQHmNYMAycn//n+/usvX8tUUgpzyu/35dt//Mf5fAlp+OPnq7xdn/76l5DjVIZOSGq/ffv+NA3hYdYDALYHrtbcEZDZKSAm9Ew2jnQ/9nY3oiFS7h4di+UkUK1VdYzlRJcGMcjt2qwPdgQR6MBegGO/e54m5hxrJ3MDcTCOISYW9ZlN6i4icTjFIbRetaubL/c7Qg1Er9+vq1jM2UWhtc/Pp3mIoMhuIRJhF1Bm5B7czJHcrbfejqP31uuhImUoTJ5yQMRWu6ogAj3G/Y+xPAIDmYKTETPio6bkrVUHCiEoqpsxkBmEgPM8pxz6UVOgLfGy3Jtqt17XQ0FSLJFjzqVLj8Ok0Pdtq73JVYdBEjMYiH2oMd09xqhdH3e0dtRj3wmZA0o3AHuM6QJzZOrOrfZaq6uAibSq5qnkMM8xhnq4inAMOTCAg2sIPE1FReu2xVzm0+SA92VLKeQQY4xxnnsIu9WoB5g4uXYhs4Q96V5CRT1e315DCkhW25ZSLkzjOESQve/Yl6DIurNVdGmmKaajPfCAaCpMCGCPWzIhkBo5mtnD00DkANakHQAJtLeu7oocxoEpNDcuHLtOaBl866K9D7b1tdXbknW4fvt9Wd5kXbfbe4FhGMgO2dcNtMvRNvOhDMTp9no0LOdf/rpv9PTpFEMeUujHYYocYzd1IjUIHwHnD/QPIgAoE7I7gYP2AB4JyKtph34gcMyZzAgsBgyBoVVk6gZuxgAJPbTVzFKbam/6fiM5hqQZxLSBtxIL5tAF97Vx5kREYL1XsU5EvYsZMUfLWRMihphObkpIHwAjMHNXcYwBH6hAAAIN9MEpcsIIyAABfAgEgVK3Dk7mCOTi+LgGTAgf/lYUkYCeUySpOdJYQnCDuvz6MrzkEGtb+rrfr33fzESUgjMxMoFJd7MYsLW9y7Hv27LezKWUROPojqbKTACuJgBkSmoiXUN8WEI5hADotbXa+gN+6AittePYe2uAaIOqBAQCYybmFEOMbuTOzBEjqmqv7TCr2hU0hKRdpFWkTkRN5Ha7E3MaeHlrKfA45ufnp4EdWoVMMRIShjGrh+W+1noA4DRNT09PL58/7XX//ec3iC76qOKBGxiYSCcCc1ezB1eJmfBDTUvMDwVz4JBDjETMIcQ5xpSN5V/+/vdkKu/vM0K3ti17rdJMz6dMrnpsQ0gJvdZ6//2bhMQxLGv74+2NwUEMS7AVaD9yjhy5o2y1z9HOpTjY9b7efv48T3PKpd6uez0IME+DW7u9/n45z8lrGmb08Mu5nDHUhnPJAzF458SXz0/b+651//o8TlP5EcJqel+OH0d9vsyFyXx5OZ2HaT7N0/V21GUXbUzoRAY0X06nbrfW8iWHMfcmu0gw/PXpEqQl0nOJXy60rO3gShgp5pIZe13ffqbzgGRv73eRNp1Ox7a/3ncJqTq9f/++vr8nP719/8GX85yjmE6n0/12+/HzbTjPgNx6H+chDgUY19736612rbe7A5aUyjiY4e3nK4KdzrO7Xt/u3TzP4Wi6NaEUqqkZYqCcs5Mfxw6mt/stj+WlFGREwqGMzWxZVxPJKeQUuvrWXWq7xBCIhXg8nyklIDyd5nXdHYki8vncRd18eXsPkaaSQRTAI+B8nh+0DhUFAGa6a5dqvbWSy/kyb+t2rHtK+ek0E5HH6IDHupvBPM94Jidy4JiHbTlSHoahTCWVEMx0bYLA99tR638M44CB63601qZfvgTmyzzXdvR+dDnMad2WlJKqfvvxI8bwy+fPy/2+3N2ko3mv9TROz//2RcSX+7LtGwC+fHo69qP3/v5+S9vx8uUlET5Ng4T8477fl3an0Ie5VQfkknKoO623se+nIWTr2uRY163X33//1lWeLy8iZtK8expymBkR1UTVUk4GkIfBDGttTerz52dw2G/bb+238+k0D+X3//iGarFMp+fn0/n08i9//Z+/f6NSns/lrv7bj6u5UY5Hr4H+UxLp/sgCIBKiM0MQL4HHlHIBkGXpzZzIIZK33ZhY3dM4RCq4E4tyYHRo99dt205DIsTtelfg8+Uk277tnUMMTGLdzMfLeYyTqLsfRzfUOA6JBIeQC/iyt8tz/Pnt5/v9/nr9Hs6nX//136ZxQqKm2BUBmQmdOTJq3QmcCTCgM+xHM2mqtbVmKiLSW4XItTb340HjyCkx80c4F8HVP1JAD2YjASGaqLkiPl4LH/EFpt56ijnFtMOdyEMgd5Orugmg965EFgOmFJDcVB6R1YeAoO3NI2vvvUkpZT6d0VFVAT1GPrbt/nYTsXGaANUA9q2GwKoxBo4xiqq7IVgpCdzNjME5cJPeTYlp2xr2Ps1jKdlh7tJEHjZrc+shaQg0lQxArcPp0ykNEzk3hYyQAjD0rgIihVq0LZPt63tb3moJqUQV3Y716TQlDrK3fVt625lT1N22V+RE5HmELiAeKHJAfNSUAQzQ8AGKdmUiAxCVbhrAiLmaNBUkRIrMKZYRHaTuJB3bMY48FuWtbcc9SLTe6vX7P//YXn9+JwKTWtf7VbdaeLu9cyCO4Acs1zvgH6d5hqopO2w/8+gvScC221VydxxLjcE6iFrE8NHQd3dyBH7MUtSVERw8JDLpWz1KBHBDtMghJw4GgT2ABSRviACqdhz7mKCkkNnA99juve+8b8+Xch643rbaa4wYI21t73UrKWQG7I3J0S3loqq9Hc6B0XTfewfsCJQpTdgfutM/Y1XAJghODIiuAZzU8AH7cUshhKAD45ATMK2oVY3VzcAckCgEpkd0DkEBHLCLHioZjQHu67b3OrlQNmbE/fr2/Y92f8vRGRDUwR1UwwcNUsHUHOqxh0jDUMIjwfbxXo0DAwQRAQB3ld5rbbW6ak8xBo7MofX6oFGEEFrX49hUuoGio5lhQGYGwZRSKoU5NjFiYGZEZOl1O7p2AemiIhZGVmkxkVSvRx+GUVWIwzjP0eHLL1/n+XQuMYJJ68jpfd2PrR19u75eDWGcTuM05jwABkRCp9ZrDGzuqurgTB8waARz8sd9CxgY0QyIsZTyMMYMY0Hi/TimeTydzyoSufz1r1+vf/x8//EWY7GjW5XnywlzySWGmOrervefgcO210M9XZ6dEQK9X++uPbw882kwFTR6OT9xwLbcQI3V933NpfzyNO57iCGCeVMhkFr7ut0vz9MwDXVfeq1MOadTkjadhjv0wjKgQ23BIacwv0y37zv1Li028NetX9W//XFFha85nBS/TE9zjvv9joZzLk1QTCyTIY3j+PwJ9P0OptFEeyvgnz8/fzrPBSE4MML6+m3d9qwHdyn5lDE3Pfa6M+VcyrGsvfXTOIc4HMcPKOU/frwd6z0Fklb3ZfHTCM4ppyElINy+/ziknZ6e+2Lb1nLKZRju12pdEEmOSsglZ3Vo0uq6TXN5eXq67evP1ysCkPleW8iJY1r3Ku7AlJj243ATBmBzNvMuQw4lj/fjkNbzEN/fj7q2FCAznceBsFzXfa+VCXIg7CJv1xCIGHo7Yixjjphzrc1TjJHHlIZxMOkiRm6JkBG6dOmChCaSYwqBY4oRXVqv5k9P52HI23LEwMu21brnYQQHNendpzFwzOfn8jA1ae3OnFNC5/l0Xve91o7I4ziUnOp+9KMNqYzDECPXHc1kr50QBf3h03x+fvryyy91XX/75z8IbJyny/kMMYYQzHQ+zcx8X5Z13Vury+3u7tu+7sfmAMPpDMZsWgLeu/hxnMvQ3KMdI7TP5/IZwhNaW95vP5du8Hpb5vPTME7HuovqBxxDwQzVhBgNABiRQ2s95RxiLMP4/PKs7tIkME2n0ap8+/bz88vzv/7rvy73u63b/HROw4B5GMbzt99/r0cNOYYS+r0Fc7IH1B8ZwU0fcj4JLqgS2BmYnApzbbuIi3dpmmIGphxz9AziouIIqQyJPh0I958/Wu05oIo81hplSGDqndkCSEPz43Ub4TMAnAIURjP3/X3AUw7gCZ+eaK9LfMK6bv/8/T8+hX+B9eKgwzBEdtem0gEtZgYgJhTpYM29mncAce/SG5gyoROGQAgu0mutjjiMEzJ2FQ4BCU3dHDgQODyqwWpdegd01bavBwDM5/l8Oh9HJcZcEjj22hG5jLMhn4E45rf396Md4lC3Nbb2qA8FJkekNIh2CgEc7suqXWKI4zhwCnVvvm99Hrd1OSi01ohIegMzBaq9inHsmQM7urmYCSCoOoU4nk9VrHdVQAOLmYum2kTEDIhTbuK1GgAyR1foe9euoE5EQGHZbA6kGNHimLKYIKwjeG9LoSbL2052mYKegtTDjkoIvfcDar26tENajyGksWzHst3X1O3yKQCXCPHaXNRiyKpipkiIBG6mgIGCiAIhAiMyIRx9baY5MCECMjOZ1igSpYbWR9Tj2y2AJNk4Vtx/FvLi176/x77sx5FLKKx9r31TlWMYyzAkPDPArvvS3S6XE2c6tutlzid908bv329EJU9Dp+AKQ8hogAoOrgji5IiAhIDqQEhIDgxdqpm4YkQOIZcUcoSCHtyDARE017Ydecpdd6TCwccp4CHYl+d0SoMnP5JRs4ODiPvr+3bUxkRTLkHBene0cRpTLlttMWkTk6YI3cQTxSibqESMRvFxWjR34mwiDMENQA3AAlsI4IDagYliiDkyAvbWQA9Wh90jxZgGRCByNxDzDggxIKGjm3dFr+p+1Kx7pCaHb7JTu+/3m7V6Oc3aFNCJ3F3B1Q3UmmoCDkCQcnz5/GJuzn60YxgKqHfrSMgBAMANRJpZd1NV3VRyKUwMjr13dzDT3rtqM1VEjCmmlDgFAgb1GGguiULk2gCRA6UQDWVvG5M9yKvmXWo9vzyfnua39ze53b7+9W/Htu/3NUe+zANiAAynl08l4NvbG2Jsr8vtth7SbvcVY8jDmRzfrnd7e+/W7/f1sY9zdAPgyAQxMBMzPGwdJKYW8NF0tFwYyN2BA8/zMIxJRUNgxLAsK0i5gdQDSzkb4P12daIQcm0dEC6n0763231/fnk5fz3tP99/vr83hTSMX/76xITcO5dYKDNFNby/X+uxzdMUweW+gGkMVJ5HUDq2w/uWYximp6O14TS/PD/tb2/Ia1U9lttE0LeNjipgw/MpZLTlpoEC0MswphQXwddV/v3HTebT9Tj027Wf5397mqbnr+SbrNe6tenzy+npsqxbvd1VhdAuc3bv3QDRSsbpNAWz5/l0Oc+69fV++/H9n70fmeK+LOwb99FEnp+m8+XEjjGmVo9tXcf5/Pe//OX7fanbRmDzeR5zfppnQHu/vpcQmckJnYCIDFzMbm/XdtQYqclxOV2maZLYCWgaB3C8L/eUYhkyhbDvVc0Z9Hq7q+HpMiPHvfX1dk9jQWYMhuhTLgmh1Xpbl1+enyPYGIKZNLehpK4SAgPR2rq2yojNuksvgeNLLiWDSo4Jxezojn45X1DVS4ghlBTIvLeWMkfGXo+m1rts2/a4wJ9fhhCSuR97q7WlnAjo9dtrjKkMGR1CjL/+8nVbt2Vd1WRZr0/PL5FDilH8QTPX676dzid1L+P42++/l5KJUKtq08gMpsexuyuAEhiBg9mYyzDm3htnRkYxGYaSY1TTox4lRlW732/z6ZxLqa29/vipose+T/NEzNf3Wx4T7dHAj2Uv4/SXl/Pxtm/vbyGF5PBS4peQ/jqNM6nsy7Hv1TyVPMynVIZ66DxOieK2rdqhm12ezxRAVRw8BD+2o9WaShnGcr+vZvr16+eSk3Vppv/3/+d/q9thYOpa1/V+HFV1pFCPvt42lZ7HAh6aQ3iQ9BWpAyLYAw4XiFHcvW/L1etd/YDaCwAxoIh567UZotfkISKyq5oChJTGRKK6HnoshwiiOoKaLsvW6lFK9pQB3U2l2bYsZRxcnR1cxRW7CNYNiR4pmsuU//LlWR3muQRvst72Wp+GknIURld381DisT5IP81NAAEZ0TikRCQIPgyZmFSUsMeYDBAMACCEyJEf+oMPzj0AsAMAEYEAMz4KNQ6+Hxsg1L2GEM+XSwwBknkVNcu5gDtFphjXbdm2bd32bd9SSESMgQjRkQIFFSfCEnNDJCQRW+5rry2G8Pb6xgbDOHFgVTtqLQM+cPuGdrRDtZuaqjx4KUiEzOiYQiwjp5IecKEQQ9dHENkdvIsw8TAMMWVTjzE0VHcnCohx3ZrRUeY8lAGM+3YwYwgQoFJb2vouUS2MOVAEFvf12I69St2ZqNeDkAcux3bse+WUkx3FFj+C0tQAhFPV7g7w0AAwuLmjqRvG2NUeyd2uisBILq4ESAbQO3YFE7au+7K2bb+9sjewGhMEG0OizMbnorLvezPxMua6ae8+nuccUwh0ypQoSfN5mp6fnxVQZYHj+vbv/70e8nrd6flvp7/+Hd0RmZDQldwMUB/uOEBC/OBBuiMiOhq4mpqxMwRmRJIuAn0oHMEBrKm6u6gQk/jjy8d63YOFSHl65Htac237tuwi7kZEZniIZE5kBEho9lCsRWZzdLGQYcoxZcrRmjU0QzDA+BiKODhj8Qf8AYHBGRxVAQy1OyAjsJP1au0I/cBacTMKCawDR+gRMRLFlGI1VxN+XFduwJAiZwrJa2aI5rXt0o5IoKLu3ps0wrZXZkopueG2VuBGiCkPAHjse6uNmaiTdHE3pocXFnrv5kYEjuQOIQZAUDM1YyJEEJHeGzGWWJAxpMAcVFVUSsgq/dhWjgGBOYUQyc1i4HkuauRqjO04OrgTsXQPIT0/fwKzr5+/gupxu1o/etP363Uac4nh9W0ZxlMex9IUhZe1Luu6pNt8pr0d7+/X3hugE7E/Ms4YGAmJiJmIPzwiHxFoRyYmcDcgHOdxPp2GqTw/PTkCMd5vy+vr+53DOtW5ZKS4bwdwIMLl/XaYXD49vb+9b+t2uTx//uXrKq1pB4Svv36lFENKYLbcb2vEUAZN0dlr3eq+lqnkHKee6tEDAoLW/Xh/e+fIIcbaJcSYcpHuYgBAU0mZApJ2h9OYUwrPpxPU3Y4jYmSCTy+fuup92QG5q/duly+ffK/vm3we7XXdPo3+6cvzj2+v27Hk06VcMm63vh4IRETeKiHMeRjmaRMlxKkEUAV3V+lbHadynufr7V770UzHMo/jtL7fEWmcpn3bb8t+36SU0bq+XE5dGwd6fp4TBXCtrblKTIEip2loqikn12ur9fn5dLvenBxDqK331krKj/JjSjkPhRB+//339+st5ShqTSTkAdFziqdpuq+7iu61USJFO+oxjiVEPjout6WF6oECk5lH9DINSNibAmMeI3jXXndpDuG+rkxUAj/0KWi27ZuJzPM0vjy//vx5b/V0PhH6sew0FhM/th0YQ2Tm2EVaU7WecuIYxtMpMDvS119+CZGXfRtP0zTNwzh06YOPXSSXwV2v10VqP8/jaRy0dzNrvYlKGae//8u/iFSpzcXOpwnM636s9/t+rGiWcvj587atSym4t9p6Dy3cbjcTBUB1q9Lf3q/2dn3++rk1/5///o+XTy/7UVvrgPj8+UXNiSM4TaeBiPe9DYkqOAN8maLe1rosqPJ8+vXLXF6mYPv9dbnet7Wcn2IaYir7fhAHxJBy6r0DQknFCQ2cQ5SuKRNz2LYKGN5vy1Hrr3/5yilzCJ9ePrn20zy+/njd1tXJXWRZtuF81lrfru+y71q7FwkB6tGCGTAjPjh15vRAbTghsou0bYt1yyRBNOakOaduQWs7OosoHUYEHBG4Vd02i1OZ5sucU1+ux/3W6+6PMZAoArXa6tE4MCIi6EarPvYOD/ysI4hhBHY+jgOYBp6+PD8Z4HIcx9v3EHMsky2Z4JQJmQlNtJn1zg+3grmZIRBzwIScysO2aaqBMaYEquYYODARECGwm33g4x6p1z8xuQ9nAEUap5EQxWRdV+29tpbHQsghRDUlcHUVDQw2jkNKIeUI6Pe7mAoitCocWEViCggA6MM0+Abt6MJCRIDUuy73LcVIHIYwGpiYWa0hRGBw021bCCGEyMzIFIiRURVcITDHFJkDmovKhxSM3FybaGstpcQhuHqXBi6Bg6iqdGSgwA9tV2CmyCbaRUGFtYFKIGNTaY0JEUmk1aOu65pjKCXt2zYOAxF0EVAbYp4T+3FztWEyA9hVHrOS5iBi5ECERNhFHocJRAZ3QmAid3pw2xgf9V0qREGgy/H27Y8heJetr/dxinGcttt9u99VutRmKgp4vpwCegyn+TSFGLT1ox6xhHTKQ5ncAExOUw7sy/c/lmVvEk4v/5JTDhTQQdXYUdENQf8UwPujsf8gMgd+UKKZEn9YM4iZrXcgO8+n/f1VejOTwFRrj5FcrfbWau1HDWEqifM4tbYfx70e23K7drc85pwnM9jXXUGmPJScAL0eu6gxUAkppBJTphKHMTqKimDHB4LEkMwQGNSDARsA4SPOrK4HuEW3qGjSRUiUESVpC/sSD1Vkl4PS6GFAQnOSw0T1wz9uzU0C8nkKn/LTWIH3qx37sS2A6qi17gENwVp7ZKjQDHpvIjsFysMQYxIRM3V07X7Y8ZDCivujvf4wYCAihceHmtygaeutmVmMMWZ8IC2QOETmSGZIhCGEFGM/2l71nE/zPJRxKtP8/nZd9wVMHwnqnLILH5vcr5s7plzmTycONM0FRK45v3777Xq9Hsvt9vpzLBkJfx3H06cLl2Grba399f22bAvF1EVaO0RkHAcH76rahUmQmI3pYSMxxwfkAR66NqfIABAjz+dxHAuScwJVU4NlXTHybVmram0lUHC1l18/70d7vd6GnEqM769vqaTnL8/Lur3db+g4j8Pn56cw5Pfrbd+2lOP9vvZ9z/HTWqHua9u2/Yrj6TQ4xRjXfXdA6ME6qMH5ecYu6obV9m15/fmGbl/K8HK+TKXtIgKex0TSl33FrmnI03gShW07wDxzOI3jziGn1NfDVMRtqcvzmDlASbC3vUokCud5SCGo4r7tBa0M6XIpATmfSkhB2n4/bhkLIjAGaVCrxpRr7wjAiMd9u91uqaSvf/l1PF32fe/tGE8zVAtMX56fKARWd++cKCRutd23JcQYQ5jmyY5qRz+NZSw5hpemtbXq5ut1iSERcgjhaC2krAC325pyScOwHs1g3/cdHBNnAj+f5tuxrPvKEpAhRh5iNIAqfT92K5liCCmcxikGfLveT8/PaY51P9ZlSYGRDAn3Y/fWpLVTzi7y6WlOHI7WXezY6nK77/tOiDaPyGTutdV29HZUDvF8OacyuMO27q0f63oM8xhzMoM8lsvzU+u935df//a3cR6OrXaRy/O55GzurbUUYd9gnHKX+vPHz8AE6yKq/zrNT0/nf/7zf96v93Eay1BiiDlHdLUugbAdte67qyzLzRGneYwhti5133/++BFjiCm1LkeTMtXxdNr3er8tRHS+XEQ0xDjEBOhfxq9uehw1RJ8p4HR6r/L97TXt93bfzuP4nPmXz7Mtt0Pa1ltTT8jI1LocR+PABrbXI0Qah9JF3m83B8tjYWT0yOQxYAhZexdt77fj/ATnYcjzsN37//nv/zidxvE81rqFSF/GC8b0x/ef6FwIPWVSP9YVRAPSo5zsDxS+I7jpRxTGAMxNxEhLIApIJTJZ0GiMu2BTFyJxPLpIbwCMBpETmoZhTAHrUdbl3vYeU5pKrPu+7buIMHGMyc2PbeMQx2lkDsdezRUiUfQhhUN6q0fM8TSmfV3rvgrH0wtD3Sp4TplTsN5bs5wDAfT9EAc3ICROD6vXxxN83Q93CzE6IBHHGJg/HDUP5o3Dg1fj6g8qtBGhOhLQNBdmUtXlvsYQ1QAMOQQiDCkzY5euaiZKIZaSU4ruAA7aREXE1bu5e++ScnZwc2DkED2mGJCFtNVm4Ou2x5goRWY8em+3lQhiZDPoRyei8+U05AGA5ssMCPVobmam2uExHGr1CCE8osWtVnXHx7FWrR77+/uVOZ7mk7kf+wEYhstLGQZkVpGQtAQOaq02lx7Q1SAVBtNem6n03qUKE6YUmQMAunnJQwyKTgwAstPDqdQb8oaUc5mNZ1E1RKIADuJAyK11CvGxpnhgF83Q7bEog6gS0CNI9O4uKcDlMsrh1bSUhEDbcmzLmhKfz3MeMxH3qvemHAMCadN93+u2BeRPL08ppvttB7TzNMYcAjo5RhjyND2e5qU7kH0sLR5TqYck/vHZ+Agco6kjcsolM6AZmeUQrOOQ8zgkudF2HCrCMasYCHTrrVbp3Q0CUQw8lGi692PflmXfNwpEUB6hhLoeIgIDDGNGx9ux7q3FWKa55HloVUgpgbpDlSM0NziIYknJHBm8GyqxOiAquSIqMZAbgiaEdb32yEq5JEaTrN29s4M2BTMeGWLZVIFoHDO4BFfqJu3Y13qhU8rllPj+c3379ntdrjGSW2/t6G4xEQGHErRbX3dAhgc98tEXd88pm6uJMgaK2HpTVXAHAlUFtxAiMT+wku6mqm72OHemUojJzJgRH4/aRCGnkDIqoPkw5H/5l79+enqKIRqiHdvbz96bOEIIXGKJMy2377XWLPn50zMHyiXnyJxtu77HlI77ctu3o+4lxKeXU3h9LXttTUTcEcd55MDSq4kS+X8mmwFdxZyMwCE4ArgLOoIDE6s5AhETIZUyjON8OV9yLiXn3ps79KZpTKT8+va+1kNkfn66cEx5HvM4qhglioRmcn4+p5J/vF1jTl/G6dvP199///358ydCdOnzPC2tH2Jb7ejGKZ0vF+vNjs6UwEFrwxjBfR4HRWLiT8/z9bYcy2Ki7ailZBGTVucU0VpzOaVBSavrvq/5y6enTy9//P5t36sigLSXKf3z9R4TzgPPyOBNxN/fa5hjiDynIRIa2DjmlNLbj6v1I0VOiCzC7POYptPp6E1aD4x9t5ji9e367duPMpUhZwqh147uMXDvsh8VYwRVcr+t2/V+I8R/+dtfaqvrbblcTtu6pBgZ4dhqEBtLiU4i8vI0A8D9/f6Xf/3bz7cfopqHIpL3+/F+fb88P3WV17e3ECMSp1imYRTz+/2OYG69Hdv76/twPp3msjQBh5AiEis6EKTIFtDQS+RSIpGJawbPhDHH9e2t1x2MprmU55O2Tk2ZmJgdXA3EPXDIJe77tm4bIIzTFFJUkeky96Mi+3hJ7qiAYsYUMMa6rvveKMX1qCllivHtfhfT67I+ic8xTU/ZALr0vR6MKP04zePXLy/f//ixrsveDkK3rtNQAsvt7bu2atLOp6/EFJmnMV/frse2IZgDIXBM6TzMzuyEAaOZvb++7r0bgBOXaSxzELHr21VEW+8AWFKMid9+Xqd5Pj3PgI/HW5RaiX084w5S+l7aOmT6f/xf/8s8Tcvt5/Lz9dv3H5QTlNIBQ0giToE5hnkc2rppb631ox+tVzNXx9Np6t1q7SFnoBhyLMBicF8PYr4tq9S9bmvvNQ9RTIacUqR12613M4nknJK69yZP0xAeNDUAZHv4sB8GcgXvbtqO5vfNscfLAOJWa8BwHjLlICatm1Joxj/eV0CMwzDkLH1fX1+9r0OOKTKMg1pH8GkaS0oh8FErE59Op5RLb11Uwc1FUiIAaH23B2gDHKQiI/c2kufIFDi7BJNgHbrXDsQYSxxLtu5WwdVVPTAxBSAwUXNDQOLgrgHRH1g7JLNHhe7xlfY4+j3i0PCwIRATESNgDAkJieM0hZRCFzMzDgHAUZEpUmICRDDpjYgowWWeGaDXXvfapNV2iFlX/XObghyYmPBjkkDE1KXDATGt6k5ItfXeG4BrE1VTVTA4jucvX7/M04mYwB90XejqpuZqrTVwiDG6e21V1YGwlOzuy3rf1m25LamU0zwjgKo6mKMRg6pIXwEp5hwfoVbvJrXum3XLgVW0tVprlXqY9QZgImYinTlwjAGJWtO+rrlAJGnbWvtPL/Pw9DlNwcQ6BSduYqpAHBCBkP4T1+SuDvpwTWRCbNKPJQWP1AL1y1OOEaIH1kFU1uVApMQpMJV5mCm0Jt+Xn/frfb0t8W/RpV3f3lvfh1Ta8TRPUxlZDQOTa2eEeRoZJwvhOKoSuxMgG7h/HICQDf5ERiEAPJi/pBqJU+BETm7QWmBQNHQDldNc9nfubqbmImomfW+tOjxSMk112+76/vbj5/c/1v2uJqCsTdEcHdyttdolO9ojHiy1ImAKlwi2t623NbPHnLOLuYJ4DFmlETASCnCT0L279xA8JohkqF374SK2vbVIGk+cRgJL2qWuSVU5DmeKbFvbHePz+ZLGKIcGQAd/vy7r/QrZPLRtu+3vr9dv34h1TOwGte3aWmpBkoxDcUWRnhLllIkePhZBRCa2JiYWAxCCiVgXZsYHfdGA0AnRDB6vMGAK0VCZiIAyRwvmZqCIAOTITtHRwTDy+TR9/fX50/kitb+/XcfIX16ejya1qxvEVGIcTHmtW4iRIjGGnHJkdGm9S0z58unlfn1T6WsXXOrWfnsIASkkR6JAvfXW5CEoc9dWD2ZSaaqdKBAHIjRV6QoAIRE6BkwxJHYmDGMeXs6Xl+cXJCJCFBunqWKD1pZlvd5vXWWYJhwCId9u95fzqWQGQjQ4X04vX79IN4hUxqmJLMtWX28ANE1T346fy07Mou23bzYN6V8/PRcej/uCyNu635YVp/B0etbd+36I1fu7cPxMoNtyQ8TnTxdEut3v27YPhYHc2Mf0NH9+Xr+9ClsquOzL95/f55IjYIY6gn5OFrQG8DFG2xuPHEIAiiGGeqzL+xpzIkrrspn1l8/PJaXW2r7sTDSepjxkiKH1Zr32tk8ly1Du96UH/vLpKyG0bU85phC1ytHqclTOUVTfrste9/PlMpZy+/Hmvc1jkXbcb1cO1KSp2phyJBrHwTVs6/7L55exxFcHNE8caJ5SjIFTa93Ujtaimai//nwzt+M4pPZhHqbTdBrGY1vBpITQUPKcVf397d2G8dPL5ekyb9u2toMdvYscra7by+UUGZbrjbTliEOOhRDdrPYUw/kyg1oueb0tRKgqCRMAj9OcUoyRe+2ttZRjV3dk4oBMvdu+rKYWYirTRCkrgIPHEv/49nOaRlFZj/rP379Djk+XyzCd2vXtfr1f5pkN1uuy3pfr7apqecohEja9TOO6vN3f70+Xl3iZQboccHg7NgZ3qW2vK3EYx1lbJ0YK7EDL9f7z9RURLp+eTM3ECHGaRwN8fXu73dZShjIMyAHAx7k42HK/88E5JUK8vl/d3NByTv/l05M+zdM4//UvX/793//xf/7P/xliqh5SmMKQxRh5SIzIFELIeUqYb9fX19vatFPMzAQQzGMgTiUAhyqwN3GmGOJ9aare6w7SPn9+AoZt2QOFurflupjTPJflUFkWgf70+XnOF9AW3Jw+5EdA4EwEIO728H5jYCQmVjOTrYIi5cRgCMDgkRyss9sQ0CO7dT2st2XfF5cdPOYYzCUQ9VbBfRgKPPDwgMNQUswll9vt1vc+jMMwFTfo0pGIiGJkUWvr3XoLoNMwzJcTKATXxAYgvYsLDZkDgTN1D4T0YPr0JojoptJ7CMENkBgRUgomZmqARAhEQMyAruYfKF3HP/9JMcQ4BHd8FJnGccwp7/WoR1U1RHzAg5jYOZRUOpKpANKQUpjPNTTJZd1XJqq9HrXVvTqCAcQY6eGuRA8cIDozAeBRa+2iaq11QHBprTZpAgSRUimDiBJiaw0dATzGwAFUFAlLiqKSUnT12mqv9UGkWu5ra623bqbw5+M1I2EgRO39EEF9cHpQAoUAqtpdqls/9mYxoMO2Ha233ttxbNu65ZLRUclUFJkDs7KZqKukHHpvtqzQtpT5mS6H9c2CujnGh8M8xSBizBhMTA5Ac3944ikQMrjUbiYClVzQpa4VRN3hqH2/rfOUh2HY6/r+/m7qR+1mkGIy8+enF3TR3t/fa6vH/X6b5pEQkMm0i4o0pZhjyg2xt0bDnGN6wM/1kaP0R6Hn0YN3B0dCAQ0PTKIhIiQiQEQRdgmO2o8hUClBNmYEItJWtTVySIGM0bX3th3b8vrj2/32HgjO0wkRYooqKuYAYGbHcazLyoQIGtjRxfoBgcjavm3/P57+bEmSJNuyxM7EzDLoYOZDRGberLrd1AQ84P+/BE0AqB7QXberMjPCw93NTFVFhIcz4EHj4gfcyNXURJjP2Xutu7dcJoswAwgs8xJcBAUjjWgJqBq6DQEoCdmHtrvtm/eRo+phjVQZ0CJaFx0MAUjXFGWKf3z7TkEpDW5cmBKF9nsfG3i9iH+95N//+f3x8/uomxRQYAh39zZagLsbIiZOyPT/xwcMVey95MwE1XSMDgFM6M/2JiEhBlE4mDm4/WmOejK4w93MANkZHOCJrUYwh2eGPsgZgYFOpUwiHNbaocfBAK/nS1OvamMYpZxo4l/KaeyUMODZ3YNw670DAAQtp5NqP/YDPAxAuz5fRYCViFm41qZmhDTPMxHoGB6kpr138MBCCBBP+CpiPIk/hMLyXJ8mKdO0zLmoet0rBZzXRRHbXsPt8nJxACkiKZec7z/e7h8Obu7/eTPKqWsDwrefP9XhfD5diEpK9f4Yx4FAuEwh/O3j9hku7/so5jYih21NP456vrzSPN8+3qv22pqEqjZOwAxmNpV0fxxdBwtJKus67XW31k9Jvn5+2QRQx1E/RFBmdsDSqLfx+ZSR6PV6eb2cvO6+PQ7XmSUx7kdf5jzzUmvToyYWDHyCHCSXx+3euxLLNM9gXj82N2XGPJVPnz7N63I+r6PX/TGieVnm83WFxN5AQ7/9+LHft8vlzJxcHT2s9u3jIUzgsd13IMwlu7uaE0DdD1X95a+/DNOX8+l+37R2yQI5mcfovfY6L2vOc+3jaI22TZLkIon5vJwS8+vnc2v2fuxWj3JeDxslcZ4yMJbT5BT9pvX+6MPWZc4i5OC9Wz/CxpLT50/XWjdvmpmnknurGLAuk5ZC6FrdHPI0EcW8LGP02+PeetUPTTnpUK5P4hWrmg4751KmKU2xb3W5nDGlCJR1ttaXl5dIfHtUpHx7/wlmf/nrX6Pp97e3KWeHOJ3Wj4/b7fbx+evL+bIyAgZczycKR/d6bOYxxnCz15fry8sVPqD2w92Waf3x/S0QyzQdR221lnnOc9nuRx/jtJyQ2NoYXZl4WWeWRMjICFNAUKt1jIaAS16+fPm6b4/wkVH+8rdfskzfv/34b//7//77+/fu/Okvf//bp1/vasdovWpFXMsUVR+tJ9br6cyttu1QySllLgUBWxBKImInGkNvt732ejqt60J7rVOiQnx/267rbMOmeXrsx75v6+XCiKe1RJwceF5kVO3q8hRAPsnxT1cTIgW4afBU0jJnnQuRjj7GIACKcAJ1Jwj1uD92YFmXi426bXt37bpRDOBQa2Ns/aiqGmrHI8l6CjUwc8Dttvnkp/NlmRZJclpPQ9XdT+spANrRiYMptFdmuF7m6+nah/Y+KDqaAAmjRUSYWq82FD0mKRDY6xFuT1KZmbM8JaHhFpLEfIQ6hAMjEfNTmQpqf2qgAjH4We0gFk7mETaeglVzTyI0BYKDPbu8ahgQzkSUEwAjZrOlt/bhW+JMxMJSRhap98dDQ/vRnqJQZpHTDAhIOJXS+7CwMcax77V3JuTAcFc3DD6f5sv1XEpGxgBgoqdzseQU6anudHEGDExccvbwUgoCuBsCTPMMSPyf9o8yZWAi9PAWQQAMPsAIYLjWcTxY/HSe94e5u42h2nOiKZ/vgsdxgPs8L0xUjwOAWAgASTAVJjSMnvyw1qXPdP8huzEmKmdMcy5LUyXJHgZ9YHTsB0+swISABOA9p0Bx02P4Tlrt2DnM3SMYCFsfhDBlSVJG28bofZiQPDeqbnE9n9vLodof94/7/fbcc0eQ+0CAeSrBWfHPfUaYEUPTIcz+lIJ5MOB/EhHAnmIURHNzCAsDAIxIYNAHjVprO6gFEoXnIoIMENYCEIQJIvV6bI+38E6cWn0Qxuv1WqZFwwIYIIKg5BLdiLC3SoiIMZXEJGGt1aG9hfV2qI0OARaepjJjAsRqlmQaOMSYLDxGAmA19Ir13h8fU5KSYdsGdrZarQ2OyLkwu2Rm2/32u7+/u4LIcXl5IY/7zzevdX4qUHS//XO7/fHbcb+144gAKSkLJeGBDAHuoEMxSIhRwE3NNQy7e0mJSRIXnpiIxmiIkESYmRBBAiIAwd1FWJKY2dONikimXrWWkpDQNSghBRA+422wTnPJskrW20Mh5sS2TD/fNwxgpkQJpbhjG52Jv35+7dYoU9/b42ZCpL1LSiTcmjqQAwW4Ipm6IwYJEnfVUB1jIBMTB4JkAVQkBAMgHz6iu3F6cpAIKSLSlCDALHLOREQk8zSZWmLRID1aexyOhO7rPJ9fXpBpu282BhdJQowgIt9+vDWzDoEpTct6Wk+uAaovXz5P0/x4vx9v+6lM10+vmtL7vjXDw/Ht0Jd1IZTvt/vWTedpSvOt+c1s15jnpSzZtEuSZZn2eqhrOSUUsG6EOJe51/H4cfuP28N7u+YJRosBGePY72U9c4Lt29t6uZxO62XO0duoG3r7/n27v/28XlYG/+XrJ0lybPuU8navj9txfn0pJSNBTpOr1fs+tq1uOwOG68d2OASiT5OYdiKa52k0TZwkFQValtO32+1f33/Woy6X6+PY+Sed1gVN99udE+WUuiol4ZQ04o8fbxyeE13Op99/+9e0zGVOrUutLQ4F4tbG0Rpx6qp1PJzh81++SkoAYBHa+tv3n70dy2l2QHRbUqZuyXB68qbdBcHaOC+rbc2ZSp4v19e3j5u1zkSz5GWayN32kZhOn87upsOQ4b49Pr1ewiOXQUiqPQLa6EjhAfXop9Op9+b+5KogBALytM5c8m3bRViKbPtxuZYvv/7l4/1+NEvznKZVTf7528/t9rZM+S9fs4PnvKynpbd29IpAof54v5UXPF0vAthaPVrd98ZJ5nnxakc9Tj4hkDoMhdu3nw5RpmW0ceydmU7ns+QS7rnkvR5v7x9+QklZOO3aH7f9/HLFRBHRmvajreuqvbtTU3t5ffnr377e9o8ntOVxf/+//sd//L/+2/9nCP/bv//f59Mv6fSKjx2NZfLuYc20Y2+exCdPltYhe1onKnO3cFV0V6deq4vsY6jkNE1YUkfqdW+HX4qklBu0vh315yNnup7WJHzsu7qfsxBBjGPN8r6bBLo/Hd1P1yAiBSFgIKIkmecZztm538xAwYH8KSMUYWaAQHIkIEgc4G37+AAykWABH/3Ydw9jQs5MEL3VWg8dIxBHG/WogJhyEZacMxGbmFv00QGh1x5oZZIxBhP0uk3zIhFj3zMTS4YAJoox6hhuxgA5iYcbi8N4LjCc4rntiggiQADip1TyTy8VM0IAB2GE/WlWEkAQZiJGJCF4ojCJCCKYiHOOAAtDRDMzU8RIiZkzPT3n7IkYgUcbuKMwGfjUm0W0VsFx6PNHxb45AqaSopsOBYLWe621q+Yk8zwBoIgzp5fXl0+fX+dlef6vc87hZuYYIMxqpu7+DLEmySmbh3vEsGeIG5CmUswiAFiwTNkimILChNDDOTo5PR7b9++/9Xb8+uvny+Ws2rfbDRyZJAmvS5mm8vPnW0TM84RAYwxTV/d5mea8IGOtx+N+F3YO9P3efv7BkCRYu2HpiciMhzYO131LoBmULIUDp5wRE8DEkqdJ930clbyzmXCAcDfAQBFxs5KXRfL5Zelj/PN//rHvdZ6m03qapwkClnn2l6uPTsSm5h7P8iT/pwAL0Hs9xnEELEyTEHvE8xogyPinAxUdgInGaEQkzBQe5taNUsCohMqg1qtWMOEs0CJcByMSopkTIRFE6P64h5vk3GvNOZ8vZ+E01IDEzMicJsyUMFSETRUhSk7Cotq3j310zXMhJNNm3UgoY0qoGExI6EO4MxGjBSiBU+ho9zhu0O45LeHsQuuSQXX0IUzrVEqC3vd2vPctsjVtYxqMt+N+v2+3WxEpWbC3ePDhhtrqfgcfDAJhxCyc6YyjKwE+j4iSEiObmUMkkgjvrYmklCRJHqphmiYRehYgApw5o4cPVUSMgCeQPiU2NzdH+XOai4AMxAndIQIwcJmm1+tpksSGmel0WoVk34fpcIeUBJ161whLWZZ5SiEOqtiPfQtzQggLQhpmiCQ5qUXvKizzmm24uu/1AyAopakUESEicw0CQmRmwqd0hxDw+WTAIEniAUwsIkRcSpnm2QPC4HQ9LWU+jiPMInQq2ZAkF1VLhDmxN9PWLSWR3Mb4ebuVZXk8tpTKusxF+J//+q1v+yTsraPZ5bR+uZ5/1t72Bsw/b0eZzhwsxB++7cDTsvhy/tHtvY55XqfLue0f+/f3X75+XpaJGIdaWvLuWx99b0n2fVpPx7E9bh8FYAxXiGP4cezDattup5dPf/v6iaW0fe+ONvp2f//0culq72/vSPi3v/ylmmt7yDIVpsd29K3VrZace9NAmpc5TPvRSsqJ6dj2VntZyrwIQvSjpsIlM3swAoT3oQG07y2VqZrda5ty8bDL5bUI17pVbaa2rmuaixnU/eg2inBZVhRuD03FuFNm1ABzI6A/LQ2tf7y/tzHWy+mUT5IEiTDWBvjx9rNrm+c8L2sAICYdbh7icbSjjbaDjabrcrpcLm5m6g6u1h3hcjnbXO5vH6R5KWXU6l2BYlny6GN7PC6nlVjyOrej1eFhymrrWkrK6dOXJDIUykzn8znC63Fg4HlZENBBl5xTkrePm7XqvYaP/XGXMREWJfvH//zHnBNa/POfv339/PLly+e274/HfVhH8FLys8OlDgBRm7XW1Z0A3t4/ausA/vP9IZIdwAPUnIRPp1XNbu9bOCACEwYljyjT9PRLAMLodSo8r/M8LVLysR+16VCfiIHk59tWppRyAoqPx/328fHf6//48f7x+x/fb8dYf/m0fP1l+fy5drPhiVOZaQxXB5BAwfcG7VZBxNZL5LKsp3q/u+mU5F6r+9j3fTgty1pKSoQRzsJ2GBRyiJ/f3zLHeZ3CRts7E5znvO9t7DuQACEk8T7kSf4PB2RC91B41nOQCiDJfAqv42hcSiEMwABXJ8nJhSkwSLt278NGC22JvffqgATQax31kMSSshDP84QAeEAS4ZTq0fZ9I6Lry9VUI2KeFzdXtVImJNjvmkoKilrbVEgI6+NRcla1Y3uUaQYgyYTuvTZXK1mIkAAIwQGYEFHG6GoKGIwsKZkqqAtT0H8qqyCQEA08TFUdABBEBABMR3BkSaVkANBhap2Zck4QQEIIaIZSEkSUnFOS2o5WLdxTzvMsIt0gxmAkEq52taOW46hqZmG1VhumY7R6AOLTPmZuTw+2R6hqKdNpPc/TfLleyjKTiJubWYQzUwSo6gA1NYAwN+2a3FNKU6Q2hrmxZETwABYhdjdXtCf30lW7ByADkLq61rf3t2+//0NHZ7ZE2OrGBClJe758wEuRUnKtVYSfgmsH92ZDNbu9vf10195rTiknTgT6uItMvmu1e3p5TZmDcqh2Mzs2QIfQ+3sv12spLOaMKIip0Ptb1ce+TJiTYGgqqVDatpaFS54+vb4s57lZ/fbt9/PlpMNKmq7nSyLptY7apzK9vLwCwem6Ssq9m5mhx+jDWDzl0OGtymQ6OqfsEE6BRKae/iyBBQSGR5bkPgCCCDkiekNE0E6kEmY6tveKU6rH0Q4Fh5Kydq1HDwuAYUNLSjY6YrxcTzkvoODuiRMwEaCOzohpyqNbhOUkEEYEHjpaH60NVSQw7c8oZRgd+6PkXJK4+mk5GUM3hX6o9sTQtke9/Xz/8b3Vvb7Ll1/+9rpe19NyHF1jFMlzloga0Nx3bS0DAJvdfxe8pr5Ju53K5bpOG9Tj278kMVgvSebplCbEcIAgwClNmZyJI4AQAcBBzQwZWSilDBGmHQKES2KOJK6WhHNOvQ2DIUzM6WHmpiySSuoQSFioPA0qo3cRBgFECAf0MNett8tc8uv15Xr95S+v66W0o02lXK4nvW/PJF93NzAgJ0HzHj7ClDHCtLdGgFmEiVR1DEPkMvHoDOAaITnB8JdPr/u2+5+3J3DwVkeAC3MYJMkRz0cKizAERgAiCjIhzvMikuZ5Pp3PQcSLGNi6Trmk2+1Way/LmpLc3z9qH6d1kYCceV3m+8cdqUHG9bx8/fXXbTs+vn9/fX2ZhF9Pa+8dh5LqdZ2nxH3bl1JOc/nt43GvHT8eNw20YOKYTka8vx8f9/dMks+nj24+Ilp8/HycTosAAcZx28J9+PjHb78ZxLKYJPnb//K/yeh//I9/PR7vy+UsmX/7/Xt9j19fLn//97//4x+//fjtX/cAZAoGu5wun7+kqVw+f50vL2mKdtM85TylSXtVZcJW288fP06nmdaCRjpiO/ZMeV6WUuuxHS8vV8lSt71WFcIkaVi9/Xgry7Wbvf/x+7Y/yjx/+vT6t19+wd57q/NcdHStxzRPVFIbersd85zOL5eSEyMfrV4+XfG5oo1YZtHuQXB+OQPR+31nhm9/fAdT701N3SwlydclMQzVr798+ePb99b69fJqR39dF/V0A62tsfl6Wedp6k3rGPWoXasIzNPy6Xpx12QG5sx4vlyGdjRs79s0TTyfP37e1vMZiT/uRz3aaZnWZT6OvQ+flvLYdic8thpAcylgeFmWz+fL434X4TVLH2OWSNbSaJ/m7Ad37fuPb++PGzGf1nNmqtvjTr65Pt7eA83GGDa2/b4uJ8RkQPNcLin//P7mZLet3t4faSqIwEokCYiB7PxS1tPqbgzx8noZw+ox3OD9/aO2Q2NIkTxJ32vr3cxApJxXN/7t+/sYbZ6n//b//T9SzjrMzW63G5Pd2vv729t+jKMbyzy9nj//1/+qKX9/f/94e+jw0/kEHZo9VzHQjH677Xq3z3/5wq+n4zg+3h/c25rTdM5pknZsyX2ZpnnKt58fTceyloTeYdRq1/Ml00yqKbN37VXrVkuSOWcMeDYdPo6e5lmeyWdAwghCAA93J0cg0fAWzDJR6ejGCBTg5kNjgAOwux211l7xT9Q9EPi8ZO29bvU4ttGqDjIZKcmR8lNXO1TdXG1EGIATMiDs+6PVtixLmbNp9DZOp9M0p6P3zEeYI4swIQRhgLmr5SJZmADBInQYBSUBcELMkpHA3QHwWQ4nwQhQHQjAksJgqEb4c/U3+hg2VM0hAjEgEAggBEADU86EGBymYWoDIYkQIxkHIRMyc8oiLDzcrT3NaoiEyDln4qfRmgJjWdb9ONxdXY/9OI59CI/RzSPcgCgiiCiBEAAhI+K8zHOZ1fR2u63znCS3DsyShd299/4EZj6v1m5u6iVzKTLMa6utDzMFoJKnZZ4kJwQ0dSMDdI8RZg6I4q4A2nIiQhImJmDEvbXuTdUQMGLkUpiJicxcUjL3WpsOM3NgfFZ7zKwD6oBU5kSQEw2B0fasGXfOU3F3r+14v5XXcxLc3u8jdCHIZYahh/V97PvHx6gHGcic0FUxyjmnBNfLMk9zmSZhVkeCOC054ede1bpW381aby0VnqfpWchxC1VV0yxMiO4KYAyWwChU0RwMEIjB3J7fMAIkQEcQxOcFgQkTUCbiCDRfskwQbNQg6uOBncBgKmXfq4M/g+3mA92FKJ+XejSRzIWZhEk4i6tbVwsHNx3dzQCMEUOImMcwNweAVGSomo4xgoimqbCA9vG43wMQQEC7AJv15BWs4dBkLYOSV2+befK+GQvMM7oxaW+9cmf2x+PDYrAQExJBIicYAuM0y3VN7I1GJW0QRBDTlMos5t19JBYJxsA8zW6ubja0t/ZkPidMwiT8p/79KdnAp1iN8KmJ5ueF0j2Yc8ntCewBzDkBEDEhxNNUL4ncw9TC3eLPu9p+7O/vH3/5y6/ny8VjHLWbuqSUkzw7nY9jP459miYSaO049h0RiFgIQdJUChOOdugwHSqJXSNJ8ghTH+jMuJQ1gMboACiSzdUDAMmDAAKJ0IGfNA0PcxeWZy9hXuZpmpZlnZd1Xk/LMo/RPt4e8y9zkuQabpFFLCARL5d5Pc3HVj9ub5KJEnezspbPv3y5rGdSf9zuOtX5un7+dP54v7Xtsc5FgNp+SJLz+nJ1+3avaZ53gGO0vo1lKlNi0VBt961p31Xh1+sFiU7ns/Z2+7jnLDmnL59e7v1ovaeZf39777+/ffr6eZrXOFonlumMwdfL9fPL/+P/+D//z/Y4jvTYPm4RsVzOY2h1fbT65br+9a//VoT++O2ff/nLSyJo23G6rqfTyQ3a1n5+//m0zbUx2n4ct1uvxzqt81KSiAonYQI7Hnc3KyWXko/eAr1ZU4NlKn/8/L7Xo375sm8bDz9G7aOO0Y/emFMGHG6AQCjuaBEWvR1t37dPny8lp58/fozelnn59PlrovR2uy1TSXI9ttqrauplKmDRel3WaZ2Xx7YRRCLCUgThclmI5DzPl+v8x2/fKVAAQVVrbfv+6dNLAKiNy/WsvY7WSqacpl57rXVZptEGOp6m0zDfvalh3fajVvU+jIfKU7t8+3hcP71u9ai1/fj59l/+9tdffvm6TgUjZknN7Lhv5rbM6fPnT5eX6/e399NatqN9f/vw0efpJIKJQEf78f2OaqH68nq6t+quQnw6nVLOvY4fx65jHLXW3usxKDEiBSBKklJMNUKAEIltDB0Dgkk4oj8ej/vtjozdNeWcShp9lDlrf7IDYT8ODQ+hf/38+daaHd0NGOC9/lCrmGJrPl9e17RkWcYIL2t3+fa+jaoi8rEfqsY55ykhYO3HRzsMMVqbOY7j4H0rOj6fXpdSgpFG45IJ0OuRyZ2ibY/bsYWO+dMnQOQkzAgENCUGN/f9aJkz0zPGp+eXywgQQvRn5MGfewDyAAw0pOGUUFxmGwPi4ODCiBJb1WFaq0fEcbSjViGWRCmRJkGEsnIuyBI2p33b9mPzh9nQz5++ENG+b7U2d4ugnNKyFg/YH8ewriMBQDjlnLMkQk6U1jIPHdo0JWbm506tZF7WAh7hmgiQMcycENzATRKBQ22HWUeA57ENjJjpmY0Ox2di2lzdQE11qAMgowfU2kQk5xwRah01hBNGpCSm4RoWhkwRAR7DPK2JiD2AmXOe9KkYRgeEnHMC6X0Axmt5DfDHYz+Ow82mnEtKXbvq6KYBoWZHbTknINDaW6sBvm9bay0Mlmkb1+u6nKY8wRGa5HlwzSLPJj4STVMGYkAHIASECO2GiKlIyoJM8GdHlzkY2CNMDVQVNIhkmUr65VcIz1MKV7XWeo0R6CyJw8CGjjaO/WBJLPTYjvvtQYgpZcAoU4EA02e8DoDp9fN0OU1ELERcwK1qrYlpbB9y3F/+7YQA7323cdCSMxOPYdsWfmTyQNc2Du8MHhXMA4iWeVmnEmY/f9y67YSYWHhFNDDVnEoueYwGBiRsbs8D4lF7OPBSKIcwURYQGuwaw8kVDP/cj2JEGD6TOYL/6UMVohQhgQIghIXhlBN1xQjDaMPU9Pp64VxGV/AwiwBMKWnrbWgCySXleQKHcJREKSUF7dve+lAd6gMCUuYsAoA6DJ6LJSJhEWFAG0cvuSQhQvIwN9XWU6Zjv7N05CTQHQ5vI3xEPyZmWReRFKr9uG/owRndIUyHUmDbq2QUEWbKTIHQ6z5aZUCwIcynJWWIWrshEKMIkXFeihCho1YdvSM8sYvmZoQgSRCRmRGCAVMSfB5JPDBMREqWMGeGPHGvrqMhYEr0xIAzPWe4EBEYnpIQQbj30ZmIiHMujAURzdwi+ogxtHfrTT1iqDUzzMIENloH13ZYH/u2nc+neVqLMCNkoXbUY9/NBriDseTn1Q+EU8qCjIgkKampiOQ5m4qOMDMEDIiwwAAgDEdDA0CEmKacc2HGJHI5n+dlzSm5+qhODMNMHdyDmNQdANdpKXPRrn9W4QzyXAqRTOlyvohjnNdJyMF9dKRAcO0tl0yAJFzOswk0tQBcX84jp62PLnh83K/z/HJaEsqcy2Gtj+agJXPOSYpoPQT9Mqep5GN7/Pr5y6PH//j2/V8/b982/fHtVjj+yy9f1+sS4DgVADt/+qtz/sfvf2yHTss5zwtmZ/Cu/du3f6UvX9XGj3/+g/bbp8/XcMApz8wxFd3b6VyW8zJU7/eP0RoicJI6GuxBCJMkq1WbuY1lmVIu6n3U9vr5026+tePT5xdLuNXGiO045iy11W3b1tMaOo6uPAOlxAp7G712CL1cThH+uG2EuC5Tbe3YDgD+aylpKvhxb3tlliUV0CCgKU1ccN/3fjRV3fZHhH7+/Kn38f52W9aTDR1gp/Py6eXiCPt2gCQEK0mmnJBx32z7uO3bIzROp6WcZJnnekwBocMv15fT5RpA89D7sRGP10+fIPzYdw3/5a9fkfC3//mbPoMcBNfX0+dfPn99/ay1gtvXL5/DrB776J0Treuyb4/vv/8LKC+XtRz07Y+ff/zxr+PXX07zlBEXSZ8/v4x9j/Ch43Z7vHx+kZyGqo6x328ftzsjc2JALNOUp3k0a32o3sx03x4Q/uPbH8RUpmIWdWvugUzLPCGjKObEbT/QYyoSGYNIR9+2vr7MEXxv4TkcZFpOWURHBRvTKWE7hoFBCi48JZN1U3x83Nd1WZe5ttEdvMF5KktKwVqmHAsDtrYfMA5yTeDH7W3mzmZ2/yhE0zw/juOUcX457/v23rdUUpnxx/dv0PtpLnPOWTKymI3eLK/k1mM0AViXZMgigvY0n0cgOD1BHgTqYMjOU0BEGsZlHEeOKMLoZmMAsUOEK4QhMDOnMlGAu5U5qU7LNKuNnMv7+8eo3cO2fTOz49jC4fr6UtI0r3POyT00swOqDR06L3MpPGpjmgS4pOSqYyiVjJwYYLRerBDEGP05vYzAoeZmAA5Pz6/7vm86xnpa+9DH/ShTPp1W1XHsOwbNy4JM+nwyQUQAMUtKTxQvEwsLAppqH0PVCJieBRaMcDe3iPAARHKHMfTJTprmubbWW40IkSTC5sM9yLGUEhGujgGI4G7LPNejDuvq4RFDB9OjjxbotZuattp+jh8sAoFHmZr2eduXPE05Tymv59O6LsLi7rUNUJuKMOPowz2YaZ4ngMHM0zSLsIdrH4aYUmZmYnLHJzoJHcFsLnJKi6qaDx2dCZMIEpY055IAovempoBgrvu+b49taCu55CJCFOqcCCL6GLX2CORUJOdtq65eAEVieLhTjXroo9/epzKdCwfRRXBlTxKDA4UcGDp3a0MDBczicd/W8xo67vc3CBiqzQ6MgKAATImfe4RwjdmGNqBgQHB0AyEBpgA0g/mUaZIADFcMMzAMJiJ8/kPxTKiDgSGiAJt2AiNyBDPtyV2Q0AxtxGjamhAiuDBiQM5p9KGuQIgkHliP7hGX82me59HG6K5jPLHjphauLIBBwlmSEJMNi4icE2KYO4TnksyAEKY5EfOfKAEWJBERiHAfgpDJgHyYuY4EMHOaz2dA7mqj1/vowDnlnApv9+3b4+FgL9OLDzCz5bSq2bHvvXsmBCARSYwZ0FQRaDkXYvJBUyHwqK2bu5qXIqGeMusIBEiccs5PphYzIjyhYhBmCCGChMFZ5qmo94c9zDECwoCF4dnzYggIVTM3SRxOw3rrLecsIpykJBFETKl7bK27hoV0G32YG7p66zu6n0/z9z++99YJsO+NEaaUSBjDH7ePx+3xuN+ZkJO4PzWIiEFpKqWU2o5hzcKet3NESinl7KM/yxDOnBIjMwI4cUIkISmlSMrhMJVpXpZpns3saC1NZZ7KtjUdnSQJyHE0TlT3B97QzT9/eTl//dJ6f9Q9TxkZ3n78PJVJezutS+19moqhCfOyzgQMQdfrJ2P+uN2+//xZR0/z3Frdt30uc6iwu5hNiebTfCTMQpfT5N3rfryc5qWcYAxQGx/3l1Lu3V4vl7fHmBr98Xb78fPj83U5HK+nNQvIxw3GcO1U8OiWT6eh+s8/3spSvvzyGUz7x237+BAb5N6OXWtBkt//xz/W0wtlyUkAwIdF6LHvCPTp+gIYx3aEG0WwSKu7gZ7OyzyvZjrGuKynT+cr7+1mexB8+fLpPIyAOAmlxJLTpOdP19nPb7fH+30/XU7L9bTdd689AA3gfL0C4qMeXYdM0wTEKb+93z59+VymUmuvreeSJWfJGRFHH310BJDECOjDsjCCr+tkOiLg/cdtf9xzycvltN+3dtT1NDPR4/5ABiJ63G7LMmMBM+1Vy0wpy88fbzZsPa3D3cOndRpgj/1xOa8A1tvxy9fP//5f/v2x39q23R+P0fYf37//9W9/IUT18fLl+ni77cdxWpeVz4/H/X7/ONq+Hw8RzPMSQixUSv75/Y//WY+//vr10/k8n8/rMr8fR60d+YkdpdHs2B9MYA599AiYaJnWE2I6anMLJGg9Rh/7frjp0Obup/MppXL0xiiZuZTk4ZymcNc2JDEO0GF5zaYmWQyRc1ler6I0LeeynEzDjl1HHyUplff3W299Ken1dKLp1HuHlGiaBnNnVeH9MRT2g/GxP9yatb7M0PfaHxuGpyljh/5wcY92hPB8WXNa9qPFqEXo8+drztRr3R93UHUbmvM0zYkIAnJmVWutAULOdDzuVCZhNAQEwgDCQEJwxGcoWiMMxXgq6DRa3x6tP1DBevcxKAkQmSoiTkthYjdfTysAuFuYUSoi2YaPRWFZE+N23x7b5mZzmSDi+nLJZQIIHY0FGOmZOwXwth9JpLXGICXncMjJJQkSCufjvmtrFCcM8zHSlCEYI8zseTk2taG97Uegu5Xe6mP7UC/zVMIjwk21N0FiMzcPFiEGZCJmDuRpiohwexJ7zHy4IhkCINKfx6A/E9NITKrWuyNQyiIiwuacADylpwRLpjRZKCKFOVMqOZAAARacW5nqfqgbMpurED/um6nlJXVrj33fth0QkyRz72MI3eZpvpyXpawWIMJG3vvoo0UAeEr2p9YViQihTIKBTPHcbgYiBJn5f/Ju3NRdQQgkJVV1GG7aR2VCQspJwiCVNE1T7z0cSi7P+DtAIIQwL8t8Oq0I0GsHiyllU9Nhvff7+7v2pjZSnkoOwjkzRdCJIr+s0HZh/MvnM0si9DRqdiceZh05kNxsSOLTy7m3XqsSEYDt26FjrMuypLLtm/XhQESSUnLXMM8lWZi5EaN7CHEWIaZuHfBpEg3yAX5QaaSDmCkEHTGA4Im7c4DwP0UozkTCwG4YwARhehy72IE23J/G0ujHkMylSJnSaGn07KMiyvnyAhEBPIZHMEC02p84Awhl9icRSRIhkVm01t2DqDAz6BijE5DIxKskzqEIgMTEnCSJJElSTJXFwm10jdEz83K51tzNg5AZNIZZUy5odWxvx9vb7f3+XtK0yDRNa2stUuSUXRyzLHNJaUKMKadmToigwEaMGCLWe29NRzxh2JJTzhkJ+tHAQkSWUgKe4eU/laSS+MlUcjXtWtZ8vV4QgQwcwyy2oxEzMnSNMdTRn3J1cAgfas7MphbeO0vOEsIt4lHbOmzKicPb/XEcDYR8wP3j0UZztO3+HgGJE4Iet9u72Xpec86JKQnNJRPSGKObaldi9gBTbUDbvjdtWTI+t9cGLMRMLgTB6EGEOQkimBkRIMI0L7lM/Bx0TlMphZBaG4S4zBMi3d7fAvzl+urho9ajPtfKgIj7Vqcyl5zudx9HB/Jvv38/5hM4msW0zKr+eGza7euvvwrNP3++N9NH3fewrR9DXffd3Kg3RpolnZP8/euL1/32fsvkn75cOfr9cV9FAK13jdpSzvNSOLOat6H1XlOaT5+m248f90714/j90fbbbZ4lIYb186dXTmlG6M22HoN8GXqZ5/W1wGOr7WCSZ0h9zrnXo283fyC4e0Q320bdbg9JuZ+UmCAxY4oxKLw/DChSLkDU6iDCeZ4mKTv0X15fPtq47fW8TtO8WO+9d8gYgXvvy3m9Jrk9ju2oKCml5HPRMdTwcfTgxAVTltDOGfM87bX2b98IqevoQ6d5EUn3+xYAo7b9cZQpz/M8zWWay34ctdZ1XXXE7eMGbtqbas85TSXV1hEgF3n7+QERn79+snV2s5zScVQr+v5jI+Jtf/iIMpX7YyeW/+X1f1EbjHDc7q+fLl9ezl+v11NK++ifLqeX8ykhPj4+vLax75UI1xUJvv/4sR3bMi3vHx8/v38/XeacZbmsMi3f394+vV57rT9+/+fXTy+/fv1ECmFa9/1JWd22R0oJiLr2Y6+5JCQOZFV1j1xyb+P+8YEkeS4IuLcjCBEZMWlt2167Pk7r+fLy+rjdb9/f56UspynPS281p3xdX3o3BUOWteRv7/fRNZDn81lO16PjvdXAEiJm5KlYAacxOO3q3IcwpTlFjvvYWh/oKZ9SzuxjdK3mh21evZ2XKYtj7+wxT3lhSEKU0UbT7XZ6uQik/diFuKQU7sKJz3M/qrs1HbpHAkwlUfXDNvPOGN2M1OrjIfhUEAEEAjoxEBM6AAWFgUIApZSmTOfiG2wx6t7HgP8ERgujWYzWnCU8UhJXVdPelAVLygeKSCaieUruQcIQ0Vv/+eMnEX/+8rmUBITaNCWapqQabgMoMvL2eIjk02VJwqUsw7X1nhJHuJmaavjQ0Y49hDkxu4cPCzMAdzN/goBGH62PPkrOLATqSaSNod04gwX8+fbkLEkgAmDQM6DggUiUyHw83/fPo5NBEPGz+82EzGQWZuGuwEDMEQhInCggTI0IOHHi5ObdepKEAGqK6EScOWMBQ0fAod7zgDkiAtAfx2EWvY/eBwKWOQ/V2o+67zY6faZ5zDpUJkkinoq5AeLQTkws3FoFwDxNAGRhoM4sgITPgDhi72qmbg7PIBhaTjJ0jN7cDAUl8bKsEUjAroYATJxSij/1ZDZPGQhP65yTuCoDgMc8FWZmSbXVXjfteykpyNtdox3AnMt0kYzX5eOxkek6r8zSjkP9eAIlIyxsaG8AKkkscD/a47a5x8v1nEToielRz8idAp5Dht51IFLQ09Ht+MyT8xOMCYiUiEXdUPvo5oQxaqSBVDCQAp7YQnLAwEBAYHNlZBbODCWIQWVo76O1Q6wWcMkpPARJw90bIZc0ISAidFeRfD6/9N7Ux3E0JiFiFnAzC1PtDoaElEhdY+h+9NYaInPKGaL1vm+HiKzrnFKGQBIGYmQWSYSC8Fw5IYK30Wx0DEcnDmLgUSsnSMRFEgYw4qMet59vP77/8fF4W6bLL6+f17JIRHts5+t5SnmWcnk59WNXDZomySWldLT9ePRUhFMwQLgHwhN27OG5FEYW4NEaABCxmZmaIwZEqJGQJHYLQgAwQljXueQ8agOC4+gARMxm4R4aGhb4rJYjeAAiTtN87MewIaOOkZ0IdLzdt/OnMa8XV3+77Y/HRhD3x/b9x7ej7oCh2ono2OuoreSkWnXUX/7y6+WygnmYAYCbgntXBWLJafSx177VByJmzikxRJgbO2MgIUl6Bh1dhAnxifIioCVP59MJkcwASdwQCfJSIqAPM9U+Ity3vaVEAQhIp9M8L9Pj/XG/b2O0Mk3TXMoy7dt2Xs/LvOz39v3n+8WDid7vj7JMy3LViDRN9307avUkmeT8nKzWvp6XU1lg2DmnjJZLKudTnpgIwICX5bpO4Ha/PdAcFuoW2AciZqZ1mX4+2ul0SgQ+VAr31vL11UB719b7zz/e1/PpMlNYRMp7t399+7mv85kz7nXs/TxLDD8HXKYZt82HgcN2f2jEl7/9GhX/+PF21C0IyzylUjhM+7DWUERD9zbmJM0MFARrSns7dhL5crkw8fxyiqA/3j/2fT+/nOd5ef+4g/Cynr58/fTzx21/HNfr+rg/hppM8I/fv02lXE4rlqIBCGwoqfB2HOrWeg+AgUTcP+63JHI+nebLGuYft7uDFYCjtbefb9u2X19f1RXCT+vpaHW0DhA6+vfHI09l9Hp5eXm6lfbHFmZlzpfr6dg5AE86Wu312JHo669fOeLzy+Xzdf34+TaV/Pm0svvHjz/YdC255AWGksfry6dcsvXx/ds3c9WhdBKD+Plx72oAZGr39xvkvdU+OX7/5+9zzn/99WsmHt7rtrMDE7KIGxDL/b6p+rwuLLkeDYCQGYk/3j760GEmwB6x78d21IBghLzkyzQ/7g9JZb2cmw5HcHA1z9N8Pq1M17rXaZ4l+e9//D4tyzpNp9UOZdJ+Os045bfHw1mQUuJEmTHhtcxt28a+H8cOYOd1skN723gpibEUEWCKwMzLXKJ37dofj7xM62lmkwzBBAlhSiLL/P7R7veP57p6kgxPgMg0bbfHMTxLCog/nyAikgsw7Mc+eiOIqRQROpoJMxoAIUAQEBBBBKACoZAAuDtZOCDyer2k0/R4+/kYyhgeDgAszGbaVWMg4sePdybMRUZvbgju4DFNBQBV7XK5HLUy0bHt7x/v98dHmSQJIxIx9N7dXFgAotWj9xruo3ckA6KUkIHAhvpo+6Pvj7DOnIT52BUAcpkRSRJ7EACbW0mpY6irg02lpPRcBDYIxGcj+gkxI+FUhASI8pSPY0eAksRNn5xqYnhiCyHc9CkbdRsuOcufSEMEBB2mXQHRzdwN9LlMcUAkZGZGpBwQEcQILcwBDFOSJDxUVc0REolLQnq6GVCYwO0Om5nZGCkXTDTauN8fyzx9fv3M9BxbsYj0MUzV3JhJiAeCubuaCOJzbCAMwYCMRO7uhoCI+PQWPGVG5m4ATxEEglN6HjaCEQKJo2QkkkQe3qLNy/ysRwHGs4SPzJIScQoE19ZafWIT9sdxN5/LwizXl0+vL9NQn4GhabNHSZnR3VURx+gpYetdzcwtMLS37XH7/u374/4h/PdlXpkIwwkASIID1f1JsEJGpmeSXYTRnNBVPdyJGUmQZLiDdjdCFOvdco8Uf9LQwzkQIxgAgDWAKYebBZo/qd0cQWruFoyCAiVNvT3afpTMGN6b9aZM8mT2cM56jDIXHGRmyMIsEGrmgECCps9x6RMGPY56uHlOHG616rZt22Ofl2meZ4RnNlHwT2jgc6PniAY+at3dnivgsKF1eERMJSOgR+hQ1RFIGM4MCAoxpgxFoEgkZB2W0bMIBtq23d8/Lq9Xg9hrA4Cc5Om3sq6SBYXr/Ug5rec5HHrv8zSxkBm5wlFrTgLPK0SEJCYhxEhFhDnzszlFRChJiIgpqYV5EMGTEQTAIvJnDY+GAzoEMjJikhTg27bdzOf19LHdh7oN/fl+q9sD3LbtUfdt9JpzyoxmWrft2I6auEyTDp2mPHqvR40Y7iCMhAFuzxamhY4xnvz3UnJJoqp99DBvvQsxBgaE6lDTlAUgEqdlnl8/vwjlo3YIdA81k5wJ0DFq7aqacqq7vf24n84zELTWz+tUsuiUH7fbo3fJZUoZkHq3VDKVLI52tNt9ZyYUFim32/3H++1onef02Ou0TDPx62lmKYvAUWtmRYGAvj3u5TT97S9fvv3zH/ft/vWXz5++XKPr+/sHRVyuF4/41x8/rq9XnuefH+9S4pf5cjjqXdF9Lev5tFIipPj9nz8k6GhNyvL5b3//eHsbxwGq+1FN64E9es8kp9On5XWuDN97e7vfefjL+bzMi8xTBJnGuq5dPZAGQj2a1kYAichVp3nmaQJOTqxtHKxwu9/v9/Vyff16rqOlwMex9XZEWHjkWZjJ1Sl4XRbvjkSjmQ4r09z6SPNUmxYFbI7BJeUOhshpPfVjb6310bcxLtezC9yOfbmcOSdXVTci6cP2Y29DPQg/7hH++unldDlf4nx/bGEBYO62P/aIsD62x91ML+e1HnvJM1Isy3T/2DDi88sLEv3y6y9v33+0x+31r7/85Zd/+w8f18tFGN++fe/HUUQ4Jev1NOXP/7f/DSCpjlt/7/UYNgjh5/fvZtFHvz8e5uNyXR7HRwSI5J/fvmcOLPkf//F/CdL1eqF1uT3UVD3QwoGpd61tgAgyB4ABpDwdtR17kyzXl+tTn42AxDx0SE4pT656frlO64pEFLDVDRLzkg/tOdbLNCfn99tj9Nr2yiT1USkiCU5FzOL+uIcNphkpG3BtOo7uPjh4LgW1L8JY2yREEInDLSS6NlNzEsmJUzrZMm2PWxY+lYwuZD1M22hMjkQlLftxb62mCERsR0tZGIGJzuupj65qJEDEDtG0I6Yg7BFTyo5laMi8CDogBAM5BT2NxqpCQkSJAQchikFvbgkTYMB8SnNz6zG6MEFAqKurR2z3bYxechrdw+NPazWidiPCeZoRI7Gr9jJPn/DV3FvtHx8fiMzC6BjsNFGEqw73AAxhfjw2EU6I05QZo9Vmo90fm5p+/frLspzH0N676UgpL8sEEbU3BBBhNfRhy1xgmp6pi+cZa1qmoTHMzCIXpjRjnhwJ1znl06i1g5dMmfsYatR9QM6CYEAYOiiQEJnJzSRlYgqA2jpAQEc1NTPSSOkZLkGzeL62EAkBhRNmVB1MKMIIOIY9tk3DEieeCIWeB4tpnZhZ0tv77W5mEp6nDIEYMNSOurWxqOk6r9M0E6H+Z49MJEGBNkaSNE0FkJ7AWk6MyE8FLScGwlBXVWYCR/PQ4W6RpSCFh9fWGFgYhIUCchJVDYMpF2FS1YiwoT5MiIX5+eZDQEEAMNXOIL33x+OhQ8c0SpmnMrelEpci3GpnlizogeoQEERgOkbrImSD3GO0xgQA+thuj9v9fLoY+NCeSQiRkJiDg5jp2Vh+An8Z+dkzByTzsAjmDMiqHdmYnt6wDmCIT4YiCDE4ECIBPj2jEJiluPdNh1mfKSZk5IR5SpMUQQbNGN6ttY4k3Xo7epYszDp0KszCakosSIxEjBjPyUFwoCRGNUMgQIgIQk65LPNSctmPox611iMngUAkdncMDEckFCIGYEDw6LXt22Zu0zQ9HfWJKUkCADVz1wh/wt7TJKtNn/o1MX769LqeJ2J3M0kA1iiBm9/ut33bUyEUf2x7+JimnFJy0/vttltDfqpCMALcvDaNiClJ7wODmTginqc6ES5FkMLcUslTKcsyX69XYml9AJJIlkypjWhddeRSEPGoLQljQB+ayrQfR0DIs+FF0UbfjmoG//ztdw9IlE1Hqy0YRldVyzlNUyJ0NT2Gug5hNNNt2wDx5/t7qdXN0eP5ESFyKkgiT6UrIwGnJZcsiQmHu7bRo/c2mCiXgh6qyoRuLjmVOU+nC+Wl5MnjqG0QCwC66jQvw6KPypzKVBDl9vF4slha7601SYIUueR1WZZ1Peqxf1QMUI9qjzwvy6frz+9v3uyvf/91OZW3949//vM3lhw73N/fwc6v5/N1OqWUP8Vy2/c0z+/32/12pxnOMD9qNw1tYxzH8vmlNg0f67qcL+ej9b0P6aq2/fb9W7pcL+czPIafMmHKuSiYmpaUzvPckNZ5+vr6+jTcP/YuhERyDBth8zSF+z3wlKZ63I96GDBhBPH5skopxnirW8o5zQycDhvv94e1Tm5fPr+E5xG4ppLnJfURwCipm59fX3755S9lnvpebaiHl5xzKa0PAHi5XkbTsR+tNoFgJm2eKTGgTEsgS8Kj69H19XpWxH0/lpnOl9OS0ja0H43I32+P87q6g5q76TyVMk3PQtDR2rQsUymjDwzIOTPRfuxh+vH2jiIv1/NRdVnnnz9+TjqZjtfXCyO149iZRqvgPE/57//2t/P5oqNtiC/rdJ6S7o8EIKG6d+v1NJci/HG7bbXlaeE8pcKYRSCO42ij/3y7/cd//49A6qNpH0gXj97armN01ZwmV91ud0Za16UeRyKayrTtFQAcMJAwsUPUOlIuRE/7EnUdTRsnrm0gEjKVZXIGGqJq9/seNk6n0+hjnufb7V7HeGyPOvoVrw53RHp8PNp+TCmXebk/NpTijBahVYFEu4ZaIDqwQuru+mfUjjKlaU6TpGzj5VIo9KhHbSNPyySpA6iPNJVcltv2kYVdRw+fEqbEiNFrd9OSZF6nVMTdzbTV5uYAMZWSBN2RibkIEqrZ9tjUBnrMU6FUyvmyLqft/vjjj98EHCGMBZ+vDUlCyOjgVoeFxXgM06YvaRrApuGUL5+/ajseH282WimJwAdC732ZBGfZj91NJWfOpG7BQUkIABHD/JnnJaLlZX1yYO/3O3gw8zxPhBg2RMQJHrWWqXASHUPVe28lcau1tcGSzi+vuZTTy8u8nsb7BydhoTRLOJj76BoOwqlMoEPnuUji/bG33onIEISp5HQ0daTgTOUEZd6HV595SoodXT10WvTra8Gw9x8/j/tDmAE9YKiOTGwAYOGDMmZkmpdpjK7/aYfA8ECwCLOnqBsYsLYxzDAQESSX5wcDAYKchzoESnIbJGxmASBF5vk0ryvIb4/tvu9HySpMoXG/36ZSlnn5/OUzF2qjggNLMo3nzlESsRQAdCdhCX6W/B2J+M/DLliAA07LBBDh6AZuRJjAQW086/xBgICubm4eodoFM7MQkxuqKwTIf571gNDdzcxdRURYWutmBkBlmudlFcnPJ86UKCO5EDNIRjdyRweHCO0K4SVnsHCNlHlelnldez9SEfde2xEeBspISIDhRIgxnlwnZhqqww3pqaZgFlBHBwrDcGLyKVEjB6ugPRERACAbIHgQcoADPUGGGObh6MGdEieGAIYQxM07OaRc2AciY0A9uoMJ8VJKeIywcJJcRvVwT8IpJQLQNtSMiThlsMEULEwsOjxnnMq6LkvKUmvFcGF6vqRZJDwCOGfhLEwiTM9t2u12+7j9LFNZ1xWBBpj5My8F7qqmkvApJ3fEecrply+//vqVUwLGrt3cAOBezcJba9vxCIzRq4+UOBwRMIgAiefTnHIONA9MkrPkHk2tH4e55jEUwOelIAIhOHlADEVkdPMSNJ/Wy/V6upxzKqMPRwTkYc45e+/zaQFEtcGMOWdTA/PaNZCJ6VmZMWbVXque1wsAH/v+c/9JgeZ27DtiJMFlPTN4O2o0s+4lTVFATYeauu511zAOTixmPoYBYckTkQRAmCUJ6wNhmIJq3LfHcVThNNTNrIQVliSSmMMhDACE0hScZZpPnCcdZeYpA+io250458TbXn1YFlmXGcAp4zkvdYwFsLYGGPOcMOzj51vt45dfv6bTtPd+3/bWowGU0xJz+Xl7/PHtj2mZr19efv54zyldT8vCknR8vb4cgEn4j497b0MdavjPdtx3mCQByrH1sQ3vY0kTWLh7mvK8LtVGiKR1Uh/7H7+b48tyTpzb3nFoziERn65pzFQftX/cSWPKaV6W42itdUZY5oLEqHr7x7+2474U9H37t6+f55yaRj8OamO5nICpq46meUmtu2qkPJ3m2TyA4u3nx1D9a8lD1dzzPKPDdF7OX17fv/8ggGPbqKTT+WQQrY65TDmno+/72wcxh8WxPU7nl/1xLykZgLDs+w6IKaURgMxpOe+1Hj8+zId5zKcTuW+PzbKJ0H48TN3NP31+qfVImSWnx/1hqvM0TVKOo33//kdv7fX1c04FkIT43/72hQTdtPca6ARxXhd37ftGiGUq59PZtGHoZZ6mf/97hO23D17XX7+82hhvbz/3+8ckr0ev4aPvOyNWgr4fAAiECNH2ox/Hr798/edvv3/8/DifT0m41apDU5Ixxv328fL5k2QRToTYD+3qy5rm06kdzd1TLmkqSKkPrX0QgeRiHjkvwLnu+4gNkc6XawAhc+ifwNK+wcfbR5lUh729f6QlhdAf7z/LeQGq7w/ctj0xn798iq76/Y/92JfXqw4Ye41SZslbaLimjFEKOx4e3dRA22glMVhc18s1o9ixJJL1HJwlzfc67kd3xFbr9nF364boIhESTKHhEX04CV5OF0IeXeuxM4uwpCRj9O1RJadwUlPJpKrmXo+678eyFJ7KgcCPo+7bz/tDCFFSQkIQcKO6P9bpxAgB+MSYDggg+jDwlE8L5yn1+4cRvX79Uu+37fbRWsOI03kZjWs9TuvchwKaqpkjEEpitCcIhDEQ5YnS4OeVfTE/9q33ERE4wVSKMBlTygkQzOzJxgUvOlTHMFNJUnJOqSzLnHNiYXd7wlpqG/ftPtpIKedcUvCQzkjgkXJWcw98kto4ZwFG47ycjItiqQQKmbzItLZ9KzSms1w+n4WNS/n9P/4ZNnIRIuy1jTEYGRy0dQLKUwbkoRhITJkEwQcihJkOB4wnbd3cIyI8Ss4swk+hGISaBaJITgUBptZaQMzrChjzInnOTQ2RPuw9HNW8FHaw+/b48f5GSYhJuFh3RMpJShY3CGR7BsPNzAOFkIVFAikonnZJMJdEiXn0cfQa9tSA5NFbABIiYADEGP3ZiQkIdzcdQvxcnyUWAEBAxqcTgxz9maBapsl0mHqWnHJKOZV5hsB5np7LQ3dgwQi3oQDkbrW1MFMdAMEg05SfQ6Yk6dPry35kQuijq45wNyMGQghihPAAsqfFTdhcI4jckVhS9qeeHMmCEDkxkECYxRMBYUaMDAABjEgQgQDozIwOGMaMCAQABu5MLAUi2jEyhD0x4oBjqEfP+ck0pyctUM2IAZH6GAg4FaKn6A6f4isIB2FBpHBIkhOjsJi51saE67rmlJfTmlKKgKHDLAggZSlZgLAdx1Hr7f7RW0s5u3sSlsTPvxR+ghIAmJBQ3K33ZkNzytM8q5mpcqaUU6u19x7PDoG7m5vpse+91dHGE/t5upynZRaWt/e3ZZq//vpLKdOP7z/70QHh8XiISE4pAhydCZlTRPShYX5alvP1spzPy/m8LCcW4ZSG++ha993D8zTP8+SmreZ4hoFUiYBB1LoQcRIzrX300df58u//63+9vFxuP97ff7yZW06p9+ZmdJoQGQNzKloHKCAQPekGFM8UHwSIcBJpVetRnUg8ppmQmYJEOI4YffTWzH3btjFG5GfdEwAiiTDJ058cEdrH9tgd6HJ+vXw5qbXQLgLDRz2OaeZc8qO2x3EkZGFOmZIwIAxUNWViYRytoXp4pJxkKuZ4VL0de1dwxu9vHzIltpFEpinZXj+tp//666/X19P3//Gvum9vLLScFOPooxvIvDS19v74cj7Nkk6Xl4m9tQoe1+u59t5HQyrT+eSSjGkhebvddPTTfPryckWULnXfHnVs+8+P5XyZSk7mqlCYQhK9iORD3wIBpsuamPpNLeL9vjEtZvF+3+evn4x9f+yENBAMYDqdJpamkBE/fSlaR2K+v78D+PV6lUQ2tLehFtOyjNbv2/H97c3V5mWllN62eyI+Xc+//HL2MX789t3aOC3Lvh31OE6X03Pv6WoOkIQ/f3oB4Y/3x9vHfZmX03kGzx/v70KQs5xPJ2tdq/ajRxgSevj9MSQTOBDT9dP12A8bliSXeTJ9Dhez9vrp9QIox1F7rfNpvl7O729jnXNJwgBmVJst59N/+be/i+SPj/e2b3sfp9OSE398vNfH/eV6Tikx08vrtWTZbocQ/frL5622n9/+KGUu89Jar7UfvZc8DR/X8+W0nFOW8D4CpzwRRSKertfzaQ3AWgchztMqzMO8tu4QUjJlHu6tKzGZ+dvbLYm8XC/LaV2JPxBr64BgYRFwHM3cLusqxGSxP46p5NfXF07y4+0nMa+XK+d57wNzLpfrlKchgsD5cnXzlCYHK0LN/MvrKik/ms2XtYZYNQNJaR6jhvv9OEjIIjPAuUwn1FQSzdcfH7uOBgh73bfWtrrPwm5W5kmQQ9WHMVMuklOqbfTjToTTNM3TIsLanycEQwVmoaDexlHrvMyBsffj+/v7+7ZJmUpZe68YIIyAbsIEEcIMCNIPcSipANNW8dG0M3XkyEzZYIBXOV9eXtfSbuXbP8bt9k4IMxdCdPM8ZUysqkMVIwhZCAIdHZmeZUaBJx4NEBDmqSSm0cZx7LVV2WW0MXTUMViIQGw0QvBlAQQiZCZ3a7USMUSEgw3dHlspIsK9j+eciYkkUXhyN+3KIqUUtug9AgkoEyfJCJocqXrsBgcVhaKQGLJLOOnN40e1Nbs5qiKHoCAnZMPaox3jWV4zVzcipFQKsrNkIhrVEAIIAfH54AWI5/ceIEQEkTziyXfTP49mISxEOPoIpFwkIIAIiD69vhJhyXLsR68HMlnXx+3DbDyPCy/XTzllBAwEM0cSBA91NzcHG8o5T6cp5zwihhuyIBnYSIkYwNnBGwRN04pIGgOd6ZmIGabDIICFnyJbd1cbgIgRkoRJRh9MyEhAxIARyd2QcZrmJCVPKRwA8IlXzCUjoI1hARjubu2AgNj2rbeeUyIKFs45QfChdhwHMUxTQYKhfduCiRAAnmHipyTMCIENfOjwGg6OIsjClEgEUXIuIPMYEHb8iXACQGZmYcowAs0SS0YgsKcZngDQQigAAkIjuoMBoQglSDCSe6t7E22j6+gDXIGJCgCEqY4xGHAq+Tn7dDYg5Gd5XeR5CGIioDAzVRMRBB59mPcAKJIvV9YxmCVCx1BVYzQlNBV3I6DRRz12My1lKikjIDJOUxnE4UFImITckBIgumnkAHcIYGIMpMC5FObk3bq2ESDCOSVjc9P7R+19uJm5ERIzY4AlC4cyl0+fX6eyuPrH+7vZEJZ5nqcy9doo7HxaJZUnaDSV8utfv375+mUuJZXk4e04au33+7Z/3PfjcIh1PU1lcrOxDiK437btOMpUPn/+1MbY6yGmMqVwrJXnqXz6+unl5WX/uL2//Rx9nC8n0zFqLympGBdJmdZ5aUc7atVuQRDgpgYVESlL8gCIQKIwP7QCUi4FMACDmSJ8tOHx/LgC3ImZBJ8pKbcw9UAQD22wfzhRkOTTp68W+rj9HH0fAJQkTzkta3e/xX1dpnWazAeG9qPlLIlpua49MQGVab5E/PH+8dvvP9bP12b6x7f3o+nnL18u13N9PArGZZnnxP2op2U6nQqYE6JK3LTZhj97//FomLOwRCg61jr+8sunFc+zBIxW901HMIdaR6f1sv7zj4+3Rw1Jbx+9kLz8+pVJxlGXiU7Tiji/3T4MIS/FRtu2rWsPSvPLy1RSmXNEINNx7GM7ppxO6/T56ydr68fvvwvhecrIlKdpEGxHp8LTsrTbdnv7mPM0l2y1ffp0yTm/XNcIYyFdFiBuRzvqwZL/+OPHp+vLtK71Q7f7nj2ury/HbTtuD937+bS+fn79448ftfVpLpxzHuXbb98vL5e397uULGlKCYOk6ZCRUk7TsoxefTgZMqYvLy+mfegYpiRS92amp/VUjwOinM7LsR9jqJwEwi+nc055PS3CFEQIcX88suCcks6TtuG7Xl7OEZYCl2kWwn27McLt/d3NLuc5MS3TXNv+22+/ndZlWgoGjd4UTDCZea3t9rhPZt0sAByMKABgvz0IYDkvtda6dxGZJ4FwnwCJejdmmac5lUzAo+t2HLVWQmEnDkLCcJeSx1AdKiwk3MbIGaZlRkljjHo0h6j1AMTjaCVl93h5uVwvpzkXWqXtXYvxlKVMH4+aV5nW8zH82x8f4TElLnkK9frYFuFzntd1Oq3T7x+bJ9tqG6N5nkjWJNm0974N4UFx/vR6Ad1/v7X395nmdmwBODy2Ngbw8vJSAFIEpzSXPPZ9DE05TdMsRNt967Uu8yKUCGHfNlfPcz7zSYdFwJylNXguwS8v59OX6//7//nf3h6Py5x///bPCPz8+ioiSCzLXLTt5P75smw/7xQkhExZQ3cAJ/aSG8dt9L4fX07TaU3ouizLp0+vP37/YdpH7YAAgKYumVUdgTjhn+4tBAB/yhPgeQvD8Ah0ZGSZ5Tnv0aH3+8PUhjVzP5/PU54A3BxU9dkyI8LooF3RfbQa5jrG6C1iAIaal6UwpdE6BJgq/gmXJQIRRmczRCZmTuQYLsBJKdWgwcml1BB3mebTiHqzSvfRRPVx1AGZBA01XJ2Dp7BKyMzupr2HcKI/X29JhMGGmzo8n6cAiAjIDM9pECIFgFsgooV7BCAQJeZEBDklc1rmhQTHcLVxPQMCTdO83R/H9qj1ULcA2LYD4C0Aa9XPr69TWRAgmAmMwJkBg4jQI5iYWIgyQ4xwDRSmUTsOBQxCT4xAkBOaQc5ZA8MHuLsbEGDQ0xAS8HRf/ylDCncLTcIR8RRqPY+2RKxjYMCyTMKJmfI0xVNXWQTAtscBSMjPT7D3PtpxAOIzHpuYGKm1btp7q5I45zlz2vs+LDBnSRLm7hYQ1o05lcLh4OG1dQ+XbKlQUOgYZUqchHNJGXp/sotDmZ1SoLgGEYl5AuVwREfBIHHVTPykjYdTOCIFm4W6jV6YyEFH78fWjp2E0LC3joSRYtQ2RpdcADDAkYAIfdggcA96nokhWAggzJyJCNGGudnTQE4JiRNCPL/5EUBISGChrVUWylmYgZlfXl4QME8JMFyNkJllWO86mMnMKLgUCSY/fABDgHd//mhyZEJGBgN38wBJSTh5WOs62iDhJFmEdYz77VZKZuHR+/ZxxxOqtamkMYBZ3LS3ChAQICLrMqlanqeXz6+//PL1+vKCBL23j/fH9njcbrd9P8ZRx7DR+3POBAG9jl5H783Cp2n55ddfg/G///f/6O8fMOD6crVhj/ePf/zH/+z78f72AyEYo9cDCZ+jyt45Jc7CQTzlgkhb2xUMHXVYH3tv3bqdlhOBEKEAP0uCqhrhai6MTKyoAlQkIwRDCCEJIZgZmmE4IgCDIYK5Hce4be2iFJC3gYvMZcmQHTmVnKcptSbTkgnAxwAd4p4BzlNpVdFxvZwtcFi8fzxuxz59fCyvF2B2VxuKQjD85cvLaeLkfnTFofWxHW0MB1guu+PPrX5/7CMIR/TH/bLOl/XUt1sf/a+/fpkR+uNmvackgI6gQTi6Ph7Ht+8/aVpas/k0J6HMmOaUE3DQOiUKv2+13ut23/OcW7Nc5HJe32+305w94rxOlIWnMidi8OhahJPIvu2JcC5z1WEj7vvmFU+BamOe5DKVNc/T9STCy9kgfAABAABJREFUUykRmvI0ev90vZZ5+vnz1upYX+dW7fuPD0lc++Bcpnke2sfet8fjr7/+GsPb3pZlXnt/NiB0jPNp/vRyzsI/vr9Pp7VJyoX2Y7Tep/kcANq15MSEX66fej04YVnS/f7Y9oP/dKSgmf7x7WNdl6lMp2Xtrc9TToQppcvp9O3bb2Wac+LLadXWez36tq/L/OXT6/l0drWx6ryWcD+2LQDut/vf//73YXbO+czETPtjG2q27f48hjN319v7PRAjYN+PMcw8nhNBJr5er/fHfRyVIpZ5EuHEBE/VjisEElIuhSWZPnHGiJyIGJnVw0bz8GM/Wutlnq7XqzvUo47eU5I/lQlIAUGEEahjQEBhXtZ5ylkAeCpTmRSpnFdFUHzsLq74eLSPe025ZItiOnGAWgn85dOVMvdjk+h7CwREGhRQYCJmW3KGNdBhngZL89HMx4D28dHd5Xzpj70irdeXxEG9LQIEPoYixLKUlDnca23hdj6fCLnV+njct+0hSZ7GLRJCR4hIzJ5TOw4XzKd1vp7+kv5LMH/c2qfPL5dlFiQgJhEkI699Yh5gZBbNwDy5n0vSUpwI2azb6ANKIsAp51Gr9X45n/pxtNZTSczJhiE9MbYsTAgQ4abw3GcxI0Do0Ig/peuANJqGu4gIp17rtj0e+4ORXy6XacnHwwDR3bb9EQDhjghlLsz8+LgTMoCnxGp2bLsHpJKfsYDChZH2QwkIAsOBiBhB0hOblwPFibEUkKyejWelNJBHEBIRZKboPh7V0Us6fY7RDCNMgmhaAecpfKA10zGaEjQgEclCCUNKykZoTgQEACIJCcdoow73IKQ8FQWFCNcAYGEkBmZGgJRyJljmNQAhOhGjpHBOnGee9HzZHtvb21sfrfWxbUcf31pVHfbly+fr5SyFwANGMAcTphDk55n2aW8UwedESoO6+9AYDJYIwACsRSBBEIbj05JCiEJAIhIBTBgAquqmQuxq7j0kPX8R4PF0qeOzfDQ0p4yM58slpewWlKg3672rDnNnES4TYLjqcxA7GjBm4mJj7I9H1/bUiSA6UDDRc3wYHjrU1QIinr7bIk+J1xNllSXnJA6hQ4k0UNMEiByYj6rDYMBktAxFTzElYkCKgTYCDYQDwwIxDJQSC3M8dfVgA8aA3sLV9LDRtFcHQ7SIEe6xuyW1rogRYWMMAMg5J+ExOkCYegQ8mVVDQZghkInNwCwQOHHysKFDgp+9BADPnIIB42mXCPdRu2LgXLLMq6l5hKvpaA6IgdrHUGPG3kdKIMYBgQElFVMHA3+6XYf5cB8jcVJV7crMpZQAqdQgkACnKeciYzyx2pZyCm/fvn273x/7cZRpSknu960ejXGcT8ufUUuiYd2P5mbH0STvyzID8jHG7z/+eP/xQYilJARsD90fP1rt67r21vd93/aaSpqWWXJSN8CwMTix9Z6FO/iPb78ft/dj215ezsJkamY2khIQYvgYTwWuMCOTSQwT9hERtTW1cdQj55IYPSLlPJ9Ow6y1PkzdIongs/X+FJNBEIL8/4j6s95Kmi1NE1uTmfmw9yYZwzedk5mVWdkNAd3//19IgCCpoa5SqyrrnPymiCC5Bx/MbA268MhWgBdxQYCBoG9387Xe93kIAdDMgCmOFDqSpCw5a6S12W9f3/lyK+PUIs9jehrL/ljqo95vG1pMQ86J1tcrqhVhQmAzUiOPQLivqwVttSl4CNJYPItMBZe63paZ5XI+YeB637MZAbXdEPS2t7WHRXlXuCrfIc3n85Dy9X/87fH+533MHyZ53B77ZazbNgqfTmeCyINcr9e39/vw/OnDxw/Xbg2Ykjxdpm+//vaf/+Ufzs+ndVnIcXvU27fbMJ7m5/m21bfH4/x0OT+fx8yvvULbEsvzmE5PE211fX8XxnPOJQs/P3vvTLTvm7m/327N+y9//cvpMn/7sg4Z50TngmNhAPzwMm3bhhHDULZtTxEJcCpD29vjsQ/DIC4G8PGHj2Ua3JQQhlJS4uE0Px5r67W2bdnXj58/lSFprYzwlx8/CQCV0qp2CjoNKAIejCBECDDP46dPL+sjffv6Z8r49DQHaGjSvW5qHFGIL9Mp5+ze91rXpY1DzkKm3VUf16ukrOFCpLUlJoIQImHizHbrt7e3+fL048+f/+//t/9HmKObdWyt9bqH2cdPn1qt27Zv6zpO477X1nXd+zRPKImJiPlxvbWmwzhcZhEkOFKVSTgVAAAPVVANAKSEkqS1rsseB4M0yZgTBiLLtrawYGT3yJLGYcyStm0TIVNXNHcX5jIMFgAAktOR+js9X4Tpel3u/vj86YfMzCklGdxjPH+8Ve/KNZ3gPMc4XLdH3x5PA59TmXPaa+vL/fa4k0gSZKCBMQCmsNCuACuxBbxt26+v/oR2Hubz+emt98dtabV9a7qLEFJXF4t5YICo9z1TTEMRwvDoe2VOTPJdeNY7BILH47a4e8rpcrqY6rasZi3c3fy6v5nrfDmNl6c0TY/rY1l3ATUPa0sImoCzBfS9rU01hmEop7NDSEDHkPAidJ7Htjyu6zK9zL2169uNAJLIuq7UOYkQk0MQUMRxt3bzcHck7N0CQEQOo4X7kVlJptpN8T9utU17bdVMu/VjzsCAEb5uawAcexYiMu3bGnDwZt0joPkRs7HNN5EMEJKEW2qteVO2SLmwyDhNgEQiCUmTdClK4kiKYCgOQRLIZEFqafeAwKMHs95vLJTQqA6Zwfel9xUoCMF766quZhaMiQkQgojCHZgP0lA4KHViibAkuaSCjrXWcGBiR2RiRAQwYUFGouTh4RhODDCkAQzGVCRLvbSxzI9tud0ey/pQtffbnZgkc87HG7A49FBLKTEDInVACwd3SZI4hYNbL2eOfo/dEFSOYrapqwERH6GYCDmwUwERQISArGqHZw0QmDECzTpQmAESMhNzApEkQog5ZWZx8x56IElcu/WehHXTCIWkxELgBFH73utOOCXG3tVMiUiQ1LS3+J5XQ2RmN2+9hQfREe7wI+xmpiyUOQ2lsIhaaGivOyBp26WMlBPhCZVZZuSZZCBCQcvoYM28OYarmzoHE1Lbt0AaBUYKtN37zu6MttzfuFckAzAM63sFqyLkjq06hEFY3RS1IjETRUSvFSAODlMgqrubualIIiSLg1IJFJi4dFsDAZlYBJGZJACTpGOCE44RfjTvQh2JvLXwQ6UL4Uda69CHMBH1rqrf+yyG7uEH+jzc697VLIsQYKvVuoc4MQtLEiEgISZkAieiY+rGzOuy7tseANM4BUAiTqc5wt0siNRs3bb77V573/p+envPw/Cv//qfOcv79fbbr197b6fTyEahUXJWUPcYh2Gep+5NGofH67dve9tPT2dOPM4jhKPD0+mUgafThBASlg5DIKHpd7E8AmjtViu5m2kwJuE0sGkSZEIGQkR2C2Q8kuPDOK211b2FhQjlnI8LjwKIKU2ju6tamCMhMgIyRhJmSWKOHUCRF4c/H/tTGmU4+TQo09K32o20n6acCoxDUmFCejqdtG7uGq0TpWWrkMOJqzvnPDB/+vRhfLpwsHSEHvM4T2VYlhuD171t28qny9PTs2P+envbzW7IS0ijIYym0/j88gHH8TzQpWBi/PblC/X2PA3jMPem90XXbQ0iM0Xmy9PFKQF4Bo2O1prthEH3++N6u5dhysMsZcgl557GechZtuVRlxt4lETtdrd5fB4GyYUFPpznTLS/vRlBGfLr63s3NXBE2rZNEjNEdA3ag2lZl3HK2CfqnZhF0mOv4ZFSkmpL7chpmM8HmexpnHJJj/daJD1/Prs7Z8lTfl/f97YH4ta3XEqg//H778Nf/jJmcYCpyHWt5opilNM8jaPImBkjXr9+Q4pcpGsLZAEeS4FUADERt6TRjQsuj3Uc8+uXN4YLuM/jlEVkkEBIY9beIZQRni5PGNBbNwZk2Gt//PkHC7+/v5Vc3t9uHz99WJel130cBlfTbhGGRPu2bbWuyz6eZgNQ9WFKKWXmhGittRWXVvuyLUSEGAFILO6x790RDOyw96jCXisgjeMoRMCoChIgIqdpIkZrZuDMpNrDYzqNrfeD0zJMOZexm/auav70fElSKPFe69IU3NO6GQkPc5e0VdtBrKS7ytoiOIFJp2m1zRuenp5Oz0+2LK9v31T1crnsXB7Xx4QSHna/B+eG1Cx29/u2WdvjaRqHJ5ynvt72pb83W0As5R1SW+6j+0gxj1yy9OUeOR3vNjlLLrmu67bv8zSOUzEXM1Ozrr31iogC9FjXJDyOg4zltm0jOJS8t71Zfb29f3p+kag1T0UQGYAB2uMRe4W6uxomH2hgLDU0OXrfqNfMMXBq18ffX1+1Ll9//8pMiY+yt7JI4txaI8AkfCjNzdXdEZCR3cLRc8mtttZbzukQhZYxHz1t95Ccx3m6vr0+bndEHsbMJGbHRt6Ag+CA7Ft3J5KIOHT2EKitQ4IIVOhmliSXUiB819ZrQ6RBRJgBea0aeXBMCtKc9FjHEXMoMIV7dyfHzdgCI1HKuNc+TMW1WjceBdG6NWRgIcmp7rtWNdPaN0A7KmPmjoSSiAkPGwtEpJQkJT4AdmFIkIt4ODgEAFECRojwILPQ7hbHSEpKmQgBAqbzpaR5b/v1fHt9+3a7X5d1/fb2HgiqbV2Xl8uFibw7EgISQjiFGboaZrIgQ6ahJI6+gLsTIASMQ6l77aqMHof2KICCj7917ZKO8ou5m2sHysSE4EQI4QjAzDmxm5u2MD1UU0xszbiIsIQDIY1Daa2HqiJoJwgPa4yQkB01MxOEawMzRHJ0N0USZGIkQKQjPhWOhAFwLPeOPiQRZsmcxN2seQQIc0S4VredZTARSaNv0r1IOedh9jCJldoG1q2qEwqfkcHCAZCArNbogWxYV9QlZxaEZV/Dm7OHVu/tAB0jcE4JPIhAzbr18GAuGSUCtHcATAmJKJzRCcOPPrlZHFrSph0xAD1LDjBETJI8kIUDkJMEhAcRcxKCiHVZgJkzR4C5IxIjAsO+79q7pDSMxdS2fXP3A1hFSHT8DLPuwUJxgAMYSykBoW7ojoApJUQ0d912SSyJtSkBlVw8otaKhF0FPISJhDCorvu673nIfd8f22ru+59f3m+3PBRiAuLXt9fae621t1okl5SKpPN5EklH+m3fd2YOgtt6+/L+9dP2aZrGeRq1d+vqqk+X+eXjc5j3feyt9tbMDCPOpwki9nU3DO3NWkPAcKSEOZWO5urjOJobUYIjZl8SEnuAMB8XZyn5CIEjYkRwEQbQpk4QCIqggCyMTiSMhEBkzpFLS/kKsO16okH29Hq/6dakw1lSEgHryeLpfC6SPj2/LNd3tcY5vW+1oyHjdV0UDTO/DKfksHx7zYgfPn0gx77t98VTyUm4G769Xqczn+anCv2K9V3TkvhuDia2o/jyLPz588uH54H6o97fPQKj183Pw+mx7tfbnQcuT9NSa+8+n4e1WhIpACLj69cvr19gmC671qfPP4zj6fp2D6d/+Of/BH//e9vrvfdWe/Q2lfFS0kBYEBj8NGWCsG3dzNDbmDMxmpuFX56eujYh1H33fcduwQlMiYLDl7f3aZ5667f321DK2i2nIbD13vbueF8CbF+3utaMmAPaumaIp5enaczX23WvbT6dmvX3t/dpmkpKt/v6529/5JQxDdt1YRYJbHsdhE37aR4YQ3t/fyxE8eHT8+XpHADf9Ovt220chn/6T//IRP/lv/7XdX20uo7z1LvOp2lrq/D08uFye32dSnE0036eSriFRhAMz3Pda9t2CFz7vu7b8lief/jw4eXDOE5B9rjfhEW9MXLOYsa9PojJzSULAKv6fD5BRG+GgADAiLU2dx/GbGpwuPw06tYBMBDN2bpxJnOPgN4VsU2SMLC3nka5XCaIYEmb7X1vvQYLzvMkzK4e5DJIKtndW1NgQidOY56mbd/Xag1JIepj4aFQ19Zh7bxAinG+Lv5YFRkCfRgylucd6g3517X50hTL6XKeLx+SxiqtBco07w1vDb49NuW8uyCObzXGlhipDcMj4+/7dQVqaYA8bYq191BYoj8zFqbIqLoXJldjxAhvVre6EsOc5q4tIojBXY93wM2roreuwYxhr2/v1+2x7lu3cKbn+cREYst9b6vnkshZO3sXMO1bBtTNN6ZyeYruEYDWyToPPE/jReDb327b42GqAZhkmKZJD9MCYiCQcErcu7bqHl6GfLyYCksu6RAj03jQSlBE1IIOB5AZgBNhSrmrbdteipCguuWUDkgUMx3ZCNUQ6TkXJO7q7p4lI5JjUARR5HL4aNzUWRIQqnqtPdAfTbVjDNkZjTiCJZGBcThZhFu4KjJRAo/wELWdOAeOuViqHZDLaPuOQYwJQQeWinvfm7vve83Mh/4ilxQRvfdjoIVAhAAI4Udf+HtjCBGD4YgIEZNwigAicQv3QCHG7/FxYQbAyylPfh6G0zRPv/9RAF5b315f3+q+rI9Hq9t5Pg15WJZ1KJ7KqGZOTIhqoAjOIsMM4q7NVYUGC3EMSpa8hZsFsbAZtN4BFL/HjgMAAZCJgggDEYAIEMMPVuB/qCSO9hYTYRAzEeMRdgn3nBMhttoAw92st7atACCJ0pyF51yysOz73k3DI6eUJB15VYdg+T6bkpTNnJAks4i4gXsnxFRyBGzrZhZScs4EYX3vkmU8nVQpJEk+WSVyyYSmK7UKdQmzhEVkCmLmvLl6gCRKlFl3q5vdb4kbU2KMU5G+VzTttTIYoiERAALE8R9yzM/MOgQ0VwE+IlDHBouQhpzVjkitIREiHzlxD7PwTImE3CMcWYSIgcgdHNDD57FQwLZttbY8lnAk5qPFRUzHbHWYpiRJhGutvSsLibCZd+vMB0EJk0hE9L1GRMmZGYhQzTUMEQ/NnB3kxwAmzCUxoaly4iS591a3HQBKzhjoZkDh6suyddPado8A5Pu6IUI4nJ+flnUz93VZMzPkYAAhUjNE3LZ1r23fNiQaT3Ot1VTrvo/jMA1DQ6zW3Hwoeb0/LufT+eWp17aty7puNDAKabMyFIDo235Mg5gZmcGx5OJqbiAUh0wkDLTp1h4tNz7G0h6mR2UQkDAgPIwpcUoGYEEAEcjASUiYCEgcmcc5pnkD6gHR+7d3fV8qLEv2+k8fnrIEUgeNIZEM2dW0rllYpDiSexvH6a22b29XEpIkCP7255+OMZ2f8piW+7os6ziOH15eMNgytDSm4elrx183+72CnqYH0oKdOUhtrP7z8/ByGTLUfbujtcvzM5nHvgL6OM/z0xMl/HJ7X3Vfan9/36/3/T/9019++OVH3Ovjy1uvjZOMg/CYrtt9j9a2iIbeNSFJ4kQ8iID5kNI8DBIwlZFYrO7v376OQxakYw4pWdbrdjqfLpcP22N5vN+gVwHWbo3tw8spM3nv1prtDVXLOHbSNEruA7b9/fXb0vr56RLMj+XRluVUUnR7+/J1HsfFr4/rVZKkaYhl3bZ9fdyxjE+XM3nUvXrXrh0Jz/O8VdLaTRtMuW57FsqD7Pta617kxa0j6JC55JQ4tVaneSwlGcTe9tba5XL68OOHI615Ps/W+jQkVfBedd971VLytmzuvtdWm3JOOYJFPn/+NORxSDm0L4/V1HKWYRpO81xre31/Z6IyFES63q5pKIQAjnXfa68iQodaGLH15gSSs0X07l09DUmSeFUHzGkEtwZqHr27BzCiMDHzvlWRNIyJzmxh62MD5N76+lguTzMCblvdrTqRemx725um6XTd+7psj2UZponL+Kja7zUpGUFD2VEej7o2BGICESmAxAO7pT8e68ImHpfTc0u0GBSB8yyOcn56cRr+y9++AEILU4JhOtVWf3vf/ZweuC/JvzTHceiRtDp0ECookISHlLJ5TmmcxkFSr63te2/dzQnR1LR3JoiAlFLvomYeXntvZoj0vqzv728W2s3O8xmRX374cTy9vL3fhOqjr+A579FHplEgU6h1bTsxvd3e+fotUg5I52mcSkaN5r2QsQCyn85jQOSUkNhVa+3fJRJMrZp6V9fwA0SMRCyZkzACjNPQtGnXkrMTWgtzBQgAYJEyDgBBiAC4b9W6RoCcL8R0pGTA4fuKyaJ3EyEIYOQwBwwPp4Rqtds25KEkxqmkPBjgujVVyPMwZNmQ7ybaKaZMKLU35piEwd0AOlEg14DNNEWcy4DFN+0RTilVDPZYOmdhwBAUCOEEkjMGtG17X6/EkLkAB9BBskURQTiKuehuLDSMg5kBHDDliAjJwkyIbB3UjER6a4m+U3IBgJghEBCGVKbTeZgGQCnD+H79+njcHut+qMGez5fL+VJSkZwOkHMgB2J3N+YO0o1yyTA/I8hWHyQAUFV3koRBfVczY2HtDgCEBGABQcxu1ntzt8TCzCIFIpwREVmYEO37s9/2bY9AYkLEVhsCSiZ0RBRhFiISBjczO3RLR2+JELQ3004IqWQRMdcw9zjMlWbgcNhJIAK/h7IBgAgDoLdOTADQVfMwHNBYYcSwui6VHKcTl8LAqp2VWNfQe39cyzjm6eJ53Dl1klwSICV26a00ta0TaMZYXt8SwzhmCYl+7P1QcoLAnISAXBUghAiRAzyODa0cKaYI18MQSkQsBBaBwciAIAgY6M5H0fp4dSNmJP5O6yYKCOak3az3x31prQHjwAMLI0OP3lrVppyEiEQYiYRTyt3dtVtEqCoqpZwSp656VPNb792t5ExEjB5qQZCEzKw29QBvPVLKTGEYRGGAAMNQVLXV3vaekpScEdDUvMR39kJKLLzV2lrb9grX+7ptYc4ozMzMEdFb12ZmlksG+g8zDaIwC3NJiTwAwpsRAIU/bvcIn3LGVJ6fLozYe8PEy7Id48HEfJqnVncEyjmjUI8wt5yysLSmh8JmW/femgbaXllSzoMQq6mHhQOxIAEiAtFRfWRiAALJLFmAINBIIE+ahiaD5nLtKgOB+7dvbyfAT2O5W4wcVPtEmJimgXXXen0PYszltj3WXZddl72lPHTQy/NzrHVfXsuQM4L27fc/fj3Pz4/a9bblPGlkPX38s8L25/2q9M2zdmo5RSm67RChhJLGkjIuD70+xkFO8+geDX3t+ziep/P59fX1sdT3fXvbdQN0Su+P9Ue1Ux6enl5aX7++XTuG3b6aY6ZCXN5uVyT4+PF5HDMBjWV4f3+s29atPV3O41ik8215hHfhYb7Ma62mxoH//M//NIzT7f3aW2XE5w+fh5KXt5sFpDKOOWvd74/bNIy61W/f3j7/9S+eS1a4MD8cchmm00Ta9uutqcUgarqv7fbtpqi21+E0fbu+U5Knp3nIeR5GDqrrttVa60bi5+fTfJngqshCNKzLorqX0ykw+tbub7dfu4G3x+PxfHn6+MNn9/Z2fauq4zQNJcXj8X77Y2+v5+fTNJ+a9s8/fF7eH4/r2zBlkoQnqtLInCK+fnt9v98+fPphOg+3+6/TMGTOl3kecnrc7r13cGjdYu8B9XZftaOM8lj3IK7r7m7zfAIGYmBhSZwledfDwGThvfWuQSx5zqqKiuFxmidGHoeETNSqCBGQUMpTcoPWY1kXBUhMzHSaR2YkRAIhxFpbN+sAw3RCcGAFoq3afJn6vRoXPD9jKf6o+7qve6QTm8jW9NGbEY40sLnVbV09TROkVLUsaiPR3qOCNu9j9MxwKuNl4M18SP7D59O33bcg5OwMO7S3Dt++3Rawh4ltGJmBEoSdGEsuz/N0HoC36kpkLDltbdNmnJkD0I3I3HtXRcIsPJ+nx7KoNXPN47Cu+7fXVyRo2sM5peHjpx+fPn3S4FFdRGvKRXvtrVf0NPJAIOT37YHH6Xx5Gy/PROW+Pi4//DCdT7YsgQ5hwmTCe90300B2QElc8khIprZuKwacTidthgSJk6kjQG8dkYAOabkjKQGKiDU9wtGENJRhGgYiXNdtWZZlMRE5OlZlyGhAiMJoDgGICBEmwm7gAb1aoHFCc933VYgC3dECPZBRRMaBywiRSDIoV8t7CxpIEqAqmVEgeDQIS8CSALmbbl0F2NBqDwkGCjDfglQjcgoMoo4JcwJrjZMmk4Awi95VOKV87Lz0+77pUIsFMItIMjV1FaZU8mETCw9HCwgWScecgwU81Ky7Js6tKyccS3m6vARyKUNKzMzrelfd365v9+v9cr4/X55YimOCjEEps8gwaGTDZCQGQjLxyCQZubitpgZQCbo4Q3gosGQRQQgAdnMATCnVLu4GeOzm0NSImZGOsw47iYhZmLtqb12AiIndojcFFBZgxJQEACAgYwCAHxJb0lwKESFiToWJ4ti5QWDA9zobERByBImAWVhAZnBAogPoTiLMjqgR4REWFhGmaq07pR5beI3IBJFJiNr99k23ZSqSmS3lCoxIJOIArRm4Z3QRpizkFtYBEZQIMfAwmUcA5JJzSa7RuxIyMXBAIgKIiGMleqSVIr6jMY+QHAECIBxDMnQkJAcAAqKElJA4ACIgCAIICJDIEbe9LusmcvDNgxlEuLa9t+4eaB4enhK6IyESubq7H1VNIAiArkpE4Rj0nd1UexdmxO/bT4g4HCEQcGxs61ZTEgLvHuMw5pIgwI+dpyohCnMeM2fCTkMpZSwRUZKY9uXxqNvWVA/udc5DlswIKafwqK22pYnw8dtT073uCGHWe23CEh77ssFQGrgQvb9dTW0oP3RTUwszM+vqLBQeEJBTkf8Toq3qZuiIziVLRABgkezuHo5weMoC8biC2L83M4GFAgkcncIDHUlkFEkYGEEmJdLk5UKnjz5MPQgQx5ydd8aEzG+3u0N7Ip0+jsMwDAlag9u6ltNsanXrOWVb2vXblU7l+eX8848/+rLV22OeUkFua53nk5d8W/W3P+/jc2aUO+Tr5g9sj5CV0948CDgAQYbC1dtqvnWVVgnBW7u+vZ2ezpTlcVuBU7361vr8dPna7HQ5zSV39bYt//63v//09Dwhv99ub+/X3RrndHl6KXmuW9VmP/zw6XI5b+s9mv708dNlfvpv//bf917V4Xq7R9uFMZWCSfIoDcxaO1/mhCyIbj3UxlLGacSIpw9P53kOgG6WRJ6enk0NiZNkB/Cw02m+1iZCQFCmgs11pfN51tooy09//dk9vOv5ct4jwDEszpc5p0wW9/v19n57+fjx9OlsjOawrPePH5/31m5v7wLx+efPl9NU97Wtd6zm2uu2We+t173ul5fPP57/Eb5+fb/ettftdnvfW49av/z+mn9KBmLkhCEi5/nkps8fL+6x7K27AdB8OgkTmM9lnMfp48uHktK+rG2vYT6MBRB77fvW9rqXQYjZameClNh6X253EmamcRwBHSDUdV33fe+7dqAEzBQwjxODdNNymt3DAlPOoNabEROymHntqs0OkIqFg3ndtyGlaTynzHXfl8caGEhwOc1lnvvbw80BCJBASMaCHltVRnZEYAYgYNaApkaZOKK4MwUQ4VBU+K72dTcSEmsp6ovoL1OmFImwL9uvt7/VIOFhYMrNKQ0KeeuwtNa8M8u9aaesJEAJIRGBhyEjoJn5eUyGQ63t1tq6bIg+onyf0rr11lqr6maqnERb8wASWZb1zz//vF4fz5+f8njaNxtOL+Xy4et1f3ssHz6dhNo2zSmYHtWs1dtjjykndEat6zbO43kYFVtv9fGob+Bn+Ym1L9v9/ds367s571vdto1IpsvlPJ2HlAK8uhUhxCFl6dJ60whz90DsvYdHHPEKJFcn+Y6srrUhYMoppwzgSJCSMLN3td72bRuGIYmQsINDoAcEBIQfuolwICYBAkZwdI+UJKVk6uGhrodwyAi32t604ywVy3tTxzQgZHBGk0B2PoImGhHwfX5j5gQQKI7eDD3AnTrmbkqYDnQnU2AYEqYxST5v67avlVgCAvA7lBjgOCTgIXRlZibCxK5GgMJ8eNvNrJuaHYMNiu9aMQg8VFJdw83wlNI4DVVNe//48bNkeizD8rjdH2/39eECwDysC4/zkHM+nSBlR1LAPUy7kZCIpIwgTCmRF2GI/UZhUwI12x47Js85B4RbD/iO7iEiRHKPo66pZiwAiAGBCEiYcwY41mcBbuGGzCR06P0YCSByEiKKcDPsXbvqvtUkwkxGCAipsGkcVqnvdaiAcAg6nulMdFi6ghCdgpwACAkxKAAPZ4+bmzkhUkCoAVrXTf1maSplKCRoVfoW2kkNI4iFIW+Orbu6UngCMPNckkDC2ungW2o/Nn1NnYSKJILgXJAAqjnYf8AOkQkpJwb046AEQQRxePaY4HClCwBhGKAgGgGyISALoDiRWwQBMQOSQyB6EAUz5USMIsL8HVDjHu7uFtUaErIIM6lZ693MsggLewQiAkC3zkEkAghB0LRr25g55QQR7g4kDsGUhNIR0A+JXNg0iLAMBYlCd/BIImrdzQ0wZSGnkpNHuPmRS/SqPVaeR1Bdt8pC05R5HA7vrDmY2fHvZ8Guqmbv72/CxExV6jQMhOLuvXcPi0S1J7g/zqeTqrljUCCguVsz64oWuSQibtXQHRDRJRFwFg9oranZkDNAaETvCkTHBNGBwB2CCAmFgcKRIgAlYRxNmIFY1MAoWZ49n2L6GOXFJQ0S45Bwq/u2duCOGbXGlDFLM1geLdDW2+1+XzkPMqWSS3AapX14Or2ta/SeGVe3I6IlgE+XJ3l++e1uNeyPulMFcL89LOZ5Q9wCjckhgZM2LYyt6Qr+52MZnT6qv5w+pKh92XvKwzTGhNVMINI4bk2xJOK8tp5LIs0pgCECHYB/+PmXBvbYmlN6/vj5j9//HE6nDz/9HOT9vmCPt2+v43wKCCaxoN/+/AJt+6df/pKmvrZ9kklEHHwup1Bo2/p0mi/TeAzvh1KKSKheb9ex5EsZ3Xzd6zDNLfy3X39L87wF/vvff//z7f2nv/6lEH/5+joIIsfW9wDESbbbelvWszsP6cPz8++/ffljWT58fM4sX769ttqfP0Ie83Ce74/t9tjW20PN+rqfTuOn8+V+e922aybcW4UyDONU5kkxvl7X9/pnA/jtj69fvr7mkpnpvtYP88TIXjvmuL/fhOPyfDpfzuG2PtahDCTydr0+z5MBfP32ihxjLk/nS+G0vD96r+AO7nWtHrHtOyCqHq9DNk+Duy2btdpquyHz6TSP8wgB67qHe1ftpmqWU6aUuoIF05iw962ZdpMEJyka4IAG+FjXJOIWrffjhgMEkmivlSBO85yEQ3WDuFwuILzstW27tSbEkHGai2ozrabVdkAC21WQhqfZiLbunAV1JwvUjuHjZYKENSysO8kO4EHUQUgaTWmQIcPj7c1dp8sLUfryvtjm6JJLaZxVcjVPTF2yhwcTcrgpoQWoo6chvXycn3nY3qx/u0LAaZ56qwwohMIc5kDe2rbX2uo2jGNvbV1XdX1/X/788qU109Dh9DLMz4vS4/c7JVbHf/9vv4kuj9ValkE8tC193feoeZTL+bSiE4CEro/FgsDs9u2P94TnnLbr2+uXV0QbpplEUhqQUAgQvNW99dpaS1kGSV31YN4GBFD0rogYGL13RMgpI1NAaLewYGImFhZEbK2bGXiM0zDk3JuKSCqFmL9DigO/y8aQici6swgFoghIqLo5OLB6kHCZh0DugerW+7ZYXSOLWWPYtBuRbc4jZyR2ZyQNdLcgar0D0sASbhEOccB10QG6hycJQKUkROrB3gEiYXLzUtjcu7kDdjXAJpzCQ5iE5SgtR4B7BAMiMXO4q3Z16z0iwMPMHOB4lGOAExInMghzT0PJZbh8eClD2Wqz3kUoJRzHUkryMLNQjev9QfxtujyzugQC4t61A0NORtDDW2AGBGJICd3T+YwMbFoQk+o4XiKs77XuFYBFEBC79YjDXhVdlRADiAGRCRDVHCIkMeAAiOaBhMc20z1UHVERwE2PzAwSIlBoaO+SRJjV9BjmAQTGIa+JgHAK8CMyfIwy4hhmINBByvlegerubnur5h4A/XivYT7Q2+RK1LwvknBI7Hvb375CWwoLBaqptt5JmoGxAHEijqYe7uDdA8w5J1Q9DoLNzAiIU5omdA8iypzP0fcKaBAKZiwsQuFGaOHo7n7QcoCDxCGAMPAosB5TCEYkRgYiD3DAIERiECFGCA13dctjCfC+1ZTy0dD/3uKwI3iDiOgeSNG1994xEAlJKCyA0MN71R5RCFHI9mi1ullUT5oZiYg4i2Q5aFXhQQR5SIiAEJzo0MABggiLCOwBgMwkSb4vKN3NrO41zHKSeZ6GsaxeG9Zwa7X7HOFRlxbmDkBMfgCiICSl2qoRs6yrY93rp48fy1AQEY5rAxGYSNI0U+u61z3lgszrsnogpUPjVQEILFhYcgYEEQn3bh2/y07g6E84EER4HMtbIEmADIyOpgdYhYSocMqSiyMpcafi5RTjJWTi4A/zENHZdmsP7Wsm6Wsd5zw/PWc2te2+tmW7749bV1u3hr401fNlfD5NZSzxR5yGtN1u6FFygiOXPUyPqg2pSV6YmyYCWggiuDkEi1qAMAUIEwWqQyV67X5W+uH08cOHafB1X76xYCaylBAwy/DY9/u652H67Y+3tesPn38oJQ0Da6RmRE8/8jDt2pZ+a61Ki3a+yPPTN4fluhLk59P4ty/f4uubhT99+ABj2TVCQ8ZpkHj79b31/tMvP4mQNY3k29fbMIycZT6d1nUFgGVdi3DO+XQ67dumtT9/+JDK8PZ2A962Wr/eHmb6448/ZEn18UhMwpSSGPi3txsOuQypX12BhzxrrxDwuO8vHylEjMhZ3pft2+P+6YdPQLSv69e3r+E+Drmv/uff/359++bRPv340xLt3//49uNffjKkt/t9qfdl22vX+2MrZXj54eX5fHmazqSNgAnRQZvu2qPkExHkccCAcBekklMZR4v49e+/Rtjnf/zw9HRBCGZgSbe6DuOwrtv98bhf76en8zCObVdmnqayPrZWG0AQHabqaFWRkJPcH4sBBGEZhmGeifOISYYJiADwcb8DBApc79t0nk6ctrbtex0HmU8zSu+t2TG3F8rjyJxa0ywJLMZSGHGcxtb7su1DyeNUUJJMpYapKjOrkWtPiTiXVHg3HDiAEYy87yk8cZ4G1sC9W4QCIQ2l1gC3ytik4DCmAs+Bz09nSPnv15swEer6WBIOgCQ5m4UhAwGAoxzv2IoU5t61cyo//vJ5bMuUkCUxyHQafv/117ptIjwUCfcIF0Q0B3LrnZnCo7eWEl3Op6o9RDiX4Xx+W/al79raIMC9C9bbVM5s5tWx1fOYRQIxhiGTzY/b7dvb62Nb8jBN42T1cX/9ozyde13dvda9dp9Op/lywQBGjK6IqK3vW2WhLNTc3IyRmYjAe105sSQ+mqVmTuYOEebMzASHc0CbmhkgAiMGcE5Eh7KJAIAOmRYhAwMhkSAggB1gZWSmYAfX5stae7ckLEk8omsPICTKKc84QR52gyTkoa7qypILBQhIC3czyCIpaT/4+YhGEY7HjIMO5h9xZi4FwM1RSkkCxbqHgzdGHoehN62t926JlYkiSSCAAyACklkAGjMGYBBqROtu3SSlsIhwwCBCxEA6ylaBEIBIiaUUYkHgaZjQvO5cEo0lZRR0JJDHY2lNl7q/Lw/Is7iVzFAx1JkxZ+mJTEghHEFd92qEeDlfotV6ezDwPI3EsQR01Va7ELEIAJl7RyBCAmYmJBImJPIAUwt3TnwMJzCCiZMkltR7jwgzRQxXJUJzBwIPVTVElCzH0pCZARA8AEGYAcQ9MOBAMLr7kQACwggIhAhwCzMICFc3jCMxg8yIhOgpZxHGAA7L7EpdSGcJ3+9teW23W87jeHGkqL2uBi4DJSRBdqeAxATmzer2uE2EOVFQ9G5qwZJymfJ0BjN1E6JEHMEEFqASDuGEBB5BYeZHCR2PgzQxH5+cI/4GAMhIAkh4NJXAI9CAkRk5EQVFt9qQCMBTTufT1Jqpdv3etTyIm5AlBaIkigAkEGG3ULNQcEQKPFjtAUHWvcO27WZdEtNxACXKnCgRMYcbM8PhG4lwAxYW5n1v7j4NAxISEXMCgHBv1VJmdDi44JBShBNhKQUCyiCAY61q3be1hoP1Pp+mIsXNlm3RfhwZU5IsLADYtLq6PnsZR8SIyH70+yUBU0nl7OA31PBoxNlSgXCre0eMVJiAD0RLyhwRrVYRFkHzOLLqiMhADngclYkCpfihrWU5jtGBwpxJinMyzpZGLbPPzzzOCejjKf/1Zd6urzKEgaw6C+VHrXkoe4Q3G6c5yB/vt7rqy8vTcC5GsD/68rj27vPp9JefnspTOebEz88X3btVQ1JEWev+bYmdpl3G0PCcFcggDnqloWVMGARAPMx73xaib2pvkV6MSxkKzNvtulxvFbycT3vvf3y5QpqwjD1Kp+Fto6epzDzWHq9bU4Z+21fT9x0eD/+7r+NcGMnf1uW6nBN8HPhyeQmw+9vt/u023rfzOMuQTXganqfppm3VrnXt1poQJRZh6k3v1xsgdmvr7TYU/vj8Ms9zIuqyA1jvnXOen57el3U8nywNISKcrl/fQysmjmGaLvP7ut62ZYhB5nF8elaH17d7MKZSAFHDIaeUp8j5/cuVKInIdt/A3Ju+Xm8vT/NpSD/+8tPeKmDOF/79+vvt379gytdlXev+8eOnf/mXv56mCcKJ0PY64nNC269vr29vag2jn6dpXR5jIuY5Z7FuRPTy4eX17TaN0z//0z9dH9fz+VRSIqDL05kI79crC0/z0LRta5JDB3MuwzAgh/vq6uNpnFNSt3Coew8MEmndautEMo5zKVMZhvHytHd7PPZl7UFEQlSGVjsPRYm1qbHvDqyByMQJk+S5uBsPXPLYPd6v18f7jTBcFYBLGZZVk8jpcu4Rb4+7ExaicZ7XZV+WbZiH5+fJcu73BWorubjrWrci+XmeEsG9t0O6TCwkHJqUdQt4W/u9SOn+sWQBeluXfW8kkkZIiL1XwwQeDAyUmEm9B9tBMwrHcFyWfbvkx30V6Z9++jCd5u2xA1jJoi20eRLGIDMTgCJCyFnydB7dYv9Wz0+n+cPT3txlGJ8+Oo9gtD0eyLxtm/Qu9fqG+3p+erLqA/PzaQjXtm+dgREIIXrH7sSdpGmrj/c6oKH1UkrvrbZG+86SSipJiIlyEjWtrQNgGVLte7dgIk6C7NLE3UVykvw9onE8tSAQD+QYHSwZYCBCJq51R6CSD7YOEhMEqh43L4DAADBzD9eqEAFGEuk4RWmysNi9nc6TOex7z9NcchYurlxbr491SGnOQ5mkZEzuy/t1yPNwmT+M6e7WQ52wdU2JBAEAHZAJ3YwIOaWDDgvaBWDIKVFob4gYjsLZAS3Aez90B0zEnUWEiD38YLWgAhFxIkkECO4WeKSc8fvzTBjIDxWRHVAB4u7BEXszAAOgcRgwzPo+yEgX4ZSZS5K3fd/N/NvXN07TeHku4ENhJ6rgYepMImUUHjlGwFJg9mmwrkGbrV01ZcsIhCAiWPngW1ImC0dhQgKHYUgAiBDu7qoBYR7e7XimC0nKaZwHQgmPRgquHu4YhBHfxRoaAFxk2/ZWNZXMIkJsBzUcUUTc48i3q5sf5ShCYgxFCITACAcPQEQiRsDE5HDkgVwNMHmgtdY1QBg8OPLEsJuBKkRvimZtIBAmrx1T6b1nJO19TjQYMyZH3PYdBAOlm9Z98wBmgcycc92bIjAnAOMCEJYY3bv1HkwUGBZwjPSOVRgxACIRHAkUCIgI5GAmEiCBY8oGYECB5EiIzkDsUQRBUcMyp91UTV1dmKd5yjm33hCOdeT3ORkxI7l7mHZi4pTM3QMCfNv2utdaKzPnkkRk36v2BgAlHMxYSJiZJSBMjROVIkRca/uP1SSGQ8oCQH3v4QoBhy4XA0wjywE6x23dAYKZiU21L8t6DGGadiQMhCQ5Fz16ksM0lJwJqDUjptp7yiUcRIQRzLxpv15vp/PZIoBoX3Y3hTh0nwDMlBATs2RmzqnkLNrNwCkTM/Ru3TpqRCgcV3AcOUP2ECGBxEpOcZisETgZkhM3lCZjn55ifp5OY+7rpxP/lMJnppnbQCul7nm/Xh/Nln6fCIckEWYKZZzPH14441a7ZKnrXqs9PZ+G8fRoq5MyljKUumzLY7/I6Ix77ZvSztQoqbcABOIAJQdiCkLtju7lACKlsuD++16lX4V8+DBkl63p27e34TQF74/98b5tiSZTyk+fvl4ft0ddOkSeavO/va47wtZh7WpJdqV834bqIuStt/f6XAiFP798BNAvb4+6tff3+6d//ZcCWtUvp/kv//CP71+/LLd1uV8Z8TTPl8uJkLU/vn39NgyDmaH7/mh4ecawseTCvNd2XV5Pzx8FMKKZa5mmZatmLaf09HL23iJiKMPpPDfzda3ny1MNX/etuuVSpnnU7vu6i6QyXU7n5yxT37fHbXGHYZzKRW5vKKWkMl4+fMJtvd7W397efn2/OZfnjx/L5cPE8te//sNpzD99eunr9v76ZV/umeCHHz4tObbrdRrLWOaSud6X+/XWtvXl+aV3c2AZyuV00vDL5TzNY7d6vb5N4wgB53mephHAHRIApCSScs7jME6mvm+LiJRpMghyNA11r3tDFgGXNHQDAppP51zGlAo6gAUhqLYA9wASmtL8eOwOkIZRMeq6x7IPia0qDdTM1m0jQMbMGH3dkan3Wnt35PnDEzGp2bKub9dbJ+9mQmkcZ3TLDE/n6TSN123r6yN2FYQSpq7inMNtr+7H+kuiw966IaZhiPBHa3+83THB06fzXve3t/vaTQOX24oyUvLaanMAJiHSwDjM24hICh4RZE7d/PXrVS74/DSmnK/7674sRJ6zbIuBWxmSdugswEBMw1AOJSfnvDc3wVs1Rqj33cnHp6cPH55a74We77/+Iajbvm+kGsTjPNXr2zgPQlD3XbWnRC/Pz5kfaUjWFFrnAdu+IBLmfHr5CEEOHdwhFIDNPVA48XwajzwvCw2YEdndwaEMpfVm7gGBSDlnVbUj7BKAyMzMCSUJu2jvESCSICClLMKugRh+EP3UPQKJJICYHTTAiDkAjnECRLS95aG4x7Z3kqTqtmwpZRHIPZbt0a4r5HH+4cNTeTHtj+t1vV013X86/4KuAOm6dUnFgHq3lNkCQpuqZ8LeFdw5MXSD1g8PegOzbQPf5kyJOcKBIXNutXbtqj0k0MPc3A8tPJoHmGZOmZKZW5gDHDdeOQrkFE4EBuhAiTMXc5Q8juNpGCf0MAtyZJYkg4UNkrvB0xmzTG/v77fH9fXbt/uyvr6///U//cvl+Yc8PBNI7y6YsDm7CPmc6YcPz5P569//va9rWO+9rxt6Z1eXJGUoboYk4C6cjoqxiOQsZkYBfa8AwSTATgSH7WQYhkNMC4BlhGbqZojE5CLEidVM3YC81t5bVzNxIUYgDEMLQ3chAfxOCMjEGm6qREREznqUDMEiEJABANyBhFPmVLJ277WD75G41qZAJMlBI5X+WJa363ZfSqEyDZzJvYHXUaYa7kjgEODuwYQCQizn8xm9BZpWa71bAOc0Udpad6BmjkIpJybpWz2cvwEJEAMRKII8kI7zfgDAf6y36P+cASE5cRAHUgQokAZ0oDjKg+hstWQeBpTI17r11sy6mhIgIaaUkghEeHjtjc0AABFzzojQunbtzElSSY4eEcb7vtda7fhOZsmZmrbe2F3VnD2cmInQiUl7BDgECEtKufe2Lrs7lJKOTmYqgkLaVURYUrjnYSg0aldOqBGttt5aVw0PUEySiOB+eyzMCMiCxEJEiJxlmk8nZjLgiG7h274BYoYkic1t3TZhqa0F0LIsXa332vadhZGIhShJEDpAzomHgozn0/z04fL+9ma9DTmJCbXu0MyCSDJJIDmyQEaRIDQKwmACczQjwGRYdsgVh06lDCOhXQZ/4voccZoxTsPbxvtt3xu+b/7eesqS3duy/zjwpzI9zRc4Tw5d+05CACEUt9d3INq1lstsIvfHvaM1cANgyZLMdzX7TuWC7xp6dwsAckRDp0JbOPcQiB4ASG/ov7f+ovkjFR4uz5/508cPzfX2x2tI3DViyGviLUULX3a/f92bx5dGDUMpbSARAgPuGNcGbMCR8/jccuiUKic043k4z+e+LjJNCbRa32svlE7z5dp0LFPJGSHc4/399fx0frpcWm37Y/2Hv/6Mqvvy+LPuP3z6WEp+/fqaJJWcl7bdHqsyrb327lr7j5+epvnMCK9f/6RGc5km5r2bAz7a7gRpKm46zyd0e9wXloyO7sBpeNzW21ZzSnkas8iHLP+X/+V/vt2Xt63el/pvv/3+b//+RzV6fn7+8PmX8+U8l9Ga/u2//fflz9//8S8/5fD79hieJgG9zNOUURC967KuCZGCQHFfajfNwxwGxKktD2tdzbq2p8vJTR+Pu9YaEXkoiHi/P2pTlIwpmcOy7utjy7nkOdZt09oBQz22qqfLOIzz9XbPeR7HUbgw5rq1WGuahk+fnlrf995YMgK8X6+pTJhk2ysiSU5lHLz2vdaxjHvv131lkJzUvb08Pdv66NYlIQ2Cmctclr2/3a+b9vE8tlWBYBzTvi7ufd8rPO6P9RG9TixCMBSRIbFqr6tiNAAP8UBH7AFNzcND2AEbUCTequ1rrZtKydE6QRA6JWfHY8bt5BZk3++4IRAMEECpjJimPF2I+nqvutavf/8jwua5JKScZF136zSUQhgrbIDoe9vdIHw8z0vDalDOhdJgKo/bg1I5v1yEzHUPrzIOYmr392szH5Y8jNOyMIns6xrg82k6nWerrW5bqBWm0zhkkdpaU2XiLEgyHtsp7b13XdYtZTmWcNr15fmFRLZ1f3+7EqGkDBCtKyKJYEqJiKqHqQEgEbEgEKp57x0JwIFYGCkAmfn4OAUaIJJQqHfzAEtHRgHgsHC4BQCICAL1rixJFaw1c291c/fnl48ZZHn7OggTJX+8uwSAFu9frl8ear3eKM3zpx8SDb32PA0R4F0DwFX7vsuQJYLBR0QSRwfoLaruba2P21QS8iDMKJwFLVyI123t7qYGEdoMEFJKSRK4qrqk8PieDgczR+u9E0XijEARoAGECSUJJcF8frnM58s0jr7vlZe9biLMScIQEeZpFs6n05lZhnH87c/frtfX5fHY1vWnv/zjh89/pfkFZRAYmRPUZWvLNKSgl9r79vpWtwe5W28m/Oi1CKecS6B/n04CIEpySXREJQgZ1TkhGiC4ZEGKgKDAYSwplZxK7z0JJKHeIsLp2E+RhEU4QJCkbA5BCsx+DHUQPMDUKUEEqDkTkgg7HOAvQDomZcjMEmpMhMTs3RBIRIahbNZabRHIXLobIYKHAJBaXa7L9bXVfRqmPIxIaK3KEGydDA8XyFwolrtTV11R+4+fPyzvr+Bt3dS0127E8vSM29plLJhzs0iltO6GTMCJGEKPJpcjUqYAPLZ5EXCU4eP4OrqBSP4fEh+A6I4aoA5ERBjVDbWKMKcM1fCgjFMfykSBbnp8jhCZEIWTqx94TRFJkpLYXvech1QKAoU7HF5zBFcNQGHJUrwEICRJLAQA5r7XmiNQUdW8GTOT6tHMatYQo/euagA482jmvfXeHJGOndqRY/cWQmJirWGtnRkLFSI85pzhjkzuiBhEeOxAtRsAjMNolukoswC5OSZBQuuxt2oBbrHvu5qp6d4adRqmgZmE01EclVzcMIiGaUaEsneVFm7ARmmw2PatIQshKxBA8kiEYoiB4RGAAciYi8ugkiGfOkw0PZ2m8TnVHwaftWJdhtO4Ay573yG9m37ZvaeRkJJrX5aE9DSPOKTb7UHYchJyPH/+VPf+/n5X65JFe/fmve2OdP70/PThZVmMJUU4MrsFCaHD8Zppbm7hrsSsYYJESNp6ysRpWHX/2+tj9N4neIZ0Pn8YTk/vX98sneRyuTV+W/urw9XZSBx9VV5aW0IMCdIQmTsEC3K49qZOWWQYJGVdlvvtev1wKUJEAU8fXl5f355LOgn+8fuXOaWwql0v50sWrnVHYknCgB8+Pm+PejldCEDdxKHXVveVME6Xc7fYe1v2fdvrvXcbCnAapskpGco4pqenl+V+hwBkNsGv7zcc0jRNKGQWEciYTvMZURTw+vbedlv3vjbAQfL5LMLDkIfnl//++7f/9rf/cV8Wj3j59APh8OMvv8zjFGrBdUhYwNnU1oV6fR7Lfr996+sPP/6gEdp6uL//+WXI5ecfP2u3trfLyyUN5frYt9pTzplEXT+fn8dx2Lb12tp1bTknD78/HgEW4bU1XxZ0+vrlTbt++vQp5cm3VqaBCPeqw0xpmFIe55kkyzAMpiCSwKG1OiR5upxq3fbWJZXWrFW9PF0McN93ZCo5l5R6tQ8fP4zP89J2ag1CHtUcfLDoXfM4Pp3mPA2rth5mYeqOhEny+ZQuTy+Z+fHYln17v9143y1snmaIBATMPJxnUCPKd/dDHQXmSYo4MAIBhoMDQR6tyN2a7zo+PdXe9m2dL3MqQwfZIsygBaiqHVEAQzQng0AMJCPeFZwzECzbtr6+btsmCfb9OGLhPAzjNE7n2Wweynp9e+ytoZA57tVY5syZpnOeT8ttt7cHtCgeieC+boVA2lZ701r7Y6+PJT5/+kiMucjhFUwYL9P4cpm/fd0d4DRPp9OszRJLQ9XeMWLKWRKHmfVYt621Vsp4uVxYKOVchmnv3RHMNeUBIsJdiDhz79a2HRmFkYf8vZ/LAIimjkBhHgFDLvwfx5oj6HpIIFtt5kaAQhIeHh5hCRnxMFUBMedEKedl3cyga9trN4B5mrpG7Xx/f//0l5/LzK09uOrz8+W//Nd/o/2+3R9f3790hX/5X/+X6fIRQGKviEIRIgzWtK7EvZBlBLEKttm+tfVhbuBGvQZYPk0ExCKA1Lsix5jHsGjeDqANMZIIAJv2MHeL2qqHhRtCePRAq5t5UCqDERtLpzHyFCDDONDTJbLQkNEtMXdmczU/Gr7AIiOzuSF8GIYSYGWQ2/3x9vrVVK9v78PT58unH6fn54nOqO3/+7/9v/7Ltz//1//8T//8yw+43k+CHYKHlMYBi0gRBERu1tWthlouYmGIQIxND14zsyRJQegpcWDUWklSGU6n8xkRpda9bYdt44AUm3GS2OsWEEmyR/TuROGOEMyUDBwggNmOvkSYqQmaqyNGygQAram5g6ODdVMM5iD3CDDt2Gvf93W5PzBtlD5wFiYhBiEW9P1+Pc/px09/Wdaldp2RkmQntIiUKUeA1dkoYYPtfX+8ihmnIt7u97fldlvXbW/KDM0apem+KZV0Gue1m7ZInD2geyAXDfSjJUhk8P8/AyGCATpiEDkgAAWSIQaBM4CjEyigIxBEQdO2Qhgwp5zR+zTMbd9KGhwcARXJ3AgxD8XViaV3DfCh8JGr7a2WlIV5KCWxgEXXfpSQVXvgEUGBeR5J0DXMI8LDggWgd2aRxAACgOu2l5SP6Wzv3c3NTCSZHeKd7l6xOjXqXYHi8OMCghmqOX3/I7kMLKhNVdXd674zH+FkKjkd4f+h5CMZ2q2p2nk+51JabRAGyIBw0OroeFEA6K7UVUpRpXma5qeLd7Cuqvb2dj8/nefLRbseCLF13yRR9rSuO5Ajc3c8QJ8B5BF4eOM5KxVNUxvOOj6BzOPT+dNp+uv5VOqff/76N84JSDb3X9/q317bt87XyE4jBs+Jxcp13ZdiLWN4nU+opmr6dPkgA3hKFuHir2/Xuu9Pl7kGE5euJimVTCkBODmwSPLegeyIA3gYA7jq4SaDQEYBU3dzpdu2/3/e3+zjmH54vr8/Hs1pnGsqX277397XO+Q25IdTs7BACuicFNERRUoARPRaGzqyQ++m3flEbXnMT/zD5ZysThhh2h41esP8vC4V2p7nKQtN83Q6TSxACT3s4+cXISameT7XWpf3exmHkdF7C8RDBvz+uLkb57ys+3Wrp9OZy/D27ZrzsPZecp5PT1kGrf2+PJihlAKZXz49ta38/rffv315m8v80y8/9d6WvbYeyIwDPp0vtdX36hl5qe33/+v/83/823//9uXbNJ/+87/86zAOt/t94NDt3T1GPt9vy2Uov3x6GQXvVsdRfIf22JbyPo7j7b60df308fOYMwBP8zCNI4jUrsM8Ykp1r5nLMJZhFEJgQGsGAOH0/vq+bpsh3G/3p8+fLHy5r5xSGcaUhmEqirivG1M6XebT5XmrVQE//vTjOM/vr+/jNEwlgXuoAVldF1T9cJnzON3u28vLizlwLmmQX3/9o8zlPE88TOeX5z/f35zk08//8O3r+9f3hZf97f39aUo/XCYUqa29vr+5UPcYpgGIHXC+nJxkacblRLk27du6PD2dx3FY7g+vNl6e5ssIwQp8f19LKhOmPXB1SIDKYt12AwG6Nh/EKVMZJyqybI/ASClJTqbYtsWBZCgHNTfMyQgC0TEIXLBpfa/bb+9v03PO2ta9lvMYoI9tsdb7XseSp2HAgFZbbR2Zyzytbl29K+Uyvjx/8jReH9u69n/4y1+fzjNBv28P8pjyIAQc1lOiEURISs5uantnAiHq27bdHzmXnFg9GGnfGkbkJOZDxQoRrVU3Cnc9yksATCTCRFRrdYd1Xx+PRxaepwECVdXMU0ra3UwhsKTMzESE5EecIZU0cjKP3jsSMbOqBsRhuyQmIgaAlMuR+jDr6BiBAAe1JMydhLpp333d1n2rlNndAMXDtO/rvWZ0WG+utWSkXb/8t7dYb9nrdJkC6Lff/3j/42/Pbpwm1PL04aOrbvcrmopu29edMsuQbXs8bm/b7Q3DiqSny6mcMjgeD2kiIEBG5lwQEChgBW19mAoxYZD27qbExIKm1rWBupAgcyTp1k0ypSnyoJSsnHE8m6JBxG5lr6A1WxemoQz35RYBCBAWasbMIjJPUyqCAtNpPN1ut9t9Wx73281++/3l85+Xl5d/+Me/TsPw/uff/v6//7/bt/9R/6d/+XR+KjltW8j5RNZKLo7oAZ6wVgODMZckULfdXYEx3NQjsQjLSSbtO1J819sjsiQ5DHFmvpkwgoRuXc0xMGIlgmEYmTnUkiQiAiTJkssQAMjCRAChEKHhZsRAjAFo5t8D0QTAgEEoHA5dlZjGaYRAU6u19l7BqbZ6Pl9yziQJMSERCpXM05RJuDkwIplG2xmSQCbkiJDWMvr9cb1++WNKhFZ63Zf7fV0WBeXEgX67PcqJpqcnLpOZqwdlCYcABCQNcCLM4kgB5EgHkwrgIIEfOjE0ZAgEAAUHJnNEAXcIBCJIGLZt2/vbBC1Np8SCKS0eXT2J1N4sPNyZ+eCFG6p3II6UEgYysbuZWXiYGgUg0lASIiJiHhPAEBC9tYBwNeHEiRxAtXNCZknMkvJQMgJrawhuEcKUUooAFBiHIZdk7l2PqFx07Yf2lVlyTiLiZuEeDsIyDKWUQkQ5JQoKB/cGcUTgteSgRK13N+CD0yxk9eCfinAy8QAIwG2tvXVkJCSWlNysVfcAxFRy3Vv/8sYpXc6X3hoRu4VIyiWZh0MV1XFk4USSI6AHdsUAMWQAAsBAcCLF1HjoMtY0qYx5KudsL7x/ytO+ee3+ze392xIn+fVW/8fbfoO8lqLBodgiVPGUBp6Lk758/CC4vX9737b9Su/DfDIEzjnAOWXsAVxUYa9G2m8Ob/eDahIe1rpTeBZWV2SiYyTrxsBgzoDkPYNNFKeE0TAF9marmTpumyfhP6r/7a5/u2mcsprfzZt+N/85gJAgYgR7HOgnF0TCQAYItbb1fXn55YdL5jNPdsXdOiSeL0+EoaZDTuM4eNuEaNtWwlBtqSRJaXk8PGIYZ0ICgrfrdRd6uczdjMWWVo+o+v3+yOOwvl4/jGOa5+2xVfX7WoWZp6lp7Ftf1zZcxo8vU5OeSz7qtPfHZp3/8/nDXrfX5XcaCnXYapOCJvL71zcALVNGszKc/vrL6el8eT6dAizq0q2eTmOa8lQgm2BvH55nXR8MUbL88PlpXVdBTEjneabTZc4liSz3xT3yUGyvjlEYc2aC/Lg9CMZbWxAiAIdheDwej9t923YgbE1RkirU2tIwe/XusQeOKCzZoGVJAbjvdTidRJIBfHt9T0lkyI9tH3NOOUGQaXs6nYZxcIRfPn/SwK9fr479PI0///jp6Wnaro/zafr4/DQ9nbaIP95v6zn++LoCRppnmosJLa2t62OrW+aJEOd5csC16vpY3x/fWNI0zjKUthgECElGumtre/NpoiwGWLuZKQ/AEVGb10DKIolzCg0j/vJYBIch5RDaNt013KG+30H26giKxAnCmbhaCyNGAQiicApIiCz3vjz2VBvtj8f17a1wTNMwjuOfb+9t26fho1ncrm9//PklKOfTxQBv1ZQnGcvl5ePzh8/3rfdRf/nxny/zSBgS8be/t9fH28v5IhBxnmdzK+qn8+n89PS4Xx+3x5DyUMrBHxDxYRhaNDXTrkMRwjSOo4i01uq+L73TkWLwSCxlzICwPXa1DngPAGsGTCyUcwY6170REwK5m4dHOGEahszCtTbodRwHloyE+7a3Wh0cAJIkRCQ8DkucUwLgddta74goQmpxqI6OyQQQqmrdeq3V1AJChMpcxrFgQGFj8PXbH0SUh3K6PK/3x36/vnz48OPPP9be+nJ/+/3fdV3ycP7080/j03T99n7/48/Pn5+Z48uX3wJj/Hzxtq9vv++PuxDPl/OY+TAudW9myIhM4O5Haz9nMUsIQciIZAYQIJwl0ZH5bW7hDkzEgsyECcsJTs+ehs14T7PzaB5Q9+Z68kp1eR54zuJmhOTmBy/a3RGRWVBAOA9lzJLO5/l9nr5++fZ6fb++/XF9/XM8Tba9Ps1n2976fv/99wfZ+tcffp7KEDgOrWJ+fEwh49TUtLqbD0OaTyfQpq1HV1DIIMicS2JkAOrs2pojZkkppcMSBQDm6uHMXFK23t2i1n3b2uVyKjkf0rT5NB2PHP6OBTwYgWDmptbbruaAkSQdN/4AJCEmOcTvgNhVW1NhHsfR3XvrSJhKImHJjEIGbtoTMzKk4VCr4fkyt449om0PKGiaGIglUThZT6xtud/fXitj34eSSRKyIKBwKpLTuq9GMlyek+QW2nUnDPUwx5TEGJ3IkYwoSNwxgADZA5AwiAxBAxwYCCEiKBQCWDyCGMktgYv1ul7b7ZWh9xK7IFrrqsgACIxIAIYHYZTVo2u4A3HKScIs3HtrvfUjILWtGxNj4DgURCQmMzMzZz5QDwSRRAIIzFWNMGSUJGkYCpPsFNbRPboquJeSSs5w/EpaJ6KUEylLEjODgJJzHgYMqGbuwAesNqWUckAc3HpiEhAlwwii7wnulES7mUcCzCkDoaTExG6gaq03CjL7HrrIpZQknBKbozAgqpupb2+3cZ7GMnBiKUmGlETC0XsPhJTKfC6uvm5bN20GfVVTBhBgBiQDVqBKSdO4SXk4s/lL0g/Yn3Uduvbwf/zXf/3jj7dvj6pR/1R+B6m59KHsDQDItDFEzLkiugiiJqBMeWmPZV874+O+U5bp+aWcnmtsS4e3pb+vHXL61vTX23aLFGOmIzzG6OFqBpQAyKwLAKkWZOl65vDH+7/89ccf5+H2x1KQP34Y1lavj5WH8np9/6r4FqmOJ0W2BuroJA5AFgSRMA4znbmrO3kgIXAIR0ZI4T+8nE+Jlj//TJmes2gmkHy+XPbbA3j8/HJp99v99vYPP//k0bXV02VAlMfjsbeKxNB6r3193LdlK+eTmkOCGjo+Tdnw3377c1eQwk8fL8h4u95v1xt0RRjce9+7bn29LhH++fJxg7a3HoolT2U4bwQd0rfHiglhPAP62pfbVi9DOV1OoNr2vaTy+dNLCYyqpp29369vSfs48CQIZn15DEUA0Ope98VswzjVbTuN44eXT73rfl85CbJ09x4WHSxg73VvdfBe8mDqhGDWtfW6r2UcwsM79O7dHJwxjUJDx3zftgwWQQFga+/YPBBB3CIAJOdxnJrq/b5udX96es5AtXuv22kspynNeRinYVvWx2MZZAT3p8u4Ny3MH/7hRwj3+93XR7tyucyny9NvX263W4vx4hI6lCrkCSnBEF7GgpK6ura9dU95eL89vEdv6m5DKXw6Wc9FWADOZW6UiWJZHlV9D1QPW/DRwoEzSgHs1SJlZzERzKUSf7ntf+6P5w8nZ/YetlsaeCxyenl5fdTr1iITESq4uhF8N1giISJTACP0ZdP7Et1AEBhTKqWM6DjOJ+2+rNVCZDx1GRTl9MsPzrLc1yxFALAuJ9ZfPp6W9UaZfv7pl/EkZk2IBBHGktSoFL6cTxDBAPM4lJxzEXMnYkIqqQjStm2tt0MMlMuIEGZW97X1nlNiZnMHC/Aw7QFm2rdtJ6ZhHPZ9e3uNUjISHYQ6pOBE23119dPs02k4YHU5p5SKhSOiJO4NzY2FUsnCfEBjTZ1LggAL1dYRQRIeXWMEQKSIo0gPAJFTKqW03rZ1s/B5LK5wnsv19tDexnFsdf/69Q9OiQnGLKEt6v7zjy/9b/vty2+XD/1En4b9tmzvF7GXHOv9MbG+/vn7/vbv01AEfS4JPIZBwrop4LERdfUeCgr/UUVGpJzyYcgKRxAOc0QHcOYgZnPxUCZCFKJCRXw8azlXGVaFW3CvARaTJMySHArXISc2c1+T8E4AGESUKYeHdQ0IQMjMkKVgRscsMo7jOL5/e3vb1/u//R//+9PpJBQ//vBsbf365x/b/f7jDz9Mpw933dQpCv7w118sUCPKPBWRPMwcIzgsN3eHaSgsfFSMkAIRjmzOOA9hYabaGqcUR7wfeSijq2rXtS8QQMzMfFTkckqIDASqtu5r3XcEdCYPb73ttUZESgkQkQ5ZKTAzCx8dHiREJA8PBDUz867dw1LJ0zTO8xjhtXZAw8xD4mEoRXJKTAldve1dXRNlNI0abEUIKBpDsHXdtmYVbKTLWZJIFus95cQstXlr9euXb+duDrCvtQwsRM3QzSiXFqEIjuSBAYd3mJDJMY4UoCM5cCAxeoAHRCBGoJkROFjPoK3t2bvWZbviikFoFoZCYCFMgCBMBq7Wa9OuJsJMxwkvkMDU3P0wqfXWuaCIHDWxI5fmXQ+V2EF4MrWUiIi01wjwEQAx5YSBh7OXwFvrbi6SUpJt27ZtUzPzAIZjk65KqhbfqVfRtZuZWUB45LAw6wr4XfcWEJzFzY77g6rxUWdkRiLzYwnqtTVlW7fV1JLIMfRVc1LPhZgll0hDQaD79Y6EZSjn89xb64osnJIIJRlzVvNAFyvDcFTiojYNS/IfYzdOjtKDK0pFVhYFTggfTvK56Nn2KaDd+2O1588fbKL35dv7Q7/V2MvkeXAgyqQeBuQoD7X3zX6eR1cv0/RyhuV+I4Y80Bh523tTWGvsQJDGLba3Xdfe3wwfiI1QMYAdAAOpuzqjm3pvKZwhUkAKmAmfEznZ//zz+YPwzSbCGC/jt+vdxa89ft9tTaddRF2Nwo9SLaeDpsuE6G4KwXaQN4DQhRCp7w/huMzjx6fyy+eXcX27/vo/fv6Hn8enpxp2v6892mlMZUyPb3uAsoDv2mvNmcqQzazWfr5MqWSAWP/Ya+tpHLbWqMMvf/3Zk6yPbatVhpM+9jKWtm3W7TSNzLSsi8j5USsEKufn56fh8vx//Jf/DYZ4/pR795BhfErm+Pv7Y3weV4LWvQc4WFiHLk/zBDlfnuciBFu73b6J0OXjZ7a5J3FXaF3DSi63b7dPLx88fNk21bg/HuD+XIaUpbVa91rXVris2zIMOQKaWuu91WquVeowjJTi9fUrBCDh/et7U0MRz1kbWGAazmC2GDyM+r2JpDGXkJRYxmECYujtdD7lYbDwptrN3ON2e8hQxvN0/fJeck5lLDmVLOjgFnXb99ZCWCQBxvuff5RSPj5f9uvj9csfqV5o033tLQSmkUZ5aBsCOjIyPT0NRHa9rYlp7721KgCJcH6Zb49l37dpHC6Xc11XBuCI5/MMxHtv79tdw4HIzZZdGwjmKSfuBslNvQdjknQgjpe2R22TBXuA9pd5/PD5A5T8/+Ppz3bkWLY0TXBNIqKDDe5Ocg9njIiK6spGA41+/4fou0YgM7sjIyrOsDc3fbBJVUVkDX2hPEX6BQkQJGBGNxVZ6/+/byNee79uAB4piYe5BQAawL4SYqR5KF77VvvzNDydfzDbtqVbxPOXz/WxpjyYuVMenwbL46WDSRnzwYhjgABMCX/8cvzzn3+XSvqf/+u359OnUujLj2f1P7++vov3DiXvFLu+tbq1rS3TOA5jgQB1k8REDBAAEg4A0XpX7bJtTGK6M2+AAFJiCI/AXrsQZeFQ2RxYICdqza6XyzRNklLOpbXqEMuyMNEwFybptSNZay2lJIm1et0qIkgS7HtRbo8RBAZ2bcBAQKGBjDu3FpHC0cIAgVnUbN3WCDydjyx8+eh12xy8rds8zUyk1iXTdBxfv71r+I9PpyRct+X5NKeSB4LzKBQpg8Fy5YRP1Kyg1DvX+wDdt2WLPsoxDUU4SxJXu3/cyliQRW1F6YkTU8qShHlHF42D9NrBIY0ZULR1dwVWYMeAYSjICYIUhagADypDh7RGXoWUM0iBruEt2FhSZnDvj2XZWmVGSWI7SdbQwFk4CTuAW9cwChzHaRjKNMxPz+fz4fh2eb8v18vbNzR7eToI5+VyabWmnKpFkLQOMsrz5xdz6ZuLJBDZumUhT9lkCPOO7IYIiIS9qzmq0zgWyWmf3KyP+3Q4UMCQ0tZ1SNnL0LDlnFkgJwn3Xazaa0PmfSqgve0cBNyRWG4BwMySWJK4aa+2i8bcvVnfz1pqQUxmujwee207InbfCHi4aaghoXWFEpkl54QIYOBqYcpO4m3k5LYSqDBG39pa2duhpHWtvW69pZTTMJQ8DIG0Lps5zYejezw+rsu2EaDwaTwVY9RAYKiOShCM4eQ7bB4oCAwi6DsVMXYvLuz3n9h3ueHKYOwafUnexoMosfelbpQSBZqqF0REYGFCVrdVN7NdZZpEGMB2c94eNQeAlBIEEFFiISLAqLW3Xk0dAfcvAnQ3giREEd5rC3VI0Zu62lYXoTQOo7tvdTXT1pqbtdpUFYU9goDcIeek6mrdI/A7aCckkXVwczfr2nfPhjABQIQjYgSo9kYwyDBNk0i28LrVrj0imnci62rhnpAiApmBqPbOvUW4pJTS4G7LtoFHeSmIoK7WjYTyPR3mw+fnL0SSy/X122vXzkRDGXIZb4/VnbdwZzIiC+mYVpQHAjIx6c/n6Y9H+vkcqZoYLM1+/dg+4nKtfjW6atydVhBwFkkEQexA3BssbvfId82Og2r3tVKnOfGxiLe6Rb8/br++3vl44jRpSavgq8VHuB2mrt7ZzTUCEydk4UDoxgGj4wgxUYRun8bpeUDGQdpjljIdy6PW9fZ4On3asF0f3rZeqSwaVclcqRAyB1E3z5nDQ5tCAEUIEkByJmNCDBwSRkvsPzwdPh2mwt2P51LmavjL60e4D1kw8Va3lHB6earbY8zSHlHvG1Ouax3LeDwcLh+39fFg5tPzKY9FN9e+RUDb+pDL8XD4drtXralMED6OJZK4W63OBFz48dgW78ch/fZx+fZ+nU7T9VabeXBOB9ba39flw+ralqGM4HEahnMuL2UqgnW9U9+stuiNsPVuy70cD+PD7X6tKPJ0OrmaS3bTX/7+S12W03EWhtPhAICXj4v2Nk1zytkjlrWK5GFIj8eyrPdhypIFkUj48n799ddfXCOXUjUgJSS5b70DG8uiVJ2um90jdw9xXrt/PhacphCGbQXkaZpJ+P3jgxnPp+Nj2dbHVpc6voyA5IBdPWy939rxMJ5fTmur+qEOuKt6+rIOsnNTSVXPw/iwAJbh/HJ36YIofY2tBi9rJzZGvV/v0/EwjnMgL/c1PHTdvDV0p/B6f4TpdJgZCNTGeSKEu5AhuhNhIMVYRklTEFB4hpBw5ihhCAitMcb8NE05YTXE+HxIX56HCvgfv12FbJ7TCrSaI0ZK7EAAFMEJeUTPgTnsOOXTAVtbsgw0pnAbhxwGy9bGaULO1UCDl4jHo/ftg0oaCgX4yf3PP3/+6fP5f/zbvx3Y//l3XyLn149LhH364ZNE+LbVXDJBaG11W7dtA/cyZAzUpkkSIUXErn0+HOam2ltf1mW3HEmS+TCFWq/dzIZS3H1baxkKmCWhknImKWXAVkvOz59fAOlxf1yu165tKOVxv/emueTD4YDMe7BjHMf7w92aJCmlaO+9950Csi+WwgI4UhHo0GtjlgBHJFUjoDLkdWvL/bWMAwSAIRGdzseSs9a+4UZCQQAA98dSVc9Pp5STaa/rtjzux2m0Vl9Oh+NhDCC9XzfXXtcw9016bW29Px3G0/lTSgIRBLSLKq379XLjLIqEIsMwzyMTkTATk7vuvDthTiwR6IDuALTbpzgxIoU7B4rxiDS6DJ1L5WzMyIU4iyTcrGvtqN2q90e/LxDKJJIYDAEAIwQ45byb2omZFRBjnotrCKdSylSG8+nw9v76+u3r4367Xa5F+Px0ftwftVVYbqkMrfq3X3758acfOE/X29bbsTBD5k2jqaw0mNnilJimkgSsQ99UiQuUAhjMjr23vhUtYDENo9bmHjklYjp7qDsi9d6JKCJq3WLH7SEgUckD75XAf3is9rkoIEKgubsBi3iomzmE2y4tEFU1q0RISDnlkpERrXY1B6QAc22mpbVm6sOQmRjcExIgpNCRyCEilC1qW8Eqtu0wpiJT6z1Mw3Ecx0B8PDatNQ+HMefpdK5dL+/vBEGHgbw0j+7UVwsWJzHjnbIXQY74ffwDvmOyAcH2XhiieRDC3oeiCAL3vkWtQ8Jynvu29b4hMECYagvMiXcg+r45EqYAFKGh5NqWCPDue+/e1IWMCCEcInZac3QFc2GKcAgoKSGAu6mqtq6970wq077czcxbU5lTGUsAeJh1uz8eERYAUtIwjo/H4h5mPg0jjrRVsr2oAyjCqjsFaU+KIUCo7q0PGvJAjABoasuyEcthZmYOBURgZiIGB3NHRA/YUelqVrdqHq03Iswlb00BYI8ELo+l10ZJiGirdd3Wl+f2+YcvwzwfDvPXr1+Xx0qI8ziMZTRz1QC3iuAIAWwkGlmZkHBI8Hmin0f8eULM+XKLe4/f7k3rh0pZnCrj1noDQAfSAARgDCJlWxx/WftTlieWni1uzQytWr0vdVm1ew8D5hpg5gtmLYfatGpvQEERhBGeOAuxmVs3CkvgT5n/2+9/Tr1+/ct/fEr25VDGp2O7fhjNyfvHb7+m+bQ81qXGanRtemm1swQREDc1DIBBMGEQNt21xwCmrh5MiOTdCUECotYyp4l9vb1njvn09Oj+7frx11++HQ/juvh2Dx3z7z+9DBHL5SMTnw+Hx7rWtY7DwJLrum2PpdUWgEI5kKfjYbn6+8fleH5ethrul8ulTMdPv/vx/dvFW306ngLtend3uy+P7rFY+3b5IIRhnteqf/nr63CYA6WbL73nOTvbdqv9vswkf3p++nR+mlO2VltpXdfHupJEntHb7qHhaZwIEAKs2VjKcC5fPn++flxuiExyOp6mQZb7/X69CFEEpwzuTkG323I6/witWtftYVkzCddab5dbQKy1XR41zwdHeKy1Ibskg0E7LRbvqymKMx6Ph2BaUVC7P652uQ6Ew30FjPt9OZyO0zhxyiKZiUPjcDyUQbbaOfR+u6Qsw3F8mp4OhxMK13W9ftx++unLOE+32+NeW5oPUPL767ooL053JeM0Za7NrrUnNOzd6n1dG6Tt+XCklIoUxOjNwszC2fogSXKahOtjAweeAwB6V0yJQYRiTJCmIYbhZtH7HQXX1kI1lTgPOXtEbcU9uw1FPv/8ec5Duz82hPq4V0fOMwNiNwpnDgh0ZyFMQVAbQhsPw/k4JtzUUVJ6ef4sIqqbq9/e7yx5Op8e966pNLUVAmSYTucyZK5r6xEmH9/ufWk58fJ2HZ8PyeJYpoYoZdwn0ZpyCYAAR4Ra29u39+kwBcD1ep3mCZECYJgHEcHWH/fH2+trbQuRPD+/DEPGxKiKgOYmTO6m2tQ6Irjbum0O5hCPZfW3N2ZurQNFHvLb2zvTdxVUAMzHuRCbdgfsvZnqMCYPF0nMstOJ9lssImLAUAaMyoCOzpSZSRLsQgAiLGVw88d9YZa61FLKOI7g/ng8kPB0OnLK98daxpxy0qrjMBYWjAD3IWcKXLaNEnvX9f6Rmd2jr/Vxuy/rOh+mPbPSagsiSaLq3U0teu1SsggThvaKQ+HE+wcLEDIheIS6qmlrQISO3p3SdwO2u3gkyJOleaMx0hBcgBliPyvAwMIo6B0RcxIqRXs4BRf25taM9tq0hwe03pkSJlbVVp2AhmEGx8RyGOd5nOZhfP329Xp5d4BpHkBw12rCTtzW9W//698///Q7r/5+vVvrf/zXf8U8XT7uHy1SmkhSQKSOBQOpRAkh7L3OGZKbMI88ULhHT1SGkgOgmyBhGYdYqpk27YgEGAGgqhFg4ZIS5kBC79pbNdPdJLpb5d1de+/dAQOJEAgREYIYwd3NWMjNgYIYmTgs1DvsOogABgQ1rR0YpqcnV+dokjBZkKtEAMWuI4lovdeE0CNyKYxg4db7x7rW3kTyVAYIbbfLOAzgkckZwrfH40MXcywDlcm6OwSyhAAgOpITOoeF7bMfjD0MEB57hE0UgBASYUJOgSXJ8XQosCW0zdq23L3SbmQzhQaBTAQEEcLkwrAn8sDMtPdue/VArWt1a8NQTJEBgXCXiEgiDGq9I6GZERJytNbXbVVthLQuj5RzkgQA5lZrXdcVIgJi2da6bdpbSvn8dEJEFvLee++tNxERE4DwCHeTlCCQkIkYAnc3hbuHhOQ9gRvugRyFi4c/llWqIhMi5yRI1LZmOwsTwszUtff+WBcAgAqS8rJuXTWncjwcUia1vjwWx+AkKSe68eOxDvP845e+1V63uq5rq1uv09MJvSt5ZKEOFoRhGCSBgyPmkQ8DP03DT8+z9Muytssm74qXKmvVNBWnZAHEEIauHmCI7IFIedMg6wEGrx8CpR3Sp2EeGDHU1hDMw8hrhaGM//V2vWe9+2mjvEVEYqCgAEbiIO7OqASI7mAtQ33J4//+ZR5UDheZB/vxqYjgX/7XL6+4zbm8f9z+9OWn//X3tw9Pf/2oG09d0AADABBJ2CC6GTA2dwsFBuqRAIRwL7IQOAeIeup9jl6//bZMko7SOP3y/vHR2kq8vF5/93JEYFPMaZTQxAkdD+O0lxOHeejd3t4+MvH58yeL0F4RodXeWi9DeTzuj7WdjqdPn7qPIyFRRGLs2yPcM5EDvl5u43F6+nza6nYc5uTDcrt/fX1/IaaUNq08CCVOmY9jyUlf8jBB/Hw6JIJfL79JdKZo5CycMZfDdJiOhOlxu5jbPM0I2Kr+8Y9/EobdaXq7vnMic7/fbxE4zsfbY7nd7tN0TGPR7sta27a6ea/9fr/d7neWPM/HPMxNabW2dA+Kq/pqDiVRkur0vtW7sRNR4kQ5jeWy1et2ZW1DUKKiIYSRy6wKtbUAT4yAsK2P+TBO42Bbu75emOC+LMdPT8fpgMSXy8e2NnAUTpQy5f6+bGkY671fnO6dfTwpUg8/yEgWy/39IPA0Dwn8flu1h/aOEGPiUkqMNEjatmUeymkaWm9aV2jbNM1kra9b30xoIhZES2FTbCkkBXWMV20OJJyfEs3Rh2jTLNFWWW/TcXo6nXrV18vH6gGB1tWgq5sAowXWnomdiUDt0URMYL/oGCAe5iOiC2Bob+t2Ph0YZavKw+CL3Te9rbZ2lpwa5XE8aaRffn29vf6ff/h8epk/6Xb/7S+/vrQuKKco761KazofBghcl203LM2HubWmXVtt+zBeW1cLYtDNcCBJPM7jtEy1Lu7OLEgMAKUU7QoeiJiE98AHM3Xr2/KgLB72/nh8/K+P6+02jsPLy6dhGKx3lHQ6nXZlYastwltXC1zWR6vteDqUVNyciQ/zrGZdLSfJOVnX1vowZu281UbIu0wUgVrv4XGcD2ruYSL09HQeygAetW5mliXP08DDUGsXJEHOKbnZOAwEwEAoVGslhDAvOXlrOctYpsf6+Pbbq6muy3KVNMwj54SIZriuFXaXE9E4DeM8u4e1rtoAyi7m3Il4iN8f4eGRE7euIERBgizISoKRHAW4GOaOYiQARAiFOWMkioLDgHDKZYKx0eP+8GbLd9M32N46rrW5e209F/kuVY0AQGEZxxHCu/bj4UAQjJhTanVFAuJQU0n8eNzBo+R0v751beN47E765k+3H2CAv357cxpZiht3N2ttEpqGIQkPjNiDzIQzo425eK/oYerCMhR0hNvjnnMhpPvt1mv3CBH22OVuCA5uZr0jJMJ/+N4QI8DUlM3M9mJgq5VYUh6Ehfn7Q3EYBiLU3tXMAzwcACQhMkZgSkKEAS5ET09PT0/nurTttjETJtfeobXAjrtEMECtno8FtTdvwmhmy+OxLEsgffnhMI3z/fa4vr32ruPhMLA/rjdvK6b0UC3zkfJqKGk8pCkRhwUEwT+UFYT7nRvJYbdmAMLuig0PAMbwYOFDOiDqCIS2dqbdBKKtExMBuYGpGSAEQATt/RMK611779q1NXf9Tlhwc3NIHmBu2PR79KfWDQm1e+/KSRDAVLVXgAAE7cpMhtBbb731mhAAEa7X23pfWq/adRiG+TAhUuwiN3ftHRyESTX2ligiIlH4d3ILETkgEQoLIbFwBNS6eTizIMJjeSCgpFRKSZJ2v63vXYEAD+9d69bMDCKQSU17U7UKHr3kcN4ZgutW201LyfNx1kv/7//23x+3O7H03mtdl/sNVbNIBIKBm0thMAeiIAGWPX49H8owFkOSlN/fPv76Vq9crEySSxB3BY8ow2g92j80lAAMQR5aCTxCa8DHvdL0fz+/zKmcEjFpjqVp3+7bvftD/dtyX3PaiKpDhwhE4WQREREaBsEplVzcDHsD6B9ff/m//fT0r394LgLTnLo5IzweiyCfz8+n4+lw9d8uq0dwYkTYc4GAgBFMKIx9JzUR1t4TEGNkZowQiDBjt6f5MBVn7brq+OWlerss9ev7Bz4dAvLl199+PI3BaVu22+1+yGTmt6V6GXIp3xONiVLOwZFSAnWF/rgtbVunKecyPO5LBBDgp6eX/3p9Hafp5x+fr+9vDOgmaR5rhyJr3eo4H6va1rV5VPdHXafWjlNZLg8GhCi5Yzweh3k8ZB5R2v26Wlvv19Y3TkRImQonHsfDIENt7X7/WNf1cJjHoWij1rZH36xrXR/L7d6Ps6QsIg5KEPM0Xj+u67K0vs3TzMy9d2ERor7qslRJMR2eTDgm2ioCD9X5CrFY6KLRtwaiKcmhVDVnuNw3R8RuXvtEOObp8PwiZYpohNvteo11LVOah4IO2ht4hPnyeKSUT+cDFerm9/tjud8hnBGen57eLh9vv77lqUhO75fbnAaN1NwdqG5KU0rDzOi6Li6gGPMkpycPjtZquJE6I5Y8ZsZaK0EMYyk5NebTfMTAj9uj10YeqkZJRIjMR/Yxewp+bLEJMhKoD6G/O8/Pw4y2bhfT3ri1bVner/fX6yVSmQ7PmuERZM00zEyPueQiSunycWeA06FMwWH9du/DYZimiQO91q0uhnY8PQ9l/K+//Lpuqh4O1AI3R1/79f1eMaVlu3+7jFYPx8OPPz5P06jttt4XQXYDQRBgWZsSIGioeS7D4XAEgI/3N0LaM8u9dTPzQO0aHrkkQDqdzvvO5nQ6s0jvPWeRlNrWADEAe1dXZeEg4CxNbScD3e/3f//3/zVMGZH/+Mc/nZ/O7iGJCUVNVdXcVNUDrGuv7X69yZl7q0Q0DmXbllo7Hw4yDgTYuyIgS2Cn1poq5lKGccg5h7kgD4eyLdXND6dDLsO6LMu2sDCEuzqrg9mY8jyMgnS5X2ks01i+5yUcEiUUGaeSztBb0/CSx5dPn+6Pu5qqmitM0+Qeb5cPVd3DUuDGSdQ7RABD6+uy4DgOCl1ECLlvGh6AwYUNnbKYuweaIxF5kIMYpgbcSXbuhwdRBEXgbvNmCOZuvXpDBElskNw8J9pnS63W/2uuhoY5JYPu5klEVXNOpjomaa0NeXo5YxJR73Vb17os9ztz5GLL9fH69bfpMOvr6+HpKZU5afvb3/8yffqptu319nj5wzFNs4ZXbKvqtdPz8VCmnDK3+3sLO5RM5Grmrl0BkDycmab5oNoTwD5FCNiB2J5yCtjHNvtRCAAi50zEAbA/QVPKbtZ7Qw8AjPAIxeDAcDMRTlnAA0AsoveGBixkSgAxjEMpWZtt63I6Hj7/8Hyc50RS74/H7Y4EGN2jq1WiEBEBQddQypmjEbIQBrjhUAIpI0RdQRvU+mjdtkXNbN0gydJadauPu+RRysxuZZwYo4FbYO32XWqPtG9qECAYdpiDmQUCI7pD7FV14pQLhSNaryacc6JtaaqWBGN/DcJVVdX2v4yEECGl5O5gZmEy5lYbkQgRRMR3/acBhpl5mCDvcSvyiHBXDfNEtHOVhRgC3AwizNr6QCTY1kWt7tOd/eGq2rR3lpREtOu2bdq1qTKBuaeUiJF3GRoCMzFxgPe+70YzM4eHu+dE4f9Q5XggQLjt2EQmjED3CDchaOCEcL89kDGVXIZpTqM17a06cW2dGE3V3XvXvSD566+/Xm8XQjkcDutjaXWreVXtwzADiAaZYDc3DmAGzohYuLS1/10Xf+SXA90ireyL03A6deDlsS1ra8yBwJzQTN2B0HDnuKemIVJ0Sg221tLysCe3Pz8No3nisqheu0c5zMPp779dF/WrbipZA0ID9m0UYFDgnpcPCJLq8Wj92+X6+1P6fB719nF/W9Iwl5xvl9ud1qcfPqUy/OGPf6iHu36C//F250APxMRmPTwA0c3UjYQoUJhZUAIFvW8bGHG4tsfp5fOZT394Gv7102HCx8fbvasu7dHvRsLa2vuv357/9BODvX39LT2doXlbuyukHiY4n7N7GEJtzYDGUg7j4e3btyzp5flFiK79ttb2t7/+xodpeb88z6NGoNWURwN6Pp1a98f9cV23+8fNiD/ud5bctA/jkAc5n2dtj77WY2FyfXo6fDoeDznPpRzG8fr+vq7LMJZU8uV67207Pz/rFr+9vQYYgGdJdW0EeL/exjJs2/1xvQqhtdaWRQZ7Op8ub69tewzjkEn/+pf/k4iOf/rzNLAeBodcSol3eTaQklHS5bp8bPpu5CJrx0cky2KRDHOU7MTLqhpQiBnZPJWcrVmPWGO4tLT2XusqoGkcr9f3gpqPwzSkI46+tvv13cM84Lass4xtWerHx/u313mcjodj0PbDD89vbx9bs3koj7VZbcQkxMvlRlBSLkpi4yh+atB6wU03HsfpkBzaY70ZWNU1MSeA8zBOQxpylnFYzdxoedRvb9cQYSbtlTOPA7uF2/bxsd2XkDIfcyokIPAy0RPH9vXr03l4/nLa1vZxfdR1W7dVPYZhdKSUcHRAYlUFgB/PeRiHv/zyPkGdDsPLLD+U6UitLRc8jzkV6Fq3ttzvPJXee9usrg0xHY7H92uVqbBIC8E0vl5XWtYyDU/Pn/Kn52/1/i+/+5Li0Nt9ud6E4TQmcdPWHByHnBA5Isz9ME8Iz137vozvTVORksuGFSBc3U3n44FZ1BUJ9xYJIO5+7t67andzIABHRCaBhERCZRz+/Kc/a3cHfTqfxnF0021dt60KOwtJ4pTz3inrvWfhHQCNgBDw7bdva10QSIiHYSRCZkICBsoaEU5MzIxASDDNk3sgwJABicZSam29NzcfhrJtm6qWwOM4Vm5gLYgh7PL+bnr4/PwpAoQzJUYh4QRk6vsv8Xg6j/Nh25qZieSch9Y6IKpp78rsZSjbtiChkHBOZipCZSxrrU01F8HEWhtiAEIwBzJDJgxHVKAO0lEacgduQB3Yd+mrA7oz7nkRXJt/tHXQxwhBwIlz96ba9z3Cfgvfd2FJBIjC9t9CmPXuTBxqiTmN0zAMxLwsD5EiQ8mptHVhRN201vbYHnXtTfuPf8y54P32tkY8Vm8bfHz7+5PQdH7K47CptWor0sPDAwZhCPMA7dprd3fTDonNA4CGkla1bvZd/aYBDmXI7kGAu0De3bV/pzsmScgEEe7OhBCYJKl67AaJiNY289hLYWGxb1woQohiF48iJRFhovger0kimcXV6roSwTjltlV3Z4quFhLCCRgQ3boJA+ZUIbT3knMSIeYx5TAvTDSVrg69ZsAyp1o7aZ1zZnLCDn3dXvsgQw5xmWWcAwWSuDugIaBHEBMTMiJ7MFIwhlo4qMZqBrqdGCFIgIESMQJGymk/xyAAMXqEqut+F3LsqiLspoTARLYvyFJiYmIycwBjBiJ0g4hISb770iEQMQhT5qTMnJl5HAciVDMER3cSTom2rdVta60x8zDmPBSACICcEgCq9tbattUID9whXoBEmWQvo+0/iNEMPSAg1LVpNzUR3suEIhyOSBDusAtuEQEJIRlYgO9tedjCwqwZ5zSOwzyNbWu9a+2tqQlKIOaSxmEg5N5a7bW+rUkygIN7a9Vad7f5oHmYQYZ161AGBwxAC3VDbdHAX++PaH3VtDqslB4dgdEh9rO7Mq9NgzEVUTPdzxiAlIQEq9bWQefhV8DHx+1TtIZ4xn7KYB1NhjweMiaUWjdV5I49kAClq2IuQIAMEdhVAT0lREmLba+P9Zf3jwMfRpHeTXtPnIZckMQsLtdbjGdgZqHwIAoCMDVmklQcIYA42MEls93XhJ6gp7CRnL0TWIiLLYlwLjkliepuFuAYxtp//uFT2/SHw/Tp+Txi2GOJiGkeham7fyw3Q6AhlZIkiWZziD1y+vLluRRx6/d1DSLmhEy9tZJkWx6fnk/Xy8LAL19+CDVvVjiBr7fLrRxOx9OZsgBjaMfa++V6zDKfpx8+v1x+fU3oz4d5TMwIvW21rueX0/n5bBoRSImzcO91We4iMo8zTBBu67IejvM4lNvlDQPGoQzMdVmtteen02GezbW3yoy//9PP21Zvt4+tbc+fXojL0tSB0jiIlHttX98uK6UVeKttcdp6AGEahlSyR9StiloWPmQZx0SBWqsA9aYX25pzIgxr5JpqfzqdP73M8yGz9cfbtS3LNB2Q6bGul03TYSaDvjYz7E1Z5DAfJSed1e16mkbktIFASOkwsP3h08GyLPdLTzEktpAVLKUEjcLi8+enceS21qga7qfjgccheoMIU9XWbo/aLdwtp+FlLJfa3NyJAXjbNkV0IHfD4NCemQ+FqC12+ZhOPz4N5R5Qq34sm5nP8zTO49vHY3OdDsdMtLmG6yHB0zSOf8wf99vrt2+66eHp9DzkT1/OI0Db2uXtVVstw4DM394uBAzMZhEA7oHgKbNhUiFOGSLm03T+8Uxz6rW+bR8/HOf5cDx/fg6z//yv/xRTrbWLMEICjG3ZwsJNU5KIaHWLCBEahsLISSQlCYBtW81AStpu1e9rTkxE1q3Vbr13NSIkJvQwBCTcN/atNuo0T4d/+qc/q+l8GCPU1YgJurVtk5Tn42GcRgRglpyy9g4RIpxYeu+Px92apiLq3UMJJGVBQGZBTMRiqm6x9gURWaQkqkvFgJzE1NZlqVtlFnQc0zCkxOFZKJwQDTFyocdjeyzw8vySy8AsUgozA8DaFpEyz0fT3roxc0YwdWZRc0Sa5hkRGSsSHeaprg+NPg4jSyrTcDidUsm5lKadiDGjmQK4u6OkoEQkEGEBBtggNUoNpSErkiEZouy6KA+n74LMrqFGbmTRg8wtwhwMICCzqAE4ikAZChL1aADm5grGgBFkZuDBLKpKJNN8IJalLthZUCigtTg98VbXta4a9ljv1/tHMK9vF6W/5dNn5kHvsPzWGX8Ynl54mtKYU8a2bSP0UjgZE7iZ7UdYde9bz8OUiCGCINwNAgkICIiJmQIcPMJAw2xrSERC7hEkTGTm7mbuEECMDEhBgBThTbsHMpGbd1BXV1PwYGEWxiBmLLl4oKq21gCo13p5f5+nkQESYSqSE/QKpuRJcyEi3moLVzdPQ0ZiSkVMmmrKmZnBMczQYautZATEnAtJWriOOedxSLlU1XXRR+/99qFONppIxiLanYSJGQEYSd2wBRJiKDO5BgIl4YQEgc6uZFFrdpJh9rpFGFAwS7gSgpsHQLi5m0e4eVi4E6AjAAtl4K5KESIY4abKhO4AgSkxS+5NtZsQYmYAYuHwqFstQ2bhxOQeuOtaPMJ8W2vrFRGEOSWWJERu2qd5JqRWNVSZKCXZc3s7idGddNdaBYYHIXrAznPf+Rr2fYgFzEyBHgARu0DWzAMw4rs31sM83M0AdsoYt1q1NbXWlZFh4IJIRB0JW4uwQEQzfdwe3Syx8ABEsUfrI8Lc1DVTgIC7KCUoQ3U3t4SMrnkovuVbj8fVIknHnAZet7YsNTSoZDQfhtQRtt6DMBgAzTksHBw4SRi4YwtcBF1t+eXthezPP84DYA26fTz+dlk2A+HEEAid9uGPUEUDDhQyU0RlEQaZ5jNtUrX+9et9RvrT5wkLbc1SLuen3Lat1lYdfv16+dvd/nKPTqUiwcA8CGCAA3okxEzUurN7BpDmA9lLSX/+3Zft48rgkhBR7799vWT91suXKQQBt/rDME3PT2PQQzgTtLqeTvPEo0TkoaRSfv3tWzObzwdiZuFSpC8rQWQJEcppdDIzaW1baz0cz//604+/vb5t2wqEQ5KE4r2fjvNf/+vVg3MuYRHhqQgXvnxcrq8fz6fjKKDXG4Y+P/3888tTXD50rVPC9X5tdUssknCahvv90WvnLGUYlvt6vV5yTk/n52VZem+qXVUP8xDu0zA2DIyYD7M1Xm63+/VSShYWVS1lAIjL5fKXv/xlGGYiwZwe67auVd1Y/O22rE11ylvVFQiHzPRdLZ9BEWIsgdnLKEzdtkWY1NQpKkcPrNApD4BFq1twmufpfBZQMtWqIpIPc3VQo+t1hUstqQ8oh+dPCcGCMpXt/nj726+tt8Pp/PLl+W3tuUflTZwsrfd6Sa6wRnW1ITWAa19fSjrNJYcDk4W3rmmSeZoLRUnUtdXWEyL0ljIfzxkZkKh1auGBQweotjXAFrA8Nt3RuGOKTVzbT+fDD/PA4bfWskiW7LpO5/F8HB4ft7Zsh9NhnMdr6KP15fIYJD8/nw8DlrbAdv36n+/pef7yu5+atra299sNwNI0tq4GOB3mVF2vj8eyDJJGQGsNE7fkQUoFzdrr29chpj+9TG1dP6ILY5ISbphGEaGMYs1vtxuzsCTz/v66DuMgwuZWSs45E9KyLA42jAUcGElbzyUnEtMuXACht163dXf77Pe0MABCDGDYCXV1d+Ee5skjVNv9ehtSmed5KthrtQhCBA31JgOKpCEXhJjGSVW7tuPxGIcwd2HZTdqIQICAIFkGwuvl2rWZKpMUQEqChLFTTrr1pjmnPea595b366kI5ZLcnY33Eq+6FyRHZ2GmXdvEw2EcxoP2+ljWVptq7Mpr60aMSZimcSxZmHNJZuv66MxpIh7mI0lRDRKR2G3lBCWrKiXElB0zODpgADhwx6ScO6dObMRBtIdVLZz3F5dwH/oQFBalFtrVu0LAnjAKDEJMTMSUmZ18W9XVECIc1X3voEGEqvWmCAgIKeURgZmNhQEfN4ikh9PxdrtHsINv9215/K1qGLC8v4fkaX6y5ayPr9PLFz6+8HSmMZMpRlvX+6fjEF3XZckIIqJh3vcMR1jv4YFIiICIKScWtrBwD3Nghgg1ZwAwMHMD7109LMKIGADdFBBZRJKYOiBFBDETEQAE+P6YBUcSImZmMjMAaq0DEossj+Xrr19/+umH3/38Yz3kj9/eIMAJmqqIAKI6blszdxa2roDESQA5AnJKwrI9VgKcp5EAW6skOJcExAypO1GWnGWENCefFTa3ZXuElL4+1tprxHg45pRzykzIQASGEGG7lxyJkRGJEmaEwF43NQZHlowB4N3dkYGJPSI0ECMAmBjMkTAg3BwpiIgJgcmcPSA8zMx9p4bDbs1jFiqSkqt5WCdiFs45T/MBgQgQAoXBDcDC3dR6ACBSYskpidC21V6bFpWUGDk8Ukop5wjorVpY17ZtlYgj3Gyf3FEAhLmIMDMxmtn+be1mdav7aZeZiIlJIjsy+T92fG7ff3poSjLNU2Bw4tqaeSSWw3yYS9lqVTN2QIadzUiC6EEIuRTrUVs1N0bRiNrUHos4Kee6dhTlDvPA01xGooEwnZ/WVj/WDo55EAJkV+rNIdqjyWHmlDOh9+qAAK6EQUGIFEhOIsJhVJVIMyIx1W3RXjCz9Xa5rGogPCQRdiAKjwB3RCKI/X0gD8Sg8CRZGGMfN5WUhpnSpFv/+svXp/ORAqzb8dP5pnZb1xq8dvOU08DABAzuYN0QCd3NPYGRa+qtuE7aPx8O/68/ff7IvS1rOQwfy/3tftmW6SZ+yplJDrnMVBLC0zTGH38MVUKtyyNN6X5bLh9Xc3u/XvNQPk3jNE8YPubE56mw5EQkREWqt77ZPM+391vrrbgepmEqSdVA8TAee4QFzqfj3399e2ytms2nIzO1unjfisCxpKd5SBjWtlNiaTWFEaFuy+3tTYQPL2ME1K1G6NYqaiWmAG+t5pTLkGtft6osTIS3602QDoep1+V6uQ45PT0/C6K2No2jq/I0AMJjXR1xmA9M6fXyISWb4215AIs2fbvdPXFTXbdGU06CBO5oU4pRPCFghKuymggpGAJ2cE8kOVVHA/OEUkrVGpCaU1PQ2u1+P8zzp88vG9L90WxOHzf9+m09n4Zj4s3j5+eZp/nXb99uH799vH2w5Mity6KBwDwOqfUe3IYBNvDerVqvW5+mEsSccJDUrx/X5U2B3WIcprbp8fNT7Go3xN77kGU8DoRwva+tGiMVST18XXvmwR0W6+peplwCyM26DtP4MhQyu3279mbm8Hw6rOva7ks+TT8ey+hK2zLkBAL39fGo2/X2nv+efv/zT8cpa5eCTkh//69fCVQSrdYson1ctLbDYX56zsM8pWbYtzGnTR3HtBJsdTWgOeWMZPXx9svt0Oc//XDero+Sy9JWdZehCLolpN5b701EnuappHRrrfcWwcQkTK6GiK037Xo+Eic5Pz+tSw3zUnJkySkHgHdl3AetsK8hgCCJMGFXLVwc3aIzUZbUrH8nQaNhxFCGzGndtlDbdDPtoTFNVEpGDAQkJCY+HWdOcrlcAdHcyZ0IUMTUe7XgQIbojoQee1LSchHriICmmhKXudRNhQVZetsifCglp+xhTj5Px/VgFmYQTgHgy/1RSq6tNfPd1ukBZRyIuW8UEcLfPQPgxojjOKTEETGNU1UlLpTmkHFTCPPaAfYGKn73hQRDcMKQYPYgYHbg5tylqORKrExG6AgRgRBC+2vB6MQkCESOnAiMHtoBghmZ2DoiGRIiQNcG6K4dd8ACARC5Rri5+s7B84iUEwIJp5ITIWxDCdXaW84cwcJZw3rv1/tdt1a1x+Wm7o9hGE+HMh55nGE68niaTodJyrdan4h//Oc/nuahQZh6HoeM1CNa63WtYfY9kyhpL0V7hHdHR0RiZkNMgizk7uGg1neoDxKUjMiEgBEIAYwMCIYBRCyyv/vCiXY1PO5ta0TEsHD3iCglpZxNzdV23DRBAJm2uq6PZVlTSqFg6nVpOQsLP+5rYGT+7jHtW1e05bES8/Ewj/Ok1t2s9UbIEJGEtJtCy8MgiQjRO3QIJ/IkKQ8a9PGoQjaWmIcypLRPwELEXQH3gZ15OKPtRfSS2DuSE0tOnBTZ2kbgrTUA1N4wgpiQGCIQofcOgInYzVQDIJBB3fZUuAMk5u8dC/CUhDi1amoOgO6BAUNJvQHtJnKUUrhulZQIAJkR0AmY2cMgoLUeEXLLQx6JCIHCI5WShDzcfchp2yEXxG7mgOFgHgEOhPRda0sIQO5etWnvbkbMKSVCBXYOsW5MBIjmti/XwgEJh3HgIkEESIDoO3CdRSTMax5yyTmnYqQ8U8uNEMdhcKUG5mDW1APMqy9tMKR5DGi0bp/mYznykA1Vx2Eoh/nbB37cdC/0gQK0OiCY++E40nG6d23NjozVAsExQoFFSIJYQ6pN0OewGfrnQ/ry/Km+9TPZMYmiPU95HuZXjetVe7ARISf0pL0jISOaKronBoSI3tsWs1MufDqlw+lAQhFweb+i+nGcXp7Ow/Nhua7j+ZSWSFvfEKcBDe1RmyEM44SBVh3MRpFDSceDjLrxff0ptePyBu292/04/cAiH59PIBKU1wp+r3BrL8NwKEMGo5SopHGU2+XSa+umv357e2zL8w8vwfLt/TKNU0Gpq7JjToIR27Z6RColMwfD6Xjclm273yEgMXOS62U5Pn3aegukMs883q/3W8MINV0Xxng5zC+/+/llOr4cDt4ey+M6MPi2clhv23V9zEM+nA4kfLs9rGsZM6Fcrtfrx/VwOIzjaGGX60dAHI/HoZQI/3h/e9zux3k0s3VZb9frPJaUU8kyT4f1/mBBLrl7HE/nw/Fpbf2X374Vc04ZcuaS1qU5MQpvjwoQCTXqgxyzpGOCw4AJYmDpm27rI0vKU+5ub497ybOnJACr2rpeoyU0QOHXt4etdQaItaWn8tjgor3x8Ovj8ZuNi+n7wgfy3z+NT2VeBB1NCZ4+f06lfOj29de/qwwxzpvR9foYD4d5HFJyRVCBYRgSwoTyNGXyevu4g9vpeICcKPB6X3keu9tWtT6W9fV2HFJxmllW5mC2wEBqj7WvdT6cRLgh40B5Ku7mtWMWGqeOsLTH+Xnul8t2WeBuTxJd4xPLlx9O+mlsCmb41jrrMp/PDcg8QgMtEPGnn37+dJDLf/7y+vE2nw7D+WRhGHg6HX775bfWtcyHiJjm6WO1tvUYhEW4WwBYbcOUDzzGxyoaumyfjscfPn9q3f/t//M/b7dNkMDViEBEcinM+wQn6rY1hGme9lU6CQsRpeRup9PJAhgft+tVvpM5IjHzMDKwuVEiRDC0/WIH4YRYUjLrahgGfeuAEe7oqNXu+ujJpmGah/mxPsItLOpamThnQWYMSCLHw0lSEpbTiQx6eKh2yWLuQeFgps6MZSh7VBMBTG2ahobNHZiFRaw7M0lKvfUkIiw5pSS8bG7dJctQyrKuj/udGXMS6/pYtnDsjrfrHYICjUloBBGsawWIXJIp9o5ElDIDgJkNQznAKXjAPKqUNMx1rRXNzcBoX+0HRSA6sAE75aAczH0/AKXcSAwx/q+wBEE4KABEdFUOB0ISQWUEQo5dYrCbeHfvJvoObGiAQUAJ9xiGuzoSuZq7AeIudyNCAET3JJw4saMd21LXCIeMhUtAqGrCMqR1Wdfu2lpryw0kHFS3y/IbLD2OLy9TKnp7/OnLZ/v9y/zDk+m8LSsJCRCpW3R3AzBtxolzyTtBEQIQImX2f6y5iIBo722xuxsoQOzDCSJy3McSTIAG6GZAzsHuERHCAry3GCN8b4UDi3iznItacFAqaZhHFlmXrW2bmXm4uQWFQ4Bj3SoRIoq7q+k+NkFE1Y7A4FDrhkRDyUicUm7a1CxcgSlRSkxqti4LB5kzI42l6CBaCo6zByqZdqvqsLXeggkQ/HsfilCI0dm1W6hBmFCgEBVvLoKcMRD3p2ICCjdTNe+mKCIsAuHMvo8NTMMgHEKYHR0iECkAmQUQzCLCGZAgoRCxOni4AyJTkpFU244NSpJKyvugcf/GDEgRUXvknJkYEPYAVh5yBFgPRC2ZMWBXlRGjO1pzAAAIc4uArVVG+j66w/Dw3ru5AX5vzCMCQITFjsne626IuDfIALH3au6plACktEfgEUmGecpjyLK6W2JhJhEW5pyTdu1rY84iKRwM1S1MHYUjQhCPOZdheHo5TlPZHku3nlFsq33ZpiyQJBCQAk1Bt/OhPH86bMig/eNRJY1oHt2CAMjAGcOyeW71Ce0Pz9OXchignhP20zBl4+jUl9Mw2yS9YXlsUDVI9v8HiUo1BQwhJOREEBbWe+/t+HwaoGeCktK2Lb/99na7L6fDYcj56Thv3YQlUJdWaRoIeas1AMswYqK29t11WshngDnsX748vaSTLHmwLW3vEzzykUtG5/R2mNbalyTUrX88nlG+vLy07Xa5fPvdP/3h8Xi8f2ymyokk5fn8lOb50+fPIgweAfh4rN9+/c1NX87n8/PRA5dlsfvj5eXZ1IokHuByvQDA+Xxutd+WKieglL+9vjqmTXuZ5/Hl6W9//btr/fHTy89fPv3xp59ireep9KjBdH97pyfDUGs9Ez0/PX28vjWz+Xx8hF0ut8PxOE7j16/fUkksHBGX9+t0GJ+/POWUr5cPc4cEtVZ3Pxzm3vXyfumtvjyfL9fL9lhyznMekIQ4BVESApFmXgqVIXdHEDt+Oj22lquBgGsbypinPE3jkES8S8DTXA6fvvz2NdR7wsgJHhh9eRw/T8YJHnXbNpCc8oGQW/WbWgic87Ea//3bvSa+E/x/f73/fW00zn5vUpePRyWCf/3pMADm4+Hl6UnSsL1+w8dWa3WQ69JvH/eRB4umWyWhKefjOH58exsSwsB962B4ms7T8YiS39+XtfXl12+Pug5zia1FRBKJamRxGPMavF4XxR7ehRHCtBqzhEVTd0DzWNSureWBD88HyZFX+PGn4/pQ6F5Oww/nDInqBia+rO3S7s9zms+zcjHAkspj21Q1CJqpzBlvmOfh88+ftlpdfUJ+TONSN0VEKYfpYBlqaY0EAKcs93URhwnzKaXz7374f/4//llv7+fjmDNrs/Wx+DgJErFQKphRUiKzDu6lZO093MF8ayszkiMhzfOcSHq32vqyLF21pKxqvbWcJDEnSaCAvCNfISAsNMxI2D0IEQMQAwIjgpE4C3PS3ltvEJhYdgM1CwCAm2qHBMgDRwAjtd66qiRBSOoKAG4uLBAABNYNCbNkYXa1Vpu5Ww9TB8Cck7lva5sOIxIGEgIJExI1NXM3c62NEIsIhGrdGDIxAIKpe1fvrQshobqlwhCWhCMiCWfhAGutqzowoIi5H05npQGG2ebDdphWoBCxRwWHkoQg7xmcoNRDjJJzMhJF3kgqcyfyIEQB32cU5Ht5LTztj+GuIcGJsSJAaPSxFMTAACAI5u4K4KY+jIMka61qNzcPMO/ORIio3RJzyQyE1nUoYt3CGwcehkNOabkvAB5oGHEYhjEXA6u1P+pyuz3Wul3v98f9ITmvtUkZ5iix3Pv9/ku7vd/++Xf9CxcmJdunEgSEVLKEQ9u6G+T0/bFUW3MnBI5wtwDE3flFEJITeAA4IkmWkvO+3do7QQCIiO7gumu1ICB45+IQMJIDmBrR96yxJEGNlCXlHA7uPkzZodpVe9NUMhLtU7FSMiC6+bLWgJDE3+tTEL2u4eDm6LCuDQj3rdGONXILJ0gp4y5oSzyUiTH1cViH0gGqdud0Pp0CXHv32te+We2IwJyGIRdIRJITElGoUhgzYXCkhBFNuwA7JuCAgDyImQWRtgq+D1ECgCRlN9s1FMTEIZIkwjt2iGDe+Z3kbgi7oYzcVThRIu09AHJOFKw99d4jDAN3UtU+UZMsiLGXHkiEygC4G2wJAoQZAMNsW3tguBsLu4cDJBEGB0T3vQQYVdsOECKkfSFLiMQJARMzCbs5xF4aDIsAhO/+iv0rortajcPpiMRmoWa9q5vtg0DbZ15IahYWQdjU1uUmnFMq39PWCJIZExOFQGSmn7+cf/zxpSR9pPZY3Mh/u39g7+f5ZDlftrVuHUGLxJwph4V7bsugmiixR6vLkDICmvWh5BnsefBTr/98Ov9+Htp1KdHTOTPYuiy5beM8nn/81N8e070fKAWn5lBNkyR2wQgGdrOuCmHuVgStLWbL/PyyXT/efv1aa5vPp+k4Pp1Ge9wpibiYQhC7lNaCy8RIhkQOp5IZPFotEZPWH6Zc1o+fnp4A+ZTmY+an6emH3//wy+v19XXt92Uzar2vGZ6n46en508/fPn7f1zYHawf52Ez//vXt5cvnyDL06cXycPattff3qM3+fknbHZfm5sNo5/LWAi7gbjWpdb7ig7sIRF5ylL4/vGOKd+3Ztp+efsKLJiGMh+bBTP9+PmH8zi+nA8j09Lr42OT8LauZZDr67uDzdM4D6Mg16X2sE+fPx2Px+vf/jYOYxmKh72+fkucDsdDmbKpvv72aqa91vPzaZ6n+/1exlJDh5xTTrXWb9/eCEGEt66rG5eMOa/rdnus43wkFgNYa1enVErfKiFOYxJz1ZgED1POguT9MJb6uC+XLceRvJGZ5GTdp5LWZqJaKFd32bYOdnPNwzzJTLnIJM9fPiX2+7Y1tb+83v9266+YwksE5whc2vjXt+39be73z+cynY/sDZwP46nputQa6zKBP5UylvHtUc2st/jrr/91ef3GP7/YIc3z9MP8Zya49rWZrtqW0N78/Xov63rM6TwdzqenEWNGnby/PdZfrx8NQKY5Hw7A+fa+kHBUaCtSKZDyYvHtfteHs5YHqTCdD8e5+CBLKmVkqHXBZdF1s60+C3z6/Ze74+u65HLcHuvH2z0jXB/raTpyyePpoBjLYyNmrXXx9vnHl2E8Xpf1bx/3t48rltPz58+NyC/3dVkG74Pbcz798++//Pz5eJjScPrx9vbbb798XN8fnz4fYZwEAedD6Z1bA+tmEVxoPsyuptrBIxCZeZoG4oQBYXH5uNzXR9s2CkqcOLEqu0VQEBMaqVrvXV2pAxIyYS7S1cxhR++b2lZrgI0D5cQhe/JR13W1rrnkhIwIZiZCEWHdAHCfkffe909zjN2amZhzuBN1iP3DV0TEkbat9t567YEhzJIEAPZ2iakiQIS5I4YhULiHGzgK49Y1JdLeGCENSbvV2gGIkMGdiLqbVkuCm3XhtKekEQgDWSRNgsy6+WYs88yfnuw0P0jubIwjmZk5puy2J5gJJRlwR3ZOCqjAityJjSiAwCIhIFI3DCFzT4Ct1zFhs95AFSMH160LSykDM2qt6sYkChoeOSVAIJZcAJG2dXW3JIIAQZhS7HRlcwU0UzfzXhshE5F4ylK8B3EMQyLC1HpzPR7TC8b18nis98PtsWl91EeAbfVx/xbzdMwJhlHe37/95de/lWHgwN6b9U5IRQBNenU3G0pOSVAtAFhtHIdWOwYiYkkZmdxdwfeXHQEQYpfN7kyjnVagrhqGhIIsxGrq4aodANFJSPahmKoh+jgWN5VUUk57RXw+HMb52FprXbu5CDlCUzXVxLIDkfeBBJNwEu27hSzcowwlAs0UgfZGknU3d1MDgHAkZjPICdKYNMrSnVDKMGyeCFIYUpJhFMhJG/bcrTftdl3XpH2EYeZCjKAEsC8/y16yDgMNQtJAllwYnIMlcUVwcyE2VSKAMP1+CUHZrwaJzQyIw90hPJCJScjNunUDUI1cynQ8rI+HLcCUirALNxazzkjjMNLuDAf3CGZikQDovXNiZDSF/XuttQb7oQWdBaWQ+47vARJEFyQEpq1WMw3YWZa0Z4CYed9yMpKIwB6DNtNw3xEVTP4PuQciITGCIRESIbJ5M3d1q1tDpOWxtN5zKeGurtY6IvgugLXqZiWXJEmyhED3bq7a1pSnaaLTkT6dh3deokWjIG/TmILhvi5iHUIjQRLCXmO9jpQ+gYrXwnnLYVvvQESsTIfMB4fB6svIfn0t6QTbx8w5O23rgnX56Xkqp/l2efv45XW7R/BRUtkcbD++eQghQlBEN4fwLJx8i7qY3pnm2+3j67evqaSttfe395+Ow/r2+vT5h8ySBJNwmA3DqK0n5EQEpiMb9ZqhD+Az2xOGfny0qVOv+eXAFM9PRwfb2mLrdprG//M/f5mfzz/+9OPLYVofy9v6GF9OcTPVNqZpnsZxKI/HOpVzkvxY1/fLx8f7x+X1LUsmC5d0fv50eH5xHoAgZIsW1/drXR/Px5OaHo/jME9bOA8Dh7y+vZm2v/7XX1Ip588/hEcETaUcxnEec73f35YtaqWU3LTXNh0Pwvzt7ZXz2Fu/b+3Tp+fheFi3KkyHw6Gbbssj5xIB59MxpXS93HJOy+PR2jYOAwBeP65u/fDyxAh13VLi7trX5mHMNAxlW2JANIDaLYgO04Qi18fqYe5+fb8FoJlH69r64TAPibBvddXDNB+Go3i5fVxeX1cAmOZpXdettlrbunZ0LLPW6y3WDWkw18Upn4+X1tKUV6L56Wjf/P3+eFtsk6FLWSONp6PEbNvt0q6yPP63H6b55fn17b48loQpmpJbv9+HwOOxPBccB6Gnw3V5XO/L7X6XMWPKq0Yr/DRPiaG02JZba8u6dD4dAOL6ehmej+Onw/FweD7kdb3dv36t6zIUNg1HyImIKKFjgs1hWVpt7kwl0731OJbP03mQCG0oeSTHqZspabPbNQN4+PHpbJJ/uz5ezufLdumtf3tfzfHTD5+qrpvqNA2DjqUMh/HY+zYfjoyg2tOQswfRQgIm/FjWTtxbL0zzPKW6wvY4Dj+dptzrw7XrugnhT3/4sRv88naRMWfyICYpSVF767233CXnlDL11ttmgGgOxJBzlizLVrOI7iNpVJCcxgwWwRSGgEjsqIAAHooBiLj1VrsjARG1rWrrW6u73QkIAzAAtOvOcnMAFI7wAHRnD3LHMo2095m3Zq7hRCSBnCRDCIATbMzcm7oFJEKOlMVd21olSW9mrkMZDvMATL0BEfduyIyIdVv2KLSpC8n56bgfs7qZbRHuZhZI02FMOZnb3jNv3fNQCHiHvKkZC5dhSCV1c4eoHRsIAN6XevdeQxjSUOYT5d49wB29owcScu5ICmCBQAIoRuRErXdGLiR71NPdGIE9hpy7rUNKy+NRWH3rKY0I1HobUxZJ4NB7z8wW1qxjRBgGODHmUgB2M0eEea9qqh4IGL31bWthwEgRKkn2HUQZMguyYBmKb227r8All3TO44/D75r2+/32fr389vrt8vGxPtYi+tPPn+9vt//4j//Ylu35+dPz+eXp8ydmXm5LztndzLSUDBD/cNYiACZJOZXetfeGhETcVYPSbsZlGMDDnVQRIRycgkx1f4YLAbiHmfVu4USIidQUmAXRPYD2TZimJMJQOJLgWAYhdnM3RMrAFkilFEJsW3PbT+a2jx52P6RbizAkYkHe50n76de8t661hisBWG+IKDAwc7hHj8CwbuBAnBhEnSFArRO7gBeBkUlz7k73ZtW8bmt1EwJGGtLc3WrfZo5CBXjZwjI5snkEBQQYoO39djVLifeSl4XJPuoJpISIgcwRYI7mZhZMwRiInpIgBSFOh+lwPAizA4AqCbEAMRONvXUgytPcWgfytjVzQ8JUCjC7u2mklFNK4e77PxCOBAYYgEBEzKZYWwenlAqxIGlOHLF/DOBe+ILvpdY92g4R0W13LxLS/udwj8kTIzGmnB0wCLt617W3DuHCsrRVq9ZtXda1bAWOB3fX3iQRIo5T0a6EBtQxETE5Y3jUvqFsTyMF12V7zxjaa6vrtW/NmObBiZIDqQ/TOB6Gdble3r4B1+fT2VVP0k4zPgSkRp/K1fnaLCEmgoKM6OM0aNsEYbvdP77emjYpcj49adOP93dWLyGv94XGA4s0d2SOTdGjqyK4JMmcYlmpbYej/Msffh6HdHwehvH49e0VhxKtIuN4HKd5rIqki68tyVnScFv2jk7PoBmNtvsPx/z5PIycM3SkvHy8CdiFlMdyPs/tttXHul6XIsPLy5nnUSMebRX2jfw4jwP0AK3rxoCt9zJnVzfW68fl9dfXMpbf//GPl8djfazTNM3jeAm7P5b1esvo05CaecpjSpkpOIGR1daU9L/+65e//P3rcRqHnIY8HIeJhul6e9w+Pl7bcv7z75e+fXu7PE3TeH4J0/P51JYNmBLLNE/a6v3xeHo6Pz098eP+X3/7m6p2s62109OxDEPO2TYlYcDw8HEaPj0/19Yej2sSef32Ph9KKjmA1GM4TWq2LrVtbZgkulrg1lptSjJQeATWtS7rpmFmvvdcRhZynzL32q01T+Q6DyXFYVyWdZqmtdZvX984ZzVfb/f75T5OY/conPI4FB43zjyV+7rGtkzbFJf49ePxvmhPE59yILOMFZRbJ7XP8zGnKX0+DJ8/Y6+sX5evHx/XCwySo4H5GGDXX7U/yGFgaGMqfeRxWDG9bmha1fA0JxmKr1f3iqBF4Icfny5qBWAahEQf1S7X232tw3g4pbFebo/eqdYsnkKXx1XSmDg9qlsacZxWHHt3uNOPE58AsUNa1uXt9YfPn2JdjolF5AoyHZ5WdLxty3VBJ5DUbGUpw+EkPT7e7n+/fvt8nn/84en56fz+62+2bcbw7fWNL4sR3x7Lw3HZrq9Lw1SGaR4S/+7lqdRNbx9/+/f/KPbjj59O98tVl+3l5ZlzqctirQrvodgINx1yHvK0LY9lWfb6V0pi6qom4kTQojtgykmCvfQIR2KM70V3NUMnTiTITNxa616BAcjN3cAgwLZel9Vsl0Z77R23TUQAd+w6YUTKjLsYEdzBkDIQAxIhOXhKRMaIDIjECQLc3F0RmIHa9zKrIqIIWxIm2RVIZhYeeZBAsm4AXgYh4q1WNd01U6nkcNhtRO6+t4tba8QkzP9QZ3ftjYCEWVtPCcxg27Z1XUvJMIB23dbWWyAPdavb5XqVXNNsuaiTpnG3s4NAB23ggIhEDuFIyAyB7mDujsAiANGtsWCSCDNyzxC2VmEljpTZaovYn/JtbfWhveSMiMKo5hhmrSIaJhEWYlak1oOZh8xh6r3WXt0cGd0C3N3NA4hIIcDRMSihuVkHyRmZAIk4T4cDp4QBB6ZxOh2OL0/HT8u6vL99u1w+vv71t1AD88ftMc9ff/+7P4DwcZzDvW9buO/c8N7VtSMhEn2vAhERkBCpmZnt4tDYS2pMFk7fY81B+wIFACKEZJ8j7rWmHUJOLEAQsAvqQSRBmMIem3XVGCdJJT3uj9Y2U2Ui7717xwgA8og994OEOSUjlH9IstyBkbmwiBCzMENgi9oh3D3cEQkgzF0Ack5s0erWAIIyBqqGemBQQgwE7w3RQxwQMglJMgnu3Uz3QYWHuzokDkkQ0QOH4cCgqEwBBE2j9XXTVhMx52Tf3VoAhJKyopIwBgR5N0NEztmxg1kAqXrimIbCJTkQGFLOw+HokGRtGlsAIjgL7ZpSQEICSWQBKIQetKfyCfdjRxmyCIe7aw/6TqPa38IkbIF717H35ha5DBiYkuyNdtxZlwAQgA7magD7gcjNd2UIf++Y4r4BdQtiJKSUUN3aVvfbgjDXWtu6uRoSIIC7a2s7FIpZEIK+Aygd+R+C2kBBjIBpHp4/nedp7E0v2nrzR9Pbqh1z1AoMA0IZ5Djl8ThcYevvfh7S758ODpfHqiM8jinBWd7Rt0eX5kAxnceZyR992bZHAl+3OVMa5vtHDUYgMqtTpn9++Xz7dblGx7SvCANMmYE1xjG7KyByuDAl5jnx7758GnW13nPKSJAzZ8yI+MOPP2xL3+4bV01dJ++xKQJWVUko3r4MTOq/H+D/+OOn03x8/fq1Nby+L7fb9dNhvr5fD+MwlDFWO5RpJTpm6r1f/vY1snz6px966KP1RA4WZv54LMM8np/Pq/b3t9fL+8fT0+n56VR7++XvHx28Qvz3//zP+XAcp/L4eJ+FvdWfnp9++vylP25ulgoH8eu3bx/r9liuwvDnP/7h9z/97BZB6Voru/39Py6Xr48B7ek8u9k0Tsu65ESHcWJmQ4s41LVZ12Ga19bv9/v1crm8XTBJ631bVkAKh9aUEYexaG9htvWWf8ySU2/buizOmpSLZEPI00BMhfJtaSIEQlttj2VbtjUCczerumwrBMzTtNataoM9u8CcWaJpJhrnaV2Wr3//+z/98z8hhpQUAfe3V5TgRI7AwqZWhnya58DUebzeqxF16p5A0X99/wB88lI8Uo/oJhHo4UU4JRGYupgdpjicmgwSoJC6UjhA70+HUcO9m62Pj8cj5kPjrIEtKAxMZL0sD0FTw3I8s/TeS8J107YsOY0vp8N5zEOWx3Jzt7fbZTUvcyKQcXawzsIZIaOOyKWQuj96KPpqvhh89Hj87XI9l5fkt8UPtYry3OCQ0+E4PW6PtRsDrQFV8tb5rtvlsSql+Xx+rK1vm+P2/v7x4/PTet8+fv2amYZUfvv6qhjLumIZMMnt/W5DAqF1a/N8wN59WwvDOKTl8v7b3wzW6+X1fZTikZxXYOiq4u5uampqGGIpjSXl1iI8TI1jTy8GEpUhhQcSnA+H3rvVzUK11d4CieEfjkqFAA8h4Yym5ODmoV2JPMJMu1nbnff7asIwADyxEDNogHrsiRx0xAjbdQEIbsoYAjkJi4QHMSCgqjY192AkCmZkcNjZQojELMDgARadkJHQHUQos+xAQpGkrZrv/SERYe0G5IXYHBGwqxISBmYhcq/L0rVDRJCzoKn32omp9W7eW4tahYwRYxgEA8w1lg0zDSmvJoClY3pI5kRm0SA1NnMn9EGEgdwdPIgFCS1CkALCQJGD3AUiM3BvwpAI+/VCAhQW2tR6ocAkTZt2l5S4RF221hbtmxsO0zFzDoDaFdwZE33PWaCatq0RYc55LLm23noLcNgXe3mHwSETE7PWjsJpzGkY1MG6MaDwmIV+/vmUkjxul7f312+/fr3fr8yh6l+//fbxcbveH//6L/9ynI+llF41l+wRoR128ymiI5ha9w6I8P1gA+4R4RDBuB8UGREIwB13tExEIBAJEoLZLogjcxMkJGFwYZYASnsgJiwAqIBk54ySidmse60EkBOzcF9qb/W7hx4QA1MRYm6m+4COkCE0IPYnsLurf4+k5JzNXJWRoJtCuAgOmWKzVruRyMzNrbduwEQgDBSO6Ba2bd2Ep7FkIgtgMslFhKxt29Jc7VExCy8GCeCYuAEULELWuiVHV3KnYShMbF17Wy0AAQMxkD2QmQzYkEmklAm027qAR3hD3FNrhJKIU+QBylAgjbUuixN4mJl2DDBrphqxO3ZdEguKh4OHIJBjMB6nQxlzrbX3ysAAwCmFowgyszdLlBS0qQWzqyIGhBPE9zkgIAAwYQSZq5sb7VMe3AUvzHt6DXYUgqoiYgjvUXchKaUwCzGu23a7XFxjnud5mkWYiQKBkAlA1SMUmCQlJgIEsCChwkmQT/Ph5fx0ms/32/Xt0s1IcTDYeuvhj3mGQsi942NlaTPq5+Pw4w/n00C3vs6+fclzehqfn6b/+d5uj0qHwRlCm7lD1/f7isl9u7/8659y4g1jW9ZV++F8ePpyvGj8E6WW7h/Ytx4eZAFoSB5oTmbMPBVJ0UYZWPu//b//7fNIp0Oum2pfMOjl5czmWbjBytaPWZ6zTykv3qdCOI3MmiLPvT0/D//6w/nnIoymBa/d6+1Rb0v5p2S1Pq53muCQhpzkL68fufX9nYBteby9lppBABH2uWZr9fh8cLfH9eqtH6c8TLJcL7VvZvVyX+61GvFv79f77eMwpX6/TUmG9L99ejlrr+vt+uPxx6WtfW1TGv78u2OA/PnnP52nIwteHneiIGufj/MVeklymKdyzMCw3NeI3JpJzl63vnQ1G6cskm4ft//a/u6hAJCYHeCBuG0rIUnOJcnteg/T3hoxQkTJaShDb50Q2tZoIMmCktZaA4GKmPnH7Y4BBmC+L2spQN085TSOEzMjYM5Jm3XtUykiiQVzzuARbm9vr9fLPYk4OhF//vIDCEdQKvNvX98ic56Hx2KPtt7Xh1Es12+r6tMwUCsfLJ3zpdnD0VmgBbQNmQg0gt4eG3pjhuv9JutjiMg88sHHmcc5E2Ov2+261UfT7kvvt0qPxsayZWZgcBvDp3XTZvXeDnlMh/QAySJffvgyCq7vb9vjNh2ny7K83evn4+l9WTXcPDLDlPPTVA4odJjGFB1X63Xr3IDWgI7MRpda36H9bsinfBRPeXy69fbvf/8LHp4ryM3jkg6/PfoblLs4EDeg2/3hb7/9y++e/tv/8d/+9Y8//f/+7X98/ctff/7hZzhgKuXLl89L19Vi9ZVS70TzcZakuq0TYX3/SM/z09NhEg+r14/rx+vHa4uf/ijGtCzLsqwSCH0zNw9C3ao75lzGcQAKIvreSA5kEWIhRpJUcknMPo+PZWlde1dk+y5qJuy1m3oSJqYd34yOCAj/8FR7ElAMABL+DoJDYkGOnddvHQIAA5EFgc1rMw9JLExcOCcG9MBAZAhVbb02CKCcmHGItNdDMDBQWFC7mVtXh90WEGjdEYApGJ0AhNmzMIlIAgzCnSEc7o5ExJRycnOCILRlW90t50xMEB5htdZ9Hs/MwhIWAYaE4Q6gGcssOTBtm6o/GtSeLaa55BxEBubkap3cmnkCJAAERk64ZxwQiUgYQysLcQT0jl2/vBxHgjUqrvexJFtuDqsapIRSsoYFmdat2Vq3JVwhCHrn7I4Abvtdl4A8IByIBKNad8OeGBOxMwYGYDARB7o5kmCgdkeQoaRSRkqlLatF5OCchTAloXHKh2n63e9/9/bTt6+/fu1925b129vr++vHv//7v1vvf/79H3/380+qptaImRKHAbMQoQa2Vk37PlhEpP0s6xGwR7sRhJAQ9mMi4B6pTsKMgPS90kTkjgoB/3+i/nU5jixJswX1ti9m5u64kAxGREZl9pnT54yMyEjPvP+DjHSfnq6qzqrKjCAJAnB3M9s3VZ0fxuzBAzgB0Nyxt+r3rQWqGglyYAIcw9SZYpzSLCnlPLEjSSCSnEQERm1GOKUAGujISjOrWIHqDghAgAYegkSL5sfRC0x9aFc9NNoYcxJhRyMh76DmCI7ghtZ7p3kG8tFHVzU2JEfrkQazl2EGYMRGHIjDGIKQhHqrkUAyl2108+6hmZGhAkTApJiUqeiJJXDqdSgEYubjP623Yy01hrbWmaPkCMwyzRgyqQklqxsDA3jt+iO1HXPHuDUQZpqi7dz6iCxuWltDcEKIgc3BERwRCUfviEhIFDnG8HR5nC/Tut3qeu+miCAsR+Reu6J5IK6OBC5EwuyuvXZ3A0CiA/btP+a/xxYMgAjQ6XAL4oGEcARzHdp7d0AOwRxEOE1zzDGIuDk6jNx6bYI0T9PBp9ChDqZj2FBz+5H9EXZzGwBuIaaY5ylOAjLWtl/L95ddiZCTSKKymtW4hDkEGI2HQbFJeHk6P1+y3e777f3CeM4RESbzc4DHWVKIa9OybQQ2u269zEQ/f/6EMfz7f/w7sIcpEjE6Qe+3b6+//vzb222/f3uLQzhNDbG2Lo40QNtIpzm5zlOW6nOQvt2/fXvN4Tkgvd1uUUKSx7Kt9zfS0Z4eFlvCvb95ok3hZbufT4sIyMC+bj99fniMUl9f2ujA2Nbby5c/TueT2khzJqK97lHCdlvF6//+55+uW/329RurQinAtrUWTlMSud1u72/XeVnMWt/L84dHALjd17be05SWGL63Nohknl6+frlc5vV6215fbJmu7+/r/UnLPobdrus+aorp8cOn6eFJFfvaXr/8IQHTNG21aNn+/Nvnaf7LfD63sjFgrSVOAoDf394cre01xUQIrRsShim9fvsOfMBB9ZgOE4vEEGNwsFqq9oZmy7Rs9zWk4O45JVAT4hSTBKnQUW2Mfn56uN/X25cXZj6dljzToQR2opDkeDhjCq2zCNfS3LS2KoHNsNU2L1PZ9z/+9mXYmOZpL/vl4WE5T/e1hBwfPzy+3+/drA5/Xbe/v289himzWhnrZjrCWW63683wVbGGBTEkogBApSJq87pbX0e/7/VCelL9+ekyQyJQkIQiKVIzulmvMjXMr2XsGqqwxaUTs1Bd7/u+msHH5NTDNC0fzsnebqfzKcWIPpRpM+/NX/bx3mkyKSB9NFd/fMgp5RjKx4dnmC7lfZdbQzd0ACCZJxX6bobb9qajWTjzsMcFLI77+u8FUYyu63u1l3u5FYR5Cc/z+7f3fr+fdF8C/PqnX58vqdYy5fj0eImB7/fb+dMHSTPYvtf9reyUowPFGGLg9ev30+P5IcrHp/OS+WGR0XZQHVX//rdvf/zx/cM//TyQXq+rgIMgK4IDiTAimSuxhAP/OZQQpykReN2K22BmtpFSnOfZHRGlSzczZjZ0Nyd3Q1MzJCEEdACiwEEVVRUYKWN0UDODHxR/BAA7CrHuAOaAQEiCyIiCROqD3B0D0XEZ+iFbJFCH4T4cvA8LHEJgBwA4qiQsgCq+lU2tHou8EGGogRs62FD37q5MJERC4IDDXftRhzZElMAITkjuZq7gFoPkFHtXtQHuTKSqzCIiKSU3H6310R0ZY3KI5C2I1LYFDAP4gCosD+eQc0LoPkzcrdNoSwgI2FoFEoCAyG0YkTA5uiZEiVj32teaP5weE33+5blehcveZ+5ru143955yoMCO4DrMu+MYvcU4BZYgYajKMTpzUIXeDRxCjNZHr633ruqEIhiA4bgxg6MimLoqMKbzJWOOYZ4wxVlSKRUMDShNWYhUh6kDUc7zr7/95jbW+7acL/P0pdW6bfv3t1dmjiESYYoZCTkIEzs4IRCSApirD0Q0d0A/isYG7ETIiEgO5gOHgbuThCjhByWbAwNixACMhM6u5EQGxxRkAMe4hIdP6XQWZnYdut/LHjkEYSZ37b1VG4MJj0eRBEmod+1DhxmChxgP1qLqjz+lpg7mxGRmOobB0WsCFkY3cNXRVJ0lW2B3kCAsBMfSFw3RjwkSi6izKiTECKZuY+ugHQIuzNN5Hk63Bg1sGN5N2T0ZhQ5xkCCAS+94X9u0BCIVISJxtzaGC6LyAOCQiFLjrLKAeEjL2K6uVXWYj2GEcorzQzX/ei2XJVCKEKW3hgMdmDAwWZwmYW69E3pt3frwYUQchN1wzvl8Op/OC9pYl2n1rqauNoYyUa+dArt5EPIYSFgYezfX0Xt3P0Z5oGbujmjmw83NCJmJjgMXHhTHAwvuZgjoZr1VAyROKXAMojpabQhwPi+VxdXQjTE4mIGbGhgICzEKMemBPXAbqGTElDhNkqHZ+/Z2u16tacfBwlOeaEp7qwINxxAcc5LAPUQ/L9navdYtLyFB3Mdo+/Z1q0pRwIM5DfMxug8SjCFMmT99fLzfvr68/v7x+eNymXKMdV3v4z0Ypl5/SrQGwN72pjjngt2HnU6TnHIdGoS2+xatfvr1L49/+uX+x79HqmhN2PLsRCNPYYy+b/eHlC/is5dRryFM+7g+CKXAtawpjiVBzn7O8+vLaxm17XdCi5FbaTlGAmTV9b4G4hODXm8z4f/x22fXDn2LCK02zYHzRExuar2d5mVnptrHGJco+eFkBOfpGRxU4r2Wnz8+6GjMOD8+CPgo+/319TIvYcY//vgWTzlP8+myAPn5vLxu697XnCcd+35/07Y/PD7laVnvt7fX75+enyPzuq7kiIDX6zWSLNMEANfb/bqu53PO56nUfdv2UosLuw4gcrO2FwdLSZyRAGIK9/WGhU7TvExTjIEQQ4xmroZz5uv1OqpGCcxsZo6E5G10dXdHDizCZd+HdTe7Xq91ryikq7o7M5l6EN72bZg9PFxqqff3eyBh4Ou+xWnmlOMSq8E+eicoqiBTKS0AnIlOxCeRcsDewbsWBxIIwEiGjGQelLEpo8LWxwXzviHV5mX/RfjkngnL2m6FOU7bCF87Doy7Ud3NqweE0PnWjAO0C//8+HMLXHq79TWhlGHMPH349Y7zWxtfxwpTGvNjksXvt22/v5UxvCnHxkEVbw0a5U5eDM1JAYdxMyCcd6PeKLq+vfXw+pqxv3t+//0eiw+U13vjfAETuDdnDlMU4E/5hEFu6xvU9c9/+fNryma6AM3ny62Ul7fX27DdFGI+nx5Iou0bT+Gn59N//tNn7sVGIdChen17CylxSF9eXs9/+pwvp9O2CQLEaTL1vY6QIwubDRYCd9VhZuBwcGJ0eOm990YACB5TyjmmnAFAh6pp7a2WanwkeMDNmFgNJAiRjwPJzMYciLCr9tF6G6qKAkYGjn5UOoA4BKJwmKsYiRngmAhJVBCk4zhiaIMYUuZD2aEGTIEJ1R0ckQmJz8tC97CXakgg0vUIkYAwu7v2bsMAEI/qEcKBzgMHCQRAqkMNhNjdwfwAoh/QOTWNKYpIiIGOCT38r+0NIDqhtV5qN8+UkqDkiUURxyh+18SntMwQpGu7X+9LgE8PCyDfrnuz7sTV3UdTtWmZs4j1HpiFYLf2/u3bw8eLJFwu8z72fJqr79v1drveSuGUZD7NDoMJiQkA1Z1ZiIjckcjUHG10O4DA4BhTQsA+ugEiEYuwAAkFFmYeTq0YAsdpisuiIgPdHfPlkmZf3+6jdvKhAK0Vt06ru40QZJ7Oy3TOeV7mk/aB4IyoasVqzqm2whyOTruqIuCBI3NtB8Xlh/UAEJiAHA6ONSAJCcrwA1UD/2gkHSERAgRmYAICR0R1MKCOBHHWfMHlI18erLeIStX297eCAzvEGHW09baO0YVZDbCPEITwSK442CGZHeDAzIhHLcmZGZlZqLdhdoyCCA4YupMOrbUSC6fgxEFYIitCMQ04mPAwnTkiMxEHd9hLmQQcYC0lBGzdY5oFebRhrjGl2rwNOAilw1kkbXUVBBs+UBs7QGcGcFvvt70WCWGK875VyovMEePceUIm1e4TgLZaiqATxREz0NxARysZ6JSmvCx1+Kh9KKcUcjjejI6OaMO9H+YxEUEJ7JjSdD7Ny5zLXU5z7nWtP/pY1qqDoSAiAxPFGCVEJAITG9odTB1BAfDAURM5gBPhD7ShIzG5+w+jxg9PriMiMQ1VRCTEICJItY5WK4kcDQv/MYo77kbHWFWEAwCojtG7qiEjoYhEM2ulemljXdf75jbO01x0jNGjx9Mpr5sGNDbtZeNwik5T4DnRum4pUL6cfOsQrGlrvQ3m3qGMAcBIrK15wOmURXS7X8v1/XHJHz8+jtZVm7nGEJ6fHgbhNMpvE19S+HLbltPii/ztX36/ZPjLf/rzf/z+Vq33saXIt/f35Tx9/vjp+9//Ocr43//p1zSnh9P5w3Kut/WP33/XAcvz88eJ1lIcceTxcSYbbex30tbvt/zhdDnNj6fTv/zrP0+B//Snn5Cp73tHQOu67XOenj8+hrfr3hUDffr8uK/32+ueAmKWYf12vynY+WEhYiE8zZmZtLR5Os9RbvfNGX/59Ogh/9f//s/1+vbx0/Ppp8fn8/mPf/t3ch+j19LW+/W+bZcchfh+3+NkTw+Pj6eTbftoJU3TacrX93dB8t4dxm9/+jXHqdbt/W301p6fPjw+PsHQ2/XOgccYW69OEAJtpQ4zN2OAEMQAaq3a+kEhPy/5uAIpj1r3VnC6XBCACeteALH3gYRgvt22OMXz+bRt5fCCp5AkhFqHdgXvzAwOffRSNkcMIjZg23dCAMe7qdqY57nudS9lmqdt30tpYc7X23V9+WZIxlJv+9tuQJhy0jF0q0vKT/N0nhKZV/Vwb6wKWlkIQDgIMaAzemRLDk7E99KueydjplxWDfd9ciTCCmFUaEirB0WpiKW7gWWhOc3Dxx8FO1sRi6Pf3r4Htn23pQGBffjl4yvrt1G/+Vx2gA3O02kX+1q3rEC3jUWi92rr3+7ta7Ubyghy0GM8AKgzCqTlJuAdt8172RMOd14xSgGK1OJEEjgGs35+OAP4+fxhCu193/T9y0/nWYSmJd2udwlcW3t/v13vu83L9PR4M3i73YOEyfQ851mItSf0ve3X2+1+u9Xaz+eQc75u5fp+f/xwicRCxJKyKaKWOsYsmKJEiWZ2uKpCjBIDM8fAiH6Y4bd9dwQ1OF/OIlL2otqJCR3U1c1zCqp2RBFZxBUMhoiajzG6ATAScaSAfXQ69PGAQAIOhCwciYMjCqMEAVRg6s4AMYWZJLiNvt8ZLEexZphCUwdXdURnVXBVUMhzCClnh4fxodvQ3sw1MDGKtUqMYFBrE5GYg5qbKgsDHT1bNIcxANBDkFEbS2LyMVR7M9Pj0xkRzNzBiHjoOAq8JAEY1c2tuzn26i7LfFZiQ4AUiTHhmEAFoI4qOE6BnyII86RcBm1tgFrv1YeeJzmHUPs+mkVEZKi3zZ/Obe/b+h68PT9c5GE+Lefv376+v311G6PvRACqTBRCQJFqA3oXlhRT6/2YvakqMbN784ExpJSBhVjMQEfTAcyJJYCjiSmypxMtjxTZVbt3khQDQ7W9rzqaoTvYQQ8fw/tQbsaMzCGlGaJOKdoYgN72tu8+TRM5ltIQgQhTyGYqLMrmZsIMDDoMDYKI/oCGIyISAUsQw/HDeaqHSsxUhw03YCZmAnADcZkwJMAA6Wz5YY9n9SjoZDZLCCGA9evbysRjDDwcFyGoaW/qACLsDq6qdbTabn4LIagZEiDCMTs6amJIZIf7V47W/VBTHaMNStPitQMaZRytM9WJkaweFWc6RG8kxqTuwGDk3QYGvpc6ejcUd9i2HcKkozkIURh9mIacyGodjk3VurIdaRrDhGXfX759U1MRarH0gU78kC8kqZGUrowsMivHbqENRQqREhg17TFFWqaQaAJHkHarCgWFKPFoVa07iiEAySFbISGSwIAhJ2JGt8B4mqeyJdXR3cENACQyMyKYq8UQQgxqPhCFGQGOFRcS9tHcBzgdGy9m/lFKOEiJbg4KTojIwoRATIfIRYhHbb3WWiozjdFrqQyYp0R0yOSdCQ1QmJjAAXpXswFACGTHBBv6KJuW1ffs+/r44SEt08vr223dRi/5Ml/YA7sIXzfwPhRp1D7ySDF+eLx8+48/aq8RpxRinuX7DlsfJRDFyYa6N2RcljBjr/f37eXtNKeFwmvfvr3dLqdLijHmwK0/sv308QzT/Mc7UxQ3UHv77bz8dqHt9+1172dEb31/f/v6/k2WiUsFrE9PnylELe33+5eILCyq4xzZH1NpeK/tw/OzTLhe+7WtkX19+fZ94dLfP/70GYimlM6XC6c0SrNWXBHAiMbDeYJRkbm02t6+eO8fTjkE/v3ttZTBLO4w50QM5nY+zwSYA7t5ntKcI4m83tai9tvPT+QtMJxS9N4+fXy21hDtvl63fS21L2YS6bbdE3Z4Abz3++2WT4GFwOzhfBm9xyQ/PXzO07SvZdt2RE85IeCcp9v1zcBfv71Oy5TypO5jK6UVBZ2WOee5qwKCDj1iGX30Xnk6RSbcSy+losIeN3Qse53nk5N/f3tnljSnGBgRkSRI9ANoTiQiIcb3601NJbB2dVcRZpEYo4q32rqqSCBmRjLw23qPKUqIZa8OEELsre57oZhM8Xrbr1u3NOO6BgpUx7KEJScRTwinwRcidXan4mCJm9M4KjMUkb0Pvw8QTs37oCYe19EnSVh7CFTMFZBiLOzjqLekAO5laK0jwKKIb+v6z+/vrgN1zEn+jj2ZWu/n7dt9b93llS/70Pbm6V561fddzktu69bNvYyitjvtB9jF2RjpSMIg8THcBwJJL7uZc2RGSj0YAYmLC4Gy3RuiJQZG+b/+9cstlv9tonPFFv2+b5QCCr2+veWswjJN55dum/m9qxnvt13Im42XstrLl//zL3/q99VqOZ2m50+fpnz++S/zn27by9tbvd59VAGgbiQScoZSNxsjpjkdlgDkyCHm1PoYXTFgTNkNStlrK20MkaBDj/ufCF9O5ylP/ua1FaYAPoIwmPc2HHx0ZSYhUVdQIMaD8JpTQkQ/7vYOlISQ1WCYsogICSOHPIA1ZkgXnB8xBBwVjX1sA5TIbRi6HuYjc9OuvSlHqHu98xqXfLqcFH1f114qCwrhUDWH0ooDOmDvxoQGcHBmJQRzY2IAKLW21qecxtAjiQuAMSUz1WEs4mBHJ0VNu2kMggDErkOtFwmZA8YoMUszqqptDERCZd13qJjY8hTN2vX9ej6fGTySNzfodWIXptD3yIOhr6WgUBJF0HXf9rbqdvt4WcBxWabzPD1cln/7F3h//QpNHd2HogMwA7KalVrmPAmzhFD2AgzRUxstZjEAI5rmBWMEEjN4fX0jBEjZYlDF9BiNA+Vp5JlTrOut1ErcQ6QpJyt1NOVA5gTm4BpC9GE2TLuPNtDQHNUgBgEEG0ZADKx9tFZF5LScYoqjtigBzE0VkBCRA5t5HwpowoIOBg6EAMREB8cJ5ZgdHporI2IiHA5qFOfZ84nzOcdJ42mEc8WoSkmBR1sCnJYJSwOz+7YTcwhkgAjMDBYACcGxlta0997VRt9GzhkJyJkAJYgrtdpVlRDc3B3M7FjitNbG6ALStvX0+EBEQlT2DZxTAiQDBSQAI5KA6GMYMqBw680AJEbs/X4thqTmqjphNDcmZ5ZmA9wCEznkQONtzeIwWt0GC01pdglkMC1pu91f3+6Slr2MuDyHeIIptqEOmGMgYiVAAQdyEFM3s8Ss5urIKfNsE08YdxiqDBW6oagdqKk5L8HdHQkpCLvkCYmZac55tHKel9Gb2+A53G4F/ZBv+HHPMbVaamlNVY9iBAADwj+OQ0iEwoIAbkaEvXdCDhwA3BRYmISBqLWOQCkGQl5vKwBICgDm5iISmIjQ3czH0Rr7wSg6vhyFArEAwgAzMEKbUohCEfXj0xxmMeuzoEcQVt/vp4c5R0IGzYIA223fa0vn+dOnD/19xVGFdL29pV9+xeal1GEQ59O9mUl8en4OsDMBY0fwHHjU+vr1iwW6Xe9McThTiguHTBB9z4Lpia/3qyn833+5/OlPD1ZuzwkIBNc2XK2WrZRBg0brbSvv1/Pzh63sIcb5fC6XVUvd3q/CkBGbtz/++mV6WB4fPzwtk7V9lBKJI/HX339vo9zfvt/vW8gp5ezqP3/4cHp4/vr3v//93/6njvr555/JcQxow8RNkBmhtJbmIFFGa8O09xYFmSjPsWzF+jGHsyyMTD9/fH5Yzv/61/+5326f//xn1X57fZMY9l4U/Px4bqMnOoUYYxQwvV1vbYxFZmLKkWJMZQx2yizr7e32dtu2LeaYUnKFvZXbujNTnqeYU7O+rduUc0gZzHNKqsOGSTygGSiBppjQ3MG+fnszs/PDfH27pSkSkLsb6L7WfSt5WhZJjMDCbWjIAYH+9re/D9VlWfI8MZOq3e9bH00PsAkzMh5j4Hrb6+jLMiPJXsrb+9uRLlK1nCc1W++7MM/Lct8HOoB2r2voMQY8nfNpTjFSiKG2dn99kxGSUyJU5z6wu/sBHfUj3kCEZAQDXIl0DOAE5OCdwBqoEjOJOhiTOyLCMWVHEgMhRvRQakOOKc0F/P3eg4N1g/IGJCjccdLo97ULDFdTWW4NiJeBPmDa3Y0YgyCxqdtB8AMid0J2QhJyYvXhyBbQhlJkYdGhQUQNhAm0368bL0vfyq3t08dPv348w/729v39+fGcp9xKCzH3Dg7+/nYdy8nMJVBrygwRMUfSVv76P/6Z2Z4/PqYl3/bxH3/7G8WJUECHa++1CDqN1jhQINdjyt+VQB+fHqd5ut3urfWUxdQdgRlxnvda963MElFslB0c06FMDUGYzvOJEEbv85RJuK6teTv2oMeeBRzUBxM5uTiHGGzYsOEIiCQcABHVmg+kTgQcBCRIXDBfYHrs+aJBtBWRDPu1j6vWRkBwyJPA1ZyZKYoCIMK85IefPrXR6ugxxZc/vjgjS9jXYqZAgmxqVq5rSvF0WWptbjS6xSlIYABoY7gpEoNrrVWHTvkwxdIY2oceLW5CjpHKVmvtMckYo9bW2yCEHGz5sNAlXSvcrkWZWKQb2N6FQME4gnHoDce9tL0xkQKTKplNMUzkNKr3Er22vTOIDv3y+99PS3o8nfO0qPV13RNRQP788cMSed9u9/tVewfAKSR1HL33tfRW5vkUY0wxqA8KcsRybfjycM7zee/uEvJyypTNjFJShGEeYuSQqlotHesYfTCSD0VWMhMAiUdaGhTNzLSpmYGBmzJzmtlN9Vgc9kGExDRGB8RDVzG098buRoQhBGc2dzdzRwQPUY6DKZKAofnxwmZGGAgARAghkHfCQSFIDGvrYxCHBaZnn85xPnNcmqKknJPo+83dhJAJmGieU4ipa6+ttVIHDiTsbYQYQkzmVusO5lGCmuecAB0cW+tWm4MjQeBARGzetVuzEIIwHdbQ44QdUzo9PTYjqWOsbz5qoMWdIk9DHZCOkIsBHpFqJnSDFMJyWkgCqi+nQIBWO+qIGAP13rqtPdpYBCzCOQTroMPNtO8lJp7nBNZOcyQAYt76aLXYvqEkd2xDWQKCiwi7xZwd/b6tOTITlVJAUQDa8BCiB1fvihYuT4SuY+z3zcwsBGYCAAmSI6UpUiBheny8gA0dpevMMvRYVXEA99FbYEIiNVPrYIbgbqqmzU04MjGQieDhr9XRY8hB0mit2Tj6FhLI3ImImEwYzQFxWO/adChrlyDImFIAtFGVAprbUW0EOCr32EcXDimFmIKag5kjikhekruBa2AYZT1fnqb80M5T3Ta0EbzCVjuCADl7G9WMt97X1mGrU4gt9GYOzVBhmuZI+F76W+mMeIrSB3x/vYU0fplnQh/rRoAUOE25q6MaSMin09l6Xd/qfefACZqaPUy+vvxOMT/liQhM/e1tCzY+fzj95ddPvuXbV2vX9ffb/W29/uf/8/9R+2AOIfrby/eYw9orp+R9X+LDFOnxMo+VnNOUJu7Qb4XcvY797V5o5w+Py+W0LDOjB2Ewm3K+vn0XEiT0MW5r4SBznsDhp+cPzFxrszFKremy9Fa0O7hrtyDiqta6u4aUcUopMgvHOd6uBYQ4pyUmSLytuyl8yjnlrGV/e/k2Sgfwl5fX5Xx6evgASO/Xr9vtfn+/1r6PYWpQh0aJJLzv+/fb+2meYkivb6/bvqPAMufLeSlEt7cbALAI+EE/KRNlAF+WzMwUwzKl+/22XM6OjEQfPj2UUmupT5cLML6/vl1vq7pOp4mERxt5ml5evveh8zBiqntxdEPTo/hc20RMLKZgTssyTfNi5n20mOLhg44pxCk1VTVnFBguRo/nMyKVoRP4w5xSCGDNQUsr27pv97VBdNYQ4oTOvUdEZjIlJ3FldUTkYS6sgE4JQKEPQyJ38ICOoIiOSMzu6IcMKRCom1MxFURY8jBUd0ZGSq4dJao7giBkR3NUQD2sOihJxyBUEDdgiARI6gDq5KjgaoOIFFCJGEXVTJ0kOKFrBxckdkcOQR06OOpYOCDS2OsvP334BLdIFIW+vb4uU9TzJDE+fvxkmF++vL3ft/f3WyCWELG0hxg+LeGnFC4JA+R//W//LU3y/OFspiTkZLf393k+bff77e0qAgLE1rV6TQxCDBiRUphOnBeUREF9IBHFyHpIKdHCtHDMeYpEiJECiSAFkVabmSP+CGYRMTg5QsxRSJDEf2gLoNSiOsAAhQ6xABGnKeaY1VDNM4HzUBvs5MgKAWSi05Olx8YzhcBxId3NCBAh4Sgro3FwH4oEyzL1ol2dWZCotS453GuJc8rL0vdt2wtyVKu9lVbb6B0cULjURod+Cw9+DMdMXdXMFM3IgYjkh5v9eKp0KJoTY0jp2H611gG9dzM3CVjK1sr94jvZ5OrgI8QpTDlygDoiIrqNMYAZQNrAAT8oMsK4rVu0iCns+x20oUNClESjwTCUEEbX+7ZxxtMpi0Gt9TKfJhZ9uLy8JCY2x/t9/f76muclpKR9aK/NDBHHGCT4cDmXvSJJinOM8+6D5pkvTwGzqg3E0QcwmSBIYHDYa4rhp+czjBash2HregUfRDZ0qA5V74fD0h0BxlBXC4l/RN3dKDARabc+BiKIBAdrtaEjEx13fydiAAUcbiyEzE4HDpdBBBzUrI6u7hEjy0ENdjQmGhQjhAlQKQuenkd+oHSmsDSFPjRYYwcRmIi0Fy37QwxMFJy2UlrXAyR45JQJf0jwDr9vitndEfFQho0xAFzNdSgShhCQkJBCDMwCZsKccjRCp+NEhFA79wbDyDtgjWk+zaErl6p4+KIAh9mx2QPkECJmcAQIiIi6t4TO7AGHBdy7wr4yVx/7aZLHU2SDsu2l7rW1uvccZFtXHe3D47NCGLdm1sFHQEshtNZrKeijjfp0mafk+76JN2/AITIiKDiTpKTDlTksUUfHSERIZpgmd9uu297HMmWMwYQopTilaZIsjjb2+62GhEDIYZ7n1rTuBYgMj/OKAyAyoqFwBOxHlitSkEDuCo7gTkCHADiFVEchIWERITVHJjNPMQKgHYGxA6KoZmyBxdoAcGGhY46k7gZEwERmLiL/OA85MkoIQBRCGt1rb0ZWSiXGQI8ooGVkcibopaTzknJ4vVVnDCnea1enbR+619RGlHCe5ru7oqnh6F50DzGP1ratzaz7ViHGkKZI8Pjxp/f7teF4fnrYqrl72cs4L5iEVWpZrViSOD1d9tSdaO/D1hW6h15m7A+X6afH5bQEw4B9vm/3ct+mmExHa2Xf9wDw8PxU2r5ft4cp/uf/25/Pz0+vr9f79+9TiE+P5/X9llK4zOf7/e3zxw+RZAxIMT9fHtlgjHqa5+enh1LWste8xAPTFKOUvTw8PZ3mhYldLQZ5e3kPgjpSud0l8OV8qm1cr+tyXkKI99u7IErKz4+PKSYyD0gDqaz746cPp8fTP/+P/1n38v3b66cPz6JoVRkICPdeb7cNPLCEXhsgbHu9b+vT86PksO2l9x6JrterCOfztF7vvY88JXe1MTgFQiSklIIDmLqj7vu271ue8+g9Sjhfzv/0l9/W23293e7v96dPH8FhW4uDc+Bax/22EaFwVNV1XVU1TXleptaH6rCjr0uIcExYuDerbSBZH0bE6rCVqmMgcMpzr52F45Q5xlaVmNVh34rEiVlG8pxsOZ/mOWkfqv1+vwFR2TupsnhkMxgMdJrC6IPculFRa0oxJEVFMPcB7mb0ozUNgEeTlcAB3YiMDzOVGfhxrnUCB/tRuEV3VhNAAAjA6gjuiBzADZjcAIhQuEHwGBjUQQ0cmRAYzUcfCEjMx3zp4JKpOykggdkPh5GDOSIQq6kjsDiBa7mHMQSHIH36kD5dMpT1+ekJvb1+e2Hm0+W5u9737eX1Cky9K0EPLI+X0+OZZ4bTJDTg/PTgMO6lMhjnOU95r2v3TjGgyF52cTgaULgskzuWAufHp7TMLqEjx9OHYjc1c0EdhkRAED18+PSIPupeXT0HcdO27YQepxApqMUjP2fQmeGHHDvSULOuMYp7VGVAHzp67xKDsKQ85Tw7YuvDQZlJnVQZZLZ0GfFB46WHuVBCFgaN4GG6SJSQsqc1+GAfbd8jAyKGTNDdwMcYte/T83PUZGNMy9z2tZQSON5v97Jv7na0RWKOQ40Q0xRjjEO1q4UYp3k289ErsaSUXa2X1kbvXedlcqA+hjvkaRaWEEIfo/VqZIGjIN3uxfq2X7+K63BMMbHkGARRjO1AqgBJUwTiKaYQE6OJmw9npLbV27qP9fbwkM/nh31flzmEx7y1MZp9f/n61tt4On98/A1UtSsLzqeZ6TTP84enj9f7/a/7X+eUQ6Qph7rXdl+neebAjjZN05JzQBbmpnaMsoziZlxCVsGtVAefYnQ2ZhSgOdAp0kOEPoaPpqX1sjE5C5mDGEiSGHi0ccw/IoO5ah8ANoaCW5gTGg5XYjTz3gchqhnCj5bzYb48itWBCBgN3AAMQJExTETMjtKHAMUYHW0MBVOPMnoPIUE+BZQgCacH5WyYVGFoZzSom/s+kV5yon1fW+/ElAiRhqq6caR6r7UogJsZIpl1Qg8SWHiM0VptvY2uIiwiDjbQj8TPURAT4SCs/bhlCSJxiqZjvb4JJ/GWdKAq1EbaKGLyGQB6bQzpxw9/wPoCMFOKWPtAJAMPEwYkOvDHxAulDmtWY2vgfd/bFKPDOBLhqt36cLWn56enp0/XtV63HgR9VC1bni8jQGub1oK9Nt/GddRWhCNJAMmc0xwWR2yuw8dAXB4mHanU6j4Y0ZlNwWNiSHI6MWPvex2KTGlKET3ldL7MgLpuTR3F3Yd1MD9EfIjCHFjcjYgJsXVUUwBHhMABnN0HqEtKEgTBcxbxrAoI6H5ofMEBJEZT09YZKUpUGI4uhExow4mICa2rmR4nVHQ0M0BgIkRyNPVBFI7dp4TIFECo9C42Fg5t3VR1v++PDwsBoMvl6dFS2G2thimzYh+7X+veb+XMfHp84hSvb7e1jFItz6cHzLuh5BTqxtaXadLRbvf105RYuI9hYDnEfawG8O33b2ijtxYDLJePQ3X0dnr8MJ1s3bb9/ZaCxymR90vK0XShTrq+vn6t97ubzknCaXp9+SPkdF4u3n1vHZweL08iYZ6TjcqgDE7oo9ZS6sOfPyNpLdsyL2bn23UX8khEYAAOhL137ePTp8/7Vt7f3nTox0+f59gQmYjeXt9v12sQqmX/5edPNjTneVnmodqalV2nEy8PFwrJBUMMHx+e3q5vX7/9cTqdlscPv//+e9u2+XQ6zaf1ff36+1dv42k5pTiFxG5Q3nppDbb76fSQQoopjKiEmGKalqyqYON23ff9Zmq9tX3bYozPzw/btu7b7m5tL5fLPM/zulV1HWY55Tb60GFDmXCoEuBPnz//eynM2PrYt/16u5OwA4WUHh5pL7uB9jF0DAMXoYfHU+u9tT5azzmTUCm27c0PTTUgEadM07wg4b7vtdTTaVlOsaVh5n1AbXsI4XQ6l9bXrTrgMi9xmmvvAGhN0QEJ1vf34aCKU8x5Dp1DdTYm9bG3KhzCMq9O12pldKXjtAGGBseRB/mICDh2A0cHNABHdCByAzv0eqDkaA7gQHbk9twdkIDRicANYAwlMnAHR4fDhgP+g0nrw921gwMBioQfFwsk92NooIDgh7rzsCubE6IDlFY5IJL3fUs4JlW/vz/N6Unpl2X+fI4xeXzM+/X++9/+rYKNoSMtA8bWWw9sakFwDmFZpmVhLffX+y2YPnx8CpFG17K2U8hJEE1r3ebTZXn8eb3e5fmXj8N0XwtQDCHtquHyABI7EqSsgMy57sXUgSEkMTNOZ3l4eJhj2/b1fkftbd8rQI4hLosIz9rrXu7vtxBDyrmU+vr9u5oelBsizjkb+uiDjFE5phRSFIkcExI6cmtFTRV4UKJ44tNHz5eeTxqm5sd4AA0RIqEnybNMJ9bm2/28TOyjvt8OUaIq3vf7FKCUwoHR4XR52G83baPu/fiSIDlPLHJU3ihyzBkQtQ9k6L0vpxMAlF3MTYjBFBytGqiFFELiWmvK0zxPIlIKURgUqXU9n+ec83Lp72/vfbt2N0xTjhB5YdDSHQDUHJGUqBoyyHACx2FwyoGS5Y8fbl9e2laFcM7Twxzr9XV7bU8fPpKNQO6q+7qXOd7u6wRARHWvBMGZmOV0PiHzz58///TTp66tjxGRtesUJE0JhEOOgoSBoyzv94KIyGJEW+2rwUBejRiZHJiIYbApabHrvXfZ32/1vh0nk5TTNMV+QKeZEXEzKFthIpnZVE0BcDiYGvahBBhCFJFai7bhQOCoOsyUDvIzOBFLCHzMfvSoI5KkTNMCkkLIi4gP4CC1tnXd3NroHYLTPFM6L2kGycW5DbAx2BWhoXZm1DaMnWRiBAnBEQyoDy21mnkQQUA1O4IjY3QdNoYRDSRqvbbeTOGwuAAAM2dmVRtHIcqAKTELuqcYakdCSnEaral24UJA5yhARsFr32xlFuej6m81xgSmTkRIwh5chJSxu4EjCACpB2YiB9AkTufU36/Mtt/v1fsm5N1HHRyYEWqz3q1VdSAJIaSIaIgDrSYczdq+vlovor20Xut9u9/n6fz09Kx0MneeJwNqtRmYuW6lpilpsVZaDNJqNbOY0jzlnHJgKre2lVp7cpiPKVaaZpYQU1nXUmsxhkbgCE6EzIBsDgZm7hICIGs3IGM+epRMTEjMzCEGH0c6J9ViZS8GRhLMkCK5mQ0FMCaSJJ3Q3QMHRICAR+hV+3AwMuJESGQ60OEHZYsYiQ7TLqEgiOSEMax1XJKEMJf7tm3FxrBJ5tM0L3malhHF9N6bvr3dQdL2x7sEiQjLZR5xKdrW0lE4zWGWuG89dp2mEKmHVqFtp6eZQbv2v/9+/ePLl+XhJDnXUvNpmUIKwr16KfrLL88Sw1//5X++vt5zTttt3+7b80+fnbnv++u3N0f78OefApkI+CxMKc15GL/Va7ndGSjE2HuPgR+enl9evgK+TacZxzhPmRxGLcuSz8u07mvbdwFAsxQ5RWl1u5yfPYBWuF2v8zyZ+uv31z7GaVlSCFOIX/74JpFHb2XbO5MwsPB8mqeUvr+8Xd/veZ4+/Pw8zFvXmCIStNKR7O3ry9u37x8eHoOk0zSDWa11nueh2lu9p3TKk9pgFIzEU5KKMYYxuoMBgmSZaW61qXZmcMP723VO8dbWthcijDHEECzktd36vpNjr221Q+IHNjSmIIl766ZOBG8v3/+N8eeff26tlVbGu7OwM46hahASs+kYQ0ERgIjG6Nu25TmnFHSMOobbEJ4A3NzAKOUYYzKD2npKUVKsXdVaHx5inNPUWlvve+8jT/NyOoU2zMmRdBgKouMYw9WYiUlUtdYGyCnFKDhFVuCt1lKdiEJiA0/gAayAGZCiG8LRlDQ4BhdsoEAIdnQngREPr7CBD+sIKMAAYHJw9gABDACPbK4jIQDAwekyV2J0xyN7aXBMrI+iLhIeXk3Do1DtR18TwOHoeZLD/8LVAJEe+mpwr3sot4dEH9kvj/Lb4/zzKf1vn87ZtKzrul2ttfOcEbEivK63e2txifduEFimaev9719flvQYxqjbdhJ6WC7TnMreeltRedRRt41ScDOieDov8vnXPzVob9+v7dqn82Mk9XSqTtWAMStLQ200j+HESESmSgiBpihhuswY4/b6hmL5gr23t9s+n3PO6Twvp6cHZskhm/tyPvXWbre7ejdidD+yWiyR1REw5ImQhzkomjGHuY9W1VTmmJ/59GxxGZQHByNwRgAaKgXYPJinLJP3+xzTeRoCrYawXW+1tDEaDd62vf/+QoGImIDMrPeB4CEIeJbALDT62GtttU5T5hBJyMHnOB1sEiaBjH300YepU+AsSwjKzCwxpBBTnpd5midZ1+v7lYhP5/N8Ognxvr2N1ksp0TAThJATuKMRQhfq4ICo7hgJibQo+gCwAcruMXIJEpY4YQL1t+/f27aW0sfa45JDjIJOOcQp3e47Es6CRFRLFSERRlM2+/B4caQ+6r5t8kAcxA166ygCSG3f0HFZZptyZ4oUNARzppCJo1CytporuQtY1IZWoe517dYq9nG73TgIwszHW8TVuyMSmlpvHAO5IBCRITGglNJqq4SQ0lkoQPCmjkSE6A46BiEOVQAnoQgeIbodb1SlECQlmWYLs5wfJKRahxqANARxN2+VGD0ljydPiwNa7Tp2gREdmYbVzUFVx+bj5qfzFJeHc2Ycre771vqwPg6xFIcYY0g5CoUQgroe2evjE0WEWGSMsdVGwjlnYjFXGwiIyOQOCBxDAqABYH24Qd371m2apsuHR0MFcGYCq94J1NiAKZMOBOjNmChyjpLY3EZFB0cYrYGbzEkGt17QTXBs2/u+vcG+PjzMMWcLykJutl7LGNr7eH29S3yXnOYps2DvxRDCeVqkXdsN2tra5tABmu+33vZ4yaJihcY+OQkNU9BeW9lrnqfROzkQUCQxBiL8x3KcQorBHBhrbyQoIlOeBw7BKCA39wOSPeAwgCAjBQFVVQcHFKHAgAhDx/E5GoQBEQUIkIOkFBVgyGBhBjEEQAgiiKSHMxcgCAsjOEhgBNShBgeQDY7CIGs4+AhERCLIbObowMAiMeTkTr3ZSJhyClPuhq11YsySbu/3IPIwLWNodx+lv79tf/3rH/PDYzM+Xc6//vxMcb5t27q+966bFk+Auvt1TYjRaYYxi348z+clZAQ2u+9bH50Ck7CaLinGHAX0Micwm0G2+x6d2q2wwn7bxBnU1vs9ouu+UQ5aKgv9/MvnpgMRhaNQcIN//+u/v768n87n3tvPP//kPu736/12e3p6vN/uKSWRgEKnyxQC5cGnObjpeUpJDABOS2IwETE2NxmtfL3dt3W9PDw/Pn4golr2PuowsjGWZUnLNKUgKbOk3sda1jSF6TTHnPtW7uttTjGF4L1tfbDDHKd923nmh4dTSGEtFd2YRQVAhKdYrm3sW5pymMNw22tNEWqpDjAvM6DXXnUf5/OZiHLMB6LifJrnaYoxosNpmdG11TZP09c/vvXW8jJLDCHGvZVhigQpBQISwPX9/hX+KKWWvc6zzKeTOtyv68v7S4wJ1GIKEvK67a0Vd6ibBmaKgOYEDqpae90rqKY5n0+nEJOpu621duKgw818DHMgGzCaswQOkYIcmjxmbsPKvhvBGHaU+dsw0SASE2HrOnoLo6bA1lu5r2woIcOI9+26HmFSIPjBjQA/jh8IcBxn/NgPH/cPOvZi6qB0sIMR0RG8mzqagSMQICAgA5I72Y9T0SFVdEQ3BEJDN3A6NMaA5Ih2BDUP87Ha8Y/isaEGO/TFdrRYFMyBcYoiWqnVJ4b/8uef/49fHuX++svlkrxeImb0ta513dn1dM4pzx7z+8s7SstzitUsLxTnbuX1dv3rv//x288L5XAgDMYeGELOc1dfbyXFmKds6n3bHVQ+/fRJGfPp+ve/vu4Y4sfnnpe12g6OmDzE3U0DjADCbEM5oNsYxjhkIbdGbfByeUS0+/16e39b397nFP/pn/70+HBue0OAx8vDp0+f3t5e/+Vf/rXfbk0HOoYoSOIOMQVTR4pI0ttQB8cgMWFEHwbp5OePLT8UDhVYGYD9kAMNJIMAwIYMHIL7FJ1yiRhp2GhNhz1ckjJWtbfv3ynIlHO579+/fEPTnDMRx5RCEBE2NVFtva2lTHt5en7K08TEZoDELFJqOci0rakwTTnyIoc2i5nMfJgBoaNvdd+2kvPcqzv115fv17f3GKPeC3Y9yyW03n2LkhQYCMcwA6LACEqIgRkcrPcxxtFxQ8TANOq+Xt+EIICW+xv4CadsrQchdG+9FqaAnAIRhJgwheBdR28gjEiRo7jFnFJOvY29FmdyhXLb7KhpcmiOEhNwcIsgGTDFHJyd+y7Qo1tw8961VSEj1qb7/fYGTOt63W4TB0khTMsUUwZMpmrDTI0JHMHMDuXF4bMwMDdjJGGB4xpxCF9dzc3BtCEhExIxEwMOHN2wmkQPGYmhm+/qQxEwQXIRJDi5qWMwyWZkvWst1O4RdRIMaHWs+/0mbAi00ZjThyTJwRRaG2rDwA4KKCNzjFFERlcOnGJCBElyhMMAD1sc7HWnQQdjSdXUFBBG7SBACIgUQkTVrkqMwi6Ogd1GHaq9OMfMiH0MB0QmGOrWAjMONUB2ZTA3w22TIEJkru49Orpbv19H2XPA8v52/f6H1+L2QAASiALevt+/fftWWim1EIShkOf5/PiIpj50va+Hgq3evra63V9fBPXxcTnPYQrTaYopSTfdyx5Sdh2t17KXYTBUlzzlSGAG4CEGO8LUvYp4jHzJF2bvQ8Vxmg/+k7daGGjU1qAEYmNXJz24PI5IRACmwMT/EMLzjxk9CQlwQG2WpvThw4fe7NXewDDEUNtw8kNfc1Q4VZUYgH5Y4Q9EOzoQMzi4uoOpKtEPpYYEOcIHXVFiiPNCIZgTEKmjpCx59taHw2meL/P0+vXl/e2uKGH4CJxiLPtXnkK6LILBDd3Q2Wvve63zfCq1cPAl0Olp8jFA68LOPn55fJDR17fvxozoec7L5cQS8+1ODNb6f/zt6/lyfrw81H1//fYNzVLMqEaOn54eS6tj32D4Tx+eT1nafpc5edPTPBuwI37523/8/m9/g4N+hPr5548h0uvLdzBblsWsb/c7mp0/pEACbrfrG6suKdUyQFUISmnbCqO2jx+fAsdGfFvXYXY+n3qvIfDo43a9BpHeem9tuSxpiqfzAq5dy/3tajrmy5kDtVoQFHwgREIQoW2t54fLdJ7v623bVnMXkRzz2/u3eZkf54xIW2txmXpr67amPOnwshUmYRGHQ/2WYhoNUc1saIhxfV2FZc4zAIYQltM8Wr8PyyFG5vOyVBFz96FpCdu+jtbSlHKOtrfTMo2h79/fgOB0OsVpKrXct72Pvu3F79uSc0gh5ehuOoyY5iUT0xhKRMtpdoBuAxCQcJnnp4dnQHZEdXh7fe99HHk3QHJAMxgGIU3CHEOote+l1t7A0RlMQUJIOW5baaWZQ0w5MKmBO5K7uPVWeVQ0bsPUqFPsCs4HiM7BwQnA/nGqAYJj+IP0D37WkfYBQwRCIUR3cnM3NzU0ZziWzPDjFezotxqDoTuA/a/RDh4SG8RD83fo/H6Q4o8XAQD8geECQPLjfQ/I4ABiDCC9515i2f6f/+nn//effvrPf7qMV/B19bKxy+v9+vbycprPUw7dqrWRs8QY52X++vuVScq+aumX84nmdL++/jG2h4nPzw+31321Mp9OErk3NZQ0nYhYUiTGly/f5L5t508fPpzP61he7r3IpDIVxGqgkgdxSzjMzdHMODK6A/WCuJWatKdO59NDzjGAnvKcz4+315fR9zDnlCdC0dYR+bRMwrjf71NK922/3tfehw0LEhAghkwUUJIEGg7DcISJwiwhtZBbmlRSc1ImRXdQdANABwAWHe4kDqqYbm0/RU5k21ZUnVlCFGD2Pm73NQjjMN1L3/bTZa6lXG93EY4pxjyjGzJxDIhOjHtrhigkEqJ1G6PlvLTeicbRq02RETCm1FprvZe9tTG2rby8vG6lrPv+9npbpntKvO87IcZAvda99JhWbGjTyaaTptQBuzJKqHUICaEDKSNKFEesWwO3gMYEbg17jTGkJfXWy3Zl9k/niYPs941y0DkqU7EhAItMjLj3TsKSwnq99vWectB9u653RAlLppxa6efT+f792qr2kBqwy2wYh4H5j4tzIJlimAkubLCWijZfJu+l7B4z51naGL3vpTk17swHXUkVGZ3ImTBGQebW21o3jry4EBKqtV6FmIhM3UwPpA8ePkxwFnJX1XHQT3WYEfV9F8kSuDvcOlYIFOYQQppPnPh924wikgAA9Kq19NvV2i1nyjFA2/v1m96vD88XhHh/fQWz56cPAm69sdM8LWjt2ISCOwxd973VFnNOORGBHYhLRjikKqiMdHxvEACPlqfDGAoAQY7RFwZwdHfXvERGYQ6mVkrtqtI9E4ON0dWJmULMkw+koe52aECG9n5fMYWU8hyp7K283YdrK2WU5tXRdfSxrbfr9cvLl+Xz5085p9fXl/fra+9juAqPL39sIWYO8jClnOPt9ra/j/V+/fr715xYawG0vsflcnp4fsxTGjrcVes+eiOWUXYfBg4B4JJzFLjdbq32CIgpAZqp6dCYJSD1tnfAiCKSUsgWkSWu7zuRxJhiaIZITsfPZ2DmhkQO7oSHf45DYGEbjmxEQA6OcD6f//LnvxDL//Vf//uXLy+Xy0MbffShZr2s4BA4dO8OQAiBBQDVBguZAiJQDGQ4+kBGYkIgEY4xDwdydkeOE6QZYooSAayPZuTDrdy3UWyZQ+2alqkPo5jiPAXm/boH9l9++0TLuSLt2/6+v1Kop8xPnx5inpY+924G4+Evj/u6ff92C9CnxCcuQ9t+e6OUJQRbW7nfTw9PYHa73p4/PRnhvvc56/vb+3a7/vzTpzzNr2+v5ymKOJs9nJd13UfZ5/l8XtL17aUVR1Mz30oPiL9+/jzc7uUeU86R39++7+suIlPKD0+PczqN3oLI42k2G9vrWwAjxL4VU+MYl5yIZWh7ef369PDAgcIcvelyvtiw2/1uw9V8Oc+l7HvdAUcIXsqt7fvj00Ui627bts5IAL6v+/nxYT7nly/fIodpmUFIm+POQDjq2LcCTFOa0/lyva/X+83dLucl57TddXSttYQU91Jrq+flFDQFYeJQ23Zft1raw8M5zfPM3NsIIQJgq73WMlRLLdM0/fqnn7d9v97uZhBEUorvb9fnp2cErzreXteQYs7pIO+a2fV6W/fyo9vfhlmXFpzMQSWwA8SUkbDsRVWZuZQ6zFPOj9Ocpnk5LXXY6+tbayPGTEIhxjaGInQz4RBSJhYJgQLaGFWbkQsyMkXikPNQMx299TRNgEc5FGMMOcaAqGApiFPq6tUUEiPxAHQSMAQGdjqA1aiHXsH0aDkSuLv7MNPD9WRm6EhmZIfI0JDdAIDYHQ4o/qGIMDLFw0P0453qgMeJhwHMD3/ScSo6CgwHzB/ox/HHwQ/esQPQ0IEETEil0H795TH95cOn/9dvP/3lJN/+6//naY4ZYWvlXvTLt+9xWZ5//W3YuH7/Js6ltL/9/vXbWrdrHyGYe1ez1y/nBFwr0bQP19O5NtWm3THNE4aAeX59fWOBhRx7H0Pl9dsXOc0SJj49ALTmUiF15q44OChhOVydjgOO2DcIsbFvrYviA+eUuBA6aQJeYjqlnDNE4dFHEInI6GimBHi+XNJ8XvZC376+vV21D0FHxF415YWnk8wLuOzqylFltpAGkiIr0gDQH+dLBEc6AK9uSGAI3ShKrntdt9HaFbsiETI7AgNF5su8gLvX0fYN3fb7druvt/stx3x+OKUc3WBvNcaorrXVMjpeKYb09Pz84fnZDLZ13fcagoSQUop1X1U15jxNM0nrY+z73tpoQ9WdmddyX99vKUmeo0zxeru5AVIs+623OmrNBBiRnODAZIVgwwic3JjpkCEBmKtu96tEmcFOS45EgRlFWzFrbTqdUURHMxtb8ZR4CmFKqbv7QCdGVy11tHo8fq21Ohqz5FNmQhccTCBpxLMtjzuEXaYNY3c3ikAihEIBRuUgQoOT0MgA/ba24Rbn6emnD9f3+2hjyqlubXgvdW+t1W2YGQNcHs7Cx/PvaE4I83mxYW3dwX2MwcQAP+4E7o78Q0MxfIABGvkxaUV2d0GC1sd963X0DkPmuMSQY8xxoEngrojgAZxJ1StC3cq1dbdwgrbbdsvigc1dW11//9uqTZ8uJ3BlBgJP02RuZSujDx1a9zJsiMrD6QEJm47Wu/fODGCO5kFCiDGlTMKDuqq52mEed7Mf4ioEjvzD8ck8TGsfhsAxAlJvXd17qYe+3lFDjOQDuqVACdl6ge1dK/lpSfGkVtbr9/tWzK3XnoSXTPMk5Wrf376X+z3n6HZpfcQYmQXIU0zX97WPcbte45woBOv70Nq2d623+fJ0SufeWwx5Wh7TtJT+w4J3BGWO8YkE8aZs0NZN5rSkSTioY90bBeZAjO7Wb/f7h1NGZkMc4HSg9EZHcESaTnMH7+83VWcOTm6k6EpECEoOjGyKMYYgASK4K8JwG8h8eXj85dff8jzttTa1lBcedbPN4DDUM/KB4AYiiikOc2semJ3QVEmQQZC6IwCRORqSEfaOHWg+LeF08XxSkTJ8mfMcTnWMuxdEd8H37QbzHGNaphBinHLee22jpokb9uvr7w0JATDmch0zLaenkxA9zVO9rX/8x3+M9T0w5HEF7da8WVazOcdlzr0P773vGz0+xMyt6navp8tDr/Z2XWsMp4fLfD4B6hgFAd6/385Pl5jynMIW6cOHyxTD9v7a2vr9675vO5DM8wVZ3r5+b95TjkgQYhhtMDMTE9HpMt/ee621CMdILByDuOPpTLfrGkL48PE5Tvl6e7++v922dyLJpymjPFweXl9emSXP3Mde9jJdpqZde9v3VZi0j33bT+fzGPr+dm11PH14RPLe91ZprwUTO5oDd4dPv/06SX75+gLu67aue92v43/8y/9czlN4fBo5pyg5pDrG5XRWt7/9+9/NgViGATHGIO2geBO2NuZ5JkZT37Y9jrEBlLr31sB93TZi7G0goTCOPlxd5PBXbAq2H5u1KZ/m09v9VrZdolBlYO6jcww6FNmu15u7s8jpdHKA6/vtB0s2RiAmgDzPLBExOIDaeLvekTjm1HsPEk7n0zAd6moaY+xdHbV0ra1S4BQzGfWhCNhr22sDh3mehcNow5GCSJTADr2V1qoaSg4Tx6FSJJjDcHAAQvz/mxINGcjdBxgcSypwAiA+ZkGOpjoaIYmbqIJ7IO/uHdD8x5BW/RANH9srJzgAJ/SPGa4BoDv+o4OJjse2zf0g/B3wNncAR3dUR6SjAOpu0IdYn9B/mtKvl2TXlxa2dnufHz5HDtv1+n69Tctpenzcbaz7vptdTunbt9e2175tmROndArQW4uIGUwg/frzT4jGEs7PAZ22dX99v5+eH5paUZ9z3KrW+3XUKtvb27/+f//nw2/SwqVHKoMbBD1st646DocpILjQYWQnNx+IzkkRV9MwPBBEIjIU8PNlPp/iaBXB3AGIq+t2r9oVw/TwMJ+B8nwJ8vsrvIAphchxhrTAfNK0KEYFroYqqTm2g3B3CDkQHAwHkBPCsbc89vpOSAomHGp1b3aSqG5172PAlEMkgZh6awrjsiyoenu/ReZlmUxtjD56BSJ3K62kaX5/e0filOLr23sdao7TPBl5mENADsIxSVl99F72bVlOMYTAst5XCcHdEXBecltXGzVGyTH00R1hmF5OkcWqlr5b2uM8Z8HAZqQ9pFR1CDrAYCJwa9sGtSwTjSG690YWCRGBmRKGO0JtvffCkE6nGdHrtn97ef/t15/Tw4UN3r+/9O0OvbFZyrGAN+e8nEWra0cf2kvZ2lqsUIb5Q5ufrsY3ZI1TBTcAJmIi1z4MDQUoUkhIXUcnFkYAjvkUAaXXir1TChRoDN1rH12JAJi7aXl/RwJmCgTOSKAhRRimB2bb7cAoQx8SGNDBGWAc6zLzIcTaB08TETIOsurNQE2A2oAwT1NYCBTBLnO83ov1PgWK2JtuTw/h3eJ+f9MCZCpIwmyKrZe319dW2+MyVXZ0Os9CBPtazg/n9BDf3++KY5rm3rsP1zZijmjoDsSBhVA9Rkca7k7gkVCCuLipDR2uhjbwKJ8akBCSOJIDlbIbYF5mEB5Ne6s5RwUdrXT3iH1KF0WLopmbVx3Xd+r72MdWN+77ul73+xXMAnEiYNd+Lz89LUv6uffb9f2uYHHKfN9yxI8/fSThUsu8nPe93u638fcxLROi96bXlxch+/z5AzqrDolpmhfnyHkOMbiBDQOkWq13lylMacaB6/smgBLYjw/xMvbbHjQ4xjTl0+VxyhKYGKGBea9j39r73UdTG5SEp5zcodlWhw7nmE4p17aDmKqDowiFEBg5MIExURyjEtP5dHn6+HF6WJ5eXx9er6UOomRbJeZpQut9WJcoSA6ObijE6ZSOhHPvtYzmcMBWwYYjsQIBcgyCICaxczAPvREKWwcKLEm2/RqgzWcW9/khE+Ko5e31trc1LRnIEP3bH3/DGOo+ooT48cMSRUsZ6x5T3N+ufb3D9r7tb5zkHOLWxsu3b/cUH5+fkeh6vQXkU46nHEVtSfl8mSWf1tZLv223dQFYPjzdul1fv7mbllHLfr5MgRIE4NMEOt6+33S0slVTN/DzKTN5rXvr+23bnj49xZwkRKLV1Cjxut219ZdvX1OM+3o7nbL2Fj8/MTMZ6M079Ab9/nZvZQuR1DsxTTnXrd1ev/kY7hryMi9hWzf3Pi9Sd2OiOafdSZtpU2LorZ5PU8qhDW6tNrU4pYGk5q314ZbcmQhS/P7tmw1blhON9vHjc+0tJGGAet/dLMVpXbf32/vtdk15Hr2dlpmZdei0zDEEN79fb3vZzWy9byHI44eHfS3rdk9JRMK6b9u+E5KaIdEY23DNOd/e74TgjvP5pK1va82Tns6X7dvXXoYBmMHl/DDlSUcngG3b1JWQDwJc6woAeyvpdELxKcUPnz+fzufbvfzHH19fX98opNNpub5et207n05zmjqMVtUdhh/1uqFdnYmZwYmEBQkcdTgfpjpmVVXXFFNMSYj3203BkDifZs3T2q2bNtOBYkDjx56L0ICOmoYrAkrg5g2dju2Tq9GPUjxOQcZt/fnjo60bgt/KTuyI0okMFRydqGkXZgcgQ0QE+kfFzAn9KGMewyBwOMJ4eMx5DrHUD8uVIwEcl3tgdHBBGrVAbX/+/Om3D5c0ruW+/bc//vpf/st//vhPn//1v//rbh2JTg/nt/X+ty//Oj+eamt//PHHspz/9Osn/uP1tvtv/+mfpsfpvl5FYX95D4h//u0XJnp5+eZg5k4hjNJf3q4gMZ7PktPt+jbMTFX++Le/93mzy2e9LIW4MnUkdXI1s8PSCAhEgIbExODuhgaoJIjOQLvrrQ3WHsiSUO09VErztG2lNt32VRGJiTog4EKYl+nyMRtF5PT+fjNmnBaLS9VgLk3ixrEbVgf9ASJBQnRHx+Mg+mO374CK4PRDBzTcEgfwwBzRBhGbWy/dhgZhVdDWATSFAMuC5JzittevX76WUr6/vrFQKbXrMAQ1nXIaNtbtXktppTw8PRzhKRa/rzvhKU1529dt282cmEutvXUREeaUct22eZoEiZjBUYf68JRCypEZE4HrgLZRKyKWAHDQuGuOUYh6a6admEQbgUIz0G5aaxtb2c7LsizT6Gau5V5q22NOTx+eJEgdo+/lupYQ9tH2um+3L6+trn/6+VPiMMYO2C/nJcXzut2rw17s9T4KzH06aTzXcLoO3B2RpkbD3QCAfxC6aTgOYEQCFKGYJY/ezAkIp5SxKzDmgE5oCDE4uLv5GH3f11orEuaYmBAUPSiQiQigq5n3I0Sl+A+dGhEiMvwwyrmBpSXoD7WoGSkDx+CIrEPPiyyJAXAgBAZPstZVFLxs7IWNlkj5PCOM0au7EYm5jdFzlNOcyQfoePzwdJoT2JAUiNmGg3uMgZlTiKpjjFFvtQ1lpimH0TqBByF0QUAhNj0ShwBuNoapIZPCIY1HssCJmSjPGUVa7yyi7kR4Pi2ETnO6XkvZt0BWwE6XCwCBNQNA3cia6eBAoCuMPYmDY55iDMG09WpB8DTnzz99XpbLw8NTiul8OlnWIIEjDx2XS7w8PC7b2kdPIRD7OvrTh5OatVKfnz8CIBIBYi3VkSWEEELXvu1trR1FvA1jIODR9XZbiXE5T27urtt2twoMl0/PD/n0WMs2hj2cUgpi2162pq25qwTqYwShFEVtUEcW4hDd1KJpb+iKKETsyEA81Mkxp3i5nPKUnz9+GNav9/euNS+plIoAy3JiltFbL1tvDVwliqr2btNpnpa5lzGGUiDv1F1BWIejM5JQzmE+OQiCaJyHLNVjB7CO0fHEk7ITBbVOQZ6fHi7nS923fau9V1au783diKBc78v58jTNkWUCusTobuX7G+Y4yj7WNZIN1dFaZLLRiJwQc85ttJfv1xQjA7TSDK4gMi8zpOk+vJq+3+/v1+tlmuPHBx0Gw2IUhPDyx9deysOHp6Hty8vL2/eXnON9Kw+PjwDeB7xu7/d1r72padl3cOrNECDHab/v7+/ffZgIm9vry2tty8Pl9Pffv+ZlAhcXMaaXt7e3by/g+tPPn3Oebtfbtu3kONr49OGju2/3extdrd/f63ADp8uHR0ZaONV1e3t5dbdpyufLOXC4nB/baHttt23vWpEjRXl/X+uwzz+nt23dWg8iTnCaT798Bk6MNryN0fr5/DC6vr29qNtPP33aS3H3UncibHUwIzMGiSknNW29o2DT/scfX5jper/7uz48XOYpAxJxKNu2r6uqSZCQQsyx1dpUT/NsHPdte32/Pn/8+Pnnn//4+g1HOT9ezGyv9TzPYIZUhKn1sV/vas7CEqMW1OEpZyS6r/tex23dX1+vap7T9O31vW2VJTTz+/WGjOogQVrprQ4mCVEAqPbhPoT9+Gs53IaCmy/L5IhjDHSCYQNKWVeKks4pzdNqUPa9KI5AMaVhNBQOkfAhD3Y7Qjmmrkiu1sEtojCitkrmc0xsGiJ9TNTuvdUC5j3FFQDUqzZAd8pCQX0QIBoyErg5g/848wCa/VhwIfwj8Pzjw/yYfOORmvwxKYIfoXHzIOFoy/76y+dfPj+kPX//6+qSVOLf3t7fW8vz6b41KOW67UD0+PxU6vbH37+EkH755dfL9HDb+8fPz3kOr1brdX38cA5JfFTgsF9v276FlNXQYJRiMvHz83Mf6hw4Z+9Natk9P1djkqkDdbAObAgAMH5sJQAOCK8fqz8ExOMXDEDdW0esgJ2Q5xAijv1ePSLNr6Nvg162uqkujzOB0oCl0mOUSDbCEp4++whr7+BRZII0dco7hAIyDjsUAYGBg6GbGSAaAB+aUQBDMHRFPc6idMApkZAZAYUisXQr3hEQfECrA9FOS04xUKThgBRu8x0JVb332mpDwfV2f/3+Mnq9PD+GyHWrpa6xcG9x37c5595HTikwp5gBvbba+6i1hhBSisevahDVcaxWzUABkJnBwFVdFc3FkUex7TpAEDEklTiNdeuuQMN8SJCJcb/dWx91feOhTG5jSGQW2u7NRwdvt/faX3XbbsvpHHIihHXf79fr+v7OAqPUyMFkcg6EWyvt/r7CRZxODfAGtM9PhZYi855OFeNGOIgcyIgAcaiRAwM5S9cjoYccxK0xCQTXH7geTiJHhFUdug5CA0JkdIdWmruCkbm6og03hJyP24mhKRMQ/OgbmAIQSRAQtB9uNyM6sIiEQl3H6BBjmKdYBmGUJXJwl8jdVN1DZirIrTAMJd3vV0aYkow2hnYkaL0aOSN9/PRMTPe3Wy0FyEAfhJEDb1u5vb8DABu72jxlkamWuu79oFMOVTRTVTcNMTKRO7XW3BQRh41DfgWMZmpmBmSGruSO+SGGlN/eb2Vbkeh0vqQU93UVxElCB7y+vvZtzzkxUW/DwMk9EcYk08RTCgyL+dRbQyRyd3URGa0P1cv5vJzmFKVthYgk8hhD3Y49XYjxdDlt+zZG760KsQLbMDc161EyANXet31t39+X0/nh8kgg2i0IUyQiGr2XVtUGqQQSIVK10RqADvV9799ettZCzsxmhBofE3ggWcIcR6vcbLTKoEIkSAHZiZxIdbgRYQJ0osDCR0XMYJAbnaaHT8/PT5dPv3xysLpVQT4vp1FGWRuJpxgtY4swdmKCGFPvras9/fQhxul2W6/Xmw6KIQl5BBjN3AmIZTrn6TIcHcnDSSWZhUNoS8B7F2gjaVjm5/PjHFJoXfdtW2/3h8v54eHy8v0dwALAx4dLyLOEfNx1cPQlpfV+e317CYyTcFrmOsa31+/Xt9swW/Ly+OlDnjM1ynPWpq211sY55NZb+/pmuWxt3K7r2/vblMOXL7+fIj2cLlq3FLk1bG2/X9/LvklIxCghIQuyHBxPNd9KUfXpNMU5j27FyrYVdqIzMKF3y3N6fHwyt33bT6fLcpm/f3u53/coU8hJtd2+39ZSW2uDv4VbECZ0uJyXdStu35hwmlLOSZup3J4AAQAASURBVJj/+PsXIHZHHQjEoIDAbjBan6Zpvd5raefHxyD5r/8/pv5syZIkSdPEeBMRXc45tvgSERlZVVlV3TRdMxgivDmIQIQ7AE+ACwyGhhrTW1blEpu7m9nZVFVEeMGFWvbA78IpKCLM4yyszP//fX/5hUTmp4fzZdnud8kFCIPgfLvflzuY12HKOY3zwExESDmPj/n773/3xz/+aShJcklT8S9ftvW+bcs0DCnnvlaKGI7p6fHhty9ftOs8T8t9bd0kE0TM85xzqr31bkMpMkjy5E3VtS+aUpaU1q3d7uuQUxlK2/pyX/I4iMghH/M4L9u99fvtfm+tXs7nJDLOMyFX2wyCU8ll2GM67nE9L2nIiNhNJWXOGbyVwxQOQLxWtVBKNDKCoNddu7TbgdAs3BGRQkHVdgwIIBOSMKrati0AQBjCFAZta9Va9J5xSJI3J7ZgJAMPACf0fV8DGA4aioEULgQpIJl5bwniQxmj1cw2t/shtk6tl2HNQsDR0cIdws0AiEnQAl0IzQkg7P9vsqF3B3gAvHfv470Tv1Mvdh3YnooGR+Tde97NAEnJf/727THbKfqXZf273/3ubQtsN4VElCtJ3Vqt/enxgcFPZfyf/sP/8NOf/poi5jkfc4r1+u2vX9f7+TQfp8P8tl2+Xi0hvX75EkGm6EBuzpRKKm1t58v9ert8eD7Ozx9EpnH67juejhVZA5qHou3xdX/XFAQ6EJK9H/g4PIAIgDAJE5k1AzHJmnKMDMya+er4qrAi18PD62W5NHwYTx79rrKsURiQci3YHsDVm4GUA5XBJVnwfqXHCAai2A1PDju8gDCc9hx5oBv4vo4L9GbewpqGBRJlER/myTSQAjwALMJ6r1Ug5+zmHlBK+fD0vP/DL+eLmWLgtqxv314g/PRwTJKwwDwNjLStS065ERFxr61D5JwAYdu2Vrtb5DklTu6OEr3ky+sFIPYRjlhyKbXW1lUQq5oD7euNQCaWFC5o17dLrdtwKHko2jcE1PU2CA/CrdUInKZymKeI6NrCLWW2kHqrt/t9WVYiLkMBiPV+e/n1C1KcDod//Mc/wDAuVT0N3vF10dd+Gz58vvHwBumOrOV0D1lTVhBlfIch0g6u6o6ELEBFI4KJBUCtLkoQQLgHYylAmE0DgZnRPQzCuhFjLgWZe2sRQbQjSAMsQh3S+7EYAQgJBRGkgxILcnp/jhAiRjCNQBFGYjUPBB5yENa2YRm9rZCkrRbhklKYpr6itimTBrdbt/BMOSfuTCXx7bLUrX748Dwd5i+/frnfbinLl9/0fr2J0PE074ydcRja2tXd3ZEgp+wQ3bqbswMVVkPt72fxHVwYEIjv5S8mfP95CRmIZU97QxkysCDBy0u4e0lM4da7tlpKyivf3tZeO8LPD6dDEFrb2X0eEb1WIRBi5EQQ27KutboqEhITEec8tNbr2hKl4+EIEHXb3M0d3WvOmYiS8P5gOAzlpRsVmsdZq/Z6F0kR5GGt1/bSdNP5cCzjxES1VsxABNt2Bw8pQzB/e31VNw1nlpKTgZyvzakeeNKtXZfam9FaH6eR0qBGZQKk7b5cwpVRIswsOpkGRxAgEyGVrAGA0ANAgjEqDtfNj86Sxzymy/VMAYdhiIeHO621GlEM81FbWSIk0VAGgLn2Pg1jykN4aGtrDSTELIGk3ZelO5GUOaR4kAcpSEB2TIHAhaTwWpswFSylTNM4t+2s1pfbVjflx0Iuh/HYws/flsfTQyrD69u1jGMpqbcVmY5D/nK5jI/z0+MhMJa3yzCO4ziJJJJUt/b29svx8XB4fNDa1/uac8nDcHl5u51vOI5UBmF8eDxwmDAwALr1uiYph+NU6/Tl11+GaZ6Oh1wGAGpdgbaXlzMgIkkEDuM8PU6AeDuvLMlt1brlJBg+T+M4jTnL9XKLgFr728vVAbx53dbWbu7tfDm/vL0Bobyep3n44YfPpvrrb9/afaPA0+Hw+HQkktv9cn49f/7++zJNr2+XJEmQBhFVf3h4BMRm/fJ26U5Acl/q4WkwdBaYsCxbLQObKmJw5nbXZVnm+bndVxb87vsPy33pvf325df5MD4+Py73BbwnIWNKkh5Oh5zT67cG7hB2v1/vyy0PYxkzCS138vBhHE6Pp8Pp+PW3L9fztc/99PBo7uu2SaLwuFyu4zypqTXNKc2HeVnWX3/90rQdnk5lmC5vb5wJwJfaltuybU0OTExZuJkuaxXOecjWFVAk8zAwSephKRdHTqkcy3C73gGQhzTadF/uzOhm3V0xCAGdOCfi7B1IhJi0KSYHN/NYm5GY0HuHigA5CyK6qdVNG7JBSeBhpi0FOAIgOlIEBVAQGuxfgYEeApACxLWAZ8Ec8UBG4r5ueF+LrgPGhkI81pANfANCwB1ZSMiAzsgIQIDirLQfvojgv/96r6Dh+38v7vbGCP9bEX8PR+9UFMQAKmXT9T/+/MuynmfocyQ7b/J4+vT0tMRLN5XHp2gNNxXhTDSW8un5eWQuHOevXz2cBevlra/Ldav388vw/Ph4mr/+9ctpmpH5ujXKQ2Jab2ttHVDuyxphpAdmEJ4fpo/f3wPvq90RerzTIOM9oxThvqeoAhAJ95BTRACCq1lAC7qHgkZ03ZQS54FFTW9UGsnK2A/ScurAZRop8GpuWxuKOMtWyAvU5oiCSmDuwpwyAKK/k+WQnBEJUQncwPcuTqBjvA+3O00Z3cGr2q31JJrMumkaU++tVY3aVBUi1LTf+9q2PIw55ceHx9pqhPetau+X65u5Pz4+zuNkmyXiMhEC6Na9q5OUPIjQtq2t6TTuj+kdIVJi7Va3jSUlyVm0jDNGEEPbKhJwShxmobxPCb23tVNoGSdyw/Vsuun9st0XbAOfDgFetyZMJY0yD42g1w3AtNVEOM9DW/O6beNQhkN5O9/eXs+9tdPjEdFD+9arqgKlLXAJNCzpkKHA7b5sTgzzQuNN5hujydgQOxIEu1Ps8z4hEAO5BRDjzo8HcWIE3gDIPYTYPdzDDcMJiS32jRCXzJAh4m99AMF3a7tHYhRhYvAA8z2SgczEvAdU3987vifPUHYbOCEwJwBGtg6wua/3Za0taiPGlECbRpinVNfN7zehIEoDkw6lbgtDMNKQ0toVAdH9er5eXi+323UYyuF4vL1dfv7pp3Ecf/jh8/FwIIRWq7qqxfl6SxuPpQBEbwrmJAi0vyRR1dw9zAVBhgIQvQO4466LCCAKAiQMxL17Ig7MaW6tX69XBCcUQayqQnKYxjbN9+V+v12SwDiUCAsFllS1326X2wXn+XA6noaUXLRvDVn2j5yhZCBG3FpvKeckg7n2frcwFvbut9stp8zMZSrug5k+Pz8BhjC3pvf7mvNwfDw9HOeUszZnRDfdlsUBgiFlAghi3XTzzW7L0tZmoGkYjk/PaZh7i9dbfb2/jC/LfEgDxba8HVJyxGhqHYfhUbKDIoSoaUdUxurRgCgJEpsRSvKAIIwAtS4YXuF8PXeN4+n0qMPb+bLe1+iQWJ6fH9NQOFO4Wl2+WnPTDx8eKad1q+omGAlgziUR5WnAnNdmvXvri5KEjAp5C6qBDhwABgQiXMTA3XEugoSt45cvZ2/X7z48p6K59N7x5evl8fFpHPK3cl62Cqoj0cM8lsTYlQBKTp+/+8AMyNK1h8XD8TSOowVU1fv6tqxLIJRxdHNjMqbX632zVls17adEnz4d37i//volPz+YbwRjeN+2xjQlhg+fnvI4cUqXy3VZtvP11npPw7DXYczde5ceEX6+XO/3RVsfc3p4Oibmw2nW3u/X2/1+fXw6zfP08vXbNI2Q6ddfXl9ebo8fjw+fv//p7fb8/PHl69fX88sf//UXhBjHcZ4n3frb0iInCD9f3pbzncv5Hz98sBZScmF267W1L9/W3//93zFkQ3ZEIqQsb+czMExDul2Wt2+/mh7X5fr09Dgei649Iz9MU1/rw+kwprza/dvXV078h3/4pzxIq9C3LSEePzwOwwAB21aHxNfbdb3fJOfDYfJAbZaHMpR8uVx7RUHW2pPwh0/PZn67XMz0djlPh4MkWrZladtxmoLgdr8Kk7a2rot7UKCptlrvr3c3TymnlNLx8Pj4YBbLsjLy8XgYp6murXl7fJ5RWM3Wdevux3FyoLbdm4VaDNOMQqQpFu9VuQxC7CLAyYAgWAMMKThzSsiB1vu6ed8EDdUTUSYepgHMzVy7YiAGslMK8Fq1RypjMUDAxNQFO1An6oBK4khgu440EkSBOBV5GgrVNfUlQbeoxWFISiSb1r5xVQnMYBSEzAyEBhqkCAaw18mQ8H1BAf4eh4b3BRDu+R8EAtxr8gi446P3FhO8f2sDIorRsCX50+K2bh/H6QW1NHr5us3lFH2B2mjzLMNUpgS4Xi/R+zQKGkLYtqx5kMfno/fp29ev5y/X353mD5+fvv3lV93acJopfLldMSewvtyv6j7Oh+Pp9HDMmV2mT7+j0xPksVV0oHeoY8T7TsuJ9p8p3ttuAYBMEBiuFraFW0QPbwHbqmf3SXACwsBVikk2p4DcPDaHBrL/CbVg6YSEngYAMnD3cPUIJwsyyJKF97NRAND7H60hAhKG4zvLcp8x902KCLt1RegQ9635doXwcG3b1mpHj9DOtG/lwlSX2wLIiZkQVX2eJhFudW29P3x4yFlYZBjGXKR33dYqzBSI4dpsXRdtZr2xsHWTRBiyLVvb2uE4CU+9K+/G8oRiHhC0a3GRICgJuxq4C+BAmBJXretl8W0h7et1bestwpB4KLmayTwdprKYaq3rfTlM42GeGeKXX78EYRlLq9qGFuZZRJgc5fnT023ZUPLrtaq0+eGDPJzO5/WlpU6C5XQFaXnanFpgICoGRPDefEcPpCA3jjDciX8Ksn/5i2RO2WoDQmZhCodwIyR09XB4t7gTebiZ7dUnRHaz7gYQ4BFh/j4gEROyMBJRMDGEIyKWlBxA3cxCEnNKOQ/uRKwlkYzD1lTBtFW+xlAAgXpriljXzXolAo2UkiTCTgDuhBzqWvtQSoSfL5fb9ebhw5BTEvX2yy8/TcNcMpspAV0u11KGsYxudr32cczDONVtwwB2RCHHdxL0DoKKCGFxMDIiZgA0j4jY1Qt797Rt7Xq5GUTrdr3d3l7fEtPpeAIwBkgimckeTiIcbtZVWYj2Lgdk4oYIHtZbqxszufWchZm0u4FBUOKUZmmtBYJqV1U19zBJiQVv9/thgmEohAhEvXoS2fGuAR7hvTbv/TBPpZS2GUHuaq11lFRKmU9z2yqALcstj46YuveuZqClWzFqavdFm7ayGqaHNKWOYOXwUvF8bsR0kDSVfEutQr5oXeapBtxqbwEkAig7FiredXDk1vu2lGYzT+n0EcrcIox4rbret0+fvjsdD+M8EIW1ahttwxtw/vD5kVNZ1u36du1ro/BExMNUDkfFWOoKnLBAADnnjnJX7wiBhuQG5hEaHojzsTTtHWk1Wy7XSQKQ5oeTELf7Vu/rh+dPJeXn5yd6vQD64bEcplFbH6bhcJi1bghhHmut9+VmZnXd1nULwCAexhFTsghHXGpb1zV3LcMwzpNCqMf9eg10pnh4mIUhwqbj2Jts633DGKfRFlfVdbu9vFwkZTW3gNPpaGrJfVurum51u9+X6+3q6sfDnEu+3a4fPz4xY07D5fw6H6fPHz+v61Lmcnx6uN6Wbvrw8WE+HWvvv/v936/rNkxHdfv159/Gebw1u7QG6mmT+7Zaq91XBr7X3i3GaUoiJaVtuUWzw2lqEIEs4/Bvf/pzt3j+4dOAcbtfyIfr5fz7332/9u2+LcPpeDo9VF6nlEhDRD5++KDazbxu68xTbQuRz/Pw+nUN62M5jEMmksM4resdEbdaHeF0PEpOy1rNAxCFeCgl5/T4+NhbW9p9KLm3hgifv/u41nY5X6fD/HA8FZF1J3iFO8RQChCNwzgdj9rty/XLHnfrtZeScykO0LoGYBmG8DDzMkhKEgbb2sZSTsMgw6AKv/z2Upe1HEYWrr0t2wIUCekwjVzKptSCK/DWw0GCxEDAEBHN3AMDOZfsWpsqMCRkIkZEIjRztcYpJyDrqhFsCMCJyIm7o0KsHsxUybs7AgsRO0SrudCU6WkeAK1dXylqQns8zIS4NWtb2xwc5gBgJgDsoQ4REuGuqBjoQEEOSDtsMXam83/nPiPsrLQI24Xz++ywf/sHIiCS7yqbUDNiwZSqBxBdWZpp/eMvI/jvf/hs13Pebmm9/c9/+N04sK/nIVHG8Ijlfp/HoZS8bCswH08Pzf261G1r63lBiMvljJlQYj0v9axlnlrfkGnIKQn99vMv6+1N0qd/uMR469yDkZmtEwRYYKAHOYAFOTAGOoRFBCOGRxjvGzEH9QgWIFSM69ISxRwwSAbKCGLISOS9OsDWdQ/waGLtCoY5JXAwCCRAYDOLrqQRJSyQd2kiBO4iNRAEsugOgRIIFIG7QsrBAxmCS84Mpa832zqxbre7mjFTgJsbAbBwqBFQ7b7clqFkdQUP9xjG8fsffvft2wvx/q+DMSdmCY0kbObM0FvtXbdlHUpBiOV2d/PDYQpws75tGuhusdzXWisAFiyASAjDUNxt53Oa9l4rsyRmRgA3rWu716h9EKFE27aZWhmHQrTd7tvtfhjHaRzITFvV1qbTUVNKzC2iNy2pPBxP8ziThGknomEe8mFYVnhdtjbFrfGfXqrJpE9z5GFxXB3UQ933FYLDvit9h1kFeAdQVGF2EsWkaB3AwkrOKZfgjQm4CAGayrZjkkn3dGFJiQBrq63ewoGJAAKFASHcAj0CEZkYmZMgK3gEkCRCQgQEYkYGiu6AFEBMOSIB82E+lucDsLSXl3qp4QrOXu8k1LYVHclMIKy1zbbIuWn33ntoc9jqlpjUtffOiNt6v93u4QoR9/v19HD4wz/9IUlqveZUHp+emGlbt9563RozS7adZhqB2g0IWHgXuHpEKmmvPBBzYgyDVpube4QDMapQQcTr9UqJezPTnkRul5s16715eABILvMjcErL/Va3NSJ4tzqUREHk0FXrAuS053+QMZiRMLqHOZhHQJKEyL223lri5AGmHQCTsIdtddvROwA7uRtSzgikzSDCe9/uCyURSlmIyFMueZ6VvLW61Puy3VvrDmt4BeRAWrZqr9c8HJ0ojWNKCSIa0NZxPB3hcLos28/Ya/UTpznSYnM1WdPcJZrGHVsLJ+JACRAAtgBERiJgVc8F2unp9PiHf5q+e7D7K45twXXliMPMxyMJRd2wAXU4TON4ytNp4jQQcru37bz2ZgEiZaoOq/naCXkwEUXYFA1ijejkiMTosHPywngonqJ7GEsgIWdg31wf5qEgmJu0dl/uWOTjpw9h9vryVubRm2rXEAGk6XjgxkCgvY9DIYe61dZt2TbOhXK6LhsKjccZCDmnYRqPp+P9drfWDw/zNE9c8vnt7fm75znLMKSt3i/XVyHuBrpYkgwob2/f8lByyb9+fRGR8+UylMIppZIP48nD1rWOhxEcpnlMYzq/nYmcGSVRuD09PiemS93W+30YBkBAAaAIxJTH9eX89PT0w48/hNuHjx+B4nq7bXUND3f985e/XF5eu/bTdPzu8+ev/9vXZVsPp8N8OCyX8+N0+PHvf/jzl1/Mgpi/fnkbTgc4TOqt3q5w8MNx+vi7jxb4H//Tf1tbB9+mlM8vl2j2+HjqQdfLdn25H8YTUXz99beU0pizTuN9A0ZmoNPpVHL+9o0AyPTt29urCJdx3rZqHojYtoaEpn3bltNhAreq/XQ63e/L1urDw8M0H7a6LPdbRchZAOEwTxdVtXaYT8OY77eldz0ej3tB0d17660aIo3DOM0HyXldts8//q7Xqt0+f/74jE/u0bpRzl3icBgUHBMv61rb4m6n43HIfBomluHWY3Fe760bOJIhEUg4uGsoCnGZZ0kEVQJqaO+bCSMLMVJr1QEy7VFAowgAnRJqRA93lAaAHtaNCwYIAJA5uYoZVO2hlnlEDwgOOE7jw3F+vdVFe3U3gjwMS2MCJhQnd7YeCujMQQ4YHrhX3/ctDv6NehjvuOkdCwTv1fj/fhADQAyOQACK2HWq5A5dg1kwT1ePxeF6rwPCL//5tzHaM+k/PTyW8XgYsW7n755OxOnl5SWFDYfT5b6tS399W8Zja90+/93flXm4XrZSxrEMdetU0tPjqZndli1UUyqSwbGBQHWTPj4uMlyb7rQk2hNLscdRd2QR+t/C0IRg6Oq2N5Rhn4dINCCITQITa7gDKbIgipOrk0HhtKl6ABA5RTCFcwR0BwLYDx3hgUAe4BGtt2ohTCKcJQtT791dCQkigAEQdmAdEwawmSoGI4HkvmFolDJ4X1SNhCKit56ESsnazdQAkQXdvG61jIVkxwuFs83T2Fo1tUQCHow0loGQWm1CGGZullNiITcrOWk3Vd2f9xHANWqte3vJuiMAMiAAMae894ksPCKIgCLAPHpvvSlCEAa6HcYjemzhU06HcahQL2+X+cPzp4+f63r/9edfXr59e/n2NSchBuhR664kxGkqIriui4YTgYxDKXmDYYW0mqw0GQ3dPWGBJGG+x2PNLdwYEQAJIMLBwwgdAolj97cjG3Dz2Boeckl5iLx5qyyUc+5IBRyEsHbxyEOextG6AsFyvyFC7BcyJiHynetDpECA6JCcxPbWPSMx7fhDRCeEDGIaxBlRHCQN4+n7j+Xp1NzeliWIhiGNiQSsLxu2XtLATL01hDDrdevmoK119bY1RJwPEyttWxWRaZwub5dluV+vZyI8PZ8C4+18HspwOJyOxxMAtKrL/UqMXdvtFtZViFNOu+qDGInlfQOE2FQxQDgRendjEY89Y6xIGQLKkCxiuS3xt/Dg7Xar25ZTIkTtjQB67yxI+/oToquZGUQQobuGGyJBGBN6gPbeWw8IFt7q1lotpUhKZn2f8/Y7tptLSpywtY5IALBn+zxcmAkhpTQOQ28dAKxr6zqOJIm6AhOK4LptX76ez9fzet+kJPe+Lp25pGEMwLq1+7qWYS7zmEomBO+q3R8+fIBh+PJyf3GOcliV4tzUCGBSJoVo4A1NwwHISQAJgm3PTxISqWUgmddxfDEYbk0avNz9tfP8+NGG46IU5nZtuFWJmMbpOI3kEWFdrTZfGywdeBiN8+ZxqaY8kIwaRonaqt2xQvwN9R+BnQgkpSQaEWVMvTXlVIbS+7K2euSSjnmG4/Z2+e2nX4Dg+HAcc47DIadivReWJGkflCWlVDiiLDdczvdhGOaDwCsa4fl6fXm78iAOMM/zYT4MQ8654BSunZg+Pz2Np2NCKJKit5dvX7/VmhCGw9B7V9NhpgDs6izpt19fWtOHx4eff/q1juVwOJYhPz+eumpbW2Ji4ZKzCInIOAyt1ceHD/AIQgxg8zipdkTMQ5KUzpdbsDjg28uFCP/53/+fD/P4H/7Hf3c+X1rX+325ns/W29unT3/51397fDh9+vzdaZ6X2+3b62ueUmvVrf7xz//29fb1dt22tU3Hw7a2tep3f/3LOGaB+DYePn5+Ojw/jqenH3//49v57uC3bbnfak759e3u8WXO2QGZqeRct02joVIi/O75cciDqd9fvvQyea/TNKjOr5fzum5fv51b1ccPT/M0O6taX25LeEzTME+j9OQRh+MRFyKkoYhpv67n87eXz999ljG/Xd8AYRiHoZT1vnSLccit1vP1XoYiQrXp69vtw/NjGbJ2XZf29PFh4FQmBoAdYNu7Xc+3dr1Njw9EME3jbav9vgL1Yyk/fv48FhkoEeUTyJd73Tpubi3EpYQkjWhmwqmUKREi+P5ZwczkShDhoc1CFZBCTRJOjB0hjbhtC6klJBrnhgkh3JnD1gCSHE0z6ECWo7OFru4YGWMYMgPer/euqq5BQAhmnQDYIygSorohBiAZulPsLff3EnbQO51v50b/jXj4N9D7HiHCHcqOQPG++/GdEAIRGHtlDTzQLBgTMF5qQ/UDJza/K15u2zPxXCbs3tZruy/TOJWhOCd1/Nc//unl9SxZ/u4Pf9/X3tvWl+X5+QQiPaxMh/Ntvd3XaR5q72+vLzJk7T1E5LXLJWIDJkaAcHVCQiQD0Ig9ZWP7zxaww50gJYfo2imQCAMDgnqAW3goU6TuS48ppZEwA4Gpd82JHcIR3IERJYmZ70MPEIWjhbsHcAI0C9ewbi7maj7mTEgopF13+s/7WdEdESFckJpZAjJAdUyUxkzNbChj8957w8TIXNW226q9BQJJBsQwAIoiCRC76rosrTZTyzkD0bJtjjiO45QnBDAzNy85uZlWTVkkvx/1mMgdy1w8oHc1M4Bw0K0pAIgk9wgA5hxhlJFTMdNa296lBGTTdnp4wEBCyizjqTw+P5VhXHnLOX/87iM4rMvq7suytFafHk9JuKlrVRGchgHAA0NSMlU3YBDgZDIpjo5DL4dzc0DkzVA15ZSSaFdEpMAIoHd3APk7rxMRQmCn8zKQdIRIEw4g1r21bqquDkwJwREI0pAhMJckOblbt5YGJo0IAwckB0BmCUBkDuBuYcjGA3JyYpAd09Wj3s2cMXIiEI4Qa44DyjjSMCrx1nozTcKnqaTwviwYMBKSdetda91xE05OwgVSta3pxixq3cxMLeV0OB4et6dUCBHc4/HxMdwjDImmeUam7b7VVu/bQggiGSje+48RwgIaO3OPgYG4m6kFISYWBCdyzAQsrTUkInRhDvP9nKyqwzAxYqubuzJlJgnzqouaEaEgOXPKqW2bqas2JiEERiA2sw1AiJlpJ9RDmIaHRgQEtrYDX4moa/cweqeMIIQBhHXjxBgYjnvTjhBE2MzM7L5dmkUZplbb9XpRgMHqfVu3er+f3+639cMPn9xDu7qj5CHJLlnpTTcskpAISVstx9PxYbp2aMg3Rw0ml9YDKQFCJ1QIE3ACA4cgR0EkCN536hEqVCjnEH/p7T//9O1WpwniegUtzxY09rT2Dreb1O1pyr13RtkaSEIF+3rbfju3huUKopZGOWzmixQcBjcyDqfQujVXTIQCtIM+EMzVexMcnp8eRkm5ZzJLA7NC9eqIkkVpFSEUQNtilWyRxoE50WFiYa211RWCWbBuvQy5DHmYx67qCMfHByc04lxGC/OIaMocBYU8CsvD4dC1b9e7qT7Ms7D89tPb25evg9Dp86c8jsiyXZf7vXdr8+nYtu4B0zg8PT1fXq8QDqojH0oQRDwep29f67reH76bCXGep2kep2E+zA8c5eXla8qHcZwCASR3sMfnp9tat7a9vd0Op/l0evi3//rHf/7nf5SB5+P4L7//h7/86ac/1vr0+bvvP3x6Gh4+PD//8OMPbdlSTvd17VYvl3OrdeB5ehhd4/XtbBi//vzl/nK+nt++/VaPx+GKr623f/8v/yMDs9MOKvzpT79I4u8+f0airdXb+fzw8XmahuVymY6T9R5WP398fv32crncWGirqwfneXSUP/3lTxb06enD48dct+bgETDNs5luy+rqYRAe3lXN0liOx8Pry5uBkqTbfX25XufH588fPtzXZV3uj8eH+/W21dZMiYSEcpFuNRzSkIfDEEBvL7fnx6fDYxlT0ro9fXhws29fv8Je+iWayrjd2+vblfOgawfrj9Pw8enx7757FsDXLy+cKSFg7dgVA2Scepo752bWKHdrri0YJ+ZEnHJmQzFCcHUPsFQEiQHDTJkpiXjfpG8pfJxHzmokBxJe7AZOjgEeHCPiMcmBYLA61AWsJYRxnIrkbV30vorwNGRDhLqKWzi7c60OmZgJhZqz7YT7CHHkcAcEpHg3fcHfRoUIgHgH4L7/JQY4GAWAI++5FnT3QCABRCAPtKBwsMggySXuvc5ML2tbNIbxJCt8++XXNGCSBIDnt/Ph09MDzw9vcxowcYq6ffv1q1m3bfv03QfTVtd6Od83s4iaE/Zuva7LfQHE6TRLJVAEIOmmYZ6AENEJHMABI/bZDDSUkJGQAiHCMER2e2UQEZEAUZB5QG2bdx0QlZJzMsbCiZDAjJndobrD3ouDPZuObgG7AIjAwygQmZIUU922tlXrtewqlpTYAbpqIDITIYEHETd0CLKArSM6jbmgKHHKuYBR3ar23gERYlmWtm3jOGZ27SZMtrmzujkg9N6sKxOllJhJu3ZqDExEpn1bGyCNUxFmZzC1Vpt7DOMgSQCZifxdORQiHBYeToR71CXlRMRYO2AAmPbevJl74QGZSxkiIGXprUmScSp7FHc+jic+vnz99u3LN1ctOfedeUqoXd1cCFMSyeQWy7qlnKZhLEPxwOuiqltMysIObAimlgXnksEMdS/WgSPB+5KS9jVlAsB3OcW7Jg8kVYvNwZjLOMd67+sVHNNQ1AzdgDCJjOMgLBGu3hxDw5ERicNBdQ/O5QChXAIwHDuyyQTpgCKY2NG138AC/YYCAmQahMg5QUmt1tfXN9/yt5fXX3/6ya+3R/lAhLa1UjJB9Fq3Wps2xEAhylQocclosPFm4bU2RCSmbduy5H/4+7+36O7GwoenQ2sdABFwXbeDFKakFszCyAAsKQvzDjj1QBKJkGAWyYjspBoRAEZMSCgeBsw4jEXViDDQ1YGIxqFQZWIqUrJkSVxyISIi0NYJnRkjsxlZVxGGSNqbh+acAMBNe2vMlHNJuQCgmsX7L+i9AlJEuEbJOWdpLZhImMycd4YZISEgYs7JLdpWiUhN3X3b6m2tW9WhDE+Pz+pWe++uwWG9bsu9bbXe7vPp8XAoEWkayjAfqKRAUNu6EidIUlIKkn4+v/bh4INYTasTkHjmiEDCDqAQhgEYhoDBQIxB8H6DtUByVyJGwq3Bdl4vqkfJ7hkZ9brcYx2sH4LGGIQKCy3Xl1iun38/OMhPF7vCAGP5Vu9Lw1IjDWMNIy5I1E17b8ECpmDOiJKCIkzNTJFQMqYAVh9yJuvoSsgCor0HQ9s2IPzw+cPp4ai1q3Zzmw6iWnOaDOJ+vcFhfJiPTWtrrVcd5zHu67fXN2IZD4fjcSplQoh//dd/W7bLx4fHwnx+u6zbAggktJm12uaHQ4eGEf/whz9Ar8v9jpLMbGtVNT7/8OPler6t625qc/fnj499rYlZAOqyLNsSgPM4LNd1W+rT82ldl1b18aF4wFqX19eLaRwOs3uUlM9vL2b2D3/4h5fX63JvP/z4fULZluV6uUwwqPb/fPn/Xq5Xa/1+uw5Jfv/jj/fr9ac//WksQx5za/3l5ds4j+V4+Kd//++Q0TQenj4u6zqW43/4l/+ptY0IETx6++7zd+fXy29fXhAxl/G6rsTUrf/5T38ZJR2Px08fnlgSIqdcihCO1laqtS33u/ZNiPcQnpre7rfaKklxjzKIqoEjM7Za21rzkA/zdHm73tdVtU2HCRu9vL12s3Ee7+um5i+Xc/vX/zIcBoQQSUMZQOC+buu6plwKpjIIgXjANB/HPK2XmqRMx+nx4bTcb+G+Xm8epq1atzTMx/nEw7C93VLKW+u9NUH6eHr4cDimiLbe61pbDaXhdlkCaBgHL6ki9QAnllygu2pf1SgcIyhi//AJC0RIaYeo2T5H/O11u6+JzVotKYP3MXNx6wDd1bsnhFPhU8IxeoIY0SL8eDyJCAAw0WGaVzcXCWLzoNoGyYbshCS8dEd+V3GyELpKBEc0+O8Z59g9nXsKaFeG4TtKeZ+HIhBsF9FD7PJUZKRAN489zkIMttP9yDEgZUN1MkDWHslhXXsapnnKLcLaer/eqhkTTnkoKXntHPtWRW7X9Xy71aa3WqFICLXmqWQ1K4Ud4HK5i0GYu7OAILFDd3NXQiBBIgs314hAEkQIC4wIdAQnCiCAxNZDtQGJMyDjUCYQY3Vw772JMScsWdwVmcxcMXpEABpiEAaAMWAAMiITmpuCmzIRABILRHRty+rceBhGImKkd0q3QyAYhgYEJwPrnZlzpbSpEYnkDAb766K7uYcRlHEapgEDu1VKuWsPw5QSERKSMBMhE5aUCRgjeq/avdXmruawrXUaCwAQ4V5J66oRmDKlJInITEkyRggxMrSmahbh4WBurbWdprQfRC3cLHIREemt3663VjciAojlVs314fR4fHzYlm29b8OQw83N2tbW5Y5EJMJFiMA9KOVDyinnRJRZlqUm9OAIcgQjbUIiJRUm8mAiRwD3fZYMeLe+YAQDQyA7IoBBOKIjGpI6bBH3Du5MpWAeBsJhPmz3DakjUy7jOB8Q0N27OvGEbO4eAMA7IxGBMnCGNAIJSoqQzoPKRCJNqKDJJqyW2UUsaTAYCedhMslv9+qIrv3+eu23bWY5zdOx8JbQa7etW1PwYKIgR/JwsN6AIMKEBdyZKKfkZhAwDGUah961awc2V5/HmSnfr8svP/16fNimYS5lenou4zggYq07+I6EJQ0pIMzBSTozBY3HB6qtaXMACAMO3LNrSIhMQBhJEjOzCEeQgxPyOA3MRIDCRIzWjJEJQSRpcjdlAiQAcAJACO+mprVvEFHGaXh3HiIC0t5W1Qhy4v2dawhECAS0tzaYOSLCwbonoT2aKMx7S9/NWUhVL+dzyZmIW2vX690xAn2rG7plCjQFbRwsOZ2O03gY1cKJPbMTSEYmn45ZyFq74TBKTiigLsFi3Uk9PJz3T0cKCHDbCWngf/NGgxGDuhtYAEoqHtJqXJUigIXNhvWOg/Onh+mURMky5Le+1E31lizjL5Y3oe7pWqhGXCxJIyRCC6H3mIKCC5N45D1ZGtg9TJ0QkyOsVr1J7lMRcLCt39dLqpsP2WtFFky5WaBInsrler2vq7u1WhFdtZtmChkSRIDXZa2NkcFia5sBSJLnh+dc0uN89K5zySXzgtEx1Kx1C4TamlpvfTtO8+l4Wm635cs39Zjnw+16G6cZAd5e37qauVoYMxzn6ev1LjlTBAEMZVjua6g9PR0PhwNLAsStbpfrJQlv2+bmy7I6gqQiUmq1kobe+7Jcfv933z9/fL6eb1/+9GsZ8OHj39Xa//qvf71cbhCYRKYpT9N4fnvZ7sun7z5s32ou+Xa5IAIyDdNYt3a9XSMip/L9D787Ho/nl1fimMdhSHw4HN/e3h4+PIbBut7A/fn5aObnb2+Xt5fDJFP+TO7r5cIIzTxCW+veFIUKz0R4r+v1euPW7utWtSeSt8s5t7bVSiTjOPTeRQQM317Py7K4OzNnybU2Vx/GEg7u9uHjh1++/Pyf/tv/zsK///Hv5sO4aSfg2nvvBtCHoWytOuPx6ZFA9oQluvdme0bDzF7fLtuyHqbp+bvHw+nZjH759s1dH+a5n2+ttsfj8dOHj1Ph2+ub9R6BW9fFa3k83TfTYEeqvRoFEKMrIwICuJp7C0M3N03aBT0TRrjHfgUDQApHc0u5MGWnulWj7D1q6w49yEksAuuhyNzhAJhiK+TjYahVbm6x6QBQGE/DQNvWe5spS8qy6XQaY5jG7r8ua+sWjgQEgdCVI9hCkA3RcH/+eic/7874XX8a71b6/cyAAXshKAiAIBghHDwwgGyHYZglcLbwQEqYBNA1i1tdXr9VZweS+eGJR3btpzlfzldtPZNsZt0aARzn+dvL23A83pf79boogAzD5taaSylG0KpF2A66k1juaTio1lTEA9wtAAEYCSiQAsyDEcENwxOyiKiFB7oZBKo2NCcjd+WUJZErIIqgESECGoAh0r5V2nW2hODgu+4ZIDyY0XsDQ2KMHY1AYtoZWUSQSFuvW4fUPSKnnIoIYlgAhHu4OyQxAAQyzp7K2lbqNpgJAO1oFmLwEKLDadKmKXPbekS03l2dS5Ik7ntk1XqzfSFCO/zJrNa2S6QjTNXuixHRUHIuWd22bRPxVHJOWfvOInPrSkLuYWrm2lsn7iK8risxDqWkUsw1PBITRQSEMDZwtd63bqHMadvW5b5sdU0pH49zzrLel9573SqgT4cJPPpWeQCSot3m4+weW22KDTDmMZWUlL17E0xC+zDOSBhBzbsnNABHR0AP3+NsAEE72RMhiAwBESuCEXLEy9YeWedUqEzuai7IaU+FuSNLZkm9K2ajYUYHV9MA4kySkZOTAGfjTGUESQDSgxvlQGbGQMsOZWjYNEkk2AwiDTweMnBBEaVsxK1McjjOhIdcPj7MvZT1trzcX7T38VhCSg9z7G3t1t09alN3I+SUBJlSzkQIDr22lDMLL+utey+pnA7HIsMf3/6tf/mGH3kcZyLKpUAA89Z6ReJU0jgPTR0DHMiDUCTPB8gObdPe3Pqe9kPXMBXhJKl1I8L9f3XKXDdf12Wvj9VeHcSr99qIkYGAggiYk2t3M2ZKwtu6bXV1sK7NArxuDkiUSs7MFB6wny0BECBnAQhtjZiJEAyQIdz2ggwxdrP3tW6EEJac3S0gtNcI7X27nt/UlIkO8/Ty9g3dHg5TXduYpRAByeE4PR1nZI7E5Xi0lNYeOwxqyDIQJuGqYQbmGIGG8P7BFxgOgmwAJkER4PtQEn9DiQQCUCIH6hqG7CIG0JUigABynglCQclZIV+0Ye9bjAoe9/Dq33xQSotiYwbmYRoxIKxbb2AuGEQBGOZVILAhQWJG8Gg10pALF23QW633W8wFGWFbh4DDeCgpdUga+m2pDyk/PB7INba7hgH7dVmOx8P0MNetnt/eHp8fpmm0ZufX8+l0+v77727rer7eKCcE2+7tdJxKSlkITJlwHDIQ3O/1VhckvF4u67aut2Uax+hKKEMasmQmmqcJMObDwdxOdMpJfvzxd/fLxWpD9wgngA9Pp3kav72+DodpOhzM/HScPdq2rSSfJOfj40GrheFwGN9ez9fzlXI6Phzd4etvv2nXMpZxLq+vr8Ofk6HVVo/HGQJfv72WQkl4nqchpSTJuj0cT58+fP75l99u63qUgim5w8vr+Z//3T8/nI4///zzsi7MOE2lDKOqHR8OP/zwnXb93//Tf+kW8+GQUr5x1LowAIauS63LfShDr/V2u5weHwCgeZgqoXy7LK+vr9PDkSXnYWKW1qshmrsA1G1LItMwrMvy8vqGEA+nh1xyHpIDfP78XQ/9+u3b4XBU0x9++O5/+4//63/5b//1u+9/Nx9Ot3WxHkYxHidCbN6XrTpj6TrkDITMtFNh1GOYp/u6emAeym1ZTh8fZSg//+mnl9fLcDog0sPDKRweHw7MaVu32/U2jmM65PvSe4hKWqJvgbU164EJwCAzchhz5CSsjcLNOmgXRCCstZp2zOH7vuXdfycQFBFICRHVo7qu2jEN5AqtT+M4gQ0WT4dpnspyv902XSFerzf0eC7lJJwojSl7QEd+yEV6zFPZmFcA1M4O7gSBTEwAHMaBGESI+0zz39vv74Z4fMdC79GBPRgE72xERAgPQN/JQAFEHsBC6CEk6GrhiBLgyI5oWVASbts6TiUIgRARwd1aT8IPj8eS8pdfvnbtUlI1bXU731ZlQWEVVgN1AKZ1qa122t//zHKAbtRHKdu2ASELWkQHd1UHp7BMhOHaayJKBBkAOVpXc40gBahuSAhCuh85AB1CI5IQkBjEFl6tIbvvQWHEXWtBiO+XsHDGwAh0FHIchIiaCgC02lxdUnJEoNh6VbPiOSURTiIYZjvocKtdhHc2OVYGBzfL1qCtFD7kosJoMRa+69aaBoSHulFEALy7G/aMtZp6jdZbTmUYirubd3NHSiKScqad94To4aquqsxJUpYstW21tVbbdl+RMJeSJFlz0w4UHkHMOedSxpRSt0aIJQ/a61ZXDytJYCrb67Yuy8PToySpa72eL2OZRKTXHgFMzISp5JxEFbalucVECVBeX66hXbXPQ5mmYr45ILax+WvMKIV6kJph0G54wSDHsAgMir1/hTviMzDQCRwRAjUoiAK9uS9aJ5JDluHBabvvERNEAWBzrOaJsBtUYy9HwMG7OXCkEmkKSU6pBQUKpqJEW0gFaJQCOTEiKGYv3hk7+gKEHlGtjtgfjw/HI9+3ACkjxCVawu2YnGydiwx0vL9dt16ZBRKZh7ZAQEaOQOsa6kDkuj+PBDoIkyQecupq6Kjm29rRk6szskMgUcpSa4fWD8e5HMZt3dx8GDNlkQ7uTkAADCl1ziTInCI1rZtVBAfEINmxkqjutlZClZREqHftvTHzDlPW3sPdzSVxQICBaXiYm7XaWYic1CwIiRO6g3nAjqkIxCDGbr7/FiVCf8dsEpEwMZMwWxggwq55Rgpw7YrQWTjIyWjZ7pfzpfVNBBHctCPix0+Pwzgyg1rnRHXuKWXiJDw+HE8lZbWQlDJlg9Ldt1ZrtoRYSorA62W736zWMJH98SLib0QQiEAOCnvfjgPSzs/fKRcRgB576ArB0AkRBAlwD1QBKfDb6psbhfVVKQZgulyDS7bhUD2uvXaPcRhpOIiH1YXMyFUwBN0J1tCwTpRQETwwSAKgWr+1NA0lFwFmwNcv3z6M8uP3PxynsqrXTm/1FsDQ3GufM5XH4yjl5z//ufftx6ffl6H89Kc/bdqaalYnwCEXiJimkZO4xzAX1bbe1zAdjyMTlCFHjNeb5VKePjy9Xm63+/Kvf/zz4TSFsuBA4iWN8zQzyzQewkCQP3/36fXltdZ6OMwi+Pz0IEzttqz3JWUCj1bXh4f5+Phwvly0db1vgToeMwK4A0QKjK11ui/X2306TMM0nS+Xfq/IdL9cGE6n4+F2vm7Ldng4fP/Dd0xca+u9UyLzSKlYD1V8fPpcctlaXZtxHpba3GMc5394eCxlWO4rI394fkaieRpqrcL07//5343z+HJ+GYb0+vOX89t5LCNhPD4ewPR+eXt9/ZaAyiP1tjoYJb6eb1+/vq6tHY7HVe2ydTrAcRpO41Rr0+66LeM0PTyeGCQiwiPnMh9mJhrnyc3u9zXnNJ/mrdac87Yul+vbd58//eM//uN//q//Zdlu4zyBsEXEwt51W9d6b45AmABpmMZEGRN671tbf/3yJWW53e+Hw+im98v15XLf4NvPX18iKAEC89PhJJyGLK230D4/PGDAdVneaoshL1ptSNZBqxak8M4QRSgLWFdf1uNU0CCTcCFUB+8K0byj0940RwSHCHTVtm9VWbhDhCAmZiEKyxkPxzQETEzDPALGYvi69pv3l8uNGK1343wYpuMwRtyNgBPSIQP59Xa9XpfQIMgIgoGMCffz9f7cgu7vArL38WdXAv3Ng/GuSN1Xu/huNKdwiwgCCnCk8HBmDgRnUgeWzAwNjBFCjQcaT9Pzh8lfLaN6X5qDNruer0ge7haYZ4bkb68Xv4USvr3e76tKySC8ddtq55zXprf7une7SJKIyHfH8e1WPXMBL+OwLKsFJUKQ3EzVHDDAtAQMjN5Wva3a11bbOB+ljJikD3xbG3FORTQigLQZJSbiHoYMhIgBoQYY9N/JzeaByMwGwe80Eo8wSRyIqg2riQgzL1tDjJTE3TxQzey+pJTK4ACJmBMnDDgUar139wRMkrnktbE7TClFxSFlkoHCwbswqjpEML+bV5iFkICjlIyALNxb7VqJoCtCQIDtd6LdD4WA4U7CxISqxEREbm4aALSu27bVMLVuTfswjsLJ0zs5qgzjOI5DGdxdtzVlyTkJ07YuEJaH1J2Iec+NlZSLZBFBAjcD91LSMOTeeu99Wzsg5JyIJAw4QWjfa1wRodaBMKKHVvXFy8jDCExuSIwIDIAaIUQ7mQci9hw0BHoEoDsR7GshpwAyTF3w3nwAEIvH6Ynz1G5XU6X5Q2As5lpJgC3oFrhJgcKm4ECRSlA2FgXuwY7sEB7RATqSksReQXZPPEA+oC7Wq2/KzEjEiU6n4X7dzCMJPX78cBdc718lTO93FXHlAC9TCQRT095sqyzCQfel9qoAtMf8Y/e5ILhDOLS+p9QzmJr6pV3q1kSEReq6zfOcEiOhhydgRIT3K6lARu1mQCKFSg4SIMFSOA1I0h0BgZyht/05iIE0etdursxzTqydiFFYIDzcg4kQmXl/LamZaTfT1js7hjkQj+O4w8Ogd0Yh4lIyk7iDu6sZMnGwMKmamhLT3lMlQgRGRCMydyJ0CKtmphkSJ7peri/fvl0v12k+nI4FgSBsmsYwa+vK5NM0A1EZzFp4oNCudgEMVHVfW3dfmjVTG4QdUbFjvVZatzAXdwh1RHR0IopAg/33PPZK6K5OfmfMu0M4RgQ5oLDgXshgAkKR/L6dRbTQqzYE6EFFmJigK3WiklwABIsAM0ZTdJPesHeOmtDYVbVKKDOMAzFy767dGNxNe91wSE9Pp4fj6Pfr1z/963ePPxyeny/ny1+/XRWwUr7frr/d63cef//Dh6UvLPR2X7fL29PTt+++++70+Pj09DSwcOC5dVPbfGMVgzgcJ0AI895rdLvf748Pp+V2K0Neicx9FClZvn5dzFS3/vzpSZgP87xcz8ttgYCS0+nhYSxDmfM0jOe3cxZZLtcpFwEsxzkJ367X3369DFM5HR9Mu+kmxI8Ph/uyarPb5V5y8QGJaF1X1348jEuvrtpbnY/T4Xi6nq+//fr1u+8//vD975ggHCSxuSPjh0/Pwujqa9hwmhNnTLL1/sd/+3NzZ8t5HhwwMT8/fxqSfPvyxXorZZAsAdF61x4i1Or29tu3nNN8mMxsGqfERKcZzSH0+fFweb18/frb6fHp09PzbV3++suva62SMuSxyDD32Mz8eh/myT0CIpe07xY4oakv2/L69bWUNM+zmQJib7ptG+ccEOM4/Pk//7mFHR+fPn/67r/98Y//y//6v6Rpenh+ziX/8vLl9np++fptKOOPv/+7h8cnM/r25e3jpw+Zy3pbIGC9XM2t5KTeAeHhwweDeHu7OAIw3m43kmHdqqoijEQ+5HQ8zt++fns9nyENFrZWlfkoDiODqXtrKcWMuRAaozHlMGEUINMOjIHswmqy71pFkkU4BQISEQETUUCoKiQaMnb3REFFEgEFBsbaOiBcm13VKokP07ot3Oo0pe7ojnu0WX3VtV+v64Jcq2okKgzCZPv7EwNhh3QYgyNgvHtD4f9Y9cB7suJvpPwdDfSuCgNAoHB0QgJkZo0Adwq0eC++FfJsGy1nEZZQgD4NSQI407KsbdNe++H5oAH3W21uGgFZTHsIVwcTdgCtVsMNKYg9oAMjBAIhUDeUXJfPWdZ+fr283n6tVePx43cwjrUuGFyC3M1rT4gjcr1d2Fts1/76lten6fF5evpgQxJMGgCM5ggOUUghDGxHG+1MHbcId8GUhAEIIcDQlZiZmJtvSATQE6PVfn95SerHx0ceCyRo3gMcHcZcVK31dm9Lb12HfDgeiCA5eDiCm1nrKil7mQtA0YFjs3tTdQHISWptBFyGVFdDImFgEmaOdycD5sRMCczdTFWJK5MgAqKnJJQQIFSNAREhpSScumoa0zBx3dbb7dq6BmLKRbf1tixVdRzH/bUCHjlTYkS3ut77Vr3bRgUpUkkpDUiEtc2HUZj28jMC9No2qxAgImSSc0ISQHQzNUPCUnIpuW5ryQwgvoP4DOdpjpRf7nfPXDhIYAMwMCECAgtsvWOwEL7jCR2YIIANHSgYgxEhAN1NoRNT5o4W5tVdmWaQzZQYmEkhNlUIRs3dQ/PQEwCl7qh73R1ZgQ1IiRwAzAk8kIAASSxglwMHF4AB02TbbSrHxEoEo5SITtBOA2OoKRdK961XWpL4ctnWJZatOfM4H8E8tq1ISin11bQroxALwK4iZiQgd3evW3ACSgzEQ8rmal2JYZ4GJOi99rodjnOt7X5tHtBVSQQxjqecczLkqsElUxoUxFDSVNgVEzMA9IhtiwCmECQIIqUePdy3bRNmZlJVZEqJ3GEvtANSuLdee2u4324luVszm+fZXK21cRiH6eBqGBBBAaxm3VTdKVxEcN+VG5hZIIAG0Lun1Uw5iWnvprWt67bp2YahmNn9dmOmkuRwGHdroRBZb9ax9wYOUoqqETAEE7GknHLGnNfaLcA8vEc4shV3ua126+3mXENwz92YIWEQGnl/1wdFuAUaICAJgiN4IBqAqhPxTpFxh0TgZpxYhMGNgL1ZAHFOCqoKPKRlWdH9MBVEbKaBmARHkSFFds3upj3amrAjWFjjaOItZRoEwr1Dd1N3kJw5et9uEMV7hLX5MDhhBblT/u3uNB6um91rHoSkynHluuLrt69A4+mQvv1ysQ6nx2Maippfz7cyjJ+kvL6+1rWO82ihl/PNtCPhNE1uUWvrrbn7OBYZprq1elvnnP79P/3d67c33e7elg4ujNfbom7T8YDg63It5akwfX5++vb167fX8zqOZno8HPrWMNDDTP31yxtnnofjkAcmud3+0s2u15skIZR13V5fXo8P0+nhGNpeX95A4B/+4UfJQ0rpqMePH58Y4H67a9ckeR4nRAyPt28vbnZ6PFoYKnz57Ytb7E/M0zgEcl23D5+epzJE74dpOk6jR2y65cwcvi3rl1+/PDwct/uKiIml5GKm3v04ZEKQRNaVGS/3y4GOa11+/e23aoaplOMBUhbgj9+Pv/32a4+grqAhTEmEkeq6nr+91NpSyZKYWFrv2vs0jw5m7vf7QsKXy20+HD7MAyH+y7/8yzCP//f/x//z//J/+78eTqfDw+Fyuyznuzb7/OG70/On54/ZDRKnnEfhPMy+3jdAan2TJI7x+PRAwLXW6/U2zfNwmF++vfW2GURriuB7Z/PN8Xy597U/PXxYMb3pHbZthIFLxgFrXSHaBDqRyDwcf3haL5de1+2+1t4CkSQrZy8YBAFkyDu9IhfJuQgyQvTeSM3dSUk8UoT1tt07z8O16m1ZUNJddXGwnFPOtfu2rQayNV19JdNlvTZXBdqUV2fmMVEOSVtXFFHrAYHk4MHEvvOA9lvO30J8f7PBBwDu/fid/gyIe3iYHCEQOQGYOZg5MSQIdiME8M5hI/sDt4PoB4Jk93pdqRkxsGRJ7IAfpw9yHHqDsHq9rrVDmicJv/bOU4aqAQJAiVmQDQEU8oCtNUmiEd1JBOIw4/m//vztz//tp1/+Ohwfnsf/+TR/d7OA5kgZAZHj8u1l+bJ+eJwPU1qQ+kvjdvEbeWahh4Ok5qjQUahuSkSCsmmAOziBswWEUqIUaq33LCVxQiJVAzM1S2Ou1ryDuBM7ev/yl5+kbQ+fPkp0YHREC0RiBx+mUbuHae/9+nYZhlxK9tu2O0+qqaoeqUzH7DWH5enJ6u3sYbVbIEeI90g5e/RwNwtzZSMzdVM33c0puxPKFQI9l5SH3FXrWomEgAwjEeVcEGgg6Nav57tbtKYaEQFc5FgOsuZdgyXMALivWKybRq9ba60hmcdlGHJOnCSttTlEGYuQJBFTu1/v2nuSMoxDa6aqiCgsKYsq1q67rnbvpJtqSimJdHUz2FTVfLvX2okfNtw289a7RimEiVPJROEeQTu0HBDBAjASsaEDOuwjUOzNRe4RuYwd7Gqbd1iAg6f3uyaTcRihOvQAFHHiHqgYavvbhQLer6IBiGiBEGBAgAiJZY9OOWGD6EGJ8nHOCTsEgMq6hkcSM7WtWl2WBTCSlNv99fX1TFi6am2dp0GEssggJSIaWBkKc/KA5uYQQgAA6mEeAFDXqouP84AQZp5LzpAQ8Xy+5JQxzE2X+33bNnVIOUnK1jUA53k2c3fsLSVOHTCAC9Mwjr6FbnfoQESOyMJgnhKLMAJtddHe3AgRmEhVmViEwUJdEUF7r1tVdUkiKQVE70pMrSkRiiRE4pRCQru5vwvz3CE80lhyyUzCCQWp1gYIbr7eFxJW6x6Q3JZlWbd1q5uZ70dVYZqGGYkO82Eso4XXta/bNoyFmSD8frvhujKnXAY1aK1rU5ig5OwkjqmvYQCGRMPEQ1mWxRQ2goqhhCBkZsCoZsTUIxB3IS5EOAYC7n68v/HUWAwICMJcWCC6JCYGhB0TBYkSB6o7yF6mjshom3aNIScKR0rqnd3FIruPBIat+UZgpq1bTRQczgagFhHeVjAX4kw8pECry/llgFOoHR6fz/f+b7+9dJK3TrX11RnTqXnHBeGXM7Xaz/d//PG7D4N8/eufb5f7OJVtW/G9nAep5MPxmLSS0HZdt3W93K5Pj4/H07GujYgfjqdt2cZxdAsgKkLD8fj0+eNP5SfvRgQp4XQYWGBdaykDBgzT0Ft3s3C/vLy52dPpdFnql/tXEZ7mqZQcEeuy3F4uj0+PGlihTvPojltt0NowzLXVe91oozzmQE+CAWB1E5HDYVBN99v9frudHk8JkqnlVOZ5vF2uD8eDeaxt6apMsmwLBA/jUM3HcVruiyAtt4suy+k4q/ZxyK22ttXWvSQqQ0GH6+v5OE4vb2+hIZlDo7c+PByP44ChL5dXIvj7v//767pdLrfVLI3jr19fN4OhwXyc52k8nB62bXFDV01cECjMu1qt1SPqVk21jKVMpV90XbeumssQAMu6bbXmYejqY0n/9E//zKX8v/7f/5/f/vRfz8vVfgl1TSRh/KSR8kCUtLfuerssw7h/k/N0mIHw9HiMsFo7o6nq8TA/f/rowPfbWkoph/m+LL12D7jet3Vt3eIwHQqKus/EjhhMvfXuXaKDNiGdynia5nFMXPOt1yq0XBXHEYCN2TARQQRqgCK6KYGkYaKAcGd3N6MAMaNwVeXWc5JEtJpvW4MUzX1tHQJTlsKMiOaeclbr2JtpR/JxHqrKZTFCZKLYlxgWABgEEKgE8Y75eXe+v8OggfZZaE8975mgdy9SAL2PSOKBEOgB5EGgA/oEKK4Yngdgb8eEf/hweH6S47YUVOtRq2+tz8SQiHOeTvNd623derdt65jzdr+p22LWiTWAuXASAGq9qwEQp2HqhrVHEOT5KGOBkT31e9GbrOfr/Wv78fHp+8eUIJbNPD2cPnz99QvVW7R740bl9OE4+dNhWWq7vnZtfL1NH56TFGHuPWYWEumB4dBbBEZ4EDF6Yo2m0XujAqmEkIR1KsnM9rcxFzI3dD3M00vrX//yF+16+nRESjSktUXvHkhdI6fkBH1b1da6uBAchxHMgCQ4lntrpjyVhzRxSkLJQHy9YyiSegd3FyZK7G5uhghb7YRhFtvW9taeSEaiWrsIEmVEQiQPZyTmzJkdca1tnudxGq7XWwddt9q0a4SIIIIwz1NBBEBxj9YahXMqTg4GzJJLCTcIV+2EVLe61lqtuhsiH+ZpTyWrO1hPkVW19W5uwzAgkpmVIe2164CgTOGQkhAxJnTwZWuGlIXde7+etSJx5ub9ej88PM3z2NV6RMdQoEAhIA8NU2ZiYHUL3u+lEMgRJggebMBAw9nbBgg0QgARv/9tAE7hgIFoAQEYGJEw9oIPGEAwiKERA0YgmLkRIYVAOBMEQiRyphAZD/k45Nt5vS7LVoJCege0CIyH50OpXrdru4niHiRlBJMw7D5IwmC3cGhBAYxuqr4FQlCYe6dwBzDXbt21hwrR8TCnLL12AJjGYVnWp+ExsaBDmCcSAqjrKjldXk23isKQEkryTlImmWWYhBH61t16mKOFqbsagCMGEaVM7qlpIwJi7t0x0NwC0ME8PHpYV1N1NyKBCOv2ThQLTilB2L6sJAxmeAcVMCFjzpmYu1oLS1lIIIE4gKpel7urbWsd53GexwAw816NSR6fT9M0EpJO3RxSym7Qut+XVXtvpkIUFIQYZu6o0ZBzaN/WyziX1mWYTyDjpluFpinpdIJEa+shDHmwbi3MKbXuOQtyWEQEAxAGMVAiAQggVlDrBgRExCzqwEzEgOZAGBQADu4CHhYBjJSIichdAzxYUDKKmcQegeol0zSkgUDagr2PCYBiu90ilClqrVmYgLal9tYCLDkIpznnoYRW7W/by1q7Q86FZPh6bddWv2ywmisXNEgky72+vC4PKT6fnsenj5fXX3jIRaBrvV0umWW93AtnGsYyZlAwDCV3iTIOJPm2LNM0JZJcBle8Xq5MvGyLu0fg62/fXr9+/f6H74e5AABzmmZhTuvW1P309Fy3utc4CNjdOUkuKZV0mGcWJMJQ69tqtX/55df5cHh4/nCYpiCGbVs3fblcueRPP/7AgjLm7Vy7tnme0X3O6XGe11Z/+um33nXb6jhOOScE+Pbrl9vb28dPz2Uc8kpb07fX86fvPkbQsm12va+32+l0rK2Cu2q/X2+tbtDHpd7XWiWR9/Debt9ep3H47vMnbYoRhfPaVoA4v15IVcApuHmtveVhGIJkfHh5e0uleCAJq9r57eYRhGymexfqfmthVko+HKetqrufHo6EvG2bZL5d7wBAwsi4XreU8tv1vG7r9e3Szb6+vCzr0s2H47Bsqwdg4pTKw4ePp8cPt2XblgXUruf78Xgay0iAxMhBda0eut0XCjgdDykzNS9zOc7FIvJAm8H5sqpH73o6HkaeZN102U6H48MPDy3l69pv97ps3aIJ28QofYU1iKYp8dVCjaLMNkzNqZmFx65T9wDgRGyO2AzJwc1dA4EKQYbISazkG2+eYRjYK961D/PJIbKad+Vwxpifj4dhpILipM3HuUCGFuibQrhrN0TIyCAYDoSG6IDOZBAQFLuV/H3FA/HOgMa97+zwPgftA1JEIJARB1FEOHiGeCzy+9PwKFi0v/z880w4H/if//BDrts/f/dZX17KUEnb/axhZBtkKlutf/nyV0xAIOev9+utbtbfbnc3uKkuxJxGA9b9eRMBhBHQQZzGtW2SB8BJ1tdXGuR33z3N+R/J1UuQ1e36Mp4eC2owoa5TpofvP92uaV1eX75t0zS0to1Dqc0dui2XKjQcT5AYkFMWB7MeY8oeaamODAwOPYRAOCvh2jar21SG0+Gw1m0uycLdnQlJkpuL+D//u3/+9U9/vp7PH394gpRuy1qGAzN3d226bVXA5iFhUG9r1O3rt6/IwGWCnKJbV12THKcj5eBeRuFoM1pttwWCvFVDkCGHuWnvtdmOsqTE4gB7tWy/TSaWTJyJANEdEEjyOAZEXSuyA66I5O8YxwBCQRFmFiIEIgYAszBTDwvFba1lyCWXlLKr7QNNRLTW3H1PzXdt3pwRjofjNE69q6puWwMIdQ0N1p29hAAOhA6xN+2BwBFSlszJLHgPaTRllg0B3VICDL1XNRFnR0AwCyAuB2SO/QUZTs5CmJANooU7OzBgICGqNiFxokhZ1QCQmNwCgRjpPQCHGBgGEBHuEG6Af5PAhHv08AjaKVO7ND0IIBFlCd3WgA3F54eJBDin18uXVdVpmYeJkDPFwzwY9qbcHIfDowwPWZK7hW8Ibga12lbNw4XF1HdSS+stLIQDQOJv0jsLVe3oQEUAwzVEuNYtIOpWr+cbnLC1LcwkZxEJj1KSe2ivRYaU0K31xcFinHKKbH0X6zaKgPDWOiFgmIfllJj5XQKC4Gq9dXdHRDdX13006L1HGAAgIhIBIpHknMs0MjO4ae/ajfg9hogRSEQsAWHuy7a6++QTmNZW1SAg1vvdzUWSMJtGlkTznFMWTsM4IKB7ENKu5tHe61prq27mDjTmzBLhTOS7o9p7OCxXNNNx2x6QMUOra1ilnILhWnUJzJK6A7NkkBpRymC9YZgwIScPRzPySIG9NWAsQkCkAKoBAswMAQTOYOyKbhmDHciA36uiDIRdNWotGQ9jSYJ4W5NGReU8DGMZcmJtENbr/TCIobXoIth7EwxXtQjtfV1XCE9JxoETWGz3vnU1b9VkmoPS/PS8rH1bKwwT09C9BIVja+pujL19oBzMnPLjd89ZIqzXbavqRUog3pbF3YcpEQZAfP78eRymy9u1bpUJHen8+oIAh3kapyHIAaCq3pb7OI7DOOxBces6HuacB/Xzb798yXncav365duPP/744dPHn//y828/fwOKYSxd9cvX167b4+HEIkPJ1/Nt+jALc+u29BVTWrdqhEDUraXgQD49Ps3TGK33ZvfLrYzTl5dva2t5Hs63+32tHz8+t9qW6227L0vitq23rdauhOQR41Sq9mEoDw8PZczrHW/na++ehU8Px/V+673nIqUUs7Zer2KII9wui3A28KZ2u62MZrBhb6ep5FxAZGna11bdXHw6HQ5PHyi49X6/rVtd9kOfu1rrba1FUsocAHXr4ziklALoer4sy/r4eEo5afi6beu2bbWKyP6x1Ft/+/p2vlz//h/+YBn/+vNPYMjAScqhPP7+9//w/PHT7eWKgGttHlhqJ2AGJoo8pJKnrS1b08fj8fnpeSzj8TQH88Nhvtzur1++Nu21rrXrOB1IUpEEAG2tDDCmBOasnaIndoo4juNx4Fi269trX25QSnNfHTZJCkklbWZhBg6CKMIJkUGRoylF9LZ1dh+FheCY0+kwBVNmvKl6a0g4HMb5NI2BI5O1BmHa4nHIhyGBKTGOU27bIpzWpemmaIhKSWR/CFNE9f1Dixxhd0Lv5Sf4P+CHe+vrb134v9nhd3c8BhiGvzduEByF8GFM/8Pf//D7sdB2+0t/i3r5fHr4P/348PaXZbYtP5SXt1dGLMfjn//8y/XLy+nxmIvcl+vxeLhdb3/919/yMN2pb4FqvmnAXDAP4ASKKCbMIWxBPbCnbAZBuXaU9e3tWrcf/+7Hj58//+uf/0SD5Dx8+/Kalm4gPer97RYOmAdCWy7L6/nb6TQ9PD6UkpgjmAIEsBds7mLWQtjxHd8vJBQebuFI7u4mSZhRmMBV2BPa9X71Bco8jhnNCBwcKIgPD4/b83Kt96aWEyREcCs5Q8dAI8SS8sCeGRrR69v18vNf59MwPD65ZfEAgF7ptuJQDuNYkEwX9+4+jUIY9wSmiMACiGJOGEQEuTDV4qEe1mtXD8kyDOMwDCihTpJISmFJboGo4V6bAm3uoQHqFh4p0bA3k82aKr3PAZ5YENDMraoylVxQCP3/x9R//UqyLXmamKkl3ENtkZlH1b23qrq7appDzgwHFC8EyTf+23wmwBk0xYhuTnVdce45qfbeIdx9KTPjQ+SpbuRLJnIjgERGeKxl9vt9H+hQUwXXnGOMgsXdoFsDgNZ6kJDnqawF0ABRAt8r6ywgzG4EgPf4/TBTVUSWGNy7EzAzqg9V8BbdDrvZ5/lTbU0bl1tKBuTttrpzOgEl0ns7GCHAiGoK1j0gcb2X4QlGNwFAUwQAdWdS9jvUiIHM73RP/+2dfs+9OTIB+Dew5rd9GzreYZv36SnZsMQcAMUtaM/op2Mct9vb23IrV8jpti232xr2h5BiTFy7urPIFKNM07zb7Wz029uXXjdVN91u19J6l8jMqOZ+l5PoYBDTVmsrW9FmAE6CXl0Qe+vAwIy1tN5b7+Xr589lWVpXM1XTGDMJ2+gIRAKRGYb1vmxjOKfEOCEDoo/WRw9g9yxQa4WZUgwA0FpttTm4Opa29d5EQhC6U9EJUM3cDJHJHQGFKYagNoQJTIFgmFbtQ5WdmdjR1e/UUrBuHEVYBow26nK5fPnytfex2x/2u/np6XnezeCwrfVOtI6RQgi9a28dEUztPss28zEGAotwjDHFiORD7Q5cBDQgVQfv3i9b1w6AYToKhuPELXgv14aiSGs1EGeWjAEUDdGcBMCHF+2CHgAFVVwzjrsXugxlEoLY1YnJ3FBNepu5Z7IDU4oy1GrtwgGxtzGgb6m3vci+W3JjBLTO6jnFOQVAbW3FUdFK7+BeUnQEN1dG76PXog7Kbj6chQQMRh1m9brJPIF1bY33yMJb3RSRUgSORHGoqisA62BgGe6ttdMuHfY4ZdrW2+31EkLIu1mItIyybSIsgY67PRhZH8QeI79++sKEvbc5z8fdbq1l2s8iEbfFGfaHQ9uqdT3t95HRty4xBGTtY7mupVYbhkBTztOU3Wxbt9evr+8+PNdWl+uNkR6Ox2mK0/QcIsUYhmO53tbzpQOdHp63ra63bd6l8BCi0NpaWVuIeV1LdbptjSSEPI+1tj6uy2q1r8uWU2Sm9Xrrw0MMClDXoqaIcDrtdnMco/dt89GZWSIio6HuDlNMOcSwbatNfRJJIai7I261lcvSezcGMK84+HDc7Q/iev78+dPnF84yPcbDvAeg9bra6A7VrLU2RAgcbAzn++l5pIzTlJAwRFGDNMU2elcF8FYqGIzeylpYGMBTiMfj4cP7dw+3h8P5+PTh3Wn3+HZ9e3l56cVTzvu8zynP76cvSAHkdHrY7Q+tltvlttvnlKaYJkpxOHz3/ffH/d57U9M5Z3l8mOb49e21FJKnVA0MqPmIFDmmCKxqLx+/VrPOVNZN0Xc5nw6HSDaGta2U3kKMPKUQMwNViwOiuSOBmasagQMBOSP4QDc3Z1ZUAyASYiEnLZqRm2sbjg4SRds2x3xMpIBD0Sk+HPIcA/XBju6DwaEobC077ki6ECBsXdUMONzNnQoOiPcK57+YL+7P/LtIwL+VPX/7izsYBN0IHEDRhts3lLUgJzZyDqjX9rDbTTt5nEP79Hkabfu4rKplrM6UcoIpr1uttyVszoS0jE+fXtc2du92rsGaGZpaAQmYpiQ5Zu2tA8sALN1tGAhTsG4+PMj798dPf7l+/vUvTz88f/jhgyE/vHv39fV6u6zXtVQ1dN62KhxCDOtatq24+TTPtVYAAIMxWnAtvcfTKcfJ3YajmRl2QhK24QOBMSCADDZiCsg+zL2VpXlb1uutLSmedpLmrQ9AQuS1tDzvPfD1bTki7aZdVbdtw6H1cknEu3lire38tl7efL3xWKT57DsdvbxdRx+0n6see/DpsEMJLoI4E4XAIU97rcXv2bQQQURyDMIi6LT1XpiCI7lCECEJTgJExobs5qROLJjn3Rhj6GhdTRUJQghqGqKIBHPYetUxhFgYhSUGAYJ7ae++g/hGCAf0OyRRzR1MFQFyTghUtm2EwSzTPN3PChy4lQ4AMYYQAwBqN0SSEKCBDQeEMQYZEEkvw8wdqLWh683kpa8bmu3mNE3Th6f9+e1V16u5QJwdBBgILEcSGO12WcrK0xz3J4x5acNjEEJREEcEd6SBAELg5t84Lr8BP9HMABDv+5n/rBgJ31qRDo6ILGpGd4/e/VNU6z6G76eHebtAX2/XcxCY9ulWOzLdLuez9v37x7Ixi6QQS7c2nA0OEkOM7E6uW90U+HbbyrYNdOZv5OMoSYFBcfTee6vlTj2NkdPQjoDabHdK4IaOZh5CZOGtFGZx81oqAM2S0dxsYAiuw9VM1ftAo7GVvq1GBGo+tPcmQimHum1CIEKmNsZQNSQw094HGBLi/ahIiIQEDiKBzJGQmYWEJqqtuXlvrQ1UNTV3hDEUAkog7drbIMGYozosy7Iuq7O3dV3WBZERaL/bpxQYUVWFqfe6rauqpSmxCDF+U6vqfVSN970qM4ckgDCGmaGZIQILiTAHQcKu2rZleXubgcK0m/MM7pfblXcHcWzDGENEIg5BeKsdnNhMwdRGmkIkEHes7fm0n6a4bfVl6RV9dXUAM2Vz0Za0PZA/CX63n6YQXi7XL9eNUxiAXZHGyMIPOZ0yJkP3Xm7F1Ga0bLps13Y9TwxEfns706iutW31rkiz1nwMAGckCpQjYm+lFWYKjJGlA5wvZ0rTIFlbc8nW2/0Tyw6EYECqVsG7+fW2PT1zSlGhNm0gJDF6IAqRWEKOKZK5MuJ5uWxrYSZhMh2mdjoep5wvl7cB9vzhOeYAqwoREaMamF3OlxDC6G35srThz++fQ8rHh2P6/e+2db0t6/7hiIh0kaFmSE/v3z9/eB+F2lreLouDP97T7zra6PNhn+ajmg9ddYwpPQDQ7XJ5e3ntS9s/JMkT5+n0IXz68urDf/+P//rl88vb5y8F6TRPx12eggDBIU7LWm6lSAy9DxYG9y8fP09TyknaCiIkHH799QuLp91kAG/nt95bCBJzFgoO6G51jO5GKbiaoRnhWovUpIStDSB+fHwn8/z19XPb6vn1IiLgsK6b5HCYjmN0VHGzNrobUdR9lFI6IO73xzugv7fRWze3PE/QcKsV0GF4DDLlvK0FDKaYf/fdj4d8rLX86c8//+lPP79//wENvn76vM/z+6d3ejq+e37vwJ8+/3o3GC61dAAlbAogYWndR5N8nHZ7iURnH6nuI26Ot25rba21xXHOMwJb1zbqdd0ube3EaT/llHRoQwPmdNgLBZ7zUrog4wCvAs7Id7YXiXvQRqMTqAMqgIfgbmgwyCvyqqC3woRDDZl1qLOo2/VyHWk8CbKqICgOUbV1pMDeRl8LgfZarbQUckaK6tGMAweOjXkZBgbAaOCE39TW/i3hYwjkvz3v70+2b934374IHMgQASEIEwBwUO8/v7zU28tfcth1e5cl7vZhzsvtGs3bdWXC+Tj/+dfPaTcd3n1Hp3fI+PGXX+robEGmh/27fZO0Gqweuo9FSddxSB44mArt0nCsbWwwCkkjgYnRsReXtpwjdUEQ99//9GM1z7tjyvtPnz99/fzVAXPeD/Ig8HjaPT/s40d9eX17e30dyypCx9PRhr+9foWQngN5G9NjAKTmij6AMUdoCs3AOLiTEYi4DUXvDE5uCXVr6/nlY3ibnn/8aZ5mimkOaTSV3ZwHff36ddwWJt5L6N12QXKm9fxW+9cEjnXl5RrqdkpwmDzrup6Xea1DjcYCY1NSgKe8n9N+kkRa2/Xlaq0HzE7DbaB4ZFYb6G7onNUYACDHhE5MJCzguI1euoOyA7A4EpFwEpGhw7u7AdB8OLp2ZGKW2tWc3FkkhMDau/n9bcKIhveYmBkj5igupH2Ae29D1ZhIAhOFobptG7GejicEbKMDOEu4n7GIxNUASCROc44p1laZWZjsG+RXmqkD5Cm9blvRz/unn54ej8XBzEupOjwIu5GWAiYUPQQKDVA3ff14e3uN+8ckIkhC3E2BhAEZCe7nNARU/0/jzjviwBHAEH97x//WioQ7/gHo26fj21ZY7j/H5AE9ER5Cen9KKYNdtlrLaX86HI7XP/1ZghyOIUYjHn1bOU4hpGkK19fz5eUqcff+3ZENrNbDLo4B27pp1+6DBbtaTKLgW91GN1ePMfhu0jGYmAgQIKUoUZBQhwE4M8e4y3lalg0RkBQMUooiREQAVmvTYTlHQZxEJAlp365njBKI5xRrq3emek6R2HrrNu69CUICV0PwEEMIQcfofRBRTAHY3YEjcWAzCCEgAAF21TFGK9XcQkrEoba+lRKU74dOVeitbVv58uXT2+vrtN/td7uHh8fAYT/vEO12vt2hHGbgYGagAFtpMSELhxjvMGgEbH24/YYmdFBzNUdAQnFHd2KmEFnVwM1s9LFt203RBRAxZ8wCJGNkCWYGjsDBSCYn1T7WamhTjPvdzKC2dPTxu2N6/3j8+uWSTc8GVpo6IgI5SG9zK++n/De7+OMU0IyhKlaEXpF7U++6y7xjTjCo14Te6mq185xijOuyBu2RubVar9eIRtD7tmjv4I7ohGBqQCgc2YY1UzVkiTEGwntJo5VKsaQctfcExo5eRnP0IIDklNpwxbA1LTdvkcq49t6Oj0996NY7AgeWGKOblm1b183G2E27dVmWZdsf99p7CIGFcXhkIcftetXW2XA3TRCnZVnPb+d5N+92h9fzW63jcDiELCklcx+9ffz0SVgen04cpY3x5evX6fDTPE/osOnl1krZ6tY0r0ve74HodllfXhczez2fp5xO+2MkXtsg4Ofvf3CJr5crdKpgX27b+uXr19u63808Z0akwAbAUQIEZLxcbsPt4d3xtloIwkg5p/W67Of5eNipet2qBEbx1rVs6+12DYF4N3cFYkKmUZEkzNMEBG0tbOqMl2XrBorYzKb9Yd7Pt61utxsB5hyHtVbaul2ixYWMOagNN8wpxpQRab1tHKXbqL312rd1I2J1YxYHMHNGNLV5SqenIxh8/fylWQcSCuEP3/+U8vT7H//w75//l9L6cb+7vl18V037w+lU2koUJLALbNpE6ZePv0jIda0iecpxjnE60GBppdZb7UtzpHneY6LbdStrLdzXrpFEkDEFrVsDDTHMU+6lvJ6vu+O8nycPyRG33ramHVE7ttIcXWJmRiMAA+yAAKZobj5A1dxJJA6CjUh1QOuMHllIYtUGMTGxVrg1y84/nN5Ngp8+/7y9XQLhvNtt10tb13mXfPRRSh/uERhyFlYJaAGQi/fhdj/ufOt5ud3PQPhb6vk+87HfZj93FuI9Lm33BjwAqN43ZM2gDy9lvJzXhxCvEj69lq+IJ8fU9Aj5YcqU6ev5T6dgl5fL67a+//778O7D+na9KV8aA8u29j+fL1tXAO6c+jCsptrdCJM09a3h0mgEGix3uuKGKrfXF/IRo/Tl2h0upe+O9bsffrq8MI0x7SZC9dZqHX1KDw+n02GnrfVSHHS7dTFF5npd4nzwrfAcJoTA1NEHKqCYg48OSjZoWCe54186uUoSHs69Rm1cVvXSL/OEmDkEwCgBxhCiY+K+LWX0FBOCTlOCdq3rV9UiU0oEk6gRDslIKn15CIDHiA6tD2u3+jIufeuHgzOcnh+mKcJhd3299K1GkZTSum5b3XQMEQEElwAIpi5CgUMUEZSu1i8X5RjIRSSkeN+JBBEKQupqDujAfK+1qJMhxN2e0O/1awAYo2tTdyNCRGgKow1ADIxBJIagYxASIgA6MYeQpsCOUGtrYyBCGwMcQ0rTlJDIzO82LxFJaVJTCTEEAbfr9aZqKSVkblWBMJAhwWESYGq1m9nb65JCnPJenBQEAhJZFqK+je3Sb199feuA0J4kzQF4qJkakLgCASE53yvL3xx49M3n+23Ug7/dAn7TAOO/zEK/fXi/SYG/sUwBTE314f1pl8Py9vnTz7/uJR2PT8L093/7N8to5bacAgeAaUpEPJDjNMHSlnr9dF1kSgdixMDkDw8PbTQWrr3VVrUUEongrY9SN3BMIcYoo1srTftIMQZhV7udr6qj1OruhOF+KLkPrAydCE291k2CmFtviogiwkSoZr2WVvJuf3w4yDyx9lGKm4ZAatbqGL07KBGhYWsNAQnJzXsfbXRCjDEK890mh+pqJm4AGCSYW+n3PREB4v3e3HtDFDe/h5POb+e1bK23EMN+3h33B3dg5BDDaPdc9fA7VoeJmcxAQmitkUmI4V5SRIQA4a5TVR33BuCdp0jEAAwIJIGQgCncI3ExgWFrCmTzKR/SzCk1QZmnzeS8NvBmyM6I7uqayI+nebdL0DdXjCIHaydrw1sFJaFmjQEZKAUR89jHhwQ/zuGnfRilNOy0lxHHVdfaOpQCgyGO3hXXBcFa3cZaxzqFwz6TTyn6aFaqtebs9zF8rwVMQwhIzIgAbr139ZRiCmLDex0YBkA47Pen0+74/NjdwtoC+qa9qbYOdQiHKDEDwXWtI80Spuv5erl9ff/d+9Pzu8vb+bbcSq+D1UQY7HK+gWKUKedECOez1jpykttyq5tMc3LzUZq5ex952hG4BOki0zSdHk45ze8/vH99OZeyUZJ1vS3LOrQ7mJOquwOU0e4hcTUu2/rp67mqxXnq6l4bT2rg5+vlcrvt98d3T88fvnt3vZxHLe7j8d27ef/wuhQN+W3ZTDgdH9+2+uuXlx+IPzw9Bhvnz199yiGIDu9bUbMQQ63dDQILA6dJIqF2K6X2YSFPgDiGIkveMRBYb2Wt4RADwbaWOlRiQCFiZmYbFcHFQxv9WqozCvnLy9nd9/M8TdMYrbf28vo2RpYgrdVpZkNwdApBogBgr62sfSe7Zdt668OB1AzA1XBoDLHF0GrPOSdJKeZ1KTQkzJmcd3mqrdVtA/Dler0t58fH9+u63dHqdbQ073//u3+NMZ3Xy+22vl2X0/Ocnx4Ws/W6rkHnh5Gua1228nobVZEpTHx5e7u8XilFR76uGxERBjAbgDHmeZ5zCGVb12UhgZzTcLstq6N0DJQkEmbswDDNDMzdhvZObnpfKBiae+9OgZSwMyDTUB9avbfdzGRwVfTuOIUwzW0pEOcf/vbvA3Ug7csian2t9VYADB2Y7uJVra1T3hFzV6+jbz4cEZHgN4Hkt1SD+53vg/hNcwpod6Tp/dH/2zfBvUN2lz4AgBMG4+CcFHTz7ubbNqTVj9oeVA99/YcfHr//4af/77/7fw6MPO8/fn7789eXz82OH541TJev17o5CaxjfFl1EM3zngTbcrPmZXSk0MdoDoNwhKBCzbmrO4LHKIfjbK2VUm0r5hjzFHq/ffpYXl9su62tGARTB+TL13Mvhdkm8imJoLLAdn4D5qfTw3Q4gSu7iwEJBoAxTM3UUMG3dRNCNzQBG0qMhHa7nqluu94PQfNjWsbY3l5G93Yrj4eHmfNyvbi1qLYLbG29fvlrDvTa27qcb7czWHv88QeJTL1NU27EL69nJ/qbH38g87FsnsJW6m15e1uv15dEMe2SkJwEvK43NCUiAALy4VbboOFBRCQFCgMHEgCLA6uSGsh0IMQIFpCmGFrdVLshmvtwJokcRd3ROzEpxQGKggBud+RqDNG9lQJmxN5KMdXe1d07QkiJAYNImoQHl176MKeOYG7gDj//9WfV/vj4vNvvHXwrLedISAAkgVm41z5MzUcK8U4UHNqhucQQE5XRIlpgs+219do7bdvAEENMMmWR0A0GUo40CaLZpVy4leyDsFNfSQ8MEjggcldnFsBxT8ER3SvY39hXSGBm34zAeCegowP4b5ys++7rzv11cECjb6ch76NNAYuOl1tf17I0enw85vmJtZ7iCE624wjARiHOWxnX3kZiT4eh+GU4nLfvpvkhJpZhreUptZEjRFq56uhjmIK7oyPxPV1MFAAUFHjK0Q1q3ZjJzFTv6VgzhxAEHFlEwN286UBEB0TgEIIOd1VmAxsSsoF7jm1dyV0IOQYj6O7DulpT7+4QRJAwxThcwXzoUDMHBMKuo+kwQnDbluoOJMHcx+hMnKfce3cAU+utmxojg+G6LKfHo6ku2220/vT4tN/tiVBCaK3f8at367DEHIJw4NENaKB7G111qGlrAcDGGPOciCQEJpLeh5uKiLoRsIgQyz2XzcJIGMyIA+e5mQwLjkEAD4gZdf/hgBK/rGNstULryINs0GDWSE7lmqIlVInGNsLyyjxOoJR9MoMEK3gIfpo5ZCGiJy6562Qw9Pb95Ltk53ot5/UJMvdSttF5lUNk7te36215a2Wcv4AAiGAQrlsZpaCrjdFNI7GyKProPQikOY6hrTRjJWAiRhIzHt0lh4fnx+Pj43yYrm+XeZ/r8HOxMbT21tRVgiOHNAHVeNqF3WSXm+AsPPeOpWrt2rvW7c1HfzoeDvtjz+PTXz8jJgrZcd22Mu0yIy6X27aV9x/eTWl6Pb/eLlct/XQ6GXVG3+2nPjpKDTnuDzsFFYatl9tyiTHujjtmNvBhmnKa9jtgviw3MzVADGF/OqWcFCxPu4ykiM1GiPxwPAgzk13L9Xh6UMZNR3G49H4ZOu336vTup78NZPV6rmWYd3Vo5m+31YYS4rSbX1/P46w//PRjjBHdTVvXsSybAcyHw23ZXl/f3r1/DiGUUu4Xo3WrQLzVjoCcpG2qtcd8H49jV+2tilCYkpmtpU3Mx9NxWZbW+jznHMPpdLhcr32M1lptIwRShXVZrtfrvJtijGOMy+WaUk45Pb5//PTrx9v1Nk8pJnYykrALuZRmthwf6P13319uN4mxtvbrr7+8vZ0/vXz59PXL588v7z88/+Ff/fTnP/68PxwO+9M//fE/JJxARvXy8eXL+bqWpu+Phx9/+p0PLdtN6/hy3sxlygGmQ2vXnPNlKW9vtxBCzHNDW4euWxe5h2c8poyObd3A9HjYIVKvo7iXqhJSCBkMj0Ips2SOkw3Q5rZC23onIgyIA73aFLMz1FEN3MEikSIPRzJAkiKEEpkTJrSin9ft//1P/7SP9NPz0+H5w8d//uf1VhAh5gSMrRUUQAAFKK7NRsHRnBXIOdzBxXSf+iDiveP7n04/v+Wf0f0e9LyfgADAUYgAHFUZERxVTTGjJEXvXpZRqHoCXop9qu041N5q//nl3Pi7D394Xf3LpZ8+/P3X7frzn79s65hoN0zGOgbiiPsBcOlEQDVMzDw8O3Anbm4dQBHUqCiAMLO4oay34qa1DCEMKc4pBvG3Lx8vb19s1LZtkvf7/T6mHCTGyFtdpiQEMLairUdJTVUAIsL5+jauN0YIu31fm1N07qYYmB+muF23HHPtNQkFJFdbr9ft8jansI/hWlcvBYP7Ru6aH3a2LcuXX1KUwz4HAgA4314u9da2Dby25YqgZ2wlxYfDTq1qV98WibHfrjmmwKi9szVdLsNwc1Sjx11Obsu6Xj5/jESfL8swmw7z4eHBFNBJJAqzqjGx2ujNUZwJUSTGEFIUQK1V3SVPVhEZfZg6gQtydPAQUpyyxYl0tFoJLDqi9cCOqlECE7iNSx9NLURutau5bgUNpl2eJMQQDHzTsq2bAUoQA/vzX/5sZofDQ4yxt2/JM4nhrqZz86Z9q8VRwTGwACH4fYQAgA7mwsTubVkKFIOom84Pj6RD1Tlgnqe1Fi3FYojepoAWnF2UfdSF6pZPh6Hugo6gfD+xGDoExzsF/VsWzpwQ/yUBfb8f+L+AIu4FMTD/diVQQrC73onFnDYbv5xvVxhYHeYD7B46TzGGnVCUVNfFiu4PJ0xxK8tNW2nQ0w4oLevqzXtd7TB92JOpxxjmeTdAkam2Pq633ho6zTkPHa6u6jEKx+TiIqzDmBnAVE2HEqG53WHKMSQA1KH3ulVKYZgjcUxJh9oYRDTn7A5qyuhgww2ECTg40bbWWjuChxAQ6c56RsRRdAx1AgliAHcVHRKlkBy8lmbut+vtPmSOMdyfOPeaaWtNh05z3soqRNuyttaihBzj48PjNGcdamY5JiRiotFGsyEiLEGHqjlJmFJMZufzxVxbH4jmDr2rBBIKwoE4jNEQMFHkIG6AyBIC3F+UGRC7glPkMFOYjVM3eno4HnM6zBLnOaZ+XrY+Vgcf4MM0RyEb6+0mWqdD4LrmXnZR4ihzjraM6vYQfTIgqs8xPOwSpWknNsPo6xu1ukfVfgOESvU4paB4a+5tw6611cvlspbSax/DwMbDcW9EtdygFeh9KwuBzSlFkVbH6EopmrqNO37N0ZyMKAqFCByGaWB27V//+hetPcYc8/6YUlVcVVt1YmKOWm7xEMG81vL+9DAx91VXWazb5W1JIY6mbd0Y6eHpUb3FeVIHH0YxYG+ltiA07Q7amhks23p+O7t5OIStrLfrCkLzfhemqQ8FBBTUOt5e15fzeb8/zPNO3T9/+Tr6UPeY87Tbv3x9W7b1cDjsjseyFUMO82Rb3ba6fzjuDvvviT/9+uXr6xeRdw+nx+N+B0SXtQ3qXy+X823pFILfETDEoFPMbu4G025/PB28j/N2nqasNmobMcaUEiLUrdyWC7ku6+30+JhivF7XmOM0Z3At69LWiuIGVnszwN1h32ozs7viSgSHjlHr9fz28HB8enom4GHXp6dHUyMgB3W13TwjQivtsDt2G29vl+W2MmKxsW1rHz2GiExm3roi87q9rOs6Rl8XzSlrt6GDoyDR5XbppvvjIcR8W26Ifnk7D2vHw+7Pf/7nUi+fv35cy3Z4PP7NT38IIfzTH/+Xf/8f/sP/8O//pw6Y9kdJ83ItX17Px+9+EKBVwdR1q2vvAk5qo7bYDBg8Z3RvbTTwbavDnFJMMfv9NF0bus8xTbsdManD6KMPg0CGOOrgxIE90BAzNPcxQm9jKIIQRgePOSJR6ZWBmnXze68gRmYF7OodvJUtmgkA+ciBt/VqRb8/5T6qt01gTFOkXWjaN8OOoiEr5kJSkCriEDKUbj7AFFHNDQmB7rQT+Pa7exoU/sX+hYgI6Pe7MeAdOIeEw/pwlxDJUU1L20CM7k3b3TTQapi/XM9wKYu+/P7ph0+jfv16gTSZhC7TbdOXtRwmdJBh1vqQNE05d/NbKRazS3APCNKcOnl3U4fh4IGQUcEBQD59fpmmjO61+ywR63hblvPbudQtz4G6OnSBLkBTlJykV6utS5SHh4eybaW2XZx6rV+/fFRCVb4wPuJ3oQ/ktN+nrdv5tkqc3j/uzy+vOWEiKcs27wTJXLsO94Qp09ThvLxMNHLQ5/R8Pb9NeuWOB3mXYliv7ZCoO4Rhy7KM9Vy31ZaLKXzd7R6fTnOeoK3n17fyetkd9ofDnpiW69KWjYTnEJvWlz/+x+3LxxCjvr1+ul7++udfOAVK6Xf/+l+5pXl3JAHtI7CIRHZxgO7WQEWCxICEpqTOfSgSQZzTlHtpRbecJojR+uDMHpPFKQShUce2BKaZsd7Oo7VAQETmGHMwUyBEpN7V3NR7600EU4w5RXc3VzR/OJ7umvrD6fDh+x/2u93ttgAiCjt8E3jV3sfQ2jqAB1YmlhDg3lBn6f3eMUIDVx3W2ui3026342p1aG9ok+Axu22jAQXTwe42ehTcRl/evkxxH+ZTDoeKWEHdjQVNNTChO7gRRndDAET6TSv/L2eg3xAQd0mwgxP5fbOC324Nal5NEREovKreHAPkaf/0i5Netw97Oca9j3hrPca0ybwWvYW5wPRp7Y3jSmmLqUEdo8YBU8NZYiLPORbVVDOC5JCXtA3rpdWyVVelJNOcR+u3Zbn7ShGh1kqI+/3uPtC6LxmJ8J4U7k2ZaZihCN0Vy4zCMuWUYug6xNFNWTjFNHrX2tX1rp4xAwCfciAk1Tv6B8zdh6ecWGSM0Vt3GLt5NocQS21VfZgas5jbaF0CI5GICLMQznPe1nW0sV3Lbjc/nB6IKEQx07t2607gFA5J0jSbO6gaIoWAjhRTFIRSex/diWKKrmbufSjxQAqIpHqPkyGRAxI4qjvfG/jA7uxMignTnqaHZlQZL31Ms4C7eIveDxG2rkZDzNVcpmnmoGWxdivXlfq2nyVjg2GUYJ6oNI+7vNUxz1msP0z8/N1ze3sNqsuXV6hrRAje5oC/e84tSGJ/udbqpm0ba1EbSHdfo9kooyAA1NtVteAYqNbGqnUTFiYKgb+pURxHHUFiTMEdytqmY5Yclto/fvyYJtlut6f9kYY9P72X3dPb+ksEPKQYd1NrOkYft3Ju1/H9cTgHoLKtxcavv3y6nG8ffvxAU9iuilv9ell6beoIpiy0m2YGv5xfR29TyuCKNwD1ZVuZ+OXtEqLEHOrQ27rNQgJuZrXVj798ijkJi5l9+fxlt99bH18/vzx/eP/+/QeRWEvrrX369eNuvyMkZr6+Xa+X2+PzIxGNNhAxxmgGow9XTTFv26amvbXbsjlxd+8KBHZ7eXnapdMu2rahkATpXVXNGS/rDQAlcppEtVjvrmq9icj337+bDwcdMO9j2vEYpWwdXfenqXd1pzRN8262PshckAJxK92DsEjOfAdD9wEIY55mBF/OVzVzMAih1X4938w95z3LNM+uSm9v5xBzCGFbN3OAPtyNmUZZex9t3UzViLxrjokyiaTd/nBCOJ+vl9u62+O83719/bo7zO+PT7fr9t2P3/388uv/63/8d2XUp/fvRiultf/+//Pf/eWvv1wuy+/+8Hf/5//r/+35h7/lP/4ZJb28blGCuqTDtPX+y6cvBLbLOcXQWmUmUx2tg5oj9KLOSEBTSiHnBuvyVsA0pLyLkYUH+NIUHLuCO2xqUI2C70z2jpMgbUOGzxLWqiFJN2eC3lsAIJKu1kGJOIeYGcYYtfWcJRGrNWz9QH4kedxPWs6vf/mjAlG9zjySUBl9WWuFXCWcIV8hLRQLhgY8iMzBmMzoPtAhv3Og8V+qLXYP/Pi/3HjBwRwQnOA38XE3dXTK4jJKXYOWiLKPbERqxMJavQtuYMZCTK5YXosuN0FB9Prxy2baQ+Bp38NsDERtmm2aIktYmjJQIxssAqzDumBHMA92X1IgqhmCMZOQYEhRm96ul7fLNecEBLVWHW2e0uEwlTLaerNR0Pt2g8v1Mnqj3R7yHFJ0IEQotW29gVCeduv5JUdGSUQNFs4USlsun3/N776TsrBjv3UC2+8f1ettvbUKt5GnWY7H3OrCoyQL0tZDNDwGcpex9b5cvn5Ea8f9DHOcJ0LXnmOIMqrtd7MwgWqWoDKu10ut1cBizKouwmP0IPR42pVSoCHRmMRxzr+QXde3ekVI+aff/R3m0ADMCCikGMGh9z68G/lgiiGY3jEpaEoSgkyhSFiH2GHnh1138qGNCYhMgrsBMAAaQBCurnNK7l1r66MxY55jLUOHIaGguBkhIQHJHeyCQQISmaqr/8M//MO753c/fPfD0M4YSi3btm5amSmImHof+m3HrdrHMFcEQsDRtSxbHQ04OLizoDuZ0Wi2XUKeQEu7rW5FAZklMQcJb2/NVFE9iF2X2/b6YpamD9EFDZRRVJXu3XZ3sLsPmNzVwBDuIRX4l8/AffPl30Jy36zfiL95gO9QP0cDViRj7mDsVIzr0MvSX0Y/SpDm1TJ2pGUYSzW+jPEGWAZ2iRZj89CNsHX09i7hKSS2EUkoiGWA7ja8dGil7+Y5pTi6mluKYpbNlJgkBFULIUqgu8JmqLo7ESMSgCO5A4cgQPd/owcRQpTIRtbb6NqN6p72acoAWK5brRUJA0szYyK6o5Lch6qbpxS7qgMIi9td+XKnwlPOExKpjqIVCRCBhNRtlJZj3s2z2nAzJjK3JHI6HREJAIIwAPx24iVCIiYhUbPWBhGnGInZmd3cTVPO3gmQQogKqjoQSQ3UzM11uIMaIQAyh29nV9VhRhIoBJNsMnN6gHTqBr0vH6+34yF6oLfz515wDi5t0PDEkQNPQY4pxzng6rldj2maoyVyBKvWqmFrfZ5TQEmkpH0XYsIBZDiciNatdm+IigPmY4hh9KS9QAR8XbcUeAsBCSk6I2ZhdrPeoFeCQQLWrIxm4KMTOoYUECEEFoLRGqKbOaKHEPOUgDlnPK/LsvX9PMecPjy9e3g4XfsI7DmAD82oBA2Di7YIROB1LQEhxGhmiDzUf/nly+G445Tm01HdD88nBthua9kWAmIhBaijA9Hjw2ndStm2UjYCDKE9PD7UZSutsZAhMjdz79qn3ZTSZOa1dQQYqvvjgSTsj8cxtPTN3FKaAKpImKZs3YTC4+Npt9+7wRhmxBhk9HFbN7WxywmJxhjn2/b4eLJtvZ6Xcn2bctpF8t68QwqyrUsj+FJekDEKjdoBcT7M+5zrrbh1JgxMMcY0pcv5Ump7/PB+uG/L0rd1jC5JYk4kYd5NKeUKVVWjkKOZe5SQ5xyYVMd1uS7XZZpzTkmbT9Psw/roqLi2tdQKANfrsm3FCXrvAJ5zBnQ1ALfeBhLEJL13M5XAHGNAjhKmHDNmQww53/sHZrrf73KK5PDl66dA4YcfTs7w8fXTH//yp//u3/0/Ysx/+uN/rG388vETQ9jNx59++tvvPnyf590ffvf7Zu4oDk6Et+sK6LKLdV3X0UcAJdBatXQCs3ovXqAN7cs2JExTQuZOpGP0WixLCgKAc05NoaIDQ4i8jm51pCjTvJvR5zpkShXCZR0dWAjLVhCdyNWcWUa3jjiHCKbkGsyg9P1phyH128KtfzjuJ4FtcV2vymytAvg2sHqoJjXubs6L55VkI6nAnVDvzR0HR3K8O67u99xvY353cHT3b12wf9GhKiiYMzIisMgdldjHYLDMJIxg2loTlnvNyNy7ggWCmAbBJqR1ME4B0Edbr1UJUbKntA4Q4YfjKQma6tbqtdbBOEjUuagDkQIooCPdo5OABEz3tLYQgbkCIzK20nqvIQVVdTM3B4cgNBh09Nv5XGttveA97OSITAR0l2YJADlNLKW1y+ePElI3r6+vHLOp8Vouf7nM88ROti3zPI+PG1wXXi7AsG23CPuU8+M8gWMiWF9fYTTWwg7r61JaKddLyjEQG5BwfHx4IHRwzDmfTsdeivbBTLvd4bYsw6yPIawPzw/rjT/9+mn07uZqY57iclkVjHOq1q7run/87vj87vDdB4iTmtdqw7F1YCcO2YyqjxiTpVmHOTgKCKKiNUFFqTl7SC1kdDJsPEAY0Tz4oA4ZWUbvvYiZAAwfSErkYzihpBTc2cF02GGfwF372LzWrZZeJAgYblshxKfHhw8f3re21dYDh98ahXeAttlwR2eJrtpqs6HIYOZDlYSQQZzVXGsj8TuIqZcK3gkB+0D09bUY8Lw/DKZabbSxm2c07Yoz0u3tK4OE56cQBdSYuKm7+vDBjBxCV2UnQAAktbtC/v5N/58fg7613QHhLgF2vPMiiJ3vwe+hCoiORMxEoei4ur5tJcIQE9UA+I05NAYMnGrkQnEQD9dAUOOsWlW3NsBZZuKJnGnA2KCDNbU2Ukq7x92Up8vb+Xq5psB7nkupw52YYor3Aj8Tm1ugYGZIzCRGTuQc+J6hIYaQhAOjedOORMOtj6FWvSs5OljT3mqPIdy3guDWddxhqHfZ1h1kYGDEHAB6EDUtpaSYQwiIWGoRVnDUYRzEdLTaiHBKeajfbjcSOp6OCBhC1KHEGEKg+/+CuTuwRGFBRBiD2IWZOMQUKMZStr61KMHcdQwfDd1ZkJmZ5X7mCyEY8P1JZmD38V0f0N2BQSh72Fs+3mgGSoZubctoG9jmlncpo+6DP7NAgRhlePDevLUp0i7h8+n5lEiCum+1brcyrlUvazOSOQg0nQKeIk1CSGFtZd7tvbS+3hCHay/XRUvXaskQiX3t8ZgJS9POTIzEZKDqo+Ysd0OkRx4adXRr3QHBQJtZZHD4RvF0SDnt9weR2AEPjw8k8nZbH7/7YTen/HCo1l6vl8BwSsFHg/UivU3k3z/uP+wkRppDrrdVKDjyu+8/7A7H8/VC7PNxH3IwQQ/OISSSdevL7WZj5JxTTGmaHD3ECYlqH2OMFOi2rCFKbW15WU5tvP/uXa/dDI4Pj/vD4e3tjUWGRgCKMQSJw+zz50916OPT87vvntx0uV7asj2eHoRDaUWAtnK3jdXS2pynDijmw+Fht7tsZTenWy/e6jHTw8O8yxO0cns5JyJBAjcJkU2Gj61VQr9jHGqrUDuCpd3u9OHkDufL+eX1DZD06+u826UUW4qISMgsLEEQHEA5oBiPoTpU1Sy4u9/WtbfmYGoWUxYO4P748OBDAaC18vOvb8uy7PdHZl5LuS0bMYWQTF1NVbW3VutGRGtZYwy99cN8+O7p/cPxWLYCDkhYe99au66bDj09Phx3u8gR98CEJBTj9Puf5v/T/zHY+L//T//0P7dW//znP0pO33333e9//PvIux/e/83XXz/XXz4en9/PcXfdrufzhURCDsh8Z01dtnJMB8kBDVRbitGYBJED1zoSuoCCjsAwJenoOcYcYhJBs8R42CVWaGA5R+2wldG7jerF6g58L9I4mvlb6aoAwcxAuw1wY0YUJB7oQzU67imkOTw8HzHK4iTUpBuO8dOHD2QnbO369XWttQFWyCvxhdINZPG0EhekDjiQ1AGI7v6KO9XtXm2515vRv6Wc79hDQLBvDoz7n438LoMawdTMAqjXjkIKQFEwooILIHZlAyJ3d0lsWwXKlPdWizLCCMbatLsHCuKI3fvW9Lb1OrSMXrsqs8U4XP2uGwA3IAcwVxEmQyQABOtDrpdrawOJAX2aJlcLQgOhNG1b6bWjEDMSoKrC3VoA7ta3ZeEQWPA+QE6B590MaAI6aivr0gZYrvvjISKut7MRHo/flVqztnFe1t5Syj++O5WtNFVR56GTMALhGNeXr21bttvtsJtiDFOSXXpKKY3el2UhQAZCgJDC8XQQYZOASBJoojDt5mXdylaJIQaGaT49PZR1bdqQ4Odff0bEOsbSe2f48Ic/fPjpX//Nv/m3vDt8XZaOCDOO4q1DDgLDmiGk3DkTJ3NrfdvFOU3x5Xp1DoPk1qA30NaJRZuJYwbIAAiQAQVR0Ly1UQu4o3gQJgYzd4AYg0jsfaiMlILbWFfb1k2tj963dcvztD/sX15et96++/77221xABNTVxZBIVPvTYGcCInBiczdCc3NzFTvi+YYI5WigMjsgA5oLBgI27oQ0jRl21p3rbfl+nZx99P+gJDKsorQ83Ffv16xXOz26qMhCtrMZoaEMQyz+5veXBHpXiw292+fAP8t+fZbJOg3Zwyi492nR3CXA+PdEWbg5shEhqwc1bU2ZHd3MhSKbK404J5jVOCOAkxjOFJi5ML8Ut3HcITniBglgIbcc9ep9a7jcJpPzw9EZKqqA9SAMSFa7WAGBIToCAPMAQgpTdFchzmQoKADubHEQATIv81YUMCdWHKiMQAcRxtta+AeYkJwIHD8tgobfYw+kElN+1B1NXMd407fcXJkcrcx3MxjiEToBhyYmUcf06TEeFtvt9siLIfD/vTwUNbSe0shiDARuQEB3+dGEoWQdSgSMpGZEbhEcQcfhoAhEnFaFx1DGTnERMLkRE4c6Nsw6T7pRWaOyKLOAGSya2GGfBrxsFBsAwGReVpFvxR4OEzv3j3y7Wqlrm/lVltdbkxJjXprvQMFfMjTIcZGdRl8Bn7p7dptHV5fbzan5yxzTFBKSru42/frAmrzbnfdSp5mEii91q30taS8692tDhgDbaznNw2CKToEHUpuKQkJLtfihLs5bauru6reFQqqA4ECUwppt5+eHh/38wE5NETMOTSlahByo/DWOo3erU85pl2WuK5LCYky2h++fzqKzWhBgGXfRjU3Bj8+TBKg6ZAU59OUp6StL3XdT/Hh8bhtN0Da7XbX8+1Pf/mLBP7+w/d5OuYxRu/d3KzHOQORpIjCQ621vjse7oVBME85zhQkBlXVbdPWzZ2IdtOcp8yIfdtuy1a2jbxelhverjzl4dbUQp52p9OUYiTEMUqpuzkHom7b02GWFA77k4jU88AcshA45jmGlMIuXs7n2vq0T5GDtaGATIjOY4AbEpMhsQQ1L2uddzsEnvLE807NbksR4TIKoqt6ry1OKc9T7YOZu2odI6WYp0R0L5xiELlcz8f9fvReSlUFBxcJD4+PyOGhD0d/e3sb3fpoEgURDO16PrNgCMxMQcLzu+c5T4H5crmqaqt1rdWJ9oddjqFe17Cjh/2+rFvdegz44f2H999/9/J6+eXLl9t2Fgm//93f/e6nv//dT397Pq+lLGspDdTAn5/f97rU2/n5/bt5Smpa6jjk0AisbvvDTDEVg/00WR1JWE1HDPvTFGJkpFGGMKZDnndzENbeyIBUBYHRbRQDFWAE0DHezpfsLQt5YFAH7601Zbl3XxCcyBkIhXwMV2AhcIghpxBaVW3DHBBpuVx5F/bHQy/8dq0tzg3ja2kbxjPQwvnmUiA05AbUARxRwRHwt0YLAIKj32Oe6HewMyIAfaMC4TdE4r25enekuvXa3C2GMIecplzLdqulrEucsxMGQAlMBk5QYJTSvfbiwim5sTFITM4MDsORgF0GuL0sS2u1mhqROoQojmB0X9MDAaMjfis4wL2046BoLsTUWmUKLMyBwhQJoXc0VXVDdjcz9ZiiTIkAlnVlxhAFAZnNFVQtxDDnKOi1VKt1niaiTML7wxGI1nWbWLeyfvmljD5iCIHFas1TeHx+GGNXu/WhtfQQOAiDu9n4+va2XC/lyo9Pp6en5yAhSOil1nVLKQjtWmsxxrq221hSjO7W18EBzG3bam+dmEsdgPjw/HCNQoF676/LlRjPZf1yvdy6Pf7+v/jhH/9Lfvzp02Xpu6eUs2u3tfmiS+19qIRAwG9vt1C2vm36tmrpIYf9u+fpMANy81rG2B2fRPLNbsOtolrtWlcC2yXIEgQGdBECDgRmWo0A1X0MRWREEGF0J8IQSJWFWAL3PlhkW9Zff/313YcPhhCn3IdW063We1CX7nVEB3ccXQEcEVtvjIgEEgMRAWIfw9GRSdWRXASJGMFCZHVupYV7eV8RVSUEYTTlVrpHSwg8Nigw3j5DLvFwCIy1g5JQCoA8xhBmv6/WwBwdkO/dL/pt+uPwn/ny/uUg9G049K0oAOD3tRoQACE4uMEwZExO0ImUDAXcVYazowMZkBGgQ2RhAERWkoVxYKujvI1RAI4sOe9ZYVIDwpTCPk86xhyjPD7erosDAbTandAxADHbfbWHdzohkY4BhgBB5H4WYBYWHmbgwJFDCD7MVTlGERROhMIccpydx2hVxz1i6wToZr03sbvsdhATCQL40AHoghIkONi2boiUp0TAikqCvffaChKKyOvL27Zu79497/e7eZpHU2ba7SYboDocjeh+6yJAHoajG6BLCLU2ByRiNwd3ZhYRD2gGDk5MxARI7IhwL8WjGqo5IIpEjtk5Egai5Gk/0knnU49ThVAcKRAH/tKqvViaGS8uA8GE1ags9XUbGCDn/S4g42gK6+qjb718KrcXx7OG6uIp4hilW3yamfn6diOz58PznKblfGUgM6+9PT0+ic7XT7+aWQzCoDGDkB9yvJhTa8zIgRggTUGY1NTcunaJGETIkclMTUSCIDNj5DntHo/Hx+Mhp72kdBv2ci2l+dr9bW0N8arXXYosLMTuuEPfTbKfYjJ7mhB7660aZ0rMHLxU7T1yisfp5fUcGGMMKedwmttyyyRjXRmwd82JSfjLl6+npwcKwd1jyq0O1THv589fXnrrp9Pp8d27XhpLIIe2lSlGBtBep32SQBUsihxOR07hcl4+//rLrpy+//Dd8/O7Xvu2bQ+nU7JoiI7Y2pj283w6mTrEsD/Mv/7zP6MOifLw7j2T3LYS8uSt7MJ03M9XHwB+va0hMQuvZUXTh+P+uN+76rVdd7tdZKxLab2/vp2RZC0NnBjx9PS0m/fr7dqrcRYbLhiYwIHKWpHJXFtthHQ87ojFAfNuSszmykKjDQN1gpjC9XIlxDspbZpnR0CkaZ5Z+7aVlDIkR55bbTnGUtecQ+kbOB4Oh13eOUJrLUSZpjTc1lrn/Q6Ydnnurc9Px8NhV7c2p7m2sxsgcW/9v/ov/9e39frLp58fT09/92/+fjc/fP7ydr5dc9wDEaqv58s85cMuPe5/POz20zQx0bKsl/N5G5p304Rs7sLMYwRyMetrmXLYp+QAo7fRWggiwjZ0a02AxtA+urMg4Ci9ATUndySeaq2MNp12OYX1vNZt1e6SYisdzIUc3QgdidRtjpw5DehL7eXez6OBbWTTmePm4T/+8rXX7XJdOE2L8xuGDfPCvGJeARVjNxqAet843Hk/3/TF8G2KD3cPEpijoxsYwLezzz0Himh4HwrdUQXI94erOL3fHzykNrWlLtdtbaZBHIDv0WMNiEIcY2tDy0JuSINRxczBOafmVmsBUCKEKYjKAGBiJQRGRITBcH/QERAaAdlQctLRzUfiIPd/D+L9Uc9uruDMLCFab64GDiFISoGQj4eZGEYdQiJC4N7VXdUH+hiAKAhk6r0eHvb74yHE1HpvPqIARFqul1Yb7ua4myMBqfatMKcoQZsnSSkKosXI2oHQkP16fQMfQrg/HFot18tFTRFCigkBhbnXhoghirCU0oaOZVnLVpg5xqCuZkpAKJym1FQhhJfz219++WtD20bCaTc/fuh5jxoxoAlPgXDqncu4lrJopLBeb5+/ftodI7q28+3l8wsE+mDjw5T2jx++z3lt1tSgtYfjoY9abzetLcK9aw0AkNKUIkemYbotN4XqhGjQuyLYGArgzsTiSPcrO6ggMiPCsBFzuq23Xz99fH73QbWXVoYrBUJANwACv48QAEwHEamqiIQYY4iEqHpnBeGdNA1gKAg+xlBXdeTL+aJABvju/QfahTo6I0zztFzD6HW7XXE08YDtFoLIEET3ZShHTiIhqzsiOIG63Q//+Fvv8a75vhPn7lWwe7bmPjG975DvHEVH++YSvkeLzPE3gMT9RmscTHxYIwAmcvN7xAoQ3A2R7hPZccfuMfcOm7e26PvID87eWHjKMwF0bdpLGXVQiGmiOtqoXR0wCIdAJHcmMwdurQ5VNQUiDhzDNIa20V3dCR2QgyCx2bdRq6lLCCSSU+bAhUNbV9Nxb00BMLqzMDGzSJ5z2YqITFMepu12q7WKBEAfvZdSQghDuZS6bsvdEVbqlmPaH/ZIGGM8no5B4mgd3USCkChpa3e/L4sEDjwM3O0ewOIgPBQBCJkEYoiqQ5iIg8lAJo7SW0NCBkZiRnZHBlRHBXCJKrNJVk4W5hHnng415C6pGA5mQCdj4Pym408vbVs/p7E+zeF4OBx6q5uey5CIhznzaL21tRQhumz6+VwvMd+Aqzq773JmHyGmmKiutq63Y5ynKY4S2nJDdB0mITiMoUOtA0AMMscEiNNxPx5PaCoOwVGE5hxV+7aU0Zr2AQ6IGFMkkK0UCQxI94iXCE5TGDqWrQSUL+ftUntxqi6fzuWEzKC9jtN+hzBgaBqddDyQfPd0zNZ19Lout9FiTDmlw+5YeP36+UvtzQNjC8ttc8TQ8fr1tRDfXt8ul5uZESUE/N/97/8PkoL2MXodbk3HlKf9/sAkf/zjn3Y6QowMKPdzM2KrG6LXrS5+lRjGXaZinkNcef3500di6qeHmOJuN2/uh+PD4/sPl3V5ud3O11swwxRLqcTH4bvd6WEK9PPPf62/fDwcj4ec5im9vb6yMOgIbjyl822pa9kdgg3dTfM+T3ewACG12qfjnHe7Wtv1diXSmMJWm4PP81xrLaURyRiOSPv9jAQaRq3NzVJIgMAhqtsYHlIAxHVZQ6S6lMC8O+6sj/P57Krzbhen+Byf367XabfvXWur1+X29nYp2/bu3fNumpfh63I9nfYPp/1f//pzSGk3z5Hitm4q4fHhQMyX6zLMAqI5rGXTOsBc2/j1l09L3ZZS1FHdgfjh4fTf/lf/7ZfX3+U8HR8Owunl6xXd55xTnu8ZhO1y2U3v3j0fy1a0wP54PD0/HoTezjjt5t1uBwC+P17erm3bHk57fDi4qw09X65AMIYqIFEKkdVovZWylWoa9nMIMTLcaT+oYL07IScJ8xyT6OutlSqcAADMiJANBCCh2uiOto/EJKa4ld7agCClqPUxMyS0qfRxrV2booxiFuZb8IKxERfDQXK/ZIITA5qaIJnfR+PfQLbfJvtoDnxfIf9W/gXA30wY9q3u4u5uJlEQuNd6Xcee8RTl3fPzuoVz4GFDWLbSL6UOdRyEKIBopjYG9CHJWy1B1YnBmrtC39yNiBGBwQXufGqoYxgSYCBCdHRXRLu31mqtIpxSlK5SthqCqPdaWsqJEBAw5zxPklIa+o3cr8OA0N2jCN390wiqBmaEbqp1K1MK835C9Nt1+fr5Mwu62bIsdVnJdcqS0uHL5y8Aqr2jE2No2wg55nmKD/uYEpHXtvayllJikuuvb9pajLRt65RnJprSbLq20mMMjKTNaukhChh2cMnRNgCgNE85ZXO/vl5iik5grrcvb1tt//zHv7ydLwPVo+wenynNn1+v+f1JDS5fl8fnRwyRAu3fJZ0Tv4Fvm5bFb9f947vj8ZEenv/wt79btvWy3N4+/rVvt8fHDz+cHqvC69s2rKOa97Gf9zvxCcz6cq1FJtqliRHaurZuoztLdLZWK7AjY6tdDdhAIiWOCKBmrS21lTzvnt89//Lp1z//6S9xmgy8jhZCDBIAvG199CHCgMaI6GTfyAvG34Yorqb3gYsI33kNYwwEBPXaelNrpbTmHJlRYwwgsNuFWgYHdPWU+ZCOzqGsl8t1Ob1/z2nWTTHv2Q5IcTgCOBLRN+SMItg3zBV8m/PQbzDo3/CghoDsCN8giGjgdreDEZr/p+YAI8g3lZiC+T0yg2oIZAB+/2H4TcVh9zOUgKny3JUV+rr1N9Odxcc5Yb2xtm2z0bx1Z0QM0QwGVpfojiQ55ggIyEDMCqS9uZt145DjvOc+vBQ17aZMFDnEwNobAk0pjKFmNlpRvWvBzHwAKQeAQdqbqQJ4zgkRwU1N61qGdmZWHYgoQmPoum5jdECIlsyt1jpUzWzbCiOty0qEDw+nedoRQS0bExNgr93cCEgCS4jEpObMyEj32xsAknDKKaUYWHz4tm0MKEABUZgBKeZsDuBELAiiDt0BMBKzSfQwmew1TCNMXabKoXDsQIpkAOSsAJ25An+6leW6HaDE9HiM08PpXYD9vG0XHVq7zBFsvPZR2vjS/aVTlzhSbqA8RkPhFAdCnueg86iXVt9ySDnh+rblzGlOrgPB0GyUfn59gykz6HI5C/NjDofp9Pr5M6lOadKtLNvSavHuSeIYQ8cABIcxpamMel+o73LazTOAl63xFLauX6uqHFQCyqE7NAyzWKmrl8thnn788Mx9Ov/6l6lzqAt2m4OEmLayBiGGWLbldr69vlzinJnD7a1m5ykBAa3n7bqtMIaZm3lvtWv/4cfvnfDl62tttdX+/Q8/HA7Hy/k1TdO/+cd/ALfL5fb+6UmCoLlbRwBPsW1VW0cHEYZArp0RckrTvEsxDh3XlyuzpNN+I3Bt1zputaVpF6e5F/Vu22X92MYU4yEfQt4DmLlNkZ/2ecL9elvAEdxul+s8T9trX65LL32eJnZe1rJuyzRlYt5aY2JFT/OcU57mCTk4wL2QOM/zfJjrVs30sN/11qqV6ZRbr2Xbdvt9nPJ1WbdyjTn21j798vG779+nGNxUa6/bZtoJ6XK9zrtdStP7XSaRWtoYffQBpu/fPUcJb19fbpe34/FA7v/0//v3u/1+ypmJSylBRFu3V2Xmt9u1mdVSHWCKIQaZ5vk+PW1jxJiJOMbQ+lguSxLZpx0zByAbesy7/C5N815Cuj/nWh8zitd+ezvbNL97eoiI4vY0T8fjYZrm6/UKADyniv6wm9TGba2MuNtHFClb66NNc57yfLmcl21ttQGjq8Zs+4QZwuDweq2tbmmeDscjUCjDgANLSBQMUBjBISdJCDB60ybCNGpxqxAqekGUnKvIplYA2RWaMaeqBBIHUgep6INEFR3Fge5tXgIAA/7NegHoYHRfhMHdZY3w7Y6LeJ9z30thdKfjAtz5vna/KQKoGUowtJeybKvfLtdI+uHxwAyJeKh9vt7+en3RkMYYOBB8ABkHS0mqau8NHKUS+UhW0WyiDEOtdwCykKuaOWqI3RWIicEdgViHEVM+ZK8VWj8RCvj9hmiE7GZ3u3cbQ0JgJgMMAepW1ZQTCtJQQAAhclVwI7xbQVCE3AzMp5Rb6bdlvbxdS6zX22VdV/Px9PyYpphCBINt2x4fnkMIl2s5pR0TxzxJCGVb3F3HWNcFUGtZe2nPTw95mhx83s2m4ADrsmgfeQplK/d2nY1+K23ez2ZGTIQA4KOPmEJMwREu17ptNR92P/zwE0pctls4HP7wb//rH3//u9u6lK8fkSe7LjillIOZXc/n/TTNU/76+pXdfv/Tdw/Px5DT6fFZWG632/V6ubydP/38x5e//vyv/s1/cXh4XqHV2+KScpIUGdHraEP7aD0AoPMo23ZbHJxj1DYM3MBBTUIKZqq9te4U9vNEzL33GfT+TXY6nZZSDLy26kTmyCJI7GZESERuFmNARG2KbjFFcHd3IFA3U2VmIFJVFr4fHZgRGaB739bjfnak63V5+/r18LCnQG3xdRmELgQSUkjShosrC0vfBC0MWG+9T1lYhOMwvFf63Z2dCMHd7Fu2B76p8vzej/xteeyGiL/xsfBbYZ6+Xcbd4f4q4O7q95c2NyIEpjtR2N3RHNkB0NzulwxCUIQ+3ANLnIuNNraBoYSuaOhhz9jRYqYU5zZG7909cNzfN1qSssyx1W4O2rWbADNTcBooUeIM0CaObbTRKyOkGFOQdZi5iYgQb6Ws27o/HUaztZTltgKZqd1FTrUUcI8pBglEGIIsy+18PseQ5sOccx696xh3wLcDuPlunolRxyilgvs0TW5m5ofDobWaYrzTJplZhMzITRERkQnpPoFDZiC9C85+u7dBFIF558McjQBiEEBgQGQehghMEs35TsaBkCBOxlHDrGFuceocN6RO0hDvgXd2EARlckQPcV3U3DmGj9XCppnT4f2uv17ePn1WB3nYI2KrbSv9c61vXWknHlLthQ3q0IKgEIw8zRNDUeul9GUtMYsLuHXTNqynLEj4dn7VRThNKTCaPb173M95fX0B9CnytdRtWYcODixMd9eeuYlQCAScKLAISZhinoeiuouE0k2Jh4TSfSut1BZaSBNMYhl9RxC0BdDHOU+Bbm8vNurj00mAUgjTNCFCWTcg//DjBwnRiL5+uWjXujaBCHZX2si8w6Gqqufrcj5fpt2s2scYz89Pz89PAFS2yEQxxdH65XIGU1C4dwzqWlj4eNyNpjFnc1u30t1Tnk313fPT6eGYk1zeaoHy8PS0bMtt3dYytt5rVyit1dbLlh4fQNjYDOnD9999/fJFOEw5aut13W7X67zbx5x6BRd5fn6+vl3aaHWro/atbsjeR0s5brWPvj09PxF/y6CHlHqp5/Plcjn/8OMPiHgnhvXWTHWa0v6wP7+9tVpjCGD3r1HsvW/r1voYwx5OU9/W6+tluV2PD4dpN58vKzKlXUagl9e38/VCiIfD7uF0WC63uqzex/Pp8enp2Fo55DmlBGbgBoQKVms/X24SwlbqAGfmlNJ+t386HMKUfvnLxzLGtJsA6B/+8R/Xdfn515/fvXtXSgBwHV6vZVnLu8NDSLn0sdXubn2MlLMwXy/XMcZ1uZ0vl4mljrbLkQnreoPeAgmBp5z6clvLZgTTNAvnbspz2spdFQ19qAPkeYZgQ1u99WEYdjGlPAZdlzVJjCy11OEKBIEDIQOz56hqUQhbF9cYOec0WG5bvZVFMVWHgWQ5+/A61MHMjSRgJEWsagPIGLu5E/B/NsVRU/qWVADFe9GX7t+891/+rRYF5vat6AtI39yC3xSRTHQftWr3PnrIWZEqeitbG31m83M/JD7sj//q734KP/+69VtxsMC19mGNyXKgmXyKcWtjuNGoUTCmyKYCBqZEMO1mjfmlVAJawQC861ASR26mkjOBt7olKCfWf/vhUSRGBMwp35H3TgiOtbTWRowBiXrvtXYzZSaOFJP4ZjoUEYb5PSboBm5aS9XheZr2+8Pp9Khm58tZfeQpo3vZtlLW1qpwTDmruTnkeWp9SG0x77Z1+/rlM7IxegjhcumH43FMPeQJhYHJQVPKALONhojCLEyIggjrstZSTVWYUwx34hzOuK0bAApRDNEBAse/+Zvf7U+Pf/rLX/7hv/lvvv+7fzQMuI2cJMTEW0lauS8Mvs8hR6wdn98/0/Ggo7lA2M2N8PW2CPrTh+eHw8F7+/zx45/+/f/43Y+/Pzz9wPvQKN7qtm2rhBCZDIFTqG31vqHqHeTLCZFA+zAYYNBHGTZEKKSJRRy5dd22SgBTntVgTuFvfvjJGAZizBPLUNX7xhUdonBgHuPeM3RmvuOYh6l3N7i/KYEI0N0ciICJEbGPrm7TlFjIHRi03i6gdai6Q5ymNE1rK6qcp9PpmGvpxBIDjVH9diMOsGacM2dxkGHg7gzAQIje3Y2+KTC+KTHuEmG/l2/ovr4DQPzNDnafpJIDAbrDfdbqAHp/CSQEH273tRcxod1vJw5g94HKXcWhaBzZHYcDYASBrn11WlRzPDY06dsp5ojetrr2TQk8ZXJzU8qzhTDM29Buo1NjgJSIRzGwgWSILJQgMiAJGHIzHMhmRCDECKwg7ABjjD4aMLqDDkWgKSbr2lo1M1VVg5hiTtPr28vlensm2O329zVlisnA7k9nIjL3Tp1ZgshdpeJqZmpD0YGJmVkSB4ruzqTqSgRIJATqiMwSg1nvrbm7WjcdagNAAQ3cObJAvOO5wQICA4lhUBLFMIAp7z3NXXLhaXCoITSAhqyAncgdyJABBF2QFWk4cJo7hAv2bVk2P5/m+G5/fNuqKUji23U97jMi9qoDg7Ju3b2YGvgYCuiAy3V55bEjtaYpZzU1QhLprcxTzFnE4Pn5pAhxqee1gnCasqTw+PyQQpofHrbbhUUCk/eO4HPacQhIofXzPE0xBwAg897H6enx3fOH/eGk5lsdHWEbHQIhGurgsp4Yn3L68Xl/iCDeHw/zYQ7YqXt27WXU03Fv6K/Xy4cPH+b9sSy3NjoHSlPamqpqH71euw378ksdfdvNOabkFHTZ1Pvx6SlOM7EAICOvy/b06K59v5+ZaFu3sq3zlN3UTFtt27YSUgxRhA+nHTGb+Vru36Lm2h8f9jkFRJ+mUGsbdatdl/PFJC51XdaF2WnoxPz+dMw5jaGXl9cphcfTEdGXtZiEW6lL69f29uGH70+7mSjW0r0NHyNLfP36EnN4eDy5e5DAJNdxq7XGmJyhryXGIEzjev3+hw+m7eXL8vT0yBK32xoCPb17nHMu243oYKZl24LIw/Hwy8ePtbTdPKUU61Z6KeCap0gktXZA4BBiSq3W2rZWtseHp+PxdH17Q9X3T6eYgrYmwg+nWQK+3W6fv3z57ocfpjmp6jAzhnXU87L88LufOOSHh6PWZsLn223/eFDGpuP9++8kBWy42806ek4JGa3Zr3+9Qh+HHPI0VVXB7fPnFxBmwi9fv768vQ3XnKe35TzF8Ph0/O5v/tWPP3z/9vHL26/Fank6PQLir58+wxgkVLetu319ed0/HVsf27Jc6FxaYQlPz89D2+X6Zg7BwWpNeb+bMyAx0na59VZ2c+SYzKyPFgIzqJvqgCAkLNY7I837faW+weqYquLWGqQEzKroiDhhd1LzrmBIToyEfIfTugOgoToosuu3R7gbkvu3UMNv1lNEgu6GCIzUxwgk5oYGBGSuwqxmvXckNgMGSjwNg61XDpQOua9b6eoI7PByfj18zWLtu+P8+bKUrcGwBD0BzAwzuOR0blp8DAc0mKJ4VdYOfcwsj1NegC6lRiYLEbEPwG4OITklJzFvjLZn/Ten6f/yv/pB8pxHG7X1IALgY1hK2QG2ba2t3KVxdO99tXZfRSACGKjpXe9BQtbdhil4SkwUUqYYUinbPM0xBwlcy7Zty7oujHzY7x3ZkQxgjAGOffQguG1NdURGJnh4OPRabudzjvnh9JBSrNvmXXc7ZaKcYu8d1KYcWnc3G95TTr03bRBz2k8TMrtDRxyqrbcxupuZWi3t+eHhf/Nf/2+vhuuy5Wy7KNQb6OXDY0Zi1k6RN/WtbJKCa9ilaZ7z4q25LXVgikhYdID5T3/4/dPD46+//Pr29iXm3eHpvex3/GXrxXQsjpSCsA62gAbWLeQE4Ood0IiQiRxMVSVwjNHU3O/Lr15LBXMJOs9ziCFOuYwx3HUYE7atD4cUYmBGAkbso6mZiAhTG6P15ghGDkjmzkDgQEBDVdWIDRDcnYWZsLcGAA/HnQOW2nvpJMzudbm1WtyRGPcIIQQC7Mvtti5gHmiGvsGoPgZLbvfS9d34gkCIincU0jcOKAKiOwLe88V2/xD53c2E7mC/xeTuQjFCtG9LNLn35t3p3qq8D43uoCP6bbN2v1y6gxPCbzAiBTeRztiMOlqDYO4JyFkTeCfqwkCoDk0HgHPKRjLUFEwZLHZAsEjec29bsTsyxIgJJTpiY0HkLuRoiBwDog4kccA+VFVzjqM1R1RVZpIg7uoOpubgLDLvdqfj4+cvX1ttj6cgxKVsRBgl3sd7Y2irrfd2d+5wiAAecyiljjZCqPvdPoQoFJgZEZFYay21E6mEoM6BMXJo4OAdwIlwmG619jba0ChJYlbSYWZOpqwQgAJwHBIbpc4Z86xx1ySuzoO4ESlCB3diRLLuCMBEoOp4v1eCE3VjJWS0emuX3oqVtSliCDxvY/RNqTVAMolhwuaMZnMKAVPUor2v5/GlX0vmSXgpVpeVAIIhUTCH3iym/HCchvOwS+lW1VpZj6fHIC6IT8/Hz33tvSN5ihGEp92kw3pvJKSmbbiZxZhPD485H0KaWTK4wYB1qyhpEgaiHOMx7B/30/NxfjzlLKNerzuBnUDtvWlzHVNOh/3ce396ehAJvdbaNiAfpq1ta62X1/Xt61VCADwxCWLoA+iQpzShpMcpInhKoZWSQhSkuy3SAMqyzvN8OOwJ3N16K0iyLctW14fjoazLvN9r6xhgKw0R8pSJmYhG7xajg6Xw/2fqz3btyJZ0Tcy60bj7bFZDMiJ2l5XnHFUVoIt6/2fQjSCopCMIgjJz79wRQXI1s/FmNGZWF74Yp254s0iAwFzTfQyz//8+znniEMpllUDpMN3rBu7k/vPPnwPi88MxS+i9X5dlyFFVS1mXdctfnilEdSSmsvVDHA7Hw/X6ay3l+elxnZfT+fjweESC3hXALtfrcp971/Mjg+p9nvP+H9jJrma2Ryacc44ivM7z28t3M3t4fBqG0QBu9/vr25uQ8BgO0yFGtlIDBxEZDoMzL+s2BEHE9/eLmrXWx2F8fnpA8CT86S9/Ph0nbW2+XgE0EjJ6TjKk5GZ5Stp1PB662uv7Zan12+vr4XgejrluWyllGgdyV4SQExBerpfr7b1s23KfkZGRCdjMA8kyL/f7gsLzXIQJRZZ5BeaYcyAHQEXbtAGzMipZGmMeUh4lRXl/uzH70+fH7nC53mpZWy3X93cDIOJhOpCymnWtyCgSETGBbIa9dokJzZjBmhJCJALrOWKrtc2KkdidRdIQrfRl2ZqVQ+qAnNNgIJMhNGutuRkykISttqZugA60d9pN93mZ76N6cjB03VMJDsa755r2KfK+3HRCd2CmfZcUmAiBHM0UzHOUWhqCDyl1M0BpRQ2pqnFOVbs2H0IsvVPOcQgv//itrtuXL88ZgNciam1bDzkkhMFbVvBWRzbo1hHXra5ltd6PU8558NreX9/y6WEKDEzqXd0HFmJprmasYFmIej8N9N8+n/48kICjiDRrvWtv2k2DhJRib62WrddGMSKhdWtW0UHd6KP4KwaOANadhd2habvPsyqkPB6mNAzD+fEhBAG0ru39/SWm+P52W7eShjEOwcmQwbyXuszLVQSGMRABgmrvTw9PKQQ1ZWFXY0Yk39bZu9d1czcPAuCKnZmOx0NTfd9KLQ2RWmlEGlM8HQ9N7Xa79tbymCWmpj3nCYHWud2XNT/7509P6728fv2ejtPh4WRVygrd0bOsvS7rujQa1DGEZgoi0zRp02W9tbUHt/P56f/6+edu9dvX77/+/78dHx4epqlyj8fJt8XXzXpDoulwauvcW0VyrR0cQ5A9XaYGhIhMHbXWhgTEHGPqpSJQDMkctrWutaZpUNP3l1cEHNIQAIW4bkW7CTOCM+5jSbP9QB1pryC6OZAbmKqaGShrNyKMMWiviMhIMUaigLCpmpr2UtycEbpr2daQIgbTZtC6oMVhpOlwJ9TWIdmOvnL/6OGT72kgYHBCR6AfW2JCcEI3BP8RjfuhjgH8wCf+IYzf5XkIhHtbngDd2d0JP6gTO1+R4GOHZuaObuQASOaoBsBIpEgayN2RwVtfu6/aIrpEBhm1qwE064imHBBY2Y0dSSSwulVUwEVQtK8ABNRQqJk3NaEoceSRtXftChESCZM5IBMNcWB0QgOIZamt9p0GZgCIFGIwd0R6enre5YIijMCu/QOLggBYa6vbtnbte91JiLWpiwQRUNNuu18sSPwhF8T9U3YA793BRIgQwUC7O7gp9qLGbg4skdMAMiIDIppiV1QIIMFDbiFXTgWjhaxhbMQFqYMrgoKDOAGam5CTOQIBkLoZAnHorTXvwBJirhtuTefb6oZDOm4eUFhvc+z1dJgsS4qim/e6DkDJ6xQsta59dQ9OaW3qW9muy3EcTqcTtnS7XGxAJ0whjsPB6sXWZt5YYHl9HRjzhAGVwOq2kfPD82PtXbuqq1oLxLukD0ncmEOWNNYCapu5rrWpNkQ/pIBYQxRHOg/45SxBrLfNoWKzeq9Wu4CdHk9M2ErptZ6fnwnp9eUV0UMUA9usg5kwH4+HPI1DHkOO67q02rau42FIAVvdrHXVxg7TMLKAmkPXISfrmQEC4vl4qq28fP023/r5fDg/nrT1MU2S5Po++1Zu12Wr5dMvPy33OUQJGLS2kGQasrpKlBx5FQZrAf08Dadp/PL5aXl9tzIjDpmxM/T7vKy1uxEzccx5+vJTCjGoQe9+ebveLlc1RUEK/PzwyATXl0ttdTpM8mFydndbt+ruLHR9v//p5y+PT49d28PjKYi4+bZu67y42bzMwmIHJabe++vb+/v7NaYkIYSQtnUZojw8nsh1LWVdaq19ejiqaasKTiklcOu9odthGg5jQtUcePz0AGC9V3p+fr1ep3EqpgiWc+KUiSOF+PJ2c0SJYV0qOUoKGAiJg+e6VTW93++tFCEx6Fo0TsEciFkCNu+l9fmySkzOdLtfukI8DNM0hZTzOIxTBsJtnX/95+/bulFtk8QQ4++/fXu/3M6fHqbTUcE5hnEbien9/ZpSms5THCdAv93X63KTGAwoUAySgoTVYCkFVEOgKYWHHKbE9/l2PDBjqAYQ2BwNyd06k8d8azrfV0VuQOg6IEXGdWvVTIlKq1Aac0SkPdYCe6zA0OyDTaJ7rpl22yPaj2f2D7sR/ujxOjmgOaEzkqsigLibNtmdLwCkDQxAiGIo5h0R3AkdrTNyCEkVpsMDPuvy+vJ2u1mrsK2nMZVLDZGOU6S6ce9aTQwSEDQPqEAUxiGMQ8TYfFnKFgjzmMGUHJNjASRwNuhsQoFrGbTx/c7XzMskKUQW0hjv17X11ryvZQtBYhI3Ccw5x9qaCAO4ubn7B4rtMDoCGLbaEWnIsWxtXdZeekxxGGMI0lVjTtp7ndvT03Ma8v2+LcsWAd2h1BJTFuRtXV5f7U9//TPSEdHX9fb2ch9CnsbD5fLWtROgCDO7Vl2XbZtn1X4YR3Uz6ONhSCk6BABorYbO18t7SinFfZ7srRciH4bUu27Lsub5t99+XzTEHP7lb38eQ/7v//nfb9++C3zCLEipbN3SgC5d1QK9zqv+ejufj8eHo6qvSyMkDoMNqLXcu6Vj+vz4aGKv/69v//i3r+fjcRim8cCcaLvrNm/DcWAWGgYgdFTybq7oIMBE6E0Rseu+1vDmKkJIHELcA0nLus7rGofEAJISIzHRcRwZsLeWJAB7iIIIpVTVzoKSxMwQkZmBQZsuc3Uzc5TEaGjamcXMmEMMor3X2hBVtaO7lpamPBySETTzrmClrqWaqgCeHx9kOMxKptZLg8G0qwkD+n5xUHeAD/bNB0kGjIB+9AX8Ixv0xxeI/sAEAQG5u9OPFiXgjt6CPS+9r9McEEDdnNwBlHaQoju5gSs7G4C57HcUIxM2gX0iCAgFbXPPhJkJFNTNXI2V0BowO6MAsTNTJezqQAkEQJEDGjCHBES99QoGIQ+nx2Ece+/b7W5eDuMUULWUacg8pOV621YFQGFCIwKu6oCQUkKi1rqZp5SPx+O6rqXUFISIwXU/8exQVHBgosASY8DdIuJ+PBxsdFM/nc8ikUPY1nUPHDoSCfoeewZz07YbDwAQqbdWAdOYkYSEOQ0WBnWCkBy4NTQMFqJJLJIahw24gXQkJ1JCNdA9yO5oZgpOiIhoZogEzLjrfgjFSR3MECQpGDCBs4Pctirurn6gII7skGJCba1j1P44pMdxiF2o4fnxiE5f//OfsVsAyEachrLV8XDinHpr9bJy4sOQbnepW40htLK1dfNUtWxDCvdW8ziGlO7zPK+Lmz+cH5Z1cfOUR0Bx2wEUAoBlLWomkY85OcMwUSvd69a3LcYDzKZEwo4AdZkV0bsKIfYOhKA6xLhc7w5W1zWl2HtH3qt1gAOfplDdbrdLv3kcEge+l7K0sm1zWZbjYTyMAxO31hC5rJsRpRQIcVtWU0XCddskiivWpiQ2HiZCVusKUMpWrTmhk3OQGCRKMLXz6YDor9f3Ohdm6rWu92Ua8/l0eH56nsYUdRJQ3eamZtodxLXnnA7Hh+VWa2/TYQwSe9d1Xb99+2Zu27K8ux4PI5i2Uh4fxlpjb/10nIRYHQAghjCcTghwPJiIpBgGknletmUNItpaCDJNU4zhdru9v7054j9/++23379VVZFwPj96AHMwAHUPIZD1aYgjjNf3+XK7HU6nh8eTCLz8/m0hTkGI8Xap7B4D5RhjCjEwcjI4koTLtv7zH7+nPFDrD4+fhjycTqd8GIV5m+9fPj+DwzLXPGb4YfZ0VXIcc56GtCxbiul+XwCgmqUckcwLbK28v97ycVSH+TbHmKdjTDEJ7wVka72/v71R803k21bn2wLIuK6V+Xg+jYejA+aYz0cbDkcM3LqlnLqBE9buvSrlRE7bVhuiARADE6WU8xCGSIJ908ZOy9Y6QVdH7+QcYoaQsUMBaFVbqYQ+SCD3Q+bVQVm+vq6jhIpYd4KQwd42Ied9qG7g+MdAf+eT/LHz8h+5zg/2D7obuBGglSZk0PV4GNY2Z6ThOCn6vFYnWrXTkKGrNmUFMmN3FoyIbd6W6/zwcN7AdFuttlOKBPanzwfZJTDqal0ie4eU471W4RgOkwLWVrtuITDLeJsXYHTvOaa2VTKM7E1biGOkxq1M4H86TxPa22+/SoxB1ZtWQIs5CiQzLXUDdXRIQ4whAmBOERzVrbTSa1OHVpWIiSGIuHp3zVOMQ2BiJNu2RT323gHdzFIIZdsip0/Pn9bDpg7rvACiEIUYQJsp3y4XZmTmbd1a7X2+buuy3O7TIY9j3uqqZta91+pobrpuMwWurXTrAKidRPhwmEIMOyN5XZZ5XVsvW61IVNdVHVMSs7bOd5VhlIi13y8v7fp2TnBIJm3pqFZaGgcU6sA4SuDU5nVgj71XpdZqmqYYgzpd7it59/sM0fI0/tf/9l/m6+X12/f3l6/q7U8///yXv/6p3RbRDuS1didwJwOkIN6saRWn3ntvrTtKkBRDb711JUQj6k1NrWlLQ/r885dPnz///vV3QssxHo+Tq2+LJwmE3ltHRglcezFzInQnRNhtXa1r3dZaC3EM4RhjICKifTJEtXaz7g6m1dSFMR6H/a6mpgAuQtZLb4YIJFK3jVJ2FyZSIkMsvRsjoBvtiE1EM3agH6FnQDdUNEJwR7cfhrAPONZeIcC9OL9rVWl/xTrBvizbC/M/6EHm4EBkoEYO5K7OCIBmH+lpI2ZuAA4EAG5gCOpGYCQUSU02UDNgZCV1NxDdU+noTOCCgETNrZurQeREmbSzoUhAkNCpqzlMQ3z6FMdErRQ3XcEF0au5phQDYVmhaQUzEQlBCLCE1pruSnkiJMDeGwHu8U9w772qGSFwlP3JQkREHFNEwNbLB2wMiQmFkYVrq01bqVVEiJyFGaCbMpMp9m5mZg4SBBDArLslJHMgFOdsYawQNOYuaetUgTsFFeksDbABd0BjcthtmABA5LiP8NQNkJzQPhiWYAgGRqiy257dCSIFdAQn6uYustQ1Sezg39/uD09jjokM2CDFOB2OxN2gD+mQDtP797fX1/ejhM/PD4B4v891K58/P+fhsM7X5XbV0qdhOB0GI+vaRES7X95uiDROo5rnIcU8KJpE4RCXZa1Ft1LyaZwOh21VAK6rTk+xLDdDfZhGs9a9T+x0jre3rdSbN9LNwpAJydDQfV2XIaV1Xtu2BWIEPJ6OvdXWao4JDciMRZCoLaXM27KU+7JupXJM4/F4fDzncZhv99tlaaWcj+cQEiOsdd7WjQlZ6OvX70i0zZtf7hTQwZ6eHi9vl99/f3l4POXhUGpfylZcacjoEInicHAvw5gTCyMe8riVOQK6hMTxy6en//jnb5F5TDkyWa3nwzgFWubrb79+b+7Hh6dxOhIHRNrK3Lbtn99fH58fJcZlvrda8piQvNVtvjaepjEF6H27XU1BhhSYtDYwE0JtrfWO5LfrLQQ6TiOofv3197Jtnz4/T9PA5EGEiHrvtbX3t+vteleHx6dpGo8xhLbWbSvYtY+5mzMgBeq2r2wQkcfxAJ8dvKMZAqYYttsdjZOwK7mDtpZQjoeHkNP798tWKhqWoRTtjIjNtRdQ7WuNITCgbl2CBJbXby/TkEOSnGOK0dXqtoL1lGTetpeX7+u6oYCqO2nXBsjuttxuOUUCe/2+9FYlMAw5PRwd6b7U7b407cOYvs1LUvc4sNXXr9+st2kcHp8eHOA6r6AwTQFCvC7b7f7evTCjAjijMjl6bb3Wpol7M7Y+NPOuW10xZOaAXa2pExhiQ6yO6q4OAnAkHsVDTr9dr0pwR8cc70rQDRz1o7KrhqB7EgHAARyInMjB9szmrsDAj6fqHlFARDDT7kEIwYMjIhwFhWFk+unTI6X07fXy+20ppgaKgsGFu7Eym2Kvpyk8RFm//nZ8PIj2IYlzmGS4vr4zGwHUtROis0AIzBBTmISW3tB6NxdCdVu6E6FCDxTKrUFRV4ss4Ng7mAMbPUT8IulfPg0/HZnaVYKEVrdWKhKMaVSHWmpvXQhZEMBbbTvFjgR7czfnsCMptXln4RgECed5HjSlnEKg1ut9vow4ucLLfEt5GHJ2xNp6zLmDQlMwjTmhW9m2PKbnz8/vl5sDmGnZtqYtIucQNgLV1gputdRS9tSRKxBjM6VurSsS1lqY0jgMvbeyVWJszcx0d0lOh6HWts7L6eHp4elpXZtyiKfzf/7zt//b199Pw5Aif3n6FKe41O16v83NxsfzFI9ItKlCZmSHebb5EtMETl6ahEFba6oxiKOs1SPjMJ4ejo8Px8///Oc/7svl27ffbauiJgDHnz7d5ktZlt5aSixRSq+tawdFABImBeEQk+zSiBCCmfZWa63gJiTWuwjeb7ff/vnrTz99SSkQsPWK9uHXKmvpqoAgJIGg2+7ENHMngMChU9/P8zEEUiy1atOdVUSCLASArkYEQbhrW9a19gaEIYYQAgO10rs7crX7XQ6P5/NhTeNMhABuSsyIbrr78XAXXQDS/qE52j7+2fdaH6zQj3q873YIMUL7wKsD0kfHgNzN3f948Lm5OjgQIyI5EDghMgIAEbmqshM7IKIQ9b1coYjIoOBsSigsYNwVzAljBFdg1dZcUNWhG7tDa4aISDlIACQzM0JmTAE5IZg78vHoaSgOVUGJOcT7dlfbxr0I44roQozMUWQ/TE1TaE3XdVOz3pSIHJyYc04fI7EOSCAciFnNyJCQiBkRtaupMRExllLcIKb0/n5trYkEibGWxoEZiVkEQU1Ntan6XmAldgMSysOAErUCcNYwtDhsEKsMlUPh2IAbkhF1hI7YHRwRyB3AfKfKf3gQDQGJPpLoiLvw1QHcFM0QWa0bABB7R3NHd2aUFHrpyG69uwM081K8196qT8cNYJ4XKGuPQLTc7utwOmVijoGyLHVR65vWQTBm0Rq69Zjl6fmcjsPlet/Ken1fctKY4/16M/PaGhAK8/npyDH8Y76fpvHz0/P54Uwc+9Gv19ms11oANBBmxLXVXtfGfn56sICa2Hopq23zfZim8TiFga0rI6YYwbTX2ltv2/b0/MQxEkMrRWsngiipCzN4YBinGFPYuvZetbcgB9W2G+WW+yLuD+ejcKiGOacoUko7TEMM8e3lhSEM49i7q0Eex9P5cdvq1+9f53X79OUnZK562+7l+PA4bwsFdtUkobVWS3E1Yenqh2F4fnxY1jrEiKbLdfYg4+ODkEggBjmOB2Se5/L29o2iMENd1/uFU86CMA2JEJ/Ox3We5+vt89Mpp/D1H9/N/PHpUQHXpjRwbX1e1941hnA4jMi4zrOuq5kG4Ypet8KIhHC/Xeb79eH5+Xq5tFZ3Id3hfJaUmHjIeVnbVst9nWOMsScUdkdm6U3BIaYBwIW8LgvUzoIhByaMQ8wp1VLOp3Pv2luvS3k4nP/9/dfMcZvXt+sV1J9O58M0XS8XcUoSCK13jxTCFO61BeRhCDmGWmsS8R462jDkrbX75Xa53oA9xBjTQGhI3EvruG3LvW7rfb6LhHSa1nmZrzdECjFptdorTQc5PM612mXxrb6/XnPgNE4AIpGjWi0EwIWoC2we1tIPR3biDiopkVmvumz93deVdfSSEX3doPV4TJKn+/ultt653rq/dlAWclA3MQjMj5OYd1xulIdD4I642p69RGRwAFOxj4Am+M5MBgcldBQg+FBe7ON6QwJFBzdwZERiZvAsfB7zMYe6zTmFKJC9D/n4igauw5AvvRlwZBFHMtG25QTnFB5YaYxSVkAf0xDi2O/XKcG8Vete71s+HjyF1dHMt9pabXPZxLIRD6dJgEnVwXyDrp0zaC2fT4dPXz5fbtu1tmVtdVn/9vT5L3n662N+ztjfL7Iuq4MDYa8ezJwQwFlYmLX3sjYJotobIgvV2mptHDBIUAV0ZGIwBPDDODnoti7aRWJw03HM83XprR2PR0BPKbbaWql97QD++dMTMa/zRgiHMcXIeUj3eenat1rWbZ0O55Si9mrWzd33l9UeCzXt1lppLAzk21rd7HSSrlbL1mpztCiRSGLK+7m1u+2SyHVdhcNwGJay/uWnn3PiAAba1vkKOM2lvF/nymm7XafxmAm9ta4teEdf21YFLA8jUF8vF1vmYwxxHIBwmf3aCpkl5iz5yy9/e2xzq/dfv/12fXl9Pj2ERMjAwvP1ShB697ItZsZOQTjn2FoHcug9CBGig+2bVmIiQNX29bdfW1kOQ/z86dzL1ssmMTi4urlbqaWsxRFYWIQBgRiNQFVNOxLmIbOE7srM7mCq1hsC7meRrh1READYu/a+7b7nvn81rFnrlYAAsHfFXpe3HlQ+/fRXj+lWPeagqkSOhGDu6oQMprSPxJEczQjJfvTBgGi35cEfphhER9qHqEB7w21fqCHuqzR0MOeg1vfUkGkDdAEgNTJjRAQwBCFAc0YMwr13RAgOvEvrEdzVvDmSIzmKGuwqvA8pGaEzKLp3RxMCiujBOurmrN0qgQEPFJIQQrWlmJQeIjY1A44S1QBZAuM6F+urO4WU6loMUQ1MPSASCSC11nynN4IDWEpBmFvtEAIiMsmO8A5BgoiZutlufAxD2PH2vJOpYR/ydQmh1ga95jw4qAPWVkttqu6AFESckCgkyUOGEF2C8qjDYQvjCqFwLhQqyE6S9j3uA270wbOH/xPtHvdDESAAdPjolHxM9ByByJEM2BFk9w6qJeF9rVd7FxKE7uaP5+PzKQj62mgR/77d3nWDWqJZ4AFX753+9Ne/+nJtdQFmZgSw1m7r4gwQkvWtdmgycOSMt21dekxJDd9eb+u85jFHx17q8XD49Hg219uYFuj/8//6P1GIr69XRYQwXC7LUi5PT+cxRl2WZCYsWCquJSNqDISwle32fnvomlMCtyTivaNZDBFYNluGHALj9X120OkwaPdeCoukFA6HQYIMAKq2tjav6/Xt+/vbt9vlEkM4TNO2ztg6KsQQJGBIKecsUWrdhjFN059a613b/b50bcMwOKIzg6RhCoD0ern8x99/fXr6VN0ohfu8ZJHf3377n//rv455KlvrReOY11b++pc/hTi8vn6H1tH8/n7DpuQ9Mh0Pky6398u8liYhCojkGL58en+7UI7TYbpdLiw8jnHt7XwYPj+d376+9LqdH06PDwfkuNT+7fVtXe51q1vpPg25xxjF9yBmrw9Pj8dDvt/n3qp5vF1v9/vMIc7rBoifvvzEIuA435bz6ZSHQa3N99bVxhSuyzyNByTOech5XO6b5SDMwhCPh/eXl++v9zHFkDNFkRhQmJBdwXpfbos2EBAicvP1vp3PD3/95ZdhGKeU5vnq3aZxcCQibq0/Pz14r9rbfavDmI/PD/Na7//+632+pxieH5/VYFkWUOylnk5HdatLN0RGLaVEoZRFEI3wcr2tW83jdBiP+fwo47kjb4hNqXcocZIoMJ49Tfda3uZuEmbjS2lr9zXEQIKn0+0+N8dTyuyI3kuz73UdE+ZDZnLGchgHPx6BotDC4M1D0741A6IgDp27Qe3WaqvrBco9xpCIt21zRQXsgEai6J2sE3wgfMw/wgn40cxlYDd3NHMFAnd0N2YgQOhG1mPACPB8HH/59NCW/P719xix39/vWtt6b2Vx+REU6w0MCR0ZIlm5fvvrf/1b1nD5/r1BfzoObPbrb/8UtMxEmRHIRBaA6q4ICNCbbw0HSI60VCeyIQdhbkzvr68BdYr2U9L/7S+Pa7N///X3d9HZ21+T/e0hHtyW60yti7r32oREyXpXEmbCnBM6mOowDe7m4F3t4y5HRIRImCW21nrrrVseYkohhmFZF4mi1td1rW1b5js4fhg71a11733IkZn3xkpOUd1rqXWr45ib9nLd9qdr7y0lHKehtc26uQT+YMTA7jzppmB7YRo7am8dALR3Nw0xpBzBoddOzACYcq6t3a83BTicztL10/nh00+/5Bjev35dbpfX6/22Lh1Re0cAr+v9+3claNq7dgw8MC6tOi4hMBGvtxsiDXHw3kvXHOJxOtZSeuub+pDC0/Epxafr8fSN5f3t5X//f/7vx8jeG7RaS5ymDAaqPaUBgbpa7w0JmjkjS0pmaqoxBAGuFVRbHodPz88hhq79++/ft23Fut2us5AAeNmqg2p3d2AWIXJHNEUHNHQAjhJC6qYIoE21KwAQMSDumVvrFj5+O7FZN1UAiDESYytWSk8phCC4Z9prg1J62ThBCgxMpOZmph/TU3ciEvvDgIEIDrpPOHZyjP8IAf2owKMjOyGgwQ+QFsCPHBDQhylMgcHMXJXRknBwgNoFgNRb7yKMRLvQARyIqXclwEBYrQMhojM5eI9xEE/aofWm2oE+FjsdvJIjYwAKDuiddLM6Y7BI3bsRAhFYaeRKam0xbxCE1K2sK7ullMnbjtJHd2IxL+tWRRAI1q3U1swMCWJMZSutN3ffF0xAzoEIWERa6whOwEFAFbqCdgVCNUgcAICcWAIzA5C5Abi51q2peQyxq9ZauzUAQGAH4BAlcowJKBnlDqJpqpxXzqtLodgp1H1Mh+gAhv8D7brTnPCHy8Q/lpEf8/C9x7cnjj5A4EjdHRHdzAwYQFvbSTC7npCRhxBOYzwHYFANEDNvpvdlAYNsgG/3u8Av5wkxOOJ4GI/nQ0DVTaBuXTckijE4Gk4CzPpyTZFOp2MaxmVel6XElIQF3IMEAl/vVwDNEetqbZ6HBwKqpXRwyCON03QYs5fG6I+PZ+19XpY6b127d+OYQDgNAwCu6xoIayvL5U5EhzGnFHNOIYaybaWsrdWcOUYoS9d1pSiR2YNjEESqb69aV2BurVtr6TAdD8cUAgP1ojylPGRmaoBKvJauajlLa622erlc17Xk1CTn4RCH8bCfn4/Hh+fnspby+v39eJpYAjLFnGMetLVpOr5fLq8vL3EYvPa3968vX7+NwzCktG0rI+YUkuQYw1LWbb45BWvltq2Pn5/HHP7z7T0FKq5obUohME5DPB6HusxfPj0MgrsvaSv319utqR+OJ6OZEgjjthWtZYispcguECFE1xylzEuvWxJe56V2O0zT51/+Umpf14oIta37CLObnp+eJEe9b939809f3OByuXz99nWY8vk43XsL4rW1mPLD8+PhPGlrb7ebq9atPTw8t94IqdXt+fPj0joxsUge8m2ZD6fD5y9P4y2tW8nTsNV+uS21lABKZqg2Hac//eVnMES6nU7Dui6n08PPP/3y+dNP//Yf/2Hetddyn9XVegPTdb6bQ++qqojgRHGIILF028xijO/repm3t3k7PX7KEnsEO0wlH99M1l5rGkv372u9KSxFKYx5SA2wmJZWpZQkmTGgYKtKgJqP3ftwjoFwBtxKNWEErkbVGYDdgxFilG40A7zcZyzLYQguEMwDQ4qy1u6mBmTEHVz3r7IaIvywfu3EFTeAvd3+sQ1zJf4wYzBjK60BRMKUqC23n59Psa4AOtf67f3VgA29m4Uce9+f7+4MyOi9kvdPUw5rr6aEGgFUra81jTkmhCgjp7kaAJlA7wCGFEPmOE6n6ja3UuuqMB6n7FBjjII+Boru62+/nh6mM9wfnvONJbc7b9hXn19fH05BmKm7m2uKAYGQGQR7V3RQ1aZtGAYwbbVKkBA5ZQEgUwPtYD0GlpQd/Xq7PT6eT4/HZVkQKaUYiA/TGETu812bDikLoiCq6jAMxKFrz8dce19rr7U8P54+QJMP9s7Y76vHIEHq5m6Wh+ju21qAIOWEjXFiJOy1caBpmvYekn10i7B3Fdm3SC2nHEJwh3Xd1q0EDp8+PT8M8Rzpen27vb2Yakzx5fp2uc7NcTie6LQO42iIJniv2lqN44CcbvNmxLjW4zRgCK0okR/GxCymGtElh5yztkVrBaLn8zloGwT/3//3/weeD8+P53wYAT6oCikGQnCzslUzDTGYKglJYKbgrqfDARkv75fWcJyGcRjndZ3yWI+nXjszTeNQtrLOKxASEai5KZiRCKu7M4KxACIIOoLusZ7mWurm6IwAar5TBN3NcZ8ddStb3UKMTNabqXYHd5Q0DMOQJchaejGaLxeJZ0m5mCKBgmtviMiOyGAAe2vAdzYJue2xF9+TQHsXHj+OSDsw8UcC8UMftn8V/YPnt/OmwRUQhDEaSqvczZYV3UIIkUBYSq0UEoDuCr7mZkBoQITdWi+baiG01rbMB4QEgVECIKCrCzI5mFqztW/Wq2jD9Za4D4mjgIJyXxw8AUggYrW6lXm93OdDiqdpgI6397d0zofzGOi4ruvWOyfx1pDBFdS6gSJBCrKPXBEcmVvt1fuOf5REIuRGpuCu4AC+V825a+/aSy2BwziNIabelLn36q13dTf1Wts+FkICRgdwBmYCIQwiQFEpVU+Fh8Zjw7RSXJ0rsiGao+0Ypl3n9nED3Et8uJMsHXdRyQ57BTT8EKAg/mFRQ/z4pw6OSOamAMJUrbvZEIWoJ8JT4Km22/19KwVyYgoKwCkQi9fStNaG9/sWAeM4IsfeCwCOp6PsGBKiIJkCAuF6XYXoMI3AjARpSDlGQihbvb1f58gxSAjIAp8/P7m36/vbcl+3pnEYzg8HV1vut58+Pyc69Hk7HUcJ+M/fvq1bUYXxYNNhGsYhxyDgWtvyfuulIsKsvSz8+PAAjq1XDhTT0LumGFIOTIjk1tshx5AzczTQ99c3BPjXf/3b/T6XWkNAcDXQoiW2EMe0bGvvDcGA6O02490SM6DFnMbjAYm7wbevr+N0NPXr7T4dDjGM873fb33ebj///OW6bONwvNaWhMFgOp5Lt1b6srxerjdyDBxevr8wUzqMKUVyLe4N7PjpTCLzvGAnRgXTYWS07q2wFijQOz+cBzB7f/l+/PMXxD4v27f3q0logAqUIvuiIVBAb1tZW4sPhzxEa32+3kG71nVVJZEpxW6uRE4tRkHQx/N5nFrZVldd5vu6LsM0Us6b2vDwNEyjogDY2/vVwXoty93HIWxrGcZxGsYwDGHIaynfX9+FKOWooOh0nI5raTKO6/1+W+d4iPlxiKckY/DSS+0k4XLb5q1QCmVb7u/XKciff/n857/+fD4d19viCfx5DGRhOiAFIarbo2qrpb68vNzuNyQEievlCkT6keSrkrOLKDNK6iG8LKVsWp0aTncLDXKcDm/gt/c1hLafOtaqLUwz6drRa5WmbpBCcNftvsIQp3za1rIZE8hL7QXtyMHA160VhU5xrraoF0cFLg2NOBDlIEtrhzQ+H6dA7bKVp9OZnWFr93vHao7qwOiCAK7GQOTgrmouQmaqaB06EzEyAZoqE3bwjoCEZihD3F9tL9++8nGgp2EcZZjO73//z7lsV6OQBpegvXNzAvb9e8pywuGhWfn+PUEN9dZA+zbc7yuB5zwu1G/3slZd1eR4TCHUtqWcD8djW1rtOq+9CmM6bCbYuBWvDXMIl7kOAW+37fuvf/fkj5+enHu7vizQn37+/On0y9u330WI8mlatu12XxxgnA7oaKbMzMLWzR2IyB160yiCgE21904GRJRTDJLWraj2eb4jHdGRmQ7TmFMe86HVdr8vwhxiwNYRIIYUYjRz7WZe45AoRAV4fX0TCb/86adaNlZbSFy1lq13JYT99ply2t1MIiJJem3VChGbfSxKEAAIeu+19umAIUotwMRCJExCRISMLmB9296/f/v69fuyLNNhclUrbQgUHXxdX/7+9+X1MpwOcRgERMFDiMMxvt9v9Vr/8qdffvnz8+vL63Wbh+kg2Fsp3vQw5BDIvcQAfd3aXZUoMk1DPkxjTunPf/4l57TNN+tVW2ttq2vttacYjscDE1euvffelQIyc0qRWda4mCk6ff/6/b7cWu9uEGMSkd7UukkQidJKJ4bAZGq1VNszmEDQ3c0dFZxc3Uy7/ujDy84XBATc1ZdmpqYISEwO1mvb18FMyBSQcDyMwoxQdeu9bL5tFnqH6sJmJjsG0U3NHHxfiQE6MRr84S77gIyC75ke/IFJ3JsG+555H/74fiLaLyVIe3kNGJxco3XWHnoPAtRBQCVI18ZM5ta1sgQFCGgAbtopiltxq7UspW7gEGXO4ZDzEEL0fXClpGoSSIPr2knU69LLPA5wDOOQpIKbd7OCqqQYnM173xZc7rWQemVraLrcl8hjmCKnmHK23j2wu7atsSCIoCMxajc37goOQIRmjoghxJwSEe2evtpaa111t5yxJOm9V23hGMfDJBxmW7dSeu9kYuYUGYkBSQIxi3Zwd6IQJIskkGSSPQwqQ+ehSC4cVpSC1HBnJ+2pdHNH3zde8KF3c9zvgg7+YTn8P39wHw4gwD+aevtfw739RwjuHUz5w0Wm6iEHIfLS18utAUDIFEMHNRWLQ2XHrhXIKOQxmfr33y9tuz2eDiFKNyVQ21rMDEhdm4O5WVcryzJOAwD0UjFI733btlr8MA5MEZFcYVmXatCK7cn5Mm99q0NO3pVSmg6nVrZ13ayrmxnAbZ5ra+OQiiuqCPHpeGyh7jhdd3u/3VT7MAxCEoegrTVzNy/butflqHdGNnbo+ng+A1EgCSxLmXvsYx62ba29rnWzme7L/XqbPz0+ENr1Nk9jHHJWbcMwHc+Hrna7r00VCCSyqbXaUkrDkO/LwilVtdbNfZPLJceQJQrLkPJW1tb66TTmYcxD7NZa3boqcai9L9vKgTjHBHyYnrv2y+V6v9eQJUQexnS9+O1yO54OAZICgOk6z5f3968vl3Q8IfN1nrsh3G+X91cBOk8HMmdwIdnBGL3Utm3z/X44tZ9++ROYv14vHYBI3CHEuN8NREIcx7WsTmzEa+nVYTpOGOP79bbO19LK4/GorYEjkZwOKaeotd/f59vt2uuGCGnI3nW5z+fjoztdl/XtdruvswFxkofPD89PT+b+66+/v7/cgMVY4pgBIOex0e0+z+syrrfren0V4pzyP+dl7a1329klp9M5xeBgRHy7z71pTIjg92WOKTIJAKiZm3b16goxojMLHfMxuFRiD6lRALSbdS2WUzKjzZ1AQISjWa1tK+dxPB8Paw2X2wrut2V+vd5CYGpC926DKKH2vnbDGO5F791XoA5EMTDJ6r0DEHlAkDwcDpm9znoJ03hd6rptyEiEbgZm7OIOgQK4flR3UR0NESKLuWvvpkqIzGRqRh4CO7qgsSlrHZJgL2XVf/v3tazl08+fS++AwOSHMd7WAk2FSFvzmCRIUvx0nH72yNpul291vdEYe98A26fPD26aGHqSUnuMIU153lrZNnA8DZNL71sDtyGOEHm+37dlzsGn43HMcf3+zVnWppf3e0z2cBqGSFujfEwotGiDYRACeDidYopr6e6WYqyliEiIARANAIkIWKK02rdSVXttDQkjcohR3a03tZ5zcsdWe8pR1W7vd+JwPJxaUzNA8K2UfRhQW4tdY0pjCA6IwkxQetfu3fvTpwdTCCBvwNfXV+sK4B8v+669FgBU3VeUCIAhBgSqtY4pm7rZ/vQ1It63ZTEJgK/b2mqXwAcec4pa64bz69vr7To7eNnvW72PSSQGc2zaULf1vQlYHKatad+WOEzgnZHQ+vzte3n7PiAfPPi6ednY0Mv9WjoIHY5ZoLVy39Z6v9+01ofT9NPnz5+eP2/rTERPXz7f3y/vbyUICxIhmpoQpxSRoPWmrdZSLojH4zHFWGpZlxXAe++lVAnCQFp76zWmUCv2osIUYwD3slVCiCkR4W48BQAHMujqpqpgFokUfW9WAhIxImKvqtoQMEgE9NarAeynXkSKKVi3t+9vgYlZkqQQ2ciad0RRxz1pu8N5AEDBHRUd3E2AHPdPB/dqAePOAtpflrSvRva11R91+t2mt88T+g4WQhBzbg3aCtqTYAKdUlCzQMhExQ3Jm3bTBlABXJiQuKu2slipwpCQnMJWtrVelde+pRQzMTFJGCcAYEFBDAIHQ6tFtE4UD4GiAKItrSzbvLUmMaQYyVW2+cA9MME2I2gKgujrUnrrwBhi0CTbvOPLqQOQuwQBQGTAGPcjb84C7ug8jDGEgEBd2n4SqaW13gEw5hRCKKUAGCO2rSuaaTc1M5dAJNRVzRwEicnd0ImIQkgpZeSsFD0MFkaPR5XcIBaOlaQDKOyZHv+jnbePfD4SV/BDWLIDYfcMO37gmH7QQeCPHdmPA9GH6xbAOri5owRAL72btstSZV2NgOLwkHMdhk0BiJvRXKw0HYHuhqH0GGPv7frt5rodxse3t3UYQ2BkEUnReq9zCRJP5/PL66WuJY+ZAkCj1k1ijHkAMAxBhoxIW7H7skgO4+HgjZZ5LduGRGxwvyzpp8xB3t6Wt8uNJTyeDs3t+n6rtRL66+V+Oky//Pw5MJsqiZjBPM+6bKY6TUcSAedS6/J+zTFsy4yAZurqedxYAgj//PhAElrX376+tlLD4cy0/5Z6QxNqSBCF53ne5sV7/zQ9qZo7hsh1K4YQEzfFbZ1TzufHcb6va9nGKTuBMZv3mENbF8RhW9ZGCzk8nk+BDbHnPCjY/frCDFtrt/f3Vrf7+3saEsfITJLyWm5rWW73WylIUW7XeysmMoSQh2HU6oAwjuO29XWpJEJC87xeXi+S0jCNpLgscwQeQ0gpRMb7fK3LSmpoHpCmEBOCRYHT8ToXGQaZRgddt3ZbN3A48UnSGJUUYVm3tZSvX79+/ukZDHrvTw9P58NxXm7r7b7et8PTQ986A0SWt++XWpfpMMyXG5ipxMgCKIjuqnVdl207fjq3sr69fZ9f5vWyBUnL1pe2HgWncYyTLCIUkxDr2uq2Otq9vPzbP7+1NE4DtHXZrjfs7U9/OeUhP2zb4+Xy+vIOQHlKa9/UbBCJKSh42Yo5CseMHmMA5AZeuu0pFkbwEF3C0up9U3dHFGwNXYOVFPxBwi/n4fOn463OMcC99tva0hjG6RSJWl3v1VrwXlvtECBU5MbWHdTByLpXTuSu93kOTPet/XN5n4S7Wp/X6/ttvm89JZGQgLWzO7IZE1XrgE4iAdjNvHcwIABGVndkZBZgJ+iglUGj2wQ6sv/5cWDz++X9snmpTV+oA52fju26Qi9tWb+cBiK4u262ZZp0WWTAp8fpzH3z21wuFGHICADZ4fZ2i4chHhNL2JyNoiUZB21FL+8zqifEFKRua980WatWheIxHY/T4VMKYZv/9i+/6J/P//z3/x845SGmFDnRbbvNL/f5cpGnh/P+vkoxMHPO0bT/MHy4uZl7a81MicHQumo3DSRISITmbtrMDBAlBCRwg950nu9rLf2phZRUrbdGtR6mMQ7x/f3mN5wc0jiIiLpfr3dJ/Pmnn16+v2LfVeD9drkAQAxhrzQTURA0UzXLhAbQtYuEmKKqtR8ns9YbAoYQU44SgqqRwLZtpVZVjTGFRMy4zGtQm+8LM5VW5tsyjTlFnu9zzjlP4ziOjnK7b22ZQwhTjmiNW306DI6u2/318rbdrudpkkCttD7fe+uOYo6Kfl1lHFgitu3+9vV3Rs85Pz2emSiEMORxvq+Xy6XV9nw+E+H9Ot+utxRCHgfh0Nq6lbItS60ViQCs1da7mWtMYRiSOVxul/vlnod8fjynGDrtgmtct5WZgkiMsdZdLGUOYOqA7moAuveSBMXMPs64RK6mvbXehDinhCA76TcKo0PvXteNOcx1A7fj8Tg+RnDT3tD6HotVM6Cghm4eIrvqXgJz06YNiBAEdya1067O4x33/BHkxY+a+74g9I9mkRPa7vsFEzOxnrR5b2x9IEmRrBcilCgU+MCp1s2sUV+3uW615EMKOQVkLQ1rDzFlSSOnTcI6z7rMHRZgIWaWrFV5GLR1Rk8dIriCMbggkHZs5Nas1VZLWStqcMtgxlvxXsbzmAPP121Z7HAcq9sy1xDkeBhSCr2Q1U6AgtT/OGEAMGEQ+QjHmIcgKSXcmdfqBESEItSVkTFGYURPwbr2ogvNEqTWzkQASExAH9/MEPYcmDkAsUiIgKJORmIUjXMLuXPenCtJQ9R97PaR8jG0HfmB+6jH97ndx9nVf6ws9+jWjmDCHQvy4yf7mOgj3/5BDwF3gP0QbMTd+dYKWI9DmIbD8eF0U0MtKad1g2pGw6Bu37eloiHpgVSFp/EBc5qvCzBawMeHaRySltJ47U7H86mUCmZ921IUHmhdK0WKmFqp6lZqI2I124rq1pDSmCYCRucxjxLC/b4dHrVZWXuXnKeUY46tqRDX3tAJANXhtmwCqL1Z05giED///ImQmGgYkqPX+9LV19JK6ymmZdvAPGUQllLabb0OhxGZx5RyzujYamNmYQY3YW6lXF/fTD2l6F3fX25Pj+fD8Zhj2NZFUY/TaAC3yx0QXa1pSWM0QOyYsszz/ZAzCTXrBNq3EpmD4GqdwaEXIgIzYRHhZVlfX99Bdeg9jMrIvrb5cp1vr5w4Tw/A4evLW2uvP//8U05hWbYg1Npm2u735TYvknPfyrI0AGLkKQ35S3z/+hpRAhF2r8vq2mutAT0CD1PetvV6uahDHFPukWKspd8ut+p+vS+O1AxFiFL89vX7fbm/vX6/Xa+tzT99/kwAKTATjSlb6SmFVnqZ18B4+vQ0xNSWBR3bVtwMg79+f1lqNZIYuddyu183337+yy/efVm2HDNjLOi3y+2+zF9++hyG6Einp4fxdB5Px5CHX3/7bVYID8+YJzgclVbunTVCyFV92drTl2dDuM9zq02Yu5q2voMAeteYxuNhFGH05kDzunYXGsSsAu6wCFSkedsA6HhMAvDjgueHhE/HkLCsVk+nUC+VN82ScgxRQu/NETpBJ+5I7qTgJIENUR35w9jFSO4W0Xtd7+uWpiPH8PLyum0thKjIpkYiQH/UTZQFWbK7aauCAKBeNxZpRshRmUAIrFNZg5WJ8OfT9PPpbNflyEiZ1zetZjEnVXO36Dz0Glx/fhinIV7fr798Ot9Uayuvt9fjY34YwtOUWnhuVmYvTWsry4gyZkDqiNFz3Obt/v7GeRxj2Ays9ygyCLetaqshCVgn9tZr2ZYpMlP3tjHD6emp3O/DIALUrOqmTa1DPz2OEkO8365EIEja1NUIoXVrZXVwAtTW3NyaAbmIYIwSIiKmIDtNVUQMsbVWt+JRytbUeu/tflVGOhyPSB5zYGJAtG6qum6rI2y1AiISzev8kJ60tnW+v39728p6vVzm+xxDEGHuXLeKKe7uCDUjZuvd1PbGExHVraxlM9f9yUv7Gx3M3VpR030K4mYdVXrrIYRlnlsvnz//9PK9mjWR8dOnLwBwvV6XpRBCGtjrupnmGHIOx+N0va8TwdZLuy/bPLfbPZb5McAkYqi3dWYRIKEYe1uJpGx1vbySlWkcTfXl61c3m6YxxvD28rItmyD32lkopbitpZRqDnnMrdZWKyKp6brcd9J8TLIs7X6fRYI73G73dV0QSZuKCKeUh7E3FVHwJiLu7qZIiLu3F826u+mPqIay7BoJZwQA6KrowE6MjA6CRDEAASNq0956KRux5Ci9aStr27auC8YmRxRiQW7uAKymTXvw3M0pgIE5KJrB7tTA3ZsH7AAA5o6021X8Q5hKYD+iJz+GEfsbVUVNes3WB9WElCKliGqwdIthaiBkLqARDLSU9VreXmtbpWbKETkEF6gYVFMGIIrmGdGYEMygavdet60WWDLGnGKgtr3dXmO7nQL23u63Pgxh73ynQOiB1NfLlUwDmLDZ7YbjEEGv93lb5jRk6z3GMCUR5hxS7e57NMk9EHd1VQUE5j16jgaGiO5gplvZSq2wl9dZhsyGAO7qiuBBxA209w+UZYqtd+tm4BwCMwsFN9Pu6IQibtwBO6IxA0bjXCBuFIpRQzZkM2VkBnaw3XL4I+i8fzbg+D8mPO4fJPz/ccDBP/50BPqgBf1x7sH9CIUEtI/jLRBArN1WxjeAxewLSod9+sga1Ig1hmLG6AXtpZRKdkjD9HyygMo0r2WeexIaibVs0CpxJMLzYQjEr6/vkSUwNO3dnAOX1teqyIAOtXVwrLV9/f3l+YGcEJA5RI68zuv72zvHCIzDw7Gt/fZ6yTEKC7C00pzZ3edWDzkThvVem9bTwzFPh9767TqrQdfmjvlw2JZ1Oj8ECZf7+vB4fvzyyZo2U+zaSkXmIEFyJAldDcgP06Cq2DQiJWYKlIdhWwsLD+NISLXq7XZ/+vSYY0oS6XRwwrfXd4khjgk4NOiceJnL6/v8cD6aN3NFtJyHdVm+f/0agkyPJ2A85GHZ6sPT09NnabX//T/+fr1vn45HEZkvt/v9XkubUogprapV27qV2+2+LETgh9O4zMuy3Eup29YyBEFT9RRjRO7LFhiPQ2AkNO9a315mioBMLAwKa2vz9X5bVklZtmFt/SDhttb7S8mnMxC31i/3iwRR6y+vv5Wyffv2z3m+TyN/Op9iCLfrBbuJcM5xvt5VpMzzNA5ff/tu1oZhTJJ76tsyM0mt7e3trYF//vLT+fHwb//8j5GO631+/svTxGO5lVKqanNTrXVZbl5YENem13kDxFrra+nnn/48KVwVfZiSDE4ipipBrXJOzv746VFR7/e5tMJB1nXu2pglh5hEJgm9lrotcXgYJKxL6YDT0xAyVdfSGqtNSZA4CKcYyKnfai/LNOXH89S3K9ZtGqcLGHqzClirNgf1ai2MOfJQ3st63yRJSNyJGKyChiAMngCZ+YDtnOk8TceQbqW3ug5p4DxZMSxNtTruzRXznW1BQN2ttUD2NOYhJlX77bI1DBW8txJ0Hfr95yH86TD8L3/9+fMh317eu7Zba1m8LvXxp6cQ4+Xlpb1evoSQ2f/yeRwjv0BovP50GLbm5zn86cSnoNSaefcsbSn1tgmxhBSAem3UVZkSG/VWl0VCmnJ04CiSiaPwSBkIk6a1F2ewvm1vDaB9HmR5/7b0dVuu2JKqEmPmREwpMPUqt3kpW0k5DjktW2mtMnFHQ6QUA0dupUVUdNtKQUdCykNAYETb5sWBJMgwDIi4LItVA0VkMDdwX5YFAR2cWXJK830m5jykUpuqmpfWdV2X89NDFHl/ewP3dZlfX16J4PH59Nvff8shxMhWbVu3mEJX3dai1gBxh9YR7pH77m7Ckj7CE6SmdWnmFkMEBHUNEoLIPhQRoWUt2tu2LNpqr3Vb1z4dDodJB93mUtY1xFDL2pdlvzdE5javIhLc1nUu96uXrVorc3748llwqPNdAsWc0jA01a3OZZnvl3dCCELW4X6/qdotxdZrmZcg/PD0uF4vt+/XYRiYSJHmea6tmGkIMR+iWQfAVptEDhIez/l6v5VSEOh8OOYQl/t6eb8wc8pJgrh7zmkxMzXyXXoKRqjqvXc3NVUFdVNEENtZOfvbFz7gekFiEDD9oPgAqGlv3U0DEQDkGEEYELV3jhRzXFTZnZEYGZwcQFX1I91MbrofxZjJAcxRdjTQ/j7FHzUwhA8A9A/eIX04hdHB0YHNxXpQla4JbEQcmJDxrqaAwKjg27Ix+ENmas232eq93i62YkyScjYNTEMYnAAkRFaLYHkIKVFTvZe6VF91K61AXfM0alnL7T1FO05HtlpqJfIYYkoRhQ6D9K28Xm99K4H0OAYODNoFCUxv12VdtpQFrC83nqYcU9BaVFGIiVyYAU2V1JSAiFFiAMBWe2/mYKXUWmtKkRiRkYmEJSVptVg3RApZJISyNiJIcTCAUnupzc0AqLWmqtpblNBqJ2aKZCQVxCE6xw1CxdAQFGhvu+4hup3Q+AeH2z8mVftJBhHoRwJo//XAndbwI6a9E6AccB877kFp/1Hyc1MNmM28VUVwilExXnSTblQaB1pVN1UXQaa1Q2c6Ho9WS1nbJGBurWk1IGRHANPbrTAA9VWbCsK8bDnl2joLaVNHykPu4G7eWtnqSijE2JbiAChkgJf7NUgMzPN9wQ05yG1ZpLeQYl3q/f2+zrdIcjiOEqXX9ts/fj09nHAc8MDn00nd1DTE2Jsyy3g8aK/mYESn84Qibatmdvr0kA/TbS1t3dR6CDIM43CY4lqa9jimWnqpdRgPCH6/Xr3b0+M550GbP5weT6dT7327L8t8X+abgz/T5+PhUEr9j3/8Y17mp+fnh8fz799eVNWKgzfTXtb16Xyk4Fhbrb0sawix1WrqOQUArt279jEN18vdAYh5W7aGuF7nVnsesoR0m+dbKd0UhdfWxAjc7A4AIGlYK8gQjo9PtXVo7uq1l7at1qswE8J8XwFhLbOLcwwBxapGFkIvvWu92X3GmF/X367b2hSm1uMwsEhdCxVqvWzrdbkvapsIphSGMQXCbavrMgPAtm0vX1+OhzESM4sL397fiWEseTikdBiJZbnfDV1N//6Pv//Hr//49vXXZ/C3b6/sdIgHK7YVra09PB44EodAkoKQ1X4vrQF8f7tUs4hyKfW19CHkCOIg13k5GgYxTrHVSsLDkNdl7rWZaYjgRiQSIzPhtsylFmRiHmIOgQ2wD+KMSgalbEgQUibi99sVjmNKYghMQhJqUwE6xLhurvOaiT8/Pd6vxfoWkxg6oBJgcDVtAai2XTksVnst2zQkWDYpW4owiUwEY/C5tBRZ8mBO3mskJKDq1qFjRAfovYF6MJiYs7X/y9Px8+Ph15e35bLMvaWQu3ZY5udg/+U4/tcv5385xnq9tHKrBH0tAV0ItG4CFkET+p8epuSQluun4fz0+fjPt5d8mLqGL/h0FOu315v39+vbfStbUwmJhFQiA/Rt0XvB6fRwnCTi+9ZQEoe8dAWDikyBJJG2JgAJcSsztTaNfBR+GCJu6+u3XxnJAF9+fz2czofno4ObUqsq63IvyxolxCjrsgQeck6hV2aOErv11+UNGfOQu6pqjyEJkpu6OSGp2baVKGkYBlWttUgUd48hgkNOqWvbto1Zbtf7sm1PT4/TaSy1aGuOH/w3V5uv96495chCKUopBQGYqbW6+9619UZARADmAPRhEuFae++dmBkDIjILEwH4vndDgrKt/gGwJQAG9K798n4hIu39/eU7M0/DWEp7v7w7IrJL5t7MeiEyVH1//Y4UatkeHh8fjs+4NgyBhjyXNQQEVAJPgZ+eT62peUerZZl///6ttvLy+7c8REY6HR8B6Xa9vNTSatnHd1FEiB2wtubqvXcRXucFAQKLmzl4rcXM13nr3cZxmKap1VZKCSm23tWttWoq5s4cEEFCYBJi8B9Clx1UzrsWxFxVCfEjkurAElhwl7nsmxhQ2McM+1LG1cBdmJARGQGVhFIeOQ354ehB5lJdGscQiIhFzcz7uhUWJKduoObelCUzx9Kcid0dXAlZd9jRR4cad/zoHrSFPSMNTgDsFMACkDgM4JPgJNQVa3FFBuFq5I4KjGRza6WsrfUUZEN3bdpbXYspD6IhDhFMCCSnFEedL4m6I4wx3DZ/35qtBbQlh9buUOcvP31+GHJfDBCse/WexhyS1K06gTA2b9fL/f6uQwqH4yAxdm0SidkQFRzm+dZrJYReN0ZOg2xba7U5AeA+1nERGfJgDr0vtVdwDyIAICyqfVurmj4+P+c8BOZaClOIMWiH6RAlBDU3dJEooXUzQKylO0CIaWcIODPEqBAsDBayYqoUKrAh+q7LRWYkNPtIM9MPOsEHuGkPY+GOQnMHBNpdiH+gDPCPc/S+JduJFWBIu/4WDYhJRAFgn9hrR9oQKnBgeO8IXd+WqkyISCIQo7ndtg3BxhzZNQLd32c+RAIGBIpRAe/rNhCdH54pxcOjz5frOA4GuKzb2npKqcwzoXx6/knP1VXdtKu23rp6DGEaD8S8+3PzNO5d3xC4FWUJT18+l3m6v97aZpHQqg4xTsNARHsdjyJlTnWrFv3n558R5du3b7V3FlFzDNSqggNHuS1zHvIGtZQSNKgE4UM4Jq9yn1diPJ6OQ869bCuCtdoROliMeRrSnidv2qo1F1/KMpUlpnRfr+ZlmlLv9fv37ymEy+vmbvPtFoiAqK/FtGurx+nIMfVuY8odpBRopjmEZnZ5f3l/e9vWFYlN3dHUHJC7wn0pHamqiSSOTCk44LYurViOIY8TVnC1pfQ8pEOMdSvgqq1cLluI7GRz37atqatg0LWhVa8f/uN8yGoOxBGwVHu/3sDZOI5EuFZEC4FQ9ZDzcr8dD+PD6fy3v/0pMNhWpikShPfXy/v7VUIACqenh8T89v3b7X5XLcs/7ka2lbW2Au4U+Pvby7ps//n7bxLSv/6X/xaR6n1ZyNfbwiEej8d8mCSLOtQOt+tsTcMhzM02o4bh29t27bYZ1us2hBg9GQ1b89ZVFZAIDKwpER6PI4nkPOwotXVZh5Ecbd0WCQIyqxkhH3I+jeLe1lYOXuum3BvHRNG35W6eEslhYG36++8vj4lBbb68HgLEENo6T0QyCAeiFOd1LrVm58MQZAhNhJu+eWNs1BssbTD4+Tx+GeMA7f7yNT2co9Dj8XBV7PPK7plDAwbEitbYW+8pJldD617mv/50/F8/H46Jr/95HevdebIGghojPoJ9CZbm98vtO7r1Tb9er99L15jB9Pr6djyO52NG0onwYYjBfaT+/ds3Luun/DQvbb2+LIDjwxEIgTimcdGCMmBMNcCUxhGhlS1OY+F4m+8BPITYELvC3JqyatdgHAD71gR0BDoNabAmWz0ckm1zBjg/HY7n8+X1fUrZui7zClYZXYYhb8tyu8+nh2OMklMEM3KYhuHh4XGtm5vN97m2GkNoezVWbSdBM7OZ9VI33oZxGPIgIkF4K0UBRESEAcBjAoetFuu6zDMHNNXWyniYzHTMgxls69xa762llMB175zEIE21t55zpJQcoLUmIqAIgDElYrKiZmaqJIhEqt38o0EUYlDtvXc1dXcJAQGZudbq7g+PD3WtpRQlFgn7Jbe2knIap3Fd77UVQJuXGzIzRev1b3/5E3nvZRljyDzZsjw+PpyOp2Vd8pByim5bqe31+3Xetuv1oqaPTw8xBu1aSuHA2tu2rr212+UyDul8PDw/PR6Ox7KuxBjjULdKgI5Qtk1bc7QQYwhiZttaCOl8Pj89Pc/3W6kFzGOUGKObu/o6L4AkoTHROAxAhGRevfVOhBJCLU5I45BdcccQI2AgEiIkMnUz1dZqr623GGIMIQQhRiTsvVvvjNxrTXmQICwyDFlTDI172QDD3rUnEnBotRGIiUJVQmCO3sysBYp7vctRHNxw33bhXgizH3ERRCD70bx2d1cmwu6IQIQ5chDspSkgx+Da1UyIUmCw3urS2wLepjGiH2qbTat3jYGHSFZnF4wDjTmI6HKvhxyQLHRldATva2ltix0YFvV1ikzexzEipGVb6lJClCASGNeygfco1Nhvl9v91pueHx4fd/SOqdfSJcWifb7erPecwnE89Oq1ld0ChkzgiATurqbmYPvvqrDpjmb13hXcgrD3vi3bECVOIyETCgjGHIF5K3UrpZsBgIg4IJN3AxKZhmPt6sROEePE+WBp7JwbiAE70g5j/DHGAQNz/MD6uP8gdX98EDu8Y0/zfEhGAOgPmvcfAegf0CDfa/MIf6zEUK0HBHRy8KZgCMyizrq13jvn0cCdJYbAQNGBFQQsuUe3Qwi9buiORLf5vsy34yH+9PxgHDZj7jYcYrBxvZgTgbD1Pt+XIEIUpnHqfbu/Xx0w50QNTsO41U7ChIhmh+N4PJ/V/PXtraouy5anMYec8gEOmATJ+q3U8/l4Oh66tm0rd77nIU85S0jb1u7LZubLtk3HsS7lel2OD+NEh1pqKUVE3IBjwq5GpAi3eQkhtt7PTw8pBgZCN2I6naYQw31Z521r2t4ul8PxwCRrb/d1da2mfZ6X6zZ/f3mdb8vxeDicp2+/vzw8PpjZdl96VSS3brf3d3QIMeXhgAiXy/08jtX8Nt/NrZS5m221LtvauuYca2khCe2eae3ozByyUDfcuioygoMER3IK3QnDwOyOYi7uPUgopdduEhMG7K6QsxoZgKdIiG3tSj/gMSBAmIdRWZRqGMa9juHVCGgcs/ZyGA7i4Kok9D/967+cDhN2m5eCCCGQcBiGKeU4DMc4DNe3t7XU0+Pjst6/Xd7+/o9/XC5vjvb4eOqtf3/5ejye/+XP/yIhHOPw6XR+OJ1/+8dv9+slj2OeglAU5K3U33/9vi3tdH5Y1oZBwnhYt/JyueeHpwjYVJe6uYQ8HXq5g6MB2F4uQbfWD8cRkByMwWtva62OnGlkEVXw3ol6CBTI2eo0jDhvwQoJj4fQCO/dNkTVKkS2rHN1dcWVhSwwHkO8g5PolNMQkjNwgr69Xq9vj4eH83HicSgstJZerWrXolNIn6b8v/z55z+dpvX+8h+X97XUxaCi3+dNOwaMwoGB1ZrTLgJTUGPzCDqRhW3G6/twzCcvZyyDyFrLYUy/fHpK2y3aRgq///p9mFIaD/etKCIH6usWYnp+PCb0+8vWEI6f/zIy9W1e5neOZNttQBarQ4zP52PTdrndhnFcnRpI6Vx7pSSn86PU2tW25Q69YIWtvXcMVU0BGobqer+X4zTsfMHPp/MDWqjL6KHd79jWp8M45Ljd773Xw8OISt++/nY85pRYnh4ft3nettJbY6Db27upLevatvL48HgYR3RLKc73++3mgsS8m2HdzAExxWRghEAIJLI3e5kkpEBCjLwLpxz8cXrs317c9PJyMTM1W+7L+eFcsZhpyhmDzPNtud4RPOV0Pp/HIVb0Vtterd/WgujDkJH2I0LdloWEhpzMXES0d3OzaoQUQmDZ9VRurmbeatvXYUHCMA7H09FG1a5v39/NdDodQ0h5yjHwrK309u337723375+G6fD49OTOW7bfYAEdQOwMaUy5NPpzBKW2x3MVA3AzNqyLV01xFjLen58HPM43+br/SpExDSNg3uMgV211K33Pgyp9yr7axBsmHKtnQAkStcO7jllYd5KEea9Ni4SVT1GM3MwZ2YObA7gXkuRIFvBFFMM7KaIzMzuhgkRQbURASJFCRKCqrvtmzEDh9oqAkSJzGTaq1pKydW8aUqBmLQ7i9Rm0ygpp8XBrbGTu0I34hgkN4ngDa3VpUTBGINr7woc0NzM0AkdwNyQZZef2o+sCAGCO/meiNH9R8RYe0frAyLFULq2rRi55OwxByu2bSPByNa2+ba+U1sC1ENMXOl96aYqzNM4RKa+LNvbbOt7+PzISazMK4bjNGYBRnh+OB1Cvy+rtqtZefx0EKshDSkka+pFt2VOA1sHcCNQrSu6T1MqM9fatm1+fTc1G4YhhOhqdd1iIG1lvi+EBxit1rYuswMwB9zlHQDubmpdDQBYaA+nt9bKsiLimAdVFaSc4pAjAmh1cMhjJpbS96J8r121G8fAEjCwVwcWHjLVvnZXIJfkeWqSC3JH7oDAHyI2QDXsCPxHAMs/LG0fYfT9fPOHp+RH6evjsgHggPQD6QR7kunHScgBPlxvhhr2/Tga7yU/xG57K966YwqhuzeDum5jCEyWrI3QjoJnkeyWz2Oe4lq263qnJPFw3pzQLTID4Pv7QqKUmDZqc3PtBNDWEoIt4KAWYiSCEGVZFzOIjOu8jGNutbgNY0ooHAL/8z9/bevWW4vEMSZAjTGRgQhJEDcrtYyHcTwe1mU+nU4Pj4/fvl++v7zX1tOQxvEEMJdavdOYhsixbjVIGIb87dvLPK+1tYcH4FKHPAJBankaRkbvay3LzEynh6MLufB9WV++v+b1+vz05de3t75tzw9TzuFyu93WRU2n4+nrt5d//8d/ppRKbabOHB8fTszYalnvy8PpeBzHbVmu9/v1ev3tt69pzJKkrNv9ekOmw+n4+PSEJMt9Weel9ypETsiSWAKitD0PL7TUxsRDHs10rb0ohHESEneYb3OvhdHXrdRW8zikQyZTco8nb4ZdFYEkfgQ0ickRu3YSAQO2aKv11seEMefjNI4pzverln5Iozyy5BCM+r2cpjEcj++vtzZ3JhzHSQ0BGUFqtTScjuejDIdfUPLxqfZVe9O63S5X8vDTT5//9rd/EZY8pmDw9tvXy8v3XlpDfP29q2rI+fvr9fK2TOOJgAkoxFy23iqYAJFEIhS8Xe9m0B0GCUKchmCB09M5hb/8f//7/0d7b71fbtfaOsUIBPd1deYxDwgkHA7TsUvYzLb39wP6qIXQjmN8fpqKyG/X26X0ij7Pt3Kfzw8PMYTb/X6e0pfnz99vb/V2S4djpq5LCTmkILKtoW7ZSratFVi2YsBjiCugoWTmKcooNCT2lh6+fPp6vb0t27U05Tyk0Zu33giMenMAFokhgMP5IfN8D/32wMx1PrKcaPtl8m/v3z8/Pg5Zn0RLW9w1PjzCMb03xbXUSOfH50byGGJI7Fq2bT2dsiBf7/ciXNZ7OE2GVraVkE5TfjydUuS6rBJIQhgGrrfOMd7va6tr55yIb5frOi+HfJhIlqr3usG2mcPw+dNwOLgSEyyXG7mWHmngowx/ffxSb+/Lq7F7u21LXZ+fT8LQtBL77X45nr9Iq/rlpy/bun7/9tp6V/NpGKVyLfV2uTTtpRQOMgyDdjPtTKyqpdYcEzGT0D7ADz8gAe62I5uFhJkRYcixq87zcjxOprYui/aOhBLCOs/buj5/fg5BtrWAqbkToPZ2v153/tCyLJf6vmdEiPB0fshDliCu1iq7QkxB1ZAQg7TWwFHBvLWIQEzsQU3NwNxbqxJizElidAdmcvUvP325LTMBhkBDyqWWbSu19v26ez6djqfT6eHUtlZqjYFiJG8NmIcYGamVygjaWuvNAWMIKUfodeThcr++vr7gIzKjlla05ZwezmckmKZhm5eybW+vL4fDVEt1Ejdz+0D+7U0uAGAiQHT33ruadXVE7NocIKZYthpiIEZVj4ERqGyl1YYOTGxGDsgshGgA7hUQCQMTESGRIBGCbaV07Q7EREMeVLVbJ9wv/LYjTXOOsDOmI3+IDgi7qnpta2exQFNp3YEhQiZDN+3VtY+SxPV+uxvQkKSpOjJCUHdmNDfT/T2IZkaEYE57FghgL+kDYdMWyJFAGZrDZu61ccD/g6n/+rE0TfI0MROv+sQR7h4qs6q6ukdh7pYLXvP/B5YgsSCxu5yd6dnprq7KzIhw9yM+8Soz48WJ7JmbQAChHHGUudnv9zwBBFU8I7A6kSAV2451t161FmvgCVDMoz+cz2lM0CEcQ9uqtX27WvdORDVwShFBt233JufkZp+W+7KVFh15UkdWtqXtpeZVW61AmlvdAAEAAElEQVT7lsaoIqQaGEsr4xg/fXnONS/3pfbcauu9HuaJgATByEs3Auq15X1v0qR38uy9CzGqgqr+0G0REqOqqmgXqbWs2xqcm+ZD8J6RUQ26EhMyEZGp5rrn3gkxhNC1COjjmsgcXHToXAfXiAuZclSfwMfqQzHshAqoj0Pjfy/iiT2EJWC/419/NNl/91wg/N55f1Ayfv/D/5qF/h+yzz+mHzJTwIc5AzsqkT3mciLXTYyAkcl778OaCzIiWK8VrTPWUMoU4Bjic3SuFO/BkfXefPDD8RDmKe953XLOcj5Nptq2QgjIntARdef4MVzf73ciPD4dTZRDSIb7nlMKIlSyBO9UdF+3w2meD+Pnn19E6r7lvK5sgITkaBjSULfWuxHHaXr+9LGWXFu/LouLQ9W2bMte2gwmiOgIHee9SEEf3TyMecvKoeaSt6wKb9/ffQg5lI9fPvcs3/Jb9FT3db/fxnm01qrIcBi3fRdprdHeNvb49u3a8n0afC3tn//ylyp9mKda2i//8svHzy9fPv08zfPL6TkG7xyjpLqt1iTnvOd6XZd1W95fL8h0OB7HaSB2zlFKMbigXVWqj4xEvXUBQMfkuDdYc+sAjW3tTXspzccQQkiABOSMfS+NnNfaAGw6HqP0NA2U2JqAqjNyAuuSQe3p6TjPB+e8guZaLtdbbzKkRFEdu7Ls0ceX8/k4T2Bq2rZ1qbmezkdRub1eydQ92TCOKGRA0zgIOPLehyC1D9OU1+227YjYDX/+0985z7/97Zde9+CGwEPw6fXbe4zO3UhLbaVc3t598s+nl9pUpKE47X0ao/cUvOsK6+VKaQBUBLu/fj+8nGMKOMSvr1ebBheQTU7zaKTH5KPD8/G8L+sii4maWNkKBQfkpAmPDoFenl+GYS6i0PK+3n69vX8+H7FnLn2Ap8C4Bci5AtjWtpfTNI4poLaN7vv2ZE/Bu+S4bcu1LdGFfRO6GrZ6HkeylveraYMuoITSBgVyEHqRe/+uZftKtbet1aUC+MkbxDiA8yqlbTuaHUJMQBx43/dei4c09PY8hD89zTPD8v3bh8E5SlS2cdT5RwF6V4Itl1U1G0wxjExbrcoyTZEJ2rZa3r33TPZ6u7noGNV5J9LmGGWrx8N0OIwgTUsJBNu+QScHGBD9dHy/X1/fliFKL9kTvkwDda5OFm4e5dK79QzqwjCt9/uH48C9rG+vr2zDaeyHFKOrzmmr7Pkwz+qw1L3WNp3S5X1vvbv7dUmDq6VKUzB4Pp2enp/u67qu27qsyCii3lNMyTkPYOttE8nSuvfeBZauvXVG7iC9tT1nRkIEBobfP9tMpZVGiCq95OIDh+BFHqEKUVEGaKWu673seUhjisFMS8neu1pr762WIiYAYALzONOADz6Jj8ExO6JSqj5ow4gU+LHzEek+BCaKMSI2MzVA70IaEjGr6Lqt6217+fgyDsO37+9dVcxa7wA0hCl+jGZaalUwbZrSmMZICPM8lqUgwpCi9W6tjzGgKfQOjik5WkC7MjkGzku+u+vpcArBaelEpNYjekPKKsv9VvY1520cBgDrrZPDBzJZQPNekSCGiECltFabmpVcH59E3gfvXfDOEEABDVSNQA0eeWcAgBC898F5RiSR1hVJCQmYHpcnQzNQedTDHgpNJhRn0BBAmRnMiOABOAAE530XMKU4RWLXWi+2OSNqxfccxQyLd4StoVYsC7Mekdq62uUVyPnoQhjMOXS4V2utGxI5fIS69NE1gscySAnokTgRQ2InUgB77uoEpAmrUhWMyCAoQi1DbYAV60ateFNT662aKSGGlI7z7JyvUB3hnGZUldbX+4qAFaDP8xDiHFItdVBsHVxI6nJ05Bj37ba83UzUEBB6Xre8bb1VJlTtrZTqcJyikdzugoal5LLlnqsnNw2JkxCY99hbvd9vj+4XiQPbkR+PBoWUgLCrdhERBQIAFekqgo49oyMCE1NsDYlCGhITta4dxTOjY1HrzgBYkQzZkNkzsm8udSILaH6WNHUOBag8KE1kgACm+CN3/ui0w+8t9gfu+VHPQwR63MPsx40Sf3T14cfv/30R9K+XMPvXwQjxhwFFATv9kC8SEwJrV1MSQ2QGNKagWlPA6Og5wFHw0xDnvkfYTVCk1tYEklCbz3M8zOB8XvdtK421tB4YPdnpfEyTLvdtJBqGVEKtvaiKMW2lAiAw+pCOaVKFGLHWbFBjinEIzhNHmg/D0/OBSKPHlAjJKWJHO3x8en+/L6VNx3EvDYF8Cl2l9EIelaBpb9avy1VaDSFQt7LtjDiG2Lf67W+/mcpxOgzTsKzr5XJL59D2HA/hcr3lbUNrT+c517ov2zDNdS3394u2+v7t/p/+038qLZf70rftfJh89NfbTdUOx7FRdw7Kutd9/fThiUGu75cPT8/eu0aw7ttaiiFKExX0IZZSRCzGIbnoAznCuq/L/ZZzDTGGORqREFawqtq7FbCulqUroypUEejyICptrXrDlFIcIiC0VuM0Tp6Nae9FyWIcTIGbTc8zMaUQoksuRiMNNUnTrnJ+OpJhzXPfs0ccU2Cy3luTbE5d9C463SVyDM45DKwh+innap3SmBShtx58SB+eL0RqHRFCmRC9cyGmuTcdZ1eKLvt6v37tLQdPf/jDZ0K8rcuEh9fLxYVgOyfiIaanYUT26AFUqQJ5G1LoCgA6cM9rli1HD6VkKX3XRr1Ozr7f74PDp6fTNCZ/cSJ2u69NLI6DEata3XeHnrr0bSfCmYmdE5DPP53vX79J3df7d6yDU/C9iMop0uGQeslrzRQp7/W93CK7w2Hct21bVhed9L5t++l0PB5m7WtrLQQ4D95vRrVty46iwzQHk8tvbwtZRWrExQ2UIrVqrQ/BfTylQJJrnY+hmqL1veThKQboH87jR09///Hk2/L2t69gnUr5+ZzCFO+392qtrHfAdF/3ba9FIU2U5uN+u/c9U28uOqiViXKtWQoAkufjeR6Sy9s25k5izlMAKPsm23KaJm++XHbXNO8XQJJc8rod/3ASk+SI6/pxPv/86cvltv663P76fqmeVq3f//pKXcA5Zrt9/XWex53rr7InMo9qjGEIJoKA+7Z675jh+dPh9DS5EP375b21OhxHQmTn9m2XKoQsIp7dkNJ8nNm58l5LLaXW3js7Z6YmKCK9NTNj72qpvTUldOyY+KFO7F1ra10aIm/Ltu37MMTD4eAcbOsmvccUVWQv+75uTBSDSymYmDPLpbRag3cpHVVs3zZOPI5JRaR3EQmOQ4hgCIT7lh9+KxcYCVBUVVVNTYgxxtCahBCneTqeToC4Lvfb5baXXb5pTCnXPb/lsczDNDJh8pHd4Bzf17Xk3EXmaexVxPQwj+RYVedpckTIPjBJF0eoCNCNEVWE2X38+JK3nIaYgt+dAwvRO+jSDAhNTQGtS913Oswzo8t7RsMhRUq+lb5veZii905EzQyJ4PEzVSJSld6BiFR6M2B22kXUwMB7D4BmqIaG7HxkR70TOOAq2gUBVLS19jBNED3kmwwGXRUAQ/BNuqoxERIZAOOjk0hq5mOc5wOGobWqJmOYGAm15NZVLZDKvjHZ/dsvoPmJvljNy69/JYpbr4cPH306mA9mCKqAhOYerSHvfZfGSAqAqIQPuLcSGjGJEXiWreeuKj0YeiLpSlgsZ1uz1WJcneYDIQ6DpKFj3/bN+0hAZc0WlNAcUGRigqKK0rRrVllvSzgSefSAtVRrfRxST5OBac37tpWyDXFAspIboN2XZV/XFOKU/DBG6dJFOYQ4pG1ZveNuUvKGPlQHCO5Rm5Jer5e99RaGFHzac972fDofhzjE6BUAen/cI51nqR0BU4rTPA7jYB0IOQaPCN4755iQAVRAmbCbldyNidghcDPsQACBXRI3CgejIC61NFTyBfGxaLUfvMlHcPmhuQA0QzIzBMPfcz2/a05/9NlBf8R7fvz4rxuk389fPyJA+EgM/QAeAZjx48qLAESIqLV7ZCNA/ZF/Z0ZvwDmP3J9i/JjcP7yMtIAst3wv4+AMbKs7xBDAgeiy3lW0iXy77axymtKnj2efpn27OucdRe9d8KG20NU6yH3biR25COymadIGIdEAw9v3b03BEJynp4+nuSSC7h1BM4/Mwd/XrfbqhxDHscm+7z1EGKdEhI7QedfNQozRYDofBEAMhhTUekhxPIzSq5B0bdJ7TEl6A9Pe6tvb27ptMb0agQ9OtQsoIkrvl7f32/V2X6+/ff3t+/vbL799ReJPz6dPH5+epnlM45++fGHnwLsuPQLfL9txnA/DuN6WfVtfoZ9PTwrWQevWFGw+Hdm5ECIiHc4H5xlFHSOItFZbrZ7JezYzCgFBVUGQO5l5RgNPzqQPaSKBfdup9SEN2qS1nmISNQ5ezbacD+lgBF3UgJzzjkM4+DGOIGYqhMSe9tpUKrOZKaIG5wPETmClkgqotpaBII7ReWeIwzSixynGIY2OPKDv8r6sO5V2fDqlMT7iScNxdM7FEJ8+fHx9fe1q5w8f2IfldvPD3AEHgOu1X/Z7/ud/TikA0drb67rGcUDjT19+OgxTSmFbtip9PJ+0i+6GRo7pMM23y+temh+mKfn3250cdtX7voHDhMJ+MJXg7Pz0hOSGcXq/3ErtzQo+QO8cLu/fETmmYTxOI9Pxw8cYuU0pHqfX9wu4rSFv923JJYxpN1veF3b88vFDCId13VaR82E+juPTMO/rXgFSSEjegICCQitlU0AqpEv2vTngQer5MNdsMfI4jL9dN0dMqr7X3osPNk8jD7ZqGeD++Mb+4x//mLxry/58SLFV33Ld7/u+eEfHIaBLWcrrL3/j6Ii5mrYto4usWksBk6fjWFY0s7639XL3wbFzKuCDC3EQYx+G5sq3374/j2MR2XqTkkfnAnHwvqUWQC6XbMw/vQz3peG+TY6Og7O8e01Hr7ssL76nl8NO4XUr5DRrHwePJqePc18WK1Itz0/HEGLJdd2LqMQhxuAcAJbmI87Jub2X1+tlXZZPnz5N43S/LfM8DWNKCA9v856rIUzHGQi+fvsGCodpGqfRRFS1S3beefY+ev699fpD96qqhgoqXXrvwVNKobXae3+QeB76aCRqvWsXR/zoLknvSDwOQ6nFQIHoMB+cc68/NurQanlQpkIIDp3zzIhEBITaRfVhEUBiRkQwFDEmDN7HGAip1dqkX65XQGDmt9dXYp4P8zQfQ4zaemk9Bh/iIF3mYU5hyDmj0PX7RbX1mqN32uTpeEzeA2jLZVs3RIgxbqUG58/nUxckbg5JRXop2lpkN4SAptq6ojLANIxE0LsQMwK44B7eLDMUFZ88Em1bNkBiCiGImHRh7x4fVb0JoIh2JiYEAVNVRHTePc5XIgKmRA/SIZByiE699NqtGyCLdFUlYmYCRFFBM2Ig5xFJHvOjKABhZCRH7Icp+ZCGaTYO92VnAkcSmTjZ8v2+1buOCUq+3S4kebu9ft2/j2NMfdmybFoGMpqLkAcfQkg+pv7wZqB7LBP0hz6BzIBU+UFONFFDNEaOBA0QVTpEBmeonXpxsrPsXlsiOwxEgavyvUJHDt6XvS7lNqR4PkyH6KkJSguB3WlYt11V9v3qUY+n4zgOQ0omRojW+7IubaugElNgpi5dW9fWsbfocB7D4COS5V4B0PkwpFFK98MgvUurANZ6QVAAzPveSq611tr8Vs4vRMi1S4wxhiSiYtpb/9EaN6q5GViaUoxjiCMlA8AUHtM9dOmtFemKRJw8KRg++OgOOJigAmMI1Q/qR/FTp9CYN3ANQAh/ILcVyEAR9cfl6keqGfRfNV7/wx7nx+Ln8fWhocmPPJD9dwTQj6Q0/g51evw6mhGAESAis6GhIoh1ccRmqsoELlBgZ7XevWms5ejkSfFPh+mJREgzaTyPcYyX99t9uY+MyQ+3y21fynw4BvJrWQQhi+ba39+ubV+GNI7DsFyv5CF4P8S05hzYo2efeNtKU3Lez2nwTGmcet9f317F8vOnOXp6eprG5Ja3vN8rgUXH1cTUYhjC86hqYGrdYoigkre9dhmG4fMf/rjtexridr2v+/50Omlr120zaW4IKQ/aZZ4mQGu5hEBb3a6v7+uyTfM4HaZ9vf/X/5wJKAzjumyl1M+fP3759DOZOx+fmPl8GH/+8GFkt2971z49HYr0799ej2mav0xPT6f9vk/T1HsrpdfW5/l4u11bry4GQ+xiIcTj8RRTWJdbzfswxNZqbzLNhxSiMRYxNUZ+OGw9RtuXXEoNg/POpRCsakFmcsMwrnXZ8+69JzDpEofYpLNzyOyrTEOYjocUh33ZSt4O0+S9b7VeLq9NFAhBmyeTfV21t1yPw8BO637TxmqCIAjOALooErNDCk7RbvtSqxhziCkOcT6NTYSIapOuxoTeBzWoVXrvPoRhOrWOpep0PKHr4+vh7f3X2/vb3/7yL1vOajgdjjENDhkc2/llGCKo5GVTUB4GNQDjMU77/dpy9cGlyA7ZPR96l5FdJOO8f3x+igRr164WiYPbxxjrOLhWl23T3gBRTFWq56C1lBWcD8m5++Wy5+Xw6aft22sTo5iatNvb2xM+qZjlnOY5gAESCjyOjmwKImXdnXMY3eu375c3mI9DzduW1yGNgxtdy0dHT09H72NySM8Te14EqdcIdQypj+72frdLhrYO3BjqAPJ0Ph6n+O//zQdH/Lf/658irLfr67rsoiXn/fDpRQSu10tRIezj4diB7qUjWBxiNIiObpdrK/vxMHXRe+4i2vcekxvHaZqn4J1ZY+Tz4bD2mrzzoOV2G4N7eTor0FLyS4RPx7kepyrdUPV4fnt7bdJ+fjpj7pHsL//0X/K+upA+Hc4V2Vecn6avX1+PQQ+H2ZrX5xgDtXUfAgxTIILvb29NZJzGnnurhVTWt+2rmfv119++vv72269f0fF0OHz86dP5fHLoW6+5VNvXtez1Kk1VTJxzD5YxIoaUct4f6VXvffDeMyOCqDIQsJloLr312lozU04jkUuh/9ghsUNEIlLTdVsJMQRfarnero4ZiV5ePhBijOGx0nCOnSPtuu8ZEQiRiUSkS3u4wonIsWuiZiZiaOSD88Gr123bzTDE4Jzb93y5XVsttTUzvd/vXfoYZh8CIfbaSi7OeRCoWw7R99Z7bSpiJABaS83ZIUL0vOZtHJ+DC1I7EpEjQ2i9M9CYkhJHlfv1tt0WAYvehRC8d4DWsrReQwxg5qOrudVahzDEIYl2AhLRED07BoXeBcAeVi8iYK8qyuxyLWrd1IgQAVTEwJzn3h4obzVEctQNauueHkcHNsSADpFF1TECmYFjRFUVkYcW7LES8OwRVFSRkBwTOjNOwzjMswo59hT83Tbt1TI12UCb142LqK7b+6WVdR44Rlu+/9ViMHMHP0yJg1bqWxUo2R0/faKAe9dqHciJKj7sYYgKoE1RDQkITFS1d1Txho44ESEot8pgVnZulbVFgsn7gcFAcqmt6rZtCuTZV6u91ioijsk5Vns6HuIUG8r77batudZtR0uJxymmYXjUWeONNpTb9RpD9N5Jb/u211IQjFQZKDBqrwLSegeh0U/OuXEctXdgQSVpzQzYO0TEQgJQeq2tGWDec3Aenasl15qQycx6N+/YFEou+76DGXr3MHs/DK3MHENApJxzaVVFwzAoO0Mj700JKICLxs7YYRqyBfFHdUmd78wCqAhCqAZkQGAM9JhhFJHAAPRRe1cgACTF/z784O9SjEd+HX5E0xD+dcXzryjo/wEIDf99v/SvtERCUmuEaCpopNKdZ0dGUifTUeXTMR7b/tnD58Elbdd9nVP0IaxLNgVtWpZ8fJ4SkovjFCOrtbGEIY5TzNLq27vk/XSYzs/P7Xrre2PCKl1ND4cpjGOtInUnIu9g2/qQ4nycaoZvv/2tlfXjy4Ed9toc+2GI2mFZ9nEeIxh5v2/inAcHb6+v95scDwOh7fuuBk8vH6bj8bffXu/L6gjzsgGCA3h7f3WOPnx8EbU5jax2eX31hB+fXzap//LXv75dXn/5+tecM4Kcj4fT4fj04cPpeDzMcwppHOaPT097yeNxlrpBba3XUjMSWbPD4bCX1tp9HqfxcMprnuZjF7stV5/Sksu2NwycxoHBpZh8cIhQtiyi5Pi+bbW0lCIgk49qaNhFoQtmUWBrVfbWvGfn/JjSwE7N/LMbpimluK+bF/aBEbCWuu778Xwap4kIQbqpcROf8LLvrdTgSMUty7LclxADGjoT51hbkd7IbEhOSy8ihhiC7027mFKXag3FO1YwFdvWTRqeDsfD6eC9AyS1HmNo1nJrVaV3kyrTfFzuS8ktDmk4zLk2H3gYOA7D84enr19/yU2Xb9+WZc39gu7u2dM/8uF/Go309DQTGxDFFIvBspZisOcaUkJ2bc9uHJ9fntZ1R4PJMQA4ioh9Psy3Sy+lehcOx2MaxvvthqqlV3wAlaGlmBySirmEdd+K3BGttrbWohznkUHVO/aEY/TxfBhD4ta71PM0IaLUsm15W5amMh1OvdZ9XYkpRFdKbbnO4zQN4VGaPQUaBs7rKrUFP0/BfTwMueTg3RgsHd2yrFgKoaQAc+CXYNy32NchhrPX7XZryxXAyBkhXW+LAZBnrTUO3nmuzRTQO6eqHjEynQef8w4Oa+mB3cePH6qgqMVhZKK6bQSt3W0c0/Hl+dN8oFrb/TpGNzhSMOsGrVGjOQRFrrWHFE58/vbt+wBQrSHidb+MIZ0Oqcte16ut+dP56eOfX4ZpkFpya8cPh9rbr69vunsX5ymmu/MIdL8sb1+/R3Le8fPpbCbut29/+9vXX4Z5psHPH8+ji713dD9wdqb66Lrnui33NeedkFotjl2M3lTNzLETldrsITVgAkdEjqqW3lvJ++87GTMFHxwHMsVcMqD54A2st6am4zhgQ3tY6HN9p0tMkYlTCgCacyUkF7mUTEzn5ydybl93JlLVWmoI0czAPIB2Ee85BKeqKUYV9d4Ts4j2LiWXLa+mxkxqZmZdWik7Iz4sob0XaT6Nse65N1VTJmJTHxxZABHHfprmLj1Lcz5QjPV+hdqhifMem9beORIjztPomEys1oJgqmaiCorIznkfoorw4E2hlBKSJwITDdGxI+2GjkqtCCTyICkjI4Fhaz/GHEJyzAxs9qCsuFI277x0MwI0qzUb9ETjMARip2rQjZ0bJqfyED2q9lZbAQA29hy6CAAAkvfOMyCQHz0YEnMcksoj7oHL7bZvd3S+i+x7LsvlfDqR2uvbN7nfoGfnYgyWbSdtp+EcIoeIh9F3hlrzNB8jS297Xdp0nAuoGSN61Ye+4YduwQxBkdgFR9YLdyERD5oQLGdvut/fNN9HgoEp0pCIStOy7Vup67rxMHoKgw97LX1bVimjtOfz/PH50AnelusQo3brteTtftM6BcaSzRSJa96X2/X99fs4jcM49d63206AeV2YIXjf96Km276W2tExI4AaE4qoQw6zN4V136p0x87FGMBqa72bCx6IWu9k1norLQOjGjh2gCjar7f36/V2Pj8FHx4CUhExgS4yego+qVkSMyNzLIDGDh2TiLqEcTIgI185iRszJ6Eg4M2gIyggGgEoAiASGgEYkD1CzgqGpvzwsOGPHPqPHDSiooIpGADwYw4yAP6BMgIDAST43aeK+GAkwr8KMfDHgk+ckYChs17NMbNZYAf5hn3/6RxPhn//NPL7NuQFr+aihyo+Ttttq63FEFiJFY/zOA2hZ61V7ntJPgLQtu/HU8rXbV+XcUqX+707Apf2bS9dAfA4T8fj+f1yi88n57i1urVqjhEZVKOLh3Fuaxey3rsPNMRIwLWJKbbcat/BMB1cqbWu27avns4u+Ne3K/tQ+utS9baupWRpFVWMrOZ9L1l6V2aHsH5dtrdb8CDS4/igZ/oP5w/k0AUXAv35Tz9Pw8Tkj9Oxt7pv676+EfeYOI7hllcTzXnftzwcxmmeG5OfjyPH5bLJ+/X55XwpuaE2s2XfyRgfp+0mKTF63Pe87NuYhjSPZa8oNB1nJl5uKyAY0V6AgttzFnSsvommaT6fpk+fPwwct+9fpVSXkgJ2KXHANI4pBUJGs9tl6aUPLkjZZ8ZaGuXNCBMjet5zrsRvr1fpcpxHaw0BkmNVKNbjOET2jXHvUB/8/eiqSO+ARoReqpWufo4e0Qu4FMihWE8uMI/ODfMM21a3dQPpp+PRM4/D1GodhiSm0zwhIpHVupV9HtIc0+Hl6y///Je/7CVXqduyfn17/evX34Z5psezuClUI8Dk/T1XM5yPp256v+9BJd+WwE57017OY8r3++mYwhBBDwC27/sQQiJX7ktk7g2ktTC41sp9s8NwnA/HeZ7IGrc2Tun73/52f79M549tr1q794yRLaKJ1raRuOjQ9rW2nlIqZW/bomR156bw8cM5DgMRaq3qk7Z2ef02DC7F1O4X2KmW1qsm78eBu7OzT0BmUodg48FXqexc7dmWqzkM09SWd1jIa+vrEp2Sc3kvzrEBxGHEQNmUfdv20p0zh36IBF5KeX399g8/f8Hj8brcHIKfkhvn296WdVu2NfeWUD1UdjKPYbm8TuejJ7fshr3keyaGkZ33lPNWyh2YXp7PcUgraiGEbZlD+ss//dOHT88fPnwUabrlQH3EcoLivGPJr+/fIW9xJGd48q5f77etkXdHH5uj17dbCNM0jPM0mpTv37+6y3pbyupCIKA4pLdvl7ItMaQxjsSOnBdZFWS779frUvIupSFgiuF0Pg7DNI0TMvfW8lakt9YagE7jxMb7vpeyqemDvoNIQEJM2g0RHbsuElMkR/uS0YSIhhRLbQhQa0OwFGM8zI99z/v7u4mS93vJzLznbRimlIJ0ATPPTroMw4AD1Fp6Fx9cDPHxHp1CBISSc+/CzITESB0aIo/jmPcdDaRLKZWIwNQMgFmkSQftivzQazjHiDEi4zikEOLh+OF+u23b674u+7r5EILnVmurbe8Nsxun2bGL3nfo4D2Y9dZLqyF4jgSAwQcLJL2pai1NH8J0Quc8EhprrU3MvCdtYGaBXWsdENixGj+mHwME+SFiaiIUgxI6F5DwcXsgIjVoGF0cGLlt1Tn1CCVvXSuT1axSTc0csSNmR8jcVZEIlWIaASE/FLnkXExdTbVf3t+X9T7NR4A2Rh6nsUip97uzdpj827fX+9v9Itl7I6DDHIkCEXqm1psHm5K3WtUjadfcgIGdE/3RoQZTxB/CVEMGRCYiaBElQZ9NRjIhZa1i8nZ5d1OANDrmIQ1q6hxbUSLorcUhpCGB1ioVVK1XEul5UwLuTQ3nKbZMb7f7enkPnk/HY++ahqG3nPd1W1dRCSnpo6QHpihtb0woytu+9d4NzNRqqd4HBWCm4D0RiPUU0n3daq7DMMzz3FtXseCDD95UTLH3DoZmSIDOeQMwzfu219xiiIfDgRBqKQgYXXDsmxg4bWbAjshvJfeOFEjAiXMWJuGxk1MK4pPy0IGFvPwYS8AUgYCRCBHUHjpaAwRC+V11gcYEZIqmgkpGqGhiqqBkivjAPKP+SAHBD1jQg1v0CDgr/G6M/9dC2aNLbWRG2sFRBRMHvbVIZG2jXg8kH7wf9v0JkZ1SbZqXDilGX/d937Y4DMF57/k0j2TGjtALiH44T7etNIO1FgBxkf2YsiE2qxhqawqOx8PgGZCY+OPLU85Fei8oBjwEYmTz7o9/+EKqbW3DGFMKpdUYx/k0YUh/+8sv9/dbKfl4OF7ev26lsUfqeL/fu+lWS12X79//q5ix55LL/XpxBADy4eV5HIfofN1XZvJG1Cz6YYiByE3zNPy70bqFGMZjEimmHQBMKdfiDGqtOWdAYsb77VZbm9Ow7CWMk0/D1hQouOHY8vU//7f/Ms+jBSZD0F7EmqAnhsd2j/ihoVCRVtu1trN7QudR0Q8JFdKBYkhNgNV8GriBI2QO4xjC6H7+6eXT01PfNnW0r1XW+vLHLzD495u7X9ayb2CcazEEFb3f7iw1BoLeuuo0TYd5pFzyXh/Dtg8usiOg0ivWHhy5mJh9K31fc36URajGkZjZO6+dQLmoHE7neIh5WwFRxW7rTmYhxhBjrfovf/vlfrs676anyfvQa0kxeEb23HIjJB+c9zyNSaaRPn58enl6+fjhdD7/87/8y9evvy2yrOvyj//5P48psvReJd/zx09f4jAKwJjSdd3fvn/1MdbSAGzP7957be3Ly9GPcX45HsbkB/rp548A9rd/+W293sRkHNOyr4wcYkKHW64oOCYzAmIkAVKp27JeVugdRbRW73jdOoExQq77OE2Dc1JqSmEeZ+c9WvMevn77TmgfPzz5kFrrIv35eFQd920pZUVj99Cl9RaY/OCZ0GH3Kjnf0jCkOV3eLiXnOEbVvr5dT+f5y8ePn798fn99++XXr9L6t9++lVbmeWZ24zTEaVSGZVkRNCS3XHeLSZVqqUOkVvZPz0+jD7XsWhoiEWrJey3NOeytBoag4qUla0mbAqxvX63V6/fXXvKHD+eYEnowxUCcpjjMEyK2LZfr7RBDcL72ntesHUqvy/326eWTf+Ky77/99Zd93wBtiOnj+TywW3I+TEPZ2+W2oPfApZND1XmaxjiiWd3zmIKTXuu2fV32L5+/vH797jGo0l4bOUkpeE4n9/zbL7/+9svX6Tx/On+6vL7nfW8qXbVJZ0covbXaelWR2qqotq4xJAMwJO+DC46ZkAhMvPfsvBn6GGppBibN2HtGrrV775DZVMdxmsYJumFAe+wPmfyUemvjPP7tL7/02uZDaaW/vLzM43RflnEaYor321JLDTHM03GYk3f+r//yV3bsnbvfcik5hBh8jKfj9XZlQjclJlQzIvTBhRBbqWbGzolY74L4+CwG6SJOHnTAsudhGOIQAOb/6//6r/u6TvORYxBRQHTRByYfw5Divub1vvZW0SCmBKbsXGBviLkU5ObYOQLwBOAV0MfonDcxe+ymAAjBRJ2jB3v3EaZFwnkYpCkx9q6qxo6LNHHghlh6fxxO2MBMc+tIXSmEcGJKZkUlo7UUrTZTFI3OaSBSVkfIAgpIxNylB6ZhSEQUhxhjSkMiR/m2/Nf/8n+VWubTVJbrdJhOh1Pv9fb90rd2mmcco26zSc25Pf6GPTdH/XxMTFzXexzjwfut9cvt7sNRRRGMELopMhKh2ePiYogogGREWiPBifWIcFQIYD1gs4bRFqck3cS8i+R8HFK0gnnjyOuyVRVPHhmn42EOPKVQcl7fr/NxmpDuuQyHqYSw+XTdbt+/vzvvh5QQrZRdWmutuwilCqBS4JarqCo8Hh9oXbqI98EFH3wYp6EW2lTNoDV9wLLI6DHAmeKYhsfU/kiyA6HzoYlYbQhoyGa6b1vv/fx8PD+fp3n+5a9/2+/LPB9gGGOMYlyaVJUQEwFRUzABJUOH3osfxA3GUTh2CoLOkORHmgcBgBHF7AF6/j2z81jRPKg+bICCAApk6MwZQFc1BEUlBFIAfUw+SPggiqP+3tz7vSX/w+qGj1fOgyEEBsRoRIBmXZTAITKYGal60FO0E+jnmY9jGrGhs8B+PkRGLmXN6z7Po4/O1M6HsZX98l1eXs7WC6OGwXsXqlrYg5bqve8TXZu+L/my7euyz0M8TclP4y4Nt+04JjEBsNPxkOomrbKHIfLTYV7fbjlvaXJdsBvdSh6YKGCuaxjc+fnjtuX3ZfHTwInr3v76337r1C/36/26/PrrdwH7+NOH3tvrb99aznnNnz69HObRE5+Ohz//3T9Mcfjjp58Cu227ttpn8ofzyXM0bEr1spXr/R5iSmFyjoFxmI5LboYUY9Ta4mGc0kAYELGjdh9yg62379f9e17+5fW3Rvrz558OhyEdYjqcIvmy1SbdRX6YcWJMOVcVW9bN+WhEpbUHTSOMkwOk5Na9Pn/54Ibh+7dL2ffnp+Pzcdxvr9zFgfSaP335fJynTHI+H0Dk69++E/qO4BIdn6e87gFwngZ39uRdmAaKfjyM3399bXs/H8bofWSX81L2ErzzngP7fS+19K4QUhKVLoIF5qeJmbf33Gufhvh8TAq65dwV0zxvoKUUt7cguZb6/v69SR39RN5qX62JQ7etCzIrQC05pgnNEGwekndMqMd5fnk+D2nYbsvdX1vdl/vlv/wf/zu3dj49heBul/eP3sfo1MoQpOq63lbySSrV3FA1Rb8t69Xan/7jP0wpNGm1FAUTbd1sWXYxmuZDGqfb7eac26HmvN3u/vz8Ar31umlpijomjzFQCsjOeTJULbURTtFPKWiz3Frf4MPhAEQ+Ref5WTogJ4JAmgIDOjOT1gZPF9FluRPyNE3zNPYuMY3bmt9/e6+l1b1fb9e0DCLaRNomhATI3g9qVHK7vi977SXvb7e7ik2Hs/PePeQJua7vlyrA0ZHCvmZ0gVoDxsiGvbd1X+7X7XJPT8fteq9IAlBrI7APzy8fx6e+3U+D8wpP80RN87JrbSGEEAcRe13u56fn+TxJUwRb7veyZyLT1jrhstwcmZa6Xq8GAIwd1I0JY+j7VnKZD4fxeIgh7d2iD6fn8fRRXt9vf/vt6zjNLWeQbo59Cs3EenWH6difZN8LIV++v//xpz8NLx+WdVuW5e1yAVByfL3emrb77b4va2+t5DoMqeTdxFouRNR7VxUTBQBTbVK9d0z0w45ADAaiHQCGISlQb8LOGVitrYsgAoiaWu/duhhhSqG3vpVtWW+/E/OAHDWpJRcXuWnPpTw/vTy9PHkfSuu1NmJnYOxdTGkYUnAh59xqDX4yNRV9vBc7RmBIMYqImcUUiRiRUoqO/cMgAQYqwo6ICPRRtpLeOxrUXLuIczyOg6g6F04fhuDdel+1PAQ6fnTBpZD8sFvOeZfegotMBM6nyABQSgOzvOUQvPNkisRsQOyCjxERoWutmcFEmRGc414bAvjITqmLKQB57k0eg6YCAiOAqkqMng0ZHZkXMEUVFzkcMZ3RTcZZ91sui8MO4BjRe5iIOjcrAAqMwScvplh+pLs4eKdSai2Xum7r169f//qXv8aUTs8HEwOV5XavpZu0aUhDit77+e//tN2veRtjQo7uci1Ft7Ku4+EYAprodrnca73f9/k5+OkgxFkVPBuqqRIYKOnjbiKGaE576G1GffHwDOSRbkWWWvzgtiHI1vxEQCDafXCugKkE57TVWivEFF04HubTFINqvy+99bqXkHwi3q7LYZrM7P3t/fZ++/nnn4ILoPrICCMAoeVtUzOfXBx83kxU2HsxMADn/TCO4RHaQnLsHDmR/kPGgsSOpdZlWR25NERj6LXVXEtpYOC4iihxiSmV0pr0y/v75f3yZfhiKg8jWmuyl91Uq/YJnylNQFHIEYUwhF6boGvgmwuFQidfOXaKDX0D1B/7NPsRSjYgepjb0Zh+LLUe3XZVRSUkwkdVHfSH1x0fMAt0HJAAtcMPRLSqERHAA2X52Pmg/ZjT9TH7/AATPcZZAFNhcl2NkRhA1QLAObifD9PUtkHqMfF+uyWycZ5cIGsiUg+HaTxOW65dKqBKl3iMgFZyaaUk530KzuEwzrk2cw6C3L7fX98v3+/butV5GKqYc/7TYTg9zc6ad8iK0nYDs8fhforQzTlfWnu/FYyw97atq3c0DiGmxN1QREop27LUNQR/f32teT1/PL2/fev7/vnDibwnBy6m8ecP25oJ6Ol0Oh8PrPjh48e/+/s/S9NhnMZhCAef94LBI/tSepfWcL9vtQiOw9H7QymrD8FR/PlPh1xb3uvEamYhjaVYjHF6Ob6v+/vr5ddvl//X//N/vZVLXvOXzz8jekR3OIxlr007IR3Px+jder+p9iGmwwzruptgwzY8Hbtaa2gGnXGaZ11RiwzTrMyGFMakCstlzbfraRydjylNIaTr6+WSl9P57AyDC11hPk7EzDF40cgkSEg8Pp39GHvvVptjXPIWHxUzacu2mkJIMaagajGEcZybWFcgxlx3sW6IZoBESOKDI8SHgqm27tTiFMERhZBb27eFHflh+PDp+XCc25YhwbLeSqvH+QTMu5SmHczW5fZ0mtklJte7Hsfzv/2Hf7MsCyK8X7971O/fv+3L+sc//Ok//Id///OXP3z6+GFZbx3ED2GrslrPZXPBvZxmJhqSl7zG6HPegrN1X759feuizDyOqR7H19f34JwPfr2vbWtaO6qVXN6/X9LHp4C2LRsHjPOMwNWUHaLyMAaRzgCD477vIQ7IdF1WP9zO52PTBk3P52MpOS/3e+/O+eP5pGI1ZxfweJyZQc3W++a9N4Bayv12vb7fUkwxuffrbc95fjoAYQzpx8HE4NdfvtY9l55LLdu2A1HwDh8H2pRMes8NWx+HUYMfQq973fedQDTT4LxPiUiD448fnuJp/nq9OU8N1VrVUrWm4TT4efIgpOoZ93Xdt/3l5eXp5TmX3Fp1ztsj9GlqTVWk5EKB0jCU1rYlE7APwaMvvb799m2cRx88O/r0+aNIb6Xcl3v66Mfoln1X6eyc9wTWe895v+8rPD+ffeRhTtv3u/vw9CnFIcUhpHG7b7/h30yt1N5bW7fdUAGx1vJ741QADY1SDDU3BgZQEKilgRkS1FqZuLWa992HgGitS21NVQFgSEN8HnrXZdmgFiSotYkJM6FpFyEDUyVk79kqqEhrXVXYk3Pcavv+9du27eOc0pDGOP3dv/m7FMeS23ioOZcusm3bowZpYL235X4nJFWttbJj57yPjhxrt5iGLr3VTmghehMouRaoj0y3qKrojzoVmGgXMUAAb855kf7bL9/yVpU6ET0dX9a8rfvet1Jq9SEM42DZ6lal5yFFxsk7x44du1Lqg5uuKgBWexcFHyITGmLrLaQ4jDOYRRuv7zepeThNoCayEIJzrGqaSxcBfFyGGLqqGaFDVDTzgKCmAMYRhzENqceRzh9amos6cuC8aJfomdCYuoNWldlYzKSrj4F9oNbAC4LVUrH3XPJ9Xba8lZyvtytgZwKpzTvXci1bE1H23gWHDzg1IiFP8xijE+uOWi59ud/COPiYqrT7ZVtydTwkYh9cEyBCYwA0E/v9w/ph0gUWCdqTlgA1qoxMyQGydilAHA2q2OkwE8GWl+M8aGv7/W4xBCZonVFQ25C8I3ZA6XgI/mGO84dj1GXrCsREDGjGDonRk38+P5VS395vKq13aFWku8M8A4CB1VYdelUjwBjDOEQw1NZRIQS3F5HeCUlFe29g0KsICoD55JnIDMwsxmSI6757F31KYPr+9na9XUqrOZfX1/fg46efP/voWqsGeF3W5uIhzt4FJVfYVYXunFJo4Cr74lIj38E1IEWS31PK+MPO9SPDLAqGD98bIBKqMiKga1Ae8S8DUgNEU1FjQILQ0Yliz6bCwETemJo+cEHGCgT0uxXscftCAFAkg4dsA9BATVnth3/XkFSd2MgwGDynOHCHti1dylbieRJ2Wy9W6zhNh3FWBAGttRDz8Xw8no5SKwI6ZrUOSsMQwji83mQptXdUg23LaZ6K0ev9XsoCbf/p+d+cX873b79F545pyHdb8xZj4CEpsFZgH/tWXt+WeCJh6wb1lqUUbyS1vL6+nY6nL0/zbVl128Ne/+3PXz7+4fO/+cOfvv711/Pzmb377ZevzJimAYE+/eELoSPCXloaBnb89v2t1BySP798KDkrMUNkj33HmrObDvPBheNzLvbL2zfS6/l8/PLls7m25feUIiEhkeK2V0kNfUhbaf/1r3/p2J3zHz6ev3z++fPPP5nUVnvvitAPh3kYBpUuCtKMB//8PI1DXtbFT2mYhw6eQipb7YjADD6oC9/e79fb6ocY4nC9bfdveyI7n87axafpesv3bQEHEgSKfXj+uLeOkX2MZd/Oz+cEuC/7lvf4dEre7yVfv7+ZSRy8mZZa1tq2nF9eng7nU87ZRz69zK20UqW1XlpV1GFKTWXJu3duPIxED8lhGqZ6K9f32yUMCZmVOnlwkU9P8zyPx9M8pECTX5d1u+nx+XR+ft5LH9V6k1rLtpQxjQQdkV8+fNzW7bbc//x3f54P89evv75+//Xt2/dvr29PHz+GQ/Kz32G93F+JwE/D7IcpTaWgdvf8fGoirdc0hXW7fv/W631QUCntw+eXlNLyvjDZmBghTNN8u1xvt9Zz7SbzeCBrt8v7aQgMbr0tYs5C6KCliSKE4Kd5doBBoLe6rUvv6plALa/7dls9EYGvueSttN6JHvcB2vNuoN77GMOjkb2vWy2NgMpe0NAFzw7SGMm5kGKr/XHlCCGASVnX77lsZX17e9NHhWT0pRVDYGaPdJhn55lC2FV9THOXv/36mvcFnRtenlNkk/50OqRh4DGVljuDEibV255130xqDH59v6y9jUMw7U17l95NukouldnlPV/fbs756AMwcAjd+rpuoupSPB+GOAwgQmp9r/dSH4jVYUwK7rJu++1eUjyfTtGH27Zdru+ltW25//rrLxzDxw8fD4fBOYYaxmFwPoSP6eXp+UU6qsq+ba/fvivyNKcQfC65SVPtrVQmCCECYAzeOUfwuGqBiPbW2ZGJqUqKQTpJ70xEjqVLrR3QvA/snGOupbVWa++Ev0svH3KoR/oVDAF6a4FcjK5nQwfgIO9lXa7X6zsABj4d5vl8PE3jeDy9NBVg2v72S22NnGPnWqvbts7zxI6Haah76aUF72OIhta7iDT2DtGBQZfWarNut2XZ930cx8PhAAiiAu2x+zEzMVVCcIy1am+yLMt9u9WanQv3bWF2jp0yapeObVvNu7rcty49xDikRB5b7YTUpbfeVMR5+sFBJvco7rfWulY0Y3YuJPZR2XGaXDqYiTPTWmsXfmRew1C7IJEL3iv22kU7gKF/vEX6IswhpeNLOD7JMOSQOqdSJbgkTvxgPggykmbARr3WTqwm+Pjcs1pryUW75r2Ro1xzziXnzI4+ffiwbiMToz78z9X7CKatFFUcJsdg27JJK967vO7X+1WM1OB2eQfEl58+E5r1MsbgxpFB+74LevVmEACBmZwSCRoDqLBqQplIjh5nU99r3xsATwlK5ds9B4P5OJ3GRNa7drGe97wva7kvtatzbDuko5+iH1wYgzuMab9cW+99WdI4INoDvfPl5y/X98v3r6/0EZMPrVVmmKZYRUS1t4YASDgOaeldpDtj7x2YgZqKiVRRNYWuTZo8UjqqpqK9CTH13rY9DwgPD0CMcRxHA2q9Gz2iWvr+fqlSnl9enp6eDKFJG8MUQlJQFUXHTaEJArMKG/i9K/gBXGxGjX0j39A1RGF6XKaMHoBCBEPEh2MNANRMHrovZiAzNhUzJDJENbPHqcAAEQmMTAmEpWm+t21DDnE8KpACd32ktn6/dgH8660WENkI8eFoQUQjBCMTFFIgQdbuQQ+eXSuyr7VlkXyXykBrx1DVIYLAGGLdKgbwgIc0oKNxGOtea6nzPBGitKoq3gVpMqe0LBcPfJzC++Le7vflcnWeTMCkElqte6uZHXVHBIqq+7odfCTHDWAXLcC7WusturBv5fLL15fT9OXjh8N08EpM+OEw/3Q8lq0czT3//OnL3/0JHb8+//TYwP7h6ZMPLvfGIZw+vjSx+32troSYAGCcj6+/fX9bLn+f/j4OYy3diHqVXVDCaIg8TDtz82jDYblfXLe9CRDGeb7f7kMaQHWv0lrDtH+9XP/X/+3/+N//z/9kVf7w05f/+X/6n/78889fXp7B9P3rd4rhcJyncSrrvu/bYyuvRuw8UvXBx+C0dgw+peH6vtltTeO4to4xXq9rYz9NRyYQsa3uyrCUvtzWxAEM5qfnTx9fpLZ9+UoOj8dDNenaRTSvuzF3FWAquW3Lvi67qAYfxomBrBerrU2neZgPQgje7bXW67U32beMgGJGkUIKBJpr2UuhEHzyHYAMlzWH5GPwubVWG5KcjyeHyfsxMN+/v6+En758BHDj8TTMc1Vca1trZaB136fToUnnRg5Zq7bWUkye09P5ZT4d4jB2oTQd7mv+X/6X//enT/80jeHLp4/HefrtX/768dOXw9MHT65sJnk1kJYzOINeoad92wyMiac0eu8uebOa5+iR/CMU70gdgxm1Vtb1Bi09z8MwDlveTGGIcam91szRMydHzGrDEArAcr111ekwI9r1/VLzhkM0k95lGIeD41a7qXWptRTyFNjfrrfe5ePnD3GIpdV1XRFoPAylZCw4joOYmeq2rSY6pjRNk/TaSuVxWO9LF3HeBx9SSsyht74uy6cPT9B73nfqXRCrKjGhFuhtPsynwxwY1+XG1oMnrGBtt24+RvbgDulPnz++nE8eodzvrbfemmlvvX17e9t7HccRiDtoXfO+5mmaSs7kuYuU1t5eL+u6Pr08vTw9b+u63G7zOEzjsNwWM5sPcy1dpHnvrfWaS0u15rJc76LCgXxy69fl4+nL5y+fHFleFhV5/vDsjvMRQLTbYZpd8Ns41F5z7QrmPA8uQcl5baKiIDHFlNI4jq0J/kBhgIg81t2AyMwGwN6pCBAhoYGyQx9ijEOI0QANIYRgANJFRQiR2amYSCNEQjSy3juSllxKLRig3Mtvv/zae3Xkfvry85cvn1McENgUD08zOldaWf5xba1+eHkB1X3b7rf7OKR5mntvl9qJ0TlW07wXETE0AQNDfUjN1Lr0XPfr/V21D0MKITITIrAjItCH0hxtK7mU5siH5Gur67qLbl37y/NLGL13AQFc4LKXXPZSy76X2KpnZmURjTHNh2lZFkF03qmqMiDjA8ziHPbSlusdgI9PToA5jciMwyStmDNGj1hIehyiMZH0pqKMDI6RSDwYUgrmQ6fAlHg8wfFld0l9yBQruk5siOZ7Z+vciaNjSzFFkU3X2guZdpVWy172WgoodDUrRszjODITMQ9DSCmpWYixV0FVZgCgXlWkqzYVYDYi3O5LqVtt2flBirSmWoe63owxMh/Oh2L87f17cA7TZEKm7kEBejjMEZVIvUqUenL6zHB2PHbiVTp0rQV7T0wvpwMI6b5jkCFir6VXOUwH3/t93RwBaZ+YB4Sn4+gYmdA5BpCuWkom7w7znEQJwvX9+v3ra3A+hvjtt+/rtjI5FkV8VOpKq80F76Lvotw1hAAApZTWaimllOJ9QITWGgIw+RhDrVWaOM9E1pp06SRoZuy8mQHDoyAK+GjorKfz8c9//+eXDx/2nB3xtm2t1VoqIsZxghDFCDA0Y8W4kqEfOrjCXJ2r6DtQJxL8gTE0NIWHINgIjADAHuEdRFOH5qCjdpDuEBSdoWtmpmZAjhBBnSmbYM8key/3sl6IIzETevXU/gdP/OO0ZmY/Hj8zAEUzBVM0QgJDQRJt3iABea0T28cxRIHect5W1G6gWupt2fvL4Tz6yQ0IeHn7rtqenp8P89h6ZzEpRZvULs75rlZLF83nD2crlVG/vDy/3lb7eDoM6TSxmA6ezzGWdXn/pt7AEPZtu72+SmnB+9uWK+xVaG+4SL+Vslwved9CF8rt5XA4n16eTofz8VS2O2mNhLcO7vPn+emDmds3S4cPvXZSjSMamknnIWydDJGmY+tLrQYiAP748skP4KZ033Kusq8bQAhpbOZ2UTDfO5cq4fkzhOG+vO9d5jmw6vn5udZatkrRPX96WUr72+X9b99f9w5/+PkP//bf/bvPL5+mEAPAtm3Qe5qG8/HYtea6xMhTOty3tZTe121b1hD8trWu1R9pLW3fC8d0veWtK46zf4qe3W3bB88hDRCbkLzvuYup9MNx/vzzz9pK63max3Wv1XZ13FsnhcvrBZsQ4vF8rPe95WKop+NJWs8tI2GaXIgREG+3e1DywQsYMZnofd1M4fx0JodgNo5JTO7vxcD5NG1F6r7stVIga22cxmEaHRKKKjSt0JBrzqZ8fy/m/d5wv7fc8/V2u99vKdAQvRHNh2keBmuS92xdz8djGtLeSul1mI+X63a/vY/Jr9fbP/4f/zhE9/H/cRoPny/Xe6n1Q/K90VKu63LrJnnfYvQvxyOKeee2bR+Pc4rRWtdWsbfD8QDo1mUv69JqOR4m8Lzldnl/pePJuS/jPMY5dUFOQ4c8HoMSqhoIhBBblSZKzjlRBiZDMHtIogCImZ13RJRG75wrpdbWfGR2LCY57+u6AoKqmaIPbj4cRKz1Soy9S2ut7RkM4+FAqut9NVQXDmlIYUpItG+llp5GZ6i1tlrLflvul1scB2B3X9aKxmjH0zQfUstrD4FQLq/fpJbxeMBaTfthGsExhThFbtvqfBimYFpul9t6u8UYQwi361py//TzJ+n6tr4jQBhCa7Ks67KswEjRzfEoqq/fXq/v76jmiR1Sb20cx3Gcam3LfUMF7b3VW64iaqXXMA23+6qmLjofuPf69vVbXrfD8QQmLkWft35fb116qe3t9W3fdpcioLneYvBlLyG4EE77ugZygd2DAxIfcV01U2uIooZgoppzUVUiEpWWWy3VB9dqjXEQtbxnMPPeAUDHlveOZExYs9RSiMgxww8LI+aaRXpb6/vl8ttvv45p+tPPH//0pz+AWPReFRHt7fWNnLtcLj56YvYhSC2m6thve07D6J1PMZmpmu371nsnR0hQciMkRHCOmYgaeee9C4/vYp1zCEiIzjEYqlEpggC9dUQwtOA9AJxOJzMYxkSItRQyZKK2l1aaoIIZmvZWe+tm0HoVlWmcnHcpDV26c484KqIaozETqO+mD6AkIrph7AoNPQaGBiBuCDEgIMi6bcQYU+hqoCAVnB+8G/zpWEMCCugTD8fKfm0GxgJUxQyhAxN7c9YMHqpnlziqsLlNlrxnBZXaFQyJH+JCUwshkCPp/ZGdJeLoXEyxYmuto4HzPqD0rm3fy7qWWnqvpZayLSmFeUyIHakzWLnfMdDx6WWKYX1boQpJT4zK2NCaGABqt8fygo0Cius9QEvQhqhORCTn0oDMOdd6O8wTVKn7DaulMXVhQjofzuBonjYwKdsaETwaae1NBGCcUq9YWi2lOu8ccW3dpG/b1lr/9vr6+dOX0tuWs/Oc950cowkogppz7J2vWsDMe/94Vuz7vtwXNTGzVlutNUT3YPY459QrE5ua80hEtTREcmNwLgDxfEg++GXZ3t8v02H4+7//+y8//xHRcs77vvkQBUxU0zC64MUHITYK4mKFVAEauk6uEXdkIVYiRRQ1IAADtR+BnQeJxwwQgX/geiw6QJHeirQdDDglDaMZgAgDMxqLBBTGruVKsmNdB2hmRL2gVofRITY1Q0N6HNgexz0y0Eez/gGbfrg9zIABtcvgcEYN3GeCc8DBDft632v30Su4oprrhl/f6xT+7c9f5nm6f3tdb4tjJkJiLi0TYgjuellE7kjUpQvEqet92XvrWvvk3fjpZYy3P/50Juaa8+hc37b7tY0xzoen69v7fS9OIU6pA93umzDtzW7rtm73nHPNeb9tX56eX56eHIFIU5D5OEsr6+1ewO1It3slqI8LgVYc3JCIpPcwH91hqNoVYFnze6X9vkDJL6fp4/PTMNP7928CxC6Z6xznYrRkueROqFVlzS0SwVZlr5+r4LqxUuut5prLPo7j+XyOqvBP/20+HJ+q/Lt/+x/+/b//D7OjdVm3y1spm2fPzv3yt18QbRwCc+i9mSH5YEANHRjmvcRpSmm+LRcfR6SYBabz+Va0ddi2Led9BfOqkelwmChYRMzvq5eujv7yT3/TXH/+6adhwFte79smKil4NwzVijTpTXrbt5KnwzS6AAIAeL/cTeHp+aVLv15uztMwDs7xOAzT7M1cL+1wnHyibk3VhmECi9Jg32urtec2TJOhCho7HFNAw7ysKipNMLh5fjLy6qdd7dfbfZOae1vvd5U6FHwGPD2dD/MpEOZyv9/uCFYrcnCn+QTsp8N5+Y/7X//y1+CQP+lf//Ef83LLpfzTP//ztpbp+OxCch5dpNaLtN05abluhC0Ogd04Dod51qamGmNQlf2+PH/4YONwfj7r9dpBneMhoTRhx8u++cA+Rsn9119/qwqf/vgFHNfaa22t1OVy7b2R84f5EEMisHEYcEz7ut1uN9EW4yAiTHQ4HBz7lKKAbMveWuumuZQ4JCRKYzzMB2LXcy61ibR5ngzMB0ZFqVXAUgrOubLnLs27pGiqcrlcYo7Je1T99tv3cUw+xhiSIhynaeu1SR/HZL1d1svw8uF8Pr7X3mvtOUciBp6cRzCp7fLrt+BcTqnWvC1LLQWY2LnpcMj7fr3d02HUrrkUM6X3a0hx3ba9ZHLELgBhk76XCmDeO1NlpBgSkRuGscu91o6IKcZa61+/fkdmDoyg79erC3x+Og1DarW2vTJj61kEnQ8eQEup37+/1tpEuovMnmoty2UF1fk4s2OH7vhlBgNTBbXATMStCyOxdyxeRQDRAFtvBOSDY+acc1fV2mqpiN6AzODBBEeCx0qcmVuprRWVbkqmDwab1taUpJbyfnl7u74h0XE+/PnPfyLD1noMCQzW2/376ztHv+35dDreb8sjeOGcC8F6bQbaurLjcZhqr0RYeweDWotnJkIgNLPWBJGGNOCZyDE7VlAFAUUDenRbHDkEQKAheWbfugBCSsE5DwTSO7Ayh9aqigLaoycTBg+Ie13r0lRFRO5pdN6nFJG4N3nUvthEes3bRuTncRDEdV1YgeeDHwZwAcDIkHpF6cxQt00UkCjGAZmkQ9bmwzwePtLpTMO0FWnk0KWi2BiQXGsg0p1jNVN2WTsDRnYFkUQjIHMIcWi1QVcO5JSYPJl/MF5UVaqoioHVUnwIHPhhQkCw1vrDtoqmqiXvZc+59SK99VYLQqvFe1Yh7XWruxHGMN3gvVf1xD3f/TxFDKBqAApqZsgEagDmiJOj5ylOuXDeWct2v25Lnp+f0vlQdVOVeXIdHbaqpRrE6JJIB6QUfN3blMKY2Op+e9u9cykmF6OC3F6/b/s+Hp9L0d++fy+9IRAxd8N73jqbMQMje661mgkTI4qCPSL5cYzsHs8K/PG4M5aS97zXWlv3jv08T8F7Ey2t1VYBAJV670j8COiodjHFLqVse95Ox6fPn78gwrffvr1f3rXLOE8I8Hi4Qww7YFVFxIZu7bABq4vmXBYQACQCxAYPHLvaw0eDiPpQmf7QWjCAqVrvzIQgpe4lb94RVXBubGpsAFKDMy+bl8pWer5Bz14kJhJwSsoBBZQBBLGDPnCaP1LPaArA8AgGKSjC47Wk5tkR8cnpk6eE7CQHXaMfV5Nsyn7A4LxPVFJMmKIzMSj9w9MzWedA76/fD8fjfDjUisxuwWXd8jCM5+enrvb97Sqttar36+3zTz+54FlEEVyIGwKa7a3taylpmM5H8X4DeJoO96oF+l+/vr1eLz4FDFTK/ePT0/nwhZslo6fDJHnb6ppiAk7N4lvd+Hze1f3XX157q+OHp7frOsRhqHBAT0CJgqz9vufeddtydPPwcty/fXN+ZHZQe9uqH8dxOnWol637cUTzXRy5ecvt3vvS8tH5D19+WnvO234axvvtknz68ulzk/b++s0N09/9/Achfn27Pj89qSmSI+eZqHd1zreqy22fhjQe5q799fW1I54+fjEKVtUNKaV+fj72rsRhPoat9QCudNjupYvGECFZybt3xAHXdfEYPFuFigGXtvQArch9z6f5RCWb6tP5yOy3bU3joAraxbT3Vdb7FoCC92XL+V6A6H5bautqdL3txj4hNbEUwuefvuRlNe2M2DqUnLvCliXnFmIRk0Oan8/PRrKWdd33X7et5ZpiOk1HGqgr1QoFqGS95v5bgaVbEyAeo4tgvVVDgfffXrE1ACEzH91esnQl4ufnp8u36zGenv7jy+3yfnn/+vzh8z/dlv/2z79sdW9N/9u//PJ//pd/+od/+IchDdMxJaX1dldGBi37lqKbj89o/PZ2Aeit2zAeat62vIv4j58/m+f3+w3ohx64NtlLi6WryOvbZc3Zp+n6vg1zMkTpen2/qPXeRPfG6J+fXqz3nHPXervdai2O2XtTsbzlWuR4PKjpIy4Tgo9D6l3v9/swjox0ud4AsEtPMbgxAIBKH0Jopd5vF2ZOKdVWam/AzGphiDZhTAMB9Nr2Zblr/8ifBGzZ1jgOQ4zkKaWkaNr7fD5Jr624mHyvPe9769U7v16uDEgAbEQKZS/ruorKMM+t1tLaXisw7a2+X26ttlKyibbWiai0GkI8Pp1q62rqvfPThCI152kex3lyzgG7blq6dIBhTLVJQ+NxmI7T29vbflnWbRMTZhd9ALDj8dBrrbmE6FzOe6tl2xZRIEcKPAyJg+vSnHug9XiIaUjJVLU9osD48FEbmCmYmXNsTKrqzKmaYw4xEhEQoRoTj9NkCL01Mw0hEqE267UDKCiUUlurj7KtC4xkIqJgJZfXt9dt2zz56en46dOnISXP/vRyGlPYtrKvWzVzJt5xKcXUai7ROyLywX349ImRGjQeWESceDNdts1EzAwJVUxUexc1RUJ2fJhn9s5Me2sPvaiKPBq/ZtKbxDE6ZumKYD54MJMuD94tgnWpqvoo/LJz/WE+R6i51lKLFOm63LfpcNjWLcQAgL73+TCz522t27Y71wnIHJTSW9UAeEqDi7HkDOyHGHVbt20B1TgMBh0MonfgHIh3YQrzUdKhuiSktUPrCEjoSDuwGRpCFXAgILtodM77qNiERFRNuiEQ08MqklICQBTuTR81/tY6IiOoiPZ9kx6CD2omKrWKWEWCkrOCrMu+bRsRBO/HYWitr7fFx4joSi5dOhDv294Mm/qOvqxbHDfkaExqQJ7B86OlbQr60JM5eHmavJrs9SpdpQMSUZzPbrvcAGyeJ8iuNSEfJuM9X8u+q7XANKYwBO8ctl63JTvmbV9rWVrZiPDl45Ng/Pb6KiLOOTBMQxQ1MQiD944BrPcqXdIYQeX1/SJmx+NhGMfkY2+tdAEzRFhudwMFRDI0sZpz866L1L3spXQVJErjwI5LqXkvjj0y1lpz39/fLzHGaRwv7+/O+W3b1nUzsS4SYwwp+hC6oiDU3rU2c1iRqzlj15G7sx9d9MecboZoaqaA9oPVYz+IPI+5lQHEunYpda8Z7MfCz6Q6Co8gmNPKfdd8g7ZSL56s9wYQXERzXEuhNKg0ZCZEpMcaGOwRxQdQ/CGveeSP4HEK6+pERobnKTwN6f59w1Z6wVyK0MPqwgokalWslFpQ77oNjv7uz39c9u1N3kX127fXT18+qRk7SkP4+PnDfJze76vuG4XAtRG73lrJebvdgfD47B3z16/fFWFv+v3br+bddBwr0t718na93G+//PbbXuqf/u0fXfA/fXj+6dOXl/NZc7Pcb7db2bZpTE8fQjVYzS3pJHH657flHzeJw9iurVkYIOh9H3ebB39qtNyX0uqe63E+7LV3D+xTETETrW1KQwfKpb3ft9d7j0Lj6QRF7mutgM1gGsch8ThwakigzvHT6fj585fjdPz//m//v+vyPgPG4H/68PHp/MzoRHTdyvPpOA1Rcnn79i0MKaQguex7Jofk3fn8nI7H317vb/ccz0808Ka4bZnTsJWeuyG59baR4SGGoj1OaSFj6wzdpFslIzt/fHr5/EIupnm2Dktt9f26bktMIQ6DiG779rAFdNWy7+x4GFLvItKJcRhSnEYkQhdSt9KEfKxqW5Pe1+1+11ymcTydD0zBwEpr97U2UWElQOdTiIkCFmm93W+327rkj5+/fPryAuTe367vy74pLjVfmy6VdmBAn1gDKVOfIi7Xm+wrqZwO0+nD0UV3oGPJNcWBxf7u55888fW2pI+fvPPPT89baWvbfv1++ad/+st0nMv2//mP/+Hf/9//b//zv/s3f5dSwB5MlLoFT9u6+7ifn6betfU2pPH8/HS/Xn779q008Sm5mKLIsmz3+xZSCil2070UQNtrefrwQQ23ZRPVOAREnuZDSH5d9/W2icL376+gWkvZ82qg7BwREzsXggKoWe1SS0FHDmjdN/dodgru+07Iy2Xpoi8fX87Pz723vK0GQmQx+lpy25tjIuZ9y+QYkQDBuUAoLZf1vq7b6pEul/vhNC/XFZxLkcmQTVsph3lMKVo3RoQQeu257Pf7ejweguN12Q7zRIhde97L7XYV0y5KZuu+lyoIVrp00dqbAoQYW6tlWUOKonq73kur7Nw4RHa07ZuKbHsue/n0+bNou9zvr2+Xdd/XWu/LlvN2ejrzGHPtpbZ9z1376XgCBc8+jUNW3frapLlf/vZbDD4MMS/bnvPb66X1Oh/mksv5fBqGYZ6P3rH0bs2cc0zGziFBFe1dHNGPTgcogPUu7JiYH25251xrHYkOxyN7b2am2qUhwP1+Kw+pBSEzO2bnnY+u5HZ7Xw+niRx///76/n4Zh+HLz39MYyLF17fLP/z5z8M4Lvf77bKMh8lQv/76Foc0HeZpGqQ16b2VGkJopZpz0zSp2f16a72bCSIAYwyhtCZdgMA5VsP+wOmY+uhrEaIffcsuHToAAaEhgnVThIduBpBUpUHT3tV68PHBfSNC5zx5RsS+ty7CRD5w3VCanM4nlb5utVbvnOutgxnOUwjehRMRT+mgznHXe+4t15Zrt2XbNiJm73rO1tqUwjSEWjOQoUItOYSBo1/2PaO7ecg+FENRdI4R1TnGaqoqBr13YHDss1Y0JrNH6dCjEyQlZh+iY2qt7AXBwMTUamvOs/eut96ki9i2ZY2P/z0AsForERBba71rRSbvfIhxPgyg0Jo8yERaem/mB4+MorbX7uaxNnFiqCgIgKhqjIZGjy2aIVLg2ioEit7XQjF6cpTm1ERrz+Q45ybaoTYfwjhNHFREr7cLB46RL6+vm/VhfAqc7vW+lfz6+h0lM9rLh+d5DuvWp+TJoYDcl1V7K6Vsy/p4ciMjOYQOtde29vv9qgDOcUojAuRt39e9t0JE+7aL9OPxMM4DEyFg2bcuWktT6WrinCciVUJEVdnW9XA6ocHXr19vy21Iw77vKhpCIKbguUF/JJZDCDEN5mKu2LvmPXfLkpL5sAt0NXm8lAiZHD3u0mIOSR7CU1N7OExNO2J/JKKdR4ZOXcwhsosTO5e7kQdnqlJ62fp2oXKHej+NIYWwiwpgiKEAWJUOmV16UKVN+SHLePx7ZmqAhqimZEgIhsoETnUK5Kxp3fw4HU9j2fb7bRGV3vRyvc7zCXsjlH3fa+I0P3mWbV0nPzlOrqTWpaOsdZPa1vUGZD7Ynm9S/v80/VmPdEmSponJpqpnscXdvy0iMrOyKqu60D2DaQ74G0iA/5wXBAkMMGATXd2VS2RmRHyfb2Z2Ft1EhBcWdWuAOxwHB26qIu/7PHtkNqTHh4dW++vL+3K77Dk/fnwCh9rsl5fbcJjnh6f/+e9/tSDjMQrblm9vX19I5Mvnz+Nh/od/+d04ju/Pr4fDLMLF+3XZ3p5vcYyusr3tw2m0af57a69fl9fub+nAmNYC6ThdujHP76XRth1zw66AwHG0YQIoS1lHrQ4UhUaKeVlUddO9qNEQt65tzUDSanm93Z6+//hwnkYrt+sLkwfEPdfTNBDJLz+/7Os+pWkI8brcvLQ//NMfVPX17XVfbrv1MUxIoUMPSeZhbMt6pxzMj6c4T9dt+x9//fPf//YKh8N8Oq639dPjIwP2svCYLrX0XD/Pp8M8bn0v2MdBvCp3PB4OydxaG04p995y2XI2oHXdbu/LYZ54TpVsWy+l79u+pyHuuezbPk/DcTgIhrxt2sv543majpfLot2KQjqdKwQACphq7W/XwgbT+YDpbNbVs3mVeZQowrK8vzeQRoxoe7XHp++M09v6tcu8UVKKX/Pt0jgDr+QX8E0gm9WcU80mcD5HA03DcPw0BcEhBImyreswTp+/++TFxMUJ5IfvHh/Kum+H82OYhU6HP/75f/y8rJbGt3Xftu2//c//HgKd5vT99x+j0OVy/fLxS0rh5fkCTJzGw/mxlFz27fnvX0ve365r6XUCN6Tbtjc1lFiLIze9LcM8xhTPHz5wCKYNo7Vey7XFGKfDREQymLQuQ2hm0xBKzaW3eR5jSnnPpfcAjMxBAgmzSUis5s2MCDixCKc09Kofv4yt9Vb75f3qqL3m3hqTjOPAxDnnEKSr3uf9hGBqAJ2RXT2FmJ4eb28XDlxaBcZSa8llXbd5mlnISuOQOAQ3Kzm31s0B0HPOEuTt8n693aZxDHxn4riaAxBFGhGRqJZyPJ22mtfr4m6P57NI8OTH41GC7LkAwO26sqPWvq9ZiFvXZS+l/XR8ON+2zZniYWraIdLf//R1L23P5Xq9osEwDV5Ly12jMhIabOv29dvzfDpIa2U+DEjEIgmGaR6v135blt7bkIeYEjPhXYyQKAhrt19tTdbdvFsHJEREJHcgEUIKMRChKRBSimkY4jSO3fyeOO6ttVq3fS1bvs+KQmARbtpbrV07BrjcLrfb7bauxDzNh2Ece2lm7uZv7++ltJYzoJvpvue6VyZqnGMahKVrQ8Q952XbgoTf/O4HQCq1bPt2r18hMREykRNRYELMOd8TJ713bS2wkKCZeXciVFBXBwZGuo96hFmYHciZ0MyJWBABtZmIhCCEZABMFGPqvRJR3zWGEESO86G2ltKAiF2t1gIA45DiEE2bxGE6HSkkrg1CzQb7dvO8a1ciXHeMCABwLw4O4xSE1uu1bmU+T6Xm1ayFKMOMpt4whsBCaqa1RSBh6WbmCIAu0qoxQURRpO6KvffWPbQQEBlIyr7V3lpvXbUTERKaWUyROm9rJ0QHc2QmgYBUmwgAUqkuzDGkaRxjikzs6oLEwo4UY3CkMI4yDDwc826deJhOcZ6KY61dhqTqAM6MAMh050NpY6i9G5sDxHloa+5dMej15YIGA8eX5xfS/v33X9IwNN2mgbXFUndvqq29521+OI2HE2bdVffedNsfz8fxcGitL7ebane3e91vWZZ13UurQUJrBVC7GQm3Xl3x/kRy3tZt2Vcse4ZuEmhI6eHxIe/7PE2Hebo36YSYkFptiBQYQ4hRRIiZ2MFb63f97bZtTPTwcDaFvO0AQMitqSuEUZhZu5dcFbtCIgnEDIC59eLdUkIWJgC3u9KWAMh+RRy6ocGvAeVfic10N7mjmbZuwMhByBFQmlE3FhDwTga99Z4z5m1AJ2RwIuY4TJxCq6i19O58IgNxiPfKGbiiG4AxIqKbG6ELMwK6EYKNkQcmYiu9vV8vDOpOjmbqgbG7krXjHLna7PB4CDGSEFgIl/VqhkFYpmG5rTnn9XY10A9PT+u+vr29RB7DMCtCaQUAm2o8HB6//+7j54/Lur398rVpbStQZGOqqg/D2OuGwl++/+4wH4+nw3w+TKe59/ruWlsR5tz627KVGOaPX9bW3pZ9TOpifyn2dastpJWHsruFWJXQcB5Sc0Bt/VYS4xCZFG+XZQ4cGULkkEh7e7m9Xm+rHE5GGIYYMLy/ba4uMTHq54dzSENv/botvu4heuxtu9z06aH7Sy19fvrQWuuK4zyND48l78/fXm7XdwQYQrgxBsYwpGVbBeg3P3w/pvR2vdiAW9cff/zx559/uu36ernF4yHMSVKoWxmG9Lau15yjMDIB2jhEUOAxWBNctlqK1pokIEgz3FvfcvNspffS++M4IPC6rqZ9msZlLVXbljMgxSl1a71rVwtD8iDXnF+XtXS4NUUcGSdHBBw4YJ9sL32RA9G41fy+l+6pCMZhBLd3X4NyX9swpz59mB/P62I51SXNf75VF/qpYMGpiyxNF1aL0mrp3IWk9HK9LudJHr9/fDgFFuSA67YOxzHEeL1cvfo8HSJHYh7nyUOC3hsgTx/nj2V4vpy2ui6XDtQR/vjjnz49nU6n/51V3a2bLnuezse91pfXd+Ww1/qXP/3p29df7nGT9/fr8eEhpvHl+WIOwzDV1ql5CFhqOz2ejg/nn//2c86tq4pA3iocXZqY+7IsbmAGORdhbKr7nltr0+nQctlLfnh8dHQ3bXvvqlDtcJjHcay1IBIzazc3j2Mk5hjC9XpTq+4WY9CqAGUck0TJe97zrt4FgqoJWWs5d2fEw3FStTd9J5bWupN3VTBLKY5DZKS8ZgFM42Cq18tVXYlF3Zr2ZV0MvJXcW5unMYSYUjQHM2vdSbjWVrWRs6rnWvd1Q/fz+SQi7qbay545CtOdjotpSOMw9tYVUYaBYqAq94q0I1AI0+lYW79ebqXWIaZ5nMeUWml3f+G+ruuyIPq+b4IE375+G+eZJT0+PZ4eTs9fnx39dr22WtGt16oADOSRupqqEaDpnVGs2o0FY4yIWGujAZgECQGhmxJLkiAsvfbaOwd2V+1dVQlIONx97duau+n1tiABJ2m1rsttzfsQ0uPpYZyn2nspjYgPx2HP1dT3ZZUggKRdJVDe9rzuzDwOie5fBa5IGFOsrbu6uyOCq2kzEkBgEXJBERbmWgt1YOI4xyjBwUXYFZSUCAw6ApATC6UY7o0XMzNVJBjivbmN2g1VWYSJ1QwAiUmAAYOrBxFEvweiAECS3AcpaUjjOHIISFJLBXQMAYl7za4aRcxUTa1rLbWbTY8PANBy3R0Qh0Di3YcYGKBua/WaHs4ycttU1UgIjYjQ0FzvQLG77IBad6KkGBoZATvUbgD3jQKPSNDWmwwpN+tmTCyRWi6AwEE4hB5ircW7de/IoqYIfrfOH0/HNIyqGkiYuFXVZsTkCMA+n6bk3FEUBDkePh535xpHFbmrGMwNUUj1DhInBALUrhX6rewp9YA0DnPZte1ZEAZgc0eDmrv32szXuue6CmuQ9vXnb4AwzgfyoQM3F0xD3jLKPJ0Sp9Cqq5a8l9raXurl7Vpaa73vW5YU0T2vO7APKVKAWko3iyli62q2b1uUKFHUS+udEMd5ZObhMEiMdcuqOk4DU9BuuZTujs4i0cEc0NTSJIB+u73nfRvGMcbkZh5CjPHX4DkwE7t7zaWWpo7p9HEYGZhbNwAABlWggEGYwFkduoGbMJNjM0AnRkQ0vZ9/7jAgQHAzUDdn4jQdUN2Rm1Pn6B7YgVGiDJLm3rN223IHEgkxDQOHUIpjzUFQzIkREBSc7gowRfo1ZWRIv0pT6Z6/NhDGaYzsrL2/LxuaJg4hibBNAq22GdvoGqk9jjKI17qdHg698vVluafvcb6Lgdm7Hcb5dJyvy5amaR4OEo6XPf/y+hIkzMd5GNMwj0te//jnP//pz3/59vKeiz59+HA+nn7z/ffjOWkdho4fzydXQzBRvX59/vb+bGYk1EwhRn44Rxnaw3nd+mumVrxZ+0bpBQy7dCCkgIZlbeAKXCbwFCVWO4/hMAVQ27brvltKOCRIEcu+vr4+nx8+4Dw+v6+rgk4nHqW7g/YBIES+3C63/RatD66rOUkEGZXi1+tyfvzAnJbrZb0tyJQgLMv18vWbCH/88PTh6YnIr5fX4zxZbYSgtRXTVraS/dYaup8O5zTzw9PRrJvW6+WVnEoxrWWMEVGXsr8vlzRHHkLP2nKeHVvWundIfOTREPei69atthDj8ePDfD4Ehm1ZQG2co6Rwu62nw2mcZ+C+l9Z3r6Wch4fqnLsXGU1i17orH+aH61JfbnQYhzrSatu+QyjVAHOZHbAKhB66dhufepVvb/WDzADhrz9dv+26DcfLrfbLhQe9ZQSOZrLUYiE4GqeI3qGu1ppjF5G8rzfD6TRY9WXLFBh2u71dwWk3joMB8VJ7Mbpsupa600Snz6fv/unSfKl/9LhB1F3z319+uq7/8p9+/8/ph7Ct+fq+nk7Ty9tLeX7vf/lx20uu+/X9GkJAsg44Phzz3hwoDYOENJ8epnlsdb9cL/Nx1NsN0cAbdFVzs9oalcIcuGtn5DRHANu2DRGJcd83CowI67KrwzQN2i2IIGErxc3n41T2Qoyq4e4jdrcQgqm6am9dWEIIuZfltvfeEaCWombuEIOQg7ZqCkxMCG4Wonz88kSMYKBmTAQEgZkYUwjatexVm277lmvhyN209RZDBIKYojKB2b0ZkWJQ91Lqfs0iknNRbWUvHz489eOE4CzCJIC6rhsi7HuhRkwSgkzjhIxjGracIcp4OuytvV+uCr6XcufoPDycCUhrA4eH8/l0Opr1tpcYpffaa7feY2QUkZLb2+vbI+LpYXh6erota8ttnIbHh7N1N7fltjBiGgYguLdo2dAdmFiBgSGI3BseLBxQQoy11946CQlw7+pkqgoA1s3Ng0iQyMItVDMF8lzrsq639WbQ81studWWU4yH4/m7332nDXrvp4fTkMZ5nqdhXN7f1z1HjSjBCc28q4JqK669juNIIiGEGIdpmoWEAhED3BCcYlR3cDPrfRgSINZcEJyICHGcBjcw6wjOQkR8H70wEwIjkFBQMzXtvbtajIEDIxA4ELFENMBu4ICMSEgkBG6AwAz7rq000z3E6B3cNESZD/MwDIjcundFICjNTPfSawjMIaBwre227fl6jczyeEQhNWy13swICUlcbd/Wfc3FA+/HmI9229lpHKkbooQGqIiG4EgODuitq4RYugNQB65O4veyYewEoL01S8PUcufeCVz7r0Rf6yqCKQZw76pm9y2HM6Obh5SGaWy911pdrXfX7pJSGmPXfjeTiSQzLkZqdH58ApDabasd40hC1o3IAVy1o2NHIAAlKgaNyJDSNIcozWC5XNuyJeHm2lpNQwJlMy3bzkzMWsrWWuYQwzCN04GH8ba3dWsAEQjnQzJvWTEihfEQFFour++XWnMapzTENIze3dhClPP5UGpeiNF9msdSeq9duUEMvfdt3VqrrhaHOA1DkIDoZh3Meu9pjOM4mBuqBuEYpORy71GmKbXW1nVDRnDL2x5SULVyqdM8D8NEiAB4fyGJSVCsFt2zwwDASE0g5VqAERAEQQAczBzQ+dcyJSDir64xJ79LPMDN3QhIIlmtaB6YXUEQScQMvHdtOkkcD6cKtr3pnnWcQ4wRzQN4wn4M7gMZO7gruKE3M0LgXzVjioRujuBoKOxgiKpMQMKR2WvJWwbX1vuBWRC96yAUWrHexykkh4HCPEYE7E2nYXDAZdlur7Vo+/LDlzQM18tS/tqOT4/nj19Uccl+K23r0Pa9Ms+upZfea2t5msZ4ub4/X/B0+sO//vOXzx/mx9lKv/38mtcyjSHGaK1f3y4s9OHzl+ttvWwlhEM4P64NXtaukvJ0Xk22alegxjFCGIfRkUvtio7gWjNFSuCnkc4JgtUQOYHsy+LVxsPMQqB4OJ8P54flvpEHJ8bjadz30vc6xeiupOq9hxCt+1rKPJ2mYWpoRXVnrL09r3vN7eF0zL2LhN///reneSZE7W1fNuw+HNI4HyLxXvLL6+398ibD1Jienp5oOP70chOgKfAwz23ZzVRrGxJPD4dt22vZt9JqdGFd3xd2Gw+HYT4UhY647mXf9dvbsm+Vuo3gj+cDIwvjlKZ9uZZlH6bxMEyQAom8XjeW2EmXav1WbDy6DDYOxWSppcVha6GG2LpfVgtp1Dm97rnXPXJ0FxkGiwSMZpVieNv2iHS7VDVbt1yVLcS1tGJOtYYwIsdaO6Sxe1dVYb8HWlLAh+NMbtf3ix+kagGRft8BV9tN3q7rEdKB0q5tU1tL3bJetyZxqOjHz//4++GAFP/6py6+eNv+/Jcf/4/z//n5ww+fPz+8fX2/7tuPv7xsJTfzbtCVnj59oDiamWs/JErj1Op6Op/NaRzHw8MRwdf1olq/Pf8cOGrTXqtwqKUIwzCGcUqtWRoiO+Xb7q5jSoRY6tRrR4Q0JjXHOy+baZjGx4fH529fTTsjulvJ3d1ZWIAIyc3cFMHHaTCHbc21NUJc163WOk3DMA9grl3JIaQoEoOEvJeci8Q4zbO5EcGy1pjYHfZ1Z6ckITA5YOul1QzuwtEJYucQaJrHDXZX5SB3KtkdLmxN8S6GG+OyLEzcaqt7FeZ5HomhN2utB2E37bmNE4lwiALEClBVjfCyLpf3y7bt7ghwT+nQ4fx4u97U4Xw6nY6HnotaC0FqKfuy5JxZJKVkAMIchNmaHsZpStM9jlNyqa1CsLIWFEEiEL4bgAjxV5GiuTDfI5a1VDULISCLdlMFvItnHN3gTooTDqVkU5UoIjQOY+BQakYiQDHGBvrT15+f315aV+v1w+OjujtASEFCPB4O5/ODqraueyml1+bdA4WY7I6OERaSu4MohgiIBm6uXfs0TACGBBKYmGrRrkpIgUVCsKatVGFyv/PiDBy0KwYKzASEZoR0H3BoVyQEJwHB4A5QciWie7YDWbyb3kWezIho6gwMBILcWJHafYGVJMQpuROxtGbqBVmIRB3WvZwfDk+HCRxbqV17At96jW6HEMl6YMFxaF0NkUR6JXDqvSIYebdlKf7MXdMwjVY8hM7SwJSoseu9nuYKAao5qKt7RwpOrBSdHKzWXtbFi8bAISYA99b2bTPXEIMj9K4AnlIMDt0UiFwRhLpq75ZLIwACREFTj0PiELqCGjJxrr3VQuloFC3NFRKE6KC9aWC25ojkXTsBMyn5PYIkUW65XhzOjicRETygu/e8b71U7R0RT48HMgVr+1aHY1rXdS85DCmNx45cajOFt+u+l/rw+JRSzOBgmrd6PCWNafd1qe3tetHeT8yHw8HN1Gyc0phGN9LujCTDkMY5pN5yZaRfccoEDlB7JyUUcoB+z38IW9d7OmoYhmiQpnEYJiSEUu6gnJyzgX/3w/chiHBUVVVXs9oqhwjuaRyFqfeGiBI4N7NeoJcYByVfe0Gjpr2jyRhJAqNUJENqqoACCIYATndeI9yhDmjW2mEc0LWCuir15kDMgcxaV7WOCObKJCmNOkxWd0YGtZoXb4WdZ6Jedx2m4shAhO5g4MRO4OrgBtjN0CG4RcdAhExQiiUA4F57GAZzpGbsEB0nocMcRIBZxCoWffz04TyGdblaa4Ok3g21G5j1lve9tl6q7ZY3vk0orePbpW6t0uPT7ZdnbpAiPw3HVvYaym9/e3x6ePrDb3MKchoSq888dW5vzQBck9+W1Qxa6/PhyCGse1lKHWYpPjwv5e+3jIfHziEDVwA1I2RhTiFUQ6BOgMwI6gw9uD7N89MgdbsF53mQ4JGtg6ATA8f5+HTb6lXLeJj2UgrUSNy897aPY4ox7rc+ELEwy6wZd2QSer28DdN4Mb/s9b3qGIbdoC23BPbpu88Px5Ecr5dLcz2fjpGY3QMTTcO+rwY0nefc/fWa5/n0m+8Ph8fjYYykbc9NSXsETCSoWjchfng48Bj3krHbOCUQiSkl5lLKvrdVW++oIKa97LWnqhLCMBwej3PkfbkJ4vFwWBZ9e72Z4+l8rtEum16qW/YOtihmwzcjS6EoqwdJgR3AoVjRJBC4OhJyM1AF3RuoMyDQIISXDZzYZK4W1aByMuHIg/Cg5h4FBRxQq3pv5H6Yp7OFEPo0DgdOZb3m2nmc+DAb8uZ9B9wElwyJ1KLsyqtSpwDHQ0MEHAOHj4fj6fFMYO/f/l1XeHv++v/5P/5PDtO//vP/crlcX17eXl5ev3z6cj4+psPgTm4yTcO6rsAwTuP15WJmTw8PpTUA0FZ6b0y+bxmx/+M/fN7X7W3bOIacbwqQppQeDzXXsm7zOI4pbUtZ9zxNE4IRwbrc8r4T8zimYYz7nmvJLy/fbtdLzbnVUvLOd6Csh2E6zGNy8yXnfVunwxRjuCxVtU3nIyA6eIq/7pmKZXCLJNbNoIVAqtRL7l2P57mRa5AkBIg9Y615XXGMkZlLMUQ4n2aOcV3WgIRdoep5Gjf1WiqT15LR3Qxc9XSaOIh1G0I8Hg9EmDfprd4ut9PxmPMekgSm0aI7zCmRwbaupfc959u64R2/7GCmzDLGIYUAbugYOchEYHZ7u9aS3W0aB0TYtpWImEjNIbEA8jge5mn++PRUcx6mMTzE5ba8vj7vOR/maZxn7cYihAD3rDMi+q+XSvdfnZ0iDOClZgAk4hAFAFnuP6IGzm6ubua1dkIWoZjinZI2n4fxcQbh58tbbq2UGgICWy3b67f3Dx+fzqfHIY5de631/e1de2tg1rptWwJNQ2IOfa+t7tM0dVNzkxBqrnnfVZWZ724mM5cgwqDQBYmR0CEwWYzIqAbmam6EBEQEQMTCGARrNVRIcXD0mKKZu1urtVlVN3JyxMCJOTB5rw3QzZCFiB30PjNUBIwx7HtBBQ2G3aZ5FA5dTZiRAoVgcA/phBCi1tLces4lZ9R+Pg2n49FqhYSSJKahqpXau7rEMEQx4sghjKG29ZSGYWT0bk7LvpuSClWhDp7Q2Z2RoIIRKtDdqWFAFIQcQM04yUC17hKTJIbae2/bUhoxoWtvvasEkRDQUdWYgEWgYq61e4mBtVVTBeQYuJlue+UoEkMrpswcJ5keLEy3psBeXV24mlXVxIzuAFDvliqiO2hqdX9v7QR9jjYFJqRxHpisB44DhDgyc9mWl6/fXt+fx0MKDEste+tyFAV/uywQh61Zg7h7rE5b7UOa6u16rVcFeHt/++nrt2bWtS7biojDMDIQS4oh3m6323oztRACAQ1pSBwICQG0dzrMIcaLXpZ1NetDjASI6JGCG9RckBmcQuAUAwLEEBGxNbWmtVUESCkGifcTtt7bw2o5lyENFCQEBreaK7iNYyqmvdf5hMMQ2qoD4FZr6wUFAiMzNUdjcEcmqtoA6D9iyb9uwQiRAKxkKyUxpsQt11pWpsDBSU1LGccgRNAyuY6R1chr7U1vb69qPQ2TcOg4OBHKQZCqk/D9/TB2dMSmimSoJg4zhwQmEUE711KzEvo4zaUguRLgcUozz163KcnTx9P7t18iIpTa0VlEQtq3sm3bnvN0Pp9Px+uy5wY2jGur71tJnN15N9+bW8mmzk6HYUwc5qNozcNh+s3n7/et7Lfldrlq78N02Pfc1NOUUERrq6WlYQbky9tSuq277rb3IWUebUxLx25ghMDohowAxKU2lMCM7g6m1CtalwCP89NREGkybZRSSLxeLsuSQ5R5GpLI2/UZBNMQdLnWPQ8T/PbzpwtfGaBb0Vqsa8F+PMzGsHYDgmuzPZfDNO4OFlOcZkZf3t56zSXvK9QP54en82FKYQjh8vparesQjg8nSskl3dbSHHLTgPTp85OZlWXbb+9Wm8Q4zlHGMaVB0M0A47jlArmdxymloOYZ23Eejbk5EBJFEkqApedt3+shDSFITDjJcRpiUyOQFDtKGYaIIU1Rxgerrb8W2KzvLrvBDsGAG5ATkyI6ursCK4AjCyE7eqDO4ETIbu7WVZGBUF27KkhqBg01hJCzNciIIDHkdYtJAiM6sgKU1izzPMbDHMSr9ddvr0mGkdLa7FoAwzz/8OXf//J3gj7wdCulY2jgrsjAMc5qvWztfPz429//S2J9/lsPw37d8v/z//X//vNfvx4Op9Z7LfolyOHxIcahds9bNfUYokgYQlr3UvfSY/385dNe1uv1lsvOgi/PzyHSDz/8EFM6nR5aKdfrLffi6A8fHqLgOAQEEGYC7GpB+Hg4gsO672YWAgN4L83V32+vec9u/vT0YNqDBEDP+44IatpaRYdcChKYmnVDsBgjkyBBSrGbqjZ3DyJlr117q83cn56eYgxdO6Jra+AqiC1XQmKA1nqlCmYsmGuutcjO0QzUpmGYxhGdIkt8lPW6tVr3dTVzBIwputq6L8zMhNMwsHAtdbndemullpIzy9QNRGQcEgP11ksvWyvbXmpvaHS7LMTMyDEm6BoPB1cFsofH4+12e3+5phCBYFvWbV3meZznaT4eVPvPPz8v77uMwziPw3yYXX3L2zRPwzjUnlU1SEjjaO7ExOE//NH+q6j8XhiGBkCQxqRdDa22bq7o5tWIOMiv03BA6K0BWBCWGFkYGZd1kyillSkOh9PBSP7y009OCIK123LLp9lUuzVLHBigbGXdln3bEbGZEpIhdjXPLaR0eDyBeW/VAbaaE7iblay51BDDkNIwRFXVrsJkwm56X8yFyEipdY1DbL2VXGKKEgTcGImRe2eKig7jfzwNVe1qgCAi5oZAQAQEDkBEMcU7h4XQAZCI9Nfgk5kaOFLgO1CpdxiGxMENUCQ6UOutbPnVXsZprDnzPaztptpTGnrrgQOwl1qDoKrnUsyNOoxDCndVPaP3Qu4HmYHwsq619KYCB8Ygjk7s1BXBMSRwAkV0B3cSJUFSRWChAK2YKZN5BxQYxkl7BQAHUNPSSu1NajMwMx2moSt0s37fyoEg6d04lbfNidGBUIDEBdLhkecPdvjQQmggWrWY/xpKAdBufHdmAhgaGCVgdSkUahi3ttwuFQO6lqyrUU+ngUH2W697a7muvS9b/fp2GZM44FpqOJkE7IBgDJKQhw3HUkoKMgNjmtd16daer7fLsswPp/VqAFBylkAkCQ2ul8vtdtvyzsxAGqIlDw7OSDHFfc3VGgvfB9Ell31Z3HwcxvNhlhAdvNfKHMmpty4htqaldkDvvSOicKh7pZHuEjrohgZg1mpFwNmOvSkRHk8DOHZUcCVPAi0GOA0xcuRS8l7FlM0Q1cGaG4ZUtamgOdCvUgtEMwRndCDK66rrLc0ppTiKbvtWl32YTr31vC3UB4nReiv7Kq5j5Ajt9v5yef1ac2bmx8cnGU4FMD2EIMfmXs0dQJ3cgBkGAtcWTSf3M/GcmAR6hRi87IoE2rp1702P0wiOqAp7z9sta/7+eFxfLz/98a9Pj9MPv/teQ7vky3A4DE8P1ciY367Xzv71/aohhsPpl5c1d2eRBOh5//x0+P7x9M//8H25XayXD4e05BtPIhGe315btfctv2xVYhBg7U2Nh/MZm+W816wOGNNJaikQN6VFsUsCimaICmDu7iyijrUX8orgUTgxYYbQymFK2/u373/zOQ3SdlWGZcu39+U0Ro8JIDWzJed4GEjwcBxS4xjSCJSJbst1qd0kUaJu/f16nacIhO9r6RD2pUHqcZjfX9e/X7/+y2++PDw9SN6ttbVs5Xp9OJ60t22z4zhs+1JLvt54a5rvB1KmHuDvP/90WtYYgvWatzVIGEQA7DDF0/EQyN9fL7pqMjC3++FbQV+v1zodEMmUcgfnwOQEbl6dHAVbMwRaS1Zr7mKtqdHTx89rb5frHoK4hK68U3irvph3IWW636bvkwLtoE0VVMmMgNmjkDMDEThYd3AQEANiAMeOBG7GxIzRFVOIvXQS7NaIzXQDLdyygKaEQUM2f97yLVhXWC0YxNuml9oahmk47pDKcATi29KqkSc2kVZVgByDjA/gkPuGfHj89A/k1mrebu+XfWk//XmI8z/8/g9fnr6cPnycjg9jGqzD3caQDlMIaK1bTHXfyPsoRJTe355DwtfX12/fvprbx6cv3333RdW2LfeuIuKO17clpYEc0aHtJYicPk1BQr5mABQWQx9iEhRwiywuY7YcJKQQ0xBrzn4/Mja9R4lVlQUHiSnGnCsxiEivTV2JvNVm1lptKcZWOoLHEN0s593V5+N0eDwut6XVemeK5dL2rczTJMyX98swpn3d3KyHbr0zM6uT+TCE3rT1hgBEaACltigC4Hlbc8lPT09E/P76SiwIgOZjSggwjkPZ8jSNAHa9XMdpzLWWVvbSDH2e56Y2jqM2ZaZ9W9PptOWtrPvhfMRGOe/N2jgmq06CJdd1t3Ealtv2frnUVjmIiMQffvedGxHhwzSjoaoh4unhdL0stVSRAOAs6AbawVURSUjuoGABBgBC4kC1V3AjBAA3NzcnjXd9knYHUwkMQOZGwK10B3CAYRzHYRrCOE33Q1+dxhEdelMEihJSDKBeWqml7csahFvrTDJMw+F4aLURS4zhfqh0x1Lr8Xh0BAnsDtueW9dx4vF4AOK8ZUQjRgAhpLwXDhRCuIuSSHgYhyElFqp7UbWYolBAgpKLmZpZqU3VQgzE3LqJBGSSGBwRgbtqGkYicm1m3boRh9681A4OhExkKUVk6d1CEPjVqUbulveMTAhQ94xmMUlgKrWa2nyYooQ71RoQWmv7/l5zG+aZiK7vyxZKmhKar3tR9PMkebkY7ct1e7vscPqQpslVAD0wCQdwrF2ZIhuSKToDheqmbmjoVYMCUwBQpG6uLMzCfteeIJib9nZXhUiQ3lrvllurtYmEIQThICTaLefVvE3HU5jGCozCHiZIc+OhABcHBhLC3t3JCNndFZ3M7o8CwNyomcY0tmKNwlYr7vthlHXf4iE0UwkiA9/W7Xpblz3f9tKaigQF6wYN7/lbZ+FAY1bqiDidO7RF+8N0JhZbb8AhzXMil9NDK9m7bevK8x1HhF3vrTdEQFDX1tENkdAwxXhvMczHowTRWqoZMDCzmrXeXRGcADt2aNiAsgH21h219/txk1JMAGjm1hWJQgi//tWArdYOMKbg5mpacjNm76XcLomnSQ5oYNhL3QvUVvf58ewUtCoP4swIRk6gd9aBCzkDemuD8NZL26658cPjOaBd3r5q3oOA7nt+eanvPB5GCYxdXbsMIgR5uVqtWve9tIDw8bux1SX6blqCE3WCGIJE6J1MWVuAdgz0lFLM+WQ0JqnUFKGWnUPAwKR630G/7LsNksz6bRukf/fxoQiXWnKT9+vltu4YgoVYnYrZsu6XbqX2X97WDOtsXMzy2g7zmCJF1A+H44fDwUvRvF3fXhwVhUrOW+nLmp3w/XLTl7eHDw+fP3+CILecb9vq6jmX0/khDvOy1y64G90U3ipUdB0QgkBr4BCFO7gToFDTdhynXjOgDQxJHWrORWuetLXIofTy/Pq+5DzEyGlaS3t/+aqgxynGGL5MH7XyupT1/bZel63snXhv1UgQsbY+B0Gm9ZaZg6It133onoiBJTI9fHyy5Ta6kmFZ1uV2ORzHKU1TmkRkrWXrpnGAUddcnIIlb7vmpof5lMYpsACjmr388rK3Og1DlHCIabnu2vuE6K0BhqL19fUtdw1x2hftyOEwElFzRIpxGubz4zgPre5vtzVN6XQ+/fTXr+uqT98N6fy44u1t2TbgzCnTsELvaWhECiDIhATmZmCIzqSK9wwFRVc160pIVu/xWVIDZgJwJr97CAjZDcyJRFgQBRAVzLxVsToTPIzhnMap63a5mttMwTDyx88X9eutakrNpYEwJZ2Oy7Jq9zgmI64AMqaaW2JopacY620JwzTHD48DB29v3/727etPd5vS6XD45z/8o3Dc9w3MD2k8Phz2lU0Vev/200/TYTrM8/v7e+lZhpjmuO97zqtCOcxHBDDX2+22bksaU0iBhddlMVVzrPt67f709DjPx64NmdU0DWk+zMIixLWWWts0DfPh+9tt2fd8Z9EhAAtp69M89dZ67ShU9hpCHOfxyKfeWt6rsLAgAKiB3jEn4IQsLKfj5Op7yVpbOM5BRHsnJgSw3qYxxsja2t1qdTewphR6boQ+pFS23Vp3wLe3S4hRAoswpjikCO4l9xTDPAyt69eXF3eYDzMLHY4HYjLtK2wADojukFvGEMCwtnoXVqYYBKmWToiBRIS229pK7laHOjsZCaorEKJQmuL5/JBru1zf3t7e9r1N54M8fniqTecpfX58ADdVR8Fa48cPH2KINddtXcdpZCSOXLQ7kqoaoDA73CNAbqYAQATTMKh7UzUAJOqmAe/k/R5iaL05AAvXXomDUCDm8+Pj08eH27b89ce/PP/yEzY9nNLHz0/TOMzj4bsffhhTWtZlHId9W+q2I6EM4XQ8Hc5HU/eigjSHSI55zwTo7lvNY5ha7SwEiKXUdc9xiBS5r8bgISV0st5DisSo5mZopsOUhmEg99J2J0MAFDhO05CGn3/+WXtVVUQQRmGMQ+pdWtdhGh1xve2H0/jw6cPz81trPUYJktx7zuu2LgiQUtr3LaWIjmA+jhFAl2UZx3GcZ+segoQx5rX0rhpsua0xhqbVGbvDEFM6TLf3lQhbq941DjIk2daC4LX1uhmQmNt8OiBhLdu6vu5rTUr19vzxh4812AoMLgquTuYq4GhmvZlrMXNyUpBG4jEQM6HumxaF1lVbiOwOrWRzDUIpcErDPR2+LHsptXdFRzfb1p2Z0sDjPKhpLvVuJReW0/FJx0cfJqWwq1OIjk5mEbG5q3VAdkNnRkPsQMSqaO5D4M68NR+aHmJIU0qa0jhIkFr7vq7P335prdfet1KHKcRRWu1pELQO1gUBvceAkUNhURZ1DCQ7qBBVVTU1a8uyp0jM1Fo3pNLroD1wOh3Pdy+6owN43jO6W3Qk6a0BeOCAQEToMR6OByJAAFM1RDNLQwwhuEHT7g2QmQL05nnPYYgk4kC1tBDRDIZhiGloWR3weDwwY95LqzUyxRRKbR0ac+rLEsP1+JSC++3bc9LeGmxdHSF9/MhGqJ6YqjZEB3c1u88kDYzJsdeRsbW2vn9bdZ2itNtby1mnlBAj1O266UbzcRhTcrP90nYw6O04jynQHvN4HHPe1n2dDycZTsk5eTLT+5lTkAQwGk4MPzyMhwa4vM2OOEIBlNTfrlsUsN619cu+DFHW7hRk+vg4niRXjcfx+/m3hLrs2/W2qot5/vq+mKTcbeu4F+zxGFIYTqcBLOgltjqyfHk6fTofPj6evv74l+vbSwokKQyH6W1dl13nw9SN6JZbrwZ6OKUkfHm57OsunNLhAGncPVxqfc2+S7wYbY5KYgigOjAxkIGBe+1N0SVKc0VCYhqm9OlpiHk7Jlfr7kZgl2XLzeaHD/EwPy/7A7gzfHp4OB6G674bMclYS9nWtu97R5+Oh22rpTaOo0UsRCiSjoe6bdNxhqL9uhwjH4+nKfH6/kY1z4dxGMe8l1vdz+MThPR8WXoHldTQnq/7+67G45pbPMbwYRBKHsetFIpzbUXd4zDcbvvz88uIMbgcZFjbcj4eEKyC5jc7yjDPD0vRCg5p7HESEXUxha3STz+/5TmhqMxHmdNlb+9budxKiSNM9PP7uuTWh7nFYfNQY8pKGEK/89odXc0UzJ3QOSIiASGZUddIgK7eTe4xC1U2NFSUO9wKFDqyEGEHpUgsEIhK65FtCnRiSqL58n5ZlvXtqqV//s130/HUGm5Ve4y9YQfcsnJvS/eKkqYYUsymvTeDptZuWx4j9N4A7HQ6nNM00cPjkf/y7zSN4dvXr6fzcYgcGHPZXq/f5unYD+cpD8v1hu6n43w8zoBctlJqrdfdF3A1QH/5+vV8mP/hd7/7+OFhGlObh8Mx/fTL13VborbaStc+xAnu8wfr3XTdNg48zdP7+9vxNCNqb2WeJiKXIMfjCdBvtwUIOQRtfV33cRy2XIipuwUUIrlel++//EBEdS/aOzJIjIgUQuJZAKHujYGn42GMUbuN83R5v7y+XA+HyQyXZXWzGPhwGBhlqWuKMo3peBz3LZc1pyHN83iY5tdcr+83A+9aEwbr3btGligswm6WhrDv5bbcai3MYd/2h4czC7tB73Y4Hwlh37ctb31XCUOtpdUeJLa9sTMDnObJ3T3p7Xqtpbj1y2XdW/nw+UOahuuybds+TDGl4VZryfnnr1/XdY9pMDDhFImJguSSCQCBzqcTIu77mmKw1k8Pp+PhWFsruY7TYOolV1Ntvx4D3dRcHQlFCJHu1nTtauZByB0cgYWBgTHcb/TuREzCYZrn43HuTb/+9PV//tu/7bfth++++9d//uePnz5I4CFOXz5/BqOX/Gxmnz5/OD3Ory9vBhCipDjUXKJI4BBAWm8xRlLu7q33vJeaizAj4l6ygUcdtLdS8jSMSIyAWtzBBUnN73HXGEIIIszDNLRJWy2uZg6AnIax10pEjm52d3gBIAGBmhHx6eF8fnyc5sPL63UYQ4jSclV3DmGcZ+vq4MQMiOgU0yAptK6q3ls31RgSANZcTZXQ93VRVe3sBIhEImq63W4l51p7SnFIjIC9VHAUZtOOjMJUqt7er8dpBO1t26Y4qGMGa7dXVBNKNhwvWzPimKJ2M+tk5oAKYu4IxIDizgiEYkCqQHYfjVYWRKKubUiDcDBzM3A3BBQJISZE0t61dwB2ZzONSVAopBiCWBxkOtjxVGgwJQoMItYqmhGQIDm6oTshOpBCNEJ3IgGCbW/iXpCVxNBK7ugMhujUcvvpb7+8vb7HMa55b27BIBcDRySqOROgVy9ZrXobDp1oN+gcxAFNU6tb3tZ1fXt5L8t1CHQ8HkK41wPEDCjy8TiBQze/T/hbq2Bwn9P0rjnXuzTt/mEITEzuvdVuapyEmEnY7v+v3aH3rr3WZm69W0RwcCQCgJgiIgHg4TgzBxF2MDcrtdE0RiYkIAABNWt1eUe3CoT7JZEIctsb7eNBPvdqLTeKcmB0MGQ0oXtKGQyxg/c+BrZBtkXbvjoNwpB76WU7zONhYkFxN9RStqyqYB5CCEOouRGHwxzGcViuuzhCvfbbi0MQngC94YAxwq+qG/KmlsuUXLgnbWmQArRhKaRUd+lmaBCJB6IpKbgzKtEGKpGs4BiDqi6lG0Lu26201qE5rVs3hDTPw5TEbAj46fNjQjjHEN0GRvLea2mlfvn03TBNHc3eV3I5n+e96KdPjILzaRhTdFcWSWnkOEOaNoyXrX/d7V0pIy7mnYOx2K/jSEZHMwBGcTJraFBLPY8Bex0iT0M6DOGQgNmYzRS6+Xw8Koat2fZ+ufb66RjTOBHh9fn1fVmHwwPyWFt1sHkaxzF14n7bFdGEOUbkkKZIBoeB4uDtomwdtqViA63jFIYhgNt8mj8fPrPa9fX9/X1P07ErPm/7reO398rHEA/H67ocpkmYvl3XfFkY2hBlmNPnT9+XtscQoSohSIDvzp8O09jaftv2IaTzOTkPam08zRAHiwmJI0pXW5ZbveW60DDJeJou27pcdkdS8JfLLWd7W/OuRMLKoRH3Dq00MnAkj9jd0dx/pY049oquwjwEjGhytwAFHwcCdUcntK1spt7BczODxBC7ITigcERhUC85YmPNVbfctuvr5fX5fZzGj5++75JuhrdKncQg9O7uztCcoTnwMGAIHVzNGLGVkojQu9WuWiLhHCex/fp20aoPpydxhAoOvl6Xrz/9TCRCkqK493W95bKlGNXaw8P57f1yXd63vD88ndz1b3//sfQyz/OXT999fPwYmOc0wMkut0tKSd2HNDpA3rYoMYZwmOdpHnLeuyqw72W7XN9z2ZNI7+14OD48PuzbervcJIZPnz4ik2rf92bue8lAxERhTKq219xruy43N2+1EmKrXU2JiRyHcXI313sZF0qp4zCYuqqJBCLOOffWtHdTArd5HsdJWivbssYhLrdFmI+HQxC+Xq8sBOSt1Hkej4d53bY7bk2VAGwcIwcuOa/LTYRi5PPDIwC+v18dfJrG3HKvrdaCgmi47eu2bog4DsOHD4/rbb1cL+M4CHOtdV+3u8lAe1fv3Xrtda97s2ZVl20zgyB4+HDmQxIREpKS64dPD8KY90wITLItKxG2vdzeLojw5YcfHh8eJIbb7Xa53K7vS+vd7e6iJQQGBCd119YNEAGQkV3A3QHgnudkZgLiANpVuzFhjCENwzRPCPTzTz/9//7b//fnn3/++OnDf/6Xf/3DP/3jPI3WLKb4eD6FEOu615KnaRwskdOe83E6jENo2261DePEhC4yHw8scrlec61qPfc9lzYfZkJstSJTL9XNwGHfcwyhtFJLlSAsxIjQe4ipLvv44fT08bE1e31725a1qlrOIcVxHvdcay5pGJBo3fbatTUlJlNIA6c4qENKw8OHhzSOP//443ZZAIiIc9tbbcQkzDHFcRwQ2bQ5qYPlnFVQzUzVXXtrpRRAJHJiBjZm7KWU2s3dzWouwzD+GmxF772UXKHROM1ReLmt+bbC3WTJmtX3vK7m8yfA+dGDMQeO4uC1NXIjQQfoQIARsTcwMFRQA2AHcBcObtS7gqMCcAiG3BvUUs1NhBFpSJyGhEyt9d6quyH6lrMEiUOQwIzkjqbWa9tgU5k5Drl2dmMDAAMRQLxnzIgQHcSAEXvvzujERqFUvCw1Ua+ipWy85TjIcru9v11yrdXsctnUoCnWDpJIe9N196ZdfSlmMevc/cw0pk7YDbD2VmspuZRyl+D22sAtDiNTCCECoYO1pkSIzkxMfG95g8SoankvvaokvOMNU4ws1HszBSYRxhgSOOKv3QFVVVXLpfTW7wQdEiLC+8Mhwt4UsZ3Pp8BhuaxdKzgQITGGEGeEdd8TURqktD2/beueeymHx8fx4SzdAlbZ99gIgGKrsVf05m4qDBQ7UTcwc1c1qA+n6UiPE8NhDAJnK3vd1iZgNXsraYymfdtWMx+H8TBPrbXlutScx3HETokoDjxCKfk9GCnlGGUn20vFMMoYo6Kuy/q+1hlCtbrdog+Hw/EAULBPk1zXvRFwiirIERGw1Pp6y93GwKitGoS39/Xa7bpcVYTHKYxTb51q01x0L6YtHdI5jU/H4ZAkEa3v78v1GXRhwYenM8e45lx6kyDHYc4dbN/HaZ6PU5y57K3V6pTC4ZiNX97rhrA0Xj0uQTJyIepEDo4KBpadGNCEqlYyCw7cWiAIpdp6a1PcsA5TWvZawB4OhxSixIrVlyXPp2OYD1b2BuF61SKN1WcOQUI2V9XT6XA4TxSiaadTWhtd915yMwHfy4QwM84AO1nbt4+fTsMhWsMphVJr2daHh7MErmupuXMcVdJufu24KtN8XDuYhd7j15+X0zwd0zgeH6EV6znFWNYtjsIA85SgGyf+/R9+JzH8+X/88bbtDbEilU2LUeIAGBylq0FRcnKAoupb2Su+327d7jsCyd261YtC5wgQS3WzqiRkFM3bnimwIQozgQN4IBwIIyCBx+iJgGoVa2yQgkRQREfSrm33zRBK91vpxokgEcXeTDsOmEjR2+p1++mvfx6wEKnIcDoeP37/3e/+8IfXW7vmthJBjNpBDYJBN9NgEMWFt94jAjNpadR7jCKgpDWCCvoU4u3rt7/+218eD+k4nUWRvmM3681ef3kZx/G7Tz98PD8BwMvz8162GHkvJZeyl80BHh8e0xD/8uNffvz7Tx8/fPjH3/3zw+NTFGm1ttKGGPcQp3H88OHDPM1vb++X9/eWV05js94DNYPS6vnpnGJ0g/W2ZMay77fL+/PL1y3vzDLO8xDHpp0Q58McouzbHtMADOvtRkj3Dc31usQQem/DGMGw1ubowziUVgiJGYOwmd9uq3ZT7SGGbduW5VZKGadh/vCA5rWUriZB5uO0rntpxaynw4gBr8vl29eXx8eHNMZpHh+eHl0BGYmxaeu1bss+TyNRjIFOpwMSWPcoTMLrtizr+u3b19ZbjGGcBgKYpiEGOx1nQFiua29FrWqtxaEJL7cFCXrTaR6fxg+7tl++Pr+9XXct+55brceH4+HhRHHIJW9eyvVSSpWPnx6fHk/QdLPVel/W5Xp9Pz+eT6fzbV0A/TDNIaZxGkuugcs4jqVcAJGImAmRVK11NTUmIrlLgZA6AuKdX4lExOS/CqHVDUKUIQ4pjSGEdVv+9uNff/zzXwZJ//V/+V//y7/+Z2s9AD18elR1zR0VxiE8PZ6HMXEKX77//P5+bbVqrmCWUgoSmOj8+HAXkEoMxxj2PYcgzjyOE4vUVtEcAAOHfc+1FhgnR2ymPVsIPA0J1BjdERC4VHt7e3t9fUtpmI6HvG+96SwJ2Y26k6j5npuhIoGZE3qt7e39vanlknPJh+ORRPK+m2MvZbleCGlIA7Mg/ZqXjjGWVmtp+16E8zhN9ylvKzUGaV1VjZiCBCFCgO7uZjGIuQEAc1T1WnIpWbsKS923w+kwD3FbbkSkrd32PTs9XxZLGw+HeX5oqmbe9l5rwa5u6kDC7I4CwAjNAImWYsQWDBJxjEODxrw7KhhKEO+wl1xyDiGkMPTewd26BqYgWEvPuYgQhyASQgzgYKpqtd9uzaWHsQPVAurEv9oTCAjvSQBg8l9T0eYIGZFYULuiVdPrnrFtK3WG1m6Vg+/b3rQ3aF4dhSMPMUZOgciVFNTynh3ADGrbemYcxnh8MJG8dyBW85qrdT0eZ5kG8DbPYxpHpiAcCLmVltfNwcZhjEOUYaoh1lq6addu4BxDSikEuZeskOh+lWUhBEJiVfuPGqKZqXbV3t0dgcBdTbVZKeWuIQshchAz7YZde9MuHIYxAXJXjUFMw3GKMky3JV+2Jb8/l7ofBkzHOJJiL/39fRiOQxwYO9dbL0vrXZFlPkkcAIWSAEU2C97n0+z7rZcNQQ+HoVXL+76tm7slD7XWfS+ElBIwc2Q5TtOqGiUEljCM40hJDDzXDt3UrwRpojAhExgiwjCGGOx0HGbRv//xx8j46cMX/jIc5/rL67t0LaWDNwtxqeXhMJWmNdeadRzCNKWvz9vlujfHa1WmcBpS1d72fZ5la/s0xI+P5+++PBzmNJDrsr89fzNtViGvy9PjYxinddvXmh2QU0QJIZI0v17XjvnAoxndVnNgSvG96i9ruzl0TjBOa7dKBMJuAEYIgA4N0YlAe3BAbWQ6CR2iYMucZCC1bqXhkjcvBSkeRynVSML5w7jnqt0Pw9Tctqq3y/W3Xz4A0Y60PF8IIQ3hcB6td/22jmmkKLXD83UBQGldQc+YJIUEGgMEN+7de8NBEC0NwzCOvZS8564uh8OieFPbHFXCcDguy5YN1XFrPlDg4zHxMDB42yR4K7dWTVxRghMcTjOSd62Hp4e/v14aaAfa1LZmrSqDN+ulFMv7hBqYndhda+91KxJEhrjuu8OdnwIAHOMAwK1bhwpORDAErtbJBNEEICAEhCnA7C5uI0EiQFHIGbVFIkHqOZO7qELLADwgE/TSssAEKIiybWWWSVWPni+3l3p55ojfffn09PG7cDyF8dDNurtxcAoKYmDmqmbMBEjVFAyI2XujrqA9EVDLonVkE7chyWEUGIdxGKZpHBOyAyiNQ9q3/Pr8Le9FtSNAa+3t8qK9Pz2dHj8+XN5em5cPnx+/fPntL7/87dvLc4zDf/rn//Lw8HEYIpgD8Nvb0nJV0CGN8zjHEFOKwzBo0+V261176w9PTzEE6z2KfPn8SVsfYiQyB9iWbZpmBzfwy/X9l29fweDh4cxEpvbJ7De//21tvdVWapmm+Xw6qZruauYkdBcWQc4pRCEiJJEAar31t7f3YRqEaM+7u4kIC4cQwG1bl1bLMKVmrfZCiuM0IPq6Ljnn1uq6LYfjcRhGv0d50AABEVovpZTe6jSP59PpdJpeX9/NvNbsDUvJpeXn5xdk+vLlExCsy8pCRPThw+Pb2+Xl5XVZlqePH+KcLu9XAjo/nW/X2/vlurdMzLl3Y1D02uovX3/OrfLbt/k8hzjc1uW2Xs1gHgc5znOUENKoqnXLgYMShhDODw+O+L68yxBDjOu6X6/L06fHsz6oGyE5WKvVrdfWWq/ggMh3zzs6MCGAd3MHc4TuSICCHGLE3tM0DONALNuy/vzTz3/+859M9Xc//OZf//Cfvnz88P7tdd82mHoK4fXtGmMcJD49ns4PZzUvLe/rentb19tqZqeHU0yMQL211rW21noTkVpKKzXFyETCVItty3pPZC+3JZccQhjGwdFrrkQUmMcYxxDlkMKQrpfL6+tryXU6HBwht27ulvfetfSel+36/na5vI/T+Pj4QCIAoOa5lNZ134t+fQkSW2/MEiVccyFmIUEmu7uZiESCu6t7/zX80nu/h6YxBGaW6NBbA/PIkjghuXazZkAUYiAJy7qVXFvrbj5PAwuv26Yl9NZrqyGGSKHs+WVbt9KnNLpZK+W2v2/Ahgjo1mrv1RFT4MGjKDJz7x7G1CxXVzOTX43oQxxn91pq6a0zEJITEZOkIUK2bV1bKRNM7tZyqblAikQSQjwcDiVXohAxXnsNdheDlb26U3QJKICAhmZgyAhCoKBqgOiAJmwEVHvtudYq5Fsp5hWh9V6cmlqv2gGAmQ6nw11FRYQAHkJ0bCxyD9zVfdtLH9I4Wh1oAIbHwwywLL3Wso/HOIcB3VKSYZhiGhhDr3bbazdVUyo1DkOShIC51HovgqYgjiRBQsylbXuOGsAdUe4kwtag1t7qnazzKyMqQqytmikoeqlmdi8WoUEYQggBAA1MQc1BQkhT7Oq5VLQwjnMMUXubk9QApMX21ZarTekQxto23S4CEFhCQK1XKhctGRTBKx+fZDghAQgEI6hg2uuylJ4BAN2HMRJA3qWW/Xq5buuqauM4tlxv19vj6fjx4elwB2u5uqsQatlBG1eUloFRCCgFhQzmQDDNPDKMiU5hWB+OMQ2IOEeyCDn4IFj3prvXnMN42G5FgIc451z3vLeOtbTcqJoOx8N4PMgQ9+stsSf0NKbvPz99/+XT+WmyXurlst/e3r99zbX85je/SUOSFMterstNhiRh2Grb95vxUIwaxdp5u5kR733aitbNdqZF5p2lgZhTRUQWuJfakO5SXmB2sCSQnFGJoZ0FHwfq5ueHw5Bo3RdGhGF4frvlv309T8eQkkh0BDfqBgWcwZXD+elTGAXI9tY4uHpzsN7rdlv32yLOnYkJGdzMhkhRldCHFKbjyM7btt/et8fHMzvGNDFSCqO45NC2dam5v1fPxF2SYihFeRoNPIzzMQzV+X3tm+TE+Onjo0Q5hk91v0DOt9veyzZN6ae///39ej2cPoThwGAM0q61kYU4dpLSvSqBSWcG78gBAKxpQ6IUPAQrpbY28DBOQ2kMhMKhNLfu+mvZAgjl7gzk3kV7JJ0MYstYriFyEoJW8u3qNY/HaToMnXW5XEophiAwgNNoFpywGEsAYOp17rZuN+iZy/U0hR9++O4f/uEf5/lxrXWvWvaOnkQCKpuyAbkDIBuIAlc1EwvE3pVbGxkmwUE9uY2kAhrAdW2R/POnD2C1u3McppnB2vF4PM6HbbtteXm7fAP31gs63NarUs/rtmw3B/z555/+9re/jmn43/7L/+Uffv9P7oYIw5jYy/v7Zd8buI/pEDCBoqA8nB561/fLpZZu5oyYUrq8XYnh6eEI7vN4YKb1tnx6+IjMy3oDpOkPh2+v366X6/X6fr1ebstSeyNGZBEWJN/y7fHxMaVo0F2NCM1UW/WOkdkJWmsEHkWYrXez3oz54eFUckEEa+369urmZV8BEAm2feu1MXGYhm1dtfeQwjgNzGS952VFN3d4eX2ttQFY7y0kydsWNW7bvm/7um6I5G7T4TAM6bpcm3Yt/eu353ka8pZfnl+Z+Y///pdhmhStaNtqWbbltq7zcYaRI04HwdfXl7fnSzrN4yldlsvz69vb7VKx3b7d6BunabrXUwBtzze5vl8JnKax9yYhjONYW1XHbs4xdPOXl3cDTDEeH47jMJbSPjw9ard1u221ubv2Du53S0evBuQiDO5mpt30nidnD0Isgg5AxCTCwdHXdf3jH//9+ZdvH5+e/ukffj+PEyikmOqar69XiaFs++k4xZjybZvHoWm/vF+2600I7yIwYkInCbLlPbdam07zBO7WWxQRETfrvffetCkSshMimlqtJY1JhD2FiDykmGJEwMN8gMjrlqfpkAaLIXWz0ur1uvSqtVYJgo4vz9/KvrOEkBIgWjcAlRjHMZlDa+Xt9bWWOk2ziJBjnwb6tYYMiAxAiEQEAYJ2J0EHV23maM3cDFFCjACe9wLuTOgAQaRpRyIwN8dly5e3dxKexjGNqfdS874BrNtWrZ8fH6ZxLK9lWRaO08cPH47TBEKh+YgYxkSEvXMu0FoJ6CNiBHFAJ3U1AKu9xoDeYN0LmYaYejftWy9NUkwpEBE6tNbQ3d2IhQl7NxE5P8Q9t3vdUThkL8w0DHFfy5ZXZ2dmAXRAJDG7a8MtIDo6tA7drSs4YQikDmoHAdlK3VbaVy/ZsEeypmr3lRIACceYmIMZmnYAY2EE9LvC3kzUsHvZVlovul4CS0rxILRpt9qs9yjH4zQzIQsisKkjAwDGFFsOAGh3pbp5a72V2lobxgGJWunq1dxbb+pm7ojOLCGwqZfaiVkCgju5qzZwIsIgWHtx7SI8TAMiErIDqqqEoA6tlFY7MoYxmnnr3dSsdwOIsZfSpnmahpiEjmMS8ratYZYkorr2TXuv03GmvoLtZiVIAG9gFbHWSqaNtZK2uu3gOgYWCYDY3QNL25e63W6Xy57zYT5Ow0CImktmmqf5MKTb7XJbVgRzDyKsjb1hDGOKD4x9b6UqmKA6dfMwiVrtvf7udz+Urm/Pb0SQxuH7zw9raTHGtfnXy8amvjePGMcDOq63/f19SUNADr027R6kgHXbtuM8HGNwgk+H8dNhHBI+v99efv4pOAXmcDyq2vn86OC3davNDWxMQRGue6ncTIY9pK3btvSO0FE6xmJYiCpDRjARM/wPwx+6wd3s6m6gjchHpqQ6J8HWB1cp+TiEh+OorTzfbnR6CMPgcbzuxaHMHBSqM3MMkQhFwU0O4zhKrWtKkAhHphpDQMiXpbcmItY7QM/LdkrRzI+RTzFRWVvJ3z+eBHwe99aP8zSZW6u9tF3Vp8Mpnh5uz2sDvmhrDh5jq1ZyozQMMVFue3M13hW2XolAl/zh8dS6sYx72WCrj+cDxbHVet3KJT9nj40GxdTZQAAk9A7dGBA4EXh3bQ4sDN5aiCgcwECYVBFMIwAwqpuB3TFsxdSRm6MEAUZGiIjkXbwFBa57XS4ayVOMQoqmBKZ9z1vORbUbADE7qKpC0yGIEDCiakkJybbb8r7lG/T68eH0T//4T+fzYylK6ocQzqf5veF62UBRhCuiA5sQIiszMTUr3uoYZBIevYXaHlP4dDyQbtvlRcDYPUbu86RNmMi1WN/I+fPHD58+f3z59vO//c///qe//FFCOBznKOHt8vp2eT4ejoD4/Pp1uf3pOB//7/+3/8eQpj/9+OfT8fRwfkKkcUqG2LullE6n8+Ewqdle88BspjmXFAYOsizbOCRCRAAt6toh6XyY+17HNAzTIIRqPcTw8eHx84cPv/zy83Gef/n29XK7/o//8d/Haf746fP5fDqeTqXm1rHUAu7jONy7vcIB0MHcVatl0ICI8zzeLjcWikncFAlDCK0WBJynmRlzLmDOjHnbYpRa676tsCAifvf9dzEEAKylbNt+fb+EFMx1XbYUGRGbar5eW2txCES81fL2dRWRrWVO4fhwIqZvLy8hyPF4WJat9+5d5qdzKeWvP/9UtKv2v/7p5z/98rePH58Qae+Nj5EPYa/1569fL9f3rlpbQyR3X9ebcIhRJErZs9yWxVXL0mrLh+ngTgZQaytqpTU1/9Of/lJ7+/77H9Zlu73dDoeDqa7LCv9BQUTA++vOiOqdgX/ddDk43kvEyMgSmJB678M0AJCC5XX7649/+ftPf5vH8Xe/+e3vfvdDWffCgYlOD0dTu7xfDNx6A4n7sv5Sd2LZtnyY5iKyrlvec6312/M3Mwe8bxtCDBKJj/OYYuituymgg0OIPAwDGIQhxiGoeakN0F2NY2AhZMqlhG3DLohwOp+QRVWN/Xg6NYPb+zW36m3Xqor23W++O55PcYg1VyCUKMzUm0bhFIaSM6iaaVVNMQoj4v0DB8Km3Vtxt1o7AIQg7gB3gEC3bt2bIULvrZS99bGUzMKuxoTMUrpupTawrRQvxoGSx9azc9/r7bYvQLzXsn/7+vz+mtLw9N0Pv/ntb9Px9F5hFjqPEyfp1rvEOWCrJN5nJO7u4NRabhpRQ+KThLhbu25gKkK9e0AOIwsiABh366a9tVJNVQl7/3ViISG05iEGd1iXbbkuKbXBQHtf80oEw/HciFo1NHcnAOf72KZ1BgCEzm6mpoYOI9MJkbTUvFjOrWcUB3USBlNVN8Ku3WphAnQCB3OQwEhkptXU0YyRmYTM69Zvb1MapiCwr/vbWxIZQgzAQxhSCgDWulXVfd9EIpHEOKi2XxeUtboZMzMrONam6r2ubT7M3XtM8Z6EA0IzaF2RiYiRvbcObuC07jugMzOBOKjQ/W4WEO/qMwBT7c3QZQzg0JqGKMTUu1pzYstNibn17uDMFAIRaNvXVmuaTxR7lE4Mtqx9eSOs0tVBra1tDxLiYTyZgq675r3ebiNoTIxuKSYjbiUHgEGksLiEIYTDNApLzbnnfC2l5bKst1arm67Zx2kYeHKlKAJlcQXioM13YExhd7VDULBayxiorfvrL99i5N/9yz9CAHTrjdzs0/mwN6Mo3XzblppLSoOkO1+dzLS2MkXupZyjnKLMkVkgal6+/RzweD7EfZ7LUsdxno/z6fFRYqylInBXoBiUUhfJBDel1Xw3Ksh1kK25ghiKBVHETtrRzH4loaIDAhDeEQiO5gh9AE+tfxiGWZBiIEOxfhwGrHp7X/JSOTSXKR0fq12Lg5duwIRU9lL3Sl4/nYYW/Nr3o5rsOhCeOeAQ8pbjIY3zDJ2X3I9jWC7tkEYh0n2zvYI1mmLTNs3H8TCZW172/fK+XjYkzNU7j5ti+vybW7fcizNLEOyZyaBXBwPXXktxb4SO3Fq/frteuj3EkMjqakea0vHjMD3K0Odd//bz22q9iKlgxdDQllyRQjUwQHYIHCQOYNWtiMgQEnivvYG5IFBTX29oYphq0j2kLKFyqMRK3N1i61D2xChYxSt0dduHiDnvva3xfqmKcS0N2t0QmIbzQChdq/XdvGvNIUTr9TgPLKwAb9jzsoDED08fU5xvS7lebuMwfHo4QJDrtgbrrCAhNAZ1qGBAqETuJshojVTHKIP24OU8Td99mMlowbwvi/fuYAQeYpzn+fXlWUL49Ph0fphL2zkQoP/3//5vHex//7/+b4eHz7DQ4/lh3/PL68u3n79+/vTlv/6v//U//+u//o9/+/dv375Kik8StCuLTIejKp5Pp3mORDBMowf86e8/E8L58dHcam4ll8vre0zy8dOjMJe991qEeZ6mn3/6+enDwzROt9v1/du3EALFIAYfTucU40+//PLjX398eX2pPTv85nCYaysOkGJU669vb2AWJQxj6rWbtSFGNwDzFNi0EToh3K4XNetdT49HZkocTsfD8/Pzy8uLIaQhpiGJ8JgGYX5/fwsSemvggATuoK7jYTS1t5f3++/Z9vXjF4khlpxLNiLKe3m/Xg/nEzI7YzpPX3/5+scf//rdD5/Hp0M8z999/MAipbbL9f2//el/Hp9O674+f31R9U/Xj+i+b/nD0xO1xdT+/vNXYTw+HLiJrQDkQwz3FOd+W7QUKSXHIGV/AzRmmeaDIZkpEjCHcZrVn9dt+9uPf728XQghxWhdHx4egSCwmKkCaIdaCiKFFMycDOgublW754RYuO6VSYZpDIEBsJs+vz7/+Le/vr2+/9Pvf//dd9959+N8fHh4SEPspX795SuHwGDbkrWaWe8dHHwYEgK02kKUw+lQaqtlL7Uys0gUh31dUdV/rZuBageFIDwM6Xg4MfNWdmFu2nvvtTRBJobWOgG22jrAeJym04HC4Ei1lZDi09PH738Ded//+O9/fH7+9rq+pJS+fP9dCMG7TYcJzBmplqpqw5gIo1DUXpbb4u48BkT5lSGDYOhqXmpVVUAchoT3x4SoXZnZipnZsm6lFu1achUUUwO4J22pYC+lrVtRgBiCg5dSAD0MwbqFKKXb2/v77bqa2h++/93vfvcPh+OhIrX1BiAsHDkhQi3ZTUfG8zwdiNhw35o7DCFKHATaUMooIw0ApfZ9pZgOw6Bd931Dxq5drRFya3XdNnMrpZ0fT2MaW+/H45FZaukOlZnVuloRIiFIaSAZVh9+1YK6DSTeW2AQ65Nwb6063QklrTSyJkn68kJ1Y28sCG5Gbqq1KXFgwOaWcwZrCBxYkEkbeUB1b6YOZt7VCqNBL5oXzAsgmveeN7B+nOYUIt4lXr03tdbUzKs16x0RWMKQEjMaGCKGEHrv3dq+l9aKGfRrB7Bpnl1Ve0eDOARzy6Uz368J0Lv1pkSCBADubmmISNhad4cUBmZCEfj/M/VfPbItW5YmNpXZEq4iYssj7rkiszLzZnVVJ4FqEM2/wP6vBAH+hQZfCTLZ3anznnvEVhHh4e5LmNkUfFg7C3zagR0K4WKtaXOM8Q3A1prFtiCjQEQRATD1rY8WiSSxm83rwlmg4vVyJRHm5IAdUqLwpRZX9AbojDhNkzYg6qFWoJXBQVsiQhYshToGs+vzc1CYNqtrTnx3OriOw2439h0C1MXrWljItIE7gQW6qbeqwpWB63K1CN8TdrvEXVVrLFXgOtUV5dWwK9Pl/PS82w3X8/XHf/7T3dvT4eHUDV03l6HR5Vau00qI6lCW9f7dQ+q4ajX3+9MovBuG7LXd3e+Ow/j44dfjbrRl/fjhg7X719+83e92CTsIzl1HiQCBU6Kup+Z5v58UHhd7cXoxuiA1lkrckBuQOREnBwyEgI10DxAIDhu+ISIcA90IfWDsQDNoh2Wfc10bgOU+Sd9fr5fVIg2ny+IEpTvsMnCblqaRDp0arNW8lh7a9XH6qJf/9P3bzGl+vJwO456Skg37UcYuGPEkKGvV+t2bk0cwhIPVdXnz5iEjns+3Vm0Y0ul0SLlb15pSGsaxipzn+nn1JuPZYKXEiAyUBYnJqpOrcBz33a1xCSwKLt0KGqs6iK7zQfqhk+fZ+9mIYvV8VZ6DZo9lWRYDJ0pBHqBM7uCGFSAJi2QopeMsEK15qIJ5IsYIq43CDbwRrgQzQePcUo5M4o5gVJu7Mkdyszr3HAKMJrXOGo1JABiZ0QhASCR4QKIIbFZYclhV9cNx3J32tbQIf/X24ceff0ncDfv9XOrLdV6nJQuztlpLB3jopc6wqmZJFuSEhuhggoimUWYKD8Ms0RP4Mi3XOAxpt+sTxnK5TdOUWN48vNrvD51Qq+2427kvL+dnDwWhCvXL0+P/++/h7u4ui6xlnq63y/N11x/+0x/+Zjfufv35l1rq+/ffvn39Xs1XrWGQJGESzNQcMPzN/elW56L17niXRG7T7XA85JwvLy9q+nK+EAGGQ/j56ams66+//MQUp8Me3MeuOx6OVdtxvyutHSjs9StwP1+u4PHTjz+eH5894nDYv3v7npm0VULcHwZw3Ja6fZcJkBBrLaXUcewB4OnpibMsy0oEOcscsda5llK1EpMHB8TL7Xo4HPpOXufkbrdlWpfVzVOXgYiZam1rq6nP01KeL7fh7qgAFWMti6r3Q/fw7Ztq+ssvHx5fzj8/fS51qWK/Pn75/PL8m9//wEu3lPXXX7Z57ilPT7dpaq0J8/zTFB455VULmBPyuBsQQJsJ8GEYm5mpPbw6EcUlAIe9rGUpda1r01YfHl4NuxsnSZKI43K93a7XeVnHtdS1qtU+9W1tx9PhzdvXHz99goA+961pi7rf7TwgMJAcEFpTFP5KiwbAAGK8f3Mqi76cr/vT+PL08s//+i//8uO/vXpz99s//PD+m7dlXYdDf3o4Mcrz8ugBktPzl+fTaZ8g1rXcpin3omaUyNzq2qQTRzQIylJLA8ScEoRfL7dxN+JXkB4GQsrSj+OwG3KX9cWaKgmbqaoig7k3tXDYH/pxf2zm01xOD2PquqWsUVruh+Nhf3+4r0vbDWOfc3j0qQsKJ2RioGhFa6kitMwLAozDjikJyVqWuhZmbq2lviPZgtBRWpnnmVNyCGLuMgkLJypzbbUOfR/e5nnucldqyVkyd64a4c3abZ5COkYupZ7PU/fCh8OuG5JqjYDrNL2cJw9gzsfTw+F0T0jz7Xa+lWkulPqodkWgPrdAM/PMKzqARqtWsaytNpXEu57qOul6O3TEaHWZGDGTYCci0lwlpZmuYNB3IwCrtf3hcDicmFN2RSIkXpcFAvsh49ZFH7Ebh27Yr7RbJkfuERJFIas9tqQay1Knqcuchy6A1nlp5ytEq4J6u0BdcwLisKa6KkSQICIl7gLJ6lYmz4EIEE0VI6qWACMCdxXC/X40YF9mm69B6GYJLO/GyBnCwmwudZ6nAEjDmFNSh7WWdVn2+4HyGODmZmEOxomut+u6riJp2OWnp2dCPBx2SECEFl61AQQLI8GGOVGzwBCmzZYE4t3QAUSttVVN7LvDbrulzcscECn1koTICWHYjd3Qr+vsUZcKBlxLLbVwJhny2gpE5MyAqsuVohGnVgtAHE4nSqlayV0urbTrSxQFVyvTTmLskyqZOkOAO0W0WijsMPSeO3fvuqylXG7XspaUEhKlLJL24Z2HFW9MLCQUZGC6TpyP0WrfcRoPJJ2CvUxWxsxDL1A58au3p+P94U//9mc8RxAE4en+rivgtdSpLosNfd8fOvI6X9bh2GdEK2V/2KPrcNff3+8HTvL+FdY2leJqt8t0vNdxPBGV63V+en66lct4ODL2HsDDeCs+gd+cb0BXhEmkICvLpqYAkm+VsbCR0jcE5QZyRwcP3OABgAARHqHhRbWsM5i5q8uQX6q/NIi05z5HaVfVeWmm5oGGYKUkSanjEbq9Iy0lmQ6AHbAG2VxJJAcAcbgZYEqUBRDxcHdcp2lMguIL6pu7wQlervH8fJknPJz2nHM37k7HU8r9c1Vt/jLNT7d5Rl7UjmPuCQhh1yVCXtfVTXe7PZCQi7a0gbwh4UsxDzYFIkAIvJSyTs/X+cV5CV6RKrASbx1IEKREkAgQFNzBgxiBEQDDvRkAYiA5dUPvwBjUgCoBOod1wPtuNwYra9mRMBjqkhN3xYkcvYBrYkMh1dAwZN6gfG7e95k8WqtNG1IiphYoHbUkjdm7KGsBovGwk25E7opD8XBENwWt2DQZ3/WDAz8WL7oyCaYMzIFBHmBOYaIlA0oEQWlzu2DNsE9CXT8s10XVTqfju3dv0WG5pjrfyhrT7byWxcEAQzpZ2vLzx1+eLy+hRo4Pp1fv377/q7/8T30/vpyvH3/5aAj/7f/8P69FPzx/mepqxcdx/+XpPLVyfzoQ488fP85lOT2ciBmQ+nHscjocD32ff/3ll+vtKoydMBE8Pz3erre+7xChlZqFzb2ui7oxUwquxcecf/vDd98jXKfl0+fPH3756XpbXr1+SJwkUVsrESPA3el4ONzpvE7Xy/3x7u7u9POff7JSwLWpRhihHI77aZ5uk7l7NLu7v0spNbduHNV8WVa9XcbdyEIRoq0VV3MXGQDx8Xx5fnnSiHa93KYpAK7/+m8exiIe3poSk4VN8/T08lJbjYDSKhIQIgJ9vDxFgLtN8zLdJsAoWs2DiBEpANSMxW63S2I+He7+9n/8L9en67osOTEzmfnx7vj73/32pz//FOH90EkgzvOMgKW16zRNdQVAJqbE67pcri/Xl5cyL9999+1+fyAH6YRZnh+fwX2/GxgZPIau77IgcWl1s5VFaJhTYsKQxCnlZS1d19XSAKM2/fnnX//53/6VAH//+z/8xV/8ZT/2Ock0rV++PPVD9/H58+V2UTVg6vo+AkpTDW+3dS3a9ZmTdGNfzVQ9910UHCgxMzNZcyYCAGGRTO7RtNVal2kSRK25rqu16gjWDAMwopRiWMdxlJT7fiC1Ft6aVZ23+qHL9fbw8Grox07k4XR/3O9+/flX08hDqm29vLy4BTpISoToFmY6x3XIY5/zsi61VhbeklCpS0zC4gqGTO7WtIJFrRAaucvE0A9dbbqWQkzD2COiu+eUplLnZTHXZiE5iaAwLtMyzwYML7Mt81zXou5a4u70+tvvvx+HvQifz496pRrSiutUxjucq0Ed0riL4LUEgU22WFmYpDadLnNmip6SrXG94E52HXMSr22el5xT7ntomHP6mmLSyF0OgP1+P+727rYUCw8iEOHNpk0StRaDlHedK5IngmDKGM4RUeahh6TrMj2352fHyPsh7TOXApdHCi9gbZk64ZAUxuHetCFQ4sScSCghDwNHuFWHAIBwB3Nr6gGeEydKaUiSsgZVRdRi6xzWMmNTbaV0IiK8zOs0TbjVyxwymavpNE1E3nUJkcxVTd08ICICEXKf+r5DAjPdDmqSk5pWrQjAkgEEwgCIk7jTlolHRGbJKQGEmTa1iCBEiCDGvuuASDb5vFXCOg59yinc1RpStKbmITlFsa7L+fVDfKWue6sLC4C3hNAc6rpK4N3d0Ti3qxJXMV7nWdepyta5dyvuiYk4wLWuKwRgzoTQaptKCYh1npLkfsxmGoH90LlzWdeeOCVBxFC31pCR2bPwgshJgpM7zapP03oWOkTsj/u1ltdv351frpwQHOZ5fnj1qumynB9T8LAfSbpaKzZls3q97XZDSnJ7fhl2WWT89OFTl/P337x5/vXzsNu9euNLKaYRaMt8A2jbsavU1c2bE/Z7M6nBq/lMXhAKYiU2xCBAcwAgoojAgPBAAAwE+jrwOKGCBwV5MKFpK9NMvhQiCTJX1Sg3DKyOFMAIyH2XFGtrVqs3La2EESQ+dt3dvjsEpT5OO2nTAv0uD11bC4L2Qz81fTlPkbk77BuFBpyfLx3H/jB0iR7nq62lO+yPx4yEFPr4+EjcOUsTuTX/vNjnYmejWWQBCuIgcvMesGeOZrVVJ13niWQvyENCRG7NHJPkzgGmWn1STbHYMl2vhnHztBhWYaAMIIDQXB1QwQGQPBA9uUdAz7KW4mTq5gicMxIZEkvKgVWjA9CAAFZnL+Ac2HRI0CWxGmQWTaFW8Bahm/ptFtUA2YWDu617it2sFQXgxALhKfWEUWddYJHMoa5Fj8e7NBz2xztNeWoOQB6wrqswM0XUBqpkjrXxllJVFGavLZEj+I6hg1anqZSJ97lWv97osN9b8xZwfLgf+3y7Xsttfn58vFyeci9bjfZlmn7+9dPz5YaS8tBX01bqvt999933/5f/6X8+3d0/f3m6u7ubJU3zLCRVp3may1qzdJfL8/P5Ke/eU+Ln5y9I8frtPRMvczmdjteXSytt6IeHN69I8PHzp/l2+/j5CxO+efsGEx0Pp7uHh24cLtNFa7uWqu5bHXkplZMs03KZbyD05vVDmaaX87Wu688//zkxDcN4Oh1zkn7owGOell6o77NbfTk/5ZRb0/PLRcOeXs67026Z1+k6H0+H16/uA/3jl89rbcqQhu7z85d1WU8Ppzev3wzjsBtOS9QvHz/frJS1fPj46edffg0MJG5uiLCUZZ6m3GUSMgvbnI4RFg4syPC1uTyRFl1bQ4imjRARgok7Tv2hb62VdR26sQKUZe277rtvvvn9b37/n//2f7idL+s0r+tsTQHw/v70u/ffH9NQtUoWQYLdfmxNScjCEXkLzRNjU4OI+zf3CKRoxZUdkcncyupClFOfu0yIKbGZR3irrZmmbiNep9yJq4GHtrbe5vPTM4ncPRw/P3758OlnTPHHv/zjX//NX1voP//jP/V93g276/Wm2lQVgXLXH08nSny9XJbagMSstFINQcACyTw4p9Slcbd3dVV1NfM1CXuYGQonJnJiVatrnXyuXVtLKbWpW6uVmXKfwaOVui71+fkC1ElO3dib2rKububu67JcLpdWak5sigQ09AOgQUhYrHMlQiautbaKZh4eEQ4HcrXEYm7gkbIw4taTraYRkZKU0ry1po0Aaym99iJUS7tcrzn37755uxt38zRfbteUpFk1rYCRRWpZp9vNTfuuA0II9MDTq/tte78bjsfh7uHNG3NvoOfz1Qh3968yU10aGCTpnDuRsTmKcNpngIXaKoTJlPOAtTC0qNSP+/0xJfCe8/XpPM1TKXUX6BBCTMQQmDrOXU/CQ98T8zKXVhpiMJEQATMLaWu1NhDy6tAFGpBDZiFSiZBQaS3p4m0hq9ZW4gUhxbrIeinzQhhqLUSEdpQTEiITGpp6IyUXIOy6rpl6KCggBISHgTUPjI0DlvssIubBaILudWmlhLW2FgDrdmPqUu663A3N6rIuAV5rud1e1jKzeO6TiESENwsCRMhdinARIsKuT1oh3EWYmKyotuYeIgZRTR0QmRk8amsYwMw9d2bu7hEowhEw3VaW2o/94e6uVFUwrc2bNS8Lzyln043E7oScRIAEAlCbZKm1OThYwwg37ZOQJFJY5pmbvd4dCHhgl4RDz426FQtarcuyLhO409BFwDrflmUGR1NPWTxc1RDhcDgkSeY6XW+M3HWSJPPI4I4YS2laDSKYETfkkJnW6l0OoUBqEc2Bunz36r6tS6nt8HAqZUXm/X7//PnZSklmWPw4yO5ux/n+Ok+Xizerhy6Fw+PLDXdjAFeNaZqm69rndBg6JTmdhiHJXJa2FEEm6dLYc8rLAk2dJBdKj5fyXH0OrkAGEIEYiA4AiAAQBgEQRIERTrA1ggJsqhiFeRADI3CE1bKs800B+1TquixVHYf9HUpXSwBL7jJCDJn7fW7FlyUiirQ4ZjoKD+DHw/hwHPU2vUwXaLUXliTSD7NfWUR2YwNR8tW01frtw16bcdMsvZrjWtMw7HejJKpWp1Id+FJ4wvRr88/NX6hbiNbqKUJLQ/JRJNV2uZ0TYT90i+O0TtyTKCTYinFirW3SSgiNsKmdrwub5D6vpquEMRMie4QDIFu4AbkbQ0RVjiaIzmRhaG5ERCRDNocakTFEpHdFiE6o3xTiFdcoYWvKlrRxDSje5gLhXWJkqK2VFkCibmgBbilHZtkcWcwYiNZMtQ0Dk7mWtTTV/xD7DuPx/pvvD3evr6sh1twnj2UK3+deIK2Xa5mqIB+DWnOq6OoM3uUEVlJnVKqEcgJzXqaVASnWuiqCEzERXS+3m7V91w+7rpbOw1D49jL9648//enjh+vaDLsWAhjA3u/G//J/+ru//h/++PT49MMffnM9X7u+k5R+/Pd/k7632k7j/uOHz/M87cfx/nh0D0Q83O3HcdfnPgKaai3VzKZpGvtOa805L4LjOFyn27/86d9///s/9Pvd+Xp7uVy7Pt+9eZ2Ep2mZ59nD98dDN/T/29//b4+fv9y/uUfmJOnV/V2/69dl+nR9QafT3ek///E/J5HjuNv1eZ2mj58+MMD+uBuGoaqupX5++vzjz7+Mh/H12zevv3+z3+2Wef3w8cNclqL18z/+g3N8enystfV9fzqdmMjValvXuQTEUup1nS+XCYiQETAI0N3NfV0Xd2OkLImEKAKBc+4Ox9NuvwuPDx9+AYF+yEykhTPnb99/8/7dW5FMhMwbBwifn58+/Pxx3A3/41/97dvX726fn+72+/H+Ts2/fPoyz/PD4ZSDBaCTfoO0SEoiVc08AB05sC21tLX0Y94fdtpsXcrz03kcx+Nuh0SAgEit1IYAgK4WETnzsmhr1SLQDIlSn7uut+ruvizLUqbPnz4Nu7G0+o//9A9/+vc//fDb3/zmu+8P+/HLr59++vEnEfnND98N4zDdViRmpo6H3A+trqWpuqWcutxXdYPQ6oE+7kaRrGopJ8zQqpa5dD2EGQK5R5iTUNqA0Ei8BbEA3VRbi8DEzITqgUIWviwrXV/G/R6Ep3kprXZjl1Peikyv11smQsRa6243LvNc5tU9Doc9EbWi8zRZBCK4acpS1lWbSaKUO4gAgkBYamlNgzB1GbBTNzdjwNylrkuqepum2/X6+PR8PJ6+/913VduXL5+0NjdLiVkkSQKgdruiKwW9enh1uDvebrcgePPuIXfJHcZuhybWDBnDTDggTJcr0JhzNvPdw7FyD3nHIXnoZBSg3q1AWPbo+iPVQmWFdDv1uO/Q69wRarXbtJZaYZqAQydDhETYdz1TivB1XUSShxOBWZi1rstdl1Hgy6dJm3W5n5YlD4paoap0LGiZrEtA1lBLBksZur6LbNWWiMoJHuuCWUKrhVlLLoRAzAJE4V6KAmo3ZqLkNYgIc2hzAFT/eghyIwfBSARioYIxpLTW2paZEXKSnAZhLkWZ6XA6XK6X2vQ2NdU2z0vT6p7cFTh5MSSECABIJNAhAqhql3KiJEkiwsy1aWuKSEVbW2c3SLnrSSKoNQ3XJEmYwC0AAAIRW6ulVETYAAprKeZGJDkJE2+TSKhpa+4mItwRACIgM4c7ASAg51QjGAiBGCgTr16stbqukrAXDC3YsMMAdjOt3hJTHnIWnm+T1gYG5t5KRUBJnAcBQGaKgFps+3WEzMSISBRuzZpF+LDPRaOtRZrmREjsmZgAUUJibrYQDPu034s7HjP9+ufp+enLw6uTFX388uV0dxyPu1JrlHm3y7LrM/jt5lzDMFStrlqLIeWlrp8fnx/uT6W0hHi/3wdQndcuMRPMa0PsA7h6u6xaYb2Bf7itl+Aq4swYQYEIFIGAuC0MYVsBIW4Vb5v1ByDQgwOBkN05QoI491gXL7roupR5XmYHBhbp3Q3a6mRdl2jshhEYk1TP1jQhvO7w1TFlpB6xC0pdd748kcf+4cBMTpi6fLcbaL//cJ0L8YLhnK9rANrrvj++6kubi5bysjpCfn0/Hu/X5/lazBpcCf682FMJ61JwQrRY1NUAwlq1snhZh8NIiSzgulSOSq4ZEzGrtbU6hht613eqWEvrOCmkSqgMJohBViPMI5M7ARIEADogoqQABJLuuINlIXckUvVmAQQWQRFhRtBSakmDkCT3oUXrTOpeZ2mtY8xdTiQ5hbq2EsqOzACC7uGACEKIvmUxwT0ggIJAgYUcaJnmLjMx6mrS73JK0/X6dCkafhjHWP2qKziqW60FVE/7FMCB4uhBCqZduEENqGu5haCGGRhGPJ0vFwRGur877veDabCklLnP3WE37obh+fpyvU2fX6Yv57V6f7j/rhszhNUyP3749fHpfLleni/nH3/6cTqfE6Zv330THtfzuR/HXcrams5zCtylLhnotEjA/HLbdRlBzufn6/UGgPM8C1GXxMxqKcf9ke/u/Ndff/yHXzClp/NL3w9vXr9eLtfa9Iff/ebU9bdlQeKU8u02Nfcu94KCQcf9fux77vj89Pzl8xrBf3j90I35159++bd5ev/+zfOXx1ZLIj4ej44wHnch+LRczrfz03Se63q/zl1OT0/Pnz5+8vAaer5NpdXqDhhNjX7e5FIAAHdnYiI2AEqCwq5qqgbRJRn6Xqu60W4Y37552/c9ASPz/f39sNub++Pjp2WelmmmiLev37w5vcqc/vaPf313uocAZuqH/na5bZrV53efl7W8ff0mE71cXpLr3eHbb96/v9+fiMLcBCATUQAFSGIGd9g0A4uihQj7fiCIxFLX8nK+GNgwjETMkpgzEtVayzwhhKq6u3kgJoAQlj4n3/qSzU0tILq+a9bGw7iu61rXf/yHf/z8/Hnsu2/fvU3My20igPffvqtLma5z1/WH0yEQ52m+XK8ekbNI6sR8eywlCTDUqoiAgDlnSbDOKzN5hHQJgepSUXgrngUPM3NVQCDYRk8kpJRyRySJwl2rEmHqMpMI51rrstaiFQBFEglLEmu6zOvzPOWU9vt9SmlBXOcy7kbJCRwAuHdXNSTQRsLiEc20mqeUhdnNW62tqUd0Q7fV3oI7IeSxyzkTYVmLu8J+N0030zbdrqWU6+X88HBv1tZ1OhwPiVmt1bUk4bvTsetGyZn2AgmIkwM1a89PLwxi5rnrc5/7XuZ1acuESbp+Nxx3tOvVUkM0wtW9lQLsmxE7iFKW7aGQnClUveRuH63mfhz2IyzAQoGmTTE8dR1gmLWtmr7vh67LXU6tNTcry5Jy1rVNl2vOPSMQGtgK7ToA2mrdyGMK1sgeSUBRA7QTMtOAJkJr4sN+VIhwJ0Izt+ayDbNBDqC1qpujSzUiIEZVK9pUFTwAAAxaUzNHIkR2RwBKKZk5ITDTFtMqc621MTNnzqlTD4AYhh4ALtetkI8RSEQYUWtTNUBk/sr8HLoxwFttdS4AYLUxQO46D9Robk2dIjpmYqYgJmYACAgWjghtBgFN1czMDUAcWjiMwy7nzEweBmaJJBiaVa/RogGTqiHihiEFQEQIYwDUAq22CCUnRNJ5zXvuEGr1Ui4BEWZuBla7RCLhWt2asKQhmTsQAgICEhAxmjsi5i45DjklEdRWaq0U5O5uhhyhRsg5J0ESSR5YWw3iangFmxjedCOghRWt2sp62PVW63Kdc5eGruskd1lulyuGruLdMBgq9Z1FTNcZPZbrZBZIyCzv3n87T9NLrQ93h7nCvMzuYNWBOI8pSJ5f1uI0Bb0sbUZeKJWQwA6C2R0jAtEpHME33zN+nUO3XhIkwIAwxQgmTJRQjawlp54GTJXaZGXRRRGIGWudgQORCZ0QesoPfXp9OHVMVhZdhKC9ut91CW8vNw/AYb9MS1n0cHeoTLBR15EisDS9LXYrUUgMUa9ahI7H/rgfc8l5Pr98/qJuejwQ01Tow61epT25fY50E5Gu92YcviMKw3CrVlHX3SDDIHOrVRsGMJhhpJwQLar2EUxsIOgYlLXnUhpaNGGjMEYwIIzgcDQgxM3149SlnLOjhTXOuQv3UCDAVitAoCMYqGtV1TBIkymaN4oB1bCu3hrq0jHupRtzJ4KBdrneLIhysiBDIwnGQEKAMG9bvhgARSiIAx0QWQQrA+LtOpWirPb84ZcSaXHpj3cQACzqfK11abWxn+6OWRJ4dKnveplvV3LyKEtblzaTltu1AETu0lbM0yyCcJ2Krq1nOhw7SFTcmtUWMdeoIXl//+53+eSR0jAeRtf6y8//+vJ8W+fLP/7LP755eLUu08vT093+7uH4UNa6xFKnlUTKdUoWEOC35epful1Cay/Lo02ze/z406+c5P7hwYqWVl8f77/97tunzxkRHP3h7dvxp1//4R/+OQJfv3r1X/5rbqUsP/786fH5uNtPtxtgCMvT89PtfN3v9onS6XA8HnYfP3yYrhN5vH3zBkgu1+vT49N0vq3T7ad//9Myz//lv/wxIj59eSR6evf9t8Xb48vTtc6X6Xaeb/LrrxG2rnNKmZmv8yR9h0SJpWll4m1Hn0TIoct5GPrW1MKdqJRWWgPg3X58eLjfDTsE6Lthv9u9un+13++TJHPnlD5++vx0uVw/vxzz/pv7t+tt+v13v319f//64dXbV6/n23y5vOx3+2VtdS4Pd3e73JfLkiD1nI/73akfyB3dvdbE8fbdu59//vmnH3/q+tz1CQmEttJpB1OvVauaSDrsDrAf27o2rcycOCVJENG0rbCE+bosHJ4lRQQQhtuWDR7HfhjG1TUAgGgpy/n8crw7OoVHzOtyWy4//fTn0/3pv/7df3337l00X6Y553R/d6djK01LU+TU94MPcHm5PJ+fx3Hsc05dN8+zEuYuIQEghltTo1L7viemZVkjIkkKRAsIM0GC+OrIMdXwsObhgYRMyMDIBBBuwcQB7gFMmLtcWq2t9UPXDYNbWFFIBB6mbV3WuqzeLPVdbVXd5mXJZky8AWOQNMABvNWGGOZaaimt9bkH2twyxrRVH3jTFhYs1OUUAXWtAN51ab/fDeNYaiWioR/ef/dNTmLqsAAhp5xQPedunteUJTxqaZvDuKzKgqpNV2eOLneIX/lrHZOJyNj3h313GheiAG9WDVy1CXIWSTlzGCMjonpT9446cWJGisrgziz9MDCKgGoZMTAii0hitfDVtakm7bFLKbvbcpvmee66zsNKWfqht6q5y0KmbeqAa12SdAmYWk0YBAboQF5UXQskCAchHHfdWkwGCg/eRJ9tVovQpk2bh2sLCCdCdNyIlKUUChAmiNDWABEBmRgJAcOaC0qXMmGYadUKWw+HoymS0MA9MREyEm0LPBIMD0bc4lmE4QGJElAEQTggCRhqq26+Desi4gZCScncvLSaWLJkgEhJEjMzIpO7h4F/JZKBqrZaRMjdWl0Tk1uUUgAw5zEAvam7QwgyezgRIRMRhoNrJE7arLSmqkiU+0xEaIrWWmvaqpqa+TgOGE5gARYK7sYYkjsirrWVVkzN3RshRHh413UsnES21GEti6kjiEeoNTQHb3ncsySKQIjW1tmpH3dDl5r61Yx2h9Tpcpkff/owTdd337x//90303XJSe5OJ3fX1k6v9mHWtEQJAtR1NRIgTMNwneYm2o9j7vrd3X3uBmv14e1Dm+anx/PQ5a7nWhtA0maLguaxZZ8Vbk4rSTX6amX2DZqB4Qj8VQMLCNiC78Gb644ACMjBIyAMeLuymIdqJmHOaymEPCSWLs2l1nmm1EULkDQehy4lYRy6DhiazmOfT7vkTcnNNWZdpmkednvO+fP5Qoy7YQj3WuG66HlqV4UYR2OovmD1x7kQg1itZSVikb5ZbipX7B9dnxs8N39JYkK1+TYuGFNgUo/S4OHucN8TIFy/vJgWwhS2urKbCw66WgSlnkV4UW/UjNC3lBFjIG06LWEQo/H2HjVETAQJgz0E0d1aMyYMJ8lJUCIiwgHA3AM1ANAm8AAvAQUtWBu4clQm4eDEmYmX2pZSmod0HQS5VyfYjg1mVsuiHgAswkCC4AjqwI4hnQB6U3UwcnXXrsthFK1VxMSQRKqu6zJ3w3C467BBua7MeNfnE4+387ODT9OFMWxd5+vtdLpLnAhwPIyZ5fzlc20WpsW0tGXYCzSbXq6INKtzP9y9u7PbfEopDwdkarqeNA6fPl0/6//+T/9w2o3/y//1f/kX5not0+1y2h1Bq1ew1u53u7vd7nabptvsdUVGAmtWz2Wuqmh+vNsn5CBelvrzj3++uztMt9vL5eLgw+Hw6u3rf//px2leXqbr0upvfvP9/fFO0a7TbTeOt+vl+fHZzLrcd7k/nY5MVKvudrt+HJjxz7/8+vJyef32NSLcvTmuI//53/7MQk/ns6odT6fdfn+5TP/2pz/965/+rWglEs4JIlzhdLz/5ps3RCkAd6fDtCyP5+ePHz8t65qY+9T95vvvvnnz7v279yL8y88f1lYCMRyW681M37x59fr1q0TS9/1+v1umtTYdx8HcbtdpmW5PHz4Hwd/+9d+o6fG0r0sRYV30sNt3kgvOda6T3UTS8Xi82+9fbvHm1atSSpY8Drs0Qiacp/mXH//UdX2EL9OktZbSfvj+rxxBAJkTIDFQEGuPVGsFDyJiERTcBxKCJKYALWWaF0SozZiAEvcJmUittarE1KeUclKFqgoAzfVyu1XXYew/fPr04dMvl9vFwU/Hu8O411Jd7WW67cZ9lrRpx1o1cgRYhCNi03abZncQIWTazBabtrV1RqbcWWxFCqS1RABiWHhd2jYcDH3HzBEOBMxbW3yAh3kNhc3/SASIXLX141DdQBjVwRmBGFySvFwuZVlbbRjBSaq1UBrGkUSm2xyohMa4DZPRamutABJ4IImkyF3CwLUUTphzDvBSS1NF3OhEAzGWda1aI0AyE6fDoeut1VqQaBiGLd2Wu8zEJCkL7gyY+1K11ZZT33U5GJ2jWUPkoU+J+3EYIHypS60rJSIBYkiCwpgZxbFPMlcEoOaICp1wStyn5B6Aw1oArGQWoNSqteYAjClnQbDmtiBgZgYz9WgWpgoI2rS2JiRqcZtm09pqRYbaamtr1Xa37yiWcl1Yhp4zTqtWGTiiLd6qEDbEdWkAgRbIiMyggYTjMKBDa22DEAWgeVOrAEYQhIwRphoQrRbVFmZbw2iAA5C2BhTJmIIgoq5FEifhCDDzCBXhLuO2twuI1GUIKLV5eB56BCAS+A+6lXsgsyAKk0OomboKMhESc04ZEN2t1kKU+l0PlS2ciICRSAgjJyGkLVcE7iIEQlHCyYSQyAGCiSB8K5w3tXAwnYjFtnnONrKCO0IYSRD/R7yemZCSpCAJD0cKSbjMt2me1bTVyiIJgRizkFCupTCBAZsqCRERBJpagAkzQKylqHvf9ebW1qrWwpUlpyQEwaHb0QIAALSVmesKiZGTIcyqCNGH/cuHz2WAg8RhfxAi4X66LUio7u6akqDg7nh0Q0KWlJ6/PJobpdSPR22KJLDbz0jX5rGuh55P+zFnBEVKGIz9YUjePz3PkHL3cPx8aXPuF4BFsYZYfJW3ABFx8/wEbnj+AIQADNxWhkHbNsgQDeFrNV04GORu3OfUufjigWvqB+nEEGoFdeQYgJF4WCqc59oPAa2tt0lvy+UaVaHPlLo9ZaiTpX43HPcVdA1gj2i16/JtKlfzZqyUlHbBKB2p18Xx+Tpjm0nxcHp1eHj7aYUPk/+8xE+rTykW4LU5BogAMQCSIVsOc6Ds/T53CVubiaGH5E61tQArSxEKiJw5U+on1+ahaBYk4IDouKm9SAjbuS1cMUK4E3A0zwL7njt0dbC1eWumSikn7tysaPXw5hXQmQzAMkbRJXENNcGtrqZSE0MzAQ2Yb0tbKgCHU6TOLdQC8oa6arWujgbYaUVLOUEkMgCophHKHtxx4i51w3DogNgmXZeLNfGgsUOJesp8vNt1mZblRrFaWa1gZszZX16uVhZkbNOcmMZdJ5KEuEtJtU23aXF//frIyJfrfGtYlrLvRg9a0Mf+HruRY6E8YBquy/T45fnT57lFR2l/nR7//h//97/4i7847vdR4Tq91GVeprXVerq7uzuNELTLaerzWhdrpetzZr7NM6rf7w8ccHs+uzk2f7k+z+drKeu0zONpN10nNevH4brOVctPn3/NY//23dvj3V0KOh52y/XqtQ1Dfzze574joW7I8zoHo1oxs5zl2+/e5y79/MuHT58+YpCbHfe7Dx8fzR1IAtnDL9dLpuE37x/2++Ph7pgkCxET9bk77nfHuyMyvrxcns7PPx9++vHHPwvxH37329/98Lvvv/v21cOrVuvv3//mcpsdgRCziKuJEEJAQNd1SDTBfL1cT+PB3F8ez9N0Ox1233zz3d/88Y+Xy7W2NQ/p+nK9na8AVGorrd2maZpu7969RYhffv0wLdPrN29Y+NPHxzp/HjIJhraWRS6PL2M3EhBL/v67753y88uLlNbQsOu7scutKgL2KZubmdZWmracGWHj0yC4t9pYiJm0NktOxB4QFoTYdampYa0W1lpt7kVV+rys5XK7/su//+vj85f9uHv/zbe7/e7jh4/hRoSHw2HYjX3Kt9vcWiVhyWmZt7iTMXPX5ZQSC7FAeKh5a207sklKkuR4OpnG4+OX51LBHcIs/Ks7tUsoFOoBAA6cGRndHAjByVQdvDVDQkk8Lw2QUj904zDudpvqrFVrLXVZ3UyIWjNzF6KIGMYBADWr5OxutdTw2CQVgAwRzJzH3tWen8+32/Na6zAMwzBsbVDjsCMEJkwsqmZNwR0D0QIFws2LhnsiSZQJuLalliYCm3KSJHlPAWC6/VIEJhnT2nCd1/DghBSxlnWeboGOAa7NIQ/DIbSYQijnsWtEgGKIbqEaRtKQTJUZsEtQjDiYsOP9tMy0RTpadF0SgMCQiOlyeTo/m6NBRLhICoeu79wVw1VbLY0EESgA3NVadZx11kiNUk8uGEwd6Tpjq7u+w6S6tohwNQJAIELqMhESgGO4eYCHb1ERU3dNIokIImprGtaaupkQJqGIcPcAd7CADYIOBFi0OpA2RUIiTokcHAjBQFh246jht8ut1ZJTHodRW8PYYr4QtplFUJgBAZ0QAoFULTwYWSSFO0BEBIBRSJe6wCCibWbhbfbZ2sHCw0OYWYTZECXnnCR5BEQwEyEAYk5SmwaGgQFtFhX/alnxcG8oEhAEuF1UMCBi09mDOanWZVpLXc11nRc391qFeRg67gnciLDr0ro2ByfClBkRJAkxuRubuAdiEKGarqUQhuRMmRCQMIcz5wjEVlbkGlHAk5AAuiEp8krxov6OR8z94dX+MK63ebperq/e3wPi7bLMy3w67cFAmLXWGgYYx4cjiry0EModdtdq3MtcZns++y4f3twRsqo6+OnhbnfcTaZtisuiLzH/6Vx1gJKGGcMAgAC2uWdTu8L9678AGACxITO2YjqAze+LHoEEW5rGBJRRkUjBIFyIpQ+kUhvxkFKi3Kfck/Bq5nOzOH+dbMJyxPzh+dvvXr179+r2eFZo++MOO6aIcRxqqdhl6IZGoIE09FphNnUAX5allUEgEiZIx9P9s9mv1/rY8B9+/DKn3dlFOVcHAkpfL9PeHEW64mSSmLi2NtVqrWZC5OQGYWBmmzFZct/vjhWklIUgGAkCkdki3CMcCSkgAAwAwYE4EVKY6rp6it3xMORcIZUQgOhSCqeq4Raq7mgBAI4olFiIQtAhGlMIQ2sVwQApwEpdzLxUBZJwLGrB0QzdbItdkkcirO5E4IINnQnBw0p101pWa1UyUWLM5GhujQAF3YO81qK633fjvsspWlnAiqAKk4h72LxMT+dHyWmpJfXS58xJAMmQprXcrpd+Ny6X27zU/XHXi1RUQknjMYBRsqfu+VIrZne2NZ5v5ePT7DI8vPvtjeMW9ePLy//t//F//5vf/6dvX30jDJ/O1zDLkl9+fD7f7V/dvyYSEm/XtetGDEeGoc92K8t1hgk55XCniMxsTbPkdEqY6TrN67IOfT8Mgy8e4c3ry/Vltx/MkSdgocPxYGqtrXlIyJLHXob+fLuQ5On23I/j54+fPez55Xw+v2TJd3end+/fH4b90A0piTY93R/fvnr36dOX48P9eNiLMBG56svzOczfvn4AgFLKqd+Pb/K+69/evcKAv/7rvzodDmWp58+Poc45ffPmdVMrSzscRyZsy3p+Oo+HcT/uzbxiefvmzbDb1aoMlJC+/f6H0/0dmL159fB8PUdYonS6v3t49TBd5h//9FO4n47H0909uL9crwFxm+bL5Xp+PqPjH//6Dx0T7wlVc8rffPPuX/7538u85tyV2j58eBTz6LIgYSkrOroHbQckxr5LphUdIIKJhSUiJKdWG7IDhJq1Zl3fYz+0um4lD1++PAEj5bSU0kJba9My/fTLT18eH3Pu3r395u50yF1Gh9iu3iRhgINgJ61UDL/eZlevtQBAzkmEPRSNRNgjItzMiCnljACtlCSUmCAckbZrP6pHxOFwMHcmBgT3SIlTzuZmAWoWDhah6kCITGut3dhX09syGcKB90hg7sCkZrnPgqSqay3LbT0dj+6OCKe7IxPU0qjra2nTPN3dHyWJuVlr23vzNl0ev3zZgKHC1HVZmyJSrY2ZAICwAYBQDgMPc/UaCwRGBCFAhNZWvU7TZOpdzxFNRFqtyNiN6eXp4mEJ2DxaqUjIjGFutS2qyzK3siIFx+Z4yPV2Aews7zESSZepI+AGZAGlgQekakTRgxIZkzFDTjxwttpl7kzH2/lxvV26RABU1wUZUydRtrUIuCtEs+bLMreNlKJ1nfXu4f5wOr68XOd57bAjsIyJqTEYtkiSi67uJjxg32vVWlZzx4BQJwgWCvOIcFVzD2T38DBzQwCk8DD3UG3qBuEQpupuREiBXzsPVT0wRBIAIJGaG0SYM7EDNHUzDfdxv0PmaO5gX4NsEeoKCKbg4RAozIJCwIDgGNtSp6lvwXjdWhVJkCjQAiFLIuQtNEAU4YqIpmrmwJCSsAgBdjmr0mbhB0DaXtNEhBSuhNg8Ypv7agNCygmFUAgDtLkwO4A1C4AtXlFaExFKHGW744c39eaIeLtdrenpeAexHQYACEQoeFOEQhiYgsjdLMIhAgEYCRGIUIgQIrQQSUrsjhuQXZjMWl1u1hHlztWDxQXXgBnjqXGfUuYGtGotVst6XY+vTzJkCweA8/lc5rLM86u37/f7EyAUtVLbYtCC1mpE5kDqYJQU+Hxb5qn2hxP2Q8VhtnKJdDb8UvWsEE6tRduq3BGBwzB88z1HAALAtt0BAATAiA2HGAEOiAgkAfBVHUMiXr0RtOam7shCRI5SODmQDAN1A6fMBAh2u13P8zmaJsK3h1HGtNZpJThP0/V6yYC7Q8YkPjU0C/PucDTMa6bF6AbwqFdVZGQSnhp8vNmUeMh5jfHF6k+fXl6MvzRWkpp7kgyqiI4Y3jwAHNCbZ0rmvnG0fbm6zsTqAcJ5TAlJElM3dGaaydQA1UgDEsL2/nKDINgactC3xBwTI2Az7QGGzMceRgmGNteltZKSQHCt3mqrSwGIfpc3mxXLdrmDgOZqzIxA6iGSIfcoCYDdmxMh5zCZWwRGK57dFMDYBaOTjoKVkuSMlBjM5gbuKQKJZre2aqBEcmpurrVBM5SE49i3aW4reJZYSZcVavQ59UOCaLfr7TbfKFN1NaB86JF5KooYALpOlRwOx10ShrC5NQfMu/3bd8d2K6rhIddbXQ3mZovNa4PbPC9Bb999v+PXAOXL55+t+p9+/vlyvvzFd7+lP/4tOeyHobZ6mW/XZaoa9/d3danTunpA16eR+1IKhr9//4akW5f1drsYQkqphlPCw/390urnp0cG+P67704Pd4/np8enp8fnL4fDoR/7Yz98/vjxMAynh5OpXq/zdb4NvKd1aWaX2+3Ll8+PT1+ulxdm2u13r+9ef/vm2x9+88Mf//i3Q7cTJBFutT1++nw8HgFiN+yPd/umdptup/3+7u7uenc/T9PD/enL42ObW62Fc3p1fP0Xv/tLYhaWPqUh6zxN55eX3oH3WFbdD/2Q+/l2O395yimv11mXVkzV/d39Xanl5eXcDem4f//tt+8RidRvz88vz89fPj92uTu9unv6/PT0+KhNX71++O0Pv805zdPtdNyVUsrtBlre3B+71L19+xrVrNXrMn/7zbdlWtzaOPS//OnH4bS7P44iSYQxMcmQlrlM040RSUQSSeLcJQIkZNrYJQCIWxdSBcQIWMrqEKBam6JryokSNTcP68Z+en7+6aefX+aX2/X67v033377buyHUPCmr17fdbkj4IBY6ro8rk29tWotYqAkTCzgEAatNCJsALnPZmbqfTcQU8pi5rfr9OXzly735/PZAxN34VWS5CQGAMCIHOjEHERB6LHlxMnRPMAiEJEI+2FEIhKutTZVZh6GfrpMEIAIrSr3mUVYmI03Oux8nXZHGnfj8T5r89ZUEo27kQhrq2Waay3ztE7L9eXlxdz7nIQENxdCuG5GboAw3+3G1HUE0ZSsaXgAAWKAIjMPuS+lfj3rm1szdw9QCC9TLevMLPGilNkpCAmAMnaCGG7gJkjMQBQUAWup1xvKLiKRJFejHhGRAgHYHJtiIKZEzZXBRcggGuDajFPHCVgo99lXbq02Xa22gOiHnshr1QiRzCKsTbUpC0uSQCCW3X6fUk6SCAFMd30PiTmhu0HAkNlXbGamCoiSyZQiCVJEOAXiV0OBI25PFJnFFnIBhPAw3PrWt1u1A4CpaxgRSkpEDIAikiRtEEIiNIXa9GtmMEJVLSwl6ftehMM9cbJQRPDm4BAIsFnIiIjQN1kKAwCIiVncXdXjq0TLIsIs7tXA0BURIZDACcEDwjwAMDMRMicmJkKKAPq6tSISEiYWIkEAZLLmqu4BSB4M5oYaEMjBppY4N8TwcHNzSykRM7OY2jqv49ClTqoWABz3fdfl5+fz1mRsrUYYBJgHIINjhBGFuZuFA24vPyL0MBEZxzHlZF+tV5U7JhaRpBqBAOZALaygK6ljAwoEEnNa0D7d1g4dxWit6tYN/bLM+kV5kP3DidWm2+16naFhXaNmUIZbg0ulc7GWUgn0AsL5/rg7ng7AtJTrYtyl9FIwJbx4Ojd6LPa0RoGMKMUAtuUhAEAARmzDztY9A/DfP9z+HyK28hyICNTNVr4N98xcvAaCEtO4Y+8V0IybGLCEpEasJIwAHlNQaWar7jKfiCb1IWXpOhbeH3bl+XZ+frp782oc+nVu1+tSqxewa9Vb8PNal9JYRHKmlDHJ+bJOzZPBn/U8BZ5XvLSwNGI3BmIxMzcWCPeUZFsOhqlpW7VGBgIchsFblHYta1Hw4TRIHkqLqjqvOq/aMNdgThmdNCI8AAgBEQKQAyjQA5y+qoGBCJmBTNfzS23Xeb56BOYOjNpq2twghCkikLAT2eKxrq3VYh6SJJDMjYIQEXFjtrk6OAEiJsJm1iWSBq0WzSgMRCLEABwkKWU0rQaAIUQppwF301rUUYDdwT080D2IJaVMA7hZXRzRdTEiGPuhS1iWtc6FGN3VFJhSBKnJUhwpUkrV677rgZgT16pqStIllhbokkopBiEiKTCFcZ97AyJfbi/rsuyPsjsehv1p9ZnANeLnzx8B4PX9fZczqN3fvxp3u+4wNvRF61ymqmtuuR/T8dXh4Hg8nQJpnW7emrWWMrupOZRlyWOXkhx539xfP7yiROeX87LO//bv/zL0+d3f/BEs3r5+ddjtWq2r/vp8OT/dnqe1vFzOHz9+Wpf5dHd89fD6hx9+8zd/+VdvX712N+HUDwMYEmNKyUp7/erh8fPnWlo3dKf94enxuWMRosvTiyT5z3/82/l2fX483x2P3djPy9z3/WF/RKZWNSxevXoY+y6xiMiQe2HpuiQsBVFIui7v0q6s9brMp4fTPE///m9/ejo/vXv/9uHNQ221ru10dxLkMXWv7u9TlyNgnpZa9O7+4fXrN4Bwu12F6Iff/HA+n28v1x9++GHf7/oh5yRPHz+VujV7dtrs3dt3rx98ui39rpOUZBxyYvzqUzN3B6QIsyQsmMcOCIl5izFu63RIXdp48QBxu92en8+MmHLudgnBpO+ml0u4aok//fnHf/q3fyah1w9vvn3/zf3dXZhJz61oq9Z3DBGttdaq26ameavKBBCdmwMEIFpVYjTzuplmOEkScze1QI6guih4ESRiziKqX9valrUkYUjCLObemgVaUyVGRAZEJjJED28GqRMISJLCMafcpURI5h7hwuQRS6ksgsR91zGSNbuer+GYkhBr3w9hprXezAJiXZZ1mUpZ56kg4+nujply13U5I4EQeXPfDkPbgo2RiHLXMWtDjIDtLph7yV0OBzOFACb5ashYVvNCHOtS13UWFreWRpFOkBMzDZ10zK6BkT0Y0NF1aarWYLBSV0n7vJMVyRENI7ZDPW4n31CPCBNEIlnUfW6plj6irdV1JqR+Py6XVrRpq0Mvwcjmu65DxvAIdSKQlBEp5yyplHUlBCtVEEPVoHRdh+BgtdUmKSWkzOwE5gUiwq1LnDsupZo6bAdzBEbpUkQEETVQU0DkzdflDhhAQAgATE5OgG4GAIwkOSGgbJsWZjePcNVW1hUcwoKTbNH9LGk3DHnsUpdaa5eXa7hCbE8XEhExwdaAZ66maspMGXIilq4rgGYqJMycRITFLZqBWjgqAeEmMSBuBJ0AJGJmoW2hEoEB7rFRPTfwsHsQoZu30hA5J+aU3a2ZRUCAb8xH9YpIm5Pa1DYTkPSplLKpPUycRBAiZdn2SMQBbBpKRIzYSqvRiFk4cWZvoE23hIR04m7rsubcbf5TcG8WyIRMQRyAIuQRAZCYwiMFoIVpIFAwmXIBnEDPTfdJduPYgdEE2gqZ9TDo0gpqGvu3h/ssg3R9cXiay8eXpdB4aRTYrehuSqbvugG7fvZWkWverYbzl3mHg6b8cfGrQkldiBhwM8uSNwb3xjj8mnb/OvPQNgFtXXwY24cIAEHhsX0Zbq0DCgFEa0AD4CQEoAaKGAgkYuYOaKUyYpeokKj0kJghnm6F9/nY91qimoIGMq9ru10vXTegB3i8fH5ZMV9f6g25BaITe0o0mlCB1ZKjQWu+llowN8wxdAYA7giA4EhkiIqhHGghYR2blBrzBEHjTu7ysM4NIAfTZYlamzuV4lVEHYppJHHHwDACR1CgDY7MEI7REC0IEQmNAAUxgVNo1LK26l7RkRCsGriBu2TmTrbcVkqYEi/zHNYwnB3CHFA3Lc1Va6nkaC1KbY0wWgsMcugRCSJMhVw1GjAzhpMDogOogQMSmxsQEgkxdzkrcFAOkAiAgD7L2PfeLIJS5ojQpVLA0PU5JfC2vkzRWp2XOlXuBiAx6CIoj705AnEeCELXooyRupwkBbI7zovmlNM+9SxrtdbWV6cRUoqQ+2MeqMzXZ7Y6dPnV3d1LuVnA2CfV9i8ffvrz51+YeMjdb1sZhuFlur26fwUWJVQ1prXkPr19/XYchvPzl/k6tVozUQAwYt+nZamtasNAjVbr3ev74XQY9sMvP/16uZy/fPry9u3rNP7d/ni4Pr/88uuv8zJdbi+PT0+//PIRAPe7Q5L07rvf/t3f/d0P333b5/7ueNjvxuvt8vNPP11fnplS4s5a06bfvH8L5hjmtbZ5PQxDl1NUd1ULny+3X3/51Wp9uHuY6xLmu3E3dN2yTAkhd9lKW65TNO373dDnmG16udWv/SdERG/evF6WBTi6lOZaHp8/dt1wPB7CHJAY8fOHD/v9cb8bx91oAUCUc3r16qGUFR2W66xtzYfT3fH+cDg8j+f9bifIWYgJ97uRiY6HvbV4/frNu3e0rm0tKwuv0yIclJibaV2rqw9j724IwIk34z8ABYC5m5k2DYCUmYiY2N3WWm7TLSLG3bA6py7J0K9aP/3y+dOXzx+/fAKCb99/+/r1m+PpQIEeyIj7+9O6lOk6RYS7qW7+AxEUF2iqX89iAR4kIma+EckCwCOWuSAB5g4wcmYiJOT379630tSqO7aqHrA/7JmJiQgZkByLWlMzISGmTfbPQzbzVnX7UwU5j13XdVo0SXc6nq6XS0SwiJq5mqm2UrVqygkRp9stZyHOy7LcbtdlmXOXI7yWwsRMabcTJBq6/j+GtgYOIgIYsDkvEfshe3ytWIAIZtk0PtziagjLsqxtDXdmIgqttS6rxjoMOSfRnE090MOMIXU5MzMDZGZDcFUmAARvABCO0My2AafPnQM3AEMKxqCw+Aqk2fJUxGwANdSKpgamBm0WKLsxoXSYh1Q9lFAEwyiZ8Nf0QrB1TETYtOXcbRQAhACPlGQtFaK2dZHsal5qg77zVoSpS0kIIQITUWYIIMJaUKuHBW7BbESIcHeAEGYiDAozJSQg2KJZCOBuIKLqAUFMTBwIRGimZl9XLNrMtkW/asIQYbdoqqVVrGRmTVtrlYmZCL8CsAgJ3cHDvwpwuPX8eeIEgEjIwCkJMUEEAbKwh3kEM4EDIRIGEChsmtJ2NyEi2kL7iJFEvlbZA4SFY4CDqlk4b1+MTELE5LC9cBwYNtWMWUQYQLXpAiWlzeQSqpvbCYWZiLSZCJtBKSU8+qFvALd5vtxuktNhfxp3O2ZSBSJOORBJrTkAkW7tWBvYI3XMLAECiBCBgMLIQkFg4BYOEQ6hDhGWWG7Kzw1fcX/Y7YZ+YOn0djnu+1LWX379Ke26N++/Q+qnqcxVK6ZPs/86WQxk3VCcXQCMvMHFQFZb5zncIUgBPzzOvTEO46dFVTpMvRu0ABBxZGOICAKEcPra8LU5oQnw6wCEAbjtf4I2089XjAmEBxJDuISwqtVgwmBAE7KvQfotsE2q208Tk84iCMXQKmKkjlK/LDrPM2gdcupzd5uttpur7/rhqrG22S1WbZ66xF3ig3uv5rcCxYKRHVMFqCiQWAMCgTwQCQAACJmREczINYMP6Psc/dIYOMzWuV0u5zzk4/6uxXJda1nrqkSHI0pHxJYyBDeDhmCEjhgR/P93TnMECGBChhBycSdTb80jEIiAm1qAMbNkZpFANDUC7HuxumTGagERY99FeCk13BJja6plKc3VyACCKdDDKjRLSUKN0LOQVWuAgUzMgGBVAVyEWESbamwUDxYBQgnHbYjqszCylzlJahFaWkRY2PE49DmFtul2abV4aJmLGRAlwoGlQ5EKqVaPQJKEFmYa4TkzOhAjp6SO81K7PpdS1mkZOiFotZYA3g85Xu2n3KJMUNIf/vD7531XpmvOnESez8+Pn7+Y1Zfr9Ph//FN4O42HP/zut6/vHiD87evXHAQSc51vl/Pnj5+7lLuu3x937nWZ58DohryWdbqsuc+Hh5MTTLcp0LtdF0SllZ9/+fnv//7/s+vGp8+PL+dnU61lPRz279+8ff/u/X/7b//Tp09fvOkffvs7CHetZV3B9Ndffj0/nn/zm+/fvn375fPjl+enu/u7n378MSLevH6VcgKILvfYUMEA8OXl/PT5SV27Lp+vZ0BMKb2cn1/Oz2OXj8ejIGA4IWprRGBm67L8+c8/5dT1Y5eE+qHblH5k/PL05Z/+5V8+ffzyl3/xF998+y06dNJprU9fPrdac5/DQ1vbHXaIyIjo0HXd0OXnz4+hSuEIcH86ppx1reuy3t8f+4e7Zd7unqKtdXm3G3NOeZ6mw/4gjFRLU20AKB2bqbbYxuTaqmrbDAgbhpIZE0uYM3PXd0TUmgHE+Xq7TDefo+u69nh+On/505/+/fxyO53ufvOb375+9brvuyy5S8maIUKShD3WWnErY8phZq2pcMpdRtgWTFssAyCQmZIIAHuAaTgoM/U9IVIttayXd+/e7g/72+XapkooEYbM/TAiwPagM9Mw9E3FYgHCQAQGRg4ATsLMpuoRzLgfRw9rrSVBCC4pqbWUJNxbbW5u2tyj6zIJI6G5E3utyixd1+8PY4C7jYywTGUta9Wm1gIdHDw8LBAkJwaCUiwlgUAIXEtRa5nlq/rlTonDo5WGBMICsLUctHAQgW3WEc59N5Za1SuyE2NitOYWrT9mQG9lUVVihwCWLNiHZMwddTtPvYcYs3E4BQB4BKBbECIoAomAhQNmVKYehARglL2QreUWnoVdxhxgJJBY26K2GhISpnALV/i6f6Yu58BIWRhCI9TcrCVM4eratGCrFRGFOKdttaBuBgGC4EKhZGEQphra2n8klkkyE7OHt4gNyxfu/+FwJVPLOQdut4kwBwzc2omJyNQQQYjVvdYGgKoaEOsSL88v87zMy3y5XN0hCQNibLMXoQf6JrUBiggSggMCRsCGcCWWnDsMrK3U2gjDLYjIAb4maratKmzsre07BHCzPG/2aBRhCLAwMwOnIAyIcC9trQVTl1P+am4LCCbycEIQYWLeBvziZq2YmZohbP7faNrclYJFeHcYUaCVutTZyZD4Ml2+PD1timHXdQCAhCnLV2YSEUCwSJhjUMoiOQGBe2y2dA4iBiZgcKFgdNweLcJgCuYFoUbCoj9dikX3putkd/Kmz7e5E4hwdNzvD9fVfn16Oa8G492zp2vaY3cwScXAwSUzIH262nVdyloQAYWbxdWzXRos80xdYAcm1R0liVBtSkRf/c9BAAQQm9MHvsbmvibhtz3Qf8hl22FgW7OgQxBCOAZgkASxA35122wbDRFAJElh3poxdZAgkjVvhfDcwj5cjwnFY8jDsLtX0en8hby8PhwfDmPMpc6tMF9u9VbdJZl0Zmluda6i0AdQhAQhpuQIqgW++sTYIgIQHRhC3BPGQfAu0R3xjsddGINfn691LYfD6OqhBcGS9NB1yh1Egi5XpDWwMhoHAIJHRMRmtg8IDmIAcHRF1468JydVs1qamZbaKgl1Obm5u3u4ZBKJw66H8GZwf3e3TMvtfKGwlEQnL61KThk385LFxjgXEBEG7JCF2cLDwqttgUniLnUdRpSyELhAkiSFpJk5BiImlgA2B/NIiXZJXK20Bmgpsal5U0ITymBra225zQBeSm0OQSmwp+7gQKqm1voul2YOkIaeFHRpy7wIyf5013VDNZ/nZZ4nMGMycUdrgyBIaqX2qLzvcaSWoy2stZ7uX+92493pbm3l7/9f/9/aFkRf5tt0PT+W5fbP/7AfhiHnv7K/OIz71rpadLneolmf8u12M9e11bLWNPaJGc3WZfEC42m8TdMvnz88Xy9fHj9P8zzu9l8+P/6v/+v/8/v33z3c3+12++/fv4fmh8P+uD/uT8fffP/9q7tXnz5//PzpY6I09F2Z13Bdp2VIecjdr7/8us7L+3fvmEmXkvv87v07YtHSPLxqmefpcrki4fV6ra3uD7vT3el0d7q8XKbr7XQ89XnQYtf5IkyIdP9w33Xd89PL8+UcCON+TEnWebnd5nEYzTTAb9erm4677rvffFumRYSGLr969eCmP3/45aF71Y+7eV2Xda6LAkQn6TiOd4fDQMJCsbmxkMbUKbKlFJslIrzVene/K2vtuv7+/nS53fxyGw57WcqCAcgowmbRDALCIVrTVpuZCgsCggcz5yQpJff/bsXgYRxAoIZPt8lMn1+eP3788vTytC7r64dXP/z2t/v9nonIkZH2+51WNVUhUVcidHeRlFJqtS7rCgiEDLhpwoSEYLBR6gLJzJmJRVTB3dU8ZyGiAIagVnQ7f+ecKDFhUjMIb60hYRIZcpfMEMk2TKMZ4Hbz4eCoa7HWGJAJQxHCp+st55wSE2GDtrQ53BGw6weRLJJTJ+6+LGVZiohsWWU33yadqo6AwqJm2rTVmru8yYvaHCxtK4WIcAOAjU3dgiOlRMKmZrW4BRLmPidMRNyiqno4bEUjhMiUqANK3JQRve974S5Mkbi6DrnLfWeLmoUFoSTJB9zdw+5eDqdIfQQ5oCMZxOaxoe2u7NEMrFry6B0AUxJEyCn3Xee+XrVOiDkJuLXWCoRlEczYgMIt3HWDL2lT002228JKW0Sc2XPOiaWG8rbjbk2Yt5UJAFqztcywuX62W1V4uJlu/JsABErEzO4QHuHbIAEQQUTuwSz0FVVMERGEtbTUpdpaaw3CEVBEcs5IKKXhJhsRMnOp1cJNTSQhIAu5QYRrBEFszDwk2MxAAOAbsqG1jTu95bkwAlosZbHWPCJ1mZOEOxOxEAsnS+AR4ZxzMGttQsxMDIiMhBQOoAho29zkEQCgaggbVXyLkKIkYRYP2Ig1iMjMTAQBaylIZO5muq6LWYtwwFDdoBPYdz1ClNrcITF3fXc4HomYmX3rxjI3te0HIqFbEJBTIDCzMIt6MzO3r+sVJCIA10rZMRTRg9zFUYKIWnOUtDr8+LI09zJ2nQNqAkv3mcfX3wVhkUEH1MPyNF3X2SbpJpKwQAGlcAsBZsZL9euqahYCHKlV4/EwlaKK0o3upAYWkDbyE5pvEUv8Wva+ORqBwMHxv7uB8OuIuo0T8B9C2fbZiLCIZs4bqd+3iB9iOBIFEgSpOQGgI27tb5QMCIQmU631OpUlp2Ofb8V9DfdleZnuBt435VqzyH6faqSR29PTOjU1m5y0IVgwCjlgLRiIvGUOgR0MCRFRIkU4qIprBu1cD4lPGe8wDoPkZgPz/bvXVo9lnS/Xx2leaBilT4jSzJwEhCK4NlViC6f/eFAcwSKM3MkjMGEkbR34QbAHdNy8UeBbX1NOnJObqZWyrFQjJ+kSCUHX9UPOCYhUy7KEtsRhzcgBmYkpzBkxENzadpVAszAjCBS2qhAuyENOnLjVCqGElCiYGfMIFu4KVV09MSGCCHaJBBUlcs61NMRIHSuaMJmV2nAtq0YNgkWbMQdx5K4At6YenjvOGZBJjUGIKEWNthSgZiWT7TvpaOSmRa2RQc/UpZQyG3IDWBpcb00NEGi+6e7w+v7hBICB1HWHb3//1xGWM94uL+fHT9Pl5Xr+/OVytbo+n8+v7x/++J/+8O3wTtHuXt+1Zb3Nt8/nxx/+4rcP370tptfzrXhT0LW2H3/66WW6Pt3OP/75p1JrmJrHYX94//abv/3rv/n9b3+fCaPZfhy6JLfbZKVA1W/fvLG1XBx/+M0PtSw//fhnb/r23WtGmq7X6TanlOdlKmvNXRp2AxDujzsC/PWXX798/uIR92/uP374xElenXbTtBwOB0Ee+v713UPfdc+PT12XGKmVNs/L3cN9ifX8fG6tPdw/9MNQl8IsOeXLbbrdrrdlev/+/W9/9/vb7aZmv/7ya63l1auH337/w+Xl8vnDYz+M3x2O4F6mmjjdPRw2LB+M+/1+vF2ujerWgW2qSJgSL5Ouy6yt7ff78Dgc9l3fn59fNCyP/dqKaPOcJHcJkS1cEZqamglvRTiAEDl3QkxMSYSZm2oppbbaM3EWm73vexL6P/7hH3/59PO0LPvd8S++++7ucH86HepaGZHDe0kcCEjDuEtJ1mmBADMnDFNDptx3Zt5aiwgWFkZGQgYiMgvVFgDEQpwERF09oKmbwzgepqVUVWG2AEkySl7W9fLyklICZEGWPPS7MTyG3a6UWkqpy2qq21Xc0bHPzuTuL+dzrc0jkGdmSVkA0ZoFILPwmJCw74dtL+y15dypNjPbUM6ttlpruLdiwqLmqs7MBsBCzGhIrTUg3xQVJpznqanudj0x1rYGBQW1akxMBO6gZUPU5DDXtqYkXc4BrtWaqgxd16VhGJmAWSBE+pAsQFzNgxJgbgqNCbpRhnvev8bjKxwOlZJ5BDFsN/EIhMDY8q6IgepAKJWcGAVoy/8mcuIRcBIkSWwByBrh5JGFhKWuddEFCVNODrY1DLiFsAQmD0SElLgf+gASoVKCmcIDCLu+7/vsTWdkt20nEqYKgeFuau4W25qEoLUaLuqmrZlZSgLbqCMcvpH6HZy22Qsc+r7PXXbz5q2WSkQppZQkwnOfwx2YkUGteXEkFOFaMSDcNzIwq7lHMOFW9gboHvHVJ/JVw9RNpNvghNJlNTdVIhQRZCwalAiFA0C6LCzAgiRaW6CicO7yV9tpADKysDYzANPmCJwSK4gwC2/pJRZKSZi4qdVWEdkdaPNfZ86YN0hWrdZaRYyu79y9tVqqbh7tCHbT7ckfx8O4v8etbwkxIpqqNkOilPIGeSIkEZEkHriutWkNDMYM7hrBhBBu2lyrcwFuCqV5Fshmygaq6JIR8ZfVL7WCluxw6o8ry03jeDrUlS+lPfN+GniGNGNuDIG0LSPNcG2aCUEyoLdACNSKyJ27u3QO2ILcApkzspnF6oSGyF+nnoCvOTDE8Ngqc74GwpC2keYrDfprNgz967IIN4kxkAD4P7jR2woJCJiCEAncMIABNtqCgjWrjqgJfRAmtoRj6n5eqtW1h6EDXFz2MnS5u616frndPAr5GqZg7g2TVA2rCkTMAxKFuocBR0AoqMeGz9AOYiAfyXfiPzzsTsl7tTFwuk3d3e44HM6fn5+/nJ0jIUMgqKmXarqAGokmgMQAhETmgUJfEwWAFhEQAt65DW5jaK4hqKoaFERstWFOkVJDRpZIYOa1NK0tI+6HbLpe15UgsLUOsZkKKkVb5xsJ59T3eRQSZ6kh7uhN3RqEMxPA/4+pP2uSa0uuNEGd9t5nMDMfcXFHxsxgBCNJZldKl0hJVv/1fum36peuTDKTyWQwIu4MwN1tOsMeVLUfjuMyRSACwGFwd3NzP0f30rW+hZLIDYSR2cCLwepQSnVhQEmtGQUJITpkqFXMhiihi4iqpSCAJOLATc3AtDazZgU8NzeTyKWpIkJglFiJc66SJKYUGa3kwGQIq1bWCqDCHsHz+YxAFHfdeIipn9cWJNzvhl4Y3BvAeZqPx5PlqqbzNZeCXT/E/mZdyjStqYtf/NWvXl6eCSHEfYy7+jDP58fL8cN33/zx3fUyWXmZjl9+8vZ+dxjvbnGMLz9eXHjydjq/nC9XEbks1+9ffnx6epnXKde61hUcHWDo+hT73/7mr/+3v/+H//gP/0AKLx/en56ehOnmsNNcT6dzJDy9PAeBr774rO9Cma9ReNiPn37ySS31dPZxGOY5v3//Xs1u7g4/fv8ur3V/c5jm6d379xLkdD5el+mbb75dl/XXv/2VxPjhw9Onn3y63+/ZaTumCgdOHELU5kPXT/PCjF988sWyrD98/8P97d0vf/mrl+enUstuGOd56lMHs2SRaQABAABJREFUQOB4d3v3+Weff/vN99M0f//jeyIax+H9j88hdOu6Ltf5F7/8mVb1qrc3B22VCVIIITALS5V5Wfu+DxKm89XUWUI/DiTh5eU8lKamJddWW7cb5P7Th+W61AZIIFH6UZB5nXIIAO41N2ZEpP1hQOTacq211AoEW0IBtPW7oV6u79+9/+6H767z/HD/+Nmnn3726adWGqh1IbSqGzRinZcudUGEifu+P02XNedaa9/3yEwkiF6tAriZb4sqJtpaJIm3y5KZ6TaMIaCbIZGabvZFB1ezlm2UQASI6E4sBK+QGxNhQVI109oQAUmECXAbMtZ5LryEkIjZTLU1llabvMpRgBuD0BEpBEJfl0bEEiVqfH56IbKujyyBmjVrm4cAAAmFhWj778JBMAYpuWkzIKlqDkjC2++OlNcswgDYmhKxhGDuH8vDuR963LjEjhJEjU0dAkpIjKLqRKHf9bv92FTzujgbhQEtODP1N3LziewfSxo99IthAQDi1xwTIpKhAjoQEzg7EJg3xwwG4ObWamtFO/PQDclboGYBStFS1GrlQMJSqTJtVy0G2vY25gROXJsCoIMJoJs3rVvARlurOYM5AkRiVd06gbcvvTCXou5gbggbEB+0KQKqWavZzcEdtyqnV0j0K17HXd0shEAiqesQsYh4s1UV3M102xelFNclx8ihizWXph+RybkQcUyJiImM3M21VAd9fe+IRIhEZGaIaOa11Q0DHUTMQQEAUVXdHJRTGva3o7vWXJtT4AAUdodDiuH0cqzrQhyYUGtDJgIkRHRFU4VmCsxht4vNdHOahz7GGHKuzdVaQ0Q3kCjMompNwR1pO8kgEVHf98Rca0FEBFK1aVpKKcgIgM0cAffjAA61VVW1Zky8DXullE0XYeGPGQhoTUutTBSiO4HqVpZsyFTz4hy1ZOKewbU1DoJEmnVtlgZZyJdSwUJCOBd/qno518cAWKfnywIU1zg2DGu2zbwFAO6EtLW1YN48zRKUXIEc0RyYSVslR0MndyLCrdvdEdF967+AV2sP+rbCAviIQdw2YA4bZNVfGUGbKOlAPxGj3REMt50iuKKhAQC56fYQ2FxBQICERABkosUYWnPEqTUqi5XG1j7d9WLt7XjLh7vVdG3Lj5fl2ShTUAxGoTm2pkgMxOqu1lhJABkRiGyTsghIgbQFqzc9PfQSahl0Hsh3jHZdIpiQrfl6Oj/3Q6DAnksFR6YGfCmKbN6KEwLLhpTwLWqIrqTkTkzmFkAZLKHCfAUBZyO0ClaLbvK7bt9yiEwJBNCICZiDKuRpBa0EFhBTCiHAOhe3IqS1FWNyD5GFoojykvO6ZnPlwMRBSLb0MZNZnUEAoIm4Va3ryoxd18uQqqonIcag0EXpenHEeaPKtxVpI4VBXtdaV0Fg993NyCzn81qacd+pS3PyELDr4tAxNKGtIsDnqjmXqNoxQFkIg+b5el1aac1hadP942HOuWWwVi+Xy7QsTtTHbqChTNqPPOwOajHE+Gb/8MUXny/LfLmsbkbC3ej7/c2XX352Pj8b+td//mMFe396OV7PD+PehT57++mlFeLwX//nv1zW6enliGDTdVrmKddMmyQJsBuGob/5wx9+/8WnX33+2WeHcYfV+q47OTzc3Q9dAoWHx7vPPv0ErE2Xc4iB0L79+i+n41GICbHkXGt9+fAUu35dS4ihD0IkpS7E9Kc//gkRht2wLuvlMi9l3e93XZd+8Ytfn06npw8fmqov1nIFhKa6zMsWIL+9v0njUNVZ0rzML8fj8/Op6/tSS4hpyes8XR/u7988vLlcrwtzl9Juf/j8C3r3/l0u1VRvHh7S2AcJpdbYxdPp3Kfu5nBDCDGEZZ5rKUxkZkFCilECXa8TifR9z0QpdblUNfv6629EpOsHZpqXRSSOwz612gCxbguLGA8pCbq1tsxLXpZlWqLIuEsi9LysrWnsY0jxfLpUrfMyf/PN1//43/5pzevPvvr52zdv9oddkmjILddh6D1ajBEBNzkdAALJzc1hykuKaZtctKpssk+gptUBHJBFQJ2EYiA3b9rMmyOKdIJEhK2phFBbBocQ+21G2BQBQI4puWOt1aEQAa7eiLp+sNbKUvquA/fWVGspObtWYSx5zesy7kZ3KLluo0nXdSF0SOQGpobErq7g4IhMKSY374dBrXEIzKhmQOTWTDUk6WNHBFWzWjO3wFsBKwswc1zmta3rOEZiUW3g6kZMrGrERMwiVEtbsyXwmIK55pxbbdt8TRRIAqcEIWmj5o4Qxv5AwxgBVDr3i5NygsDR+4MOtxbHTKmqr/C/dj6Cu6Nt5NetFgxt84IymlAmIxTMxmAMJBJNnSIgRwLxhs2NUZpuOTtmQXcVFweDis4IQHMutImefZIgahkBmdHNWm1MxJhaqyWXknMtpbiKCL6y6l5NOCFGN1jXujWGMoh6i8LCggjazJs52LYAFeEgMcWY+o5EzC0Faa0yooOrVndvrZoqM3RjRORSoGmb5xk2/7Kpm1FAJDH3VuqrE6iamQmDAW4vBzE5+Cb/qOqrpEAOgg7YVAW536X9zQ0i5Lzm7LXB0Pc3j2/249CP4w/ffqPWyEViREQtrTVDQkE2lsYGYJHYcjaosQ+IbqYhMBDVSYk4Df3Y75BxWVZVBUBADCEisZmyiJu7AQKFEA1NzZA5SEJGM9Na87IyMbh78w1ThIDE3FoLMUlgAmaWbaxlohCianMHZmbhGAO4GWBdsnHFqBJhOw6aelVNjEhQmoJgCL2Zq+upFgZtPM4LYPZFQ8CkQLWhc1Q1a7adQxwMgNUAnLZQVwM3QgcwBDVDFkcEZAQ0c4KtvYRsa3ffxhP8KfuOCK9/f9WAtmogQNvKMRwQnXwbfZzwNeaGr5xJc9x+bBCgIoHBa5sYOCGRAyqYETZgADLh4o4S0JQpRAgfzObi6bpcgGct352v3851pmSpWx186+ngbQkFDmiuhgaG6LB5XrZtFWqNbHeR347x07uYFHG+Uq7gyK0mxrZmdWdqzVaBmATaosMQUj9kLODkYO7bwRAZyVgqgBO78FpaCixqrDYGoWWKYNBKqdURmrk6YgjbDwEEcgc2IAqSMAg6cQVVjujAYCzITDW3UtYQaV1KVUULYFyqiTYCplZJF/ftQhqAExO7mzZdi5o3IIRXAVCGm904REC81gqI/bATY/N6XaaqS6tVQmylbZ0zWnVLUeQlJ+YA4m0zhZGbxDgaJlW45tqIojepFpABBawxxRQ6toLebm/2wNGmmuepKMabbprX2TWCXY7HlnMXQq6FJYW07yju39xzDGoe+3DYHQxoze3m7lYCgVleplqXECCs9fbx7fl6/uHHr+uaEfQ6X69luf36LueMwsfjZWnFzMnMmlvLQnh/d//Xv/nrLz//cjfsbvd3P//Zz3bjzkyffvgwwTmHab5Ov/zlz8euf/fDD5+8eTy+nMpaoHmz+nSaT8dj1/dD1/Vd0tJKzq3qvBxT6hBw3O1Z5Pbu9vMvPx/G4fhy/Muf/mwANw+3eLyEKL/6xS9A2zgM8HBfculjCiFcLhdhatpejpfdbnf7cJ/XQlHS0M/rXLS9+fTNsNvNyxpCGLuREVXb5XjZ7ffavJV2Op2raQU7XU9M3I99ZFxbubm7SRLn83UYhv04RJFaC7jHFK7TpGYppdjFZmwAMSUJUnI9XadhHBT8fL2mLu1ub7que356EndJQxesOVIwA3JwC0ItVyGM4TpzyHnJWuv5IgFJcLkuyOiIHPn9jx/++b/985+/+XMI8W9++7svv/qy1sqOoJ5iCMTaDMy0WuqiO6rZkvN2ggwhEQu6l9oQjRiJmAKoq/tmBUYgQAYkBMS+6/01N4ObHpOYzE1r0WZRRSTsD4fL+bKuq4RAzLW2WhuALz7XWmKIm4+diFjYmgaRVrKpElE1bVU38ir65pxwso33HbY4ejNnBFVTt6q2H/vDw910mSnMrboj2Yb7jXQY9+uSS6kUtn4Cc7DqiI4BOabExK5AzMSsDUIQIiJErU3NRXgDHrTWHOwVxe/aVJmZA9dSkVhCwNgpSGkEHjBGDinLzi0gIfSprlQJOCRJQ4tdi6NytwJn94pbyxe+umpsOw4jAaIjObyeuh2B0JgbuVBcpxaJqeH2z2agzo2CBXORtjZEJiFAe2XYgxs4AOnGr+GQYpdSEsZWVbUKkbkzIhNqrVZrzrm1ptpKKQSVGYn4tcSLNxqNIxIxImEKETw4uJlpU3BTBUDbbl9m5u4hyNgPBnCdr7Vka8Wsqaq7icjWvj5N12WdRYKBt1pVW0opxOAGrxlyFgnQtBIRAbm5km0GIzXbQkRIW+EKbtVsGzdIRMDRkB0phMQUu6GT1JXTaq4mySmR9BRW5OBqfd+XspacQcHNaPMxEQURB0Wi4BEgoCCCA6OpmVpMsWNhSQZkao6AYfMYwTbCBGYHUKuqCogSpJkxhw3QAAg5VyVQdd7MpEEQwLxaU3MwdTNzJUdTbUSy8SS1mgMToAhxEGI0Y3QM247OzN14S+prY0VgR9vwE2TuAKiG1YMDheH2agBuFKURtaJVDRiZGBzBwF0dHWQzz23wAzc0fQXWMOAWMtjMY4QIYBuq0hk32PO2zXq1AOHrrw0R/Rr5YkQAx1c1COF1w7kZzDZdZ9NMt8S8A7jRq6HaNlnJCfH1nRu46YYrMCACoteQLZujai6za36Z43lRxFPVC6UaBkcx2kJpsD3HTU7erMmG29Qj6g5mW0afXHd9vE0xlHwYqK16ff9Um7OathL70PdRBBv5WlanOIz9MI4m/WBxWkqIokikhA6bQ9/MgMkcODC0GkBHxs5tv+8Ncl21WQMmY3YUBWmA6turQIbGIAjSEFZAdlbcCiKdEFqp81SrgeWyLDl2qe96orAsuXgJHELgKFjUkIgFKSA6gIKD5bJqKyFGB2QMCGAtlwmByVpTE0Iw4qplKrNDNrUh9jElAFqWpeRC7kmkBWPw5TIBuFUNLDyMYby1Qs8vl2nNtGBy24c0pl1TLQ2jdOOYeEVglch9TMzh/dPchTh0oWpTh9bAOcQ9np6ff/j2x2la+/3Dr//mDzd3N+dpxQDblfByPp/OR3QVlphCEPv+u+fj86WVlZDALcSwzNPYd7surq19/+6dgZVmiKTuRKTNxqEb5fD520//8Lvf/+3vf/fw8HA9XveHw27cgXpt9nC4Odzur+fr3/39f9Cqx9Px/vHheLxcLvOnbz+JIV6v0ziG/X4HABtYNXRxzeXxzZtN/qnaXNHZd7sds9S65eIVib78/PP8UOZ5dXMDW5d16AdrHmKMIbiDalNtKCwx5VIp8DTNReu434lIP44ppjKvxNTtumplmee+6wgR3J5eXjAIxpi1xWFQVYhhWtbH27v9YZcwDLHb7cYoNG8FambD0NfapvMlSGDiVrRpCymWqpfL3I1pQLxcZxK+Tks8nQ5Wl7wIplSa1uKxj/vHsetFW7FWl8sMZmnoiQknvF6upaxAjggGuJTCaufr5b//83/745/+3PfD73/3+zefPMYUF1vcGgubuqq12kopfWdp38WQSqlrLiVnVZMQgvB2XgIE5rBlv92hqTITIRKTuWqFzQwEgAquasQYgyC4NUVCYihrGfrx5u4WDE/nk5kTkZPHFGt5rYCkAQih75I1NVMkJ4QQxL0vNeeSibHvdxIFAYHQzEsxcEd0RJAkwamqknDOGoYuDcPmLxoOe5gmEkHErkvWHJzTbmBtSNuYIFF2CJ4iM6AQgfmaV0lhL2LeaHPwCCs3a4aEtIGkqnVdjCkhY16zmqYucBQgMEcTkCCUBuVYNEoaLfQXSa7u6kkkd2jOjTvv+hZCk9iMCmIDd0IncFc3h83KAATb6R8QzLdGbDVrps5K+Or3nEqtAE2kEjhEjmDAFDsSCliQhBhMm0OJXadNQZuqA2DqRELaWtBb1VJrXvK2HmqtBudaVVXdTAJp5WJqroT82lnJKEFcVV/BxEi+DY2+Gc+3fRERAgkAqrXttr3dOxjJVJd1ba1u98iN+8zC6zJdT5fqpUvDsNsPY98BuBoTURBEJN6i6/CKUkQ0M2/FzJu2V1FgA5szAG33eyfAj94VJ0YzK2teloWDVIWi0CAcp8LnKzJdL9OyrIchhRTyupRcYggUqK512+oJB5Kk6rEDCbKWvPl0zfJmnk5dZ0h5WUut7oAkr0sZdxZm2kylRR2jBMaIYsIBidy9VAOkLnVj6lrNW9NZ1wmzaGvm1tTArNZKTGQM6CKIAIGDYBQBYnK0qtkqAEqQ5AaghqauzUmBzdHAnDgABVc1dzSAZoykTihCgYtVbSpoWxl900qw4SDAAJxByRyJ1dFs26DaNqZs/EJ8/bX1WzDRx4b3f992wSvT79X2vM1AH2vAXvdg2zeNb2rOZvdxcAR93Z8ZAjpuwTE02FA89vHxG8/AtzITYCBCUMQtTwXcXIt7IRQKEmnVonNFCY26moJJKBXIkQHZQXFbQAMAMLyW1DuQIxKgEziZqqYkD/e3XzzsaHqSfM3XmapqbfNljoEl8LLkeZ7UTGJ0j8hpLT4tawZS5OZSQRqiAuP2nc6gYNY0MUqrI3qyDLpwEhLwTrS5EQOyglRljdIUDZE35gUomi7mzZ2RgLtWYdXGtbKjQwcC6/VYshMZNRCmXb8LKZWct7GPmDAIUAAMtbQkgYwULdfGwmaWuhBIWmvrfFxak13XMMzOSYDRhnEYhsOyrNrcDFqpecpmpQshpFgJdM0pUZDYMOdctdblcimehtQLxWIZas5mdV7dCSkGwoaNZKC4KACh7QcpM3a7NOy683K9ri2DZWvX89PleFygZGoh+f7zm/6wm7y6GiEFkfPxZbpc0OrxfQGv83L+8OOPZuvhEJnKbkyXM0SCXZ+EmYRMsevj5brUUse+61J6PNz87PMvPrt/88Xbz4YUpfnxux+12T4lDB26+5o/f/uGowwxjik9L8cYxM3N4OH+ATdnbbVhFzdEyPPTy7bg5SD9rrfnSwjh4c0bFKxNn59ehmFYc/7xxx+72BFTrY2QD/vDMPRIFFKsVZd5QkQJMuxHV/vw7t265nFXl7zmpRFQ16XLde76tD/sjy/Px+eXvutiCPP1ak1zKe8+vH//4bma7e4OtbVc6uU8sXBu9e72NnapZVNbUgh5WV4u18v1DAgxBJxRRB4e72OKZa3n80WCdH1v7tUaFHw+niXG8XBYPjy9vByXZXE2cUmlrMZBxl5SZ+QNoanx2NfrkmtT1aaGTP2uB/CmrWNa8/r88uEf/8s/vnt6//D4+Jtf/frh8bELARF5GGQDM7Si0CTJ2vJUVjhfdgdAREdXQOkSgWtTCRJC2KpPmQiRY4qkjRAlCAKS0vZx5yVLiCwMiMwRgREtxehmEEPLysxRQj92pdVWFcH6lHRTcrZOJaJWW9d3/a6vtWpr1hQIY5+qVQ5RiMbD3sBNbRu4gD2I9MNgbhJEQkzEwJJumAIt8zK/nMbdeHjzkPbj8/NJQtjf3pjR+TIThfu7Q2utrKWcTwh+GPvAtM5TLTVF2ne9MJe1uFd3NzUCoOgOVnJpqoE57gOzAKJZw+3ia0AASNCKAhj2nMY9hZ1DrNSZdItwU0XQYIRBiBOEISMakTkZkW2vw7Y32O4IvrFQ0BEbKJgTMG4eBnDc+kccHdCYVyRIkSI6O3X9cporoFAg5uEw8jK7FrDmToKqrKq1lqZbhTq4ac1rq7Vdr1MrxX0zoRoxBGFTI6YUgmsrNYB5DAEQXyvZgcyau7q7NgUGqlte0LfibiCkDdTMbEa5NFVd5mVbwta8WqsIuC2JW3N3by2XslTNpRUAHHa7mKKaFc1mjYWZpdVWvW7hxxgiEUU1Na2tmrkDCBMzE6K7mZkiujoBMiO4EqGZmvqyZj9djbkCFnUXWav9+OEkzNZUQmQOZS1qLUbe+NZEsCWYgJljAGNkrqrOWFtDAqBUVDsRkkgAK24rTWARFN40RXMIJJuLd0vpmyuzEJKBl1K1NkYMIoi4WaCIuUsxpqDM5kqt1aokFCS4gZqTNYmBPbAwBHDXCs2aeXYHDWMEcN5SQmpGDZgJnQmIfNP8HNDNQQ1BmTGvTZljF5CxrVmYOGw+XHckIDQwpS03aGjO8FrWCbiplM6bYXljPaMh0CbR/HuQCzdtx3yrhN8M0bCpda9WX/hIBzLY8oYIr14h84+moY/lYQDOm+qzDUDbLg02YNmG1DJFRzBkDAzAQLiRTpmae8M2pJRrMFcIobk3JHN4pUZVs1fdZ3ODIW0ZhS2IaArgQoLgira0+v54Glt9m5Abt9UOu8N8PIY+7g/7fjc8v3s3z43GnruDGi9Za5tWD0eXmcKqUAgLkiG7A7huR4QuuJQ2eBu09qq+XnNFIXLkRqAsFWVVMhZjaYgG6IgkCO7Vmio0N0EgEkih1eyWI0EaB1tmaFbnJU+l6vnm5u7h8Z6CKIfTy+l6zdJHYlqmOYYiTg+3PTBTRF1qbRxCCuPe1blP53x8uU5QauOugI87uhnl7e7m8Ljvcvnw49P5ZRYkNQSHDYTBAMNu2O+HVlyolTp5WRdTHuTx4V7RlrKcL14r1gaImJgxRKOqkix2qxf22gEcbtL+0BsoW63rpBxezsfz5WKg6Wbkrvvki8fDzahtHUbOS42B1a7L8lzz6Xo8l7xOl5dlviBqni/1Sm7rcjlz00S0npe3nzw+3N+X2q7nawfy5vHu17/69V//+jePhwM2HWNCMyFMEl5OU6k1vv0kIIQgqNFaizGurf3lT39pWnf7/fPz0d2ZxTPm2hTs6ekZAPs+Xc7nUkrq0sPdeHN706fBHKrW+bpc5/lyOjMzEO73h6HrWlMAcPMQwjju1nW1ZmlMu3F4+vD09Pzy8HDnBKfpcrycUPjTfiil3t/fg3sp9e72Nq/L5XJRs1wKEZJw33VN9fJyLqXs7m4kxiWv5+v0/Q8/1Nb6vv+rv/pZCGE+XfM83+5251JOx/P+MHZdXJd1Op72+/3+sM9lPV8vy7Ie4t4dzIxZrpf5fJnH/biWvCyLu3NgJpJF2VBiQAcozVpdl/VCDrvDOL3ktdbz81GEUNgRYwpU2/V4/Pbb77/97uvT+fzZ289+/tXP7+7vEIhJCJGRYkyVakyhxFRqLk2XaZ6ntartd/utmmDsBzBdluwO4OhGKAiAZkbEkZiFCClE2TrWSynEFFIkJqTQp14itjXP03VrJaIoAOTNYoiH3UG9zfNkrXlTdO27lLq0+TkQgIkakTnkUrSpAznwzf1D3ydEvF6uhpsW5cichr7fj+uam7ubhhhQOA1jabq2KwDtUw8cvLGHponD4WHJTatQN9r+xs0sFsCeCGjsojB103w5hcj7vtdcajsFSkHEta3ztAXCCYUBOWKMUVub57XUAugxCblbtcSBEjQK6pAbQIqeDovSDKEYEYcQgKoHA5HOKJXN/LDp6ttS0QwNGQAcFMgAFFHBgAzJxdlANwwab4dYczOtBpIS9GFxv7RmNU8L6AI3Q4yhh6iBPV+raSMxN2dBogAO0GqramYo1Iq1piWXLcJupm6staLrRmRgJhaKUaw11Rr7CAhWXVtxVwQkJGbeeIaMtDGckMnVa60xSIgRJFhbrKmbqpZaWlkymAUWc9dtQAlUShPhrk9YICQGbrmsTCRCZtBq1Wa16pZ1T6kjRCYMQZqFj3lpEGYRBoDWbKtPcYfW1BQlOgnX1RABUZd5bgDpcMshYhpgYDU3knG/7wh0Pk/zta45RUFAJKcgqmDuRgIcOPWGrGvDgTCXUjOJI9mqNfprAj84bDExba5qwFsyBYkwdh1Ubc1i/Hf6IgMHVjWrpdSczdXB1a1qY+cNRLDmYqpjGpiptEJCzAER3JoTIImqazMAZ9kC5BaYgMg24dDckDYPnyHqVnACRAjIhlrRHAmUyGtDxURhqz5xIiPT5k4GYhVeIYZMvKl+bptuTGxbz5SZ//tcb6CwgZq2bdLHVPtGmd9qzuGjNgRAAB85UvjqEPJXP9BmEXJAMvCPwGgCcDKkDd3+8SgBmzfIFYHACZ2cCBTAYOMERIxKumpVkFU5OWIAdWrWPBIhMBqoIdPmtLdXxzbC5lFAQXR0Y3DXamgsklt9XmrQq/eSyrzv9tKR1Ha7j0M/TNelFN/f3NtwmBWOeZmzViJL6VIxE1WOJj0gOYBCs1YFLICNAVnXzspInlprYKiQzRSCUawUFoUKDCzNt5ofQuSyDYkgxMCg1VVQUAJAMI5EaNBqNRzuqFqZLxOJV2znBZiztvO1zotazXrJjh7ZxhCbZ2gN3JpJ86CYyGPowrShE5Jl9VlxcvVyHi7cP3759uZNUpPV6rkSQbcblnMpuXiAEGM/JEIvbZ3mcylL3N/0Q8+JA9eICthqEAXg1BuImTeEiqBA7gxqucydYu+MCwTpp8vVFau1eS1GLLEHaF2IqZN1Orfanl9O0zyZ1baW8/Hp+OGljykQHt/9ANaImtc8XTOT+pyx1L/69JPDuP9P/+k//eFv/3A5X/+//5//K5f6m9/95rNPPv/qqy+h1ed3T1ry+fn05s390MkUoOT2zZ//cn/3eHd7e7jZdymVde26+O7dfDqdAbkbekToQrfOeV1zTEmb53X9ML2g8Jj2anZdZkAehm43DmvOz09Hs3Zzt39+ed7fHJipqoiEeZol8LgfTf3HH388H09IFGKaL/O0TEG4lNJqG4fxZr8XJjQjBzMb+x4NrpdLK/X+/s7UmXAchqHrpmme8/p4/8aJjperEXVD/7f/8Q8oJMDPx5eOZRyHw2701lT14fGeAzNS12Hs0tD3yzwfX07ENAz9uBuatvP50prFFI/n0/F4nK6XeZ73N4fYx2VeJEOgQC5WqhtkxazqHEMpej1PbrWB1VxaKyGEUst8nf/0lz/96x//RdV//evffPL2zZBGJkJHdwek1rS1WV57iGw+LtbUwXXrotTWqtPHhOkGHzJ3EpQgZqbmKUVmFpGtdsObMkk/jBIDIKs2JA6pG8ch8zStS8nZzYnZEFPX7fuu5Dovk2q7ltxaY2JikiCqpOZVm6rVUs2gH3embVlKGjjEEEMEwN1BqlYHyDmbuYI3Qw6h5LLmbLkON3s0C7EbdndIIQ2HacoFI+1uWTgeHpfrQj7KuM9R5lom9/7hU3Qr5IfDrjs073qyVgnmZYXU7fYjI6Bp7NPx+SUEjim1Wl3dzWII8TbO8zLPMwKnEJxAogSAuVGuarWwezWrmCYnDUFiaGZBDM0NUBFc2Mlxg6DYhkIhtK11hxCw8esdwsGRSN2RoOYaGIWBDEFNWIBdEU9qxex6qSW3psKWknQ5BNpBUql5WeYLu5s1AmIAjIy+LRC8qQFha4qI2owYJYiBq5srBAzEkUNwLMBMgG7tdUsK3mrbjgsB0bMjYYwRXps7CQmbQ1Mg5M3ZGlMI48hIBMJkEiRaEObarLTKjMyMSClK6m/XtUoKEoWIJCVyULW2tlrLdkPbAmva1LdngRhC2OYwIo5BTNW0OW0NF0jMiACoDiDxNWlECE2dzWSIlaQfdl3fDyGMoYHg5G1ZrupQVIeuE0Q3E6ZqBjFi6CtEiX2MqIAelUsRBvS6TueGkYli14UEJJRzKXltaoHFVLVqDCGkDlnBjIi3CB4CBhEiWEupuQGqRCGUzT7VrG2hvMv1DO7IAIAl59R1zGy1aDUmkq53dLW2EUZZEBGdkBAI4dWzgwQQGkIMIs6mqGrMQihqKsGFQMlLLewYAFwNgJg8m7qRg6kCErohOsG/1wUDOZBvGsnWYAq0gZMA8aMc9CrYgMP/glh9nYE2jQVe4dD/7hR6HYs2XWjT1ey1JeNVMn01zOFHVzQgbh1aW/EsvSIWCYzQCUA3u5i5uzd0ZekAqTZjBydkDgpurrRlzFDRX0e5Vw1qo2LhJgo5vG53wQg1ppelueta8l3EgvG6lpj6YTe8n5frZcLUv1wyRZoMzsoL4orkAEWkkjhteiG5KjkS8xDjLlFPRevirUZCJlMyNXeKHthQikt2VCYAaQC+JTAB/ZU2aQQguFFtnQCbOyFWkcSwrKbgeHiD3WHOZW52bVTmerlO07Qo0jKV6mZugWiX6si1rTlsorY0DjUsLfZBtkCfcwPPQB5CMavL/PV37/ohjkO8lOU8XzvBu2Ho94NmdK2YBJmbWa5FraXUIUNIIkm8ZrXSSibnwAJE6jTuuuDq7ixDlbXm1ZrGnVyndZrXlMq0LMry/vllXdabh/3tYedaS1nOH57++TQBWmm1+TKdr652+vDh3Xfvdqm3UlupfeScF6v507f3t7ub+1/+3Gv9xc9/9tvf/uazt5/e3d4vy3U0mufl7aefDcOgOSeWTz95vFyP93c3kZkQbvYHBJzXWltb11L1FGXux05XvV4uj48PYLZcp/uHu/U6vRzPtRah4XCz+/567frh5nAThNd1vpyvRETsy7rmXNb1mvpem13OUy5lv9udz9cQhJA4s21OCbdxHFKM5ihEj588hBjnedrtd+u6mHtrWta8zusw9hiAEVsuD3f3qU+X09Uc0m5Y82pg/TAA0elyrdpC6tulPX14lhiYqZcYQ7y5uSG3msvYD8/H55cPH2KMfd+Pw5BSN01LSGEYhpJLKXUzdDi6xHA+X0IMaezv3j4CwfF4Xq6TNAllaWY2JnRwLcYkrej56ZTLGoOkLh3fXSUyOj0/vfzpmz/+5ZuvwelXv/jlr3/1KyapuXZDX3MViVaaKZh71RyirGVttTLhOEShEJhhK1UGbC1v9A0JDI4hBgDMucQoSNT1PXMwMABQ85jSsB8BxQ0u16vmMgy7bhgcYLe/B5Tz8bhM57v7+9h33dhzFxUaXTl1qdZmqrlqPU+pS0PX9eNoZvm5pj4O/VhLVpuQuTVtBrv9QJXb5LW21I9IZOqlKgtLTF5VVRFjznp3f7e///SHHz/MxWcj6Xa1zd3NTaFxRZQDQ98vah+uuYUOh5FbNbLcDT1CQFzO56XMBeVwM0JKpvnucEuu65rBNQWOTbRqkNBa7bpu3B3O53NpOXWxubbaijqw9ENUptpaGEKQhAaVSBFjCAgtEJijklevgQIBWDNBJiMwZ5St9AiJ0MG3FRIGQFy1gjkjEIHVJu5dEiCq2q55fjnOS1MKo9EAMfUUl0gtSdilEYY8XZfpQuBezVy1NW+GSEGolGpNFdHdJQZAQwIiESEkbk2JPPQhcEQkd0xdF4OUtZSSiXAjGsQgEhCJbKPS2XazBm9OiP2YTE3NUtcJh3EcUkq5ZltURMpa1EyEgrG6uoGDhZTUsO8lDV1tutWhARGjuIC6gzrya//8WrK7V61mHkMIITpAEIkh6KaBtAoGAFvwFgArEiahVqqVergfPaS1NVTEEIGDcHDwEIQpWe7buI8plTUboaohgDZ1JicCwjCOFEf0sFb0pnFnAlrzxOAQt51PA6Bmtqo1RCeh2GtZSmuBRZgcm6s6QK6llULoIgzgjmagbobmKNjMXJua5pJLyfM6uxsQiEhrDSuWFt1sWRZwSLVJF92dkYxMBEhIt0oVQAZCRXRB0KotOIo7EpTaAMyZG4O6sbqXGhCCq5UsiMLRiqkaUHTaitqlNmREADM2JzIgUEQHQ9/mEvfN//NxW0Wo7vTxLfjKxH41OX/0N2+7sy1vuCXBP2LQ/NXr8+pzd912Wwgb3xppk30ctxHIkRS3Seg1Sobu4ASOhMSIBu5YGYlIshkhhe1A6NDUFEFBbVvpgSMhOgqgbTkyBENQdEBnVHICR3Bu1Qu4cvdsmhGuuf24rocAt12cr1gmH8a7mo+TNi84EU80FuaVySK7RzUwa1BXBMJWhySRYC/+yS6Keu74WgDNW2u1KoigyNZuq8CAbB4asCEAkQGYb64lQAImFGciadaAXAUJvInMtfJw1z08LOt0vRzfX5/WeU3QTG1ZcS3JUsps5i4BwfRqztXbbAkcWkUiY1Dw1Id9141dxFK01ni77/vu0A9t8u+//26ZnoRc8zywdLG/zlMSVLBmTUAXVzZ3xtj1ZtBUpWrfsYt8eL4s6+ocGV1ikiFutCgEIonjeLeCBawPj4ccLi8fXpbTwqlfa5mmKQTskvRdiBIvx9qm6/HDy7Re17ycj08t56EPbc27ziyfTu9eCOnhi0//6tOvdt3uH/7+92Wa//7v/ubhcNvyOu7S5XhZ6hMhfPXw0O68qdk6D/3oZkR4tz8M/YiAZc1ogiTq53c/vJt28+PbNzGGu9u7f/u3fxti2vfd7d3N0/uX6/Pzy/MREB4e7kPsz5dzKcuXX31mBq21Wtuay/TdD1HiV7/4GTKp43VeATyN3dOHp6bWdb3PPo67vg/INF+nWsrd7R26P70ckWAcD2qe8woAMaYgDGZD3wchdAjE18v5MB763ZjrGpMQ4ul4dgdzpSCIhERlyrXVyHR+fllzvrm7efvzn13nCyM83N8kCu9/eLeuc2tay7z189bcVNswDBvHteYyjtFb7ft+mq45FxAedrvd7aGUvM6rRJG5Vklbh5EzCYjnebqeT/N0SSKgpq2xiDB9eP/+n/75v33z/df39w+//eu/+eKzz/vYWdMkKaU0WwYAZAno1VTNatPN0BOiBOEUupQSsbweg7eiGZIQxR1ExB36sXdzlhhjB4DurZbqgGuupV26YVC1XIqqPR8va6up628e3sS+5xDrux+MeG2tXKZSC4KTyO7mJvVjK9VU12WV1HXjMI77pm2ac9O2OSJSv9F6lZgB0YGRRIS6vmMSUyu1uqFIXNfFDGPor3Oel9KgfvjwMhxupBuP1+W6tBa0YJ6LSuAQfdWCAfuUzFUix5herpMNvbNcWitr3XU77BINkTVI16G3/cNtXRYyCyHygNq0qSrAMAyAsKwLMQWC8+kCYEEQUb2uwmvJk3joWIrjaxgbHVjMHHnzDpk1IwDcEkTEtvl7wB0NAQkckTaf6KSViUMUt+YKQOLA05KnvF7zfF6ykaRdpxBJjYdIA1Vu2XkXULq+2+8ZrGXRtZS2VG/sYOqtamtqCCRERKUWJo4phSjokKGwiDu5s6Q+qJNEZEBoBLABHtZlIQBGauAIsCFLHKHligh9iqZaq6Zu3N0cEPDu7s7VYZ7med0yd680RWJ0VHNHQt+YeK51g/9bXguTbKRpM2dhZm51g3ZrrqW2ikCbygME4M5IjhQlbH1ktgkPzUKMImitmdrQh75Lxdka5NaSiAFerlfspKXUhRS61O92I8I8zZpzqUtgVPNmFYAdaoqCkkK/g8YtVyRyb0aCJEBNrdW6Ybi9eOgPBzdwcyFRXx05mxFybk21tVKsVncV4RC4qW5dGc0aC5k6mCIjgNdSzT3FNAw9IUGXYkiRg6IxF1VD2jJfSIghsqMjmLUGYmi2lWFYcxJWNwIWd201EKgqkMcorSiBo7ZdYNRyvbxwHwhDfj4rEseO+iicgFHdUYJtOg/BK9vH3QGMyEE/9sW9dp66GcP2XY2Ir/9o5oQfzeuvuo6bbVToV14QAap9lIdeUYiMr8Trj1IRwsfEqivATw9UeCVMI9P2xQBDB1dAA3OwzbjN/jEEQgDblARAgAivFmd3QN0Gta1wjBCdXkP421RHiJvgSY6oGBbT3EoXuIDNazk1HcP+NE/sqXtze1KazKpI4wCJnMjLBgo1sAYOjEBWoRZBtmsNEXNZdVmJwJsBEiAbS1ZojhwCNHRjYnFGdVRwfy0I2khRzRmFg0VSb9tFxsECk2trZs/n08vLy9PpbIi8IjqS9DjKVR0GAQdjZ4JW1NamhNWdUAABmYywmbe1vZyudb524nE9p+NzJ4KmVi5P365dlF7w/VI//+xhTOnd5VrWebcbVPfMnkIyZoW6US5sLRpaJVvnUtVTkNj3HjpjNmCWuEzXkotghYYhcNeNo/S3N4/zslb39//jfwDBfD6dnt99K3B703tV15qXa23z8f3T5XjcjQlqOL/7wABgcH8YPn14+//6P//zL3/2q7v7+8Ou/+P/+OO+20WJY4jgLSBBqw64HwdiPl/meV5d6meff9ZK+/bb7+pax92+NCMRSSmIcGBk3B9uH+7uDf3+4W6dk1ZdpzlFKlmtNQmibnW6Hl+OKSUiWpZ1zUspdX/YL8sC5ssyCbO75lJjSgbKTOYK5Nb0eDqa7iRQLqWUMl2u49ilGMxtmqZSKzMdbg4f3r03s75PeV6t6v5uVG2X03leZrUGDLW03dhTgpfjiYMs08zCKYa7u7vr9TpPM5rd7vdffv6ZOKF5YMrrcnw+LtNSa0kppq5fpvlyeU4pAlqtKsK11HEcUhf8TMfTuZlRIGJorc7TzML720MnKAUYQ0w9JFIyX+a1Vh93Q59kvVyux6nWtdbyl6+/+fPXf/7x3bvb24ff/+1/+Pyzz1LsGImoMRE6pBhzzuat61JHvOSZBLfCyaaaUjcMPSG4bSWgW3pHmJmIm6qabY0HrWnHom5mtuastXHYLMB4vc5mICnFgQxgac1rodSl3f4gfF3XNAwUQs7Lsq7MOBx2rh4TLtM0z3O/38WuA4nVwZG7cXc+X8/XuUspxSEECLEi0TTnZc2I0A9DiBENMKCDp643d4e5llpLCym9nK/GDCko4vUy/fDhPFV7lKG7ibELZmqqAfTQc0iYJJZ5jUQQZJ0XbZoBveupHxripJ6cJ9U+4HDYZcKW13meApC2yoLrujg4CY03I7GggBOV0iTE0szbqnYiIOmw73dNUqmVJQRitcYiuRWKAuaRwtaMWLUiB0RSe3VuIjq5Qy0EgEh7TrVVqzlKwIi1temy1pprVXe5uesxRCcGCmAOzY5TBtSkxaIHl/72puRVVZt4o9aoraWS4nalR3dEwUD9Ds0sphiEXa2/2bMEQiTmYXcTuh2i6HrtOrvZ9SLBXSciACytbpBDQ94wjm6AhNO6mlmMqbgvTe/v7w9vH9fLPK3rhpDuu6hN1dRUERkZoOkWPnN0bUrC6LQZZFUBAVNMRPgaQmwbDtqZBBHdvGhRdxMTFgD4KaIP5q5GQsiAiMIh7Fk4aNE0DoLwfF12b9OwO2jJZuU6Zxy4IXSHXT/0abrOzyetrdVNA7FWZ3KquQBWrLUQLOi5KSFx3EHDrEWtqCtG8tYo7qEfhbGtZb2eZBeZfJmXti4xhI3iKCJmXpsa+Foyb+hA9CBCgqaGSATkHQTu9vvdbr8H96bKRAhEgH2/B8QQ4/YibKQM962cxNCNTEGbSDTwIGxKWGspOTJ3Yz8vc6smQaDV9XKikrueRBtcP6yXBkhh24tLCnpraUi7KBwLgDJXNyIHQwFn2saXrcTUDNwREIg2ycdfST7bVkrdEdHUkLdUq3vbyEKwvV2EbQudubsTATqg0evc80qTfs3PgxGaE6ErbmF3t61PAwCBtrch2E/B+s2E5/D6AX3je/rrZ4ngAh+dSECv+hNuZm0FN/zI7QLgTZTanhW6kzuAVyAHyQazt4HSuTZcloS4i4ehG16mmsmRxInAwKqDERIhgZq5NkFvRSN6q/mcrxphvpy9VAyyPSsOaW1YFaUbHCNaE3cWLM02DOJP9FlylUgKThEQuc1FsO1ERpJyOj4/fffj03drmUuzgHF/fwvSESW0hLEPaquAua7rqladkEJIY4SlYG3WWgV9FdusBUKKpHUpp2l59z2bBoS3b2/X6Xh8mulm35byl/PT4+MtAa7XaytLx9xS7A8R3E015wrssbNc6rX6shqKpLTrbx4nZxVBFEdyxeXSDlG6YNcP3/zfP3x3f7sLPX3z/sc//svXa63TPF+OxzzNY8ftfv/4eJjml/ff/zhN11prImrTcno5sdu+77/69PN/+A9/+M3Pf/373/1t1/WEdDmfd316ef98ppcvPnvr1vaH/eGwq7lcTufreRr6rosxSgyGay51KQ2wLLWqxRjcPaZEYQ4xmOuyXn747tilUEqer/M6S4zpfDqrG5qWNedSwW0cx++//2Ga5nEc1Cx16Xw5X84XEhqHEQhTl56eni+X8zzPh3ZTS81rlldEmzKiu03zFRFYGBSn63y9TjGF3WE3jMO427XWxv2wpUT6FAFsvl7maRr2PZHUXPuhe3hz7win42VeFoqU+p4Ou1LLbr978/AmphCI7m8P8/X6/bfvmGgYdtNynabzJ2+7w/09mG3+3ZxrjLK/3ccg0zyXvK7TGoeui4mAUYGJ3f1yvmYmKcSt6d4pAmop755P1+PxYR87dgTrhnh5d/zm+7/86x//9Xw6/fxnv/jNb36zOxxcTVtt1RFQErtpyVVdt8g4CQfvkMDUU2riFlNywFqa25Y8j4zCIkjY1LSZkZlD0eZq7sgxaNNSCyC0UsE09V0IQZIAsgMqmqpjc1HnGJvxzcNjMZxLu3t44Mt0vZy61NVcDY1j0Am0GbuV1jgXIGxmDp7X1TZ1LgQkAsRp3l682I8jITtYyXW7QJXStlT/siz9fk8xKDPFsFpTJAVbS05Dmq5z7EPqpVkR8SSI0CDXjqEtVZhVtdQGLMihQELC1uq8LqfrfDtKz4RdJLA6XUtZdmO3sWnXvDa1NKb92BPT/k7WqWizwy6ua3t3mpZibYC+65W4NsewEZE1EAbi2tTVnZGIHB2ElbFoJeGN+qO1hiBC7FvjhGGSmJjzWq7TWjTbtujpEgeRJM2tluZ1YSZgKkanUrDmGu2WbAxcqk3zyuYkLBZbUyC04k5IxCCsBsghRiJGdQ8xpK4DJCCCEFGEAjBLq+X2vr8ZIzGXZR2HcV3XJS85r5RY1QmJhBHA3NQs56JuHsnOEFMarxMDpj4hoRYnFhZqlQEol4qEfd+X2lStNd0UAeYogbfwoAhtRWitNTdVVWBKMb7mgMxbrbUUUBVGJNpadYWFmBRA1aARCcYQBVGLQWIJMQBE9b7vHu9vvOl6eS7X06lWQiW3OHR9P9INtFyXi9VSWdjNoNXry4unFg9WQpdLW5WIkzeDhtIQK0Tquy64mhOvHKyWmPpIiK0StM4RQiBQZy7gG0OrVt0Sp31MxIIIKXRMVEsxs8CBBjLz3W5MqaulujkTEzIKtA3H547uIXEQUm3ImHN2iV4LtJoCkNCqVbOFgNCqlyX2SZQ6aJfrmUIcBct8Xo8v/T6JuE4v8/WSUurHhKZWsp4q9AeOHbMjhk3Q0WZksMGOCEF/KjPdRhV/pWe+rsa2+i9EdgR3ZIKNHa/VmzFvuzMwc4So4ERMjo5ojgDIgOBItNXEEyBs1SuA7m4GaNtX4TV4hrjNN9u4sg0824DzE3X6J/7i1jb6asn6aVP3aknyj8zG19/81Xn/8VG4GY8InO01F2ebku1MCNUbsjSGDH5q0KTbLNyA0Kqab4kIQoAoJIzUSkRPDAzWaplrBfeYGMyEyRzUHIBJgjmrORChuraKCIFZEdQbErRaRTBKCF06Tddm7XbfDRj0+fny8vz+23+7HJ/M2yf3d/f3j4fbh36/V5Rs/OFpzc67PpxbK6Zt6FwrqXUUEKDmojmvl8uaSwUkBraKjQmBGRJQ1xGVDG15983Xp9O7Ms/Hfuhj6lIYeh5SInJCQ9dlupZ1cdpo80CBwVtep1xAWMbdfuz2brTmaonCIGZAsds9PDzug00//F//73/88z///x7f7JXah9Plcl1+9etfP9zf7gbWdQyky3T5x//739wzuNd1KaUx0a7bffLpZz/74vM//M3f/Pzzr778/LPIwt46xhDiy1J2fa+qt4fb1PXHD+/H8Y45QuJ+Dxy6DWeVYnc5Te+f33d9ckUKPMSQc71ezw9vHh/efLKuy/V8quvMQNfrVZvmko/no6l1Y9/3XWt6OU8UaNjttNnxdBbmeVn7sdftyAGw5py6LvX9+Xhm5se3b1JM0zy3VlmEhVur6wK1VHQXYgC6ubsB8zXnru8k8HSdd4e9maa+N9XlMj/pU4ohJvns80/fv3tqVW9ue5Z0PJ45yM39zbLm4/GYqBOSNESCByRkA26WunA9np6ePtRS7+7vUt/1pZ/mxVrb7UYAKGuJUVZVQBqGIed1ukz92FOQ2lrOqxumoTe16Xo9HY9gJrjbS5QFFl9ny3rKKwU6ns/tcjnc9Uu+/tM//9Mf//g/ze2Lz776w+/+cHd/sy4lSdiIfGRb8BdcHZmBsDSDmt1sIx73/VibBhYCrOjNqwECYIjBmm8AGDVlFCJEAwcwU7NXli4zqbpqBYutKjYPEY2wWDMgb2q5GDGk9OkXb07vn6Y17x2bgTY8XxYHE2RzBCQzz9WaZYmhlXa9XLda+1IrAng0IIwhhbBNJJpzjTE5+DLPgDgvy+V8nZYlV63Nb91vh9TACpSqMKTdJ29v8emUz8/vz3N/2N+9vZPIATGmGCPXtWptZNBaA6QQhLsIGFq1qdaeIoWhLK14GFKQIFv/fFvXIESIacDL6Xr68LJq6XZDF8eUun6/P7879THsk6zLfHo5NufRvhrCcG5NjVggpqDr2qeOFBGQ3WqdSVhCRKbVAQK2XDsQ2GwVIA5elolj6FIEgNP5cpnmkGQcxj51xCQRay1lLaANNxyZxEYxo5+z4lqdsKyF1tKW/Mp6YgkxlVwaGCCQCHHcTtSycZIIAaUpUwgGjNgpBeqEmCgvaQjDYdd1YZ2vQXi6Xs+Xs5mtpWzkaDRA0FoLEnJgdc9rmad1nmcz/eqLL8fd7vbubp6mZV4QKHQQ+4RTLq1x5NB1rXprtbZmDUIIXRet6ZpXd9/qLraK+taUAIh50xWAnAmibBXuryEitC3WSMAIuqWuyUCcmCPGbkBKEmzH2DP0BCCkDBSQnMx8WZc4zXfjzTjuyrCs0ywSUhJTq2C6XtHdBSntOhYKSZHmrKps2AOLBzciY3MJ6qjqu/vDPuL8/JRPzyjexbBeVnQLkRiDEgCgulmAFOMWu0xdhwBatWkjxJDSBsOy2rwpKBBxitHRbdVSajMTIUxCzFvIHAxMG7TiZaEwEIVAqO6oOARq2T78+S/jLt3c7Pek0C7c3M/v7PKyaiByW66ep9qmgYf9kHJt19MFam1BquxlvHFOmzBMjmgbF4LcALc4Otq21gXcoO2+gbzRzQHBjNxJqJqaqm1BDHfC18bZmgsxozATORA4EAo6uAMh+rYh21xEuHmf7ZUn5B+DZoj/y5Di+qpNvco58JoW21QpbwZAHz1Jr6Zs+olZ7T9VkW2gavxob9oqckEB0NHAkTei8xZrICLcgN7ggMUqI6K27RMMiAhg6Lr9XzBBjISpttC0E0vgrC6JA3Era1uze1VHIsmqLmiGU1laCAaiggpGTMiOrpvPSSIDwFLKWpbE1Avuqerp+OO//NcPf/63fH1++/D4+7/5/Reff3Z/d1OKOvpwe/s0lZ3bNXuJuGvYODpwL/t9CKJWshXiXNRrUfNGMde8TBdva8uX9fie9byThJNfnp5KOTPBfncAsMt8zZXGY2zDQOAsZK5IcD0fh/1ufxhj9bXUvDYacRwHwBRFSG2+TA6g6LUWJolRWmtFbbmc1nwyXL/5+t2wG3/521/97u/+8PO/+tW6tH/+p//641/+cnx+ef/jN6eXF2bsY5dix+5j3//ht7//f/7Df/y7P/z+i8/fYGmlrJeX07TWTqKApMh9vO1SjDHmdVXXeV26YVRFpxB6ma8TAiKbIjHHruvMHIVd8OV4jjG11vphpEDX0xkQh3F4/+MFwUOKLy9HQ7/pb/tumObJliIowkJk49iXXK/nC4vMvEgIqYtV23WZr5dLq615G9Ju2I2GrjXwXjYZU+umDviwG2qxpw/PtTUSun24c4daKzNbbSGEJVcRCTGYGRj0Q3/35g4RQ4ilFjMv8xxDYMCh78f9eNjvL5drndZxN96M4zgMpebj+UrwWumzlrKuhVFIaJqmWjXPq2od+q4fumVZX47P5+NZgixrLaWcTpfD7SEEmc8XAtyPu8vxKHO1PiAUv17zejxeprzvZM3rOl++ff/tX7751z/+8V80t9//7nf/4W//7rA/INDQdyIcIW4nJG1VVbsuUuRcTLU5mjfYmntCCIF1W7rHEJl5wy67ARE1VW3NDVCQhcVAuUlgc3UwZgoiQm6FyBzBUh/6wzCrRQjUdbXo2pwVhqFX4/5wy6Dny/T+h3emNeeSUry7ueGQYup1w7G4mnuppeQcJUoUbA3cSsmtKu5QiHe7/bzMtTVtCmoAXlstuc7TlPpIIZyna5z7oR0a45bxySWPu7G13traia7L9eUFHj99DCmpgRo5iIHFXuZLBsQuJgjijss6r3PGLo4pRh7DPnFH0kJzD8MYUijXJTC6GjEzCygtc3Fmb/jw+DjeNl3XEGgcY5rW03LBy9HjCAUwdtoUQZNrp7WjICG6e6luBE2zIQfeUCfWvAUic8tlZQfhgBKXaZlzXsqCgYb9oU9pqwkravPacm3M2HFgh2VeaxCmoF1XKs61kUHMSsaRyV0RkYkd2EgRmUKSGM3NG5gjCTpiQ0JMaoQhUdy5JCNg9u5ws6zTtOQQKaUUGGEcm7a8X+EKLfA651qLRN4K6DkKM4O7WTu9TLth/Oqzz2MMu/3eVE2dAxOimQGyTfNWYyQRiNEBm1URFEJICYmm6TJf5xDko9HatbXNzYAIW5UYIRC9bo+YXhM823iNhM3QHWs1dE4pGTAYxpDMsc55OV1N63o97/s4DuOyLFpLyaWEHJGImYhjDExEDm7GluuijcBNUTqO4MQIxl1KsUdQ16xsimYkFMKw68PYsVjo4/W5RYCt5gxq483EFERY1Ew4SBSwhoSMTFs4EACRmJiJVVvNBQmFOWyAo2YIILR1p6KZmzo4mmuQCFtsCg2hADZ3ZUImCAiIrUyniOGyHIchicB6mWB+5nrBHF0wsmGiknNdrYuIzalWqBGmC3eUdvtAkBEbIDoRMjr5tgjdnDEoigbwCvV0BHWlbcHVFMyRqFYzMDdHACAgREJkQDNTU9p8cw7utnWDIDhuiHHYph//iE8nejVK20ev9JYLe7UYbaPOR9joT/joj8n67bHwyuH6mL1/nZD8Y7UGbBmrj6u1j6LQK7dxq3Z1cIDtHOn2mj/cPl9ykQZOtBmxyYW0qpMDoGtzUzSH1rCUoK0n6QCBXIQ1NwammOqq2rKDo0gtS66lOTVXj6mhGLMCvFanEuVSQggGJgJQyi4GXKfjN98+f/fnD9/+Gcv6q88/+9u//t1f//Y30jQiZG611VjnWMtnd/H5VCc3jrhYI6TbGHsz0aYMNOzwPtYlN4CMlGtbb4YQ2CBfn29/+ON///D+21SnBtjd3X3x8Hh3+6Ba//Q//ud6Pb6cr7mskcWJpnUe92O1dj6fFGDc7YXVowz7uBpO87KuVYLxsBtjuNYMhBJFp+q2Un9g1vv73dPXeFmn3U1H2jznf/0f//hvf/zzt3/583q5LNO0TCcw/+TtJ198+sVuGIXCm4e3//s//G9//eufd5HzlIcQ0NgN+77f73bzvDA5A2mr3/34fsnzplBKSMySa16u88vzcTfuHlI37MZSMxNfr4u1GrsESNM0nS/Xw23t+w6ZwZwYcymmWzDCHz99GPe7dS451/FmDJzcUTiMvjudfgCiUovPmPp4Pz7WWp9fXp4+PI3jQMzztPTj0PXDCutu7FV1Oc8OsL/duSJHaV68GQtvEgMKmbbT5fJwf+9mzNzFeHN7k9c1t5pbC30quZwul42bvq3jSymlFjsZIwei28NN16cuxVbbdJnAcRj3pea1ZCI289AFdz+fzmo6pIEZui51XZ9LdQdJ0dyAvGglxt1+DEEu85JSeri/6TsWMFqmMs0LrtUUuUsfnp+ev/7L5emHl/P7b777Izb7+Ze/+OUvfn043AhLCiGllOclpEgsrSi4xUCSRF3HfS/M2rTlYqpIGJndsNasVhE5hEjRCWm77qA7AqMrmKFTYCIMbtbWAgjMLCQhUkNtWW9uu5v7OwMG033XNwrnZS3VK+DSPB+v0MrNvgPVCubuw/4gzFVdkIa+zzmbNXBcp9XBWCR2kQlbLSzBms7TZO4cY0pxydndHKyW7KYpcF1zCHR7u6+GDZwCClOIsZqFSNfT3Ba8P3SIpMCnDNfWaiP1uOQVcmHEGNJklgGttvN8jH1EoA9PL7tuoCgGzRGvS2aJHYEaGnCMAyfI81LXXEvdH/bI1Ep7eToa27osKYZyva4sgFRKeffuw647jEMHOaZEgaGHuhe35XI5lZS6mLrDMKxoJ11bZQlpa4PS0lDYqxE6GQDymst1mZt61/fSxf3Qg2Kt2qotRadJMXE/dFK1rWte81yISRSU3JJjVOQWAiRdK6Kho1AIYSPasQw9EVtVF8aQKLA6GFEhrkgQ+kYDbdsxbKQFrDyfjzVfH24OSFDLAu59NzjQuuZx0HXNIuwDHo+nPK+pS11icAvC2ur1chm6IbCM424Yd0Tkbuuac23I6GbgBu7WlMDC1pnoxoRd5LLyPE9ukRgIgAg2BxExbRF6BDBTB9eqjuZu7hBikCBqRoAiAoCA0g27GFNtBuYphhB6Vzu/vBCYl0pBAkBWg6Y5r8fSAgetOfTBFbQUV3Vr3qqr55ItzdqNMDhERGeUCJGE2ByK1VKqI3chhmDV2rIWVY+xC960OQCbN2FhwpoLOIT4ioSu6lobOqSUQkjbooaAAKA11WZ93/X94Ga5VDNnlI0zhETgpM3VtbbGrCSBCCWwCRZSoLppLFqy1fnxoY9o5/cf8rGNXWh1oXrtWIfoSbAW48DsoeU6naeq5o4dNfLciaFmVnSIRMEAgMj9o2TyupTajMq+0aEdwFG30DwiGFgpBYmRQBANCNGYeHNrNUWo6B8D7/g6stjrrEFk6K/uawAANzei173bT/u31z9sw5D/L39+zZt93F8BguNmkAb8GL1/HWv8Y/gd8Kfp6KMO9NOej9wdnBDgld/uBrbRAV4rTZENDIjAzYnMEQHrRrQnTAEZ3XLp3Qb0MVhPlqBGB3cslzWvJSRh3qpRWm2mNTctXegD95NptUoCiNCQjEgNyZGQrbYUYSCPDOXHr+d33z7/8OeXD+9u7/Z/+//4T7/7zV/fjDeJiZsfUgp3Q251qo20lWmFRjF0LpHUQFVyTW47NImCrI56ztOqDcJWf9SD47Su1Hf6+Ob70/H9h+cuDfvbN93bz7r7R3H6HG+W6f3pu++ez+9J1/OyVm0vx/N0vVj1L7744vETYJYURVw9V5+LhN6LsyBbuNslFtK2VlhTp+Xy7Yfv/pSvJ3T9xa++Op6OX//bv/7Tf/kvZd3cdLbvU5fkze3njw+f/Of//H++uXszX2fNene4/fzTz7quXy9XRgz7LoZEQH3XnY9XM8UG6nkjTwQJAK5q2lQkrtM6X5a85BhijLGL3WW6gsF4u1vm1RRijM/Pz3d3D4HD8fnUpZS1lbUJh/6wz7nuwWJMNbe8LgCwwSXQcV3XdVndVWIwtdNy6kvXdx0SDkOPbx7NbZnm0+lkpjGlcexb1dPpaFXBYRh6Qp6vS65l6PvU9VuWYpfGKV+maRr6LgRGRDNd5nlDwU3LCoit1Vqb2XZV6U1tWVZwMLUUYkzJXLX5+XhOKQ3joKbXy/Thw7OTj+MuhLDb7fOan19ehqHff7Jb52VZ1q3Eg4R3h/F8vHZdNxzGkgsYrMs8jn3XJwmstUpoqGAhJiJUh5Coni/rmv/y7bfH87uy1p99+dVf/ewXIXVPzy/73R4I67WlFNbWSA2cLLCbgTkycSRCZg5d6sq6ADjahk91UyOC2EUhas1zyQjAyIEDCJuDKwZhYcw1u7m5bkA8YXH2ig1EXHhZSrfbcRqOS65NnUI2t+a9kBmcLtfA0HV9knh//6ha3333Y3W72Q1glrMRwvl4lsghcBAuubh5raUs1d2XdW7TJCmu6+KYfDv0g2trtVY3a1XXXE1bWZdluvRyCEh917FRXhqmlKJU8/0Yy1XXaUJHI+h2OwRQt8t5CqZ5mo5PL+PNwEQ6TSEJNyZW9NaqXU4tMwT1WjSDQfN5KVaakAgxIkgU0LzUfH55kRDAPXRDrV5KtjpjO/ewVK+86E6Gh31fL095urx8+6Ma3N0/vvn887TrIyCHgBKvS4khhMSaqyD0afCm75+f59ZCDKmLaehDkpIrU1THZS1FLfUxJoFa8rJ6LlCrcGR+peU09KzQSRICr5OpIxMJUQOkRilCjNVdUcwixJ7H3g2qmjk4s0rIyhI5N43uO45D6p7ff5+vZUxBCeZpQpFhGCREoXXsxnUtS164FjNY6ppSFJZ1XhnJW3t+etZDY5aYQt/3iKTWQh/Xmqsptlxqq7nkUqxZSjFGbrVaq/TKkXAAQ2RixIa44X+IWUSCgEExa7UqGAsLsYhICIjAxCQMnICZpdsdDv0wTnPOzQAFDNe8ovlhHPq+11bzbG1dUNVLW0vNAGaNEYSlYa5WXDVuG0PYOrYcwIWAYlrdwYojm3vJZckFA6UeUM2tqmmMndzcXD58AEAKCQBT37uWtpbw7xRHFRIi2iJRMQRhNletdVlzyYsDUsHUJXAwbe4AzKZWVYmZCAkInDe1YoNDojUGzXkKhCF0pdRIfllmbCUmCFSXyylXdlCySmBkVdvGDTMHy6XWpoDEEqBUjqUjszaXmpF7iYOHvrk5kjuA+ZYy+mgTRvzY2LVBn4kQGatiUUXTFBILuiOiIKC9dsghMSOR/zRjABi6uyGS0b87cF7t0Ai2RenhfxF3Nm/Oq1aDP2lA/nEM2uL2Hzder3l8AnKA15lte48fSZs/fUD79+Hq1VAN4PQ6Sv30IV/91gYfLUm6OZLIzbeYHDN7yeQYTMl1T3QT6bHrNtMfA665lHUBh5JbCIGJmMRIfc2JYxBQaEA4O7CTA7N7KQXNBWnsIxmSrrBcXr750/H7f/P1THX98v72d//h9//wH//+8eFeV11ezm8/ud+nuKwXtza3ErDl64QyssMQQp/YSg6l7YXuYiT05lbrug8YCWpAixFiXJf1eDmC1TePj5bXPFtI3f0XX+3evOn2N7Xkh18c2vw50mH+Eyznp/kyl/qhj8c+hce7B0f//ttv+n437vfNvCgJhT76/mZXAacyQ1tPH04hYV6mp8vzD3/58/HDt+vzj60u61zYndETU+y7EFlQ+pB++ze//c//+f+4ubn/2S9+tpzmp/dPz++PRHQ+Xtj95rA77Pd5zrXkvNTWXJgJaBjD5XI1s5TCYb9X86raxb6uFdS7lPDmAA55zUFijLGWdri9Qby8+/FHd3v7ydubw61qnU6zVk0pvrycbm5vhmFUs0d6vFzOp+NLCCGE0KW+G4Z1XstUW22H20Pf78x9+eGHeV1eji9qmlI3jn2fOmFe1vV0Ot/c3oxjt67LMq+EICTzddntdzFFiWEYhq7rzufL6XSarld367pUa5uneWOLrmtGpupaakWimDrmGCV0Q2faXi5HbZZiur29vX+4J6Kv//LNy8sxpUgSSGhZ5lrbWnPNFYDevv0kr/nduw+vHnOJ7rau6/Pp+ebmjlgctNTcD4OrIcCyzkISOkkxdn08EcrnD7vjdCnVHY2Z3j58+vntYXr/9X//x9VMHx8++dnPfvX4ySddP2gxlkAoHGm42demtam2bS9ApWkUnuaVmYkphehErnVjjrFwxwkQ3BtJiiSqjZARNwYM51zVDJGEeEvZIJADldKaKjhCkqf5OoH3XT+ktNZ6Oh4bSNiNp/OVRfv7234XdZ1rXqOkvk+5rlt81LWh+dDHOs+IsOvTNM26uq4llwKA67T2Q6emwmG6XnGZq1qfYs6FCGLfLfOS+pD62Gru+wQMuZbzu3d1XqUbW3ECQYDj6XJ3d7vbDzotsVzJW6urh66RtKatrd4y26qXFyrnkBdtKnlZ3588xLGTw80hpr41PV0LaYlMAUgbNheOwkKRUQhUizlWh7WU03XirpvKMTddsY17GXne2ylfSz55x1/c3vK3L99BKW93fj5f9FjSJzsGXBFng1IMPK5TZbTI0iV2xKeX8/m6hr4bhwMhmRpUL0slITVAp8TEDFirlpXAiikgDRKFwsCcsPiiDSWT90SA6C0DQWlNESBIA3YLxmAxqCWLo4bRCds2AAFkVXRqcxOCfRc6gWk6z3PuoVmz5lpz6UPox2EU5jC12jgVPftcSuq7Yb/ruqhVUwi1tVbb+/cf5nlJMe32uxC7fohQSAh2+12uNZ/WPK/zNJeaJcQIvMzza0eauTukFJGQiYCZuJHSVvJFhPxqYgpaq4O1ZqmPIW25RQtBQkrcDZL6JTfp0v7+Nh3a09PZHFRbaatQoMjDLuo6IRmjR3AmbE3XZS2lcKBhSEjoaIYKyKUqJAoxmASSgKkjICYGdPNmVW0tXlogpGJulUTHbuiIZrWq7Er9uHdrCl5aaURdTBy51Coim2i8qWIGzoxk7Ny0lWVZcq5dn4JITDEGIWIHMgI29aYNkaOEkBijcGQRCdy0rdczsABhPXvsug7xUur56VmjRzRKYq2IUIXWSrnkNTCzUDNXBTcA4hiCuZdl6fs9Lhco2VcP+1sSVpDSVHnLdrkAGn3cFOHGmdrkHEdwRkRAhYZg4GRuEaMjbS3uZts7EWLUjxchN0MiA0cEo1dUon108mwqEQGCw+a58Y+5+I8colfD0Kvggx8navyJVeQf/UAf57Zt7wUfWUUOmxEIXz3P2xIMX+P57uivVR4bEBBAN+j7VpYGjuS4AbmxAQCrNhJgU8wqxTps0fW+pzf7dBMQmOfKRZtVjRIAoJbS1lzBS11i4ohW62oAFUidESMBEjK6Qs6BDZvd9zuGtl6fnr//t+ev/+Xy/t3Dze7x5uY3v/rVVz//mZdVy1zXrPlyMz6QleX8fJoui3rgjtGNIKQIQVqtZnrYhQFdW6tFDZoL9oIdSxNpUZS5aenQdrcjIQX4RRffUhz7w410XXV7f1r7mEK87x/bzVrG/e315ce6XiOyEyNTqQUBSl1woqenF+nG0A0xkXDZDcPTv37/w4/fNatxL99+/c3L84cPP3yfL2fWNWDt+vHhfn85z9yqV+w5/dVXX/3ql7/67d/+4f7+MRc7Pk9lrS6xEeYpD7EsJcMZm5qVdno5zdNVCL/65V9drkcmXKZ5HGPXDSGGMSVVNbWXy2mep3EYG+M85/P51FSXPHdpuF6urRUkvz88qOv1cgpRHFo/HETkepnV4f3T8939odVWcx37kYRCiCIhxbhlIdecqzZANodlXZmpH0cEIOZlzcwhxLTb7Q0spnh8OQ9DH2M6HPZ9StpaEBn6oTad5vl4PDVt1+vETLv9PqYQYmxmTDTNc6t1GMfYJwBQMw7CAYPIPC+X8zGkePf40GoxgHlZ53WZ1yX0cdiNHOO6rNd5aVoPN7cEmLqBSKqV1ur2E/TdDz/sxvHmZo+v+2xszUKMeV1NvZaCSA+f3CHw5TQ9Px1v7++l5fMY4cvPv1imy3o+vn370K50XU/zPH3y8OlXX3z52aef3dzd9dw//Oz+yy8/R4fUR2LMpeZS17Ug8ryueZkIvDNQbc1abi0IIQk75mWN3esTBoKtRASQJSZCbFXNUULA1ogICEW41gaItdSpzQSYuh4Cz7VOl2lvEpYVkbUoDUlExrFfc305nu/2XRA+jPd1mkpVUtOmIcVaSv3/c/WnP5K0WXYndpdnMzNfIiKXd6ulq7q6q7k0QYkrKAnQAII+zf87EoQBBhgJAqQhBA0limyS3V1V75aZsfhiy7Pde+eDR75VlH9IZIaHZyTS3cyO3XvO79QyHUa63z89vjBBcG7d1q4tBL9cV2JGvG1+MKYAhFMIYHY9nwzBEcqtm8yxcxGIduMwaDpfl5f10+5e/KBN2aVUpc/LBmDn0zOqTeO41Pb06bz84XsA20/D4C3XDftyl4zKpa1bvc7XnD26YRxOwzBMe2S/lRZDOE4TpZDSkIJfLxf2Dth676pStsyIkcPjfN1eVuXQQHPL3iHk5eX7/1ILEI/zx3bmGep1IH54O0TIopRQCDWAy01CZGJoVVgkEmLTrZVtW0JwcZzQee3d1OZtU3LXeSMi78gTDkRMaIYkNMQgJmuZh93OA4BY65ho7JbnXgZKiqbSjUKz3qQzp+5CJ3RpQgwVApB3PgiJtE4MaNBbFTRDbGxNVbZCiATERKTinWMkJgJiZNL66shwxEY4TeNuNxnA9Xy+XK/oUESXeZZB0pCCD/vdTs3meX55ea611LzWbb0VsNdSyrYQOQDoTQ7Hw62IzXsvosTgQpBSRdRAEdTxrWOOnfe9dwAwtN7FO0pDEhVVS977NOwfdvvjftztuZRU5LqWKt3HFLxXwtIF0JIjH3xbzQWPYmsTLR2BW20+cJrStm6tkXLgkDAMgr42ca0LKjIroGMGUIcwxQAMHsRa8zF4H0y6oju+fyelkGnZ5lxWAfJpiENqJcMr3gYRsIuqdlAlBJFeW17XtfXapEPWy+VyvLsbUupdEMw7BoHW9YYZR3KM4JxrTSyvxqF1ghCRnfMuYsAmxymcv1tzbWEMQ3ANu6l6pq6GCCKd2XnHAHa7001jWuZsHQ+7Ab09nx971tsbj0dAiBzCK8sH4HM5Kd7ogSbqCF/z5PrTJooQwBPbzaakpiCv/asIqkava67Xqrcbl/C2MDUxREZ6JR/Da9TrNXP2J9LnNcn1Ohf6LHE+yyD46dt+sjXf/mivU6vbDu+mhZBePdK3eZJ9nhrBrT37dclG9HnWZXhb2iESvi75yAyBFJEdqwmpBtSEukNwve2IJ+xOVLUkj8SuJQFmU0DTXIpY98GN0wjL3MrWcjbvOQxOxRmzURPJdQ1suzHA5cPp6eNy/ji/fPC63U/pq3fvf/Pnv/rLv/hNiL71AtLK9dxyPp2fWaX37snd70botN/TasFFpyxYinPysBtGcueX09yrueB9iOQgZ1Kh3uZ5btuKANuSD8fD2zfvHbUC3I1rMUVEjNe57KYI8TA+fJMe3r158/7lw3enD99fXk55KV9/+XYc0kRDHOLD2/vTda5te3n5oFbePNzvY/ubx99d1/Plevr08an3fDjs40AgDnrf5tUD3437n7/9hpRSGv/xP/5H0/54PN6fX9bvP3xat3L/cP/0cq5N37y9Z4dL3tatnC5Xs1tfs/mQDDCO6fJ8QgQXAhGdLpcQvYGFFNe8dVBlu65LF72sSzM53h++/vqrH7/9cZ7LNI13bw7XZc6PmXiYpgFBVfV4fywl9y7f/eG7aRrHMTnmeVmul+uQRsc+rznFQMRSi6iYwdt3b3e7nXNuy+u6rNLkcj4fDodpN3nvQgiP89p6G8fkiELw121brsuHHz48vLnftvLp0+OXX3351ddf9ltPOYCI7Ha7WnKtrbV2uPMhxpfTZZ7Xy/XqfbwVXtUmgL1oQSKAPq/L5XxVst1hPw6TAT6fzk17SnG/PzC+ogRVlMiFAEMaVl3VzHkvqrVUDqyqpkCAABa8jzExkplJb+fTuYO6luf92wNh3ZZzcvD04fv/+f/5f/3bv/n3f/HrX/6Lf/Evk09d5e7u7jAcvvrZV2/evvWOyCEiVOmtSWuiiOtalvMFQMY0Oqa8FVA97KblfH15euxqyNi7qFGKQdVO13PvzfkgBl1Vunnv0FEXHUJAgtariZEjB7wt2ZBagRbCuBuAKa8ZEXZTpBBFOoiA3TYUwaF572kc1vk6Jl9acUhuiLXV06k7Juf9tq1qKibaIQ1pmAbPrAImOl9mJNjvj85zziXn0rsg4DCOPtA07Rw7Q0JAdNzELvOSt8WIesfeOgW+nl7OJ1Xou2FHQBEVt62/XO7u9nt1oUkrG1upl+u6XJwDLKXPixhIjjWmy/MzkQtpxDQ8X6/89iHt994zIeWtNDLnCJmbQF633WHPFNb5JY1o0ssyI4OVPqoeDvfkOG+n7//udNyNPu3W87W3jGQ1z6GNu3EKcdwaGlurXeo2hlRKy+dl4BAOR5qO5+uKqgS2bdpALASKaNal1xj8gGrardRxPy2tB9TADQRrFebRUDviota0mjpiQqcNQNiLC+wnYaec1Hit4jx6MzTwyUvLwdHog1gvuZTLurDcER6PR6prLiU6C96DWWut5O1yPm9L7l2lCxmU0iAZAznnLk17rsM0OO/XrXTR0tqat0l2NyJFbbVueVtWE2Ez7b32rqLkHBog8llPwziy84R0QzYQcYyhtqaqqiqizOaYMIXWyHuPiK01A4sQHQUAFNHBu93DPo7Deb2eTxcA9oOvc2XnOHljrCAxcJUWYzSj2joCBO/IgBwGR8xsHHAX5k1S9P7ugacjoGvo0Dupbb3OAOCdT+OwG4KR5zg4Uqu4zNkajEMI4xSHAU17y/WxmfbgGXsDx6QeanHeISJ2Y8fWpXWVVkWaqBgCOYbbRPbWOOvoFT/jkChw06691qJqxASAoqoNUAWEDASImohT88mPyR92Q8uCqNJqyyV4N4RABr33G0wDFYYYgsfgg/e+YnHRRY+t5j6fsOua56gw7ScmzmVrBmmMgCAKdusFM0FwTA7gFvMyuVnGyXmfTAXZi2mTZgZ6M/DeNnfEt7h5v/mDfsqbqzgzYgZCURVRQEEkQmq3CrJXLvStFN5uuET8bE36owP6Zo5+XdP9yRYM/vjUnwbgzf5rSQSf/dF2a4e/Lc4+Z8huUK+bDer1b0d7pT1iMyNGNiSwgfx9dHcsuLYRZB9pPyYR39Y+L3VeMoAQUwheVGMIaUoEULZrcCKllXWxsCH76HSIcp6vodSUvM3y4dvfLaeX3q4p+enuuB8Pv/nVn//5n//Zm7t9iN459QT16QUYnp9evOPowxCHDSi3vjvsexaCZr2xbscxfnHktrUXa5VMg7dhZOK+5T4vHetaW1UNfi8mIK5u1fJWa9+UKI214zBOPg6GAkEwleNxPMQ/O969/c8dHr/73cu89O/qcTf9/Bc/q1o+ffsx13a4e1CxP/zhb3/8Donkevqh1lWWq5PZkdl88QhpCKh+God/+k//+u3b94zeuRB8evPw7nrNy7W8+fKLOB23bfn0+Hy5LJ5d034+F+2y340oUHNGUO+5ZPjxhx8JlYm7tA8fngihS1+u892b+/3dXhh9HMQ5N01jDOMwOaYm9v2HD+f5vKzXw/Hu+XxGNGTovR/vDrW04D0SMYOIzCbsfVPzwe32B8D5F7/6hZoaWK75sB99cOuWx3Hc7fdm1lrLyxq9v//5V+uyIWGu1RSD94f9jpimcQSx89NJpIfot3Xb1goEv/rVn43TuMxzDP56veZtO94dt215/PRoZsS4rmsuudbce9Vszcndcd+leaIhhWXZ8pozrqXGYT/mnLdtK7V+/PT0h29/f9gdjnfftCroQbqUreScpzENaai1tdBu1vtScyutX8R79sFFP5yeT+u67HZTy+3x+bG2imiq4jQv20XzaSZrwu3f/3/+7f/4P/4PxzD8H/6b/+av/8k/fjm9/P73311P8/3hobX++Pg8TjF4RgeARM45w9paStHhXas1xHDc78LNvQo0jxciKuXb0+k8joOYeB9V9P7NG0K6XK9NmpmSsSNkupUoWkrx5jn0wZ/P18NhZ4YtF+/5uJ8O+31e5utlCTHthtE57MrX6+JGNmSfvKH5GJPqtlwQ0Udn1EurJedrraW1mCKR6XrLw6p31FrtXZAxz1sHGfdTQA+ioOqIiJkZY0oASEwueFTYakvB1+hbl3KZOQ6AtWeo62aIIUbpfVlPjsIuQrwfvvrqITLNz4/zyyeQfDk/o3U3Jm+y86xmhObMUvRxSM45sF7XqmXsnjn6aRfWq7RamCMQu5ggl+t5OewOrZsfpnVbLqdLy/rmMO3TNMYIjp3xdd6694/Xjz/88F1I8d37L+bLR53n6auf8e7ONyCD0LZtufYNMXjIJU4uOX8ppYuiQlsrAIUUcfJIgr1ZyWVZx8CYZ11Xdn1gTIcgyNu1qwh0KAZu9AZx3roRO/YcAIKJmKFHNxAzorvxDLVtPozBEfTioYM2T4aIjlq3DZogyTgOLmDNdTgMzmNrfVuWOefL+TRfVxVNcXCEcy7L5RqYAGBZrqbq2IUQau1bzqeXFyKstUTv121ZrtftuljrnpFiFBVdJPfGTEjUaim1rjmPwxRiis6LADIiMCC21l9vzem1Bd4PPqVkQKUUNe2qQ0o++G5ITCKae1tr6Wa7aYqARMHAcwy3KjZgUrUi4oa0XRYCAMeeyQVWkNoVnO+IEBz7tHv3Je/uQIABDaktC9cNTBEaU0QX0bkO0rv44Osml1wa2BC8Y3TAAD6Ok3McyMplbr1479n5WhuBEYGISLcbA73WoiohxH067PdSSokpAkEXQ+JbZz0AhOBQGW4NGk3U1HnHCGbGYGQK2rVjXc5T2OV5JhMGldrLtph2x+gcDzF1alvOIuLIESACMN0qT4lQ8zIbKLRstZsS7FavFcHfukhNnYIRsxkSIhjfFkpmrwBB4le3MRMgsbWKBGhdxcCMABg5ELF1UzEAFEXnBVANxUxVVboRO+8JScDEFE3h1gt7a5c3AED6yRD9utJ6nRPhbWz02dvz2Q2Nn0WNAaCh3eDi+BMmCG//7J9M1p8HR7fC2FfPzx9tQgbwWYrZKzkIb2F9BYe1tegADLqIKYVEh/tJrs/bVd7efalAy7ne/kdaFUUyU4o+Ru+Zes0OKfrQnfqmaYzDftealJenvszSi8EQdyGguF0ypXE/aIO3b9/98lc/P+zG6F3wGBxfn8/R+ykMolpLW06zAlxzPzVwhwMi9tas58nD/ThQnvNlY7YQuTtkgtrycr70ZRsORxIhBQVjwnrdWHHyGJgLkRFUwq7a2XzwGHaFbUoerbowHB/ebJfLev3hNF/n9TKXeTclZDwcD+eTXS7z44fH3rdWN+t1NyUpa89LdGEah7dv7lMavnj/5a9+8fPf/PYvDvtjzf18ukzTAYjjiLno+bwM084ALpcLIZnp+eXKIqTKTJ6xtgZq7Jwhnk7XIflpN0iHdSl8S8oOQ1d9/PSSxuRCyLkhg/MsIuM0rMvy9OMjgJXenp+fQ4gPb+6HcQQxMBh3ScVyKa017/3+uD+9nL3nh/t7dtR7v1kSnGOsEFNc1hy8H1ICA8duNwzWW2sNFXttpbXWGh92iDQO4939McU4ny/rshjiw/3Dw/Hh8ekZwLz3nz586q3tDpP2Dogxhm3NouKdv5lB5+uSczGFcTc9PNxD1/naBHTb8rSbQojI5l0YD2NM8bLM33/33d/8zX+6ztf7f/jm7u5eqyCoI8qqQ0oxBbvdl9dqand89CG02mttaYj7w24IYb3O8e74s5998+0fvp3nq3du3E21dvf87R/iOHzx5dclL//+//f//nf/7t9yx3/5r/71b/7sL1jxMO3uHx4u83y6XIHo7dt7M2+AIMCEo/Pndd6u13E6DLtBeypb/vDtj977+8MRDPKyEFBrPa9lGKdxTON4DNHFFGurFRRrNREwAzQfHRnWUonBe+pqKi1v6939XfCRHCF7yhuGaKVKLeqdSfUhTCleg3OMN8+8Ndkl9kQZtEvtS4bWmWD/5vD86bluJVBg73z0tdd1WxhJmxjgMIwqcr0u27KNMXnnog83ZJFzN0JYLzkTc2CnZloqtu6Ju/RyvboQBMCbpWmKKZjq8vKkCo44AcxPP0CK54/fnz/8wCgtLym6RCnFZLuxtV5ynUY/jN5MtAoxOw+DNylrbhi9340Bdqm2GoZ4fDje7Xc/fv9j6cKINRd2IcRpF+K7919t67ac1v0xDBzMWznn63zptbx7++a4G87P53n9GNh4fgkujMP4/PhJrlcXonKaKCamUpai6GJqBTj4ISRjytaIbdqFMAx+XVi2Nr/MHz7t8Mvju7tLkwa1bB26I7VAgAJ+ig17VZJIXZpIdd458NIa5wYA7GwgiwwTFSmlrSv17lAcAxFCa0qS2E0uaL52acEhOhLRreattFILGEhr1+vcUhtTAtVea8lFRR1zOhyCjybQpa/rWnNb5uV8OsfgpPdSci1ZtHdRJL5RjIGhWetZaukhem3cY/CBQwxIiESmCMhgGQCi9yl4Zu6OTBVUnfPpcBSwXnsIcX84rLWHGGrJIkUVd4f9GMe89WH0qqEYtNrIEybPHPq28TCN5rRXZeqt1ptbBCHEkTAxD+KihoO61OhGggaO7BItp2svnR2mnRfU2tA5ryQ8RGlWOhj06MkQHGIah7AfxujODOdPuakRU14ao6lp7/0Wq76lqNn5mIYYg3NCTORczi1jC8EHplobGMchOecNoYkQA6CyRwIRMUfkPZPDTdt82S5SpW1M4iJp70RKjNprE3LOw2v2nmPyQ4y9S9e2lQxkBjxfToSqZfNI5iixsvbgwIJvVXprCjq4QeDmWyc1QYRbmQQS3Lq44Nb6YgqmIIYG/bZOAhscelLtvbeKDskMVDwPAtQU11J6q3wD2DtSpBvvx/Dmnn4VIWiGr8EsNMTXfvifdMrnvdcftcyN0/jHzdlP5MafdM1PQ6U/puLhVvQBr/6mz02ucNvuvbap3hrK0OyGb0QCAvKIZL33LW8wOBcosJPqmMkUl3W7zosScxpyqbmJKTiG3kTWtealtyqqCHY4jsNuJHZ93ai1YODQ74bxzf0dI4bBL/OSL+t4iL/85TeHFPu6FMkOU61Wt2xNjQjRlVLWLHEcxn26nrblPFvyiuqw74Zp9FSXefDsYpK5djDsra25bxsgDEOiBJcl51Z7r6R23O92Y2xSqzV0fV5h2frT5ZLu92OIdhdC4PUyT2P65S9/8eX98enD/bff/oeX88fHbz+l4IbkH5aHgNE65vm6reuyXkNgaW2M4X53/+W7L/7BP/jtYdx5Dg8P91+8e4h+V7JM0x4xGlIXmHbT+nj+7tsfmZ6GXVJtvfUxxi7NyFRkvly9cwzI5AGZnCeB1vR8Wp3DOEbvmJljilveTufz0Graj73IreuGEH10pZb1uoy76XC4W+eZHRHSMAw1l3XbcAMVy7W2UsfdSARM7H00tcvpcjmdrcMwpbyVmtu6bNo1Dsk7P0wjAtac97tdq31b11Z7LRWJehFH1FVePj2tyzIO4zgMgFhrUREiSEPalsVUdrtJuxLxYTekkM4v5+DDbe3bpc/rUmsLPqYUzRQRd4f9dp2l1V747u4ujunx8elyvoi0XisoEOJuGvfTdNjtyrbO8/XheD9NKee6rtvp5aRmzvE4jb21dVlumW5iRmAznPaTiTw9PtVWp2E83t3dvzl89+HR/ad/9/91gZc/+7is1//p//5/u14v/9t/+a//4W//Udt6gexH/3B/73x4eTpvMS/z6giT2027iICeqS5LXeaHwyEQdadL2dZ53u1GAgPTXnJeV+3ive+l7d++9c6NaZh2uw+Pn9KYQgqqKqXVUlVBVbpIvRTnuWlflsVMt7yu8zqMwXreTqtHZAopRUOqpZvrfhiHlMixSQcm6ZV0YED2NM/ry8cnjzCmNEyRvIvj2Lo4pDjGPre6FRN1RCF6kUYMwxQBoNYiooh2o7vccIit921diXi/m5z3jOiIFdEnZ1uv21Jqc9H7MQ4MSnpdLo9PLynFIcTH64VMo3MpOTCTAp4xRY8I0psHmu6Ox+ORiJ+fXwh5vxuZXfJsYoAwpPDw5i0QfXp8dOOtVo1CTP/hP/ynZV4uy7a/v0sh3d3f7aZdXeu2rD2Wcdytbe7rhk2+fvfVV2/feaYVe4BaX37UE1NwMIz15TQ/n9998fV0F2fpulyWOoeHO1XXex9idNaly8AaPSaw/eCTH9zavz8/n378bh/h8JACuutabYMx7SYfBgLRWmujgJ4iBVzP67qs0zA6F/pWHVDbMiULkVJQXEqbr5KL9MoOObqUwuiwqgY25+zlfIaav3h337tt83K+vrQu5FzwPqV4vVxa2bJqGmIIIYXg2BnviAmAtloIkBDSEBxTWbe8iEpHQu85bzLPMzlGRlUBNFVpvXHwQAiIPgUD6CLs2PmgCoYmvRNhGtIQIxKx8LblXIsHnA4775OITvudc96ojeO4lJznzfvEjlpp25KBooDNtZVacXIheGbmgTTT+DCBVF5Tzqt0JeeYQ9wfFJO61JA3cmu1S6+AOHqXUrDiCmjOa83jdMAO2G/QJrXgBucMRcW6qgGDmkir5IJD8o7MVBWYaBwHMKmliimRKagZOhdiCqaScyHEGKMC1FIAkTpb11yLGjQT56MhGkCI0XlGIhQ0NXYWHXUVqRVErs9rCExmJgaqjCi9gYKoSm8qhmbB+xSCd2Qm65Ivywpkwziadu1Npfk4ABGD9lyAO1l3zLU3ApPaAAkUyLGCAhLdVkZg0JEBCM1UtXfPZKKtS2QwVTLz0jyD1mItq6m07tLAqYU4sNFWtu06Ox/RkGJC5w1MxIBUb3acz2snNEWgV3/yH/0/nxNa+Aooeg1x2Wdt9F/Fy15DXvqTaPqjkfqzTnp1A+HnFNhnPOOtBe3m1/784hvWSVXREJmNOIttomsxR/XN3f3dPtVqy1wFUQGV2YIXpSw1smutwVJqbhhCRymeEak3wybmvJFzbvDJ79/eNTDBwdTt9/Fhf/8Xv/75l2/etOu11tJzFweqFoCRQ4zjttXlsrZmd28mc+GOPK117Z3QIvsxDGToiMbdOK89Sutr4Rj6vFFZw+C9LCEkN9BZ+lw3ZvIogYS1Q801r95cIuB6TRDux/j89HL6dAVUzS2yffWrL3/2zRhC+S//OT+2UmvuZZNcqJNVkCYAcLebYgpv7+//8q9+fRiP++H4zTffkEHd8v5wmPZ3uYsirVUgxNr1+Xzuz7Mi7g8HUTE07YoCDpETS4Wuql3MIA0RyNYtS5eYvAFcTudxmlJgUF1zVtUqbctly+UOkYhqqRoseH96Pt1OU2A27YZWa8n1cr5M02imy3Vd5qsZxBR3x8m70Eo9HvfTbmy5rvPaRR6fHuMSY0jsmIjv7o9dBAFTTHXblut1nEbv3WLqgw8pGsA07lQ1pXR6eVm3LKaENE7Ttm7TNAxDnKa9JnGOY4yPj0/zPN/f3/XekWmfJvLcaqutjeOQxuTYMxERBueGFO/2+zTE0/l5mS+nl6cqfZzGLVdm3KX0q1/80ofws2++Kdt2OZ/XeXbIMYZ1mUutSJZ83B12PoTacu2t9R6C3+920zRql91uZ2Blq6IaUoxD6oq9N6d9fTkvP377tym5Op//8s9++b/7N//mq4cvz0+fvOMxTEChd2g7zbm9PF088cARqpaSe6vLurTarudzSo2I8zrXbXa7tB8CM2NtIA16n5IPwdV1lVrJaRxS6z366JwDg8ybiknvhOCdQ+dE2uV0eXx8HKfROVfWXDON4569D97FceorVQUlrCq9FOeZiUybGHgE6dWsX56enz7++Pz0hGpTSqo1xsSe+GbiIQvM5lhuXTAbGHZFC9HHkFQE0aSLgiJhLaV3adJaa2ZACLvdRLemHzU2c9Bz2XqtUnFBsbK2Vh9/+O58vuLxGHe7xNprt67am2mPMfngRE1ay1sepzENw9u3733wzC5v5e5wFJGWy93d3bibvPMpDbmWkEKpdZ6X0QVAaK05YmltW5fpcASyGMP7dw8/fLtha15V1pVaGx0dY/RirP0YQzDd1st5vor0tt+JSFQ5RgFsT8+noktFf3gzko9DF9vOyXk/eBoBWWRZ1vkSkqvzVZYXK5eXD3Z3N+zffdGkQikDWSSP0lvNp+WaVYbj8c27e0h+fdrGaUhoc56DT4NHgU69UlY0C9K6NALxAtgESbzzDNbX9aWVl6cTWU+eQeR6OZ1ezgowHffJhTEO+/3udtmenE8xhujZkSKqWogxpNh6b60Rk3dORJZrLiXH5KL3nj0higgY1NZqayGlw/3gU6y5m6GPoUtHouQiExNiw8rOIRIANzHrXbo45wm5i6kBOecihRTWJV/mSzgkNMBaaxYrBsBN0MWUay+lG7nW+XLVFnCcIgYSsBjjGEcsuVZxKTJHjGNvZG4QsKpYVDoYmqpAIOfjgOOkW0Fp2js6JoQ1VxccAEYmxwRNeilrrw4KtpLbSpHXy6WVQgqIGGJwoK9YQzJkEhEzJSRyZAjehxADGFYfuyqaoRmTM4FexbRxcD56YlTtJs4H7whEtbUm0KALiTKjtl7y1sviPRKANGFmBJQuInJrGTPR3PO6bct6XedFrKuUaTdFlxyRihIAG6KqU1AjT1wkG0IvxTkPBkwAXdC9jmOgKxsEAq3St4IqLnpnhpKlNARjEOu1W9/mC6GZivXefYDhkB7eMadr3VDUpRsyoNnnQjUgMjFFIkCyn6rHXjNfnw1EnyP5P8F9Pmufz7utn1w7Zre+eXilJ+rrCz7Hv34aNQEA8CuO8VVEId5IQ5/HSJ+LW4nMTM2QxCRXCRT9BJvC4zk33w7Tft2sLjNTHPfph4+PWaAxb4qLcEXvmVxAoTEDdtJqoorBvA+B2dXeABGiLzyqVgzJObofQgB9O+2OPsT37z98n6VWapqcL9LKVnc7nzj8qJB7bm1rJQPa/i6MOtYi0vJ6Xhv04xShdSdlz417y/OFa75jGQK7tjD3w7Q7xv0Hy4+PTzPUY/pi8N6rFKwv89LXvKfm63n+8eX64cO8XWqv+bwg9pcppGgs9W4Y4Xg3X06IZl2cQYxhf7x7uLv/7T/6SwA4HPe//NUv9uPd3eFeqn364dO6LQ+/frh7966Bff/DY6tADh4fL91AzVrvYOKZHNI0JUgMJsvSEQwJnfdg2Jsa6o2imigyMjKpSROsrc/zHKIjx8Tcu/bWU4qIGLxPIW7rQkyMvpZWSzXTm38NkRCImENMiMjsHPshpehda1Vqb62ayc3Z1ltjosBxSIm9F1FTq7ks83w9n3fTKCJ53dIw7o8HI0gx5m1DwBD9Dsfr5erZwZTG/cDIJRfrXVR6aTf/4G07cTq9jCnt9/vL9bLM893DHReutZrp7jiq6KfHT19/9cUwRHYGZuu6EuJxmrz3fs8vp5e7u/3PfvmLnGstG2ogQCJ4eX5qtavItNvtx50BapNmVaQPMSYKTdr55eQcq/Xz6TyMIzisXQyAok+7xAHd+68e/u4/fcrzS6/21bv7//3/5t/8w7/6bV8ytr1De39/9+OnT8dpGKOfl5WIhxA9+zzPy+VcyyYihLy9XMI9upgIVEp++fjpEIf9YULroLLfjSGErnp6fmbvwSGhJ4SbuCFgx6xdem9DDL0277j18unpab7M18uViWOMKh3BTFWaEuMwDoHY2DfD5XK9e/OGAWrepKhjaq3XvGzX63I+Mxgx9y7nl/P+aAa63+09c8+dkZPz6rhlKaWQZ+988mkYBgRotUrQUuq2ZnZkN4YsonPYej1fXhsMh2EENNAeg4vJXc6X06ePj70B2Hy9eMLRw+AJDMzzdZ57qwhwuDumGJDAeweIyJRLXdZtIkrDFPyA5KzKlutRbYhjq/XTp48vp9O4mwC1bGu2ZTmvl3lJUxpz3PK6PxxMm/YSg9uNMXhuZZNaTHr0Mc9zZGPm1iqZaN36cmldcAjRM3Zdr2fNkjilRNw05Ms0OnMyl1O79Hg/EYBal3k9f/j0abneTYGdpYGDg/n5k3NUr2t9WYX4itJqvizLuWyK7v7922Rflbytn76/ai6c1pcLh/2bu90uBkBM3jl2q0EPxhjARKCdl4y2eiI0W5eZmFruz09n7b2UrdSGCNqauhCH+EAPn378pKIh+BCdihhYNx3G8c3bBxFp2tdlyTlvpfbe8rbVkomiZ47BxxhFtfTaaqml+BSnaeIQYzAkCj4SMyIiOCQyUTMgJkanZlvOvXYk3O13IfCybU06S+u5X+dlWZfz5aKm+90OejchUQKO5CMgdunIHOKADopW62pFArnoyJwz0i6+k0lgFwbjuBmIURXdFMAF77HlrbSyFYkqrODEyuW6hDPvjsyp114BO4F5GgmcWi9bmWdoy93kpffrUtf5alJKbkVgjCHFQEjEZKbOuTQMRPCZrP1am4lEJAxda+0I5kNkRVFh9kMaXXAiUltlB2LEzjugLr31zkTWZdhPNZdeWm/dEbnAbhrKWh2Tmd1gPWAm0mpr67r21kC7Sm2ZLIQwjKBWegcERiPTYAYGRZQVFcTMiIgAtVUzRUEyvo0/IiG2XueNegXpIJzGQFBzXkAlOoNWyrbIfELGmLwHWy/nuswjI8ad622K0Q8DOl9ERJsLkdkBoakCGN9KdF9RP39UN59h0PpqCkJ4bZPHn5BFf5zzvIbd4XMI/gYa+q+DZD/JKvhJDf0xT490qwL5Y+jsNnRShNtazww0DINIv7SKIq3W+HTZB0hg7988XMtWgTbp1XBR2NhtQiww8mCgC2DBroQIrqNz5MAQw8COQgpza4MP0/5+xD4GStLz8/llWb758v39btdyTsGbWIda83Y6PR0f3sTBoR+O0zjXLc9L4N3ucDfb9nJdOkMcXRgHx+hLOQZ3d++ePmznst6/uQtD6F0FauS2H4c684fraS5rGWPc76xs6+W8nM9AkBz/8Dd/12tGsiZlvsyt1prXT9+vDIoiKfJIbq66uxuc0vvp7h//9q9+/tXPj7v9L3/980+fHofjGIeRMDwc7pMfWXga92/ffYkhbDULuzX3stZGTkxzzq23nldS3U+Jgx+jY3ZlXYkxsHeEPriWRXofd2MMPqXUao3jwIjAVEsFQmTuXdXABw9ItXQwRCARXde8P+yn/ZS3fL2szrkQ3ZiGy/m65S2FuD/sHftayzzP1+vlzd09Gj09PpVtXXP2Prx590ZEnx6f49AMUdZ13I3zPJ9enkvJjqm1RszDONTWXl5efArrthCAirTSjnf7L7/4Mufcpffel20houfTqbUafChbabUBwTAMqlJzaalK74SkInlbDcAQtnVV0Tfv7p9Oz27mIY6mXU3YuVuvESKy4XKdfRhu5wAK/uHumLxb13wqL6K9tToNIyCKKnRZr3MYwtuHt/OyXi7XJ3sc9sPz6TT09ubtAyW/LNvvv/8uJvfhu+9dGCTL6fny7T6l3/78n/7i/Vsvxbh12L58+/5uF5cTuYZht/+x5fPluhIkAOjF974fp1pyTD6NQy/r5eVRcnu7nxDx04/fr9cdmH16fLoNhmstpZftcs6tGKALrhfwajHQtDsg8NPTYy41eFdqNbDbu6sqzvPlekJDcsGH+OHTp4qIIZIL6Nm6BMT7cQSwSy3SKhAbMIBGpsO0U9DD3XQ9z63UVov0rqUPKXkmB9y0xxDRNTCIYzQA6c0ssnNIBGAGSrdqsFZ6F2ICpFzqup695/1h33vJueRaam3E2Npaaz2dXnbT6MDGlA5jGoI30NZkN6RZOiJ6ZiZUVRf8OI0GNG/5v/zuD3fHu6+//rq2rWxFm7Rmy1ruReMwPD2f1usiXYCs1nxet8vLtYMIdEHNNS/z6SHe//jD76MLJl21xDSEiK21y+lqBq1Mh+PRAEpe65ZBume8JeAQqJUKlg+HCR1pXaaW+oerSs8fnz78+MklHu4ie68Nry8zGL27O94f9wx6eXzx8wV6+fDDj6UIElZoy7YuZZu30rpB/ybp+eOHHx8/flrevJ32R1bK7UfZ7v7qL38bYorDtJWqxmHY195rLa1Kr6i1k/XBc3RJA0Ar27qiNQRNMRJTLc1g3Y2HIcT7h+OyLmq9VxQkIBS048Mde9daTyEejrvaSl2bmaQhsENE6L3VXtWUPG3zVmpNKRz3h/20dyECYGnVcwgpMHk/xBRiztn7cGPhINK2ba01A6i9O0dGhMTO+zWXeZ23ZWu5PX34uJ7PjgP7OB48+2C3kJIKhQDedY+I1EBMuQMaDSqgaJmpspnzvUMXy8Xw1s3JJIhA7HxwAqTQavfEx2l6Xs7bMnsXIDpmtzUQMOvdeyTp2JqVTcp6XloIRqqgPTjXodbWmIDMmFC7iHRAZCLnPDLVnFsTZkBSU91yaaUiwq0pxr0+fPDu1pJKGGtrvXaKMQwJWi+9q+gwDESIADE4z4lATNR7gugBQaqic8zIjGLaVdDQIXl2iJKC855ESm+KxDGw9da3hcKRuDBEj6FDD845hww2r6u0xsy7/eiQW625NhKBupE0VPUGjlao2eqm2qAam3JbvBSPuHfOwGBtJYtcPqjfohvc8Q5CakDO6JVYeOubUEGi1zSXfTbk3NpP7XNP2OdM/M3jfNM3f2Q9v5KgP4uZm0ZCfK21+BOI4m0OdONzwp9Chl4VkhkYERq81p7eBlKEbIZiiOhcwGpC7EqrF7DSdeoSkk+Os0lHcsPQ2tYwFKZK0IGYTNCMcWNqN5AJByFXuoEYgkQgrVLP173Hn7+dvFpy/uu39yPB6fHHM8g4BceMqi+nS16XXSLCdrk8Mtf73fRw3E8a97tBOpr06zxT3XhwMUQf/dfffPnpD9/ml2tivPvmze+kBLC+rI4RGizrrEByXfcegMXyfN2uL0/PW1kMxcA48Pb07bJch/1wvlxP5zMjEjKjTWMKxF++f2ui87ufvf/ZmwHDL99/9b/+679OIZa8heDiF+/d4BW5d9yuC0S4O+xDSuta5+f59x8/YExhtyt9Ncfzktm5w27wsq/rlbVrqchoolorBR6mkYBU1HmO0Yn008vy3Ds5CoEdcZkzGIh0EtKuN0p7zpWIximV3uZ5zqWMOiGCkSlKE801z9erI9davfX3UgRE8D701uZlvb/fH+3wopLAYkq991IbeddVnPOn08t8vXrnWi2gxj7udlMcYhrj+XzNrdRee2u7aQoxnE/nEMP9wz0Q/P53f9iWzceQUnTk1pLXsjlm/XwMzOtSS74u18N+//Nffv3d9z9cTmcfw+HNYc0bIZfTKYXQTZZtDuwO+52nMC+zQUGipt15p6JgRo7sZohDCsm/e//2+fGU12w7ef/F+5zz5XoJzpFAK2VIvq6MoM7x8c1dNfk//1/++3E3/f23f2glf/H2Lq+L+3/923/3+PxRuxyG/Rfv3msp//P/439y0d+9vSPrNc+JIS+19pqIPszLdrmw9LvdOMbwcDz48NBq6b1IbeW0UPBgUkv3MW7rsq3ZeXp6Pi3z6mNkJlVZ5nmZ5zSl/XHYH3bSrPXmHLdW5/Nlv588U86biY7DaGAll+UyM7sQJ+fDtm14Ok3Hu0jOIxJD2o0BzEyTw9Y1sDMV6f2wGwNjra331mrd7XdMWHN3yNJacAnJiHhby343DTaU3kRFVE+ns4jesC7OU4ypN+mq5BwRS+tq4JwjRmZCgi799PxcarkJGtO+G6MzOBwP0ziQqbRsAAQYncNp12opay7ZkFE0hhjSkMiFj5+ehzSmYXp+POe8OeLg/XxdHz89vX//Nnjn2ffSDERVSq5hSKXU67zkmrd1Vms+UWC3iKBq8GlbNx/9MIXatl7a48f1ep1j8sRYSxW9zRuzAamYC8rYtRWt3fIGi9Ztna/X0/Pz9enFBfb0drp/gzz4w3F3f//zX37trG51dSG19XI9PUenIo29uz6fX56fhQwZY6CXH/+QX75ft6VspSa8P0YAPD+/YFtPX96/e/d2LfpyWuK0q12LKgRXCigQstPWzUx6kbJJLwbi/TikaGhIqKK3w4ydA0MTuEWUe5PS6lYKe88xWDckct4PKVkVICCC3kLr1VREDJhFteRacjvsD8fdPnCYxul0vq7XLQRxPriIQ0oxDmrgnb95UHtrROiCN7OtZFm3GAOx896nGC7X25VQ5/OlrX6cdmqVfEwxIpqCAAN5A6fG3oiUvSALUu3kAJSxMFeDrgAGrYMBO2Y0RRNogtZBevJMta25BLRhl0KZ13Ll1RH4NO6X2m+bWgFgB0gErMDw/OkJrd4dxv3dXhV7aajoXmHjSIxq5INzzrXW58ul1RZCcM6JSsu914YAhNykBR98jNqN3c0yByriXQDEXCqHjgQheh9DV6i1A2gFTTG0qt4zgWjvMThpCh7JwPSG31FCCsFBJEPAhiFEdq61LlVS8gS6bXPtGOPUBcBNxN47F70bBtdrlrpJV0TfWxOrbdv6ulneRrIpYHDqtdPSZblard6j9W6q3qpxT8EHMiLCKa6lWyvSZz86p1JrYRfG4Dpaa9Jy4eQQQFUBEZBUPm+eCNQMEO21kOMmjV5F0Q1i+Dq6+elX+KyLPufgf7I83179R4/QT+u1P318Tou9Zs9e02O3ojIDAyLs1pg8MwlAQwtpMOd7HK8qDBz9IGQbbBmkgW8+FFEjFtCugACVnSCS426uC5IzZsXeqjbQfjiMb6eQot2F6RDgqy/fJBOoJylrY81FS82X67afRo9qpED97Zt9CKluF/bOqUrtOS/z6fk6L1ycG/yQa67ZRffVz9/BXCy34On50xN6GneDql6vM7Jj5t3oe++kFVS29WXdtusyoyMDmc/PtZU08GE3td62rR7v3/7mz3+9TyN1+PnPvhi976Ud34xk8O7ucNzfl2Wtm0hRQ2smx3eHLrpdasMKxKLWckPv7968UR+zGbDX3mvVaReIOAUXUa3kvFwul9URHQ7T7V2YdlNv7VYdeL0srdVtW4hwHMdxGloXMGMmH2LY+XlZWm1M/PrBUJBujp3d8GrEznnpknMBs+BURJqhrNsyryF5ZvIurcu6rfnWT4VIqlpbA4SUYm3dBT/tRhWdxqFkNDEiatKchq4axkjqrufrtm5jSsh8d9jXvJ1fzi74mKKqeuePx2MXKa2UWpr04/3dOI1gBg6fH3ttVUBLq/M6X7f5i/svRdSnMF/ml+eXaTc9vLlzzrcqx8PRITsf52Ve1o3QpRR3w0gE8zJfns9nOktvwzBM47Df76bdcDgeVAz0dkO0hBCyd631UkvgmPP2+9/97j///d99/PhhOOyfLxdT+d2//fsvvnjjlvk6jtNXX//in/+T/9XXb79sufctf/n+ITg6P780ZmtCaqXWnDNB8zEwgXPskHpv45i0VccRA7bjTonq1uIUdofp48dHAkWgvK0huv1xV2rxgYhxW6+m3XFgJjB8enrWKrWWLm2e5/fv3rLjLn2/2z8+fui9x+DJeWTooqq6XhZ2IaURe5tiXM8nDQyIfZ2jd2SybiuIEOBxv8ulnU4vh3FkQgQK3q/r6vcHUSHFmGI3WXKOITjvpFu/pZ9bba3dGIwhDi4GqFsrjUhiimpyuZwBrJRsaq01Mx2HRETO+1YrgNRSp11iIJFuZtpV1VJMgZBD7L0TsajUXPRWyxkCO75c5++++36eL3nNjtybN0cmXpb1erl45+6O+23bWquikmJCxrrWvKyOaBgTItRtOb5/d30552Ubxj7upnXN58t8OZ/B1HsP1QCD805Utq3O85rnvrs7EDvaSkJX12XbqqrOTyuQbucnWZcpURqmLx7efPHNz6SFIjA93I/7qawWxp1UDNLZo3fH03lB4mq2dFnyuq0zaB+Tb0qRbHccqeeXH/+wzvnpw8v1zbs3P3vn99HUAVGrWQ2ddx3UENGTZ+coOWxWc8mXvM5DjD5SSKG0VnJ17EL0SAgEHB1myrUMbrhlvratfPrwqAbTfh+8B4GWm/dOwZhZtGhHcJ4nyM/r5XSZ8+ZTZBcAuDe7vswEREK9Sl6LqsQQpMu6LUzsnZeu27blkonI+6C1KbZbCXdrvXdlIu+DQ4yBUdEF7spbrU4tMNcu6JC4G7aqVMAXJWB25EgQ1ARJPSkhggUyz8hozOiA67Jo2aRljwTKZVtVpWMnpz6aW9Y254gtJXu7m2rrkNchhIRmlEVWbfNxR/O11A10TAQBu/ZaECzFARBqbYo2jpOPEWqp85kC+xRqa60UQDATQORAXMFAe62IhMDaRRGC96U1APQ+MGNrhdD7GIigFW2tTtFbt00qWGcEoFslpxKgGSqA9I4IhEaOkNhGoEouRkQW7Yagilp7Na2Cen2EJG4Es4R+mDyh9Jqz105mHp3VCkTesQtOOzgpQcxJa/m6rTOYOGa51lYyE7hI0SEBS2sCBGLJcQWrUj1102yNGcAF3lperqsaQB/cOCDyTZq8+oBuxTCvbSqvnWCfS1J/Yid+Hv981i9/THgB6I3188qN/skl/bnf7LN2+pME2Z9CF/Hzfgzs1qMKYKCMqL1hI1BDNe8ieqIEi9H1vMqbnTQoW/+waHOpoa/gBUERyVTIwKCRB0IzUgXAWwWJDYOPqgPbN+/2v/35e86zXJ8TtJbPuzGkhGutyqE5/eHHp5B2/riH3lHbboiH3YQA59N5XeYYU8P+9PhxOt6tRmsrL9cVQED7cfDDYd9EPr08ziUX6sz+73/4UaTH5D0FycpWeyunx3Xb8ofHTwDcEeorUT0dpnG33+8OD3fvf/lyWr/6+pvf/tVfekOqehiDV5nu3bTzrRXnU9zvMfglNzaIMQgKCjpw40gGXAWa4Xne3DjsD0fxvi+riYgIkPVWt5bZ+6g6phBwnE+ntBti8NuaiWi5XswsuIDOqco0jardRPlm3gcMQ0SCZVlFIiI5F8BUVUuujAhoiLhcFnI8pHATxqoWvY8x9da3XNKYVKRv4pjBoNe2rZuI9NpvgHvtfdrvAZBrA8B3797O1wURVNTAUorrupXWAImIpHbo+vbh/uH+br3OqOoJPSEjBk+NaRgiEfRc1XrvjZ3n6Hnw63WrolV7HNOHp+dmAN5V1ZfzpeRae3l+ef7hu++Y3T/567/+9a9+sx93YdoxUAK6LkVkHWOK3oPIfF2enl+k9zQlIl6WtfcOBrtpVBHhNi/LfFlCiIe7nfcxDvry/fmHp0/jYbxcz3lbT+fzh0+f3n71Pm85JBdddOsp/5O//gf/6l//819+8w1X0LVwBwJOMZKAdmWkw2FXS20quzQ456W3ZZ09EsHw/HIeBq9d5nnR3hVoGEJIAxHE4AK4Kv2w3/ngXXC15MN+F2Nct3x+eeoqrZXW2tPjMwGp9Jenp7u74+V09oGjdzoNp5OXLmkY0jC2plnXOE0GUNe8hSU9ONDey1oWz857UgYt84qm3mHZNLeupp6dab+1gdxKu5d5kd4f7o/ex1zrtmVVG/cjI3P33sAIu0lvYrXgvCDAvKwqmsZYayu1GkDJuXU0BQba73YpJiQC1M1sXZsZlFwYXYoBDU0VAW/mfwMjIkBkdGK6LlsT3R14HAbten550q5gEkIkBGYE1bxl7z0YeOekN+mSgs+1q5r3wXk6HMYu7Xi3dwQIyg7YI3g7ny6n86XWzRHH6I/HHbMTM1EVk9rq8+UkhIfDQVXRtOUNVQn0ej770SPp4TDujg/7+4f7928P9w/bZr5jSKNxomB3b7+ahlxPj4Gq1PxylTRO927UsN9Kma+nui7J4+BZtdVS5stFTQndfj+Mu0ikBhJTIHB5LSlEcNAFxNO2bNJbcDgEB+abI+e5a5vXRT+7K9ix876VlkttvTOzAbbact5abV17bfV22APAusyllBDc7QLURAxMDdZcLtf55XLprYUweBd6U+80DCnEAZG6Se11eb7W0sZp12olZO89AJRSeu8xBh/DMI5iCmat1q5qCilGRqTgQ6BWWhcgT6VXlzd1oRg3M88BgYw5N12BOA4eyQB7FyMAUO84EJKI1CZSyak5srxpKSidHNSlgTTSalpLaQxCKMt6LbWX2qf3X1MTB80B9Frbcp0vZ2x5F31wvpVyOZ1FcMvbumYA8PHdlpfn52fpcj6fdof9NI0hem19XWY0QjQTADMmJAZkVDFjIwYRKdq9cxCYGRUUAXJpUPr9w/Dm4Q07//L8/Pz0TADGQIzayZwZQO9m8rn/Sk1FbzEmFUUCQooxMZMomCGhR/I3pqGBSithaCqFgVijN+ittW0ha9H7EFkVTNQxuZgMhapYWVu+lvm0ni9M5h312rQXA3HFIRGFENzg2JmiGFQj48HK5uOa9oNwK7nLulouQEzeo5owwI1rSAZgcNtDGALRT7Mbe3UC4R8LU/+oe/7YdGGv7EP4jA0C++Ozn1mIt4jZ5x3a6wINPxMT//hFQ4CfDhmxNo6p5kKIDomIgVxFQMJqbNd2bot0O3XAGJpSdb4riAGTIqopCrkbVukmvgSECIxADKp1Sg6ca4wv1+twHL7/8GENEFC3sjQTStPx/g5dvCzr4LmXFlMkpLaudV5abh7QEf7sm6/ND+l4WKX1Vuo6X1802WGZ17IuH1+e1fH+7cPlOj++nJx3DUSX2RSco2Vd5nl9eTkvtUz7o4/TmPahyTSEEN2wn3bHNw3Cfm0P77/ImHLXffLXUg7e7Y6HIcJ87vNp9XwZhnT/xRuo2ltd5lVNAbkbikkjN/f2suW+bfb8HMe01prn4pzbjVFK6a1upYyHKaSgbTMwQHXETFjzJmrSeyGOKaXgpMubNw/zZXbOIYIPvvdeaumtqZgLLg2RCctWVMx5mqZxWzbpnRTETGvNWyYi8q5J30qVJi5651m6djHPTEytS6+NHO+mQQ22knMpeqtNISqlqErJxRBU9Hqd7x7uFbTkqiIl5xjCm7sHqfX58VFr9dGvF88hjCmFEMhx2cqnx0+X+cLOf/nN3YenT34JBIDk0nHXpD9dTqtsLy/nTx8/nq/X8+XUWmcCBHv38C6GOA2JEOaXk/OegMH0uD+G4Awkb+v1eq41I2Cv4hOZausdDbyP3rnT+XQ+Xdm5EHjdCnd9en784cOHL75870PcjdO/+pf/4rd/8dun55f3X75//PS4O4wfvv3ofvubv/hn//yf/fybX7TcBZQcFdN5XdMYWKlvzTM5gV7rfhhuUb0tr8t6jT7s94OInuZFa1vWtbYG6Fwtg2gI8bDfN+m6LimGrpLXLXg3DCMglrxp63XdCnOtYr27GLsCE0nr27aWgt67Lp2ZbmR6ZBqiR3KIxOwNzVqpy9IJe83np74/HoYhEoJDD2om2rzT1hAIEFrpomJwqzc1ZAgx+Jicc8TUeuum5XwmZu+8DyGqaNetb957Hxwh3Xm/5mW+XEpuQNh6QcJpvxvC4J13xFpbl96lE5MPLp+3c8kxJu/vfSA2x0TexRsh1wByLlW6obXWyTsiHsdUa3GOiB3GMI7JTBEgjM5QShXr2lszFceYW2tb7TkzgPcRyCCG6PwtDKsivdcoKW9FemN0Q4i7aTocdsB8SzAO47jl0ns37AadHTiPABYYS5VacsVemuyn492bt/s39+TDsjUQZucpeXDeuvoAgSNKGZ28PD13DMPxzRjHmFs3NTCpuZe5b9e8XLbrLBTrtqbgXHJE3GtGlSGGGAe0RWoxa5Gd8yi99Ly5MQQXCV3NqZRtvlznOR/22zTtpmF0zAC4lbxsm4F6xwBwejnVnAHQMwXvtLen82lbNyby3gFY763UUnIDZ6XWp6fnjx8/dpEUYxoTMGx51WT7sGfPw5A6KGRc17ysuYuqKBMHH5xnRHDsnHPB+RCjiKzblsvKzsU0DMOQYtJWpfcYmRXW9hqzNxXvWKpC6d6pmFhp7EJkZudaVUAwbZ4hiHAWqtlqU6mK0hgYe1Az7fWygTTPCK30uoIUjujUoLXr5eO2VJ9GRALTLMVp15oVem8F9da9Bss8G5BjP01T11pbvp4vy7yUvDzWD8e7u/fvvxyHwYDBs2enqr30LkiEpuB9QGYfAiiREQIZEiCFEBS0qYAYADofDvfHlEYDKLXknFszcl71FhxB1dtSkZlYpZmac0SeOqioEJHzDIa9GahjH9iFrhi9N2D2foiumkCv3Du1qm3r60KowxBJzRRuhDBGckCGZCAiXVpDkV6bkJkJo5VSc85m6LxPqQUOiNRNOzhKBhul3RAk5oYld2gaFNjv2bEhiYHx5z3FTXrcLi+v6yyFP5n0vM6K/tS88/83E/qsaH6yP+NnfYN/kgL7Sf68Pm9/OvqBz3E0ANJXlWUgpsjOEBXRzERIWkuM6NNZ5bo2UbA4GHNWVbsBHkEI6TVNZ2bGioCmaDfmY1Wp2gro7x6vl+saZKufzrKWndT9+8O4C/lSHz+9xCPevXuTs3z88DgDMAJ0uz5dRk+9tJrbvJ32Dw+Hu8PzdY6BGF1e2/OaMQRSOp+u23yp3cbjsaliacd3b2svl+WKBmgwP19LKY7CeHcPW4vjfn/3drq7Y+fHFIJ35pygK9nGwXc3PK3tsNu5u2mAFlAqGuW6G4ZNbLuck8fhkBp0H1LtteYK7BpSJ7eZroYQYy0bI2rv3GTn6Aa0K9rW0kSlVHQo7Gjaj4yEAEyorRE6RDTVXou0EnwMwTvvgFFMzbTk3FoD1FI2M+8YFZ10jSmM45BcAkHFVkpdl42dy3lDpFt6sNbSSnOOGhIQOs+OiAB7l6Y9klcAEW21L3MmphBDLe2W93TeMfGNK/j88gIEZghqcYhTGpMLufbjcMgw76YxptRA53krteyOu7XkBrKsediRH93p+8sggwJsZdvy9vHj4+//8Hsf3cvzCzHuxuP+cP/N118ndin5b7786ssvv2w5N0BpHQxE4OHunj1fr8u2LQzGzh+P90RoiONxWq4rEnjnlOyyzK3JtBtTirmU0+WElVX1/uF4PB6HcSem27L++le/+uLdV8Mw/OqbX6Yp/H78g/tv/9v/49sv3klrp8slJK/SLnlVp3H1hzSpoTaZL3Petvsv7u53h2Z92qUtb6rawWJya85h8APtYmut6/V8BUQD9cF7570Lu91uXhaVFrwD07KVQPxwd1AkVHGEx8NkajVv45i849tqU7XfGuPJQe+9tT4dRiKnFcghO8fS1/MFHYp0Tsla7ShM5G/9i7ncOlVVBJEAqLUyz6v0DoT73aRgT89PIaaut4IqyGtFwnEcIyfn/G6/c9HbKy7TGagu+vz80lofhuQCj2kc47ibdp6cda1dbwmZUksMcXO5d9DbTRmzdgUxH/Dm4yBmIIJSSq8+xBCDtN5y7r0f308EXNat1UxI0xTJQ92ydmMmNQUgQgapaBqdEzEyc+TGw1DyhowxxRsDqlYJIeloJnbYT7vdROS9Cziwih0OOzUpuYToEC1EIlQmQAV1MA5pUwUj8t6n0IrlvLkAzRgjQe/S1lJaBPBIyF4RjdP+3Vc83fvDUToKITEzWl5O5XLatQ16Ldt8fXku22W9nrZte3k+Pdxdko+oStryOqvBNA5jSjLG1QpImc+LtLqu27Ll6zajoYGomLS+0iqiueauioS3vfh8udRSHblhN5hI3rb5cslbHqZhNw1I1Ftb1tUYQeh6mh9fns6Xy7ibpt1uv5tSjKboiETEmznv0BSGAQCAuNXb5p7ZsXMeEVTNDGpt3vvWW865tuZDcDccOpLDsNRqCD4GaN05HoY4pKjkQLF16bmUVqUBT+ikI3QPiN6kdq7dIQVR6tl6RzIXUHq31lLwXWzLW/CMpr1VqQWwYsPAMA1hW4u1rc0vhIxIzYGaRIQhpnmde28+OPYu58rk0zA4Dk1qlnWcEnm6nPH0dGqtWW/R77uZ946RWmvmEdkzEftkiBQYFIE4uOCdN0AEcs4jYVvWNIzekzS7nGY7Uu8ShrTloorEIY2utbLNKyDBa2rXmUCtXcTYI7PXV9gOEpNn550nDtIRmWMcydCnxIBqsm1z750ht15RGxNqbi76YYjQbZ1n1D4kBvTbaqqYYowm86WpWBojqJqikd0+XWXN6joTo2MXHKD0vMlyzrU1BVVkdUMYgyOOrnpqgk0VkAwYTBEU6UZ0vu2g0Oz2G7BbhennbNgfyc5/IpF+esIAzfSzzLGfmsBu4on+K4LiZ8/QH5dmr18zwBsImtg16cgMaoRsqB1MANGIySG7euMQOFKD7m5ZfqJbNsmUCLoB8i0iAkDgHJtoMzSiJvTjNb9cW5RtrOrP5Vd3k/PTYdyHd+58voABqNayecLnx+fDfjeLtpzf3R+GOHLflvPZzvNI2GreavPBURVWtS61NVGqim4YwcfHT0/CvLu7f3p63Dbd7ScwXfJZhN58/eXh/uGyFHJDmPZNgGLiYdjdH5bcz9e1s4v7fQdsmk9V8qfzu70f3kxpn47ao9YpeGkl3Ub0AK3KkHbj5NYKAgbIpWZNZExS8pTG45hwaK3k3qX2zsSCiEwMiAjs3SHswayWbCLTMCEioJbaTZUUtHdGHIZ4K7HqvbEjx6m1FrxX1W1efQhEdKOEdu0++lJkW0pvhZxjRmLKOb+uQBFr64gICCYeFR0SMGzXUmrbH5wLzscAxOy45HKdZyIUEdhsSDGEYATrujnPKaWWayBmwmVd6rbt9+PPf/blPM/G2HszVHWw1HLNq0vhx6fHgxz173737fffO6bz5fr48vRyfu5dYghfjO9/8+vffPPlV7/8+a+/+uJLMl6XSwyurktk16Q9vHkLot99+60IzOs1hIgEpbXINAyJ2bfe5zW3lyt5sq61tJxLXvNyvTLz/rCXbi/PFx/Dbj9AIwOYdnG8pr/7m/9ctu1wvEPRN2/udetfvn/rduPu7cNDKfX06bI/3F0uL6XVrcJ1Xkn4zf5uNw6X5yewPoZIitJ13Cdi27Ztvl5WZh9jHEcfxaQTckip9fr09Cyq796/JyLHPoZIxKY2X+fe+5R2aT9WlW3bQM1716uYCJreQgvE5BwihlaigRIjO243LYIezRxYb7V1QUZ2nAJHR+v12moNITJSrQLeoZGn4MegzZZ1K7kqCDGer7OY5Fze3D9Mu+l2DBNhbW2eZwPc7cY0JtF+vlxO51ZrDnEgIkAg5iEmn0IMAY16KVUKIyFScM45a623LtHHGJKP3nsPt9A0QVettYUY7veHkXCZN19ybZ3I9drOLycw+PKr9wyw9CICMQVkAb2ReRGIQ0ygUObOBofdQCLSmB0N0wSBWpPa8nTYD4f9Muec27jfHw532iUwWgepsN8NzvltLSZ0f3xY07Zt2RBcoF439LcIjg3BOyDvcTcekpvUPKhKhSya6yo+UkZpnWNkJO982wqHGJ27NAuds7L52AGk1pgeEKchgMNe5os/XOp6ud8ueTlbb8u6PX18QrVxGHprIoJSt/NlW7Za1q3lXK7X84tjd7s4iGouxTHXUvor/Nd8DD6FWktes0q/3d8IKCIikZn54JmJbq3Var13ZpeX/PT8eH55ccSH6bDb7WJM07THW+EFs3P+dioxoGnPRC6vWUScY2bHRGqq2kVMVLx3ZsZEjNRrK+vGiERMYIbYWxdoXQTAtFW0ht2w155rnVcIQyIP0oJUZDagQIJBqas3Ia3Ui1ohZDICqVIzOXQoAc0jgDSyBihqYt1CcPeHCbvNS7t++H4YkosjR29SMXpPNKQBpDlEBBgGak1yXhE2AKhSYwree1BFhRQjMUqrJRftTMimZmohuCEml1IurVUlhDj4GBI7B4q1dVElIiJmco59q+356flyuSJyLQ0Bh2EAQEJQA7ENyaGCKqAjH1wU13vvTZAZkZGQiZgcIRkSGCsAO++QFMyZyVa6FFSr5QIyhCHtB1+b1mVjBR/9mIJvBK2ObCWXcr30so4BMbo0RuniHKNZSoEcrdd8LvV2CWFGInQoik27lsvJhVJaJx8HGgTM66A1mIHzScn3rgLmA4EAqDjiLnpLsiOSfYb63IjRn7dVr/DC/zoP/ycSBj6n6j/H6n9CJ37+1p8C8Z9fYj9hFRHAyNCQDE1Viej2g8Rey8ucc4QoXYsYkVPEIo0cAzozNkWk20SLDG/sKSMzunnB9IZYDNpNEMwhke+bkWc+jjC4ubQ5b9v1alLfP9wR0UtegoPDcYjBXc9LYDJmTjEgxZ63snD2g3PW1JpE4MO062Jr7ewd+2hNculAPi8rE7NL5KOC673H6ThMu/ff/HLc7Q+G162ttdempuDRXTMW4e5SN9cLgvduF1vZrlu28zpNw/3BK7taOnQgxTKvWhu48OHD4+HhfRymJu15WRaVRtQQKlqp5ely3n3znrWVy3XajeGGs7Ox9TakOCSvrZmqttZrBbFpn9hxK61XBYQUPRD2WlFNW2MGR+lmbDIDUMtrBYDg2RS0ybashOiYay2A5oIzNSYnImUrqhZTMAZVNVMmEsBWLTfp0qV3FNzKlmgUMXYMAKqKCOSJGLdl1eBC9MvT/PL4vNtN0YdW6ktuV3fx5Hqvu9003I3i4HQ6n69XvxvffPH++eV8mpc/fP/tp/PT7378Hv4jXpZzKS0FPw3TFw9fvL178xe/+fOff/PNMAx52VKKD/tpW7bOtlzPqFi2amrrZTbpjjjF0FutQIA4jkNwfDs8jFCkqxh2zDmnGMl5UQFDJFrnNY3jF1+++4//8W9+9/fLtN+ryne///11WZznvG5jHL7+xS9V9XSZD/vJff/t35c6hzD82Z//WqoEDtCtl/nx43Pby5dffTXtDuv5/PbhzcPdvnWhoigWyBfYzqdzKe2Lb76g5p13KsYILvquHQBr7afTOaSYt1xrY8+1tXXenCP2yACeqCJ0MwIchyh9WpaVmdnR7agOwQ1TbFI5cAzUSwcwc8jBtdy6iKl59h5JW9NerfeybjWX5KMLMY5D74JIrfUuoAYu+uBHMxDrarrf7+KQfPAPbx/WedOSxaS1uq4zgEiXbVlLLdfrXFt9cGGadvtpV0ofx9HHG2kNa67ajZgcsykbWHCBicEIidhhV0U1nyIDIhIHH2PYHQ5AFGK6XC79fGWkFMPiidGBKCDG4LoKM5qIsQAIkTMzIOwqWy4GQkCgYiDeRzBbrusNgEbkmdg5dQwE7rg/OHbayjLPqqJdyXCMSYKhoz0eXl5OzEhITar0PoSAgCBKyEMIUxwieQVccydGD9hEuefAoUmjBgYYGE7zEqbxlOtayYae1YwjpNSUyRNzLChG6g7x/vAGW06g16cPp8ePSnBeakAwNSnVMS7Leno59dx8JJF+nU/rfPbsxmlKcegiDlFFzaz1ZgB4E0PS2VHJmRyzo2p9XtZuMkwpBI/gnedmnZXIoQ9cW395eT5fTgQ07Xb73ZhiACR27mZ2vs2oyTlmIke1NekSYmi13u7cRaRLNzVEMDEzc46HlAAw19JqXQFiCLd+J1Et66am0u3y8gyi6H3OvVXoBo5o3IU4Bg0saADdrDsUJrUibB2woTVCtYYOwNDqusTgpugNVFXNgMBEAUzIkaNw3I3Wl5fzgmQIiKzWW9fmCEJwUvWGpEIgJt62reTcex+PExHV0kDh/bt3AKZdtvV2zg1oZGTMmIYhxihKwUUEcd7FITpiAxQwJOoqloUcOs+tNlGBBq33MQ2ggoAqEnwgJmYHSAimoCaKXRwCM5mRIhghoQ8Et/lTryKKwOiZDNVUCFBbQ0c9N+c5kjprD7t7xfBpPYGK5C2fLI4JtouUrVaoy6x1k7o1YDYhBlWoW2XGEBIBmVrrzRRFFJkArGwrdA8UoEOrhQlCgGawrqWYBrzBD5Gd6wpASOTA9KYwCH/SMa+5+J8sOp/nN59HQT8NgH6KgL1qpFun1+vTtyES0E8Nq7dSsVcf0ec50p/YjF57x24/8PZRubm5btBFQwNFMMQuiqiKRM6pyI0nfUux6W2ibmDutViDCT0xgKmoITgXfPIifWvtuDtCKy9bvnfUx3TN7cOPn0TguN9tUjy7rvLmzcPlMgNT2h8vW13b6c2bh7fh3eUyk1lgFIe5CCC8eXv/48dPpdXkXWvycrq6OPjoqThif//+CyO/zEsYhzAeYprGu3tysW9tzpubpmHnugjGtLT+cllK15B2CJC3LUSfhrB7Nx0Dr6V9//HSPbu60rYl0sAK6FuuS+77mBblS20/XpYPlyWM0QWfAh53B0OaYtJN516lsvPOBSede6lgyoTbtkmraOoIXfRMPKZJoxBizdkxMrsmQgi99jTGw2G/5dxa886Zym7n2DlRyVs2MDFotd2omilG53ld1lqrj94F7lWGYaCJ53nOa6PALjhTLbUCWZXSsnQTA6i15i1rVwVtrTtxNwKqGfTaVJUQSsnbsoqomMRhV1sLo9+kfTy/tNrRE0Y3r8vTfz7/7e9+9/tvv/3w8ZOAGgIhOR/f3L/981/+2V/95W/vdocUgnOOEaS3uq7n55d8XX/+s5/v3365zPP5/HJ5Oa/zvNtPbx7eEfDldDU05zWOA3u3LJsnVtNcig+BHK1bZufTMCACE7/76j0B11rJkfcc03hd58Pd/vvff/vy/PzP/vk/77393X/5uzqMjx8+eucuz6deivs//Xf/3Tc/+2oY9r/+87+IfpjSCCJ9611aztvHHz/qXYmjDwqtNGbcDaH0Gr0fjm+2c/72/OPltKyLDGMqS0bAGJwKxDTW1pd5vVxXdtRFDbDWdrtFkabqOhDeIrc3YMZuNzFTqRUAWq2GGmNwziNR7yq3ks3eYeBKgmKmhmjBMREs1ytKD957ZgMFMMdIqtpbU73Oy9o2YNodDt6xmPZWTcXFgA7WvI1jislf17mVuixL9SVv29PzCwOEGIZh2O13h/1hSgO/fXe9XschOeeld1ORLoREBqjWpSMTMgcfkDx7ZsatZBVBdkBICGgsVfNWydG6bAi0P+wIzFq/Px5UrZUKPrBzDlxwAQzzkmsp0pXIhTDU0kvJLmjJrfVWSu1iIaStlTgG54IpqhqzGwcOLgxTdOjEYW9VVdU6EYd4c0D6NZdxGBHAOhpyKzmGGEMaVbfSHEKwbmVl5tEZsfgu3uSepjGmzUBkhW6qGdoaOnOrINxrBb8Djm7c0wAmFUR7rdu6eY6D5/3xAbSObuLprZYtUIMyr09PKD2xi4nDm8Pv/vZvHcZeC3YJ7LuUvAFP0zgM3oWUEqjVUm+n/Vpq712aIjExl9puacy1bTvdHXa7YTespXRTRKit5lI+PX/6+OmxlH7/cD8NQwiB6XaH3lPYUXKtdjNlRBcTOaYtL9uKhMGHGzbaVNGAmdg557x3Tk198KKfHyJdGrPvosikvWsXM9Nal8uLIZZmas4Pu8gYvBuGWImUGLSbiCcLnrpKqUX6FggZrKMGH6zBPF8jHaLnkgv27kAVwVTFulQlA2cWUN7sk4qStORTV6w591uDgikgrtum3YYYUgzSeq1VuqiYAXjvCAnNkICIoo9TGpFYQWsTNVLgYRqic7VXQmcGpTVy3nmqUsm71rX3rghEnLeMFb/6+ovBe2lLtQYi5shx9MGNY2q9san2biAKxoGAqKuAA+/94FxAhwAWYMu11oouACCRIrL0pkYOlZgZkT2B6Pny8vzxE5P74uFhYFuePjz9+F30toKSWWRzkZkVVUnAIYQYvPN1q7UV59zhcKi9eyY1azmXXJGZXDDvow/kSObeLagxEsjitQkO5kYnxorcexc170I3VQTSV7QhASgg4OsI509T7Z8z8D+JoZ8gQT9poNuIR38iG/6JtPkTpxDBq4Nab4LlTw3X9pO5mj4DhW6+ntfBFPPN3mwG9CqPxAxM0UhfAxzsUA0JVARMPDKBGhH7KKaOHWEw6JQQO1x7+zgvnUR93O2m82VhxsGNWdp63ZZ5TePODaHkXqwXq8Sgpqbm2KUIx+MBib778H2us2BrUlWsti5WXQzjOJWqPgxh7ALeOXbeMft5K8x4zcVNYyfOvac0XNbaa8+lI0etMHoexpBLQSBmRnaO3GWZKQBnOcbxeJx2EUDt0w8f0v5OQsrIF4XnLNem9L9w9V/NkS1Zlia4iZJDjIC5+2URkZFVmVXRVTPS0j2k///LzIjMy0hJdXdVsoi4zBmIkUNUdZN5OHC/0Q1xcQfcADOIAGZn6d5rfes0HYacNXYh7t/c394dZYlIsszTskywUtO2xUHPz2WZrpGZ3FPf7/s+xI1x4ZHJkHLIy7yknDEQjsAxEFIgUrAyz+be9x0zMbOZa5Nay7qs+/3QdTlwfHx8JMRxHB1Qio5jF1OELbsViAOvSxERQDBTiozqKrauyzovIipiQNgPuawyr2vuo4G/vJwA7O7+1txUW7P27rt3l/NVGW5vD5frNJXy8cPnouXXX399//7Xp+eXaS0x5d/9/nfovNvvEqdvv/vm7ZuHiOHf/fHvTGRZpve//Dr0XdN2Pp92+31I9NPPf727vYsU6lxujzf//o9/T4yX0/ntu4f+PH1+egKAnLJYU9UU2cSXZWWRcb87HPbEjABlKbv9jpEc8Hize3o6nU4nIP8P//E/aLPcdX/6T3/a9eMw9GPu12W5vJw4UEphmi7hv/3bvz0tT+tc/1//3//3u9s3//P/9X/83TffXZ+fr9eX3e9/H9harcOYda19zF0XW6tSa+a4H8f2vSvy9Tq9PH8+HA9Wa20thDAOo5hertO6ril3IhK7ZO4ikvvO1VRNzbQKASBhQEIAMc8xMoUqtdXWigUyRCLidV6YYowx56AiDWHoBnDfpgYu1tamKRkjBypFwNowjssyn6f5fL5cpokYc0pEzAxkqOKPz8/X6frNt2/3h8P1On3+9PlyOYcQTNUI8zjc7PfDMHRdt0yzg0VmaaKqKUQCRHNXRcQYAgd2M3BC9BADALn7bj8AADIQozRFf02CLMvSREWNAqsaBUdCQ+i77BbPl+vlfD0ejzHlyLy1d6tXEam1IQqHxIFTisASmPoRganWtpSFYkipM9faGrgFil2OgYOri1cwzTmHwDElFQVAMDdQdNsMCimmFGMLMcWcc6eyNmlgImWxLmkDU+/6PriJVFyuwBjddF1bKy4tx7hME4h3oSNWiMDJwUoRCYioDVCBMaSeU1SCVhpAHG7uMllHJqdnLpJRbro0DmlZl8vT8/nludSl67th7NayrMtaSu26cbff5ZTLWlqVnBMCEJKattpUTUzXWq7TVKV2Xa5Sni+2aksxEiExllY/fPr064dfapX97nhzPOYUCQkcQ6AQ4nao7rok4q3J2HWIgajS1inAqOIAQIRmbgYBgIkQUUoDIjdjIgAwVRNEZgq0LjXEgA6lNDKx2pZaxZ2xN4Lu/phzJPdgrlbBjMATQCJKMQqCuKeUECAGBodWy1aJBaao5troq+3VvK3NmgIimfcxGVnOMbiXWmRd3I2ZmNHNGFm9lrV0uQsxUKXWJDZrtU7X634/9rkLzJE5xciR3UGqSpOAIXX9fn9gcJtV1ZiDrlpa7cdh3A3Awdf1Oi8YOQA2qTFGqevuZlemoCk4RRVvrSLAMAy1VRFRDAQWAgAoM8H2zCEgRCJyc5HmboCuJjkljlyaNZHWvDkRhdBFdy5r3XpDa12vl5dd2C+X56ePPw+ZXNvN4dh1AdG6FEzdhVIiJtaqYIrsxBQjOzoilFZlXbUJeQAHMYuM2EBac26BkrerTUyGKWZrvWAKjCqGgYlRBL6wfrbE+CvJcjMAIX6FGL4Kma+a50uk69XJ/Nr6jvgl9P5Fyfhvn/46KYKvafnXmdPGZ8TXB9uSZF8D944A25/Nhv4lqb+VqL72yRuaIzghIgE4qIEpthYZIyICYSBRYyYXSW7RZWDH2uY2/3Sa4bh7s7slsE/vn2/2O3LoYpzrIirny6W5pRTM4Tottzf74814+vTy6Zdf+91IBNM0t1Jvj4eltXVdCKIZBERENIEmsl6v4tofRxVdaiU1FB0Gun04fH6+TJcpDkMOZO66tj6SuwXCNq/KmHZDHLpq8vnlEppBqeuYjrlX1Z5zc5e2PimGPj4+PV1F5tWXWo/74dDner7I5TK8vUtM5+dTCqRqyEGhmSpTjF1E8KdPjynybtyh+dCnFCORr+tyvVy7lMc+xxBpq+1kdCUAy0SUo0vlhDHFlLrN3R5DnOcFEUW16/oYwuVyWabJzZjQDFqrIYbz6WzmItIPfWSer01N+zHPU4uBh10KhNrU1Hb7narV2lJMKQ4P9yHmaC6nx6eqGnJupTw+PlEKQy0tIAD85ZefT+fzTz/+/NefflzWlRG6nN4+PLx5++3Dm3e//8MflrmYGjHd3OzXeYkUTNpuGOfLecjdfr+b5/n2eNwf9p8/fQoU8HgEoP1h1+WEACa+rm3cUzf0u7pHpnG3ezk91nXtYoyRmanVNs/zzfH2cNgT0kxXd5PW+q5HghA5Yfzuh+8YqL/t/vDH331+/+Hjhw/ff//dOAxg1rCdThdEWGsJPMalLM/np7UsVud1+mPwt31HAQYpy+X8HG+xCnc5GaGau0HOXZc6EQ+cHh4emshlmp4+fpKyvHn3wIxMpmimklIAEHAlsnW5MAdCFpDWSucRAawZB1KVtRTiEHNkJILIoXprjqBu07yYWggxxFDXauqBOtOWUyQgQnCz43GXUpTWDMABi7VV2lqLulync13K8fbY5diaXM/T5XpxNKl1vk7gfno5q+qyrG5we3PHHME9993t4S7E0ETI0VzdvEqZp1mbgVNIriIA2I89BXb32lqKARG8CTMyCSKpSEDgEB28SG21IbC7rcuacnCC63kOMQzjAEhIGHNnak2AI9WmAIzgKaTGIqAhBCYvtaqLm5t7zJ0BUIgqlvvcp6yu2kRcCcA1OLiqOpiJxBhiiohYpdVSHYBDiCHsBkKAxBHAnVzVamuOZmBqlWSJNbiBGagpx9h1kdBdKjEE9lalltKlVJqbipR5d2hdEIJFm3SMrTRUiSlaCMSUcwxkMQ7WyMrqaDHG3fFAy/XY881uaGWZ53Ucx2WeHC11aRzHuMRtxRBzcgdTz7kLHMq8qlkIzECIWLUt6yqu5t5U2zRfpqnru3f53Xgc3eH5dH5+/Pzx6VMVOR4P+8OBCBCwH/ucMiMjIiEERnBkphADOM7LvCxTLQWImGgzUoioNPnC4PBtctJac3fcgICwhY8EiAQUnDmEzoHQ3FXWGdC7IQY2WefhYAy2zlNT63KXI4EIbZ4iBWsuaIEBgdyNARhwnacUGFxB3V0RkIHMEIgAAAlzilvBUIoE0qDVVhZ0iH1GQ63iKpEIkVprKg0RXb2sK7IjUVlrjolpg+aSu5falqV1fR+7VGq7XOfjcaAU55fruEv3D3firuYc42WeSylNagcZmTByN+bj7WF/GKTtpnkKFHKflrVZk8CMltBATIx8i2uKNEDIOROimV3nqZYGDhgoxGRMFKI6GjAGdsUQO4FQhEJICGxkIUexZt5C9JRhv08vnz5aK0MCrdDl5JQDI6dQpgqIjIDujAggiGpS3MDNXSxwyLlzwK5LyCCiIo1YMRopJ+yazV6uDVPKOwB2JDETV/xt/oIGAI4GtPmiX8c+rzLmi0raJj2vze4OX+HP8Mo+xI2s/+XGL/uu123Z16/9si7zr14hd3ffxk+vyzR/FThOf3uHrwTfzUNEaLS12X+x/zhDYJUo0qscE3cxzKsWsZCIwLjOqS4PA98E1khmZIrPc7ndHQVbN4whxIxwXa9MYKprrbHvDuOx1rKulTHshjTz6fH8qFZTTsicYh73+2MM58s8zS1mXksJTiFEbEKIu3Fnppe5rNdl2I0xUUy4nE4p0JDZRHSZIvMuQs5diMOy6sssU/UWxsIOawURmBuCNWUP46WV5SJjsjoX6XaX+bK4pD6/nE5dF9/c7dfnky9X1VVrJ0pSdQYTl6aKKZJDPw4hxZfPzzdvH9D05u6uLUudZ3Ij0PU6d5EC2d3dzTxP61xy6vs+M5iYDJEVqK2zi90ej0x0ejlfrteuH/o+TfO1H7Jq01pyoPubo6qO/ahuuYsApLKhfysBeoiI0He577s+Z3fPfWbHZSkxdyGG2kpMBObDLt3f3OZxqF67XXp6PlMIuB+efvnl13/78b/8279yx2tZP31472rTZeq6/puHt//wd3/35ub27d3D8eZW3ENMbw63gOTu61qm5eoo2vTnH39utTBzCnG8fbP/wzAtc12KqYIphdDFuO1Z13Xph/z4+BRjjDGMh93z89PHjx/Hrlc1bdrnbrePHBjRH+7vp+t1Br+er2/e3n/73bd//etf//znf0tdfPfu2/1xFzn+9//1v03X093t7enpaV3X8/nc9wMFPD+f3C2k3JnNMdB3b3/3Dz/8/du72wDmxMNhTyFM52sO6e7mrht7JmBiIESxFPIyTabKzDnnPqfTZc5d7vvB3UU1pnBzf3SA1pqo1trUFAmlaasVQUV03PdNZK1u7oAgIrbMKh5SKrU6mAO2IipGzBwDcQjBm7emzRcvC3U5dTGlFN28rnW7uHJKtbXLNL2mbaXFFEOKzFxaVdeYwnZ5CjG4wxbLevfNu8Shyz0iqqmpt9ZqKeaG6ARobipiqm6uqkGQkVOKMQQxA4Y0JlBDR4oEYE2rmal4CCkGBsC5VQMiACJipBRDqQXUPCgjAKCqMXHgiAy1VjSXptB3KTK+slytSVN1BxdVQugz9zzoNKeUY0rMjE45ZaggTaoUCP7KUzEz93UttdUmgkBESIQpRkIycGnSal3KYmqBOaS45TxAtZXiDqomUnsc+n4fCMo6qZqZukpgSDEis8U2YBoOWckhmlhBxAYNyCNHJ19rEWshhsDgoM0EQLWKautzIrTLy/n8/HS9XtfSEEMIOYYUQ0wx973lnFPIrQoCxRCJuR+GzbwCsK2/mIgJseuzs10u07IuVWU87Po2SGs///zzx08fzWy32x1ub/rcq4iAuJnZlmJGB6+1IXDXDzEnU7hep3mZAJ0pNFcKYGamZm5qamaq6mYOoKqtCTOHEEzNTREMAzu4mHapB8JaZgDNCWttXSZil3VZLuceIwpmClBKEyL0FpEITL3Vdm0aCTiSu5k0JvBt6NWaSw2MhIoIMQYD2NzfIZKU1lpdWnH3sqxoHgPnEErZ2lRNm8WcEUFUVSXmHGJorYaQuhzNTETNPKeuipp5zCENnTQVlW5AIHLHw/3tbtzn3BWVy3W6LvP1MhVpIQZEqqVuiLjWDJFu726vUymlAaJaAWQHVjcDDqkHVJGKwDEzIDGzqQISEjmxmjmiIRTR2BQwUMwc8hg6Sv1qvIhWwCZgyNylYBUjFin9mPuxI923mUuZATwyWQyJAxJbCNqs1WZuyA5mYB4DWzM1CykyETqEyLzNf9EV1METxZQAoaKsVhcKc8jZPTmTw28l9F9r3v1Llv1vhjKvS7Av//jXIcxX9bOVWnzplv/NKu1fKEG/8X+22Nlr1YbjxlHctm3bo/sXwbMZf8DNHXzrk9/6wl5z8wS0WcQcgEwBQQ2JCNWDwuj+LvHv7nYh4S+fryeFy3zNXRygjl7+fne8P/QlB4X+/XuZ56mq5ABrqffHfQrYoMr15XAYwqrgFkOIkXno0O3yfHl+enTwQNzlAV3FSYzZggOvrTgRUFjWOu5TDMkR+6GrRSQ17xu5al0hBRVVQF0KxuQNYjdSTImx7wI5Lq3ux+68nD33KeJyKSmEw26niGdpYO3T55e3N93p6Tn1SV1rEwg47HJyt8uZ6noccuY8ny/QhTFlcw8ehv1uaevj4xMxQymA0KwlpFoLondDt+uzrmtOQUtNKd3dHt++fZivk6qEELsuXecJye5ubsexv1wmQldpIhXcSynBXUSmy5JTyCEGosAUmbsulSpipqohhBjj5Wrn04kp3N4dhqELgWsp67KC237cd11X6/V6ncUaArjKsizPnz9zClNdD3c3/X7485//+r/993/+5fH909OLSANEJri7Ob69fziOt8fj8Xff//Dtw31ClNKGvj+fr9fL6bvf/bDb7eZ5Zcfu7ZsNN2UiRChNd7s9IV3Py/U03Rxud/sBAebrXFvrux7Qb+/uX84nJgkxbgYZd9vtdznEFOMyz+PxMO7H6+XazD5/+GhmMfB337+LHP/yb3/+7//83/+3//2/Hg773//udxH53/7pn6+XFxV5eX7+4YfvU8rXaTqdX3LKP/zhu+PtIXjRNw/3D3/4+7c3d+9u7w+7cV1XaZbTDoGWWqdamit0YZlXAWUgLeZQpVkXUi0TNZVpHYe4vzvksTs9n+Z1OR5vYtct68IxAkGtgsTqWkpbyxo4LmURtxSib5UsCLqUdS1iklTLupoaA6vJ1jiN7hucwAFyDK3pss7kQ59zTikgA+O2SzIVAJJWylqY+Xg4ujm4TfN8Pp9LKSmlGFNOHfFW+ggAvh93u75njE2k1HVa5uk6uzsFVBEmBnA1CYEpUo4xx0jEMccmDUyJKHJ0d9EmJqYGANvpEczRLIS49fW6GqGDyXoVUR3GnLvMyLWstVRTjynT5lckcvV5XnDM5pqH7EBqmPog3rSpmNTaYtwySRQ21jVi3MAyomYqLpFT4LCFd0SllAoO3ZAQsNXGiBwCAIi2ZZlFJMWEQGhACEQYt+4FBEUVaaVA36WGvqzrWgoicogpxT6H5CjuQtihNiuuHjHIKvu+B4e1lqIG6lXEEHPX5YxdZGgCtbZ1SuDL+fz4/tfn58daRV1FRER2h11KeV3LNgUEhFZVtVi0lDIhbkhDIkIndQ8xDYFraUAszWutp/O51nI9X9Tk48ePrcrNzc3xcEghuhszc2BTb6Vi3A7ZtG0oVMQMFNxMCCkEdkA1NXNCJEIydCRCIqLXTYSDiro5v04nwd1M3AiI2NFDIC/eWkPEHKOpOlXgsFxe3CF2u8jZkUVVEA2BGRTBEWotisZCiE7ugRlcTMSkIog2BwZwQ0RtgghEQbcQM7qKmSojcgybq3v7hglJQERaiinGyMQxpTyky0UcbbcfXe16uURmjqE2mdfCKbKICKQudruRcxccmFkA61qatCqqBo6UUk5dZgzX03mdVqvWEe/7lFIUxNLMkbZSL4qRKcYQzWFdpzZPHDzG4FuNfNOQudv3cQfXZZlra0BGhCGb5RRGjgN3A4UUHJPaZV0BjBP34248dEMEEhlTnoZul25Nh0/vP4G7syuoGbMTETfVUgSCI6O7hRBjjlZawwaEYLAdp11cwbQpEcVAgSGiudSAi1Fm6VR7tegY1N100yRoX+Yx4E5bmsu/ap6/AUH/H96+sgZ/AwB9UUn+dWj0WjTmX9zSX8DQ+OqH/hIXcwK0L7eDb1Yif92q4RcJBfBbawcgoiM40rZsYwNHEE9MbOvOyncM//GGlcQni43KNAeKA+iB9fc34y7wh+cXTzhG6rmf5tPuMAT2p6dPb97d9WPaLT3n2B9unl4ubZlSDJFR1mWZJ1Afut3t3QNEms5TKc3IrNTn8/U8FWLu+g5Eq5mBa2vL1QLzrstobV1Wcobabo/j+/fPbNinLvZ9Nwy1zmurCRonjVTKOrNK3t0wxBSs51jrUmuZ0ffHsUF7//lapimsnDKBmREMgVKVjL7bpb5LDHq9NE5U2ipNhnHYH4fr++u6rCklkVbWtc5LF+Pw+y4FcvM8DMPtUcr88utnUzVTpkSEpWprKqLjsFvLSoD7/eHzp8+X8yWEOC+riKYQlmVOkaZzHbvU5XA9XyLHEOPnj0/f/PCNL/D8/KJufdeDgZnGwH2Xren5cgECrXotrU9dzN3N3c3pLz8t69IN3eF4aMtyOZ8+/fnDzcPt2e35ev3zX//6T//tn0OfGCnE/M27t3/3w+8ebm5+9+13Lk6IOXXQVAGXqfT90KU8nef5fA0QXCUAjMM4DEOT+nD/0KSmGA+7AxO3Ug+HXQgkTVNIx+Pdus6qkoeuidRWp2VuqN9894MjfDfuLufLLveEMF1Ox8NN6rtlmafTtAaMHJBIaiuynJ9f5unKRK2tl5cXFx2HoUvxl59+Xuf1/c+//OlP/8O46//655+maY4x7vb78Ke//+M3b+/ePNxFQqjWpIGYKqxVQuDW9PHz0353SH12s/N1OQyjqy2XiRhTSEOMKRAHbE1rUyylmdUi12nhiKpupiGG1EGAJCLz0ogDMQODmA9dImIzlyYcuB97RJymeS2ranM0jhQjE/GXJ6inHLt+QC9CFRE3Rm4ekruvpV6vU5Eauw6Za2sRY+7SdqSppbbWti5bN+73eyZCglJKE12micwPh2PfZUS8XmbmkCKrK4ghgooiQEqBkGOIIQZG3qwJyAHBUYyRzLA2MAcOMaekbk22nRbRNhUwQdPIodWWU0wxdX02hWkutbbt0oHuHIM7EFGTtqwADqlLIQRRQ8IQU1PTWpZlMUvEpKoeXcQc3dyJMedsqr5t8IHUzMDcPIQA4GoK5uZ+vlxyzsxBtJkrIaUUv54GHYgZmVBUTERNC/i6Jml1bWurQsQEaOTujZGZRETbfMWUoUjMfSBLruamyyRqfTdEBqmrFQNnbY2ttTLrdA5dVJF5mpdlZo7jbqhV1nXe7XYxbj4xaE0csJm0ua7EfZc3SzJHVnVVcdgkYEoxd9blriPGy48/fr5ezuczMxLx8Xh88/YhENe1MvHQD30/oAMhAriZIVI35CZaa2uyUNimxSGEWFsVx20FtuF1iS0wMwcANNfX4m53BMCt3hxxGxbFHDbvRkihiRAREa1LsabYnDuKKabADtKNO+BcnRTAXCiF7UsQMTCCKLMjkVZs0sCFyM0VgFSs1FVUACCGlHOMjMBkptakiZhrKaBu2/wPCSNEM+j6rh8HV1MzUEgcA1LA4KTbnGHZDpiEMUTm1A25H3Yc4tzUkM2waiulisjGHk4pIXGKiRCHoa+lqNp1Wp/PM8Xwcl2lmRMqJw+pqhN3zkHNKkbIA7GLq5qvpZkIEaWByAk1mSOlrh8Psds1iYBBIK7FgoqicxcyRVGJOe7GEU28LpnD8f5gZT5//FVM94cdAGBkcVjWFshaVUTkSEWKiDhY7jtyQoOUmJkJCBlFXdRUmhomZqIAjqCKWokIcTbOFhIhxxyVuLg7on9tJf1i4MGvdWBf0+y/DXW+yiH/ijf8zQ3tr4adV7HyRRP5V4f0F1HluNmtX8dOGz0IX7dbX/drDgAEvKn4DTCNYK8moFd4tDsaggKAIxmoISSyCLV3y/UljvGhM4i4nFsAH0F6qLvgD4fUruFlud4eUq1u85J4FzIH1NxFwLAbh8u8tlLB7Ppyur3Zq+K8rmTQD2NIGRPP63o+X8WgG8d1rVUaBUYkzjl0eDlfWqt1XVUkpTR0XQDKMaUcI8c2FTTLoRv7ob85LrUsVdDtdH0p09SWCib3t/v1+nxdDSmuWE2lzyHn4HVOrN7s3Zv7y/kSFY6HfUCV8yVH3vcZzFxLqW13GFLk5/efzy9nMemPg4mkyIG57zIBWGsiTVtzTGVdPtTy9uG+iyH1nba2LOtlmubr7AifP33e7/a///vf59rN6yrXS22l1gIA+/2eY2xm9fm0ziu4dX1CIkAadmPX99O0jLtd3o1A9OnTp1orEt7c3Y79wEylyTzPwzjuj7t1Kefz9XATYu72xz0wzvMaY93v97nLMaal1et1OZ+nyPk//6f/y7yuy7Le3939pz/9x3dv7tfL1dcamcdxSKHbHfb7/b6uVVWuOt3f36aQyIGYl+tkTVOKrjZfp3Ec94cdM6vqPC+RSRRVjIiOh5ubm8Nff/zp8+PjPC8xZyM/n1/effvN56fntw9vEN1c5suCAF2KT0/Pjx8/qfl3379zhXm6isrNzW0MjOwEWGqpa1twWZeFzL//5htCnK6zqeYQ3759mJf1+en6+fES/pf/2/9ktZppIFYSUQtMfUzuWhZ183la//KvP/X9/v7tfYhuTg7OAYlRqyD4/ZtbJ//1l/eqoE1Tl9dSrtfrbrdDZlXXokgYYyLmrmu11RBjjIFj5pxVZKmrq3NgRnYzNwFzUHRVR0ghxBQZnNyYEEzLPE3TVNaSkOd5Lgttx6jrdJ2XVcGVkIlLWV+en2MMXdcPQ59SGvqu1GJqbt5K9RAQwc3BoNUmQRAwcECoTBgDO4CIhhw4oBRAAEJgJgQDMwdo0iBCIARVqBZippTEYWnGcRxubpvL9fEjWGWkmHDoB3evSwnEgUPXZyISEVVDxJBSMA/0OjsAx40AWWsB9077EAMQJUyImGJu0kptALA/HKSJmgLodF2IKcYQkA1JRGppxVY13zi7IQQzMzEHJyY3aLUZOzEikIGpG8LGd0UCRHBtrbWmpg5mzcsyawi2JaQYA4PWUqYpxBTBgbCtcyIkwiEAUmylns8vtdT97nA49CLw/Lisz08NbN93KaGYmjSrbtqYaRyHw83NuN/N63R6YSSgwDlnaaZqVYSZMCTRcr3WLuXdYU9M13muTWKI5hwIMaBYoMjT0oXI0EDdGXm/3x/3xy51JopO6ECETMHMQk6RAkFg5tzlYNZ09ua80a1qQ2QUAPUtHoyM5O4GREzMbq+rJ/CN6CFImxwid1dViI6E5kghp4zqjgjSprYWXSRWOe66njtwo4Y5U4hpVa4FMAB37Mo5p6gb87CGFDYvkUpzNGYyl9qW2go6Em+t7ORm0lotbft7Lauq1Fr6oXd3Zs4pAdB+N4q4qqDDWtYuZwL3pqoSQ9RqT+tLSOHm4f7h4W3OAxJTTI44zauI3Nwcui7Tul6v0zLNtda+H1LMAI5KhLHrB2mKMa6GICiQsGMDaqJAPK81JF4v1QEIYwjswcnNbU3JSptqExEPgdIw5I6cc9jdhH4HHtdZxAwdPEBK1I98jF1tVmpjwsxZVCNrbQrEy1LXy3Rzs+/6+HI+S5NazUS71PVdp67zOhuYmRZfQwiJiTmgOaCbgajUpakbUYwUc8yISL4ttUG9icxQc+56cnNABRRw/c3cvI176LchzuuOC19bUf8GhPhlkIPu9oX9A/Dbe1/4QL5JJfwyE3qtPgVHQ8NXK/Xr+Mi3/BggOfnXRJgDOW4psG3SvqkjQ3dQAALaPiJHVkJld4Zh6G53QeuSs7zZJVgdbzpAH8H56nU+SdJjF5bFVWU+X49DH91KXR++eeAQpus1cehCnF6uamZiZa35MBJx7kLq8jSvLy8v3W4fc2TgzWMXUyCIuevVfLpea1ljDEpRRJSsVkGjYRhNTYoZeJf7pkyAoHY6vaxlPhyG6Xzq0Bgr6HIbBgv5zx9OTfH49tvhMHRkRNBUSinBzNcaRYeuC011nYJK34dDjmsp03UKKaTA6zyLiZMRAQN2Xbqxg4Pvuv4wjHJ3+/H9++enlzd3dzl38/l6Pl3D4ZC7ETrthx0xmeP5cn4+vXx6/FxN7+7vY2JD3+2Pbl5rDSmEmKbTiQP1Y2dma5GUMHQZY3RCCNxEQ867cT9dp1JaSGnoh8ihtiUPXV6Hl5eLOSLhPM1rkxDisi4IqlIv06WB1Nqqyrw0DnR7+/Dm3ffdMMzX+Xx+SSGtl6UN9Ydvv0dVV2EKh+PN4XgIMbZW3//8YdePvOfjza07Xi6XwCGGcD2d53nputT3qSwrmLdalst1NjfTbuhEym63q+ilzmtbDzfH5+fHH3/867rM8zw9fPOurDvT9vPHD13MBPDhvV2Wa1lXd7icTn3X5xyP+zsiOp9fduP4//x//C9//fGviF6W9fz00nfpzXffbhOLIUUHApF91419N81r6IiVGUPsh2xi03mmQP1x0KZVddj3OK8v58uPP/68uznklE11PI4BwE2ul6u5u/luGP/wxz9WdwhUS61ra1VVlZkCU21CgOtSkDEPvS/bZj/EnBStSF1LBfMIEUFrraISA6cUYiR3N3QAr2vhGJh4nmd3q6W6gRPUVhhCrW2jbaSuA0J1E1VC3ML8KkqEfZdzTK1WB5BWF7Mud9tCgCPGlAjQVJu3shZCCsxrKW2tYejItzWRu5oDEJOC11pEazDOKQYkN0dCMxBgyDmMx3S81zrXx89qtYNkIiFED65maBA8MgdirLWZQ+qyA4E6wsbdwC3KaF5LrW6mAIgUUwgxOHrKaS2BSTlQSpGIpmUuZb1epr7vwBIAgYOIlHUVaYFjSBEJ3YBwMyqhA2zscECJuUs5m6qpI4K5bXZgETUzEXFwQCfGWsuGFowcOQZAckMV8U1WUdhS1PEVvxPW6brOc4r5Zj/uulRr0xym2V0lgKACSNkNqVwnKWvOMeZdN+QQKOW4348hRNyGOmkDQlKKAZykxnm6cOSUMxDgjE0kctztBgdb5nK+nJey1lJy6lQ0910gHsexS9nEYowBg1QhYDBHgMAcQ8wb4hLQDcB96z1lpOourZa1VBEKBMwbYlFU1T0DAIC5qYma2oYIQiAmNEZkcvRi1SUykRNzVFFADCFJLYSOVuv17DmN+71ZqRcLu0PA0LyySySnCCkAbeRvdZAWGAJtphDbyDpuyohMHGKITCZNVOZ1FlFi5IDUvDUtrWTPqtpaY978LdB1XUoRzM5n0tZCorLW1izn7I7L5eyMZtj1493D/TIVUQ19V53adaniu5RDDACgomLWDz1hUJFS21qWUmtKsRu6SxEF524IKVXRtoi4W+5mtcXJ3WMMCTwSpUjbKCW4ARja60xi3O8hDM1jVSrqixoyDUNKgVKEmKnve0J8fjpLqSmn4BDULp+f5pez1EoIDKirLKfJTMEYjCCZugJA7rKpOqjaq3ogAEA3tVatNimlIiJFDkSJ4usYDQJsGCZdQWfQwaWQBk5Z8G9Zzf4qYBzha9fXNsp51S9fPT1fb9tsiq9Zra8a6MusCF+7x/zLnW+/DtuQyX+zRm+pL/TfHgG/Gp83afSqe7ba1C9DoM0tTWAOjI7uzIjsjj7uxrff3h3khf3iWm8jG8uylJtj36cDqoo0NMNaOqZ8PIx9QrMcIhNJrWUpZRYmzgQp0vhNty5raxZiTl1OXVSk67SawTgOpfnjy9kRY4zkMcVQ1tKWFcD6nDsME6I7aANwTx7KslAKzKGL3HHsUpgvZ9SaA+37Lnmz6dyPzABBC4UYtKliZkxEMk+troJ+Op/Q4DCOmYOLTsuk6/TduxtrrZY1hVBz2B/2Tdo0z0spKefb+ztEyByHYzfPM6MfD3tEX6epTOtut++63IcuRVJVV40xdN3Ika7XCZCGcffx46e//PXHnHPIcTeMlrTrumUt5/NJ1ael5Jzv7u4Dx7UUM+/HvmgrS52vS611dzwEZmICh9ylWsrUrjFxiCn1Wc4nB7+5u6d4Ob28UKu11pzjze0+7vpq8Ph8/vD+07tvvumGsbYW03CdFDD1u7v5cvnlx5+m8/q7H37/h7/7/vH9hxzjuBtjjMD48jz3Yzfk4XS6iEircj6dgeDp+dnNmOl6qUiwzEs/doH4D3/3+xjiOi8bSPZ6PXWpG3fjjnZd33/+/KG2VUxezufD7fF8Oe12u3Ecc0iR6MP7j5+ePu924/6wX+dlulzePLxBw3me0M3Vjsf9zeXw8vy8G3cBKKdk5pfz+fR8fnP3cLg9qMo8r3dvbta1hOVyIYbcdWgemHe7HSE7hpBT2kUKcdeNdglP59P5ev39D9+v17NgTTG1IqFnM2qrpK6/uzlaiKfzab5OhxtBQg4BHABryrmUVnVGgxBjzrm1BuAqWms1lZAjqKubSFMRUUmJUw5fOF/apKAjcOxSbyYpxXF3h4g5Zjczs1UKAogpOqWcyEKrU13XRNwNiZldZV0dzHJMHmFj2bkZALg5OBCSg18u167rVS3EyCEiUddnfLUUIhNtmHgVM98YzEwUzNyZOHBTqBgsJOWIww30BzUTTq15E0GAuRaO3Ei7kBxtWpaUo6sjASLGGFxNqiAyB0ZGcI+azKHUggwALibXaQIH8MXMYowp5Vrb6eV5LfV0elGR1nrb7WMMsIXiwExkaRpFPSciMjNmBnCgbTtjbt6Cmtlm3BQRNQNwL8DEITCiMxI4RI6qaqLAgbbLr2nkgIgxxBxDa4aqwZW1ybLU0ubpEkO4OR4S4Hp6dpNDQmdDcqvTeVkSwe3tjqVcKxx2g7i6g9QaOQ73Y+5iXQsAqiLXBghMGAIHygjEEd2dkFNOveZWilYEhFLm56ePa6mpT2/u75dxaCYmDs4YKISQY6LIlQoimAgytiKRYtfllLObmzkRhYQc0UDVm4HFyAZqoF9YvOZgJlrBCVlV3J0JNwDLFsHB7VytoLUS4ioQiJAAQE3BwVMKAESE0Gq9XCLgeDhCCCJCrtQqaSVtACpLDeq45dgJQAXVNl0OCGgeKdCr7wfcVLQt69JaJeRAjAFSjKqv/YcmTZpM0zWE2A/Dw8MbQjidXlJmDeAOQFiqUKDdYZdKWmo7ny7qAm5EkGOkGIddXFZpzZoqgg5jN+yHx6dTK02kbJYvdacQ+nGAEM9rwdxFpkWtGXpOZrh1a8aOaq1VGzN6ZjER9Yhw2I/rMpV5cqRKgSDmfZdiXprP0+rMVYsEH2On5tfTdIe8S7FHaNb8stTrtLZlubygtYDEKa3zUmspyxqIiEKM7KZSGzEOMde1OKC5NxEkcPRWpTURA1FRt0BMYAhq0ogzYVAF86ZUTQsGgDVwSKmL4qHBq8N40zf0ii38ql+2ZPzW4rRltvxrsenXURB+9UTDF4/y60LMaOtG/eKEdn/tHvtSuvE1L789TfBvtm5foIkIYOh/M1ty3FDRaBtrhLa7QBS3KtQHdLpO7ZdPUz7mTovN5z7w24F93O33wxDS4y/vHz+vERxc7m7eGPjp6QkzD12erwsTRWRO8TrPKQSK4bpMzBRSDIFqa7ZCSF1odp1mJ6oC61I4xnEY3Kkss63lZswQyNW7QxczS/PWXNUAOY+jgS9ziRmGHNflORAdekzdgUw/fPzwL//1v/7wzX3u89PLuXl3XVwwvLw8z3NYX17crQE2lS5noySATT0yffPD9120+Xn58PHDfrfvx/7l+UVU9ocjY9jvdgQ4vVzHoY8pDjkjYZ0XJn64uz/+cT/0/eXlstvvYohW2nVdTfE6r7Wt6hhi/u67H+7u3zw/P4UY3ezl5cXRQ4pd1z8/n0wghWjil/McYoSyllpTlwBgnhaRhgAvTy+Hw6HrBqZIjNd6SUMMIV7mBdiU0GPsD8dmVtrKxCMMKTAEnqVxTLu7t08rPC6+uP/7f/zT6eV5btO6lHE8fP/udxj/cn25/Ld//uvj51N2TAHfPNwM+93T89PL82kcR3Rstf7lX//cj/2yztfrVUW//+G7YTc8fvrMIdzf3zqYVjmMQ2nlcBgul2mdF3Vflzl3WcU+f3oE4r//47+/vb3BEC/nlxTD9Xp2h9P55K7VaohsqmPfPz89SW3rPLV5adIocmv6/uOntdXjzW1A/ru/+8Pz4/P55WWa174fl9ouv/yacup3uxwzmYcmEpykyaqITiGE3HdEEXGLKOD+eIwpnM/Pz58/3e6G/b5HNwWNmYGsVh/HQzOf5xoSkCMTj/2oVUQEEBNHJGJkAhAVYmYEMHd1J22lqHo3dAYgtbm5isXEMSdTQ/AQA1PnvpjbulYk6oc+crq5vUEO0rSUVUtd17VVAfRhGMyszGW+TF2OFoOIMoHU6gBu5uApJQJw1aoFzLetpIqN4yCtgpOZAVKMgTmIVGJihI1BSQZqnvteTDlGDhQ4gJtBQApKwUNECk4hHu8976FVip05TtMaOOo06SKH/QGIZWnrUt0xRAqBRK22mmMOkcxg8xeZWx76PPaXy7S9ok3TFKs6mIshbQi+sFmmYaP81dIPQ+BASBSIEayROahoeJUyJCKtVgfnsBmwKhBtDBgHZyZEAsRaRUUCE0CXc+pyBndVDUSqtiyrNAkxbIUH0WNKXd/14xibSlUz1XW6PJ2v4hhSp1Iv5zJfzkMX746Hw5iWqZS1WFu7/YjuYBoj7cZBxC7XSxPrYro53oQcC6+tuo042bSuK0TChubQ9X3f5yYV3FMMmjIYuEOp5XR6OV+uwzAc9zcc47LO87Ku84oOYJBiAABpjRgJsa6tHztZZfXSmtS11VZjCl3XmTkyti1kxqTSzA0DA6I5ABAHrrU1EWZXNaKNJERqCluLEqCZA4ChlVaICIiQ0Ew36xtTMDEtzaOAmhWBpikYu0jVnoywaStgEolATd0ZHNXMlBAY0cC1thBCiKGhSxMTMXA1ZSbCvLW4bNdQM3PR+TrP04QA4eYI28AuxFKKiAKiqs3LQsy5y05o6Lvj6NcF0J4+P5Nj7rv9eFiLLktFwoeHuxjx44fPJvVwe2Panh8/SYOhH0KKKaWEhuTrujQFNs1MAlxFMQTMqa0aUgyISUJdF37FClit9W6X9jn2Ea9nWErJDLUsxvPubp9SYuaXea21Xl/KvJa+D14rwGR9YmmZnFHNyunyNL08R6L90Jl4WZqW2qUuYthQzWCAwYloQypIM23a5YjsrdZamviW8zNEYKaUg6ttr8VAwV49Psbg6FXaCnXlJAzb6+jr0GUjCX5JbH0Z73wprNgmrPBF4iB+TY5tx5jfeNL4RQPR/9k+/dsd429Z+Nf/3Mjmr2l8sC8rtlft9Tr/eZ0xkTugIwEYuLuTBwIgAHNwNUBeqv76eMJTuw1liC1BDCE2VWhSDbp+OD19zozH465PIXapC0BgZEpmbSkppXHfV2lLrWJSS+l3YwyJ0EXVEFS9VVmndW2ahyFwQGbm4GIowuCEECN7wFIKOvQ5pwS1qOo2s/S6VnCZLi9Firvdv71JwVqpP/31X3/66S/z9by7OSrnON4U7CDxqTW25kwEkVM/dDmlaMxIOK3X4DZI7XPqD+PLh2ma59wldIyp2+0Ou34fmLQKd1SWUubl7u7W3MV02A2qKceMSF3foXqXsnOQVmtZPn/+lGIchu72cGyt/fC7H/7pv+m6lMNx11BKXQGh6/ON3aAxhrDWUlsLXQopLdd5mpZ+7EqttdR8k2KMbkaBUg7T5doPOfVdWYtqKaUej4ecumW5VqkUYmstUoQQXs6XSRv1O0/Zuv2Pf/nwH/7T99/+hz/FD4+nf/lXw1livP/979/+/ofy/PLp558e/+UvuxR3XYiZSms///KLNG1NDjdHigyM13k+nc+n55d5nsb9uDsebm6OMSRwcUAp8v6XX0Pk27ub3dgv01VVbm9uzO3p+bnvuhjvY0p393fLWggxp3x/e//Xv/z18elxHMbD8Xh/f0+AOcX727tlntZpub25iSm11oaORXXXDymm0+n8lz//BQ2YuR/G3/3+d621n376Sd3fvPtu6PKp1OAIHAIRo3lZi3eAO1TT1ppjdSAAN23X8/V6Os3X63/40z/cHvcWQmu1VY2hCyliVZJGRBaCUYwdu8jp+RQiDzlfzuccY3/ctVodXRpuG8TxcGSkl5dzW2uMCd1qKSEEhFjXJlqYEAgIYF7LMi99f8hxPNweahUM0R3MPcSISMu6LKUwo16nwGsrzU2BUFqLIegW5fWNzasqShzAHdBExdwB3EXmZQ0hjTHElOa5UAgphFqotYoxZI5AoeCSYooxV2nuyiGI+LrUmAfux2ZUA9GwDxg+Xet9NqQUYjZEcwi5+/Dxw+3DMeXBRddSwK2t1YQ6ytaEmIHNDZjYFed15ciHw2FZlxBjSrHVtt8f1N3dVp19i+trULMmgkTDOCBiimzWwFG34qRXfB+oaWuSc4qBv0D2QVtz80BICESwubABvRXRJmbSBAkox4TuhNRMRJuoIpGrttZCiKmPbRaiMI5jjGEu8zwvuR+RsCzXkIehS21ZVKpLrbNY3/WBOScSMUqRcZnnebpuUapxHKq0Ni8UogEj8MatDSHkLqurtGbemCF2HHOggGbeRChGUnt+fjxdnkupx8Pt27dvCWkuMwONXU9mzEwI61JiYEJCAHNDohDDVJZSy7DfEbK6YaBh6Myh1I2wkE3NAFibuisBIYYYXBBZCXEz/TRTIkaGQOy4EYLA3YmCoxPD9ltHEMAczLUJRtoaCspcCq0MXDgGIEPYp5h23bLq46xrq67ex15TALdai2kNZBi4GqirOwJQCLzNJ8EBkESEGL9wfzHGeDgQAiKSuTARuLXazLRpO1/Pp8ulH7qltaaaiPpdB0BOQMw3t0nFnj9/bmUdd+P55QSYGtK61iliDHh9eV7n63w+hS61ZTYFzCFzamzrurQCAgTOSCkYpjE1r8URGakLImtEjqQhg6zVDTjgbtczWY5x12dsMp3PUhp2Js15HPodORj00dlXwNh3pUiIY7Xwci69lz0rSE1oP7y9+wT1+nIBbTGwEXM3UogqugFaN27TdmYDMGSISLDFBFzcFdzQncCJKQZCBlEhIgQBEyAKKYADRlJ0VdsCBJsOIcAvs8BNjWy7qv+TdvHXyNYXIfNbqxe89r/Dl7awr/igL56e1wHTtrX9W4XkXyrm/ZU+/TV2j5uf2sHgtVHVHAHMNi1G8EVAGaAjuEcOjkjkaiJup8t8lyLddrdvj9++7f7yL/80PZ/vHt6g2fl8ZsKQ4mHXEdjjh1/G3dj1icwDYczBW42Zdsd+ret1XVLOx3CkyOu8EnGI2cwDE1Mk4hCw6wcN5TLP59N533WB/DJNkfm466u2l+mMxKEHAkoBFJ1AQwq7IVapVb3L8XI61ena5sv7jx9+/fnPgj4DM43d8aF7eBtiv6p731UxTBhTh6mvDko4lYXaPEaAdV1+Ob35z/+wv+ndFVtLuQMgQy9LPR722mzs+/2+e/74WaWuy1pr6cdh6HpVHcce3M4va1uL73ZMlLp0OOyGPn/+9KG19vDwtqzrdL72XZ+71O/6f/vXf0PC/du3WMr5ZTrsd7vjYV7XeVqQ6eYm5dyZau7SMHYOdrlO/WDDGM10vc5QK3MmaQTC6GPub+/vSmu//vIzhQgQYncgDu9fXqpC3h0894BxfMh59p9epv/Pf/nfAej9ebq/O1Kkc2nfvb0FF/8cFmg3x5GYPz09Ho8HAxsPQ8755eXleHf7+PL0/sOnYezvv337XZe++fa7x+enoUttXUjV1Loug1tZS1kaERFSzmm/P4i063W22sb9gByfn15yl3fDaOamvt8fEXDc7epa1nV9++bt0CVXOxGLyG63Y+bLdTLyIvJyPhWqOSdZ626/c7Bu6I83RwesKvvNB7rfzeeXsPUGtCqRuBVda6MQu2FobtoUEabFY6Bh6Kfp+vTy8uv7z/ubAxHOVWrTzrWjiBgctCzFwWIM8/WKDjfHg5mb6dAP5uroTCSurRaprdvnh7sHgLDMi8iGC3MHZAqAFpDEmjkCsBMwR6BVAc0QnNywLBUADBwJahMOYRg7E2tNyrwiYM5RpCKAqoioqgASEyIwETIREbrBRux1Q87BzUU0ptx1vRpjICKiaHUtrpDHbug6pYAUKCQiUXRDKi7aZe73uL9hDKWszoNynNsK1+sNG6gHCt98921tur+zm9tj4FhXBQgUWMWkSu4TEropIsUQgLg2AWZkvq6rqcXUc2QOEQmvl0nMun5AgC1+35q01sB0P+6GbiBCAGy1uiuEYA5EhA4IqKJCEpgwhCYirZkpbj5JRCJqTZqspoYYKRBDgs2rq9KEmUxF3G1b6xACEwUGBqytztMcYhy0nZ+erst6JEj9MKQIBB0DMHLqPIVWynK9oAmCpUgKuFxnlZUYCHCeV2LOuXOIIaWXpxcKLLW20jiGlJKIuDp86doUUVPdOMKttJfnl7/8+FcTffvN2+Ph2HWdgzeV1iRFsr4TkVZbA/GcicANupTdbVuiI9I0LzElDqEsVcU5sogiswPWJgaQulSbOsDWzcwxRIJ1XrZrkyGINAJgInd4tZIgvWIa1NQkhkAEZoAIqmoIIRAitCbLuoYQmFGlGvjuZjwc92ufZF10XUprRoGZW1VtDdxjjEzk1sDV3Uxfr12bsFM1AFNxU+ZAxBTxVciWUnbDruu7eVmfn17O58swni7TVVXWZZUmX8L9tNElapXtuh2ZpLbr5TpfJwWqCqaeyU3l9PT5cr4cj7tu6EGrVitXBlUzkdZiTjFFbxAiB3ApDUQcDAQZkcmCNVJxlUzKgDGk43iMy1mldanPQza3WmoOHDksjx9lXTD1+93ROO1TDzFrT4BIAFwWLHJ+eWqnTw/7/nhzoLvbqGYu4DiMO6lNRCgyAIXIpgb2VTogAjIRMZmbO3JghgAREBEDkAdwAiQObGYuDQNFZoZgxIARORkzcgAkMED6m7CXfcm94xdd8nUb9aqNvgoa/GLJcfi6q3o19OBXjfNbPMxfhdXf3kSA9vWeNjPzVxm1bdtoC9sbfPUKgW/zLILtRcPJkABBDIhiDKVVIE7DcLleoBu6cahlcXNzK6WgGgcaxqGgAZG7ra2102knQ9fFnDpmipEB3E1D5twFZoopzdM8Xycgirkb9zugoO7E/HB3iyFD5VJrWVcPBCJDCsPQDTFGxqVL81rWeQ6pCyEy07qsoiBS1URd0fn29iYw/PTjn/9//+t/eTzP92//8P2/+1Pc31F/6G7uC5PXWkUhOkKAkIqiOUSEmAkJOWmXceAGSDGkd2/fkWub2zItGOh6uSzTzMR//P0fhn7UY13mSaWBx93QBwI3MJF5XvquO+53ba3LvOzG/u7+dr5epWnXhRwDWERwHUd1syY3x6Oqr3Pph+7777+/npfpOqlb7vJ1mtS1H3pzc9cmstYyjmPKWcyYAzI50TwVrpVidIcmao6qcJ4qJYJIb+5uxOMZ1rRP4WYfhnGZZUzh3x/vf/r553/99WetjQF/dzMehvTp6dPHX/+yXJ6sLDG6qDy9nD+X9QcwMJimpTa5v++fn1/Wtbz77t00z0h8c3u3rPPj42e/vUkholhK6Xh7RIDrZUo5xJgQ7wztOl0/P35+eX65vb0NGC7XaRjHHPN0vZ7O5839dzzemuk8za3W63Rl2j8/fgKHwLws6+F4uLu/XWt7+ulnLXK8P/R9fzgcI/E8L45WpJ0vl2G3O97eAOGHTx/3N4ewYSA2qIyJquPz02loGnNOKbjUti5x7O7f3tzRUcyVw8fzHFdBQ1WqIuIaGU1c1WIOkbgsJUbv+xxCFBNpMs/zZbo2XZEg50zEh+Nhf9ypwTxP83Ql4nEY0AAc17oCYYo9bxWdxDe3XdfvMGSKcZlbSCHmuMzrshQz23r9mFNiJCzrNJUqpbLUyoGZeWMAxoTM7G5EhARIaO7mzozMHGMA5BRzHgYkNizb60E1NE5hGLnfm7mvvooaBOWgBBwyRhiHgbsDhAzIvswakzq2aa21cB9YDA1D7OayhjzGNCKhY0POrhISdpljjmRNVZpZDEwh9sPQAyzrui5l2A0ppu3yzMz7Q6itgjREN/CyFFFhJti4RkRu5u7EKM1bFXWz7dwdY9y6015PfsaBHAIAxBACMW7QboFS19xRTF2MiWi7HqB4a9VNxNEDM3PkV0DB1q1mZV0+fVjSKcWUxqFzEZnXPvI0L8sJd4ddl7rzZbmeT5UpIAJql5OrMWOgGAOptHVt8zTnYRj3aa36/HhGphAIbPtOgSkNI2891DEGFZnnxckN7Tydfnz/12Vd3j28vb97A+jn8znl1PU9BlKV4I4YpDUwc3DXDbdEInK9TuaGgM+fH910fzwyB2miZsgYAoEaMRFia96nAPQKfQ4UkGE2BwZVQ0d31c1S+4pzYmbaejNUxN0dTUHRYdu+mLsbmKkp1lYARo6YchTVoe/GvgtMd4ejilzgWtbVDVqp6sJbitFERfD1jO8um19jO1LotsPY6EWouI0M3ISQOIYQ4465lHqdppfnExJtVRspBvENgWjEtJlLCDAwcwgYGBxba6VKTENz/fThvbYKoAGd/LXUVlDWcq2ygnnuUiRCgIQQ0INVr4K1ICBAQyRG7QgCK4i5mtVWrtNlgVyXqxSHo6LFIaehU7VMHtlkvpR58laBUiKkSHHcLUUv5/nYpzH055Nez+cdyQmaq3YxECUVxYBFvVXlwMxEDoro7ui0QRBey883DiCxNd+Cq1uYfPMGIxAhqRtBcye3ACGpR6Meu52noSI2UCB+NTJ/WWF9XWx9MSHjFy30RX992YRt/jEA8E1GvQqhL5ZqpL/xE31ZlL1+0peCCwf6sv/a/EEA5JteQgN0+z980WY4IkcEQDUndAclAEZQNwUmwJQiyorB7787ppGLzOvjIwDVCr/88vjt77/LXVznZZ7muOt3w7A7eCulKXKDwqbVFPCwG5ys36VdybVIW+b5fCFHVZumuR/Hsi61tWHchRhLrYl5lzuoLUZipd397c3toe+7aZ2m5YKECiSuCng9zWrqbk2EI63zBO5///d/NGnn0zwX/sP/8D+9+/2f0uHtTKFwVygrQiH2hOjAHNfmjgABOBKAMHtdzxkxcrw8nrMPN2OHRgjw8OZexU+nc2kFiVapuaWu7w/HvWlra1nX5fHT5+P+wAAuMu7GlPIKGJgD4/Pz83w5I3pgLuu6yd8uZUACgnQfm2itNYSYxwEcn57P07ymPk/TnIdMwKWWWksI4eHh/nhze53m8zTvxh2nziwcb4ac83m6RsFAqIaG8fDum7+8/1xm/TR/ePju97Z7KImlUWj0OC/9cHP/5pY6+Ld/+uf58tKm9Z9l7hPO56fPP//48vT5bj/+7s3bN//w79/98DA9X2ttfTegu6l/+vQpdz1xuF6uHGOMYVmWX3/6eRi608sJHQLRfrcrdez64XB3ayZTqW5mrs9Pz9fLnHN3vLkRUan68Ps3IcT5fJ1erqWU4+3dfF0+fvy43+/evHnLzOfn83RdXWQY+4DxfL6OwzBNU07JRIeuZ2RHjzEOA4YY3H0cdjnlaVrWtTBhOuxDCCEQLLIqGEXeahDscg21gilYBfDrNQNAGAekIJQaJlFGM4ppLSYi0YkQUu4gcq0VYsRtQ9t1ZoZUyQxrJVVHC6lDEUcWtZu7IwR6/PSxlaYmIQRpIhfLOSMTApRaYuSbu1sVn6allrLMy4CDO8zTUltFpK7PYB5CyDmGGMpaVK+ttmWZQgg55RCIaCvsRjMtRWKKRAROQIRIMUdOkSiO+z2nZAAYoiJijNo0jfu831tIqh6PLGsTIHXwlIwTpwwx87BrYqsCD3vOGRzW63lgO/R9HbqnT/rnH39O4+Eyr/v9IXdjHoIJL9OEgfJ+B2Ypp60qXAFy3+eh12bVfJdzztlEEDCGgOjd0Hca13nZSqMAwc37PDChtCoihEhMTOTb8dscERgpMDOzu5e1iAoT5y6FYIgUUwRHKYIMW3vGhtTjL35dQJcqdW24GamiO6IpQnMAVLO+H5vK9XJh4oe3D0O3N7f5cjLwOhcrRcqUUrq+XKXWfLMHwut1Wpdl6HIK7KrNBAmRYC0FQowJa62OW6WjgYsXN1FC7PoOHVWFCZyICMXtfD5/+PBeRf/xH//x7cNbQrxOV3dQ8XHs+7G7XmZ3wmytijVhInTnwExsbJtlBwBLK+fLNffD4RBijGqm4KYOjoEZkVANYLs0sSG4mhvEkHR7zwERDbbcHgRGDq/jRndHRDTfutiYCInYGei1fnK7WKnbPM2560zberkGhtbUWktEkXmWRUSRIFFwtFpaKUupNRAxE4BvROovDQzE5ITkvtUJb4+LhHjYH9Q8ceQc7M6XpahZilyr4fb7g9RcVMyrh8gAzDkGDmbqzZgpEBpzQK+1lnXpugQOkZDJXZvUplXUiisAosNAiEa1KlAVAPcYUQTcVEuIUV2VIQVgILEmba5rRYBlumhbV1mH45AP/TIvu3FYr+u4y9bafJnW60lDP5r0eBOYo7OWQh3nwARuorWUp3ViMFO/ubslgmWtFJgDOuhGuqHNt25GuL1W2BepCsxMCRkjIwKyb15iICR+BTabckAwd2cIPcY99nvvB02xOThtxIxt3PLbsuuL0+erDHr1IG/On00MvSqWbbv1+sGXW14l0hejkDugObw+wJbfor/xFaETASBAALItN2i0Pa9eBZZ/ZS3iZn8GdkdAQzU1cEd0BgBjtYjE2PphoEQNWmutH3aDhPnzCSKHHNeymKuIOlI3jKnrwMykzaUFdCQzpqIK5P2ht/NcL7Ub0u5wXGo7zeu8zOZAjOpyPa3qtj/sD30K0AcmjZwi50CZ6XlZW2spJkW2qk2UQuhSt8zzsOv7sRvm/vnp8fHT59P5uir+8O/+87f/6f+e7795mtrLtFYFBGViwLxNSoBeLxZggmDsFsEz0k3f97ZSVVxVsbW29qnrUhK0u5vDtJbcZSKY14nMUr9HxH7Xu8vpaQm3N0PuTnZ6//P73WHXdX3u0vV8Wq7Xvks5JzOTUpHAVQNTiLGUgo45RDe/XKbrddmelXnI0zwfbg7jbqxtsUXXdQ0xjLsRI1eTp5frsurxeOj3h35/QARbm7J2u/Fc21R89vB5bae5VakfJR2O4zdvvj+dz5dfPy3rdKhtGJBl7VCnNj+9//HyyVEbW6NWOtcR6Zh7b2Zih8Ph9u4mh1iWcj5fSq39bne3u5uXNeWcu/Trr+8fHh5yjqenp64fmGhe18t1NsRhGC7T/Pz4EpiY0Rz2+/2439emLy/Px8MRTNa5icgf/vC73A8A+OnT4x/+7u+6Po99v0wT9vlw3D1+emytxi4uSymlnq+X3Oebu+P1Om3VnK0Jh7Dre1PLfYdANyH+5a8/TtcyLRpSjEQw7FFFEZBCAuLWrKx1uV5D9F3fEeK61hhiHPu4O2J/EAcHiZE122K6mpNph0zqTrElN7OFSD0utaqxhp5G6sY9utW1tHW+ltpPl5vb4zh2ZRm1E2kqZu6e+xGJkUBVaYnmImJmECgJintrVci8tmYOh8Mu99lEtVYVAfBh7FNK03Va6yQqESKnCA6iiqgcQMTMnAg4YsoBicUMwUMgIFSHbuwx5GLuQKgeUmecVtGYh/3+iPOyLqU15XFshi1ybRZXqU2NmVJyh0R4HLss626X6+3R/kzXpfzx92+hmzAOIe8oSROMDugwFXDTkRMzOaE7NyBQcHMIxBxEHYl3Nwc0m88XgcaMgVBWB8A+dZnTpn7KvIYQgHzr9ObIIQZsKg23k/26ltZqLVVd4oZBcmMOCaNutD41M00phkBIW6+YgbuBSzNtNaeAiE2amm7DjRCIwGsprRkBpchSy/mxhcxSZV4KcQgxzC+n51KZqes73XjBok2K1kruKWDf5RCYCNVgXdbWVNT6sXOmMs9SBVG3OI0qMSIiLsuyWWo+PX7++PH9NE/ff/P93//dH/tuKGVd1mXcjSnnrutLq0Shy8jEGpptZU6tgoOZASIxxRhz11WRGOM4Dt3QEWCbFxVlJEAgRHBnQBMzNwYiRMEGrjmnVhsyqKo7cEAU/43Sqw4bz9kNfENSOm7lrETE6AAYIjpgoHme3RzQI/MZYFmugGgI63VerhMTUOJtjOMAtZVWVhPRwAjhC7jJHcxUXQXDtm4AMwX3zfSNiEiYEu9udlKVFj4e9xxiWUtrLSBvwMzA3MRUzcwIFdyoczeQqiEREaPashZpkkM87Pp1XVR8vc7IZKabhjB1VUUwNAXipbrjXOuaxpFi7IjWZqCFGbyZRuAQg0OVFgnGLonGczlfZvOEjr6sC6mVZUYXAI7gpjaXKoGNPcSUQ/dwkzuCMk+tLikFEQXXEJnJl3lelrXUtjscnMEMxUxVwF4RyVse85WP4w6AzIkIEAhgwy5t7HoOgQCAjIyAOQAF5BSGvfYH7PcSUwX0wKrbRmkTS/TVk7ONB9HpVci8Tmm+gH4Qv3agbqtVelUq9PqFrx+Qu/nf9MIjkpv/tnNDQEADMgAAIkB0YHB3B/ft6QRAm9cTAAnczBzd0ADZASKRufpWhIrGptF8jNRrmC+z7HZC3O9vA5En4SEsdQmJUhdlidfrKoLqmHJOKV2mKQXvMpHZ+eXk5Bw4hiTa+r53RDXjQLvjMK/rMq+xj+PYt1KfH5+gxUjUBSqt9Ie+TNPHD9Obu1vTGggRSB2k1iaW+lyWdVmnfoxM7roGsj//8z99+Hzubt8+fPMPvH/3pPTiKDFnjsSoggjRgACRCRmFTbytUVpG2ZPf7vrvdvEQx85lyCR1qWvpusFKK2sJzA8Pxzx24H55OZHB84vKUnIOsq7j0Hc5oSuBg9n5+XSyl/1+kCYxxLEbTSuaMgMTkwMFdrfr6WzmIcey4aRFmKMD3L+56ZYMQGptnmZ3GMYREWu1p+fP3Tjkfrc282u1w7ieJ1WfV3Huztc2iRWlz+fr59W7/c3D7u7TLx+fP38Ike7ePMg62zLL5fz447XM16e//Mvjxw/Ly5NH2vfp4Xj77d3vH443N7txPw7ouMzr2+9/F5ien19MNzeaPz+9PLy573LXaptKBfGb+32X83Eca2sf3r+/Xq7uNq/Lu7dv5mmKkW5ub54fX5CpH7rUxXVahr6LIQBgq2UY+iF3MXXTNPdd7vfjMIytVlHdjSOifvz48eX00lo73Bz6YRzBDrs9MpzqZYP8dTmHyOu8hMAMKCrDYXd/f/uv//Jn4BgCs5p2Xadi5oDECMGkpRjT8ZgCHPZD6oemVJsfdofucGgUldhRuU8MILVKE2xSHRidNhUFXs0EWCIpaeh52IOrIfkOYJ6vy+llUdGXFy1iaIbej12I/TyvnFREzI3Icu7ERFVlWQPzfjf2XQcEap5iMrdh6JuKmTWRpTZwC4FiipwCxwhgnGgbJjH61nuQOBIRMQEhBAZkM6suAaGJI3HMPQRAx2IGzcLQi1F1id3O8liKr4xGYNx55KW1ImptBfB+N7hbWwoidIFtkdrUY+x2hzF3t2/e3n4XUSRFLtfJU+5iIKdWigmLM1I0N3NEB1ALgQPmgMwMdalghuAxvAL3AjEhKHgI7Eju5g6BQwgB0EQMyIkIkUJAMI8xaBNRaSrq6u6qVkpxdw6GRCmn3MUmhZljF8M2/21iVYnAAFRETUU2ojVt59QvbFsoy6rqIVDfZ3Jfl9kXIyKpLXeb+0Dn6wkB65rnGFwhJNr8KtJaoJBzDCHUJuatqUgVBaKQKHAjcjNg3AJK67LGwA66lMVEn56ef/nl51rKu7fvvvv2W3c3N+YQQwfe+q4PMdbWQgjaMMUIMVoTNcEZW6ulVhHlyCmn3HfUtO+7ru8YiYm7nCVojBnAZYs7u4iIA3QpUyBdzbcVJAdmEjFTcTOL6OYIaGJEAIiq2qoYGCKiszJv27GtH5x5iyzDsiytVKn19vbIgPOsSDjsRnQ3EeDXWYVqbU22Xg5AUFV03BphOUCtWmpptZGEzQvr7jGm3CUEFNXL+XK8O7qom8bAMcbWdJnnHFOIAQnNfCMWGejWpwvmCB5jDAFdDRyY0KUlppiwrmsrhRGIsJQ1hM1fw0be3MC0lUIhgLoj1wXMtd/v+75DsFJL5pQCBULUbRhkSNDFCOM4nV/WUl6ehWNQ019+/pnMZRjG3a7PvdWWDGA+V9KrSIvj/TffMMLLx5c6TwigrSJYHDIhPZ9eHh+fAckJ3JwCq1qtBWHzs9G2A4LXBhEH8M3q9cWHAxt+F5mQiQkd2ZCcgkAE7iHtNI+Ns3IsIs7Bt4j5F0LmFmjH1+w6/lZ5+jXfvrW+f3HkfNFKX4PrgAAGgACE/Do0cretyp0IXstcEVxfrUVf7Nbm5oD0mrQ3RAd/VVz8ulBzcGIEcWVCgFeqOSAFRHRDacEsA+5Sl6t4k8tl3mFMnl5Ol8tUOeZ5Xruc9kPvvX4+P1WrwDyJ6alN55exi9//8BADzcu0rnM/jEPP81rRFZAeH584hN39oT1yIBYAAQAASURBVJYFzPsuHvY7HVpd5lbr7fHoaoC274d5rS+fPnVg4+FQxh1gKiofP35ea7MrXi6X08vLhw+/xkTT9XSdLiIIFMfDw+HdN0+mJ6Mac4oYamNHo+gQ1cnQEMxNyd1BE1sS3SU+dhxEhjFngFomk7bfDfvD6ACMLNpiZFA9vZxcdTzsui4+nc+gtYvx7u5+WZZ1mcz0cLNfl/LyfDLT25tDQJyu1y6FPOSAxEiRmCOva+n7bl3XZZrzMI4jdQCfH58MYUc4HMbL+Xq9XFVkHAdCaiJOOM8LAg+7GyhSm74s1RCaeEqZUrqel9mkOlUKu7u729u7w+GQQefTo16fz62u8+nl48e6ntpykbqs05RA3h67Xe7+8d/9/Z/+4R//8N239TpbrYRUpUmV3W7XWpVmKcXD8TDPy+PjMzr2fX96etnvd2/ubsF8q5kzV0BMKY+HPSI/Pp1O5xOCn84XRtrtRzeXKofD/nzyvssPD7c//fhrYJ7XeXl8vk5T13fIGAhNre86V1vaItpCjEDUj4Ob11pCuu26zMzXy2VZ1lpKqzhN87tv36nq9XL58P5X5vjDD9/cvb0P87z2fadKokCEIeTAYXfYizSRymAcGJDWUi3l83Wla7k9PFAMzaRuL/eIkAfFGgKhG4InIgQrtRFQ2iV0Fzc0I4dhSFLWPvfdbnd9+jDNl7YsfRfN3AANcSml1eYARLy9ZGNFAGDGGIk55JwNfC5rzMHMl6UgIRGam2hDdPQASCmnm9sbkWYq7pgip5xUZJsuxxgAyAG1WTckFESOYt5xiCk7cHNpjp4y96TEShi6UXM3KV4E54apy46xViVOlDinSOQxBm/CqKSKriGEcykr4u7tt5TSSvHdu+/ml+elLNT1YxzWddEqt/cPIaDVIlLLdVHVvh/G/dB1nZtJFXBpy/PlMifGxNTn6GZuVFtAVWYSFXeLIYRxICYzJ5BmTVW37HPKER2JOcaABCnHVysxAfk2EnAHn5fl9PIMgMN+h5FETM22+YSrBWKVJiLmzhQRCQncdS3N3e11g6OlLDFGdSHEUouqtuoA3loDl1YNzAwCA2slZoocUhe6HIex71LXVC/TVC7TdV7FcTyE6BRDaIxMrE2IAUjXUtcyc6TLfPnpw49znb979933330fYrCmDSvHcHt3LLXV2jbAd9dh8XXbd1CgSMlE1nVBwqaizUJOrQmAhxCkCo0YiZ05pzSOu2VehJWQFgdTd/DcJeawndAVLXDafioiYGIRgznUWjmSqkhtott4yJk4UaDfHK8IYESIyK7m7mqylKWbotXatIFjKS2mmLtUVaRKq81diIgwSAhqm/9Z1TVwAHUVVVUibKWCGxFxYN6ujQ7WBAnLUqTqWtaYMjq4WdxMclv4krfQvJODqyMjgpmak4HDshYzDSEEDiK1FRWTVmrKKeckrakqE7oZGuQUtwhCCBwirtXcGjnlQGW6NmllWaIO43Ffr/O6LgiQIrtBWaeeKcf09PwkJqnrQwwqMl1nVDUV8VPoO4Ig12qyYCkF88ieu6FcTmVeltN5jJ6iV03MYVrm63wGR0Ptur7nAczMjGmT6MaB3Cwwb9W2ryQdgCrVHVLMKUVkJiZDA0ai4IDiwbj3OGLeSxqLxyIIGMHwSwDPXxdS5oT4ZfflX21A28Dp9cfzt2+/eZo3m/SXAZADgJEzAiq+JhLQ/FW3OZrzhkJ0/FI9v4XEgpurgTEQv3LCXhmJhmbu7pCBXUxBzR1DZIraVnaNbB1aVoymdZ4jtOkqz8rL2k6Pz8PdcXczTqeny/lKCggcx706pS5dp2lZK6RUwefVjt/cdf2AL6cQ6eU8L1WQ8HqemLIbfP7lsR/it/f3HGmXmEL2N3Y+XZZS12W9v92PHBz4/WmaQ9ztD7uYBai2ZqWZSOr7lOLp5QXJkfTdu4dxHE6na+hu+vubyXwCbBzUDaWm2mJMISAAFvCCYuDI2BrkkBKGXUr3h3QXIZQpBZayrqXc3O7ffvMQObpapHC5Tu1aSi2X82m/H9tcjsNwf3NLbrt+SIkup/NSqoKNqQtBjrc3u6EHk/Pzk9UKY2eVDruxNm2tdn2fuu54M/KECjruc4bu49OzuJ2ul6M9JM6XaUKEcRzqWhBg3O+qGmK4zKXb38TYl2k+i2GOmqAmqk14v7PS1uvKXbobuojw9P7H9eWJdLl8+vxp9afTp3W+JraBccDw7/7/RL3HliTLkl0pRJkRJxGR7N7HCgVg0v//MY1BNYBCvUsyI8KZMSUi0gOLLExzJVsr3M1URc7Z+1//oU2en86/fPn2+fnl+Xx6GkbhcPnxVnL59dvn+/2xPB4+hhDClrPdZ2Y8nI6n56dWqtS2Tcvu1n2X93Wbx+M4jmPrJRcB0LfXH8fDMW9VRbrO//v/939M5b/993/dmqBombfp/XE+H/7525/zNLfWDschbxuDLff7p8+fROrl7cKO/uW//Gsu+T49cmnn8+lwPkhpZtCFLjwHMMg5X2+3wzjGGJk4OK8hheAPh6FMi9sXxkTovWtNVNTQCCB4zwhoDQlVteuHVW1ZNzctRwNk3xCKmAIbMJHHrmsIjs1MswiKQeoEeUPb459gxgQ3kWE4USi6OXHX0mbg0I8naFJqmR+PZZpEdRjGEMK2LqAqrTKRY27SANAHJiRvnisxgEitW1OztuVaKphZIO5c7HyThsiUoBXxIQISoq+tMbMBme0DMO/IO08FASh2T2fqUjXIguoCusTBLaXGrhekRUhUhVyGBvtdCtC0EUAKDE6lZqlb712M8f42obYs7r5VTn2Madu2H3/85lScc4fDgQTBtAIEHw/HflvmZZ5rm4lwOAzHw6FL0QzeX9/neWlWTIS9l9aEUKQ574Gw5Gq1EBIatCbe8x4ycR5N3bpmUyFHSF4NmB17biqtNURGp845aa3Wum3mRNd5LaWxc8wOEMzEbF+kCDMH570Pqg1ASgHHjth9TOhxr/ySiqzr1qqwY0Fd142YAFhaQ1PPDGyEwACOgBE8oQMkRyl2wQci17ZaW91vq947ZnRMIUWQts6rDwRorWouudSyTttvf/x2fdy/vnz99de/HI6HslVEQkBGZuYwxpxrbVWaIqJzXpvkrSJqlyIRq5mKqCl7V2uzthKzqnRdPB1HQu6hPxzH1A23y/UxPUoRBTCi4Dl1vfNOEasJmpYqTcQRu8jU7Qp09QHKtsIHdPPj/r+/yRiZDMBAVHQ3/u6UH1BEds6XUqQ1tRZC3LZVVVoV5P3mvsdFcM+2VzVVkrqfjdrO9mUmMECPooJG+4cEDQDNeadqtdZa6pY3aeLGgZCYPqwdLjhm12rdSwY+elVD/Niwqe1qCKlZuEMmyqUYiHPsmFSEiFTE1IgJiWGP5bdW1ZC5lVpba20jBFErUiXX6zwdAh/6dP3x/XGbYuetKao8jeP1/f32+t71PXDLa1kfMyGq6bzM7JxoU6Wm4FqMTCLbdg10OEqZHYFKFcYmtm05JFYzdixNETCE4INvuQCAqnr2P1dL+3/XROQjtLyTdRiRiD0rojEZYkNSQyNvnCwOGgd1sYIXYBV0wcvHRAd+nmsMCD9izj8L6fCfbbC9gbVPbND+rwAM8Oev/sw668dvBjD7mP2gqZIZ/1zdAe6R949FniGoCQGqwQ6eBFVvHxmk/SeqgIKAQLpHgQw7500VypagJtIDaeewLgVyQxAB2QSyuDyXhm58fnn6dECpj/cfpDSOT6uWad0G51YBjckTqLS328zkDp2XZtsy3e5L6OIwjsuijogB6rb1vsMqb9+/T3339PWzSFvXbZ6Xw9Bv03r943tgfnk6l5yvlyundL1Njy0H74D4dDofT2cpQmzLdP/y8un509O61Lf70rzbzAbvmppX652LPQGwgRk0VN3zWopGTDUrevbexxiHjoAbxXB7XMbn8/NfvqGjvOXrjzcH7Jik5bLM58M49v399shd16UATaTVP75fzfT5fJ625TE9Xj592nJBQGmNgzsOSXOuOU/WRFotlQN1YahFwHN3PlyXpYhutRoTOd/MpOamSmoNBQyIeejHMk1VlGMXx8P8WK/zRil0fZTabo95fuQ4JCK2tmpe1rXelun9x/fyuFvenk99COnJ0+lvf/mXv3z79ctnFCitTtP86fnp+elJizwNx+fjsfvksElet/NwkFK//3g/PZ0Ox0FuLW9b6tPhMCJAYH46HWsuPoTL+/s0Tz66t7f3p+fnw/nUxEopZhRSGocDEtzf3lXtl6+frYkCfvv6uev7y+Wx1axmvovHcNrmqdbs0MbT2AWfsxwPAxHlKt353PX9tmYkBNW319eU0rev3zw6E7vfbi/Pz+enp/f3q9p0fjrHGNZlvbxdaq2O2JXSmC3FqCLLlk2tS53zjhmZrFUhB93xUJtNW95y3vLmfTAm2bN8jGLo0CGT7F9zViPTfTQP2FoDIHLsCJChoITgHTjuJkrt0/kQCOfb25ZLqyV2vrXmWGIARpe3zbMB4pyLmG1WQ8up6xHUM5Vat2lCYgMAaaBNFaTVsq0xRu/c3vEJHYkqfhx4tNTamsQUvXcppi4lBDrEpD75EFUtjGEc4yrYIDQEQaoWG3M2bM0qUnfqA8J8u3/58sWwLessZXLEjKpWieh47qfr++XtVrb8mO/Px1MgkprLZXHBHZ6eDolREZvfJJ8iQJnL4zK930kaEy33m2cz6abH/fX7D1Lro1tB5vvimdGEkKpmY3ApeHJglrcsZqRQWiOimJwzQOWmjZhMQBA5EAOgEZo5hOADAedKZqCAYrLTtrs+pZiYMLdKiGKmYMzoHHmXaq2tNbDdFoZEhGhNlcjUFAhFmpmy8v46kSrcUUzRVB1TcXXv26OhZwTFvFYmcljmRzYs9+m+5g0cpy74ELx3aGamPri8mYGt82YgYvV6u/7x/c+39/fPn7/863//r+PhqGqnl3NeMxqYaOo6duydn+d1wywijpw5wo/FlCFy7Pp5mZsatgaIYpKo896r6u16TzEM/eCdk1ZVm3Nunjc1OTwdur4nIlUJKfTYA9KuK2JmALhdrsTsXICczWuTwgZMzlgBkch5ds57RFAAUTFRIhJpaMi7DA503TITdX3nHDNxLnUrxacEgGbQpLVmnt3++qQdXMdUW0PYjzIMBr7zKoaIzvNeOTKAJq2VOh4PTLwnXrZtNUUgtL2O1mTnTpVagw/O8Z4E2hnF0prtAx6AUgsgNq0i6p1rIqpWWt2ZOmxMiMzkHYHZ3vPfWim5EvP1cgGErhv6oVfR/Ljnx/3++kNErVHe8nyf3j2jGappqUuporY3rtdtRYKAHpW1IhJ7cJoXa/Tjn0vXDUR4PHZaOpBq1hRg2zbv/fH4VGuL0SOYlGqqe9RGtBGRmDFSk1ZbVftPbYQBKTIZiaApEPvAPjaFvVkDrod0hv4kvm/kxRiRSHBvlCMiEInZ/i+BGQEroqIC/oQi7mcQ/Ln++kk8RIT/HBr9LIch7oYKQwHFjwEREhDtrB8DACAmRdnDPkCKe6IHFAhRlWBXvSCgKYKgIbqG+3jU5dbMhIG66F3JrOWJ5VvvPx08WHtrmlHq6Jg8MGUiCgldyGq1ShdD7XqI3aPp21ofi1w1cwy5bCjlOUUwvV3ncrPA0LTOa17VeBj75zGQw1q73o9D3ObtcZuXpVaz+2N+PBbvfBfDcrlN1/vxMBKxc76WsrR6u959TH1MJJpCR8z/+Pu/oNmP19+meQXEl5cvqR//vKxPI/4oUwwH8DFvE4MRezEoqvu+kMyIyUzZBWBUpDnX3MXU9au1FlNL3V3EWVvvF0QN7Ps+LvfbEPzf/vIXAkjO9V1suUgtTYUIxmEIkRQDoC2PC9E+NhYwQ+bTy7PV8rheYwjhENmH3MrWsiJM63ZfC7K7zfn9env+8kLOB+el6evr68v56Xw8geL77dHMYuri4bQ0XUWM2Rhq2dZpxta8lccfP2ouyHZ/v4aICM2W90OKh9PLX79+6kNU0fPx9O3Ll3EYgktNW5W6PJZtKck7Eem6FNl9/fo1eHe93qSVw9BpEx/c+XhMcYgxzvO8PZbT8XA8HbS1rksAyg4/f/vy4+1tq+VIHDzd58eXb1/NtNS8PB4O8e//8pcxJQSLwa3TAmiKdV5nIHTM//z3/6VNnp9OXYxdCmRW1hUVWiuP643Yo0NDCC5c3i5mmrf1er0cj0dE/OWvv9Qq0zLfp1vOJdcyDAMHV0pWU5diNDCpUnPV2lRbq01F+r6PQ6cq0hQZbNcCeKdgTYRMDQiZwFANwLiagSrSzv1CMBVE3fsL5A3AkIAQ1aqognl06fCs1YRpKcuStSqHrnMgJa8A0FoVqWatrAWIDaxKVVOtbB/9FnTIPnjnPTFtSFUU0RwH75OoOR/UGjGDmlTw0YU+ITFsW6nNp84xs0+KHFxM4+GRG7joj0N/Pm9Gj+u2ZcvmFlGXRapUU/AEpCCtqTwfup6EPLNxqRodq0FNfkjBIZyO/Y/fqqnHZrcf7/x0HLtIxIPjhMq1mEAipYh5uW9bvry9r1s+v5xabrfXN2Z56HWZprrmoeu01jzPJW+ViGEIKebaFNU5530g3N8RgABDiipCxJ4pcKhS85aLVu6iEZEhIrBnQAZkMCCkLgQzKiX3Hff9ses7x2AiEBURW26l7WEVhp085Pw+Cmi1qoGZIiEwiqhjRnS7Cm4XTKuIiKgKGhByDMSOHHOrYiLSqtRKSIYoZgIwLZMBJeIQHaK1bVvmeQ9nEsO6LLUVVbleb//85++vbz+eP33+69//djyfUKmq5K3UrXj2aUzB+9ZUmqaY6EzbmtXMMddStpJFGjmNMYopIIo0AHTepy7WVu+3e3Cu78Ltdr0/7iFGJGQfRKSJxBCD9znnVuswDsfTsR8HI7xf7+u6Oe9BIedsoqKNXHTiTExNam1mEH1IKUrTvWsE+37IwBRaa6qNAFoTUFFRMSNi9F52iW8t0kRNW2tSW6ViptrEOWZPkk1qI3YhBmZu0lTBOx9iYKbdUNaqtKbEjACOGWOqtS7zomapj4DUpIm0Zs1E91lEayJNAA1EVUS0ge0YcW2iIlJbMQMmUjNV2U/JouacYxYPjsGZWm1Sc2HWFHnN2/3yiCk6gKVlALvWrbXWtmUfzGzTpC1THIauB9G61VIrwB7b472N3qQFj9EHZNZWrHFgL6Vuc+0PI6NjRiBmYECquYLh8XAspRIZGO1zOWJW+YCkGhgaiIm0BgYh+l0YvBelmgmgYQiUevAdgANlcBFdb/0o6dBcbMgCaEaogGaOCBDE1D7mOIxgYAJI9tMTT7u4Cz6S7T83XPjRf98bX2QfTMKfpXfED5Qz/AQYigHtxEYAg/ZBQUTb+Q60W81+pq0BSfljNGmMaorEJrJ/iwk9mTnQHmRg+xrg7wm+9LgJ4MAPgEsWz1GkTbn0RNba9Xqz8sBtqbWFiI952aQZE3Uxt3a5z4FwTN2xC5ZLDM6ztVo4use6wI/LcBzcwTGxV3zcpun+6Ls0nk9h7JuimMUQcilVWn8cj09PMaaS18ey3pflcD6dzufLY13fr++Xdx+8Icz3h6gMw+Hp/KRq8zR1SHB/JekOTwliF/thXpZmCsHrvplvRmashsSgVg2W2q6gfoHz4LU0Q4fFaMrPT10pgrk8nYbI/PL8ZLW1NSPi0HcglrccvGutOe99TIowzdO6ZUQ+vQxg8PbH92Walnkqh2Hoe98N7BgJwcXcoFaalyXncr3d0zAqoo9JFUUAPXVd926wbVWPWKusJR9ezkH0ujwupWW1dZtPYfStIUE1SYFCcvdttlJGrp+fX8ahK18+D93h6XQYu8CqUpqpPa7XvObPX76ejudcNy2yTPOhS1La24/L+TQ+nZ9qzaWVr9++bbk8Hsu6bhzct69fmrQUw3R/XN7euy4R0U4qfv70Mgxj7Lofb6/rOvfjyEDOESL++c/vf/z2+5fPzzG5+/sbqJ6fjiWL/WmGkKtw8m0tt+t1HMa+758/PanI648f8zyl2KU+MbNIS6nrxuE/43TjeHDe3+8PQ6i1qmhtrR+G4OO8LKnrQtcdnv06LQ7BiNEUypYVdFeyE1KIjA49BOcDoGuqnOKYRn847E5NIgIkAyAkUzLc7cEAKB8D3X1gTgy2Y2pVPw5E0AwYkFI/viBq0827LOg7R1rzWtYMtVRsiGYGVZURiDFwMARDbCKttV3D7WMwAHbsgvPFE2HfDymmUhugodOSCzt3GCISIbEhxMF17PphKLk2g1K1AZE6BQYfmuNMeLutl9tM4VDRttqcETlQa2wQmU3FOzgPPAaIYziOuG5brXVdtojmoa73i2d7fjp0PmyP6+397dvzYQjBM7KZrBsReHL3ZSvzZKDzNC+3q5paDg5gyct6c96HQEzBt7KqqHNE4FFtmafb7Uoh+C7wLml2ZKpoGkL00ZfNRERAP+jx7DGhBDZjVEEFUxSwCkbOcQouBEKG6cFch6EnoGWZgnPwUQlppmA7vxiZGZ13iFRqzqW01gzQR69FiCgET4jSmoogAjE7MKlSbDOD3btJBtoUdmXjniNlVtUtZ2L2HAzMmhhz1Vq2sq05RCcirZUtbwJyv9z/+ftv1/v1eDz/y9/+8XR8qnPZ5xmP97tn6g5xGEYf/eMxT4+5H4au65wP25pVxZBcCCC05VqKIfN4HA0hr9k554Jnds5zbeX9csnLBmhdf0AiRAYER3S9XPqcEMmxO46H4+mchk4Bhq5/f7+qNDsM77XO8woKXdc11bwVqeZ8YKbgPBGLaW1V9ENIwgCEyAR7YV5NdgFurmVeV/IeEBRUiqjYTu7VHSGkJlKJgcTt4SSwfU1HrKRW93KPGYpqrQ0AvGMArFUQKxODmYogsyMPiGZNRaEBM5tqLaVpAzV2DAKtCe9bUsetQd3W1sTEiJmZAEBM2/4iVRU0FWm1EvE+b2BnzrOIbWrJ+cDUtrXOkmIS1XVdGcEDgmFgdNEPXTgde1OZUMQAAEIMFOgD82gGtqurRGqDGJKPjkMDCgGbFjVhJCZnCqVWzxy7qGAmioymQgjIJAataWutSVNR+ClFxwoOPBE4R7KrbT1j9M178J1wNIzoOnBdCykDV7NGJmyqRqZmiugUBBHoJ3x5lwx9OFLNfk6J9mXZnqT7gDTj/5V77QEhREAz3M1d+BOtiGYEtG/PFOGnpAXN2q68YDMzASJQ2vFFaqYGaoa0T6AMDRhQgYzUkTkA3TY2jFBfIv46pE+hucd1SG5AuM7rtjQYab7OwSwcYiALAaHpMudq0vI216Jo3ak7fjr9+PFWWjOyx3rvMY0xfPv757fff5eaxz42a0jaWrlc1tNwIABFK1sZ+jQMvSCmLi7rMt0mVe1Devr0MpyPUqW00hCqgRLcl1xUQvSlaMt1Wub77eYTHU/nLvU++uPhkKflMq2uSdIV/MjcV7CptgZSiAWx5NYTEQgio8PaamFYAf6cy6palvkUyKS0ZR7YvDIT++C889TTcrtvJddWzbC1piChTwBWas7SpvvyuE/knGlbpzWG4FwYhqHVlrOEaIbkOBjCnCsgTVtecs0NpnlLx6fzyxDGtdV6u97+eb8F77uxR2Yj6s7pmD6Rd4+83a73P97f0XkWG8/94L0AF+XkPZ+7/DwSwXR/xBiPx9M8zcfTsYsRVIltfHkyhffv762V2/VyPh3NpJQCqpfXCzxJXua8zvT1i5mFkFJKTy9fz+vcms3zcr28L/NyOp3maUJCUbndb95HDpxSKqUi2sv5Odc89GmIX/74/Tugvnx6bq08HhMCxkgtt/yj+uib6c75+/KXr8654/l0GEf2Xsyul2vOGxOF4A79wOTENHSdAJQtf375fKHL+fmsAO///CMN3VrqfHu46P/+X/5xvT5+//NPYvI+9GM32+JarVbBVPe0nGfHgQlQq2xt7ceh61IzKoYueH8Y0/kUumTO616Y2LlqpkiE+9fv511mn+QSge50lL2cu3uQgRpgQU8BHAKFlFywurE2V5ZCWJfFWgNtAA3YERODdmMnarWKtWZitQmYhhRKaSKWUu99arWZkSK5mFRaDKBiMXXH88kQt1ymeU1DNx4PPiZYy7ysQOT6kWJ3PHXAYa1QtnpfswAaQVEBj+iQHTggF8zMlIANJBdgIvWdY3LutizUSpeiA8st52UdIwaGzqF28XjoT4eOTK3Vlrf5lqPz0LJKzlu2VqPH+3W+fZfhOCbnGHHsO1NdZ3tMExt0KcSxb6V8//FjWWdhOshp/DyMx6HmWkvRpupkWart0o8sBOTYIaD3vO8v9ldrE6tmjclx6I9PxI4JFbG5HGIAsRBCiq4WyqWAgYjojiEhcp6IyAQQ9szIXjTjKuKdQwARYSJmMjMV9c4TQq3V1Myxc740ybmyZ+/83rV2zgNobcLsTsdDbW3LmzYBUy0SHJk11bYsy5LXbVv++OPPt7e30+H897/94/PLS3Tec4wuKEpxfs9UiAgJl1oej2nLdTiMSLDlreSGCORZP1rOFH0KMaCDlqtjjimen58887Zu0ioTH8bBe54fGZBSip5wnrel1dPplIJbHw9Cy3kxoFIz7GDWdQMF510/DsBE0tj5bXM5F6SPq4HsIpafOxA1c4yOeW/dlFq30mIMQLRsuRs0hEAktWQEYnLqpDVBNJOqKma8l9sBgInATE0AwHsPZlvezKy2pmoxBmaXt01VCQE9qgISee+cZzUgxY+mH2EppUkttTISEjZptVTHDmLACqKqrYHsmRNQMYXWRExNQZFhP9vlUkRVRVW07wP7IE0Y8eX5UEurpYaUhr4jRjBVU88updh3yVT6MQbHuWhITvctqyO0ncRjWkGLFahInPqEhtqaGjITqZpZ6tJ+NDfV/UBuasEHwWZkrbTWRFSlSatNRYuUJhKcd96bWBMxAOcYUJUYkQ1ZFNGQXTDXNQvgeqRYBAqIQjVCRiBEMVIgAyR0ogUQCVGk7q0DU0X8sKQiAMqOVzT6KIbhTywP7adX+JDaoILSf1KE9nCSARqg7c2u3e1lZkrEH+cqBAASIzNCJBMiMqvCCLRDhD6usAUMmAlaZRRmxW1BEkeu974PDorVpnXNy33qj+cQU9UF1UCVnKUUknOgVpfH7TaJw9il8TTUvLBpSr4s87q2zSGNnaH5zg80Ptb1cOyRPBK3pqJtXquW0o/90PfrvF6mu0upS13LDdSenp+6cci5vr+/bXljJgX445+/GTKy74ex75OZKbRx/HI+n+dluby/ff72ZceXp9AdGbb1QX0HYT8IS65KXdTWCigjeEZ25Ii0YGPanC3bsq1V15ZCPzLcfvzQ2+2//v2XoUuIIAbIxF3IuS5bMaLDcbjdrt9f346nQxVZci6lhhiYXS1Nm7rEp/MpLws7B6pIZKjpeGwib9+/L8sGjK5LJbdlk3nZnlKKPqYYwHS6X4m563sidikOpyN4N02LEfaH9Jf0petGajJGH4iaWXxOjghM8DCen4+///bn9JhQ5XgYovfbsgTnYhdjDLsAfF5WxwFQ12V1gWrV1z/etnU5jH1M/s/XVwIbh/4wHrZt98nHGNzjfrtdb/fbXVU+f/uiTWtVozqQM7D745G8H4Yu9L02aaUGR6nvt5zVNKawtW04nnwIrTT0HDi8v9+K1CZyOA4SfOr6fhikaewS2E5/4yzVRWdVSy6lFO/jcOyXdc25snMhxq7rUorrsh7Px1qrinz+/AkU6pIX1XWendQChGBIiDF5Zu8cE4JU3Uf2lR24aERrriY6xkgcBAkJce9eAyLh/i3cF9cIyPjBWTYQIPwogtr+B1QQiHkzAmUHxi6QC9ZyYIpSMA1lnrWsWrLkVWk2FRYR20m7wM5HHxCsSEUiz2IIyacQ4+M+zdOGyMxOAQWUYwhD57okCozc7f8WR+WoHiFRiCmMvaDfGgR0juKyaTXGjrdWBCQNIXgfwr5Agm3LyzxvpYY+TSpNs3OEaLotCe156E10ZH5dppqXMIz/+Mc3/fYydMGhSsuOjNjafo5r2zpNtZSUnOtCmbAsU3B0OB4jo7Wqao4hRddKVjHBnSGjRAAfDWpjA0Dqh1RaBYW2tZ0Eq6q1ViEJ3pGSWgNAjw7IG6MCWUh+OPrjJ0NpJVPqomMHAGLBQkzBB4cLtdZKKR9yabRa1fijecvIHJiYiMgPjgmlaasteM9EoiogzEREYDsb2YGZqvoQXPTOOxA1RCaqrbVcuxgdk/e9Wiu5OM8xURW53ycxESjX2/vr6+vj8Ugp/fLt69fPnwJ72epw7LZpWucNAVptl9f3eVpCjNMy55Llg/Tjmhg60iZSqoqlrj+cDxxdzuu8TOS5qS3zdjhWZiRPMXUpRe9CLZKG1HeDNFmXNvTeO+dA6zJfHq+GGIaE7iNpXmud5znEeHo+cogChoja7DE9fvx4V2lNgUD39TYRMQIQtNoEdG9iAyASK6iYsqk2a9LGMIhqq3UvUDOzYyfW9jlCa0oohOjYsWMwq60ycfRJzVrOKqIiZrAjw4lZTXMuogqAyGhm0vTDAUHovN8fNKqmori38HbxiOyGMyAkRGb+KGs3aaYfz4R9nxhDbCJbLq0226dVamWpopZi1/eddlJyYSbHjIjjMJRa1SzEgMmZqXegIrVJa+DIi6jKhwSUkfe2NgCj8wYsDdREAUPy1lTNxvGQsZqI8wxqZtKK7nFmMGtNVVVB9mIUEKAiITsXuhRl/+TvyjZTJOJAVq2ZgjMQKwCLQnDMgIBKCGjCVlFMDdU+gkCISD/zPYDGhIBIqmq2d8TYPsLxuiObPk41Rkj/OYv62RbcJ0m4K+w+AkCGYEaEDVH2DwchGIopAH0I3gHFEMkZIDOiNQ/grDkxMDGpiKhqBEaEntmxMVsgC6Uuj8ct6Hk4NuD7NS8NwtC5oTfF09Drupq21vSxrjAO7tij5pLvAX3vSbdFmpDUziF5CpEEZdEtW3v55fO6ztN//C6lBMc5Fyb06BTlx/u1D2FIqZRiTYNz7MNek0YkbWYGzjlbzXcRaYkhGHFtZioh+ukxm8rnz99iF3Jdl6l8/+0P5922ZdhaOp1Kndv9dYVJ0KOPiF6aqBo5qtqYPTlTAjBeDIqBi8HYOn9szsSkT+PoZehTK1tum40Ugl+1bS1vWn0IEHB8Pl9+vD6mR62lH16G43i9vFltwYUYYp86A8vLWmsbxkFEyFQAllxvj2UtZTwPa6kC+Pz5Jedyvd5OT8dh7OpWfv31l9PxmHO53e7TMplnYrrd73nbEIzNTl16GsfOufXxmNac2AXv5sfDdTzE7tu3r7+Zqtrf/v43Qry+vwfm02lEhHVeEWzsu/PLuRSRVlNKzJRiki2HFGIXVaSV/PTtlxS7++U63R8llmme1SR1wdS87xxj6PvHFIrI7X7vuu5+u0nfdSnlbQGz3//5W5byj//yL3nZfvvtt7/+9de+614+f8nbuq3ZhxBSevmsQLjl7XGfXz6/HE9HNQWE55enOcZa9+au5XXVqjHFFCMjo8HpfFzmpeScuuiD37Ytpvjp80sK/dPTSwju+nZ53O+X7z+6PrhWM7Gj/cVXm4qqUHCeiQxRm5ZcCV1DzKBsZkxABEyAoGqqwIwE1FQJSX8OfgCAidH2bfRutEEDBTJC2rfhmxoiVgPvnPdOCiGSdz6cnR+OUDK0UpYpnhbJpeQ1LzMoOM+BeS+pzeu67x1FlJmjj5IEjJi9c64pN1V2PqWUum5ZcyktDQMQ+9hTStoMAmDyKxiY3G7LCDy6MNdWVIGpSXOJYnKEiACOXatigipARq2qkZYlx7EPnjcDUHWqO6Rl9G6TBlKenz5tsEieiziQFkLwwaE1qUVb01ZAqzXtYjyfxsd99sQxeBOd7nfH7JiTj0Wk1ZyXRZqw49NwAvIhBGttmWapioR9TD+bO8JMCA72gTijgREYIzrvEQhcEsTQDfF41tiptlIaEu/Lj73+DISgxM6zY+ecqBIiE7Zm0po2kb0F7R0zl1ZTiK0KqAXng3emZgjAvP/IwBARu67z7A2NnSdPgFDWLW+LtAyKZsaOTKTrOqTDrd1MlZnXdS21irXb/fZ+eb89btGnb9++nZ+fDKxsa17z++vbOI47SY4Yl3mD+dH3Q2nysSNSiTH1fVebbMuylYxMKcXUd1nXPG3rsnRd97jdL+9LiPz8dI7Be+9jDGbYmnhmRAzOW4yIJlrXZdktbOtWbX4w+/4wxhS3ddvWrAbj6QmInecQowlWszAvbcsIUHORqkTkmE1k37e0poBAO5WFib0zQFFDBFVV2McBpKogAoZEBMaCRIgfTl8wIggxlK2UXL03wrITfbz3UIo0ISbnOWqore4THWbnySGRmpIiIe4czCbNzAiJ9pgKIjMjkYruM2PnOFgwBTUR3Y09gAhI6NCxY4M9YYLg2bFnZk+0blsuFQwsdiEEz05a25YVEbsuMXPd8vxY9tOBJ1TVUqopOHQKTUoDBOeYEMkRABowsjNFYzJFci6GaABNGyjEFFupwQcE26Fl0NR510QQyXk0Q21GbAhEzplpCtF7DwbshICYmMmxC97Hhq4pSKmNcmU2goaLCykGg7qvitE4ICZGTy4SgpQWCVBEd8gPGu2ldwD7KK7vSi4EBNlr96CIhPtAaJ//wEd656OzboaE9JMU9BHqMTBCUaMdbGgKHyAMI2SHpGKIhmpOxWtLLNg22VZthRnNtKw5pHA8DigmpYzJWV0lL9PmZjisShmdmlixtm1EgRmVUBgJ+HJfG1IX3KaiTclDBDIzBUkOqQvFoyMRrf3h0B0O5/MYtnCb5na5lLw6YFLUWhGsliLsfAhbzlpFqzIpI2wlS4wt59j3wXlCElEGOh9PPnXoXS6FGb1DphiYlvuUpyUFH2IyxMMvx1a0GXaqm+RA5Psu52KGtZkheQQi8Fp9VTSUYg0RkifnyeMQOpkuzerfv3z+28sBJTcq6iirzLf1drs55zi61uofv/1+PJ/Pz+d1WaxB13X4Ia1pUmRblxTC6fnp0ORyue7JsFybzeu0LBTcy/nUTB7XyXfhry8vpdZccoq+buvj9mCClD6lFJdpXuaZTFuR6f5w3jvC//jtD1f0b//P09D3g/fOoNbN1Ni7LqVxGNG5T6XU2voYTfU8Hk7nY4p+etzueQMFYq5bIXKHoW9NXr5+ccxlWXZx9Hjq14uA4eX9h0pjtI8LQJXPLy9g0HXd9X6rXE8vp5zLNC2O+e9//1twYZknEZ0fD+fc4Xz4t//xb1nKf/1v//rl8+fz+bSua60Nmc6ncxr6kuvxeNry4tl//vy55Xy93ZxzMQXyDkzSkExh2woH9/x0NgURybVOt0fs01brljc1NYTzp/Mwjuu8qLa8uq1kchSCG4bkvA8iRgCEVEt1zqnqVtp+l00x7oHj4XA8np9xPBlybqJAirC3GBRslyqp7U1f/GmoUfo4DuEeIgGzn09SAAIjVrSqIghFTQyKaSD2LjkXwnBkE5jvoWao2eoq86o78h9sdzfXrfR9QKZ13VTNWvVEgXgnvu9lG/YO2a/r0szY82OaQn8Yup77ZKXknGsuKXkA9MNQxLa8u5+YvKPIWyk1r4RExmtrtSgCdDGxU4YqrcbkXp5PnXf3799rztOPdwTL69Jqeeq7bctv//wtT1uMHE7j4TCwQV6XsqwqWmpmAnTknFNTctiPXdcnIsqlmcq65RBC38dWqFYpORtqCCGEIAIgui15kqWUAgjn02n4NMAVWqmuY+8ZDfbbfGvVOwwxmFIVABc5JAlJXSzA67ayWHTOVmhSQ/RqWFrVqqZmCsRMHwwZJAJEVAMVLa2wZzAjhG3d9umfD3vctYmImsYY94E/Ix/Gsev7bcvzPLfSnGdrrWy5GPSpO4wDKs7T6mNCQPK4LWXb8rQsSvp2ufz2z9/uy71L6a+//PXLl8/JxbplJd7WNW/FQB070J0GSAAgWpEREEQsdXE8juTZFXHBuXWrZWOkUvLb5f37999TShCh1Upqdc05LLZ56tQBmQAj1pr//HMygdQFVUGymquZOediH3Jtpq3VTAgIamDLtr3+eO2PvSKkbjR0RSzGrk+9tja3u1IzE1Vt0qQpIjRVACFAdkxAXeyQ0ESY2DluuZS6mYmpNftYe4Dt5yDe21GAwJ6RQEFqK8z4eNxKLsN46MeREBqYqSIge7eHcFtrwXGMzgybiKoS8c+WWdvPQPt7tzYhAu+dkYUQ9tqaY2om/zeru5+dCciTiuVWYcch5v3AhGAQQhCFXGSe1yTJMeg+gdEGWNiRqdVWDcFUxREASBUELDu6Ckl378MHR5MIiBy5EM0QyIUUyDMQ66L3aWFwjri0agClqOnehIdaVUScQ2ZOHdUmoMiegYjRCJhJg/fOeUIWVfLehahiKI1bpbo5IzX11noumkVzyWsWRugOrn923DW1rhvEwImoFq3qoiPbR0VmRLZDm1V2ogGZ7YlJQCQwNFAzQiBANTPQprYPgRBRQfbt1k6RVjUjJsAmAoZo6sGSDwptXTaB5mJnZForNw1aerJONiuP7X5tbXMAQOZEooRAfQxeBfRSUWXoUmv1zx+XIY7cxbJc81JUlEMAYXRcOaADK/xYai4ZqnlwQTmST31cZZumtdV27gbfcVke87q9PiZhcWjj+aiAmpvkenu9VpMuxU9fn4/jIQ5xrZtOMj8eybqaJYXIRLVsw9gd+v71x2ut1TPnskRIUmpdNwrw8nSOMREYgkxXDCGM4yhE6N1w9CrQKdB42lz///7ztWT1ySORmfgAkMtAGGom4CK0AWoxAx+8C0idi6cYa833m51P/fHpvNb1z9+/o6kyqNphHMtW8rJt89o/n4OPfYq1ttPxOKTu8v5+eVzBsLa2rbnv+3leSmm3++3p6UlUS6vDOCK7FAcX47IsYHY+nVqr99v7248fKnIYxt/+1//59tdfmBDVhpTuj4lEP38+A55e+hOIHIeemVM4dM5d3t5qrc/n527sc8ll2T6dX7a8Pi7XvGweSWPaZ2anbiAiALRcP317KUO/69m3tgXnHFMpa6SQTud/+7f/QUTn03MXO2vyy+cv19t1HA+h81VafS+hCyH0rcrpdJin+fh8ZHav72/zPJ3GsWp7/fGWUvz09DmGeBiPtdSSc0rd0I99H5d5PR+OPjiCLsYQYwjMXYoxhlKr846dX5Ytpe5wPqYY0UiktFIBZByHy+32fr10XZdz6YcuxPD9j+8vn56dC++v75e3y1/+9mvwLjK6EJOa1lxrK36XZiGaKRo20SriHLsQDqdz9/mzdEMmFgPZA827NPCDY0FmSh8QVWCk/Ru7R/kIQT4eo4ZIqmIACsiMzF5FjdnMiUIFNAJFbSJo5tIQ+pQQglSbJyyV0LQ0k+YI+i6VmqdlotR5723HYYnWIiVvO+reed+nsOTyeDyqgjQsOd+ul5P/RASGKtqMdJ1LdMN8X0qth6dBtKo59BgdXu8PE3AUcpbpugx9dxyGyOhNsOVAoa3rPGsgUtEyzcs8b+vcp3R4OlkpzOS64Ajd3rI1W+al1eocl5wNjB0Tu1LWXIrn6LzfWcZm6tkRooqs6zotMyOAaWOhpnnNMSYfsGw5l01Uu5TQ6DiOdzWtskPxS80GUGvph6BNq6qAY9e52Fd2U1GVFQ0Y0QGSDw2KonrH61bztoX93euciew/WWnmPBE5hbLXbtWk1WZqu4q5tQYKtRZRZWZV27acYkypS6k7Hk8hbqXm29sV0c7H8enpCEan0zmldL3cayuPx4MDb2t+TFOpdd7W23T77c8/3u/XPnXfvv366cunEKIJxC6iIhghESA4T3ktJhJTiDGG6HJtITgfYt8nJivLYkhj36UU1gXztuU1367v82OyqvfLVVr78vIEYOu0xVOQopUae6zS5rmsS0Z0y7aG6JlRRPc76M7lNbF1nlUkdWkYxjlva8n1LgJES0X2zjuKqYvRAUpujLBr0hWwfRg5gJmQWBSD9+M4NmmtSEye2QkqGNoHTVhNTUQ/VFGKqqpkiFBqNcVl3VoTjWAAtbXWitS268yc84jkGH9+H9HvsjxEMco5O+fVBPZezEf2lsBMpe1J9t0hioi1VkY2sb0btodN9mWZI5drFm0I+42EtIkg7zSmGEhlaa2WjMrEnpBQxVprhgxmjvnj2fFTaQZmqLAfxNUAGZHZwETBByYf1Yid9zEio4GLIQH5Zd1qbooavVfVLiUwa9JEKu6rIzMzJuLg3X6a2pVa+GFN9syO2ZkoOTYwBSXaNRLiQcxKMIUtG1TI2eatmlErHh3iFnwXUJ2nPE9aFjDk2jVglzrngrT9b3NAu69EQI3BkGjn+ZAaoElrhMSMZrC7WoloX4IJ2J6Axo/wDjY1JuyCl9JS8MexU60T2fv7jRk9B4Oq69SxJstRNysPy++6zCISO88IXNm54tXntUiRvh97P5TWHtOGGEEBQc/HVMmq2qqtGeS5MYAnhVqK1+dT37uY79N2uVPtTy/DuRsfcV63bFVZ+Y/f3x+3xz/+5cvT+RBDOp14fr9uyxY9e+eP59P5+SRm07SAYxdCk6atvXx6JgDJtR+HIcbLegORFMJSCynO9ynG5IGstcPQd6n78f377fJ26DszsCbKMs9zdxxD6GSrmNv99r7d7wDBudoNwTlALXmbvvYHjzp241zh1tqjFEc2uhhaGxz3noPBvKxi2cgej/s0TU+n0+l8lDUT4JAin57YUXSegsUYwHYft63bFmL4/PIZEd4u99gFQLy8X5s1MZ2XeVmW8XB4ejoAY85bnjcp7XZ5b6UCCSGM43Dou/kxg0h03MdopR5Stw392KWXl8/rabaqsmb0XEnysnjH2pojJrU8rY7xkFJkhtIOz6fb2/X29v758zNhYMKa67KsBjaEyGaraN+l4INq67okY7/Ns4mUkqMPh0MyxOmxzvN9PPTXy3vXOlVNMTw/napoU815+5//9j9FpOu7XPPr6/vYd7QXtRwf+wMg1lJ+/PiTkFNK67KCqjT99PnTtm1bWc5fvkQfFFsIwz7k3mpuomnozCCkOHTDNi25FmnNEOZ5etwfrTZ/isfTsdZS1/L56+cvXz6tS8ZPz5e3t1JKCr7U4gi4tlpLVbXovfPsXKil1tpSF9HRVktKysH7Lgm7XCq74IJnx7W2JuLQEbGoEu33PyCAj2kQINI+GSL6WHyBgcAutkFpCoi0ZwP2LImJAlE1JccITQ0RxakEtMMwchIEJTBtBVW9o/u99SkagJrtsZhSm7SVmNbdDaMCJsispSzLGroRpdzfX9khMr88HY1o2QopLNOkFcRkuUsaQz/EedqA8DwM21ryUjqKfuiktO16648dSWGQuiwlUGJ/7PqEWLbt7Y9HKdkjbKsLzqWYqCdtlQCm26OWnHPu+w5578RCjAEQro9H2XI/IGzsyLFzjKxgTXK+t320SwTrUhWMHbMjaVWtSavbsrngWqnv378TY/TsupjXsm05b4WY+7HzgQVAGMknNxy4Pwjiui7eewK0aWlaD8EheLNaWt0rwYDovTMNsLeEW4U9WgCwc6DBDAzYESKbWatNRD6wJbbnFAAA+3H88uXTYTysW90Fjd6zmdTa4hBPp9NhPAHyvKzGaAxqdn9MVetW89vb+x8//rjPN0fu25dvv3z7lmKnVWPXdSm2pYxPx+v1Vqt4b8jk2O1XulorKAaPwWGZ5+1+n+5zSDF8fnHBtW21WvqIp0OsOb79eB2OQ+pCAytWQQiRu9RLa8754OKtTWq1tmyFtuZUlIhCDC74Xa+Ghl0f15yN2HdDF8ZpydfHxikEz3ku7ML5fPbd6EmPT6f5gZrrLKuBuhDE2r7y2xlBHLwxm6rvfDd0zvvr/YKKPjgVRaVS6odligkVVVSdOiYVnadly0UBkDikaGAuODERBRVoAuNpFFXL264j3cpmWQgBiEVBq7Fjx4wAJmqg7PCjsKRAzEBYqhABIrWmSETkCAEJkQhAFRTV9l0qMeTczJQclZbZeVWDj4yRijZDrKuVWtAAiE0agJoqMfnA1vYRFOzHTTLxDtVsp5CbAbA3H4ATsiPvjfADUR059h1zmG0mpBCCCRHu6p7CjH3qSgGxqqKgyI6dYwNotdVaPDtyTkVEDVF3qmTJpYKhC/u+idB8cDF5Ri1FgdRQWi2usN1diANsU5LZedre38o6h8NgMAY/lkdN5xdUUtobW6B7ksl2f7sCqpqgGZo4Q2YSE1ElBENV1Kame6VE4WNThkZmxFiLIAhZY5GD64OP58j1/b3zaCVTy2W76XJjVx1sJlvc5pYfKkLgYgxSNZfJnBep7FPfdfX+mJv4QUgp+vA8hGGMleFtmh9/TtepsE+MeEguMgNjSv2gRlvOy5Q8PvdfDKBdp2VZwUdHMa9TK2Ve4etfnnuH+X5fELZtPR1P7FBBti1naZfbNfr08unTY5piirGLT6cjmt0v7++v32uV09hzDFE6gkdTHfoOGNc112V1CmzqlNjQh5BSV8w0IBFveXt9v+pleRj3ofO+LyBetx5dWx+fOveV9PnYHYbh/3x/7zyfYxAEXh6ekazc1/z571+x8vX1h1mZ50dI4dPz83joN3iUOatJH/zpfFjmrQ8hBF9qFanbmpd1PZ5Oa6vLul0f98GGVooihBDmdWlV8rodD6NDqFVQ9HQc13X9/Y/fT8cTmGzT9O3Tp3HoT+NBcnUKX1+efIjrlr88P3/7+rWVCnljQBdD34fHZVpuU0rpNB6AYb4+mDH1kc0673Acayme3GEcPn16etweDuB4PvUpNJH7+6t3YUxhW7dlWUspOcbhkEretmVOKb28PD2WR3DRQMjR7XZR0cuP16by8uX5cBpqUWa6T1Zynh/TOm8K2g/duubr++3bty/zsqzz8unTl3VbpMhw6o+nw9uPd2s6DH2f0nE45GUt6yatiTRVOT+dyLEuKOv6Udc1BsbL7Xq73J5fzrlkBXOBD2lwnogtosPgnp6P6zzP0zrPc0rhz9//JKQYnGtNSmmI5AOLmuXGHNh5BQx9NMNpqyzioifH65aLQp3nnilyIqaPwB0iEe1Wvl3LB7vEe2eYAijoT14XGHzgL/bKA+HP05KpGTDyPtatIAbogUgtquzCJEIlM1T9oJeKxuDHQ78s6+MxIWjXRWLqQkTiH7drnSdp1fvDzs2P3h/HXpkuv/0pUl6+fEnRc3DB+WkuHCAOkQJty5wc6rZZyaFL42GEkS/fLw5DHMfpeq85Oy2J1DNu07Q5OD4/hy6yap7moescQ815eVDwPjgXfFJgg92PrF3XOe9rzV3XqalIW9YFFFPqY9eZYS5Fcyagnd0itZaaRVr07DwrmKqlFFtuouKDP56OO9j3t9/fCWg8Hs7nkwuMKzKzAplhblqauGHg2PnhAKkjlYQdokVi8k7mlWLo+35dH82Edkm6KSgMfa/SpmmurX3ENxHYMRogYhMxM6Q9fUm8S48MiVjB2LlxHF8+PZ9OZ3b8mNZlWZCAHeWtaJMQQ9cNznsF7I+Hdr81bfMyi0mp7e399vuPP19fX/tx+Ouvf/n69WvXDZ49RQ7Rt6yKTMH1h6HVBgghOR+JiFox3OF1Cq00Y5MqzChSp2lKXSK0EJkcyVYC0i/fvo6HMbeSSy2tINM8r6fD6fnphGa36V6rcHA1t8f9YQYueHaOHAVyrdZtW1I3YAw5S9na07FzwZPMHn1/7Ii5WW5F5sfqXTSHxcyQfe875zlHYqpSay6IFvsEpkjweCx5W2PwzBjRVAQBkR3Irlzd29p7hJmI9wCrQ6KWCwAyee+Cdx8pPSZqJnvAthURlVLqPM1NCztrrUmtznmiyDHudM1Wm4p9oIJhP/8g7Ku2nWYJYKiIwEBG8FFwg322spNqEImYqFQxFGKutTlyYKjanHfOcclNWhOpjATAAAiKTIyEWj8ivYSoCia2N8B3FCQSEbOxB4oUxzSMyFTzpq00ATVMPvgoereUEjsnIKZNtBoos2dCz86a6u6EJzQEUzARVTMy2oPSIk3VMTOTigV2GJwCqQmIAlatimgkrWNCz9oQtQauBGteitW7oNbrq9Tq+18cHzK0XCrljXyH6EzVDMiRAZgRkO55EVRRadYqKRiz7uBCJEUSot3baLKX301hf5yqKRCotKK1lmqyrh5iZDg7TNBKmVmqbReZ35pt4gSt6rI6KOxBS6tt1aZNIQPkrYTQByOKvfUDMTmmLuCp92PnJi2mpUlR2ov8LIaOWcuyztPnp+d4OubAT6cjmeayopY+eUrDXMSH0UfO4q5zXg1kzmtR9DGdn1LXTY/7+7TE44DDWCpYrcCc+v7p6eyJVDKRvb+9SlF0jp0bx6HVtm6bqUTvK4LUUom8d8OYVLRu2/npqQseN1cUpmkBFR/JN0oxUkrXeYkAvK091c9DHEGOICeneWDph1nb7T7XbXt6PnXo5vfrui7BmQuubjXGdD4fuuSxtIAUuhi8lybzbZrneRg7FamtpHTO22YGy7o+po0ddWNXawWEp08vptJa1dq884S8PBZDA5G2ZQb49vVLF8L1em2ltpypG1IMSs6a1tqcT0/HAzFjqdvj4RBALXmWnAn0l1++7HlcQGOwEH0p9Xq5dn0kJBU7Hg/H49hK01KziCME05S8I19KzcuKAH2fuuhLKVYbqIzj2Hd9LXVe1xi166OIEhCycR9bk1ba6x8/DqfjPD0ub5e//PXXmCKTuz+m4/GYQlinVEs1McfeOfLOnc5nEb1dpr4bHLP3YV7W0+jH4TDPi6qNY29qIUTnnRG7EMxMVGvTeZpb06r1drvdbrfD8fz16+f36/X9++vjent+Pncpvb++t1zu9ymG2HXpcrm2pjAMrooYgIoQc81NmohASDGmhExS1QyAUMzWNW9ZIMWyFXlMrbUuJXS85yEQP8zE+6Nv78Mr6A5j/6CaAiKi2g6+2LGbSKCsZggMP8NDtj9azAhpP04BWGvkBFsrW2YiQqytbOtsIH1MY9/vnA8TI0DPrAjDEE1FVE3EEaXgfQiHsZu21Zus18vqGWs5nJ9SSEtpif3QBXLQua7v4lK2Yx9qk+16S133PEQHhE1cpHQ+MqlHaevSUOo63d8t163maqJdH7Z1WpYpl4UAVPP56YywZxYxxu4wDiLinHcHKq0sy5JbPT+/pC6ic9N12pYsqjF6MiultFK0aasN1YCRGFNKDKSk3vkuJgHNua47OaEUIBi6DojAkD7IO1abFCD03qfUPAuoAnimVlbTGh1RF50D4iATiJm1BmbOexcQEZoKIjDiB3QfmRzurO99yQLWfPA+OMYPq+e+FgHE2MXW5Ha7n5/OPvL2tt3vkzYxse6Qjv14OI7Mftmq77zc9XZ7LNu8bOv7+/t//PHb5XYd+sPffvnbr79+iyGUOWPCbgimkEslRjUchhGdtVxFFby2asAAbg9NIJo6ppgCO65Ncitt1bJVQGPE8+H0fDyL4WOepbVWa14FB3KdD0OPIUktRYB8IId9CA1UREJgrerZgqfsyNAKiGUxDui7myBVLBzj04COmHh03fX1/THNIUXqkiCr80oUQhRHLVdyofPRBVKT+X4PjpdtXqd5RQKEw88NctXSRGwn8hGikag4dt77/cPO7BkbB/LOOSJQDeyd84gMaNJ0n8W2Wsu25W0tNXfJsUclqKV4z96c1doMVRvu0cd9n60qairITERO9YPFt3vIfya4aa87ESLzXpE2ZLRmakbM7ChErwIqAgAituepiQiBiIiQgG3nBe7nEkQwBUco2hAA9pUjM3mnQEIeXII4QHcyYsGl5clUk6Kotibeu2EYtnXJtZAJk8XIgNpUDBWBmRg8IiPK/tlGx845T4SmhDvLGck5TwRGjMQCuJWKskrJgtj1EVWlZcg5onqHffQiAlp0LbnMOt09+4FdGoa3bKatSfExIisSqRowqIGoEAOhWhOzplK1VNE9yS/AxD6Bc7bT1B19zNltByaCmrEn5xHJkLGu+e3HZXMAZbPpjmUatPXe2nIt6yP4SqCqLS9Ther9B7cCwLqUrIG1Ni93Mnf+8rV7fnaOa9mEJBwcarm+39alckjHwyiN21YIhQGdC4GZPPAYzi+HLro/f/+P6X4/9KfxMGYI1uT06Rsn/N+///Y+zQO73hNlG08vS0wWe+f66Z+/NU2LlbzOMi3np/7wdH5+eQEtf/xxQbTjaXTogSk3I7Nx6BBhmWdGjZ4cIZEu81JLTinFmLq+m+aVmiXvItLX55fh6fO//Z/vju1wcudhYIK8zpbbU+xehpQvl/Vazt0QDv77dVPL46fhafSyVei4lLmtrXM8nEcydZ4jI5mhAwNwCGC6PiZCWB9LU2WH5/Op1RZTbK3ltR6eDkg43e/e8zq14+HIiI23PgbnoLVtyzm4EJnfLvdffv3mgys5u6dPh25AEU/MMZiItla3ZRyeS63zMqUYmsnhMIjqmnOI9PQ0TpcHmsQupfikBne919oULXj2zVkTQmi1csDoozbZ5rk95HQ6SVMmCDEE70spMQYiDsFv6xZjNDYXWUBut0fwAQlabUQ89n2upW5lhkdeFof08nx+u1zMMHh/fb/0ffr89cWRSx+eRLEGp+Op1ha9j130Llxvtz/++H74r4fnL5/efvwwsZii826dF3C8R0sfj+XxeJQtM2HqQl/7t+9vOW/z9Pt/P/13q4YKyUcpba2ziQJaYOcI1qVok+eXJ+/YIaFn1xSkKQCo2bpuQBhiRGFrrUuRgKfbPHQHZBdcsI52AogaOAND3K+CsLdId8Gw7caaXWpsH8CLjzr8XtM2AkYD2o2coGgAah9IIjAlVTAHH/15Rzh0kYVu6yatlibrugGiCc7rEmP07PJWtrJsW65NmkLoYgq+lFpz9SEchj6kCGrJ+9NhuFxvy/We521IHSkGUAWBlk1tPCQ0HVN0Ljzm9X6/Y96OfTeEuKyPY6LDwanIOi3b44Ha0PTP3/95u19jSs/npxidWnOBS855zd6xjw4Au5icd+w9EGg1QEAmB34YR3bcSgkxiIEPHFMkIO+5lCxVzaxL8TD0u8gdGdExCLrgnXOASEjkicUdTudUa9f3u1Geo4dGYIjsfUhMPhyO/jBWgtKqZyJVyNsy3UMXjkMwkaIN2DmfWl0RIYYAYFJqlaagIcVWW0iBiQip1CqqaGxWEUBVVYw9AICqqRl7t27b/faotTrnStuut9vtcltLZjNH1Pfd4TDGEADZBXl/Xe7TdL3fctt+/Pnjx/vr+/V96Mdfv/z6X/7lH12KZSuqggJ1q/04jE+douZpc0TsEZBly2sWUwhxD8o3BGMHTRDZgYESq0Ite38RfYpfvn769PS8LOv//F//PtZha+V2v9VWpmXaShYzIjDcrR3iAsUYSi2tNGjSCkpxCBBCV801imE4+/64KdfSgKOBB0JyFBAdR2SXQu9dhB59TCoNwZyYKTpHIXjnaZknESkmKk1FDDSvW/TBBae2V8JlL1MiI+C+BPl4TYOo9wgdgIFzjIYIwM4jMAGlyOoMgBjMmiBg9N4xxOjJkUMuVmMIBLgX5j/Aw4Zmun85zVTUTJkICIGZ9zP5fokyNAPeferoCJB2b8Y+lwAgNYvRM5FzjAY1VxHduT5m7MjtMrsPAs6+3TElIgNj/7MNbgCI7D26AOjI99iftD/Z+MTB0xr1jtIy+MAujgcejscY4jQ91i171OiJHNVamZiAiGxf26uq7OCfnWj/k1vonEPed3xEjvbCnrZmDdBB8MGIwCpIWx736XY/PB0631NbCTmxNCzrerG8hPEcvWMiDuQ7571jNANBq4hou3kdxQxVlc20KdaKrXbRI1rJUnI1JBdYFVozIGMkVSAitf2jIY6dJ4ZasZZARlLzsiyX10Rtm2tyyn2Kuoms3oPVigQu0DKVdSnEmGL03vcpMnDnw7JkMkmeNOe5SMm2xvB0iI39o1gGp46VHYdOVGspGfTp0xCcTo9pjB4wPKbH+9u7VIlJCfS+LfdN2I+WcTa3zfWf99tpSAktVgvNle+3CP7Hn1d8vXlnrtSBQlU0oq1sQ++QrJTSpdSn3piu98fteo0peSbPXHN5ej6Laoy8PJQRvOfUd2q1lo2BupS2LvvYgbZDgjSgbvenPsXkZ4Fm+HTuX06nP5fH6+U11S20FVobuP3y1JPJdZt6DwHNVM7PZzZbHnco1aQ5j4q65g241dyIMMZ4u9+b1hT6P/74EWPwCNO8EGPZ6unpeDyfnKN////+9/R4jMPgvD9+OczTlHNh5sCUxn6dF2vNiPsuPj8dPDqHrpaC7MahJ4B13dZl3tnrx7F7zEsrmRwdj6Mp3K/XbVtCiI/Xh/M+pI6dH4YdWkqpi5G91LYuW85Ti34cDy6Fx/u7iI7Hw3AYEKCUYqZV2vV6A5T75f6Yl72s47zf1szsct7ymvu+3yWFrZV2r8z8+fPn//iPfzrn1jWDt9SF4/HovG+5Ktp0vb+/vv+3//bfhnEEx3neDFUNYky3+7WqgNEwjiYaokeDvOX79OiG4aXvYvSvfy6m4GOYlyVvOQTvmL7/+WObVjDzjl+ezyml6X7f1nkYhtT30zSt0zz0/diP98fNSS0hBOfog47PrGI7zcU5DwbRBTVspSFiDMGYBcG55KMPwQGiqtpPSsUH7mfnIH6wvD5AX4C4Byp3RikB7IZU+ClENtCf5h0w3BFgSEoA2prmrQgHQmNjQ1zblqUdjqOprtO8LBsTE6A0I3TJ+2lZW26e2MhKq1nXkGIfO2Jec345nTy6ZdnylrHVFLswJt/3pWqT6sAet/n06XQYhuTDwftlunNe0LJvCxHaLKXk29v743pLKWqjbblrLcBY1qkfxmGIrgCiuIi+ZyNFxVZrSMHEHrfZ1BAwrzkk5zzHFLZlVcsqBMqHcQzO5TVXzQ4RyEfvUgrVZFmW0grqji8DEVFRIDQFBDyej+RcKWUt+XA47qTRdS3VLHYH14/++Vm7LmeTVocQAKS2mh+P13vV08k5Nqccg/NBFKXkptXkI/LuyHnvcH9BIRKzU1UR71i934+9tUltzfvAwRG4Vhs7t5Vyvz9Emooty4IMIYaA5IInRFPNa15zMc/vb5d5W+Ztent9/fOP77nmsRu+ffvll6+/xBA9B997GPsYk4j5kHwM097vAwIBbWaKTcAUoNp+bjbV2iSMCbzLYk2BYx9DJHYtV3L4/Pnrt8+f//znn8d4/Otf/3pfHv9j3S5v73WrInYcTuNwOJ6O2mya57JlISmlSC4pelVb51IBQzcO41N6+aLx0Lg382WbBWUF9V0Qk7ZlF7s+BWn4aBvRDoAWFe2O3dmdasnbsmoDNSD2aOZ8CEnIiMmriBQUEYOqasiATERoAEQMBtoEAH0ICBCcl9o+5qdACKxqRgCiYEC8C0oKE3rvWfexHjryEIgQQT5OAGDwwazYReNmgEAARIhkBjvDid2uUneyh7IJd4Wx7l9uFWmtKViIodV2W+4hRu/8/v120RFCq2ImvLeiEH6mn9kAwAiByZmhEIqKfMAOHIHz6HqXTnB8xsNnHV8wOvSdd8Hmx1xXgHY8Ddu2migkxpVKKUCIADueCgkIdrcYqJhK+9ljhSZC+AFF2j1atakLrGraVKQRoif2rIZQtjUv67bOrazbwzxj6lUN6rZJW0A2aBu0IrVpUXAxdg6NoDbFYqBALMYGBIai4MDIzAMAspEN0RtjcLRyBXJMTkBMhIERHXpkhFZMNEsuBM4Hp6W6UobAIwOKhgiJ4f560QBCdeipjweteZmytNr1sbQ8T0VawxiIYFkWRjJRAI0BpK7XPwrEPvXPW4E/p3IISYZza7otbcvqQyOmokDeH59OCTJMi7W2rpPUkrohY36fJlSdCr5PlRxmoAy+P42rD7WYlYWXKtNj3TZdCrOFQGNwYRWK/CmOy7T+aNs6+pDC7HC+3VPwxCFv67Ys42EI0Z9O/bpu3tMyb9P75B3Waqq15S2EmIITQwfQe78s87S8Pp2Ph2PKZSNZYxOxcvh26g+hmmAK1ZnJZtX62DWB7fU1Oj4Fr9W41fPpcAxxm+ZEzjncHjOPyXlHjPMyEzr2LCZff/26m1yneQ6BifxxOLytb+vjwWQqguKPh8Myz6Vk71xw/lZa2crhMKSY1ORvf/nF0Eprzrm8bBy789fnkotKc56PpyENIW85Z1GT6+UdDV+/fz+cDl+/fW5V8qPFGEouj9sDGD5//dJKDcGzQd3yOPRD6GabL9fpfrmG6EvVYehdlxA59l0t7XGfYwwh+OX+mOfZM/kYnHPOuekxI25MDKZguK3ZzGIXylZff7z1Y3f+9FRz7lM3L+vhMCJSd+4I4H6/o4GIlJzNtLY6z9PxdOLA87TO0zKOw/n55c/vf5yfnvsY2bnkfa6l1rozzNdla01iF7wP27Jd3q+1li7GfuhDjKrWd72BbusWQwSzt+/v8dcYXNjWlRCGYVjvj9ff/3D7Wh8BYgpARORbFQMB07xszrHpzukhbSpWc9UCNJwORGwAe/SntUZEto8ddqOw/Vx97ZBY3QFe9CFXNjAzMlADtV1PY4qACkS4WzUAAAmBjZQawCrt9bJEaH3oyHG9P5ZpQQNAFDFQYB98gBE8IOpeWWIARkeM2YAZkZdp4RQA8OXl0+Fw+uO3P33OUqr6rVX0ickgOHQAbcmWmx+BmZxnAGvrLAXaOksT7Lp1zcv1IqW5FNi0T5ERainXy7uKeE/r2gAseAcAjOijR0XRCoZ5zYQcU8iloLPdb78nLp0DM3LsmFhVg/P+4GrOJq3k4oJjJBMABTNj54gcI4kJODCVudYhhDlXAujNiB0jcJNajcOQxmMFWNdcRJ33jqg1sVrrti7b3NblcDqqw37oHIPzDMplKyoNCLx3zjEAOMfbmrUpOmNmRGTvgKjWFkNEpNoKM4/HAwBM99l5VmlvP36s6yIqy7I65w+nEYJ3Dkotj2lyuS45F2rX6XJ/XP78/v39/W2ap8Nw+PL5y+lwTDHltTJyjB4UQ0gKWFq93H7cpod3wQ9OmtS2xyScqkpVdoiEqsA+xPGoyOtSNYQwDsP5CciVtTyNvjuN/XiK6XZ+Po/D6Jg+vzw/Hrdpmv/84zd9kb4bgvPD0DPz9XoFNTI2di4kdH6tulVNIXz59tfw9GnSCNwb+VjHrWwITRPWUrec+zRqbe+3h2oLEVNk0AYiDkJITBDyvNSSW2k7pi/FLvkIiuzIzLQJglVVQyWjfQhDwESouhtR7QMFTUaEJsaeEAiJmVBaa7WZKQq2PcilCgaqWqsQOe/YsTNRZkKiDxfVDnunPYljUBuQ7Y8F3S1SxLvIjJVN94mRGUBrjffOF7OIIhgzlU1vt3uILsWhS330cQcpmoGKqZpCBQEiZHT4cZWi/TkDsMsrPkrgQM44qEuYDtidYHiqaZTgIUQXU0H3uLS55g2XdXoMYxrO57rlrRZVRcTOBREBQCZCQwF1xMi8L3Vbq2YKyAo7u7WpYdOWEO0j0WiMQKi71aWWrWyL1Gxa8iqIKq0Su1pKyQtIc44RTMoWTbQ0dk5aUbUGjRITchMyDOycmqIpqyYi78g7z6RFBFo5RK6lUGMT1WZR2p5SQhGoq9UJcg0QE3jUhtb6VhOZtSVF8AjigbXkR3UIwUFp4D2DKCJ6cl1KzOg8S23TtEqT4Fzf98zwuF2pOxNSCL4Iv06y9bBhmKVthhmhNo2GMXbj0zGENHjPQOt0Rx/HfgwcrrdJSp2KFPQbWC2lKGbC5bY5iOhZBKZWhXguxBh75hjd1nLLNhAcD6dIdZsfKtvT8yl2/QSTdz7n0nI5HAZCCN776FJKeVsZba05BH8+DDENzC4NyWpb17rJ7MjKthhU0kotnzvXagMtbBKJ5vt0EVVr4/MZxSIztBoZ768/+hj++pdflKlu2StYLp6g73tmbNDaJmq11FJb6/tAisu8DMOQYkqxY6ZSapN8ejoDmKi+v73tNPC//OWv+PlzWbd1XWopfZcIoItRq1zvt7/+7a+iYpAJcV620+FITM5738UtZzBz3qlpAinZpvv86fmZkVXk+nYBAHb4eExmeDwOqopNUdt0WULwSPSotbi1tKxVT6cn1ZbXTIhlreMYg4/X9/uyrMxsZq21lLoUfH/otzVP0+TJAwMC1CZmRsyq9v52RaKt5Ntv96WU55fnNW9byR7Cl89f1nm53K+g5siBgQ/BVP74/c/hMDyW6fGYSi7EHGNMfUK06XGfrvrt69f74zEvs/fOMb3+/p1/QSAGg2Wap9scQ4jRd6lzzCklACQi793j8bhf/31ZluDduqwueAJi4HVdbu/XWptjNGJUgdokBN5Z6sS8o4SNueZCsZlqWbeVpHAM40hIoNZa84SEJNbMDHcTH3yEAOBDd7OX5HeBsSGgGqAhGQqCgiCqwU7DICCUPVigBoRmpojGBMxArmw1dYFTBDMfAiHlJZN3tWoKyafODKWKiO22ZwPJpda89TGkYbw/5tf3CwT3y19+jUOf6xVRg8dtmWrNS67+fk1d349HQGa2um7z5Uom63yv61SWWVjrtuUtS9lUwLQNXYzOSatkmpyTUksu27oO4xhDUtFt3aBZCYESeA5l3UIIMXoVA5UYojUDw+hjjDXnzLzf6zHXUqUS7m4En9emqFWa4d4Qc7HvzIDJMZMRbqUFJFTbahlPx6FP67TW+8N53krh0IXUhzDMa7mts3juOljWVuZHLkvXRVmmnDda2Jh28UgyQVUCUkUwcM6pSW3VMacYWq2EaAS7VonJmaPxeDidz2r2uN/7sT8cjttpvd4vdd2+fv1yuV+v7+9iDcSm6T6DnscTOx/62LFdpuv7/fa///0/vv/48zHPtZS+675++vL50yfvQ8vFx6iE01LAAJxn9rXpdF8RmRyVUtRkD2UPMTRqoMaezRS8un7I5oyDOx2x61x/1OHgg/d9UZZsdHnMDezLL1+9Z57g66dP3rv74/H+47Kty051IqDz6ezYX27vsevAETDXpkoahtQ9fW1uDP4Q4hFczKsY0nA+olXZZkQvcUPnRRfzFDkySssFVRzaNs+dZzRIzk15UxXnWUWZnXceTMpWTI0coZkDL9Bw120ak3OOmYhzzlqrqCGoys7Os90ym/pOmuRSyRECoKGheUe1ifeuH9KybAbA7EQ0xGA7yRgAiPbTTG3CjonIO0De3W3SGjExMQMQoBEjNDA0E2vSDECwIaPt4xYwqc1M2bGKmZnzTEx7Z9A7V1QVdL80qQKxApDuoWdGQ1SkfSKlBkROwBkFCz2kEdJBUy++UyIFDJH5wB5Dma4/5gkgdnGoaOCjDx1Bcx8aUQAF3sdo+y0MiAAAlDDYLk4HBCPdXVpITRsYEu8AZxATqaIArRW1BqaiRQCckDS/u+taq3tvYJ0nflygv8bjF5Mqy0ZgVrMWhqEjDEJmQISE1kgrSnaSI2rnQmOYpIIpVTGljj2YeSlMxoTaSlsnLguVlhycg0/s5/c5mThodbmiNaQ2RL38eM/zPB664F3JpVaBnbXkkDmF6FX08rjUVhBIDJtaydl3Q38eilIpBbvjLdvlda3kF7VtJyyaMjCnUCu9fr/hQEe2MaanwxFMX9eccwv9EBS3Rq73y6NWBXCuKYoIqhGxMK7I7nzyTdu2NYOUQmhtGPptyehKnlfn0rqst+s9pTTNyzatnffELNv2mOaYEjG1VrsYUwhSW5e658+f1GwttQtsrVSrpdSh8wfflVaW+3uLgZGXdT2cz2VaK2EDJHJNdHs8NgPQ1gd/PAxQC7SCWrAVaG5rJexXVSTP/v7YNsnLPKeQvOdt3UDtcb0owOF47PtOJitVbre7mJyfTv8/UX/aG1mypGmCsqnq2cyMpK8Rd8msrOzqqS6gaxrz///DYIDGzKC6bi733ojwhYuZnU0XEZkPxyPni8NBEO7EIWmmKvK+zzPf7+q+zHd11VKYeRhHcDidJjdHp3VdXf12vQ/nXltjwMvlhO553Yh4K3nfN2aeX+bUd9M0xtSZwXiavOnb69v9OndDn/f9y2/fHh/fvfv4uO+riDh42yuS79u6zsvDw4WEDKxP/TzXbdtEYkiRUK5vt1xya7U1LbXO85piuJyH+Xpj4vPpFFLYtj3v5X5fEW2YBib69uUbRwEGdZuXZW9FUjc9PJac//b3vyPY89eXYej/6T//Y2D+9dcvy33pxuH8eP7b3/6+rdvj44OBvc7P+Xv5/Olza02I91qXZdmX9Xw+uXuKKedi5u1Y3pU89sP5fF7XbVlz33ccRZtKSna/L+s2jON46kupby+3YewoUC768P79I4Mg4r7tLKGUVnPp+0EYS9Em9XSatJmC72XrEXNrNIwpjaEfOXbEbm61VQdA4CMb+8NJgz8A9eCKgA5oBIgA5ggO5KbgaIB8VOAR4HAVuzsSmekx/W6tOlggEo4WUhSZhmAtz3nGgc8fH+9v87blFIduPAMQh/jwKG8vN22t62NVW7cVAFNK7HC/XW/Xl3cfP/YhgOZtuadeljm/vT6HFJGC1sIGEONtmVvNMggW3LZlud3ytljbTShvG4CXzZZlc0Qn3He/366mehD/CB3U2LGPkcCgaSn7/HaH0XAAN1/uZZrGYery3lptpVZ3C13Upq2ZKzCTMHGQkELeMyGySOg7Ftq2LDEO0zCcJvWjbUzE4ogoGBih2uPT0+k8ieC3X75eX2/NvNmPKzOieF29FAIyMHUyLWD+9PTQC728PDc1IWFEr2qmqBpTEpG8bq1UdS25UJeE+Ei21JZrLVZwHMdxGgwgxODgRBxi+vzzT3/7t3+vpfb9cD6fJMkyLwcvatnW+b5se3Wi8/vHDPrb12+/PX/5/vr9dbmp2thPHx/ff/r4KUlQtVKKGoSUkDiXsqw7izazlHrzRn5AigWRGAHQGEmCIFFRdwDlDsKQpksaTjicOI0WUyWUTgUqsRfdT4+PbM5gZu3z58/nh4c0dL/99uUv/99/ne/L9ridz+dh7EMfXaiBSZf25qgaQ988Unfh4RG6CSRVQyWS0FNAq0BhIFLpW2mVU+rFBkYBW6+vrVQU0lLm63XoB7dG6DGwhFRL02pgx+/GEa45hiUEhm6IKICCFDlEYamKtSiYMSFLMCI3dSASMaSm1dUoUEwJ1EloWzdVMEDiECKWWoGF8YeH4WjyHecC1fZjJwXEjEAHuqIBAQCoKtFhHztcKVRaBQI6hkztOJE5ETJhF6JPJwAa+rHvejRs7gBAxEGCooIdijZgFgA6hkJmZg0M6nGNQhTAoBRQeugm7CZPvVJQpkZYijtLP52HYZBh3G5vrmtGr+vsiBRCJAZV0yLC6ATH8EkdGcEMHIGQhVut1iyEQBxqq8dmPjAd7hBkAgdAM3c11ZoRLETM2+EpPfxv2sqOiCIM1bXpvt3h9n2YTthKMAWAZlVLoygUwpGktKYBLaCS5u32ojV3707D1Mee5mXf53Vv/vD+YyAg3AWVEAwL2JrzAq2eiAfdo3nqPCLUNZsV9kZk2/11ub5RMJKoarW1WrWUvZQyTd3l8aKq820uJc/zMo5TTLE1U24PU0KwbZm578JI1Wle22qekTAyE6KhAKhIqd4Q9q0MHX18/0im216WbY/TaLHLt+wU0tjDNrMQdNEqBGJCFJIUEAJx5P3lNSB41RD43buHp6lLKfUpdlHe3p6/fnt+9+6Jm3u16bHb11Vb7WMs+/1+e2uthS69f/d+mqbX1zczF+JlmVMI6TzEIG/z8jov58fH6fIwb9vLy/P6dk8xDkNPQIAcWdbbvZ9GVN/uy3Vd/vGPP396965nAauv376XvJ6nAanXVpdZW6ynaXS1ZsVNCYmFmrZS6nQact7n29XQpvFUS3GtErux7/ougA0hxIfzKa/bMq8f33+YHk77kmOX8DZ/e/42jRMTgXndCwGMfY8Iedm9c2L49u2buRHTMA1EbGZ9F0sX6172dc3rer6Mw5Ba3j98eIoptpxv12t4Fx4eT0F431YC6/s0nkYkcILX15dtzcsyn87TNI4ll+eXbznn6TQxEwGGwKq23Fd1VdKO+fX5tWpraqUUZhlPZzcrZgNL6NJATCJO1I3jdB5/++W3r9+/E7gIxy7O81pzfn15TSkR0batX758qaWmGCgwIZZcrm9vwzCQyO16b6V0fdeleJDBrt9equpPf/6DECPQvq7P31/MbRzHXConDhJu15tpnR4u59PUD/317Zq3vd5LTDF1HSIamSAyOQShuikAWavEKGDMXtpWqxtLCr0S9JeTdueCHafBCM3VmiE5EuoPLR8eqgx1RzcGIYwGBg7kaO6A5ATu7mQOzUHhx4j7YJkelzwkFAN3B8EOrZpDcQ3C5s1IgyBmUMTuceQhQPXkTCAvr68xxTB0w0PMtm17frm+qGuM/cvrXEoG96kfLJfXb18U7Pp2VfB13bY1k+Bp7FiCkG63l/m+AMAMrXDY921dl7ptMchxvwW0kos3LbVBBabcirqbRQDzIEGYwNVq6aPEy3mdKQQRx7LmbctuDgC1FZGQxogVEZglGJa9tMvp1HXRtbkzCXPsSinETDHOyybdOI4jM225KdDp8USE233d1i32fd8Po4T3jw+Bed3W6XLZs5rpvs737Yb9bTOTIJ+eHva6z8v9uqxdkOk0DNN4Pk3SxVxKK3UcU75XdmxNjSsixxhMGypas5rr3kySxD6pKbOAGYIxwbas//6Xf2veQgyXp/N8u3797bf7263/+CHGbhxOj+8eFT2XrOuWdXm+LRCu6//nX4jhy9evu2/fv702rQ/vnp4u786nCxCbE7MItCBBi1Ig6QIgqim4SnBt3po2bwgUQ5QgiEiRJCRi2beiwGG68HRpcUoPH6CbTEIlATfH5qS1bVPqz3HM9zlvc4zh3fT44GDuUZJnXO5r3veZEJBSP/T9VA2md08VeQfk4azYNUqKYTNpjtUtRMGAteRIgWO0XLreyv1NXSP7cO6ie15o2bN0HRPlPWvTthcnS0M6JjSobkWbVgBlBoMfAi6ARCxAKXQdMhtzBQRJFM1VmYEIjpF1aw0BvZk2jSmmFAMBsgGYRzFrtRqCh8TVmjqEw5prYOh8xIPVDQ/YwVEAA0FxP/x/qq5d6NW0akUkJi61IjmL1NpMjQiIMAY5ZKjIdDqfCUlEhNgREoUfi1SEiq7ND+rP4XIwUzUnio5gTuQYJCBH4J7SCcZHOj/R6aH2YxUxIiXn1LlrNocgcpEuJrItaCaS1orvmyMgwVEc/2FoB0QkrQr2u2QVgOk48B1udjczANamqoVYfnSvTM0cyK01N+v64KehmYYgx/D6kKmlFAwQm6GZl7Wub8BDjCGEiLtWQInROUCSXJqYstWOIRDNrd5eX6mtp20QDrDXdr1Zs0ytG6ZWNI69MNW8p3329a55Jylso7NZLnPdt3VteRV2It2Wu3s9mj7eHMwBodS6bTsxMHPe921dW601153yMIyIFJKoNt93IVFv67a3ECtK9lAlEAc1xebsNnt9ehjffX73eeKky677drtte1m3Sl1c1nbfKnQJY1DkvRkoShAwcscGelg/2OAyRijOe+0lTGMXOilWfFctO6feSm0QSsshhPPpPJzP8+3l299/CyE4wjJvMYWnx4fYddXql19++8tf/qLaTuczMpdmRe1tXubmfz499penWNv6/aXvh8uH94hUWn17uZVtCQRPDw8hP20sHfEY4tvLs2sRoX58EObfvn2fptFbe327fvkKl4dLNyVCfHw3upaS877fHh7GNJydnSgg4bbN2uo09YHDts55Wx+nTxT6t9e3y3mKkcu67Xte1jn18afpp2VZzufT99++XS7nYRjmeen67v2HDyXnfc0Pl8e32+vpfAqR95y1wLqtD6dhv62gRRhazkttgSD1seS85/3c999+/aXsl3EY1vmurZwvJ3RtRRMLAvS9/Pkf/pcgoeQs4q1uhJi35Q+fP7Zm6OdaWhDWbG/P13Gqf/33v4/niaPkWj98+EQc3uZXDKxCX7/evn/79qd/+qOI/Mv//BdiWJaFJZBDP/bD0K/r9tuXX7dt61M3L4up3uf75XR5e3k7n89dP3z4eCGgGFPJe4rw/PwtBWGAoe8Od97Q9bfXqzkuy6y1rdv6+fOnbVv3femt65+eDK0bp3EY9m293e9Izknm++xAe75/++35Ns8yTFPNBdyncdi2XPcqUZgpiLj5wWNHBBbph75IRE4UYrV2hHcY6KAbqhuTCAdwdNAfzMOjzgU/Xk/c3dWB7D8MGfQ7LwgAEY5htIIzHCJAAHQ0cwVqJOBqjhJkmiay3QmC9F6aLnWbl+V+Z7n8uKq6rdu91gLmLpa3DRCncYgSlm2+vb6RHCpXdbAQEVxbqYRYa1u3HQhM/f7mUaJpbXk/NvjaTGtx9wMRB+atFu6O7wuhw4+3HAchynkPQVKKKYau6xFpmTcigoDNVCxYbc08pJi6JClIieM0jtMYhfd1AWIKDER6iGqVhmlMXYwUY0oouZmzcKtt3fbmHpiRooQQUqel5S0zx2EalnkuTSlKtbbP1yBxOIG4c2sBnU294Tyvp65LXefuDOhVySCERIp+6MRZagZFHWhopqaaSzEEBOiHIQib2bosuVQAokCqttzugtL13ZgHbapNm7YQwuVyNjT79hrnfVmWry8vLy9XDP769goBSThJOI/n8TRyDE7YzKauG+KkDiBoDmr+e8aFmioiShADZg4SIgsfpDiV4Nzh0DExn991j+9VBh3PFYNLaI7I4M6b7QMJBSllj11QDa05EMYYCel0fno4vfv25dvL6ysQdFMfuo7HsRrJeOIYiWPjPlfOxnsDMNTWnJDRoFkiBve6VUbsh5G8lvtOoCjMzIZcHY7vXcvFtKkpIVprQG7FvCm4Cx22FDBHdWyNf9yhxoljjxIRSbVUR+8O4WczN3B3q84KTCjI6uexO09j21f3htjc1TGZ7tpaU2emH4WEwyoFdBCdGigYuTsROzsegSJCc1QDxkNjb7/LOo/yFJoaExMSEbKwglqtCEjEAYlIwND8uC4HBAB3YiYzFG/q7miAiPBDmkXEIUA7QKtMaXQe6PxE5yc4P/pw8picyFCZ0M3dTB0KsnLg4RQwdboztG0WJXbXg7rtTD+ek5q7/uhuICCANiNEZmJis0NUenTT7CiNCRGgt3bs90GIDkRRCAEqHJUsdIxB6KjbpBgG3hW97rreZUAOKoABlEgiB+PQjJoZOVEDIoohpTRs8HJ7e2PLnQi4+3a12uZ8hfM5dDHGU4ex6qrl7nXd82q3mu3e6n5/u5e2t1rBLQrFwKYlRKh5X++zNo2xC6kTZgfd1tVVHdq6rEDY9ekociNxHznEbBkxjl7rjnvlwUJnKCbiSGAmzPveNqKlNWMJfbR5ZsKiNdcS+1SRq0FDarUpFhRBNBNUd9Bj3u9ghtBaqT275i1aHaQTaOD+druD29ClmMLzfbvn7+8vp73WaMoAYbw8fvKhT+u2GYbQxaXUey5fv70sufSpQ5b7ulc16RKn7vL4+H/969+y+YfPn0opwzSeHx76bqil3t++z/ebm+6z+zheptG2xVure3Zt27I+PlxSCq1WdM95YwBitKallqghBjHTKIEQFqH77W06P0znSfcWA/Wpw5RSEG1NkC7jNPS94wEQJXcAohADKsUuqtn54bIscz8OZnp9u3WpI6J93/Oy932KUf70xz+x0Pfn78vtfj6fCQnUui6C1W1ZtlLGvu/GvuTaSu3H8SB6zfe57JswhdAP/fjyes2luPvzy/fT6bTn/X67mSkCPD49CEup9X6/uR3U3Pjuw/vffv3SpcTCP/3hc65tWVeJIaUudulBnpa8/dtf//r92/fWVM2//vrr29vbumx9P/z5H/889cP19Q0f5HKZ3ubrum7X2/Xzp89dmk7n0+Vyefn2PAz9+48fQgxHw/w0TS8v31lYm4owoAOgNc1tffzw7npfCHA8n8Zh2Pd93/Oyrbnut/tsYID+dn1tpY7TcP32FlMa+k7V1nUD9PN5kmk6p4ewrvfbdRESdQ8SUh9NHckDYOo6DqxaaskoU2A8Rt3oSBgIj3IsMMuhJoIDlPaj6n4YwA7V37Hhpx/uYidz/7Fkxx+f6u4EwOjmaKY/1KtARALe9gKraUJhCJHq2rZSCiqieatFcynLitMQCN0auJ3GsZkBQAxi7tpUIidLueZcaq011wLuURjV276Da81tLzUEQeJWi2sD05ZLMzvUr4SABM2gmatpq8osyMdPsJlpLbWWtm8bE1bm29s1Bkmx4yCny7k1m9el1pZ6JPlxvqmt1NaEXNnytmCI+IOiA9u61ta6vkup708Tguc9jw+ndvP97f72kufbfdu3dx/ec6Blm+tVjye9LysTARCJnM5jSF2MHZAs63J9fWFkcodcDSCewjB0IQTAHs2VipUGahKIouw5t4aIxCLkDBGw1JLrnnNVFSaObGBg0GoDBw4oIQQSM81l06aIuK3bIUhf1rXUgoL7vjl51lpzRXOsgECdxIeHi0i6PEwppLwV7gM4VgQObO4YuG7NDFgkpMTMtTVtSsIS+9h1QYKDqdm2ZwshdkOfBkxDvDxBd6pOGdkoOFBzFyQCrs6NuIEZYdcPzLiXzQgkhcCCxjwKfebzw2kv2Zm20hpQHHrlkIFbiJXjan5dS1VgjEQoiIweiCKhNpAU3MxNETH1/SBR1V7n1VkkjUbUwI0FyDkkRlCraAckgRGBmYDQBRuiNccgzgn6iaYH7AfgYA5mxUNHqoSmdfdcEZw6D+bmFiMOJ/9wOb1/d1rent++fQfwKcXHy+mF7mveas79MACSq4OBBGGRoyBOTQEQsPzQddIhMgdXJBAiNDVVFSYg9+YpRjWrrbj/SCsjEekB+DvAp3zAZpgEGY6ifq0N0c2amTo6MSGjG6IwMGNMBtwcDIA4snSUpjg+0vAA/blJchEDRFQCPOzqTgyE6uToDtKqtmWz2hgd/XgBgqZ6/NXBXYEYUQ4RkIM1wIObcLwioR8KkR/2MXQ1Mzc1cEckESZycDe1VhuRERKLSGQ6emQOSCyK7iZ5S11C833ZW24gPaaJJJBIil0pDQMXLQwW09ANk62F3Dyv2vIYvM53FKq3nHDkbLrh+nbFWkOpqMXWLRvXmtfbvWhBBwlCIZRtL/t2+DTKtue90oliSoTgTQ0BYwxJSuAQIyIt93XfNwS8AiAQUY0YQgch0I5uBM6ghAAuwmoAMa6uf/v+OonCnv74FD88PWnd99yqYiOcc9mqeTA34yRQam2VgVM/pBDd2rresOQpUOd1uIRL6qluXluloKAonsmWXe/FsG5PHz7c77ft+ZkMxhTVIO/K3ENXNmvXJSvY631tVUGs7zp3VGrjZaoNHp/efVx3NdyWxc36Llkpf/vXfwW3t7fXNe9IaJygPakqAUTmPkbohj5IimG93WvOAFbmUnLuuiN/E7SqAKo1Gfou9f7w7n6/1W07aOlu8HB+IMRlXY5AYYi83NeYOmvWrJZWJYYYIyAsyxZTSDEOXd9LR+BuYOZgXmuNKbj7uq7v+gcEOI8jOYTEYPD88jalaKYxxr6LRFxqLa1Wbffv38ZxZOH5fptOY8n1dJoOMFzOVU0fHx5EYmu6bzkG4SCfPn3W2hxwXdfn59dt2bo+vb28TFOHps/fnx/ePbpDenqMXWqt/OVffgGkl7e3IPKP//QP03Ryh9vb7TSegsRxmph53bdvz8+hD85Ycjk9nqdheHp8Ok3Tel/3ff/44eN4moauOzQSyOimUSKfLqdpjKnL2/b28haj9EMPAKdpQuSXl2dCXLcdELu+b62+vj7v+77exqcP7xRUrUrkbdsdoU89skyXU142eThPIUVgu992koPiFjByvq1CLBz7mKrCPq8034P0SIIefydA68FwFyZHNEA1s1bdnJAbmhAfbjD84QhzAnREcyJ0cGPkgzPS3NwNwQn4WIW7OQHSMVohB+diMKsKZIbWrFQrhC5BXBUFiXFf19vbza1qq0EYWbzWbc2EaE3v6xpSOPjFZc/LupWaQ5C+74VRRNCRkYKwmwUOkaWWsi2bBNRWa6mEGIMwHtEEc1V3qjWzsRP5D7czNG2tekxBTddlCUG68SwOnz7/tO95LbsbNjUK3KzVeQOAGMM0Tl7b6/11TH1KCRD2UnLeJQQEuFzO08PZDG7XOeey79sy30WkllxrraX6spVWcm7fv1oIUrb1SJUDWt93iByF++lE4POycgCtWrc9t1pLZibqun3dXNs49OjtnnMp9bh+l1xYhAhrqeqqTdX1QFs6QK1GjjGEqLxuxapzikjw7cv3GO8SuDVtrdZWW2tmNi/L9X778v1bZZIokajruiBsVU/nvk9913Wn08UMdqsIjMwuQVncD4CmYMQ4nsZpCiGoWlV3JIld6JI7qLmwhL40JBqmdLlgGCz1FaWqNSA/DuMHkNPRWbKW3eDcj0bmTJxiQCKOCLhvu7vGPk2XqVq9vt3X/ZZb9ai5bcsR0Bl6dWqIFc3ROzrKi04IqtbMnBkRct2baQBy5G1f3l4XYekuDwGx1L3WGhiBTGuF6lE4Bq7Q3PFQxqMwElMU4sFCz8MJp/NxEVcwMMXuBFbdlKzqnsGVmQHQWwukj2O89P04yRDI913bBl3XTwOTvF4FXabLeV03RQNGAAhBWETVjyoWElRraMBCB9nLCBmJiY6NlbujexCR35dfCvrDpGuOCEgsSEGCEJn7kdkiYQBwNQBv1hzMwEmQmIEIgRHFnSD2DmLYFEkpejdJ/wDjBboTdL3jQeJxIkBt7IhAzoCIBg5grW62zu12pS13aqAqCExYgVTd1RBAhI/C6kEdIyRAdzUDJWRCBldERAIyAMSqrRYFcDzG1sf1jg9kgB+6LmaqTfUokw+dOkpzFowCsBciqfuWc+OIdVulD0KRET1EIodGYAwth6EHmoDafl/2bT5N49Olb9a07LGxr6jm+faqpQ19TAnytm2lATtTi4SBJaUkhLnUYzI4TCM5sO8EiGboNnYpBBmnwUzpxDGGnMsGhyQuknleN2HDsKbJJCBFMnaXA0kt4GTgKJxbNrVrLkrjeD6btWXZDGlX39xve83NKaKDha4XhJwLBwahvbVtvWveRoKHUx/V/vDhlMju3xYGzVs+Pz0A0f26bnum1KWYqOtsW77fZ9s1IKQgfde55bfrgghpIolhfHr/9vy8FiXxP/7pj/3Uf3t+vs9Xcx6H0Y3GYWi5JJK6Lrfnl9Pl9P7x4fnllYROwxiZWtPT1MfA+7alGACp7nvdcwjCjNl3kNClbuiH1CVXLXvuUowhSBRa9sCJkZG4QUXE6XRCwHVbU+rcISQyhWVfUdir51wiwMPDw7bnrSyMaV22VgsDnqaTqu3rCg4SQgzkbnlvr89v4zQwY2C25iXnfVlZrdSdOYauq6WtS3ZEc3i7XodxnE5TTAncam61tHlehnFozZodcNckkXliJGil/vr33z59+uSq4ODmKcac89v19fLwYKrTNJQ9m7au68x83Wb3YwjQhqE/ny6pS/f77fHxfH2FIBHAreqeMwl/+frt27dnR/vDH34mQ3X75Zffhi5dzuchJeHYcgGHw1358vym1h4uD4i4zsu+rqmLMUirykFT39t9NtXTw0VSWNY1pk5COMLbt9vtdr09Pj3cbvfUd/ueQ5eWfSciagagAk1v69tWMwfSHUtuaeyQiQMH4KFLiYMZqnurlVwRHFzdkdB+Vz8jktihjjIgIAU3VRQEcAej3yXR7L9Lo/13c40DAKgfygwD4ONgBA6MhAhmVlWdUYUsxHXfUesg2Ko1wtOp7/vhdXvOWvuht9ZK3vK2LvPcDIl12/e8l0Py3FrLeU992nPJ66Y115KtaaDQn/ogwiKQcMvZHYZ+KLm0Wk1rcyIEcnf3w5BFhMxycNLMD0EltGatKQsJgTXLObdW3A2av91fQ+wu+SGk7v3H92q6bXnf95yzHUleM3LrYlwAtFUIARhbq27adaMEaSW3vAMxgl7frut9YcDTOKC7m5Ztq60S89inGNhNaymttRgCHvJ2sH2du5RSkB3Myvb67bnVSg7fX9/qnt9/eA/u0NqUUt/3VoruOzl1KbXW1D3vZd/3osUNwCHEELugTVttnGJKMa+bq7WmeUUmRrCqO1EydGQEAAokFtZ1/f792+1668+nx8fH0zBN05RiiEz7snrRd+O578eq1ncTUmiK3TQAAQIwhRgYiIfpND08MPHeGpipk3GoEpGCEWOMAgaA0PUl9kZcjSqYc4DjTUx/7EoM3ACz0VJ0JW+QbV+ZsO9HK6amuRQH71IEoMBpGtwpwFJy9XXfZjVxjjTWgjGFlJJCY/BERA7atJlVByUHazFxSr1d7X7fyrZXkJh6ImSBWPvqVGtOCQEzWK2qZqCGQEwUiSOF5BIodDJdqnQe+pIGlXS0KAHMYiM1RiNQHyqaGiEakjXy2j3G85SCZvR6vkxtpZRCGvoY+xC7GO9dP5BzTIEAcy7qhoJlb02dEIIwGbj9oHYBEROZubsBeeSIQE1VmA83mYTALmpqAIBILJGBjkkJgDAA0BFaV1cDR8KA0VzJlJhZggGoE4UInOL04ByxeiNxitQP3J98erA0OEZDQiACBXN0J4cj2WPWCIxZcSvr2ytt6wQQibQ5mgcWB1A8jl0uhIDH1FmFSETcvGp1N2FANALV5gJybD3csMExFQratOnRlncikQgigUQAiA4qOuBxnQvo7BoBSq3rPCNSjBEDe80QcuySOhaF2pyEjJCDhKEvtpfma637tj2ch9iROS45t7VuutSipeXDuIfueZv3mvuxB3BQDRyHEBkw9tCLmKopBGBMyRFarmRwOZ/6PkoIZS+BhQAddZCEiMNpICZtDtpazrCvPj4iIwRUMscfYQanuLcWpUsn9D4Ch+2Wl/vL9eVeQTaLt6pZsTED4LZlbmhERKwORc2aNXdrFmPonXuU96fBypI+PKz3GxCkrr/e73kviDiczl3fv1yXbW9ASXral5367uX1jm61mmmD1+sffv48PaRc2/PXb69v89OHz5Ti69t938u65pfn6x9+/rnn4AMxwDbn8zi+u1xO0wilObq31vZ1GAZQyMu2A8Qwzrd7XlZEG4ehj6n2dV3XbV/nhQCQGYQZAJet+LIv88rIhIGQmAwJj3uguknqc85WjZjnde+HCYOWeyOWECOKHJaZkpf5fhv7QVta9m2538d+HMa+7jmKpBiFSWt7fb4exHYz6IcOmeru674Ri7tXsBiT1ZK3WotOU+xjDwDn0+kocPVpBMBaqsQwnUcExK4HhPvbbVmXX375rZZCRDWXx3ePreq6rdeX68PlPPB4u81VLeeMTNbU1eZlGYfh4fFJzZ6/fS8lL+uy3Nbz5cJB9nVJqXv/9PT29vry/NKs/eGnPzw9vft//5//56cPH5Z9u13n//1/+68xdgTYWrlf6/Xt6k1brfuyyuXxbZ7N9N3Dk6oCQGsNcqllv5zP/dgPNI2nkxGGFPZtu5zHh8v5+vLSWvvy27dlmVnS8/fvf/jzn4lovV6X25u8vb1er7fQdYDuaKWWWmtIkvouAfUxNXVVdUNXZolK0FrBEMyVAJnQHY42CZgykBO5qyMSoqoy4u96DHCwgwhrAPCDE3184KBDA4CrOx2NVHA7MD/kiNAAogRjLm7k3ppiJEMBCtVBiYbziZq3mtd5AUBzLznnXJB/pIyCUGtecyk519YAUIhNrZUK7mDOTEfJnIjHaTzMlF2X8pohHCBHV9PaVJhZAAlba0cgFJodkBV1UPVSSmvVrLlZ6uK8zpLL9+fnjz99enz3CAC36/12vXmwlBIg53271VuKch4ndBOiporm6N5y1tKW6/2+3ELoSynzbdn39el8htYC0eV8OiYRyNSlmEKspfRdMhMwQEYENMd1XW6IHKJrW9fl5eV7YHr//p2DHg9tHHtm2rclhdPYdwVQqzatiAjmqtq0ggMRgQMTWbN6eMZri6yEROhNrZWqqMjYmm5rHk9jPw632+12u16v17frSy7ldDp//vzp/Yf3XdeTQd+l8zg+f/nuyd49vKtqNRcJIY2naugoRCTCqesJkxP300mGU1Pb27a12oCQY5dO3E/A3FjMDVlMQgU83LoGgER2RFQOEx2iGRZw4bSBvax5IusxhBASp2VbS60I5AQKXrS20o6X4L5LbVMtuzdV2UtcckHrhn5MTMzN0AAd1EzBjKMilGZAPrAgS6mes6duTOOYS2mRuylATNv9FiMmoP06l2Wr2kCCh8DDCNJD7Dh1JoHOT4ZSQIBjYzY4oJhgTkn4mHm4NAQHdXRM4GprE+EuJeDW1mmaaOiHoUNCwFXtB1m574Z+6Bi51Hqb51x2Le13KCmQkKkftIqDwdiamloQ4cBEVFqtpSESHGBURGYmBzyiQHhYWRBMj8zQUXpvrZnpkRdCc0ZgZiDU5iDC3UTdOT2889iBIrhA6CBFkM5ibxwcwcHRnAydmICBAIkAzZsyWofQtJTlHlsZxxSbZy3oinxo31lR4Ud7EMBJW8MfJMaDbH4MdBDczZoeBzfihioHpIeFHFo7Ttx+bIsRydUU3RHNnA9lrJu7aeV12aGTpih9F1N0Fm1GtpMG8yrISFyzguvAEvppX5elrWtzVdz2Qm1n0pqX5babA0oAInDYl6XteV/nEFPoIgJGDmM/DKEjRCVsSK1p2Ut1d7MfEPGmkqQ7DLWtuRmgdCzhcnY3EpYQK1RXoGMVJgIsfpiZzd3MjAwASBwdKBS1by9v5xYeIsW++/rlerNW00j9iIrK2Grb8y4hsgQSUdXS8jGW81by1R4fBPbSEVbiVf3y8GjZlusaJBogdbEbuu26uGGKSUhCSEBgsDlaf+pddct13vLlNHJI4/kiYf/69fm+zEFiCI2h/umnn56eHrdtOYL+gfDDx/eB2Uv5+dMHR3/+9h3RhJAkQbOU4r7v27a1VlMIe64SgsTQeX+bZ25t23fX2qeulEbMgFiKp8RVve65tHpK53nfXl/fgPjb66+I2PWdGyjYZej4uOeb3q5z16UuhG1Z0fFyehj6xIwt57pnTz2C19q01igCCKpNqzbV03k8oMTrsoSQgKyatdbmdUvNSi4Pj49NdV8zM54vl9ZqTLHr+nm+D0PftHVdsqallPfv3w/jGCTe/u3ei7hZLTWm6ID7vrdax8sldX0rzd2btlr2ddsR6cPHj4j4+nZ1fY5dLDlra9CsS7GLQUKc7/d1ff3TP/5JTZ/fXn/66af/+T//8uuvf//yy6+vLy//9//+39///N7M3HU6Pby9vgjRT58+z/NcawWAUvLlcp5vt1/+/uv5cu7HHtWW++3Tp09N7fv3b+Pp1A/dvK3a4KdPH48x1T7PtdTUJdsgxFByJcQuRRvTspDkfVmXeyiVRVwNzfOaKRAzg0i1dt1q4ZQwEAeRzjgYoqOxgLshIv6wIBL9zj0MEpo2c3UHJnaHY9RjbobHwFzBgZGBQN2PF1Sw5u5q0BwcnImIyB1MobgK0oZ6mrp9Ltte6rLB0lACBbMQlcvarENRJ2TphyEFus87lAyAIZGbAXtIAY7BNh585UQAYJ73PXDY5g0Qm1tMsZUjgcSpD4xcawkRzL3m1rSauhwEuVaQCOkg5rirl6LuBgTullJkYcSjEGLzdj/vp3EYYoh9Sj4OZn0Isu+twZ63te5wOp3Rcd/3Zg3BowRX2PKaS77PS9eP6m2ZcxAq+z4Ow+U0oVBRX7f1kBK0XGreBNGR9pKRCQkdkBBUd7XW2o6gWjM6I/nju3PeiwiGgNSgLHlu1nWRADhIEKqteilEEEIQFg7Smpp5raXWJsLHrqFprbUiYgjMwnsped+RyUHvy/3X3377+u3LPM9mejqdP334+Ic//qHru5qbVR27oZN0miZyvJwu2T3r1UBMaRjOMvSPHx7c0ZyaiRFXwOqsLG0I0AEiY0it670fUHg3MD2krWiM7kAcfpy/TcWRfgwy0JAKIIGzUk/RQyBiigwoKJEMAZEEDNwjU2Q0225rLppX9aoCAM1wywlDKXubPQ0jNddiTdUFjpAwsJB0e1m9KCs4CXJCTgUTn4YmXkS0ATQHgSDSjFw6IjDiSujDoBQwDCgRYl/CWIiKoQMaoh0WKAQKqdrRnVJjMncAjRKwNW5hVZv3moKyCMY09PFIq6jp+Tz2/ajmEgMSE/G2beZec+m6rv3gSzo6EBCHY4xLLKJNYwpPj48hhvvt7uBuyCRCsNTZtCFRYAYCAwcAPlpX5Ic91x386FuFwMy1NncEJAcG54bG0vPwROcHvjxlDxI7NVZkip05VKRjQYcOYOiKSGSuSGDozSuBJsROoFiJrr0QM6ADC5mZqxIikAcmQxAhUzV3ETa1rMXtOBhCUweFas0BVK3rOzsgSa7aMgIANGEEICJCZj368c0IkYRrVTz8hs2IycG3rSApn06cegvsaFSrKHIjkliKSYx9TGVra7OAbsilEXI/XmRZ7+V+hbwNQwwc5/lOYoaw3GdVBTcwBURVdQcvtsHeUweEpdi+ZiIUlujmzc0qGZiqt1bzrg3qVgAIRLuUYgjArm4lK4TAiXkca9fvIAYRsTs0R2qISI7oQAattFqUMHWn948T2Xy7Qxe2xRVAOeylqRtxFHU3sNpMzYzAPDINMZzQqO5TuLz87ZefPr8HN/Hg2QtkARmHPrf2dru62zh25E2brcuGTNNpfPfhfdPa9Qnd93lWs+t1NvfxdDqN59M0pC7udXcCRnq6PKUu7dut5hKHDhgu0yiGiN4NycgYXF33svZdz0IU6L7uoetTP3iruVa9L+Bea1338uGnT6p+e5nneSfmp3fvYkrNoZi1Updt4yDrvi/7lrWB1Zf7nYg+nQZ3AEOKMoROOOS8EVBg2dallSrMw9C1nJ2kC7GlDtFbKQiGiGrtPq/DkDjSPtdSa0rdy+v3EKK5fX95FpZl3i9PZyQeT5dx6GMQVKgtP39/FmaJsteltVoqXk7jvNyXe2OSX/72tw/vP637OnTDhw8fmrac87ps+7Lt+971vcR4X5dW28vr6zwvP/38E7GIBGFelsWavn/3btnXLqXzx/frsqYYx2mal+W+3KjBMRb69uWLo758f37+/v0f/viP//RP//TTTz8/nM9f//qLg798ezazvktEeLmcmzYkFKaay/PLc9EK7Lf5Vmubxmkcp//rf/yPr1+/PeYKhIo6DMPj5TJfb6+/fcNmfUxP//D4629fl3X/6adP4Prll19zXlNKkvfKiGXfkPhIsWjjbdlSSk2iM1iMFEfq+jidQuoppqLFEQwM3e0/GlHarBQ3izHEIOhQWkEkAIIjeQhmgEjg5sSIQG6QmzqiMJgZIqsbMrgDEalacwUDQGKiog3UGsBW2zYvnotrMXirTtuWSzFxBNBWKjBHGQvqMGHTVrfibgCuqkRyBDOFxRmYGZq5OSLWWo1wL7W21rXOnVotZmoEIYpZAyQzAwVirEUdsGptpmQOIXJkNdViPzq1iGEY3I/QNCECCRPDusyCDEiHcxGAVDUIj13fEGot8/3OSMu2OkDXdyICCIGpAZkauxNQYnJTNAdTRidkwyZEpdbldq25qLYuJkIspdTWui6RyNAlTpJzKyUT0zh0e9lz3oW569IwRHTw1lKgfd1ayefzMAy9ma87mGlBEpLUpYP0q1YPFpyZlVJqLuR+rMZCDIgQQzhWg8u2fPv2/Nd//+vtfh2G4endu8eHx77rA7E4MkeO1McOnZhkWbbSfDhPY4XcYLo89ecLd510nVOoCqVorpAPWXdMcRxS6huQsShzBTfECubAx9JS4Rj6HGFV+F3TCQBwuK6cubkXTzvYisZCyGiOjaJFauZAtsw3u2uMjAZKXrVWbQ5OnNwIjVIUJGy12AKg3rLWUilhGnttjk2HPu6FtRoUSCFxrKa6rXvfjQ257M2LjuNwSaLrHkIKsTNglYAxWkwV2DE4RWdR4Oao+GOz6YDOcFiEj8mLIeoBXUfOQEgQQ9qhZCCQyDGKDcxS8rqs277t4zh2Key5tJKPEU5MsU+yBYlR3NwVzK1ZOzRfMSQkMvcgMfXp008/pT6GL9+XednWnGJEJERf5jX1CYnUrdQKbgDATOhCRK25NgfAg75IRCwJBJpaVaIQADg8fgiPH2A8+3BRY0NRQ+RkEtzNXO0QZxAd2S92d4dmdkguiAzASq7g3qWUuKk1ZgcBMsl5R0YmoUDW1Fzt8MsiWTvg9kZIxIfMw1trgOAEtRQzb62VnN2BqYQQkCDI7zZnR3NnJkJCkgCkBq7mZiHF4yfMkIwFSKparRvnylIMG4QuMm/L5lt0kKU0AnXnMJyGFKSt9Vb1jsMwnM7jcWNc15WFgnCInPq03G655LwVZrKqZd+3sAD4vu0AEAO7W4oCbq24mRKAq9ZStZqZEYJwDCx8JKjcyB0AYtdD6HYQo6gQHQK4I9pxmyBAZGJkz1CaOcetamBV4ThNwT0rzaXt5gAYOCBaa4qHCpKQSAL4KaQLtp/S+eHEi8332y2N3dPT09vbHLswdGmZl37qL1MvgaYu+p5DH2qnz29vuWwiIQXJ26KlMmFKIUkoGfZ1EwnD1G/LigwpCIXQp9B38unTUyk7uAXgbZ59bynxNIRqetDVt7Kt68rAMN/OlwcwW27zu6fHru/WZfny22/Xt7fUp6Lubg2gabOqsuwfpgmr5WUteXeGaZru8zxvez90uZTp4fzx00d3z3uexklCpCDj6RS7RO5dkPvrlUW6KHUv27J0Tw/jOJg2Nyx5ZxFwUNNcM2YCh1zr9vzSai2tvnv3/vV6vd3uwzTtNYctM4Xp0oPTOE6urV1zrQUxYW2tVFWNIarVbV5Iwjj1t3n+61//jQI/PD3GLkHBdV2Z6fRwPj+c9337/v2bOZwupy1nZLrPs4QgzK+vb12MD5cHMEe1PqWh6whQVUMQcG9aHx4ehWVebsM0TOP0cDn/b//rf/1f//m//PT5p8C8b3sa+peX7zXXWts4jilFdH96/9TFuG/bbb79/Oc/vr69vrw+f/j44eHDY6Du+fV5z1ufurzv03lqW8m+7SRdjFYKArLTOq9P798NaymtUKO8bbfb7Y//8LPEQFYI3FprrWnXT7HrK6grdaeLopweTzCcrLsox9qcAkaWxiaBvZmXZkdKgCkNA7hXrbXsHCMpgyMgu3uzA7YK+KPWirVUCbE1Q0YjaA0Cs6mZaqvNDRCP9Q1IEDUD821boZb1dmeykNK+1ue3297sNE1xnKiaFi0GYJg6EZRSNXV9ENm37XfIsrSmIqKlAiJziJFYRLM2dSRs2sxt33ZTYz7kYtpatWaOIIHTKLU0FkAA1XZ0XA4tc8nV/NCZITN3XWy1HjP0WlpgctV9Xbw1RGpZRaRLvTCHENC01VpyDiGYacm7mrFwjEkQJRIaAEKIUnITx6a6zHMtJdccYm/m83zfc3ZzMCNmTmhmOW+1qgNMl+BosYtVPQTWpu8/vmu1lL20nM/vhhTFqoUkAVEQJPAPkps2JDhfziGGt9tNXU2PHJQx4TD0peSmmrftNA6xj0i0bbuBE6O5vny/vlxfX19f5/vcd+NPnz5/+PSxi/2xsxGU09MliOzbvszr9boScWm2Ps+72vnp/dPnn+LpVB23qs3IJShxY1i2DVCiJO56D1EBlKQdKjB3R+Qg2szp92ArHIopcDzWtQgGRmiERuZGJPGqtTasBKtbBEWAGOL19e3Lb3+/39/AVYQEGQElJYucutFo2JsYRQ5dZAisQl7mRefl9nqVjuT90/ndu0buql0fmqszQNuw3cFa3rTkBONoCsEaoBjXus7rvJSm0k/x6QP0p814JaGuBwrmdsS3gYAAQM0ADNwcGQ6n6GHROlDFBAjVoQEqBYvBIhCjSIiBKjSuMgyjhCApcgy315u36syAIXVxGLp5zVFiCnUvJaWORKppGBIBBhFiOZ0fPv3xT10fQgr7vL59eUH1y/ny6d3719vSnU7F7Xa7m5a8Lvu+ImIIyWuWgEwYQi8xsoiDAVN/Pr/d87LWMI4Aic5PNj5qGppHw+AAQqj+o+XuDsxMCBXc0IAxaxUEAtTWGP1IArmThO7y7klWtu1NzUGwFVWCJBH92OQoIQO6qQKDWQskxH4YmgmweQMzwEPIoa7gZuzUTNUaAUoQx4O/DeYOBsgAxPDDs2Z0cNMBrbkEpqmvIW5NkcjUrWTOm+eNpIMY2LE0Vk6lOTKnNEgXpaDeNycaL9MlSs9Mpq4FagaC/mEsrZGI9r1FZwZvim5AVnS3Zg4mgiJiplUPQreyEDGoO6qRkDCZeqktiQKRNmuqx1qvKYExhNFlrBZUBQgQ7EjDM7KaA7pQyHv+5e/fulv48/tpyZrVQWJtuDUrQIwBDI8IvIGr+jF1a1ayZpni+5/fTSGn4eHt5apoiehynkhoXmYBoNZ6xoexr7m2fZ26y+V8Msx7LoLk5lAr1taNve7lZX0LQdhJiDW3dV5zXfuus9a2be76y9DH1NN6m/suYbOcq6kutwUTRpH5vjCF5vXt9U0Ch5AcfGvltm9KBMzpdBoRmPnlds95tdaixDB0jfz79RolyhDnfV3ntaiGEIZ+EuYGfqC1QpBhHFLs1nVT09M4GlBZN2t5mDpVi1FqLe/ePyGAlppC1KZq+vb6uq5rTMnNFLcUQ3N7fXu9XC4fPjx9//L9+naLsfvH//RPtdbn789I+PZ6ZcR+SOTwer0JUz+mVtXMn949dkP3+vxaa32cTu8+PKHw1y9fp/4UY8w1L/f5en0bhlFbu75dy55f3l76YTxfzl3fn05nQlzWreRCiNM0pZhabT///FNr2mploNrqcl9K3oeuO4/Dsm9P54d3D0//+Z//8z//83/+93/9t3/+T/95meeaSwoRenWEv/7y95rbn/7TnzDgvm7T4+mcTs+vzyQkkZ9vr//jL//X2/3+3/73/w7YAsbHxycGXral5VK3si/LZewZpeQchLOV2trD9C6E9v3bl7wu49gfpFhZl5xE0hi2rbXqsetT6tGN+15OD6p0+vyneHmaFSwkdd/nxcidXcZECGYApkE4EXtVcENCE6nN3NwR7P+PekZAclM1BwdmQeR1XSQENQDwkkspxdxMnYkAgY7VUbMUJCCr4/16n6/3oY9V/etvz+7tQWHbcxe7jsRynq83aPVC4+k86rKpgampGhFLYDtCj4gsgkFCSl0QBMjWct7raoCQQkKmvutiSLXmgwxGiAho6iIkItoMCRKkPWdHQGatelTlDxxNCEGbdakD8KYKUFMXhegwwIEaIam2nLfdXFhMTbUwY4hiBkgM7tratq5937kBIza3bVm1KvrxfLCUXEruhsIkrg2stdLGYeyHPois2w5wqIwcDFqzsmd0C8JWawxCZsA2jikJCxBFDEDQ9PR0IaSc93m573lPKY39iD3kkvecmyogxBQPJ2aQsKwzMW0ldykioalt+7Zt69vt+vL6smx713U//fTTaTo/vntIMR2IlDT2XTc8Pjy44dvLPM8rIHfj9O317bbsaTw9fP55ero0CfuyWwxOUoFLQ+tIomCIMvSN6VCgujsgGaIfdl77HWaMx1oWDQwPpBVBO8AM6EdoVgEKoqE01arWGwZHMaJc/vq33/7yP/7ntr7FgG6V1PtheP+Hz9Pj43DqtkKtequVIwqxmKG25fo9z/fl+ze1FnRnKHE4r5s5SGDSdSnzDWwjxrYvy/XVYnp4fEpC9W15rnOdb/M873sL56cTsXDS/uQhFRFzdEQBOIzDboYIBGaIgO5mP6Ir9B8GYgBEJ8oVdsfdKCt2HExLabXWJhIkoZrt++5m4GrawNUqW1Gt2bW6NSJMMXCUatb1XegCAU/DeL5cPv388+XhUsoyDiPUloT7Pn7++N45/Ok/pduWgenQlL98+/ry/blqqaWokgGGlE7nx8enh27oSs4QiPvR0mq3ysM5hEGHU4v9jqxKgX5AAcCgmBlAoAPS09xMGdCPiJEfomV0JGJmZjQJdTgTi2fb9+tMYE1VWCRI3SqYIQCLILLlXbWllMycCRyaNq+1qjZE52O952Cq5JhS5GamSgSOpma16X94oMmICYgJ0JlRRIq2WqqRU4QukHSBJJbcgJgD2bLua+3HaRweBom5hXszBmitOQdAIhZDKqUlxBAjuQdCdghIJNTMoBoyXB4u6GhN21ZBmATUFQiBXNUaVhDTpm6ATMzSanNoCs6CVrG1imaZKyJU0FwbGZKkpgjOjbuCUlwU2NFNDYkYEB0E3FWJ0ADXvcmHE4jc9/r8dt/4vDduLsDIIYFBLQURgEOtxZqBQ2Tc11Iizvfrh5/HPo2qrRVDBEBngZRCLnvdNwKthMLJ9n29et/Jw6VbN6i5ocP4OO3zfj6N1nS5lrGLj0+XspeSdybfl9VyOV+mWvPr6/PD44UJnp4eI4e67BYaM7Ewh8ACkmLRprXlLc/3eTorIi7btpc6jds4jQYeuu5+vbHkZZ7fvX86nc5M3JohE3eipph4u+2l1Y8fPz48PESRtd9ZKETux+5+m5/vLzHGddmstX1b217O4zikVHPe163s+f3DGRyVGB2ddN23WisfTx399nZ9/PB4fnrYSpm3LZsCAAqPp7Hv+67vVQ3RW1VBbLXmdev6XpgCp8BgakcsvVYdxhEQWlN3DzH244AALy+vTJy6ftu2msu6rl0czufzy9u1/WKfPn1OfVrm9X6/D0N3ms6vr68wwrv379Z16fvu+rp8+PjhfruxUClbZPntl18+/PTp//F//B/Ltv788891z2D27ctv67y2oh9/+hBTUod/+Kf/9PL9JYTQdR0hatOX1xcHKLV9ef5OzN0wLPv+er1+fP/BwKbzVPfaafr+eo2BgyRoMD2MSzenlF5eXxvRAc6utXYpnc6nv/7L/fnrqxAjBqlm1TEbqIJw15+GMJ0y9i3G2j3weNZSi7WOHJtCzjFSFMTj0lQz7rkitNZyKZRC7EcKkQmruvGhh2ZV++GCN0BAd1i25Xa7nS7n5ioiIhQxHnlDAvQfK21wMASLIiYI6Espa9503/O6kTAxUwpbydf5imrT2D29+xSDrNf79W0h9EMr0fZ9m0uryiGJBAcNfQ9EmzVvzsjObApBpB+6rutiSO6W86ZNg0RiNDNVq6UhotmhwAIHd3XNDdnwSFMiiTAgkrAhugKRnB9GDkTEMYqpIgMRl72oqakv88qMEohJTBVIRKS1dthnVcLBZ8tb3rcigfuhO/ZQ5lpq2/edWRCQke1IW5mXUvZ9N1UJEqOoqRdf2voj/WBgpUamhw+PKUWrTVslCUBH4d21NVXN+7rOe+AwjJ22UGpt2vLuZoaOHMjRiNHcVY2AHByJspbvz8/Pz99eb2/gOJ1OP//8h8eHB2YmYDAQJiJmkVxK3ptIQMLY90OMxKK5TBJDP7pwVr1teXfrht45LnO+LoXSEKaRu2TM6mYOTuwAePA0wQ+MwoFeAED0I28PjgflDhScyPE4kzuYekNXRGWqzrthMBA1z/pabFHfVJdt29dbx/zErtQatGVb7ruXGooxVur7kNDIc52f5y9ffVtddX9msi1ND4SdSKetzs/f63IfeuxPY7by+vLihw0NU91e5+9fy/xWS8l705a76dQ9fQCh3U21YYiuZuCC8B9fvIOA24EvPBJAB1QdHNDRzd1JSVatz3MeQCTgyVBbo2ZaqruhWV1LLcXMIrOB7fO8zIupdikQgQhyCAC4FVUERkHksR8fzpdOmMHIgRE0l5h4GPqX62t/Or1//4RdLLVKEGu1CziNw5bz9XrjeW7qsRseP3x4fHxg9txx6IKHbvXQgu3QSz9hP2Xgg0ttrUkAJERBJGRkVDBtTh5IgK14I2IzAIWIzEjgas0UUTioN1Xcm9XmcmwMDUyVmIiEAziggyExmiEyQAM6CqzN3cCA6Ac8tamaWYqJGdCxIao1z+CIR7LYAdztgB45qDvEEIlchJoBmAt6ChQ77sexqa+vRbhu263VjVU6aiF1JYpuum7ZihpoHPspjqXc7jXXkjUGRbPa8ppbrQGFiGIXKMYuDYRc9+zlMJi5oXFARDJveynkiEzMx9cJZl6PvgWRG1oDBCh7AwCMSMJkzF1XsfM4Wuorx+qgCAoK7GAO2gIGAG+gDZoShX66PLzrO5b0WnzeijUUQwNgc3UnRTR3RmqAwgnNyJGV5+fll/l+xtOnD9NpSN/n1+uczW28jNNlRMJ8XxPq54dzK/695tLyHCGOgVpJAKW0wGzuwdwZHy/j+TJ5a9s6Pz09Pj2dT11fa3l8eljX5X67rjJPY5860aK//fZlTOPpcg69hMiteF7mPO+lZnIIgS4P59vbDcARoZSyfduWee6H7stvvx2Hm4+fP0/jpK1s2/bw+FhKzcvWT4PcJG9Z/YCBt75LIlTyPr9d5/scUkpJ5tvc9l0IyaGVakRulucNzI78pgtJ5HUp67IJhzQlR1ju87Js3TSE4Knvjrjn+Xzu+r7ru2WZU4iXh7M2Xeel5uIO3dCHICl2gcXBnXyb11wLAvbTcH29pbR0XXe+GIvM87yty08///z/+n/+JYXY9904DF3qYye5tX4ciOh+m79++ZL3wsyPDzx0fc7517//suf84cP7LqWUYnx6bLXWLddY12X++PS+T6lL3TrP3758YeK38jrf7622Pa/7Xp8+vO9P45YrADogi7y+vD6cL0Hi9/u36XT6/Onn2PW3+VZaMXQn1VKtGIB/+vhhz3m+3V5Lm84nd7zf7q3ZvuX7/GvokwOOpzGl9Onzh7f7LLuBO0PsJJI17PqH9HA5fXof+nEzWbO/5jY0LWAOXnXtmdtWWSEva7U6jb3tW9l3dDfArTRlfvc5cgxHLBD8eA9y/H09ZGrITIi3233f934YyDmE1KVAePhwnOAA6xkauFtrLe+z3uZAdjkN1+fXsueh76fLJMze3Ny44z5NUUiR1qLP19lZTLU0BQcgaN6AgJhSl9Y9IxIibcW01BhCSDEEdHfhEGM8zmelFGJJXQSAkoupHulZVT3YsMzk7oevOnBEgUPFAO6IqNVCCCnFkCIAiHCM/B//joNrKYDUtKmCIacxqULJOwZilRAFAc1UQgR3YRkmVrXWlIRarcf5o5SiuocQBUkICaBsazWrpTjAD+J1a7WaqiJAYGS0shfppAsCpvsyA7iFZCGAhNdlK21jRHAQJq21LBswgVsMYSMopQECkO+55j0bOEeOXbxfly3vL6/fn5+ft30NEs+ny8dPHx4uD+MwMVMtLYQQJIYQl2Vtauu2ffx8ef/p08vbW4ydRAlbJhHqEhIt67q1UklY1dDUrBt66c80JBUqrdnRLbJDoenHwZoQzYAIf99/AfoR1Ud0MDA8+AzgaP4DE2DghEYEHhWsuAopUBcvHx7+UOJbv1+fDWyKnEIUQAGvdSt7axaJo1XP1aWjpruVOVIdzz0R7vW+ft08Z8SohmatLLPlvSg2Kkl1ElMvPF+thHp90fsb1SW5IoNbE63s6uZHzsJdAeyAQxAwG7kBAaLzAVZHQEcFBLTf806Hm1R4zfXFtEPsRhnSSZBjcita91WIhpTuubbq/RiR8fvz91LqMJw4Caw5RGSRZk6Cay5RekROcUyxL1su+wLoXgqD90NyhL//9lu/3HeH41Dc96mPkfvUpx5D+Pr1+e31uuXMoR/PF5SwbDeAQuag0g/d6jYvXnOl2NwsIomw12atGLohMQQiADWEo0dqqCgIqg3UEMV+TMha1WboyA4GWi1nIyChhFLzvmOBLvYpJnDNpdVamIkoaFF1MDNXAzRiOs7RIqTmx8fdHOz4zw3MtRkwMDEgmOERif7BjnZza0ghRsHmZMjkXnNb565PQ9/XNxO0iq5et7c3bfvp6R13F19bVIgphAAJm+cMrZ6HVOpetxwi5m3LuRyvBiEEDGKHThEMzAkY0BmZANk4hlC4ztsC6qeHCcza1pgAiMDJEUozAkZhUK9qVjWwkDBJdIqYJu9PLQyNpRkYmqEhkbsRolsDdGBQRDVrCNUJZJB0xjjXHBoJMucKtRohHWjV5trAIoVIrNvCwJGFod1e71Pksq3PX75cHt9fLpe3240CPTw9+DCV21vbqpYWGRQ8ElgpAfz8cLm9LHXZh5jQ2u16Q4blekupm6YhdYxgp3F8fdm/f/kqAZn89vpGhNPp9PXbl9++fnv/6GkaUqRWPRIHpvPQbTvuXYq91HwwBZuplZzfXl9F2LzFGN3s8eEyDP1hKh26FNDXvGnO4+l0Og1aa4qB0PdtPZ+moYuB/Jdff3GAh8u71lRLOZ/Op9OwvN3KWhoRAIxDN41DyVlbLbnmVtQ8dBFVq+pxuXv38b22Vtvu4H/885/NPC/z49Ngqi/fv0/T9PD4WLZtvt8CCQFu66ZBiMUBwLEfTwB4/7KoqS+m1YB8Op0A4Pv3l+eXb+Cc678s60ITP6SOiMqWc87n0yn1qdUK7tPp/OFjv6/7vuX3H9+/vby9vr7EFF5fXt69f9r3vU9pmWdG/Pju4R/+/MeX2+v9fn33/v1yX1OIQ9e/vV73bXOzWe2+Zen71/tt23YeBne4v83D0D08PLy8vJzPl6enR+m6vZZtz+C4Luv54ZzLpq0+f33+/PHDdDkvy0Iib7fbL1++bNs+nk/V9PV+K9/z0I/zvJJjDIJgYjLJdOnOU5hGDKNjQg7y9IAiWLmUpRXb79v0OPQx9rXytqOV7Ta/fX8NkU9/+IhlS9bQsZlLFIihF8y1KQBwOBbFDo5MgujWEA3V1j3PtzsTJ4m/s3OUoCIDGqB5YkJHMz1gO2RqrdyfX04pvrsMUy+OqKa3728ONlyG8TydphMj1FzmecYQxhj2Za15dfcYQvf+iUm0uRkYoAKoKThWM3QPHEhAayulEBMBli3XUoMEADMFACc6NPegoABGRGAEhDGIMLfAtagrIRMxugIhpZCEBQ2REAGtghu4IQHHGL/fXnLJyDT2A0UxQuFADlYNiWpt2iyXOo4YY+iGrrZWlu1+3xwtJiEiPHSyZuAakzAnBKzN3OzIgAiLMJu7lqLqIUogIiat5ZgiMQIBuKGb7mtb21JbVW/iOE7j+TIiHkltYqLjYGfalOAAGxKCA7air+vbr7/+dl9uOe9M8vj4/nw6jeM4TRNjSCGFEAVLlIAAjHh5OO25GkHR5ojuLpFaK/u6SpeEWWkPrUSJJBJYSgV2St2EqVua5tq4j26u1fgAZgI6ILj5seiyH0MQ+LEQQjyQJXDYNn8nLziiIxE2AxdogIqKRILMkeUB36V+GM/18tT2d5iXMs/bbe37IaQQg1suWpu7m3tF8LbXvNa8pa7rIrda9nXerZiCA+zbZrUKgFS+l5mQaS/QYGvNAntdfV2srjGypGABxN2rejGOdBD4iBF/LL4AnPiQ6B3YCAT4j8wqHqB2MEB1auCOYQF8LhbQ0Ll3OYcJOkNHYgzqKI2wYhAR5jQMcezHaV7vFZApNOPWnDgECU9P7xwwdX2KHXrd9l3EGW2f77UpMM/rsjXdKuSyPZymn35+b6xNTeJ4Ok23tyXwtradEqfUpT4YdtYA3Esue7V1Le7dulYCJYrkGGKHhI1UhQiA0NyrMApxcV9z0eoYJIVw1M3UXZsioSMWMDDTY6vOgSkGBkRULMcDAwQ8gBi7AwDSofkCdze3o90OCIhk6oRIjoo/MtGHmM3x6KEjHodQAbD/UKKCK6i248dQDZAErNxevuEpd2Nyt549dXF3nV9fmTBXQa+x31WJlbtwSkxtnl/fvrX1xm3pEglD3ndrTYQdggE2MGsOSOu8BDiWb4xHvd8OyT21pvf7LQ2dGUKj38PaHClUPaJiFIIAuZs7mYIRiQGqEcYR0ilTyEjOAKiE6AoCjMevHUJDDEHK3tbSrls99bAZrY0KcgUunpQJWZqZmgIqEyCjubbaktvT+/PHiA9UnyYg1JfvL1PXv/9wqU0vT8OyrAiS58w5JyJC72OHwp+fPhYwNUP38ziGM9farBm6QbPYp6kPsetyzlprWfbr83OpuevTdB6HviP315fXZV1++uNPMXavb6+pdY+P57wubd1O4xSn0dH+7W//LiQiBG7bsl0u559//ny7vp2m6TKONZd92fb7KszbffW96LqCeyKs66J7OU3j4/uLG+im6iWFIUqKUdxhud6Q6OE0Dn20PacoAoZmBBhjtNZaLvu2qnroo9eGxN0w5Jz3nIl5HMeYwtevX0v103Q20/n19fX5ZZzGd+8e5+vy73/5VxFhoofLGcG3ZX5e9jR0Tx+ewDGX0nddP/a316s1eHr/HkmWZZ3nudXq7t++/nYul4fzpe+HnHdrHoMg4ny971u+PD48nM8Ab4gkgftxIKBxHC6X89/+/tfb7b7c5//63/7b7Xr9+tuXvus+vP+IAHUvHGVfNiT46cNPrnp9ewsijPLu44fH5t+/PV+eHj98HNihbDXGOA7jtuS8FkQgYDQ4D5MAZ61aal62bV9en18dcK2lghewx9OEQdacXVi61Kfwutx++eW3f/7nfzLUf//rv63XBSPLp3/+L+N4kT6l86W63NaCMe1BEHhrxt20q5e9hdym0PUBxayVtrW63m/TNNy/vZyn8HCZSs5bbiTiXQRTcyMJTRsd1klVRAPGFIRBy7x+++Vr3vbT6TJ1o3oruSC7g4FgJBZmIQAFlFhK5WZ9iDmE6769ztfzOAQENc9bXm53Imgtr+uyn/fxMgkQQbg8PmzrIm7Vte6FmVKKMRyobyUxB9QKMYlIcDdmDkzGXPa6rxsjuDZXq1qscYjiYBwYiVtpZtBU4SjTIzHx4SLHTmpugCASRAKxEKI1b145ECCDE6JIgL7vDVqc5+t8lRg5STf2AGhHWYak61hrE0FTU7NmVtW2bd/Lvtec8x6LhMCHTi2wMDEi/U5PckSIKbABEHkzMyNAFmZEbc1UXRtEIAJQH8aBgVztusz7vjXT/5DuBhJAbLXEFNFda/WmMYZtz1VbGnrGsM3LL7/+8vL6fd02Inl4fDyfz+Mw9H0XQ2QWRuYgRBRFmLi1hmrTNHT9uG35dpu3bS213H+Z7/M99t0UaLtdMeZuGseHIZ4n5PiyrPk2u0nAgOzEZKp+dOzMGRn8QE4d2RcAQHf4sSY6DkHg7n6cCx2P49KBMCZEInB2bK0BgQNU4CgM4jLIQ99beazz+frLLxGjI5fNImlkqgKmLkABGbR6AzcD9/vtrewsUYJgWe5ooK7eMqghC3qAqobYESsBll0VtW0Alrrg1mouaZTUx4OkZ8fbtB/RFqJjjXcI2v3HHz9gQIB2KCv8OAqaoRu6J9oavzawVfesTx3W0KFXIO8DqTfrYd/WgjamwXp1lo2oBpPLAEaExIYhpnOQ2CVVcwdr1qcg/RgjLq1pqblURQpdcuJ1W2+vV1btI5WxM0MJFSHUdV/e7uu8sKQgPAyDJNwWRoC85NvLdc9qwRKnst4AqGXbRcbLWRJF7B3dreStgqN0nZsHa3iYSwGU8KjGA6O5oRO4lUPdysIpRR/Id0Ya+r62amYlFxJ2PI6T5OaEJOLND6CRHS2n4zQkLAfJyNrhBBQiJGcGVHBEICJzUFczNzMgNnd03PIGv6fzS/alupiVYaCxiVZouW3rtty7wNN00u0+r7lxzMVtudH5pDWvL1/admfLGATGfls3BFM4LoioqmYmhIRUSmMkZjZ1VQRHI/ZKt9vtdr9eAiIiCVMgK+oEHAhDKGpEFCWQARgoGjIiifHY5GRh1G6soc/ITvgjxOCIx+4VXcEdUd0BaAf46+u8Fl2Wcq+8AqpwM2yAh+zIEa0ZIzt4UW21iFA6T4JgbT0/Xrbbd4f08eMncvj7X/8tjZ0a7Gv2bB/O5xDT+4cHRLgvq/0wxtB6X1uzdIqeWykFCVrRYRiGcaqtXl/eBDlJenp6Gs+TuR7jK0S6LvPl6d3nz5+3dfv73/6aBFKXvn17odZy2WuzfV+jBBbqJP30+bO753Xvx5SX9fX78/k0jv3QxUgApAC1Lsv68IfPgLCXrOYxMJKUZQ9dALCX79/bur57encaBhJebxsHmsahT91yv7d971OwYgdjr5WS1xXchr5rCLXUZVm7IdWqL69viDCMQ611W9dpOn/97bfWqgSeTlPfdc/fn+teLpcLOAK4tooi3dDNy7qum359JuZ1nT99+DD0A4PkPQ9D3/f9uu172YdxAPbnl5eH8/nnP/5hm9d9z9lyl1KM8Xq7BYTA4uYSwrIsy7yoNptOIlxrA8DHx4dW23y/n0/n0+kixNu655aHfmxurWrsohN+/fK9qfbdcDqfHy4PWWFZ1r4baist52W+uzZCvNfbt+/fgkhTP13OIJi6Tjcref/b9+eU0nQ6vf/0eb0vv/z269cvv/72/et/+a//NxlSqQ2j3J5f/vKXf3l7e/3l1zivp33Z7m+31A/y+A//S59GD2QYcq54GqqbxAQGyo0AUOt+3wN70iqBLoIEmgS7yKi5zXZ+/3kg2vY1kIQIBTXnDVNPBujUckNmq029ciduRGAl72VdPzy9Oz88pRhLMUVEU0QnRzdtqiQiJKBG5lbb6+s1vz3v+75fX99evo+pS7Fb5iUGYuL7bd6vOt+2h/2BgQXC5eGxzLMScx/bBmupP5CABmYeQvDmEvDjh/fo8Pz87KZ93x0mybLtZvq70cxqU4oHTfEQRRIFChIIMMSAABICEQILWkMgZh7HcewGNXWFpm3byoE+iVOIQwyBAbCW/Xw57WVdtzXXMsCkarUpOrJwn7qaS4ox54pMe6n3+71WZZHpNIYU9mVd8yoiqeuYGAj3kl0dkGprMUaRSAD7lmtTjgKoxKBquWbztq/roKlPHTkyUddPBiZBAiRqSkRdEmZSUwBfV1W32+1a9oII3hq6m+p6X0ouf//t12/PX2tp43R69/j49O5JRFJKwzAw8/H+3KqiEAKtaxZhEjcziTGmUGs2g9Lq29ubuSO15bY2N6M9xmS1vRduoPXtRvNOJP0wADASNKRmjoBI5O7g4Ih2UDbhd2+6/TDtItqRjTnQtYczClyPjDQZsqPXhkC1KRAZoVYL0oWud6sg3Grlc03jOaFSYODo5t0Uh9QRMKrbum9FBWMXkoTI4sTODrYV16ZaIzpFiJFi+KGAUTBER4Caa95XAiVCVTMWJ1ZDB3AiOzr7hv8/pv6jSbJsSa8FlWxymBEnQTIvKQBVKEhj0NLy5P3/cQ+65y2NBxS5N0mEh7sbOWQzVe3B8Sz0KFI8LUQi3C3s7K36fWvRfuRGVNwPRfBx2ttRo4h/bPxMSFFpR+QogAELAiC31jbVO9ilocvhGII3bZrUh60FYCkuzj0bcK1teDgPXbDWrLXeB+9cq9Ww9TGs7/e3l1dP9vn5EDlsCmPfd3GsSOhKbkrsWMAB5LU4Yh+DI1qu97YlpxYIWKuDxmBoqMgh9nKrmltHHMdYke/z0tZtmzdxrnfNNHajB+C8br5UBCDIbDiyF/KKkpIaEjAjOyBCIGmGjqQ0FutiDNPIVnXLBBhDRMBSa5Gi1ULwSNRFz8zLkmqt3pGxEpiqtFZF2t7k8J5VVcGISEWJ9hGsECM7twNc4WPubbsojT0TGSgwg0lt1jTbnAoahu5e80ZSyrY8nae03G8vL9PxSHFMtxtSTPfbgRuUBOv102m4fL+aEfQEUJsIMoGBgEADZvyY0ZIZGjILSGsNABBikbbmO6AExyBVAZl2RLuiGTN6IiY1a8575xwiNYXmhxYftH/Kw2Nxh0RBkJVU96UzQkMBQFJQQkE0A3TdCvovt+W3eaWm6rokpEZi0KApIAOTEQHUBiKASHEYlpp/vd7F8yTlYZG31/nLl//0/POXf/3b/2cYhsuPd2I8TA/90HvvrvMyHsb+8bDU8vb+nnNpzcLQS9VlexPR12/fYucd0v5c//b7728vPxj48flpnMbxfEZPv//6rdTy+Pj4OB7m2/33336UkokoECNpLtv1+zuYIdF4mj59ejTAnMrU97VVKUVqA7BWa0l56kfH3HL58fre6vr88JCXLcR4HKd1K2Mcu2HQpnnJ221zZK8/3g7jFJwHg0/PJyBm4rKu2mpa5/mtPpzPwxBBbeerOce1VvnjIpe2LKLn0zF4X7b84/UlhjgN/bzMh8PBB79tm/fxdHzwj/z86Slv5X67jdOEiFTSw9M5xHB+Ov/yt18RLG3rcrueHx7HT49jP7LHVJJzPuVMSJ8+PZ8ejqZqZsMQh66LIUjTn7/+tOb1ers+PD8N41Bb/fvf/na/8XZMnz5/mobhy5ef/u3f/nUYBmJGR4aw5s2xj32vYKb2frkx0ev399v16p17enok8vfbBkTn4zktS2vtdr+OQ59XeX99zynVUruHvkl7e3tTxK7vxrEf44BmtVbH7rfffvn+/WVe5//1r/8y9tPXf/hz0fZ2uXz78fL+/j7n5XK7vl8uP//0pesDE/Sdc93jc4yDEVZlqffcWux6ES21UdfZmqN3ilC3tFELPUd0bBo6Oj1P6b4czkcfQtpSzWU6Dc4FRWxgnXOzqgM1xO0+m0l0gHO6p3Uc+3a/jY4exjh1kVExoFfvKDLtF3iVZlupWrOJOsKc5l///d8t3by2kotq67pwT/NtWUQ1BL+3L7Z1hR8KxF2c+mUTDjsQxR8O2/1K1UAbAomqmMV+FLTQdyZweHi8vP6oTYmgtRaHqCrLeyYm/CgaW1VhBgTvfDQKJSfvfdfFVouIeecAd/WPDeNwOD06IinFvAUOwJS3jEj92BuSj4GJFDXqsOdggu9ytxkgKvZdBwatNiIGADMTUVHNJSOSD1FEHbVh6BE6YESAKg2ZAKy11lRqbWo2eueQHVIB2fm2iNC0pZTE2ralWkv0PaE6ZrOPshQxqhIwrikDQiQPQKJlu6br5apgPgTyrvcuX/Ptdp+X2/1+Y3Sff/76/On506enGDupioSxC6YorbnA0hQMRFTUrAl5NsN9kFBba62lNUlr7Gjow1bS9XYvAqnk4/3OjGp+vS7rspWSVZXPZ+w63v+oBPvFcv9E3hdAe/0NdpPVvvv6mJHsLzBCQ0Mh2r1gpAgqaAakyGgIauidV9FsiMg+DtOXP8VpKu9vdb51MWQxim58nBq6Vg2qRfRaRXIZY4wM0rLU7KRCbGktTYTInGMGtdZEwAefc5GixCRSDQQdqBqgd6E34qoWkIDRgD9MeoCg/CEWRpOPrxma7BlwRYAP0NFH+XI/NIEBOt/AjEhMM+itigc3NnWqqB7ALLKLfFXVrpem7NBPvY2+Y4SaA6gHowyhi6ZttbbeF6eyRXDQgdrxcFZgDCFuKVeJMdjjOc33dU0lta6fwOD3X/4OBn/5y5frfLvdbnW+Vo9NtaUWmNLatnl1fRdMsLWnyLXi7OWWlvsP8cfD+TR5H9nKut2a1AxcFYTC9PxM3DvHBWlrTQEcOTBDZkZlYM/ekVL2AMzeta2AaQgOmVLJtRYmCMENXaeAiAkBkD9CPKS0o6tLKarVzMhxYLcH2ohAVYehV1NRNTXHDhyKWK11fyOa2T4iZoJqAqKeGAE1pWUrZnKaeiCac+qCa6UFBtVCLcUhnJ/O0xjSUrXj3lvrQ/Dkmb13AGCE7L1WIUJ2CE1bE+cd7YMpItkT2VZrU/Y8HY7D0DOhiXpHu72QGNCRdwRqHhyTR3YGpMDmBo1nHc8tHjNHQad7bO6jXQCIqGhAqGRA+zyKm2HmkFvz6JgwNwBk3b+JDGJqSrjPxggriIASyN/ut7cmJwIYeDocXs3/+L/+TVv++vnZB7+tCxOS2XKbc8lm9fg48RjSZblf5tAPSLSs92VZfWAF+PrTT+PQ32+3XruvX7+O0zFtyYj+/n7Vw1kQFowU+xZGNbuutYv+dDj/7X/9KFuaxsGFSOxC8AbQmhyG47fv30XFIY/DEM8hbdvUDwzIgMwsrW7bkvIGrdVa5qbl+v7l56+AEJzvQ0i5lFwiu6ELr/dFi5GH5T635HxgRDRRAzPVnFPOW/QkTedlSSkDkA/eheCd2/tfTBZCrLk0qY5cFzsCa7lsOCd24zQcjtM49Mt9ub5fToeDDf18uwGCiw4J+66vqRynqQvx9ccPqa3vByBkprYWBeuHLpoty/LwcP7p60/X95uZxDB2obterojw5cun67zc19XAcsqltufPn0KM18vl9f2tH/r36+Xb9x/jNHz68uU2Ly+v7wTIzsn9/uXLF3IUYjS10/HY9f3tepmXzfn4/PmhlkIVtVUACcF7xzh2aZExHAhxHKdhGEsrqZSu6533Hsk7jwBb2n75/bcfr6/N9Onz0/1yf31//Zd/+beXbz/ENMZQt3w6nX/++eswdNL08/PDceid+liRcilVpepurSBiVrRcChN64BCi65GoqSYBESmx7567+AJWsW2tak6q4Jz3zpOLZGpqE/uttNLWdr95j21Oy/XaD2G9yvLtzcg9/ePP3pdluzDy2E2GvKbSFIwI0AAcOCBsKoWwHqY4r1aTDsdjk7zk+v5+VYLltuxLaBfj0A9p1dPzQ3+Y1irdMLJZq6Gm5ibSVoSBTQhARVJbIbhwGFvDVoT6cVlXabU7HKbjkFLZispWgicmA4Q+xqYqquNxDIamKNq2OanJOPUhBCQuTRCkmw7D8fj9199Qatf3AOi9Y0PH3HvHITx8ec616Z0Q3cPDU95ynjeZmvPOO2+qWkUBzXSuFQBcCGZNpYXghz7UKq2mbohIIKJlK38wlnAP94i1WotoR0xdH4jRzGTP66iq7BVx1Gbz/d5KRsB8zMfzkZjbtuVcQ+9aq/cf8+nhEEIchn69zmJWWnm93nzwMYbbff72+28+uE+PTyF04zROh8lzBKOuD569D16aNGYRcS6YqVglxwBoQKLYimw511pqya0klSLNWhcIIHoiAqhFtvXy/XdRahWgiSVaf0BHhnBy3qlzzbDtEyEGMwWE3aq7q0v2+dMHofw/ksL7/B60me6t5Y8wqJHh7oYixwSNkKiZAjtjaoo0TIHYTydZsprEqTcfgKgbvWWRy208nVFF0uxArZaWZRp6j1bWBUEBQIrYjgZWrKXU3FTMGRNBN3jHqE2d82E6ZdcpO2NQBGMEYlAiQzYGUzUQUiNSs11GSXuRiQzA9ny07aJzQDAgIFMVpIaWCJmYFQghggIAEe1PF0J2zptB04IiCsGHDrl513LJ8+02eAbi+XYNEdbt1vcxeDHJMUQ6hNs9g/Lz4wMyWK3LbfbjoGJN1YyIXN95x+iodU5rhLLOxJYrqLlbuay3uSzr5cdbW/OnL8+fnh/eyqZUKxSR7eAPB4Tl/bJ8+z14ZJRqmpYM1LvRR4c+dGG/h6iituAdAdWchxB6cu26zrf1xN5zb7XUsjEjMYgIMwfnu8754FozJEJEJiYCFdHdNaJqZsywAxbI8Hg8OOfSlsHZtqyx72h3TdSyw5GlNkBqZgxmqGGIZGatseGh71w3Asf36wZgj8dD8WBl9WQ8DYAwr6nzFFnHiB1DHGPdYl6WaYw+kEOOIRiYApta8B5QtTXNzQfngkNAUWkiTauZam4G8PBwZnYEWEoxEQMI5JA+8nGEhkhgTtE1DFVdY6durHFsYUwck2FVQyA0Jdxnkh/3DUNDQKdGuCMBrILtBh5s2PY6wo6ONjP9GGXQh0Aam4DzPgM3tMpW35dO22TLKcjPD+PaYDgfh1Pn1Wmqmlv0oaVUkjs9Hqy2ZZm7yTnSnJboiB2e/vQpxLCsy8v3b86Fn/7y5+5waOTe7tu9ut9uuQiEcXIu/o+Xeb7ezmNXm77+7ffPX76glnlZkfjpp6/TNNWa59v9x+tbbbLc54c/ncc4ipa8zFPf57QJaOgjM2PRLrowdEiu1nq73XwXESl0Ma3btiUiejge+yF23r++vR3Pkxq8v11bza3Wn//0s4+eiKbjpEi//v4DDKbDZEhpq+bYsYMqzntpeno4q0pr7Xx8eP78yTve1g0RW62Hvj9O09j1adtAmyr++PZyeb904+C9N7MvP31l4mVeGd35PJrpfJuvt7uvCRHY8b5Z6/vhdD7drvfff//R9zGGfpnTe7oZKHuc6NRPA3Xher29vr+/vb/99NPP49Czd2lLf/vl15S3py/PSHCb51rr6fmhrEmaEuL75bKu2zD2fd8Nx2GQERFrzeRpWWfJDcD66I+ngZkv7+8G1h9G78P72+U0xO405ct7be3tchmH2MewLMvtev3pz3/6+eufHh+e+8OIYK8vrw+ns/sv/J//+g/vr29I9vKb//T50z//9/+Wa73fl+dPj3XZXDUF0KKSWnOdt2pN1BGF6MwUrXnnusDd4ADZRDRnVBWQaZz0NJlU0FprNtNaBEj6zmuz+1I0KINZWr1uvsHy+nr98fLL7eoce+9a45e//7syZqnH06M/uaaSSyPvxaxJJbTg0UfnjAKqppXLQVYvddsuW85bbdlIDVsurbZ2IORhkFZLqsMDgHfiuxC81444oOa2JQ8NZSvbvGM0zeR6vftuKKaKJGqeeRiCD6E2HM/n6hO1QlBd59CF1gzII3tvHPtOpEqr0YXY97lVZuiH7uAiE91uNxEJzgMBB+o4BuRAjgi7vj8MoysVDKwb72/vP336aRxHQKqtOsctN9N95FNbrWoaVGOMp+OJHHrvWmt7dwkB0Yyd2+/4KlZFdiirY4cGzMxEBCSmTWuTBgDOOyJopUmtpRTc5Y6ohhC7QJ55SSJFTZZtUZTT+TRMkyEgQytyuVwM1ftQS5kO02GaDqeTNHM+drHbGboOnYvekRMTk70dT0hsAuDVOUaiZd6AsGlNW5ImqmpgO0Egeu+9FwNAtlbffvtmiON06FxI672sG3gMRKHvHXsBNMWP1vE+5flIx+wZZ/tIp+6ZVTCF/Qartu/GARhZrO3Dot2It8uowIjQVQTZr2dATN45aM25vguOXB/94DWQmZqrVptv7uB0/t7yfAeB4H1kBu+9IxEys1pbU3XMTCxFrGkXA3uHDOhRVcCIY0+hi+PE46BIVcW8kWeojAqoe9zbCGDXxQECoIEh/OF32glHH1Hv/YltRkgC1jwqUQFFQSJOuj/ODQEJCAEi9a2IoXPQOnSxGAcb+1jSrNZK3q4v15o2p7jcryd/DkzSmvPd8XzwfVvWFaCBtNvlNW+VOU6HqQE4H4iw71wty/v78uPHW+xi7Px6a2LeuEu1euZp6Aj0NIavz6fj2OkYtcXDqS/gOTpcl5Pj6eFwu76iN0HY6pK2uUZibTgc0HWBnQkSmHfWasO0DYcxkiWzbKLWgDkMQyNVk71mDKbeoSd2xEoSYgjeEWErtaqoqIki0tgPyNSamCkReucQcBiG0qpztA/2wYFWQERmRgu5tV2QudulVSoihP0fB3EzGIJ3wTliCP50PG7zzAS7B9C0acnL5SKxYzIGA1Vp4D3vh1YEZ2LsApDWUkExdJ3zrABiVtseQzIzBSBmjiE6F0pKJVdEJKQkgvvoyBAESMnYG/fquoqhUq/doY3n3E2FY1HUPVVHZCYAH4cgAzQAAmS1/eaKSMC4QwiIaA8SgJoRmIoBIaghCBqCARsCAlNTro6EIGtx1UYFIXqkDnvfBfGNlt9v0NrxcIhdEDD23JZUluX8eOjHabunGHgc+iZatvSayziND5+elzUtpQxdPzeYhaU//khwz60tM+IK1qgBZfEt/fn5+dN5lLq2tsUYcy6pFnbIwS2Xq4h8ev50GKeu89f3GcCW+T70sWh7+f790+Pj6XyopTKSqALR+dPTXmTRdccehmGIJpKXdbndru9XApmmsdKeXYT1fg8ltFLVjFCul4uLMZXimIxgy7mpeRdi13nnS661ltPDuetiqWXvIg5DN4wdGInqfJ8vr2+tlq7vtJn34eF0AiAgkqpx7AG3lIqYxhhX3u735fNhcuxUaug7AKs53ed7Wjf2Mfr4fl+/fXvpYnCelzldL3fqggLebncDOJ4OIu2XX35lz4fDlFON2JtB33cueN/Fy9ubmKHH5b449shQpeXbbV63v/zpz//pn/7L5fXt+7dvtWtPj6cYwnJfSilqTU1vt1s/9anWOW18uxSwl5fvZctfPn8KfQzee+/HcXTMX798KbWw9yWlr//98+16/fz0aV3XT+cHZDv30/Hh3LlYk3z69InIuZ6dkKI1JUVHfexa05qKQvFI6EEBOoYhWgcN0cQ+zDt5vncAHaE0RStqFVSX282npuArEJgBimcbqDms6XJ1aR605ZKX9+Xh81Mfp8uP74J0PD8duqlzPlfzYKWUKkCByCkzAajuDkYiRy7XhgAqWnJFIzL3/PmYSlnvy3Ecg+f7bb1fbjweJj+ithgO3g0U+7ptCqtpbZmEFQKQllwll9KMb+/zcn0bCYehowbbfWlNA3cYUdV88MPUKbPregRft6qlHo4TGOBuyAp0u11NpOt77zmtSbP89PPX4IJoJU9D6Mfgtba0JYfGKqNnP/VI7v70qQxH711KuUF1TIss93X5Q7MKJiq1Yt/5wGnLc5Mm0nIFBecdE7uOzaCUknPejdwxdsEHMKilCDLSvkez1pQAQwzSGiNx9ERg0kRryhvNdDweP//pJxW4vr/9+uvfnWepLaUEbKEPL2/per+9X97EdBzG0+n09etZ1ZBYTZz3Xd8TYS07SF5KsZSySPvAIwUP3jkDdlxbW5bFBZ7vS0q5HwKAOee9d96z9zuvVlstpdR1XYhdIGDnWzOjaNvo5MGpgkEl1H2k8wcDh5Bwv2YiKRp8hLfQPmBB+B/XUUDa5eEK2sCASBEYGVT3mAJYQzDU1lTRobHXwJGCVQBCdV7ZpVpElNCEBQimaSxprtsdGU+HA0ndUnEevQVg4OxrKY7ZswNE5eYj2w5mFACj2HW+O3B3wOmksRfnKThAREAgBFEHQKYEKDtmdKc92gf5cG/kkAEDNkQDYkAzcLu1EpVNzdAABVHQlByaouwPMwLFnFEbxxg4SALZajkFgAZU7dh1tkrOrTNarrdpjOTo8n5TwK53wCM6B2Dr/XZ9f7u9v4sace/6ycVY291a2pYLWN3S9vtv33zon02G4TBNT2LmwIbetez6bng4d44rUu4OHBNH5t7F9/drWtrQd0OEFhFIl2XjtLhiNr8LGJUSD0f2veYWRo1iqWQq6+XvL56gd0wg67IUqx7Ek5FZzaW1IqXdRbJ3wzg0sLxlJHSOzAQRkMDIWqlE4JAQrZSqJI4Ph8OxH6e0JQURldvldp8XJvTOOR8sgm1J9zYZkCogMBKLqNRdLNYejsdu7Ld5vl8u2nLNwuDAkAxBlUShtGopq9Qm3vlSyv2yRe85eB+CZcm5moEZEjv2qKZFrOQqtTpPnoOqMBIRa7VmosaGEZCQHIDpzo3cd17slXv2B+kGcaOGqfopd8fsYmZuBqZIBApisOPZ9qsFKCIoAZiC7f/M9gmPfoTT6I/DjhqQEaiZARoBADlTBrMGgCjGTUEwsFHJ1bY00vbUd4BY7jXN6zR2PjhD844RTVKOCATEpUnO2kREYvTOIahO02CIPnbqXFXGeJCaq/CKfmH5cV9FUkR5HnshejhMgWhbZo/iEMfDtMSt1rYuaRwGUGPmh+mMYL///hsTrcsGANN0yC29vf5AqGqPMXbLPC/r+unzpymOKWUE6/tOahv7OI3Tui6367XmdBg6q/X192+11NPpMHTROwdmfexLLbfbrev7JvL2/pbz9vzpU3BdbVVMAnaIiKi1pNtb7j5/Wu/3dV3GafSBX19fzfAgJfoY+ril7fbt5fHh8XQ+/nh567qumS7L4tw1la01Aezn+ZZLfnp+ALAfLz+k1ePpQEyX12tpbRh65rCu644ciX1XW6kmy7Lmt3p6fJgOw+Vyu11uf/nTn1vJt/c1EE/HY2317e0yz7dPz59+//b7el9Szn3fpZT/6z/9E7Orte7cLFXZtq3VdjydiOHl5bXkwoRrTn0/xBiGafRdtKbV9DIv9yVt23Y4jIbYRJe8IkHsg4ohKhPc3t+YaPr83EpSaV0I8cSI2P0lpJxZYYoRzTrvyXmnhBWUhwhFVUsXfSDMRasUUkACMWkVFBmttTV1TJ69GKbL1bRFz6zkDIyo5iqy5fbmDwcjBlRowpI6lFpTur09n46P40+vl+vx6ZH7Q2M6Pn7p+mHoplak1aqtqVjbSX2orJ4do1mtZVfy5JRxJ504N04dAiDB0HWRXV1zwxJ8VLD5dhcOxxCx9YwhZzXh0I3Siqm11FwgsKytmhIZ1rRdXl7dYXLjgGYg6l0k6hmdOp7G6Drnhw5dqFnANmB0jsfDwXnXmgAZBr/cZjXLuXjHh+n89etX71hqATbP7ATvS0rLIhrW+73WVqz13WE6TMX5WhvAFsgREyK01mqtPri9gAsA0mrO5X677yJuNc05G1iIgYCltVrrHnhkZseemaVJSpmZAFD29ZIaIjpGNQjBh86ZSckp521elyb6+UudxtH7DlBe3r53Yw9qtbb77b6u67dv3+/LrbYKSM4HHzw71qIpJTBsUlLKzPwBG2yi1mproKagISARod+N4lbLXvFvaUuq0sQhsvPgvAOkXWcBZq2UVgoaOGSrtUlj5L4fPBrkJNsKvgdDYkb9DwYyoiHtSWcAsj/iCmaEbB/sN9sR/p5QVREbIxruRZ7d54R7hcoMzGTPJlcxYULvqynYLuvlliRLA6gIBR2iC4bAfezGgRyxs3Rbtz3eRMTBIZN2UUrziORQHIqKiBE4NSPHPvbT+TGen1Y/ZBchBA4BFUUb2U74+WgnoQGZIe5N7Q/kNRuRAu0WJyDF//2/EIAUHCACCoIA2m5jAt7BVaoAigooYtJQvavSGsJ2r3dIvpRj79l3/cMTlGbTue9CXtLL29t0nNJ9eb0uLobD2IFpSqvvYtvadV7rfRVVldIF7Icgkl7fLlsqWdFdNx8PLoSaSq2FvFNLJadWu5pj93hEfwTPjsO65vff3pXs7f01dCDUlvlWSmXBYFaub5KT3S94HcXHLBCen3k62rzWZX7/8XIc++npwaOuadvy6knH6EDrdr9Jrp553rba2jT1se+bam0NzJh2GY+0XHPaaildiEgoVYAMEUIXjsfx4XxetqW1VlJe5sUzM6GK7LLQLSdCooCOmcnFrks5OWYk21K53y6i5fr2vsx3VEUwU/Ge0cCasYPonQGakaOdntqIyMeu63ojMN22tQAjEbRSWwMfnQpoM1UTMQJEcI6YyYGRCSN48gBIzVBVDc3FoM6ZOaGgbmj9UYZD8xOM5wIhx5iJCkJTYDJANEP9oNkS7Z1JQwQUNjJA2ReGaogGpmJ7hGAX334cjRB30ywCON2dJawKuh8QtRCzsm/G91znud3WbOvWxHzoQt8jqkqTUlhx8F1tOh2iKaScgo/TYcxbqrXM84LOba2ta+kO/S3DZSkJnX94MK8gUJbNOwTvgRBA5/vcIFnNx+NwPBz7PprqMHSHaUKFLgZp9X69vr29d11gppLtfr8dn47TdLjdLkw8jpLWbV3TsqwhBCJO2z2n5Nl1Mea8zfdry/nxeMo5r+uyLYuUuhFNhwlIVWFL6Xq9+RjFWojd159+ent/HY9H711ai6oFH2L0rdS8pXHsEQ3BxmkYx8EsMjE574OfxkNOebmvhtt9nsXkdp1jCKVWYu77IXa9tNakee+NAABLrqUkE/nt778dz4fpMC7LNt/nkiu7yI67qbsv2/1+NdC0JQPYtm3e1vfX99IKMyEAM6soGkqT2HWfPn369vvv27YO0zBOQ831r//81y52zO7x8UHFti2ZwTpvtUkuKacsVa7Xa/BcW2mtheCZ3eX91k1DP/SX++1+vXddNx2Hy/W6bcvgfde5slXC3NfIREOIgPbr3/7mvCulMuPpdDKFzp+IqLVatpxL1TWR8479TlExYtAiaBg9MGPKZmpNsbSmTUy5d1STINY+hNEHEs4lh8DeQIgwBFNpZqXlwR9TyWlbQ8DobUuz5rWlpf/6EF2XWw6xOz48jOdHcP28Ltfru2MPgNhaQAqRqtSakyrxNETva5H57UZmSLilLIbOeRVjJhNrtTpGcl5Ki1MnQAToHbOnraRcqghG9M475wNF31Qlz9z53hSMHHlHZNIQwDv2znUhuNADDrkVsS5Ex4EoRgMmaT4iR4sx9EMPRKS6bhv5oTtwW9e8Ve/5fD6PfVRVFCQmbW1Zt5zXmpJIGbpYVe/LvODs+07RYh+1lZLTcl1zSkxEIbBjaUpIAFpLSSm1VhnYuwBE0qTWItr2SpWoECEzO+fMVERaq9JEFaSpqDaRfcfkKAYfMAYEBeDoXN/FKjWn/Puv3w7jMXRdqpsYlNKAdLmv79fLsiw/Xt/6YTidHwkxhFBru12WcRyHfsi1tSbrujGzdwwALLp3ztEzIyIRIDISwL7fU0RY1+S70I+dipWSERCAamsKGL2jQDVXBGTifgjOUUkVULujtbxtt/fYHyhO4IHI7dMcRFDbAS34UYe3j92XmQIqGOFO57T9RqpoqiKEjpHVZH8pGCmC0P45b27H7SBXgSa6pxeSiqhFj8E5MEFwTN603pfZhOI0jacDpHVdVgVg8qpCap737YDuhXYfwpaqtAbIMQRiDmHox8kNY6YOQxTk1sAMTRVYgXcbmKmh0m4125cQRAZoyGo7+Vr3BSCYQdVdD7GvLwxNdpA0KSjjx8TIbGdB4QfyWNWaNZFCtaBkKRHpcBhR3eWSiHwc45LK+z1vlXvsOXBZ1kjWRbfctNXmYt8QkpWm5gilFuSYcn798WPdcjcc/DCAjxj6CrikvG7baTg9Pj+8/PYtryufT469ER0eIyCZLWMX65o0rS/v96ppmWcXuIudquZNy/ub6zvsh0quKXGd/eOTbNlS5jyLpsxiNTu2OHaewaHOl3va0hB8DHzf1pJzDTQdR0dO7k1Em7RUm6lJK2CGYiZKyDH64H3O5f311Tk6TIday7amVmX/mSrAuiZpTZpqbcgOgXKqSNANHUe/bVmtXu63dd66Pmxpi953Me42ajViT6bcREppalCleR9KEVMKXYxh9N43aYjkgjc0E92LjVJNmzrygYNolSShi9H3iNQU2XVI3oCAWQFbqQqa2TuKFHt1YwuDdqOMx+K65sdsWJgbWvsDLQFqH7RaNERARQAjBEPdZ6y6K9iAbO9jEujOmwAFsJ1wg4AMYAIGsFPldR9mAjN4a00REbho25pc5jyG9tPDY//0HJyt69IPXavt9n4/x2mIw32dI3t3iEbogm/alnURlS0XNXJxvK7tXm+vS7tmo9O5llYMXNdb2hT3jXzLKf3p6Xj0p/fv39Ka79dZSVXa4XDQUk+nQ6syX2+32208jIfDuCzzti5d1w9x+Pz5eeiiZ35/e3NMp9MBAVquiKjWpLSiNnSx5TRfbibt8XgIjjFGLbUqOMcm7TrPpVXfxU9fnpH4crmK6mHqcx5j17VanXd97LsYCLDU3Pd9jBEUnh4eDbSUTASOacvp5eV7SgWBTsdj6OM6b0R76g/FIG3p+csXJv7+45q27aeffu76UWvzwfV9j6Y/vr9s89rHvpaacwXiQE4bLGtqrc3buq7zX//6D93Q/fbbt/vt3g3d8/HxME7v/vUwHqrUt/fXfuj7Ph4Oh3VZTeR8fhinQWu73m5//fnPLoa8bXNeDtNQpRJiae31x7upAMJ4HMqyEZJ3LsYOXVvm9Xa5vL+/vry+f3/5Pk7TeBiPw9QNfecZ1boYow855S523rl+7F5/vJpIKxUcrfMsIl8+fer7YbnP6/2GplqUmRwZsA+tNkQAFFNhB+wYwKuKNCNgEasGHRC5UMuWWnNA54exBEvrCogBWQFC9CZmRARW0ioth2HQmtZ5Qcanz0+x74ZuONQqgCat5e392+vb9dp1Yxf7OPYejByGEIB9SVJLxpK2ec7X1QPGLvZfP91vHRC0Vn68/Cg5TYehCz5vKZXEjNMwKmF3OvWnET3epVRzoTsyd0Cmiqzox8MmAq0yigMKTNZKCO58Pseuj50nH4iDKSESsC/7pUkJABUcBheid8ybSE4bAKbcAFx/GLA//Pjtt1KV0PXBL9utlMU1qqnkZUO16F21ti3LmtP1ficOsXTkAseuiyGty7atOSUiDF0wAYRmyIQoIq0WAPPehxBLK+hAmrba2h7WRTKC1oRZWmv0hylBqqgYMrJjFQEDRzxOg/eODBSFYL8r1sv7Ldf0+/dfc5bxNOaarveriC73eykNEbquP0yHru8NTJuqAXlC2nFrzI4/CDWqrdaGskceI0cmliYV0bFzziG50sqybTmX6TgdpqlWBUDd624GIAqegnctigi01sBoN34xWp5XGB34TnKCmhUInQdmINyTqmqNwO+fw2qyG0IRSVX27BTtn9aqIk2kiGjwnaDtlTJQBAJgbKgG4AFQwerOhyEBaKbBcyttt4l50EiOkQEspXx7nQcETx064t6Bvxo59p6VRFpt2REzESK44BQIaOdZ+2469tOhm47mulUwOdd8UOcFCAEdOyBT1cbgDMFISBRpfyh92K92Lp+BkOmHCc0+/q4ABIQGCESACqAAbWdh7xBtQ0ID2lfcCEzmoDS4b9VrejzGnl0feiJKXVzTurxff7xffvvld+f9cDycT9OfHh66aC2traZlntucrmttwMM0Haa+Jh5632pTew8ftpyOQ9eQshrGIDltKR0Ph89Pn6UW16De12LNCKsaqY19f5u3LvjbXUSg63u1tq2LqjVpZoBiXshhWFMtP8pSk5GzVqmtLcMGSmBgMkydI6t5k9aYwXlutdVavKeuC13w+6Qup7ytSy5NTQghsOu6yI5b0+Cd90yIrZb77bbc72squzXMMZmKmaGpqYXgRD0AMlPatq3ksHrytG1ZVLZ1vV6uy0Jm4A7HeBhUDcQcgxkpKyJVaa02NQPEnLKKkqBh1xqmLUmrwTMS1dL2bV0tVUX32x42AHQhDq7rqoAAYxi4HxGjeYfEWBuYNnLmI4ZBQy/d2FwsPhbnCzpFbh/rZCUkBkJAUEJEBd1j9x8NAzNQUDAC2yN3AghoaEhAHy8AQdtzegYIZCRof1hryBAYwFrbq/3CpD1Xzz/W7b/+/PnxacS8pPn99eVHjI6Amdj3nda2bXldczd0jhkBcy5A2PnBkJdUHp4/2z3/8nJVCi56MZxvN3NMiJNn2Jb7y/bTz+fHh+PQhzG48OWn2/yWS/aeo/MtlZzKCIiI3vu+74jQO2bE0+k0HUYQmMZp7HrV9vb2dl82FZgO063pOAzHwyFvWWpZ57Xvu2kav//622+//Pb503Nw7jgdit9EtRXJKXfjwI7XZU2pFC0/Xt5//fXXn37+6e//+m+PT8+efWBHBtuyaZPHh1NOWcr+KVav9+vtchmnUdjlVK6XWzd0o0y1ybplZnp4eNi2jdSG2JXSWkulNnZ+WTfbVhCdpjF4X1LphoGRtjUDICKV0rqRt5Rv890QwPHp6ZGDF1Hv3ePT49efvjw/PUG1n758RqN5WV5e3y7vl4enR37+bGDDNH75/KmWcl+3P335GcG+//2Xlx8/zKCJPjw/fvr86Xa9NpHj+XB/vxD60/mEAH0/+BC3ug3D9H6/XK6Xby/fYheCDyWVT//p0+lwGPhDiIUKf//ll/vlen588M71sY+dH8ahtlJzFZHdjthUiKkLMbogas4Rs4Gq5TWllKNn7pzzEHxsZi03YFRF8lTFqO8AtUgtrT7R2PVdS8kBUvStQS5FzWLvS561Ze+xrCkt9yYWfXRd3LKs6Vasxi4sy21b0rLk24/X8OnzsqxYBg7AwYEyEOqaJNdLLUhIiml+b0gP56N7PD59evYx/Ov//Je3tx9oOi8LMJRWA8Yq5Xg4932cbzeVJt3g/KFUMWvqtA8YKLI1ylkM83IfpvF8OJBKdO7p+Wma+tSWJpWEYb9GO28OsxEZN91XTITk1XmxthVRVfCRkDFE8np8fM63Sz8OIXiETlPyRCmXllLf9RQ9Vtju62W+5Fr6AedbBkOZDp7IEQ5dp1JrFalKiM4zMjJzKYWZ9ngPMUAx2gMuimZqZIQIiKqSUxLR4D07llZVjJiYkZAVEQwIaej7aZq6LiBByuv18u6Qzw/0+uPtx8uPVMr3N/r+/dvl/RK6GLs4TIfT+cTO5ZSJHREZKRI7ovm+IWIIsVZlAkICBNpTDAhmJq21Wp330lpB6vrofDBgYtdPPSCUVJ13x+OhtlpFSs5qRs5zCEHAyLXaRLQ2JUeOyHsChlTSdrsOh5OaN6g8oCGoKuEuZ1RRpT0Ag/vlEoh5VxM4JCVsIqa1ltJECJ2Cee8R2KwZqCk6pra7vRWIHDLtYSJCElF03NTEWiOtTajpcrnXtNkKMQQLeLunss2Ohy9f/9K2JadlXeeSSy6Gat3UKXIRAB+HbhoOD8eHZzcO4OJ9k4YR+gP2B4qDKQEwORIVRa2424X/0HzAh3GBAD4gErivAQGAdyQSfbwWDcgAUfftwx6HMjX80Kfu4WGAVSr7zjxBcUQ+SYEQEHLdkqWlpM1UX1/fvr+9LTV7lPfldnw+HJ4HZ7LUNXjfhe593gh4Op6G49H74LootboBf/pLEDVyrjYYHw4uxNwa+jBMp1rzupbRD0RdW+qt/Whaq0oBPJ8fD32f2Keq02HyUmstKS8iaqrMoKjSNioaqA8mUKouwHFgtYHd6eE4TuPLb99aSwkKgoK2nDdrTbS2VpqUyA5JVRojMSiDQm2MFpiJmBBd8K0JIXp2jOQYffAgWtTylhFIRddlFTF2bKIgYmiemJgDsVg1abUagxunvtR0fV9FEykfxkPfMWETKY6JiUwN/D4gkaa11MpSVLW1RlW19YptS0uryo69c+AJK6JDaYBojtl5T0wISCFk4MIO/OBPz60bK4VKDtjpx76XjEMjryFWCo2csCuIgixgfxj29ij9Hyx8gB0gb6Qf6FHD/Z2GYPTBo4Kme08eTWEHIAKyfpyQWIEEG5AiAaoxkLNmosxqjIKWtc1YP02RDpM40q2ih+EwaKsll8P5kFSWZbnPG/l5LTVLGcaRAD3T6XTwKc7rj/f368PPf/o+FyAHHF6XLXRRVJixHwO4RmnxVqW2H6+XNsSnh/Nj/7nVTKjR+ffXdxMlMO+c9d18u0qrl7d3UTmfTrkkUZ3GSQEU4acvXw3gdr/fbtcvn78A6LambVkdExICqJR2PExodr1fpFTnA4It6xaCHw+jgG5pu1zvXd8Ph/Ez+Ri7nNP1dnMUvn7+XFJ+m+ex6wDsdrmKSEpbP8Tr9Trf7kzUhdhNh9vlZmZpSz/0tR/6VJIP4cfbOwB0Xc+O7+tyu9zMtBu6eZt3u+q8rForoo7D8PjwAADNgKiAo7e398v1qoDTcbyvy7yu21pEWgz+dDpak+iCWrNqBhq99+zYcRP5n//zf21p+frps1RZ70tZE0xtudxryo+nc6nltqzeu9racBiHqY8xjrEjhvNw2Lbltizs+HQ6xb7fan48PX77/oORvn7+dDxNr68vqm349KRm6b4u8/36fpXSEHC9L/3QRXDaWityOJ2YsTTVNc3z5igcDuchxh/vF1dK6QdCk5zKtm7Nc4xHMNaKIURjs1KJHJlmqcH73h9lvinSUuuAGGJAURIInrka5IzKdUsOuabydrl2XRClJUlwmLb1MI1Pz59NVY0idXleeyZnwkxtvWOzlrCRllKWOeVSlm09TIdW2/dvL6XkGAIg/OM//+Pj+anr3OkwLfNye78Y2ng4jMPgQ5jvt9CH+XL3QGgerHE0QABHwpBNfPT96XDJpZqCgxDZO+t7d348ImCpi5pFxhCcmGFw4kgU1ywG1KoRQccueAJw1g07TbhWScaDj9zVEcGFgKqB+Xw4bMtitUXnrAmIhuDElIm9Dz6wFck5r1cdx6mLEczytlWtpmbE1jSEYGZMdDiMzE4NRQoRtLbnWgyImB0CyB+7DUeOHX9w2FQNFIANTUQcO2LeYYnRQt93yABorRVXY23y/vp6uVx++/33XBszHU+n8+kxxm5vR4cASOR9cMRMDGpd2IcuJiK7642JiB0hEO9lbGhNDKpnr6Bpy/W+NDPyDIkYWfUD1eNDQNGUS85l5cTskAiQXPB53tDUIXvvQnBJFR0QgTTBAMTkmHct0QcQeRcVIYCC7HAcINt7Org3eaGkWluRJiIiviEAkWfA1kBFAR0xM4KJmJIgNDBVY4fSCgl0XVDZ86xaWm1zarUxUDdOIMpdbKBjfArQZLsAsQAHI5EFSF3wRijA3DvH3vnuy5//Oj48r02vW5GeIA44nsRFZW8IpqYgRgaGqtBgf8h8LLn28Pceg5aP2CnCf1CPCHRfBQIZ7oUwAAPVvS0GQGCApmaMYEDE1iqiqgEQUNc1zWuzDe19XcvlFUxSzW+3y7JtwzT2YxRramJa0cx73/f9+eGhoT/4cXz8RDFWwVIzd8CesW+p1FyaGzyNgxEZmXfcBYN1jp6PYZRtu1/fvBsc2rZtRkjans7HYPhv//r3aRq95JzQtLScjYE8Vsm5bLmkkDYXBmbro1PUXKsIBs8xuhh8ycu61K5zjjDGThBFwUff952Udr/PzgVHZb4ttdRaCxK6ELwL+/nRMceuU4Baai5tUBgfxqnrHLrbfdYmtbRScwg+eB/IiZnzzCE4ZotBrO3Shhi8ajFpjrDz/uHhGEMA++MHgmiIFRRAlUjABMxUyZm21gRrq8C09xKZmQijC4RQpKF3BM6F3sdYRcywURTfieuwP9rDV+sPgn5rRjEAk6gxewVo6ASpATVDRRQEwY8tNgCiERjqx2rZDAzBFHfw+i6eM9R957zn8UwNCAn3MzfaruoDIPwAVBiAIOxzOXAABErSHIGoEJuiT9qsp89//dPlvvFSB8mPY+dPyMyX6+JiuM3bmjPFsJXUwMbjOA6d1FSBoNQpdp+fn//+7f3pz385TuPLbe169+R8NXHM0pptt1MfxmGClAzIUKu03Oo49i7wcrls12Xou9h3l7cLYPKOx2m4vL9vy9p1se+iNSFPHrGa9UM/DmPVNoxTk9rFbr3dL+8XM43OH84TARhTP/YimrZ0v93Z0TCMAvZ+ufS1xr4rpRJjP/bHw+l85nlezPR8PBNCk9ZqK7kwoIGVUlSUHM7LXZqM08SEudbLb99ySeeHc237WN2m01HVrpcbO+6nyRDmZb2vS9/HlEttzXvnI5VU7/M9OCfNHp8+dTE2gdjrfVmXLfvYAaMRsfc+dgjqzDPDtm5OcTncpmGcpnGaDt9+vHRjPx3Gv/36m6gcpqkfxq4L24xD3/UhoAHowM7V1j8+P3P0TXQ6jF30iLTdbss8v29FtHr2nnAaBkE8HqY//fnnt+vl/HD+889/RkJHFF14/fFWc/r2y+/jOA59Dx2amqimlLshLMsi2h747GPIudzut/u8gJmCbwe4L4tj7xGNHfQ9l8rLVgzW89ODI5YG5Nw0OjFruVB0TRvFCDiYlqwSENlF5xSBBJVZEFNNLRcl6sCwpCrFxtMIAMty29b6+fNx6KbtdgcVpPJ06s+HCMCq4pmslaH3h/OQc33By/UukDnfrqXk7X4pLaeFcs4m9Z/+6b8S0v39UnNhxP4wPjw9MbNhm2/px7ffgT21amv2zhqJWMbonGNRNIXp4cDLXBK5LqS89kMI4eCjZx+ilqpiAMpgQM1QlCvBXGptwtwp4I/rDa86xsCe+rF3xOa0GhYi7iNZ3ta0eokOHBIbP5yP0oop1dyEDAhdfK5SSq1lFS0VOmYC1aYqzlM0DwgqyuzAbC9x7aB9gN1Cr2r6H6nnP9j06Ij3U4iIqOgeczNAYgIkEcEIhrKldZnnLS1jHtR0W+4K0prd5/nl7fX18rZs6+n88HB+mMbDMI6Ie/sX9sq9c46R9/sl7/mjD54aECICmsiHqMpsrwTv3jFAkipAsLfG+mHQWpGh1SpisYsiTaQyofPUWtvWtVb13jnPrWpTIRcNsZQKHvqhVyRgNkQmak2aNmaHSCKwb7sM949ZQ1REBDIxq1Jbq6VVUPAxeAMAY2okOXokNCNuyFuu6PaTHDCgaQNGMjUQBoJSyMQzVZWtla2UYYhjDL1DWLdGRDSOXehZsU4tpfXyvs3z+bHVktd1a83i0A+HyXUDuD4+PEM/tSICxcBb6Cp4QZdlj+UgqBHsF3LaxeX/f1Od3X5CjXYLqOnHlXz3Ye1dZQPbv/N/VOAQbS/P7+kgwl2S1qw5JgJstXpCZK4Ic7XT2FfyG12OXff+bVGlcTo8fXkKwUnKgbisuUr1zsdx7KbUZcAwxn7KALlKhk4QwaJ5KmQ4Mjm3MRoIojbWjmQ84ORhYnfLrZvc+cu51Zq0oDS25kCGns+nfpUtYlccOJKWty1nFA7IwNZURRRa64dDiHEtAoRdiOxNag6RfHamNkwDIzqmlpjNQCsCqUEVmNfVEy/zqqq1FA6+60nNiDF2XTdM/TC0JpfLdZu3GPrD+YGI1nXbtiWnbNK0SUNwDhHQ1ARaYOc9+BA5wLpuVVpLicQezseco3fBc3DO11JVycwpuNpabUCMgEDMnSPvA4I6cgZQ1bz3PpABkCNEUgNjUEHgEIPvxwOxswYVCHyP/UT9UbvD3E0ShkyudCwf/DQE4B2UbrBfHXawgtAfqAjcJzv4UfAy/LDK7P+BiLS/4wBA94/ND/aogRE0MgMFQNwxc2hIfwDKAT8mSQS4J/qNwMCa1ebMGJT5X//+DQnRqY+YrDKKi64buy3ny3oP0R9Ox5LLOI3n04EUztPozGrNh8NhOh6XomleHGMXyXl4PBx/++33IDQNnRpPDh7PY7rUL5/OXvV+vbxfL43EUsrL2vuoqjln/IhXUt932xLrlqdxHKcxuACiJSePdOjG+7xeLxcKbhxHRxweHrZ1rSmfj6fz6Xi9XLd1kVZSKSKa1llAwzAczufL5fp+++2v//DXw/EYa22lEmAX47IsD48P8312Idzv88PpdDwd0rqZWqs19tF799uvvz08nZ8+PX3//rJcb0SupPr5p8fD8bylXHKtta5pO55PpdZcCwA2aeNxNIUmWmre0qo2EfNwOEit/fFwWWa4z464SPPeP3QBmOZl/fb9208//4m9ZyZE+PbrrynXx/Mh1VTfc4yRmLZ1RYTgAwKOh/Hnn35OOd9u16enx5Lz/XrvYgTVvG7T6USdn5ct9N3Qje+vr/fbvfeu9/sCp3YdqMrrjxdR+/e//9318U9//tN0PBoiqJWcfiybJyo1HZ8fHw6nT4/POeVlWUPH67xc3++q0vU+p7St69vlnZBD39/v9+Xte4WnItXFqUvzDK35wORZNkyG1djQm7aICKhS8tA5A1qWuqQ0BR+PB8xrzknWjUHPp2MfwlrveVtqUQUeD+FwPPswXG+zKk7HCQhzEUUqRUGhbhmwMOMyL+u6tNqmPtaS7w6X+5C2tGzFhe7h3L+9bOu2/cNfvjjvm2rOuVUhUM809p1Ev26LI0aEUsuW59pKWlIT+sSH86cH9i6hNlSpFTuH3gnALM0cDseRPEuzrgsIDh1R53s7atpqkdYqhViaFm1zaa/XlV1QS0V0ratKnmIcD8PZoSMPRn2I6hyUrTYppbSCHlGqtdz2By8xGpg0ORwOzeTt/Y0V+uilSvRhH5wErzUEFUUiimhq67qxIzPbtmTrQsyI5J1vNUsTkUbMpsrMIlpr3Zcb+xBaVGVfsSORQ1VotW5raiolpdvCwzqcTtOybi+v3y9v1/fL+5ZXBPr66aenT89d3zMyITVRVWDnAFFVc65MgkiEH0AiRAIUA20NCNEYEEhN97DtB+D4wx6Jw9BjzmIWu6hMrdVSChE3rcu6imoMgQhLyTmnJmagRLh3aJFZEQWMkLtpqjFo5KxSSwHS/YxiZsSkqrbHL3clpGkTFW0qhgClVBV1TDHEprptmyMk06qqRmqmiMy4a7ZkN8siIgiIBGZq9vb7S4zu86cnVtgakvcUgwt97Mj3fVmycaSpI2oRBgIbz4/b/aa1aJMt5Soaur4/HDBEoZCUZnCL842HRg592KrUZo0UPakqCvBu1DU0QDL6o/q/c4/AducX0H4q2p8tBoCwd9/2srztkgZE/ENmsDfuYD8MqYjzHDhAwNstEfPWNAv8yO3xMPXeus9/MSw61/4zzrf5Osuhd6fxfD49DMGnbXO9C0jHZyo8ZPXQjbXBUqv1saBLgkWBYjBCIgRTQiGtPRphC4zMWqSAk8Pp6E99ugtEny7by8uPoU+e2HdcrhUYnHfDMOQptdZEGzGHwCiaS/PETaTUxuynQxyP42Ea1vtSNPshOvKuC7yvRrOiVs8AXd93nSKZaSvig29Nc65WmqgiOa1qHbCnru+IvQsxTWkchhC6/Tywy5KcY0Y0tVaFdsRLg5IyACA5bQJmfnfBiI394Xg4I5KqtqpmyC4QeQA2EyZGIgAIDtWAgdkFVd9EjXoKQ7NSm5jsmGkHPiIaIYHzOD2i79ioImHsoT9YPyXyzceMLOgq0t7DAgMCj7YPCww+LjG2n68FlAzRdpsK2h+Re7OP9579gboGRVSwP+wyO6Rsf4Wa4AccCHQHLyHsw679FEWISqZABNZMwZkQGJkjUoC318tPx8nF7nDosdyWZePoiRxA7fsxdpFQQdDI1nUOQB4hIIqatGrkj1O/SAFtU2Switvt0dFxGIaehZ1H7LW46Ai0tNSsBQ5b2rbL3Qmgwv1eTBRQv/z01VRev72VnB6eHoL3JVWHeJ/ntCUD6/reeefY7UNQqW2+z33XHfrxOB0AcXfsGDE5f3wYVY+//fb799cf47ZVk32k9/D4IE2WdXGOW20iMs/z1z99vb5fPXv2XrXFrlNppRVAKK2Nh4MP8fXt8vL23nfdT3/9c/9+YeeDj4b7qDJfr9fPX74OCPf7fHm/qGrsQs11Oh7Y4XJfc67D5M+P5/vl+na5HKdD7OK6Ldf3+3SapuMEAKWVkssvf//7z3/5c4zjfb4DQGv1119/l6aHfrjf5zivzVpt7eX1Bzl4fHhKJd1vt/M4LstcczkfDy3XIcT4OFTRl5fXIi220tnYxWiTjDFut9kRT4fpn//5v+VW/5//7//X9+/fOca6zH/9L/9I7HJK7y+vp8N0ubyXXJ4/PaZl08PZhTivaStZ0c/LmrZ1mvrgD865y+Vyv98P53OWspV0vy/NmpbiBLWhsuPO82Rw20puspbaE7NBS4WxdR5RCwINBCUnFepCCGg1l1zqOMTuMBAp36n33iMYcdeF4H0YD2Hsq7TpcIhjMNT7MpM2llLS2kxF5PJ+qa3WUvKdpGYzW+69ARB7512e6+Xljbw7Toeu7/q+R6L5vtRWP2QApo6pbKls63WeL5dLjI6IychyCU2hJO8boLPiNDsXOvWc862fBucQmqSSVSB6X6WqBj/0QxfTllpVRIeiYlgNk4ikpRSpag2qtjXfcd363FLfjeNwHKeIzmGNzgdDDKHzbNu2Xq83Uq2SkZ0ZUPDsHAI75KaFDZznbohIe9loB9gYEIhayRkQWmsioiKiCqIxxhhiTg123VCzCh+NVkQg2m0ItFPL9s8oQkQzs5aLmio3r6UBopgETy9vL//jf/yP19dL18XH82PXd13sh2Ek3u2KRCrsac9A1B2dxw7xY9i4RxpbbapGyOgIzFSVvdNq7AB2LReaGRDj8Xzoan+939UElCTtH5xWUpbSfHBdCB7JTFjBVFDZkJCYvKPg0QUHxMMYYu+PY2K/bI2t0U63blUadN1AyPrhy0ITU1VRqbWqiKmZNBRARDRkQjDRYg2xSvI++GFSaSAAnpBAgBCBEHbiJLSGTfL7jcdgh77r4uC9iLaiOHj1XJo0T+R0Rk6ih+iHEHg4hG6oOUd2XjXXBuTBh2yYDe5Zs2EhB94XBUEqDEJoTEhIxkBGpqQkHyebD/ohABrq/4Zd4x7G+COnAX9Ujz8wkASg+9+aPn7vH78TwVC8Z0IDzbLZ4Nw+ROLDeS7bv93zu9Mvx5Ek5ONXikeg6zrPpPR8fPTDqRtDHKcYXapqQ7Zj+/1tSxSThw2s+LCJK5GzgiLu+BlGcWCBqkAzycFxg7rVrT8O/anfrCxlNSIjXldZlmtg16zVJtKUGUupotZ1fVNJf3Qeifb0W9vSOh6OoXesmpY1pU1Ffey6bgAxBBuH0Ylt8wKAfTfsWS+pBalh9MuWcVUVLSUhQc5lzcu8rnnLoRsBwESXea65xM7XbWPCEBx7B27Xz8teD2+qeamwzAbonWfvQKGWogqhGxBJmiA0EPMhoKOSRURMCZmISKWpgAueXKgCxjH2IU4HQ9egWABp2gxiH72PQbkhm+vkcJLYVXIVqDlffazBZ6CGLIj7OhgIAAwVd6zUx8QGUU0/tqh7hdLgf08K0fQjXr8D4XaGltnHdkvRmPdJIgLB3pXfb38N94U0mUEDdk2VyO2TIgNTRAFCAiOsWomQkTUlAPr566cRjEwdQTfGnKhsmTCUNaOBI77dbtoaA26l9czHfvAc1NtyX5OmBrikvKVMPsTgjz31Xw+naVyutyRpGjpHyg5Q6/1yybWczodhHF5//W65TENPhtuy1Fq6vs85qekwDjEGa7LOdxC9vF2ZSVSvt9vp4fT4+GBg632Zb9eSKhNh8Ou2gcH7+7v3zjn20ZkBEIuYgorZeDgep8M0Dbu7MPrQSlFTz1ykSWsfk15ozWptpZaiIK3xbiYg4vt9RkRi+v3X34eptyrff/3NCOZ5RnYP53Nr9Xa9qVnXhWVeb2+3UnLfx1JrbSWX5L3Pa4KPm7O01rYtI9O8rOu6+hBul8vt7XI4nCTV9+V1WdfjcfLE23X+9Zdf+xgfHh7Hw+F4PG3p5Xa7tSatlG1dmImdU9FxHB7Op7Ll15fXLK2JXN7eszQx/emvf+67ICrLsvZDF6N/ejhXaa3V6P3Xrz81let9fvn2e8nlp59+/q//9I+e+dPj0+vbW0kp5fLy8nY6nV308uHqw/E4PT48HA7jtqx520z18vr6er3eltv1Mo/D8OX52TVR8K5mcUYYXOz8ush8u0JtHi2VNTg7n8fgnZl1XRDCOi9SUmtNCQ/Pj9Oha2x5WXMu4zBeb8s6r8CxAWGrisSeujGobX3vtNm2rnWeCXSIoeTkGIPvNjCt7XA8MDGgrimrVa6VAY6ncVnW95eXf/q//fN0PKY1HY8jAt2ut21dr7c7Ek2H0XvHhDF6ImL2/TiMnQNJWJCMrTmprNK0NPbOakNixtDyWuc03xKdx6WUJhrHE7EzDqBNGxAyGvno+0Evb+85bTHy4AlD13JJtxuB8KMbRsqtOaKx613tnQcfOu9sbnPaCqI1qaJtOPS+i4BMaL4PKu39dl+3NB4PuWYDa7WKNFEhxJJbrdU5qrWqWYxh/0wihyLCjrz3eyYXmYjZABzDnshBQIKdv4yAoKp7YMXARBs0A4JS2/Y2v7+/fvv2+48fb0Tu65efH5+enOOacisVSX3wjB8cPhGVuis6rDXxnhBRVFVk13GrqWPeZRdExMwEe8IWTXXvwsQuxhjZ+2VdlnXTpsToQ1QFFem6EIILzqOZaUP4QO4CM7D2QwfskcM4HuhwJO8gBFWo1gh5DyNIaWiEYgDGe/oSpKnt31UzNTMT827fFpKCIkFgZjZXZd2Wel/P5PbM0x4oVWI1IGcIwEraklWZ+ghSt9vSodVapQr3kaOvZtsmTI6dryBkVCreVR0YWDDnkFAZG2tpqkoCnJslImFfkIBZEBQBnNvv2SrGzKb7Jf0P+Rf+cdwBsH038RFOtT/i0fuxZz8kfTzLcD9Z2x9KkA+HAew/RyTauWS1JkAMvmugqTXyERi/pXRrNlseO+ZwUjcSHf0xOY95jC+Nr9c6DsE3B87PHMqB5+XyurYEbvYuoSuOG5EQ6h9JLTJhEGOGVh1hsVJMHg7HoRdkyPPt9n7VShCjR05r3molNt9FrSWlvMxr2goxG6KKlNwQ0UVP5Ii4rNnx6h1jwNq0VlFlH8bpdJbSPEHH4Ilyynt3sKQChp6J2KkZkXMuFMilVFUDgCY15dxqi91KQPShWcOu87XWEFzJVdnIUSkNzAhIa9s73SofbXDnGYlSKqIEwI6hbCkER25X0AGAtlYRmdGZGiB1Y++7Xsyta4HQn798DYfzkgRNPXtsaqIUg7EzYCDG0CUXq/MVsCAJu0pYCRvuFHEE3Q0W8HFBsn0a+McSC9T+IKh/vMn2oM+uoNvfcnviDHfeONnun1MA+kCN7r0DJNqbktZAUQDUIe/jacdOVJHRzEANmfbZpIEisjWpmk6e9D5nW2noeGCghmzD0AFAyXW+zeNxBLBaWwhunAbNDatwjM57IZJl5egcgFeqtxXSPBynUxytLUGQvHaj6yMh2doaCiBArWVb0i60xhBV4Xg69UN/eX97e31FAkfUH49dDDVnrVJrC10chv4+L69vl9La6XzMKTUpaHAYxz1h2HVd13fDdVRQH0LO2/fXFyI8nI8PDw+eHRg+nE45b7fbTZq0Vg1wHIfow7au9y0dH05S6+127fq4LEstxcfInvt+MrNS6uPz89fu59eX13/9l3/5/PkTmK3LUqty8E/PzyGG9+tVRYZxKDl7x0IwDn0rVVtjwhi6++1qqtu6IGII4f1yWZZtOow7dCClBAAPj+fz8TEvWwONIWzr5ojYu/e3123bHp8/eR/BcJxG38VvLy/fvn3L6/L1y+dh6D2RRwbAvu988P/673/rxqEf+u12L6XOt9nhYb7P221+fDinZXn98WOcDp++fvrP/+U/35fttsy/fP+Wr+Xx6am1Jlrztp2Ox27rpsNRWksp/fLrbzFG8v73Hy/nh8MQ4uV6u99vZNB1PTpac372rmj79dubIE25uJIVXSCnFY1DGIZByixlK6U0U2cFGZK2eB68w6EfBPCuLS/btm3MMD6dhCGldVvvpVWt7e3H+9tljrf1/Py5ERnxMPanY+9APCrFcF+WeZk7H07HEaEHUx8ih4CgMfqWG7Gh96VoyW2535d1lmZRNee0veT72/3x8TyOEyEF7/sYT08P43jw3h+n6XK/baWYAhFLS9v8jnWG0FEcvA+1ak6FQ/COshZuRq1t8wpAQEEarrUWWA19q43Behf7LoiwAkRfA4FA45rZkNBQlRwN3k1D13e+iQiBi5HbUOuam0TniH03DsyYtr2UyoqATAZiZuycgS3L0t9m9lFNTT/yG7V8kTU0AAEAAElEQVRUZjLjWgsAeGLvHTunqrnWlBORCz44ZiKGD+uTAcGO6jckIGRHCg4RRKXUoqIhhhg8MS3r+vL64z5fzcAUpsM09tM0jmiwLssu0ECkWqSYADEzm6hIa61Ka6YYgmcmVSOmrvOEDmojJGbeRWDeMfh9IGHQBEwNDQhySqXWnFNKmSkwsqkSkoERIiHVVrZcVBXN0GAv4HhmF0NT7Luhe3iw7mjoaqkFUM2cC2Diye/7MasVCIHRCD9sAAQECMYM6Ji8Z1ATtSYNwQi1Y/IGom3bcr0jhei7kZTEqAGaQ2BtouQYjAjleBq2ZV629V5KEYuHqT8MTU0bgOsq0CbiXGB0RYQMsCkBI7J9rCbZ2KuhGqojRa4Igqywl9pBzZDIwGptYMCwO9T2Bwv+x3DP9vnbvs2w/x2M/ohBfwCy/zgdffz6cbGHP+Y/aoaIqvt2DHwcxDRJA0IBt6qSouMuq2zN/KZQBcwcD/4wXJvcCnx7VyzbECuCGvNatLG/JksWM7jmYzFQ5Gofs0A1QEZVAKRswg6r2VbLyfFw6M8jC+TbcktbzptSCI6jkCoqI4P3reTSVA3UqOamAGqI5NQUkRyxqRGA1Va3ok3MeeSBImF3EpyMq/MgrTYhRXI+knpITaugY2au24qIcei40G5PJoTgnRowM6LWWk2six0hLHOepmmcxnVNIpXZMaGaEeEObfIhmGIt1UAAjIiRiIBMDJECdyDmvfOOmrTWJHgiZh+CIrVm6KIbTqVilcrTGZ7/KuNDTi0bsvemqKq761gAhLABNURhaoZKLAhCqB+i3I/x4AckCwAJbT9V238EnPe54C6X20UysL+3GMBMFZCAd7ChqODHjxRAFQARWFUNkBwDAJqRghpUVWQEcgAmqqa6+1sQBAEIgJmhASgw4n53+vPzOdwg3r4fJn48eucaEfRjp1V39vF0GPupX3MvrXHwnmO+z0urMbA47h4fuQ8uNx6HLnqUOnWBS0rLstX14fHE/SBFSm2eONc6jF3ofYjeIXvvc5qRednm5XaXVlVVtRHCOAyOCQgNIfQe2HItuaa3yxs7Gsf+5dv3n//89XF6yKXUWonccJic4/On5y0tp+PpcrncbnfP/vOXL8fDARBqbsTYWl3u+/Krqsh5OvYxXqQ5Qg9Yqmzz6pmZqCigoWOOjhWQENVMmk6Hw1//4T+1kr+/fHeEx8MkCp7x919+HYbhNI3sfNtKH8L//b//9/k+r2mrpS7rlnL69PkTqEmrKaW///vfspQ//fnP/TCkNXUxPD4/fv/92zrT+Xgcp6mpkOPXl5e397d1nnOtf/2Hv07T+Pr+I+VUaptOx2Hs377/iJ5ryWAqTZgN0UquQ999+vQUp4F8ODw8fHv5VnJ27uF0Pi3X+7/+y79N49jFwDEroJmFIX77l//LzL7+/PPheACFy9s1OP/r3//uOx/jNDw93O+36+UCBbx37+8/pBb/9XPKKW/r4+PDcRrv35dWZJqOP/8UilB/GOfXm4NqkqsPbM2ALAZuHYuYrtkB9J6iQ1m379f36diXcM1LXm53UtVaQJTZ4uhMaskFjLY1NxEX/LKs5t780CtQDCRp7Ty24GqR5X6X2igGRGCP5FhE2XOrtszJMRsAU/BR27Yta8q5DofBOXd9u5YmO73eh0srTVoLMQz9cD4dnPcKNeVM5HcfspRc6pK31p9O49BjT1lQEEBl8HG/QY5MQIDO+RAZPYHlog2qqk4xGGDsfBDeUm1bxlZampvkRkTMaPz45dPhfDo/PLppymLQe+gcaHf95e1AEKBHon4a+q4LXczSmkqzvd1hu68pdB0yG4L3IeVUcnHB++CtVjU1sL2CG7xDov3mTvtWygyJmdDMRMQMkHC/u9ieUER0vHuhsdYdyqatFehcLvX17fX3b7/llB4ezg/nBxXxLpjZti7LsjjnD6cDOUMBUXSeHLsqWk1VdN/riyCC2x+3zOzIMTkz896F4GEnE8LeVjI1bQKtVjBiTrWVvCWpLQ4BUGtuCAQApWRAA0SR5r1zzokaO/LBq3dJDDkE3zeKQAHR1api4IAcsXxUlLnWIhXi0ANiU1XVvcdsTQmQPfLH1F2JFQBUGpqSiOYMOTvJ21vlbvB9C6M6QgUAYm1KCAScRalpIGLmUtuSNh76wzi4LlZBcg6ARFGIhIDBERmKGuleRzdEQVEw2FEBih/PEkC1PyoygIi7Xtw8+z3tg/qxRoQ/wjvwR6B5/9If5yD4Y631v+/18MdB6ONLH4DsDyvInmHdRwJFGpNXMHTkjNijmCpg9ajgVHRTQwZEIAAUQNNZ1LdGjbmJqQCiIilhxa4xC7lmvJeDbEcVqSIgGYAB7bJypiQtY8QQmdkBeJAe3dPp9KPNc0oG1UTrupmZMizLggZNpLUK9IevAs15jp4ZAJGNCMlVgWzYxcF1R0BXubtVdOS0FN22vGVBIBFC9j4YCiF/GLRE+xCpC02qiAABArB3+3mTiERURWMfyfuuj+QonXIqeQ+pKxgQoScgQUQfvQ8OEbz3AHg8TtKgVWmtIkA3dCEwqKJijFEMyAdjXwXUO+FoGDemNo4ynN+wM/MpdJUcOr8fA80MCQQVEJtC0/3IT4Zo+/b7Y1y4v+F2by78EYH/WKjafxQKd0vevsgy+OPMhGC6n51oH0aaOSTR5om0NqjFBfyguKMzUwG0ZojKiILonC+tqYpDarkE55DUtDoiEuM9haYqVscQ//zl+XmgU6cPJ/xPD8NgOb3NbowAcL0t9yUhQUq5n/pp6C/vt/v17snlkua0OanT6dgPxzmv87KSo7HrA/bHLpT5fnw41ZJ028LQrXnLJaetGiB57wG3efnt9ZfXl5cuuKenJ5nnlx8/nMOn89m5ruu8mrRWh2HAGAnh/vv3bV05+NPDwzCNLrjdkgSoueTYdcM4tSZvl/d129Z1U1EQ+ctf/hJiUBEVBbBaiyfquq7l2vddqw3UgnOqGrx33gcfFluHYdjW7Xg8OOfNrJZ6vd44uH4Y1mW73m/jNDx/fv7tl1/m6/Lz18/H43FZEwLG4IehV7VhHA7DcLlcmKjrulzS+HzEN9xyejif1i3N6xy6+OuvvxzOp9P5zJ7WdWvSHHMMfvz0/PT0KFW888u2Bu//6R//aZnv27o+PT4P01TeL8xcl/Xt9UcM/unx9N/+6z87prRuKW3D4xMRigkysiN2zsU4b9eciwG+v79Ph2kcR1UdpvHhdMo1X243ZPr+9kLe/z/+z//jcDrdrvN9vm/3+dvLN0llnIbYjf0wbFtats258sv/9+9pm9/e3qZDz96zBHa+qR4OR8VbPwyfvv50fv50na/fCrh8vfsYQcFoHz5g7/uCK3nuEWSbgwuiLW/r9+t7YG41r8t9HIbg+PZ2nW8/pkOHokOMCJhr68aBogXRYipSzKwlt77fxDsyS7d7npeWS//pXEqqNXe9N8UtZxHxPu6GgZLqlkqujZ1zEBC51LZuyYfgvG8i1+8/kHA6HuuWtnV+ejyXlF6/fwfD43SMY2+qLfDr649a0pGPJhsU9NRraz72D+MwI7y8z4UMey8bVK3RxLsOfR98p9asrFWbA0253i9zWe5szZGpYew7H7sY+oenT3Ga+sMpGzUUASgCHXsFty41e/beueA4hN6xpWy5uMjee0S/uPsyL3EcTqcTO+89q/m0rqbqo28iec2xD9pk36mrWSm1tuqC8z6UUhFNq6ppbRUBfXTOkXMuJVRRQkJGMWEiJm5SlttMTDnneV2utzdmPB2P4zARUpOy5aUL/u392sXQWlVrh+NpHIZh7J2PoAC5KJKLUVVVmg/eBy+1NVVTc8EBg4mhYa0VwBwz8d67Nv1Yn2GTmrbNQAGN6f9H1p82yZEsWaKYqtrqS2y5Aaiqe/ve7uk3I+/NzCMp/Of8A+Q3fqMIKY/Dnum+S20oIDNj9cVWVX7wiExUD0QQGYjwsDA3c6QeP3r0KAmzECxWIoJCShljrnoDrUHQOkXW+K7NqOa5oG3BrWb2Cj0xVQGpxSgjMRGBUsTIWDMhdUZnYC5gtQZStVREZRRJZagAKEoRaSGtsRiep3A6za8HGYMlRMTpuPc1a0KtlTGSMzKyKAol1FTG40lCaFctWd+0qtveub5LlWsFhSLMBYAV1sV8mYlE3fxRkEEK8dJKackQClztqvHaOQlBlvauS9hZ6rWY6Zq5ujZxvWqcr1VeV3RzFf/IN/9cqpRBburT9xTYFT8RLVSbCAhqZa5bUxZ9ERCSKBQRZiRRSFIERCoAEBEBVpCIVbRCqAKCyiymMAxQEVlo0cQumlm5+QSjADERMIPKIijmXPPXMXpOtjOaE851ZV1qJWceY8qppBhLiZUl5Wi0raUIiF5sQBGtVdY5pYwIknWoLLhGjAPl2e+KWxWyBRWIeIJSsMYRwTjbSBxjmbEWozRUHsMcYwQARcpY4xq7VD2R1oBQitTCWpMzyhnnG6sIRSoROmtEWISLUMmpQjXGOmsQyRhTC4uIWm7PlEKrci4xZOGrqg6ACnJkYdSEDlUDjdOuq6CL9UJa66a268k2VdsoKqNiJCYh5EVTvmhuClS5bjoi0KLUAZCl3grkejnBNZeFQHwF1EsHmVul4VICsFxseJU40/WyQqVBcipGK4OAcW6wNlasVkQUajmFTG2HyiXkOYfWWEmRM2tBYLJEjpRzBFxyyNpo4Lz8spjDrBF2287HuP/pl36Fu/u2I4Y5DvtTHe0lhMTgVyvf2TgN0zBtt7twCV8//7buVw/3u5TLlIJgN46Xw2EIcyAiJbi+2zbahXhQyhBijpGUHF5eAKlt2/NpiMeTVto2jeLaNG67W2ujSUG/7mouIaVPD/dOaQIympxzWunLcGn6dbteIxFAbZ1Jc9hu11z4dX8QwGa91s5lnucQSam268+ve+T6/f/6D2meD5cDVlq04mEKSpExJqdUS+n69jKcX/b7x4cnFnn++tz3K9Opy/ECAn3fCst+f0whqlrmae7Xa2vtOMzH13/b7lZ/+PMPCjGkBADC/Kc//Wmcphijb5pu3d8/PWmjy+FgjCtZrPerzWYxkBRA592f//EfD6fjjz/+bRqnrmtJyFp3v71brdZpDufDQTsrzH3XPz08HawzduxXm/1+fzmf7p8etutdyuHl+Pof/+N/AhStjXP14W7b2Ga6XM6nszXOOH86nEEPh/PZO9uvVnOYvn75uuo6ZZSxBhB80/brFShy8/B6PP3L//gf3/3pj965KczDOKacPzzcrdcr4fLb559fnl+mywURGu9OhxdEmsNUMntvhjCJJuesXOB0PBAqxWwYHnZrfX7dr1Y9+gaNSpKJCIBRsdWIORLnYT8ojRJjo8QSjDl6Q1Zhnucwj5FrHC4KBTbrKuiaRpIe5rO2mqukaXLWlDjPoybblpLTFKRkIhGpJQsiGWtBoJSqUGltS6qlLHEtA4B1NpcSQ257471HQAHlvAVBpVARNq3f7tYlpZjjOM4kuFlvN20bUjqFqQq0604QcgwlRMYLg/K7u1ariItxMFZh7RtGHatop633USgNkWo2Dg6vX3/8bT+GmKaqNffrFrVtV5tutbnbPfimywyVDYP0ve9aQzkRqqbrTE0ArDUphZWrblzr3L31AFW4apQc0/k8Wqe393cxhVKz0cp6KwBcYcklcZGcKikio1lAsJDWAJhi8o2LKS/B0ywNFEE57UgROtLWCEsuOYRASNqg1nph5o77fappu13d39+nVFOaS82AoLUWBqdtyUUbVUqZ5tFY25AiwlyKlKIX001FwkxaWWvGy2AQDZFWWltVK5dUSskxpFrYOuesrZW5CCKB1JJzTgWQuYoiWor2iZgACxJzAUBE0KiXkBlSMlpnQNtudisf0YLtQ1V5TutujSiqVKlVcRG9uAEwQCUUlIICS4d04aoFF8BTGQRhURQvNyIisngjjWM0lZ/udvM0M4jXiJxqGKAkY20IoTBb0pgLARzHKZS6enhs+o3ybRHFgIwCikDjtS5YRPDapmKpVl/MAIRIFrnFYrsMN70FLioLEGC8mfsIMCC95bUWZucGgW6C5/dnV24HYKlyv3E+VwHQ9fm1BOwKk65FgwhQQRCQBaDK9e5fYGEeRQhhKUsiIF5M767clWAFFFKABQhQmQVLCbC8NUK4Ju34OvsrDgMGEMKycJdgzpz3uejThPNJ0lxyrqUwM1fhysZoAK4xWKM5F+FKiFoRKUSlQEAprYwh43Klpe277jaoW+k3AZpKNhMoAMLKlUG3FlhnYK5IqJRoxhQDEhijEWVxPlZC9caoApD1OoWstVFatY1HUCUHax2BEEVNDCDWQGVkrsxktHfeIyJRJaWIqOYiIk2jQCp4pZRFoMq1ZEkVE9qKxpi16dbQrsCtlG+mXKtxrGxtfEKbiRiwIvCywggCXK9bSbJQNHIVI8Ntr/EGXq4/rhY/1/1YOnO9Z0+vqnm4MorfQFisS/Nh1pq0FiginFsDf37afditS4g/fv4NsUxxrkYAUIyeKmujEcQKhnkihY93/WbbpHEIHMo8tq3VCkopk4paqXuVNqomnb6/v7tfO+SMCjZ3qxRKFjRNU5jHKaKwNup0PB33++F82fSrxvu2wTViyvXzb18vw1SZrTGtc94ajWS0MorQuFJyTrntG0DSqPq2KSE5rR2pOM7e2cfHp5xzLelut00xaa2ZmaUobUHkcjrPU8glrXc737bnYeBatWnny2Cs1lbzUEuR8XypzFWkaVtSmGNSqbatKzGMw6AJQRhErDHCXEsV4XGYEJEolZpDyvvDGTWO04iASxtpnmotxVqrCT99+jDN8Xg+M/Pd/f3z16/gdJjDPE73jw+X0/luu0MEAnl6uP/8+cs0DH3bnvaHftU7Y0rja6lt2zZty7W8HI53d7vHp8fT4fB//Lf/I8ZApP75n/+ZQDabldLq8y+fraa7u60Afvn6HC/D6Xh6+PC03W4ulwsRGWNqTHbTKOU/3j+tu1UIk7cGSlGg5mk6Ho+1MGmzaO0P+2PTd8ZZbYwHfzxdxmG4292VXJRvrbPO2TllBmSEv//888vp/OHjh1XXCZF1zviGQU7nk/O+6VqtNEJ9eLj/4btPwzA0vhWPzppS8vlyudveOe9//PuP0yU4b2vJBKAlHN3GtmRDyoKlIjXadqvm+MtnJA7hDCmXGBunN/etJjBsxjnJPHJIqhTfOO9tjvFynpum3fRrZa1zdo5h16h5nGOIeR7PJQe8kCIA1lox43AZ1utOES7K1DDNKSYySoHiKjFFrrXxzjcm5yQsbeMNqVJKqcWJahpXapmmoK0uJU9cn59fDvtXyOCUkyJTClMMxtqQQggHIiUMuTKCMjXzw70T6KwhqaWSbjtqfRbEyhtvaQ4xj5zmyzi/7A/7l/35nDabO7faovG627QPj/3mTrs25orAWLFrvHOq0WTQai6q83CZgDBzBpNFY2LW2jdrUyZJc8y5oHCzcqXUtm2Al/oqxaUoY+7u78/Hc5wi11pLrYWtcaS10lxTyrFoo2uthIhGVUaqvPyOijlBBucb5xwBxkJKUa4ll+y6Nnx92R+Pr/vX+4e7u+2H7Xo7TeNQuZbgfee95yK7p4fz8RzCrJSUYRbRWjlNOYaQYzbO286SVkqjNoRc20YpBE1sgbnwdBkW9r+KMGDKpbIAoCghXBTEFHKiK0QQKQWJzKKU1tprY6xiYSRlnCuV0zBVVJWUX++au6cAZipQRMXIoVRr0JDUWtM0KPSq8SJVGUqxxJyESGrVi4xbEFhqLQCIikChIOeapFYsXEJJWfrNxiMUka5vXUmpZiphupxJG9s2mGpJya1XXdM5aMazCTHpkM2aFFMtQpYEJUOFRWoKQNc4I0gifJPnLNU314riBYvgNUDxt2KdxaTwTcO8dP7Cm675FqB+B4pgCXd4y3DdEmMLGrqNI0t8XJoYIN4OWVDUNXou/SuvpJSgiCyGvoAAQiB8449IcPElYmQhBbT0pQKEpVyIQa4do5ZEFeNb0ZksNFAlEAIhQywz4L6MUlIPxpBLzHNKlzElFlDQOIcJUXFKIcesDKHWgIRKoUBhroWsdkqaBCjOYbOufpt1L2Y1UVuVqooBckihMcYaS0Uja626tll5Q3UMuWRVwHcWcWkxokrBIgKomBUp7Yy3uvWuQQBQlFNJRS3937XnSh5YGsuuhVjSogew1seYbdN0XVcLj8OQS5pDKTkTidIKBJgJndKgmTxTI/2m9rvi1uBWWbuQExvNS1NSuIrAEIREQERd3cChCoMwvTk8vXkkXLde5OaNsFwGV97x2kDlLTe6wKM3hH3DRbd9YwQkKJUXSS9IZWGv3R+fPvxw380vr2a7grz/Oo52aY3pfIAMxtZYgcEqcErWlj51pu1XxdfxOROE77/7bhjH45A3u00tadda9dTed1YrQEVkLU9lHiJZu77fzPN8fH39+LgmziEkQby7u1Okp2lyRisEjfSwafveHo6nHEPXd74jqtB0zTyPxpCxVhEa36BSNRXnvW/a6TxeTtPHj0+7+3vj9Ol0cNZrraTny+l02R/tbu2858hxmrkwIl4u51LrQocIc9P6znsQnOYwDNMc5ynOleHjp6cQYyn56dMj1AoCD/fb4+E4DcOnj59QYYyJaxW0znsGrLmmufbrVYjZad9vtrlKjHEaR29NrTxexvV2gyjWKUI47Q/9lkVkd3eX4tS2Xmu1Wa+N1YeXQw5xvV4TyPl4PO0PRhtrTIpJIVhrCnPfucPz+Pnvf/3Tn/90OR2m6aI0ff/0vWv8HGcCSCUbY4y3S3e6l/2rsSaXUkv99edfnHPrvnfWutWWFAzny+5u2zg3D0Pb+r7tG+MJ+DBN3arX2iijWaDn4jfd8XQOOVBNbeefPj4KM4KoRRERwvHIruvW/eqLft6/HpDM04fHr1+e//a3vzmtNdFwOf3ww/d3Dw/rfjWeL3Ea+6bt+244j/16vdlt9vvDv/73/1E4d91KGbe9v4fCKaWairda//rjzwph98+rVb9+OQ0MaBVKjt4hxzSNF6+Qa1CqLfNcmInAoOyPZ2axzm63K4UUkRBwvd10fW+8860fpymXYEgNgKfj+TJFKdVotVpvvLXzPMcpwqoLIYWQQgiXw7nUorVRShtlSs3WOWttLtkYFUNMIbbOo8B0GeM8+7attS7VVa8vrzGmGAOXYtCkGC+nMys6ny+MFRDU4qQh4kk1vmuUjpdTrNgY1MaXEAvXXKGUBJqg5vGwf/3lF8SS4zTHEXPctna77WzXqW5jNg96tULXzqKYxSIZowlQQgVhrcFrY/u29WAh1Dy5vtHOx1QJERVWLvN4SXMstRBDLVmKGKsa43Nh0kobb7VpvLPGpJREhIVTLk4RKSqVc8kaNSARgdWGBRCwlkqExloA0EYRojEWFNZcjNHk9fl0eXl+Pp6OXdPf7R68s8KsSHWr3rvOOE1KzVPgwpp0LXWekyAyKOcmb8wyTuMtklpuMUmh1hqlxHEWYgQTcs65CJKz1jSOK8cUlVJIyLVooxTg0pdKK2Mc5TmWaxWYWqqIgaBUzpGJtCatFHU7J9brdqPaHmxDykpIWtnVyqaYKlerEUViKSVq66/awDGN+0Nuu5YFNIKxnoArSBUpVUQIhVghKQUkNYvS3rUAZLRkp7BVUAL6WiqUaT6HmGvjyNhOWVeizlRyJs7AVZE4q4zCSlfBaBQptRhtrvSNXI0JGa8Jp6sq/Applj6kiHQtogEBvAEbvB33TW4LbgmzN7hy06m+yVvfXIDe+hjcinqugWxRvF4rwG7NDa6W0oswSJauGviOn64ptWuHS2CAq8tSfYdTwsiLt8/NQA8A+UoxLO3DEQSBAQWFRQgIQCoCE2SQgqhEIVpUkCt6qqr3VZyuCkuKcYoipBw5Bi5goAoAEWmLWi9y9wIq2zYrl0Grtsf1A7frAk0gG7RjpSpmYDbaGBDynRJWaEjVbtO0Vo3P+3Q8xiIMrBTVyqSsMgZIK+eEVAWqprHWtes1CqacsowxkXYNGc0JGAoiKUUkArVIDAKQUTNp2/W7Tx/TnOb6m8xjqklIZ84lFgSTgcg3bFrV3pFquN1wsw6qqbrJpNk0qRZSioXlBmNoAS0i6lZ9BUQVhKXKcj0hvUng8U0TJm/s2/UR8Y1SfKd+3gRiV6+fb7RmDFxRQKkYiyciUsY7ITyPl5OOKoyPnR0H3TXmIAWnMlcxZJgLGQ0VNDrheDmfJpN2m7Y3tNv5NF7+6aGfesgfW9s0v/z0s+fSWeDpjK5lhHEKYQixpna1uVzONaf7+9Xj012YphjOfddYpTToEFIIEQTJKOuaxmjYCiA3zk7nc+eaftVxTQjVWpNqzjHFXGLIxqi26ylmCWm9WiPwcD5Np/P27p5EQog15RzC6VXKnL2xlsx211Xg/emY5tCuOmdNHmettFRIOStUbddbb0PKiyPJquuVCHMmQN/48/mUY7q7u1NGzcOktPJdM0xTzEVbjYYkKuP97uEhxpgTzzGAgNa2aVuQxTyWT4eL75w1Zmnea40yWrftbhzGFDMhjMNonfGNv5wvVYRL7fpuu9mJsEJc972y+nV/GM/D+XgCFkI6PL8WKf/8T//44dPHmOPf/vK3ENI4zl3XoVE58PF80kZt1ututSJS//av/9Z33f3dXc1ZKwLgRNo7f9wfUorCayXoWx/HhEikMOZSUmzaDlBN01S5aqOt8V2/IpoP+z0KKIQwTtM43X98tG3TrPpxnleblXbm559++eWnX15eXz89fVDO7uzD3f3jqu+41lXXeEun/VFIum7tnB2G8Xy+7O7ulDOr9bZtWuf8/uuzs377aS3AOoynw6uZPz1129VSz6mBQcHqaX15LtHpmuJ61zbGlhjyHLx3NVUC0Nb5pkGQNCdFaKwVhpqrtaiIlKEpcWUhIGRgrjWFmkEpLKlM8+y8mac558RVlhZOiiTnPA3zIuPdaoPCXEucQ07FO8g1G6NFJMWMOuWcUwyCoI0tpYQwI9But91sNyyAxpRYxvlCmnb3W2+tUrTqur5bZ4HXL59TVa7takBgyakypBSj0VRiSNNwOe5znGuJrjN3nXf9pulb3Xduu8W+S2hCyBWK8w6WjjkizBUzk5AhVNZ7r3niUAZvtRABFhDJIUot82VCYKuVQzXOkVlWm1W3WuXCiGSbJo4hTnPbeEVUa801AzMgalLWWCKsNQtUIc2EWilELKUqorZpF6MORCBFSlROse3bc5hfnr++Hp6btv3+++/udvcosLSQ1Mq6lXLO1crCmHNuOl+hvwwjMxhlSBCrWG26VWe0mXPmXKWA1o1rW6wcOWijUSkpBUmT0m3XKauH84AoRFWQWWpKRaFiBuUsWQMoVYS5CIFFrbRiqYDIiljpCloy+tb3616Ma7cPc8HD/qi6Dp1LnENKRFcvRikUU0TIXSdagACRa0kzK9U0XnP1wKQpxkKGqnBlRiQkTYw515KqUcq3ve3bHC9QcuNtBZnPR6rZlxjO55odarO9v6M8h+F0PI9KaN30686sHJGuOedagIhQUULEG45ZEM8ieYer/aAgoNBSKlzlJuUBQpBb1LkGJiBZyoNvpBAsmUS4prfeY9s7FsI3TmhxmoN3FLQMyiyIdNVQLyDleoN/tQ9SV9GIwML2ECMhVxZkhqWSbzF+QRERIhEBZEEWKIwitHgMEdxER9ck3nIcQF3U4CiEC6WEgiikMuFQkBUUUAPozjriVNpG2TXFUKezSJKSa1AZsKgCAEobcB60QVIEZMiy1qysaMtNH9qN2DaBm4SyIiGqoIC0UpSQqFPaOC6lYA6tUhprm6BbCZcszFqJ0uhb8r1yjqzLDCJQvS/WpqZXSFxKEQ82c2sjS22dahdfAWEAR4rnOaUkBg0pu11DtzEeXEJqJ64ppXmexgwMpFlb3W2pvcd+y8pFckn5SDYjojHMRchIEQK1lIrT0jRDBISu+4vCJIvqmReYjCyIC3MIS75RAJHknTd8u9C+VczjDUdfLxG4lr0vHpoAiISKBRFKzEJCCswhzP/y04/nA/25a+9b94c7cwq5L2RyTda9jpF1mwCwtZKFU045vPw20fG4Jf60ba1Sr3//a8jD4/cfMdR8eJ4Jve/IGyj5dBjGYbRN26xXXdd//umnEsePDz/EGIZxBGbOgk65zoScY6xd1xvvpmma42SdututUbjMc1ay6jbe6jCnMI65lJzrHOd5TpVlf7wgIyLFGJjp+cvnFNI8TX3ft21LAI1zw+kSp3mzWRljtCVAAuZpnpl5PJ47Y8Wqw+mVBUmj73qtjdamgjTeE9E8gWQAktfjIU1RGwXA4+UyT0EZrZKaY0Ra/G+neZ6ds1rT4TC9vh4JFYJar3rjWi5Fa4skw3lIkdfr9e5+e74MSlkuuSAY4wio5jKGabNeKW26tT2dzqXW1WqljL5cLk3TpFw4p3EcrLNN5+/v7jjnNE0PHx7Ow0gMrfHfffx4Op9fvn4+H1+td5aMNebh4RGENAEirNbdD9//oBB9a8I4aq3udzvfNIO6gAUpMA3TNE6VizF2Dul4OceUtT7nUl73rz/88IcP338/jsPrYQ8gzPz69ZUEFOJut61cLqfTVPJPP//45flrF6anx8enj582m816s949Plki7ew0DhoAQQkXEF5vts62X79+zaVWAW28dR61GcZ4Ogw5ye5ut9nc5Ro0lfL1l899u6oEGaAmbjbr7XYdT8fOO7rfDsdj23ivaAhBaVWqpFhc45zzhEpqdY601lwwxni6nMY4T/N4upwBsfEOjQJFTpkpRWA+nU9xXlQpNM+TIEIVYwy1BACn07nUknIiohSjNZr5miJgqeM4e2+NMcw8XoaYUi4JAF3D1hqjrHKqW3Xa6PNlpMqbzfb55YvS2DjbkO67Tes954KEOYQplJJLqeD7ru2amDMQlpSn81lyWvvmMI7GmJVxvmtFmRAjuswlWwCrVGbIIomrIIpS1qJoECgiVSoIcjifdZo1aEwS8ygiFrmCyiEJc9NYBFQCWBiBjdbOO54Toep8w6kCQNM2DGyz0aJs44GwMjeNE3TjOFSuWimjDQECCVnSRiurtQARVmZnjTWGt7vM+bdfPv/t739JOf3x4R8eHh4MKaOtcTrNcZ4jFwYjWunGiyIsJa9WnVIWQbzzKCCMxjuldK3MtRKKVK4pF11qBe08WVdBixLhisowagKltG0sotTKSRhzrqBIa22cJoU581IVbDUZo0mpwsCItu382pZCldGuOvRW+YZ8KwVDzCpHZ5VGghKAVBWdSVdS05wkFKdVa7UGwJy9UlQK5MRFTSkDSogZlCFrNSrJtYRQSqkIgKoSlipiaelKnblwiSUMNc7lsjecHUC4TOc0kdFVMAyzaVfrdevLzOdXVhTHGY1F19qmRW0X52tZ9EZvwoqrNvXK3dCtYGtx2L1SOzd1z/WVJZWGLCiLBwtd5cy3u/VrqLpVw78Vib0fsFQ2XxGU3MZckJIALDYweNMQEV79pBGQCQCWthu35BuwIKIACRIALh05EEAYYWmecA2zeOMQUG5kwi27csOGeB32lqBkxEjEolJBW9UR0Glr+17m2buVbtdcQ54nphGpg1QAQLQF37C2TApQae+rtoKkrWftsnFF6chYRQkBSwUFwlQESXmFTplWSq5QKpZisPpCj3/Q7dYohUQMmlwj1lVtEpKAEoJAKikdtEZBchDEllqKVVBFHAORVFGKkDBVrk3SCEBcmFPfn4wtWOv9J6hZg+RphGFUCiogaCvtpvhVcu0MaqhQUOcFdZTItWqtAEUW1dW1zBPeut/CFTyLLBp5fIe3QG/wGG8lhu9Xh7wnUG92hzfvqHc90Bt5eL1KkLkCa6utMBSBgqpq/ds0I6JJUlPebdx3q9UffLP+fBhBy3k/TSMqgwQstXXWcoGQpjArVbcGDeTLMFwuh8hxtd7UHJp+3bdut+0vp8Ph9Xj3dO/XKwC1f9mfjqdVa7CCZOYikupwOd//6Ye2a15/G+aYt48fTOMMYKy57bzTBrkgApQc51lqGc5nYalSm9X64fExpPLysh+nebve9m0vOe9fX1DAN67WAgBt15yPh+F0vr+/67s2xXI6XVIp9w+7ru982/z606/zNPyHf/zHznXrNU5hfj3sM0PTt4VZWx1DGKdpHkcDyCWLSBWRXITFWqONOl8uYQ6+bR4/Pgjg5TKwcCrl65evqRYWUYSNd8aZeZ73+9eube/ud23fjtPovOFaEaSUfBmGEOJ2u318eqy5lFpCTClna2xlbrpmfzpqrXlJqM3BWmOMQcESi0IKc+jb7mn3kELWSG3brVeb5/3zjz/+7Zeff/3Tn/9098NDuEzH4/npw8Ph9VgLG6VF6n5/BBCDZLRmFuft/cPDMIze6jDPry/7Ktyuu1J5moMg1FiHYdSkdtu7vmlTmhHAWLvZbofLmMY5cX769Iha/fjrL3/7+ceX/cv5crmEyfwP++c//tl73zVtjpEJoFbD8vHhzhCmjP1q5U3DwlylVlFaz3OYUzmdhnkOHJO3Zr1eeW/qNOtWy48/ffl/fv7yvw6nH/70R42mah1r2n/+grloYqvUdBmCVCIyzsa5xJRjSl0r6+2GBKQUozQaNYa4f92HnHNJqEAZjSRKaevtNI4IkmKcY0QE23QpLu3NVc4lxLj4vCilXdMs7aKq1FSLsDhrAWAeRwGsuTFWz2Gew0xEWuuYYkrRWG29lSosGGMaLhch1fbtZrOJaQ7zDNv1arNy1sU5pRCMCFa+HA+Cql+t29Ua5wEAuJbD62uaptZY/bBlTFAKloyspJYAZ9O0DoWcNk6fCocqLKy0AU1oEBDnOQ0hH9OsD69rqt8/brrWjuNFckYFUAqnxLXMc0UA4dx6S1obZZAhzkFYFOkYgtZKKRdCcN4Cona2cOVclVbGWEBhYQBEuuqRAYCISi7WmeV+rkrR2pBWp+fXXz7/NJzP29V6s15JZRbs1l3btFHPBEOMCSoYrUgBaCgxIYhVYozRSjGDKCRNKUZFtGkbEYwlSOEQUkmlVAwzk1OirW+caxsRiXHOAIa0RgUFhIqyGlFrpQ0igDCUxmhR5J0lpXIVss64ZnP34Lv1lLhWsE0ba8kAU2a3Wq17mUOehxGJGlJAirRJVSoSGssxTodTs2pd471AnoMCUhrnMMac5xBSrai0b1zjWmeNYtCVyfuKNIc0j3MxyntA4jHN8bAfv3yFPIXhDCCCWRUZTnPMRVnLRIrYpkZOdTi+FGbOVch2dx+aJ62ViSIVgK5lUUBXLdASjPDaTen6ZHlGVzwi8HarfsMvN6UOCiAI8y0U3VifJUS9SYNuuOba4eIGf64dneDayuCqi7oCJ1ni2nK3T7fEFwoILh1klwL9BX0hCsBVyH2dACGhILESkirLZHHpFvWmw+arfgiQ37DZQmQsf6UCC1JBA4isJSk3K4aSldGdJsWFOLOexSZVss2FgchoUI6JmKiSqsaK1hmxoq6IBVUVYFI3+yEUfqvfl5kkAZMYkKwku8rGrfVDL+siiEhYQbEyQooRqkBdGuuSAhEivZhNiDdXjYxekCUJy+LGXrGIZlLEXAFkXxkD1kpa99opBBF/l7tMhEUgA1bjiqjEOopkWWwWUaBqQTRYa9KkSa5GCIxS8boDSmjRjy34h0BkcYUXvF1B8MYB4i1Huijk8du33pNky2VyY47g/Xq7CoY4Y+XG2FxKASmktVtlpY+YZQoFefVp03lTzpcPVokzsKYvUz7VXDOjwhXpprEKcoNwt/KiJBTYPu0+/Icf9sfXqcTN3ebD9m5tnSN8maamdZvdKjFdzmPJZb1Zd87UAlIrJKkxtc41rV2MXhOXn5+/NP3KO9duN11nDCCyGGe00pDyaX+QUmspRfj169cH9VSBlMbNbrPd3B1fDvN4Ea7PL6+b7TrFWKvsttuu7TUpRVRyvQxnljoOA9divY8xVs5397tU4vPz8/12q7U2xkzjKCht39eUAzMAHA8H4tr3vbNOG8TChrTWqjCiEBGVkp+/vrRdb60hIlJUStHa0dYRkbO21jpMQ4gBST64x8v55BqDCqYpDJeTcc5oN+Txt89fzudL17aVi7BYbU7D+Xg4dX2HQE3TzGEWkWGY1qvV47pPcwQBTVoTffjwtO5Xq+ZkjH3Y7apIinG72lnt/tN//GdRVObZKsohrVb9NE7e2effnlOY+74jqxFxv39tvEdFxukpxv3ra8wplPR5/1VpM56H+6f7xrYPd3cppHAZ/3Y8vB5egdRmt2na5sPHp59/+qmE+m9/+ZsY+fLy/NOPP/7xu+//9MOfxnkyZBTh/f3d8eUQtPn0+Ng37bjfn/b7x4c7ayxVVopOxzMgNk13PJ369UYQDsdj23erDw9YuUqdpqH1Rn//dH85Xv7lLz/99//ff9us+h8+/gAhvTx/PR+eoWRLgFzjPMV5arz3TaPINU03juMwXIzV697nLMP5orSeU065AEEpKUyx1IqwtM+UaZxqSAqg1mKtNVbHmEJM1prKLAy1CmL2jZNw7bhJiuYpaGOMNaT18XBQWhUu4RKnaRIQ560xlghCSmlOq/V6ub2oqbIwISHi/f1DLXEaB6t0iaX3rfIuzrMi8Fa/vr5Woe3d/Zo2WhGiIMtwOnGKq6bpGjcOseYSUrENeeeF2EExeVbZCVrPXDKgNlJqFK45A2QOJbwc8v7lrsxRS2dt55vW9bEMGhBK5VJrLuMYpFZj9arv275jbatIyUuhL4MIEZYCRKS0ZhGuTETeN65x3vmm73PO8zwvJTw1l6VPako5hEBERHQ5DznnX375fDi/1ly/+/hd26+axnGtDFhrrbUQKee9CBApBGU1aU215JCLiCADkGirrG9IGRLWirQmAmXcuhKnKqyoACTRzvW7h/vNZquUOh8Oh3nSzgEXUMK5aG21ViSq5IwMJQYisM4oZQAoJJ5L7bv1+u5+8/CRTDufRtso7dtaaspFiBDQKZUhjcNQCzdd1/sOjK0IMaa+76olGacSAmp0CEbTylvrHLI4q5AgHA7zcCnBmr52fe+MNq3Vzg4xEwEqqjkCEaoap3E8X1IKZR7idCkllxwa3xgulbMBKlXyZR81aeeLSJgzEDEbp63abdC31xZbN7ddvEGPNzENX/XIcksTXeHIEo3oVrUDi8L4qp/Ba13PNUC9YaBv02D4pgmSN3sBeBPy3Ob09tG3/Ifc1NNv8pClYvraKmxRg8iiGbqqg5aiO7mpS65Zl6sr3vWf15Gu9XBLURFeWycA49W7kUSIGQSqJgCsCoGBwSw90AlrENGgrXKqbdFWQqlLZyVlClJhqYiVFCiVWQpIRUKiJS23xHd99QpdpocMUECACBygKGI7SVbaGETUV2e5pYKPiVik8gIkZXFOJlIswMy0OK0DiAAhXT/IggJi3QJDK1ciYJBaK6nFWUcBCGkErIiY+doLAkhXgLpsIwEJIDMyQxUiYK63mq3r6gEs0AdvbbUQGW/C51sa9Jvyvzfqh66+iP9O+XMFPFc/57fXryqgG/eIosAQoQZCIGSuSiUGbdtLCkrTEfCQwTuAkCklB/xgBDp8aPpzKlI5nY6bbYdOdU49PG4hx/NpCrlstXl6+vD8+TMw15iElAiuuy7mkuZExirhjx8eLSLndNq/hnFarde73UYrPB0GVso0jaT6dX/qK3QtO411nj/erZ0mTphjFIB5mn3TOudDii+fvwihKN2vV916rZBSisfzSQG0faeNeXl+abv6+vrata1rvVX69eXl5fml7zptzBzjYlS2WvVWqRQiEn19eVFGoyJiCDGEGHLOSmthXm3Wzz//mkJ6+vihcQ0pySGmEJ13fd+qgHMI8xjbpuvabjF7S7l8+fpFWy2sD4dj1zZt1yBKzmkcp8t0oQgolFIIIdA43N0/bbe7w+E4DmOK6e7h3jkbppBSaVf9MAzDZRQApbBpuu12CwCff/3t4e6h67oPT08lJgSKIRJg61pD9rh/Oe+Pu9Vm1fUKqCZ5uLvX2gJLzhWRQCTlaL17fHpKc6w5tW37/PpSpVrvwzyfx2EYhymFytJvelGUSmmstF232+xevn799etvzPD48QMiKkUAGEv68vLbT7/86Lz73/7Lf/4v//l/e90fN9u7tu/+/vefur7frTcSc9913z09ng+HFOJYi1bk2460mmM4nc4hpLunRpGOKSutvPO7u/XTw/1lf3LeNkbledSrjf/P/9f/KI3+un/5/PPfHpqVdu749UtJY9/5PE8ckzborY1zzFn6TjvXWNuMw/l0PELtCJAEcy6AaJ2eUvj65fl4PgqJVGGRpvGrvtdaTcNYSmUW6zwpUkoxi1IKNZWlD/gwam2MNUqr4XRh5lYToTIa+75HwlLy6XTMKRIS1+x8JaWsMptNv96ta6zWuhTy0+NDygUV5cSa1P3dPSmqOYcQnHV926ZSlEYpdQ7zcDo6b5PUMI2WGblIzSUBF9GA1jutNJANpSAEHo9ZKZ5TQlMEG9ctgYYJCsRpnso028oc68vXfaDiGDprusYAYsqZARHZehPiHFNiJb3rlNZN100hGGvCPA+XszFGAGJKhfNyC55zJKW7Vd+2jXNNq8xlPMcUrbHa6JKL8NKUok7TJAz9usu1PL++/OWvfxHkP//pT6vNBgFrLgjEladh4lSNsZyrMxYQmZkUoVDbtaZqo1POKXNxoKzHrvFYKzDUxOSU8w0rzSlXFkJjtHfb++bDI5AZp2EoVTf9uvVKSslzzIsbocUChhRIBECpFbQmYxS5LNVoMH7Vru6a9d0QawYlFVWBLEo3rtYyTHPXtX3jakiXOEliyQwEzpqKLClbY+fpMo8XnYNZVDdx0UTOuvGbviklck6d0p0mVVLJcx2RjCIkk2WjFANqpTjmlFhrBc5wREBmSXEqnML2brM1TSzleLggx3jMhQySliyubU2zsZKg5gUpVLjWEBNfG5AukUYQeDHKuya9BIRQrg4/C41zreG5gZE34CIIfE1Xye/zGFeQInJrhHut9PlWH3TTtF5fpKvq+S0+yhUdXW0K5ao1WhJgN5/gujApCzJjABDkJV6yesdGb2FTSJZyMOAl87XooJeFYEQmEQEG0csURFiWi2SBKVKIWEqpokhHEqiVLBChKBFERELUpVZBrESCABorM19zQ4siiklEMcMtVcgAi2lyXfRUROqGOBb/G7x6ZCz6deQ3Km0RDNOS3Lxyavym3RK49ty78nDCyLS4HS31WkAohKKWBsUALEpd1wyusjG4lm4higCDEkJkAKzAQFivMhyA5TuRFp8HuXoZLiMh42K0fEtzLghG5FbxJ1cy8Qal4Y0Fevt5hczXK+T60lXOzggEpDJXrFURaaIpF1YYsix3bH95Pg5n3MW8NTqnSCWvkNrePKI7vp5HYDVNpU6maSVPOYcc4mmaMNe7uzVlwAyQ+Ti+Pt7dtc6d90MOue374XDeNf1CdSNA5aK1MtqOwznX6jbrOGch3aw2U6qCuXqtDQraaR7Pz6fG2VITaGO8I6LW2u22AInS5vhyOB3Or6/7tu1904Rx+MMP3+ec/vxPfz6fT3//8e/bzXq9Xn05nEOcnj4+aq1ZIM7z4XghgLvd3XQZ9y8vZFTTtavthlkOx0Pbt03bDOf5dDw8Pj0pbxvTGKNryqx0mFOcZiQy3hhrASmlqgzMcQ45eediTJ+/fO5WvUadc2681YTzHEpOcQ6//vLLjz/93Tm33WyUhVyyUTaX0rad901MQQRY+DIMp+Oxa/sKNZairQHAaZqA4qe+q6XmXKYQ1n2PSmuHv/36Wzt75xvSOqQkApv1drXqlVHzOKcw96uOFKUctVY81+P+kHP68PQh5cxUQwpAxMK51DmeU06g6Pl5Dwp3D3e77X3/Qz+NI5Eyzlpt2r7Zla0ypt/04zScxtO//Mu//PzrL6u+W69W67775z/8w8Pj/f9r/H9TTWXG/+Wf/6xJv3z+er9pOfPldDRa3e3WUuowjEC02dwVEK1USmm/P5BSNUejzLo3juTl629/+NMf+01HDPky68/PP3/353/YrO1+X15+/eW/JXncbJSUmuKYk6ZSUkLWiqhtm1Q4xCBzpKXLN0CKGUFa63PJiSWNZc6BuaacYoqEQKiM0dZqAyqEIKXEGI/HU9M2vgFg0MbkEnNlAHTGIGFMiec6zVMpuXJVSq3WK2Ntznn5b2itA+GSEkvVyux2u4eH+1W/RiAQTj5rbS+XcZwmTsVas1mvECXHNANix4s1cZoTcy4lTZeza2wGSTFpRZVLzuESpr71zmtFSilNymAtjBXTFA6Q4RxEVedtt7X9VrfEoEvKXjCj5hh++PTp5XzGNB4Pp8O6c087rRFR1VJJKeOc71shJQiZl2QCWtM0PlxOZ60JQOY5ppS896jUHOLp5ayNXW3WIBhCmMIp10Ka+lVvnQlTuJzOMYXldhMBSqmvz/tpmtfrzfZu+/T0YK3W2sSQUkhhioiklakVSuFaq2ucdU5YiEBYKaSmsQAjxyDISgERG9IoRNaAUoVMQYXeNtZ5vwbXtbud8S2XPBwPcymfPnwwUksc+8457+MwaSRJXFIwptVs5hgLIFdUSGCcM1aUr2SGmKYMrJRUCcMI2lgBkEqKcsrW6Nb5pFKNGUolU8tctGK0oEmxM2EcI5fWmprTYbiARts2WoRz3q3aPAxr7x63qziN02UoOeaUpxAQabN7UNY2rmMFQFAFwhi4StN3JtF0HhTpXJNvvfPOOTuNQw4hzaFt203XsBStpdZUclpCyyJBvlEw6k2Os9gE3/gQuAlu5MrUyO9UzXCrS5Ybr/OObt5UNe9ICG7edVfm5huiB27Sm5to6Apr3gMg/m7UN7h2U4bc8nAIeLMMXnDUMhwBkciNK+JvBgViqVcaiOCWkAORt8okQYSl7oyrENKVdgJARFREYpbm5YmrAALQooVBJJSl3RvBon9ZEAqR/A5x4U0yc8WVS4ZxSfXdNggBoF7hIyKC0NLNc2mMdfMgQMRrwdVV33RV1lxX943mW/biG2oPmUFALX3PSYGqIIDIN6nNFTO+i7vkWiwncvX0WWyZbtO77p7cclj4TZE74CIww6vLFF4zrt8Sf/DGNr5dmG/P4YaB3h7kirhARIAImWu9QnomFs5iEEFQOxdq2ZcyvZxfIP3Zd6vvdpvVZvvpIYT55XBsfHsZjlaKJFCatQKRGkNUikou+68vkIIj6lvfeTeFOcfZObPq3DDPVuHdukvDAEblkJzV6+8+tm03DMNlGI33ufA4zVnUmON5DKseV5unZtVmpMsYhjmJ1qXUZr0OlYHFOdPv1immeZ5KSTULc9FWA2I8lK+vL3fbbeMdABitu66HWo03TXfHLJXBWrNAybbxijCnpJTyzt3d7YDofL6sNyvnPQIQotbGOUdA27sdAQrXFNJwubRd55xNOTfeNF2jjGZm1FRqORyO0zT2695qR0hc2Te+5jzPYxVu+jbFcP/w8PD0oBXFGKzOjW+984sfDxIO44QClYW0Xm3W0zx3fW+0bttuHMdaZQ7x4fEhp/z1+XmaZms011KgFhEsdTgcuq5r28Y5V0u1QDnF3XbjvGPG+TKJxq5ruVbfNCXnz59/VUoppbvO5jCP47Dero/nk7W2X/Wl8qrr+65br9fb9SaE6BtPQKIUKiUCKaX98ZhKugzDatX9n/73/8vT3f10OaHIX/77X6BUVLLyzbbffP786/l07Lvu4f5huAxa4Q//8IcU4nAZm66xvjEaVzkXgGGcG2/utjtFZDTmFO/vt5qYcxqnoJG0ru7//n/7f/Tb1aZvz8fhx7/+27zZfv/hYbfpsfJ4HuI8rfoOjc655CIpzca6pnFC7LxxxghXAYyl5MpIRIh3d1sG/u3LVwHpNx2gGsZ53bWrzVrbOcaQYrZsK7NWWkRq5bZrtTLOmRCiFK6VF8a6cq1ShgG5VgQsnLq+NdqQghRijNFa1bbGKr1dr6x1p9MpjBMDOKN03276rum98368DNM0xjDN88C1Fubn1/M8ngURIBOUTbcqzsfhEudRuEKp0zgQtaBcLUUZLDlqqxUXqUOYa8hSjVe5snDfe9CYx0i5fHi4mxSuG+r/6Q9f//qvvnMsNaWklHFNC5zH82WKRVmvKlThgjSmlGm2xiljrPPTNIY4pZhzLULIIKlU5z0gDMMwXkY0KuSYM6/W3XInJMIl5zCFpmmMtkSIAMy1a7uHh8fd/V2OoeRolfYrv4+HkrMxlhSi0JJ/zKkqxc65XMvSltUY47ExmqwlSyA5sbJK6YoKlC9aJ1Dk3Or+0W8fxDlWNsV4PO4r8ofvv1t77wjS7L1VOYRj3Utm011FCsb6Yh0DVdBZlG1X3W5XicD7qZTE6L2vqeSU4iVWpU3j0FABFMyVqwJRAJqTBV1iBGHbWqu1eO13a49YQrgMl2kYt/e71ru2a8eQ5hA8gORgdA3zcPz8i9ESw3w5nUsp6fj56eNHxDtJ7JlDSHXO2ijrvbOaE4QYTjwp41a9MZoQsOTCGaxTzqsplHkalOkgzKZk8hYBgCtdfX+Iry1Lr5FIbjXqArRwRbTAErrGn6Xc5l2xinDTL8s1qyY3m943ePItcPo2mN6GfL+1v3IZcK3SR1hIn1swfAurcK03e5OAyDuqQqA3BEOAIvWmsX37yBX/EeKihRJZ2mYuZfOsrnNCEiQGZNAKpfIbjyKAyLys1pKjQ00VlCw97a+0CX7TxeHqu0hXbAZXZoYWmEQMIiALJXetHJclJYY3uLeo1gWFZelbDyB4texcsBIhiIC6Zffouo4gwlfNk9CNSvl2BYVxmQug8KKSuposXTHrG5kH3zxiRX5TzN9SoIsoGW8bcqVtlivqxv0AwNXb+TrsDbIBgOCt5fvbgLfJ3oigt7zZjQtcqEq87jwJMIEYlAoaRAMCL7HWslFJ0zlNXyo158jG9FRVjL5mHvcrk7Ek0s6u+s1uq5FiKJasaRDjVKbL5nG72/SWCIqPMVhDbeOds9u7rSYaTkNJMQzn1XbVNH4p2nBtkwEOL6+nOUXQX49DFIiV+m0qqf719Ppht+4/fZou55h4KmMptZSsBO7vt8+vewCxThlSuz/eCdLhdAxx1iM01hxfo9V63XeEmGPhnHNK4zQ1XVu848rWmN3d3Xy5fPz4GOOKGawxudamsd43tfCXz59zyd9//5ELc8lr38cYGWWeg3a66XzJdQqRQVzT2NYSEin1/PLs22Z7twkxfvn8xTn7+OERGH57eSXA3e4uhPDhD38cxlEZnVM0Wpx22pqUUhwmUiqmHEJ8eHqw6F+eX15x71rXNA0Clcqb7SbnUioPw3Qex3a1Mt7Oc7iczqQJvdn2XTqHMg5ziikEp81rCI8fHlf9yvsGCI3VX768OG/brm27DoFGexmGy2a7Oh9Oh/0+5nz/6enhw9Pf//o3FOjbVoOCItNlFpSSc8l5uAwxBW3M+XT+2y+/7I/71ar/4dMfnp7u//DDP1ijnTL71/2vv34uXD98+LTut1hRK/3p06fWtkbr7mMXY7rMsbHGNn7OqRByFmPU3UMPkIXrYf+8e7zzTYcE4/6oU8Zti4jH06h75x7vtq+nfcI6nC/DaaQcdr11StZti8I155SSAShVuCKK1JzFGWOsMQYUkUCpDIiL7gkJx2nq+/47pXKtIoyAXJmZtVLOOgCylgkp55JDMdaQUm3jrWmYq9aVCwPord/UKjnnmOZxHECw7VuQa2sFqWK0ccY2rSOhME3Axej28f7OGZVSqplrkVKqt9Yo2oeQUtRKSWWu5TKch8uZFCELCCtFhkikpDABiLe61BJDqKWs1hvSekpxDqNWpl91RApThcJQM0ZnazM9/4bOGRGLWoXJS+G5GoN3jztM4zRNF0MCHbBYp0Br2zYismo8KBwv0xjrZTorxBjD+XwOKaSYRaBwCedUha33qFVlnqYQUyxctDXWujAHzmyMcsa2jQcArtVoJQJKm75bkdJd3yEgkfLeW+cJqWmalEotlVBp52JMMZdSBZQBbaUiQxYS07QmG7DOGTBGVQbbNLHQEAUcrVb3fdOBc83djpQV0gIwnA7T+fJ4t930nQFWKL5tzeKnYm1KEZFM005zqLGmCuvNutvcTXMF5WzXp8rjFJt1qxEckVJW13yOSStArjVXIIGqhAtSJREMExFYKVJLPU+jsGRuvHfGIokalFLIKUqYC3I8DwjSG7gcXo+Ow/GMZSZAh7W3cBgu53zBGtI4aG0a21LJRmPNXBCN0W3TcUUgjjFZOwNgzjUXQZBamVkEIdeCWBmYWYiWBgNLAgLfeYWrJlgQbk48eItq+C0382a/cguJ8o5q3g77JvmFb/fwV2hzg0bfpqOusVve8dANNb1pk65VQjd26ne8gMAbifDmPXRrMwW34EqyjPv2LQiCQIj07mkEcNNTX4emd9mSIAGIiLpaNeIV+zAszozXVM+bZeQVRiwogIWvLAjCOxtyrY16gxBXD0AUwaWWjd8ojis2E5DFwlFu2SkAARa5rh/dxFjLGS+Q8ao3v1I5IteRCG7I6Ub1XUmjxbTwimMX7MFve7pMF9+W52bS9HZ5LETT/8TpwC1DBrfNv771Do9/t6dXnfPtglqIpOvWoyz+mXLbyOVzfLVO4AoiuIitAGXJGJZKUgtUooLmtYodAlJ41Lzh5AhyLndbv71fizKxgtY0nmcRVMqsWk+OMpR109Rpps5vdu1wLKnEtmmU1iTFaV+MOo95ve7axpccpzBO49j23SXM4zAKKuf13W7TbO8uQzyPsXqVK37eXx53fa18HkauVZOyViPReZhDLkhQ5tK2rTF6nMI8TkDStC7FVEvOwsLeNXY6n6dh2u42T313vlyO+8Pd/Z01hmvZ3W1zjCKcYgLm3W6bYroMl5LL5m4d5lBzmYbp46ePpWTvfclQqyirmHmOIeagjOZ5DinMc1CKxnEEgGkmEBjHC9cGAVlYaUWEx+NxmuZhmhi4lNq1zXq9BpCcSgoZEWutiGScuQzD6Xw+Xc658pN7aLveN40x5rQ/ziEaa56fny+XoVu1yuv9+bjf79u2iSVlls1mFeY5ZVyt1yXG/f4gb/14SI/DMI7j4bifQ/zw8UPX9SxwGSYkmucp5GStncZJa/Nw93B4fe3bHhikcOLw9fmZFG3WGyA6nS9zCJfh0vX9ql9ttztFylr3808/IcIfv//Dh3/6sNs9/Ou//RsIbdbbUmvXrp1tuqYJIZwvl1zKOM0/Xc5I2Pet14o5cxUBrlJff9ujxvVuPY+Ts0aBevntebwY42xIVU+n4/Hzb3/9y4/VSizlfLiomhWkY7/+/sOHpd65MnOMIOTbRoC4AIhoheMwaq2klpxirdz3a6etNg6JykU2W19KGaepbX2Y5mmcSZEmQ0o562OI4ziBsJdWG7swyyHMMQapYJ2xxtYqwlLQEAkpAMGSF+loVoi+Mau+VWiUVgYwjpP3zhm7av3AdZhjKYVBhlPKpRxeX1jg/v6+bfw4DlBh0/du1b2eLsfXF6Ww7lIKedgfEYvxdrkNJFJKmwowzmGeZ2sroWhlRMQhMiDGUZe5cg6juLZ1thm/HOfzOUyXvqPOqul0yQhGQds2SGoORbumXa2QIMT4+vwy56SdDVM47w/jODFXkRpjFoAqNeeaS3ElEynSaqHESqnaGCKap+kUD23bPN49KqU00TBNuVQBUMa0bVsqhznWsRiNq1W7WnVE2lnbdH4cAqHSzqTsi3AVDLmSAe2b3jtjbd/5PA1pHhRX0rowzAVFN9Y3Zv24+vAdWFOEM2mDKDk9f/3y8vmXVeMe27a19nx8nVP0ra0VYi22b4BIciUykhIQKW2a9aZZb5IKFTBJDjlm5FZ7Z5SV2ivXglMxMFRGqKhEgVaUNGYsilmXMH09Bc62axRIrrUyzilK2yiivu+0lHQZ9vNgSaUSXOvCPM+H86+nLzVEhdhvV6QErUivz8OcxuNFinON2z5sN56zn8YitQCiM4pWPtVSQr6UCoQxRGGumUNMyhpE5b1TxhpjCKFUISQGhQCy0AhLmmiJnwBL39MlnbQgGvw9RfMW6d4TX98Iegjf9crwdrP+FuCumulvBnyPdXDDYW/Sjrd7/ffHN/W0vE/gHY3dAu1VMyS3XAnecA+8cUhXuLdAGVxC+fIRvOqRBd59kqQiXxHEYjb9lgC8Ir8FZSzL+gYF3mqZBBfd/vV0kUFE4WKwvfSS/RYWwk3QzXgrVXtDnUtXcpBvTg6ErqvH1+za2/Jc68u/gR5vkOZqAI5vKwq3rN0V2JHAYq6E8g2Lh9eR+R2AvYFHuR3wngO9PV9mc6OSbtcP3oRh8jaxd2bxJlS/fs3b2+/7DwAgi1gKRRAYUXhJYAoyAwgDIpBoBNAAVVhqhZphENzX3Ar3nbmzvjUGOq9W+jzOIeYa4q8vL1LJaMOGVk4R5t2u7RqlsWGpOaRSs3WGNFmjOKVQiiJQhM5arnWc5zlM2irn9JevI3B5eNyxafg0d84BEAOidqxSKml/Gohj4Go1hpRjLa01c4zau6fHx+lyfnn9GnN03s3TMJ4HVeUf//QPatVCkbvtNqfcuEb62jrXtW1N1Wu7XW2MUkaTcA1TiCH6xrumsWSadWO0zilV4COevnz+TbjePd05ZWMJfedFyel0zqn0m3UIACA55zSmWgspfbkMKca2axSqu91OK52mEEPIOSLCHGJhxpxX23VK2XrHACnn1arvuz7FnGoRwP3hdDodpzBrbUiRb1qlFYDklFfrVcrp8HrcPexSzqXyjz/+pI0xzgDAOE6b3e7rl69E9N333wnzb1+f274XwNPxslQADJchhRjSHGM5nc5au5BC5XoZxjDP/Xq96rvzZTRarzdrKQwim/UWCYTIWqetUcYIyTDMIUXfdN99/4P3Ddf6ut9//foVgZDUx48Mxhnf3z1+Msa+nk6llDAn53tUzvWaUoxhHsfpfBqb1n/6YWsbN46j1lhyXK1aIv7w4SMiHY8Hu94YrQiBY7HeupXTfeu9ou8+PnzZP1+GcTjvXw0riMPhQCyfvvtovSetaqk1F1MYUASo1pxZxstUuKQwl5K1Vsyk7qwxxnlvYkg5+8Yb60AqOHk+npDEGt+0DQtWllIyIQrXhUqupcQQSr72Lggp5ZxLzdpo5xxL5SpECMJam8bZrmsbZ5QyjXNaY87xsH8WQaislV4MZktMtfJ5GM7ni3NWaWLhFGItxThrjAnz+MsvvwzjmSunuRxevqzXjcIKRRQp620p9TQMl3HUnhggZxFeSlXEO0dYzy+/ub4vDMRZzDydLvuvX4+vLx8+7PT9RkhyLtMcXl/2IJJrAUTfusa702XcH09VOJ3OOcyn10NlbrxLpc4hCooAMEsVGYZJEJrWW2sFUWtDSDXnUlIKEQVDOxutcs6LcNMYq4i0Mdois5RMXJMUVoCElFK2zpGyOVVB0N43SodUACixWNTb++3uYUsE4/5wLHUcRgVA3oPrms1js31S3a7aJnMpEh0icB3P+/PzFw9w33eYA1OZh0tNCbDx3lrnMpDZuBJSnGfX9kCkvO1WG2ttJ3UusZSc5hkMSHTWOwmFPGrJEoaUs1v3JUup6NdrraQgC2ar9Xk8HE/HzW7bdI0FuMyZjLPrtmkceR0Mvs7Deb8PUpnzdIJaiwKY9mPNuV+1JM4ZynNdtcY5KkUIuUxjbVrUbedt63c5xZwz12KdrnNkAWAsKXGsRumCNYcSddJNq41BUkCIioSXNMw1SfFNXLxat9xwwDugeMMpN8zxDSp5T2d9e/SVqLlFs/e01dubV44HF0LkquNdmCDmJcn2TRiF92+U90HfyKF30gNvDcbflCW/Z4xAbhDqNszywrdtyd/cjOQGXuBaN3ZDI/j27u28ljMkeUunvU18mcK3fNiytgulc1Mpv6WL8Jr6QcQrevk22l+rq66jydsGCizB/n2R36ivNw4O3458o/9uWaY3tPK7j38LRa7q59u3vV047/Xo3wCVbw+5ged3I4X3P/L2/cs6g9zsD96n+u3evw+OC3J6pwGvNJRcReIsQoIgwIiCgIpACBg0ktQCZEvlIHiZUvKugkKqqYyN8w3XMJ9ba+Y8IJnG6mke5pk2Da3WKwVVIYdhuoyj8cZ6X0VCjFj5PM7CkGOexpmFtTe+dafj+XA8hSk0hrZ9c5lK60BxolpKYfTeOS9SiUAro5RabXprTRhDCXEYpx++/7C7v0Pkl5dnqeytW3d9moLW1Hfd5XyyyjTelZjXq651NoYghT88PihFIcWubYxRp8Mp19y03jfNHOM8TyzcNI0iRQCts8P52LQdVwaCw+FwOeNqvaqV53kmRSnn6fWFK+dajoej0XqRz88g99ud9844J1wRUSmVYnbWda3u15sqMk8x11rClHPuVr3WlIc0hbj8F2q6pl+vtNEC0DbNjz/+BCjfffq+3242q/ViJre72+VSiLDtW6InRfr19VUZNY+ViI0xYZiQaLXuW99yrrWysMQQhUUYrbVK6WmerHNN27y+7j88PjRtN1wuMYaH++9SiJXrd58+Wu+/fP5ivOv6NqT8+dffzpfLMA3bzfaHf/jjar2ulVOc19vNOJAi3bddLOXHz7+cDyfrGjR2Cnmc4vl0ejkOd3f3osAYa9rOIf2HDx8Pr/vLZd4aa7TpuibN7jCHp8enx8f7n/7+k+RUc4oFAeD+4b5tm6/7V/3Dd0+t/i8vh9Pr8fTjL7/+8luPio1TwzSchuMu7/q+W60302WqqsYQtVKApJVFAWOUEjC6uQy1Ml+GMxAaYzJXQNTKlFRIKWCIMVRhKIyQddLOOAVoSCtSCpQmBBZBFgFS5BsnVeYppBC11dYZpZQSylKcd5zZWdO0TimFSK13jXe1lhiiEQ0C1mjnlVJ2GMYQAxJdhgsqpbSZp5lrHYYxpqgBp7g/7F9TmLl2WEvN0VjtnLfGxBKBkJnHYQohMkjJAIlti8ZZBE45z+PYKAIpx6+D67tScxIoIWhJfaPyNA6aGksMdRrHOIdff/216RpEJSjb1Yo0plJeX/bny1BzLCl631jnkDQoyimWzMYqpbAWAVA1C1pljcoxl1RCSgxVK40icZrJN85ZbXTKFYlYBASaxhvtas05TSCSY2YpS7M96711JjODJqOdW3UMujC6tuvu7ppND6XApsaYh1AyYtfeNY+Ppt+Z1SNrmzMnZq2UNzZNp+Pht87I99992q36cB7G6WyhVo01ReWsaxwSKqWTUufzSEp5b4FUnubeWXJY5pjmoGsSQRlUiRFKLVzDeYqXgyDIBMiSc0w5uNapNNeSHLnW4ARVpgtLFkJKtfF60+mmszKnChlKwBqNoWmacslt651xftXlHEXqeD5x45Z6JqNIXVm3fDm8pmmwxjVtT0C1QORauRitvbMgMp0FDYKINkggnAs2WEulUm/xHa7xfOE2b8GD37IaN6nse2bp3ZDnLbT+LkItkYkW5ubbPMYbgrmCpavz4HXYBa1cA+GVcUFAInxTVn8TnK+PV1DwBmne5viOMa6aEvg2at9QEd7C5e+Awg2iffP6Nf+DSxpqqdy/ZmHkrXDure7pqsO9ch23MeWG8uCmJ5a30ny44g0BQHpft9/FfFkgjADgrTLuW5T5DrIQRRiRvkUyctPbfIParqCS5ZusltzImG8B55WX+Xd0zO/gKN44GXnDjb+b/G2y357XW+LrumtXdAo3iPWGY26X6vUZXrd+WdU3iP62uUiCAELMAMiAIIQgQAgoDMJYBBBYaTGGLEBBglDCRfhU4HUMaYjWpM192zfNpCZNlh7uySrrvTkDAEuFmpmULnHKcySRtuv6bpVzDuMkuV4ug9FOIYYQBWV9t7mM5zBPpHHVmRhyOB6G08iorLIrRWMpukZhcU79ww/3w+mFslLCmEvjDBpNIlbbX3/5Jc3jbr1dbfoU48Pd3cP9HZe65KgJUSGturakuGrblDwArlarlPJildC0/nIZ2r7pu1WuRTOHks/Hk9TaNm2ttTHuH//0Z5a67rvpMpWcJQu3DaE4Z1KK1ukYg1IKK7x+fV6v19rq9XrTNL5t2vEy1Vydd1ar9aobcarMinCaxjnE1/2rn1vvfS65cVMk+vL1q9KGlJ7HaXe/U0pb5y+X81//9d9Sypfz0BjvtZmGIU0BK3frvvHWGnU8HPpVL1g/fnyqlZOdSyrTMGql265FYxiBrCq5nI5nQe77Lp9qKkUbjahOx7O1rm0aARiHQbhut5sYo0La7raVeZpmY60yahjHYZxTToi43e622zvnu1zqz7/80ndtLpmUiSnpWrzI4XCMITaECZiSqSiJ4Pj88tvL/sOnj+2qI5CS4Xi81Mzn/YWAKudNu25WvqSAyMPpGMeLVWo+nw/Pp/WqM/4f5jldhqAN6qe7+w8PH5xv9qfLX37+6/74+vL68usvXwrXYRyctyFGZYxvfBhiLcVaZa0BwL5rQ4jaUtf3h/3xdD7HnLQ2vmvbtgMF4yVzLYogp9x3XU4ZGAlIERmlG99oowBQKR2mGRSUnEUgTCGmOIwjoVKGCBEQCBVIRgBnddN4QgwxLuRTir7kstn0UiSFkBTs96/n4+UyXlKu7WodY0SltDO5Vq5FW9vTOueSSl73q65Zk1Ip5d1us163tWRrPaESqEopMWBEcxRgdI1DpXMSAEmVAQTG0TdNTYGqsc7kIljyyuvOdfM4XQ6H4g3UOtOkjR7OE76i1sSV902z3q6Gy3i+nBkhxlhyrohAylpjrI05CQEDlFARyXlnrVGkjDZGmRTnyxRSyd6ZZrNBpJgyFrTWEso8BwHJlZGQeiUIlZlLiTEjkrN2mgPV2nQNMHjRZLRtPGrLZJRvlXehgBbVbO7WouYKRan13Yfu40fsdgE0aUNhbq1beztPp/3hOcX4w/39bt1bDdgbnIqz+vXlNZekpF6jgMOcc+WitVPapBj3p1MJs9Yynk6Z67VbgkUFogRLGOfLqaRABBJRIao051Oi5DAnyXk8CpbYO2U0OYRSS8yJp0s+7zVnSGW+HMfzkTg75TIIEXiFzhA5x9WkFBfcrB1Z5+YxCICxWliVHBCYEGOYh8uUay61lJJFK+c6EinWgmiupXIhIuMcgopZtECjDSoFSFed8q0FxLWK+tYn/i10wxs38/s/b/zGFTDgu2JGRHBp83QjPb6Neu+cEAIIytLB9O1+H38XgN8G+eaLFybhmhV5K266QarbQcuc5Pb8Jk65JYXkm4OvEfo6xE3ye+O5lhKnd7C1VLe/MUdXh8cr1YTvg37Lusgt8iPAN5/9Ha11m9E3P79d9mWh3maOcpUs35iVa035zf0Rl4/AN0jrdkJX+LWUoL0hVbnCjxsh9rZu30zxXYn1DkRuuwbyhobe4OUNDL0PIt8itt/h4rfr6KrXfrNLuJ3MFXjibQHeZWXf8lJXwTgSL34OS+UfXh8BkJSSKswCwmKxClSrZ+ExlU1nNcq0H9q10wx5mrbrlSgqXD8+3oXLJY/Dfgqrpwdvndvd78/HNKeA82JApRSVIork7u7eqGlKYyklxdh1nTXaWTONkxDt1u04Zw3FKCsWG4Ng6HG7Ujn3ztrH+zlGKdK3K0P0w9PHcbx8+flnQX56eGybJo5jBf7uu+9fX17SHD99+qgAc84kgIBaabIYYpzG2XnnnRNmbbT1xhgTY5pCWK9WiDhchsY3q7ab5qFrujjPh/P5cjqjYNs3fduy1PP5NM/x4/efjLXMMo8TC//v/+f/WtLVHHjV9kvDqDBPm+3aeScFrLM5c8ql5AgE3jfAknMutYYYNOF3330niK/7AxKFOdw/3DPD5XS5nC/b7bZvu853YZrnca65Rsy+1KZth2GoucY5NE1z2u9Jqw9PH0oul8vZWS8A58tAAp33IDJOQRnAws5516L3nTUmzLP3rvnuU4nZOzfPUy5lCvNuuxXh0/lindfOAi1Nsnmz2YSUK4uxdprG59eXmAsLnM7HUrJz7niZLuOsrckIz5+/ACrnbEw5TcE3drdexRguwyWGKYfYOfdwv8tzCmO4f9wq0ATw4eFBK8p5Oncuh1QzW2eQzOvrqXAFsrr1Do0yuu18v2lXztEwPf7tx5/X/RoIUkwhJMKZAKntjFVakXfWKm2MaXpX+lZI4HCSzWoO4XQ6C8s9Udf0zrkZQ46ZrNJkuNbttquVUVArozxy5dvvYUGEeY4iwlwPx2Ge5sUNSCtNSMsxUDmFaPtOKVVLzTGVkodhapvm/n5XuMZ5QpRxHL/+9jyMAxAa7WrOuURveq5cFCOqfrUptZwvF4v4eHcfUimlpnk2u22M8/F4qDUTKSIh0qSUs1prxZUVESGGmFJKbe+0oTQHjUqJEEtjTGMV1TKPsaZoCBAqFwGi0zDklF3jNZo5pukyxGmqkkmZfr2eU57GGUhX5jkFFkZCrQ0g5VJE2BiDKMBApEhRShEIeCnURThdzpW5aZoS+TyOXHkc57Zrgeh8GbOgsXYcAwCDmq22tTIL5MSoMll79+EetI2pojZt36NvAankRFop3zghM4ZcuLt/au8+TKiZJcWMtVpUcRg///q38+Hlods8PNx1nUvTRNZ0xp9eXy/HU5jnfJnKEExjyJgQSq0JTAOaOEMu8bAPOY41xc2u51zTGGLNdlXJ2DGnYThXSSVxHM/aaqVJQy6XsZaKiFOYQoje2k3bElGIGWI8nk6S4mq74czHl+cyB6MwDpNGcUZrEoQsFYlUv2orS4qxVM4pk9ICQoCrrp2nJAJxDtMwz2NAo4gUFGQUFkYQrQBBqUbHGAVRO1uVNk1nu7XyHSt9lcASICkEWtqjyFVti28kzRvzcBWRCHxbo/7v4vbSXuI9SN8i/g0PvOdd3niEK+8AV287ecMst/H5m2D7+zB8jaN0/QTyt9zDm9fQ+4flJkJ5Z4TeUyf4hofkPcbfINUNcF1zUW9g40YH3eL+W3yX60tym8nbKX2jw1mOeAcOb1jnjbuS22g31TiyMN7UTrdc2Q1eXpfhWqX/DQx6W//rT34/9fd1vqEHfGNc3hbphuBueOdbGvBtjG/w8Rv19u/IoLcJvUHnf//eO830zWretvBGr8kNN75lcEVubwIQCCDSrQBNBIEXwRezAoWCtNzjlgIKaqlKFXAQaxSHT98/2jAMh6/W2Z31GbK3BjSdh0sDhhDnWpWwbyxx5cxY5HQ6vIQv/Wr14bsP8zgTIoFwzc6bw3map2G17lLNxmpFdrv1FaSp0m+RvEPSegxzmtf9WjED19a6zWoTSx3P55V3NWRIRUJurfON2/ar9aqTOZSSp+Gc5tkYba2SKvMwxTA3zjfgL8NQavXOl7EgYds1ubAwvL4evPeksHABhO1u1zZNyVmYS6mXcVxvNkJQQiwxsDeoMKUAKKggplhqnefMUrVx1rYCo9EqhJTD1PUNs2Ip45CUNkSU0pxS8a1Tximll5qs4/l0Op0+Pj2Qp8P+9Lp/mWNqYuO9N86kEhTptu2++/RRGZtSWImsDXnvjTFffvsCXO+3G0ABYU1q3a+bxp/rpeu7aZwVaVL4+vklN3G17S7zYKsmMgKy2W36vr1cLk8fP4RpZmZAXG23q832+fkrYKhcjbVT3L+eDk3XkNKH077fbMEqo9V4OP7y339db9efPn2HWv36y68xl1oKkr572KBRh+FijO236zlEMuTITMNpHAJJXa36pumk6rvd7ocPH/vWj+dzzaXzTZzGKHmzblAoh3i/uxeRpmlzkufnw/N+b6xru053q8YgNLq1qnk97VURzfSPf/pjt+pfX49JpVpKnOeaWVga1xBgCrli3XzooLDkaBv7w8cPhSTXcjwcYkogILUKs0IoUqdLUERca0rFGqNJIyAiGWtq5VpqrYwKjKacRWk9C+SUnHdN2xitgSXlQICl5GkaRBgRFJGIkKJcc5UKACmWUmQYTi+H/fPX55TTar3a3t8bYxvutLEAmEJC0koZIA1IzGKN8b5NKTetX61W5/PpeDwNl0u36hrf5Ay+8UorAIBcuZQxxByLbxrnXE4xhcIyGW8IyTqvkOI0FlJIKsYIXBC0CC4AfxwnpTSKaGeU1TFma0kZQBLrvdQKUAUk5lQri/Dyu9EYjYgx5EJsnSU0XCXn4rxFdCnFMEUWUNoCLjfJxCLDNLrGC+M4jiqFXDKC4Bx0p2vlGEO8jGqcm/Wqv7vTtrFegzHknGpXAhjmERG0Nbb1h9PZrVpEksykShwGq7WuInn65cd//etf/8fHD4/b9cpZK4JoTB6DAsk5IaJCzGEekX1xqNWUUpxiKYnutmmcOUVC1ARN45zCGJKEkGoNlanvc4k5B65cYsgh0Yxt5xkxlcwMrm2s1kzojLZaMbPkpKRQyfFy4RSBOU+jkqoEU4goVTcWK6calVZLBxIswIY5l5IFAIzRWpOwaEWlMArnmEDYkCFFCCyINRdtlHVWhLUm1KoKMiow1vWb7u6RmlUgTaAqA6AAXb0LWeqSv7pmM5Yoz9fepiDfBCa4hXS84YCriPaKEq4duK6oib+Jvt8+w2+ZpWu4vDIWfEuGALw9LnH692Hzlnt55yJ+l5x5T60sr161Rm85qG8Ipn8XkW//lDf8sgjE3yDA0kbjin4E/t3E8O3hdspXXIjXXNhtOtfZ3dJHy6tX+HCb3jdJwJs3ALxhrxsbA3DTJf+Oq5Nbwg3fAQmyvI95+67fncD/lKL6FtS8FaL/O+bm/QT+HbNzXQO56Zr+J/TzNsA71HrDZ285x9tC3iZ029IF9S3D0g1OAgBeW+Di0jtOEBFZkHnpw8rIRhEAKa3RCGChVkUJjUbJGXLujZ6lXg57tCrlOJSc59C3zf12PUyjpGyJfNuEHOZhUoqstuc0+NZ3TTNMEyF0Xfv58y/M+enjB2PMOAbf9Eqk1OiNMtaUwhIDVLaaFBAwAWNN9W63ud+sf/77L2EYc0gppVxrgyQMcU53u7t5HL9+/eK8VlofXw/9qg8xTNPctE3ijBpKykBOK80CMaSQ0xSC0lo5ZdDmORlrFEIucbpMSiPL5L3brLqQ0hhjqWWchqZptNEaaPFU8t7QbvXy/Lx/edmst13nuXAu8f7xThFY74bLOMyT03oYpuP54py33hGaZtOM05hCqDFXLnMIv3758uXLM4MMlwkQzdJAY5we7u66VV+BL6fj+XIJObdddzyegOByPH36+HG96r/89tuq71vfVOE4h5LKat0J3yooCVzXlCqCWBmBpG1bEXz5+uqsvZzOKaXDfr/ZrIWr983d7m6ex6ZtSethGP/+88872VnXum41p/rl+Uvbt9o517VAmEr5+ce/lVK7dV+SJVJdvxbmHE8xlKePT6XU4TSkOLeNfbq73/Yro0y/6p+ePiJhjsFq23gjuQJzzFNNKc7aNwZBWaO1NQhUqCqlhUGEkLTWpLWq2lKY58Pr8etvX5eemjKXXbdWd3ocphyLdTanmsNQU5HKq759fUXnjDCHaeq2m4iyWq3+l//0H1LN42nkmqAqq1TIrJSuUrTRShnnGlIoFRCVsaCES0ZEAqGrgNdarY1vGmedtaZyjjErpWKuwkJKTfMIAOvVyhjLwrVCqXAexq7vstQx5DnkmEtOkiuRbny78v06psKV69KPHRAAuULNlaxvm76Us3GNMsZah0p9fX7+aOxqe+e7RkBCyilmo4kr55pRAWHNIVRmJBznoGrdPCohnMd5Hmeu1VqbYxqGqQzh/tPj7mEdY/z1l885JeDqrckZSs7TOCGhIKIm4zWwZqk5pjkE4YpIzrqcmaUgQIFyPl9EgBSmqbCgM1YQBZX1PguDgPVOMagUh2FIpVhnlTCSM8YKc0w5mGytQ62lSBVm5pLK5q61fT/OeQzRmMzCIqXWVBLneXAkPI9/+2//n3/6r/8VnefL2bUrZ+DzL3/7+V//v502//jDd1arr1++rLqubxoQ2L+8AMt6s8pOQS5c63C6KKtSKWGcmtrNIuPlLFW67cYYV1Ooc5RUNACnWKNOhCEGyMVohaQYyWiyWudcwjSLgPPOmgVJQ8qllpJzUQKNtUSUw8SlWFK2dVxSgRpLlLmwtUprURRCQNIiKieOqSgkrQ0h5FRAWCGSoRSz0dA0vpSSU9JOa6+4Zi7XbuqlsPbOeDNlVbXzzcqvdoFsLMAKAJGhVn6TIAO8pReuln03EYbc4M1bWH1zX7kFIvj9H7xmMq5hkAjeS39uEREA8Joqew9mb0FR3tS97/mob7HONfy/w4MrM3N79Vux0jdB9B23yVVDtEz1hnQQ39JZAMsyvperfVMIh0I3zHadzzt1dEMB37BZ8MY7XZuXfQsVfocrr8ZAb+uI72LqNyCwTO9tC76Z1w0e/Xso8btTB4SlZ9c7VnlDNLdNwt9B1Xc4c6seA3k/9bcF+GY/vv3SK4r5BhH9HnPh73Hxm8r8Cpe+nSIiyuIQdC1Ce7tI8IaWlw8t7gbwJq8HBGCswgKASpFTEVmjjsIhZWpMu2urZkDs1x3nLMBOIa7cOCdHajhfVn1793DnrHr+6aVrrfG2zqUW3t1tnz5+AFTtqpsTzjG51jmrpwG977bb7W59F0PYrgyhyjWXORRmHcM8hjDO3W53+Pobrza986fn0zxP+/Y55DSHBAQi0K1X4bXOcz2ffv7/0/WfzZJly3Ug6O5bHRXq3pui1BN4eADIRgui2Wxrs5HWv3w+jFmbzRiNHIIECDw8UTIzr4qIo7Z0nw8nVNZjZ5VV5Y04Z8u4sdZZvtz3V1+8b3bbEnIM8d27N0C4nBTc95OItNvN1E8+w/0XXx4PR1WZunJ+DNM01l1rrbFOl5QJWCkcvR+PvWTGwKt11zQmBn/s91rrt1++NcZabcjYl/1rETHKNE6LZU0sIm1jfYhKQfOm48L97A2XIiVKLmEqnBG55BhGn9Owu9/OQ//4+Jhyrtvmh+8/NKvVarc57Hsk9Td/+zdv3j387h//paDU6xacPviJQV7nYbVe16vm23/5yRr15u3D3f3ddrNWRMPxuOo6EOyHsX85aCTUetGCd+8elj1vt+swh6Zdt6tWWHwIx+OQSyEUFEwhfvr4CQSUUl9+9WU/HF+eXz98/OSn6OtsDDarZp7DqutC9kiyud/sNjsu4hpXk2671tmqadqubgDAGP36speUvnj3Ru62UkptzcNm9+X798NxqJytnPHBz3Eax5e6riWyAhz6XiGykIhmUUobWzVcoMKy20kpUDdN07WaCIbj1PP8+nzc73sGAqVCiNFHBlhXKyXIAG3bDMfp5ekVBNerzlg7jTPn1K6bxW7MGpq2Wm1W3s9/Oowx+Pfv38UqLyVSZu9DStZZY7UUSZyIFmcI1XXNzCWV5SyHXFJVO2OVNjr6WEo2RilFXJbyKsRMwpJSLAVLLkv1iZTM4TCEMPkQXV29+/KrnKK1tQgWFmABkeDjPAdEstZobQikttZqRcI5xU8fPtp6z5Lrth7/NL/uj66uUAERccmCpRRGJE0kzNH7kjIDaKtJk/fhuO+1Mn6cx2m0ShuttFIlFVvbpq3qul5ttzHm1+dnAuCcfAggopUSkVSK0ro4Y7Tl5YzT5bxIkVQSFCksRimjtLD44Jdqmyl7H4OxdrvrSFNKOcW8HPJeN3WIMcVUijir6sYRovchxhRiJm0QEIVz9DmYaRjUy2udSkgcUkosprZWoza2trpVq/7N5j///T+Qq/rn+93797/94u7bP37/7U9/+v0//u5uvfpX/+o368oqJImhf9k3b3Vb2Vmr4JMiEKsKFD95kEK5+H4C5kqB5gIlayIFDAzz6LlkrUARACjgEr1PMSyfCGR0VjvnnHXCS8JgySmhoNG6sEQfck4pRmGuKg2a8sBWGWs0lJyAk8YQuWRhrZ1VIpJCTtmHkEsWpbVpGhAJc+BSiNAYBUQEVIgFmAib1lVtjaTmaeKcQSkGQSFSCsGKseAaNlUxLgoyIC8OkBPkwcl7ehIY6BSdWYrhwZJyJHJRIM605MQErqbmU7GZEzzeGKEvpt8L7znHV67IR0sj5/vPhf3gJk52JgYC8BldunnxJtvrSpzgrJKcof3CTM6E4NwC3upceEJcWQgln29fFmzJQvrZMK5p+XxjprrwBz4pZNfrl5mICJ2ODr2VTQAATul65/W/mGOuP56Fs8WpfVaJ8CzvXKpWX/gsnI9vO0tQcCGWN6ahCxU6By1vxTU8y1dnKvMzo9aFGcpnbX2+Vuf+ztt+ZtknCgOfLROfmuNLT3gKRMKZDF6YEIsICQosB9+eo6N86oKQSaGAcExcYsY5Aji1Wq1qG3xH2zT3CsQ1Rjf2eBhjEatN7VyO8bUflSNbucA8TFPdNpWrS0ZjlK3rp5djTmn2gTk2VfPw5q1V5vVln1Po2lYg5xQM4uGwN6lmhroyxGV4fmEf63fvNl0b5v73v/sXUGr37m27XVnjPvz4093bu+HYp5kn76d5nsNsjdFk5uD3r6+rdVfVDkRylrqpc86Hw2tJpT/EadRN3dR17azW2pSUSkqKaDqOnLKU4qfJGP3y9IIIrq4qp+tm1XRNmMI4DDlGg8q6urIOEUgDKRn64enpkQXaVZcL58SZ5fj0GnwonJ1zCpU1tmSOKeZSPjx+TDHbxk2vcxyOd2/fR2SfEhr6xW9/2axXr4d+dbepVs2HT4+N9+M45sLC7GNETdq5tu1c0whimKO1erfbBR+ZyzyNWqnX170yRildNQ0RpZiNISSqV10BCak4q5u2fZ5mQMi5dKuubVvvJz/Pq8169NNhGL79/vuYwvtf/Gq93TSrrsSEym0cppiGYz+MY+k2TVP/5i9+UzWtCDR13XVtjjmG2Tm13axiiNvd1moDXAzhum5J2CnklI5hnmN0rSXdZEnBh6aq79+8XdWtNipFnwuEMcQiVVWVVFCZN1+8UaiOh14DEguQommeU84+ZeW0oAJSJcbhMMUYSyq+n7nktqvvdvfdqotzICFGmX10DkxjUREDvH3/wFn6l+PT09MwHBXZtmtBAVmV+yGmVJgRkXNBAKXIOYtIKUUASSXNU2igMc4Kc5xDzpFIMVNIMeeSS4ohEhFLGceBCyjSSqOxDgC9D/045pzr2imldG2BKaZkclakpUDOOQRPSvlZWVNQoG1rYOkPhxjmmHOIs6scSEHkT48/xTRN05tV1xJBTAkBmqpWoIUhcykAxphSpOQCXMI09lpNk88xZ1VAhAjr2jHB6+NLCvnuzRujqGlqa40fx8P+wLmAQVsZUBRjyiUpCsBMmrRRBjUB5pyJiFBc5ZyxSJRzAURXWaV1iB5ArLMgGErKORfm5UQwZYmUM8ZqqwGXvBwCgphimSB6X0rW2iiA6XgcptnUVbtat+utNspYQ0qglLE/vn749PLx0fdHV9LjH/+FQgjd6t//v/9f3/3x919/8c2/+du/vru/e3l8vn/zpr7bvD6/1NYoRZWzyc8+phB8CvM8j3VtcuIYAiIg5/Vqw1ymYRiG3midS07Jh8BGKasNEhTOpZRcijBopa0zSIoZSKnK1R5CCsnPXmtDSiERAQHTUmlznD2zkBIARkTSpLU2SuMi4jMWZhZOPuWUFSmFkObgc2ZgrRQiCqNxqoAIY+LinNNGI6LkAgxI2lSVoCqAYpyYmkxNzVZ166R0FkSrFpQ48YslBAZwAU6R23jLjXiy4PdFEQE4n9d0jfrIGe+uCcqfgR5eb70gN57tuifRha9s5UStLpnVP4fYk9QEZ7npRlu4jdtdxRI8R6JuxAY5iw0XPnF2257SsgH4ROoAb/SZs7L0OT04Fee7EZ3wujwXUeMiURHgRSC5kMXPVBOBc8ROBOlayghO4bzzypyEnSs3hYt4d+EgN3WD4MREPzPwwFJv+1QMAS51Ai4r/rM9OH86bpflvHVw2xVc7OTnfbwZKcCZ/Z7fg9u/nD+Gy13nJhbvPgCetUKWkwGIFwaKFwnxtLDstOUSJScSUEqhSGfNDsGGIbwcooqo9RymAnnVtaYyKUejlbWq0tqP03SYUpjevn8wzoZhFhZjVcl5nKeMMk1x0Z2Ox4ElS8HdetcPU1MZo+04jUartm3rFiJHIEKlh2n86YdvD4fj8GIxTHh/pwp0baO7Kkl8enoEUsfxkCUZIiZOOQ1Db5zZ2l3wIYQZRMZ+TimsViuOyTR26AdCYCivj6+usu/evavrmjNPofd+csZaa2pnphQ3q5ViQZJpmIZ+ePP2Td3WKvPzDx/6Y59yIVJt03bWNXVThEMMfopc2NX1cZimEBMpTZRFYmIgnUPmnNfrqutqHxNoJFYffvz49a++bjZ1+N0fXVPVbffTx+cPj0/M+Zvf/PKnjx+mYfry668+fHry82xXbSpMhC+vBz+HT49Pv/j6K9e0u/sHyflwOBIIAYR5Zuamcrvd9vllP3k/HMeUcrdaEaqX50NIuV7XnIrwuNutRVA5oxBVVW3X69Wm6/fHI2pSWDj5NL7sn9t28+vf/tV2d2eMnsbxuH/N2a+33abpfvrxJ4u46VbdZiMkMYTxeMjj4f7u3mjVz9lo5MDZz8qKddpZKyDBz36etNKpJObcNVsgFUpsHYiAAopcnj48a6sYKMQ4ej8ab42ZhwkQFdA0ThpJr3Z3RtkU8PsfPnz49kd3tFVVC6puu0EWpXQ22Rrb6JaU7rqVUgoArUEpxYdQW/2LX3/j58QId/f3zlRDP338+Pj73/9hs9mt12sAJXDSgUCwaWtX2UtuairFx6gISuaSizGqbetxkP3L3tUm5TQMYylFWJRSIEBK5ZyZGUWhLhqNUlQKx5Dm0ZMhUQgIKQkhE0iIwdnFuZysMaRICgtlY5RCKMLDcEycKlcBqVxySun+zd2PP36KMUzTkFO0xggKFOZUtputqQxnUdpYZ3yIhNS2bWUrFFSAQEQgKSVFUrf1ceifP77003QYhnmcFKE2a9SKlMopF+AijACEkHLJkgHEgHFOkSJERFaGCJCqyioyMaUUE4tYZ+q6Iq1yiosGVqSQouUxN6UMjNpoYy2SKpkVISFpbQCAS845o4C1mhD9PPZzYKT7d2/X3bpzNpY09WP08zz2/fPzPPYP95t59k8/fvf9n37fT/2//O5P33zx1d/85pdvdqv+8AolhXEAEciRY8jCKcwoWdFSAlCMM7kUyawVASyJUVw7J1xSTplLVTulaBr6yEtBKUEiY7QAIKHSRilNSqVccsqusqRo8WIrpavaIdHMxTqNiDEGkUIkJadUGIFLSiUWrRURsoj3AU6VUqGylpQWYU4xp4SEgKC04pL9lAoXUtpWFVmFSNHHknMpYppGuYpBgzKqarHqwDWq27m7u2JMYSjMvBygiWeoOv9zljauosLlGf3GinF1ty7qzBlfTyEQuXXvXA035yMx5aoFXew4lz8CQjdlmm+x9qza3F594j6AnyEwXrOjbka7/CBXJ8tn3QIuRQFOlqbTjK81dm5yoHChPnIOll2YwUUJO48SP//7abFPdOhcjPCSRy5XSnciZzeBIzkt6Ocs4Ez6LuzhIuNdacQlqw0uxQzPLm2Rm/W/kKHr9pxFsZtdOHcKf/bnhiDhmZ/BDd/FyyfuQoluzNon4eymIwEBoMv+CsDplDS4mePZgnVRs05bx2qRjJbfGRBkIETIiZInzsYSZMGiusquCXdk0r4/pHH1Zs2cQy6qcJwTIeaMnAPkLCmRsDNGIYVplsJWG62NkMpAzy+HwzABlE8//WSMthqhQGMbLqWqViDCc+aSndM5s9OmCGtNL9Pkhx5L0kqHaXhBWa3WX371xZjj6zQc98fXvl/vusl7BfCwXXdd11jnNAFITnnyc9M1q1U3T15rPQxDzma9Xc39kGMBlFxSTmng8vbtG8Mq+tnPk6EuhSgsrnFqt4neSy6E2LZ1zrnf9+MwNau2cpCzaK1Kzvv9QVl97Pt+mNqueXp67IcRx1Fbp0AteVLEQIadMVXbkaY+HMZ+nsI8Cb96bx/WxTnVNd99+vjTp09/+vYP8zjtx3613hCofppYYL1a7e4eutUmxuiq5ocff9TKGm2tsVzYWeO2q3F/MFY1zbYUGfo+x9TUVSmcAhtlOJfheIwxAGKYvNIq5RxTirFUxrz96r1SqIAAqK5qY81h3D+/7H/84SMDdpvdarMz1ngfrLV3d7vheNQIVW1+/atfAtButbNVzZAlc/Ih53QU6LpOoXz88WPMuelW6w0YuwIgYwwiklKFcy6xW6/n4EEZbQxVmjP3+34ah+H1qBS1m1ZplXyYxqFpq5TKcJxyTOtVo41pGEBr3W03Gx/IutEn26iqqudp6NbtdrUdh76UUndtmOOPP/203excZUmTtlYZ8+b9u2++/ub1cIwxC8Nx6Cc/kkFkMk6zlDjHlAswEBESIpHSRpPmUmJaoi6igRSRtaZtm+1ma5R5eX4UkJRyjHF5VlNKWWOAIIXMLFVlUGMupcxehcCAqLT3vrC4uiJFrnIppteXA/Pr8rVQ103btCDgnBEuMcaUc0ox52yNdbUrc0KBytn1qtnsNlVl+31/KHmzWXd1q5XOOWtjXVVVlUsxE1LXtda6uq4RsWgNIiXlGCJzUgpLLgAw9P3+ZV84WuNi8FobpVXdVohKRHLOMUUGUKS0UlprRCqZWQQYConWxIyEkFMppQCiZyZSAoKoBIBIV7ZCoqqqiLCqnITlQE5YcugyFyRwVaVJpRhRQERyStEn1CrFeZoTIexWW4XIig798/PjJwXilCLEtrbHl5dvf/jTp8dPx+PxL379V//u3/z3d6v2w/ff+zl03Wo67Pu+TynFaW67VQ6xRM6p5Fi0MrZV0zAKgqucVkYEj8fe1c16dxeCjyFYQ8qoGH3KMeSESVVNbZVBVKQUkY6hALCIpMzWaaONIBJRt26tc372JbPSKoU8Td7UxpDJscScSoo5xBAikWiltVYpRlLEiUkpa1CgAJSMRauitdIWUUEqGURQQGu1WXfLuZicKHpCAiGVRYux6FZqtbObHbm22DqpOgMCCamFOOAFl07YK3iOKwjAki2EiJdDpc7BlbOddbnthGlXReXmf2dYPiPqAuIX0F14CJ51lRPlArjc9rPAy42B+KwKnLH1Nn3pFKJZnvrxppGL8nMRsU4GoFuZ48Y6dBIm8MwBr1QGWc6LtThRroYfOJ8+Cidp8wT5J4C/dHUOG8kZyOE8NoDzaRi3BYPwWqcREOlyEMaFF+K1u5sVO0/3lP92IQunxZcl8ig3A0IEWIqBf9Ycft6s3BKY84u3vZ9mdI7T4c0dt/z5+um54btnB9kp/HbbNV2HiQLnxMVldxhhKfmDy2PMqcAVoCgp2RJSmmvM9+uurs2xPx7GSZtilexq9d41DyuFwo9PT6v7nWqqGIuf5uRD8T4dh11Xd1VlDNbWeZaMuW5bZU0BkiL90zM6/fz4+uOnT21j3715sM4d9semqZCQkIgwhjz0Y91UlbM+hDh7YrZE3XrdNm1lbcmpcDLgCMFq8+MP3z29HB7m+y++eP/p4+Ombo01KYeuWhXOrjJ1tMJChE2znDDaLknvWAoSrL7+MsT48vK82q4IERistrqqgGEcZxTxPkgp/XGs64qUjjETKWsst7BarxExhqyMYpDZzxDweOxN5XzJL4cjALx+2n/5zTeuaYFUZd3++Yhk6m4NSvfjrFw9Ho6//+7HKc7fvzy/3b98+PTx0+Onx6dPfg79MFilv//0+Ktf/fLv/qe/e//2bYxJk56m+S/+8jeHfe/9/Ju/+uvf/dd/+vjjT/ebTQq+cSsQ2d3t1l0X5/D88nI8HI/HgbQ21q5XLYNM/TiNE0upmkZrQ4as1iyMwKQh5ACR52nUCF1TC8nj89P+MI1+btebh/dfKuteD72f5rcPu+16W1JSAI2rlNazD+MwPz8d6qaqmur+7s3+6amqKq01APzyV784DuMQfAIpgOisz6UymomC98qqwnzsJ1NZrV1l65xYUNXNSimzf973x7lZtalIYiHjKuWKqKkfQozaWXMcpxzTcq7F+6+/mOZQVU1l9Pfff99P09/81V+xwIcPH5PINM7HfS+g1ICGsFs36/Wqqqqhn8Z+mH0IOX/8+PGnHz4wyHqzbuq2lBxjZBFrHRLFGOfJp5iMMYSYcxIWYwwRMogxGoEqVzEzIeVUSFFVVc460goRCbAfhmmejbEVoQgFHxBQG6WMUYqMtiln9nPbNtPoQ4xhmnMpUNhWldE2xSTCWmFdV33ys58YGEgKLyYk0VY9PQ9N1zhnU8pTDCWV1QqbVUeAwgRIxhptrQ8pl+LQaq2VopwS5wzCIlxyiSkYq3LJAgwgKfmSGQqASFVVTdcqpJSySAFEESw560oTES7f/oQkUJgzS56jODDWaGtSToLAwuM8WedIUS6lsrppW6UVIZXMxpiccipFWJhLiplZENE5WwSKSN3WUmQcxiIpzxGEAXOYx+fHD8Nxb+rqOB8fP32qnF7Vdeb08vH1d7/75+8/fAuC33zx5W9//at115Xsx34qBaAUpfQ09PM0h3ku92kxToEw58zMxpAUAYaqrZTR0ziVorStKqVIKeOsQsgpoVIlcA4RBLXVAFCKEJ0eMgxoACClUmEQMEZZ54xzOeVxmoRFaaW0suYkECoiBsiphJyL5JIgZ6kQkRQAKL24mLMIy1LZFFiIAIWhCIF1lVbWmto1DQPknIW01iiCrB3VLVQt1iuzfcB6hbZiY5KovOCeXBjDJTtoOZ5z4QxXJELCU0ABliJ7C1+RE7LdguI1hnNF3j9XWX72woUXnMWhS3b5tdLPWXm6KFLnfm6MJydUFbwyKbhyLjy38hn4nmjQWcS5ijUXenebY346YerzZPWTU/qsQZxmcdJ3Lv0uQsZptGdidl6zq3R0iSTJmZidX79xfuPNDuGZJl5t1Odk+OsunC462b2XINRZMoNL8PEy84uCdQ26/YyGfvbnqghdt/gzhe72ujN7PNcVuBFyzkt2oU1ysWZd44VyXbFT0aNz2cYTQz2JlYIsKCTEZ6KEgoiEJRnOb1f2f/7rX9TO/P/+8b/mQ68j/OJX7367davkVZk1Qik8+6DGMI9+/3rYdm2Mef+6xxTvfvmFUcgpV85F1PM0h1Ki4PP+2E8jKQ1E77/8YjjsEZEUOWNSih9/+rC721Z11feH/BR5u1EaJef+9dAfD8l7g7ju2q5tEcA69zIcPzw9//v/9Pd//P5bRHU8vj5++PCw2x1e9rUilRKW7KzOOVtnpPDjp6f1qrPW1uvusD+wFCJUpNq2rar6cDgkH/v9EQlDjHW1Gocp+Gisnia/f3nRWrdtKyIpl6oxkKjrulJkmscUU900tnLa6OM4hpSmlPpxnH1wrrp/9+6bX/8yTHl/6EuJ7XbVdu3Dm/vgIx5727qf9i+/+9O3/XzUtfunb//Qz9N+v68q5Sr75u3bru1+9c0v//a/+9eret22jVXm22+/FYGu6dqm+/ZPf3r59FhZW71/Z4zOMb4+PVbWrtr2uN/vX18eH5+aplXbbZaitAVUsSRUGRGBUZPabLvMPE/ez3PlXNM1w/HYH48IknP8RIhE/TiPkydrdw8PVdv5UorW9W5bb3fA3HSbtrJO6+OxB6KUUohh9nN+TF3rNpv1erMFZkIdYn55PaTCIQozWmss6tdhAC62sq52mSGG1I9TXdev8TUl2ay3zpim6Zhh7HvvfU5cVXXweezHVHJVaSpZR+/TPM9D7I97XduqqQpC27ZWqfVm+/j0+PR6uHu4U5V7PRxjTBn5OPRaawXCwFxYKTUcxzn4Icz7w/7l5TXFwoVLzuM4z2E+HA7WuqbbWuNAMEoMIc6z79q2qhtcPK3RF2YUmL3v+wOi0lrnUpgZFWpnlNYskHyIuQBCKTmlJEqQIOdcYrFq+Q1WWgsgHo+TNTrnopVRZDJHZMwpHY9HYc4pFS4xJgEwRpfAKSWVYsoRWIBFKy0CQz8i4Ga76dYrY6vgAxGRVajIh6CtEi8+eFtZzkupvMiFYwwxJGWVEJFWOqsw+9pZVoxERiulUApHLiwsXLgwKdK4zFesFYW65FxKdtYutZFSxjlEhWQrO89eAEopuUjlbCkMgnWjcoycCiCyAGotpSTO2RdUkGJKOY0jEChjjN2sBIVRUFOOKcy+sha5PH34QQCrrp2zj8FL0VDiNA5//P3v//T9v8xz+PUv/uJ//Nv/YXu3meeelB6Go1LGGsoplJxSjEpRPxzD5ImUMVprnWOSAsaalBIguqrOLAAScsbZ55K1UoCwlCSYGHLmEIKedCksgskIKqWtWUwixlkuJYSoLQFSmAsDt+v14WU/9WNX15WzIcbEpXACgVJYkRLUBTJziSUbY5RWS5k7ApQiuYAQgtKJgQtbW9eurptVVbeI6H0ABKFKjEZlranB1brbsnPF1qVaZVN5Upkgg0rCCoGQ+JQ5vEDEWeo4o6/cmHzg/Iy+CB63UCYX1P8M8q7X/PyN5S9X08pVC7mRhU54tyDx5en+jMNXsUeuiHpu9jyqn4kTFyi+TSO/0oQLXcBztzfWFDnliF0II93mWJ3HKACMV2v5VUc6h/8u1l46C11/tiY347yIHxdB5sp1ll24pFZdqAucudx1reDEgc6SDnz+CtySyjMdXGQkubZ4Eb0+X82bfq8C2+WymxjodUxX2nVrLbpSuMtxsAvh/rwzuR3v0sqFIV9GyMCnrpYNYLoUc9KaMBYL6ZcPb365rl4en8LHHxvAmotL/k3TmhGGcYZW37/d7gf/9OFp7EdjTI4JBHYPO4eUE0thRK5rnUoOOZPTfvJFmAH2r/vtbrNZdV1VrbtqHIZqtxv2/dyPzIWWGgXIMfha1VwKKfji3dtf/KLav+73L8/Rj7WrphFe+/77P/1xGveQcyzpi3dv4hTWv2hI8TT1b9eb55fH3XpdmFWk9XpFIMBlHPrHj5/W6xVLISQEDLM3zr57+/bx06fH1xfnDMcSfQzRFykKtJ99FhYuoaSm7SDGzELWbu62L68HBnGrOpWyf3p+en6u2846N/lQ1U27XhcBY4xx9Wa3tl1/OBxL5v0QlJsKF7Hqh4+P//yn37+OryGFcDxud5svv/jyi7df/vVf/fru7q5keP/m7VdffinMOaY3bx5I6PHT42a15lI+fvgpziHM86prHnbbytYl+Kk/zMcei1hSBGS11dqgFi2C2sTCDCgKbVMBiq3d8nRqrbGiq6pWDLFk4IwamTn4tNndvf9q22ynKabI6rnvuamVNqzNSCiJp5iodjGXPgRrFGlqu7qkPAyRmdt2HePyXKp99AV0iPO+34eQm6qtnRn6MfSzQnn77qFpmzf3Dy8vR0g8DxMz9MID4Ga71YaUUdM0VbWr2mr/2h+OPZLKEakU/fj0DJJKKkhwPO6dMcasBDCFVDV1zPnjp8csnEWGORTmMPno02a7WW/XMaVvv/3u5eXl/v5OUI7DcDgecynGmJyKh5AzD+McfCzMxjXOWaoqBBQWULDq1tqoklKKYQ4hxohSZj8Ll9V6tVqvQozeR0ARlhhiKklETGUhCseSUgZBRYCEpHRKRWuFFouQn2dE0lpLZltZAFWUWZ5Rcy4gHFKASVgKaUWgOYQY4nLaKJdCiowxqBQqZbWpm9ZVNWoNKqfEythm3T1/etUGtdUxhBgjcMmpcC7e++C91kobW4CNVYC2pFRKqZxVShGpBY0Wk+/yvYRILMylAAEpQgAW0VozAyJqrUspwYe6rpEIELiIAOScvTAS+RCmaVJKCTMCMiEXTikh4uL2WopBgwhIIaVEBJC0MT4EpcharRQoRTHmeZyRwFQanIoxfP/88fHxw/fffh98fP/2/ddffVO3TUklQ3bWNE3DDICQOZecQLjkFOc5xhhDtNYZo4gIl/ClNcY5UAiIpTCnnE0WJFRqUUesc6tutX954cIxxFLYOKeUQqUAFRAoRVobYU6ppMRAhTFUTcUAIeaUOGBUCoC5xJK4FM5ISKSRSDLElLRCBi4MCKAUGlKgyVUVKZ1EQmZt6maz6bYPTbcqLLHkXCYktHVDrhZbga1Uu0LXZmsZKIAqoBMCIxSQE3gyI6hr0OkGim74zcJCzulXJ2A523vOIYtbOD/B0g20ntJ6zmrCrWZzEUcuT/s/s9FenEAnsnHG85vb8cZ//HmkCy6WkjPQypWGnGI/cq4m8zkWw+WVW/niM6UJ+RrOu/KHJSIlt+1cNKQz/RI523Fu1K+rjnNt5iL8nLnCrbJ1qx3dDPgmjHjz+mdrdiO1APxsrCcD+Dm2d7r1oi6d9ukSw/qsqsE5+naj58BlDS99Xhq6LNqZpeG5nNNt8telvRtVS67UVs47yZfyQgggwIQEwAgCwgSqgEhm0GgJGkOtklr8Snk9HzdNu6nNQ2dbixTFrB04GvNECIawdRUSRh82q6a2KyfgrElx3u8Ph34grZKU+XX++OmJnNXa9MdjSeEvf/PrL9/9xevHT19+9aVw2uw2bx7uc4xcEhI6V5NWP3348Pz01LSNczYG7+fp+dOzMerNw33dVBpEUnrY3P3q61/FXKrGAsN2tSoxZBKlt0aRSKkqK0WGY9+2NTMfXvciMM9ktDXWdJtVTvFwOKLCeZrH2W83m9129/rycjwe3jzc05JNapz3PhcMOaNWh5cjKTpOUwgxxVhLk3MOKW22W22r9d22CL687NtNm1mm2Vddt93du9V68/Dm06dPAuLabr9/zZD/43/++//49//Jh/nh7cNue7du13/5m9/+9rd/iZyruuICzllN+OnTi9E6zSGn9M2XX9VN/ff/4T+klB8eHqrtOnhfUn7ef2xqA1yAQSM4a0ikrLrCEEKYQ8Q6sdDh0Gfm9Xplna1dVVsHwKXkYRi8H1PwmXOMJc0xhmSdq6rOWlfQQYqjT8d55sORkZTWAYrV+jjMUXjd1gGg5ITOaESl1X1trVY5xJwCGtBab5ptLHL3cP/48ppDOu6HkaTkDEVSKfvjkBmrxmw26+HYI8tmtUol9/0oInVbDePg/bzaruY59MNgKqeN5RRSCjqlhCWB5G5lpzBNw3G12w399N0fv3s97A+HfcrFx8gCMeeqcs+f5hRDQVmtG6VpmManTy/BR9fYYZiOQ9/Uja40CgYfWQOyVK4CgJKKQu1qvZxISoTaLmdjc5FSmBekLLkcD0cENNqUUozRRUpM0fuYpSCCtZWzLkoiRUiwpM4TUVVVAFBYchZERIIwx7qumsZJwYjIUObRl1yq2iFiPwzakKvcKRmEkEVSzsyilI4hu8V/QgZR5yW1ymhS1K3Xm91mmv0w9MwFCMZx3PuZUK1WXe1sDD5zoVSUM1KiMXaz02H0ImyNFiFXV6gUlznFiASatIBwKVzYWUukUki5ZJEl7ieFJeeSSkYFhAoJNClEAwSFWTJrpbz3AFByYmbrHCKVUgBAKcUASKiUkcLKKEHwKRljWFhpAjSlFAEpuThrNJHSC5GSx48//fjxx9fDc8z5/u7+m6++udvuJAlrJKc1abKYs3BmP/kYoiJUhNHPCKg1IpTValVV1TiM8zQvgU5FVDfVPPuU8zhNWpumtZUywwDOVskHZ23JRYQVkdGu61ZktM/F+5Bztqaq6oYZUopL3YRSRACUMlESKQUiHMVpaxGGaQAuWZKxZDWQJoRCiFIyImmjtVHa2CIoympQ2lTV6q7bvHHrra2bMfgcZzLJWKfrGo0VY4uyyVasdAKVRBJjAWBCWcrBgSgGFCgLhN1W8znzhIsL+mzpvcWoG1A9sx65xMx+Xvn3jNhXlxAQ0i2Oyw3EnbnXJY0eLmO6BD4+VyKuYs7Vdy2XN84k50rn8KaJizZxEj1OzSOe/Tz4ORDjBfsvPAAvFO403s9KCF3Gsdx9VasQUJZ/Tv1f9JPrYgMgLnWf6aL/XCa1iEBLCexTsY5bDelnW7D0fdPR7aJcTiy5bBPeTPiiwiHcyjs//3Nemf/WAM7vnQdzM9Obad/wl3O3p08aXlbvlJp4XVqBJZ0PadkMESBBJkRZfG7MAIDAIiyFgKIP5IST//DdHy2Hd612u/put9qtrNbiamO71RC9Rvzi7Z02VQ4lhBhnD8LTNNmuBqVf932WohQ0VTVPaQ6+WtW2armUtq44Zkeq+LBq26p2eeZmswKGoDDMzMwCOE3zOI3KaVLqeOx//PFHrdSbdw/G0DQM3k9SZF25u+3uN3/zV/3oHx+fmqYOfiaQ9aoDKIWTQNU0lTAqVErRx09PxpjVemWUOR6PD/f32ig/5WEYtrvd+y+/+Pbb72Mo+8NhnGckPXhvtW7azntPWvscLTWI4FZNynkapjmEblWL0gpVZ+q7+93raz8cZlPbzd0ucX7dv3z9y29E4z/98feb+4eX1769227vtq+fnv/+H/7xpw/f//6Pv7Nkf/XXv/zLv/zL92/ebbcbI+qhaae+X9uajDn2feBIhVddMx+H7777rmtXkzVPHz99+f4LDZBzCtP8sR8+ffz45bu3XVvXleNSnj59UtogQeVsJu7nSRXKnGc/CqLQavKT0wZKGoeBS/GTPxwPD+/ertcbrfQ4zI0l19bBp1RIN3VlrdTp6TBML8+gtKCaYrRG59nPYZxirbhYotrZcRolpe2qI4R5PPrh2K6ah7dfoDG4pcRMD/T46dPTy08cc1ev2rq+u79bdY1SJgafYywpOmuC94wlBh/87GanFK3vumHsP356ORz6um52Dw9jP/j9XiutD68vXeusUeuuPY5jHOfjy7OP42rdVk39/Praj0Nd19qqcRhIkbFGKTXOMzAjkjI6phj3sR/HlHPSueSCRFCQuQgIElnnnLMxxQy5FEHE4ONRjsooEEFUzllm5pwkFxGY/ayVziUvfpoQY+GcSxFhQDTaKKWUJq0oBY4pklXamRwLSxIAa2wuRStFiFyEWQTAzyGXgghaKwDIRRgLlWSMrdp2GudjP6SUWdhaUxi01gCUU5rnSRCEQWu92excVaW4fHWij0FyJkQ/jc5Ywk4751wVcyzAnMJSONgZXd9tSsrTMBmnuq7T1iHSMI45Mtqrg4KFcyopJy6FFKJBIhQgLGUhgooUIBqtlValCEBGAFIEKClmZhbhHJMyWkCERQQ0KiIkUgKorQGRaZ5hmrVRSittTEn59E0MwCwKmZkfP3787rtvP71+slq/vX/zxbsvdrv7qqqbqrG105o4AzMwl3mYo4+20ovpmxC0MVyoaZrNekVKh9m7purWXSmSU3Z1VQTiMIJA07br9RZyRoSUUi5pgW0u7KyrKqe1EiIkIa2hMAOgVsa5IiAiBVQ/zLnkwoLKMKiSY2HQGhFYK1yeaBHEWa0VoeBSyEAp7axxTY26igUjKuU62267+3f16r7YJigTTRBJWkAZI9okwixYgLLSgKoAZeYCQFoRSeFC58gBnrHuhOJyrSB8NfYs6onI5Wzui7njhHbnINrZA3NSFs44JedAzRnv8MxQTtRKTgrTxZcM58o1fFV8ro6SK0W7SA1nUzacLcifEbMTpMtluKcE/huuddOD/PyFSzTsrDdcuuXLqt1g+xXU5c+I4GdOo5usK7ghd0uPgkiXQNCt++kirVzowEVCI1wc2dfePpOXlr+ezODAcC4xcLriWlXocvtJ3uHrat6Kc+dSk9cl/HO97Ha3Tq6uzxWca8t4loRg4YRyswOfGeLPHS7mHwYBQAK4FIo8bdUShMSlACsAgmJh1IQERIgCOUXXufT69LBWBVONWUPMEUkKCfsQFMLKWaV1AABW88jjMGgLsVTPL6/Px8N6u667LhcWwIf3b5BomsJxf9CE27f3GjHOc+XMcDwahcfDIcdsrB6PAwBUtVNaAxIXQaS6drZym9X6q6+/5px+nD1Dedje3d/tfC4YikPatO1q3U4aFELjHDBUxtWuyjkb45RSYQ7O2batp3EhWSWlBEham67rKuteXl+qqv7hx+9Jqfv7B+10TFkpM86+IPbjdBymfgpt28SchHlzv1XDzCU7ZUylQXDovXOVrtDVTUEwAA/arna7w9D/8OFjIv3h8fHr7uvnP/7hH/7jf/r//B//x3A4/s2/+u3/8N//7f39m/VqRShOW8Xgj1MeQ7G+2hiLSEqv379DxI8/faqNnYe+T/nL9+/v7+9Yiu+Tn2ar6O3DfVVXTV0roHGYpmmqnavbNufiXHV3rw7DoJRerVY+ZR+C1mqexv7F+36w1oDS9w93SEoAdg8P77+qDod+f+wBaIn2xlIO/eDH2TbIpWSGI2cUUQLUNiFojhFSqqxualu7ahqn134o8wQpOiIIcRzGXDgWKSUKl5wyCOTMLBhziZk5zdMwlFiMUcxwOBy1Mc46BkFSMRddWYYChKSp78eqbXdvdt4q/f13P/h+r/BNLMVU9ov3b173+5L9w8N2tb3PhX0OL897o9U4T+NxrOu6rTtSFFIkIiRtHQWfpmmeYxSRRbtBQkGOzMxstEZFgtCPPSAqpUrK8zxN06SI2q5TRIBYmEMIJeflOTBSFAYhiDGVzNpoRgzep5wBgJAASRALlmEei5K66wqUUKIm21RVzAlESmE/B1Sq5BxjSilbo1NKpWSGwgV8lMyQc56mKaSYYkQiAQgxVl3ljEmQgCWHUCpXV80X7959+eU7FATIff86z/O6rrq29YrmeY4xOgvWal1pn3MIoWqc0QQMLBJS8j6g1oBAiqy1SilmLjkrpRQRaTTawBlnkBAAkQgBFSkCUqRZmBBYmBMvJ2YorbkwF1FKKUUosFSMRICyyEopGDSlsFZKITBgSrmUootSSrV1XdX14XDgUoQlpyzKHcbDDx++e3r+BCT3uzdff/nNdr0lRgDwMQpByVppw4XDlACg7lxdVfM8I0GzaoElRVEKQUABggiXQkTaaAjIhRtX5ZhLKUYpKTyPUw45pDD0Q0lFpJAoZZWudCwxRkFjXV2llEERkFLWYi6atKnsoT/6FCpbGVvF4DPnpqk5p1Kyq6xhZDRLLh4t6URA1la2qshosFbZtmtWbBtq1litsNmMymVdZ6KsLWgU4AggiEXgVFOT1KK2nFLsQJBZnaok4yVF6Qz250AT4RnfT/XiEPEMtwBwtvyccJmvqHMOlJ1B8mQNvnWyXrUb+bxaM17T7OFs0TkFv4jkNqxyhfKrFHFhDnAOoMC5MOMtHC+4eJFwlqZuFI2z8/fWoHxZHFlOpb8kjp8I3w0nwAv/QRAEOnX6uSByYY/XrCi8cqzL/D/T0nDRgeRKMfDPGkS4aE7n+NrPAmSnC8tSdAroVIj6hu5d5n3hb+cpXZnTz1WbP8sP+9w3dKHRJyXvvCF0ziyTy5tnBorX666D/2zO52W/MJ7lEwS4OLAW8o0EXE4FLoBISCGwSEm5aWpV2Gj95u1Od2XqzcsUNUQqYRrTMHunqCAfn49pH1fbbWY+HKfjNPfj8MWXD2DV84dDIdjc3xHB8HIwlSWgoR+mcQ7TpEDePeysVuvdfb9/9ce+aJV9AkAu7Go3T1M/jFx4mmc/h93uThu16jbbzZa0QpHd3YNgRobo06Zew+JlshpDMgULJ04pa7XZ7Ha77dPTk/fJWjeOQ9O2hORDUEq5uspcKqXmlJ21wzCIcExeG20qRwYPh0OYw5dffrXdbcZpIm3o9OuLMaYC/Kauh9H3x3H7zT0C7F/2bdW5prF1/bw/MGK77b54f//09OyaylT2P/2X/5xi+ud/+ufHTz9996dv11X7f//f/q9/+6//u69++daPc9s1CDAPvukqKJmAjabhZZ9j2m52hPTy/Npau2mb47Hv2o40PT0+pRStsbvtZrfdVFZrrUnEj5NzNaAc9v0w+fu3b6ytgOh5v2/arq6b1/4Ychr7KQGqItGHddcmkJgzCkYuRejjx9fHxxdUenv/gJpizj5GzFKhcagEVULWAvPkU8pr66zCMST2EXMOx1Hadh6OfuhbZ5zWh9cjF/AxkHXKuRAiMRBqZRUaPaYY9vuXw34eJ1e7dbfSipRz3WajjQk+HqdeUvHjdOyHu92uadp+mDYPq26zAlJFUH96fIxjr7W6v79r2w4gj4cDIq8327qtXw6vdW2dpZKj5KQIjFJaEy3f0YK2ruLs59HnwgDEwiHG2c+uMohKclHamErnkmMax3EipZqmTiGnlEU4CRKRtjrFME1DihEFuTCgLPnyIsBcBIVFlFJKay4lAyCAIihc+mHoh2MGrptOa1VYSEnhAudytKUUq4gIldFFJAvv+6GURFZrq3JkyiwM2pg5+CJAIkiEiCVkZ60mLQUEoHb1u7dvf/WrX3ZtN/QDIKSUjKWqqYxVKNU8T/3Qz86EkFxdo0JXO60NKSqc+uMwjYMwx54zc7vqjDXWGiLMsYgwaTTKaKWW4ofGGkQU4ZSKVtpag7ScwkhImFPyIXIRV1kliITaamE2Wi8mAwGIPiujOEFOZXnuLyLo3EkiIBTEIhxTYi45l/3rwVSaFB0fj3/87k+DP3bNar3dfP3l1w/3DwpU8Vy47F9fSem2qda7jXN1DBmRrdM+Bh+jNphzWlDKx6DGXmsTcwwhxjm4hoAh5ditVs7Y3g/TMEQ/5xCYyzxNMUaNRFopjdYqRM4FAImWakDGIgFpBQCmEmcdKGpx3W7W665LPj799MnYWjmtmPIsCEUpAuGUowgQAWpVGLI2SNa4ClyF3bZ+eIfVWtp1FBOVnjMlJCBdTgjFDLzEVYCIRZaMH5GywIoUJgIFALwEVIjP+UtLHOEKpGelBG4B/mouvpAYIFhSbPAc2LqFeDmzkIu55VwC5hz0uTW0XAw7Iix4OuHy3PDpvVsucUr/ET5bYG+K1ch1/HBmGSf18uLMPmtHF7iW2/jSaS3wnHIO52rPF8q4iBj8uT4hZ60LzxE5uaEzN5TkNNQzB/q8v8vbF+vuZyWXTuzxJAMJnzP8T6QNbxPOrzLSmZJcGAne7jVcjVaX5cZLRxfd78L1rvvClxZvCIxcf74MGs7s6rNNOKt3cnnlev3nu32R4PAkJp26XQoensWwZUsQAIRAIyDQ8qlkYi4sCFAEJh8LrGIio+12vZmmj7vt2hkqU+gfD2/fvtm+3X38+PLp0/M0R1tVtmlXjXseh6enI29zgry7uwdSwzAUZsuyXjVt5X6YfyhGm+2WuUTv64cNbdYvH59jKkopW1da6WmeU+JhmLquc64hpV3TaFJtGwRhOA6Est6u2rb73T/9E2e+2xit9DzNqLQP4fj6kkrOKa0367ZdhxhSTpOf3r59J6SGaWqbbrVdO2f95H0I4zgqpNfX15jicnb1N798cHV92O9Tyq5ydVuLiFI0T77tmm6zcc4uSafGms12/e7+DSJNw/zuiy8U6RgLs9zf3/3w8TG+Hsfou93qp58+/uM//fO//Msfcg7f/v5bV9tffvWL//3/8v/4i29+Ef0UjhOJSMirVWc6Gvtx7qfVthEu0XtCrKwmQo1irPU+LmdYCWBTVUlRKeV+t2maNkXPXIZhgMJNuwk+MrO2RmkdQnx+fQbhcZqabiXMKJJCapp2va5gu3p9eSmo5pjX9ztDat8PALB5ez9N/vl4bKS1dcWlNK5qCJhFSGpjcs45Fy6FZz8+CzATwjzM0c/z4Wg1usptthuOcT+90DwZbVOIxjmFWhlprBVUWpsYMoMopChSkQ4x9f1Y17Ux1qdy6MfJB+uMcm6eJ1BKGY1InJhjCdn7EPTuzf2RuRQmTU7blIt1ek0tgggkLplzqp1FBGc62iqFGkmJMLAASs7F+8gg5LQRoMKlFO9DESYiBkGFPpYSiwjkEiGTMSqljABIihCN0QQ4pySFFRAgo5SSMhqFpKQInw6zQAZmZBEGBkTIJQuDj3PiLPM4+6ltOyRMKXIuXJjo9D1cfFCEREprSTnmklAKF0ieUSNRMdpZV+E8a0ZUpDUuer4CJIUMkgunyUvJsx/mefjw44fn15f9fk+IKScE5pSRMMQQSuz7eafU7v6OhYdxFJAUfIqRQRhESnp9fZ19ePPmoW2aUnhGX3LSShESc/HBE5IxmoiYWVhsY3a7HSIO/ZhKEobIAUWsNZVzpHQppRQRZlKCgKeVv+IZIAKDhJAYJ9SotVbaoSJFGOcw+3lOgTV4ycNTPw7H1/2+bZs3799uNtt11ymwwKCtQqC263JOSBBCyKkAcOHS92EePWkshfwcldJK0ykhqxRldKMUA8cQWcRoAyKaqLJOMseYtCbnrB+xcpXRBEpQCBEISSvhwin6qq2brosxcclklCM3TjOTrLar9d3Gadu/9NWm41xySjFl0G7xcBCCoswCrqpcVWWRxIja6lVn6paade52YtqkbRRMoLKlgkvJX1o+aou6K4v6IAIsDGVRChEXvxkAI8ISKjkD+wKRt9LCz+Dn6jY94f4ChieFZ7lCGE9cQG7A/sIX5IS5InCBrivwn/vGC7SflYgbEefCFS51l+UkjsCJvZw410VYgjMHuMXRq+RwkjquUZ2bNcATKzoXkAG4Mp3TPXhzcNhJj7pkri9zZPzZFG/o1cl0dArdXOUs+ZwFfH7ZVUdbdmUxsy8zOZ1Ee2Ytl36W1wUWCeu0E6eL+UZWO9Ohi5BzTu670NVbGebqIr8lZifSd/0cfEZaZfkAnojon+s7t+Tz9u3bBTm3fSZbl+RDvOwtweK3XzROKsAgoBcRhTQgs0hk/eF5+D3iV5vyUNP+6eXr9w9ta2JJ47Ig5DYPb1Jgz9ysa7Ru//Q6xaJJTT6269Xd23tmMdbOwwQMS8XUru6sNvM0+2kaUmwbvVuvu66WJNPsPXul9TzPMUWHrm6bqq5ZsquapqlBMKc4DSNimaepsKx2Wz951zSVMcAyDHHdtCn6/WG/f36pXJ1S+uMf/ySFq6Ym1G3bHg7H/XFfVVVlFbGOU0TCw7EvUna7rY/+h9/96enpuW1bbezd3W632+VSXh6fSKmHt/fOVdaYl6dXVOAqm33edRtJXLhYq8dxBFLGuhj8f/7//kO7W73/+stv//Dtm/iwf3n5l3/6r3/8459so7qt/Zu//Ff/+//t//mrr3+Rva9sGyZ/d7clRf3rsambpdh8f+wRgXPWVqUw5VRQynDYM0uYpo8//rRabdumAagz86pro/dzPxKij3P0oeQS/JhK3DU7RchKjFbWrlIp0c9hDoxsnTOVc1WjSUKML8PQbNvnw55G99U331RVXVXdcehfDn0BZpDaVZqxbZyf/DTNVkNiEYZ61a3aGgSLcGGGworQz0G3tXU1k0oCtmmUNaiVyjL7GApnFHJ1RnoajnEO282mbuuqdnnwuZTJz4fDsL3f5JSP42grU3etD5GSDalY4zardfZhOh77oW9rp9/sHr64vzu8vr68HKfJC0nTtG/a1X6aUGujFecyj6PWxjm3WrUEBgBDiKUkFEgpZ2YAlCJklNEac04lhz6SIlNZQSRSqJBz1lqXXErJzGU50IqWCM/y9IFIWiEQLc47QClcSmGWIlwABBh4+W1HrQiVEi7WubppjTVExADCXAoLiNaKmXPOcCo+DKQ00ilCoa0BopRzDkkEm5qs0dbUogspYuHlOMXlJG9gVgQ+zD/99NPkBxbev+5zKeN4VIiNI1XXiIgaOLIwkkIytN5ujDHhh+9fnl/maQCQ6KO1pqqrAiXFMA7DZr1SxMVq1qQVxZAA0GodUwo+GGu0Vtq6tm03mw0IhhDmo1ea6IxmRIQIOZcQAhGmlIwyrnKkkFE4c4r5ZMMViTHNMSilVptOK7cIPz54EYkpkYbZz3Ocjv2xq9p3b764u9sa60hUjkmREsZ6Va1XXQGOIXg/sxRnKhZOJYPCmBIV0Eozx1LIKGNaU9U1ICCc5KuqrnJM0zhCgbaumDmnSCiFyZBRBoxRKUetUCkqOaeSCxDZChAF0Dk3jFNJIad82O/RULdqSipFMhIg6cS53a7LMAqA0paUNta1SsXCrmldXQnpgsSkTFWDdaxdVDaTjogZMAEKIgOjLKkul7pwAiLIyCIoQNcsm1NFOQBZquKWy6lKcoO3tw7ZM3R/hnxXhnRiPkAXmecctbmGX265BZ7jZX/Gs26kpUtoA886xEVhusFEuRSzOcsI16o5F8T8LLEM4HQm142x5HNBacFzuaFDl7jN7TUXjxHLFbkXR4tcgPkC6iiXM9cRrs5egM+J2ZXbIMAlqnhe/5urLi+dDU2wROZOhPYsGYnAeSKyhCnPGhGeCh5eeeqJ+VxiYOfcuNsErQs/wpuh3BKUG3Z41pzkzGEvk7goRNcZXdu5aEGXzbhZA7n8B8+rdZ3dMqMTyb+wVwEsUs6TBcaMCEpRzDkBaFv9+PS80/j1m4e5THcPDyDcOqtsSiH2w6jntbK1qmsNEGMajvPhOKcih3EilNqtfEjDcdQIb9+9ef70OKAyO71ZdcMgCmT//NLUtqrccBgQeHt318QUUka1nG+TjXVN2+SU55G5lOADIq7Xa6M1oRz7fX84vnn/xjufSwFnN7u1rUyJCdW9sTam1DQNCrbNymrVj+Pj41O37mKKT8/P796/mz7OgGyVCePc98fMGQCss+++fO+D97PXRlfO5pwr69SqA0BrjQj4MWhjm642RofZK4Ef//j9sR++/vUv33/11fPxOMyzn2Lk9NXD9jAc/vCHP/yHv/+Pw3z49OlHIvnXv/3r/+Xv/u6rL77arreGZPewyz4dmVGktdZu1DSOwNy17WF4dZUhVClGP0wiEOd5HMZSSs7lU3/MJTtnrbW2sjH4GPz+9UVpXTeOgV8OLymEpm1sWzFKyNkYWzVtQRmnuZ/mnItxhoxBY13tHppKHafDNNpujcqqumVUiaHZbKIi72NVG8zCcwSB9aYlghhjbZRqKmFAgWkal0O+16u2W+9ym0pO+2GeQuxaB9YdZl9ZjUDjMB/nWbeu0saXsu+PKCIvOXv/9m5DKH4KKOiDPxxQG83IzNwfh8LcbToispV79/ZNGKfD6wFzToG1IZdSKEyHw/zhp2fSuNluyDbNqlPWPj4+c0mITATCjKC00QLSmnqaxXsvIKgxp+J9oESLlznFlDlrUKpoXWsilXPmIqSUdkZpxVkIUSlSSuXChGiMQ0RCKjkDcI5ZGVVYGICRc04xZKWUtVZEiAhJoSilVaOpqldEqI0py5EZiy9VKWDQWvkYlKLMQiCKKOacck6lKK1YylJoGABySYACQKg1MStmEM65FC6Zs6uctvpw2L++PDMsaVXIzIDQH8eS2TmbSh6nEYiijx9+iqvV9pe//vXDu7f7wyGkMI8eWYjQz54Lg4gAa00aCYFBWBmjSlFKV+tunGbvfUxJAJQyKZX+2MeUjofDPPlu1QlzjKnMoTC3XbdIBSWjMcaHoK2xymilIycBYeElVz+kSFqVnMeB5jmgIuaSUyIiV5nCMA5JAd/tthr1/cOd1QpJNW1NSCnmqnKEyMLaUEqiLSFSjkFrU9sqzCGnmEOuV84YzSxGU7dqtNFjP93fP7jGpVRSjGFKJUUQzkmMtiAl5xKDBxBNCkScsdZqAoHCTtna1aIpTmGactvUWus4z2Pfj0NvnX388dPx5fDFF++bpks7zk8yea53O2Ur07RI1rSd0rYQMekiRMagwsyQQBdFBSgBJWZBZAIBLCyLxQERcMkBvkga59TpBcXkHGAQ+Kya3inQcormXIWbswxzfqC/6A54CYVcAx/n+NZSIwdP11z9qgKAfOYkZ5C7YOkNHTm5iZGQeJFy4BzYOvV96/A9n/d5ogEXjxJdFJCLbnUTgMLLhH7Gf+R6MBiejjs9r9EN/5OlEVmKlwMD0vn2s5S5DFpuIkE3IH7t8TNZ6nYUcrMznw1xGd7JLS4ntvK5/nJu7CbIeNGEzvzxXOHpZsfPs7xQ1tuFuY7s9scLL/pvDuIiofHn+ht8VrIIhOHyk+Dtvvysr+tmnvnxku112o7b3vHsdQcEVHTaFxSAggggGQmEdCzUrTYezciw7lZffFE5zCVxDLHuVkJ6CAmds20lJWmt8jArgPVqNR/H4RArDJIgTHPXVuPotbLjcZ77mRCIxJF6s9s6p9+82T1+/yn4EEzQxriqbraNrarXF8qc59lXxjZdrQmhsCLQirbrVfDT2/sH732aPKY8+0lJQaTM2eeUILebTQ1Scnp5/vhwd68IQXgcjqRxGobKWGvVj99/jCE660rJyScAQQi2rrXWD+29MWYcByxihNLsjTGvL3sWcZVjzqt1263WsYRpiP1xiDG7pqpXzU9Pz0+H/fuv34/lxa7q73/8/sOnT7//8Q///Lt/UUr98pe//MUXX/93f/3b3/zlLzTqklOaIzVm//QhTLPM0/xK3XozvBybrm1WlbMgCrz3wYfAeXO/3g+v0zwth3Iq5ZzBeRxA6rq2KQSF8MWXb733hcvbdw8xxXny2+3GWTeHqR97rapYctW0K+OKMod+NMbd3a1rVwXvq9XWFhWO0xxLtzFTzCg8HA9KG9c4V9WEYGtSxrEvkw+0HJ2igJhQqZf9PpUcuRhrvZQSYmWVcXVJKaRc5tBUrpDqR88sypoiMvXTp9djKKkwf/nFW4gl9v1MoJniMDabrmncMA5d1zZ1FeaQMe62O43U7w9cSmWc95G0evvlG0DWo58E+DjOGWR79/Du/ZtD//r9dz+p2nTrlVY6p1w3NQJWVaUNKUJAlWICIQBMMXEuQpAl5znlkkouJWdbVVVVL9IfIIYQSinKKGMsAGgjikgpAgHmwggioLVFAGFBJFbCDIoUEUqEGFLmoo1RilIqAIiCihQRCWiljAAv/nxCUloT0oJcirTRkktWipSiGLKPIQQ/+1Frvd1sK1sxA5JacmJhsVcrEi6yiE4i2mgANFopwnmcjNJAEEOUmMmoklOYgUsBYGHJJU7TmBh++vGHZl0rorZ2vdKmbayzwjwOUy4lhSgreebn9arTWjNzDqmqqqquS2FrbS7Je6+VKiX5efTzGFOcpxkEU0wIqIhyKSmmlBKRMsYSYNu2fvYo6OpKKU3eI9I0jXP0KYdcxCAgqhijgCyOFUScp9kaIkBn7JT7dtXVtkGQnIqxylmLQkYbZy0XyaWwFCTiiGM/GKtd7RApEVlr5phzLk1T55iNMQoVp0KIVeU2212M4eXlRRHUzhyPfQyRy+CcySlzzrJUYKoMM8fIypi6qklp13WszP44Ss5DP1S1IeaSvFGMJc3H4/DCFvDuLZeY2rZCV1ddu33zBl0bhQKoVDAhZlRobWTJIhmFBYugCDACKAUIwowoCoCWJ2AAFGA8HW+FZyUHgQT5pKp8FrLAy5P+VTG5kSBurTkXfJMzBC8Ic4al85M73mDn4mK5JmldMO2zxKfPcPtGBoAr+zkxGj5B32c2XDqTpnPzeHElwxkCbySuE1U6x4x+HqA5u7rh0tVV8zhj79kqI3immjd0AJEuRZxvK+V8zmTkBsRv7l7eu7EYXfbi5sIb+WvJ0r+qVVcOcp72VZATuGFEy1TPrXwmNF37uWzabajyRHlu6cyy8Oedg5+pOACLjf2GBcrNfRcJ7OIH+nzut5OWmyleSfA1Te/m1uWzf1oDOX34zyWUEICNppyLreoU1YsPPzyNre6QpeQgoZScUQMZnXIOodSbNUHpj8cPnx4zVixorIGSn173H34a//q3v9ZGT9O0Xa+lKs8fH63RldPWmHbVhDDvn1/7obfGuape79a5lBRDXZu86aZ5MsbaqrLOoEjwc38ci7CUDCJd2ygyyXurabtbjeMUfDTO2qrCorRxVWU+/PDjxw8f52F68/bB1RVoddwfP316DDFkyE9Pz1ohc6ms01pprZyr6qYbp0kEKuecscwlx9gf+7fv3r199+bl+RUQt3c7UTTOoVs1xlZWqfv3b/74p+9+eHyixrVvd98/PfbH/nd/+v0//9d/SiWO89A11b/5H//u3/3dv7XG3G9aB5qY4jxxzntmEG7q6vByUKS8D3Xd1I3NObrKTH4qJQvmVKL3QUhW285q7aoVITZ11Y9jKfz68uxn//bdQ9vURmtmPvaDsebu7l4pK6SHOUahEPPMyKZqu9VKVRmM1hbRloJVtVpvNkyVqpp//x/+/vU4bcb8i1/9qur00+PLrrKEGEJabXZ3m80P//LD7LkyiljHHF3jSOsxxzhm5ayp61yKn0IWtdtu6nXnx3nYH0WCAvAxKdIKwFqbOU2Hg6C0baNY6trFVHw/GtIEEr1fdR0g1VWVU0JrjDMx+Kf9UYS1hjiPH3/6qJV68/5OW6O///CDrZ2PCVBtHnaurWy0KYbI6fnl5Xjsxzm8uX+omppL4SKZWaTklFNMAqI0CRMIV8ZkIK1ojjHnYMUYq0iJsChDOWUf5lwSdUor7aoKAFGASwGEmFJJRRkFIEQoAOQ0FxYpl7QFY4wxGgSkcIhZ142iJeUCAIS5AAuKMHPmdLaOkogwMhDFkiFnQqrbxlhTt/U0+iywVOwlMiFGJA0gRAuxElGlpCQFlNbOWiqFABrnlKYY8zRHInRaW1cppRAwZRaEksXV9fD08tP33xFlo3Xhoglc5ax14zCs2mZJl8tQ5uCV0oSw3q6YRWlljJ6n/rjfC0r0QSFZo0AkhjhNIxEao8M8KaUVYmWNUkpSFsUETEQ5x7pxpQghIgEu55+jCDAgShGFCgCD94LiXEVIpzNCs+SUo89N3SlSpMhaF0MEwtl7q61zVcnsKle4TGNi4BACC8ZY5jEaZwlBaQSSnFMIMYWkFcW2LaWYyiKQH/08DeOhN1pLZq2sLwEApXCOUSEQgDJLLUohbYAoJQEuqpS66VYbM0x9DrH4WWPpKtKiSpIYY5zmn/40D8dX19Tr+/uu24E2AASijKsLqnFOQ5YESIoKQlkOH8clWIUn7YEXTngKEl0tMueAAiJdUpdxwaBT3WG84ICcofSC8FfABrj6aM68Ac5ovCDMufDNmTThqQrNVS65ANEFTuEUFTkTlMsj/cK+FgqGi4RzwTMEOKWliZwbv6EVF+bzGW5eBCG4FF+8tgafNb3UjjlLXXIz2TNJud50xvsTVl8dxHBdTLgywQsDuxnB4kz+TEw5b8aFVsolVf66K5+pKLe8ZWnvbJ2+vfAUFby1UMGFGF3X67MKTLcmqMs6fD7Q690IFyvPxZt1cWfheUn+jL8t0xGU5YixzwWi5f1bY9Xnk7qO6LpBcp7tpRs8/VqcXIVLjQ1Qy/xFkAAyQwI6Rvjh2Vsuv27NmpjWylTu+bmfXma32X749NKsqnZVzz4lpaKgj2nTVMK8Wtfr96uvvnkf45y8QhLr3OpupQC0oBQokf3oh2OvlFrfbRlxihk1xFIkZkRs6raqna2tIq2BECnEfHh9FZG2aeepIKqmW5WYcpIUs3Z6c7eu6iam5H0owXdNu95s5nl+enkRwFJ43/chhHmaviL79dffKIU5xhLK7m7TdE0paI272735/rvvQ4iosHL26fFxu9pGzrOfpxBq294/vPHRD2H6/R//FEvarrcvzy+fPj09Hg5vfvUVWPvdn7779PGnf/7H/3LcH//qN3/xb/+Hf/vVF1/++pe/2G12lbNaQQ4JFFhrJh/mwRttnKu6NeacalcVzofDYRrHdlWlEjnH7bqrqnoao4jE5LfbN8ZYP82vr6/WuTnG19fXcZiUwrmupAgizYPfp+Pdw1tlYAp9IWNXq3mOc4wV2SFBCFmZChiP+2kah6++eBfnPBynzcNud/cwfXjsJ+9TYUTb1lXXbbetVqi1ej32n45Ho3C1XvMAmCnmvF6t3q273//+T/04JsSuawqIT2mOSVtra2e8C36utDHOVs6lkLiU1bpm2aact9tNW9npeAQpyliBIlxCyEDorLFaOaPqrkGiDz990Ba5oJ9na8kqBBBCUYr08/OzIFS2TSnT4yMghxhLySGkl+PhcDhqZeqmNsZmSSkmAUgxhxAZmIURSFsDpViEuiFCDDEsv/QlFy6cM1u2iCAsKed5muq6VkoppYzRwfvgY+acc86cAcQai4jGmcDR+xhDiMnnnIyyJbEo0UbVda1IlywsTESFS0yJOedSSuHFTaQUoRQhKMuBVFKUUW3XNm3LJc/TDLifp8lo2zY1KEIiVIhAREYpJERCSKgE0RpjlNZEOSXJLAIkYLRWShEqYVhcIYWZEBVR4by5Wwnz6/MLGSQiYFCEhYsAL04REcgp29rGlIymoR/ruoohktKJ06lEG9Fy0MfZ4ooIuAS2SinLQ/fyhJ1zKSULwjCM3WpltA3BhxCnac6cU4xchEg5dzpgJKUkIM46bZQ6FWEqgGCMWY4MdVVVVZXRpjDPfvYSXEyVcxAwx7Q8lOeUAYSZPQig5JhY2BjNwrOfJfPQs7Gmbmpd7DyN49DPw4gIpFFKtkq1bR1jTjkulvmzY1lLObu/iEtictnUWZNqqjohQkYErkAfX/zUTwjKaiVS9i+PzjujdPDss+gPH6v1dnX/HpqVUW7ddX0pc2I+2czUInQAg/DJBIpy/jo/iy1Cpzp4Z0fOxSBzPSPy1j26AOspE+is/pw5PALcIidc6Afg1VJzVRpAzggkS3a4XNuSGyC/cIbLCC7t8PU9vIo1Z6VA4Pov3gDpmaFd6dlVEbkNey2Mgk5JYHhL+64IfcbRc+uXZKOTiHSVY04hKFzU28shCxcHNFzswyILnzmxMQS4MVnhyf680IRblrOQxz/LwrtwldNIbhnSLY89MbWfMYdlPOepX9PMUW6uwgtHuyEan0ss50DclR1eyM6FDp/HcCKAy410G3O75PdfN0wu3f1MLTwJSzden9On/mbUn2l1AGeeCgAMInQi34iAIKi05pgyqmzs49A3mN6o9u6ubjbGOmn204c//LipmqapD/s9WSXW2PVqmso0R53ztm3fvdu837ZPHz/YCuumBlApZCE0lSujjz5wxOBTt64Ly7Efq271+vQsko1VXdOsuztAOe6H2fdama7rSJn7uzdaW2bOKe+fX4F5talKSMwJQbq6tcbVVR3ngKlYa+22Tszhhw/9OKbE3vuqrr/55mtm2W13bVPP8zyUg21su+6mcTK2stY8PT0D4jhNMfjKGeds0zXHwxGV0rU99sNPHz9mTkMYJ0ms4IdPH0QgGziG+dt//x8P4/E4HI77IxX4X//tv/vf/u3/8he/+EYKz8PQPz2r3UZVtdF6Hqf+cNRabXdbESTErm2Xh+HjeBzHSVs9T6FdVV3bKa2YS+FEpIhsTBLj3Pe9D2G33ZBSqHTVtpllnEMKWWudWECbWGQYj8fZJ4B2s3N1u+q27eau74enl2NVVRqJtNbGzT6qftg/v4qhL79+H5nnWD78+KFdrTe79WrVVXXlKgrej2EWjaGUfpoJCZUJISlXsYKq66ZptpXJOfpxLDlJKtF7awwhKGUQyNX1KWMaCsey226meQbmFIIf5s2q+/KrL6dhGvo+e//68qK1rt69Kyxx9qBAI2y3a23M6/Pr8Th0m7aqqjClaYr6OByU0sKIiI8fP6VpSsk/PT0V4UN/HPrp4c2DgBBgXVVEquRcCmqjkDSL5FIAJWdOOZNCQqyqujBrbYgQAONi3EYyxhTJRXLKSWltrEUErbSmoohQMOckIDklZTSCBoaYYggh5wxIXEAAlNKnI7UJQVD49EXHLFwQhC5Rfi6nZ+eYcuHlDFBJMcmKAWDJchQRpZVyZmFNAkCIpBQgEoAiRI0gVDlnSQEwMarGMufsY1U5pVTOOQcvIixCREqp5fvKWKM0pZS8D1xKVVUlM7OQUqjIVNYxgwApEgRGmGfPAj6klAsirVbryc/GGECMKQuICAtIKTLNoRQWycZaLixUjLOAVBi58OIxXw5DjTH62QswKeW0AgBmEeRcsiztMSgkQEFCFHTOGq188DlnANaaqqqa59l7L8KqpFJ0lKSIlCE/e2Y2RheQlDIGyDHnkpqmAYGSs9KIhN4HRAw+lpSstQTQNO0wTd4HFiFDJIiguFAC1gaV08wgKAhUWJQCYw0w9K99KaAdIXIpqaQwz/M8+uN+tLbqtl2KIeaAKJ8+/pThU0xSuXrz5q4MB1rdme090VujbDyfTakuT7ALJUBiOOfuiBSQcpLN6IQUgidQu1CPM6TcYBJeEPHyDiKdgyZX+nJB3XPB4ZPIg4vV5lwxCE6p2CcWchEJiM7W7DPZOlmhr0aQkw5zJmkXOD8dyboM8Rz+ulbSuxUPrrrV2beEcoZEvELk7cTPL95yPDgbqG8CVCdF40wWPutPzmaaK3G8DUmdB/yZhAJXLzfe6ELnoV3dTHjt6+wpP3OXMwk6sdelKbmNaN2M4tLDhZvB1YV8y2tuBnJeooukcvFhnSnZ5cZbO9Xl43XD5BBhKfkDV0KzyFuX82LPY76lL9fRnBYYbioLXLr5jPRcef2Jvl8YM55ccFfWziCiKBYmAW3sPvlnn+5LnZCdVnf3m8NhcE21MibEqQgfez+nzNZSWwsKKuSU+peX/eNT3doSUr1qSStl1DhOoZ9UEbdq19vdetv99PGxH+cpJde0xlguBax2dZViPB4OIGCMfXl63e622+2mabrj4fjydBj7sXb28NqnGN5/8SCF/Rw0qTyn0Y/WWGE59MfX5329qhvVffjp4+Zus1mt39+/m6NXKHPfj9PgrNXGzJM/HPq6yk3bDP0x5fRwvx2AtVJd067X3W67eXx6YkClVFH5H/7rP3333Q8jy9/8j3/TD8NmvRpTmOLwhz/886dPj++/ev8//e1//6svv/ntL371y2++Rs5h9rrpSoqcMkNoNs1cMhQGRSLFaFtyHoah7Tof0zzNWqsseRjnlPNq1YUwDEPfrJq67tpuuz8clKJY5DjOqM3dw+6hfj/2Q9vWJZcknuoqHqfjYYxku+3WKuunGbQlW4Nz9WZXrbcRUCCVmKZxbjdV2627tmqO7uXxUbTSCnKapmOPROttmzkOQwoeQvD9sUdccotIEBjK5uFh8DHHVFl3v9s5o1OYkzCnVK1aQ6gJm6pNKnz64aNR1NRV0zpr9Dj6nIsxuqQSknzx1ZcPbx+wgA/7H3/4gEhv3n/Rdm3bNbnkx0+f5nG2ztbdVlu9Xq99P2Wfm42ttUvIuh+OQz8aXTVtDQzPnz6JJACxlaur2hhXVW48Dtnl9aoDhhhT8EsJRKURtVGAWIqoFHPOWqmmaRHJWGOtY5acSk7FWmratnDmsylSyulpSGlaiIcwFM4iQISlsABaYzUpZmZhY4y2CgQLl+SjoqKVBYDMsByJgLDkmy3YcMIc5hJjJIUsXEoexjGjABc/z94Haw1pynwueiIgiHJyosrJB0EIpE4SgVYkLEAn7FIKmHNIOWcWMUYbY6rapaxSSgjoKlcyJ0FEpa0zypTCiFhE6oYQgYAIFQC7us4551IEoWlqVzWm5JRzLsyFAVErpQ2mmMZxDiEYY1fWLgoc0akSsQi4qqqqmoiWE4eM0SFFECClgACKFC7MggjaaOssIp0SrU5WJzHaHA+9NjrlrI3VxpglJY5lGqe2aY1WXJhzQRCFiFr7eeaEREisnKmcNSllztk6rVBNk+dcOKXd/bZdrY1WzuhjKblk7ZRSy3csxZgBFTNIYWM0F0EARdoag8wx+VQkJTWHKfhRIOWUEku1aonsGFIpPE2RSaUyFcGcGNM0kff9fsbv3Zv3669i/cVXhsxiBCbmE28GAFRC52O+EUQW6/1JZ0E4kYaLhfdEPIThlB9zpQxncWEpGCPLEZm34YiLioOXCtAXt88FbS605WK0XRLwEa+e24WNCd9cj5daQOf7T88KJ6J3Ht1tAOVa2wZQLqag60qc+QVcVB08c6Eb2QFuRCmAi9Bz/mGhMDfGa7iEFa+QfPEgX2AXLv1dFuYaALt1bn+G0TeSyYnYnOM4V9HoRtU4F/u5QXw+BdAva3Z5R26GdmUrp2tw4a+wMOmrffwysutSwZlSwpnDnNPyr9bya7rYZcZnh/LSwMnDd2HbZ4/45eyUcxGBs//r2tJl3p+pd5ePBFz396xM3dyJpxDY8h15+RUgPFUeQSyoUtFDoUOGIclhiJYMlLRqDBGnEhXy8XXvgVC7uloBRf/ycpjnHea6tl998/U47EssKSSl4PnpJc5BmCGDbSt0ZoypKFDO7Y8Hl8vd/aaIvL4ejHZaqapucs4AlDOHGJ6fX3NOUMpmt3ZWT/2ojKubxjVt8n6co0WOOQ6TL2kszImBjPYxZo5ffvONIuSUvv/++/V25UzzeuwL5xTi7INSKpc8j1PdNcbZcZz2+z3nsr1/ePPmgUsZjsemrtEoV+Tp+PrSH/bz8E9/+HbGWKn6H/7hH/7hv/wDGRHmv/jqq//13/1v//O/+buubjRiRdT3MfnUtU23W3MuzrrkIwpu77dLKLJuau9DzEXmSTIDgastJsXH4fll//L62tSV1lqTFcRhnI7HYZ48aU3GzCGLMkpp1Pnp5SiC4zDnlyExAyrVNEXb7ZvtLx4ekgiiDiVPUIy2dlUjOSg55RhyzpCPY48KiDiVrBRbTcWBMcQ5K4VGQZqm4XCoSL/75iu/5BgPg1Y6lWkOszXq9eVx27WayDVWcd1zzjFRU5OmmOM8z9ooazUjh+i1MvdvtqMP2urC/PLxWbab1WqFAsPx2LRtzsVabZ2LMY7jMA7DattN43w8HLRSiLhadyXm/jiJIFqlQ/axxGn24zysutYpHfxsratJWVJaCwLN48xcNGlhXGozpFg0IGlNBEtMIwNxETKq61pSmHNBIKVAaYUs1tmqakouMSYC1EQIzBlSyqUwERKRMZp4yevGXLJSqlt1zCJSiAgEipQYUi6ZhUvinAsSiiwgsmg4tJw2KsKcOJdTvSWFRETaGGNNmIMIa2td0yhNRRALn+iMVoikteHChfMSehDBGLMQEgkLS1n6JSlSmIlQaXUKmSBqrd0SZzLmdLaXc03bWmu1MtoYQsrMKRVJERjqqjZWL/qVtk6ES+EQM1HSxroiKaeUPOSijXWmAgplmGIuygIqRYhEhFoLcylShI3R2ho/B+FCShljZu9TThoMIoEAoVKkCumlJFTmHGJMKWpFxLR8bxNhjNF7DwjCwiUDYk4lhowCIEyEXJhFkKgyRgorjQBgjL2/2yqt+mMPxixfkyWn6KMlVVI2mqzTQK5r3TwVrYVKCSXUGnUhUqCJweiSeYlCImcStaT8+Zxi9If9YRh7cmBrA7ULc+Iiq91m0zp8fm27bu6nddVWzrQ15hKHOYTksW5KmLEkbXQGLIsABoQgiMIgBZjPj/ZLcIYET4GWMxReQfnyhH0F66ux4urYPb/4Z3LFAkBy5U5XYeimp3MbCDfHlv5chrgUurvhT5f/LTGKs8ZwjhHdKDvL2M5BlEtUCC+3fSZGXJ7+l3meF+C/8eemJbwGZW61iWvQ6BIPu8z4cvTHhYzd+IauPOKzxTozpxtmtMhpcCagF7mEEJanm8/NS3AiBZco1WXGF8pw2YfbeV9z5Je7L7zhZkZnkiR/tl7XYNeFXcipr9NPF8FmSeg6xwMvvIYABUGuVPj8MWa5XHMhn1dedl28iw708y2Ec7rb7Qd4aYSW+QoCkACTCLMQQckZtS6iEtpEOVrLTdPdGaPT9DIYgVVdxczPiM+zD7rGqvURcyKtK5W4eLaNvdtuFcE0jkabYRh+/PGnVbdSWk1pNkPvS/LzoLQGwufX/fDt919/9cVq26HQ1M6VMU1TEZIwOGe11fuXPSHe7balZODSNFWMQWv1/Q8fpmnY3W1UXc1jGEPc74/GmLrpTNUU0Dl4IE1KlZCtc3XdEFLd1KXk15eXYRhXm5W2pm07RWq3W29368PrYTweC+embvYv+8Oht7XzKWeQl2GomoaMRmueX1+U0P7l5XjY/+Vvfv3rb37x21/99i9+8xdv73fjfhARtFYBT/0w9b1690YbGkLkUgihdi6XQkSFs3G6XTcxRdfWr68vmFQu/PWvvn59fh2Hoe0aRQqJYozPn55iDNbaOYVxmIZhrLq6W61BUxbcvx6LsABp47rNRrSZ5vzVl3erN3cFdD9Nfn9M40zopxSNktpq01QvP3388OGn2uq7u/X927s5+CqW3ebu+Tg8v+xLzJt17Rrb1fbNwzdt3cVQHvOrB7Fap5SOr6+7N7sY/bTv10azMGpRwCB5HhNLRmUEZNV1D188dF2TY5yOvSXz9u1DyuxzGsN46I/uUe0eNo2tspTdu/vv/vTD4+tzwsIpv7687A97tDxP/uX1iQhLhspVICg9lyxekp7nOAcPSIaMc66rqhRCTqkfBtImM7eNIlRQkIWddVpTKZwgCXDOUSklUpgl57z8XipSRluAhITMrJR2TjlbIyCRqhxZaxVSDCmktJyOySxEaI1hocKcc/EhVHWtkbRCbWvmEmafUs5LEnvMwKi00lqTIkBAUFotpQRPScmFmPPyxYPGGETQ1hrrMBXSiggZFDCQNspoACBDWimtjFKKSy4ls/DygMMimUUhEBJoZOacEgKWIoCylHMUXk5gJWYwyihSoqUI51yUUsY4ay0A5pytrQASM5Chqq5c5Qix5JJLjj7kEnz0itRms6nqep7nwpxLTjkLogii1raujDbMgoRIBIB8sj4usTsUkRiTsafvfRYQBtKIC78DWGorlcwiJcecU0ErWmlEVITaaERMOeY+L9uqlSVEES45cykgyFyAWZNq6spozVy4ZBYhIAXKKE0KSyk5RRKxxgjnEqMxxlWulKKNraqiSIRSElFMxlo0SmldcGG7wAWIlxrg4oM/HvpSSkqRDBYpgEpXBhKvd9uvfvFV27YPbwNp+OGPPzitf/nNl+t1FWJ8OUxdRtq+2X7xRVCGT8CBLIACQkv864qgApdH8IvfEy4AsohVcvLHLjlDcH5SPx+XhTccCC/4e0bRWwIDZ2wDPFec+RkwXq6Bs9WZzpnVl9bwEpq6wdJL7hieXDXMFxnnGlW7SgpnvL0IIxeL8Z/B35mVnCJ9Z3nmct1ndPGkjZy9Phe6dgLSy6iv5pIb3Qlu5gE3077efsuIzhj/2QUX3WhRLfC0qzcU5epqWtpDuXK2a9XrCxf5b/CEpbXrCl6O1/hsrieV5rQU/6fM8axgLbrZzUIu078s/mXxrkxTzmGqZUh0LrZ9lpXOXOv6ETyv+oVUAdwO7eLTOrOmJff9fJraRfpE+v+z9adNsixHliCmi5n5Fktud3v3PTyggEIBDVR1dVcNu9lcRGZkhL+XIhR+Ib9T2JzmVLEKPagFy8Pb7ppLLL6Zmaryg7tHxAUqRW7ezMgId9sizrGjR9XAEEA1eyYTEANlJ1zuM9x3MmrTJcmu2j4vm6oB5HfHds3h8WMrkN89PIHai3Wxra/j8bHrhrqsQ8mHndsfjs65l6+f+1CrSjLtcipc9eb9R1PZXm3LqlSVYRhu3PV2u+2742DonAu+CKUfc4pjVtVmvVKQFIcx9k3dcPBd30XTPiXd7ztJ3oX742FMqfEFh6Isq3KFK8lPT0+eoSmLpiods4IwoYhtr7fb6yvvPRJvrzaS9di2jl2zWhXO397eHtougVHw33739uPT4+rqaj90r754haX7X3713x8O9zfrK4npP/71v/+//M//8+fPX2nOBTL2CcaUY94PmRw9v7t5/vLZV7/9auh773h7vQGAw64Ftrqpvv/2zfWzm7qpP37zmNLTw/09s6ubqj22ZVU+e/kip6Sqh2ObUrq6vj60bahCpQ0gZ7BuGJH7bhhElMqCyK03m7JsyHkjt2pWRdN8++b9x92hGwYxe/36MwQDx8fj4fA0pC4+HY6Hp8er7aocCu6wKP1+1xKXq6q8l4f7929N+5fPrypmInrx4vnj0+H924ft9bapi8fH7njce2/jMLx4cf38xd2w23/3zbfTdmcYU+Scsg1d75g/e/ZM7MoH9gWLpGN76Ibhw8NTG3sL9n734fD3x7IID/ePpnr/8VFEfeFzin3s+64vvw8GpqpgOIwRkbIAEonqMI4OHRsCE5ZVuVqvPPJme5Vj1smAIJpjruqSyUmUTNnMprgFEaYkOeXJsTtlbgNoyvOmYejHUIS6rp0PxHw4HovgN+tNVZRDP459BDB2ng1EBRHIUYowjEksE7KKjmN0znlzcUxd18/F+Q2Z2QiQkZgce2QkmFzPaGgxJ8kKYOydK7zX+RPHhyoUBbkcs6ihK0pCcsHRpOUCOMeePQBMxy5kzThl5zKYAbIjRwSQRdMkcSHmLGCKiMREzBMRQUQiD2gm4ie/LZKoIaEajlFSyuycc67rRgAKwSuagY1p3O/37N12c1WvamJGxMNxb0nbtlMw77wvgg9ecm67IzF6X7joAREIUVENVA2JgGjMSZIgExsDgqoikCN0jpnZzMwEGYmRbXoEADCLFiE4x2gY4zjGsfAhkCcAMii8J0Cw+TwpAmTgmKN3nAzIQLKUZVUWZRpGxzz2kofEjsu6IKbjsVNy+0OfBMiVkhJztW6K6RM4q2g2dMSOAMA7ZMcGOowpa84QD21rYL52mmEcR4cUylA1dbNZrdbrZ6/q3/z2d4p07Dvw5Kp6dfeiek77TH1Y5XI1UugNZIpUTGWcaKpeCHRKQpoxZs6FRkOaowwTDsyaippONcsnpKATol5mhMMlRC0A9MfZSrMjaHn1WWXB0wUunr7oCpdk42Ijf/kq/ER6OqfzwJ8i4Zm94Kf51dPb7eT8xrmAs50R88Qi4DL49m/JHdNV7VJWMThbds7hMbwA5OXpJ/YAs2J0JpJLoZs/+TqLNXjx63TRc92ciwDiRF4A4VTd8XLW4GTa+SM6OFcQWgJhMNkJzzTq3LOZOZ9fcUlGTrx1XkZwEpdO32EZ/IV4zCMCU5LnTH/mkZ/i40sEa7r5H2tey3L6ZLmemg2L/GdT8PAU1JuyABBgqVtFqlPjySBPA2zcK719GmG4r2m4rmQd6tt1M5IBYHH9XORDD2PXReWCeXobUrNe3768jjl1x4PkuKqr/bH3zo2pB6IMuR/irb8aYkx9//rzz+q6WW1qB1iEUHgv44gAeUyaRFIAFe+5WZVDGszc0B5zSoejVM1KDdi7569fZZMYR5V87CMYmHP7rn94Ou73h9D4OKZV5a3UqixTzn1/POx3fd+/+vzVers+HtqyKlW16zqJ2mzKsqxoy7vH3Yf7D4/7x2PbXd3efPnTH29ubu53j199/dU//OpXCqmofFVVv/zLv/7xD758/fzFdtXIEC3rqqxy2xdXpWbNquv12hNf31yzu3VEx/YYu9EV3jt3/+4+ifRt9/79x/Vmg0QAdGjbbNr3jy9ePA9l0Wy2Y9dD3/vCu+B3h/3T49Pti9vNzSrqWNQFl1RyA4Qcc9uOXc5jP25vm9X6KqyqQa2NcUxJHder+jj0sR9WTXj52Yt333znSrj97OW+b79++74b+/DeAtrm+rqu3dPHp6Hdd8PQfvUo3c11XV1t129jfNwdPnx4Sqn3zjdFsanLh+/f9n0XvnjWHd3b77/58OFt2VRPu/3b9w+uLnxVpRRTHx8+vK3qEPth3ZSgyshicOj6w7F3BfXj0Lc9oPb9AIrEZGp9P/RDz4GYKafsy2AIBhZjFtOE4DmIqY7ZTeURgw9VXbkQyNCH4LzPomNMOpfcQmKm4Kb3dyg8WJFiFImnDVAIAROqiqgAgGRRVUB0PgBYznno+qqqfRGmcsyb7WboRyIChpyzZJEsakqMqlQGB4gp5ZSSAeSYzKZEKkNgJGKa3o4zcUFFQMyqOWWRjEhMzkwVzHk3pe+EIjgXkFggiRh7B2DIHtREhZCNWMBAYcolMyRTReeQQJNmtcAOkX1hWVUtphhh+ixdQlEIKAqo4L1jJu9BVEVkcjhN8TgwGeM4xcvGYYwpsiNESymN45hFRK3ru64fHNPheOy6HszULMYk3larhgiPKaYU1cBzds6XZdU0jQ/+sD+2bYeECjaOcfoAU1UkREA1RUQmnoozpZQ1qogCgIoVgRFxGGZP9ziMYmkaYsfs2BUO1+sagSQLMXBRFiF47yVnM3AEohp8UVdlcHwUa7tjzimnJDnn0qtBP2YZ8kgea9d3IxA6KhwTEeacx+MBCD17FQUEH7ypxZTGlNlTWRb7xwMSeGDnsBujKjXr1WH3+M1X1qxX5Pnd2w/j2K+L8K//8pvru5tme628Xn32A/HlU5diwVSUpgpLyvu5gOACbLNGcRZHTugLaIuD+gKdJoCZnoc2A7+dEOSPZJ8zbJ25xyk3/gKQztrFGWXPMIlT1BcXtD5FOf40xILT2atwMg8hnsr+zIfJz8GgiyzzP2nsBY/DZXguoXs5g+oTzjVTOjurKOdakUvIeL6dGcLJgg6fjOn5kT/VTBaKdHHPT7wsZ8VpcfxealAnunbBJE9umYVZ4MXV5mjjhRa4cLPLpl0yGgAAm0LPi142zyDMpPOc6jYPpJ1eBpeCF56fNHPL82JdSLMBzH61ZQGe2fAyin88evgn7b/oxsRPTxrnLEOdLjZLzovVTZUACYwMHbGhmXN90oec/+4PH56t+fnWf797utkWcRjaZG/3UcomjlZsGozRJA6SX96t6qu1gKY8yjjWdb3drLKmfOz2h0MaU05p6Ib1al1f3xTOX9/c9F378OF+7Meeu7IqCw7DEPu+G/phc71VsbZtFWy7vo3dMUuKKbfDmE184RXAFcFXxWF3KJtawQ59V/gSAcum2lxtQvBFwKd3908PT7e3W2Ju1isXvJrud8cQAjnsun6MyfvwtD8i09X19sUPPpfK/dP/66uP90/bVy83t3f/3//23/7+H/7X3X6XFf7DX/7y9u75i5sXX7x84YDGbjxk2zaruirrMtDVtju0Mqb11bos/DCMV1frlJKIlkVV+bKqw7HtNent3a2hqcGxbVebdb1ejSlvtlfPX1YxxXYY0blQ+LKpx34AhdWmkb0dj1029aEU1b6Ph+N4fXv7/MWzoqgTwMeng69qKgoKRcxS11Wz3XYxtl0/9L2JFMV63ayGzRaJfv+b3371h68f7z++XwWHenu92nZPEuHDxycjR6W3lN9837WVH4ZtjLbv+n5MH+/fXG+u6rqMOe4ePyjK+7fx47tv3719c3//EQj3bdelpAbIDhlQ8cP77whBcy6YAMAx52xJzYfCl2Wfx/bYi0Ry7NC54FQxoUFZUAhc+CL4oqp8KHzpUdFVLok6V1LwMGRXeJ+GkQQIYBxHNMxjcswAlJLEnDg6731RkpmNQwwFi6pjz54rrJEwS55qIovkcYzTO0TUiMi7MI5xSu8ipBTT8XgMzjnyTV2RcykmAI1iqmoIKoBIREBEgFPt2pxTBIC6qgBhGKOITZ+WqqYoSKSiaAiKWTMSEDAhIQEbg5khIZFzgVxQIna+YD+mqGaInAWYEJwzA1EVAJ3MyCKIRjS9u5ELR0iCgKCAHMrScPKIqKnOx7AjAJCIaEpAiOQJKaW5UKEBitpUrjGLGoCKicowCiU0k5yzgbng+m54fHgk4rqqhnHIot57B2hG7JiYp7LXqqY55ywppbquDEBUUk5tbCfj8qSfAQASShYBtSkNDVFF2DvJeTJXoQExsWNTYyJg13ddP44+uO12u1o1VSgtW+ojGq1WK5Hc9+Nk8wKAoiz7vi+rqp+LTHDTVKHwH+67oR994aqmNMf7IYbr0m9ufVlG0f5xN7Rd5YMPTlSGtouRJcd6vbE4dMcuJSmCRwI2VchVVV5db9pjm8eEaBV7VYjHrhti37bsXRaJksoQujTGfoxpcE97Xt1dV2v3rC6aRpAFEBFVZ+SbUrQmXjDtmGfYucyjuTR/zKg1eS/mDHlcMonsUtE4wTNcXurisUu0OYcfFop1euIEb1M8Y2E7iy91geJzctHFZeeGTtzBYDlFfQn94QK5l3adsw0JJxPJpQflk+tfhKwWfeTfcNWYLRRh6tenMSw7xXXsEyUGFjfwqfuLhjPFGaeGXUg880D8Gxabk/gyU5yznRpO9val0MGinRicAk6XXZ2NUMs1lj5fjPVpfvVMjy4KB8zTdBG2nEnOOR3u1Kt5wS1FGU9kGwz0zPcueNHEh/Dc11lMsnMY9pNGziM20+mLK52/cLHDne90SfwmfmhLFt1UOg2ADFHRLKuBhaJoyQ+DftylP3QHGA9VoaVjx/XHFrheRbPMHJxlsIzITRmaanh4GNr2dnvFni3nu6vrql4xOrJdud3AqH/x45/URfHh3bunjx82m83dzfUYR7V82I98fR3qkCSxdxxc+7TbPe2ub66RqF7VCpqzPT7t+nEgz1VT52Pu2t45B476thu6CA1//tnr4MssKRQup8E5DlXwwR8Ph3EcN9ebzXZzPLa+CHVT90P68Phwd/ccvXv34f1D17qifNrvE/uw2Uag//f/8l//7//X/9vu6emXf/mLv/2Pf/P6B1+urjZDO9zdXEvM+4+PL25vvPN91zqzuig9Yc5CxJ44BDbLY8xpGH1w5HiqGXvz4ip4f2wHRM1iZvjDP/vh3fM2qyJCkhxzSpZRMKWEhORcs1o5F/Zt6zxutuu2i4f2sN3eMlJKuV6FEKpRQp/G4/2T3H8s66pZV4i5P+zMzDsaNT7t9o9vP9SNf/H8+f39w9vv3z4dPv7uq8eyptLR1WYFwKbYHyMgXl2tGcmB/tM/ZwCc0qAD8degIEZMY9+jc4A2jMOuPQ5DR8wCho7AgJnZu36ImqWqqqIsHj7u0UFdV5rMkJqyRmR1JTXu+npze3dLxi6UzAWTv7rZVHXVDmOzWlVNs7per9frw+OxKJ2ZFWUZ6lpTdIxYeCcZcpI4xiwWh0hEpta3Y0xDCAUAqoIjJKKcVdVM1XmahAREjOM49F0/jIA45QwxExiJ5pylPbaAAEA09AQGRYCAU4VKQ81JRJSZplKGYpJzlpyYnYER0VzMD0ANiBAJJsEXkYBQzVISBGDPBqDZAADdRJ5UzSxLCA6JUxRfuBA8+8KFMuaUs2TJIkZT+hiiquSJpJgx4VTqQglMzRg1qUomJMfOeVNTlSnghYSkqjnJhDgxCyIh2piSiKAaAKpZFp3knBA8ISB6NTFTNZtqFxGidz6O6Xg8EqKIBh+ccwv1ISZGhBAKZscpSZIpKXocR+k1xphzVpu7AQjO8ZygwYSEamoCqqoxT/SImWEKawKaWQgByCuImHnHjOTZm6Ck1NR1VZamFocUnN+sN2VZkePD4ZBSBjATUYKUctf2bdeqaCh801TOu2OXRC1xSZsbvr5O2bi6LsdkqoMagWE9UNhDHty2KVHFPwzHIxE1TRXquj3uTdJmswKRdt8aWVGyc25U9ezavh93CRHLJsjYDxmQqDt246FPj90Bwl21Kao1BZ9tJgXzt6kOJhAg0Lx7nmWK0y5/Biyaf174CJjOBVTs4qyomQfNgHbGk3PQ5bJWzHSj8z4ekJZtti0IdIHMsAg2JxRfhKLJ74qLvAKLHgCndl0i4GJXOt0DF/HjHE8yACQyu7jLp1+ziGGfCAi2aBQAn/YLL4cDFxp2YhW4PHqhh5wznuD0lJk94ELRpt+WHC/4k69TdR08/fppX/CT1k//7GK8lsbPwza1Sj+hL3BuGMAph98ubnfRvYuT1/DirrAsD1tW3olz25IueDn0iy6zCGDnMT2PAyEpCALNUwuoEzmbKzucX/XpUr1gnKfun/W4izpDC6tHRENUmztvpoSGDtFgxBzFQtGMIEdRk+D6oQwAKRI1ZOUAiaKq2tp7coFc3be523WmhM6rmQl4X67KIq7jw4eHYxc//+zVZrXCrFfrTZLROQL13gckPDx+VHm8vrnabq9c8E+PT23bAVKM6fHhiVCLsvKKHx+eirK6eXnbdW3XDlGiIsQ+A0Czal69+uzm5i6Ocf+wOxwTgXnnTeHh/mkcIxIxh/v7XcoyZh0y1KvND/98/c///Jv9/tAPY2b72V/9clU/i19//dtvvv6n3/7r2O5X6/V/+R/+0y9/9vNnz2+b9bq5Wn+URwa33tSVc8f9EYoqeCcqh/2BmZqmNiMDILL+GEMR6rqM47h/OsQYx5RCHUxxGPr9/liv6tV6FYpijKl9eMqaEMkVTkUP7XH3tAvO317XxzaqQlM16Lkb+v3+cP3s5uWr1ynZoRseHh4TPBkX1y/v4pjefPMNE5TXlS95z5pJv/7qzT//+tdJEsbharv58ssvnvYfru9Wh/5DHMd601BBD7unvkvB+zQkNByG/apehdLvHo85Sc4peL9ZNagwDF3X9QBQrdbmYOwHdFzWdbNpqvW68IWK7Hc7chx8jKMAkligerO+2v7gB5/fXN9VVWXo2PtB1IXyix98dntzPQwZfUEcmNx6uxpT3O0OzbqZzuAqysKVXQguxVjWBQCAiiObEC5r1pSSKwqP5dgN4zAaGTlSwKwmYAAmIqKCBgmUBR0zIpmYKuQkMyPJyQzYEwDmLFmSiAACmIB451xVVUg0xEEVJIuCucCqmqLIkpw8Dr3zLvgQvJ8Ui5QFABgwuJBFJ/cxAIhkEQEwVZ1OBl2iG9PbejpLCBXMVEwyq2fH6NghKkaaNoJmxFMdaUBkQJ2K8iFBFgO1QAEAU4oiQkRIAZABmNim5DoRUVBFAEAmMrMxJzMbx6RZXfCI08H2Mp3jqDBlsKMKiEy8yyAjIbBn7x2RM0R2vqwYEUSEgNgxzKVlwPsAiEMe45ha7AEs5dQeWmaaPkJDFUxUMxIhMDO7megQInpRZSbJ6ryTLJNveqKphLBab0IoJavzBTmGDMyenXOeCbhuqu1mU6/XWbQf+5SjSE4pqshq1cRx6NusomVZEHFReDEl56Cue3IH9IZhrPzgSswABpByYNSuN6ogHt3NqgksZcCHhypw3YTj02M+qJmVdemIihBEUhZRlaoMHAzIxj6pQWGFM+uHLo3RVYFXjamMfQ8Ty8yCRAhzSrnBcvAWfoIuF3iIixR0gVLzU0hxMcSc4GSxxeCUC30BsHjGyAm36VNoP4POBIRLSGoyINnptM/T7S729XPbppyvaVs/qz8nFrRg1alLZ8vsfKuL4MtZEzjTr4uunHu6NOYCgfEs+FwMKX4S8AI7fbvkBrjoIhfTYZ9MyMxOTlLbiUie3L7nObxo06wb4Sf0bBoOtbMshBevPg/aeeJmdQYRaeKhC/VaKKPZRaNOI35u5p94tOfnzaO9iHpnYrSsNSMDowttcJZf0PDiUDCcT25eZgQBaarrOfOSiZPRechhVuiWFXih7ixXWG62dGd63lkOmjLTQAEVTQgQjE1pfmOYIShDBIdCaMZ+m6EA5yShA8/qlBl0MMRe0m6U929sgLGxsSrdsZdQcCjroii//ub7h/sHjTnFqFF3H3efvbxb136MYzt0fdeL2tX11fWz2xhzTkZk/dDFJDc3d3e3zw7H/fF4MJX1eq1mPvi277/79vsYxyha1sH50Kw2KrJerTfX637sCbioquMhxZic9wbOVO5uXzjnksTt9WpEiUNOxMcsj0+7X//2d5PpYejSmw8fk8rvvvv67371D6uy/h//y//xFz/+s5c316u67PaHdnxiwxd3N+OYDg87RKibqiqqpixRtM9tzLHUYnPVHHbHD2+fEMEIHDMYOh8ElUEP+86w92W4urpKko+7/RquApJnGsZUVEVVl8EXAOB8cM4f2wHIv3j+WtTe339AVGKXhnTY7QHdh3cfh0GiAoYQ47Derj/77Pnzz549vP/+t7/5p9/8/vcZ8j//82/+9Z//xche3F598w39w9/911VVSc6W++ubTewHTUTMoQqQLZTBNPvALnhw4frVq6qoPn548I6261VTVlnj4dj1Q1pv13VTBxe2d1dNs3r9+nVR1LHrh6H91d///9rhiIxo9PjU7vr4+uUPv/zxn//ir/795vrKFS6Ldf3YD2l1tbm+2nh2tu8FkYtSRB6zdJ1EcKLGarE9eh7Wq2ZI1h5yBs8IJuKKsixD0cGARCnmJBTqkAH6cWTCogzkOKumnFU1xTzzDFARi1PUBxCRQhEspSQCgJPYgIgqaoY+OBFRUXa0aur1ei2qJpLBFGd1PMeUUzJTYoaUkiRAq0LpvENDARBRA2DPCEymOYuKIQEyIYjhVIWCJuHntC0lICUwW2JP42AG7LOBIpLMiVPoPZuYibFjVVBiyEhE4AymzHx2JmqALgQAUzNAJOcAjJ0Dg5zNDMkhERMzgE7iEiCQo6lk46SNGRkB4GTNmXZPEx6bqmQjYnKhKNiRqBJS8N4AVMx5x45Mlt2YGSKqyrEbxhirqphCYKKUYvLBl3UBjkABDLx3k/W3CIVjl7KgZp2GlIgDxZhyFkJzzhWhUBMVcc457/MoDDgn7g2xKsuqqq5ubpDo6e37fbfPksumIGAV8Y7bQ6uqzap25kxNzbz3dVGkcp25GNElowEwhTKZ5CE7cCVyUbu6KKyvB4sFsy+b+kpevbgd+8NxtwtVEbgGkaEbXGA20F5jjLGLEAokKLyLMXvCJhQ2jjGLSC68r6t1vdoUVc3BpwtYMsSZbNhp+3u24pz2u5dItqSSz4Vzp8PipzxvurB36B/B9imwMocULlHwfO/zCy6IziImXSAjzVzlZI5dMOlEBhb+tAhRi6JlJ6Q70zSbAn+LPnIRsbOTAXaC1lPjFvaCCx4u1OekJtj5pgtoXpaomdp2Mh2droknYnNuo13E5Za+mE0lCqaqSCcSdzF659aesX0WrGBp4ZnOLa+duMrZ5XI2HZ+n51PV5sR7YVpO51DawogW4oiniV2ucuZ68/h8Mu/ncT2viEXzATVbopnzWpxn0BY5c3rPL/ezpZ7V/PNJ9zlzmxPXm1bcOfHvbOG6bPM0XzbfzAAmP8BU8oAUUXRaEgxoTGgshqaaBENZZ0dWUExQogvOsRErD6NSSt9/3I3eytsKPe4OrbXarJrC9DD0XJahqYBwKuhvAF3bDbETsFCEw6Hrur5ZNc4VfT90/Whgq826aRrJOWne7Q8I1Kd8PHQfH56O7XEYx2bT+OCvrm5FdL1aVXVdhLI7tEM/3N7cwcBZoB/jzXbbVHVdFlebdYrp7/7hH6pNU15t2Be//cMf/vlf/nW9XidHoSqKqvrmt7//p//H//PN27fO+Z/85Kd/+Rc/+5/+D/9nr9I+PHjjpqhFdFus6qIeMI6HXkWLUEyFx9ixMqVR2n4IdTXG8XA8IFvOCsDNqipCUYWVr1Rw74NXMy78MIwxp3Hsx2HIkqsyNKsGELJkF8JP/uKnaPT+7UdkOvadId48uyXmetMcj4fD8dh2w/7YrjZXBHjousfHDwZJc3z/9vf/+I9//y//+i9IkFTff/xQV5aSvv3u+/Vqu1436DCPdvv8lWo+doMPdVXXNzfXzjhwULPN9cqAHg/ty88/266v0zjmcVhVZfBOJA9DDmXBxKEI682m3qxW69V2swGx/cPD4/3HP/tp/v1Xvzu0x3LVOClfPFv/5Oe/+Okv/urq5bOkdjz2VLqog5DCZt1xSOM4GoWmssIP/di1Y6hKdIjBO3ZjjM6H7fUWjbwvUxo0Cxi6smgKdqq7mPPY9btuv9qs0pBiTFNGtIKhI8maLYPqnAWpqqYiYjadneAtw1SfwJXOTlmhIITKBCrS9SMxK5ihiES1XJZ1dty2bRxTzslMnGME6CVbFiAmAu+YgJQIEHRK9QZlYvSUIKsqI4XSI2JOQo6QEERM58DEdKIFAYAKqJmiwIhoSOwCmciU6w5izOw9q2iKQKZA4JxDNCFhZkAExLJeOXZZkqRkIDgl3iMZmObpAC5CIkMiZCAgB8ikotMWbNakp/NWdQrkAREVHFgxYwLnnSPngnMOAdOQfAjkgdl5I0REmrBXy6rMOaMJO1IlQEuSzKCq6xQjMZjq2EfvnfNuOuoBzMgRM3nvYkqaBCb2Q0RIFFg0a86OXRGCqKQxGygTqmiOiQADuaeHnJp6Zdr1LTFnTYRExAzOe/Z1gQi9iUhGgzxkQwveMbshGpSu2W64rnrEqDaAGhF6bwqJjBRSNhlj3j2linVonbfjseuedt2hXa3WRekf3nx8fNqDKdNURiEnURnyNC6BufBEZKt1ITImpBjFrXyx3VhRJSBBnCjolMy1ZA6fBQe6hN+zbHKG9LPIM+UDw0ItpsvClB93ViMmsQVQZyZFi71aT+ziBJon7nChUuB0WTqTs0tr7sl4Q2Rml9lQFygOZidrC57B7ATf5zv9iaC1gPCCxKc/XpZmXlQRAMPZcG2LqAHzqJwiUDB7Z3HRHv4NUeSUKG5Lk87hqBMpW8zbdjYfnX3SiyZ1adO5tIv/ae/h1MNzpy6t35edhfP4TzRsnjRdjEy2aCsn6oML87CTh/liWPFEVGe+pEtvp5AoLLa0U5zyFJVaqBecezXtqPREgie/l80HI07XscVtvczUbP62Px4ZXOKqdlpceB7fSXRUACAjQ3VKYEY2N8IAFYAEyQzNgE0JDKSP0SlXoUBNqMTs1UzZcokZwupuUzaA0t1/9+Hp6fGLH/2AJbqrVckuF+TawYLj0icVYExjNMCqXg1DHPsoAqLGzg85g0HIuXu4T8P49PR4bLuyLPqnduiHnG17dfPZatWsG18UjsjUvPeW4XG/q6vCBf/t2zf7fTsM/TB0RSiyqK+rNx8fuq5/9/GxiulZU99/uP+Hf/oXrorP/uInH777/pvf/a7t2j988/XTYbduNr/4+S//41/99bPr29VmhSmSXFXrGlViP4IZJCgobFYrABTTlJKaapI0jGUd2Pt2GNsxAlEoCqQ0DOMQEwWvoimnatWEEO4fHo/tUU3ruslZ7h8e9rvdy1cv2mMb6jLKEGO6vX1mAoI2tP3jbteO3c9/+QsCNHSbm1tFje8f8v7w/bs3fYwfHp/evvuAqNd3zf7p/t3337eH48vXL6goVTSltD90nssXr3/wn/73//nZ3YvdY183laqt1htgl7KIyLqsq3oVxYSwHcbv371zBb/+8s+2V6sP3781icG7FNMV8+Z6iwYAxI5DFcj7o2Js2yGSufXd6x9+bMfH9PZg7vrLz1//4Eevf/Tj8ub5U0L1Dq7rMWXlchiGcbAQx1XBFnBQi30UUah82ZQwhnjsfemvr9agwIjNqgqOHj7E/XHfrEpXlmXqR8l6PLSCllJGoGbVIMJkAc5ZAMHI0iiM4KYzlMxEprjN9LmXhxiTSlEE9AzTR74KAXjvTUlYU85lGcZh2JlITiLZ+yrnLDlPB1Eh4BynEhGRLGnoB2Ka1Itpj82MmsDE2BEGzoJg4AufkxiYmhLOx3oTMxKYIgBODIYQxBRMQcUH7z0DgSo6djgRHDAihklwyTaVZ+RsoKCAzN77gnDe6+Zsc81YQgBEmjKpp8pBBARIDm3ydJvJJIUQoDAxGhAjIqgaITjn2GjiQ8zMSDgfdwAAINlspjDz0R+MhIQ2hRrZucq54HPOKeWmrqNzw0g5ZRFxjqcQyiS1q6qpqYCoqGkowpQiB6JF7XHOtlMCYodWV5KVmNljVLOsAICEKaVxGI7HY7Nqbu9u+6Hf7w/jMOYhiXowZcdIoKbkKY5jSiIWqdxUm02oKiCSJODJTEEMDZnIIaKapDx2/fHhcYRUotWV2w1Du7+PwzgypWHc7XdjHCcClFI2BcckWbKJgZVV6Puhk/TZ58+RcT/IAOyrplpvDDFKAleq2ZQbTPBJIvIsEHyyaT7B/SchskUW+iQTCmC2GC8J7ROIn6IT01tGwKbo5Bw8udjun9DlRHRO1l48Y+D5v8XxY2eb7WIUOQs/J6VjoSnzhWHRDC7sRJ8A+6dAP+PmmUicUuXtnPM/LbHphNizgLCM7LmLBnQmYefA1QUvu4hszb+fKddJXJm/nUbz3MF/0wo9t3xJTSc7EbWLu54dVzCzzGkA1fTTp55aPFcFmEdyFmMu2Bd+0q8LOnTWkD55wsKB58lZWnQSaJaJRzBd1sqZkJyGbunMZWlphBPPmSuaT9c/c/5pXiZF8DSn02cpzOtxcY/RaYHYTNFnk/aS6mbzxxfaZAUVVYGASCBTjB3JyJJkEx5TBpNVwd7V3e7h/f1DJa6m3HZdTHn3tKu02dzcsHeNCir043Dsw7PrzWp7w0Td0CGj86FL3cO7HTA572MSZj52nZLEftztn4Yh+qMvQuVcWF+VN8+eba82RRkM4el+N8b+4eFjVVd3d89W6+a3v/v9h/tduaoR1USe2k4J+++ypPTq88+uXr16c//+t//t7926+LO//Bkwvrl/+9//+z/+9p9+bapX26s//9GPf/nTX/zt3/5tYKcppXbYrJqrV5vj4+M49IVzj0+7Yzs0TW2iACggcYyS3VSYdXdoBxerqmbvQ1WZQdWsfFWlMe2ejka4vV4T+91u/7B7ePvm3Y9/+uNXX7w+7A4pyw9/+mOD/Pvf/EEIXn3x+tWXXz62h7fffRhjvLu5O354a4zHoR/i2PfdzfXN/ePjv3z1m1//86/fvv8oZGOUh4e9qa2v677dpzgURfl0bG1Ity+fr1arUKzvnn/25Y/+/Kc/+3eb1e3TU1fWoa4a9OFxtz8OwziMjn2XxDyxdzd3Vaq2v/71r+vruHl9s35dju0hp1htAwUH3o1JCQmKkIMTQMswMkRvUbgfxV2/XEPTbDc//fnPNre3UeiQISMgGKuAWFWVgti2kQouXSCGQQWckmPMedwf77arJIIxM9jQDR+G7/P1lfeBzarCNXVw3dBbFkDLKXHhVquqbsqqKlWy5KQqx/0jgq5WKzXxPjDjMERNedrFMDkASjnHPMVfwGcgRyCmpkXhgNAURY2Qj8du1azGOFoWRBjH+2nvy+QQBI2GcYjDkHICgHEc8xjHNFR17UNQM8vq2C2iOE1vPHYkkoexP7at827VrIhRFZ3n+TMAgQgQkNAgQxYZU84pyg5W2zVPFYo9g4Hk7LwPnlWQgps+1JiQiMHYAGKKAMZEzM4MEGXSjKewYCgKQiLm6bOYQERE1SY2w+gQqABT0DgOlsCzc46mSBYBBR/mmFcI7JypAQMSgZEkEQV25zBIjDHGmCQZQPDe+YKdNxrBccEVICWOiETkAMl7BgBkYHbBFwiENmUG+Cn2Ro6L4Dy5zD7nSIiEWIWANTNTTuJr1iwEWBQegcwgxahS+YbHhKEq1DSOsW07NKuqAgBzzghgMmWtcFnXviyZfBYxVYdYwZRHh5CSJ6QhxuM+7nfpcLDco+fCwn43EuRAdP/+o+bIiJXzfdsZaSCKKTsfTHGI0TN553LKvvTRVNhxGbyr6u1VWa84FBEQTJjmkzJP4sASAFm8IAhLvvZFBOYS9eACG8/+oBlPbMEfXBB6OV9iWrGnTfa82b+4ts10YobWJXI1o+Vc1vj0El1cQAioIOc4yKKgXBiHFtpyohJn4eFP3D2fyBzTQsaLbl809/yUk94BMwZ+2rETJM9bnJNOcxl8Wu6Al1UET69daMZp3M4TtxDDE1tY4H4OaH1CxZb9ymloLgjwv0GbcGaYJxIH50m2Wd2bbmiqp9HApZN/XELgYixs0QvPsVO4kKeWMV7u9Ef2pSVaZgKzMISf3uYcuMVZG5t7QgA21dIEgAtif4rWTUH5ZSoQJpfCiXjb5VAhACjidAs2Ap38Z0ssDQDMFICBHVNWMZwcCxiziWRCcKhGipY55kLtal3H/YNoiU6bsggEMAzFptm/eX9ou6qqc4ofPz7cf/8h/uCzF6/uaF34yoO6xvzh2LvCV1XVtm0cx9tn14d9t9/t2DsmF0ry5CYnxOb6yog+Pj71/RBT9L4w04fHw6uqrlbbMQr68vbli2PfhWYV6tV3v//q48PTz375s97Sr3//+8enXST9w/s3xbE6junbr77619/+U05pU9ZfvvrsFz/9d5+/eLlqqrVzJtbFsR/H1y+eec8f3+djO/DVus8SSt/HvN/vvXfEeNgdrq63t6+ePT097b57cEzXRGVRRpGxH1e8cc4ppm4chnFUhGEc3755Y6B3z58Zul//07/85re/deyehq5rj7d3dwDy7Zt35dX1brd/8/CBfVFoctvVZ68/X21Wv//Vr37zL/8yDv3T/vHD/sOH+/uHh50rgvNu+6IqigoMwDsa5fb22c9/+fM/+/O/eP7yZRnK4Ctf1H2CFsKHD085mXYxFCnU1TDKkLFYb9s+KlpTlWVTbjbbzYvnVFXffv/2+133+rMXfr19vH/U0h/6gdkLQSiDBD8YmoGiDVzc94fd/YERxvLqxZ//4Ec/+rPtdhNz6g8tUKrqwjvBfrBRC8JAVHknbYIoHJhMypqcQMmMVeVjut3UllWS3O8OJtqn+5svvsQiVGyO2I1JKh+sGyfLceHDqm5C6dOqOh41j2kYR2pbQioKD6aqnFOKY0R2PgRybjq+mZgtJTPTLOQmQ7FonorwgYqYmUTpsQWEHGNKCckXoWzqmoOLEWIaJclU7RlQc0wJDAZk55gJEM005+wKB4onh42RxZiO3aFtu7ppFICADERNGRkdqpiqEAEhOccg0A2DaDLAwl2Hotg97ZMkQkKENPbTO7co3DBEQ5iqqiOBmmnOKhKcd85NuVcqknKe3+6EZVkRY9ePKcm8S5s9GTSdHo8AapbGkZm898yoWZAwJXXsiKZjwzwziamIkCkSAMF02AUgsZuK9xExTwmTMWXVwXvnvQMDH4JNricxRPI+AIImK8rgvCvKUlIO3gs7yeYch4Il5TxmDhi8C45jipISIIZATD6DlaVz7Eg0jlFNnOPD7oCESCqSvSfxbuwiAoqkobeiLoFNs3LhDEmQR8XAgZw3RTIiQzR0CIgoCqwCKUrfdY8PJQurtvdPh7fD1bbyDlRi7AYmcsEXzmdkZnKeUQEMIalHEgUVrVY1EvWjgS8MEcvKN2tXr8x7VDBa6IydLTQGJ3/PLKn8ESz+W9iIC4fCMzxeoNdZZbFzAGeCITh7c86izcx27AShl5qTnWH2si3TlnzqzESFZtxbKNZ5z3+WemZeNxOAZQwu7gRLitzFhS6EodNvi7awRJ4WjmLnC80jtSR0nwZ3+nl+cHEszWg9G7PwT4Wck9HmRFrPmWxT/6ZaQtNpr8scnNt+zsA/T8lFSy84zXkS50j+gvp2au6fjM0i/5xEpDOfsYWJfdqdqfezJGWXzUE6j9OJbp28PtOwEJAhGCousSw7NXG+wWIrvxiwSbE+2bPsQjOj87gtW4PTLF3yHfxkoU8X0/mNZIBTkj5MTcTFXTYd7ktAAE5UFYCZHXJOAwYqkDFH7gfK4je+DChjUoUXL55Dzo8fH2zIjx/u2z5WX9RVUx/3R43x3f2DOCvKsL3ZMrIaeF+UVWWmgLS52oaq9KMMgxRU/w/OrAABAABJREFUhGbDiGnI45A06bjvqEtjjMMYkwhSVxYhU6CiOQypa4dkrEwjjEUoVPL7h8OXX74eFQ5D/O7NW3S4H473u33/5p385l8Pu0dU/flPf/a3f/nXL2/uSu8b5yHb8WF/fbV9avub25sU0/39fTcOrirBuduXz6+3N4fdHtsuZ01dLKqiqmsVOx66og4hFKOIR6y3W8XDbn80naIiAkgp5/uH+/3xeLXdPnv+bLffH447hfzh/uGp68qmvHLucOy+/vrbxNxcbaTgD/cPv/n227Kuf/vtd/cPH//pX/7pu2+/k5xC5ShgNoESBUWBdh8fXRk//+zL//S3f/2DH/7Z1dWzF5+9vrm7HbO0bReHUclZFfpsB4l1swkhdMOQFDEUrqqAGNVd3VW1Z825Gwb2/me/+Ite88en3bMXr9AVxebK0IpQCKGK5OAMCRT6btCsfR+PSa1qNterL+pVUzfTMmS1iggJVo4DZ1c4Lihn1W5sFKt1ualLtXyMHTMRUeUdsbSPB+ecZ9fG4cX19dXVFgDVtKnD7qE1UFfWq8IV4yDU9QhcFQWjyhiZufABAbpuOByPYKDWqFpObQjBFV4UckpE7AMFLiBxTgkMnCPHJFOyvGQwZ2ZMpETeMwJ0h3ZOJUsZaqurAowQwaZDwZAmjcF7L5pFU06DBed8wZ5yEslqhsDo2AmYGqSUJBuiBySbfAGEAqAmhCyqCJBTRAIkUgDyRohlUTg0Qq3LMIzjMPRxjJIzOQzBM9SOkIiLokxJk2RTUREASJrMjIABcTruw6Y6OsyGIGBiknICnbfdk0EQaPqYJkLyLqgKAnhic2Bg4BAmesPBAFXETIEACI1mRFIRA0VwjgsEY7OAlFDGOMwEzJAJTZSAvPOKioRZlYhc4ci5KRHMsVvVTTbthsF5NkDQyY7oEFBNmaiP0dRE1Xtlx0TARAW7svDjmAwgi6Qx7h/3XDgFPD4d0hjrukqqcRwQsvMOiZqqjuqEi4ReOBg5AHbESM4BgikzBSBMERgtjjoOcThWkNJhn8Z2F4+lD8gWCo8IsR8l51B555mZc7bu2KcYzYALX5ZeRJiKze2zhADCKazc+kpDGTMokxmBCRoA6uJLOdGXGdcWPegCF3FREy4/+U8vnIF/dncggpzowII2cI5TLFzhfPTqsne3+S4zJp1RZ0LWJdAFS3r0TBbmBlw4r2cCM9ePQQIzw+mHqTGKiACEoHOgbsK6JaPnhN+w9OBCqTkPGk6FsO2UjgZ44Sc/w+XcwBNpmKnTYi45aR927uwnKWrLBc7AOj1+Cv8B4SJuTbUKZpp7Tney+cROPUXszsLY4gk+YT6eWzy3kAgAQGf31TyhdhqgiyVky9gZXNwD9ELEWhbPQm3oRAsvqC3izG4IwKYJP7O9mW4skt5UjRxxTmlc3M0nMgaf/HcuHY1/1NNLYjNNpy7r6EzdEPQUdgOYVw4ubq1L9jgZpKZ1nlFpiRYaEqgisiYJjC5HjMOKpUYJwxGBX9ytfnhz03740O37m6v1zfUNMG62yZWZg6+362YYP759L11fddXYx1CUeezefPN9TsJMWUTJAPHxMCTA4u4mKx2GnBTMnBClbDBYs3GwCqnIx67dP+xuyd/d3LRC3/733w79AMRFXVJwYzumIa5ubptnN28+Pnz77TdvP74f4vD23ccxdZKSZ37x/PP/8PO//Ju//Y8vnz+Lx+74+OidE42bzbo9tC/uXrx4fbfftZJls1079uy4auqo2ddFsaoK5w77gwsuq33//fv7+wczK6pcVmWWfVkWSHhsD4hQ15UopTwSYlEUrz57RUCPj0+7p93hcIxd3l7f/OQXPy+b1bHr9x/f//NXv//dd9+V69Uxdt9//+HQDVVTp5zabnCO69tbRwggUUeRMZQFGMYMVrj17Wd//V/+p7/9H/53m+u73VP/OMD7339Ian0cGO36Zr26qm2MJGVGds7X6xCHxOycc2lMSKyIGdAEskTp+1CGF8+e/ep/+9ff//4PX3z+mpgNrShCAs0qQ8poKn0WSQg4xN5Ir19sb+82pXkb49PHj5u6dEIb5vWq8cGGbvSi6/WqH7ML3NR1U5VlyeMwUFbPzgUHGdKQnIgOcZAujf12u6kKGsbYHw7v3n0Yuv7V5y9dESpCDmVZlBWCMVIeRVV98NQwRVfFOPajmnVtp1mdc9OWKOcUY+zHsaqqsiqQwQfH5ELwky7LSOx4OkSUmJwxM+WYEbDwTtVUjYDGPkJJ7FxZlWOiMSYwDD4QQ0ookmOMPQ8NM7MjYjNgZl+ElAVEAc2xa6pVXaELjsmZGSIbTDVvVEGn/a6JMQIgEU7nxficIiB4xylSGodx6NOYnGMVTwD1uimKAgDVYdbJSmNTQQBVcejIOQPLImBATMRkYFOefAghpQQC02ldhABqWbNOPnF2RVUhmHOYsmie0udh2oeZqagCAjESTU6S6bvNniFiQ3DkmMk7QdCcM6iRY0Sa6rCFUCBCzipmYOhDQMCUhTATkneOwMYxTp+Eq82qDB7U4jDmJGZCSFGixVSEAg1yFOQUygIMQghJpKwICURUhhRj7I9HZmYERQLQnBSJ6m3jilotuHLttndcNRgK4qBZp09uA3WAITARg7KMKXbd2iSPfe7awIYxAoAnb2OKacwx5xTJoeMa0RA0pdGy+OCrVQXAhPzjn/0Mq6oTXRfrFGre3oELqgTEaIRmuOya4WzPXT68F0w4c6EFXpbfz7rCguq2iCwwI/fs8J01jyVXevrTss8+AYVdAscFlbqUXj5RV2AhWp98LXeZm7Y0bJGg7BIGZ3PT0tSzJjDh/9kyAqcsueWRpRDPhcl5xkE8pWRNfttzdy6uNzUMAYFszqQ806eLJsxq0dSWZU6Mphpjiw8dEdTs7ChCWwb5RN9gQfpF6gM7TT4s8td5JE/c5dTW04BeeIqX6BYAnPSXpUFnGgpL9cyzYnQZdjOzxUF/mtzZJW02Ky80xTFPpOvU0osQ48SBTgLk2YJ15lUwPzZNzkllPPHRmTBdRiSnyBWcbj2LlzAvPFzuBPMEkS3lxWGxhAOAza5rkMmKCbasNgJR1FyQ0jg0EK+dbQOui+r5ulwHdCBMmADGnOttrYh1zq42Di7lvNquJGfJyRdlbNuxHSYpDRwKIJdlWRdRIAr0WbQuDVzsYx9FDXJWK7HZlsnBENP+OGSl+uZFKOtk7v1jFzOMiRDNVS4nfbh/unt+s7579tSOb969/80fvtm1bcxjN0RAbJrrv/jRT/79L3/5kx9+eb1dqQCxX29u7jYbsAwmJkbM+11fNfWY0/5wvLkuXekOx+PQj86RGiSzq2c39+8fjseHonTNdv3w8CjD0HY9M7/87BU6GiXtnnbr1aoIIRSFC96xL+uyO7ZDP97cXL149bJPuV41m5vbD/unf/zvv/qvf/f/eWr3IJi/gzblom4++/LLompWq/XN7U1dbbY3m/sPH/71N7/eHx5zHj9+fDDk9fXVn3/xo5//4m9+9ou/omb17ftjygDoDUPMMiQJAdGvjcp+jIc2lsGLpaoMDjl1PYA67wmxezyOnkvnHKsPoGm8vVq/fvlsdzgc2/56uxmHTlISVC7AAWiC6dgoHXNNuNnU3kFtWnDKMN6tyk1dcQIdk+taTLlSaaoQUER6T1baAO0gyZeBaoTcDdIPY58AbF374Fx7HFATaO67tjt2JuIQ1nUx7vfOO59jZuayqE2Td4ERgRwFJ6AYQhYry6iax25UNGI6HI9TcW4kqEpmN3+kOjcZljHnLDYV3UUzo6muswIDGEBROiJMQ2Y25xkcYmD2PgNYVkUAN70PjYjMOGVJh2NK2fvCh1AUpQsOmXRMKU01pn1ROu99zgoK07kUhjRVqkNAECMEoumYTUB2jAwGaUzjkLx3OY4SB1StSmbH2eKxy867sixVTVI0ETRhAlYCAzUxTGCKhgyQNedkBAjsEKEuS3a+74c0DgzgGBEA1KJkQwE0z74ITiTPOARAnhGmI8MUCQO70xnkhpNJCB24lMUTeUYzUlAAQ1NEYwJGdMxoyMxq5r0zA+emg1DNe4+G4ziqqaqxI1VgZucIgYoiEOAYhxQjgIXgEEsEcs6tmlpVx27IMYtzjp2YiuRxTNhj2ZShCKjqiB15NHSBSleKGgWfjR0WVNRhc1O9uNOiUWZlQERDMbDJK58kk2TNqaz8ze02P3xIsVuvAqSEmks2yHHohhgjOkSAPEqvWhQlmpaBuS63N1dclF3MxXrz7PVLrTZuNCtqrVYj1yN5VSAkkRN6nuIxE1icke+ELJ9wIYNTctIfQyeiwWQrtYkI6AkPT3vnJfC2BItgqQNkZ9DFk6nkcsttC0hewPSFvGBLPaGLp5yUigmiF4o2Y6SdudwCgCcmd5EDd/ph4UALI8BzA09FgBfOdJY49KLBuLD3pe0L2VxyyRbP1VJQe8HymdLN5y8g2lJu2GA6Fvg0WIZIp59hUrVOEbITkz1lgM+06FTF8Y/I5DL/p3GZx3CSkQAuXnVyZi26yEm9OvcdLgzX02yfVsNMoub6PSe2gac+zIvk9NLlqqdg6vyqU/x2siqf1s9F5ybajKBLkt70dzvrmmduf542w5Od33D+SLqkY4uR6ROKO707TuG9KS5JOB1YT9PbxQIbDsNNTa/XV5/V3g+HjcuvrhtNQ+qPwVtR1KLSpwSOR5Eo+WpTGfLY9evtZrWujw+73VNbFKXzvl6tQlmJgqvqaNgeut6sI8jkxRdSUIo5JtGUHVNHFodhHFOfyRI19cqo3PcjCGy2d5tbzjm27XFoD+yKQ9t+84fvvv72m13/iOSa67tNCEzcH9rnt89+9rO/eP2Dz8uqUnNlVVTbbSA6fHiQFFElNDUaTkdWG9r2ah1Kl2Ts+uM4pO3VtqrKp8ddtlxva4DGVLTrN9fbzXqNiKqWchq63oeQJU8HhF/dXMdxHIaxG/oQ3M3ttQ/+/v7RHFVV8fh4/6tf/f3/+nf/9cObt+vbzfPPP9tcPQ/19Zc/+klZb9abm6pqjsNxt98P6fi078eo26sbpfywG7P6F69/9u/+8m++/OmfD+q6Q+pGK4qmrBpEB33MZsTYd7jf7R/2uyyZr2rPqsNQEVVshXe+cAowZs6EIrGqQlW4ui5V4C9+8MUfvnvX7p+a0lclKWTSLFE5K6HDwmsXwQC9KwOWBRdOQRN6aeq6JhfbwQeX46ipLyu3qVnSwD6ZaWo75wJTcOBXDo9D6rvBNFVNsa2qUHgZtN/3WJfVuha2IaabqzWjWUyOyXVjR0R1VUgkh8zOk3eGlHJUMecDEmlOWBMidkMXJU0HfjEyETpmdjgVKlRVlaRTFvoS0UdEA0HCLJpV85TyZyaGY8pcleicmPXDoCbTWzGL0BTLImLWrh2HfiDnt5uND0FUNSbnnZrkpOzYEEnR4byFAkOaDponQ82K5oiDZ0BTnQ/6SlEQTVVzijkNmqMjKgKLKGRLEtv9oS5LDoEQYBJW2bEDU8sCiGaiKoqmBGaSBUgle3bkfRk8EfYIqOoRwDRbcg4dOseegJBprrpBDABTBSOYT97EqipFJecsc8lHIpgqoREj5pRMJUsGsJRyiskxMuN0ekgofM4CBs557wAIRQQN2bETT0ygYIZVXTRNPVW/RLNhHPrJ6RXCpFZ754oyMBEpZCJRGcfo196SDeMoWYg9EiMQAtVNFUKIMWYRZdIp0Y2Da9ZYrcvrq/rqauQiEgmAC05NQQSRk2YywxxRpKjLWJRRrdmsYOiGcSg9MdnYjRojiCCSD5yJck6JkJGrwoWy2G7r+uq6T7YfrB/k7vWdp7AbLbrSgHNGIEZkmuvGoYGc2A+cxJJPMOsCNhbYx9On/pIkNlORs+KAi4ZyuWtfcGo+duNy/32+p53Uj3NtG5hqG86HWFzSlvPXJV9DQ10exguT0Akz8QLsZ/lnJmCXvcbzvxP6LkYfXLQBmNmbLe2/oDZLS3G5y4nInfq+OHOXtp+M5wuYzmO21EE+vfwMvSfT+jINc7/solXTqwzATIGWrLpT+xAnzzUu7ADgHBXEs01q8q8so0OXs3cxjzMruYh24embfeLCOk/Z3H68ZI/zeM7xxIWvTCP4iWfrYrBtWYhLiy8Y03Rju5yZUxsuu7GkRV6++GKET9Oz9ONE6s9W8dN/87/JUj2TVZuFcJmqpzCoJUZ+drP+bBWoyzcBtD14Ul9yeX0DjP0wdO0ohMUqaGc55XodQKumaepVJTHV642C+/hwIO/qgpLhZn113PX3cewyWlEl4145AmpRJdZMkQHy0McBmKvQ1MPhOIgvykIMjWJmLptyOI69DK50X//u91GH33z1hzdv3q+2V3/2kx+9evnF9e0VgD7d725uttV2+7g7tvv97fX2Cl2OAio5a04ZVRoXmroqVr7vh83Ntmvb+4c9kjSbNflxHCOzK6rqeDhWdeGYUjJVK4qi6wZTHfr+7bt3X3z+xfbmZr25Ou5363WTUkwxXt9u20NbV+V61ajC82d3STR2Y1X4P//xT7bb6xiHoqo213d3n32+vnn29t2T+aqL8dAN94fDuzdv33/8cDgeyvXVhw9vQxFeffGTZ8+/+POf/fv17V2M4KuCQ70peehGETQQVziXPZr1Q3582A2akPkwRF+5kl3w1BShcISE5jhka0W7PoqnQZVS8ujqUDy/uf3n3/0ua379xfOmcE5hGIcCwDtM3eAIysK3u6M32RSV9OPQtUXhmsZhHCB2zapBj8djhpQgszNZBXzaHZ3R9qohx5JTjL2T8brxCphT3L9/d3W7LVBXgW9WVcV0HEenOQTfHbqx7ZyoGKhmKEovDjVDzsoMyCQZxiGrKAB4X4TgVbXvzRNUdSlJxjF2faemPrjgQtXUAKiZEFFUwdA555wHgCmTVE3GlNOYVAUZyfshRe1adA4MhmFAJjAgYhAViarmPBOx8z6lcRzHtutCWRYCofBFCCbCZMSsZqDgCAHJFNV03m7K5H123vngCUxFk+SJWmRkZEKRjABMgJQlZc0GJpgsYdcdjz6Uk904ZSFFdAignhDMkiiokAEiTdig0RIKmjgEBWBQJCVAVUFVVGNPpQ9gQAZzKrwBIKkZADKRI7Z56w2qIlkIARhmiFTVbIY5p5RSAgMxUTFDh0hE5J2TlFWUyQXvHXHWTIiaFcwcUxGCqpVl+eqzV2UoHx7ud09PxJhiJMJmVRHQ0A2m5pwjIBkzMzsmBGPnkuQkqayqplmtrjbjGPe7vQ8BEQ0og0ZEF7wBYgjF9q68fuHWa15vkisSUgQTUCYHeYZ8Io9gPpAnzynZ9irkMR8fjseOiwJQU4apJMG6qgCNGBVxiDlnQTZHqDHGvr9+dotFGFCiQRTI6NRxNBRkACRAyIJmU7ECXaB3SQdfpJcJ8S822+e0rQkV5oARgi1+VAQ8pXbbErOAKSxxiXSn+AfCXCzxk/AbwnlnfqGDnEWQE/ScAHCuDTFHNZYWfkJCFr1nOm/V9AJp56edXmanSkKLS2eJnp3Q7xOpAJcj4mfd4SK+s1h5AGahzAAvDvAy+KMM9PPYLsRvkUqA4OySAgA8PwenWtumJ61tcfTYmQ3MLTgh8jIwlzfH89/xxCQ/YYpLpy8Yy0KvAKbI+PyHC35ywS3wPK8Xt7Zl/BfGdM72OkWqTp1a5MpPLoEXFzq3bu7LwuQuKCIi2qIGnns093sZQZhnZwmmnVnwslrM4CKSe5ouO5FYO70LpjOLSAkBZJovBEMQ00zoCy9ku93xXQ9rabc3dRxG7+z69o4c5ywKEKpCCduhP7ZHA3OOpyMm28MwjPb81ZdZ5cMxd8d4AAnrbXvUQwz3qcwuKBZ9toycCVVUFIwdiMZMbZvrMtRlUA77IdcbXzVlf3g65gGzfXj8yE4HGb55+4endjdk/Pnf/Mef/OSXZbXKCdbXN2aiVCjq1+/eoPbB7A/fYlNVm2btiW+utnc3W9C8PxyiyPXzz8c+7h+Pw9jHFMuyQKPgi6fdoybbXm1QYLfbdX17fb25utq+e/tuHPrNZuODf3Z3N/aDc+wLf3V7lWJsD11VhM127ZBzTjKm1WbjvMtqfRyTyC9+9pf/abPJeej7PklOoqlv1yUd0/jh7YdjTMc0vrl/KJqm8m7/uMuw/sHnP/788x89e/Zytb1OCsqAQDKOIYTtisEpAI3ZQu1QKfd5tWlKpkFUEEej2vvkaFRDRSaKWUbRdohRQLpoMVchBUerYnV3fX14+ez7D++Ox+bm6pVDq30Z22MJNEhufGg8rjI7x6hjTH1wFpzFw4OlHDxVVZUksc/9sQfNRShiGg/7w/ZqU9WeEIc8Sn+okbzjMeb7N++6rsXhRVmVhcrw8KChq8AEbDgeuw+PauJSyoBIDhGRkBWVvUNyyDy9jYgoRaGAzB5Zg2rXS06KTMSUR0kpMpMxMDGzAwdIFMdkCMF7ZoeAZmIKwBhjtmAiSdWYCZn7YWTXrVYrH3wWyVmIED3ljDknA2X2RRGIIR2HFFPf9rxxLNi2rYoCoakBYXDOO4+EqpBFFSymbGoI6Bx6pslvSAY4nfJFSkSqCmjOuVCVCjmn0UwLdiCCAsOxwxpmRFfRnC2BGTgmM8NsjDg7TGGWd00VsozTmeqqNGOlgJl3GLwnQAPLOama996zA8IsQgBVXTERIrVtm1JKMQIAEGmePUigIEAKknK2KeFCxdQQHBM5R0yYk5oqO/JMwQcWGmM0shwzMZqaiJRFeXt7Wxbl8bCXnB0WTVM7JCaKMZZVcFQj0ZLToUScJaUcxRwR1av65auX2+ubh4fHY9tnFclW1mVVrSylYt0Ae/ChefYybK4glFqWEWlQjQZIDtUI0CNHOZmkIJlgCNcvXx5ZH+KQQ8kOk4qIQjAUAkdIOn0Kq9k4JmIKhfPBDVk+fNxZqLDZinPHMSXQ5PyYVBiQUFUQcCpnKaYnYgEnO9AZLhfGs0gFC7gZwIXFFU+4P4W+5jooYCe+s3hZLoAUAfVkm120EJgh1/CTuNul5jBnQJ1DKxO+TYxtJhqnQ94v/LIzUJ2oCJwtQUt3bAZLOwPlSXH4hB/NZ2BdQO1if8LlqAtccBynTMzJDzTZeC+0h5nvncfmwgW8xLUuIH3R0xCRDBSnXKZlaODkDj9NFHxqBsJPegTn/5exnSS7RTNbOAPM4zNrducksnmgDE6RvnkX8yepXp/cZeEbZ3fOMoyzR3uWTBbyd2ZmOEkpetYVL/jcMgMXDG2Ryk5RvIupveA0M1ddXjxVNV+ePl9JbenY9JrpJZOUdh6GE486vUtg4anzihQEmk91QVJEdJxNRoA2w3dP+520ryqXNa6Z1j4cxyRDP3RDkgzMYkbMz1+9KKvi8NiS46R2HGN1dVM2V7tjn6txgLhLVEOZo9vFvHe1sOszCjIu1XcVwUyInJWFDmFQ0DGR577r2ziSc30etquCC6o2xZvvvv7qq9/ed0/NZvvD1z/+q7/5T+Xmev/U7x+63VEIxZd1yt2+72L7tK4LS/JwODi4d8zPnt0MktZVWVcNkh3b4Wm3b9t94V1T123XmdpqtVbRfhhC57u2e3x8dM6xc3XTVGWRYww+XG2vcs6/+c1vH54erm62RVEF726f3VjKsY+SkolyRbEbrPBlVfVRCLTbPQ6HQ0w9E62226apvvr2nW9WD28/dkMb1le7N4c2QVk25MI2rP/Df/4/bZurerUxIy5qZhY0ILSU86EtS+cq70vHYHFMBlxWnrhMBhWDoRZElCSOQyjZhaL2XBjo2IfYl847onJbXa23DkCj5OPT2kx3+6/uP1QpPb+9Xjk3RvEwrgL3hx14rknrshyHZCmt1o2ZHPa7q+sNGajkdVVj1mHXQlZk7R9bTyxj3j08VUXoD91w7FRERJ3zLAoxd487SHHoh1z0z56/sCzd4dAeOzQhA1c1RUwjsisql2JSFAVQMBnjOIygNlWxcc4BmmQDRF/4oRshiZoSTWd4MhDmnJGYiFRBTcFQFJz3AIoA5FnFyDlSISZTJXI55bqutldb732MUVUmdywRTckdgIBohERI3rtQeCLUlKKqqJmZqjGx847BmJCREcE7VCAmmo7gmEJUSZQQVNVMmIgAJQsBOBe8I+ZyTMMIFggJ0fGkUpnlUU2RCUVNbVITBDJM+yCEnGUqushTzWklBbIkMUUAcISZEM0IkBEZGBEUzDknIs4zszMzEirL8u7uxsQOh71YSmkoypAkxZhMIWt2SJZNo8lUDsB7JiQiAkAwBmCbUsAMAFQymCFYCH6KV6qoZhttNDADjTGOw3Bo9zGOhQuFD6Y5pWQGRfCEmJIgATGnpMMwpBzNgJysNmvJomYpCzgMVdH1kYuivL4p11c+CpaFqyoMBVarXFRclJlJkQHVASEgKZkIIgQOgipoAOCc56pJQ8vNdfVMwJU2tihj7oYhP8Q+uZRDgcwIxIqgqEkMIIAriApQ56hcXd1itR6MFSmamXOmAAqeHZigZQCYCiGesGAhKpNIAnN20gxOp5yZy7MmTiBBBheehzmrCugi/+VCCJhferoMTORlio2gXd7iQqVBWLLcFzPyAs0nPWBWi5YOnU3Hl1A5WUkMgC5Qem4+ICxFbKaHFWAK2C3tn81DBPNhU6dLn2H8Ao5PXwvHmeH4jysEzZLDpFQspHIhCQAws9OlV/MmYz7mZpa24GIcLntlCHRG6ZnXXozq8jI7Bdbw/O8ThnSq+riIZ3Y2Q11MyEm8Ocs4fzRSCwuy03Ns6eJppCeWebrB/McTCzovjukPp89HuIjEXj4bT2ocXmR9wXKYyjIOCAi8TIme1rSdltn8FlnOXJvyCu28NuDTDk8zObPvqTSs6sQt1ZSQQMyQhLC3rDENxsSgTvhqwz7kLGmIYy/smZCS5rrZrDabcRz2w6MCSxEVKyg3O+QHcw8YDux6wYcOIHCnPDAMWRMAsZsYPioSEHCIOQlReb3VIaY8oFp91Yw6Pn39vaPsXPP48Pabb3/33bdfv3vz4fbZsx/97JfXLz5vDd69+VivNnevX0nf379551nGNAACh8I8V5s1Kew+7mI7jGB9Sj94+fKHn3/WNGXMaXc4pGF4+cMvm6Z6huQ9P3x8urreHvftuzfvnOe7u6vdfn93e5diCoWrqspMUxqPx+PV1dU4xuCKnPT5s6uiDMOxI4TCOVPdbjcqVldV1VSBXdt1cRhcUeQYDalAQsN1tfrmzYOaVU3z9dsP337/cXV9UzZX66LabrZf/uALiRKzpsTONz54IvNkZn2ombTzOmKMZlqxkHPjMI6DKiAzjl3nGcvVqnQWcopPx7qpqsBjf4A41L4uESDm9GZn4CTllOKL9frmp5//b//46/EPv7H0ori6aVB0iHHoue9jpwDKuVo3dYCmCWXfdS+vnxHB7ul4eOie3z3zWJRce3AkBNm2222Oaf/xsCc77g7DOCKgI1bWVVN+8fnL3dNORKoijMP45ptvESkNCQhIbd8OrtmujOH4dIxZiFBMZVrzyMwYo5haWRbOOVHxjhARmYmcppwlowAzi5qfLSxgZmImYDnnJCoK0xGaSA4BfOFNxUzZeQFQy0zsvQ8hlEU1BWIIySSz44IKXLzAiFSVpXOuLIoQfBZJMUnOgJAAcIAUiyKUvnCOHQACswE6ZiQ2zaCZmQyUCEDJ1LyjovJgoCpM5BgclsFwHCICIIsAsGMwIDBUMxEGRFBmRnJmZiZIS6KxIMF0apLaFDVURUBm5FMAQlAgGygAVXVtjhHRMZupd7xpmmd3dwY29J2kNClWKOqIsiQHIDFNec2ak2Y1JAyecFLrnKlpzqqGiN45x95EzZQUGQkdFaEYhj7GREzDML578xYJU0ymGmNkHwiB0QAtp5xTJsKyKqZ9HDExupwTIrRdy+Tev3//sN8N49iPGV25ff78+tlLc3XhAhalOC/MCWkAnAMvCGAMYGpiMHnSSWCqI47ADAjA5Dw75+oQ6tsbylHHQbr+8O7t8PSUupa8mGpMObOjOgBQdX1NRchA1eZ2/ez5+uVnqailqBOyAOn0Kc7AZDIRewDFE3Sed9knTQQWSrLoImf2Mwn7lx7XGfhOyeGn3G5b0GQGg4u42ifiDyyHHVzQIjgDKZ7aMLfvMmPrYoN/2oJf3OJ0qbnm0an+L1wqW3B6c5nZ2X07d2fa4dPJDzwfhza7ehd0XDwmp1o4y6+LQrCE0k4gfEFaPq1GcPrzJUtajNhnIoAndeH0/+yMPjGW5XXLaE7m9LmyzyyD4KJb2J+O/AVdW3SgWSa7NFPDiT9f8KilFvhywcuqAifyBTitxlM3pm3LwrlP9YEuXwr6qT71Cf+aWj6HcE/Zenge1LPbGfAsBC0Lb0kCm+KHi5zzCZu9JJ44j9sS9LqYyfPisXm0FMV4soPpFNoHQjFQhaKqoyNNNHZtlwEK2Bq+Wq2CX0ExmiZEJUvqQp9MXImrq/sPT+0uVuuaE77/+PBwGI/qWjV1QcXJCIoUAbNDIMpqaKCiDqbDQMQUxn5o6kAes6hn2qwKZ7m+2xyePn79+9/vj0/v370RtR//7Je3dy/C+nZErxkwlDnp0+Ex9R0jxmEsS1/f3ohEcjQMMWfhzZUejiP7q5efWxl+8+33QeXzZ9dKfHV3V6/XzhEz7Q8HXxQAWK9he7MtfEAwV/j9YQdqzrvtdg2AcRzLory7XbNzDw+PXddqzrG3nBITZkkItN/t1+u1ih4P7dB2cRxC6Ws3HXsPlHEY8qbZjsP7oqr37z4Q0LPrq/X1zfPnL56/eLZaNW3bIgI5cgBrh4ySc2JGsFwGXIXKe006fHzaXVcNF3SIo3nwwZvkd/v729vrlzUWBAUTm726XSMq7D72MpSj0XhEBQe2WW/V7MPuCWC4Lsv//O9+lCWR5Q1Es/TweO8dM0vf9U+Pe7y7+uLVc9DV4+ND7Ma+7XaPu7KqVPS7P3y7XjeOGA32D095SC0cfXCOaLd/atu2LApG6tuu3KyutpsYx2HozAyJRHN7HCRLVVUm2He9Iriyag7tUc3avmdCITMER1j4QFBJHKMmFfUcigLFNIvPOTun6kVyZkTJKYshMTLNkjcA03QyjIpmNEZENRU1ZufLICmbqqEh2hShSDEBmGQhJGZIWRGpKMIksMU4AJhj7xwBmGYdhk7VgneIKKKiqiKSR0QVTKbgQ8iqZVmAgSdkR4hoRqJahFBWJQLEKDlndIQEBGag5H0VymEYPIIZjENix8yIAM6xmQXnnfciqirInNIsHWeZqvGSiZGBmnkEYkDICMRECKSqKtE5T8SM4NiLqWdStXpV3z272Wyap91Te9xLjGVdScx1KEwNizCOsR1aA/DOu7KIOTlmH9xymNeUhI4G5oi88+wcqI79MBVWdN5VZVUW/mm3UzEi2O+eUs6M6Mippj4mTdmjd95NmSkGdjz2quqCK8sCsBhjRAAByym9f/cBCaNo0azX66tiveKq6sW5ep1dSEgRIANOn/GgBqbTQKoigM6IawAESqZAmTADenCqgD4UiBoH7HushppCeXU3doc0tkPXM2FT1WDc9uPtD34QqmYUK9ab+uZ2DEVyLpOPZslUzEwRSVCnc11MZrGDTvLKCWbP0s6CuxfVXk7BkeVZn/pj/sSgfCF9nDBn2Yuf0PMMu/BHSDbhySlqNePqRRhmgfUFB08ge8bdCYbmcMQJ4u2Ca10ios4606UTFkDPbp6ZQ5zCfrNHeMHE8yidemNLZ2gpVzMTrBNXsE9Iz1Le5uQowoUomQFO56jZZRbbheRhdDmIeFaGTpLLGfUXeJ87deYuS81GXAbskiWcVI4zn5mqSi+cR09iyLkpOFkDzw2edbyJQtHCnu1iTpcQ6vywLiRtKl1lswd79n1NT7UTWZ37sFjbzmsKbFl/p7UxLzA6WX7OdGsyLSMiqdppCaABwFRl49TTT869uxzq5RE0MJ1r9xuAMRhNDIgYzLdRLSsJlFbGlORpuG3MgDdlFcoij33f7Y2x9szoinrVcb+DcTdS3+25Sg/HbjdmqJrkGcCTOlCCqUIGGKKJCZmRQybSrJLMEa2bmkDGccCUq9JRikN3MBnevnnz9Vd/4EBVffv85cvPXn85Kj8Ng4sg3f56vfYAsT2mrm18UdYVgEg2JlY15wsgTSnfvr7drGtoNo/d8eN37yiOktOr621Zr//w1ddxHMqyaNaNZO26rq6rq7vbNA5vv3tTFqEoQlNW7eFQlZUB9P2QsxQh9MNQ10WzKgltvVodTFSFHR/2x/VqnUTu798UZemYxmEoq7IKtYH5ojBiIx2IXnz27Ov3T8/vbnnXffn558+fv2Q0gFTbsG7cvu1ULDTVulScjkrS3A9HJl1XzWZdAOL49NE7dZzrQsEgkGSNVcNfXBfPV8FSZFTLeXzzLTNsddyWFDxLit3QrcpywzKm4dAfKB1Ld1M1dcoUx9H6J0RrwlSXjAbNdR1U8uPjo2Q9PO42V+unx0fN0h+OV1eboRtSNxRNY5LzOOSx39/f+8JttxsPuC6LumkkZdTCsrx/++Fw2Mcci1CQY1VVk6IuYs67p31OOTSFa1YbZrzdbnZPu7btiuDUDBUdEpWF1M1uv2ckR0zM04aayOWckgF4QAV2c80fRAJARZzL/wCmJDp/1KEBI5qh+VAQUt91XRo0a0zj09NTGcqUYhwHMCMgQiBmJiJmpKBZxCSEAACaJaGJZFQq6tI5HoaRTZiJmVDNyFQtxh6Q4qighj5U65X3Lo4RBcu6dOwgCyFsNg0gqIhoBEDEYKpmPmUxAKiCiICad84VDhFMzLIUPvhQIuEwxCwilhFEbUoatZRSzBkIvHeO0QA5THXi1cDAdIqVMRNOtSIRJ3LQ7o9P9/dD1xbOl86TCz6QZhiGEV2wIo8pIRggESAze+ecc4Tk2YUimAIhe+8mEdvQRNIYxxihWa+YSIkdu7Iu16tV13VxjBycryrJse+73CcI6jwhYFmUYxrGsRfVAosQakSuCiKPKeVDTETkg7OkU2Sl68dIeys2haoqDmZCJJO/B5QJGR3aFMBAQ1OYQhnznlWnqieKgoguMISIwL7yzZUzCevtuN/pYad9W8TkC7dabcgXfByK58990TCSep+auk052mSIR51ED5r0p0mFkTN0njbsM+TBEsg6gZyZnUMSn8gtEyib4mKGuIDiswQwOX7QZoPO4sxY1IkTTp5Fnekii84wFdBDBDD9ZK9/vuWSKnRhnkVcYMnOODcnHF7Sk+kay8sWyEc8qV0GZ4JlNLmXFtI4jeZZG5vo3enCiyZzllIu5aAFJM/EYuk+zvrHTIzMFvVlafZlJtXJzrTQ1DOnOdHSZRimB5YaiguRWRo8sSCFuaiQAeDCFRbatGhmF9z1RIPsNP7LQ4u+AsuYLmRzMcUswzpTtVkgg9kqfjJmnfQeO3flkl0SnHLez5oNTlLeeeDOfO3CQ4TLHE/UXMGWGZ6vNzeYTi+bKRnh7GM7j8jFmvpkI7A0WVGBEFFZFA3RFAEm10QSUQMD4spHDB+StLtxt4+3m9SUpaTuuO+2tyvSnNo29PjNbhiLVTvIrh14oEgUfZWAFQkVHSADMRCAIlHKEczUjJEkJRNzjB7MocWuK9mE0rA7JBsP+8f7j++ObcsUXr36fL29bq6ui/XzvksSOSesvAvox/aY0ljUoVmtVWR/2CfJgIDIrijrTYVEY5ZeaRdVMvD69rryFgiLJgFfv/js/v3bfd9l5rqssgFy8fC0z3kcYlw19YsXLw5PT2Ya07hardn5GKOkXDfValWLSntoD/udqsaYuq53wderJhRliGNR1lVRNJvNEFObE4K1Y2yut8e+PSZh4ud3N9uXL968/Xhz92y7WY19f9g9VaShKVe+POxayF2ZCcGK4OMQ6xpWVcMoMBwlD1sP68a3+wOMsQrhdtt4qh4pr1ivWI/7Q44xp7Hd7xzTZrstQkBT9N6FIo7j03dvYopBxWMRD+3Ytut1UwBYisMw5pzLqnJEm3Uz5RQ9fHifs9RVleMApq8/e6U5i2RhaprSe2qPXXds0dRA2n23qioiyMPY5fnscSXXtu3bN+9W66YoipijChCzC95IuPL7vj08ja6qm9u7dXfcZZVs5gqvpuNxzJoIoCwKrVdAJpIN0QgRCQmcQ1WwZDkl51wInr03cKJA5JDYeUR2BnFCAAMjRHIEgABqlg1BsjERAscx5phzyikl7xyaMRLxRKiAkZ0PQNlgOukUEK1wwbGr63L6yM4pAiKpuQBAJDY1WMgTOuQC1FLOZgzMZKQKGgr2BTsmNTAHKXtCp6JJEhEHz+SdmcWYAMwhhuDKUACSSGJiyaoq3lFZegOcTubKIlNdaHROzZzHUARJYmBE5omKopgBDoTIEXAcxUAsSez7427/8f3HsR1v725WqxrEJJuxMeIwxLBdj2OOkrMpEHrviGh2aIXgXMGIoQjTXierqopkkJQNMMVoqoTcVNV6vUZmiTmPoyd0joEIBZmIHGpO7IL3PuVsCmCWUh7Gkdl5x4jOLJtaUfiyLE3Hfhx3u6eIuEYui5Wqqimx06WoI6ICIqGcIEVPHGI+exHAVAAQ2FQZOKskBEfsCTN4qRRcWW1uCslmORSe2QO7jVpil8ArkiAdFRJyViMzZhYzAyUGBVNVmk3FaMsu+AKuFglgxhFbLMm2SDe24NAkHelluUK61FLOIHAmWXZ+YAGNCzg8ocjyKJzgEqZt/skSc3LKnqMfOG/gcXkGnBQSXLbpJ/3kU9p3AVNn5QGWF+C5V4Sn9LfF3jIzhIUuwqk7J8S/uNYSsjpJE8tfTlLMuQtzi06S2kzBYLFKLTNyOcDne8889zSxODvL9fS8E44vo4WL/5fOz5m5ll38fEGQ7ZMWfKKpnZYVnqjJiWedOruwKbysUrBc6iIiZqfq03Nrzoal8yq5WJ4GyzEac9jzk1uf43yn5T/1yBSRGEGngLEtFnyEszgGiHMh+1PKoZ1EpdO4XeigJ7I/zc1UzkABxObzaPIcazBwIQCwqHbZkrhec4/29Ng5GCT3CPoUUt+Pg2ho4qHNFOoR3YENzZFjYRoEVZQVRNQ58gTEBAYgCKZkluJIkj2jIyBRTV08Pu0f7i12eehi37rArqhv6vXV1U25Wmcgqq6iq7QKZOzAXtyuGrMEJuu6qIMLvm97kzJHYiVf+LIsAdnY+YDgoM2ZuVrdrYuCh/awG+Vpv//R65fN1U1ih4Xf9zFmO757V1aeEV98/lnl3NAPkhUA2/aIRHVdM0NZlAgGkhGMwFR1HGNZlUAsIr4qyXsuS3WcmdhzyimlIY1x6GKVU9v3QkxVeXuzaQosX928e/vm2j2rzIByXUCWsUDlmk2h4Kwp6XEf0DZFsWkwjXloj2N73JZhjVAXrh16zkOTeo2pSoOO3ZuP75mxDgEte9Nu3zrA0bmcpayruq7Vct8dTezu5kbN7u8/JskgKaVEzCYgksmAnY8pMjogGNoulGG9aQ5P+yJwUbCwdd3IjnIe+7ZN45jHEdnWqyoHV1Su3R+G7uicS1mHYUCirutD8Nvr7TiOMcVQFew45TSMsT0ej4djqConeQx+7TdXJlhWTcrpuG9HHSSJqhLSatUM4zCkrCmjI2IGADUrioIIJasaFD6w9yBzpgIzIzIgemeAc/kyIiR0pqaawYiZ66qYVJ6cxCyrJO+4DF6zIAARAYPm+XgsJGZER0xIjt3krXPszJSZiIKIAhgRO8cKlhHYU1mWoSxVJSbZXq1u727imIZh8BxAU855GEdEZAJPhIRKOWcgIucckQPCqq5yjBpz4VxVhlCUTKwiXdullCrPoSwMIYukHA+Hbhyir0pF7PoeiSWZ50DIRFgVZd3UhNz3/eSkyjEDqEMmo25/HIYRRatQNmXVlM201x6GnplUgBjYiZOc1cgxM0sWpKnEIzt23rmyLCUJB7AY4ziOQ0TCqixDCKHwdVUDXonkru3NhAhVcgYwFe/YBc+MOYlBEnGEWIQwjAMBSBJNUq4btomUKpgRoGcaY8rtqFUau87cISlZkbGszfmqKQ3UCE1ETUERkNTQGAAmz7ACGgEgMiKiMjoyQFVWyV3KDokQDdnXBZoSoqhA4TNgyjmZKVHKlnI2Jk8ePbORylT/+hySOH0QwyXsLH+b9Bpb8reXP9nCfy7tDSeMv/j9BAEncQAvbn42XJy0nuVO5xeeQPpkCz4Dy/wrniMPf3LcKJ5ve0a8U78Bljz/E9E73ffU24srngjXAmhT+aQlFrewkgsys6D5GR8vA4azS8qWzpzUtNMFp7/YPEVLhYET27BlWk5iip1COjBzjFkcOgUmwWyqEz0JOnqqZQxz+YClLacmnEdgpo6nHuDF4+dEwE/cYLhIJBcL7nK0pnk9rTz75K54sdQmcqZwcYFlQZ2ioifeeZE5v0S/JgVpae3FGE9mvKVneGraVIjxZNCa/D0EALhUTTAzU5tkTF2YjZ0mdiFWn2wCpkfmETGDKQaqMBWImCueEbEtpRaJkZyaKHDvoFezpAieAJ72mhTHZA5ENWAmNcyuYs+COqXDMjlQVDSZPiXEQLIjQFXICSWi5jSOYzeYxNQfdx8/DO2RSYvgfFVfPbvb3t4MUYyQi5qAoarFOTPyjXlS9ADJyLFrfAYTQGxWBRc2ZIfsEE1UFYgZnQPP4LVwXDg3DIfApbgiD/Hd05FAlD25cH94fP/9d/f3H+9urv/sRz/0ZSGiu659eXfd7v0wOsk5jn1Mo3dN1/eaBQFFtdms3RCLqqiJfSgA4d27D8iYx6FLKakUTalJxizq+RjHhFrV1fpqU1RFjP22Kg6UAwxxGDnH2jdD1pSH4Fijlt6J6q7d11UJUY4P3W730DRlQKSUaRwLA/IMotIe97vd0A9NVT09PN7cbNebW1Mbx8g5Z1XJeRhGVxTouOLGAACIvD88PR2Ox+12W/iiO3R9v797dhcKP/TjOOzFdLVaAZJjcASp772ntm3ffd+F4Ju6Kb1vj21/bH1wzbo67PdRbbWu+/bYHo6AwJ7afuj7gZ0DxPWmieM49MNqu8apslTXjykmlZu7KwNyb779djhuXr56sbm+4sKz899//X27P0zvOQVRgaw6/v/p+tMu2Y0kSxCURRcstrq/jYwIRmZUZp0+p7qm+8P8//8xXVNZmUEGybe4uy3YdBOZDwDM7DFrnIf+3NxhgKooDHL1yhWRMBUVBWRrfWWRiA0jeKihiACAFEVVQsI5O0YLIMxNQxFRoBDMVdRERVHROaeimoqyllwAwJL1ng1zhigAc2nAiLlIIWRrvHeOELWIIQYEEUkhsjG4ZBiwqGhRJTDWLAWEjGFjIKOv/fH5+M//+jcpcDqfT9/eLudQsmgWBERLTDjLcx3bAsRExhkkVAVmi944bxlVYjCu8tb4415VFUpWKaU4ttkSKSbvikoRMmzmPDVfVXMlHUQsAq4yW7cDgZIzO2PJlZJRdbhOYZp8ZdvnqqkaBt7sWkClC126DplLLoSWANrGszNzTxJVAcWqrpyxsxNgwwhgrYsxzTliiy0AvfMhhqHrkXC/2xnmNEUVAUEmIsZcSi45ZxnjhErOms1moyqqOocC2aAztqnqkkVidkA1G26cN3h9e+uuwR8mbqf26Z2pGkqkjApSQAhJiQqAIgrNymcCBMXCQCigqFoSgZ0LxyIRoDKSKorx49zRhEgRp6QqoqrIRlSV0Rqeo13zM9jgLIcSWqQHqrRiAUWEpT2W3jztEqmA26ubehYBdIUmCKBzrGDeCy/7dFoCKLNbQV2BzA2ELE6CbggEH7uU4+pPcPWoi4Bj7o26fJrglgR9I8/W0T16nPVfvPvIu7NF/X7HfnfX6893TQmsMEj+EN1YAOGaebSixuWHO6d1M+IdDM3MAsI6CJp1YLdZ3HEZIoIshrwN8tGf45o2hut6LSqTpWgkqCoS3s6KSCizAnfFgyork7ZYez7dgl90ASK3WOIdFt8ENv/J+g94ds0ffFwUwjsGeqz7/QB1YR0e6uNqqQIoqzwAoIX30zU7TgGX5mxzcr7eu4whgiqi8hx8f1i3ZVOwPEbmTchsChGdS0QCKS1rrgo083gq8552QcG3QCwAAt3YNgCY30OKAEQrDEIkEERgApr7RYoIWQvIikagjAKKxXhWyVBUVJU9Os5zi0lRBFSilAsTGDIiCEoMzBaItOQJtZCKIYQSUxzCcAqXa+yvJQ4xjGmaNMnhsN8fDkVhc3hy7Q7qSkNOIrStnbeQNEoCTbUHIg1hgFFYwRQa4uSr1vsNeguYs5AW9Aa9JSUIWjIQKBGYxtYMZGwUR03rYxi77rTdb18vlz6FQATOj6X84+uX8/ntX/7ln3MY2m1lLG1cG6fAzOPQh2k0zF0/qOrT05Orm+DTMAUECCkj0uH9+/P1jCQJYCxZQUNKBaE9tMbZeLoWxMPTDooc2iam4U8f903N55BSGWTybds6V0mBRKmkAQGNwTj1xvu+6ywjlGKYJJXhfNnWG7a2aEohjH1PRGx4f9w1u7YQxhjZm63bb9qtFM0lA2CYgnG2bbZI+PL6eu2uvq6Pz8fKVeMw5pROr2+zuIWJal9t200uMnTXaYo733rvptLlVEThmk4I1F0uVVUZ5j5myRokEOE0TqIlhNgNIxK5xhOxEfVVNU0TGUo59eehHwbrnSEDwO8/vh+n0fz93/7tW1Nfr1dXuaLy/PyeECzbXFANpJimKYQYRLLM+jcBjErMxjASOOdkLkaTBUmJcc7LJoQkZdb/KoJBI0W0aC4CokwEymptSCkHURFiIlQmA1kqZ8Gb+UOac4mlIKI1TMwEIKICIlkQoYgaRmOsgrIuxdaN4bquQHGcQk5qLRhjkYjZVa411uRSzm8nVW3qBpxIyQqzVJFd7VAlTglRjCMthXBuQs511aSYmMkwszHWO1+5nOLlcs1pQuLaW/QQkclySlLXdSmQSs5F2mrjK5dLLkUEyFnXVDUhlZxijCo5jGPOeZoCs6lbZ61tN62v65wyu0hknHdggdm6HI1zqWRDtmnbuaqqc84wj8Nw7XoppfL1rC9SEVEN42B4c71euqG7Xq6I8OHTp8rViDRxX0ISFSXMOeU0q8mzABDN/WJZFFJOOaaJp/kZzUiKGqagWciaigwryBQTAZiqto1jQNQSAhhSgwBQSMnMXnPRgSjirChYuZnZIUmWUla+oUgkIGVXENAyISmjKijkmUciQEARLQhYsigiCiIwI4ng3DS7gKyFKglxjsAtu/jZB90aN6weWL9zsnBzFzcBz+3Ix20z3EkB1Ed//SDggJmvWBQzjzjlAU4gINy31qurRBC5OfgbZrizSw/Ods1yQoR7aGmtqrz63XVSN6UIfj//Bcbcndk6Q7j1rMAFICHMcGEGgqsLv1VqhgfcpfOMbiddZr6AkpXBwbnz140KW4v6rBLqZRFWZugeGJpF7/Nl78gPHuRKepvFfL4Vct7+uAIDkdXAK/10R13r7fOos9Hv/lmQ7WqK25uXmkiPgbobJLvZGBFXPI4r1EICWhf7pvgmQZjznBBlLo+EiAZJRWHRqCGogiABkhKKEKoglLmHDioC8jxx0rlK6PyJEhVjuKRCOLcQKkvFNQBmUpjLa62LvMRXdSkWpXdD4PoRWuavMv8ZRMqSDcoZFBWLCCMrapQoIITKhARYCAXRoEHAWCIRMREioCIqaBImW0TJgJmTUCBBSUZz7Ic4XMbrpe9epsulpGAJva/q3e7903vrrKlqYNsHuZxHDmKb1u8a8BxUgIREAERi9q2tjW8dtZVLEtlDDgIlI7msmIHqukILWUuMCYxjy9M49UVqBWeclgxFExKTGdgRu1JvIZUfnt7XhqmEb7//rkwKGkLsrkOZBmfspqmttfvdIYxjXTn/9HS9dPMmD5mRqJ+m3f5QQF9Pp28vL4q0Pez8pv7t8xcm0zQbJWNczSaGGMchgGRJceyudeUr52JlQPzY975uPVtgNIpvl8GxJdC+G7DI8/MzI3aXMyISYBgmSEKIKoqEiNg0jYJuD3tV6Ye+77sY426zQyaR2A9dLmXoB1/X757f9UP/9va62+2MtSIqIszUXa6n05u1rq7rTz/+uNvuVERLtESESCoSkzXsrTu9vZ2vJ1BkRmZWVVWp2/pyPr+8vFaVV9RhnLKUuq6ddzEkUDidzr6yXdd1v3e7w94Y+3R8quuqiAxDn2Iw1+vbOHRjmMgYJure+jk5oaiUIiGHJEE1GUuMmLJISUkKGUMIxlgt4LwtCGGamIy1dmZ9SlZAIqaUMhGnFBFRSlFQZlIBSTOfSkRKit4wItSW0GJOsfI+Fymg3llmnrNRUowMVFK2zkoRZrbWsjWqymxmQAZL3N8QUds6UVBlZ0yI6fx2/fb5xXr37du3/jxYss5YU3EpOcSpxOIqf3jee2tfX06EWCQLZmvZEFfG7nfbFJOqMqCAWmsa5yfRypjCrAqOjK3NJU8xZm8sMLWb3cvbqe/H56cnX9ch5XEah37wtfnw6ZOt/MvrNxMmFBEVmTryxI1Vxwm03m2MdbEfIwhXZut3dV0b6xA15DSOEzNXdRVSyjGFKQSFME191+eUR568s0RAhDllKTB2vSj42oMgMsRxwlKgJEYkw7HoME0pBUajqEhkkJkJAWdKSIpqgRQKQGTDRRWYCSHEtHG+xJBUoUBVtXVbkTUpZuegqjwwC0OSkpQyiCxcPYECyBylQkHNWhYQBAUZCXGOU5CAAhRdwFKRgkoES3tZXMNcNBN1xFmUkFiBb3VvZRFGiM5sivLiUxeCAleu5eZ+vvOvAABIgI+N0B++9EG4s7AfAghAirJGwR6Q1BriAV2aXMxDwLvL1BtMWC6g99dEpAB632Lrykvh/06F+4f2FI8RmNu/K2JaE6AeR/DAVsw+WACQAefI5crL4C1CdMuZWw31mBu36oNuGGBBYXozjMIt+vcAFudB4oPx72X5YDnJnVFbkvVwVa0v47gHBm+I6zFaCCte0tUCi6r7JgR6wEfLeqzQc+GUAHBdmAUb4nK2O9a5oZsVz+litRtUuMuul5AdIamutZd0FZwvP+IcFZsPhxUmEwKpAIhILjkzOzZuXi/GOR8TERQJQRWJUkrOORBhYsk5xmDYsPGoUACBhBFIRUpiMgkglsTsZ9Z/pcRupJgiKonQo/UFMtLSsRVIaRESsWaDCDpH00uZH0wqiFpZLKpFCsz104hAOaekCEwkpcjy2FAASRKZi2GSGBTBWWAIKkN3+vbt919L6EG05FRZ0x6Pu+12dzyWJKEfctHurbPtFnyzf39AY2NSci0B9FOPxH5uPJcgxvK0bT62bY0SJUewl650OQpYU9UKRp0dNOUgtm6qyqlojWyNEcQkEBGGOPmCrTel3b0JPn/88/bDn8L51PcXW8jWNWt+/fr2dGilQMoARaW2OSGSeXo6ppRymghpGgZr7TSMMaVN204xxJS6YRDAcZpwcK0xu/3T+XQ+HN8RUS74/P6jYRq7KY7D2PXOkOxQkkyjbA9P0I/9ZQopElIMUZO4TZXRvPXhsNnut7uvnz8TYO0bkaKiw3VAxKp2kgQUjDFkiBDGKZacmGm32SHAy7dvJef+OlhvCUlSHvt+7DvLhpHSFD5/+22/31W1f3r3XNX1b7/9GkJ49+597avXl5evX75Yw3VbTeMw9MPpfHp69/T0fBAt4ziGaXoJX5EIAIjwer2GKbTbTVVXQtwPPVuD1lBRQ/j6+ka8tda6yr//9DHF/Nuvvxnkuq7CNHVhMtZYRMgpaIpawIDxzseYYpxSSSnnmBMisCE2DJinMchSSBBAhNgwGdDirLXWVdbx0nG0IBLIXPglxzACKCFZZwkgJdGcNRfLM2Wklslaa5xhNlrXRVRKEC11uyHgIiWWHKcsUtgQAHjnVNUYRiAAsM4Z5iKSc1YE7/xuv22qOkxhCrGqfTm9Dd34+vL67uM75w0RjlNS1RprUE2pEFO72+6Pz0SUhJtNlYoM3bBpvWPWnF1VmZTGcQRQySXmXPqBmaq6RWZQtMZMMdUNtMYSGUXc7/Ypi3P++fmZnYs5wwVTTsY7IULDu6eD9/b88jLFETpjvLrKIlFRvQzDpx9312kUVTbGW99stpZNDGORUvsKCOdK01JKihEBQwylFFBlIsMMIMYwANBcGciYumlykZTTNE1TGEpOUgoolpRzTqUURSViNjwDWVXRucw2CPGaV1UEiYg5jMF5z4Zz0jhNZJwzWNduKikMo99sGAkASlIyTDQ3VhQis/reWU+EMHP3AMgIMHdNAcW5HBUgIKoQwJyQBSCLq7pJdhBUZd7t0oN+ZVFpLo54dozzf8uRuvD6t68bFXJ7eMMaN7lzCQvjcZeUPCInvLu51V3fUAXeygqvf1/c//Lb+1b6eyJmjn7BPckcl3fdDlwDEXB7uXjJGfXgGvhZ53kTyjyKle9qGL257VuW3kKTLEhAl3yqBcXclEnw+PX9K3gwxYo8vkvvmgHrg7ZKV0k3roFKvHW8v/WxX8+Et24Yer8yrezNys3clgkWamQx+4J+7n9eORv4nuG5D+BG/ay69MWqj3jqpshavq23611PdV+9FS7qw6rCjZ5ahyZrGgEtWA3nG6bMgS+cK61J0ZwsAbOScVlRoCCaopDnRTRQANbAVqmsYZUcJ+DQVlVN3jibhMYxaNLaUQkTSmksSc5grK1dKNkQ5vnOWgN1eF90RMG5AsZMriKqQAFQxSV6yjobUQAURIlh7WhCxEt0khlFRRkAkeeHgyISZQAALUkMERIZtoAgKVlU7w3l6fT5H6fPvw39i2VsvPPWO9u0u72rmyTweh0ur6ehu+x32+f3n7Kp3GbbbrYhFpUgMVfeoquvfRBnyNYxio4p1xhDkulyONhD5Txmmugy5ZKLbbxazimbymzqikrJKXoAh+DZoDXFpHFIA6ggka21lGvU1rBpN0zQaP2nT0eToo7T4bgpfXx6fodFiQmJ0pSGqYRpYqKqqZhMCOF0PivSdRhDisZXhKgqT09HBbyez1NM//qv/xUUYszeeY+kRbBI2zQGWVMSgetlAgAVHocomoqoYTbKSSXHWFv3/HRwxnz+x299f333/FRi6fvrXNDYMnvrxjzmlGIIG7+VIsy02Rwq740xWXJ3vXbX626/AyQpIipdd60qP/TD68ur9QZRFDSnxEzbbevMX3NJhnnouvP59Xq9EGqR7dD3OedxGq99P8UwTVNM4XQ+lSJV5Z3zpcgwDtZZAUU2rnLXvnt7PRHSdtMaV314//z2diqlPD8/hXH68uVrjNPm6VkUYk51Uxsi8pU13uUoRUp3ugTjFFVAFQQUGFkhFymspqq8MyblpKAI4l11PB59VQ/Xvh96VDCqBqGoSoqqSkSWQFSMQsqZLZOw5JzHSSWTKFs0nnPMPKcyOS/C7KxzxsR4vV7BGEIDJRlErSAHkVQIFI2dM/NVod62bAyT0RRzyNa544d3794/a8nP9phiEhHFMo2Tc2Z+dsWYY9aYYxY0TBlM4yrr6wzgmI4f320OB/Y+TDGnTAqh74uKcSIhhykaX4vEovh0OBLQ+e009EPJUICQHVtXb9pSpADsj7s655hD5Q2ijEMXpiGlkGI4PO8//PBpd9znkn///XdEHPoxTtFVFsmkUlzboDdu00z95LYb2zSnlzdJMcdYN02zba7n7vJ6TilZb3PKMQQA9c4YS6JFRFQFEZnZWkNMiGoMZZEYExGEGOedn4LmnMMUrWHveU7rI8MllTIjfWuNsyLinAUEJBJiKllSKmXOtwJjjYKMQ48eLAvkEocpoyojggU2okJECKBFQJEA53j+Iqhcne+ajnNzDDgLpddAyY1OeWAU7vQK3nb/c4FKnRuKAhCwiKxlVOAmQb6lLD3oGFYCZdYr/MGXzwNenCvefwt3DmjN/b5zDrhe6zbLNV6xZCHd3SgAqNzmtrpBBbzJpG8a3sUDre5bb6qg7+iW20b9xm+sPhnmLi53SfDdHkujlQUm3INAoKD35uVrkGZpd4n6HQh4TGu6m3c1AH738oFwgtva6l31/ICeVqBzXxGcr7b8C48rtsCY24zhfu8sBln/MsO+O9d0G/0amNQFN+Ptot/NC5f8cIW14clsxxUIL8j7dqfc8d9ttLoi7OX8KnPAEQGBFHUu7kCgiFigwDq+FcspAhCoN9xW5vlpE2M+damfUlIF4lnXRCCEkEWIgUCNioFsUSuCjeXMHEoep1xCkFTiUBqLlSUoOoYJnFWoGTkLEjGs6HyNSwqAKhpFmBVUBKAgAAW/k3YrAAjI3NhkAX+zhHu1HspM8hLMEvxlUyJa5hpCRORnLhKRckqSS+WZTXn78uX3X37u3r7tNs3x6eitR0BkE0Vfvr6dLt2Q4m632zy/3+3273/4cYhinHWImgKW5DLVDIUZXTXmkpCKaUoOb53I+brH8NPH7YdD3W9z2+vnU/52CQWtq11iYhWXBxljTegILZTGcZESmYHbUPI5hJyjEThdP+89P1Vuw9A0rdHAXJ5/+FCm0Xr2lQFBZhy6qRQdxlFKtoYPhwMA5DEAgLWcpjCO44fDzoljZmY2zn2sn09vpy///ndfVfWmLSUX5zGLR8RSfOUngrZth35QhLfTue8GBXKV//HHH85vb6cvw+XaGyZrCEv+8ttv3tq3z99SiaXIdrdFUAAhgKaupWTJWWIqOStoc9g1VRVz0pyZ0DurUgClu16s9d++vTw9P9VV3V2vAG5/2LVNTYpvr/049Mend91QzqfXaeq/fPk9TOFv//IvKU+fP3/JqTTbTT8O//h/fv7y+ct2u6mq2vtqs9mo6jhe543UFKJAJ6WkEKZhdNaIVGM/tm2zbdthmsI4FhhjSq6qt++O//6/fnn9+vLnn/5irDEIKjFpUk2CZESKAgCjdZaVlU2REFIqJRlTee+ddzFE79xus/nw4UNdt2f7BoApTColxlKkxBhAwXvvLJesXFUiTjWXlEqKKIUQkMFaElBURCQA9vWWXdMcdsbZNEWuT/31OsXE5K11nGNEEMoghRmdm1twsLUG2SgAO9+gqTbV9rjfHg4GQOMUEYdxqitvCUuOfdeFKdRtbSqvoojsHLfs2qbeH/ex5Lfr8PThQ/v8wbWbYRjTNBGo32zGaz8NV9NubV187RhBFa23lm1SSABhnIz1zlPVNkpmmK7dMCECEBmVcZx+//23n3/+uxSx1r58+3p621yvl93hsNlsPnz6pKopl8+//n79uX9+/yRK9utLu2tTzgpaSh7H8XR6k5icMxXWJZcY4jRNgGrV5pxUhHCJXZWcU0qlFARSFgQV1ZgTEU5xilOsN401FklBZBpySimXxLz4G1EgRUJmo4hkiAWAVYw1OWVQYERf+SAlxCgKOpfbLrFM42633+0bMHjuui5MVFfNYUdkCLlIoZnlmEvC4tzAHBdtpa57Z701B8ebl1hGBosERW9ODOChcRbAnGYL3+/d54DaIp54iDjdttsrfliiCncXq/e/Ly/XiNV3uEjvwYxVz7TkyKykwXf+9/auNYn6fv4bkYO0Klfwka+ZKxrf0q9nKLdwE7fs/MV0D/zUwxeu09A7xXEf0rwMK9sxH7hs5GEJMS2QEgFk3rrDHWY9Xu5mpv8EbW5zXGyzciW3fK/lDTNKpHtd5tm48AiGac2iWoki0pvBZybnloG/juNuubm5zSPehPWuumm3dImr65JM9p1BEWnVJc1EGa1mXHmmldh5YBtX8HvXij+u2g1P3FklBdHlc6O3ty9c6EKDziExQRVrSsUGpylPU0kCgqCErFBUQQqiooIICDCRpAia9lW1dQSaX7vpPHRRCYDyOIKWzXGz83YMsQtjLKPmbNsNCgMaWJXmoDP4xUVjd//QrFNa5ObrnbJQr7g8DFSWpZqNjaSqtKIjXFdy/XTMzZ9ZNMeSS0q1N6axOvVfvr5cXj4Tw5//+tNuu0mpfHu9phwREY1D9sXXx6ePHz99sEgoMAqSY2PIotrGCqtlMKZkJFtZzuY0ZAFrayoWTt1UO8+m3ltrUoyGr5pdihK42VTXMFIYveHGkWEoU0hTZIvGmWGKSliU0NVoch5Gx4SAjPTuuPth2zQoZbw0Dslb1KSlzALikCYFtY0n9NYYtBynNEx91Tjf1EKYSpYsdVPv9tsUUwgxT9OhrQMbcjalkIo6gIqtapmbzxvDolpUVFRE27bd7HZsuOSEInVtA+Y0xcrUWrJhBChvb5fKe++9d3a4xrfLZRz6/WGnIlM3dqezrz0b8+W3cnw6MPP5fK4rP41jd7222w0oVt47y93lYhCctY2vKue1gGpGAGNtu2lPpzMojMMwjdNmu8k5n09XILh21//4+ed/+ttfjbVN29RN07SNtxUSWrJ1XdnKz8h6u9tIKdM0VaZq6iqn1Hd9Ze3zuydzvnbDsDvsfvv8BcJUvTY//Ze//r/+3//nP37+bAgQVCXlPOYQs7Eea6eAxjBCYVQwytkKUs4xakDrEREKWmPbptluN229gVJSihfJJZdSMjN7NkUL0fywkqoyCBCDKpFYSlMsOSOU+elOBotq7ep6e9wcn6rDHon7vv+w3b98fbm8nZjVWICc2TsJIyNYZoMExEiMSKkUBTTGbg5tXdeW66qu9vv693//5fX19XodREtduakbpyEgoTHGbzwgiVLtq7quvXP1pp2up/O5t1kPZJLyRE49MQpaV0JO49Tsqk1rLRkEvV6vUy4C6prGThMgHY97Y1AVBfjtfBmn0A/D5dr9+Kcf6trHEFBxs6kB9OXby+vXr28vr//0t3/2fzIGTVVtXDX86c9/CTEwIUDJMQxXkQKI2F+7bbv54YdP3dtFpYDoMEwlZ2YcQ5j3mc5bYjbGaCl57nHLqKIKJRcsIilnJO6H6zhNYLBtGwWYxjCGUbQgoYqsj28RKTSrcQDREAOWXJYdHatvrQhLTDGEEKIAGTDOWFsXqwVjmqZrd+76XCoiUERiQMGCoEpK8P12EABJ1/jV6oPWxByYd936sPNfpTdyS1LS2wZ+YYpuMQdc3/GgVH50YHON3fXsDzqaFXDBwy++c+LrgO4Uz/fHrqhF7wfrvXAdwqq70VUZtKQjr8zH4/kQVn01zKLW1ZEuAqaH/LEb1KK1j9UCaeBOc6zZRN+FYu4X+85dzTv52YiLcRcea1ZzL4pdeQCLt7DT/7+vh+ncAz+PYO3h5wU+wA1SLHTZzeyPLMhdb72Gzb4jae6M1QKgCWZlL87mh/t74E7A3UD4g31vVl6nukQeb5fCG8q83zQ3l66gMDdqno+9KWpWGdAi6bklCC6fFxVcYOLDqOaJAqNiFszJeWocaxzTeI2B0TbEkFGFREUJEGDpW8QACMWqHDfNxurb+dJfLsMwmqau6iacgwXdWdxb1FBqw8gmIjOyIImC6KzoXjo+r9L/eWXXulugCMrrnQo3u4Mqoq4lvOc1JkGa9z5KD7mY9xsTAAyRSkEpcy6ZMbxxFksapjGcz5rTdrd1zp268XrpQipNXe/2R9fufLVR54zzBqlM0zSNfczHpy1b4y1aNAUDlmShFCoVgatqInMaR195X5GxRFCufXnLk8busNl3VrXBYqCEEUtsKni3aRpPRDIN0o+FuUyqWUsIGoryZlPZltF4CXurG2cqRs/aWotYlzRUFSNgyWkaSwih2W2cs5KzMcyMYZySBAFNOeFITV2ryjQNTe3nxkzzIxGjtEyu8f1Qsoiz6B0zWecYiVLOp5eXoR+2221lXUjRGq1aq1Gr2pTM59euaWrf0uvnV2u58rbyZrPdhDGM/RVRUOX0+pZCdNaJllJy5bfW2hzT5e1EzCmEZtMaw6DaXS6b7abd1U3X/PbLrzmEdtMYalFyyiFMUwrBsHl9+QpYrOPLdRSFvh8Px/zy+rLZbkTUe7fb7vb747/+y78qSN8P0zgSc9f3IUbr3Ga3iSnFEPuuN8b86S8/VdZJln64ksEvn7/GmD79+MOYY9cPl+tl93SoU1Skut0YxrlFiiKoIeT5UWsQSUsSVFHNBrn2vhSa4iRU5gdekTJNU3+5pilO4yQqoiqq1hjnrDqbY0YCKYUQEFRKmft2Si4ARbXM4Y1ZYEJsbFW3x+Pu/XuwbpyCsK/b3ceq3T4d57JWYez7t7dM1hqxAKqSk5RcvANPFtFutpvdYeedb9paSnr53L+9vH39+rXvR2utNVspIlmqpiZjyFglRKFm01R1E8b45dvp7XoaioipJ+EccipA5A0IUYpk1dXFALBLRbrzZew7X9Uphmnoh3F0ziSRPJW+66cQxn5sm+3lcj69vsVp+vDDuxgmnIW9qrvt5jW8vX15bVzjyG4Puw8f3lvrpn7IOXbXLuZUSsbMTdM4a9MUSs6H3Q6Lnk9v0ziJKhFa46YxCBTrnbVz7UgNOSsoG5REc26IzrnsICBlnKa301uWBPjeEE3jlFIiBOssFiCmRWMvCgzGWAEly4iUckpFChRSTrF4a+vaxzDGGFJRz0auWARVTYwygY0FXV0755AMMt3kLUg3Ja/SsmPGRW96c91rEhMsQgPE+4PyO4+y7PuXBySu/mrlMJY33h0h3hzcol7Rm2v9zk/pzdd99wB+YChuYOn+zwPWeXzbTXPzQB/MpMDD8x1vKV73wTzSKTiLj2HJElpFMiu7cQNsd0h4V9TAww/4MF98iMXcj7npW5Ygxp3JuXM9cIerdF+A+9BRVnQH+GjHZcx3zmOJKy0IdoF630Nh+MMAl2nfV39ZjJvHvBtZ4aaJfkwlu+XWqcy45W6phxy1mzmXkz4mb/3xmDthtuiZFonOSirqzUJ6E1PfMDDBd1D1NrzlwDVErAAosNThhJmLI4EMonMpQ1K1TNu6/vj8RBr1i/QpJC0IVkTmzHgFIUWaN39SDMCurvZNjWUarl3sB29YQdM4bCryqpjSeJqYTG298XVgG9QoLl1TQFWhLBAMiNalABBabI/LHXLbXSyrjAC61igHAKSFXwQChmWTg4iIOPN0qFqWeweEGBkJlBglTf3w9pKnkQENuu6aJhZyvD2+f1+32+12s9uRrYpiLJqzqCgaWzULaneGLCnnZFDAoEJRUSlTbarkSMGOmgUYnQvj8HoZW1cOnjaMH1sDqRSLoyaDoVVwqcciIY1oTNXwqGnMmCQVQcPOWYcAlkCundk6ByTD0KUBLHosw/Uk28Z7HscpxtRs6hizYd8PAcmqwjSMxvJms+FuGFNsN1tmautmnEIYRsvWWvbe5SGolNz1mHMYxpIzPB3ZWmA0bADmWpE4t+7qz5cYh8O7g/eVaNKSAKTElANJySBlu90xcUopTuO164/Hw/O74+nERNQ0TU4xIBEwE4PVEIKI1FU19EPdVKWUb19f6rpRUTYkoIfj8f37d1+/fj2dIjMxG1PZX3/9dZzCZrcxxrEzzaapq7pq2sPxkGLabNpPP3z406cf/8f//B/emrqpwzQ+PR+JaBonZtpuNsenp1RSf+njFH3lpmmy1pLBvh9e3l5jTGDw//mf/wONZWeAKab47fOXw3H/4eOzMUQoYAz6hkspAgaIyVopMieySFHhwkzGOFIii4QUU8opnd9OUsRazqlkkZQSE2kpeSrGkTNIhpkcMeUQpzESlphynMYcIgKRYWc4gxBb9pXftH7TkquoronIsKs2zbH243BlAAUYrx2RP3/74oxaVC0ZqeRcXOWrtvFVu9/tN9ut905Knsbh7eX1OvRJYkgTgAyTQ8GioJw8GweQo5QiZHy12Q3hdBqvXSrN4bnavVPbTiUVNosWOALUG0aTQrgMJU9THDOiY+dUcDhdr31uibZMQDql8Nsvv5Nh68zhaff3n/9+uQzN3lpj6saO3TANU5hiVVf7QwUov/z95z/pX5q6aWpvEF+/TvvdLks+X65e9cPHDwZpEuiv/e+//p5iuJ4vCmCdNcYgQF3X1jIyzosSY8ixzJgnpyW7ilBFtEjOOU/T2Pd9yoGI2qaJMcaQKmeZCAScdZbN6koRLTEbYC6awVA/jJKLdYadSaTn0/n08pZVgBhyygIhFQUGYnEbX23qzdbvd2BZFMosp1ZYd4eLhEXunkTnUiOwbhfXx/8tb+jRpy/SjnmksuRhgyKsupZlizz7occtKKzp4PqQUrViCPyDY/uOJrn97sZJPPxaby7t5usepobr2Ff3B4t69xGOzbjtj8zTCg6Wqy3f5yra+Ee2aOVJaHEg8gAQ71DiAXl9D4IeZEd3ldPqku+w5IH2QoE5jLR68NWJr0f8AZPA6s11He2DIEjvDMwd596AsOodra6jvtkN1ss/wt1H264jv0dQEYmWIuR3294vfcOU8B3w/f7YB2OswBAfxqN3PLMu/XxuXe/t+RXeT68L4Ln9RgGBFWVVOelyDyOgwryHnLV2DGAYs0g/TY41FlTkOTVrDdARzd2dFUkFtTjCp13b1PbLb1/HcWwr36cSxkCoHz/uXRFTShgmqGrnPZiqCxk8G4NJBHBtvLpMFwXmVn+zwZCWwOMMjElXqIkKM4s5l0IVWIxBcq/ieMPdqw5NAVCliJZ5lx5iiFMgLGW8Xl9eLKE1CMDG+t1xf/z0HtUIgK/qJGjQighLYUVDhGzUMEJmKBIHMFgbdq4W1WI5ZEiTlDDZYo+Vc8ghp5xlCvHrMPlKN582U5iMxkMjfuvRtf/4+epK3oJqyVLGkDha15cY0aCSRfC1k5INQUVIlm2K7z8c3rU1xxDPb8NwVYkEgtQ47xApljQO4/XtqjlvNi2gOG93dZtzicPYOG+ZL5fLNE3IWFWVM5ymmEqGUNpNjUifr1+n7sopkSO0Vkqp6qapqyK5pFgR13UVx2qIoXs7fw2fEXDbtofnPRRNIfnaWqpylJBiDME5s2s3c2xgt9tYY1FpGvsYw+WqW9gQ0su3t6eng2+q1PUSMyMbZ1Whv4w55f1ha5wxbPfHY99dz+cTE3enbgiByDy/e396OzPxj3/68/HpcD5f2s3m5cvXIvnPP/7l7e30+u2rpuLrqvKeAKd+8s4+v3va7PZDP+y228vrKccQxrFtNpfLdZqGf/z2226/2z7t//Hb790wsDXGuv/r//6/9/tdLrJpWiliRISZrTcQEyEqEhCrYo6FGOeoYZEIkompqR0SllKEqIDGGN5Ob0ygCsYwExNbIoghlIzWcOXbdrNx3k39ICXlFC1LYnTOGmRmw0yozJXHqmFfIVuqKtPWdVU1wHXljUM1KDkB4r5qRGScRo3RGMo61Q21m0YV2Nm2bZk5l0RJSs7j0IUwIBUyjKiieUrBOgvKWZWRNJWcRNEURVvXfic2y6cPP+zev/e7Q2YuogVRAZOi9RUCsnGFRylBFbbtBkpKaarrqt7sxymSscimdtVmk95/LL/++o9//HKptk1Vm5KBEJy3zFzZ+kqXumlyLirAyEgUp9idun7sd9vtx/fvkTGrtNuddYaJ+66XkIzBcZj6rp+mMPcJkSJEVHlXVZWqguKYx1KKqOSSVQQUkBiBQAlJUJYqJMwkRcMUnLUppZwTOMfGGsPOe8OmFJkTZgXRGCpFci5oGI0pJecYcOQwwfl8vnZX42zdtNaQIuYSw9Bb31j2lTON92RMRliEZbCAkRkdkIIoAsi8aUZZndzKGegDmrijglURAjeh8RrUWV4u++h7GOzutG+ecCVlAHSmzdZwxIKdbnTOf2Yg7n7yYVR3QgPXp/V3iAP+CFMWL6u3XOvF+a1xFrnBjz9edMEFRIQrwfEIaL5LJVrHuMx4McEfI2wPI9XHn+9nWYNhoDcz3ZQyN4CyombAB8izgrfl7WtuEy4jeRzyCnGWQeCKM/QPc//uJI8GvXNsc/f0FdUuCO5hMiviWG2hD/9/Dw/Xt39nqe8x4//mBrlN4jv4fIPwqyLtdp8sZ/3Dks8BpgVX3wD1nS8CUDVAggVk2eiknN/OXQrBMfZjFDQKKKIIwEyghAIoBRUJgEU84ca6HMLl0g3dVDeH2hqDpW7c836HMY6nsxrmurGujpmM4YgoojBn6eOaa7gEYWnl8QBQ51zOudXYzIjRGrwlXTg5WbE1Cs56DKClbrci6NwHj0BUiUgJQdGw0ZJzSSEFBmXr6/2hcdYw+SzIpmm3wlUIOaMWxZQKRnWGLRJCmXIpoohqoFSgccrqqakqKgkZAHDTeq1wHMrlOuUpmsaKISKXpkGKxIJZ6XrpJAztbgPDlXM047m19ujqXJBAS0qvp65LgvXW+VrGhDBpEd/6DYirTIWAKXCxkKKk7K113qc0Dddhu28NIxSwbLrh8rw/GsUQY22spNJdrwjYVPXn339/Ob2FKTw9HXeb7aZtLjFLkRzC++d93085JeeMIoRxtCqaJQEWAQPgiLvTpWLj2FDDoaQ8RbYsItMYpn6QFJu6brdbEM0phhg2tn16ty1F+36MKWgF3fX68vJa+2oYp5ji0/FYSh6GwVhbklSVFwuH3UFRYwrjFMYhmI/u6+vL7ri99j0AdkM3DEPd1H/56ad3794fDs8ipYicz9d//1//jiRVXVnrpnG8Xk4//fmn/W7X94N1BosSgK/cu+d3CvD5ejm9vp7Pp89fvqRYnt69q5o6dOn5w/un56fXt7em2fz4l79WlbfePz0/seHT6e23//gFDRtR1gKY1CAgUQqFCNmSMUiGZpaVCuUYChYWssYTIDFNZS7ypzmLpEwCvnJus5kLVaUQJRfnvJScJyDAknMIIedUihgiYw0pSMquqqq2hqqt2vrw4eh2G243uQtvb+eXc/f8/uDaytebPOXr11e72Xz485+uX78NbydS2Ozadx+eyVi2XERUaRqma0zTNI59F6fOGCDN3pOKIJQYS85gSl0dn9i39aEh62mzDWiq4/P7zYF90z4dpiKjFiEsiHOuQsjRky2s9XHHOeEmsZY0jAU0MX/8659273aX00uQnON0ma7kgImvp5fr9ewrY9qmSHh9HQHw06dP//yvfyshddfrNIbu0tvKNY2vnAMRC3h8enp5fQ1h+vTDJzD0+u0lhimHIKUMfR9DaNsaGECxpCJSjGFYeqO6xMWarCUyGp3LI9PchwOTgAgQcdO2OYuoOO+ZDXFho2ytddYgz9DBOxOzZtBcBIpYY8Cgd5aN+eXtZbh2F2PbbRNzEAUicpVFVNVi2TBIjpPJSWIoacK8WWL1hpai4WuKNdJaA2cWBi2i19Vbf4cgVvmH3nyqAj3sxBdiafGCekc9q5z6lq57d20ztbTs0B+zpL5zdnfqZR7HPQj0B8en61XWM38HRFbV5+qM75zEDANucZOVR1iiXAjfabznMMGD5Gmp47hGjlYgByumW6x2B0J3bdCjZ16rCv6B3LhxG3dPvUp/YKlP/TDou479bt+Vxnlw9He4snIiSxmg+0LMcpIFpNzB5QJX8D6eB2Pdl2s5mB5moY9/XKiU+TeqiHQ/4kbWfAdFVqy7yqRvoOhur4ew3Q1PP6LkWwxuPozWZENcm6/fFnrmVOatAcxEiiIIKhRceyvSskVAmTMWRAoIEYliUbyM0SCmVLSqlFAzICEAzt2IZ+E2KdoClaGGTXd5Gy6DQUfs9vtWtIDEy8sZNPd9z9YbQAWMqkUVgFQy4HpTzyQrKKjSCutl+YQqgM7bHAEhXdg3XDU/CnNUC3ApEo5AVKDM08flVAqAQCggQKiCUQsjuro1rtZS2CEdD3kKIWY1IACXWDRNOQlZM6agRXLKBOSYVApVzlXeIIBSLlNDVIGlkCBcfYVZiimVcw2VWHIQMDKRcZUCZE+b7eFQofPWQH75+tVlmMLLtetiyof374tzwFRiSv2AATyxRXLsOo0URuttg9lpcJRbo/3b18/nl7YyVcW7Zsug12sO48RE3jjPzlamtK1lrBxDxjiMCUI/DVVVZyhK0DRNVdXDOFXDSEDVpr28vimUt+u1FGLntn67O+yylGkMMY+S+s+/fXHGMVFWefn2+9v50h4OESRJcb6axikMQxxGULmE5KxVkcv5VNcbUXp9uyLjbrfzuXr98tJ33WazccaFcbycr92lN477YWDjnTOXa0eGgfRy6ZjJVV5Au7G7nC9fXn7/9vVl2zbOuW27qZu2bZru2jVto6C///7529evQFo17fPhKYXw73//j23b/vM//a2kXFeNseZ0Pj09HxWwqatr33lnkwii9mMXp/jLr7/Y1ucih+NhSul86Q7P+5/++ad+GK11ry8vhAqkDOKQjWt3jFBUBLI1SEZLLsi8aWohnKaQSkFm9hWosrNAathoTiBgmJFJi4YAhEACJURbV84aSzRNobtctZSmqVWhu3TDOBIqEpNlKQUKqopjrp03m83+/bvtfk9NY9pmyholXy5XJW029l21d5V/fv/kkL4BmCyvQ9CcEBmRm9oDsYKKqOQ4dOPp7S2GkSBZYwiw9j4XQLQFdYKyqzdcbTbHd3WzYUPKppB3TV0zC5pLCBlViIBYBRQECJBtKmKsDVIMGbRACdT5WUSAzrW0M0aH6+l6OsU4QSqbTYPmg4KgwaHrxyGEmFVxHMZxnGrn2k0rRa1N89Otv1xLKZglNSnHnGOec8VrX51e3tIUxr7rL70UrbwzxuaUSylSCgiogLVGSpFSCMhZB04FpJR5EzyX6i6L4xNo25YY67oGBWuss9ZaOz/PEIkZRZbwOwCwt4YtgTIjIhjmnEuYIqAQU71pvbdzqw8i8s6RNWRZSx7HUa7XpmmJNzrXIcSlms9cEwgVAGfa8dalaN0t3nzj4spwTQqZXes90WQly+nuXe9qj5uD1VXlDKpLleHFdd1CTg9sE9zc8ursb67v7s5vtYAefOQdr8EqSflj2hDcHPh63OJJb17wdqFbOv0NhszjeKQrVrHIbQozyXNPLL776Ru79XjZ1ZU/MhyPZ1p5h3UIKz13o3lmk80Oj3DFebCKdWF9CQ/m1e+JkRvw1Ps04ZG6e5j+AmJXcLcijFuc9L52cDsdPoKPFd4ArKBlLkWwoqt7AE1vyOqmRdbbePHWm/Y+iRvWu99D93zGOyi9d5H93yiKZMWDa7iI5spXsGi0UVTv71sCwYhEoEACwM7PbYhiLlRVEbAoFlAEQlmoICliAJGJlQ1z6Pqx77Ro3TSm8khGYw7jNHQX4zgUQFIKGSWCmpgEWJEI4ZbsjwRL6BpUZhIPEXT+LCMg3BoIIszthIEQBKgs6BmRlFSgoCjqUptatcxqdUQAVAJRmam7LKpAhAREiIzO5JTFErKElJDJkGVgU1FIJcaECLGUMo0VExtSxmRM6zwjpVRiSVrZoes3Vq3K1J1IKlCBGL2CiDC61vM4TpnTrnKtJyySY9w2G89cVerEt9v3IeXT60smzGxBtGKsvGODTcUuAoHWNVqTNUUo0TDu9nUZgrfGWaOgl2s39GPbeFIYL53b7QyyJRq6LiGFOOUiIcYYc9UEV3ti3mw2McaSytQPtfdUyBp2vh36nsg8HbaqqFMgVUpJYgRRyOIrrutmGoauG/qx3757mvp+GkbvXOM817VDVpHr9Tr0vRQVAVtZyXrth5xjXTeHpwMoxJJLyalkv2lsXYlI09ZjP6YYjeUphOvLNaZonEOi958+TNM0jZGJvn75WlJS0e12X3lb+zqM4XK5fvn9i5L+/e8/p5L/67/+K1tbSp7i9OnDh7ZpSy5F8rW71FWdYmybuoi8vHwbxnHTNti0U5x++utPhi2w+fLlq2H6+99/rtuaLf3P//nvP//y609/+csPf/nzNIz/8W//9uOfP3369N5aNu///LfT1xcpcXvwDjGnlGIE4nrTTjEC+RjntCkK05BEgKjkJEUMsxBoASZja2PmFMhSxn4SUJ2DKACgmnOJMQ3jFENyzlljVDFnNaR144Cpqjambg6HXeV8MayajUFf2a7vfv/t89PTBssnRuCSa+bzy9vweg7TtGmMaP79t98Ph93+/ZOrfJnCNIThPHhmYGJkFQU0bCxXFtir4La1H//yl/c//FBvdjGVc3fVIvsNqXGClEEUSVSWx9vyjENEBGIRLUygQoBFQUTQeiJAw44gjwi5eDLcNKdvL0T6/G4PxNMwevZ0uYCMbKwmHfuxsr5tdo3fEH5LuaQk3dg5Zytff/n8dcpTjPH3X36tmiqkKYYw9mOaEhLU3omUMKnkknNSQEhRUYs4QJwfCHM0UkQyFSmCiKlkRpp7yANIzMkaw8zeuuxcDLHkgopIGGOaH5FIRkDJMSMZNoBQYsyx1HXz/gPFGAHEOucqx4gl6dKkHbkoQM6a4zR02VoYu6apQJkRhEikABLBXBIIGDkBZC1884kIuuYUrc5YEW8FfhbfNVdkURFEVbnxDA8dD/DucW5+fPV3q6JkjaXcaIvFva7uCmBNKFuHo6vbX/S1jw4QYHbHclf80KOa6Xbkja3AG2ujS0xocf2rIdZvDwDg7qlvYh2Fxxk+hHVwZSD0ezIH1m93zmemkBaQc7MVza/uTnxlQmYss9YDXLDCAylya4SxSoluRNyd0rnFkdZD8XbqByB4Q374gEFXBHGHySB0B5MA+sj8AcAccrlZZT1wiePhupTrJZc1XsDainRutlxHoQ9GXW13H/4S0oV1wXQ9ZL2tVBcJNpLcLbl8y5ItMioDcNGctRDxvLC5FMuOEUQyqQCwAgGRIAoULcUAsHFZUQGLKMy0kQIAiYLcilAQVnUdpv78+pZSPB4PfrsfQpymqWQhW4M3gDAqxiQOpfHsuYoqUmQuTsCwtChb2dulMe1SRmoJkNLCFokgiAIuuWygiloIYC5vyst7EBVEAVXm1ipLnYKFbiIyM3+XUpxRuCQicOx9yhMZRgACduQQCE2x3uQcnbPkuFElaydjAqIaj0xdF4gooGtr2G/2JvfFJ+s4TkPop9o3z+/eZ4bhOlgJFSZfovRBjLMigLCrPKmtmbiqhnAKOchcRtZSCCGn2O5hB1WOV2dwx1pC6q7npvYVuNj1eQyDpL6U4XpN07Rpqq1zOUzX03U4XQDwer3u9zuyth/GKYSnpyNxfHt7C1/iX//5vwioSNnsGiQsOY8lMwGqMoGv7LZtcpLucp2moAoWqN7UT8e9NXMt6WmchnHoP//2DyWAkMswFJU5GxpENGVCjDmez1dBziUx26L67fW1H8fr+TJ04zQNxtiPHz80basiiNhsCQmnaYphAgDvK1/58/ny69//MfSdt/6f/ss/xRB+++XXjx8/7va7oRuuXb/b7djS6+tL13WXy+nTp0+H3SGleOl7RoohNq4ehv50OoUQcs7dte+6fv+0jzFVdaVF//GPf1z76+HpuNsf/+OXX75+e3HGIJGv/H63O13On3/9nRSUNE3Tu+enj+8//NNffhr6i3n+6W/795/idI1xgpIbR6pwvfam8c76Dz/umqaJYZqm4fXbSw5jjiGESUomBGZUQFL0lUPQaQiIkEooIqjoK0eEOecwhRBjCnF1a5hylliwcWpMAjMJ1WCKkiKmGEOYbNvsjk2zq//+7z/351Pur1ZSbaBic/587t5eHeN+u89hOp9ORabC2bDtr2P3drXEbEgnEDD9dcqC1lmm1lZtzb7a7/78X/5ld3yecn759u2aSt004kwAzSAFRACAGACWxkYzk7/uwgqQEqCQEhdiyXFKIU0TjcN0fuMcHZtw7SSUuqnruk5ZooRtU5eUw5C8q5xzJWXvqncfPgyXfkrZOTuO0zQN84d9GPopTVVVj+PQ99dhGs+nU0nZMmmRrHl2FHP2LhMyM+OcY6Wz1BloSV+fN18qa3FVw4horSUiaw0bFhFQNGytt0QkRVMuqACEhBJLlpKRjWMLS51lRcC6apq6mZOS2DARFlACtsaGmGPOBi3YlDLGYSjnK1aNaZAIlVBVU8nMxIBFi2hGIgYSVVqqAj54F1VEJeQZhM573dUBzU9XlFvwaPE8uGIfWMHMXcGyfN12rrQyPas3XbPSHvHM3afpovZdEdT9UHy43KwNxTXJTO/wSRf3TjdKaoV0izBn8eC6lm98IESWs99y5vWOP1a96OJkZ8SxyE9vWqh5Miu1BreeVHdAsWCyFREs2xd4dOkrVryjwRVULq+X9KQHlDEjq2WNVoOtYp4/qKjWS8J3nBSsNNq68PeGpI/yJ5wRFd7UXavTfIREt9jVik10WXjEh7tEAeZqOXelz7ygN2SMt2vq+nI+6XzUHfTgKvK62RQBhWBuWrfgKQW95XYJCBGCgmWbNUMRgYKECgJMoCigxDz3JaWlOcnc7AsElhHHIoxEaNAwSiHQUkSxzEWV5yT4mGNryFhjyEkRwAyaFePr6W3shrZt3cb0KUSkqWhIgM4IMxUFQRCCOf0dge61kWa8MhtytiWtYu4ZfOFSLFFJUG8DXu/k+W1y4zPnW2tZTdE1ZEZFBRSIDagSmlIE2E2lKDKggmoRjSUREoAaUmCQlJuKn6pKyRhRTaIlGt/sPr7zeYplUsvIBrLZtDvRlNLQELQWK02Adpj64XTabLgkDWHC494Zm4qGaaoMdV3Xv769jb3b7PaHfSFmKYgwXAfOA07UUtJcxq89ouoUYg776hnJxNQNJZYQputgGEPXvwTZ77cMmEOcM99ySmGaXl5e2XAIMcaoqk3dDH1HhnMuhChZ+rGzlqvKT1Oq69o5X2IBBWuNs1YRY0oxJkAoRfowubYOJU/f4vT6+uHTh7ZpsWgeEwnYqgJQ52yGjATNpkklKcD+sDXmOPZjPw62ch93O1VBYO/dNI4hxaap0dDldLHG1G0dL5kMF5UiRXPZtltjGUGfj8c0hv1+n6Z0vVwAYOqHMU/d9dr3w7und58+fuyHKxJWvmbmrpz//ve/bzbt4XhUhCwiKqfX88vLW72tj8djTHmcpnazca76+vLNeuMrz4htu/nLT3+WUv78449P+8N/+2//jZmv50tTV8/vnrtzX3lv3NPHLaUULte3XiU7p5apuCuybIg//umH/W4/dNdp6LyvL2/futPb1A9lygKIhq1lQpCcVSXG6GvvbaUA1hnnXYkFQlRSRCAiEDEE3hspnEym1gegum1500LdTkp9SFAZdsRGD8fN//Hf/2YNvvz999d/fKkw24O/hhj76frtG0Heb9B5aw1cT29jPwBQSjmNebvZiOrpOvi6BtPEWJL6TbX1u6d6t2uOB9PsM/kuxWy5eT42zYbrOqsWglLwngMDywNJUZadzcxMKACQIimwEI9j7MOIYw9D5yWzpPEykKIn68m1Gzedx9fPb/3QD9fBWOu9N2wFpJv619OrsXaz37T7NpVwfj19/joREZNBUCacxjD2QxgDExpvATGWLFkI2bBhtnOPi9mtpZxDCGmKxhgtDKhIJEVVgeemX8yiapiZmJmJsGSBIk1dV1VdRFOIc603UR2nCQgQKfTjBGSs8dZU1vfa5ZSQwFgjpeQMyGjI5CAqMYYUVYVdAUqGDGouOeeiOZtMBQkQRQWKKJJiAUCcs2ShAPAad5hRxOKKaHHYN6Ty3c5f5+aXNy+2OuqHoMiCPlZSD+HBF6+O7DsB6iKJmckiuiMeWF3bChKWw5en98K0LDKhNYC10CO3iekC12772rKM/+ZEb9e5QSa9U0+3kkUwex9YNvc3HkK/pyEWR3VHJDMndZPRzN9XJLKGbBYo8ojBVgZunt/Nq91W4zbMx6+7dOtucvzugO+udf/Fml50s7TeV2aBuXBf4dtZbuAXl1+uZpkh2l2presqL9jlu/fOf57DYoqAorDGZWU9+E653ZqyPkzgBp9noZqutyUAAN1EUw9vXNYWCgKIFEUiZEJKmuatC2QCySrzzoYBlRRIGYsigJIKyFoqGpCYlOdTGQUkVZKCWqQQctFIBbDESfHcgatw/7zXjshqzoFQ6m1Lrp5IJ1ByvjHWF1LQqRQWNMYVmbciMpOv82LI+qmZtUx661gGBKRaZpPNTS+Ubmhp0Wgv6H02CwGA8n2HMNsNuSjOsiEFRSKrBEUtMogIz5E5A0UAVaUQKaOQpIqL2rLxhiGllFvvUCWXvvQBjbesKPl87mr1rdHGmdCPDGQNV5i9TpJKxRlLKIGiFJ9luPbNfm8Mx5D6U/96fpuQhpKwKcBYRBBw09bj9e38cu7ePj/tD97bb19eEcA5K5LHc9fUVkuKU8Iilmm/38Z+VJHKegPcK1hntvv28+evQz8Q0dO7JyKT8rjd7dhaZgOITeWGcXx7fSs5tm3rvVMEVbpeuzDGpqmNNcYws8lhMs42280wjKloU1X7o1XEKaRNs91tN1qy5MJMULSoxBynKdTbTb1nAExZeD6R4XEov/7+KwI+vTtutzvPlTB2b0M/jtttLYR9HE+/vcaUmk27aXbH43G32+cU4xS7S48Am03bX7q6rshQd+mcczHGpm2Q8Hg4lJL7vkOkpqqej5+swd9+/c0Em7WcL5fL6fLxx4/bp92X37/mqxjjqqY6HA6KmHJi4vPlOnTDf/nXv71//26338Uxts3GeffjDz9I1nf7pxgnQmzbGkSMP7S1Bzd4V201l5wntnA01ez17WaDzvm6tc4yMQOQaBpCbWzJRYoYYjaYplSkIIF1drvdFSlsWQuAJW8gTFFFrGUlYIOowo5BvZC1Tfv845/3zx/d/ljI9CHv9rWrbS5Fc2oqfv+0Sy8X8RaH8O3n3+NwrayFPCmW6+m1rquUc8w5pysie18TUN/1mSAh+Xr77uOn65gKcrXZtc/vd89HIH7tYuljYXXtzlaeiDNhFp1VfACoAsvm5busIkCcxTGKgMDMlbPMcZhABEJUIlCUVAyQyhz2VkYixmkYr+drymnGVDnnt5e3fhyMdUnyFKaq9R9+eH85neM4WWtm1i2EoAqOedM0CmIMC6IBMIaYDBFb65h4fkiLlhhijlkkF0HNgoRMuOpLkYnnDSoRzfotQMgqbCyxAWLDlJPEFJS5iMScFMEQS5FetK5qv7MIaK2JYSophxCIiclggvl5lkUU1TknTLEUsdBsN7zZsrPIpIiqKCLEy3NNFWjeJgPOSTF4T2aHRUq7FH6e1+HOPyxa2btgYq4l86C4WVcNbhTIfDCueOORZrirWpfXd5e65N+saEBvCPkuzkVc8rHmA26Uw6PDv3NSD54SVniwci0ra3Fjar7zq3PEhG6o6CGz/xG13a6gcJvWSgstL1Y/jSsXszqjFRssl5x1G7gCB1iUTcs66GrIdbaPAchlqnO9xPndK7v2PQS68TJz0v5t5ivQwu9puFscdNF9LwIgWPS9KzS5wacHmdcDAnqgju7qZ31Yt9u99Mgn3dHOfIPezY83T327de6nVQXSm0xa77fGTZqNK1oi1duNKwCCZACQJHkiUZgkEVIRRTJSlNfoEgmSYqH5DkcEIiBQMKJLuAsRESIUAWWLJSaDKird0B1cZUg9SBrHHFRSUuaomIlN4xiZyABw1pLmLYwCziVSVWi9eQTmC8oa75wlEYqKBRGVEQVQ5kaR6z2xBBkNIK/QEpGWvvfz5xRQQGSVnhkgVZiLmYCIAJMiI6AKA4rITLACk1oDIpbUZmkMN617Pu5LSi+vZzLiUhpiMMgce0WxFiiH1Be7r2MXIKlB0JTHsccU6+3OaHo+NNM0QMlVXeWcz5dLZW2apjBNvqmqdqND9/Lydu6GP//1z9b58XKNwwgpxpyitcfdBzjspnGsqooJx+v5/HXUUprGG8PEHKcgRavaq4o17L0XlZQKW1+1yERF4Ho5v51P799/cFXV9z0xHQ4HJCLGEPLpfHbOfXz/XkoZLiMohhSGcUBEX/mU827fIICU0m6auQH3brurqti2jSMupQhiW9cqehmuuWQgQEJCyiopp8vlEqdQV5W1dnfYTmNMMY/jlHLOJSuWaYqlpJRiiGGI03G/3213u93BWWvY9ClZy4b582+/gaqzxjnjre1AmfmHjx+ZbUqZLX/+8psU/eHHHwkw5vD29hZLfKp9jMlV3tV+GEZifnp+VzeVMSaXAohjmIrK9XrdbrftZvP+/bv9dseKhrCuq3fv32spcQq+cjW5aQrWuaJgsrVdSZKpqpuWOUydaGq3bQYJQ0gihcA2lVFHqrEfJIRQ96qJmOIUc85FUlFBombTNk3rfcWWgajvuhADoOaUVLWuPBMCaZYsUerdfvP87unjp+PHP+3efTLN7hKGPoxTTg6tdVS0lJh3TTVsN7jfTjH2OVeO0jA2tWmrbR7DW9cTGbQoRUGLqWrf+m4I1yFv3r9/99Nf9x9+rIRDFrZV+3TIiKfzRUAEdXvYWl+zdVlilgIAqvS4vVx3bQgPPwjeK3sYNMS0PRx0tIIqkG3osWSIVLc1E47Xob8OTPj87mn/vI+5FNG3b68xxY8fPx7fHXaHw8vXl9PrGd/Ue1f5ihTCMHWlyymlnJ013hpjuO+GYRgrb5ttxcboUpNZpWQAEJ1/UAIknpuZIADNlfOMIZV1L4XIZAHBkEEEmcmeIRRBX1XILAohJVAtIsyMiCEES6by3jKDtYxMRDlJitk6Q5ZVIMXIhsmwcYa9V+eFHbW74/N7OhyxqhKA0qzjRFWYw2kIVKRAVma7+szvpMULalkXAeGmq9VVdbFEhFZgoo9Y5wYhVjnQqke5wdr73x/38CvqukuJHoZ0Y1Pmi+ktJgW37JYbJFk93iOUmXXgN5wwP9pxLUOsqnPDsoevRwUP3ODHHejgEpdboM0fJqM3nLhyQLN/UgLRu7oFbngBAFdgJAsqXdkwXSPCa/Gdm5+Hda+wWhPmYNA8RVzX7G44fBzgGie7D2ZFUA9xqAcl0s3eN4j8fcrdffrr4G7ADL4jgvQBQMKyHMuakxLiGrCZ9e3L3GVZijumfSB8Fq4IVjnTApduYFwBAWYa5yYwX+4L1BUd4dwkvRCjBVQpCnlODiBY0gaWECYtUUdZlxdBZlkOCqECEwBIUSUEImTkBCK47FicgIJcTmcdr5bVWRqAau8mtckweydZSyxFgkFnDSmYkjOUQkA618nQJWFtZsfnfaIC4AJiREFRQVQZkIFItSwt44BQFQgEQQVFCUEJgJTKWsh9Nqyspl/WakZdTACkYOZKuihSMs859cSCMzwTkMIpbZjeOdtosBtjxeZS+nHas7x/d/CWp9OlJq3bCsYpnN7KODEKQPFGp2l4607T2KlqkZKGTpNsnfGVDTGRYbGYk7KhXLIipBT6vq+92243w7XjIs9PT86RguRpqB07rquqliJv375154v37t37IyqoFEhyfNo7NiEka0xV+SkkRamaxmmFhOfTyXn39P5dVrleu5QSG/P775/bTbvb72OIbGkpUlNK3VTWOBU5vZ5qX5WULm+nMIxInEs+HI++ab69vp5eXj98+ljXPnbj1A1hmoZrV7eNglZN1Y/jOE1lVGIa+lFVu+u1qeqS8tD1zGa32xprX19fu2vfbmrn3C8//6yix6f9jx9/+Omnn+q6QuBLdzmfTwgouSjifr/bbFrnfRhDypmQRJQQU5yqpjYz1cKw2TaS5Xrt+q5v6jbm9HH/AxDuD4dhGBCwauoQpuu567q+H67b/e5wOKaUckjtpq3JGqC2qaKlFOK3r1+fD/vjcTcN49vbSUSwZOu9SYZzVqLooIhgmmIqU7M5Ns5OyK9fv16/fttumop57PvudI7jyAQ5ASIawzGGaRzDFJyzfvbhTeWcCyGkGIb+mlIupVjLVdMyIaB03WCc3+73f/6nv3766Z/Qb+vDUdlHhvPYnS+dd6aujCcrmo+HXfsv1c9Fe8Da6enbZzay321QtX+7KKhzrFHbTa2CzMiGgMh4X213H/76EzTHax9zEbY1Nbuu714vPTL++S8/1psma8wpKc8RCUIAKbqWOL0/3uS+4Vw8dymAAFFKSqW2lovjqtLsJYwwZ3uWUiAO46SGjHV1U8156lOM3768WK4sUej66HwKob9eYwgxRkKMU5jGQUWZ2FWOGJCQBazlGAEUvfNELKgp5RCmlBIiEZMCaMpSijVEyKIqWkAyI1trs5ScMykyMyBYw6AkqtbRFGLKKY+TMDvjTSXjMBAQG1tVlUiJ3UCtadrWWYvMslAgKCo5ZxUk5FwUHRNzRiylGEOb/b5+/rB7/5xcnQ1LzoCIhJZYVNiAIRRRVREFFQEEJFqfe6uDX9yUrL5kyaC/7Z//sBn/vlWTLoSF3l3iGkG5JYbrjVK6cTN6xxKwPoQfyQBYqJh147+e/PEKd9YFcKVP7tdaXR4+ckMrp7Niue9Awg1kgN6/f1dHcSU/EGGuN3n7w4pmHiTfj05fcP3tTKfgzQqLUR6yq9Z53DcF+nAmvP32cQ30fga8vec/fd25lxu0wD8ix5sh8A+GvC8EPAztj2jpcVTL8s/Ac21Ge4+vwmxbBCAlgRXxrHZep/WHsd1+XgYJj7O5Qe6HYet3i4yywC0FFUAgBFQoORITAaokAqACRKRIiCQoQvOHZRk6I5LinBIgBLwWilAQBSpSCgAaFhVgImRMRYswQd3UnPPh+XnA6st1pEwDcRRAQGQDqmyMkqIWQzSX5bmZq+Dc5n3ek5CqzOX9550GLoFlJWbVjCIgGUlBCckACgChKIEIzGFx5Pk8c2OY5QMEOu82FmE1EBOCUiEUJMIlEAxASLO0L8VoVCgHyqMlroLG7s0eqz1TTtFB2m6rP+2bkuPYcONNicPL9TWm6IAAJZeEpAZlCuP5ZbS1TzlPUx+mEGP/458+QdasKcXp2p0RENCmkg2ib+raOocUVIj5sN0Yg68vX0OOzOy8VynjMJSU2027W5pdFDLcbqv9Zpum8Pn3zyLabtqqqrt+rLabqq7HOD7Zd01Vv53ehm7Y7re5lO7aAUAueRrG4/NxCuHt/FY53zY1ZEwxIgBo8d6CgpQCIlVVxQiSMntHIsawYc4hlVRAIac8jgMy7Z4OrqqQjSL2Q59iQtXttv3h4wfLtkg2hk6n8zgNx/rp6ek4h9kA5Icffigpf3j/bn/Yt01jrR2H8Xo+99e+lNRUzdj32+2mdtUUwvl0IsLj05GIhmHs+r5N8f2Hd8ycYvr57z+D6of3n9rNpohsN1vnbdNu7GCnKXTXbgrTNIYQApDGmK9d93/+X/89/o/YXa7PxyNkgVJCPzhvrfcxRCk5hen07fV0eQWkOHpXOZO1ZFSrcH5962Pqz29Na/G5dcRdd377+y8phmHbqIhqefntc7z2lTPWmlzy0A8hBBGNOcdcFOYKQWYapsv5fDq9iZQ4TiqK6JJkIotI3leFrPP17vjU7rYJrQIMU98NFzaUU+rPvZWGASgikKrohx8+2U/vf/+Pf+v7PsSobKAUUXTWGjRs0SCRYxSJISDC0/Px6cMHdHUP8uXaEbkd65ByIWh326ZttvtDgQyKokul3Jk0R7iJKBcmenkIz63F5w+i6rJ5YTbeoAKajNYnNQDkqspZg0W6sTOWyVtkSjmlnBSdd+bThycRzSkPp8t0HQVUQoJcJJdhHFGh5CJFjSdCDVMgNnOTEcsG0KSshpQUVDTFVEphC6IgKgIZjSiItT5nNWzVAKjmkhXAGktExsxhMcpRUNVZFsCsWkRTVle5TVWJYI7Tpq2NN33fG8dgdAqDd7s4DWkaIWVnLCHkkoGUDdjG27oiNiHnVITJVs2+2R+Md5lNFkXiub+FKjAALzGvpWk9GsK5KBAAyA3EyMqvrG0x4EGrg9/tEhd3cwsy4OqJHl3UHXAsWARXDuN/55MXb6fLpvwGj1YHuzIGt1SiVfW8sBd6z8bS9eq6cCgry/WfrrvM9u5UV0rnPofV+eqKq1acsL5hQQ6L97ghjrtyaeFldIlT3KQ2j4JkvPNJeIciy+jm2OV3IupbiG0906qbWioFL8ZZFU3wQAghPI5xPeEyu7VU9wPSfFzSdYzf3QW6CrDW3+jDO/6YSoYroQY39Dk73aUv3kLwLRh3oX/wEUXe9FsP+HS9I+7Lv64FLpHLgiudeYsQgqISqqASARhUUI05GmMMsWXWnEEKZhCDACSgBUFIkedLEggwIKABQEESBClg0MBcSgi5SCQgRGRLVpCKOKDnd9v3jQ+XbrPdYAY3AMUoUwRTsfHKnFFGyARIiqCSJBpihTLf1rOEbW4zNnc5JgRRIQIoCqqIxIgoCUtwKFaLKieVMjM4KMhIQgJYdIHkpLKsJ+INFQLjzIGBCioQkmEgUmARRVEUUaa5j6I6VAdSoe4q++TM0bluOsGp32ybktPew5/fP+Xucjm/VSpeXNdd4ul0eLetmEucbMUSYoqTKYmNtQwxTCAlxdCfr96Z/XE7DHEapmHq97udNza8DTmk9z/+8G6/KzlSUyMUh1BSbL3LOYd+JAUlIcWn5wOAGOJpnHKO7aYFxn7s+66boWRIUVBfX182Ir9/+ZJT2h92jGyMMdaFkEQk59Ju2k27MWybumLqpeTPX39v62bbNHEK0zDUVT0Mg3eurquq8gAqkAH15fUtl7w5bsccTteJitS+qjaNKa5q27puo5QNc8ophGC8aevWe2sNv768dd1lmsIwjE/WOe9TKb6qVNQ68/z8br/bG8uX8/lyPjvvQoxhCimGdtvmlInRO/f3//jlfD09v3vnnL+eL9vdDok2272x9Nuvv+WSY44vLy/bzXbzT1tDpvJVLjnGJHodhoER26YJIYzjcHx68rVHNkSQQnr34d2f/vxjGuJ+v9vsmrHvoBRrLVrWUi5vp7rx291fzudryeX9p3emP1+dtwbgdO1efv61hO75aUsy7fbt9NaNby/d9fr6m3rn2BqNCUUY0RjURQSXiZRQh2HKMY7DUDnPTCVHUiAib1wqSUsZxwlqtWxSlihj1w3/+OWXMefjh0+NcefXtyGMu/2hFIYpTTpJSpfrdRimGPOPn37YbvavX74cP3zor9fX03Xb+qKak3jHhDpeh3bbGm+SqGFriDXr69tLZ1wRvXbTeOm70+nwtNm01WbXzrwqABKQLCz7+rzU1QOsvmFl/GndnNMibhUQxKLAzunEYBicgZQQDWhSATbsvUPLlKgMwRhy1szdW4d+LJIr74GAEcdRx2GAIs47AiUma23OSQTIAIJKKaWIhKgizGjJqSoDkSW2BlCzAKnVkskwMBGQ9V6JYoxFBZHZOltZUC0xM6JhjjHmIobYWV9Uqqqq26pyzhCPw8CMIU+K2O62qZQxRjv1ry+vMQQk8N5Z4ikkQDLO2coLkDKjsAihqfxm57bboBBAkqrIbDFlYwkNicxBf1UCUmBUolJkrkg3l+pfS76tql2E264TFre2wp5VZvLgfx/8+AKKEJat/yrjQbpty9fQxsI8Pah45rtgdYyzGmbFVzeIAzcXfhvBzd/BAgJWMfTNIc47/oevGx7DVeaiKz64IYsFVsywfT7b2o58ZZ1ueGEhHvAWnHogSe78yUNgCr4/bP7d7aRLycj1eP1epjTzavOodc3p1/vHaFm/+X34aCtd1Ue34ORMVwncYdAfRMb3ed4ufn8v3jDNgnLX9X4IOa3Ey6pS15tWG/Amub7FSm8WuwPuu5Vv4OqREZrXagW9gHjTQa13ji6StfvM8A5ZVRFQRAnAGlP5altXjjRPQXOfZkSAouunY5VkCRKq0hz+FlUiVimCqiiAqCpGAUSQAAtoLiXldt8en4/vtu1vY/rty9eBzLfXS/GeyZdUEEtQLaRgqahoEtBSGACYCJeyiAq0RAlRVAQEABkJ5wA8Ac55baIEpTX4pw8fzpf+t/OlMGckICopzyvHhIpaVJEYFQWWGtC3jy/MH1sBgwSKSlQAkIyICCgQFFVFYAIRcNZULO+2mx829d6Bxev5dKm44dp23y7x8moBK42QQ347SRx3rX0+bBnL+XVMKRqDEMF5++nTx2+vL5QFskhOpiIyJKKiJabJOr9/ejq2Wwf8+vrWOocllWnSktq2YoIwhuN+N4chU85DNzljpmsPKqapmE2OkEKkZjON0+V8qXxliIyx0xSmGKeXb8Q8a7iGcQphcs6Nw2jY7PY776q2aYg45bTd7eum+vnf/+NtPDHMWbcETP0w/OO3X49Px9pyjHGKMaTTOE37/U5BYw6ZRLNojJWvDNisMIaoqCIShilN6bDfxil2p4t1Joy9d+7p6TiOwVgbpmkchrqum6YZ+t5ZV1U+pRinWNUu5zyNYyppe9gSmTB1OYbT5eIbH89lCnF+pBPxZrMrIgplUACVqqoIsG2at7fXTdsaY7t+2O+oxDz2AwBstxtm8+7Dk7NeFJ6OT2io9tXhsDu9nLz3VeVIYVM30zSGaUCAEkOJyRlTOZfbeuyn6+vVUM6o0nh/kXJ+ebm8fE3dBoY99nsqsLWuIA5jSFOwbf3+sIVdMwy95uQN4s4TlnEYtKQchyQKUOc8Wls3tSctknMxth8hSgxhQoRCJSVRY79+/dJLuIwjW8/W5amHGJ1mX7nTt3HopqEfpikM4zSMIVz6tmmMluP74+ffqm//OKUSiXEcIhNbA0QgOavhFLOwUgyff/lHfHsLvrG75ziVKZbY8aai7aePbW2HMAgA8H2DKOvW7WHvthQ7W7Ujq6R0cQeAQKKQpEgspFgQU0xhnDYGPRIag0WMNa72zjsmLjmDqGU2bHiLwzSx5RQTFCkp5RByjIxAjG1bl1zIO+edsVZK+fL7t5Jy3bYlpzQVsWKt875KOWkBNuSIwCNxK8AKAA5N2xBbW0BUkMh6R5ZSDEGuoMpcEEVzVOFNu9nst9vjLqQSxvDu/RPT+9+/fJ6mst8dtrvN5fUtTNOp67phGKfUbmrjHBjkqioCUigVzEUUinH1Zrtr9k9uu9OqngBCLgpcGTsXUCoCBUGKoBQlttaFkooII91lV/NaiCLN9Q/nNDFZdT43emelEmilhlYgskgRVsoOljAUrQQKwC11aoEA68ovTMbsiW4k0wLCdPWCK/KCm6roP+MvXWmL77zjnZJZCBhZSI71gAWcwUzzPYSVbnNTfAA9t5HMzl4eGJQ5Uvfgkh89N+J9wDfX/geUBEusb+Wt7kszg8kVsi2znbHoOgGcqTxc5MN3cunGLT1I0G82Uv1uMLM1BZbCxysXtRp6ifStw12EPrIesARO4AFOrgjkvk4rMCF4vB+WkxLonWi7QyNYcOyKxdad0XfQcpHdzYLsRYK3kmc4V0YmkKJwg100R3FYBFSFQFXUeeudb+q6tqC+SqH0UxSVIrowcKKEtOqOZ9BGqWQwKKTOzIFjIQIrhRFUNQ6RCUmkhGTNfhzSr9PLf/z2exCB7YaayvhGJrRAiJhBlLGIiC5tT8GYAsqIIAtqYyABKPNCLcBuhrA37IJaigHdN9U/PR9fia/dJVPJRAogAH42dS7ACmBAgUAZKKdEM2XNXFRzycyWLCYtjCy65PERACNpKcaQqgiIMhTCKJAQJswVSF8Gs3fQUH/qX05vYRh++vCpshSmoGFqrba1Dd15s9u2u20YQs6xPvpPH96dv768fv1WN62t2xTjt9e3b/jNfPpokBrvkbB7fTu6arupseiubRGpripLlYoY4u12i0q+tsaaoRv7PLiKDODpfNlsmsrZMA5hilJkCqFkQU/NpkWkEJJhx96TQeed9RUBWmtLzofDvqqaEEMYp9fXmEtCQC0ZEA5PT4x0entlov3+gIQRJICIYbtpNBqJkYnQmdOlm0LYPO0227a/jt0wddN4OBzE0Km/GuL+2o/D0DS1M5YdMuCUwv6wz6Ug0/HdkxQV0ePTcS7aIqovby9JcuVd1XpnzPV8vZzOoDpOoW2tr6tu6DbGPD0dM+Bv//j106dPzx+fY8h5moZxIMa2bbGH9x8+9t3127fXGL5u/9ayNVXlc84hjM6a53fvt7tt3w9TnECBQNrtxlibcyLE3W4zjePbyzdrbdNWojmGyIyZGUGH7jJdr2RM7W2I0VTWWCLv+HDYffj0TBBqaykjF9i3TQXgEcd6UhVfGeedqjLBNI2I4L0ruVhL7bbZ7Xfd9dJdu6+/f97vD03tiTVNBQHbxjuw3TDGGJPmqmms84Js0aR+ev36dRymbhiKCKfYNM3569vL12913eyfDk21+S10P//bz3VVfXx/0ByYmQzlnA2ooozTGBEMA6AWkZA0lMmrSSZPMdAWmu3xuK1AsKncbluzkVyCUkK0y75vyXVZN4CrjHF9Mq9ii5UHx1lrMj/uEFVxbsuuRAVJEKcsWbIiAFIcs/PeAJPiOATCjL4yxqSUJUuGVFKeKziXXEouEVNVVyJKZHxlXe1BcUwjI6ozxnKRHHMGAOed99ZXLpUChMSMxhQlYypyhpwzzvmqMcYRMSgUFIGC42VIOYVgjXFIbIiN2z09vf/xY922/dS/fbsAkCo1m2193D8/Px+O+19//uV//X/+v6GUjJrmyvZIIMKM7F0uEJJWmxrYZTDq20R+LGgUC1mcm6Pq3PNQiooqGoOSFAlES5HMZOfHJQLM21ZVnTsNrWyH3pznkj8Oi1+58RZ62/jPGoh7recbJsF1ew1wj5I8RFd0FQvrbQOPAHJDW4hLRaX5QNWb3PWRDrkRHXd3+wBDdGl+PoOkm7O+IwtdYMDCNgnchnhHLCsQWZ0nKKzi3CX/fz4N3JHiDCl0pXX0JgReKIrbMbd3LZ7sgdi4ibdvRX10TcNbBveQRA/LyfAxFLQG3HBl7L6nWNa5PEYvFekGDv9Avjw02ljXD24U3ULtPGbGPXIwADBXGF9ZrttJHi8+Q2F56GKxfOxvC78sCq0xvhtGXItT3QRQeLtPdM6FVJEFKoKqljUzCpCJABEIsJQifT+GMHlWRzYplIU4oplWElWaKzOrqkKRDEDemihFclzWUnLJ2RuLhGFKJaV20zTGC8Lbt5d0Vub81nfN7shcVY6tb0pOcZxQwTaOCKMISLGM1pgMGNKkgJZIkHRpcqwEgggyqxbmNUXVuagsaGWdUTEMUFLDULNc04RUwHhDKFmkFDXKaNm6nFIuhckgITNlKQAspcwocW5lj1DMHJRDNGy4IBJpSsgI1ihomEaU+O08YWA92mxdU7khlK4P6KvTMNi318aYNEytd42nfhoLIVnjnd0/PxlrUgrWm/J2snW92+9d7dmbXKRyvvG+cq7yx3EcX7+9nl7fts1m2zYlJsBU176tq3EcQhhLzojccosANFPvITpnK1dpFlYywGMYXr992263fDzMXWNjiorQbFsy1lWOmJ31hIikfScicL1c66Yyzk3j2PeDqtZNVTdV3TQpp93TkzHMzCoiRMAURIYYU05RSui7UrI1XkDHYSqlKGKE0nfDkNK7pydQtcQxRWMMI099cJbbbZsvpa7rVPLlfMkx7faHECOze319eXs75ZSejscQxsvbCUCbuhq6LsSQcu6G/vfPX5j48LRPIlHKrLNmZ2LSKaQQA4A0Vc3OPlVHY3i7P4giKikgIjGab9++eWcr7521WuTp6dj3/fn01raN5hxidN53lyuodufL9XyxxtS1Pz4frDXW8NiPcYyusm3dEGN/vXbDaNptnaa+66fNsf2v//1fPr7fVoqNpcpT7lPJ0jT1blsjUUwhheSsMQ3kGAXEGrfZUknZepdi/mpovPaXywmgoB5ySjlk46211rFpsImpGDRtu0FgX9dVWyPB8PX19Pu3cRpSknNV103ddde3l5cPH95/eGpEtfTndHmrcGtK3W6q/timaRPHUVN2tc1TjCnFUJjVWgOIzIiozpnt89Hsn59+/OCbLRt2hl1tkLFgkdlhIMGcpIJ681vzjm95Jt820HMO9/K0VVr1HPMzm6xBdWg9+Ro1agphShKzMZRCHi+TNYYKYpkrFQ3jEHPJVVsbY/thuF6vUwwpSxYpMSGTAhi2rnKaNOeSQ0YgBskx5ZyKFGVCW9jOfStYiW3VmMorervZ2aYBW8n8IDQWFHMuJIkwO89misWgkhhDMCEAp6JojamdkWR9fTn1Uoprvd822+N+s98duuNmt/38+29FpNpUvvn/sfVnXZMkOZYYCEA23Wz5Nl8iMiIzq6pJdrPJOTNz5pFn/v/jTPOB5HR1Vi4R4dv32aabLADmwUzNzKPaz4lwczU1VVERUcGViwugqqoq5yRAIC40PjjvV42S353ypDRFiUPqYnY2kCLpuTA0FBEgBUuIxFzIoLJaREsICOYS32sQUYBvaujztv4cKIQXMu7yLeqFHUC5WFvAO+yyIIKL31IBkM5NkatBvGcUbvSHXk3uBUEoAcrVPXXzfy1OtcuNF5rhhjoW4uaOW7kgbdVLGdblVnRhrq6YCfGcEuV8mcuko1uJCV0QCSyA7BaFfQU9i5VeQMqZ2LqDa3h3w8v3N9/hQvgs7pxb1NvSx8uQLOct/A5c4OPyyHRFAKp4digvcWV6l9vwQk9dXGcLwlu66L6p12DpBZMtDb2xWzdAuOA0vT0nnNHZRbWOcAOBS6/J9QZwN7iLM+/W04hLGZCL6AlQl6j+O6RqyKiqqpwh1dVth4ACDArGWDnPUyJRUZXMDLkgMIh4Z1VAQI1xhgjhBpouLIsIIhColuwAHVEpsyX0pCnn1lFV1yfhrqrrqsrTWDkcj3M/swFed+tq1R6HeOhjuxFnQu19VlAtkrW2BAYxCxVBNHiuWoagCOcifhaVlEAxX4hHPPNnCiyXQDAQheMwfN19DSIVlCAqAFKcoAELokxIwtlYJKN6zhkmS/IAYOsMqGLJKFw7c06NCAbmubi6BckODACgKmchAwrk1JBASjwN5GyISedp+vY2PW6224d3u/1rX2bvQ9W1c2FGXW07U9UlZwQTQjPOaTyMrm5ePvzoDD0+PTw8PX386Ydc8jSMqLxqt23TGEHnrK8dp1LSBCpRc+XJGOQCzpmqbphLP87W2aZt5mkCoW7VWWNTzIWLFI1TeX5snJWUkqDOKc9zIovWWlTkXMQzEI3HoeQSgi+5xDnWba0scZxtMM7YeUou2NfXt6apQ70axnE49cPY9/M0ff78tn9DohDC5y9fhPlh+9B2rSEjDEDADKd+KIXHYXp6eqhc8ME3oZpP4+5137Zts6658Ol4dN6di1dUdbPZbM+L7qnvmfNp6Ks6MJfj4dD+8INz1mZrnYsxlnLOVeh3b/txGKsQCstxf3p5/+Hhqfn27cvb28F5W1Flg8+FAcEHO0/5bbdzzuecmcVaa5097vdk7Tv30jQhTSHNseQc57jergm0lOK8e3x8GI59FYIUztMs3jvnQNV5H3OeD6d5iqlk66oKKcEgNti6Xre1CUUwJ1QYudfJE1gyACoWlKxFUUcuVSWm2RrXtZ0IsHDJx7btnl9ehtNoXchcUuZQubqrU5Kpn6tVt9pWRDaOMY6zNUbnM8OHU9/3ux0AGk6x359Op5zmty+5smCcmw/7YMSUNB2PTTDK7JydD4VAiQwAiqhmLpmZmUyw1mHtqlXz/g8fw8O7+vnR1S1ZK8xFsoAUUbRGzkn4FPWSk/WiMdHzy3uhuC/mDq8L7VX6gKAALIKgTEDWoPcQghRXSkaDmYVZUIr0vN2ug/fY4TSlKcZ+6BWwWXVocE5xmEYWycJZ2FhTQKVkJ1DljIpxjuM45JxYxaCwFAQ1xpA1YpARsoILtd9uQrsxoWkfnqmqC5pUSkZUdCBKKliit1p3DSqNr9+cMsS5JBzG6Rj32eLHnz86X9m6jl8PXAp7sixzTHA6dpv1yw8fXnevXKTtmqqqASFQEMKYBJFCG9B5165S0DKpXa9c24g1omoVJJV8tp4WEYA5p0t5PCFQQ+YsZhAhQpSSDSIhAiozIyHhOX+InNfVs1lDAFhqAy0pE29G8hpjfBP26v1/Z/pgQbS48PTfGTlQuF0WrwwGnrP539DOHcGj13Mvdh2uf/RKWlwPIZKqXJkCUFiSw+GV87ld8ZJs6N6npUsjF9SyPOFVfH1lo+5YGbzwO1eMtRy+gb3lwMJiKSyOuxuyu/XdBQwtj3Z+YVTv+gfP3ke8hOldA6l0odVuY3ceyu+e7AaPvneBXRDGrcF3YOiOHro95BW6yXVM7jghuKmTYElPoLAUxYF7Kkzv+lPh+iBLzPv1UnrfVwh6RlSEiIZY1ZC5BFeAqiEBEL5UixBAAVAgNN6SIkhJJQkCAJJyEWvQwCXjpiipkMJFl4kipGCJIMbGQe2wtnbiVBvctM14mpylNPbzcFJVb3C7WhlVg6iRK8QZUHMJvqHazZm1FCA2DCiKoilm64M3hJaSCiopnqu4I+lVHXBO+nUp+yWsippLUdEhly+H4wPoymJhSM70nKNkJRtqm1nnOQGSJSsEApyRi+q5LLdTBc6GkwddW0LQlBMTqVEsGVRV2FojqsYYBAKj3jpDAliGxBXYNI0pSlQ7FH18vxnGiQhWXQOiQuVh+0DeZFDX1fMUj19fpzgS4bvHp8eH91N/rNraW2unYynFEzVN3bXreZgenx598CWmOMxNWwFznOM0DZbIGtu0NZEpjPM4A+pqvXbWphSFuZQ8DIOyrDcr7ysRzlxSyUQUc2IQVWOt4VzOL8A8zeM4dl338PiIgDklFqlCsE8PiDBPc5onJa3q5uvX19MwOO8Pp1OMc9utSsmfvnx9fn5+erc5HXvOvH14cM4ja6jClLPbVqvNZp7nMuduvZY5n04nVGlXTU55GueiDA5Zcgjh8fnh9cvb189fENB4/+3rV2HpulWM8fXbq7J2XWd9IGsEcRjGx+dn46yIHA+ndt1yLmjsu5f3b2+7mFOR/Le//SPnVLWVIp6O8vj4MA7z227nXYhzenh8bNYtWdNt25J4TqkLrnA+HkbOqeTMpVjC/nBQgqqufFspgwHqVi2XfDgNAMN6uxbRwjwN89CPzlsksnFkFGrXq6oyNEctbDEHb8fTYJu6JZqHKaV4Xm9AkBNbR9b4sSRVNM4aY50FxFkYt9unplkbb6dpUobu4dEHb5lXL0+pFGusdY6ANqvV4/PWGTfOMc6nEkerbJyxkFgkECtqmefXz5+ttTlGqyAx7r6m/dvbGKeSchqSN8QWcizn5TylNM+zbWxBa5BWT0+PH967h8cRsGBmTgZIhAGAjDPGirCo0HllW1azi527+cBu/7g3C7JIO8/pNJQIyGFd265JZdSSSlQ0iAK5FBu8oiqXKpCzlQ/22GviMky99DLPE4AqiHHWkBIZOa+bBmJKcU5xnnLKIqIgqmINOWO8dTkjeivWCDm73laP703dmbrhdl2sSwUyWEGyxllCzUUBDUllnF1lO+fUH7MaVzWNrw7H4evu1Lx/XIXmFOOQoqpwBDNb2GsYwo8/flit13/4+ef+0HNOMabjMLRdY40VkThMak1tfds10DnDJjy9qG/ZOwAEASJQZkIkJFZgKcpsGwsKRGRUc85cxDqPRPmMTMmIACEikQDAuYbqVaYB98bt4npY5CY3RICLj/Ni5i6aFLmYx2tQN1w4/HPGlytMOn8nNyOui929UReLeb15ga7W8GxGF67n3LCLCPsmHqFLVsPFT3KmMS65ry+yM7wGaes9MLqQF/dA4949iLCQK3e6oOtP7+0/3AG/84WuRModprnHTMtlrjTXQrfApXqM3pM154LnBKDn7KDnflgEQtdwHxBElEtXkF74Pry16Mpg3V5W+K43boeXUYFz+fPLkcVALw9wHn+8UL53yPLSiUsI2hm8A51LlcK1MZevLm4yWCLnbjPlin8Q7hyahEREpGoRuSQQRlUVA3oW1RggEiQxBgwDCysrIFijCkgghY2C0XMmaACAAsCALKhERCiMwGLRgZSVo03rVrU/Ak/DDDljKf04xmkyoLnkx1VjBBrvK1ulNG+6pqnzYS4co4DRzKEisrYME6fYeN85JAf9NFiq8EK+WiKDKirMuXjjFESQBJQB8IyGiDICBRWQwzQGkZeu7hyatvk0jF93Q1g9uO1qf5qIBRFYCgEogXOGAayzRpWmZDkGKY91eLfygPp6nGeDRDZmseQEga0RQAAULqS2WCKUCUyO0zjGPE517epmFWP67ZcvpPDzH/+wbau0P2hMGYiMPcS5QuSkXdNtVu1+vytg6qop/WkY0sDD8bh7eFg/Pz43q05YDrs9S3G2jlMaxmPXvdRtJ8rMxZBVLEN/9K7KnFXZ2sBZS2Yk4Mwll5xS27Vt0+ScjcFUJM0zq4JqqKqqrkrJLKUId9jmHAGUEFOMbdNkEXOmjRFSSqC6XndTyt2qG8eplFzKbMhut09PT0+iOg7x5fllu3rIL6mtmrquRFXmnHKunKfgAeCMG467w2//+GWzXlW+KrEPteeSM6dcStPWoaoOu/3+sOcibdfW2nnnSy455vVqxanM00iEu91b19RVCMMwlpKtdZz55fnFBx9jsmQR8MUYBd3vjk3TfH3tnXMh1MyZrK2aupomQ6ZZtUQmi/imMs4Z46oKVl1T+cA2vR0ORFg5r6AppdNpOOwPDw9bQls3FRdJc6rrJqY09OPpODhnEdF4Q4ZiTLbMGVTYaWKobLBNS2l2RDLMWYsJZNVkVc0CoMJ5nEacQRUKlziN4zRWbe3IWGerUOVUVpsm5ly1VDXtavsAAIa5amvjnIgAIPusIizKEMdpiDGBsrGa5rEkDM45RyKEaLyz3nmDNA6TZAaL4zDOJYNACN4hamHObIxaZ5EoFyE0rmqqzcP65bnebLmpNEtREAVjjXOGCzMrS2YQQoIrp3Dm8b9bb5dE+Rf312KizpYNAElBFQwKUFH2VYBca2rLPDM5gGy98QhkcI6z5OidM+RssC22uT/FFHNKMcVUknWusgYLpJgzqxEkAMnJWMolAUKofZFCxiAgOQ/WF3JAzlWdr9rm3Yfq+UVdJc5NxgtSJga1CmCIYmGOiccxa5lTzOMpTzHNeTjNVVev2s53myy56TaZ+ddffjsdjt6bcdbd2+vD4/bp+XEa5rptfvzpD/t2d9ofTq/7KeZUjl3bGuuklOk0hLqWlMBg2zW+8REJCVWBRc61Ks4ldVmEBFLJJRtChCIl5zRPXLTriDxZBGEwlhwZZtFzAsVFSnmm3hdy4wo0rohIF7u4EB83a6240EN31M7Vi6HXsb0ggjO1gFcIddUb4YKBLib5alav7NTCptxBDtBFW6P3B5cPgAt/gAAAsmhKlol5Nbrf/bXAiAs4kjv+49JFVwABy0NeEcTN4l8j4+9AJYCqCgHpovaB+x8vp+CVGFmUwLfvcfFJXu52IcYusGJp55mrwgtcub/8hZY9u91+3+bv/5wf+Dt8BnjVLS89fU2EffWRLkqVK5BdpF26cG6XMb4Mz6VM3hLZf7v5Qgwr4CWPw3l+Ln2jAEBARMTMeI5EB5QcnYonBNHMHEs2zltnMgKLaGFCBJXCCsJGAcEYS2jQGUBVg8gCZx/U2VNkAUBQAYWQhS1CILMOVedNNhRV4jyXnE77gzOEwBKTelMyrrbtum6/fTpWEEzlU8p9nBSsQTJAkJk4i6S1DeuuSyIU56KMBgCpqKCCETAAaB0QZubE5x2HUUECsUBgjKAwUAJSY9ZN97RtfB3cp7ns5pdNcJt12g2iaizmDHMpYMh6KiqGi1VwqLWlzpoPjfnYucxlPrEisUJiKUbUGjFQcjIsBgnJKJIaE5MwU4xMYFSx5NRWIU7DdtVUwTprwqab+mEcMgANBcax1OR82xliPJzmlPN0GMfZtk0a5jTl2UeDduABCLWoNT7NWVWZ+fX17fnp0TnvrLGE0zgej0ciw8JN03ofvu0/D8Nwfn2rqibEHNOoWgoTYcol54xkqirUbYtIv375ar1JKQnzatXFCF+/fnl8ePztl1/qqlp13TgMfd+jYt00tnKrrjr1J0R6fH4a+rEY26067wMi/vTTHx4fHoe+t8Zaa1kYBLjw/m2flY33m822rsMsvDvsrTXBBc55SmO9faiaGvLcHwfrjAJ4H1ZdV4UaFGKMACgCc57LgSvrq6YWFmetDcEQhuAzs/e+qitRiXP8+9/+qgp//qd/VqTDce9ccFXFqm9vbz/+9PNh/3ban5quNYaY1SE2q3b3usspHk7QNe1mvVKL4zSehmOMcdW1XdekWIQlBDf38zTNoGiNNWSMC5oiEoEiosmFjfVcSkwFDVokrapKBMeJjXfG1lJoP5wKGFCxlrByylYdSeI5FV+5lFKRwsCirKy5EANxzi54JGOcAWuCgaZpgaVuGjR06HsDVNfNOM3D1BtD/e54Oh2ZxXlHhNM0j+NoiUoIZ3RmnV1vu7btSiw72J1OJwQB5TLH4KvVutNc0jg1lQVlMGqDRe/Bhe7x/fOf/7x6946tS4JqDTCcE+cUFkJjEAsUZ5yIAl4yoV32b3fhKpec73eUwm1phWVzCYSE6Vzdk5znVS6lsM6AFLy3kIb+HMLOomWa6wadMXXlcq5iiSLig0s5xRiNJW9MaAKoCnPJEyMY4xEZDQEWRQFrq3YFpgKqTNNS01bbbeg24WErXRvVZEQxhlGZUUGCc1kkp/nt06fXX37h4fjcVRCnuD+sVj4En1PJ0rfb1cPmgYimfjTGNk1tCHa7t93ra3/YG4SuarYPD3Vd2xfbNk3TVEXyYXcoIpaIuJRxPn15m+cCq3b7U8CYrDfW+8yqCHNK4zBqiQ/bjfHegIKK5HL2PKdxmoceAbM1tW2dC+KoiIgUUZWicE60gJdsIGczs+y2Fb7DQRfTe7W9i+/yqisGve75r4YR5ApuCFFAbpIeWBIRXY3+FTAtvM85vux3tvlOdAv30OCGlRBgQXNno4uLAEhVr/lvrqdeZuhNLPM9FMAFJVxQ3tV0//5E/f2xG7dy7dqz7vssaqFzopflia7/uzmDF+H2ctY5HS/cdhO60CAXGmzhjZbKUQigymefESEp3DFPl6eGRUl9g6xX9kW/x3J3TsarUOv600tf6jnZ8h3iu43WzRl66fDrzc5BVqp3g3LpjDOUu1UMhO+ufAZTKsioCIisoqrEiLnUzjytu8bbfpr2wzBLGaeIxpKxFohZkdGcFxdmR1RiCt4ZIi2scmYtkQwRqFFGJgUgAoNU5uhVYl9mizrz6bRHslMcc46GdL2qIM7TaeIJVpsa85hiioevDmOz3nZWSmYEQFulFLlETXNFunHwYRWmXBps32IcEcGQZAEWA+JFJbMoOGtElC2pQQbFSxYikVLQEBrPIEWgJlqT/lAhbl3jNeWplajKBCYbAIGoWlJCUBCBzAHhqXKPgT60tIZpyHNVRtaqaGUBYhEgFC7EuSFjDSaRVCSrWgS13mNnij0c3gLE7eOqfWrn8dgfvkKuV01dr5so02s/hfV2jnlO8ZffXrFM1mBO/OXTN+WyWa3rbjsNsT/MWvC4/6Vbt6umqZtwOBzHw7hut9M4HN5OIYSwDpy58nV4Dv2pzyW3Xc0lHY/79XqNgIfdXl1Zb1pCSiVbZ/b7g/N+vV2XXFJKh7c0jENMswdfMqv30zSq8tPTg5RCRJuHTYllGKeYi3e+SDaRXLDrVQcK+93BWlvV4ZzfOYSwXa+gSBwGVd1Puxjjw3azaTvSp1OcyBkwejodOJanl4cmWJ5inuIvf/tHfOrrbjXMpylOIWDXuMqZpvaH0/Dp0xcBbFfterOFI76+foP1evP4Xli+fPsyxmm7WW+2m1IKEaaUj/tDyhlEci79cCA0p3EfQvP69mU4HQzp3//tL4WzI4tErPz56+uTPFdNo3SufKD74xEI0Zg0Tru3b+dq2Jm1ct6G4AltLOM0S1Hn/XqzGU/z/nXPyu2q9XUAhTnG/enYH0fXeNsf3pzfojouMLKgMTwpR3HWCABzqr2FYsfTmMYZFZx1c5ytNVUIKhK8t86nnM6ebOdcUbXeWWMQKZaCc2o3q3cfPpyOQ0x5npIAGjKFU8y5ZFZEY40KKkDMiZkpERI9Pj0hYk5pHqdSclXZ4TSUmKtQBR9I0VgL3uU8h9q7youxhWzVbjZPL5unl6pdMZlyFiOeXQmCQKTnjTOcawfpsn3HZZ9+VfgsB3XRvS5OCLhsEwUJURSFlJnVMBoy3rcbKOCRZB4IGUU5zQyFSRFkZp36OaU0xRyqUHdr9KEo5ZQUiiEySMJljjHOs6I6Z4GQVUQoJgnegWtM1bWPz757CNutW63ABnYmESUGBgQAUSB3dqWJ8xYKAWk/nYa31+OXUht2Ita34zQWkT4m89X80z//eaWreZiaurGKc997sm3dOLQOnZSye/2Wc/HOdm2TY0QEFchZQJIKl1K4ZJeKZeaHU73a+KbLCKzovVGtvu3e4tgborZtXR2I1RNJ5jRNcz8a0Cp4LXEeEUyxwQsgWUPGqPBZS3AFMBe7RHD1/3xnjXQRw+qV9gFcSKKrt+ZmLP+dEbwPWV/kvfcMxB1phN9Z43szeiNMriTDzZQu3IEK3KGZhdhZOAq9u+TV2bRE4y/uvgu/cWvHeXIKIC6Q5cp8XdXhVx/QPQ92xgq4FAG53Fpu3Od3HNEtZ9E98MPvebflcS6AYNHXLU1BxAuvpoh0SfN915k31u0CyW7deaPObk9/yQZ1Oe3WqjsX9tINNyroPC3ugukvzkCVy0kLkr38LdecnPdz4sxsXefXTY69DPVNVH9uBIsYOBdxUgf6smo3bTAor6chCVvvxZiCmLMKCoswc0DQnA0hqSEwGbQQAyGKoIg9pwlEFURWscYa5ygnldIfDhFyzhG9JhYg6NZNVXmWklCDM03r6uDKaTLK8+mQUirgCDDNDDazAEuRlMiARbBaHmpX4mREDAmKIChKoZIDYnAGjZ1VLegApQACUUZ1CMjsiVjEusp6Eh9s7SsvP27b2tBhmuOQGo5NU2Nl9/1AqF1oplIA1RojMa6CXQdaV+A1yxTzNDqWAKTOAbrjFE3GrrbGsCmJRYEFATkTG7JVixn64egRtqtmVZltZyf0qEnUJvWEFIXBUO1dGWZNOfP45R9///mnDzHl2A91XY2n4Xm7abtmOB65lFLKcOxJIZeIiN1m5Yzt2hZUVGQ49dM0rlZ117br9VpRfPDHeQjBBx/ImHkap2nKKTardp6TiI7juNlaLpxiGsdhHKfj8dS0TdM0wXvrbJ7z9mkdfIhD9M6WOVZVXVWBC9dVFbwR0TjP5A2gWutC5Z1zOcYxl3EYtpsNl1KFkAtbCymloR8kcbfuHrqHYZoOuyOSrrqWEHJK03Bq6/D49DCO41/+/tf142b9sD31w//1X//rxw8/lsxTTEVE0Zgq1G1bNe279+8IiJw5Ho8meFaIuVRttWlXAHA89cylqsJmvf769aty8W1dNXVV1c3YHvreer97e+vWqxD8PA2H/cEQdavVYbf/8voVgbab9bnUyWkYOCZWQITMpZxGXUHta8lYVGJmUB1jgn4Y+uE0TGTQhAKgbdtVztmc8mmSXGzq33qSKqyScDa2AHmEplnlcZ+KgoGUS45ZEpuLegIqb0spwVKz2ZI1pXBOEUBKFgEWACnRu4C55Mw5cxYIdUmpTGPMXBBxTmWeU2EAJEJjwFpjnfVqTEkZFchgSunLl1cUVZAS8zkXICoQAqHO0+ytqWqXSwACF+oMRNabqvZ160KjZIsCKNBlCb5u3xUQLBhVWczpZdeKN3NwBUGL8dCLDV24bUVAFT2LDVEJFadSyFdoHIFxVS3TWKbB27rECUrmaTIAcZ6HYcxZgSpfrdquw2mehPg0jP2RQAzK2cuF1hEZclVKRQnIekT0q6f66YNbrVfPL7bdUF2D81kwq5SiRVAt6dnfR+eaqaBaQhNePr5Tzl+93X36ddefaoT4dS4pMmdAMkS/Ejy9PMI5g+FDm7tNjiPnGRFIdRpGZi6Zm7auvS8xchJUkML9acopqWjdhaoNZR73n7+GzWO7ehBBUBFUE6wLNs4wzqMBDJV1iJKyMqfTMB326y5A1qFPY9lF1m69XT88erRgLtt0FSVEuQXYgCrSxR15L4y9qpfvAcm9KbvZzNt2/cL26WJtUeEcbYOXZAcLG4DLzc7y+TsIsYQQ6m36wIK64BL6fsNb11Chq5lfSCZROJtevF4TzrrrGw91tuQLFLw+JdwkxTeNEQDimZLBO3h/59C9QJ9F+A8L7FsC3W+CpsttaLnAd6gObrjku8ipxel4RanX0Mlze871yBSREEmXFwxv3XrlYPAGwW5w70L+3GHZ5YW9Df2lusctMkzxUpTu0kXXML7lcpdHOwceXibBRY1FuKQu0Hvy5+qhhcXttrBEeC4dc67upqKIikgIaK1V5jmlfujfSAAVUtp0NXo/ZYixAIAFYgEhBVAUMmTQ2JiLckklOe+DCanMUNhap4CRmUkYigA5QIOmdugkGtC2Cv0spsIf//BRAT7/7W8BNVTeOFKkQz9M+6MBDMbPcyKPzhqROed0GrIPdd1UJc2H4WixOBuGGEVRpAAZAjXCQcuKqCEAbyiVmIWMRQUgB45AwTAQkjKlVE4C/0hjHWZduVrYqlCa5Ri3YNqVl0DlMAXA7ePTbn+ax+SdNZWtvNmuQ2Vl7PsicZ5Ho3ZTW01pnqcupqdVvYXiKbmaC5p9KRPC7lQyVIRVksKKXdc+rswmGBiPD42fpbiaInJ/jJlL3fq4e5XDaRWcsXTgsrJ2HqbHTdOEMO7eZlLgRCBEUK+a3duOVUPtVquVAsUUm6oyQPM4DGOvwlJcnKZzLdLDbpimGVinvu/WnbU0njITPj49EZnTcRjH6dQPTds+PTx0badFcY1VXdWhHvtxOh6eX544lSmysWYexsPr/ocfPjpD3lhk7g/z8XSsmiarWO9eXp6qUItwDunh4bE/nVLKx9NhOA3PT0/Wm+1mPQ6TkIa2LgLDt29xmo3BkeHxYbNZrYl503XbP2xYpPpH2D4+C9L/9X/+X6dxtlULYguQ61Yxp2HOYZ4eHreSy+l42n85pJyeX166VScpFZYpFVU5nXokdNYiqvX29e3Vno5zSv/tv/7b+mHzv/1v/++2a5VLfzz6EIZ+yCluNtuS599+/UVBC8vu7SsR/af/9B8Jra+9aJNTMs5Y7w5DfxjHpmuf3z+/7XYqIgiHYz8MPVUm1NVxHKYpNvPsnN8fT1xS3XS23+12344ArWvrrmnWlfMW2KBhqFcrjv3xdERWFypnTJ5yjpMU5lhCqL0JpbAKl5RKYiRQhEteGyehrr1zqZS+P536nkVUCYm4pJxKmuezstUYBDgnUicF9T6wMjBOw8w8xikiqCGylpRBhI0QMMM59ZX1q61Tg2AtKAm6TD6hzWoAkc8eA102kXertC5Rtrel8bpof7fiL1YMr2TRbX9KgIAqJXtjAVEAsyKDMb4yzoL34rw3YPOkMeppiNOMVWNslceJrGvePT1/eD+NU/ktQLWfAcocyRoiRIqh8lVVNU1T+jELuKqrfL39+HH17r1rV65tNdRRic8Z8RmBAAmIqIjSxT8nqMgsgBia6k//w788bNd/q6tP//avcTgMw8DTGAw5Y5Ww3+00FzSubue2W4fgnx4fa+/mOHz65dPbNDZdo6rTKJDT4bAXKXXtVWnkcjr1ZFBI3FTnpJMeutPkHxksCkpmMd7WbTUdaRwmU2DV1N6BlmwAhzL3r6/5gC44RhpVMtiqXgEgGuRrChYEBKXFVl/Mr57307RgipuU92rgr1DoYhhvFNA9Zjp7oM5ljK5Fvu6ky3AzvvfGb7nsgkbu2CX47tMikV4M4w1EXe++oIZreJXe7rWwXtf7XrH6glEu3MNdA3UhaVSv9OWFj7nGMF+cZfeTfUEB99zY7c24kju3giS0SIWvcOdKmeDigLqioUsfqt550K7Blgsxc3OiXXkkvWFJWCicOz+l6pJW6Xqj60y4oZtLDyzI8rtXGRaa94K9aAmNuECXpSfPKRWuTdK7m5z3VrS4ze4g5oXlUjgHgJGqsnIRcs6Sg1n1y+FU0mytNSweKc/RKBaUMRU0xoYKAwU2qJQ4s/A5eaaoZGGyTpQZsORivQNiLqJciIx3rq6xVrJg1QBDnFQgFx+sNwQ5++CN97HokCIzdK7GKjhQV4W6aTgMh3GeY/aeNts1pSBp6qfZOxVCBS2FuUREtcpWiiNskJAkG/YiswoBWDLnCA6jQkU8gLcm89yn6dPb7Ll5dK5k8d53lQbFdW20JnjXpiKVYzQyk3qHKmQtGsTC2s954x2ZQMCP6yokTP03J+kl+EerjdE6WNetvsX82zDO/WjRDoc3Zlm3Lhi2oFBkPPZpAlPX1PCxH6ZJax+slDQPMBy8aWtv//TDk5XkVTabVrmMHMfTrumq5mUDgP3rYJ2rV3VdhVAFBI0jxxg90TxPJaXtdmsIRQQBueg8RlBMKSLgNE05FV97Fd3vj8M4IKFzVlJS5a9fvxpnV21rvc2lcMnGQL3pCKB/O7Vts2raAc2Y8/Ftv9p0TRXmaUrzjOepyjL2w/v376d+6MfeObd9eNhut7vX1/3rrgrVPM2VBhGVwna7RmeP3w6pZLK4/7Z7WK25rlrfhAcLIMe+F9Cq3aQipzRUm/W7dx8KGHWGmchYw6EAiQ9Dlv233W73Noyjqo5FPhI4gNifpmksKVtjz7UQWCSlvN8fzqEoLCwioaoQSVgU9Ovnr3Vdffz4kVmmYbCGnPeH4+l4GAj1H3//peu69+9eYopDP2ZfBYHjaaia5qGppn5KWbpVOw7THGf0vu2a/f4QUxrTnEFe3nft43qzXb29vdkynFJC75U8p37+x+dBmX/88f0P7x8r24wHkWlGBCMKSmjBoTW+mSmCqHCappTynOYiyoSGEFGVUwbhpqmsRzBOopxOY+HiqyAF4pxAoSgjEYGWmM6LiyEsTMJK1okoMwuXc/Zk8gRqRFVVgIurrLdWgUwV6qbOQGNiVzVkfFg/mKbDEJhM0bvE/YtxvGwnz4vx/R7+u8X+zpxdLc13USaXAshnYaUhW1QZ5Fyr06IhRHWIK1eU1Xowqao3MKVSct3mINkYU61X0G6qar0S41aP1eqxxGgNljgfdnsC6bar9x/fmdf94dSHZtNunjcfP/jtlskWHzKayCJARIt8A1iKIKo1aABUVUQAcc7FIHljmu3jn//lPzTOf/n7f+1Fcoq1t8EazgmknI67cSpk/fPLx5f3L9u2NoQcU384jPNcykZFQOSIWEq2BtDaXNTV1kevoGgpi2ZCUmKlokiWlEhUDGrdVE2oj/04xQOv6nW1VkRvzYkL5rk/juTM6vFhs964Zrt+eCLvcxGwBHRO+HZOFC0KJOc9/VmseoY4iCp6s3tL0DTcDeDFli580B20WYKDFuZkMWp4trSyAAhcfrHwQPT7n9wb69+Biiv5cKMw9P58OPNHN7Xv+Z73KuLfTdLz97dLf3fTxeSe/3fhsW49cYEO14MLQaOXj6B3bqJLCxGvL9Mt5B6vAqZbK5ZthC7kyLXTz94mWC4HoKCkC2d347iut75Hnecf0s2TeJZMnfndy/At439OoKl6HWJYAOEVzd7mBy7hgEvQ2TVD5N3PFuCzaIBgSQCgcNVlXWP3cXkmXag6ufKPF5yGlIEVwRs75zyrxqwB1HKiWJ6837Z11vJ6ysnwKCMXq4IsmEpxVUWuypmnlAZOPlTGWGvOyupiJDeEDtQqECmIokK3ajKzgahzEu41uG1VCVEWTSIKmJHUVSl4tWi8Nb4C8t7m2rJUQVV0mrwnG3wTgiHPiVVZJWsR5uK9aQ11wWy7OilMOTthDwQEuQga4CKkYkC9wTZYW5yXbBByoV4wR/Te152hafKYqqpe//iA5N6+DQXSQ+cEdHcY5glKnIO3MWobgmmsxtM8xa5dfXxajUNfQTYsUtI8AwqgEo4pCBgPrDonLpIxEKLJqZA4yELeHj+dMhlnfABwORtNBjNMB0tVQ1Ji//CwCQbjWH748Kgg5IyqpFiq4FbbBhXJQNtWztuTyP51V0CnoSei4F3fnwoXIgNI1lkVCKEig0qYUh7GYTj1oapzySkXEVltVnGOnMv28QFEh74PVbXf7XJKP/30Q+VdsqiaJaeH7arE2VqM03TYHed5fn739NI+M2DV1IfDaf/tdRgG6+x06sdT//T0RECWzGrVGmN2315Xq9V2u5pz+vXLp+NxGA79cNjHKa584JirbZcUvu3fxmkwxqkznz5/7mP66Y8//eGf/8Pr6+40zv0cbVVRZXzw2LXHcdoNcyH3/PEP317ffv38Gkt5XLdGWdHMcXz3/oEQi4q19unpBQjfdjsE/OHHH5FwnkaW6nG1CsF/+/K55MwulFxA9I8//XF3PKzWq4enh7/+2799+vL5MSVnPRpcbTacpbAM49QPIyCGKvjgj4dTzsmFsH7YkjFVLofhiAarrs2cE0vM8TCNNhhDRuNwAB7Zmde3t3GeXI0vPzzXdTDMQUHmieeRmbMCKJElsAysAsKaU8oAosoIhgyaAgjMheM0KAqQBWUyYABVVZhVCiEFbwFEc2EuelYakAFAFtYihqCkAsrWGFOhIeAiIGqdQVQBFga0Vh1BCG27rkww7co1q2r72D0+u67NAHB2cumdjAGv6/n3MtnFdODt+JUj/35vfzv7HBFyYRkUAMmIiiIAkTEGDBkypSS0wdbgiTDGc2UeALEGnLMFDUNpn16qLa+eXySmeezncdbQIcnzu6fHdy/2YbBfdmC8X2+lbie0CcgA5sIqSJaYFUFV+UbsMxCRgDADEpINCFA4I8LTu6fag9Px13HMnCurFjFyBhG0BlS5lDkOp6NzKHMIp8OuH0455dNOnXOqnGMOwanynDIDmMqsnjbCYmtPvkaq6+1jtdq4pu1L0RpJIc+xCY7Wq3Q4TId9PJ7YobUkBtfe9sG/Hvaa0Wxl5UOzWllfFbSMAKSWCC7ljJQIz3QBLwDmluEXF8XrxRounIjCNer8bhAvRv/KAt6hkHvshHCp+nmhbe4g89ngLbmk7657lZHc7vS9wb2dds0v/J0v6fxEcssG9N3lrpf6Ha957wfUhSW5OcWuwOPGcgDAd5TZd427//DvVdfLzxaA8ruc2hcos4zRjaO6cUHXgLorsbMc0AsLdEGZVxpFb2edP51lYBcAhN+PwXlnchMo3VDQvc7ockn97vHvxVqXJ7vCu6sCGi608rKgLI28/fxKDp0D9e5vdZ6aWbhc8jirtcGuPefceBsgPjf+p8c1IP8C+aT6Osb9aUQXnPFFmKQYIUXxhM46OCfBNywiUjJiIUQAMxfOKYXKr7qqrut46odhAtUqWKtoyWeCrOn1rW/WHCrXz3EupVJvhANjTlNJGVSdYsrxNE/RmZenra88z8CRvXctEWmOOTuFpvZV7USFC+c0Qy4WPWMGAqsgMVWoHrQNoUJ1HihhjQbVneayez2uu2azrn3wJc3xkMDYdrOGONqcVqtqf+ohTXEuI1G7XolonMp6VVU2ptNQGffUVcQDp7mXpHEO1r318VjKSQDUaYwVBS4jzzOa1mBtCOumfX7aHob+65ed65oiMcXU1h6INqtOSpQ4cuHN8zYEl4bkra2qMIz9189fTqexrmpFaLFOc27a+lyDjUvZv70G77u2m8Zpfzh6bwkwzplFjsfBBa/CKgTIMaVpjoJYtY1XgdPQrLrd62616up1HYL3Ppg4oYG6qvI0nw7H+qVy1h53By282Wy7VaciJReWQpaGcRRgVaPKdR32v74VLuv1yq02395e//Kvf+m61jn39bdv3jsVjjHtDvtjHFcPW7LBBT+n1NSVr8I8pdTlL69fpxiNC5unpz7Hdz+3H6q6W3WnVMT6dlv5NU6Z3w6n2oJMEUCbp+3Ujxng0Pf7wy7n/ssvsl01P/7hx6ZrnPOq8Om334ylzXodqhrx4L1v2zplTjEaQwDaNo19/2HsRwR1zjRVqwjOusPxULfN49NzKbnve2tft9sHsTrFeZ5m5/0wDiJqnRsOw+l0UqRUOHJarzaqbI159+P7uuv++t/+7V//7S9jnFIu9nHVUTDTmA5vhzRkhBlMnsuYiSUEyRyMh1Q0T3E4ZdzNpyPPSQS8twRMBpwBQ6ZkBihYEFUNoYAyc0pJSVkYEJw3xlOeixi1dFEix1xYQYSZlZwRRLJnBZvquRj42aqLamEkUkUlK2rJEVo3Fka0T+8+tE/vNLRUN65eUQgZIHM+Z14CWHigs3DnO3L9mgrmJhG6bWJvZPltJ3pnH/S6nBYpfEZDROfLyTmilowQsmZGKgqmNqgqqSCyEhQiVKTKkoYSExlnA2CobZOq7dZYDE0jdeepfnAtg2VyCWzMQLWLBehslricCx2iMBkDROeQYhFFImMJEAwaiyDCUpIIOKTterWv/PGkOSZyJgSbIhOZrmvA2FLSbvcWx3676jjOBggcWVDSUnIBLlyAOU/zfC57Wm9bUEoZkJr108v2h598s1Fjck5KZAxqZIm8asJQVQwyvn3J+89d1xKR5EzT5DIrwbzfZ+bTKa6exT8+ofcgqqoGEIEQBBXknCGWzkzAmT/ARamL1zCpRfh6Mcg3EfFluK9qGlQ4l1xEvCdcrmFHuGz071VkC4tzttbf6ZURzn60O4N7b5ivV1+KzV15nrtUyIvhvWd1fgehfs8H3R+/iayXr7+DY2cDfK3Fcfsh/u7c76XD/440ucHB78HR0j16227gd+fcBc7/vn3LnuSqRjr/Xi+wCC5lSZSWzudz3ia5gbrLy/xdp9zY3xt+AbwWA1nA1315tCvIvXJ2l5ROSx/fYypcZILfKcIVLx11BUl6iRy9sEpknBGFDCBExgJCmUsKRh2B5+Sp/PGh+zaXPM/1Q+uaCrD6219/LXGyqw4ICzOQZ9HMOefsrSUEACyiSMLMxLnPumE7DPF0GsYY26r15KCIEb9/O4AH640Av70dp9MgmX1wxtrtw6NznhOrSDBkDA0l5ympdKCSx1lzadtm5bvenGbKDoWMRM7jOObCqRQSsqSpJEfsjViOW0ebyr88NyIZyTDLfJzn/WFMiQxVVWWtY2REncc5l5JjPrzu48ze+5KSRd12QRQ8SMmFD0ciWFuXctSpTxH63Z4I2qo9xjGAgNB+SEPJgN43VnQKcUaeV65pPFmSErOCrJrWidpUeE52RUrqVDfrdcnz4fi62W5B8fNvn3MsPrgn84jWlYJN0603q7e3/ee/fwNUZfiUPzdVsIh1qEII3oW3afftdfzxh4++alREQccxwhhzTqFyqw0BAiBZ672vAMG5unDebLcxxf51l1L2bmq6Nk7z8bAzSKgUp1hSMWTjnN/K7ng6igirrjcbQ6YfxuHbcZ7nuq3Wq01/OjrvDFDO0Rpqu3qz6tab7uiOx+Mx1B5Qp2n+9NtvLPKHn38+7Y+7t+PLP/2TrTyS+brb9XF+ef9hink3TeQ9uarZbslVWTVJUgYlKAqrp0fn7WH36jwZA798+XLYvb59ebWE1svuy5dx6ELd9Me9sQ4ICvA8RGY1BnLJw6mvq6ppamvcNE2//fLrx48fgnV+uznsD6IwT1PKBRCen54UIa9W+8Oh73siw8xviHGOVdU8Pz+ho+3j5vXrt2mequAOx9M4jv0w/uf//D8/PqwRuXL+17/97V//2//xr3/5byln7yqbh1ND3buHDWTe96d1s3pat9vnd2jcxMLe+7rFIo42Ia6pbe1+1+92UGYR5pjIOd8oqqaEMaZcUilgHFnnlQxY76t6TlGSkHVnDpCLqAqXkksuzCIAqAzMLIjGWvSOUozMRVgIAZAUgQyhs6qWQuXbuumaojgym27lNg/107NWHZNhNEyYRQSQBFQYaVnZ8W7TrHdG6n4RvFtBv1vU4c42fr8AIhpYwnERCVRUVRREUEUIDVkzc3TGBERSsZVRLixZVAyRCIiokBVU66iqg02lpNlYI4R9LKddXzcVAhljhUzlvKJRZusIFHIuxhgBMgQW6YwYrCFlFigogohWjUdDAFNMWjLksQxjHdyAIEXAoKucCCOiqyoT/Fm3gCLTOCBzqKwwqkhJPM8zImnSnNMZnltPZA2o26w23cP76vFl88OPuWqmzBScIhhQY8lEdYi1d7N3h6+/pOPp3YdHYygOsT8cPBkyLufp9bfjJK/vYnkx5vHDeyWMOaEhQgCChfmQhe44Ry0hIfyupOjF5lwSHNDVVi2m+TaG18BpvWKcC/0A5wLXgIJKZ9GJ/s5CwsVwLoYQbuXI4GI8deGp7qYTLsb9MifxHlnABRqcvT3XqmFwZbQWMuWK2G8/1eXH1ye6m6w33ufKy8D9nF4M88W7tlzlu3ZdX4Yb2LhyYN+9L/r7zwsxpnePcevCG8JZMCZcqNslpfcFkZ6TW9492CJxWhoPcMGVCymEl1NV9Aq6Fiy0eOnOlM51R3NZLRbcdikbsjA8eN9fevewV8h0e3S5LRvnvwhEzkNowAITc2EFVUFmEikxUuaRLD362jlMGcvQEGDlts/bvo81F7TUBB1T5hjnacKqtmCtdWQtEYiaoppR0akUnAr3iY3NhxjZWDY0TpMRaaqaJXsXjOac8zRNZKmwHIeBcy65tG0XI6tIW3nrzDktlSOjMUuKRgGLVA2pNVUVRFNJeTRacgEFVeiq2mRWKai5Uago/9i2Pzx2q5U7HQe0BqpwzHno48z5Dz/9ab1uhedxGFFltepiTHNMZZxVoOREAMGaqqqJwCjNcQQutuS2rjJIKnk/DOPb0dRVaNYJ3Tjk2hkfavQhRQ6owRLXFthuPQVQLDmO4w7lw7uPXXAGtKlcHYhzPJ56kkwgqYgL4fX1bZ5i13XjNPzbX//6888/t11dklSuWjXtaXec5mmzXo+nsczxcbMhYwvzOM9oKOf86cvX1aqz1jrvV+vVqe9jypnLnAoReh+6buVCKCw5DrkUBQUgY+3ucDRoPgYPoE3b7N92X76kktkZyqVUxhQRBTTWT+Pwuts/PT3Z4FIpZMwcU9twVdenU/+Xv/1bCJWxZrPanvq+sAjnKcZjf6rr2gW32Ww+ff5SVU1VVw9PD0JwOPWrph368fHpyVfNt9O3mcAJ7F53DVO7xv50RJXgXREhZ9s27Ha7GGdWnE/jXGLK+Z/+/Kf1qq098B9/TtOkykg0TTODOOebulMWlvT48IgP+PDwIFxSSt5aa7w15u1t99svv3rvYkyhqq13APj09DyO8+FwmOZxu32s6lCEpYgPlTU0TaMC/PqPX+Z5KqUc90fR0nVt9fjgrTntj5W3Xz//+r//l//yl7/9qwg0lX9eP9g8DjOa9eZJyT98+OHz8eCax/W7H3G9TkgpFSYyjjwputY445xvbCDJkuJ8PEylICIUJq/EMqU0M1vrLRG5qn58aNtVXYqat2GagEGAyHktRUEIjLNGWFiKJWIV1GLRiYh3ZK1VQTSkBDlLZq1d06023Wbtq8o458l4oPblxa7X1HTFuliYhSErGWOtI0ClvJg5XLSqi9m7moM77eZ1Pf7uH3pvXmBZxpXOtZsuPIQAoEg+yy0QCc41HBFF1XjHwJkVRa2KBVVUMFhAEZFB0RJan1mACIMvqjEnAhXOhqTf75KU7dPLplqfUrSGLEjJDGQMGQAjANYgFnYABsCqCGlBVRWHaAs7UZIyHb7Fedi/fj69vRHP3pOgKzlpFDLGODSkqFxV3pCZp5jmMcdkLZQsKWVWliLBWSJUZi7ljPCipNV2024eXv7wQ7190VBRCEnVOCuokNiIqbuQDgOXzCWVqT98+8JxV1cuxRL7adWt3z1/lKqiadZTOX39gsZ0TWWb2lgQFFh0TkVYVBDMhck555dTJUAGVjRnaIFnnLQoUM/SabpgoEv+GYUlzBoBcCn3fhWd3MabFirgYh/PiukbgNDztXEhjm7uGL1cSPVGSdy5pW5Y6XLdG25YzPZ3wuazcb9yHQv9cifw+d1E/l0r4IYZFg506aVFpHOnzgY8F/24vDE3ffM9Tbagm+/3B1cAdct5fYF9ALoQVDd5Dl4vcT1neeXuiKdF5L4Us1W4FBRb9M94B8W+Q4d6BVgLlXfviLstCcvpd4juSgtdMRVePZ9X3f0C6M5K5wv4vDwQnQEUqgDAol0jPe/qWC0aC+ZcAQMQ0WIh6dF+muOQ9Xg4nNJUr6tuu+13ex2mn7fBBm8bPzj6HKf9XNA6qHwUEAZBI8YWQMnFlGQYMuJcVPs8FVTj9v04cnxoGidAlllKyakAV20nAnVrc5lznA3ZOcZxLAXE1sHXwSIGSzqn4XiqyFXW94f9nGfvsDCPc8o5oYecS9utMKu1UAM6Fc5zYHmo6Cnw+0aHt39Qf9w8PgBVRWdyvH1ePbVuOL1KmWE6heAfu4cTaB5iTTSUDJIJBZU5zWQQhYPkrms2Te0MFUOHQ5bT5ApoknhMFtwcUwapmhAMFh01n57atetCGjKlU+bBe98ZY1X618+dUWfReavIfZlKTodjURBr6TRM+8Nhs15vt1tmfv389hq+xTyXLAbJOvPu/Ut/OlU+rDYrBdmfhmGeVXicphTjMIyRyzBNXbeqmwZRrXOrzVqkzHNilfXmMZe8+7I/HI/WupzLarXyzvkqjJ+/tpuu7bo4z9NuVMDX/Z6sbZs6p9J2a0XtNpvj8fjl29sc519//bTartbrTfewGcfRtvX758f6cHx9/YaE3Wo1TH2a036/9959/vxZVJ9enrbNw48//fwRYYyxXW3+5X/s4jRrKnMqrMAAUym7foC6TqaMqrlkLmlSyfPUAgfvUMru6xciaILJJa+7+mX7L/E0vzw+bVeN5Gn/7cswDJULZCFHPux3ddPVTfWPv/2SY9ys1926Dc5/2e3TPIfK+3a1e9uNwzhNkzFmHMbVesPM3Wo19P0YJ0Ro6/bd+3dE+Pr1jS2v16ucz04xY40pOW8fNyjy9vZGAk9P2+FwEJVxHtKc3j09Wotvb7v/5T//T22o7bcvvwHtxlhs220eN7hah83GVy2QA0PMZSzZKBQ0Bo0NjX8I9XoTVKbjwfgqFzmHeZcJoSJnXY5ZjNHQ1Jvt408/d6vVPM/FVtSf4jikJIhIlkgNGQYWVCmSc85YorUGRawjVcgM6AyRYwUA9bVrtg/PH354eHnxoc4ipvKuacNqQ21bnC2I6kgVSBFARYrSeVnD22b4sjrjYthuZSXvFu+bDdJl9Vt2gnhVeFx3+oigyKBA52qPigCCqmcCQIQFRYSJlBDoXOpXOZwL+SiJLOu5KhGJgqCqI2aKw1R7Es6f//E321bA5eUdYqGSMnnnvJkzo/HCBUBAwLAEaywXKKVqQhIVFhJBYQey//y1//ZtPO1++8c/5vG0WjfemanELCUmCMGTEePAWFDJogwihdMcR5mzFEipIII1VsESkTPOEIERycV5dNbXXcesgnI87UGL+rqcivFogOPhpDSXaa4q8/DQnv5RptMB1Qy7XPsgcxmZ4eNjHZqweg51GWa1pcTjAQxa6zOrnG2OoXNa6HPdREJzsWAXs32lUejs7lwErBdLf97h37iPy7y4nnNJh3im8vTiKbvUs9TFHMIVOyF8pylbps9N83uNwsJ7+HMTwwBcBWdXNckNR3w3YRe2BW5elnsvnt7zEld+BBcVzUVodGfH73rgjha5z49zhiJ0gSUXr9n1IW5QaNFG4+/bDMvBG4i78CM3QucWjnWGSne6PF0Q00XZpboQeBekuHj6lse7Rz+XUQS4w1+wvJxXKHb7dCsmdwef/t0ofLdHwgVAwnLLq7jojCevmO/m6ruA43MMG52/OjsTlQgQSNGZMaXPOae3VEHhOdqKeEiDnqZDv6n8y9PWovg6RFaIU2XsIIDO5mEuqiiq1mXgeZy3Fq0185y/HUfgQsSKgEBJdZbiwVZtHVMM1lTk6q51xjprqtrsXt/G01RYUuZpSoUUgguWgijmAjlvXtbMygIpzgp26Icpx3oVCjDnAiU7VEwSEFoHWbWMo6/rFPucTRx283G3CsbWWhvxlfMhnL58+vr1i/fkDK/Wzx6KzamS3BlNKeqg1tkYpyGzM6bzHjV3zaoLyGk+nfan/ZEQau9OU0w0VqtGvFcpeciEijyXadSg64d1shqHEYIlg9ZYYtZSJE1SUNUnLmmeq9Zb40DVGsusq826sHz69Nk5u96uCpcq1OxElPvTXErOOX/99i1xcj7EOVZtzYVjyZ3328cHUUmxKAAZyimTdUBUouZcqrpS1XGa39720zyDgnGWyJj1yqj98PHjZr1GwBQzGeersLUP28dHBDwNb1/eXnPhlJKApsL2HHeMFoyZUz6NYzWMddc9vnuu1x2KzNPsfOhWHTn7+vrt6d3LMIwiYL3bbjaFIL7uf/n116enp/XDQxzHNE6btgM005xs8LPKMIwQglrz+dsOQSzC2+7YBhsMdevmcbuZ57lw4sLH18NmtQEVApmnqaRUOfvTH34gMsfjiQBKKofdAVUJyRlbVzUqGDR1XVVV5b37/PnLNI4vLy/BhT/+/MeY0uF4muc4xhkJm6q23lvjrDPWWVWZx4mISLGtm1A5Q2YeJ2coGCeR4zBZi0/Pj9PphCD//Kc//gf3L7/88uvz06MVsIpiHfSnowPelOeH7dP63ft+nsdhco0nY87EiSDqmasw6K0rQBZsQ0FNNR72KY6hy1JK7WyVCiM6Xz+9e2kenl2orIrW69XY779+m9reoMRxmk5DHkflbAgIHbFY6wCUDKHFUlAFiJwNtfOhdr5u188fPnz48Q/NZmt8OI1RDfmmAefAWr6kOTQgggyqck3odk0Rcqd+vC5v1x0m6m3hu61z9/KO89J1XsXwuv29k6+eaxEgAAARECAKoJCwCqKgslMkEVLxoBUqqopyASygwqgAjCAAIirKQAIWwSCAksHdly+f//aPeBi69bNvO8nOmtYCppJENFjyrJ7ZlNmjIhQzptoKaykpQhYuJfV7S0UgsxRysNvvSUG45MQ5F+tcUelPfds1wqgqxpjF2pKx4JRyzORsyaUYgwhVHVg5s1hDJac0jcchlW9vbr0JoK4SBu1fh/l0mI77JtTrtsWSgOfKwKbzzFMchvqS13/ud6/gSHxp/Cr4QLUfdrthnrp3D65thYhFARiJ9MLxAKigqtFzykdEoEvMvC5mCUAvxbz4nlS48gznUV2GHm4hQheSBu9lrlc65sbwLDTR+aSl7sTZmi43vCGTy7mX2aR6Ne3X1t5/uP3ye5gFd428asBvNaq+/3O9/hIWBnAPts7RUpcnuYNQC2y5sR1Xr9d3eG9p4gLM8HbCHfK4vkLnSyzk0H2DZUF2d0KoG564nHkXzXBReKOcQSrI3Z4EFqR4cWtd+nshkO4A5p1U68zbLmN2+dm1exfm7/eU12UU7rru7vMyqS6KbPgu5oJAgUGARUEBBJGMKiVQJlc4p1wMiFVbk08MvI+YdOZEZJ5a/9BWqljG2pv8fvXw6240OWGey2Skqm3rnVGrCpnjrGJKTtkadah1RdRVtmvAh+128/aP32Qau6beBNc0LYIIx1nZNx6dD23jDgdjMZcsOZuizoe2WwVvY0zeqSV7mmPMJVS1956nPqDi4bhqK4SUUgp17YweueSckjOHcWqaVfA+KeaYjfXBNgC2xJMFhMxSEuVC89hoQk2IUSgddie21jrjGx+cM0VLzKe310oiceFpEGYArINTdKnM3HNtqWQmEoMimgHzaf8l8PzQ1aEiFY37gQ0Zg4ZAC++HkUWqthaErvXBNyhQSjq+HQziHOM0TcF7sqZad8H7OM5pSsMw+uAMmb7vBbWqqmHoU0wgWjfh8XFrje37IWUWgFjKPKfj6fj8/ITWxFIwZmOTtaZt2269SrkYa5u63m63xlBJeYrx+GU3T1NOcb/bIyGzPr88M2oWYZAkHGNcP6yt9W3bTGNMKQ9D//r25uvK1iHHZAxM/dQfT6tuZc3akCEiBXx6fmzaThV+++3z7nSaCvfDNM8FfqDx1BuF9boOwY0lPz4///XTF9c0frOCpm4fNoevu9PbW+uNchlOY+eNEylc+sP+y6cvf/mvf3l+evrTn/78vP7n55eXpnKcI6qmOQHz8+MjF5nnqakbzskHb60lxKau+qGPMXvnQHGz2f7w8aP3VUqRyKaSD4ejC8Egha6zxo59XzfV0+NDjul0ONU+bNcrEFDR7WY9Wfu03b48PcYphsqv206kaEpScuN8KqX1vrKVA7RpLoAZYZx2sX19XNsqDSMZg8aAABlSEi0ioGSRz2k/FQqoMd6stpumNm03D33TVJKL8Y5cAGNYoW47tRWLZk7Nh6rNpdk+lWkCTse3/WG373dv89BLKQRsLPFMiIrOKoINxiCR8aFdV23nu1W7fXj68K5dbzFUxgVfFbkgDAQiBhBQEUZUIMRzuSFc4M+1UsGy2C8rKd5Ujjcy6I4Uui2G52VSF+OxrNioihfmQBBo0VverAWKAnsCzMxz9grBohP2WQhNYhEWAji70YiISVVUWYwl8HaKk/Hu6d274+Gw//a68g0WtQimqUy0wVlU9MEZAJNLBQJxnsZT23rjHYASCmphThqzB5mn0ShvN+3u21TmZB0BKIsU5mmckZQLp3GuVw0ayjFxKdaAdQEUZtUUYy7RkJ1naeqKDKmAI8cMMfHh1Bfj4xzXTfAyceI4p+Pr7vDtW5qGtG6HN8LEMI8hmJen9Zdfx2CtAfHBEZl+t8vCq5cPRi0gZ9FJUfLs1w1VFRg652JCQFqiknAxrQgkoAJ69jrqwhBccvBf1CTfAYM78uGOS1j+DboY9ov09ZJzevGf3EMJ1BvpcrvAeULdcxwAcJNj3+REvydNbrzMdWaeMfXdwUUcc6G0dInwhpt5B7hFZZ/vvPA0gPetvU5uXcgTvcCXJbfCdYuwAIWl6XjlVBYccAeJft+fevcyXamaGwS8AI3vdiA3Rmdp/vIWLnsPvN72iqX03qF3T3D9jsVakk1eX/dl1G5P+914XO9xWxDwCoMuUWv3cGuBkAB4zhcGAHDxKJ6BJUMGAgVz7tSzji2xKIF4g9ZqNha1gFWDRdhYRC49QyN6mrNFYNWcigcehz7NSYiKlDjmeQLUEiw1JrTrjoLRKZc4WUlCaJsKm3bKrDnPcaKcKOH0LdZP6it32B80JReCq4LrWiEBsqgwDSMpufWmqkOSApZIIHLJJSEpopY5OhUEoTK35KrgBhaNY6ic2zYgXFiOfXz++cdA5rQfpjmWwjOfQmjaqgqE4+mASMRcDiceBpxmmAceT7lP2Riqa2fIgKGiMJdhHAKPlUXJXDk/iQDRyrk5lzjPAHbVVETCZRaG4K2WqDKBWEkzF50OU98PdVM9PT1Ya70LKWdEsgbKXFAiiI5DP/aD915Vc07e+ZeX56Zrj4f+2J/mYU5lNn5VtXXMMadMBlNOMaa2rRVgtz8+bLd100wppxj3n78iUkrldBrrOmy2G0Kc5shShNV50/rqeDwdj6e+H37++SdV6Pv+NIzEnFPePmz6Yfz05XMRXj9srbFN26RcPv326dCPD1tXmIvkxteqDRmjKsPQl5Sncax8aNr6t19/HYaTMbYwh6r6+MOPp2FgZlZJKW2fn9ePj2lOb7vDqmnePT+BaD9OX7691tvOOUol6mRUCjk/jafgMHiYdwcnOh8Of/n2mvLsG3favb1+/Zzj1ITw/uHx5fnxoVsd9/Lp11+FxRoXgjfGcik/fHgvKsf9ceyntq032w0iTNMsAu8+vDsrewrzt2+v0zyH2lvrpmlq2hZLIVSR3B8zWdM1tXcWFbyxmfN2u3rcrr+k+d3zU075l3/8g0SGw64fh7YOPzy8H079MAxtU6/bBnKxQ3+a56larUK3/vbLr7t9/7PQ409/KAKcC4IlICVAAeCL7CKjKSDGkDVkSN3jg92sm7pmFlENVVNAYuYZEL3PJRd01qK16pxvRIxIvX7sHk/94TD1xzxPwilN09j3ygUUnPerzcYGz2jWD0/dZqvO+7axdR3JItmCRrwVhLPxBlFFJVVzRmfLgkq3rbvecTa/tzh3Juh31ui68T/bE8FFDnLHal+MsCyb/vNqJ+ZajgCNKABwji5nh7QKjpR1TqiKLMgswuQ9AqIxzpIFxCIFgVDRGVDcvnv+M+cK8Nuvv/Rfv+IfJ9fWTz98zGTJmMavDQCnAbjINL3+8qtsmucPT9ZaMibrOfqeu8p//uvx9fVLTPPUDwCizKBkDSXhuR+Ui/WuSM5cnLOWLCIAi2KxzjpnnD9XaCcyhIbAWBcsWSemAtO40LSrrlibtex/+1wK5zSnedZ5dAjzaZfFrEKQPM/jIClVwSKRpCQALqCwxONJhcCdxASzebLbje+q4CyiAUICVAUiIgQQRWGjeLWFF/N69hQhAeLiboCLq+FS1oEW+ucO5l4s5x1XcUk7KMsYLzbzwoVc3V93EpCbCf/ukt/d7FZG87uZtvzsliQIr/+6p4SuUxjxGiF+bdg9a3KbvldQAfDfFQjddMNLQy6Clu+Kat3YpqV6x+1Sd0b/dsl7mAK3+1/j4265B84uutu9LqQJ3t18QVrLY/47/uauNfcoBq/wSOG6KCwa9yvOvXA+F+5nwbxwOwGu4Obi7z7HOyx7qaUP7hDaBSpdAwwvPYDXAUFQFFLRs5zMEJGoAqA1VqQAaC5MqkUAM6F1JhBar1Le8pxPvB+jQZ1yPpYsb4e5lCIypTzHnFAygnCyzkHbuc4lBjHG1N6AFeII9DpMx6/ftB9WJf6wqr1KPI27zOuHzoloysOYA6Npa8yMKCJiCa0xBXQuxXgBohm4T3MBUZISR+eNlexUjIGnNjxs2qOHlAr5cBh6450jV9WtUJgy+6oBssM0HPYHFAnOW4cR2BpDyjzO8+GozBIjCq83IRMN8yyTsC0lCSkr5/6UZiOh7dbBza+7Kfam8s5adWK8No0/7vd5HgNJ7a2vXFvZNAzTqUcE0eI8KclpOgVfKUvKybLtulYU+91hHEYyQBato9A0dRsICRDncepPx6/fvhJQ0zbDOHGt5IkT55K5MBBUTU1AAGScB4WmaUUAMTrvnA9N06JCKWUcp9BUTdee+r4UadvKWPvly9dxmP/+t19ySsr8pz//PA/jl8+/AWDT1A9Pjw+Pj6Gp+tPQjzOgtuvu6d3TZrWdp9EYYwh+/uNP8zy97feWsJ+GnNKHd89c+J/+6Z/meUKkuq271UYBpzTv3nbOhc3Tw/rpgYwjY0nVAtVdF4cp5TTNI4xUYvz7r5/DdiVoknBVhXga/uun35427XO3Duv64enh0B/HNK3qartZzfM0jf1f/+0vJU1/eH6uQ7Vp16iac4lzGsuoKmmKogLKoiXl7L3v1utUiiAY56rGjXmOc4w59cOQyiVZ4OG4//D+ParmObGI8/Z4Jo2YraL1jhSG/XHuT2NVifCqbTnn16+vqcSmag6vr6v1xm/Xzrl06nWONpd0OJ5MP374g0fGNKf+3funH96DUslsEckaJCOieM5zqkAWkawyR2ZSY5yxwWTnVCSnPMcEhAVARTQnsgRkI5esgMaQ8wBaVZVbb7rn5zSPUlJO83wa4jzFaQJFH8LT0xM6n7K0D9tuu5kLCyE4W1hFFFJWsnLWAhAhLfn3daG5F4mA3Lnml83kZVt3NSDL9/8u7ms5+S5g5Xc7PEC4FFqFRSF0Vo7queoRAihbslCizBGFnTHrqoWoeZ4KF8syDoOiIlYqUIqQdyw6j3kWYEOhrZQ1bLqPf/gJYx6+vU3D8Pb5l9Xj9uMPzynH4TQbndarrqtwfOtPuzfkucyaeh+qNZGZUorzZAGrpnp6evj1l78ddm8mOCJMpThDzvvAMuWxJEY0xlKJzInrCqrKgRoVBQWDVFUVGipZWHWKRY13znpXubDy68f184tr2oz67W1X4jj1/XjqHzarrqs+//bVWvfTP/1x261Or19+ObzuD/1624CUU4lznEG1atphmPvjTD5g3a6rehVe1o9bt+oSGbE2FSEExEteRLwO2UWRcwO59wZ62bqjgp5LcN/5tHBR1S7SkLNfRW829PpJ7ybEYkEvpu6cg/F3oOZm0fVmEuGKau4Zipudv07Q/y47dEfFACAiIpyr+S4AX68U0x2FgvT9vF4UbMu97tpwDQu/+r1ujqOFfAI6E2w3x9SSMVt/9yznv+/131csdBMdXZ/7tpe4ICdEvLIrcC7BftYQnzV2t8w6C6D53ebl2qV4ERSde2jRK9MCou7ES/fe7KU5y4jclGJXOumWH+g6D5fu02vXLNzVsnwsN1AAQ6AADKws53BGRlJwRNYY5kyIZO3ZhSaAQGZWUSBUnOeiJSsBkzv2UxT2TSixjHHiOKMlKDlyKpwxFQ0NGUfKomJIHJGWMhexAq6qmq7dBp+G5rev35Lmx81KWeKUimJLtKqqsR8s0uP2wRExywTZkmXIfcpqTF3VJWeeJmOYSm6CrZBa7yqAQsqcNcvx9dXX9R//+Oeua067U4zzdr3ylSOq8zRxmmKZuYghJYTj/kApO0TjXel7FejqoMFZn9B4KdinKClVAVkRhKxgOvbjcZ9FK7uypjKqta2NaBqnNM31uvLWkhQoxaFMkLNg97Cuui7G9PbtMKW59o4B4pyc8yzluD9O06wqofFDP/5QfUxz6odh6AcA/Pz58+nYPzw+isiXz58Z5OFxY4kUiYXbpg7OS4G6qYX5cOz3h8N6s67b1jnXrVaVs6fDcdrHpq0fnx6NIx9CLDlU9SYE58PpcJzGYZ7nh4etMVRKTjF7gcfnx26zIrLzOLOIqpRSnPN//POfOPE8jSnOu2/D7vV1tWmFBbx73G7THJFVEityfzoZ69abVVNXQ4z708m3NSj42qeUXG2bpiKgPE65ZBdc17Uv/PT59WviPB7eyOlpmhn0L1+/tN57gQBN52zr/KZpuqZ6Pe69sQju+eVxvV6R2rYO4zyVeS45NVXjnc0pBmdX69XheNzt9vMc266u6hqIpiGKyPF4muboK7/fH1dtt9qu0RAgpBgt2spU8zxp4eBtCNU0Dtv1evvwUOY5TqmqXJ7nfT8cDm/OmHfv3wdvS0revV8/bL5++rLfHxBh06zIWALIxtpQuXGc56H/8uvff/qXfwneS5oxx6rtpCzcsyKiEiEKKKlIQTAKiMaqlZhLYvFWkFC9zalYS94aFi2ifPFxk/VGRWYRYPVE6Bw669uaRLTk9YtwKfMUEdE619StIMTMYCmRlWAVlens0TAXWEMEcJb7nHUXqHgpHYWC53XosuRe7dt1k3/bcF6WsHMylpsF/W6vfLMTV/uBy0ZeLxtNXIKtFYBAlUERFEWMIS0MOdeVX9fOakHIjqCQSoomR9VCmhVNmfn4bU5Zi1Imiqy4WanibigPm+b5+aX88x9/+ftfx/HYbSrNczB201akRdII3mmaQaJzTKYgSsnRkM7TkOaZTHDOPD48PD0+Dn1vjC1YsiCTGmcd1bmIITKVQ1YUAWFgQQEVNdaEEBKxFIeWFCRlRuOy8WhCqLd+vW0enurH52bVZc5zTCgspxM5+vDYKcOX9GvXtS9Pa42FtBhUEckpGVIyxCxImKekKQdj0zyyMMx9baRxBERRWAsZNKqq5Vxr6TyQtMDdS27oG+OBuHh9FgsKJCqKVw5hMYuLfbp4cH7nK7vjT2C57uVXy+0u1g+vxhW+oxAQUOl27Gx0F1nIRXtyP0NvRnaZTTcje3ECwuJKWuDUmeOiO0/fDbZ/pzT6PTZYEN8d//I7GHN5rEVpvLwgF4rjDoNemdJ7rTRcyKArNLg+HuC/AxzXSDNFoIu7DRaH1q33YAlV/+9int/9uQKY+1VgGZf757wi5+9Whhumubb4euCq7b4M0kUqBXdM1fX7G9o8X0tUQAyX4tASqDUkAEVERUCNMoAaFKNKCAjKWqJKAZWCdhQlMKJs0Rjv0hiVsOoabMR4zaPPUoDCPAyZU0mDgggYYBlTQS2rdV1Vfr3ZWF9VWMg3pmsUKO1OIjAJgHV1ZXxVbbrWWj8AqUodnCiMw8xMamnMc2StmkYUyJBrg86T964OrkJNMfZxmuYTZBmHiJwav3Kk8TSWGJ2jNA9n+VlwOKU8j1GEQ+1V4PX1zWB5fNxKlsMwZIWgoLlITigAEAQwFmWArnU2+LlIfzoCQVtVAFrSXFetReQYOSYtpQ7eGSzTBEDWwKptqvWWnB/mNBdG69CQbWqPNQmUIvMwa+GH7eawP0rWcRi/4FdWFuHNejVNSUS2m/XDei2ozprT/th1lW/qKoRgfZrS4W2/3W7747EI98PQD+N6u1ltuxBCHeoSU9NW0+xTnN923+q2ITJtU1d1s98dgndmu1GRp4fHpqn7Q/+43W7aeppmJZzHMeXCqimXUNUE9Prtra4qFJSSa++LnesQypxyKqeYqhD6Ydh9+YpCwzT64FPmpmnQmDN8H8cJCWLJ3cb6WvvTafdtt92sq8qVmImwqhypVNb+9PH9UOLh7TOzHL597Z6f/x//9//nD0/PMkcjrCUbRIkpT/E//g//0m43RAZF+93bp8+fhsNxs1pP1Vg3Vds1IVSnUz9PYykJQIZ+jOnX9WbDOU/TVLVt3/e/ffnUrVaK+vr2Fse5XTUxpWkc6zp0bZNi2qzbp8eHbzm3TeiaSrxLPnlv52lULqU0bduMw9GQPez3RMKlfX55AgJjCJTX3cZ5c9wfbdXUYZ7LiXNKwKVrK4ta5thtNuDsVAoAKqIhg6qqjIgGUVRYhIwVRSFkZjiLcQiUkFVBGRAFuLAgEhmjcCZ7rVC5VIdBROOMBapqA0As2AookDVZQBUEs5AywVmCnQs7a0kAEIkIiBSVRUUFVMx5f3pd1JSWeNuLtdJlz3i/6l3yx1ydWnRfDHtZuPG86aQr830xmHgWRF+X71tADCAQnCvcI6gSgAOsyDSVR85QMqpoKVS4cSamoszWGgXFOVuFUNVOOQ3jl7dXX9UKpoaP75631b/8mcv87bffOMY49K5rGltVXU2iPI7TMOR5mk5Hjr6uK0CoBI1A01Rd09QUhuOJEC2hcxYEkIqoZmEirLraGSJjypQVGS0ZS6AqoIRofR3awIiRJSU2QGRdaNt6tVk/vTRPj7Zqw3pDzgbhqjrloW+9e/32Le6P795//OH9k6h+/esvcepfP39++/W3lGYayRrMOQUXmroZDpM1BKgGQaXE4XR8ffMPz65ukTyAEqEUoLN/S877elSVxcF1r6s9q2OuTqPzgN2lXV6M44LuQW+Oi6uNvlOZLOdfhvZGHp51Sddb4M3O4T0UuKJvWNp5DwXuGn7Lqnj9ny66n1urb2b9itwuzbn37H3XijPeuZMR33mUrjJevO4Pru8N4EUffam9dfcN3HEm9zzSFbVdj9yTQ7hQXITLV3J+qgV74q0d549y/nQbLLhSXRc/5BmKySXtE9w/yALX8No/eN9wXVxg50oY+v1WZxnS2+BeJ8MNvl4QD+Pd17Q07X6c8FwpDETP6c2McUSimgtJARAnSt5evW0F1BDpOV4MgFCRaM4MLJYQwYiiA7TOEoBFRGeqdadVRYjk4HQ6DXPqi2YCAShFmAvnxG+pCS5b43OqGl8Ad+O02++g8m3bmcpYROukbVtLpDnX1giDZj5vWhjAt6Ek5sJRB2UpKa4q70EtQskJnBWV09DHeVivOrWV8aFbr3mOnItF9OAg58hFpaQ0S8kAXCSXMQPRLOV0fJs4ORcioQKNXMZhmGOu2hUQKqkJPpX5OM9RmQgSsA2+bTsWnVJWFc4ppiJSAESLoKEQfKiMJQ22rteb/TgM0ywABXU89THlh+1acgYRLqmULJwRlEvZPm5yKsZSVdXMwIXbulWReZzImqapgbBbdc45RLIWkyZDBhBSTGjJWGusmWPcdNX+dOyHQUVq7x4etqVkFkklWw8E9rdPv72+7bx3IVTGmbqtc4qrVVuHGoKzxk4xfnt92x32m8fH9z98XHXrt7e3t9ddnvOPf/hxGo7zMK7a1jqMOf3j77/sv+7evbysV5t9fEslGeuc96tN89unT1+P+8eX5x9+/jGV8l/+P//fbrV5/uAl57fdPs85Vf7r53k8HNdtzaVY5PX28cePH//3//P/SKfDar1+Wa//1//4P//xp5/WVX369pbm6Xg8qsKn3z65UM3T1KxXx+M49Ps0DZzLz3/8c+Xc29trPOzXsj4ej8fTaRzGpm1iSt++vSnBBxbv7bHvD/3JeV9V1dAPCDr04+Ft5/bGEDVNY601ZD68f7HGlJiq4PtjD4oheEQQERb505/+VHL59va174eYYpzj8fS2O+3+p//xP717//Ff//X/R4DW+TV11jo7jck6Z1x6etkKF84xTsPu2zeoQlhvCJBVEMw5w9/51ZfL1lpBxVsXi56rcuSccmIDwAUMWutIlQwioVEF4SxCgKQKLKBwxklKRAbQAAGhWCRAIQIDIspkGTWzKCESGedERZiJSFWErzIbRDR62a+p6qWW4bI2nas6XzfoVz3rNSb14j24LPSXlBzXBVwVRK8Fw5fF7BzCCqh0LhsOCAhygUWiAIQKAERgECxgqELrbAWYI0uRHJOUbKypSEFVCdEYazhUFGMmHj1CgzmmeT4cfVWnTdt7ZC6ixJnBy7ffPm2etqFuvIoPTY4KCS36YTce8p7UPL9oE+p13cwlI+KU5uPpFGMCIWHlzBYNEKJ1UkoWrmpPCln5nD0SAYyzCGB9qFabZvPAaIYoltWGULddaLt63XWPT1A3kWUmHOdsSlaVNM7T4TTtj6/CtbGShqmfjp9+i3Eaj31OkYyySp5zyQkcSiXe23EYpChZF7ztDwf8+mX108+WBQgIiQsTkiUDcvYJnCOwzw4CFVhEQOcRuuNQrsZYL1zJvS2+TGQAQYAlpfBVIv07DfPvOAe9EAGX8uAXGf1y9AyB79iQO7ZGr3/jElR4F661QISr+aYLBwvfqbUv4AsvIOdivK8unWsg+TLBEa6yolsPnIHF791Xt5flerdFFXRDhkvP3jYMcO37K1H63+u0O3i0bCduVNbNtYTnxAQ3mRJc6blFSwzXzECIlzf0+hT3wPEGiBaV1TlVwl2s2XU4Ls90lZDj7UEX5g91CeW/TKzzBuk63673u2BdXVDz+eFVVUQNWOFiJGmMFrkyqIpxmsQFtEFBkQiAyQAoMoslFBFvA1o1CJJVNYPYumpUlcicy10ZpLauEBVbCLV0gFMWBZznVJwts8lzhMzA7C36OkwiY3+Y4rhptuuHrQVBgzmmlPM4Dl1TO0UXjKnCnLLNxRpQFBTWefBQBx9OY5EE9bqe3va2DtXjpg7mOA/orPFuW1fgKuuc5AwA86kfBu5WrbdUSOfjXDKTdSnCECdyZsqc0Hwbeu8LGgfo4lSGufgQMFSZlQlNbaFg359iYV8ZctZWddisQxXcaZqnNMc5pVRXnjMUzuRqEeyHVFd23XRzhs+f93Msj09PSmHKMsQEp5PkHAytau+CAdUqWC5lu+rQ2JqYAicAAQAASURBVGEaM5dhmtAgWRPHkuI0p2Qsbl62zldSOE95s169/7jmxITUtfS626ExXdcZQ4CAZL7t9/M0vjw/PT1urVKw9qfnF0V5/fq2orWrQ5oiEoHK/ri3AKTKMTV1bZCAZbvZtusNA5z66Xgcd7v9arPdPm33h8PxsAdQZ8gVAwY+/vyH5x8+BOM3m02KpRz2f/zTn3xVfX19XVcuM7tQvb7uT8MJjX14eHz//P50GKBDqct4OI6nU55nmWprqXHhoevarmstPtd1U1X/r//1//b88DgOp9T3tXXk7LHvq6ruNutPn74d+qH98unh4Skzj/3UVK5aNcxpmEdgOQfqMrPzIVQNkO3WG3J0eNsDqnWmXXW7t/3bbte17TRCXYfHP//x82+/geq790+rdkUKf/6nP3EuXHiah/E0GKPT1BPZIXORIoD1qqP9nkXnce667vHh8XA6zqls1tvt+vmw33/9vI8jK4AFAC6pDq4JIU1zFRwSfPn8xa7XfrNRWHxDYFSFjBEFRGJhIlIAYTbXiApAZx0pqIqq5lJEBIDIICCqCIoiKSKiMaJy2VMiARCrnjkTUQBQUShcnDOEwCkjGgAwRMqMCApCiAQEgHLZEN6oGISzHRMFIL3gIkRcNK2yRG2AqhCeC3gpIorqOYYMcIFRiCKXCBm+2MhrdajzM9MlpQeCkIJc3DGIKKAiSojMUhE1PlTWCMsZF2VWAHLWgqBhSDkRcFN5ayDHFGMaxtFD6QKV/z9b/9UlSbKkB4IiosyYs2AZSYpc0hRoLDA7g/fdh/3Te87uA172zGIHwACN7r68bmVVZgZxalSJyD6YmbvnBeLUqYxwN1NTVTNT+fSTT0SakNq0+/Jz1x2z3BIKxxT6vkNsjsf1zU1ou9Xy1mV6vSyePx/6pu/a+tUZa5T3YYi+D71xNoX45acv29dtTIm9MCdjDJJWxkYZ+ToxSgdCINKKkDAJJ0GlrS4X2fpOuSrXZghi8mKxXqHRiYizLFqdRLwPIkEzt3X/8vQ87F7j0G6fTqE/bfev1hgFeDycOLFzSghCDCklDtEz1HVjSAcfUuLcGWVUDLHrhhAZlSKjIyGwCAtLmqpgiIDMMveRpZAJyZ6hz1fuzrPxn60bzu4xRJ5t1rWM+Dqg6Wxrx/ZGITNfwqbhbHuvgfOZczqrZP+ibqiAzHrr0dLLWTRz5jImIH8lE764juBsZS9XnuVQZ/gxcx1nYHbxPM3ycZh9NJcD5+oiV1BMriZktOlXfNM1zrkmrOYW5nOvld3jDFwliQS8CM//8kcuHZjQxBiSJzBny/5LEd9VqN/XKqFxsFfPA36t+x53NpLgiuw7A9jzanL+DifwOSPg2W0pE3tHZ0g5rSsI0wYDJCMoS7vOtVW6H/pd39aYPHsUNUHqNG7xVGJhFsSoxm0VCYSkUAg5+CBxAJaClHGWQ4wxpZSM09aY0iKSjlkKMabEfd1CGDRHCf0QwkmYEZab+9xkEUFZJ5KijzF6i5BbTcLeex/iwNEYsrnVhJE4Bl/l+arMlgaZU6EJjHKZzVxOBlVRRODjEAqjy5yIJLM6Mfcchq63Vi/KZdcNu7pW2vZtaPseNQ5tSwTgnPcDCxKhJPaRQeeuKo11lDgFP3QeCYvVYrvdWtCbzdKWpc5ynbkCdYKTcgaOTZ47hWAURg6ckjMWlG67gaz4IaSE3RBQq7yqUhhi9FnhCmsIxWqriEiqw+F0PJ0Wy1VMgqTW6zWgHHaHslgOXWuGodos1ner/e5oc7t+vwq9r4pcKx19PB4PuAel6PH9O1cUh+MBSRVlCQjlohpC7Lv2/uG+7tqfPv708PjwV7/4vuv7+nDq+/bzz58//fxJfPjFt994lhACEmyP+8Vqs7m7CSkdTo3vfbFcLFdL1Pq0PzR954N/+/ZNuayeX55jiPcPD82x/vM//7NROlsuB+a+a8rN5uHtw/Pr6/Pzyz//5rc+Bmfc83b3vu0VkkUVmTNlwGY+JQlxvb65v70NHA8vX8rM/PX3v/JJ1uXKKNt13bv3H0rnUGAYfGJepJvl3e3/6//5/x7+OPyrf/X31WIZU/z85cAsN6uVca45njCgArVer1xWDH2vjVHGHOtT1/Ys3f3jXd+1IPzhw7vMZuvVkhAz5x7v7j79/PO333zLPhASp4SAi2WVl1me503TdF3/9PSFWdab9XZ3WG3WxaLyYViulmVVZVn+DjCmcKqbfFEZ68IQlqtlSlFjglAPee64jz4l3/skqg0UGQBIgFmEEKMgohoreQrwtPKCMAMgMjMwKiECVEgiiSUhIwkxSEoRZPQE0bRdBSEENS5ggsAJiWKaSwcIQwJCZgFmsKQBkJAoCcyCiitLNzLjTJcY17FMIiBCOmexE8ZZ54xwTnELDGfeXCRFpcaMZJiSBI5MRKSAQdK4jo3LLYpEAAAmBIWgph33OSRXGICIkFlGiTawGNSGiBBIaWBRSgWfYhJElaLvuyFz1irKjbaSZOBj1xtFy9L4lnzg7rQ/nrbWWd91aeiPx1AsehbhwWuJltNu6A/7w9Onp8y5d9+86brut//8e61V27eipFwVIcb22A8+aGuZmQMCc14qiBiDWCSDZAgLZwICAJHSDJSUApeZ1aa4f2uqZbSZi4hagzEJJQL3zDGmBMIgWe4khsP+8PL07HcvGabMyo9/+j2R6KJMMcrQc+IuknLoowcRRcQhDF0N1plMQcKIkBiEtMlzk2eodBJIac74gmO4DPIcbISzyhVm3gPO4EVGtMN40aTLTEKct/tw3tkD4JihBefkQDTFjqEIXzU/y73m3AkIVzUwrvAJTHygXP05MwIgOBcJx2vbfBnLZG4nnmGiO8f+TmOXUYA9x3/JtZ0/O3smHnTSHU2ITaaYJphzN1xpVs744xo0AAIy8AW9/WUo2xWrM2l0znjqjGjGGbywRzNInSTtMhfzvfRkpJdmWCJzfNychmJKcIA4v9wzHXWliJdZqDRedUZdc8/GybnQczir4JFE+AKbYWbE5sGeRzFHm42wemyY557SRToNkzccBFk4QRxzHK9y+/1msTCmafG5hx/qoeaEoBIKTX0cSycqJPI8GADNgEk0SpUrS9TJkELQWaYzl1D5IXlGBRoAKLIW0hwFIGhipzKVp0FB8r5Og0/O2QxLZwygHJsm41wpiyaGbliXBQmz7y2IVjRWsjYpOlQms9WyWpRuWWqqFIkkP9hS+9g19T4rMiHlEyRh3w51+5I7W9lMMUcBRgBjTl18PgyDcn5Ip9qHJBwjaLBaOeuAzKntEDDPF2jJOCWkQgLfhRgDKRLAEJNyDgmNzYyzx6bxrztSyjhT5IUApBC0JiJU6IBUkTkCqE91qJvcWemj73uwevBdptWiqBZlycl3Xd02nVFKsVba+ORPbWdcvlgtBeD56dlaV1WVy3M+7YvVwoP0nPquK1drsO5lVxOCcEohGms2N+tlWYaYFAJHfzoef/eb3+9ed2/e3RPDn/7wQz94H6M2rq0Hpclltuv94Ie8yuvtcGrru7uNcrbu6y+7XcNp882b4EO2qFb37nis637otyHFcOjql+ft5+2ry2zwviyq/P7m1df//MMf/v3/9u9v7jf/8X//j9vXbbVa9v9HqJt6u93++MNHpcy333775v27P//wUQMWxlRZVVYLr3SnyBr14fEdYHz5/KXtagxslUElN6ubsiqfvnwBZqsNIEaMzaHzIey3ryjS1+3/+f/7P0jT3f3darHSiowxq7dvdkZxjNHH5bJKSSJCDEEhLMsi3m7qpilclrxfL5ZvHu/v7u6HbhiG/v72zjm7Wq1ub26a40mEObExuigLpRQhtl2/ub0pFwsQRMKu73XXOKPbboCWnbWYOWvdcOyiD2N6l3yZu8K8fjnqKi91TEorTHh3c1sfmpb69eM7pRXQVNlqsgdjkpWx5DhOPMloRYho9vszTz79EYMQTDtlxqmEpcikRWUEJFACQICRBRCRSJgJQFCM0jFGQSQkFEKWGLwai9IQSAKWyCSIJEgENJuZS5jLXPxnMirzcs0juQNADAJjKVEBTqJJpzgMIZFWAKgMASBIkgQECoF49Msh0RQQr4DHZM5CQFMiRBEAJWNqZkJkIUZCZQw5i8Q8AjgC4MjRR1IEIMmHfdM4p/PcIYtvOojR2TxEdlrlpfMsx1Mbur47nggkL+wY3TM09ZeffLc6NE1z2B+YU1kakcQiDPFwqNumBi390GqjiexitQSWFJkZYwzBJ8VgkJRSCkAJgTKmMIiUUAtZbYypNrraSFFxsQqokiUeVZxCOEZuKIp+QAAiAqVdludlJe1JxV4rVhDzzKWuYx8JOMWIpIyxDBRD0poQlbCkGLVzZZFHtFFl1hbL27titabMQCJAYBZNCDiSqGMi7dlejxtvuMIAFx7hgkxE/oJdmBsYnR9flasY/2E5G8zJiF3xF39J+Qhewa/J/8I8Rax9XTJ1PvMr6uTCsaCAIPNEv9LsVD3bUZlN+cR7zSzReHmaC6leqBuZceKZ4RgZrMn/dcXHnCfyfwA4MsuGLm/ZLGySmUXCr6fmfzLVc8t4/c05Vn3UVM1OtAnC/aWPbcJ0IjKmOpi2TSLT2GcIduGdRn/3VADlMoDR0TYy3DgnTZwdlOPplyi28RJ4BQ/P4xkpIRrv3BmzTV+d5YcjIkMZMRAhKi3ILL73/rQ72txUWqJVL8heJIlGpVCAQRIkBEYmIEAilsiJIYXMYU5gJAlEUaA1JpHIYowG0gzQRz+ElIkYBEhCCMKggF1ujXHekRIpjMHeh6Y7dg0g9XmoFmWmNSilgIdjqyR9+O6dsm53PLXNQCQqheWysusVAhSLoiicpHDY72NX+z6cDvvBZ5zSEJLJHAt/+fxMCG8fH5ZFScaCcO19e2y3zbHuh8OxH6LExGCEKDmjJCsRVGTNUUilrHQ2y0PwghhYQkx5UeRF0Q6tq6xWVJQliDrVx1Pd3N7eV0WJpHThhoNvj6d1VRoiZyxYl5i9IGprjYARUTqh5ISUks0yFlAm35RV8GG/3eqiWFWlafskqJ2LIvvD4XW/R0JUZrfb/fZ3v9MW3n77vlosN7ebIAohbI+7tq7r+nR/e5s5G2L88vwcOf3u938QAiFarhd1Xf/0Hz9++Obd7eauD/7b77/Li7w+1MF7Ijwe9lVZpBj+sN2iJlO5Zre1uc021QDxjx9/LBaL4NO//OH3x7revewExHf18/b59XXfD4OIKKVubm7/bvvEnD59+lL97nfmB/ztH37re//y3/+xWq9W6zUo/eHb747HxthCKXf/+Pbzjx/7pi0ey2VVEXCInbAoVLvjrj6djDarauWRF+ubd28etTFffvz48U9/Vt9+S4pedi9dP7R18/Ty/Dd/+9eZc0+fPwvAar2uyuLx8Q2B8sNwe3sLiWMICkmAy7JIx3q327qsKMqyWiyyzAonBMysI4bM2vubm65t66G/Xa+dUlSWwQ9N1xT5jR+GruuGfnDOEqI1LsvzEFPIQ1kWXd3e3t6GwZd5ZciejvVxf6hWa5fnh93e+7gbDoKiH+5uZLNKKQFpu6gOXjTQw+ObxXKBhCiITOPmb1pzBWjyvMMYlHJRMcLkPBppdaaZqRFBBIUiwjxWwpnWYQFgEhqpThFBJZrAKIoSEBRoJcwgopViTjgrfiYCXI2+JgQEZia82kjDeaWXMUxLQOiyRSdEnOp3CeJFDyopcQgeEpJWuS04JQHWyvC4/ZYp5oWQFJKICEGCkYNnnHaAONasnhZeABBWioxRSjFJimkgDprQOc2JGQBYKVRNH7pTfQSwRqOgUVorlRJwiCzJLvI86eOu0YRktdEQY2iaDjUMddO2J0WECMxpv9/XbQ+aUgo+eVJotDKkEZWxmoP4EEmrosxjdIBJEQgDDykKkwVEBFKCRlDrsnTrzfL+Q3H7wFnZAiaiiMSSkgABExAyCCZFBAnCEB3qh8f3qan3Sil/TH6f5dnQtCqCsxoiowYygClZTRITJDFao6B2BrQyVYWQuXLlNvc3777RWRUTCILSCkBQASQBZAYEGn2tZzbkbPEQYHSOTSbnjALmR4MAQZAvXMi1WZ79Fzg/oCLn52O2ZxeUMMPt6ZGcXomLMOerZ/LahM+ga4YOYzrN2XUCMxU0oqJrT9OVLgf/ss8zgrgGCjASDzOEmyHTNOIZ8kzY7UpDMzl8Z04Jz7ALLkrqa1R4iY0bQctfDPtrxmS+E7Nfcn5bZxAlM5yV6Y2bez3diDMvgzO+nPk9YUCcYubHLo/nTt29JoKmS0/zPwZDICKQiAgwCJ89rBfP2DiWa3k0wLmlMzo6o8DRTTstk0giAAQjmegl2cwObdo2LZ9OQ2be31UKwUUxUTwIAzACM7NlQHAMzNHoRMxKgk6D9QK+9aFPyaPLQgzdwB61K3JyNiSue5Yo2iCi0oiahAkphSQRhLTSmSbwSSlAII0mppiGXpzOCleV2UKDiHKkNmVmM1dqOCDzEEHS26ogwW5oHcRc2bb3Mgy5MVQhgwopdqdWa7Moy+Z4JMayzJVREVIThqZt0Ic+Js/cRz71PTNqawEgRT41XQ1dkeVKa7MwIbFVqLMMnK3Kolr70+GQQhrSEONQZNn9mzuFmhl4f1Amu3/3tqyK0/Goki7KwvcDoulDiBK72KUYGVSRuZhilIhaD12/fdlaRSEmAlhUiw8P79qu9fuTQsUuy1252+2fvzxvbjb5zeL7m2VMqW36DqJdF//0f/73//RP//K//G//7v96f1f75off/SEztlpVaNTq9kYh9H3/9NNnlzltXVHmkSUKN9vty8t2dbu+fdRpwN3pIIpWDyvrzM8/fBySlxaenrfHYeDdYdt3/dC6wrb98LLd9V2/ub/tBv/jx59OdYNIeVmEYajbNkUQEZZECqHL/vzjz6vl6u7x7f3Dm75pv333i9wVytK/+jf/8PT5+fe//+Pj+7dN0xx3J2ssY0og7dAGCAnlafv85eef3jzcAoJ1brW+gYSR+e5mub6905rq/UFCjH1f7w9FmQ/H02q1vlutbx9uU4S7u/tvv/lFDJ1Wuq5PafDaONLKagcqAKfmVC+rlc1s5tzd/Y0IlovFn3784bjf393eAEJm3DD0ZVEgc9+0klhVq9D3hBR9CH38/NOnu/s7UFSUpYDEmLq269rOaOtspskYo62tIIlz2g8++BBjaps6y7K8KITRD8NimWtLymQZGdv2setl/XC/zoqbh7flahFg1LuMgk7ks+Z4Tks7BmeNjDQTjOzuTEXLOTfPuGjwOR/zqBkaYZSgpAQJFYBChJAUkXBK3gMqnbnBc2JGGq3JGAMEACwEikbhMyLgqIc+27rzcjov7JPzYNTfnHtFSIkvaepDjERKaTMMQ6aNiKCIQlSEA3NKrEgTKRjF5hJTEmMMKUpp3B/Pe/pRVSAASMIMALN+hUlEYkRO1hCRC4H9MAALKTJKxUFC8CBSLoo4yOFQZ2WWV5kPUUIiZpK0XOS+bU+HfYJEREoZ41yMnFIKPrbtADDYLJjcWWeKRd6fUlnk2mgBBOYYWYSV0ia3wsAxxuBDSoowxcSabZYxajCWlHPLm5u33ywfP9jNbdTWszDBqJOiNG1ymXnkLBQpkSRI+Wq5un/0bWdS3uxZ5yc/pKrKMKYYk9WorU4iMbIjGnMFkDGibBR0yrp8ld++ufv+V8Wbd6ooupjGre8YoIeIo2gMrqwXTqXiRwnGlT8MaDRsZwrkYpzkDELgUjdsxhNXR073FM82Fc8w6GsbjxfTOlu/c56Ys+0fjfZ1xNP5CmNzfOFVzq3M46TLRSYkAldmeEYMV3+feQy8CI2m0V86PxEhOCObc2+vjppZGjy/4WOn6Hzh8ZcZfs3v5VUE+7mzM5qaTsOpjgVcKCCYIND8sp+bFzlPzhnETY5LPhNdcoV1zxM5AlKCM2093Z8zqTc9SBNo4bllmNH1X9zC6z/OsE/mjEiXGvA8J3+eATEAgBCwALP4xCgipI+ctE/VIKtVdbtC7mJsOaUwAJHBpEbRgWghZkYc93QgiVEJcyJAUCogBYLGD22TbL6oB+mCKELROgABkDYKmRULCpKwtbpQ0B3rorRFlQ1aRQ6BE3c1KC4MlM5oUxSZMkYcceKwskTaxAiKgybVhS7U3irBGDh4q8jZkknVTdsxGaWHY9Od2uVquVpVwHw4ner61DS9ylg5g6ASJ2W01S7PCyIIvq97D4SuzKvFQghiElcuExBZXa7WztjFzc3r81PXHDd366rI88wdj61xxWJzi03niiUaRS6LTe/ycrEUDpJl5f5wEgp5WQQJeZYhw+D3oe/quvny+vrth/dAWhBeDsfw55/qrl0s17c390TS1q2PMjBjZlc3a6VIGXM8nNyy2rVtl3B7av7lt3982R4kBeD0y++/H2J/2u/yRZZZR5kRpzF3DzfLGOM//dNvPv78cbFZLN/c/Pjpy58/fVndLnenY/zjHznFGIbdy1Yhpshfnl+GMMQEPvbKQIiBFPmQjsdT+mfIijyKKNSbmxVpAlKVtW039F2/LFe//OX3b+5uC+PeP7779psPubV/+u3vb779Zdu27795t3BlWPrvvv1mu9uv727Wi5v6VB/2+w/ffPPLX/3idrOUEMjZ97/41hp16Brr3GK5abt++/Kya44fP35SSgkzAZVlmVJ4fWmOxwMi/eJXv3y7fP/x40+n426z2mTZ8uXlqWuaMnMonBfZZrXmFE77g1Fqs1m4LGu6PsYQmZVBQgEQ56wxNvmhKLLMGgLMnJUUh6FDQoXYNG3wAyD0Xb+8WSGpru2yPNOkQ0xKq/pU7/bb1WLh+8H3PQojYmIehqFpWxBc32zu7u6cNfvXV72olsponWWemxh9Xq5X796ZbMGoEiAA0ST7A5w0CMJTzhuaF9NplePLwo0wU9Pj2jvBFjzv5pjn/Z1SRKCIOYWIpBCwaU673a4sy4VSIOBT5Djt2JiTCLOwUoqAgTDFhGNdzHkBoimQR877zSsegAVGggZHwocUIkkILNGTUtraxKANzOaWQDhGnootMShEAPAcBz8wC+oSeAzMR8KzqIOmQDkUHgtWoSSQEJPElJJITMIiSTjE5IcYYxo8IeSFGwaJzG3b997XbSsE1mgEiIl93YWuc7rIctcPZjj1WZHbLAMgHwIBkrLWytB29eHkgoeq0FoZrVOImdLG6JhYGT0Ic/RoUClMkkiQRCVCTVpZC8aSyVRWuMW62DyUd290tUxkPIAoBCUiafR/0ciFMSQAGrfOZAMkAlo83ANxOG1FY2AAtJgigLc5g0SOTIAYRCMCGW1yykxCWy0XuiiWd2/Ku/fV/RvKqwQaCRFREiAogQSo5hs6BXWfjeSF45DZ0TBttketLM72/owbzqzRtVWc7e3s0DqHD9FYcutiXOez5Az0z1FCAiAyV4yfgdSMKi4Q6WyFr9Q7MxU09mzGaTO/wBdMcRUcf06JDRcaaTbPM1yZMcaVJ+tqrOf2BGat0LmDs5GHC38zIcEJs1x8izLPw3klmHHYWRKOF5UwfI3Kprmk6ThimCM2L0OZRXhf+RPnVQYQ5thM+MrRdgFCMmoBzwzSRWWF85xN/7/msPAvpgrOz854Z2jys+MYdQFqhmIkIIBCKGOy+PlWCoNWOnJSzrI1bU8sA7fdvaLc6BXp2jc++oBEyqZRDixgSDNawBCFgkYPMXdkjFWE0Vgf0hCjKMVKtT4yZKAkcmhSQktGEH0iwBSgcLawiLHNwpBbrCwY5ZWJddOu8hytXuYqRygzkxmDHPquWeZW5XZb7xVRsXbsh9O+bU+nrMjMptCZOWr0rRdMaDQxS4oyoGd2xmTGhj4oC9oo55wQJSDSWuLAia0xWV5Y4yQxYlovl2RVWRXGkk/srAFMx/0JSCT2j+/e66Jga0p7syozxanvw+vuaLO0eXgjuvOALNCn5BnD4Hfb49Jldw/3dedvH29j4v3hGEGBAlPm9XZHxj58+BAAHj68//njp9fd8fd/+rh+2FSrzfPh8PT5p6HpyyJX1n786aen1ydnbdv3bdcdj82f/vRDebf8/h9+/fzy+b/89/962u1vbzdfXj4zh3p3/Jff/+7t42OIiZOkxInj6VS/HLan4zHfliGGbvBDN5BSWZ4hYNc0fdsZTWWeCcip7m3ulCYfuvbQJk6rzWa52qDJ27p/9/Zd79NqvXr37rFp6hj85n7TnLrTob67Wf3Dv/77XLvXp2eMPJya593Pi6IE5qcffzo8v6Kmv/37v3/75h2SbprW2kxQykVZFFleFv/8T/9S5m5zd9c1bXM8vGz/8Dd/+3f5Yn1svzw9vaQU3r17+9NPH7/77nuNShCKsgCElHi33b59+yYEtlqHru2OJyWyKIp0s3x4vOOYQCQvTNfEPM87EUHRxuQiz6+nYfDG2NVqlWXZh28+1KdTD7zZrFNIBJjnGQIg0vF4Sim6zJSLsm3avutzX2glBNi3nQAUZZkSh5RSYkHIF8XhsD/tj2/fPxrQ7z68r+umrev1emm0RoQsc7ooc2WMdplPquGGTF6tNkkbn1iMYhEkhCgCgldJ3WFeZwTnrei4aTvvdWCiVQQJRzJZBHBcBZEFWZIIkxpXDCQgAUQSAmxOp49/+vPju7fVYqkUyZBSImscx9QP3oeeCLMiz1TGMq49o8UgACaY7N0YTzIvVLMDQ/jsWhAAQNHGMEtKPgafKScCSmlOCUkBQEopJWYJREaRYkkkCMKYZJzkGIO2Dq6MzUQYAIEwCxBhShwFhhB6DJZZa51CBOGUGACIkGNI0ZNGSMoPvut7AWYB72PaR5fZxDIM3ndd9P1x11fLMs9d19Zj9HMIwXd9jMlorbUGY5XCFFMcPIEjJGtcWZbO2q4f+sErBX0/pCFpo4RFK61QxQFEI2tiQWNddXu3evNNcXuvy2U0mUeMiBHHzXFCACShcScLooAYMYqIppQYNRqVr83jyUBWuXJTKmvrLy82y8CrFAZKSTgpIQFUNs/KBTiHOr/75i25cvHwXlc3ovNIKvAkxQIAgUSoEXhyq86OjLONP5skOUtRR1Mns8t2vkkXj9kVw3DxM/2lVme24LNK6BIgNV19RlFwzRvM+pBrwHMWlFyufMUEzWTDTKLgbKFhepa/Zp5wJlpmLmhWRc3juWhjrpgYmNRy8zgvPigEmAjfSe0CeAVVLu1OQGTiz74+5jz481ROVKhM9wK+PvxqPs8zN0MnmP3bY6IIgQvKO2tvpn9GoMgXUTleT+B0lyZKmOYbf2F/xnVtzlkgs6h57uT1rJ5HeUWWCZzdndPeawLlDIBKAPmMzqaREY0+2CRAkAiTtgCwZe/3x42yAEjBU4jWGgBlEirSSEBITCRotAIm7hkUUpE7QPIMbWyGhDovEko/sLLWCsXECXhIgYElAgEqgZiAA0vTA4WHRUkQqkWRiswAa61JWKcoifN1aTVwTFoRe08iZZGlmIa+8/UgIXGKu+ctKlzd3TitBuC+G4ZTAqLMGqXIuZyZs8xlhRUJpPVquRr8cGw7n1ivTEyy3dYGqXQupRSERYOxGoRP9aEfPJG2Nh9673t/POy7EBb3D8cIoRuGwFZYKxXJorLJ5p34n192SoGkoIwehmEAiYq2x8Pz64vJLSMoq37+8uVwOFirsiK/e3u3fXr98x/+aAw9fX4auuHnL59/86fff/z5s8vc9unL/nXvnFUa8yKr1ouU4rGun7681m2ntTW5G3566vu2C0MEaPqu65sYBuH09M+73//pB9JGAGOIiBRjAiXO2j4woyGjDLkQoqgMFOYmc2XIjDVaGacftGMEUmCNyZwFgNOxubu5u7u/r4rFYX/Y7+uHx7sss33Tuky/eXzQWg9dYO8NqJtqkQO1p6bdHQvjvnl8fzrUv/r+VwKwulk1dZtO3ePDm7ppPn35/PT09OnTJyKs8vyw2+bWrhfVr3/167ePj/wKx6ZWyoCih7eP69WiKvNvvv3m7u6uPTW7w2te5ovlIs+yfug5pSyTm/VdXy2a5iQp7vYv9/f333/zzW772nVdfayD99bqdIofP/4M8PP9m4flcqVI++iN1hK5OdVdXa8Wy+gDAtb1aX1z4wd/OBxjijFGl2dIpIw21gKjdTr6cNgeikXRte0QonU2yx0IZln+zTffvuaveZ41TV0USyLK86woC2fc0HV57vT+eMyLYmlzIVzf3y5uN25V1YHDea2a0uowAk26CRjpEUFgNa/X49qNAoAkwHLeyAEklCSAcx4wxDGSCxHIKBWSjwiGEI2kofcxtod96NqhrfumpjxDSc7kLnPH/aHrut53hGTzHBFhpHORhJMgEACNm67JAyeIxCIICnEUP4+VNCWkZJTRVqXESmGKvm/b3FlNyMCIBEAxQWQWACBiwhSDRlKo1JRQjkSS4CgWFAFgHoOG8KxlHUP6E4CPqU5RayZFxlqVWCQpVoAxDB2IaK2GoeOUOPqhbaOwK3KXu/7U9k3jiqzIMoI89l3btqcwCHLyXiuDIhwDiChSKTICEGJmLI+rcGSj3HKxXK5XxuoC4OVlK163Q0LSjBQlcEqIxKhSQgnkFpmr1uXNu9WHbyGvBlG9SBrRooBwUjSpPEDG7AHEACKcABIBEDBCJNJRudvN0t4enlz0WOSr/rBLe4U6KGCRlAKzIFlrqiVlRbm5Wz485ss7c3MredFGZFCRkUhxYkRRSgGn2Ys5AhCcooAmOzu7ZgAm4cycDGZkK8fdP59N25Uf6OKFuvhsrqzdmZ6ZrPaZUjxTC/Pzf0VETbZ9VlejXCK8/oKguNpDIEzDO6P2M+syy2PmYiByFRk/dWF2II3bkysHz4VFmXs9w7grdmXeJswtTnqm2bV00UqdezbjncmuyyyDo3kTNIVnMZ+nCmfWBOHiCPsauMkF45yJqgndycTZnImjCaeN/R2xL8yTdaXTwvP8XTV5eQjwcmP/8s5cQv3xMtSrJ2IKAxE6P4w4DQ8R5yjCcfmcDsc0Lp4pKsDIEpMQEYMOIH2E4xCMsCVYO9MTjfWnUQhJIscoQIQaRBmNPrUhRUQRZqQASrkiJerDQKhk8LkisTrJQCgxRAa0NlOY+eDrYbAsHNjz8PZ+sSmrPva53vR1PzSDVei05hibulGQ0FHddQjKWssoh+0p+VjmuVIueX98rWPC09D6EEUjKtBaiSSJSTht1iuXG+PIkAuRD8fG102mdeYyRirf5fc3NyEwCg6DiEcGJSBCoq2yoFKMBLHIje+Hpy/b51NXPDdQLCGkRoU01ISq91FlEsqhDtLvGmOQ0xD7rm1Ph+eXbx8ffvrycf+8fXl5toVllC/PT13TvHm4X9xUP//0w+7lZfv08uOffrtaL61zkZsYmi+f/7xcrhfLxd3tXVmU29dtO7QxSZ4vXbFZ3Twej40yOkqMfhCKj+8/aESFYi0dD/unn5+KdWWMu3t4OOwbZrHackyAMPjw/ptvyuXyy5eXIi//9l//bVmVr0+7sszv7u4z516+PB8Px/XtmlBO+z0wv3m87br6j7/9kzX28e7BKBPb4e67m4fH+/12ZywXmTWRl3kuKltUZZkXHL27u5fIp+Mxd1kI8e3bx1/84vu8KH748Yff/O73q/vNavl909Wfv/y0221fd5+bU5ti2L4+v7m9//Uvf/G6e7VOP755RKL/8B/+Q9M2//Yf/o2zrsjLLHcocHN7u9msTqdj5uzDr35xPJ26upWYulNblZVGapomU1l7av/j/+f/u1hUi0VFioq8LIosevZDDMEHHxF0viwOp6NGlS+rFHyR5cf9/u7mRmlzCOnz56eu7RLIw5v7n3/8ef/zZ2PNzWYtiVOIbCyIKCQJ6fPzpyH4m7vbzveb9Q0nVkatNouhG1yWvzy/BB+LsmjrVq2Uy1zfNnroByTj8kjaauuyMietgaMAK6U4JoIzpXxZwkTO/q5xRWAEIjyz1NPmaHaJRwUqCQMpAUGUlHisLIqAVhuOMUbu2hpTPG33x+cX6dr9py+WlFuvEioEikNsj3XfdeTUYrk02oaQYoogYrSl0TEOLHAxcIjIzIgIzGNZwnFj52MUBpSoldJEbdM0pxo5Wa2RmZg1AgInxMgSY1LGjCG3GgRIWFgRGaXGYLGY+KyWjTBG3U66KBoXYUU+JgMYUAsBQxJtOQUQQaHAkoC1VimqY12nyFqrzBXaaiAMHXZNjxrePNwUzvZNF4Z+GPo+9gBgWbq26VpvjHN5TkiKIPXeKBCAmMA665zbbJZ5kSvrgiRTVl0ClbEprA9RSDOCsFBulHNk83y52bx9X9w+sCsCmh4gMCMjIioEAYXAKDz7O2f2DWSKUycdJYFS4hwhDJby2zffVOvm+eX09Pxi8zj0RgEq4JASA2mXL9ZutcoXq83bt3a56kCxtowCREapJIBjGa9RzTPal/kBgykp3RmgTDF9F0YCZ7M4S1TxAkPm6Gc48yUTWXJlK/Fr8zn/Ntvqs/3Gqyd+bH32oV34la/N9tVHM0dyJgpm/9qk0SYAEII5/cS5K2fOZ8Y0MmtiRijGs62G2fF0Jfq+xF7BOVDg/D7Pxhr+pyQQzsFTFxgBExV1JcM+T+fUzvSs4IRcEa7m/3LNUbJ0xZHNI5hD2Gb2aTpaLjKiyf95xeDgGTOd0YuMAVs4E1UCfL7chPYuiSfnVqfByEyNXdDQNIKzMHqSKSGcSTJEGAk8mLKAMCAB0nQQAbIIJtIAgoqQ40JxZbDSKoA0IUafmBKO2zCWlAQJWBIwiGDTsSkcMwVAFOIkKKQUDX2PhnQGxmgJYcxqRgqSsEBKKTKnCpEFDJE/HLquJgMFkCZxTq8WJfteG22tMwqb7W7/undFTkonlnxROpsZ7ax2IfmhbZr2SHlWLlagKQwB+iRITdNpq9HkPsXcad+nMPjMZkVVmUXOSh9Pp/b0qol817enbvA+pujTYDKqVqXNbdcOvm2EkRTazCbUfReTpBSGj69PMXRVXihtaQB8eo2SvvzwMYVW0sBxOBy3p9fdaf9CafjdP/52tVi8ebz30R+702G3//L5oyvdxx9+7Np2XVXvH9+/e//WabNZL5CoH1Kelbc3d+/evW+b9vHxLSqFhrS2fQi/+d0fN7eLsip1pgmZNEoKfds19aHI3WG3e3j47u7+vj71Zbl8fP9uaH3wfVd3+91u8MOHX3xjs9xly9v7+3/4v/wDs7x76ze3N5NQt0914zmhdUpEurY97HRzPCiQvmm6Y802swh3y+p+ubzJc993CqUosuViqUgF77lrl2XJMcYYS2Oa+vTyus1/VYSoQn2q2y5J6tv2v/7n/9yEViOsq+W3/+t7p2yWu8Nuu31+Wa2WILxYLfow/OkPf/j48YeU2Bi9Wi9T8C9fDouyWn9YnA7tm9uHosyGvkOWqizyLB+6IbdWE2pSzmgfg0Kw2pR5AQDD0PcdpsSPb98m4RQYkeqmBQBgLrIKQeLgOSaXZVmeN037px9/RMJqtfr0+alarVZGvTy9PL1sN8tlimm/3eeFe/v2oW6aGKPRevuyQ4P522zouqZufN8vyjLPnJuqmkYR8N3QeE+E+nBq+4iUV6pcZFXJBEP0YzgpJyYRmNxMxCjnoAaaYodxcg1MlY0mIwAANFV0ZhA0NOa0hFGLBAloDHEKPgFzCs3xOBzr3etrZki60L7u/eHUvOxkCHcfPhQ3N/Xrrm0HUoqMHtkgQGRhRZoACZET43lVQsC5bisKjTaMAASmjWnmsuPphEodjj0hRO/b+uS0sloUJkkeGUib8QRtLRABIWPqvDdFJsht0yUR7ZxSiiUhakCKyAhAQsBMpCZzKEoIQWNSsZFECZKARlLWRR5AMAIkEFdatLjdbglxuSqHblAJCVUYuhi9E0sgRJw5NWRWW42DFRRSpus7AFlUrqoyPQp9fKz3BwK83SyrZcECKDwMvTO29+AW60W5iNsTA9gcFClEFROYosiXlS0WplyUNzc6y7sEogSN1lqnyMhjmbVRjkmzL+ccVkyEwmN+JVIJITBrY2uUIq/yrCpYa1PqrIpDp2nCCiykrLVl5RZLdDkVlbhMEicCpXWMkqJXyqAeE94wjtVP5kIX12Z6xj10vS+/whxnekJmamTW6oxHXMw2TqZusvRjG6P/a1KazPhDzifNoU9X9no8fb7EFX9xxj1wudz1Bxd8NTcyRTNN8Uwz2XEeO8zWnhFxTmtF8JXoG2Z8MqcCOrMvUxTdjLrgehxwDVBmtgfm6ZGZNpq/H1HQRVt+PRV/+TO/rOPcT+Dma9n15exZww7XHZs9kl99PoLj8ydn8DNTPFfYeBYlz+zZGRpfygKOJ11pvOZJvdI/nWdulK/Lta90VGdPup9x4mhaNnnMcgACQKgSUsQURAVkJo59D4FuSkvsnXKJw8ARjPZCBDiMMRgMAohEYtzA6NtBgDOtDRIpBGGXweB7jqiJUu8pocmMBC8MwQ+xa1GxWhQ3NxulY7PfHnYvi6oo8zwvtCIQXw+HRlstymZ5RSbrhgDGFJkpdE5ITd84Mi6zqfPdqUVgoynEIEnvDzVEkigvT6/HurlpS23oZrOyNtcWlDImL0TrIYSm7r0PgHA8nLp+0Fr5rmmatlrmZlkRYmQAlqbtQ6TSZau3j8kWz/v4vG8S8up2vSwX1mmfOMWeEFMY+ua0XhXZwq2r/OTK5TJble7wtP32w7vHNw+v22015KkfAGC9XL1mr7frm3/913+7Xizf3r3lmN7cvUGjmq5//vzS13V7PNZ1h8aU5TIR9O1gdPH27XvvE2mjrdYWESHEXun89s3brmkWq4fH949FVv70w9Of//zx/Xe/9M3w848/nfbtYrV8LEoy+suXZxYgpZ+fX1OIN7eb+nT6+ONPL0/PbVN3dQOR++YwDPXbu7uft88p+s1qtbm/Xy0rANn3cnr6snb64c29WRVWqa5ttj//rJXeLNfIgn0X+6Fv2hCTTyF39unp09PL61/97d9qSyLyX//Tf7m929w/Pnz39n1uMpubVbVyzvZD+/nTp9V6pZV+9+7dbrsLQ8cxvnnzeHd3++7tW0jy/PS5a5p/+sd/3KyWRZ4d961CFfpBk8ZcUMkw9IiYO1eWedf1fd8aa5Bgt9sPfc/Cx8Pp22++SSJD9Hf3D6EbqCiGtvWdF05Eslouu65Libuuu7u/X64Wr/uDIOjMoCJXZmW5sERxGFChddmXp+ch+u++/8XTy5fS2qIqWTiESIiEtN/uHt89ktIuz3zfn451DAFERFgn7XpUjUhlrV5WKndBIisDQMIy0hiTJhInD/q4zs42YyIAxiWYhGReB1hERJIkmk4QHryyRgCEJcQAwJmyYQgcYt+ePv/0UXNa5fmmKqRu28FjPygfbOL6WNd1s7zZlPnCZRmBAhbSarSiMSRF14LTaf88ZjrhefvFzAzMIBC4yIsUIoAXFlK4qHLfdPXuUOUmdq0AAWQMRIDKuSjgfUDmLDNAwFFC9ICI6GJkIIKUGCIpItSMMtXdFJYIgMhIEZUXIUAtQgBO66EbkhABizEQjRCSRlvk1llN0jU9AqSYhEVrMkhhCEPs+6FnEaV1oQ0QCUPf9iRAwmHoWCnvMQ6eU8yyclEV65tVCFzXXd0Ng+rtcrNcbxbaYXlIACmx0jrLKwY0VenKTGd5IhW18qiGidhiEZgyuY9MASLPbh0CRJ5CXWRy3cikkCbNWgJLL4lFdFFmLsvXyzh4hag0CaCgQmOAlGgbQXlBZgiTkgJiDKgIgABpNv+T/Ods0ma0g5e7P5lVuWzPZ8M/Gd3pYLxY9BEUEF5Z4PODfUEGZ2fIdXwUIpzh2NnTdbbIcye+juWGK1uPs276wi9Nhv86qPErGCEzzXH1+YxcZqbr3AeBMRXfGWxcQYwLljnHc113afRyzuTRTG/MaHPWEl05mia4cAGQiHMSyHFTNMNlhHG2ZY7hnzQ0o4PyrN86j/is2r5Am2ui6jy6OTkQjJrCCfpcQuJhpnPmDn6ljRpB8jzzZwJp7KJc5u4KUc7U4nhFBQAILJMjFpEnTyyjMDIkYCQASZAAmRQgYEwQOQEhoUkECVKHhE5HRQHTJjPLsipy20Suw3D0IbKOAkpb73mISRFoFBJRklL0kiIrNEohYS8ekeMQ6n0nPuYui37QoHgI3ncoSSFL6bRVzF5bXS7LsipyY1ASgmhFtHAppPp4RBSGmJAj+xhp8J1E6Ychcy4z2ak9JeT72zdR0XEY+tDt93UY0uZmozIDRLbIjVMDg+8iaSvGvtZN/dpF5rZpk0jf9vWpsc4oQI1ktTKg2EfjzDqvAiWNHozxqIc+aJNAfFGYN++//eX335S58233uj8cDw0Rvnv7ELri3buHVZmHrn/+9FlRenO3ebO5JwBgKIqya5o36weX57dv7//h7/5tGtL7h3siaOq6aRomcCofusHZLM8KIr25ufNJvE+tD9Zlm5s7UA61ViZTVgkmgAQkIQQi/vTTPy4WxXJz65QT9XI41p+fXkLnn19e9rvD5mZRFFndNvXhsFwtJQ7//T//F6Xo4e6m63s/DPv9HlluF2V7aIZ+eHez/nd//3eh7+9vbj58eAcIwfeff/5cInZtZ4Gb7RZAMqv7tjttd2VeelJlkR+fd6fj8e7hjkDqttsfj/lyRUr++MPvf/Pb34UwZIW9v79fFeW7+zcasfd9vX+lxVIRlHl2u96IyJeff3734cO/+7f/y9//zb/Ky2y9WCYfQ98phK6ufd8Pzhy2uxTD4+Pjoiy7vnt9eunazrn87bu31rpDfbBG+x6QpT4cu7qtFmVIyTqPSMH7Ii+N1rrUX7588l23276mGO/v7suqOB5PRA0gWKMPx6OxxmWuqVtlNRIJsDYus85q3XddU7dkSWl6++7dqWmMov3LLi+y1d0tcNq/HupTXZTZ0HWn47Hrupub2+Vyud8f9M133wMpt6jcep2t1jrPPAgLkKYkPCr6QACA52X+bCJmQ3RxvYug8LQojD4SRMExhpmAIgqBBkghsu97pTBixJhKYzF3y8zFpsM+fv/Lb1fWvjy9RGHom9g4X9c68iLLbm6WoG3gEEWUaKTRM8LjUivzLnjexV8tcmNORxBCIiKlNaIwawNoSOWAdUjt/lUaOh5OSCZfLcnlAjoCgjWJk2+7SCDOxDD0fQsANs84AnPS1o6muk9Bk4YUjVIImkDG1U1pExl9EmIGVENipCRKVAKxhQLFEgS9qxah71PwRVUCSNe0IJDnuctMXR+PTd12nQ8x9oJGWecQwCgU4aHru1MipZIwiGzWi5vH2/XNrcsytFEJmBwwX+nVvd7caLfaVDGNhgNJOYtE6AyDeMQoHBEiSFLjkh8RgFAJjwzaGM8y7ZzTRKvBmGZ7ZPOZhQREFCKggiiUOFljjQWylgokpUZrJwxidALwUQIzIyVJDEgiYei1VUSQkmcG0oZ5jO8DAZxrhcvsq5DR8ziLnfHrSPazHOZi/q+/k3O68Nn5ItfmdxZ0zFZ9/vDrxuffz/8IAI+E6eUH4QqdzLTRtXUHPCOT8RU7w6mzyHrGIgJ/+YMwcxNT06NJn+bi4tQZeZCLtvfsuoIzoJm4lVlBDecqXDBzP+fBXhDa1aydscKMcObvzxjwPLLp7ZznYEY/V/M7/19mLHo+dG7icviFERtdsgSXRetC8Y2gbHZOXe7f9co2j0nmwV8xb1MrF44Nz/wZTqEXCCAojMKAjJAQWLESQYEELIgJEJFBkzARgxZQQgI6UWqDGBmWebaoylJhCpFkYPGRuWkhsYasEEC0WhM6YCNJKVBKgwKf/DAkJPKD105rxL7zw7FG5282G2fV8XBMXVM4HX27fw0vOj58eCu4SNGjpi76tm3Ex2VRLUyG6C0pq1A5++ZhiYDB+/pwIqMiI4km4ERksgIz54fw8rJPgiEIKRsBN4/31mh0Viz1Ceq6iYmVsae67vpOJHECa4wPMbL3dVflpVYIKdaHfeKhWlS5yjghApVVycq+1H0ahozS47cP3/zi+/XtGiQeXvf90O+et4HT7fqGK6dJ7V63x5eX9njYrFeScHNz0zXN0PYazWZ1+/jWiVIi8OGb74a6NUrF6Ce7IBSHgIKbm5vVem1MFhmsNaXLshhu7u4QXTtIFwfnCiSyVlunInfH4367fd1tX3cvL8v1ggf+8U9/Prw+/+N/+s9DPwx9/frl5csn47//oAxB6FTIoW9vC0eIN9a++/bbxaJi5kVR+KYZ6ubwul2tyoebm+32+e3Do8tMjNyw/Pr92932da+O3Pep77XTnLRvTsi+O8X+uCcEZ/RqvTzsX5q2D8y77WtWlM7oU9P8m3/1r5r6VO+PmOTDw5tVXmqFH/e7vmloSEwS41Dv9pub25b5px9+uLu7K/IiBP/HP/2uKFxOepEvyrykJHGILZxWqyXHtFhW1tnT7hS0R5LT6eBs1rWtXq5W6xtC7PvWGKeUAoLMuc1mrevaOds2p+hjtSh3fYdIi/Xy7v6ubmrnXIixH7z0PlsUddO8PG/LsrQI+9fDa3x9uLu7vd20XT90vSAY47z3QBiD75u2PhxzazGJCBRFFjloo9u6Y+FqWd7e3SxXpY9ef/8P/waUighoDWaWtWbhmJIRNa2a43stNKqLz1HBo6GZPPLTKqUEZsp5WvlQK2UUpZRiiJyigEYALToxSQgxtpC8ZnaCb243xZsHCqwVKhRIvj4elYbt9rWNKV8sNUTwgyIyLuujZxGjx1pmkDgJ4URCj84SGHWQY8gLCQvQlHhaEPu+JwLnrEqcWyskDqTefjlunw+vhyHE8rhZ3Nwt7u+jQF03KYn40Pm+i6HrmiLLXJ6jsLM6elACURgASKnEbI1WSByZQQSABSPjVJ2eSIQVJEKjLOEAqiiVsxz71CFlBSQmhdZQfajbriMiBOQkSWLfDYDAID6GOAwxJOcci0iQkLy1hpAQmHnKP5zlWb6oYAjhNERU5epWL2+xumVbqgyEWTuThIeYlNFMwsIhJiBiEtJaksSUEEd6AAVYhGaGf7JhOFsKGlOnJJwk6IlREIlAIDCgoCgdkUcEM+Ys4ASACAkEMCJEACYe82IziiAbbRAhxsgAKGoGXjTpR87G70y/zN6ms5G+4JUZpsNEk1yZN7n+5UIT4Nn3ccXMzJZ7xhP/ExQCE2d0caLNWGQyxFcKOTi7YC5BRTj6TUYFPX7l4jofcOnTdXLms90FgDn9zF9wR1e/Xil4ZP7kDIumvQNet/x1G1czPyORaedzNVsy1t0bcxDIeerGBidi6QzszvgEz72+Qk7zbM1cziWkHs9DHw/Dq7uL5/GdARlOTNEZ+F6h1/M1Z6JK5sGcUR7iVX8uZ07vBApM3jqBs1AOJxXXWAeRZ8lgkimGVWtCLxC8ISWMSlmlIfrTqQ8H6j0H9oPEcLvKCWJkIlb14JkIBVJkADGYKk1F5pLCNuA+td3QK6TcZBJTpZ1PbewjAXEQTmCVs0olHcIQY0iE5vXwFHwqFgttBPuubjoZ2CyQmI1SOoEWWeUOQVpJIS9smde9j5JsmYNSbdu+HhqyVmkXvSyXeZ5nCZgxDcyhi7kqtXGi+cvnL5HTmE0k9H4Y+qrMyzw7sdTHOvnonCmKou/bvus5pV73AKTzTACMNYtSgdXE3bu7zYd3N4L49GX39On5dDy09UGjOvFrUdn60O5fv8Smz7SWFPe73cPDXbkoNdHx5VAsllnhfv78FCEhkdE6xJhiqqplVa0EIKRA2gpg8JE0+yGubhYs2Df9jvbWFQL8+rw71f3dw72zuj7UP/38w5//9NvX189ts9+/vj49/+DbqBSdjqdPn/5cn+rEwZL6u7/9m0VVOKI3y+V6sfruu+9ubta7l60l+vD+UaEMXXu/KVvDr+G4fFMJp5ef/3Q6HFNT397fLJcr9r0QFZn7+XjY77dFnn/z3TcgMgw9kTBHTtJ2vd0sGbg+HI9N/fD28e/++tdo3dPLtnLZ3/36l9bYP/zmtyA81KeXUyvMyPxwe3N7e980zfawXRalBtk9v4YUt0/Pv/z1XzlrJKt+9atv/KEZBv/u8dH3Q92cjNFjRPqbt49aqWpVaaefnp8+/vTT3e291korQ8tciAChKHNm6NquKqv9fm+s/vLlqe+6+zdviqJUd7DbbbMsV0rf3z8cDwfwHrve5ZlR2vcDACxXyyzPJDKJZFnmQ1RIgXmxWq03axZu2qbrujTELLN923Z1I8DG6OVmWWRFc+qQoCrLGOLL00tKQev1PRlEiAkgAbBIYCZSnOK8JpJM4gUGoHGvfK6MLBMqErgoMmfwIwDMqBAF6mNzOp5SjItyZZVZLJfG5qETbgcJnYhvnrc81OZmlRfu9dOXP/7+d119GvzQdUdbVBHIKTx8+RRDf/fubVmUhqjp+9R7VEgKGaYojEltMWshpxGMNYx4Sl0UQuAUFStUAsApBg3JYFLJn15f+qYeQojBE8BqvbRO09BTgiozPg7b7b5rm8W7+8yg5iR+4J4Dd7rIMXNEJCAMHFk4RSDiUYbLE1IUxMREgKRAoSIBhwb7DoEwVxowMg/1CUCB1op0eVMRYvIhDSGzJoFNjENIKIkhRQ5CkJBTjICSOYUkEoNwQBJSSlAF4aBtACP5EquNFMtBVCCInAYQBmaDHpMAEpIoAABUU/CbUgggo1YdUY1bcxIeUymPe+NxlmViJjihKEAQRtE0koaoQGsgGMSTBiTiyERKmFEIhQAxIUeFQjLqxhSAUTrFoJCQWWs9G5iJAYK5FhTiGI430xJXEepwpQWB2WEBZ3fZmaA4P7MTt3LWsZ6BAJ5t3DU/MwcrnXM+nJmi6cTRXM99m7E5yhnGXBlYuPA/M3k1unJmO3tt5i8oVM7S6anJaeSzjJoub+MctT6N/DxwvBAbs1r8wsXMpv3Ki3TRH5+ndnyv5Ew6XYOGsTc4Y78ZOMKMXEbt4OgEnPHN9axcMMxlm3WBNfOfs4LoonAaxdHX7ji4yI7OCHbq3vwzOv74arr/BwgoMtNVeL703Ojk/BprYkylCQkgCYAQKUFICAnH6j6kOAEg0RhugQgMSRxSChTCoAhE4Q+fv+Qc35TLPMs2ZeGM2NIYH+O27UMSEKupUpRFUbFTka2tyGQ+puBjVlZW2873GnVelAmgj4AixlVGKaXEZM5RMm7x5cv++HJyCvStKXJDyJg4tX19PPq6c2Wmxood7ckgKWeNdoiU5baN0TODMWKstha1Xd7eHna1MRoByzxPOgpJnpdClJKyVSFKCeHmZgMs+9dX7wdrtdMqd1mvm5B6GaKzNsts4EiKlKU8L0HroioWm03709PQ+8xQ6rvjy6vOzP7ly3H3EoYofVzellaZzOi266xSb9+/X+ZlfdrH5CWFhAgMLnMh+G7XF4sSFfoQusE7RRqkyLMYuA29MsaRij7FECynPHddU293x9Oxkc9YLBY2ywurlFLbp5cfTqcQ2q49/OGf/vHl+ae728Vw3D6fXlfrdd9yGvybN2/+/f/6b/75v/2LM+b/8X//v63z4unHP799uM+MNQB6GB7Kgtl/+t1vDrttVWbcbKyh5vCEzMqYLpzIcFaaIfZ9sNWq4iT16bjYVOW6KMuiWFS77dZkdrNek1L73VE3TbleaWPXm412psjzLK+OdSP9EFO3/fhptaw2ZXY8HZqmUeSYuSyLzfo2d9lysfj+228/Pf08NO2379/VXfv6ZXs6HKqqWKwWTdcxByQ81vtVtbRukzg2jYjI6Xgsy8oaq40ZYmy7fgieQXV9m1cOWJTSwOKcsbZsmpYQo4/OZUPfHw97Z0ye50g3Qz8cTwdqkJD6rl2uF1mWf/zxJwJ4//ZxsVzsdwdrjNFKEcYQTm03aoJP9WmxXhprAODt+8fDdrd72ZVl7pwZuq5GXH+zZI771z0y0AaHrvcp6egoscRx3VWjG1sRACdWRJcF72s6G3EsEgnTmsgAJOm8cMhECgOARI7AXdfuX7YxRPBcZMUizzVDZlw3+OPx6NvD66ef2v4kvnPGHLfb02krfmjrFpAqSdpl3f5lGPrN8CbTyqAGkxEnVCCMpAkBggiDiBBM0kIQTgoNiCASISVmFEAirVAIow8hJqew7weVfLvf9s3puN0ZAgcC0bfb188I2XITGAC1BONEcpK2rY/PUbpa3d0nkKrcFItlJ+J5KjTPIlEi6rHk84ghUZIkRGFJYzA+ECGSaM9sbWadUUEpTRYYrB5Ox4xUiNGHkDkNwvW2xbGYhR5zM0YCTCAoggQECpHHNk2RuaqwZRkVNU1/7GK0Rbm8y28fOMt6ZtbKC4uCBEnO9hYwTvpZIQEC5HHTPmaOFFGjfRAmnqmFKQs4wJyCReb4HJKxUIgwsxAiKEBMIAyoFSWBwEKIRhkU5NFEahxVE6OvdTTwzEkrzYiRE6A+q5gvOpWJbZQznDjHgl89uiNIOBMeMyNwjY/OBl1G2HGJIzo7VwCv/rkgpJnrOUuqz46ya7h0BkGTnu5r2z2Oa9bozr0/MyFX+pULw/H1GKe0XDCrtCf0MnZvnhy8vMhzp85Qb1LlnMmf+SITJrvWXE1MzCxCBpqYqKlX54Az/HqGYYYuX4HRCUXOVzs7MS+ky3UTZ9bpfLEzazaPGmdgOG/CZth88dTPQPcvhnq+1gRrLvcQzwzU1xBqPH2sSMs4iQQYxjReNAqAtKI0Pk4CKSWjFApyiE5R6HuARCxKUBkjPSvSiiG1YbXJl5XdHfao3RDYOeAhSYwOlYrRKlTamNwVzubC2NS+GSInpTGyhMiCqJQKMQ4hJkRTFoZIFc5qC0kUKGMAvUlDe+pTrtJiufRtvTtuPWeZU4vNqkXpXltldLXZ2AxPQ8tK6TwHRcOpq3d1sa5slqE2XTeQc7rIgBUlMdYMbbdelnebhcqJnBZljnX76dOeBW2eOYDcudAPReYWxR1KatrGWvP47k3TnPq280OfF1lmLCcmQBJBZl+fcFGq5HOlmIXbbvvTz1lV+GMNg89I/fUvvjWKCFBbtTQ2VEVujAbQsAjepz6AkaHtUCilFDk5UM5aZh5ScMZQYqcNij9+OSpjrDMECgkPL1uX503bex/Lwg7eh+F0f7t6/vQTGTN4/7s//KHtjruXz6fD06Kw3z7c/90vv2nrOs+Luu6Nzf7tv/u3tzcPf/XNd7nLfv3dh3Z/cBoVR5XgsHvpD/bd4ztrTRc8ed+nbpdagdgPw5u3j6QNISgyWZ7tdvswDNWiItJdX69WC6WUslqYtVbrm+UwKrs3q8WHd82pTjG4wkVI9akehgCIZZnFENvTUUMSjO2xttos13eMBCzdkKqVeXh8eHl6Oh6OWZZ99833kaV931bLRdvWwfvQe0OY57atuembzWYTA9VNvd6sBaDvO4++C733/ld//eu+HVxhOTAn1tYIxLbtpRaXm7IoXl+2eVm6vLDWHA674/GoNQ2DV0oh4HFf28wSKRGpT3WWZcqovg8ppMc390M/MEvXd019aLuhaZrVekWKtNbaqNViYYxJISHi3d29MXr7+hpCbJtWK2OMCzHt9vv21GjjtGdGhSBqSrYGohQCA9Gk+OA58vOy+AHCOePO/NqPS8a01EwxL4AEmnToWiVc5FaMRZEw9PV+v1kv2XMKfvf6Ar4+vD7XpyP7blkVx90uhcY3fb0/lkWu2cEQ2feQon9VR60rl2XLFcREmUOrQDAJKwSlFI9JlxGFhRmMNikGRSqlhApZhJCJdIwyBNZKCYo2umsOp+OJ267MM4McQ9puj3X9jB8/u3Jx//7x4e2b2Hft8TQc94cvHw9P3C4Xp6fPIcnb97/U795TXiijEjInRuMUKe97rcGgIhHhCALCyDAla0PUAglRKU2JQMAowMzmcUjO5q5YtfuDCSBNOwSvwCaZSoOJgAKlEgHKWFw2z6xSShsCRm2yYrPY3N0v3rwTkx0OXSqqqlrb5YNerHqgwJKiB1JjoSERJgIYQ+hYQIBkMqU4K7kmJmI0AlORAJkNLMrIbMGowRrlOIhTwThUpAQpAQOLJsWQAgcmIFIAxIlRCEFQwZyjV5AQGcbct3hRpc7YClHmehE05WJANXIeZ+kXjLTQZKGnRCqz5+tC/YzK6itF82Sj59IMZ45zBiEX4ADwl06QqfGLJPgCoGYJ7Vyc96vTJuX1RfIMF2w3YgSRs6Pr3CpN9lcApuxacD7y4pibwuBhbmq22FdSmrk/dEY7s80/82FTWp8zfLlAvZmROvuFzgBh/mSSUk97EqJJTg3XwieZUeaZzTpf54oAw0v7l4udP5hn/eywP7sOr2b3fD/kfM6Zpfq6vfENnbmpcYc3Oc/OAWsXMHZGh+POIAEDoSBEFgVKKReCTzFqrS1ojZhCED9YDmvExcIBp/rUJg4DCIqJvb/JzUYb69Nmuaqsjoe69aHAPETeHbbNkBgtWouiQNQQI4gkUiA4dH0bQghRgJrBpyh9TKS0aFAKdWZAq+AlAmGmCO2pPiwCvFsvbqrCd67zp7qrWRyRRGDRerW5K+43p/ZQg729uTXWDMNgqwz70wCKEoQhdH0ARZGCs8pmmfNeg+RGd4d9IZk2+RDj7vn1eDgiOWHw/bDrB0ipLF1VZn3XNoetQnTWCmccIyArUn3T+uBdNgAkZ92hbYyWypqszJvGc+z2X7ZFs1BJVmUODJnWRZ45a0PooyRA8l1nrFsvKkmJJbV9pwSM1YFT4hR9sEZziBCSQFRAseu9HxSA0QoEi9L1TUMpLnJNjAPyYm33u15b/eff/reFy1j8D3/4bcEJU1Osi+Lx13/961/+3d/8ze3tpm+7L1+eDvtTtVzc399rsDe//Pbly9PTn//4cHuzWVWHwwtUi8c3d/Vx7/vDqeva0wGid1qfdoe8crvdrqiqrFyStlrplDj5UJ+OkmJZVZx83/oQwmK1stblLjNOw1KllDTqtutedzsEUaSAxOZOKZOYrdVESJYY5dPnJ6313du7p+ft8/P+l7/6FVjz54+fex+UiNZmGIYf//zDN99+e3+3bptBo75/f3vcHQCiy23Xd8L8sv3iu9C1TVXlpHQ7NCklFtA6y7IMgEIYVtWi67umbVKMzMIxej8Ak+97Qi7LCiUiqH7w5AFQnMtCCD4GLfZwODjnNjc3LEBKFfkiHwtkuAxB6EghDb0furaBg2xu1oSIjBJTczhZa5erhQi3TauNBeSm77K8ePPenY6H3cseSViRZhRNhIKjK4EQmZnGgpECgIxT3aXphZ/InckUzkvEeccEMHokhMcYIUgctSar1c1qmbusPdYpMkkIQxOarjm+Noc9pEYhK+I0dK2EFAeF7JxeLgsQSCG4DDf3S58Qg++Px92XL7g7eMTq5o4yq5y1RUYIMTEzxJQAyJAx2g5d55ShmDQhj1XoATl4jiG3FhEIotUqats1Hvp4+3AvfYeAQ5ua3Wm9qbruNGzNAXzbtk+fPkPi4XAMQy/H44G+9IzNseu7+ubdt9WbRwAziIQYSZEzbk4UKchIgGHk/+clnwGQiAFAUUpsDYUUs9sHFQP3PUagwGVRhqb1ba2LkgAlJUWpKMFlNqUoHAE0IpG2og2hzlbr9du31eomu31ISkOqdVYUtw+QFZGMAKQUCBUwgwjhFDY+Bm5Nrk2YdvQigDQ9CTDXYMCJGsLJ3AAmGLe/MIeG0XgUTs4oAhFCSJwAZExow6P+fLy68BQoAzzXmiCZgooJcZT7zNqREbZcYwgBAGHhsyJ1NkgjNTlWxRAZ84zDWYOCl/Ymuc8lRP2sB8b5jK9YjIulPAOq6bozJzpG2o+JCif8dt48fGW2r1PbyMUlc7ayM7y45m/mYc9sxNmEy9UMzCSKTHYZz2QtTEjwmvq66GAmE355z2dWbL78xdKPMOjMqVwTakhjvm48I5I5lP8sNp+ZOgEc6/yNjV8DuHEEX6l8LheZO4zzDI9wVuRCpOFUmOb8vOA5rm0e0xVghTPCGoeK832cya7LRFzu33lG4WvajlhEJCkkJIwcEZGUItQIEUMwwJp4gfJYmXf3SwT5bPm56V5Dj5TlGkqjqO+j+KxQWqM4EqKmj82QAhBazT6FYWi7cERxhjSkGAUlEQcG8IJRFAQQVCrTiOisVlopQ4JESmLkgKKNosJBprHQmMMqK/Uptd0h+t7luXFOL5zO3b5tX+pTtqh6XdaDFxadF6tFeerq19ct+1gtlk4b5tT1Td8NXV2XxqUg/dCcTnEZ1qzzGINWOiYui7yJvjudSuvi0HUchJPEmIien14QIcXgnO27dr/fJ0kIZWZtZAEBXzeLxVrHSMmH3nM3eIbbu/vDqfYhrNcba3T0feob3w95bgNx0zZECRN0TdMNPRJRwpiS0ticGuBotEaOBk1mlVKiSAxBHDptM2eUrQqnkOKgwkCxjw2WFlL0S4NVoavF5tfvHwfvyyJ/eXqOPPz1X/+qyHIAYQrvHt7cLTcMwP3Qh/Z4Ovz08af3H97Yh7uH29sXjjF6ES6r8ng8tnWDwsvV0mhSRoHiarEZQuK2tzaL3vddz4wcCZUWxuD5dGpiSErboizBmuCDdaSVOuwOdVOXixIBurZJSZararle/f53f/jzDz8iobVufbM59QOQl93hebffn+pPLy/vvv2gy/zp5fW7D++++eb755cvXVO3beN9r8muFpVGXC6LpmmO+5MIZ4VpT8nluh8oxriuqq5rjXKrzU0IfNyfijJDcDGEssjbRgKLyxVCdjw1h+12tahiDH3TNV1rlFmuF23bC0jw/vOXL/cPdzElZq6WVVEWg++LLHPWaa37rvPBG2fywvmY932vjXp8eFuWBQi3Tff89Oysefv+Q4qh7/3gw3K1aNuuafr1Ta4ihDjWz4Oh7zVpFE4IoKa1RNSskhhlBOPecaythDhZFZwKop79JzN3PCVcHre7ICLM4jJTVvlwbGXoSofaaU2MwwniELojxwFSqI8HItYoiyrbbKpPQ6iHY1GZ5BlAtNbJR2edLZ2QvD59fj11Qnb1UC9vbm8fH1SuUpQUoyhSZELwSYCYnMIMATgpFoE0qjJ5DB6TIIzWahQ2St3crL58PNS115JE5O37RzWGsnLL9a4eDr3vpTvGIarB56RKZdd3d9lq44Gap2f2ablc5ZURwihMQJoUIXGIzKJEAQoiz+z/qF8hIBKRIBA1JEKAEAE0JktOiV7YCkKXqqZvjuAcpNjVtRijo+fk/TCkGFlAW5dXVbZYWldU67ubDx90vgyZHQTopiJXhqxMiCFKBNbaIoiMJVFRRFBYzoBmvGcIwCKEU4hMGsWaU+aDiSuYMcRY7GwkZlAEaCSFeEJ5LEnO7OBUKABp3ErTJI5FEDpDgdG/NqlpRSYYcR10dUExlyDmaw8GntHMuRbKbPivyJ+pxTPmgJkQAaAxGBsmuY5cK1auUMjFFI4kksyvzIyMrg4ahUWzKG3CF6PW+Wv+afKpXMiPmaA6D/SiQ0KAudwYnumgM0vxdXj7ZY7kfKMv9I/MZ58RJMAFKsCMkOZujM2ctzwzpISL8xHGRGFnQRXOJ1xu3mVy5HI/rmbuyqs13gDAszZKLkLy6zs/czFndxxdMOgFPslXTV+JnuDijoQZsE080IzK6Io5O3v9xomccNMYkkggAApQCaPnxAxKayGUpDAFTJFSXOb4i9vVfa73h10V+0PfLoCLymba+VMtw2C02KgUBqYYonx6bjtBrNYCOoU2RNZaA0ETGJVW+TqyZxYCIptLYqVRaWIQRFLaIWAUQSRUaDQqRRg6syzRsFgULTBwoXQSIpSb1aovstPTvm6OgYSUYuU6Mi1G72NlnTEZJvRpL0x5tagWRdOfjrsDAllrQjforEKlm7YbTr3HGHovMYlg9FhVuRE2AoQc++F02oskRYTCQz+EofedIkROQRFpIg1kyCyWCz/47ednk9nIgIClJgLJgE1Vbf2ufn0ek5uk6IlTbKN1xhXZ0PWSIoIkPxhrCDQJQ4Iqd2HoU1SUAMhrZ0LXD31rELwfDqdT6WizXLz89JrisFotFs6cjvvNZrO6WRHcHI+HN6uFc3k3dMa5RaYYhX3oEzhnNZoYUvJcLPKuaw6nQxiG2/U6+Pjzp5+X5YKTAOJ2v7Na94Nv+qEqimK9lpQWN5shDuVaQkoA4DJ32ndt5xXpxfp+sbpp67aoNoOHpFPf8HHfFUUmCZuu2e93b9/cl7mLMYpIfTjUbV3kWVlUAJIi51UhRH/44Yf17a0i9+nLa7le/vy7P/3w6fNfHY5/+3d/VS6K7KZ0oouyaOp9Smn7ss2yrGnq9XqFyBoxL4sh+OZYF67IS7ter42xKabgg7UEyMfT/rA/vqEHkxlE1bbt4DtOrCJmWZYps9hs2r4hoq4f+q5bVMoSJWdOx7rvO1I4DMPQeyRwmfVDzzEddttFWVWLxe7leX/c3z++SSKfvzwVZZlX5Xa/3T6/EAECDl3nh+E2+hDjoT4VZdEOQ9O1WuFPH396/vykrfn882cJvLhf6/NCNgodeSpljBcueFykx+35JT/qZS0b9+gIxMjjKibn+A5EAY4+kkDmDHdt7HtnlBbSWpGWg/g8U3HQfvAEXOW51i6lpJ0RVMEHlzvnHAD3XbPIrNEUAerjvqt7W661Qo2AzF3daGfT4IXIFtlYPj7FUGoTu6PiVDd1TEFr0pkzeUGilNZZmUlgTFLmpbt/aLa7p59/zjTH0C/eld99882f//gDD8Pgu6DxeDod66OEWBXVerEoy/Lx/v7Nh2/yzc3r4fCb3//5n/7rP374m79ZPNyT0k3bhcRWGSUaJClCvqZ/5AwnRsIFATAKCoKwKEBGpXJjsoWWCKmzQ1f0/dDUsD24MAh7ib5vuhB9iILa5Mv15uGhWC5duXabOzFZj9gHL4oSmUEQtYrAY0kQYCBCSTDmK4JpZ36pvC2T+RkdSUxjP6dgHkShKbp4ZNRozv8POOaAGlOHj3tyJuFJsIxAk4E464TTZGomuRHIKB1FQJpg9JRuasQq89OG51jj8YOLDHk2kmfgMRknYUEca7N85aT6GhvMv84Vu76yrRdEc83EXJ2NQHPQ9fT5We4zzoWcX6oZ0+DVYX+BrOSqBxdcMWG36+PgPCS8Hsk1LLtu+cxqAV8NaWKBRjHyLMQ5G/g55OF64CPAnFDH3LxMVUon/HSJHhe4Ap/TRa8kTlfTey3wGhmm2RU3HzPJb76a/68m6dz8GchcPdkzv3OZpqtZOzsar5uWq0Mut0Eu0zIdS1/LJSfnsiBwQkCtTBJBEEYiRaQ0Szo1fUkpRh/63hBapYykdW4YMk+xyJQtqB+6uu/tomKA03EQHIJmJk1WKeOIECwKISARGmImIIVaJUHNIGM3SICYhZQBAInRaE1JiJTSNkh/8nGhNQVQXrp9bSorSrMIW9e1QRT1SY7bE6teGxUD1vt2szEoikXHGDkxxMj9kKJfVJVYfWz6UYWUVRUZJyExp66phyHc3t7nWUExpLbXiD5FYFkuq/1+n1JwRityfvDMYrQy2hR5UZTFsqysMb7tUvTNtnYuu7u/NUrXXdefjllRWOC+7UWpsshSEkTje6+UYoyBuapKQohDH1ICTk5TGvPDilhEY5Sz2hC2bW80Ka3IQlOfUJLv2swYypTTxmV2s1ogAvs+xnS/2fi23j1/GYJf32yWm2Xb923T53l+7Pvb21ulCUHGxHOb1SqGkLuMtNrv9/WpQaUR9PFYr5YLMo5MDCzP2wOneHu/DkMoFwvUHGMMgQVhfXujtTPGdMMw+Hhzu5KEwqFpWozYn/q+67Qhq8wwDG3XIMLt3d3ju0cf/O3NXV13gnD/5j6vKgZc3Nxs7u8O9Wn75x//2//+L4dT3feD/VE5C7/6xfenw4mtqVye5/l+uwMWYRl8dxSolgUIROGhHZpTZ7VTyqU0IFDftSlyn4ahGzimqigVgiIhlOZ4SpyMMUoIkhRlnlKq940ylIbBWVOWi+jjYb/b7w+L9RoaGXpfraqhG5q6WZYlcupOjW97SXHo+tVyuViWry87Z61RWgH1Tb97eS3LPLPu3bt3r9vt8XiymStX1dD2nz99KZeVQmZGWxaIsL67O+0OzbHVNNIRF7XAKF4kmIspzovbuFpMzLXMa9DkLkCSyWuCiMDMiIRTyHLyQ5B+MASYkq87IhwkrdYVhIFidEB929/f31ZVjoJ97Y/Hk1JmtVnXxzrG6KwYZ6OP++3OZhlYlDisivz28f7+/S2gdQaHvk8xggQg4h6AITETCikemsNxv2uPx8RBAIvl6u2HD0VWjOSkQlQiEoNB2qxXp+1r6uvj6+k3L//yeH+XWxOdDWnwYQhDj4lJADhCipjS8cuzInT1icE+3N0cYwp9I36lC6MIY+QIUSkSwAjMwpOTSARGMMDTVMroWWJISViQhBKAJtRkNDGhgbyCFPViWK49cEQZS4b1KcaYmIyyeVHd3tisCKJPOmPUUZEHZK0SQ0LgxIACzMxJhC1YQi0oPEoWEIBGHQ2fN9UoJACAY9pmuuCCeT8vJIJpCrdBEAACIsERnTCA0BjQLgIJR2n1mE1aBAAYGRWLCOEMooRGejGNeHp8rkayZPLOwGxHZ7N2Nknj13z5SM5x7Ofo7AmDXOOgrzgPmOU3PB3FMgnaEGfG4GwArwDRle2Da8wxe54mIHIVXjUm15ovhnNQ9/W7dsXPXF97gjbXEu7rRETnkybPHl43CjMGmrmPs+gYUabMfdczMmGXq/ZnCc/U/lWnzwPG87x+JYL+Cp6duZrLfM6TfLljeDUWkPMdOuOhqxtwzRKe923nFUpkdu1dZhWngLOzfP7qYYILUhrHPCL4S6qkc89FrreEU0L8cWCJmRIIc66QhVXyRutEAsogU2LZtV5Je+yoa49KGbQaY2hP/j4Pd8vMrsAaan30XR8F7m5uXUJPu0Mv0QsZp51DZVJKCgWm/xRqh6hABBUnSWPIPQogJ0BkSgaUTQJDLylpDUabxGF3CtaTtQX0XRKtlDn52At1ujqpAUhHTMnFugvIjEkoJdeF0He73RG6/mQttrYZjvXxGLvOZdnhdKhPBwV4c7f23el1d6j7NiXQxhAkEtYaxUAcc545QyK5s5mzAtw1bZFlfvCcOC9clhmEFHyvQFaLUlIa+j4zGlJo20aRUili9FWuc51bI5R6ZEYkk5sQQ3eqi8ysFjkIwM2m6/uYks0sIAXvQ8uZUevlar1YGEM/d03dNeQcUEIlQ+iR04dfvIt939aNQsmM6vseRJaLar2udvt9WdhKZdUyT8lbBXZdACAMidmXpUWKvvUKYXm7Grohc0WWuabtgg+LxdL7oVrposqPu8OYNx+0JkX7Y9s1rS1LImzqTikiTcYpEfDeC6XOt11vkYCTGKWq0olI3zbr1TrF+Pz8vH3dKqO2L/uqLO7f3PvW9+1AoqpqYfIsMkui5y9f/vTDj4yQWQPLTGL39POPqT0YiavMcu4aOeRZXpWLMqtYWBEKMxFlzr2+vCSA1XpFpP2QEM1+W4NwnmeZKzKb6bUO3sfgm/oUfUAiRKzWRVkUfvDCcjjsiypTRM6Zu/v7EOXp6UtzOGbWxKE/7Q8hJVJvQaCpa4sqc1nMfFu3Td0WudPOEiildFEVmXF93ykF5aIAlnJREOFqtVjdrNq2r+vm5fmlrMq+62L0VVm1XbvfH+7ePLy/ed8caw006jtGdpcJaII68w6KJynlHER+XsHO+6x5l8oy5d8hIk6j/gMV6SRRhNMQUghFbh1BXw9DfUSRMrdVeYvsj4dU5hVH7uIgERKTVlme8dD3Spksy7rUdqe+rk+mAE2YFW5ROpNS4pSTOKfartco5JwCEk4pRCFGJZmlJgypb2MY+iEkH+5vb5dllRCHEKyxeWYoqYjd48N97Po///53wYft67Y7nt69eyyq4nQMvvMKcL1aoHBoU32sFZgQw/a3OyZz8/j45vtfL6oqEPRNK4BKa6VMkhRptN9jqNNYRBbU6AYCZJ78TYiAwiSkFAEqSRAkRRytq0EFSjuyhVoAMCOIRdA+EFGKSVnNgOBcw9z7FHxEDcIkhDFFRJqCpxCnMgGIY51YZGRM6bK7FsCLTJbwvJWHibeZrPyZC2BBBpwg80gGkSCNBA2ygAhKmiorIQoQIwAoQQEZMRMoYB7dgzRG3Atc2zo5m+4Rzpz7N5v7qxR9o8fnYuVmh8h5o49nyzlTHvOZZxM2szlnWz8ff6Yd8PLZbGrP+4ez1TwTLWevIp7bmS3/3NrUxJXMd9bJnFuaPr+mJr6iQSZ8Ndnys4kWOMu852/OqAHw7Ni6jOjKUzSdgDgr4i+dmKw8zvjo0qmLd3KUB8kVMJy7fYU+Z7BwRnwXGDKGJ9IVwLrM7Ve37Ovfv4Jj43cXxnEe5dT7SXZ/hX6uMeX/qBe7htLnh5Omq+ConZczG0mkYMzzkyIlQYkKjQRgQm1MZgoZYtOH0PZ92+alyypLkprd6QD+zfdvKmcOL6+v+ybZnKPue9FlkVcpYNTgBqWTosCSBDUiTdONZ3E8IbIoorFcNCgAQYjCnNiwoAAzYEImiKB33UAcdQy5qFStspsFVwtO5Pu2gzS0XiNHH8LQ2izjFJAlxug776wBYasUsago7PsBkjHGWLvd7wWIT27ww/Z1G4PPMmeM5n7o0kEk9U0bTp1R2LY1Wnp4c88IbddhEiIwSsXgtVYh+L7puMyLwjpjc+8E2Do67LcppvXNuigtESbvqyIT5sH3YxXxsXRerpVVKvWDIBJKXtjToUUWY0lZ04g09anKbIpGkXHWDIGG0AvhoswVc1YYq1WxrIiBOXRt23fderVaVIsQQts0AHi7WHEMAGCsGlPGFJuFMcb7IQ59njnnln3rFZl+GPaH/aefPxljXJY1TbtcLoKIzhwNAxPpPNMEPoRMVUzkMqsyTYTCcuqaGGJVLtbrDQB2XZtnjhlQAxDHIWhDY4UUIlWWhXHGWE2I++3h7uFhtVm6Int93R1P7fJmddo2dX1aLMrOD/f3dyH49w9vCCE35uHuloBjCKvFInc2JXCZOZ2apmmNNcNp8MOwPxxIqdVqabMsSop++PL0BQEe374RxH7oyyILvlusqu5TAyzGaVIYQhy8D94f9scksVqUh8PRGP3jx5+UUkT4+Pg2pHg4HhPHCKnt+yLLU4opRWczrUyRF2WR9d7vXvYpsghXzoFQd2pRxCo97tlfXl6//e5bY2zL7dB2y+ViuVn+83//DRkFTZskhRS6fmDhMAx6LKguMyOOs8WZI24RkWROu3Jeagguf40Z7hmApgJ/F+0kjMXSFWlnh6GPwS+rolAIQwcpZE4vF2trrVP08UcEobxwq1JzkNOp1lqTQ6NsUZpp8RHxbedc4QgxDPF0TEbbomif+8DcdEMCWt3eLx9XA3EdYvBDFzsK3d3DMjb7gDh4z7FvT4ciL5W1GLwmLEqjRT1vT/X+EPqGUJbryiBz79v2RAinY912HWno+x5C0spYq4WjJOKY+tRtPwsj3Xz4Dhcr7SLHmASUMwAoiMJpUhLMGZRJEJkRZOQ3iAVJNCCrMekgAUJiAcQkoJRGxJCEORkiUijMiMQuIaIYAZLEAkkii2iNgDyVp0cmQRRFI3jgcRc8HjDeXpmEOVeIYN5uz2SKjEW0cMYeY43Xs7VABJgyAwkBqvFQZAZhxPGqgiMwAiUAIOfLJ4DRN8RC4/oNgjx63yZJ9phLcu4CAM9swZVJpTlUa/IlXZE7F5cEzk6eq0w2Z7M5/j1yBBfwMYndpjreM9L6ylDOMpGJb5nbm+HXXI4UJrs0EkqTPT7XfICZVpkxD5zt7BVzcwVDznNw8f7N7+4ZZc3K3IngmVmRmWS51nZfhHzjHZ1xzywFuiQdnAmTkRfEmZy5xg3nif361/MocELMcoHT88F4NU44y7JmHunKFTbCxZlumlvC/0mk3vjEn0PVvpJTjQBxBNVyBv+T9nl8UAXGYl7nC18nx5ynZxJ2ndXbNO4zxgDalCyK1QgYhQNEiUDGlk4bZRSFfpFp9IQcF06V6wKOh9TXwS+8mKb2ISBaI5xevzRqQV40oiXUIBgGFlKKlKRRMsaAMoWeEPKYm10pgDTJ7EASUJKUEmggrTSgxCnvun71jMEXKHmxQl00EcFQzenUdVVuK6XBoINWVNf1nUQQT8A+szrL3eZmbTkO7SFDstYtqyrLSszt8dS87A+oWBuzWlSLolAEClJoT33XsU9F5oIfvB+cMux9Aki+VyjWOqWoDLlSSpESxSml5lRLzkXhEvuha5qmzovcZVZpTMkDBBEqqsIGak+iFPVNB4yLVWWMbfv+eDwJIClC4L5tOGpFyhqKPmyfn0PX3mzWy2VJBvz/n64/a5ckSbLDQBHRxVZ3v2tEZERm1gZUNzgAARAz5Cycnz8vnG/wQpBAs7u6qzIjM5a7+WKbbiLzYOuNKt4vM8LDry1qqmpyjhwRFY0MhC73CpBiuDy+3Nxe7evqdHxx3SAsIaQYuOvarh0iJ05RRHZXdY4ZSLLW1LnJsvzL6eybFnMmpZIPqJL38fHrY991KTPHlydmvkgSoP2h3h92bnBfvz4opVDDzfVNVpZN2yhjiyLr+15cJAJtiRTkte3Pfqxgpwib8yXGoLVqzhfvPSK+ffd2d7VvLhdJQkRjxqtGtd/vWLjIbZllQ2coo7//+7/b7a4u5yaz6sOH95rg+PSkiQjY5jovrUTwgysLG4Y+epfn1vW90mSU3tX1y/HFWpuYba53u702pmkbjcTRH/Z7pdTN3XXfdGVVaQMxoCKddNKZjn38+PGTc25f1burHQiwSAghpkRAv//Dv46SmqazWhtrm6a9nC+7qj5cH2JMfggKqT2fu65HxJvbG98NIBJduLm7ISClyPtBWE4vx6oolDF929vM2MymJF3fs+LdbV3vyvNn0LMvSZMd4sW+wmxr1o+zszrZWJA5BDau74FxnTnJiPQoAJBiQoWSJMXEnEA4hRR9j5JEgUajFdW76t137xQahca1fV1WkkQbZTMVgkvR9f0Qo2R5vj/sqyJ3fUyc/OV8CgMDdL1rB9cNjrV++91vcmOyclcp1XnhOLi2qW93+/3OD9ZoW+32hlTfXOKYSKxN/6w5uM8///qXP/1L2zbAXO8KTBzccHzySmtllEmm69vgAwlYg1dXh7IoQUAwYYzd5ewQJc/fHq5sZtiYLnHbdiazQADMo7yGY2VAIBFQRLKgBsKYO55g3EgCWIAAAYgRxi0gFJAABaZx6Tsz8+R9IgsLSIwJFFprlICkBIKoCACYE49hKeRR+RkZiozWfMTLOZdhsvWTkcdXow/L0uUZt3BRWgAFkGHc30sgMUyLuyZNYcLJ2aEf14VNYIozBiPPdccFQMbo3BRxnT3uv14BtkA4TIm/iDBfZGUU9DpJdcXnv5XoO+s2Ex4uKsW8xHp+IFguM309l7951URcVYhtnGUVPOa4kSyNkVWeAZiLOstr9AXYuCCrrrOGY+Y2zY7NSKpks1phzsuZ/zlNi4XnTY3bEE6cWc/SidM0WZjYq4GZJZPlYrJt3Uiul4DqNz/L089C3F8dsfbCMlPlrzmQzP2Ey6NOXG5z+qZwwCJ0TtNuKvYxjSzMXbIhpuM3uDgFLKCAEGCk81JoeFMVGrkb2kZ1ifRwfolAlUKr4Ic3V0NBfXCFhqquq3DjLifFUUDbqrQQexYE8M61otjmDCoKMIpSiqxOnJhZxvwz5HH2hxgZ0jTtEYEkpkRjgSIFCBpBJR8RRRMCKM7ygOnkUxe4NhAD+mMXwgBd4sHnmf3u9gqCq9GDTc9xOJ66tgmFKspdbRWASN+2fdtJ4ow0Jzmfm+7SnV5Oz48v9a66u76+vr6+3dfCcWg7jFGUbtm3fQsCRFQVpSZyfevbQWutc1SkoShA0BiVlAqDe3l6MW8NAJCgdwMgV1WZWT20rUjKc8M+5kaRtToJKjwUlXcDKZUit00TYshszjFJiu2ldYZQUGuqi0Ji0gqNUruq2lXVw9Pz88tTDKHcHRInN7SxKsq8gMi5zY3VIgDCSlGR54N353PjnWubpq4rbVRRFMbY80vz9fMXEPBD8CHKWO5VEgDf3V0jklI622en5xMp5by1mQWCplfaGgBkZtQUYores7CkaKzZ7659SE3TpBhiStaYlNgPQ55lpJLz7urqGhqwWVZX1TD0zeWS2Swv8uCD86EoCmROIZHgvqrzLLNZdn19o3RWm0xblRmdoi/yLLMqON+cGwLSqFzfsYDNNEeuq8oplWVZVVc2z+IDC3vv3d39/dXh2g09dlKUxen5JaV4tds35/Ourphj36Y8LxFAaQ0AWZ63bWvzTFk7DG5X75jFWqp2VdcNbd+1brh/c6cAm6btu76uSyDyPgiDUipxKrKiOTXDMJR5qYBIq12929W7MeQdo/Td2Q0uxdT3vc7sh/fv86pw0f/868fz6fxQPyC98T5omGoo82jkaYl0LKkSUz7sGECZ8xNn71+m7bVH70MAUBgQiZBBRBhSYvFxOHeQktIqhJjc0Fxa4uS7vuva3e0hMqvMajQYMDh3d3P95u6m63sACdEdX16szlSBOjMKtQGq9tUw+Mvl1B5T0zaD9733p0uXFD0/PEJK/5f//j+URYGohczT4C/HS56Xfgj3b97e3b3pvD+dz59//ZKSe3t///K5eXl46Jvu8vwYBocgjr14LzEkonpf5nXe/NwURVXv0DV9jDGmRAq9c8E7TUiK6n2139V3dzchyztBozUTWWN8DIioiIATMY3rdNOY34kozIvDzQRM034Cs8MuCgFFoQAmQFAABCwkjETCIsBKKYUqQVBGBZYYgiRAAKUts0ziOAjKGAnDUbTn0b1FAAA9Ye8Mk0vAZi6XsqgCo9csC8jitOUWCo/LAkUkAY8roGUEbkREVDNWME2eO4Mw4NKGsXqlYMIZXqZd52UWrWDcSBJgIWG4YN/UmOW3sqoCrxB1BdJZDJnBc5ZgJpFlvqasFOp1HsxrHJ4TbcYI3HybDY1Zqt9sKwridCmcCw2sq99lYhQr41qpzfzMM1OZH3Y+evvAi8+ynrr0BMK0gmy8L84EDubfbu42iVa0VGDC5Q4rBVtWlm27Z3vIfOtvqIxsD8HNoTjVxByPGquPryH3DfWEaceN1wrP1PA1MXl59IVUjRwdZhXtVS9N3BwnykSwXn2msHPsf83Dnw6fh15YIdfavN/v9lb6Rj72p6Zr7+orTFJA2hW6FF9aEZMxiLj2qtZ2f10WWfCprLNj6wcXkTDPcrIFaxvAgFAiCSFwZCRFI91iEYQISZhREQiokBBEtGGBJEkJCDIRgcLEAjkJcEoRRdAYyHSH3vn21IQ7qyU5zaFivqrKuyJ/U2SYQcb6eHq+tkkyadpW18oapQSb5tQ8Pblu0FYZUqEbXh4fmm7gEIxSSjCvClPkbEwac54Jmr53IZAiEa72tbJ2cLG99L4PVGByAQGJgQg1EAIGkbLI/TAMfZdnWVnnJVRFUTsXQBhBfI/sU/N8vn9zd3aOhXd1rRX2fS+ohq5HpUmRGwZEKPOs6zsEUaAjx7IoyrwwRnd9p0mHppXOaaJca7I26mBR0jBgisCJA5zPFwWY15U2VrrBapNrM/SD74PrU5EfEIqu7TiStcZa611jtGKAl69PtrS3d3d91yfhu5sbo00STiEeT+c8yz/8+H2RF23TPD8+3STJ8qK5NMMwFFmWKYugyyK3merbPjq+nBpJrKwmo6wthVRCsZUlApWpy/O57zsAaNtut9sh0uV0SSJ3t9csYJCMzerdbpcXZbmLcXh6eTy57nC1r8vCWhWImvOlOR3bS8cp5XlZ1xWgnF6ON7fXqEkE+q4nRQxc7/eXc/vp46/WakXq+eH5zf0tEg6uV4q6ttM6s7llSP3QDT6YLBv6/vPnzz/8+D0pGoaBual3FRE57yNw51xdV9rojz/9stvVb96/Q0ACbC6X5+enLM9vb259CFlZ3b69V0pXdf309ORdeIkvh+sDED58/VrtKpOZoXVZZm/u70RR3ztb2P/hP/2nx5fHp5fj88OTOK8nijN5gJO2M2Mi4py3O77n4x+j6ZaJC+H89gED41QdUQhBEgIwEUSRxBxDKjUKYNc7AcrLnCSdzg1aazJrjSmzkl0cjFKZssYUuT6dLqTN/d1tXhVImMbto2K0mYYkAwIDQ/DuckGSQkEbvWuPXz/++Q+/+02h0XIavEu9+9Nf/vLjD98TQl2VZZHHGELfPH3+1Q39VZFH516+PoXe7YrMYwKW/nLWRhFCWVWHw54MlWXpg8tsJrm40/l4PMeYrCURRtTGmsPherc/CBIpSp6VsYXNBFgB4mw+UWRMgJnqJAMIMQCAmpzQZWHOHK0RYAGYCgNqHAU24ZRQEIEBgDkJCkvCcdswIgUAiYV5jrgAwMhyt9yBZ8wFkKnwz3ZpzYQd45kTSPAGr2TaZHzKs1UyC0Ibf3zEgAU6EGFM8QEBHr+e2Nb41eqsAywot2ETK2CuKa7zHHzFSmaVB9fShyO4b8rhLVedmMmcaYMw5yfPYsAUy/iGXiwCjkzKyqQ3zaLKEkCeUr9gdRUWeJ0HegXclYDOWDqSgCnTdiuWzI9Ci/axNgsW9rNoQ8uv1+NmtoOvNRCASRmUzUAunbfSBFwuu+EcUwungODSFxvWtkpBuGnW1J3Lxadfj8R6S3M3LHXztHN89m/94ORmvGr9eFOeenyhLJvTZJZJN501rm6HzV2nI+eoKk7LZJFFRMRYTT4mTsH3dV1eX9emr7rCembn3M1hd3tTh+MRowOBIKwKu7vdZZly7fDy9dyl2PaDoC3K2ta7ZOyx9S4xGIso2mJKIpIEZVyiMO6HyJwAWCFoBOR5p3LSPkQDoFNSIkDIOPZMhBAIFRIG4EAQI9vOGUjxdCqrrC7zfaZDdy4N2+D2SE6pFx8oJNd2yQVk0QLG2jy/ZkxdjH3XD4MLgY2yZYm7uoYEIYS+E9d1wbuh75i5H/qirvKyRMLOeUNEo1oeIodIiJhYWcy0Aq2NViFEAlTaxJR29UFb8/DlyQ3Dd+/fVWWJAhFCCOHl+fjw9QERL+fGGNV1QwpyOh6zLB+DD2VVUJaXZSkS/dCHwVGBCPL48LDf1X2Irml3RVFURfDOMZPCy+VyObcv59MwOGszm2VfH19s0xRVUZRZlRXHl9PV1Y3SZhicCCURm5cm60krZUyW5Yk5z2y5q0LwKYYQfExJIClDEpgJrdU2t6QUKZWXed8PX3596PtWa7q9uyOAp6fn4/FcVeWuLmJIp5djSpzntn1py7K4e3sTOB3PF2sVATCDNrqqKhDUGrVVKTILINEwDEDqcNgbY4d+CG7Q1a7vBolpf9hVeeH9oJUuDpnrXfB+v6+JqO99WZaa6Hy8nI7noipNZou63HPsuyHPbUpBax18zOpMa02kvA9Vnh/y/fH51Pd9XmbG2OfugkRN050vxw8/fthfX+93u/PpxEFiSkRq6NypOSNhe2l8iL0bsszeXN8I89APx8spCJfaXLrufDqVRWmr0mrrhuHq5ibEIADdMDgfHh6fzk2jtdakyqpKgVNIdV3meRHCscrKZ35sm+b8eNbTNu/z2y8zGCDinOrDS0qCbO3UbB1YxnLBQoBAyLMNFARSSgmBTjbPKSWChEQqs4f85vZ6fzm+PJ6OnEAYDKk6z730nAZAYBFr6eq6GldEk9FFWZLWbXdxTeO7IYagFRibaXWFwoFDXav7PPeCmeLQvZxC7517fn58fnzouvMjcl6WbWYzQO8GHHxpNHfYvJzv397e319hSqXV5+NziJ4f+67rUVSWKUKIPlqj3dDFmJCIlGGR5tzmha32JaFCTQLigr9cGhQFOk8xQpLErNVYdZBJCBkFR+VGAMeI1Fx9iRAFFMiyGH1KXJjEgSSYBCMI8UhYgEhNsM4IShRNmUVTxSEBUNMq90m1S5PRlhWN5ordGw6wQsQspYyAhAjTZhgIMNVPXJUSACAGERRe1gdNkDFV44G1/tGMNq9TeTYgucDSyqjmhJU5WgQwR6jGf67IP+fu4tq+OTCyUTanRjCsqSiwHrLB7TE/BGE9Zwu8gNNeIa+eYCYPa77z/BBzVG1G2zERaK5EMI3JfDVc8ktmjWIqJLiM0ETA1pbJK6o4/XpmvQu3nmsEjf8aq1ssL/R04sqgZrY5VQqXkfuCrE86y8MyLbd6LfuIbIj1hi4t6dmLOXnFf14rRVNGECJvEsTnzlyb/c1Zc4eOa/tlvdc8PZZJggDAU7lnWCpFrhNjrke1DMU6uXBMaYM5cDZ9yyiBhQW6GJ6by9u9zRXc7So/9IOLHvWu0ofCnE6sFRCAS2wyNIp964bOvTw+vrRDJ7R79zbbZaagi+uH7hLQABaotCQWHKVhSH6SAFNKKKABEVmIUVEUJm0hkVKQS7TMVgIhOA9kKfJAIRTacCNEpIvM+5RAFHNVljRulchDc27P7RHE6Uydni6+DxzZdxciVIoOu8P+Zg8on54+Pzw+iFDvPKm8KEsdRAD63lltDGK5K4+Pgwjur/Y6t4CUQuyGgQhskWutrNYEwDGMRTlQACQZY1OC5nxBwrKqkkjTDEpjitEoFXrfxZRnRmkNCKemcTFoa5DT8fFsrc6KrObcGmsteobu9JIXeVFV59Pw8PD47t1bmxnXD+3pUhtTFhbrHBWajBiovXTO+7LaRZEE0PuY7Xa7mxsQCNG7wWdZ9ny6KGVdTJlSSPTly5fHp6eQAojkeRaC7dygtcm1rnaVD1oZVVS2a4f2fBmGIQFW9c5k1jn/8nzkXQSEw9WBIURO3qfh82Oe5eV+3x5P3qe2dcIppISALKKMfvj61DRdUVmTqZv7Ow7RD0OIPsSgtSl2RTe45tJeXd9c3VwPg/fBXV8dCNWurvLCGkV5bp6Pvr2cFEkI3mrlgs+s0sqen89uGKrd/vPnL++/e1MfSucGbVAbFUMQEK31pWmt0e/evQshhODe7uuX55fggybMsiym5GN8ejmKUFEWSEoZFWIqymrccdYWJasIIKgx+tD1rdJGQJ5fXhSRpPT0+Hg6HTklRLy/vQeATw+fgIVR6rjvnXt6en733bur3eHhywMgDdEd7q6evj7udgcW0MbGyCpT+/pQlOXzy0t3ar58/EzABKBptohzFJtmZFpNuowrJhA35mKBHaFl/bvgmDk7hlDU7FMZmxmlkrWYguZktMo15lXeNG21P5jMSpS+73qlQVhrQkpIiRCsRlRKBM9tH2LIyrLvuscvD9FHYWYOuS0Oh32W5ZfmrAtbXV/5KEW5KzJyQ3t+er48P4nrDMSHXz8WRalSDN0lJXDDcL3b3V0d8rwMnSvy7PZ6z37g2MekYtpfzl+VghhT3w+aqMjz5INLMcuK4m0dQwwuZIWt6h1q6jyfm74WzIoiKGJMghjCaIwMjZVxQJCIGWlaDJbUGFOYMoVnlJApAXUy6STE4/5mjIAyhfmBIfEEPqOBJ2GWKXV4BrYxFWuTkY4wp+JOeswMXzAj7SsyATNErnLQjAsbnQHGJesgE/6OKI1TAfEphXrhFTNI4OYWm1DUK+FnbNxyrxmt1hDVDEU4A7y8+n5zhy07WdjN+Khz2gvNF1iCT1NNHFjwdxUDNlg9NW8+bso+nugIbDt/g6mbBVzTgTMtHFs2L8KCNRI9v3ZrnsvCP0fkX1Klto88eyky52hPNbqmHY63JHQ5cklYwrU8hojMBSanG8lMRGFhVvPD4OYxcKus4NS980kIAEDjOvM1WjhZovnMZdU+rtdYKfT0pALbPKQNP1m6E2DtIIBJopOVnk2A+5oKzq/AN920uccsFi6L7cfALymkxEllehjiY+9+PZ5gn5dGZ6Yq6nQ+nlIYhhaZAyo0howyUUHbnIdLjClFhrzIB5dIEqa+Pw/Hly4lLHZXUUJmtCEcAoNSSUQsCWIMiTkZpYhD8pGTV3lmdYHAwJycI+dudvl1lsU4NDFIBOfa0uhDbX3gY+OUzXoNwDFXlKPaFQqCc73X0YfeAQd3bLs+CiMAFYXlxCnFpmlSCl78qb34GEFMvdsX5T6JKJ20UlaTJA7ec4Doo9ZUlCWSGryXlEApREkx2UwrKoAZgd3QhxCMNhxTiKe2b1Pgw9V18J5T6gfHIlVRlGXGzg0O2lMkReWuImWqqgJARai1yYssxjh0QyBX5Hd1nZ9TQMHT8flyafPMphRDShrEWjX0vSHQhgQgJSaFu8MO2yEy26qwKR6MvX3zpt7tL+355emsSe2vdpdzxzEqrYsyV0o1TQuEu6sdAvTed4Nj5iwDm5uyvj4fTynGFAVYnh6eSKuq3hV5brOia/vnh0ffD/W+quvKeQeoe+dPl0sCqA51Xu2sUi545xwYBYJkjFVKLq2L8bq89mHoWl+XmUfXtkP0YXewgBRSRKOU0UwYgQfvn0+n/X73ww8fhs798pefEdPhal+VRdt3wTuOCRAt6RRSTDwMPsnZaHs+XvIit8pUVU1an44XhTpCMkopIptZIuq77hIuZVFCAYPzXdcXRa5EYkxFmfsQEVOe53f394Nzp9MxhAIJOUQO6fnlmFIIwQPRaIHzPK/3u/PxdDweiejN2ze7673zAx51czp/eXyqb/dltbNF9unh6y3eeklfPn26v73TSnkXkJSxWYxMStksSymlGIssr8tSgwo+vXn3Ro/UZfR8JisxA9bG4Gy8JwBcnd7JDM5KkeC45B8QJ9UiEYg1hoyKwOJJgejMSPCXftCFLcoCWBSA7/0xPu/qsiozRZxSCsF17WCMJWsQJEUZWtecu/OlVQhd17q+y7KsyAttNSllspyj3L+5v7q9HXrfd+fnx88A6WpX+ECff/ncPp0psbs0/eCTcJYX92/e7MriT//4j8eXR3faobB3HWpKUap9qUinFJMP1a5C4QEVkyqqnSD5c5fV5dX9rsjzxMxW0OY6y43NdFVEH4Nwbu3IC3AqEAcoQDLuUsVLbAphXLCBAIJMU6LDyExwAZ7RWPNsYknGPJ7ZmJOMaewMI2iNZ9K42wbMetwsKeEat4Ep5YgmWjNpHbRY+xUKt3iKc9LQdNCUtwSI4w6Qc8UUXMFwVkAEYKUV68ZVi9aFk/rx+nYb/FmSaDYQtfy5nvsar7bk6HXgZc7ukXlHBpxpzUwDNndbE6hlYp+bnGEEWUNJMkdDYL3Z5tSF+b1Kw155IvwVNYFt962UGTeeysrVFrK29Osrzjq3eb41LjWeNv2y0dlgyUVf2zQrMSOdmkJ0y6o3WIZjvvNK+XClSvMz4mbuLcMksxc2iy5I61I6gE3PzUR1mTWv4pVLl28vL7L23/QcC4PGeaDx1UnzOzylBs0TfH6tJs0Sp9gZMwArFiSVtzz8dGr65O5ze8iMTTI4Tr5DgRjS0A6Hm31eZMAch0S25MGpvDKZje0gwXHHfmCddA6oktciFEghahBhdolBa0bMCCAx9ENhNGBKJMxu8EmbXCVRGEvF7y3+cFX0re8EfPJt7O6vrqpa9wkyji17AWnaS1CYIYuxceidBFMaUPpy6RjJ7ArlAgXJTJZC9H3vBt80DWPUuclN7qMcrg6ozcvxTIi73U4JcAyhG5q+SykYq3wfEMl3zlpT39fBOd8OwIiI2poUQ9d1PnhrDBKwsCQuqqIosuPxlCldFTkhERKHYPIMBYosU0ohUt93l9NZWLQ1AuIdOBfcMADDSZ2ZuawLUlTqChjKuiSEy/NREyAn17acdsbotu0TApBGrQQxMQBI17XGmuDdp19/OV0uHNLu7s25bRMkZdUw9IxJG5Mkvrm/z8uiazufxr0HhBQKAgubzBy/nlJI5+Npd7U7XF0Hn9pLywzIWFd1bvPQp/58jjGWh/r6pvQpnE5njqw0ZMaeTseyKLJcE+K5HwqbHe4OdbU7HA7eDb4bHs5PWpOxGcdxUpO2FpUWRd0wdH54PD4djy9//OMfP3/6EoPvu0YR/vE3f08K8PnlZQhA6nDYNadWkK6ur3eHvR88ETrvvfeIkoTL/Z4UWK0Ph7rr+qZp/OCQoK4rAanKUin18PjQNb7vhxDC/nBljHl+eLS5vSnKq+vi119/STFVVc0Su7Y/v7yg0sEPTy/Hd+/f7a4O+/2+Kqu6qsosN1o3l4sC1bddluW3V3elzcu6Gwb308dfmqYx2n789Mt3b97Wu1op9fj1cRhcURQhxnNz+f2/+j0zOO8JMTiXZfZf/+EPz88veV3qV0mls8UePf7FxCAiISw7+WyswgRnAgjjxqm85gjBWI4CxDNDSoA6q62CZEjA+9BdvENTFFbAIuTKRj9IisKilQopDL0LPqYEKrLJ8qwsQwwSk1LaD4N3McTkQ+d8NMbYLIekUkhXN4e8yJ6+PhyfH58fH/NMH3KTZbl68+Z0PCvm5Hzoh94NfdNJ4tPL8fnp6/H5qW+OeW4Ape+9j6ytTUlQxLnBG90PgwCYzAiQD4LG2rIgnUdRu+ubqzyPKgelXAwGBBUSQ6Y0Cvjo52XjNKaa4rhUdQZ4mrcZhXFtsRBNsakRcuZCI1O9vBkDF9963rVy/A8BpuwcJBz39xrXky2HrAi9hYdFZZHV/C84D3NoY3ajF28cJtjb4hjOK8mRX2etLsrLgvRbDFv/3CgsGyL1Csm28Pbqqptztz8zh8MZyDZ+/jSFcen1TUbJ9PTbRJFNm2WzAnylD1PfzWg46w0bDraesVDB12QHZ31jbvW4Tx/MPso66OuzLkRMFgFxusOmi7dBwDnIKNNwIk6pTiP3E8CF5i4pVLLcYT1q3jtWZiLy10O0dpBs/pw7a0s7pytMsiNsmNj4jLjQ62W4l5JLG6dtvfVCZZcxm0dyWv0+XXOZ9MunOR9LcOOrjDeXVxeb2zPbPZGx6CexIu8daC06f3ZdlBRTGhIVkaNoAMkSxgTNZVBFDnmWBJhMYjVI7JWFhAn15flcFAGVMda2Xd89D2QsGONZIqMoHZjJ2qwsEDC5Xge/N8XNodYGP788d8wQGUPIJV5ZqqU/KLu3wqiaNl2IDxxKDArgJfYeSLzH4K3JLGFyHlHiEDzxpRseL22x3ytUoAWEh+CjDyKsrSqqfUguSEyRYwh912ZVZazSpESSMRYV+JRUXgBkiJyCK+vKvrnxPiittCozrYWTa2PTNjEEJEqcTpcOCA6HK2vz3WE3OoBEZIxCQNc70gYAy6IwRpNSPrjkIiGKQu+C0kqRMZrrfQUJlCLgZLV2zmVF9vbtG+bUta0ttAEEMa7vh+CHEEGh9+nSHPO6zItKCEmpLC9jjN577zwI3Nze7Pb1yy8nVHC43iPsussFUO7f3hZlToj7XV3tyhQZRZRS5+envutYpOt6EInMicHmeUrD49Nz0Q1lUeV52TZtCqnv+6LK94d9VhRJoLv0XdO9+e5tWRVDCPfv3t2/vXVD+/WXzyS4P+xSSl8fHndV8XI8Dm1zc33Isny/P9S7OiUBP5BSWVmR0m3wp8ulsJkp8+PppAl3dTWm7JBGY22934UQXx5PQ+dI09Vun2syyvdd33bNy+NzVZfaZi+nBpVkNhtRPvoQ2ZVVmVkLgDGl0+U0DL0yChKQ1saa4ENmDAAOfhAPIFBWRb2rLpdz23bt0BtjMmtJ6cicZZkwg0iKKbf2+nAAEQJAhpTC/f0t8/XHT7/2rr+cz79++tWHeP/m7vnx0Wp9c30FLD//9Mt3b9/98OOPgEpp7bpOhIuyUC8qev/h+/f73f7nz5/0bChnD3V1xmapeo6OTJ9XY7cBPpmN+VgSSEh43BIZkdRYhBgVeUQGJcLAEllFUdrYush2RkmKoVe+67qzf2l8CCkxkzaJIQwxk6Aw+GHItSVQMWJe7LK8GAWnGFKInGV2iMPp4eWsL5fjMQwegVzvj8+nusitwbrMun5QpPLCxhRdSP3QO++898YaRETkvneXU0dGD51jobLMIKVTOKLSoCgxajT7270oBUAqs0WRFbtaCBlUiOy8596D1lbrNDiDGjlppVhB5ISoEUSByLQNFI75iyQiY/WQhU2smSejvgYoCkY3dURWBOAZecZiy6OBXot3y0RMgRelApeEzTlOgfN+BjDdbrv5+BIyWFNgNsAysbAV3ACXNoz3oG+2B5gjG+sdXssKsk6/mR/OEYpXuS9/9TP3w4Za4YLS2+NmPB8PmbOUZYnKLCHELama85fne0xIv37xihdtlyPNwb41r2d+xWauRnOhUZH1aNig8ZKjNIksSw7KeMmZfCLAWDnhVVHqFavHR8W5F1beudKgpSogbJq9RttkzozZMoDFdMjCUpe+3uZara7UZqjnl2DhetOZc1kn2XDhaTQFedXBlh6VDZGSpaPW0VkaK9OsXufrfNpmeMZXBl4nX7/2HP6K9k4PxIKAhDzt75ok6SwTgggQfAbM3KfWcY1gMLu+3oOh4GMyeccQOzeEECOkZJ6ObesREYmKRKH1MfJwOXaOGcmIDwkgMkYBIQVEZGxMQSsNzueKKkUf9kVtpOigY2ldG5LLON0V5V5Lap9VTHuTaYNZnXHw7nQKSaTtTVYqF293u31hpG2SC5gpVur50juX2KpT36qY6TIXTIyxaZrkfF2X17c33umX0zGlGIJ7eXk+AChjtIIUwxATpaRQ8spWZRV8+PzwZWix3u8ow7ZpjVbWUAqc5RlzAOJhSE3bNs05plRUldVGWDJri6Lwfe88KKK8KEDkfD5brROn55cX5qSNrfd70hRcEARjdFHatlEc4/39HQo451JM+3IXQgCU3GbG6tJmGlXbtyGEYXCXS5uV5dsf3xdF2bWuaZvr3Y5ANZdWkdpVVVWW796+izFlhkRSkWlA4WQzY3e78vhyHPru+nCdl0XwzvugNfV9xzHZ3BaZavqu6xuf/JjVZKwGkrY7O+eRSOdKixl8+PL54f2H97myu7Iyma3r4nJuI3MfvKmsT0PjOo6JCSSmtrk8fP4agt/lWV3vfXDaWue9MdZ5j1qVev/565f//b/910+ff317c9s07dVun6I7FDUAHC/nssq7bjDaDL1/fj7e3d62TffzX369ubsqi0rr6Jz/7R9+V9VFc2m87yUJlSJliQiZ1X03nI/nLLft0Gulvffn02W/3xU2L6oihhh8KMsisbRN0zWdze1hfxVCbC6tMUYAXEw39/vf7vdkFTMTquD9y/NzmecoEAY3yitZvrdKJ5Lc5ldXV5nOf//jHwLHssr//Kd/eXp8SCH1vgOQoijLsgCtXl5eHr883N5fE0FZFinUnOTp4dlqozecBlafXDa+46p+T67QuAZ7ds8Xuz6ZKwaZF94wA4wkCIkGN1hjYmJRJExkrKl3ynnUShRKDAzMzG3bnk4XAUSlkCBFSYm5SigJBK2hMs8QIfqQeIrdcUgppaFtXo7nvumzIvM+pJiK3Gaq0sDD4FHA9f58bptuKKuKRVAEhYd+AGRjlSYILkiCXb1PAE3sY0rBB8ptiKww+cTV1eHtDx/y/aEbIpE53OzzLI8p9mFIURQpUAqVBsEUWINSigxokSQMMFZaAgFIIymZ/fQ5UDDX0RdIcyhngoyxeuEEBKNrzvOCu9UyIwggAc8i3AISyxUE16GeedAKDxuokNeosM1ZWbM31sSg+esJeEb2s0m3fp3xAwuAzTg+w8kIpXO2z6K8zHdc6hb99c+GWczXmL34zRn46vPapjX+szjyY/L4FD5cr4k4vw0b739VuDaSz3K9V+lTE6GU5URcHIel5RNxmZKnFhqxzhSYj59jpABTEPUVoVwYiCzEGWeytBKzJfULACb1aFkTNz7XhmNsOOX82HPS+fjqAy3WYk3in2gnbinEyovl1UOuMwFf9djyPkxJa/gNuZknNq6fVu43rVH9hrR8y2Fg/ff80kwEafQ5lvFdKNQynTZ8VFauqZEIlePgYzJGD8jM7AJHq68KM2gFwGwLc6Mdpi7IpY2o7eDTkxPKi6qqlagiK9vueDmfTzGqPCuLHWmTgLRIEmER0kaItDFEyAKgCMs8ADTHy86onAG7EDDt6rzMSGtpLs2+LAKHEBMq1Vwa4CDWYoxK+UNmkSCcL+zaGL1KBrxvLk1dV5mtQ9O5GFzHxlgWTpwSMCrsurYo8purK0KIMQqCc32hcOi8UabtPXtnCA+Hal/vh+TOl7OcTm3XZEXWXto8t2yM64cis2VZiWRaaR980zUuhKbtrneH4P3hsKtj9dB2gFDvdnmRt013Oj1rpXb7OqZYFPl+vzdZ5kMABmNNnmeuHwghL3IEQUKt6e7+JgT/9eHr4Prv3r+31voQwWJWlu58VtYerEWtjbGJ5dSc2qazeZ7lGYBEH/M8q6syeK+0qsqi7dr2ckGCqqrKoirz3HV93zSn07Ft25hSva+988fj0WjddE3Tdj6mZuja52cvfHNza21eFFnovWgkpTjB/vaaU1JaAUGW2xDCpW27vjdF5lP8L//b//7Tr3/+4cN71DrFECEqBb3rQwzX11e7ogRSqMwvv34KPnz4/oM2puvdX3766evD14evD4T49euX54ev9fvMeXeodinEXV0rRWwlBq8V3d/eaqWs0c9999Ofz7/9wx92+33bt6fTZRiG0+l4c3O9u9pxSsyJGQgxy2zfDcFHBFRKX1/XWuvRNrRtxywhBue9j1FpVdUli3BK42Ll2ze3RZ1//vrw9Pz84cMHQFBIxS5P3nvnCVFrlWdZCPHqcLB5fjlfXk5HZfXtzfXNzc35eFJKZZm93R1OxxdjbIjuz/Yv59PpT//of/fHP6giN7n68z//S3T+6ubK9e50PO/2VbbLNKxRis0bPW31Pqa0vra8ILM3/8rJncwrLqZQxoC5EAgzsmibMQghucRGm8RChKCpGYbO94q9FokMAiolBIUaJPnY910MiSQYVeVFgQJVXShLl5cozMISQ4wxKK2evj4xQMd8Ph6JtDa6qMpMGwsUfOidc0kEyQ0xpkZplVJybkgSE0dJgAjWkLLGmJJIK503lxZRkEgXiozGCPXt9dXb+3J/c6WyhJhlOSTpmjMrlWljyp2p9mB08JEQEwEDMEqERIQkQmPJlymhSgCYx0WzK97I9EkQpvXYyABMoqYKLGlezT7Zd95A0ggxRLTIBjRb81cLcSaXfYELXvD3tUe/4soKGpNisBEHZrCZs4PHWYErEi8UZoWplQotQDQdMM2pv4lu8urgxc3/axhbQ1hbyWfz51aGmJozso+1L8dhGPtoDQ1uCMTUnJl2zERv7qFNC/9GWGiS2xYSsXbl8mgbfjmn4Izf4MpsZoxfl/ONhSvm/Jz5V1OLlvZPhAJlJqM4NpPHOTgl9sIr6otTLhotz4JT8tB8mUV8QYE5ZgcwR8pmmjNNttcZPzOJmmbX8qhLbs9KVxZWvf5z8ztZWO+2r7/p/3UcF4I7C2vjL2jJAZLX56/cHef+3jwDgchY805QIRFLYC9aGCEigihNdkieIihGTpwpLOp6uFxQmZDiKWpALXnl9la0CdpUtmCjIVO2LMuQyNo82wFoRhKQJJyYEYiMJiJhSd5FiF9dCC/n0vVXmXZdO7RuV9dX+72CFJJzESjhS+fc4BOmi3MEaVfleWVZqdu6btp2gJCVuR+SMnoIg4eYDAIrk2VpcH3TNXxRDMaoqshSDHl+VRS5WEOIKUlg1jaTBNEHz8OYb8+ohHTvHQDs66u+76KPKcbMKE3onavKoi6rvusuTQOIV9c3RDpJymwWUiRWTds9PR/JqJvbWwE4Xk4hRDT08PLcuNZoLQjd0LvzSSEppZTWCrVW2hrdnNroY0xeKW36oR8GJCjLMningGKIfd8Dog/R2qzaVU3b/frx8zAMoLCsKkLSiq5v913TWWuA4Pj8kjgJxOTCL48PHz58Lzqdu+fy3bsP7z+4wXvv+35wPviYhr6PKVW7ahiCKJsX9vq777Q2QGroHWvFVg0DfHp+YYhXtzc3VQVJtDKX7tIcL2SgzDMW6HznQgsq1XURgr90J9e5Tz//UpdFZkgbtIXOr2pbFBnjl4cvDMIINs+bruuHrizL//f//P/s204JFNa4vj2fTtI7a+z3uw9912eZzazSWn3+9DmmRES76x0pZBXb/iKYtCVBuLm91kaF5EEgRn8+XUDwcNhn1znzJJLHlJS1l+OZtSnrEhF5YDe4x4fHrCiKstRKNU0TU9TWhJgSS2azEEJwXillNCgRpVReVbm1bdsrrfbXh6wsH48vXd+54LSwGxwhDpdL33U31zdZkRvSh7ouyrck6v/7v/z/9vv67du7x69Pf/6nPxW2PB6fu6HpzoMPQ52Xl+NF42ykYDH4y4v+TRkxnjzoOc32lU0Zn3t0n4HGza8EACQxohq3w1RkAJMACJDOlAIxMZE2rFQaWkkQWCUyaK1SOOYDgQARxBhiCj4SABqlWauqyt2AfvCB2VodYvQuMDNpQgUxRRQ9oIjNfIRhcIMbQEQbo7ROzCxCGr1zPgw2M0ZrBkGtEDUAKa3LEiVFAFZaZUWeUO329eH2zf723tRXuihY9Pl4eXp6HIKr9/vq+sYURVDkY0KtkPTgfJSkFMBYh3lcUCPCSCIohNPa2XmLrjHPeKQ3s7SzaigCIrMkgghjaZOxzC/iuFPpxFYXBQU20Ltg1CZvF2CFdpiUJRxDbkvEaXK/EeaN2VfgWXJNcF5VPWZvzKC4WZf17d+zhz2zwcXbXn+WUOzE03iuhbOA0d9w3V8RBnjF3P7WzyQryMr4luyahSKsF5GZ6Uw8fyE9sPoBM9dYHmVG1G90IVwgGjcv3WbB19SGhQouCs16/BaXcX6EpX9nJURg4Vlrm2RUERdON5GYZW+JaWgmLgvL0Myq1Ub52CRmz5lCCymRmSxuScJMNtcA+nz9TRvnEzYcb7nc9D1uaeyGuS8cZSV2m0svEt3acSKv5/U8Yhvy84prrzedHm5KEpjOHXuBIKWIpESSEm21BmFCxQKodccp9v48SJlTrVXnOcuzmKRTOWAmlJvbqusDI+TWupikLNFaFQWVipgxECMkTjEJj7t9paQAAISsITBdHHzva6BzFzAh6JxYSeONxRQZwDw/NpgSEofUU27KskiCQFgWutAomupDDcK9SiICxlKWjeKJMlwIGm1//fXj1dVeEymWvK53dVXnxdPjw1Vdpcgv5wsSOe/8MIBIXmSIaIwVwPOlkxTrqiSEfhgQ2BjNMXHkzawDhXR9dV3YnEGMsSlGSfzyfDqdjiJydXMbQnh+OSqlhr5tmzZ89ofDoSqrzNoUYlXXRVEMba+AqjJP0SiNNjM8pKa5KG20Vh++/yBJhmE4XB26vv35p8e+H7LC7tQ1ICmlmFNR5rvDXimlFeZZluV7TdS3Tiu6vjmcT01Mcndz/bvf/EYp6rvu4eHFe39ze9c0HRJ55l8/fS7rGhAPVzuymRaVobZFXhU7bayAoO68908PL6TocLNn4f1uX1aF63sO6dI0wcfj+cyI9dW+G9zp0l5fX/13/+7fXc6X0+Xs3OXl+UjA1+/ePn19FCQG40Ksi7I6XP/y8aePnz5xip3r97t9Zsx3b9+1l+b54SswpBD2u53EpDV9+fIZEYtU5lUunHZ1pY1OkbUxQgKIru9DjLe310ZnXddobQhVcI6NNtYyS4hJKTTW+hB8iDGmS9Mpa8uy1FohoUoafNgfDtoo52PwXoSrXW2MadsupliWxfX1993lEgZn8uzSnRSOGU7xfDlHTqVA0zSn40u93+d50bXN8el5V5YGlZCOw1BY+/7N28ENMXhC+sMffn//3RtEeHp6UEa9XJ7/2//xvx+ur2+v7wTgfGl9THoyUn+FKgsPEoTX7z9O+2aMa36XRWO4itRL5idNWMREijkBTzIkg0RkQQClNKEgBgYNZvBJ7Q850PnldDk2CKkoTZFXRBAEIMTIwhyZZSQEgmBzKyLCUhTZ4HxiUYqUIkJCgeAD+xgjM4tSymaGmZnZZEYgee+JNJHNikIbIiBOEn1kAY20KzLmNOXsaKoOh+r6hikbIlhG50PjvWOwRZ3VVzqrx8V7IhGJBAFIQCGMu35Nm5sT4xQVnLYjhdEXnnp5LOwxZ2bCtFHXtLJkhpfJv0eBuUjhaKonroRTPUWZSMriIs8gOaf4Tl72rHVsEGhOQFpdff42x2NJs8UtYC8f1kDqdBTM2TMT6MASgFt+ObZ3zqDecLZ5dsGr+3zzI8A4d9aMYrBcB78FsOWyM/gulGFC103obAX2V+fSGtOBtambd2k++Vv0nL2ITXKPzOxq7Yylj9aE5tfMAxbNZL4UzRC8Gcnxn3N+Lq5cb6S7Y0Gn5ZDlabYVh7Z/TXG2eYTnTK5RPYJVKoYplgZ/RTg2f02r3+eMt8l5WinTKrzNv96kNy1zBwC26XOTsIULe8Qt09qO4Jpf/SruL4td28hA25Dglmdv+0UAABmEiIBBKQ0ImBJCmip2MUdGjqKIQKOLsWnDizilSHsRVqJrQfJRmGNk5OAoMQAwgWOJRD5EoxUIhBhYZCySioDEklJCRYgQWAgUkO05KlBaqazIOxEbJEsIrCiIsMq1Igio83pfXN/shDnFcwoeSGtJMSYRUKRjClmZI4LvnVLK9QFAbJF998MHhNQfz8H7q6tas0CMoem4dwqRJPWtG/yQmIk0C1ZVaa1FoqHvrdUsoq3Z5QpQCpv5YSBUpGjoXNf2WumyKGLwZV7sdrvT5ey6PqYQYiSFdXXFnACkKitEVIggCAW/efc2t1YST74iIWnIcq2I+s6FEFOKt7c3RJhS2u13wfvgXJ7nIQ7eOx+c0hQDC3MKkQRubw43t7eAeDweu67Jc43M59NRK9of7sa60uJiVZW73f7x+anp+tZ56LP4dHw5tybTpHW+u/rwux8ON1cPXx8iEhskobyoiqIKMUhKRZYbZV6OzxbN/e21UhoY4uA4cHtuijzb39TV1eHYtrrMr757X7685Hn+8dPT0DRW5R8+fLg7XL+7u7VKff7l4XRqdF4F5M6FxFzsrn76+aeh7w+H3W9/+G2WZQgYg//488/0/Q8pht/89jfCnFl7OV+MVoPrtVGK8Ob++vOnz1VRgoTgQlZW17c3yloCsbltO/Q+5DmGGLgDERaQpmuRVMbZ0PkQojKalOq65unhIaWkiG7vbr0Pzg/767saVXtpUwh1WZDSQ9cPPty8eVPt6qZp2r7f7aqu7SKLs4EU17t6cM4NXmmzrw+73V5AhqaVmKzRuioGghQipDS0LWl1Ph6B0x/+7nfNpfv5zx8HN3z/44/n8+nh4eHcXIAIRDHD97/9oFd7ja8txCbJeTbiW1Screjq1QItYsFiZMerjJAOk6Vf9jZikZQkI0VZhgqFAyQxxjpROWnJCsKEyIhAGlgkoIQUgk9+GCRx8BGRFKEfPCLmRUaKvE9kUCmFiKMsPGpyNjOkSClkBlRkreGk8qxgE7O8yMsCQRCIkJJJCGKVRsUh+SHG1idtzf7m/vrNu6CyNqT20rXd4GLYv7k9HK5QYRJIwEkQSCUQiVEpDTTuDzKmkFICIKAx35k3UaaR1cw+/PJpRW+ZFsLjHB2g+apz6sds0zdBHF6/X5DiNYzjjHwyQylu814nRNmusZl5sSzzZfMtzhNENv+cmvUKeWZPef28RElgQ1aWxVgyx+umJ1g6ZxZIZG77PDFx+SgLI1plkA2Uzsj3DbOQmR6+bv0KrjLLczCxIwSc6qH/DbT9G6xNFqoqsBIJlIVjyBJgWnnkdpH9nCmOAJsXFZcZNY/LJmEJQaaqhwsvnonXNwLLSIpx6bNFSNlOsOm+03lzRv4kUo78Z1UkZ+kHQYRnikvjZ5kY1Xz77WRbmr/p7nUV2NKTuO3VzQBM02TdEE0Wkv3XwzJ1wiau99eDtyqVsxPyyn6ODyIAyMBJmBQlSZCAcNygAlCToEQgVgoRJTEBu0iIhKBIqZA4BtaZyZV2bUsAIVIiDVoLxgQAKIkEBRQSI6bESVATgogkIQAkEoIkoEhISAMURBnhwAlZrFLFLgNIFIc6zyqjpfdaU51bNwQ/DF3XuRBkrMyMUBS2KApxngQyRT54jPHu5qAQHrwXozABCnPwYRjaEDAzIYTggyTJrEUkYQkxkKaUgIUvTaMAFOJuX7Fw1w2Z0aQVMiSIgJAixxCtzay2KSU3uJRS3/cCWOQlIBhrMpXHEPuu2+92dzc3796+jSk65zgyS+LECGS11URu6ElhXmTBx64byqqq6woAT8djCGG337+8HJ+enjixzfO63tdVDSIheGN1Sul0eokp7Xd1f2k/n36pd/UPv/0xRvn8+XPfOyQFITx+/Onnnz8WRb2/fXO4uSal24TBezTqh3/95s27d6iwTgAEQgit00XRdtH1XljKMidNRVmVec5hqojT9C0hDi4IkMlrUCBITTuYoqr2h/v7208ff4WUnHOff3nMtLakrvb77777zsWYF0VRlTEwJz41p5s3t59++TXP8iyz3jnXDVrr//Af/2NVlITAAmVR2swSkNbkffAu1nUJCIfdlXfOuSGJlBWRIqVImBnYZBqTkFLGWk4SU2QW0gqAu8Gdz2fvQ33YdW3fXC6EGEKwmWn6NrM2Mb88H6+uDiF61/vnp+er66s8z3wIIng5X7qmBRZOXGRZ3/ZDP7x5+4aUaofhfL7Uh6LA8tI0fdcFHzJrL6fL88NjcAMAZD/+aLO8PV+ej8+n0/nz589C+v67Nx++/7HeVb/91//q3LT/8ueffv74ue/c+/cfmmOr17cXZkiczP8rv3X2cBaH+nUIf/7AS94EbHwrFAAZl/JOWbyIgASAjDxwEhSliCiD/VUGIHmdObePKYU++YCQCMW3AyevjfexZSCBRIqYhZP4EEmhUdpaRBWTpJSiUlp42l+BFDAnZomLaRU0OtvtkTkSKSXknQcCa7Q1WlIiAgBEVGSIELNqX+xvVF63Pg0xCABkuqjyYrejzCbxnKblVIhIMu00MUaNCNVYwkcAEwLilLczQ9eyx8S6yB0nLJn7fuPvTiAkgICIPFKW2Yt/BQMTprx272VzufGeUx9N6beLKw3zcmNApLG8wYalvcoCm1jGsqB4niuyiaF+izQgM1iuAL145N9MqiWnW1bhaXOt+S4Im8k3Ezmc0XqWLPBvNWieFYgwrsl6TR43oPdN05Z/j5LDdKulc/7Pf7aMa6WbM+7PctkrjrnpG1xiaAsXhYmxzNk1f6Opa7hmSZMf6dv8jDJTLNycvDUDm4uNs2WViMfEnrkbtnG9qcXTLNtQuGV8lmm0fVBc2BDMTG8my9ODz6xt/Fvkb7R1jvWNHAsWf2ElvosG+GpaycLI53fu9ZNPBHJ+XTaJXwgCEghQJEBEHMuiAYIkTkqAUEQopcgiCKIVIVJkSomVonHnYjTKBY9CubIShVghKklaqwiUYopa6WljYyEmAcB5VSnPrgygQkbhiKIQDHkREjHKMAlzQEhFpkslJQi3vbHGaqO0nE6N6wZd5JQZJpbEFlVus7JKyIl2VTd0qAgBw+BurvZ1UWiEwthMqdvbw+nSuMhVkZHWgwtFXaKCYQjeO+eGssglJdcPKfosy21vSUFMSVsVfezbDkVAmABZxBqLgM/Pz0qrD+8/tF3bdi0A1HUdQ9QC19dXWhGwVEWJAt2lraq63JeAzMJ9352PF+9c17Zlme92e6NN5JhibNq2a/rEiRQqrW2WaWNYoK7q6+urq+trRHx+eASCoeu/fvla5Pn3P3y4vFy0Md9/eI9KD92ZWZJw37omxKbvezC39+/f/Pa3eVmc226fVb7vOfp8V3UupZgi6oRCWTZ46fsIjrXOFYATjCElsCrbDV0XnYOE7TmU++zuu7dfHk7Nw7FrL8fjkbX6l59+fn56QY6//f33GdLx65ef/+kv/+bf/F3xoXRuuL25eX55ac7np8evP/38y/n8ggL/8//r//E//k//9+evX0DEue5Pv/5a7et//9//exQJcWBJnh14Dsl3Q5QEAEKDzm1WVmVRFN6Ftmvac9N1HYAoo0MfiqywWuc2452E4IMPPgQB6bo+OldWRWIWlqzIY3SHw4GIonchRjc4a7Sw9N3gBqe0cs57FzKbHQ5Xg/dPT0/EnGX24csDMguzIuVDUAgAEGPq2j6JHJ+PIfhdXWnC0/PL1y9fq6rITOZCKKtdUdbqdDo9H53zu+urqz/+wRRlN7gcbH19ex9CebUHgf/r/+3fQ4zTMvjRlZNlhcvk2s2v+sa9XETm0Z7Om3fS6APi5HDJmEcye0kIOMpDCAyTs46TQ8oopDWITsykbRCwWSF9r4RT9NaqTKFve9d0fdNI9F3PohMpDZAoxuQDKZKUmFgRIgD7OAKgskp45EkppoRJjFXGGkVEiASMACkklzwhkdLR+RRjZm2KgQC0pQQIRitlTLHTRe0EHDDkJq9rawwgCGKbHAITaho3RGdGIhIEYZrTVUdY2pjoJVPimyDBTEK2eDOatuWALbKt1GVFgvmeM41aOMqkAiyGelkmM248utr2hU3Mt10SXWVeBrXZJmk57dUqn9V33zyabG7yt9xrmFWfDShNHj/OcDXv2znriQsAr64/rB0xwd5rGvBNk3CmDjCqhWvr/+r4LbGY675syuMsQRxYwftv/kxPsxw4OhwjB5IZ5lfR5JufORYKC/cbB2EqGTUJe3Pe0cwgpuI6izg0i07wmlltCDDMj7iZiNP0XGN2M01Y9UiYt6Cfe36e67CVG2GmjTP5g7mOoiysaeXGuHzafLO8Tiv/3fb5xiXYMEJcxpHXEPR4iSXhZz1lmTxLovvK96c7yGYkN6w5gRDS2sWzCcCJvqIQgwizyJh8rohJEIElJWalkUMKwkgIWkVhERYSlinaBeMqMBBAQoSYkkYkQAIVUxICGqNDigTFM6CIBkyiSCS6LjecZ1mtQA9NGgaNqIzxWlIKeZHvb6+TpsE5TKnQqlSKoGA/FFXFh13TNc4PWquq3hmtfNd57wTJGFNVlWZQKcauFyJEQIEsN0MffO+9QmWIIYUYAGAwmggTp2EAEUjCSggAsyIzWneDk8TD4Kq6OBwOeZ7v9/umuVzt903TIgCyFJnlmFzfX1j2dX17e6uMfnx87PthcN3lcn56eiGkd+/f7g8GFaEQkTpfzsPgFCF7uDRdlmeHw5XzYb/fF1UFqGKIxuag5OvDL//4p38psyIvq6Isr6+uhiGYjJRWh6vr8HL++csvd99fZab+7Q837378sdxfXYY+JMrKQwlyfHwQY4sqRyAVhgGYrTk/XpDxu3fvDKIlra1+fn5OzjVCEY2pMh5CdXNrMhKdtZEfHp8zQ11Izw+PzvdfPn3CFIM7V1nu2644VN//7nc3b97+w3/53/Zl6Ibh+fh8Or6gsNX6/vZWEf7w4bvfvH//9PXL7dWNO7YvD4/n41NiNoUpymLo/cW3CqBremPNzc2NG3xzbg6HPQCiIq310A8GzYgZWiuF2F7aVKQ8y0ZjJcyD90M/WJvndU7acmKT2zIvnOtTTKQUew8IzHB9c0WKSCtFiohCSMYIKcSEyuhDVTWn8/PLi3C6u71jwp8/frq+O5g8L+qqH7rgEwiXRSnM7aVh5uvrq/1hx1HKqgop7Pd75+8up0vTtnVdv7m9v/RdcO7L518FkFA9PT6X1eE//3/+1xQHvX1pNxZ6dYxkTQzdekWrlzvJEauPijQt+V7hVqZtGogAGZln0zJKQRGZWWltmSWFSKSkVFGSSB7G/Be01hRiSwlDHYFRpeA0SXKOpbcCfuhFhFmAAYWI0GiFIimxIlRaI0BMCZDHNRoppAjinAshiHBEKkqtRoEXEgsT6hQRSKEqynJ//fZ9cThgbkmR0WTKggATpyQpEShQIsijkZOpUjYRwbglKcISKEBBQQVbK7tJnfqWD6xe5YwJU8Xe2WTPBfhnWMJlUBaTv+DTKzcacHaOZ/99W4kFEQBoTjrm+R4rLq+NW+NO82wZP3zjjsNrN3/LhL79WSmhzPNsTiiBBZOXJsySw3zWLCht7zI/N65MSF7/+SqWgRNOfTsSf+Nnw5I2weBvT1uediUDS7+NqS0oYz7XPNATVXkVp1tvOt2KYCnfOGaJ4etuf0VAN7HJ+TcbqrBZzLWA/GoXptjrOqMWbjvR+iUkhcJzRvyk0CwzclogvvhErxjinOI2Pd4rSvbNw89UR2AxQTP/fM1Qtyd/Y43GR6J5+NdEoOmITWtgSZrb0iAU5E3DFvF0aZMIgSAgS4JlOBEAFADItDkOCo7VvKbRIxQQUSCCzEKIEhUQkMfIKCIMSRQhKj2WfUdCAgFmEdZjNXam8X0YpThJQoDCLAoEAEhJgggpzwqFgROmELGLmlRVFpLnTRu1pawsTG6Gvh+6zhACWUMUfexP5zrPbu7uNMml5XxntTWXy+n08my0QpbgvCCStq5zfdNmVR59EGBBgMhakVEaEZUiow0BcIy2yEUkhsCRjdZFWWpF7fnSdl1hM2OVVhoSJB84RQVAjMCSWzMOz9D0KcaqKggkRh+CZ+AxoYeUurm//df/5u8fHp5++stPWVEoRUM/AODQ92/e3aeYzpfz+XKxxgqiMlqQHp5ehF+Y+Xw5H0+nz18/P7VNBPX15axOTSJdZHn39bna1a0LA1D95rvq/n0Cm+2uQ7F79tQlXVzf5bn5+vGT5KVYkzBLITpPUSs3gM52NiuSKpzrNXFdllJDoM6F2AxJAyhGbSghJbb6cFek7Gpfvfkeql9/Gprjocyj69i3Lvqmbf/V3/0dGv2nP398vjS9Tx++e5vnBUb+8OE9cPruu7eX87k7nYq8MAgG5Yfvv2u7HbuYhO9ur5XRGEGChODLqiQgrYyH4Jw7nxtrjVYKCcu6yvNpEXdmTXBeGJpT44wDkOCDcz5wVErFGMKghJNzbr/fOxk+/vSVFN1eX19fXSulnPfWmhgTAMaY9ldV3/ZtyzGm+mr/mx9+8/TwQErV1/v20mZViVoN3eXc6B3pqq4Q8eH8taqqLLfBeQWYWyu7KoVY7kpr9cPD85fPX5Kk/X53dTgcrq93RYlIf/nzT5Tb08vLP//DP4riv/93f5De/9f/9b9qnJe/zgi4YoO8tigy8aLZir7K7Bjfe5TJiUVc/MDR9o31iAFxTVoRABJgJgHBONslJs0gqFQSElQBOIpoMYp0lpUqJZuXpqzay0mCc3BhHyMEMlYrJSkBg9KgrSGCFBOgEhStDaGhFFKSGBNIHD1bQizyXCk1OB9DIkSlMASvtVaZZaEgurDl7ubN3fv32W7ntSKlEkCI0XMSEK2NWjR/AQRWUz4LAstIx2Z4m1MpYd7FYMo0nfv0G5xbO31jaBEBxlyTJSliBKENsP+N62zxfv2w/TfRNud1yYGYvOhF8AMBGms2yuqow8yTpk+LLvC69a+khr/1ePND/dXEmkFrevaFdK3HzedtWIgsqL8IDMsvvqVn4zPPgYxZevnbIzIHTeYA4yqDLF2xvDECa9Dttaw6NeHV+zSdPb8/gEuHbDjwxjPBV101A/iWlOJCeOcWbJjqrJFtImLfRCzldXsm6rEZknVccIz9ShpfbUSaqOdyIC6ao0xe47Y5C7WVV59xdaE2QhJu6eb6zH/NQLfjvEhfaw/guuXLVllEmCc7zt06S24L6dpcC2F65QWRGGShQgAbp2LDp2BSU3kJD04dyzyainGXPiFIgALCYxEjFADkMaK3qTGAy7sqogAQRCOGeaEDIfAcUkXSAiykSSkQHpw7D32ZUpnpCJSShCSYmYjgzk3bDykGAXACUpoYYj+4vh+y3rVNG3wobcYhDF1vjLHGcEpN04ki77u27ZRRiIAIbvBd2+VZZjJjiDiJQU0atFHW2DwvclKX84m01Lt9nmeSEpfp118+NnC5v70hrbIiC9GnEBBRK3V6Odb7WisSFqO0AsxMZrQJQ4gh1rv67dt3g3NNexGApm0HN+wOu753JlNAiIg2t23bV1V1/+ZNjFyWxeBd9HxuWiFlbfbLTx8/Pzy4GFS2+/D7+8P1dTKGiJ678P3NnTHFXz492Kosbt4Sk97fKlOc+uAcgILOSyLRuQ1kbKGSUk2CwUUfFGrd+GDr2xi5iWDyEsmexT6HoQ1kqYB9Fp1DJbogVOABy+tdcfWeY8iN+n29646PVn7ju2N3fDq+PKUQzy+nf/mXf1GU3b79cH9zc3uoQ9vc7Kubq+vrq4NgeibFg++c833f+nDY7a/2e6s1O4eArh2KLFcFXVJCpLIoiFSKqSjLoihGYprlmbUWAXrvhCW6iADWGiZFhAJiSoNI/fGYl1lRlYPzx+MLCHZt2w89jIUhkMbEl7Ksyqr0wfdf+mEYVEPBxy4k59zg3fly3u8P1a6q9rtn/RCZ88xe3Vz33XA8HrM8e35+fHp48oN79+6tJrJ1HQf38vJkrVWkLscLh/Tw8IgK7u/elmWptP78+UtiEWartdUKCIbW/em//vPt7eH+u/d6wgmUFWdWf2f18+YXGCd7sL5//I0t4BH1p1XVOK30EBQei4PMcQsct5EHSDxqpZyYhJaMDtQ6SkwpBYGMtMZxL1Glyn0JKtvtQ9e6okaT9+eTay4JAUgpZYBjTAyJAQkVpZF+KQHRagEM5jE1HRUpozOkJIwgCjFEyepSZTWzFtaqvMa8xrxIipgIBTQiKkrMgMDMSMjTNkWCRMhAMrn187ZeIGPm90SBxsrOtNjE/xN5Ye7gTYLB3OtT6gYsSL35PAdH1oOnwcTNeiiZ+BeMW3vjGlRBXEQIgSnLAeack4kSjeWFtlLQfJ8tB4K/Wjr1ilRsHX2EbU4vrpdaf7tA6ZqANueRLIu0FkEB5sLKMCd5rA8vm+DcEgcaAWj6bpUylyeeLizbe8zPvS6kli2Sz+RIpl/gpkLxumPWBpUXFXXpNVnbsXSJLM3e0J+FlMiGUyDCtDRO4JWmNYt+Y2Ef+aavZX3KTSrfPIXW43C5zRjDoXmOjU8rr/pwJcTzk8GaCLd8tXTe8s06n74JBi4a09rvcy9uKOMrBrRpzesbbeJyM1eeih7BXIxyHRdZh2yaWGOQX2j0JNfGjjOOpiYtTYVxu2mZlKJFr5lUd16tBgogJpDZwyGeqOq8dywCgLAggSbm+fGREQVZICJhnAeQRDgmEhSk3vkMsXEpXlzH4YqK88ulR1CFkTx/OffipSoLleUpegYaWJoQTs73Xx5P3sfkoouu60F46IesyLK88s6hsV3f98Efbq5igtPpGLxHkP2+zjLbt113ueRFRiCRmRNKRqRM5CSCt3c3d/f3CtXl+NReTvuqevjy5UT4/v37sswRSRiqOicA4RRD1FmmtL67u0OU4LywhBA+/fLpfDrv9jvUBoQuTcsgRVHaImvO7a6sUwhFXhJx07TWZkrrPNNZWZzbr6TU97//7T/+858//vrzXz5/unnz4T/9h/8BVdY5l5fF45eHu/srragHblyvbu+rm7s+BJ1X5ur2pelSVlwCYwzM2HYOFFJVNpdGbAECHaApD53rIuXa5D4ObTcgyO5qJ5idMbtwuMoKEBdC3FUl1hlLOp3PArLb1xLT8+l0KEqbH9LJ3dU39z/+2LWnv/z88XxqmuOjNhXdXt3fHaxSGOyhvEOB4/Pz0PWX0/Hd2/s8s9f1rm0aEK6L8vOnL2VduabV1ri2MXkWfeAohnRVKaMNIETvU4xZWaSYPPjdrhKFl5dT75z3jlmMNnmeA8qY5yYgXTf4kLquK/OiqIqHh8/MmFlb1VUM4Zefn+u6evPd267tTqfzuC775em429f1rrbWPjw+KqOubw5u8J8+/WIynZf55XyJnNww9O2giIIPIThNh+Z4GYbuu+/eGKO1MohIQNW+yqsyr8t+6LK8sHnufQA3VLv69s3dzx8//uf/5T8/n451Vf385598f/+H3/9eA2wM1QZIJ+8T199PWLKg46yLzzZVYLKDNC0Em97+MTWBJw40g91Ycw0ECBBZABiRgEUpYCAESCIKSZBEOAkgAAuhQsrQGJVBDeEwXC66rExZdqfKDz0hcIoSfBi8pATANjMakVkkRobxrVEowil57xBYaU2kbIZCwswpRTRGyIDOsnxfFge125U310lrJGRCiKKUQgRUatw6KaYEiIgECsZiOQhCAkmYBJgAJkGFJ5949BWXNbRLWGbLDrY2e7bkUxRitMQ45xgvxnWJpXwD3MtK4hW1Vq904g1zRs1o+JHmujvTgCGukpPMfGTGIAEBBpxI0RSIWqTCv/lEG9SalvvPyDleBOa/5y5bAH+++/TEuPBp2soLi0O/4UAzwRqnrszBmaUnZFGY5jFaf7f9GXnUooFNwD3LL3NXTwxtw5Lw2yv8VYe8vsvcgvkO67huvxi7bySxM3YvnQAghIugtSFxCymbZJn5RrCmx0/oOgceN5eYRm9W1+auXmsgrh03oTROo/aKEcH2BZjVxU3TARBpfVRZ+3jDbbZkRpabrmxvUac2rG799EruWuWfeTynQ9ZtUDadOCc7AYKgIG+CZJsbTyxGZsFrQ+EECGmiQZMENDZUAQABMyAI0mg8ZdSEkBDG/bCAAQRJFMO46hsUqtm0gBAgkozhSAQEJAEFBCKEFEUUQsdCqEyWI1opjJN4Gvp9nedFjr2kFML4giB5kWPfn9uuTxxTgq6zWiPR5dL4YbDGIlKvBiFkVOemt1mW5TmGKJyqPFOIiBIHZwCtMeyTUciIKUkMDEg2MyGeXo7nqt5zjKfT+epwdb3fcQw3d7dVVQqz0oo0IaK15un5OTbRWvPm7RujDDA7dp8/f7W5DkPour4fBiLtOT6fjixye31TX9e7Xd13biwUV1e7en/VNu3nXz5Zm9kiL3f1ubkEligqKPv2N398/7s/1u9+bFxMfT9ouv/j3w1dJ0aVxua5e3N9++Xh2WszsB66FE3pQoiRFXFprQLu+14rSCyNiwI6qNwliCoLLN3Ag49d02NKbIui2InNAw2eqShLbRUSPrft5Xjs2v7+3RtQmbK0M9lwfCTG29u3b3b2+/vbr19+RlH8Xr4+P76cLuenr/8cOTfqtz/+4Ae3r8qbq92vP/1SF0WR2yLL66qqqmJUZfIiL4uib/vrPO+8C1GyzDRDBwDeh6ouj6fzy9NTnmUEwJLawXV9Z4wOwTvvUkp9NxBSYu66jhCvb69v726btm2bbnCDsUaSWGO9925w1lqtSJKkxEPvQgxfv36pqjrPMxHHzFVVZDaLiQ9Xe6Mt5rS72n/59Pnl+aSN1koXRf7jb388HU91Wf7x7/4eOQ29E5GuGzKrAYFZmqYdQhii7/qegYenF5PZH37zg0/p9PD5l4+//PzzRxHOs/zDh9/0bqjL6rDf69kivUrKhFGknV5mmN1tlvW1RphclEkJkK2JmJJhRuQnBBSIi+Y8uk56sossOJVYBIiEOJYH4sm0CKHIuH86ojIUBUShQgUCKs+LLFNlYXd1cb4E16cQOcW+7ajvhdNYn1sAhZMb+hgSjFwqcZIgRkRYjAajAUQSJ4hMBpQOgqDyYndd3b61h73d7cSoSDSaIBSAxJIiAyORISMAgsI8RS6YBYFoyklBYmaijXmX2XzLTD4Wo/stFC4kZh6H0Sotv1tiHNvk0nXQFmu/MbyL+z3FJVf3eTLGJCDzfvC0BMIWqw5rkV6EOQkDBUa1b8WVpd3jBTaZH1s8X5NnRGCdPtPvSSannGACmdlVZtiKXIgASEtwEdZ0k6nFM8DMLZh6cENzEABklCThVfwLFw4xX2eRiqapvqIdzMksMgsBMkP8irUzPd3eYBqcrQoyoxesVG5Celm7dUrMHTuOF2I4vcDA32RGj8M2qy/zPJylSRnDmEt7cHFsVg49PfJEDSblYqqAIbNyMc2WefJO5GUhZ5tYF2y446v15/iacKx2abrhzGXXhYYzj3oVQP0br9T6xTIrZL7OpIgh4+ihyHrQSmEFcVkFAIAotFQoheWNkIUgz7IjwsKrppCXTM7R9OLgKPAIAoIiBgAkGb2pub9h9CtHe804S20MzKMDicgwE9Jx9Gi6FbMAiCLNwI7BoApEjqCwWpWFVkEbGRLHztuqRPLn40UhGA1d0xgFgBC1srkRRUrrutwdQwSRqiiFU991AtS3PaEMfdueVF0XSiJEVtpk1gJpk1lttOt9AkYZorDWNPTdMPSK2LWXj3/6083t9YcP744vJ4X6P/5P/6PvB62UIhKJWcieHx4BIAlHToUunY9gCJh1Zn/4zfefPn3Wme2d88/xcH3w3kUXsjzLc6NY+raNMda7Okl6en4x1rgQzl1bCvUx3rx94xj+5ZdPPeL3//rf2uomZtmnwfuEXmVZlkdUkBuy6tPlbND05+GpCdaasqyDyoNgQEroFYHRKtM6BYYYWFTwjJkKyNpYqyvX9QkgUcbKH66yq7tbh6r3vtqVmCSkSDHmhU3dEPxgLRmt6pt9FH76+Gtzevnj+/v7fXaT58qgIr0vdllRvf/+h6HrP338+NNPf46dG46nH3/8HqsKBa9vrs7H4/Pj829+82PvelKqqKqsLIzR1ti2aUkr0qptB1J0/+5NWZYxprZphfnd+3cPXx/+4Z/+dPvmOrfZ6XhShKeXU1GVdV0nQWM0ELngASB3vh/65nK5vr76ze9+aNr+/HLc73Y2s+25RSQkGatzd23HwmVZ3d3fIUDXdM8PLwp1XuRKUde1KYUQ4+VyBoSyKrXRKcYiLwHg/v4u+WC1Pb8cL5ezteb5+QWFy6o01mZ5hooufet9yKvsy8ePj49P//CP/4fJshjC4XC4u72NIf32d7+vi925a65urozRerHxsMgBssQKJjfxr4M0M36POXwjGZpe0AUDZhYlNL7pwqM4AASAwjxb54QoQnNK4uyYCjHOOQpImnAiFsIEEUUjJiSVZUqpsijz/VX0TlKKIXRdF7xXCEpRlmUhMQAPTesGNzTN0PZD1zKx1kYRkFUwlguKKaEPKZm8ImXt9b29vjVXV1SVnBkxKsRECkGEWAhFISIpQI2MIklGBMYZssaUIMF5D3eaQVLmABnM1GSTMrDC7trPk+wxdsQGCCb/c03RWUgPbNjH6nHP9nraHGHRKjb8CNcrreixwN4EMwusz4CxLDsaqxwtItDMM3C9FuASf5pvKUtjloeZ1f35waYLTGd+00Nj02ROM9/64bLeaNO5a6rHko2xCkgowviKASwdsFKlV7/GNU40dZIgIvCYtrGGDtcRmNBv8hhokZC2LG3NRtrmB2/AHTd/Lag6F+mRTZcv+T2ySFVzs1eeOWWVLblfCGPW2qInwZIGNAkQvBDANciIOBYRWAjFosDA3NHrrH/FrRYyt8nTwomRLMxtauyywn6rG8HCRNcV/ktPzUG+VxwUxnyyUS+a883nKxAsRdWXJk4rIMcZMI4aAyLI6/6FyX5OV4a5FtLMOLdzYHn4mZVPlla2MqTMbEaW8kwkM2eaiqrhOCjb5DjB6ciJKQuCBmLgSKwz5TiRI5OZWFhnjE+JSceQfPI2s1qprLAI4t3QdH1V6LKwojn4wCleXx20MdVuB0WRWxtDvFyawTk3DCBCCM51Wslhv8uU9v2AiXNrtTZKK12pru/qXRkTR4C+69q2DdEVxggpP7gqyw/vq+PLS+g6TepQ1ynFvg1D157PZxDJcltW5fvv3reX9vOXL1lmM5P54PrBhRCKshCG48spCd/e3dze3ikNx+cTi7z78M4Y03TDS386Ph+Vtu/ev0cwtiqHxM9dd0nyw7/6e6j2lz4NoCAvBw+R2QU2ife7MgJLXjwdz+HUAUOZVVmeI9iuGwDE5iYDAU7IUliKnoHTblc5hCACJG3XamtF+M3hFu8PChJBis6L71CrMsvOX046+by4rg77f/OHH0CpS+vb9tQ27T/9t/+i05CnXt5cv/lXv43Atx8+aEallFLEzt3tD7f17tePPzOncf3P518/VVUJLPVun0J6enne7evvf/ww7sw1OGesadpu6Pssy5XRRVEgEkfX90NR5Uqposi11pdL03JjrPnh+/e7Xf30/PL09FTUdWK+XJrB+/1+T0aZZPK80Mb23RCcJ4V1XZHWbnCX43lcxNd1/dPjU1GVJsv6fjBaX99cK6THh+c8t6TU4fqQkhxPx5fnFxHc7Q67Q62V9oNXpEIIXdMSdM35EnzQWjs3fH14ePPmze//8HsAbF3vYrx7e/98evn68PCXn3+6u3/z/fc/HA7Vh+/ff3j/4ZefPxltq2r3vvrQNt3nL180Ak4bQcPssYx+Bczi9iT3r+kjPO5eNZmHafXK+M5NryJOMZRptQICCCEw4ri2SFjGVD9ABgHGkSBt4BwBiYhFmFmSADEpw4QMEplFWCEqpTQCGUUK0WqdcgIqAMqUQvAkQIqICFClFLJLAwyubc+nU3c+p+iNIk5xahIzpUQcjWC+OxS7fXF7T0UZyQQEBcKcIietEUAs0vg8wEyUhGX0vQSRSViEEBMITl4ikhDALHcL04xZS14ArKTiteUe4XejR0z0YqafC/wtiR4Cs51dnM3ZPR2Pm2zqykImqjri3YJQsy2f9tqYoWpy5nFS+BiWb2erDtuPC5ytXGyiD0tEbUGjhTcujvwG8hYas03PmYjTFg6XjtoqYuvpCwWbIrCwIObaedsQ0jwgY7sXDB33XF9TTaYd2Kf2jmO0SVlZKKasAzOP6StknvZyX8Z+BdxtDOevaOAYXJm8j2Ujr7krtvRN4FWMZ+FcCUeXY3zV53qly0RAAEDiiSgwziR6bun6KNPI4qwqrQ0YaQJNzZ3rLiyTGebhQng93AgbDrSO4vQwaz/gdJGZ3659M43F5h2aZtV8pfG+C21aym/OozDTSFxfWRkXfTKI2gi58/RYrrsh0Ms2bssMAZiywqbT545eSbuMAjgLjNoOAgAwjdRGhASAScZ/plHPZQEQIAUwBst4NLGimBhRMDELYiIJpJAxw6y1GmJiF+IQi9IYRTEMqE2eY4oMog9XBwNpvy9jMq7pc6MZQRB1ZiKn3rsYIoMoDZlRiEqQEIVTevvmPjemPZ27S5NrnVvdDoP3IfkQOZE1RmsqbYgDorm5va3yMjPWeZdYhuaSG5OXVff80rshhigQ9/sdEelMl1VNhtqh691wfX/DggJ8/e7OO1fWpULqOtc1bUiMpBBQGcs+dH0oxCirUElMKSv17XdvkLJfPz99+fiJdrurd7/Vh9uTi00ClZWJrGiKMSIEUsq7INEJ89BHk+eH60Oh8xQTp8GiFEWmFCtIFAODTz7i0Gc+ZA5ilAKI6h0RsIJdkdfWUMLLqfE+lMa8KXV0bgewu7YlWpMchOEuqyHPPv7zPwVW5+a8t9w+vvyXf/lv4bcfbP9iOP7uxx8OVRW67tw0mUGd4Ic3b+9udjbLUow++PpQRR9tkZVFoYzZH65iij//9AkIb66vB9efz8e+78uyvNpVznnXD4fD3kEyRoUQnp9eBt8D8s3treuc1ipxcj5oY0OMX758RYSyqlDR8/EIRDc311lRfv711+C9taYoqseHx6IqlVakFZHqLp0t7Hcf3idOqOh4PFpr8zwrduXV7c35eOq6njRxZGEpyzLL8qvrKwAJId7e3YDA5XTu+/74fLy7uSnKwlhDBM/HoyB0fjDGPjw8+uCzLD+9XFLkXbX/8P67P/7xjzEEFmkv3YcP75u+UUqEozVUlEZP9npdTz2Z240juSLlaItoMiiTKYBpn6gpIQMJERCJBARFFKrErIAQCQhZmJkRcVxTB2PFIMA0YhKCIBEjEiVmEOaUFGkRSSmSUgSgFIpoIhGEKDDGR2DcwWvUS1mUtSgAhCLMSRJSfms16dJ7s9/v+j7FYLQa+j7FaLSSNFI6EaRyf8jKUpU7h+j63gWvgEERaEogQqAQISVJDMKMQrR2iQhI4iSMQGNgAnFONoZxG0miOR4gOG8eLZtuXn4W+FoiJLQwojF+tdaDWc3uzGyW+MwyhAtQgMjS2aMPOR/DOKbyzHgyChgic5U1EZjYnkxmfHuv2RddM3y3CDzBicC8kH/Vn5Y+mPpwKTK0Jugu+DDD7XzLBbVwaczKx3Dz6DjipcxEnRZquNLGmbFsFprNN93uhDbfd7773LglXWQiTDPhmafWLF7MHGVzw+X4lTjNQD7zpbU85WaeyDQMr2SPmS8RzneZ9Ixlhiz3GVstM7NY4z2T6rjZgg0Apjo9m4xkmVUHGDF+6e41sLv0EW4ffmY684BtJj8iyqIrj90iK2VcDt0O7mZivAqByZqyuCGC08zHLQt/dR3ZJKkTzt08rc/HuYdhjtbNfb+YzE2zpnn5bV3ZhfhuGO5CuGCaqqNdRpSRBI2pk2rigzwXeBQaC3DgLPwAbZ0EEIUjnRUApRGERQECiRjdx5h6F4nJs0pYFXWd0+n5KyEDggfM8vxuvx+aRgEQqv3tTVXmKbjk/JgNcD43bhiqqjBa7w87RLicTwCpLvO6zCVyWRQaQQMRUQp+6Pso3A0eg7q6u81NHmMwh8P7d++M0hKj+Hg8HTmFrCqDH7q27fp+xI6syIq6bLqeOSHltsjKugLEvCxFYz/0wObS9FWZ395el0WJpIzJAHF3oObSPD8d97uUVboo8/t39yGhoGal25Ba1Hc372F389hFx6KyYvDJp8gmQ60psiJQwO3QQ2KtEACIVCSIzmlUhdYASYQ1idIiMRlKZUEaUGtWiiEEN8jh6o5V7jgej6d9mSlFGJ3FyKHdWwP9uTSqRNLEWmvfvLQvx7/8w38TZQ7Xe3CtTmFX6c+f//LP/9t/1hze3d7/8N37XVFmRPd3N+/evFMZYgKtNYtIjNV+b1BdjidAzIrcWNNcmpBYKxVC6F3PAEiU5blzHgRIoRuGtm2FQYhTCjH4zFolymYmz/MkojODnHIs0sspBF8URVYWMDhSqm27y/l8Op/fvHlTZLbv+sE7ZYzWqqyqXV1dzi0C1XVtiyJJciG4oXv4eokp/OY3v83K8s8/fRSCw9UuL4ssz6uqJKWen16GvtdEu3pX5HmsirIog/Pny4UU5Vn2/ofvu6775ZfPWZHldbmzV877JOnu/u7q5vY3v/t9URQdR2auqzoJf/n6OaVUFlVRFPu61iAAMwgiIAiy8OZVXO0XzOI9wlRcflzTNb67cwbMsvodQXgUjgXGbcBQkswaL7AwMCGQpqkAHRMKgjAkFAUCCCSkQI2wigiKQJCYU5QkUXDEMcEkgEQCyCIkPK04H0NoSCIpCSTAIKKMprrKyyL6mFmTi4CIQkwpaUXMzMBkLBCxImAgUpJiFM5qi4oSiyD6lEoii6iERISUCiC9c2QNKcVASaLSGhhEgEhxYhBQE97wJDds7PniOa9Wc+yk0eWbkxsm1iELNr0apY3tpyV2skASTXKdzKkNAIBEgIgKGIBYQKYBmxnDzK1magEyqVobXFvmxqYY7sw7NhLOeLU5BV4maz5qKgv6biIkM8FZhbEpiXkDNTP8zZxtJgdr6sh4Iq+6wVozaY7HiOBUew8QZTMGApsP37K8V7+ZmzMz1ZllCG66ZSZ8cwPmrpoeiaZyepsAz5SBDiufkbV3YKbOf5sHTGctaL92mixtGTelG0diKxcu/T/qSKv0NNEpWXJjpq/nmScrd5umyNrbOAuMMOqgi+Kx8Pe1z9f8nqnZCzVcHmE7C5bHnp9iGzOcB20mkQDfMJ41DDrqW3Pwae1HWcYUt6ZyvTkCCMOyEhG2bJRAQDZ0ahmajWI4XYjGDpu6aOw3mCVxHmUeBGRkAQKQCAnBjJVxxvpqwokm0zC2ggQBMAEApXFpKqKAZtCCGFEhARgfYpvYJizIGFNqEzhF8VIVVWEwV5YECDEMQ56p0mgtEpx33VDnZXbYKcShz/LcDoNzbri5vtpV5fPTY6Z1aayydPYBlAIB70PglJVFnWt5uXhORqvM2sJaRQoZ8tKCIiJoXjiGeLmcNREp2u3rYfDMHENMIWmlEIBjJADmFELISwQBTVpnKiJleX5p2rIq8yJXViPol4fT89cjKnh7X4bggNHoXGl9HMLzsRnIfP/3/x7r/YC674fc5iBamFkhoygiq43hBH6wgJrM/qZkk6GxQ+QszzUDMPaXXpdEliDEDKUkyDiWGvIcc1Q56KMnF13b+yElAN24oSx0Fsi9PJcEH95eUyq746nOtNXInPrWx5Sslj/9wz8Uf/xXt2X5/e9+67oXdzqm79vm5Tn0w9Whfnd3p4Q1qjyjLC+Pp6Mfumq/A0mu6zHPdocKGGOIbnBd1xmj+849PT6ipvs3b4a+j95//fXL/bu7osx+/fLrbrfvu04h5bktCruva07Su44AM2sFkZFA+Ob25uX08vX5Kcuz9+8+7K8PrnfehxhSigkr3TvHzAAwDEPy8fZwuN7vno/HtmmQ8NK3iNBcmuen5+8+fBAgBr65vw4xcBKbZ8AcfECKXdtezmdFlELUWqXERV58/PnnoR9CijH4/+7f/du9Nf/0p39yzpdlpYw+X84393eHq+uYYnu6sEtKSb3fKaP6Zng5Hjlw2IUwDCbP9GJFEZCXwhtz2smEJ2OihuCoGyRmUjg+HiIgETAgIjOjUnN6AwMis8QUCFApTYoGN4QQtdFaWwBgSRrUjB0iDBNbksioAVijKrJ8cP3oxiVhFiRCBQhJQISFQZCIkFRKCZGAIYkwRxFRClBEYiKkBJJiMErpIhMGzASIFNGYtgIhiiIEIeBBmAgwBkRVGhN7n1DK3MbEAhKAkcVoYxjE+8QeSJMxhTVBgJMohajMFKcjJciTwZO06CuCIsQCJPJX9nTxcuesqgV9N5Z4hVlcWdRyGi7+8nJxma+IKEg4VmJTSONSFAFgZhYQlnmwYf4Tp/xNXnzYJYNhbrZsaA8sAY3poDWBZUaUcXkPTooRzoGtmWdtHmvjGAOsMZLpf1yxdFE3NpGUBcOWCQzrZJ+I2MxUFumG1rjKGtKbD164pqyVIQQ2mduvdJg1wgEbOjmTQ5w1p00cb4wXfwPDM6dYLvP6w8KOp4kys4BXfBLXX48jAAi0USVoFt0m8rAQyCmJaYvVa3u2/2/inxsyMmtYssZ6li/n8NZy6c1fE5mVLV+Z+3L7Lmxp+DK9Fg47KUzz6yPL2VtpcIrvzwdsA2ivb4AwcbiVg85TajPssxswJf0gIkwJQ4unMHXXOmlg86ALbZ747oaOokyjTCIM43WBhYBw9A5mGZ5BgFCmCmQCIqIAQcUIBpVBNAkQgYBEAhClSEqrzKjmcgltrxSElLphKG2BmHJtMMsu3imR0maE0CfmGJVCRWStBWZrDLIEN2jSRWFSVSuF3flSFLk1qm/84Lwy1lqbBBmorOurPBu8zzLJbUaIZWHLLEuIXX8BYGHp2i7LspvrK1KY56Vz7uV0GgZ3c3879MPx+eR9QMS27UJMTd9nWXZ3e+Od984hkXM+JK53um+bh8dHN/iyyvvBD94LJt14yOjT08kpW16/MVd3xyhdEm2LyCQhaWs4U4NEYURICCkOfer7rKjYJxcdAoG2oDCkAJystQQchmBIECH0A19OmVYqUK61LnJB9enUDH3M9rurm13ywy6jQVMj6crm9zarymIocuEgzMfT2fnhp3/+c/f8JQMPzfH3v/+3N1UlORVv7g1h7F1u9f3dNTG4rgneGWsR+O7uWisLAMXNzcvzy5fPX3Jrrq6urTYhBOdcVVeG4HQ+78pDcK6qKskz54YQkwvOmHxwQ9d3/v/P1n9+T3Js2aHYOWHTlvm5dsDFBa4dJw45HJJPT1pLT/869YFPoujGcGauA9DuZ8qmD3v0IU1Vg6q1gO6uysywGXvHPjsijFVK5lmmE40IPvoYQtd3Os21Ul3fu+AZsqZrrbVVXmVlIYQkhKzMdrt93w9ZkXLB+qFvmyZPs9Pp1HcDIIRIx9OpNV2WZyFG6zxjmCRJpCBb1Z47a22Sqqqp+74v8oIhFXn+cH9PIez3+yLLf/zh+0AhK/JzVbkQzlW92qxe9ns72LwYsiJz3lOMb968aZrGe79ar9rq/OHD+6dPL0zyzfZWJ5pJ3tb1P/7z/xTzu40EcRwrKE6WXUQcwx9LxJ4BhgiIGGIEYkIIYweFfDzhBpkMPgDDGIlwXPwVGBPjhsjeusEMFEhrRZEgRs4ZQESaNtchIs8oRkCmGPLeNJFRqiQXDCIhonUBBIMIHBgwoEDjSetEESIwZCFEH2KkKDgXWhAgOU8QQyAUIBMJRIEIBQPkEZgPEWIAIBc9RASOyMGQD4NbJyqT/Ph0MueTzpW0GpkCKWIISmIYbNt2592h7epyvXr97mudpc3Q++gJhAcGyHrvlESB46GsiBEBI0EMCHHanYx+Cq3TGDjbimke7i9osvDSZf4+3TKHlibRZ57KT5Riho6JHDFANkUqLwEZAmAA0+JjRIBlVQ4sBhucNzy8xopp0J7Q/DouNVONheROJbyeE49Wh6sTBaaiTYA3H3wGQCM5mHdnmMoXZ8Y1O2+IFohFxDgBKU4QMQkSyGZ6j5OfdIZ9GivoypUBQDNFWIDsGhavNIWF8OB4LB67rLMbG4DRJGXNtHaWTmhxkc/ZGq+JX5qyZ6Fh7hkw7hkzHS/6JV2AWau75pdzppfMj3uXzh0Lx329cOlhy0xoasdxZLgs95uXAsKXvGEu29w/Fx4NcxHmZp2ziNdmtzGiM3WPn84M5r523QywxJrpiizO7fVFyHLhxj8hdoBL9dLMixbKRxO3pMlcDAgMGISFwFzlh8a3cO6WM/ml67SW93gu0RzinIU0GsPq09DMxhc4AhCKiIQIPDKkcdOR0WuAQGwMdCFjAEghsnH0YMxTjBBRKAyInhERRkEIyIkAhcAyTQrBIHYyF+v167bu6kMlJMsTbZpOCVYkWnCQgF3XkXPrMlOCASA5F5wNDCmG7XqdaKUE47BtmjNE31a1NSaG0LXtzUOus6TpBxN8Xq68d8EFzphMUyUFZ8AYBCDbu9VmTRSccc77ZuilUIyzrCx66yLFVCfRBzdYqSUiP53PbdszIfRKAzCGfHuzZZw3TdcNQ+zqpu8Dx9XdJtHpvqrfvn0js/TlUFX12cus3L7Sq7sqQGUDKq0YAxsZgwiEMQoBGILvWhc99l2CoDWzHpyzApQQ0BkrPGEImVY+BIZcSE7Wo4dMJ0WiBEBTNTxyzbQm93aT5+syBttUR5kmGiBRMoUwPD2pzWq1Ks51d67OTPCXzx//x//7/yyL5JcPm3e32SoOWJn/y1/82cf3P9jeMh9WNyVHjNFpLRMlIETvfK6VVvkw9G1dS8YYkDOuqusszYpNiZINxkUKr1+/bpqmqepVVqTbIkmy0+kYI6Cgl5f9arUmBlpqqZKus+fzEQG5EP3Qpw7u7h+6diDCSPDdt788n09PLy9VXRdZsd/v8yz/1W9+cz4dXbDOxd3zbrvdfP3N1z/86Yfz6Xx3f29t15ueKD7c3gmOWaJWRV6fT8b6VKXrrwpnzPPnRykkuHg+nBjHu9vbu9ubumrubm+Dj2mWC6WEkqfmbJwbnEmsQ8CyKO8e7glillIMIXgfI2VZmubJdrUevrefX57++m//bdvZp8enc1vtdo//9P2fBDKMFGFiLAscTzHvyecxw8Fo+I0UERgBWWfHA3tjCEJwxjgx5oKPAIwJInIhMuSJ1Na6tu0QIU0SzgQQBgwIEZGHEDjhuFYKIjHGicCaXgJPhGzOdZGlLroYorNWZymNw34AisAJGWM+RkCK4LngMB73ghicJUJGgMgCeQYQQ2QIIRDj0hrLuWScBe8jRcaRC06c+Rj4tPoskLPd+fTy6f3N/S0CFXcPiqsYQBHICE1T7z99PFbHQ5ZR9LevXiMKRB4DefAiUVmaRYgxEJBHGN8pgPkc+HGAHu1QV7A0z/xG6wJOq2DG0RQXUIAv75j/eglOXAQQXAZohIgAjCFjyBiMccdpN7wJyy6z6wWZZ2X/ArzXUIJwmUrPigFeBnaY+QDNP46961osgCmQupCjedI7qzXL/2laFzRLPBOvGdWPOY/zY2fYHk33bPoSp1zj5HQbMZLhEjCc2eKVanUhADSBPS5nsi6VPk/4528RZtxDmukn4PJ/muOgF36AcAmMTHcvwaAxRkYLOVwo0yUbMwqP5bxePIWX5pqAerlsZn3XhAgWMkojY5ufO68io3m+NH8u3XmWkWY6uXQQNrf8WLCF5EwkCtlMHa9680yOLrQeLkskAJbo6KWQSxPN3y/Zo6V3LOrW3B/nUW52KE0sfjSCXUxbcc4MzkyOxrqa/3rpp3CV+MVidqnk/+UlvrTVpVfRyGqmrnUhT4yQz29TxOBHPhgjF5wCAqPoA4vEgUREjuM4HV2MxDCSQc5BSO8jEQjBBOcUGFcc0CNAXsgs52me6yRPVM4tIFCIkSNL0sTboW3bGB0icGTjS7vZrOsKiSjJUq0UUBi6IdV6/fbtfv9iexdj9DG8fvvaRewH41zwLgQZ6qZN05QBzzMVfbCDFYghBKl5libWOWS8P9bOG4qdc/7V61dSKWMGwYTkUicJIQN0jMtiXb56/Wa1XfVd33ddBBRC6jKNgg/GrLc3SV7crG6kUkPv79+9eTmePuzPlGavv/qGl9uq9xaYkglwFb1jQJwBF0wqycG5wTBv0NtcIidSnDwEcB6j1TLzffQhKGSDccSCltw7Ty7kUirBuZJZLpNys29a07VghyxJqTm15xq84azMOCvS1DR1U9XoB7L96Xz2EEOMn//0faHYv/2r3/76u+9c2513++3DFl2fcNZ01c32RiHaoTfDMG5DaIZBMF5SJrnq2jrGmOrk7vb25fn58+On1Xrz5tVrQJaX+X63t8bc3dwhJ+OMPVoC4FJwITRjWZYXeU5ZATHEEPZPz+3QpUnCuei6XusUQuy6Tgmev3ooVmvORNd98N4zBt9++y0R6ESvNuu+75y3Nw83WZp2/QCMRaD3Hz5EiEVZ3Gy3DBECCBT1uR4GmxUlIrODjd4zYOuilNtt23ZN0/bd8PT0xIhlRYaEbdc2u/ZcV+Vq9fDmjeDCOvvb3/7ZONQPXccYW2/Wd9vbIjeDGfqu4ymuy/XT6RQYfz4c/ts//MP/9x/+WzP0gfPxMFSMRAt8zOPCONZDpHnAGvUAJKKIwMcrA8UIRIBK6aEfmOAheEKUUoYQg3dCC0d0qmpn7aoopEoDBaTxGEBEJIF8dJ9EAi6QIoUQOUK01gbHiCD6824vhIjIAiKTnAgQ2Yg3cURqQCAKzhMExhgiKM4pkPdBSik5b/uGC0TBQoi+C9aERCMhMgpEUSqGEMc9503bScZDsIe63T9/rg6HLE9VqsHZ2Afqg8xU7Jtmv3f1WThLQzw+feaA27tXIlEDIAeMIXIhGOfeW4HICBhM2z8uEDTPp6/HxwVMxnnhZeifZviTXLAAHy13L2PoMljOoz4hAMU4ww0joskTCRRihDlCAYBsUhQmdIkLwIwOkBksrwIls2F4oggzoOMYtMRLr5pGfjbnfbYIT2C1mF6ngz4W7MG5IBNkzdamyWO0uFwvkAk4Zgtg3DzoiqfR5e8zHi4Lc2B2E83LiWZopQn0GHCCMJHFqTZn3J7oaZzYDcRZ9WEXVJ8kBXZlOp6UtelZE32gS4hxaU6aeRMubHLB9bFlryJ3cyiEAYszTi/hoKVFZ+83zu115dqeGOLSnlPpANjcHHCRpRahBeYl6JOf6UsKPlf+2OEubGiJCs0yIwIL0zUzA5pX6X/BHOZXYur+OH87N99c51OHHv85c6DJej3Ww8xNJ84/drqRASFcvQ8Ay5m1ozuKZsFmEXCm/jM5eiYmu1QjLSHBuVqmmcfIk+McpYXZhj4xryUbwAhY4J5iwBiRRRxPu4iACCxyIAFRMyIz5FxqKUKMwzCkmgMyC0ToiTwIbgKhUgSkUh19DwirMlPCDk3bdlVZrrlk3tjn45kjpVnJiCKEtqq04nmaO2fNUDnrN+tS55p8gAjWDqbvq+Nps12vt5u6aswwBIpCJsBEopXxnvH41euvzk378PBqvVpXp2Pbdg93t945xljXNoxh1xvnfX06WWMBUEix2x2dD0JKawclRXWu9odTBKazFDkrVxuVps5HleUBse+sHVykyLniIq5vN5Ggb51IVZqX//L+/Q+Pz2cXv/nltyFfG2BtJAJQUhkfYojIUHKBAowxbX20dX2bSFudOIbbbUmuYQh5LtZ3ubFeCwTkGqXpTYyhN8Pg+wxjQzZfZQEBuYzOdX19PFQiLdrd83F/zLPk4f4miUFEnyd6CK71DqJvDnuwDiHsn57BDn/561/+h3/9twJZx46JYFJA29ZSYJJIKcmZjkuhpRBCdW3vHYVo0yR11o67FayygiHfbrdSJd3Q/eEPv1eJ+uZnP99ut4IjRPA2nE+nqqnXN9vt3Q1FPB4PWZqZoVdCMsDz6eSs0VKmOlFKMeRN1exfdp3pldI3Su+eH9u2EwKds9Y5IQQy1g/DelUaMxhj0yQ3g7F2v75Zv//w4Yc/ff/tL3+RZ6vV+sZap5UiouPxnCRZuVpRpPN+nyZ69VAywRQTeZZLpeqm+fj+03q9yrKs63vjzO39nQ+RK+G867r+q7fv1uv1D7//U1NXrx4eog/ASCBKIU6H7nA6breb8mZ98/ruv/yP//LH7z/+4cc/7fpm8CHThaAYCcMItMjYuNrlIsovQy3No8UYDohhXJ5JAF03AEFWpiFGb6irB51oJgkIU5lixFN9btt2VZRpmlOIBBRjZIyPb7kNAQGmSFEgIGCBMKJAPrSt4qKxNcXQ1B0gS5M7DBhDYIpPxxEyjBAZYIjEGSIw5yzjQskUkICiNRYItJAxOu+ckIk3MU9yBhCD4QLAB/ARBTDkwYabcnU+VL3tjy8v5+OuyFMMwbat7xrmZBLY8FS1u+fT02fXNdt1Xt6siMuuOveDz+/vkvWGM+GJBmOE4AjAADlDnPY0gwiIccKFGcsmtjmToRnXL9PqhY7Oo/xldF9iU7T8fKUJXOb/i50AZz41Jh8nIAcawWk0RdFECOJMUa40kSt8GTvGgtAwl2AJ782wt6AWzuA7z7zHgtCkoUzoe8nvrI5crh6Fi3nt+UUNuCaR0wmhI+Qg4XTq02IyXUjTxdg0VwjBpEZeO5XHONlkb2OAV1G8+Qk0rmec71kaBJfqmttnVCom1jISvrndZ8qxNDJeWpDm1MY84dIBaKa5U9+ZQqczA1mae26tLzrCkk+66DTXQb2Fbo5nm89OGrYEbWgu38za5uDRuBnx0pzzE2ehCC4mqKVt5nnX0ozL9XhN8ongcqLeUllzr5kJ5lzGKWB3yQXBJZY5U6e5wa5p+dyvpoDWouVNCeJyHX3R/eASD75aWzs3znTJdPOoOY0LZgERcVHcl5cQAJAt0mkEiBQjAx+DUso5x4iEYGAtA+BIacp4sATuLlO5Zl1najRKJ8jBUXRE7TBErpDAAkghESXnXkkuFKILvh9s9IwYI3SNAQhd3UKImU5c32utU620Ft7Jw643w9BLXq5WTIjnp2cGIDjzIXSmd7vYD0ORZ0mW+YAm+CLPkiI/nmsXY6KVkNrawQxDcLZtmzRJlBQ3Nzen04kJxoHdPNx55w+7k0x0sSryVRlCAKB26I0PXKvnpx1vu+3tbeDscXeQSr168ypbb5i2zjpE8hD7U/j+x8e71w8mYrU7RIB//t332d3rX/3mVyHJWgLnQmCMAffDtK6ts84BSc48eNs0rmlW21cY892nD+CHV1+/vcmzKkYeLJrIHVFkQvKsSKveRu8yrTJO7tj2VcMF597EGFzbKaAyk86TivntZiMFC8PgvePr1apIFIveexAxRheMybT4m7/68+1mjc62fS85boqScQACqeSbN6+7rmFAm3KFwLrBKpXc3t6SjzFa0/dDO6SZRobRRwAs1kW5XT8+PoboH58elVKp1qbrOedZng/W6kSdqyq4KITs+j5413dtohLTD4CwXhXrchMB2n7o2pYAbm5ux7Mju6olojevXxtjq/P5/Q8/vnn3pq7q+nzSiXYumKG6vd0eDofj6VTVNTKWZolScvf8nGidZUnwVJar12/eIrCm69IsK7KMMTodTxAJGTLOpJRKayGVDwERtU6kkF1fN+cjF2JVrqyx1el0e3dTFjmG8Hw8NG398ulFZcnuuK+a2jrXePMf/z//6Xc//tgMruoH450Jlg1CRBpDM9PQwJEBAYFfRtt5tJre9rjMdxHG7Y9jjEM3KCkYsnFw98YawKIoIoO27+pzw5lMdEYAwUclBcoARNY6NhIlZIzzSIhE3keKEXxAiIkU3hqKscgT7z0hcinCGAbhjEJEBoQxRgroAYEJTs5LQInoh6Gqqq63WuXO2Ddf37sILjilVPRBy2Toe0RkEQSSVlJJGWOMNgTjds+7w+cPSlKeCq34ef8MB8a832xXq3J9qPb7Dx/a09E1jecRU0UinttT5KnKs3KzVUoaIITRr4IE05ESbFrIPoMgTEuraYrKzHBzPcReoG9iNMtwunClRSqgeboNoykAZ+fPuJh5tMNEms+XIAaMYDy5bW7QBV/nIXocnS9p4DKGw8RvLtA2A/9EaBbcpvlRE/bMplSY/UdTqZbjSOf7YNJeZjVonivD4kKmmX8snpNZVZm664i+SwUuwsVc0xhnjrPA+BdKw4VLzoBNc6kXQnpVPUtW4EIv5upaQk9zYANgoQeXqp09NThpV9fE80JOaKaEc63CVYT0kg2YooQLY71aHjVrQrSg+yLKXWVp8aEtFbjw3UWnu3KrLSGy6fqFaH5Rp3NOZ5YKo4rPRjsSMsA48S6cXwtYkp1j9F+KOkudL4W6mGnwmoXCRDpgqZLL/ycxcdymaKyWSYO86krTNfOUZUp4WS53aYPxdfqya8y1S3PtLNxxfoWn9prin192xXH26X0UwBWTLJBwnmEQiBiCEqgkblYpDJ5xdrcRKUYdrWYB2cAlQyRHeHShJRdQOWDEhPPeWucgxCC3eZ4I5qwNIRz2B8E4FxScs0PHyDf16f7m1lijNNNa3j/cm74I3nVNh0AheJWlWqpys5JSIApHwUWKvfVEzgWd+du7u663j8/PN9ttlqWH/YtSsihXfdvazqjXd0IJYIxL3g1GcqbzLOnN+Vhtb7er9aptu7PpnSeRyND327utzvOb2zdcpq1tCOjz7igEl1JstluV6MHbwUNn6sHEz08vj8+PnR3effur3/7rvwki+Xise/IRuUikqQdB2BtHDFywZG0imZaizDKV6TxLEsXrZ2EHy0BGH4eqDV1IshUnsr5jZJVWa0lcqDyRtq4RYugGsclD3zvnRIylYrnmPJOQpwyD7XvBAogYaZBCoIjRGmAEwbMQNmX2cHcbfayPO+uGPC9klhVFhhGC81JwZ3xZlEyq6tQ455MiU1obMk8fd851XGDVOBuDztIQw9C0WZa/e/sWgA77/e7pyQcvgBdlppM0xoiAaZIf20PftfcP96d93zV9cpukRdrWHeeSaZGopOn6N+scIhwOx8P+8PZn795+9e58PGmplFTB+aZunh6f87JgwIXQgIJxjETWuP3LXgrx3c+/vVlvDy8vMcZOyqHN1jfrpMi6rjtWlU5Tneima23ft21tB9cPQ5Zn96/uVyvJuVBad11XV/U4SzeDWa0Txthhv7+/vU11midp3zSCMyF4mifffPfz9//xo7VWKvnx86f9/uX48hSlUlIOQ0RnRRrFKNgygSHGUQCEaV+JK3cszTMhJASIkRgCwqjZBK2Soen6ul2XK6DIojWtBZvmWp1P1bGtgODm5lYr7byd17hM7s5IwcO8p17E4L2xniOkUoShC8YE22V5GmPIMo1SeQJDkXHuMToKCAzCEr0jZwyLUTLOGR/67tP7j8dD9frVmzzPGWDwQSZJIDDW7V8+D31/f79WRRKcs86jFM5H6+IPf/hh6IeXp73vzj97fVMdT6f9Wer0Q1Ob+1t3d3Pa7U7Pj4qh7/vnHxtT16osRbFa32/WecpCIO8ZRwaEjAdGFMhH4uPBTAgRx3DUPMmcuQRO9GgZptkUUpniAnBFDi53Loxj1kimL0fsHL+bZsUzx42LKWHyOozGzln4i8iuyMuc8GXjv3nEHzd/WvI8Qz59kb9liGcLy8bLg2f4Gl2xY3hs5kTz+H9V5ikP114ovOToAq8zJ8TrvMwfmonUAjLX1qoFmK5xf0wn4midxkm4YzNiAcEsGNF1ajMBXSjFQgunIMrMRSZidp3YUpClf+CSOZqjovNLOgoEy0LseSkYASBDRvEnWxoCTW/M4temaQPFhXB/yQDnyxaWcEXKiJYlZHPVwZfr2GY2fLUjwCiNLGRsIjdLOeczPWZl6gsOMRGTqSBLb7ouzkXxgYVIwNLnLp1/6ngL94FxqeMVObpkbL7+IsPST/6Y8zxTfLrKNF31SqBrQj4XiK4qcIqLjlFngukUmHFKEyhwhpwIAoFzBSPJkZwNbsiUzDgvmQRNOkmUiHZoQXolOcQoMSQsCp1Kxp4a472nwME723UEId+WSSkRInRIxp4Oh65ptpuNJJ6nuqvq5uCKIm2bOk2T3fNutSql4JzLrmmOxwNRLMtSqdR7K5SSUuis8BR2u103DELINM3OVeNCPJ3PXdfd3tykWknO15tNIsUqz/74hz8UZZpSWpbl6Xyqz3WW5zJNys16GBwgB2CMs3NVE2NV3fSDMS48vH737rv1ze195ty5OroQqrq/f3WnioJxJoQo7+6S8ubH9z/+x//0f378/PH2/vXNz747td0QOi5TzaQn6LrBWiMZNF3LM02MeCKElqkUEpSgYHwQAHdvXzdVXbedbWIIpJnmPiKFQM71XdNFpbjUytS1a9pVLpmhIkvA2rbutGLk43A+CqmUkl07MKDNtlRSDn3fNJ3phnKV7192QopynR92B2ctxbBalaej10IkSmuuOtt575uqJoDBus7YtusRgHpy1tq+H9ygBBeCVecmhDhujceZiCFIzqVW9bkSgieJ2u32VXv2Pvz8598653t77vtuf9hb7zabtdDSB9pu16/fvhv6vje2blqhhbO2Ple96e4fbu5u73a7lxh9fa64FFyyvu+On8/rzebuZksI1tvD7rB7ebbWxhjSNHn39TvGeFGW9w93zbnx3q82Zd0NTy8vgzU3SgdBgHhumrap3755W/rQtM35XKdpkgjRdl1V1cZYpVSe53mRA8MQfKK1NRZCFJwZa5SWJV/pLDPO9sbILG36eveyiwG+/e4XQbPPu0NvO50VQFEIxkN0EMa9eDDMAEoxIONEkU17eCwDCiCO82YK5DlnksuQJs70EEyw7vz4XJ+Pb75+e96b9z987Ix/9+23iUwY49EThQgAECjGCIjWub7vOZdaSslEsH5ou1QpKUWZpz8+PXb1STzc5+s118oiH4KPHAOF4CKFyNkokk0QwoEoRETX1nVwnoKrj4dCpW/vHxgxYx0iCYmDtZ8/PwvBVps8MOZiPNedcoGAnY7NMPgiK17d3z39seqPjeIRhkFzYU79S1/3x90wdLavjfVD1VIMmmGS5AnyBKF+eXHH8+r+gac5SgZEDNg8pMZxe45pK53FukLTOaIjnsyVPKPCMgv8Qn//ggkBTLPUGeVoMRqNIhMRjjv5jteMNzPAQJO8MnsfJliMk7Iy+x5mSjKi0UQ250xdMjQyJLzAyVSiKwcGXePRFcrOxZtr4BLru3AouqDIolfS8tOsCkxluORqQuSrCrwA3CUOR3C1G+MMSmNr0Vypy3R8pq/zT1fhnamcMGtcV5n/YkK/fD+HP2muHoCr6vqSh+HEoZZsTNm+kJmFS+LUeQBgPBdzKtRUSzNRGVtnCrDQBOCT5Y8WrGdTVU/lGHdzuK4LAJpsLzAbpuZKnJJbOt5Caei6LUaePhV3JIvzdddluSwNm58/lXpWaUZOdNUrZ6cU0BdE99KjiSZKR3NWv+ghUz3PnXXmULgU7boX4lX1zWRr9llfUeHpsrg8Yb6eaDb1T9rRnOjkeqexLTgixEjecW+KXNyXmnnW1ibapkzS1IN3ZnAmJjqA65wPDBjElDBlLBcAGoPjANy1Q7BRE0omvKG+d31X14/P9nyuqxNn6IQob7aMYeBIWlT74+3tNggLEc7Hc55oQLDWQATvPAOGiHXT9F1frkoHzDovdXJTFJEwuFCuVm3bOucQ0Ad/ro4hhAg+RgCKRZ4dd0dbmLvXD4wJIQVjXHCpVfLwmnXtgIwLIXWaWevvHh5OVdPvjvXQn5s6Xa91mt0U6dPT5zzRKNTuXMVIiGIwbrff/ee/+3vMsr/4d/9OJPm+6au/+wed5ZvbB6byAMyYwcXQGsOUwIQjY2WeFkzoECRFwSKFYfAkkixU7ePjS1IUtzc3EoUMhjNiLBoy0TtnvBw0QABniZNUwoeglNB5ShRzhZ0xYeiEyJGTUqPv1JuuDSFwjlKI7XZ7Pp9QivVmi5xlq4wi3b16iM566xwT5/1ZSCF14kPYH09KSp0ozphgPIYYnV+v8kQr77x3cXyndaKEEG3T9m0bvFdCrYqV0kqJJDjX9LU1w4cPH40zddMC0c12mybJkzfMgBnSEAMXkkI815V3HhGk4AK5krpvGtv3Q9cXZRkiucEmaUKnozGm7tr94ZCV5Xq92j1/BoQ8z7VKvHM+DGW5en5+SZMkIjw9HoptKbSs9vv96Xx7u91k+eZmwwVGgsEZmagYyPnABsMZC95naQqE0cdyXQaK1elcFsXj58emrh8e7tM0ObXNfr9/+/XX9fPQB9ft6z9+f17dr/73/+f//rQ7/de/+8cyKdLX6eCGtm4EQzTOBeuSPCMA78O4NnqMQSNjcTrUYhxwYiQi5OMrbY1NpBRCFmm2O5/7eFYMyNTHzx+H8z7Ns8OpzlY3mRAYfVv3xtk0Sxljg7FN2xJQiIEhqAQDgR+c5lwLGa11LeXrxA3d/vlplWdfffOzYz8MPqgkq4YeUQhEwblzXgk1uj4ZRo7AGGub+uXTs5QcQ7hdb3OlBYEzgxSiNWYwwVmrtFBSMkAz2EAkdOIjHs+1HUyxWlefX17f3/32Z++e3n9/fn7c5BmEoDQ/n09ddcpyzcFX9TkYn6cJgxjN4Lr68/fDgEyutlzoUkohtQ8AEBkbbdnjrDcSTFtAL1P1ccDHeZOWy0ALy3R5GeWvIZRmGrBoC7MxYZlbzw+jeTvqOG2cPW12SfM0fiRCiAxo1Hau5/3zyU4XWBjvmye6E0z/xL9CS6IXaJlRbHHQjvssjDlfDoKAaai/oNAl1jbD8/ywGVpmdXKyj06K11WuL3GgCRBnujiiL3yZy/GGRcdYHD8z9M6gjPODL3xhQrpRXLtMG8Y0Zx1tSW0JPM04fXnCXL8LTl4kvVl6migJXfOJOaw4QealMyz1Ny0To0tKC9+9RE0vLTFfNtNDurT3VavTleIxaTwwhVCXGlmuuuIDcDHtzMRyIqszUZtremFhU/FGVhBnM9Kl4RZr/tgqbHonFu1woaxTNX6R9bmmZk48E0wkijPdvCy6x3mbhsl2T5cDo69r/QsGj5e+uEwFLhxrpnpxqS2YdqtAQMAw+dmY4Iw4AGkhEs0kprYPGiGaPjrf913vrEiUA2ac89YGLgRicF2apJssCYy3jWn6OslyhVDtD9AQ+jb0hhG7vbsjb6MPZuhSqYNUzhkpBEXyg4sxaK0oAmHkXKxWK2MMEXhv27Zruo44r192IXgh1E26SdPCmcCFWm8UIFdCQSRnvZTCOUPelnm+fbj58fsfMsx8iIyhVOrh7Rsi6jqjkizLSx9cANrc3tZdv9lu13fx9q2PiCBEa21lze3Dqzc/++Z0OPkA3dCnZRkIPu5e/vj998l6+//4v/8fX3/7i8fj6fPTy+nctBSHp11ZOFWUoz1QZUlSpJELlUgtJVmPFFMp81QhJV1dBdsTZ10/FMUm1xk4A84qxYVgSvJxnXKuWKJ1tEJLmWdqaFo7EBMIkSWpEoo3dUvWZ6mWUpi+p0gcUSRKSdk1bV6kweVpniqlOGIEautapVxJddwdWqyt81mSFUXZ1o0lDM5HZDpLJRdVWzln1qsVAflgGOdJoqVUQ9d3/dB3ndzemDhwhlrpNEnsYO7vXg1mU9XN3e3t58fPrx9eDaZ/2e2ss03TPjZP++OpWJWC80QlztvHT4/W2p9//bOiKARyFilR2g7W9INUUgqZZfk3337Td8PT4+Pt7R0Affz4/unz46oo1t9+bax9etndbDbGmmGww2C6thuMK9artCzSLAtd21QND7TerDbb28+fPj4/77SWm5ubpm226+3pdNqsV1maH4+H6lxZa1xwdVWH4EPwQnKdpUywyPDh51/JIvvh/cfHw77uur6tMOPt//xDRPi//W9/+3D/8PS8+933f/r4/lGEwbrBBCLBuVQKYuSSh0iCyxAhBI+MjQNdJEJk4wjpglNcFTp1pgshpFpu8/zw9HhqaxkMdXVdHw8xsiS93d6iD13deKKsyLyPZrA2hm5wjKEQXAks8zwSe/r4PBDbFIlkKrrhvGtPu501HUVP3lOMI5FQWg8mcMTgQwwhRscAhcBx92aIwTT18+NH8uFmdfP1uztw2JyPmfIsk1qIYfCZkq9+9fPqdNKcgAZn+yQvHTAmhBlarZLf/MWvUxFsfQwhnI7n+23h+960vW/byIGlXDC4f7iJ1gXjrB3apoqcotAsyTQnsJ2gwBmjQJ4IkEajMZuXexPQuIHNaJKYYioLgi6ml3l2iQDTzjUzCaILP0HA0auMcdqoEqe9oKff2fR0YOMXEQCBLyg0bmcZgRAZAcyHPhCxaWiehQmIAIulZMTS5bBxuLLjXCBx9IksnGICQMJFpZjYHs1rar5AMbgoGwvEXjMsvPyxoOsEhjQbYKZ1WZeJ+1SxuKDvF5RnfjLNPBIXe/XlhI0Z+WFZ1b800oLuOJt0L9i6eH3hiz/G8O9i+YaFTcGS3mIGmlnF3PhXYasv43g0Ky50jfZz2cfMTE8ZSwCXzYBmc/n0zcSqL00xUSDECxG7AvKLj2bqIlMdXgo4pkeLDrREMJedlhbli77grHOBl1juaBxmMxeFhVDN3OgSIaO5yHMZcE5xroZL9i6pzQ0HYdK22NVFlynCpUmu80tLOOyLO0YH0hIcvdAsYOOOz2MEcHa6AeAkv7NFpwQgzhmo4Gnw/vHUoG9zAYkQ4ME405peJonx2Dcx3ZRKkHNt50LEYALdKy4FLzjbpjJBTASKaIPvq2Eg3+tI99vN3XY1VOfgjeDBmSbajgPdP6yTNIUATV0lqe7qpu/7LNFpnnLBGUMKFGJYrdf9YKq2yfPc+WC8j6YXQg/OFXlalPl2WxKR91ZJYe2PGoaMAAEAAElEQVRwbmqRSKnlu59/7a07HU91XW1vbjhC3w3BGq7Twfu6bTjnq/v76uPj4/6Q5UW53XCtmFAuxHPTqHz1+s2r47nznpJVAUr8w9//z7//h396+82bv/yzv7p5/dX3u9MAmD68Kb/KTG9kwDyVEenUdoKiziRXHJgEJGY9907EqCRLAAmYQWJalpsy+JAkmrxl0ca+E5RwAatEdJ61vc1FITlEyRItGEFwjkIQwL2zgjOBWCTp+AYHF7x1IUaKITrKtPZMdG2XpLqrW14wmWvXDd64yJO8zG826K3frEVTNzH6uqo35coF256roe21li44b4MZnNaCjdPHGOuqGvc/9MH2Q/fy8vz67ZtIVO+qm83N8Xi6vbur6iZNkr/+67/+/PgEDWZZul6vkWOMkTHGOTufz6dwbJsaCH7+zbdZkiY6WWU5RQo+xDQCoEffnGpAJrXabjfH4+np+QkZq6pzDEFKeT6dORfbzfZwOr5O3rx68+oPf/yjtWZ9syHGfPBC8qaqyYVUyKIoh64LRELwwZjdbvdwf59mKYUQQkgSfX93ZwdruwEFvjw+7p6e/uwv/1xoVbXn/fEIklfV8/5Y+Rirofn46fNvf/3terP+p3/8g5bqNt+sXn3j07zJyze/XQkO8HB381//29+V5ebu4UEmsm7qJMvdaDrmPFIc5zmIiMSIkYsBmYyRvDdAwDlDAsGY7YeuaRT6MpUhYNMNDJGFENzAhDC9S5PMtoPxjgSnAISUaKkQTDtInWSprg/Vrq03qRLkgYISzA/2tD92VQ1SILDoPRKCiy4GpJhoIQDIhaZune2zTKyLAoxBO4CnVLKbYsVBEIMIRDFCIMWYFqpMUitbZzqJvEwzFyl6JwDu77eSWLkph/Pu+z+9//GH9+BD13VgevJBCx4w2q4r8jLPMz840/SRgnW2Oh6TskTkpqq6NFPnolCKcckZm0AOp52u59O2cBoLaTw2bBpOCZcBezGjjv+a3FjXY/QFPiYpgS44M7IqmnEPl7NKZjHhCo3iKABckGR2aFwsOJcp+jSHncSM6UaEmafBBdJwLsCVZ+RKKZomvnMEYsaqBT8u8PLFVxNYLs+/fAdThO7aP/rFzJ6mGsZZw/gS8q5w9GpKfvksN0wroWlJZr5ydgXD7OiaKmziUzDC2Fw909ajgHg5YQHYxbs1E7QJDJfusIggS7FoodFTtU1PpasSLW02X3uV76sGWipz0UGuvqVL+ZcugTNZvAQ+L8uwrtzi07bEcS7HdKT6VaGu9JCJn+BSsLEuJ6caxDnPE3eYV+1detI4XkVaKNFcqIWaTdm76uOXQNN1ey+RzKW+vuiUUwtciM8XrPeaE82cG2dhcflp5tg4vowIMJ5cAWPHCBRHI0IkYlI4S0JgJECtPMDBDORsx6DkkDGUglNEBkJLObSD7YJIVJIUbhh6Y5nkfSARrWBJrrhCJhky4saGtmli38k0jRjP50qzkKQSAZy1yCIjprnghIPtrbFPn58YkrWOYogAEClJtDFG6cQ63/Vmvbkt1ytvgwsBI8u0TtOiG9q+7ooiKcssBuG9pUiJlkPfnppBayWECBSYFNaF3cshEmV5QSiqrj7XvVBikxZvvv7mZb/Py5VMssCQCTmYYXBhtzu1g31+OuRlKR18+vz93//T71+9++bbX/+qBXZ62TngPnDGWc5VVmjNhGQ+er9alcQgQiQGRMABGQELEb0DpMix75uhqYokKcpsk8jqWPfnUy6ZFiDAc0+Ki8ggMIhDbx0wROCst45izPJ0JBNtNyRSCcacd8RQao1amcE4ikiQSA0JNmfjyUrOBTIWwVuX6YSx+PL0iTNeFqssywTyp+dHRDLOIAep1WB6H9xqu2bMnM7nskgBwbtgjDXOWjvcPTzEGM/VebPZcMDNZnMiDD5IIb13RZ41Tdt3XYy+yLOyLNflygenpWaMRQLTGRftw/2rtm5iIGedlNLYAQG9dwTh/v7BxzgYG0JI0pRLWZZFCL7rujIvk5sbIDzuT9/94jutdNu0xlhkXVU1aZoQw6bpfGgAwVknEDjnXdMzhkR09+p+6Ia27YwxeZkppR4/fGTI1ptVWea251V99s4OxnjvmqH9H3//946CR/jw9LnxDpDtnnfBWRdDudr+h3//79//8P3u0+M/mNh257vb7Zt3r0QmpQ/2Zr0ejMU4NoYCipwz6zxjPAJQiBimLXcBGHIOEX10XHKKEGKw3nPOlJZeiFTh3f3mT7/7IxEIStvq1J4OpRDrLB+aehgsVwq5LFeKc9KScwjG2K4f7DCYvo19N+xcmYhMIhjr6v7j9z+8+9k7vb2RXCotXTVowN4MDMA460Lom2ZozqZpBKNmlQ11c5vk602phCq1urt/VQ99A5YSyWw0rfXO7M+PHz++F4LfvtrcbDZcJYfjOd+sEGnouvefvq9eXj4/vVjjwfjKDhqDN7ZY58bZvu0l8FWRJUWSalFXdd93yIXr2r4e3P5gfCAuRZbp1QoZD0DAGVBAYEjACBiMcUUAGE9em+blcxgEFovmlyPx7K+4+mFiHmOYChBmWJ7hZ4HKyUp95Ti5DODTEULzilxaWMZy0NP1aH8laVxQbwbfy2r7qSw0LxSa8z86fRa1YLwVAb5MYwaWOYHrPOByEgUCQpx2iL4Qo+XaqcgXe89kRpk+i35zVWPLfTP+TivPxjVyl2fj5bo5Okcz/M4m5YURzK6cpVGXYCV8ObOfAy4EsHCMpbWuYmxXITiCeZ3ChTuMjTbz6It/ZSrcstfA0gZz/eHV4y/9CBGnM1uu+t74ODYeNj4GoWdSjAsVnincfBuycRvVhcbNxGmh/Usi1z0C4RLQG4s2q2mzKjb32UVBm0x217TkyqBzZaeDWQubMzEzMZpjuAuRxMXQs9DI+XFXEwWaKSnM9b9cO1Py+UNT1710VCKafXvjyriIyIDFyIACEUNLgUkRXPTWZZkkLi1oUHgeBhe8dZTHuFmXgliMwLjoGwMBZCKY1IMPJoT9qeYUiRoXYox0ONd+6Fi0Yei5dxExdtLGIBLGIyuKlAMDxPVq7V1oqwYRpZRt2+lE+wjeGC51DP5596KUHox53h0jwp9/98v1za21pmkrJCjLnDN0hry1w0BpIhmyzbp0WpmhM32nBNMJB8LNZlNu197Rxw+fLcXovTXeehZliqlOyg1wpm5uGxs9MRuCD6GxFBKd39+3Ve9INMY/ff+Hj7unn/3ql7/9i78KWjVNPwDqNNcgMAJ674IBBBSCcy4kGoJIKkSvhFAMeWQ4WAguhhgckelTxIKB7ZvQdYUAlSTgyPbWxrhaZVwwncg02TACzhkAxeCDGzjnDJEDVzrxcTDeEuMIlOkkRhpdwJvNGpFLFA4txOBMSDMtOPZ13dZnpCik9MYqIYxgAgkBs1QzwbyPh8OpGzoE3N7cJmnGmbDWNm2XFRlxaNuuXJVZloUQvXVvX7+LEJ2zDFEw7p3VafL506e7u3uO7MOP78tVWRYlMKzrygxGchmJIMbXr16f6+pmvXnvfvjw6f397a3UsuujHUzbtFmZJmnCuCiqk7U+RqjP1ev7V4nSx8NBSTWYvjqe15tVkijGWQR6en7iUgQIQslAyCWzzlnry7LIEo1ASSKPp/3QdcF7H9zj06ff/a7mnN/f33PN9vt9W7dZooeuf3l+BiCK9OMP73WZuuhPbbU7VY7FNE/ff/jMBc/T9T/8j3/YPb387d/+u7v7+zIrbzfr9x++XxclDF6c9of9eX+uqqQos0Q3bY9SMMZCJCV1a1spJONs9O4iQ0A+xAhEztpIschTwcEN3dB0Wim+yn3flOVqtV5Vp1YrHoI97nbW4WoTWusM4E1ZEKJSUkkWveMAKJnph+hdUaYeQ/V0sufhYHuITjDyznz69PmVUjxJ+5pynRvjVJF4F5rTyba9ZDGX0jl3rg7tc9wU2c3NJmX88PKCAW7vbpCRAGasI0/R2qcfn4+H3e75ZbPdKskhQr4qGFGaCCYwRuKCzGCEVGVRnOqaBESIkUIIfugMAjCkvmm8FD54axwCCqToPSPSKmFEijOIgUIAJqbQEzKiGa8i4DQVRjbZHr9AyxGnv4hwTIMrfTGLXWbw1zNKnFFwlhpG0JgCDzArFOPYf0UHYNqTZhIQaAEbuP5cu63HhOP8tAXdp5yPOtLV6VqzKWUWBhaON0PPF06Wy7x7wXL4yYeAgC1ayxdLxq7AF2cad5FsYLx6PnLjUgUXE+t4mC3OWDz7qH8ywV+qbirdZQUQzjg7h7NoWkJ9uXrcJGFWIRa1A6/Iw8xRaDbPwmI5udY7FoYxKgkzwwSYKelCEHEu49RYXzC6LySOhZ1ed4EvXU0AQPPKOEY/5QUwsyi6qiA2SkbxSqtaetNVBq5aZe7AACO5ImQINC2Smin9+Pj/xQV/ecz1npwzpZn53oU7j/oSLQxy8TvP7HLeoXN+r5baWioRAa4oLV7lflrlP1vkl44xW74RgCAynER3IpoOnWZEQIwDESjJIBDzJLRw3kfvHWBknHM1OBAQNFE0gWFkAdaaJYENMTjHAsUYiQluuib2Q4yhrVslhen6MJgy11kq0FK0FiimqSY/9KYXDDjn280WgXmKeZEzxnpjmBDWWucjYyC1bCpjnGNCJkWeDlbqNM2KsVrTNKUQm6pOk0QInpcpALZ1v1rlHFBq1Z1PGOn25kalybnpTQg6RA+YbNY0eBuoC5G4QiGTTYlZhsQYccWx6U3vWqW0dS2XWbm6TVNf9/bHDz9++PT5F3/+21/9+Z9Fpo7W9SRUkuVpxgJ5a8g5hgScPIQYo43giDsCnegYrDVuJblOFJEF8t4N5C2PkRwoRgFjdCFNM0feAWmtEYBi1Epw5IKhkNIZyzRTUjJkXHDnXbSOnPXRBkLJBVEEIu/9eFRzliZc8FAFJEizVEruBlPXdfCOAiFBnucYwZvghPcu9L1RWhMCAFut1kWRJ2nGOEsTTavSWu+D50Jst5usKCDGfjDFTb7ZrD99/NR0bXWuXj286rr+5ekFCPYvuyzLtFQMMMZYFsXz88thv1dSMcbfvnuXF7kZhk+fPwkpv/3u50gsydJE8r7vkzxVWrdd572PRGmaMCkQUQhRt7WSyvaGIdxub1bbVQgkBRNcvOxfsiz5i7/4qwChbruqPld1fXd3kxc52Zhw8fL0/HJ42t7eMsBjdRBaFKtyt99FoPUq1zod6s57b8zgnc3z/P7hlUi1Ax+APj8+t86pMom9fffmze12m4k0DMNqXfBIr+5f//K7X1a73Y8Gqn3FtxvRnPc//v4PVd3++q/+vN4feaK9t+SijZFrSHQSfPQ+oI2MgDEQAhVjre0QmVKSgCJBkipfg40RCNMkbaqjlOrbX92DYIdjryDGvj06n21uI6BpOy4EQEx1jokMJthARZZCniCB16x+/NTWZ3D9V6/uRYyHrjm8fE7W5cPXXxNFxTBysNbxGCSFfmhutuUmX91l6vP3oT2fEgRf1Ud36OouEfrl84egJSjpYugGG41/+vjD48ePd3fbLOEf/vjHpul/9ee/Wt1tCJzWPNMc1wpfr9/erv/w3/+eC1auNUNrGuoH44xHHq2xphsii9EHKZSSwg8OOGV5KleZThVBRIhE4wn3QOO29oRAwBHnEMUY5WIwIx/M60pmx88VKrAZDC9ywfQbzpfOjpwZcq5RGq/H64UXzAbSmaJcDDvL8aAL2UG4hsdZ6MHrGfSkJiyBmAsSLTdeiBot/uXL5H189BwRuAR0LsxoDmbQzBRmueQnKH0lB0w1OyUVZ8VhunQJniy3ItC0UTZO8I+XMv5EncB5zTYuz4JpY4HZyAEAAGyMM+KXYbM5/7SQ1QnAf0L15jV6F9SdIJyuMf6KA891dvGfzE+6VMpVoa6anxZt7grir0o7pjwfXYEwetkmDXFxvEz1NPInmPbPWNg6XT8K8EsWOpONiUdckyPASaqcKeBMZMa8M4CwlBnntVQzoR/5B43HzY4E8lKu6akXtWyKvi0uNQTES7dZOvBUn9e8CmbWt9iKxja9UHtcJNb59Rp1rDFdNnYwHxwDppBzJQHImYGCU0pgCBwIOTk7kFBCy+gwOkIAmQnJPPoB0eRaMOe8c0iciIXggw9ZKjertOtaYwYWvei7lGfrUvNCr8uMEbm2l8SLMhMMmErak9s9H2+3N2mZtU1b7c/b+7vBGhfAR66zUiZZ37WIQimtEp2viu3NXZpvUTClJCIwIuedUrLrQ4gkdSIdRudN3w3CpJxDDIfnfaL1zW3iPAFwQGwHG0EInWSa+cYoiaCSACxK/unplKrcOqp6Y4wvNvlms03L/PHz5+p8Yop9fvz4z//0+1/8+a9/8Ztfm8g+P77wbakSDcHFtpOMR2cjRJkoFEiBKACFGGIADgyjYMAwRu+FYlooHgmtBSQhKHpD0Zd5OvTODAaJ1uvVel0400H01lrJmVASI4vBU4A8z7gQddVU53OMQXD0lqxzIELbdoKL9XqVJNo7NwwtRQdIMpHGGO8Y58z5kKSZZKIoc61k1xrnLSFWTd12ncqUHYxUTGrOJQOIpu8wxhh9pNB3HRHpVBvruMC0zLq6ZVwMZjjujrd3t4IJbx0Q3N3eJUnqvTscD13XcsHrM51OJ4oxzwvGmffeDFYnOneZViovi6atTueDViLbZICIEXprOGNSSGMsCyEv8ufnl+P+yBDXN6tEK86llLJpmx+ff2RCFmXBOG/b/nDaPb4822HYbLd5WSRKJ7kwbffpw8ck16/u7xAZl7ws10mW//73/+Kc7TseA7VVFfNys9m0XZ0W+eb2DrXcnw8qTXWWcQzNMNTn9te//uXDevvL737+1eu3FOPj52et0lznNR4kk1Jo5Ersn57b6iylcH3HgIpV1nkXiKSQZrDAGENkBJJzTggY/DAEhkpwAhG8M94LJQUTd3c3L3338dNnybwSfLVaIXDvSHGpOPfOnU7danu7ud0eqyo4xwXrD+ckZdEY4wad5zJVXdUlSkqGWgiO6v5uU2Sa9gwy7QbTVI1Ksqp+itEnOtWciVybM+vPVbff3a3Km1WeojdN83I+r9dFmapEou3rECU5KTMlgmnbNrpak8GhO396//KyjyjCL965Qea3qzxLY3RdZwqpfLR5lrD7TZ4wIEFEoR6SjAGFvh0YAx99jBEVimmjYfDO+qZlWdGeG73uijRHijSdm4NA7OLCmUbACDAeWTYjw2Uk/XIf2csAOi87uuDFNCovAa/rcAZ8MZ++mtvDwgRmVJzRFxYKccnnLEZdzXqv/Z1XH7pcj19agWEu0xfxjWtIgZm8XaM6fhkhm3+6YjaTuvNFhGuBW5g2vZlo1PXisPGCsSwTi8ELpC1EYUztp3mequuLfI6siWZSMR01O7IcNkkUl5ab9aFrajkysGswJYCFPVwRuukGWu5a2vZKW6EF3Edv0ZwKXu6e8zKlNdfDJA9N8axFi5wZ3FhxM4Gi2dh+XfljluLsg/qiuSZ6OZKMmR38pIYXn/D4Hy4Mb7mSrkQdWBp36clXFrFJFfpSaL3kB6amWV68i/P9mvLQXNB5/8fZbzbX5sJqFl1teV0uHG95mS9sFAkA2bT/RKSAgFJIRLTGQO8iomIopWDeg3cQA4PIGRuc5UwnICVTSEEhRe+71qySyDXcl1n0/tj10btIGEd0741wPlEJRvvq9R1D4BwToYRADBRy1FopxuwwCI5aJ5IxIaQW6jTsz+c9IOksk5yLTCRpEmJgHJ2zMtNsUDZE4pwp5kNEhM12FXz2snvq+mF1u1qv1s4FzkSMMUaPjLW9UUJsHx4AYHesXQwyS/LNmmvdDa4fnNAyisC4VkVmA1EIKkkH47RKwrnSWq+LvD2do0Jg8Pn5+Xw6fXr59Ju/+M1f/vW/klkWiF598yZyHQOYrg3ORKkY5wGZ59yFEEPgxnHGJGeMk3A2k1xKgUM3dH2aydv1Gl1vOVAwruuM6YkDxwiESqnVOteKe0N92yF5lechguvaSNQ27WAGLvjQD847wUWeJUJKBhidO1fnclWUSSGk8N5VVaWE0jpRatzpx0mZlmUmpABCobX1rh1aZ1zf9d0wKC2llsZYHyI5B90ACUopfAh103nvX/Yv6/UaLR4PT1rpN1+/QYbvf/ix6zrkyBg669I8F0qWqzXn/PHptFqvdaKstafTaRiGzWbzcH/nnG/bLngfoxdCKK0G1w922D/vb7Y3o6AopEo4I2RcSXC+blt3Op3O58HYNE2k1kIq5xwhuuBfjvvgaXt7q6X6lz/87lSfT+fzelW0bdtUFWVZ6wJZmxf5w8NDqlNAzItch8Q5PwwDbLa73TEE25wbivH29kalqafYmN72zbnt8nL93a9+1fT9/rDrVY8etuVKMPb88ZNgUqEo07Svm+jD/f19mqWRMXF8ftx//rS+vf30w4+3m9vN/UYL3lsLgTiywQ4MMeNKca45h4CGE1CICIMbgCLE4H20DJCiZJSl0nW9d2Fd5MbFoW4kU7vHF6YzneUJB41hk6K3Xri2Op1bJM4oMCjSJGXQDUPfdXmik3Vhar97flJSbFdFG2NXVY4IpQKQQ9u8urtLVlmqpEnZH//pj0PdfsKYKvBdG/pBClArlWqpuGfkooscAftAdXP++En6IeXx+cffZ2ny5nbrIgvnFxuH5GGjPXPG89Z9+uOP5Sr7xS/ennZ8//RoBhNi5EqoVETnKAaCAITjyfZmMIkShDAMNpIQ1qUMkSEii3FcrMKBgBGb1J8LhrHR0TmD1xdT/3mYxy+WIF3Pe69mzV/s0j8/8bK8+/ITwgycc0AMJyya4eEiRsAkJSxOnAsO0WJr+eKzDPNjYAcZEoURK+bDKwCXeMT49fVjF6ZxqQiaD6P7aYoLmbxcuGDz8j9YfLYze1wIFgHCuPPdxEDnhKcKXKIm82ocWjStC3J9KQgtJGR+1oL3M1Zf4qAzDF5478RDL0APsxHp+jPHya5o7kwCYUHVpSVm+wrM7GUp4AWjJ/ZDS70tX8xE8KrLXtX4hRrSVaPTVOuzHnjFqmFpnev++5Nuf7lqyg3BJJOyq2xPC8LmHkNzRU5zkbnHwMxSL7apy09LNSztelH6RksTTK/vUpSJ1V+/LHh59PTWLfU/cWSYO+9ss54565S9i+hHEBmyECNjEIIHQGLAAclZhSC8X69UGAbbDwwZ84QY2SgtDI5lXErGOXODcZyhUoVKrQ11XykJstBMABmnA5U6XWfrRIJp2+CMQiDrrbVK8FSyrmn6pk20LtOMFBMc2/akNaaJatpKZTrPMgAOnLKsSJLEegMAMkuOx9O5PnnvEVjAwcYuBCKGQiuuVEBQqVZScIZK8L5pO9Nn61whPj3vbl7dJ1qezs3hw3NablDLqrcpKsukC8HZwfm4WReJlN25BQ+Z4mkubXd+fnl2jKLku93pw8fPD29e/+3/9h9I6UNVp6siT8vOxrbvEi15qiBABCTFWh8iRM25gADWEXec8VypNHJNkbNoybDeEQLSoKPngsMqs4p76wSjoiwZMPKu6bu+q/u2KYsizVMias4dY6hV0jW9s44oFkWudZLrVPEQQtjV5yRRUsq6rnjPBBeILEK0zuRJqoUMFGIMnAsg9N4fD/uhH0w/MGSc82HoZV52bS8TRQzMMNhg15uNVspETLN4rhqdpIxxYEynSZ5lzvjT6RRDWG9WTPBhsJ+fHu/u7wHg8elxGHqd6CzLnHMMWJEVzvp3b94QwWF/MINZrVf90BFBF8Jmu4E0rn5e9l33/PicZMn25iZI2XWDcc4aF2J82u+U0r03zIuIeKqb56fHLM9vb7frzfbp6cXFKBHqrmu64fVXX+dFsvv0LI/H0X/srJWC73cvzpmyXEUfX55fXr95XeaFkurD8Qc7mDcPbyLgqa6aoT/sD9mmhEQ2Zvjhh/c8Ubf396vV6vP7j6/vHv7Nv/rXQ9Menp5konSaFqlGjAhgh4ETvfv510ILJOefPz0lRft+9f3Nw91AMQBypZAzZNoPFoLrfVf3Q990681G53lgzLMYPSgpYLDNud0dD5nEzSp7rvZm6ASEwUYMIRKYrkcTyiJNhYv1sd6/mMEqLU67Y1NVQvGkyATFTfbNSsoqelNX5PrgzPPTKXh3+/rVse0dip/f3uXrTd0057p+6lr2+tY7+6ff/e79n35MpSrz9OMfP5m2fvfmQYj05fkFxXHd9Q+Sndohy3MupQLcZPLj6ejbLpPsN999s77d/MPf/fPLD98X69Xv7JDm+f3dw/79+z/+4/98/fbu//q//+0208H0Z6LqcCbAJFdMcCFE19uIoBLlOxtjIJTjEi/kQqokLYokLYFxIaWNEWg855Bx5ASEyIhCnJwYRF9MGceBcxyfZ3fIT7CfriFjnrhOs+RxCn+1hHi+cIacCwaMgDdF4vDq0i/CWHB5zpeMYxQzEJGuT1sab1+m7xO9WubWl8NA5mn5/x/su/p8QXCArr+gaa8gWqoDL3D0v9w8IxQBLCuPlyVAc1xsFhRGkjqvt55DV7Bg9ZJvnON4OJuQL3xo4SZTYrQkfc2ZLo02Po/gopDRrDnAEtAaP+xyXPFV4yzMdOI8Fw/ZArVLTeCkwIyLjSjGC7OYNJn5GbMKSRcWOfcuXB66bBs/O/FnPoaXSlo4zVLyRVe6BLIWyeS6zS5S1pTAvDrsEjyj5TlX3PIi6FxNGpaqnRnhTzk8zDJqXP4574c5t/Ec5Jq73LXr+ZIMwdLwk+VtClRf88+JQc/0lYgxBkguOiBKpJKKB+uDiYphofi9SqQUkErr/aHv++gYmWFwClhKKAMwAvChP7enwYcsgRDAWAbEJPO9aY9thoIBCuQ8UMKkLpVgrG87BNRacc6E5FIikI/BD4OxzBRv7mMExqhIsjxJ8ywdjG17EyNjghvrAdjm5pbL5Fyf0iwti6Lr+rZp8mzFOMo01VnWDw7Bl3mOAogRIbgQfcBz1wudIZfGUiBGQoISMk9FgKodsrJkQNa5NE3KPI/OAcSu79JMUnQuuKxI+2h31enHx+/zzd0v/uwvBuKH3TECYO8HU3fGdWbQqUzShAsebYBAMlKaJDlnmdDRNE3Xk+kLmUtL3EURXZkosOb8+NG09ev7W10mUmjUSd/3IQSt+NBbZ/3Qd8Eahhi9HzrDxzO1I2V5yhlv68YYQ4HGDeesN23bmmHIdKKkpOjNYEUi0iyNLvRdL5lI0qTrurpuGGBWpEzw6MBbp5TO89Qay5CtNitEjBRFmjJi4xDhrCfOCIELHomqpk7TTOskROq6Ps3z2lfnqi6KQkqlpLLGnuuqbVtEtM4HH4GBlirL0q7vEbmWOk2S6OPjx8eizG5ubpz31tn72/vz+QgMnbPMybpp/vTD+7wshVJaK9P1x3NVV9VqtRqc/eHDB4hUNXVnTbEp0jwvb9zt64fdfvf+8yfi+PXmu3xVtlVTFsVvf/ubtmpqLl72j58+floVq4fXr5XOqqp+2e9++atf1efzerPerLac8bqqjnU1eNt7G9vuYfP6Zb/78OOHtMzeff226+J6vfn5L757uLvruV7pVEvhY+y7PknF9nYlFIcISghRZMn93abubSDv+hasTxP9dDi8/vor463pB42Mh/Dxj3/607/8vuu6v/mbv3nz7c+Nd6iUcwM4TJH1XSujb/aH+nTaffoEZOOqSPKSxRi9f3Wbn/b1+f0PTcaKdWkOH3fPuzxLAWK33wEwVxZPzmhvg8XojTmfzof9qswoxrbtwtOLBfpXf/u3b3/+9bHqKFF9LuJgu/MpDKY/njapKop0vVo1+113pnYwgTDLUtO0TW+1Tow1/X733W9+uVltNYX4q2+lkpzx87F6enxuzse27l+/fevPw+ZmXX14bNsmwVDv9v/4X/7+9mHtBzfUAyOkSN46yRjjjHERg/POMRYjxACRJUJyzbMy29yUNw/p+sZzDERIETEiEBMQYiCACJFzmDdCuYybOM/WxyU304nm48qiZQHLNPQu8HqZwRKFq5+uNjm5YAp9ATPzzRduQQsAXC7Acc67qAALI6MJLa8xaMa42UY9e1enCND8r4UqXPyyC2ItnpxrO+0X+P8lVAEAEIMRlwm+tHfAhPWjijBbgyZsm3IzHjiyHJpOi+EZGI5LlpZtAZeoHxFbGM/IIBeb0gJqV7R2nt/PWtI1TM/tR1dXzhU/cy+aHzqJBXP1Ldv5LIxsbtJLNAvmqrkmBgjLfk84MWaYNJVL5eAcsyOC6eiPRchY0h2317ms/oOLuHGhdhNbmEnUrDcuOb7aOPFiiJncc0sbLvWFuPzypfy2vCWLC3+iYHNH/AkNuohieJXV8enXRJqIkDGAOYg5NsTC566bEpZWAoIIDOcI7vKazV1mrNov72WMRSAiEIwRRWutDyQiJAxTxMR7PNdlhttcDwNg486D1TnWsU2zAjG2pwpDnyiIg6tal6DkCeMxkjEU/dCZ6EMTAVW2XqU6yzAqFh24wBiuyiJdpfVgNtvtdrNpzicBnAenE9X3A8Vwc3sbfFititO5ed7t8tUGOcXgz1XPJSt8mei0qZpMZ4lK9i8HH/2qXAdi9amJUWar0lr/uK+0Et54nemMMwcg00Sk7Pl47gezur15/fpNFNyFsNkmUDUIoIXkHPMiq88ngTgMXZJpBnz3fGBarLZl9fT0X//zf+OZ/jf/7rf5enNsOlQ6L3LGRN+Ytm1QsBBDN3RScIlMmLhSmplBxkBDX2pWaEEibrToT2ff9xBDZKgQgvVIjPmIhoIzjDMtuCOCECXHgDEvUo5ZW9fn8/l8ON093MYQ+rYb+mG1Km9vt23bIYDSsm2atuvauunbVjFhB6MTxRADhfbceuu10sYOHJl33lsvOJdSIYLzVigJhACMAJM04VIkWjPGBjMk2yQrC+dc13YRYm/M0PXV6fzuZ+/Wm60d7PFw4ILf3t7U59ba4JxPsyzNMiBQNmWC103VNLWQXGkVIWqdrFar1WpFBJvNBonF6BnjZjA/vv/h2198672HyJDw629+RsDrtgaGp3PVDb0x9vn5pR06Y+yxrYe+Px1Oq1W52ZTpKvvx40ch5MObN3Xf/P777zvyddX9v/7Tf/rldz8vZNI79/HxyTYdObfKt+y1bJq6rpq3X22SREspt6vtp/fviyxfbzaH08FGF2y8uX/wEQ6HfXc8+274zS+++/q7n3/9i+9iJIxRc3l8finSTGU5IvmmD9Z1Mdze39/c33OQMZIoy+zN65tVa0WSrDfrl0+fHk/7xvmmaza329W6sHWb60wE//zh/fl0+varN2+/easFnpozMhb6QEJqgZ8/fz48fTJDx8j1Td3V9c2dSfMVRuhONTkTKe4/f6j3ard7PO1P8tXd7Xabvb1rG4Ocd4fjJ0+Jzvq+HeoTki/LzFppnfMxGOvJ+76p94/PHz58YDGgDxlbcx/e3t9SCEmiEeH1q/u2qsxgrXGH/SHNU4X86cPnJNORojk3Qabo/JuH2xihruvnj5+qtuZEoTPDucoY339qQgjbm7JMRQhUHfZ1fRj6/nQ6m64v8jz62HkjBEolQu8xAGMIjMk0iVKprCzvH25ev9ncP0ShOQMbHecMIfLpqCsIkQAwjltCXwbly6IRGmWVBchwwbYrZgDLNHRGnZnLwJdYMaaAM9Ass/f5mVfXLh6HBQBnhjWv1fmJujHrBF8iwGWuPEL3Yie5Ijg4rRGbhJarm2et64rEzDdcvp6my0h42T8IZ3pCC+MZCcKSV1zye5mpI8x78yxz/DGSg8goxhH0JuifNpde8hzZaO6dRLeRE9IMoQAwuoWvnUlz2rMgMLcX/rQ0wCadimDatXtkB4ufdzqVeCpFJEI2XojjAa+LWf6LBXJLQ12iUiNNno/futC4L7vbnBLMbHvuN3R140WTuup+V717apKF+8Bi9FnS/CJ9mGtqvg3nRe9zfA3Hs30XzWy2HI1kdqlOWrjbTL8Wdo4zQbr40+IyMbnm81NPwMtbOferWQaaqfHl9L2x+0zXTQ6xmY7RZeOtKZA6httgPFSCYQjReasiIuOSQbSm76poOtLECo3IwuGYcJ5mIkLPTYhIwvaaE4uRMcrLPC/ziK5Ik9737dB5a1WaWRsaO5zbTim9yhKMvOuOXApENNYikmAEkbar0vuYZJoAquO5bRshGaIQdVO1XSDmIwnGAJhOcs6h7w1jTArtTTzbRuuEB9u3fbouqBTO+vbcGB+CCwgYXUykTlLufCDkxvp+MMiEUiky7gZzOJ+lUpzzpjp3bZeXOYZQV3VRFirJBZdKpXRoTQiffv/+9+9/x5X423/77x9evYGE53rlAkchnfEEcbvNybuhb4UWuU6ZNWxwW04KUfLINEl0IVrBI2uqt5viuW/90OssSbgqNptgjRLc9H2koFPNBCBCXVdt3XCh1tt1nqYMwBvLESXnXEnBuXNuMIYxppRiiJwxJXQP/c3N1mRJmia/++ffpVm2Wq/KVeF9oBgRMYR4PldJojebdVmU1pvqXCkp7+/uIpHpjVbq9nY79quhH6q6KlcrBEBgKtFd3w2DEUq+evN693Ksq45xzLJ86IeuG9bb9eZ2U1eNtYHhoJOEcbZ73h+Px69/9tVquxlnhoOxm5uN1LI6NVVVq1SvcN113el0joGaU7UqyzzPYvCElJelTrTzcbfbayWbqnHOGmOss5Gi0FKm4lSf33/88IvvvlVSNV37fNy3Q//j+4+HvrbBnw/H3dOnv/zNb5M3P/vd7/5FArtbb169fbdebZ6fnwZvhn7I0zzPM8Zgs97UdfP4+bHpGiH4/cOrLE/TJMUYX90+fPfdd88v+5/96hdvvvrKxVCdj7a1SZaH4B4/vVCkJFGrdelDtINBLoBQKCkgAPlQ5onWOfjwwx/+cO67ZLU6PT8zcInwRaJFdGDNtsyOT5/2T58EuSIvI3lCxrj0ddM3FWK0g+mapihUoLh/OfWdWW0GxrjpjfM2xmjbulhnfdNg8IJAcZZpmQjRdr1p+0PT6CSzzjGIUnDGQEpcb8tTXXdd9/jp+ebm9U1ZfLT2+LKTiCnG28364ZuvlVRd1+1fdtub9VdfvT3s94wBRxGdI0Wn09E8mc1m/f6PP3z+/mPTd+vtpliVXd1qKTQyzgTblIqjGzpje2P6VENW5C74oav6rgfBBEKyLTkXHJExsn0vBQMpxskek3KwQSi+Xt3cvXpTbjZcSuI8RDfjDfPgAYCQjXunXCE8W2CfZqRaxu0ZLCc94OosrwmDxuGXaFxnhhcABaKfzi/nwM2M4jM2zBPxy1A9B+GWyfBMOZbF1lMK00EAM6guSDY9JjJgC+W6jnchMIIwE5cZC5dQwuIjHkHoMoUGnI/qhUlWWoB0rtNZA5juvSJ4cS5QnMWISeUYVRUMOGsjfFJv5rDLjIgICBGBsVn/AvQT/BEARWJsnKjRArwIEYgYwxgiG08amTerplkWGFf/jErSqDFMq5/jeIoscaKINO6hGQMwAhYJMRKDECMHxgEBMEyC1bRdOwLMC9qWep571sVIP5drUj7mZrpaSRhn4WdUYub+N3eCyc41spC4dJxZQsG5e18Y9dwrZ8I5N/PMOpa2GZ90ySfN5HLkEhcdca5stgTwrkn15VyUuZ/iElicH7u8Dpf7lgzChZpdkf5L2Gva7mDhz3O2r55AAAgM5rAaThHXS0+ZVtIRUCRPAD4CYSoTCNZbMwQvgTgCh+jarjFNcCb2lic8MlMI0ZyP3oeyyJRACFZLnmYUQxMxZloAahtjvtUBmDW2Oh6jNZzHJL9ZrxLTicPL7v71nYuRAm/qvq3qzaZgyBHQxZCWhQNKssxYF7UWyIigdcEP7u7+bnVzSyE0fX08Hdu6KdLUW3v/6qZt6xhirvKiUOdzezieq6p/+/atkryuG2SCCejaru9Nkubr7YYiaa2YgPZQu24AT4CIzoK3ArTmwLd50/bGknVxfbPluWqr5vv3H/re/6u//Juvf/6bwUXnGr3ZBIS2bgVRIsj3DbfmbanLbZ4J2e66oT3eJpgq5W1P0XKMWsnqWBfF6n5dQN82PKQqjcbVzdkNVqcqUHTeSiOLVdZ3XXDRDIMQwfVJY4wxBhHavjV2yNJUJ8raIUbR1vWqLJSSfeesMUSxaSqGPEL85a9/aZ3t2947v14VQzskWiohKlcLBgxYU5+UUpJzJGIEEAkojtvqnk5HIThF6IfucDisN+uyXPkYdod927SKi6IsiiIXQqRpGoJvm/qw3z08PKw3a50lQ9eBobpr2rbr+r7vu+PhuLm5ARZjoKqqdrvdze0t57w3QwTsh+F4Pm0269u7m/1u31RNlqZ5nhtjFJPr+20khsCYEHe3r37+7c//6R//xQf39t1XaZ5+/vz49Px0/9e3ztvHz5/a+vz27euizEzfJp1s7SB8uL/ZlmXe9fXhcff21WtgMDiTKC2kIDMM/ZAXOWO8Otfbm22RF58eP0KM2/V9lmW3N7fbcvvV6zdllg3Grot1sVrxEIAgF8nt640zfXPuT8czYyjF1vRWah097R53jPFAUQRvfd+dB5OmK8aTtut+9vXXm1f3LOEuuHZ/sAilzsE7ssPDw6ZvzvvPn+8Y5kp6ioKzoGXjAgPMtPRGYIBUJ32SGGN3zy9JkmR5BsSNd33XE9lUJ9v7oswTZ0xXOcbA9bapzlIpiKo5n6QUALR7ftGpTvIUCIskEQgcKFfJu/tXoW7b+mz7JuRJdIEEheiNMcjp9uGGAQAEKWVb1wwh+LB/2Z2Op/rcAEIIcD6e333zVZblRZacdjspONPKOteYQSgQPNbVvm3OEcEYz6UmBwiMReQclZQRkVxAIK5ZCAEEAy6tByHSdLUp7+7SzdoLsOSBI2McISIjIBaBQvQIDJCP7OHio8RlT564ID3NSgMshGQaS+fhfxn8L6TjskJ9HqthSebymUMy8z3z13PaM0yMN48ekflGmpnPlZAxpwM4sQsCADZhwOyNHY9SmefJV2vBZnS6Cl7hskLoutwzB/xfPsv2dNenms9G1wkm6UKOCNlCaca0pq0OYWZhy0LqqVIYsogIBIxjQAoYGEKMhBwBIkVgnI37XI78DBEpBsQ4EqlAERhjyKbmHS9hAMRGGQPZIglO6s24ueB4H2MeEQJRJOKMMWJIDBE8G1eaIUUIkS5kcjyCd9zD/SqEBVN0ZlpqN50NgjCew7B0rYX8xjEWu/SoK8Qeo29ES2tfnfoJs1iCMwOYT3y7uKnmDrd0wut/Xf1Ic1gM5qDu9M94rWTOnX7eyApmZ81Eepf+/xMetNAUnHedBoBAceqyY6qTEnflzLp+aeaNJScDOV3zqmn5IeEYRY0RiSJwmCnzTM4YQ6DIZ32LE0EkDlwhIuPAAvoQgweKbCT7wXMEzaFtGtO3ItG2HxhjsQ8WIdVSSh7C0DU9MAiELAKLjGz0MVrrBxuehmOS6SyX0VuUoDI1GJvmqW1N1/QUsW1dlovjfp+UmVRCFVnXW2JMlXm0ljvvrCcJJBkmwrR28KbuO8bQBx+8j4E2661OkkjgjYshIMFmteJA5AIFqOt6sy2kFtYHLjhn3FpHwUaD4Pz9dh2BrPVlsn64vdG5EpK/HE9tfQahiHD39Fx3zfP+pa7rv/7rf/vr3/75rjt6CoDMn8/AuPIxlypDQoFlWSiMbGgVMhhqDfaGxzjU3ekQyW03a+mja6rA0ffZKk+UwKEdmrrq+0YyaczgvFeptHbwTnLOsiRNlA4+jKdPxhAoRiUEF+zz50/bzaaqKgBIdGL7QSnJGWccu6bp2k4ILgRmRW4aIwRP00RJGaRPkxQgOue6riuLIljvEIs8s8acTqc0TRliUeZDb6rz+eZmC0BCcMG5ccbsX7puUIkui0IIgch1ohOdAFB1amMMnDPnHABqrbu2P55PPoQ8y1eb1dPT5+PxaP7pn3Sitput8y5SPJ/P53O1vbkFhMEa5z0FStJEa2UGE5x/fn4pVsVms22qKk+Tm81mGKwH9+rdu/7cEtC7b7523glkv/7VL968eVVV9YcP74PzeVkoqf/9X/2bj4+PQwy3d7e7l73p2uDNw8Ptw/29knroOpbCerVmjHHOOeNpklpnEQAZbDab25vb9WbDOe/bTgmZp6nWOrgoGT8+7YZyWG02q7xou+bHP/6YJelXP/vZ5mZzeDlUp1ppv96u8yTZHQ6fnnbCmj7LZF23h+6wXm/vb25e3d6rPAceIzCKrjlUrqrzjEdnT8+7VOrD81OZF/lmU5/Pidap5EjR9YPtLbkIAGmSlGXetX2apGmqV5vC9u589IyiZLwoM6UkRxQMAwfvrDGtM72UCBAYgjGD1rI6nPIyDz6kSqZaD2394fs/aZ16ZxIt3SApxrZtAhCvxfFw7JteK5mlyes3r83Qd21jzUBAUipPoTl1XIhylQPyfJUDUZHnu6cn0xskCD4OticIwjGVsnYwkRjnvGttlkUOAgB9Z1SqWJokOsluVk3dhUBJnvJER6EkS/LN3erhlS5XJJjxlmkOiOTCGCthwEb1xtMllDExCJrH4HlMnTAULiPvSINghuyL7+ZyZtP8zwuhWJBhNnN8iS/Xs+RpEj0LAVfpEANOOALkAiTxYmBe4njTbWxeZsVmkLmWhi4qxFQwnP8+ZWPRFRAQkGG8HCE/k5FLlufQ2GUlzkU3WjKBswV1wj9ibBRmrqjRxNzm7DJkMQZAYOPSIxplJ2JcTFITxxAjYURABhwZRaIQIyCFSIhMCiYkpxAZ58EDEYVIAYHGtaOMRwrWWgAPBIIJjMQAI0XGiHOIjhgjjBQZH9lQpCgRIwIfjeTjnsoxkGDkiYARRkTkOKoMNFmbro2+F4iH8Yj4icoCEASYLDgIV46Zpe2uO8pimZ+im4Bz618Ek/HPUaCL8w9Tj7mWcmZpZ+oKywPmSOgi/8ydZaIXl0wAwGwrjkRs7oe4GI8vPW7J2nW/n4s5samxisaDeBeD0E/lqi8sXHNO2KxT0hg/BcIIBDSdMxMJGSIxBBjPUeWInCCMFUOzPy4EjiiJQfAcvEJACADEBRforOn70yEDJwupOXoIJljvo4g+eG9j7NuWEcq7DVcSQ3Smt0MPTALXQ9P2kanNdrtdJdnWm34gqPqOUUwgCsZYhNC55lyrRKTJuq6GqukDYoykdSoZd7EhxkIgodRqW7oQYqCmr5qhJh+AkVRiU5SSmDMm+MDTNAY4nSrgLCkyKIuiKLx1QnGtV13XGm+QQ7HOY6T63DjrOAKFkAhQjGKMIboyy7NV1nZdV9Us2kxzF0KqxY+fP+6OR52lf/3nv/3ltz/jZLFtyblX715zybu2D96VaNNAIrg1KAFEzlKI4PoQ3fHjj3e3t9tMt60LXdd0vW3rs7W5lkmWhWHomwoxZFm2Wa+d88Za6wcuBAPMy6LICkZstEZVpzNA1FocdhUB5UV6PB+3201bNUPfKiVDdJv12gwmUhCC3d3eMM6GtmurerVZAULwIct11zdNVfd9P3RIQM5b6XiepYjM2Q4RKBJnbBj6sihCCP0wDP0gpOSMm8HmRba52Y6b15hhEIIBxcEYxvDh4ZXzTuvEeTeYoanrcdx9fH6y1hjr1lvVdd0w9N76NNNNVVfn+u72vmubj+8/KCUhwqdPj4lOmODGWg+YZzkE+N0///7127eDswxQKwkx7D49b1erJFGhN/W58tagVhjh63dvEyFfXp77tv32q2+lEo8fPq+0er294T7ugg+AuFJJyiXy42HP7th6vUbOvPdCSM5Z6P3Qu65vjBlevX6TaB1iOB6OwYePg73drlflmoj6vq+apmu6m9ub/e5QHSqXul72Ok+L7UZnGQDZwdTHqj6dMQZRFLks9WnfWmv2zy/vsuJ0eE5DTkAuOKVZdTzYfnj+8Elrts6zvqr7qg3GoHM8RFM1qAWDqKWUTATGGTLJZVmUWZq9fvXKW+ODl5nw1jqvkkwDMmtDsVJJotNVXlfVuWm54M5aw/skkW0bGONKyqHubD+s7zbeh9O5GZouXxVt1XGEMk+0Yoxh13ZN0zrvwIc81VqKoeuQkbGDp6iVFonOVoXWSZqnx+PJmPDVz756ePPq4dWr4+EAAOfzqSzKLEkGa7z36EloIZi0vZOC2a7Lkowz7oK3nRcIWksCJlRCkUSmo1A639zePmxev87uHyBJByQboqQQPCERIwK2+A2II4tACGzcHHGmIdPoO9EBmFff4MKUluEZKV5El5ErEc3GYvqCv4zrzAj+11UwMIslyy94DRMzFi06/kiO4pzTqwvxCvGmZy1gMukDF61qKsZMNCZsu6DLLNTg/Cxkiz31Wg26+FuvQZcWCWkG1VmPuKgYV7aQ0bYDANNhspPkgIjAiEU2ItYYLhnf0BADUCRGjIHgAICMGMNptB73gQXkxrvBDEDEpvVxnEsBjIUYAdEZwwQqKYpUEUQxHjAco3cWKEbnkcWEYbQQfWQoiAPjkTGiCEjIeUDGicA7xwSPEQmACYHIQqBrgL8g/kWngbkp6Qu9bekxV4LeVIlX5ihaon2XbnDd+gjXvWMx9CxGmllPm/vHGNNbtLulbafuuXSkq1Rn6WoKbV4359xRL6kjwHLa1xed/6f/vpQXR8kGroJheGF4U9KXXxEvhqQxmUiIEEd1l6MPnmjaAjNG4AxHVj1qkEDAGAs07pUxeaaRIkaSHAQgCxGJOCIXiIFiJEQGjBuKzvqm69q2A45SySzXPkTTW9+Zoet8qgPE4HxTNUmeB0dN0waZpMABhGRK5ZyBD8SASyGZsaHvbKQelFRZ7kJsrfXe3j/cUoxcJoyJ7U3CJB/5Pya6HUxnBxCsLEryRNFhJGfMqtysivxwPO4PB2DIBQ8OdEyEwOp4lFKmWZalmsgez5WQsigS671UPElkkSYCWe/Bd62QXCFF17s2+H4g79dZygL1xqlE3K2TlG1ev/v67tWrvMx2+/2KR6HTDcdEiXoga/ssOhkptK3rURWaorOD8XVXVTUSrbL0/uFhleefP38+PO+1khDj/uWlXK0O+4Mxw81mo3XKMErBuNDQB5UIzuU4aEbyALGrm+BdouX5eDoc93mRbzb3Avl2vSl0ZsyAiIwzrZU1FgmyNFuv1uf6RDGsN+skTYJ3Os2F4GZwxEClKs/yRKX12SJAXVVKqjRJkGHdtc45pVWe51Vdm35IUr1ZbwixbhqpVJalpndScsnTGKPg0jlXrooYqO97xqx1cD6fpZar1ep4PIQQIlCSJcGHcrXijEkpyqIYugEQbu9vtdZhNCf5EIE+Pz9tb9aAmBb5drMNzjPB265LtXbBK0QGYPreeV+fesbkpigipE3bmarZvHkb1/bDn/4kAVmMH374YWjPaNQf/un3VXc6nyuBeHdzO7TmNJwOT7u+M+GtR+Rd10ulylV5PB4Oh8P2Zp3nRd91MQZjTIxg+mHo+s1mFSj2ZjCDqdrmZb+z3iZJ8urd6yxL/+ff/dP3Hz+uV6tXr18pqbu2HsyQ5El5txJKJX5oj7s9k6qth//+n//7N7/8+avX9yJhVVufT8fj4Xh7c2PNEJ178/qecxm69od//t3qZkuM13Wz3pSaI+OwWheSR+8tR5YkSmmVKOUieeO44JvNxljrnGtOfVqkTAhggivhI3Elkzztmr7vh2mD6Rgp0mAGHrA9MyEURNecj+fjgSF/uLuNwYfBB5TOWdP1QHC7WRdZ5ow7vhx8dMDg5vZmtV6vNpsiL3fPL33XK6XuX223t9sYw59+//u2a7MiC8EXZeGNJaIALMQAkYdAggsuRNNXoKTOBEN0LgTvhsEkXBY3W0tIQgWUentfvnpb3r/mZWk5gQCB4IIHRIlMAGfTMI8I0dM0QRzH05/MmhcEQ8QIFDFeJp7jbtCLoWbZt45o3ih6QrYZgpYR/CqRqzF/xiL84rtl5Md5sjv5TMcnXhzLs/JDV4CyWG7mOf/lSvyJfDMzNMKpZNPGeIyunj7LNnARGSawmfkizrxlvpIWI/cF8GdFYF4G9hOpAWEKfwEBQSRigQEBZ3JZroSMM8kIQ3ARIXKCaHzwniFxZBRGwGPODdbFSBgDcCWk5kIwAAmAyDjnjEKkIBiD6J0b+uhsBM+ABINMcq1VwMAZlLlyQ2AohdKRgfc2QDAumN4OXZ/keQA00QUbGRcRWSBPTI2CF0G8PgRuaklaqonwYlmhZanYuBPUleJxTYXnBhh74bIR4FVTzuR2rH6aae6kbkzubmLXhJVdx0BH5oVIQBEiXvWfqwWPV/9CIpo10dkzRAv1m/rI9fKrLz5T+S+S6/zHFIfECDQ/91pOvZ6nzKa8sQ/T0uOmdMfaCCFyDkDIGA8UIgERcMYZIcYIhBgizpRoDp4RsgDEKFIkEgSMIo+RbFCC8XUuozmf99EOFKyNFgnaHjnLlZBqpdoYjbXWOT9Ya4Z2MHK74lLrmADPBGIYDISoUyG1tDEMxFOZlTfl0/vPVd1kqzSVwoGNOq6326QoTs8Hb6qInCBmZco5k5I77/q2a3sjUq91SiEIhlxx66Duqu16Teg8WMWSLEtCIG+NNbZtOsaZ1ogkKDgteZLoYG1wrkxVmqSKS62kiL5zLfiwzjOC2B1P1pgkzzPG883GukAId78upVBE6J1PfbdVwFr/1evXfdfDuU5tq9yQoVJMDBBtOwzRMQHVubLWJolkyOu2dp99mmSIWK5WiVbWGGfcYbePIaRKpVIxBNMNvRmklsGaqm90knDJm8MRAWIEiDFSfHk8CsF/9u6rJNWJVolQWspVliODtu2HYXDGb7cbl2VAMU9TZJRlGSE+PT8DgVICAH0MnIubm1tGKITQd/d911EkIbjpzPF48t6tNpssTaWWKyxj8IHIe8+4QMAQfHWs8iJjINum4VzEGEw/eMEJwNoh0Voneuh7xsTpcCaCb775JlL89PHjdru5ubt5eny0g2kA1qvV/d1tliZ11SjBGRMiE0pJa6x1brNa9UOPNa5X67pptputSrVzwTsvpej7TkjenJ0S7Ha7GV/joW8/f/xwPp+Ds9vt9uPHHw/n46ooe2cPh6ePnz9ChO++++5Xv/wlhPjj+x/KVWG9eXnZbbZbJtB5S0BCiiTV6/VmtSpfdi/OWgRUSlhrgcHg3HDY715eGDKlFVlsuq4oV8giE+rVu7e7415o8fSyY4w/vLrNixLA7Xc78fi4WxdJojUgW5X5qfrcNfXpBfenlwAhxOhdWK/L775+e3rarTcFBPzDH378/g8/5JuSSTkM5t2716mSp6ddppSUgoI3XR8okHOGqxgcUHTOCSEoRusCMgwx7HenoiiElqZ3DHlepDHEpu4ZYLEqAXDoesGQA5i2p4SUFEjRGYOMd9XZ2cE5x/gZOXIupBBayOZUn4/HrmuBoZQCCSDSw9396/vXp9Px7//b3wXvH+4ejvtjVVfH/TH6EILPspRCCM5LwZUQnbUxYvQx1QJjTLXmDMi7REuhhLVEyNLVKt9sBHGSWXZzx5Iiv7/n5SoqGdCZ6JExYMiIITAKy8lHAACcYbgaqy8DMC5KxWUKvHgtZ1YxjbGLf2hGtiV4cU1G8Hrt8xepTb7VeVXLgiPLyA5AEHH5luaJ/EV6uiDlBSuXm69gha5gg2ZmgoizAWV50OSemKjRZPeYCSDMUHzt8bmkv2yxvIgQxGYZaTbBwFw/F6QfcZMQA41WQ4whIiMfI0cWIUAEBsTGJdDOS8kQA5JHa3nwkmIqZZYpISQQ9oNpuz46j1ytiww4ixSicUCOgSD2/6PrP5skSZYtQUxVjToLkqSquprd9+6bmV3ZxSdAAAH+/w+AYEWWDHmXdHeRZEGdGFPFBw+PyJ4FUqSqsjI93M3dzUyPHj2qikrRNE4awXqd0shhgBy8UV3tau/b2ndNRwKI7I0SFm10VdeMkHLJUsZximMME5OxQIYUAanA+uvr29P+mEq0vk4iXN5VQZ4nCS9pfJf8MX6PqWEBznOlcrmyQJeU+EW29Y5rubyc5YEv2OSGVq9w91av6PLkaamosOisZMlBxxmBXCYZLi8I3l/+mpYFMhctYOErvF6KXf8J7stlUb3XzL2rkLQce6PDEC9SpUtdhPcjwOs0RSARuVTxnHHblaJCABCGrEgpPU9kVkqJoEi5tIMVBAAW5pkGBgEoSEpYhEUACxfORYloEgLBkpUw5iw5pTylnDkXBWCsAZSh7wnYGldVlXOWuSApFpkAIqmplLYztVr5emPdKmfOKEylSHnbnQQmZrQCBY2gKYJjCsysrDG174dQAJ1zQPp4Oh6/vlTe3j9sNWmnXPEUUvn2+8t6U6+7xjQNIubzOPTnEMNqvap9DQhKCzCigF7p8/m0f91tNm1VeWCIw6CU1gKYCkOwnYEppmFsrUUiDZhywRDKOIhSoKytXF25EIII1saM4zgeDxj8qm0KYt7tJERrQUsawyRcTN2g1zlcHrdCbJt6vdk4516f38ZxYJaSMwJwKYRkrDkfT8aaTbcGgHEc+1N/7ntSRBpZgAAIbZxCzmmuOjKMQw7p/u7OV261WiPKNOzP52w3W4Vaa/LOpphq7yYAq01O+bDfl1SMt/3xlGKKU+xWbdM093f3zvmS4/lw4pKI0HpvjHHW1VU1jGK1abs25TRNU4xBa10455IVidZ2HKf1qlWkQpiGftBKT+MQpqiM2mw3d9vNOE3r9ZpFmrZJKdVdczqeqqr66Zef3t7eQMQYPQx9JPXXv/4152w0vTzvm65drR6UUk1Ta61Px0PJqa6qKYzTMPzjePj5118+fPj4/dvT/rBPKT4+PuYQ4xS0IkBcde2//7d/zzE2XfPLzz8boufnF2FIIRwOh8L5//I//c9aGaPN88vz6XgYh+Hh4QMRhRgAMUzxcDi6yiul7u7u1+u11uSds85ttttpikjKWBtTBgRUSkR8VX36/JkFSCnSJsRYde2jN7/9/R9TTL/+5ZcpxgCpcqSN1j/95Ser4cPLw9cv3znjx8eHu81qs16F6bQ/7kBg3XWrdiWMdw93ztHf/svfTsfXL1++bPPW19U0BUmDJWWIKloZTboyAfI4pX536vdnANFGa2fLwFOIhcVVDoCmPnCBqvKIShvb94MAuMpJKWGacuEwjYqgIFwyZJISQuASQzylNG/qMUZrLENxrc5TzCGGIShBZ/00TcfdYTgNXd39+PMvXdNuVhsAXnXV3//9n5nTYX+UItaapm1EsOqqnAsz11U7joMWBQWhiLNWG0IiFiBtmq6u7++TNpH86vExYdU8PuqmYeMDYeaSpJAzOWdNJMxMMt8ACsybpgjjxeFeaBW5GIVFpYHLbisEUOb/3Gza7Ly+p24uqEkW6z/3dYfZ2RdYhNUXqHHVmy5i2PnAa5Dq1r5giR3QbIduxD/gny3NO2bnHQJ7D7yuhV4W4ukdZzNHK6453VfDhMhyA3pwxYIoi1AZlszzS/oUzSdHgVkWgpdne4F585NnmGEVgoJFX4RIgoJIPL8OAhFRJAWKRoDCREAgmKFS7DRUylWmqZ3pmqatG4UQUn57O7xhOUEWZMVREJGAdZEsnCbSlgAah5yiTMO29aZbN4378LgxBBKz0+S01QqIoD+dtVNKA3JgoqJESDqjoxZxAsol0YkLaTVkyKtuvz9NKUwh6aqGWd+DRKQWGTDDoqW5CG3xnYDnhiTnf256r0Xf8p74WF7yBaW8A6TveKCZ77lqyS+YBwXmBX2bKDJDLry0IBUCXAijC411YaZmBHeDLfPvQV00ZyBzGBMFEIVn0EOXigDXMV8Q9PUG3s3cCyiaFV9Cl3DvZSG8i9u9cx+W4PTs3jAK3JYuMrOUuZu7QoJSipRFpAWlXKRnKChIqJAkA5QlgKyQy7zSJEsxUKziFHqVRguFgYsC3XhrdAgTC0tCyJQlD3mo69r7Ogs5Xz2sHvrpJMRDSv0Udc2rbZ0zDmNfimhtmpUa9n0MJwOyUuaXf/nrmIdYBuutxPz6vM8xf7h/sNZNOdVdp51XSrKAQr3Z1Cbl/fGoNXvntbbInELJMXmjnXHTEEoREJjGabVaVU1VYjofuaQszKf98e3pua6qtm01QQqJS0mAisCiTKdjXdf9eSJSlVJJIPcDaWet7qy2bfO3v/399eV5fbeulOTxvN/vau9PT1+r2mttEESMOvdnYEGgImytEYCm6bRWhBSGKadUeae0jilM44TOzQEpIsMZD4e+5EIKjHPQn0MIrWu0wnN/+v79bLQxRtd1q5W+q+5yiE3TbDed1jam5Jwdx/F0PLnKT+PgnKsq1597Z63WlFIWwde3Xbdeffj4sT/3ymgWpMJWa4Xw/PrSn3vvqpQKaVcp0zQ6pGy8q+vm27cnlnI+n6d+fPz0WFIxxnSrFgiFS0lFGZVzmsLUdV3VVIDQdZ3RNsZotHl6fq2barPdTjG9vr398ftvlfX/+Ns/YkpNXVttio9xCmM/fv/6reR8t972w/jbP36rmvrx8XH3tvv25RtwOb0df/rpx7qq1np1eN59+fsfgHA8nY+n07cv3+M0fP74OYX8+9ffh2FIIf7jH/9omu6v//qvzKyd61brmNIawFXVD59/JK3++P0fBu0Pnz4Ls0I1xTBO49vbGykCBGZGgLZpjNa7tzcQJKH+3DtfdavVarU6n86kURtdOQ+E3jnrKwF4fXs77I/aaGXM779/MVaP0wORimGSnH/56bNuarfdtruv99MYOcNqu7XWTVNYt+107tHojx8/aNKSYrOpXp6enp6fTudj21gNHIZziDGcT964rqo766yyKOKtSSH2YZymRIqQwHgvAIxASudUQJQ2KoUkRbQhUui0ta1OMU1DGKcpxBDThAKayFiVC4JISRJjIoEYinNaG01EWhEBlhjOJ8gpaq0JNYooQGIIY3h5fo4pc8kpBi4cQoxT6IczMFtjvHcpZkQUIBFggBKzQgVcCMhWXlhCDM5YW1eoLbrad1u3urPN3f1PP2HVJaXB2QgYhXMp2hlFiEqBCIsIgwDyrCW5cOUz80HX0ilwY4MW13hJKblmIcm7xN7FCFxjVUsgTd555TcjIbeo1DvcI3/Oql+2XlocZLgZtivaWNDPYjLeFSu6kUN/NpTLgK9mFG5KkhvvtDyEP2X5A9wYgqvn/06bMUMdXKzs5eRXJkng9jDeqVjmajuEF/mUgCDPATAkBmHhUgoBaCQUROEZbkHKWqFXeNdVXa02jW+ctkQaSRMDiylZN6ZVXdo2ZCyCFjU/fS6hcEFAbYwuzKf90TqsatfUvm6cc0qkoEXgQpxABEXVlaU5REQcS+bEZJT3xiBRrUqh513/t3/8sR/6MYFtVqEvJRdGFGeRtNaqMIqwMAMpeZf4v7CDt/eKcE1JWqz9JcPrymncMqAur/pdYOxP4PfyzuCKVG+kyXX+4MIECizXZ8CL2E2E4SL/JwBGQb6xPjfS8wLrl8jRAnIvbx0JF9kYLvlitxn6HvjcZteVc7rdMfKsUsLrRLuwmMtzuDy0d0K5ZfoLAGAB1kqTQgBIU0YQKBmJtCaRwkUEkZQCpMwCgESARRyRAgEEluQVaSg6Jc3ZKoz9pLRwnCyS1cpZI6X0/WC0qoxBxBSzVUqYX1923VY9tNtt1xlPRaI+nSprJYW6bgDMOAqisd6MroQwtd1KM4XE05SNMwqp9tV5PCsia+0YwzBOvq6Ut1MIZUqmogbVYeiPQ9ys2sLw9P11OB6c1WUaGu98VT19/zaF0DZtVXcp59IPXIpSVFUVCOxedooImePQV7XTIGkYjtOYYxqHwRpzOpwAZbPdGGOryhORVhDCEJ8mEeGSurbWjI1zEcL5bVfi9PjwICD9uT+fz84766oQIheZ151SylhbUjofT/35bL1z1oeYnLXQtuMwWGcBKOXcn8+kyGkLCjyzrfy42+/3B+t0TrGk5LRdr1fr1drbKoQwUL9adcbYnHIKEwE0VeW8N0aFQYAZiFKIICLCKRdrra98yVkUrVZdEckhjXmSXAjh7eUlhGwfPBGN46iJBAUQjDZTmPa7vTLUrVbrrmPmknPb1GkKORcEKDmC0d57pXSK6XzqV+tOa73f7YZpIkXGummaDsdT3w9vh9f1erNdr798+ZJy8s5W3Uq3TegHAiHgwgUKN5VFVVvv0hRXq9aan3avuzzF42H/8+qXzXZzOvcvz8+o9YcPj4Dy8vrarrrPP/+kFA79MMZJaaJC1uvD6YhIqbDzLmderddFuD/1mWNO+efPv9zd3b28Pk3jdH93p5Qaxlh5dzqdjTFaqaquQcRZR4pKkePhvNH27u4hhDHmvN/tdm9v2+3GGhtjEjikmE79cDidtLGlZFs5a804jFqbh7v7FEcG0YrhP/9//o9z33vvOUkegmaptS6jtM5lkOPzPpwm59Tzt/Hp6cv5dIbMm3WjrY65pBJSzoAml7jbvZVUe2Oc0cAMLEiiDAlz4ZRSRq2JBYG0BgBIMYcxIKD1lghZSoqplBTTxMLa6hRjEs6xKGBByoWlCM6d/YAVZwDUrIzSIYbTsVcKFVJOyTsLAt45Rtk9v335/VuMY0mlauqYowArUkarkjnGCIgxRRTS2iilUkjGGiBSRguRIFarVpSKYJxf+bttff+pvn9Q1RqajW7rzDJxzgAsLArnlldYhBAIaWY73rERC9W/VO17F/W6gB6Qdzv9rS38ex5+sWXLNn4xGXDVWFwOnkHWTODw7cyysC43q3Q1f1e19jsX+QqKbkQS4nuks9wKzLLiq7T6z5Zvvr2bLZvVofO5GeR25OWb+a6vGvEbBXblmGbjvUT/LubqYqQuBuuiA0ERnDUoc0YXADCgunTrRBQggCyMhFRmy8mEQqoo5toog1Rp3G6aD3dta1ETGwCSLCVzFBQwCHVr1o3iIqR0KXLpSkWgycSYBRFJDcPYkCeFKNJaZRSUMCECEgISKyCkAqSdAclhDGEYSGtbV0w4DhHRAuPxPD69vb0ej6/7U2LlI9q2yUpzKqkfyDpHFguiUnJ59QSXmt1zMGzGQ3wFr7ikwt2g8vyq57+WCj0C1/c8zwG8YIhlZuIF7shtklzOxnJJCVcLJ3MRD+PCZ15gFtGlwfxSkPo9X3SF4VfwfYtwvUclsoCbq8aOcE60uroHl9u+oup3c/m6rm5RvNt44d3ynEmly8/nUucEJDPtgMTMcxpCThmEjVES2VsiKGGcjFKgVBIRISmgADjmSkGnFZZoLQiBTCNJxJQM5LrGIWCaRue1Iy8pK+Z1bVXJMRSnkQXJaMhCmtbrtqptzpGsss5b37br1elpf/ryPdc1Gp3HGEkH66IRYxrbdrmfxpS9812rCVIhUrk+HM4FCxnACEMIY0xTSrZtWzL9mJOr2seKmacYQ0je+82qPT6nNI1VXSmUh+1qvd0ez/3XP55Wm1XbdYL89vrqnCaUdbNK43R4240n0zSNcVoED/tTTPHhsTaoSWPMOcRMSillSmZgGPpeGV21TbtZW6UP+xOX2LQrUnjux9fnV1+7HEFpMAgEVNXOeYtIBJhigMKQRZNySkspcexBQJPWSk3TZK0VKUDYdqumdi/PT2/98fHDB+fNH3/8/pdf//Lx8SMIO2ubtrHaKFLWGEQQ5vM4GNLjODhjP378UHLJudSuVhrHaQKNQvL8+no8nZyzRpucstW2aWuttSKFxkzTlFMUkdWqUwqP/SEMIcdtKqmqXCmYS9FOr7rOGe+cOp/6EnOKQSsTwhRTenuN2hhXeUAYhlFprbWt6ibE+P31uRT56ZdftNbPTy+k6MPDY5gmQLjbbk/9SWsV4kjOV3Nq/o8/D30PApv79TCFlNjXlW/8YJ2vKs6JU3l9fXt6eRaCqqmt876ulLE//frL/fYeUZ3Op82Hu1Up+93h0w+fN9sNsKSYO4TMZb8/c0jtqlEKmVXl6nEaSeHd3f23r9/6c//j58/auK9fvvyxP+x3b//2r38tKStrNtv1nBw/xswoIQUBrKoKRGII3758e3h8WG26P377UtdN1fh+GnPOzpmubfZvh1d+/umXnz59+jCcTn1/1F//+fsf//zD1Z6lDIfzcBpWq6ZuKgAQLqdjr20ipNDH8/k4DUGTthURCacopRgg45w1RisqOQ2nnq2BypVclCKvnHEmxsTISACFAQrnlATTeMlwDmEKwWhNLDyNI2oUQiQyWgFBTpmFhYsAM4DWGguUkpmLZBYQKQo0aE2cGQooS6RUiLlpaltMKokBoOSSmVApRUPfa2OqmsIUcs5TGJQmNAoQGBkQSBEAuNYrY5jJ+LrZbhiVaOe71ebzR99tdLtSVZedyygT5wIsgMZqY5VklsiYRVvFyHPW9Bx4WLJSZgNxgyPLvnzlLPDqsl/c6Hcm/2oGru7sTQN9YzoWtCD/nc262rebNuhyhnfQ579ncZZQ2Z+4n3dWYClIh7CYsYs+exGe3EiCK5v1Die9S+q5Xv92A+8GeIUzly+CBdzMo5ijYLK05bqGXwSvYE4utpDlJgRBAOBcJINIRhSrUHKWVEoqndGbzm+7ujZaQ9msq7YyGlKOOcUIXIzSmkgKl1S4FAFUQMIZL3WeiJBKLjMmTqXkMCLA/vXknXEGnW4AIZdSilhvgaXMqlghSZxCnsZoPbbWCxBzyYKv+9Pz6/7bt10uqlndFdIh8DjmXNgYHXIp4xAlkdIEVpFJpSCAKL5QXkt3C1qE0kuO4DsGZHny7/i2G+120WldHt8yD6+Q/QqnbiAel1e8MI9LPO5GRyG8m354EcIsb+c2rOWicAMpCBea8P1Qb8DtymYt45wPuSy8+Qo3JIfzk1lyFPDCdt1SFW5r8bpkL91gAIGWO59bs2hluGSNOkvWhLUzzmlvFIfpLKyQlVUxcc4sTCiSY2id6koJx0PdmLbWBTGMGbF4lEort257FOcUJIkxNZUHLJVbpVgNpyGEpEkDSLvqPv3407mfzmNCkCCYI4eYpsgCSpGOMeUpms6h04V1CXAaeidQe49SSmZtVCqxcLHOxhinOMXCqIyprDiTEQ59z6CM90JICAbROtNarQl9bSWnHKfVqmnbFQOEaQIp4zggQUhhDCOCdUYBABAqUiWVkhmJQ4iZuVutVput1jqGEENg4pRyTPl+u/VVZV1VN/UwhtenV2P0OAylsKtcCvF8OgtCVdVdp4kohACAROScA4FhGMZhdM44a0vO4zAdd0elVd20bdumnE/HcwhTKvnx08e2qeI0kkEscNjvcwlt027v1h8/fMgp5JSk5GPfE5F3VWXdty9fkfCHT58+ffiIAufjsW6aEEaGkiOHGFNOh8OklPaV95U/7PbDqf/h0+ecSkp5s14P5/58OnWr9uH+MYT48vySJd1t77u2O/XHuq5yKoBYN1XbtmEK4zitVl3lfckpxaSQFJK19twPU5jWm023Wh3PJwaIOR9PZ2aZaSck1EYz8JcvX8epf3h42G42dVsjAhRwxlbOcc4gst2sm7Y5nfo0hbpducqfTmfnLaIbcyklIWEaU9t1TdvOHIxWyhpbpAjBsT+LQNO0wrhar52rQTimE5Guq/rxI59PJ2Nd5ev7rT8dTtY4ZGh8/XB/VwqHKe7eDkhQ1VXl67qqnXdN05z7c4kRiYx3OebvL9+mYVitVtu7jXdWSvnLr78iwnAe66Y5Db0itX7cVpWrKvfLz78qEV85KKyVUlrr48tznvocx3GcwhiHU386vG3vN+vtqgALsUAOYy+lkEjtHAiHaTzvTsYZBoDCmhQVFikllzEAFwfAVmmjdUpJkzBKSlkjCDECcgx9GJFQG+OdQxaOUwwgKFgykbJESXgu34RApQiCRkWkFInSRmWIpOe6OgwiBIyIxmoEVM54bUpIvnbhNHAq4xgQpK1rrW0pHHNKLAqwMCChUVqESUQrBBYRVlqBpiSorHdNW3fb9eOjbTbgnK0at13rygtZMTqhpBDIaGt1iVlJtkA5FSnskDgzgiBCpjmcgHLdq+H9ZgxLmOpdbs0tQUaWHf4GN25W/+bPXkQbeHWBERCIF5hzkZleffmLnVm+veTQXP319zZPQAgBrqqI93hmGf872upqov78w2vEAN/HV26trq6A7ZIdtgzwTyPCa9QGaXkWfEF/Fys69xOgCw8xcxCEV+RU4BKSZEUXNetFooII4AAZmZgVCAJ3lbmrq8+P666yGphzMpQoF0C2CKwVijZKc8l80Q8zAIBiY1Vh4rnGnSJEhVkIQZLEfUgp5xyGEjVB23jrNSYRdVEvCYoyxCDKWFIpxHw8TYwGlNmdhm/P+zFJBhJTaa1SLmM/aee4FJLinSXhXBhiUgZBkihAVEty4PVp4gUMCuOtIvU7WuNCrFzjOX+W0l+ACV41Z++YuWXe4HU2z2D2CnD/NMOuqPyaMbaEq/B23VsJqyWf/zr+i8b6um4uHORtrhHNWJzoHWRfzkRAtxV3I2JvK2EB8ItY75IShssY3q2Fa3baFVIhCgMLcGFNVBldE1ouLYv1ui1mmEYrPJWSkxAipsyc6iArIYZRjWfPpFAyhCmGMAzK6boysZThpefC1lkUBGatkYxqP96RNsfD0A8BFCinVXFOa183heEUQn8ekZHAwJQh5+2qc5u2zwWt7nPMOYhQn9EjHJ+Pq9aKpPMQtvebGON5GKqmIW0isCLMmYcxjFNCrdumclYLsDNQIE4hFw4EpeRsrFWKJBel0FfOOQcljecjSjnuzoTwIk9t09bOl5RzYUtKa1NV7v7xXmsdYiSi1XprnB7HKYxBWysiKcQRIIV03O2mEIwxhTlx5lSatmnXLQrGEBSRs6Y/nQ7j+Pb8UnIhg4qUNW3ilHPKKU9TcN7FKT71T/25N86ClFN//jL2lTdt0znjnFZN2w7n88PdfeXcNA4AMk0TgAzDULlKWOq6tkZnzn1/Oh5K5T3ncjycgHAYxn4cNndrjjwM03rTrbrN3d229vXOvq3v15p0DJEQCVXdVPfb+yIlhDfrbG3rbr0WLopwGifrnCSWIimkEELJ2VkLwn0/nM8DoDw+PjJCZsmcpxRjSF+/fPWVv7+77/uh74dutd7c3QkIKvX09fs4DDGl/txXvmq71hqTpgAoh+OeBMI45axZ5O1tT0r52oUUc+L+tFutu67regDnPSkdcvTC1vmUcyrFWjueB+Ntu+rOp9PhfL7b3hEpYWHBt7cjM989PNZNZ42v28YqI1zWaxWmaexHTUaB9t6e8inHknJ6fHz89OmHuqq01krT2+5wOp8fPzwc90dmuNts/3E49qdeodJabdfrEhMioeBpfzB1/eHTYxF4/v7a1tXHj4+W9NCfyxS8d8qQfn16Pu6PgirGqLWp66qUNI4jowwxlMLTEPbT3jjlnEYpCJBC5MyixCjDnIEBgGPJCsQQ5VSyKW3baGuGc6+1EmbgzABAmPNc0ZQRKaeUiZzRMcacklLKWpO4iAhkFmCllSKLUpTSiAgMKKA1kdFz4gWLcCmlAAgog4DIDMo47yuOGQgREbIICCqYwhRDEgUpZKM1A0ARo5UxRriUkIgIlWJEBVAAVdWsP37u7j90D4/VegOuElLinTK6FBQC4YIgmgABuDCIFAkcilG6snaM45zTTcKCuCT5LlGF214ufLHUeJFvXg+Sd2rjm225fncR8yxhtMVyyMX3nS0L3nbx6+9vp7pdAK+M/wxfrn/exbeWANaVZhK5qGsvYh1YKKC5WNENxuHtH5klUO91JMs5YLFtcKUErjTOu6HPmlkQmq0YLCLVxZ+fix8K4aXlyKVTAcwNJxChEMAl+11AikJCEksimXOOBqBxarNdPW6bD5vWoijJnJJg4VgyircGRYhFhGfgL0VQEREhCCoSpJmJIiIiSilLAQY+7w5O6dhPtfVf//hGIG+v6Cpvm8pZxyKEYJwmwJJZGZ2z7HfncQwv+1MC2p2G37+++NXd3eMn49eVtzTEvk8E1DVesKScLIL3thTIRQSzEArOSmOaxV8IIMCAyCyX7rAEFxG8XGHr9Q8uz/vKgLwj4d4ThQvJdiES4fo+l/mxzJC5stNtRi/TcpkgF7SGCwChSyB3mXdLF4/rDxeKCRD+lGZ/mzbvKJvrRd6d4boW58MvIdI/4Zzb9S/5CLerX70ImVHm7GYQINBc+UmABK1SGkTl6JS6b5tAeSQmoyJzPw2cC5ZiNVng8emtNeIrhDFzYUmpnCaJKYEWvyJSRaTbbCvvOU7WuJinyKletQjKGFOvjG2q/fkoZBgBCGLKQx9jAWNcljyeR0elRYYUQj9lzm3TlAxhTFPOpDET7M/npvaJYYy5sJA1zbodhum0P5Ix1ledt2EYsBQIqMlqQikhSamsVkBtW2nCOMXheCStnTbksWqalKKvKmNol97GsffWGetsVQWYUi5KW2Odcd7X9f71wFI223XTNYhIpL3z0zgN/TCee0XUdK0iIlTa6jJNu6eXpqndemWM7c/Hw3FvlLbOhBCZeRqnmKLzbr1a9/3EnKvKd6tVfnoZh2Hsh5Syr6u6rV6fnotkTsWt6g8f7zXp/nSyxjxs76YwHfY77/16tbFGcynbzVqhHs792zB45xhsmALnctzt7+63ghJDUEpZZ0sRbez2/g4RTsez0spVjkH6fvTOOu/O5yGl6LzNOcWciMh5LyCH/cFqNY7T2A+r9UpEjvvjXE6fmY/H47xdamNDCt9fXuq2sbWTCXe7w363Z5BUcipl+7AtwCnnGKKvPTDXdb3adDnnEIKxBhH3b7vKu/3bfujPq3WnrD6e+n4cBeXtdRck//LrL2OYjqfDMJ63d1tbufP5HKaYOffn82Z71zR1CGE49yJMWm23W6XUt2/fEDBn/uP3v6eUrXXG2mHoP378iHVDhFh4mqbhfGYuQ9/vXt+0MSKiNa26NpUcUgKAUsr5dFKaUopt03AqOeaqaRSprm3DOPX9KYW4Xq8QUWtcrZrd7kCE3lcC0P7ll82qU6TSMGrAsT9PA/p1owGLNep0GAVEOWsrm6LEmIb9oYAAUcksWBBxGkeF5KxlQFRak7HKIitAuFDWpJQ3SmkmSIUVaW0sMGul0UrODIikiAAIgZkZoIgoQmOUNgiIZJRElJys0yDCzEopsjYlLplLKrgk+8wOXckAgqhQG41aMZOyvl1vCeT5j+8ESltbt1CExxC5FAAoWYzzShOhJIlFWAMqRCFQCo23QjqjNr5ptw/3P/3UPnzEusG6YmVFUUHKDIoIQKxWGYVL4VgMkdGac0YUTcTMikhABIHlUgP6BmUYliZVcsUdcpGfLnZm4fkXU/E+pWaGEBfAsXjRF5cYl8yo+UMXs/Tu8ghXQTW+My2LyVqEGze4cbUmeEkfuhjLi/e9FIL7syG8yWbnl0XvCuotwAuvmGW5hfe0wyyJvmb243uruQAmXNKElnyu+ZcoiDKjTrlQFchQ8NJnSxCFQIAJRDgzAiLkGC2IQ97W9Ye75m5dewVOIsQJAIwmIABQShBF8hSZmUhNJRIAaTJWCUIql8ETaREuzHPtlxzzNAyciyLTtV3h/PmnT0B82J/Uuf9oH7EyMCukRBCKcB6OMYZgfQ1af33enUNmMqB9Stj3qcFc1U3l8O5um2JSAKQIChChlKJIzW02QsqguCCgMohK5vb2SDPlyAAil3o8l8TumVF7NyveT4Ibh/IOqb6DsTPIvwnT31FC81ugme2R67RcMsAu032hYegGv4Gv9X4WwuiSgXbNP7v+6IbzAS6TQxZ2b8Y5f4ro4XKJ96dfOCC8zWFcwNB7OLgAu/fLB2ePR4BxfraiiFChKlBiCSVyCqIMjhP1pzsEgpAweQpjGUuMqpBCkWH3/bBvN/XmoYEC0zAZp11lERWzdlXTbR43dx85TsNp37U6lXDoj/2UuUQ0+sOHR9e1+/1JCnOG/jz1ITIp531B8r4WYyCOx/PQADutAKssNC2m2ipyVoXhlFDAmT4FQLGVy5ljGhGKt75rK2BUJU9h0pBbMgYljMF7u3J1JiUlOWtNrV+eXkiptmtZvDaWKr9qWgGRzKFyP//0syJdUnbe9+fz8XzcbraVt/vX/fl83t5vwxiFD2Q0AaUYQ4iIaCuXc94fDsPQK00moiWVSZWYQn9WdQMsijSLzFLfzWZdd3VLbY4p5agIz8dzfz7XdZVT1NYgsLJUeZ9CjHGa+v7j46dfPv+yXW2N042vjscDIJ5P574fvfcph/7cA/PDw0OKiTR5ZY3SRUqJiUvph54UDeNotF5t1qu6AySjTeFy2B+evz05Zzhla+zL9yfvndFGa61JTf0kuQhyGCMzu9oTkTXa+fXYT6fDeXO3UbZM4/D92/fPnz/XTf307fvhcNjc3bVdV5jHKYjIbr8fxuH+4R4RrXfrbp1y2r0dUkzn82l/2E/T5L2t6qrkjAjeWKd1cYZLnhFYTPn56cv+bf/x0ydllXYGEXe73TCO27s7QiBU0xiGflit1yllZkkpIqrKV4DgvBunIMyb+w1zqXy1272FMCmtEHmzXRcRX/mqrkoox/3u6enJaCUiYRxJUdvUgBimbIxd3219KrvXt1zSMAzee61U27WE2NSVdTaGyClbbYhQtAYWq7U1lta676e3l9efV2tSiKSY5fnpaxmCN8Y6FUMa34rmwt7ZUkkRnqm2lFMupZQcc7bOW2OUcynGHDMTWWsVGWVYEAuI1qSUTimWWfGgjPKGlEVX+dq7xg2Hc4kTCs0F7rQx2mAuUJgzszaKRQoXACaj5vehCI0xCnGaJmAhjdaawBE0aqUJaS4PxQxKaQYhpUk7UFoZ/fDjDz//9GsYhsNbP/YnBFLWo+QKSac05qJpDlcgEKIHjnkmGjRpY6y1VkwFYvz6bv3xh7sff1arVSBKWsUCNDPnhIJQUkYGBDZKFRFFqhQREWWMIE55Uoquvalxzu9d+JRZhQrCQLhkQV1EEvP2ygsUgcV5Xjzli+GnS4r4gjDe78N/Uk9c8chywNUdf2dSrldaStUtBm2h9P9sAq6G78oV3eIbi9FbDNs7y3L1t/FC1/ypgTZcc55nkzYXCZ5R0kIk4ILgbkOh692KzH73BTgJI8vMAc4KLCWJLieeG2QhCxGjBkkJCxvJd3W9rd3DplnX1mkscSoxEgHNLQkZSaEUYSmcGQiIAEqJKdW2Ik0CoogE6YIIs0hhRFVS2T2/5ZydcymlEJOx5vHxPpdYck45cClpDKR1EQjjxDFy4XHMhdE610/Z2MYT6qrW9f3Ty+nl9cCIZEiRmWPb/fEYh6lubJA8nCfrK0MoAJmTICq4qOSlECCBiDAQLQ1drwh0btwqLChz/A5hKY9w5XKuP4Eb+Fg4OLm+xIUFkouK5voBvM4JWEDD0sALLohoIWcucIQupTHlNs/eM4ELeSPLTFpYpNtsl4Uy+jML9H4mw4UHmpX7eFmnNzD0Tod3S4m7LKiL2p0Xj4UQL81Xr2kBCFkYmZFlmuJh6mU4aqMLJ065AiGY+nSSiLoyilI/HNHkKZ6BUZPWylRN7ZydwoQM3cqWkhjZVNb7SrM9jzHFyTqvrWuqhkA5pUsB7U0sBAC+8Uw6TFkBVk0lxFIwMvrGobavh35KSUG2WoM1yjgqMUyTtqaUPA6TVqCVJqK29pX3ENM0TQaFFEhKpee6qYwzbV1hLqf9YRr7j4+PTdciUppSccVaXxILoDEGFbZdt1qtASmm0J8G71zT1KfDaRzGh4f7kp2IEMA0jW9vb1Xjt/f3qeQQgzGGSE1TH8YppejYFMrWWWNUimnspzBmRtYaQ0g5ZaVpGIdSilaKC6eY7rabqq7O/fnf//1vbdt+/vyD99UwDqfTsa6bpqoV4Ga9slof9m/DcJ6LSjhrKu+mQXHmHDMUaZuaSyk5hXHMKXfdqnCe/bCu7YgwTBNrLbw2WseYxzimnAoXX9uYYhinOQ+XhacwWbarh7s4xtOxB+TKeyRdLl40IKB1BgTCNA3nHkD+8pe/pJz/+OOPcRx3h31BPA1DLsUY8+HhQ9s2ueTj4ditVynGvj8ba7f328r6kvPhdFREIKJJFYlh6LmqXNeESR0OxxgjIjZtM4V1u2qruhmnKZVYoIQYNuu1UmS0AeCc8zwtSym7t31/7rVRTduGMR73h/3h0J+PP/z0kzUuxuCc/emnHwVYKS0o+9fX8Xz++Olj5appGgBkHMcYQim55PzDxw+C8NtvvzddV3n/7fi9H87MRZi9s3PTCADIpfA49OfBV9ZoU3L+eP9AhMYYERj7MYRRG43Ir6/7nNN6teqHc2Oqpmua2hPRH0/POsRkSVmnhzGkEJUzIZeco6vseegBmZTHQnEcU8rW6DBNgmydnX0dYxQSFiZnKuusto4VMVm/vltvN2nqp6lorRVwGNM0jiEWImRGUgoyl1IQQRnFpQAUJEJBbSpjjTXaWs+lMHCMuXAEQEEGhWRIGaXBaAYyGhBR2wLKN+36/lO12oqyzf0DWpvCMJ5PwACKOAPN/i5eNkQNuijSGknAOk1Koa8L2qpd3//8y+rTz9TdZaOSwkIsSmWeZT2FRRTNnqsAF01U5pCPMZkhA5AxICDIV5IdYS7aRjc3lYiv9vySL7U4sf+n1l1X2ec1++ua53Tb1t+lzd8sw2IrFvwhf+L8L9e5mhtYFNE3E7XQ/HNo7SrgWcCdXHLQLlGyJZV9aQu5oJ/r8bfmVNfk48WgvJc3LQYXL2O+AKYrxsLlRghB5pozMleFYQYApIsVJhSZ+zRhogwiigULE6AhzDkoLpimytpP99vHxq+9NUpUHoVBISirkUQKSwZGRFYiBQRJK0RGAtKoSSmrAIowE84phiQswEUbhUCvu+PYD4iq6xwnySnVXisoRGDWVT9ICjEnqLpGGzeG6bw7SpGUMpEtZBl0Bo/ORNSsZHVvfZqmOPGpOFttt3fWG6W5P5YQxso3BHg6jlyg21R156eYGHCMgTkJKUENpESISANhLLDwhYwARQSViMwJjJdXTX/iTt7FrwTgQvdc5tUNVcOSz/juz/L/hTicp+M1U+xK/MFcfRGXQp3XifFO6Hz5P9yucREuwe1MVxxzhdX/v76Wu5GlpdhNnrZ8VK6DwBugmrHfnOZZEIhgrrEAAETzEkaVJc+RUgRQqIDMFALE0eZ8niaeBo3ijIqnM8cJiEznfOPbzWbOfUglp5R97e/ata9sDsmRVYL94SQobWVFKCUGUXFiBHHGxiEZzU6oIBuvhwJDhNPxjM4WplMfwapK61zyMKVDwQyBAbQ2WKTvhxRGr4mEyWhnVH8OIU6ZYItrg1pZshqnfsCUcwiVc66tQITD1DaVlLw/nfIUCVQpmWNq6mYfj+fTcHdXaaMj59CPOSdt7NxyYThPKQSntTHV/fZuDstqRVPfh3FU1gBICOGP334HFGBqmloKO2sMEWGjlOLCOcTX51dfVXUDqcQs5XQ6p5SatnHWc5H9brcfxrZt6qbKJUMBFGibxhjFUsZh+OP33x4eH51xqsKfPn/mUhD4eNgdDodutRKWv7+8llJYSuUrrbRp26qqjNG71x0AzDCrqtw4jM7aD58e+1N/t90yS+a83x9SyqfTeegH510IYTh/85V7/PQYhnG1Xi3dBamqbI5hGIJdtcfTKcaUc1ltVrlwzrlu6/3rPpfcdZ2rKpULM3vfVE1zPg/jMIQUq6pSRsUcx2FcdasU4+509s7f3d3drbfe+d3bftWt5wqKUOS4O1oycZx6wt3rKzN3q846b63/6ZdflaIQQh1CzqkUNkZbb60yhXNTtXXbxBiHvs853z/ehSkKF4UoUMZxSHGC2ucQvTPH43g6nO4f7kvh4/GEIDkF4NKfTylMQPL5px/eXl64dlwKKSUgh+MplYQA+8MhhEkbbZQHwMcPH6y3Qz8cz8fT8RxDyFweHx+aruaYmbMwSuH94fDt5eXr07f7xw9fvn79/Y8/UkwphH/9l395+PGu7dra+XEaj/2gU0wFEhRBQkIlzDkVVCQCddMohRxLmgKXohVqrWIYjTMoc6llYRHOBbU21inntPOsrPV+/cPnj58+7F+fhzHn/qyhAAYGlBBn9UaKoeRMgHMrYI2uSMmZgVRTN91mo5TOKZ72R8lRaTTW58yojfYWURUmIkJDpqqKANnKV83jj58ff/7Z1tWkd9tffsGn5/G0DyBxGCROMTJnFkZUiBqQSGlSWpNCrbRyRhjR1b7umu3jx1//svr4EZ1nZIaCgICMhHDp28MF5hR1hFm9TMggIkJEcCmgKyBzwOVS7W3eLK82HpfUGBCeywItXD1eVRcyFx8VWfQNcN2Br67qAhYuYoglWXch6q+maoENt2Q0uAW6FuCEC3t05WtmRdElOIEXgQbOBuGdSbl47gtfIFd6Z35EN4npjbC6oqMbW3VjAt7RS/IOTF0ERHM9YQHAudQdzWlNGhBAFaJInEVAzZEKJhSFaGim+gCxQGEsrMtksWxa+/Hh7uNmXSuQGPI0ZWFjlTYEzCAgmVnYaF1KvpJPymhE8NYBi6CknEAEkBB4DmQZo0tMIU4lpbarqqZ1xgcJ4g2XlIP4xgIXrUhI5SxxjAS6xJymWHlnqOrHWChrq0zCYcyRgAG8d3WjT72cTkMIKaZ4f7d1TrWr+nzMMQaFWqEqHKdhWju19g6Uciod+iFAJOuAtXV1KiyoCCjnwshEqJQCxDGNCknRrDRHnHPmbvWcAWdV+QyC5SIMu7E8uMDaGz8j13DYomgGXHL3QGDuzHqZastBCyyRBeIsirSFBVx4qfc+xAUTzXThMsBlKO90RpdJtkT6cE59l+W4i4RablMdrtDoeneX4eHCOC7Mp7AUkQKg5iJFWRiJGHCmzGMpVntlVAl9ITWezm9hQmZtyHjHoMi3qw8upWKtEpGxn7pu1Ww2dWOH09Daevey19anBMdzHmK01jSr7e449mNuGjwfj5uu6SrbD8N4PFDbKg2SMolVRuXATIqsLqlkgNN5GmJsuwYFLGOKUyyJjbaarCJERYxembZtJOU8BSEsQcIUuqb25K3VTVVxzmmCFIIzxlu3ale+9gggwqAzarNar33bKaN4HBMzKs0s4xScc9771jurdM6ZubRNB3J57IhQWYcA+/0bF1hv12TVcD5rZZUha401Lsa42z2VUpRRKef98di2rbDElFJOOkZXeeZYctlsVuvVxnlXYsw53f/wcZqiIpzGYb/blVK8d23XlGhTjKUUkJqIKue3m/X5fNaKKu/rtkIkLqWqa2GYxhERtVY5JyKlNAHB6XzWWqWU2lVXctkfjtropqliCN5tu1V3Pp2fn56dtW3dQLooJTQpQiKtEAFFQpjCFEKKIhJirKqqcEkhIYHTPsU0DZM2qqoqQApvoe1a59zp3IuU56enwvxwf19VPkxx9UM3F17yzr28vlhjc5SmqY/HwzgObVWtuvZ8Og2nIcfkq6qpmwJyOBw+/vCxHwZjTGPb8/mYUs65lJig0lw4xGiLZeGQIgJUdRWmydf1Ybc77Pc554f7u6pp5+pkguC8P55O3tlSclVXn9rPxmiFiABTSvu3/XrdKVIgggrfXvcC8sOPn0suIU6b9RoJY0wp5cLFe09EQiAi/sN9kcKx7N92ZYreV4f9Xil9HgfnnfP+n//8549//cV656sqDMM4DHVdNW03nk///PL1NE0aFCJg1XgoEGOeYtSaUknTMBlrtNYAMISoCOrKK0UpF6PpSiMgofZGQIH2UUiZptls7z583PzwuXlco3dT4P5tRyUZF4VOgr1IZs5UQF/6OCpjDIgoQCiCpLVrbNWIADIqWytfq5ypLoIgTIUFgIzzSmtAJdoaazePH7qHh+7hzt3dFwKl7bZd6bbbff+mVtV4OIzPe1RauBABIjLzfOnCnAG1qU3VkNaua5v7D5uPn5u7B7KGQQREyZzfc8lOx4XO4EWtzEu2tSCwACw1aAlQSABgLsQCF4Hzxbxf7OQVhlxDDbMYaPZhack7Wbbs2Rah4NI9CFkYLnm4i51Z9NE3CuiKc65O8juXfsZyt43+cqp3u/xi/gTkJtyZhUAXv58Wz55BQF0xDi5W4l3s4GIFb4GX2dlfTJUsJNDVrN0KNi5J9jPyu+pUBUEKiSIkAVSgoETldBQWLFKyEpnZOgIWzlSyYXHKNG2zqe3jumkrY6WoknOJRGytUqgIJYTIpRhjlKZLER1ERFCk5oaWs4WLU+TCShsiVJpYkLOg4hBSigUEvPdGaUWYUlAIqDBzLkVxZo2Ui6QxkkABlBgUsydCo3NhYYVFFJFWFHPOXKTkzbZbdXUOcRimMZfnFD99fHDONW173J1SiN5ba1Uu+e3psL3frNetbR0C9SmGkscUwhSNr7VVSilELCAsKZZAhN64uUWrMMvcNwPVDEoRAJBkEa9d4caFuLu8vlkFf8MpuMwmuRT8nv/mq+YeARFJoMyuxWVWLBj8Enib3YcrH3Odv1dy6N1kBpCFQ701Fb50vMVbW9UltnojmfDGKl1dgCtuF1gUajPzhTd6cgnwXoY3E45ShAGAiASRAXIRhYqNzQhBFJScVRyjhCFardu2au/uItBxmFx757XSCBxC1azv7tebbXs47sYcD/txGpMDZ6wbhykcps+fum7TtDGnKRYULtHqFrFITgTAsVARb5TxLhZgrTKqAMa0W8gxYJ+1Og9TZbQBUFIqa1tvZUppHAWltbbzjkt++/49xnC33QCC5JADWWOc05owSE55SjGK98ZYUDCleDz1Suuc2XWriGrIRYGIUqiNdVYyHw+72rhV11akSsqncOSUJzwD0DRNTVVlTiSl8TY4p7WurWGBMSXORSbOqWij+74/Ho8Pj4+MMPQ9KBzDhEi196c+pxRKzufTOZVIqmnapmnqaegP+xRCYOb1ajMMvTb6Xz//aLQmgN3+oAi1US/PL6fTURnFLFqZqq6tsYQUQ2IqWquS+Xw6jsPw4eMHX/mSmYS2m7u+P6eSBUCKTNPIJVer1pnq8YP1rlJat83KWuu8NdrUTZVCAmbTWFIwDQNz0U69vb0h4sPDfcp5fzg571bd6nQ8VVVTcokx7g+H+/u7MQQinXLebu8+/fApTGH3utvt3tar1aePn07Hk6p03VTHw2m1XisiKRI55pxSjES03W6MJgKsvCOF9AQhpv7c9+OARN++fjPWlpJBKCderVpr7TSM5+PxdDppYx5/+GCMLZyF54Q4DyDTME7DWDf13WbDSG+7nTbaOX+cdlqbvk917TZ366aqp2kaTuM0jTnFHMPYU9O11vsYoq0sA5dcphD++m//WjK/ve0UKdCYUzocDsxcpNw9bFk455wk7d96Ano77KdxXK/WgEBardfrulvd3T9u7+4L8+H1der7cRi/h29ffvvtbb9/+OmzZkFtjChdUk4x5ZS8MUgQpolErNGpJGM0iYgUYTZGzSWdSy7Wee29aA1odNWi9u3d/d3HHz79+FP3cI+aNcHjX1V3t83DeN7thsKKmYhRxEFJqYxTZJBYEElVdW2U1dbVTSdaD8OQmahZsbAGcNYqozNDykKkfd36ulLWMamq6drtXfuwFaVGEVFA2xWlelW5atvtn74d3QtnQuvzFBBFpEBhpch5GzMDkWu7Zruxrmq2m9XHH+rt1nSrhJdMZg3EvOx7C7ey7OMzwbFs/9fyJPNWe/nlNQr0Lv/lAm34lsElVxf4uulefdYFIS2gYwEGgkso4Zo2c3N68cr8LDplgdv4FpB0keTAIu64EjJzTtBskN5DlisV8+chwtUS3WIRF7DyLhL2jm+S96Oc9bPvInoLQXC9xMIn3MTTl4dwgV4aikTgFDNYxYDMopQAMCjRBYzilCJyhhIqq+/qZtt121XTWm1VIZE4jYWLVspYR0pQgEsWvmTRz0phJEIWvMSHWJgZJOUkIgqVN460AlQ5F0QYpzgOk7Boq8MQoSA6TiH6yhqt5tyx2YcoKZNSSJRT4cRKUeEigXLmUlIKXDJVleeUJMk4ji/fx/Wmu9uuZ9iSU3l6elmtVr4ym+19PMdccpgmbUjQjFMQOaw33Ye71cTldbfnlPrxnGIg67VrXN0gcogiwkhKaRUz55I1EoggCAPQNSB5hdTXt7LAoT/9/Ap+3qln3k3u6xybHYlrP6/Le51/t+QE3ObagoquVOgVf8yXYoSrLh/hGpbDGyEpchsg3LrC3rgnuHR7XVjJdzWgb5rp67TE5bPLiRgBZmwnMLegEaB568RLJQxCMqi0ZJlUjr7JCKkg2kbARUFZtcVYo03MAYt6eFxt1hVCJuHVXXPgSXl/7sNpDGRUYB5ysUWqtmva4ojzGZRStXPuzgw5s/KoTdifxt2eUTHS6TSV7aqq61zQOsPMFmjdeTVNIY4OVaN0UXPHoXG9WTlvxhRzmDSCN1obFRUiy3A+KRJRcb/f5xCtc9MYz+dRWa2MfdufAOn+4UNmTiFNWXJJRbJWylcOS8k5U1VZrcdhPLy+Vd5bY1NM4zh1XQsI43Hojz0SImLtvdXm6eklTGO7WpWCw3iOp2itbbpuGCfjzL/+x/8w9P04jk1dSeunGIiw5JRCICQpjIAKcRrGnNLL6YgEVeW0Utv19uH+Xrj0514pVVeucA7jVFW1tYYA52gXgmIWqlSaQhoTqVl+SKWUeUJro6vGGmsPux0S9v0QY/SVt9YSEZeCCNPYO+ce7rcp5fHcC5dV1zprUkinw2Ecp7apipicivUWEfpzv1qtttu7FJMx9rDfD+NorS5FYkzM4r396ZdfD7vDH1++dF3nvNusN13bHg6H3W5HSOfziRlc5WOM/fkEiDklRGyaqq6rnBIUnsZxzledy3Zs7jbn03kcx6qqEIkINYFCbbUeS5HChDgM/dc/vqxXa2W0FA4hjOcBAAqXZtWWWE7n3lWV0VqRHoehburn5xfvvIDkVEaajNZNUzFnQpSO+uH89fnJGPMv//Kv3WZTSgpj+HS31cqUHKwxiNg0JuXy9vJWQKquqrwLY0whIqGxrj+diVTbdaT0559+jJk/fP5RCL69vv3+xx9/+6//7ePHh+1q/fzywin3/fnDp0dE0MpYsmYMJQ7T1I9aIRggQI0kuXBIWiFUBhkImBCQiBlcUxdBULYoY6vGt1292tbrbXv3obt/qLZd0mbkqNvOe2/rJp573bam6+L5LCXkEGKcVEwYZ20cOee7zdZUldLW+CrlHO0JmOu6AkREatcrX9dZoAgQGVfV1nntHFkjSEJKtImSEzNaImIRoKZWAhulXN3V7WY6nYbzeTr3OUellXfW+UoAlbbVetWs1q5tbN241Yoqx8YmzgxFAYEwsSDNOTpzqgxf0nkXEcOyXy5b/OJ1vqPXl033sgPLzamWOarwzohc/d8/sTIL2LjVaZO5b9GSGzyzNXTlaeRmn/Aa3JqPes/w3EwTLLGqOSHpanhuxNEyjMUZloX5WcIB7wJj167hSyBjoYCWMB28A0sgl0wxoRsBtUAuuP59M31z88v5glzmYj+CxjvQWKCwAEZhyQSiihhOVqLS0LX11rmHtuu8t1opVbAkkWIMoChFBMDAIsyAgDSTYwLMqIjwCoVmEkMIUaNWlpCJcxmHqbBo67VSJZcpBqutCCuryCgWIK0QqRQoDCJEOCfyUhinqU9V7ZVWKVLOnHOYxsDKMkNOmYxxXotFbcxx93Z4O9ZtWzs/cVBG98N4PHx9/HD36eMnTW7szyFOLGIbo60pSU6nU934qnJ3TeWN3vfnt9Nw2vfKT7Vkba0xihljSoXnuOOFZFQ4Z40BIS0araVZOl7It+vEuzAzF1HYbe68x6vXWb1Ieq5zdFkuV+7nRtYsxy4Cs4WCWmTccCOh+DptLtOeWMotIIy3k8C7Ggv/p3W3EEJ0QS0gc5v6m3OB10kJfF1bAkspAUQQZgGUi6acBROSkC6MkzChl5oYHVGGwqNWo/EZAEztfQWlhCFtfS11k0s6PT9vWudX9djnGHl110xZcmFBnzkPY28NemMMohZmRABNpIgFEWqkFekJSyIpcdJC0ziNpThDmjkcjm3rVhWlVJDYSnYo6EypLJIYLZwn5OiU0obSNEx9BgFmORz25/1hvd6QJmHJKTfrBkKcaz+AICMkkZyz8b6qqnM/TOdReBzDsKpr623OcX84Yua+n0ip7XZNk3rb7X3tkbBu6pKz9ZaIkGX/9jb0ZwHIMa3Wq8JlmsL27m6apvPQE+F+f3h9eTkdDk3bKqWARBXKKmpN1tTr9arr6pwyKdpuu8OBpzEc93tnbNd1IDJNYQqj8wYQhUUE2rau6xoAhr5PKc39KzgCIrrKI4B3Xms1nEdBcc6lXIgmLhlAmqY+pKiUXrcbJNKKcsbvX7/FGNp25ZxBhBRimCYEpLYNYTodTyAAbaMJ6qZWRmeWqq27pg7TlLOMYfr+/JxT/uGHT4230xSUMw8fH03tUs5D30/DpIiqqp6m8PT0NIzjp48fV+u1NqY/n07HUwihqiuWUjhat3bGCqfdbhfGqenaqqmU0qR03dWH/aFbrdbb1fPT82G3//XXX7rN6umPr6e3Q9VUhCgMAjKG8fD9WFfeesOJY4hV5cIURUQZZawNMR4Ox7Zr3vavUz8arStdjeOgVKdAuk3HLOM4zhTa19M3X1cZysPmrpQy2D7FJCAzNlOkzsdeW1PV1ethd3ruD/uds9YqIwx9P/TncXW3rtuWBaeUCgBPAyDFHH777bfX/autdN3Urm1qY376y2fhkjJrQcWgbONyYUwJuEzjxFxmJtAoKlxYslEz42mYEZXxbZMYC5PyfnV/v7r/sNrebz48uqYDY1nRxAyGtKpEG2ecX63bmLr+PB1PUmIKU3/uQwiCWAQFlK+auuuUc0gKSAlKnQsS+aqalS2+rYxzApSLKK3JaCRKLEg0pcgCQoUFRYBL4SJKa621oKrbpt1sV3cPaRynoR9OfYpJW6rrmhmMtcY517TKOVvXqHQEKQoDF1CEc2W2WTot183yIuGZ3U287KO4JEq940AuLMZFA41z+d2rF7ooIy59HBdLcPFnkXD5/C0Gdj3p7Dm/24ov7i0sQpwbN3M5gP//EvtwNRZ/yjRftD9XcdLNVFzB27Vc3qIsvz6ld2QXXAMPcjVASxwBFux2c6ovQ8Hlhq7g7j38mfONmRBnbbkQJAICJgAUtqgIMpdQJFJhzVxpqCuz2bQPm7Yx2ohgLhxDAQFkrZTWClgApaSSctJEeJHREiIAzaoSxjkSyiDIwgKoEZQiw1wOh+M//v5bYf7p119X7Wq2vr6qOIN1WjKHELRRhYsIAHAurLVGUtpQOvSlcN22pIygFiSBxCUjmapyE8fT0Kvaa2Vs5a02L99fv/3xtNo0q86PU7bWjDF+/fpcCja1d87U1MQcxzBJAu+qMMXz865rXLeqnXPWgtZan4dzjMPxzfjGN5W2xhjLhbU2UuZ4L1+UQARSLk9/Tp9nvADrS2jqqim79VWfX5ksCOYdlfOnL7nNVcB3f66r6NqWVC4nxHfHv7vYlW6ChcuZP0GIcpv/tyVwWX+45BXIReQjywpaznChP+k9eXRBV7J4N9dz0nKSpfuHMMxtRxAAlaCeUoLChKgrr3wrUEhhYmGBJBCFjlEMICqvcno9TrZSvmo2m0ZAqOThdO7u7rxRQ5+2d41RqoRpGFl3fk5DKSkdztM4DDGmpum0t+vKVQ6CiNKaUg6ShAuJ4jF4ypWosjuvvKH71mlUiUNM2iAaiinGOCKAq4w2xLlMwyjCCGSNqeuqW7e5pGmYjuc+hGitN9ajgnrVsWAukAElS+eqWqnC5bh/Q+FN1+1epgJFUCuiuq1z4WEMpZTMZb8/AMCHD49VUytCrSjFPE3BOsvCpBQza63rCmMMhct6u0bAr1++DuO5WdVxnNq2efjwYRqGME21r+qm/fjxw6pph37I3vXn8ziOzlkAIMK69sw5hHEaxoRxe7dxrll1HRBwKeM0nU8nrXVMqe97JOWcyyWnlAFRkRrT2K5aADjs9/0wrFartmkISWkjAsaZYRwBrFEmp6xIpWniFLXRwkWYj7tdHMec0jAM9/f3b69vMQfrbM5SNY2wPD09x5iruhnHAQC00aRMysU6cx6GKcRzHI/9CQWNtU3T5BBP5/P+dCSiwmKdNda8vaWUc7daMRTIGEPmXEjhOEzH/ck5Ayhhiqe+H4ZRPavEeaM2h93heDzs3nb3d3chTSkGZczpdE4lG6vDFGJMKSb2TqECoqrRx8NRK+1q76vGN83zy+u379/WYXM8HX3tfvj5R2F8/PCYU0opHc/9636nldJKKaX+x//5f0pcuMC570MIfd9zLiJIiKfTaTj3wxSM1SHFQ39OOTmlnDeSIefim1pVbggxliMivO72ypnCPIzjrj9+f30aYnh52f3lL/+SoUwJ8limfnz4eKeVr4twCCmWAkYjk7MOhXNKxmptbAlRKXJto7Qdpqi0q1YrclXtvKuaarVa3d1vPn6sVq22hi+1VxgAGDDOSRHaaWOVB+dq020UCOfUTSGEoIwhbRODMtZ5FwujplREgGtjtdaIxMwzf1E05ZwzFsGCIgQqSCpRAECTAQQi1KAFhRCASxZBpRmRtPO2qgTqEDY5cy7aaqV1mDIjNqsmMTBK0poREpRcsiDlxMZoRASCUkCh0OwLLpv5Ozr88hOA649mWpwWufC1JvN1t8crrpk9ZpElIDVjjtnDvfm4y368qImvoYWFs1nK89DlkjduBS6BKYQllHUhea7u801/vez6s8tMS3PKBbW9MwwL2XW94BXEvNfAvjMNV4HScty1WPQloeaidBWZM6Nn8Thc1EbvqrIsZAEgsBDhDCELFADJKdRGa86Yoyspl2hJdY25X9XbVd1U3mhQIpBT5oTAMLfOhAVBsghna9R8MeU1IAgXnIUci/yJoRCQMHPKCjUULJmPb6evv38DpG615QSu8Uhq7gsmgFMIc10gRaCNAYQQcxEkxSKolWFJAqRsxTSCVRpBa2LNTW1Z6/PTYewH5aoixVhz9/GhlO9jP1RGKSBFuuvWh/3hjy9f1+vmhx8++rbSRYPC/jQM/b7pGtKqHyatqHK6M0atdbdpnt7Ou2Ofw/k0TbZtus2aBQnmuy0gs9oPFs4E5pgrLxGlW3RK6IYa/sQv3nDEnzH3u8WAt+kk768FsFBFsMzGGf0sgds/neXdtyIL7p9X1lW2dA0U/+n4xetYSCLC6xJ4dwjKwm8uwWB5H7G7eUeXZsIMl9DhPBJmAQEpIGiUoGLWSdgoCwJaUy6ZYymIbFyIIUKpfdWP5e2cWjJ/+fjJW5pOR8NQoRp3p5CKrownW1kQxPEcy8BJGJHSGKZpiiHWdcUIoR80kQVQVmWWY98rpZytPFHgYADWSm26ikpJoaQxToFj5iwFkhROIQxECLk415FRIwARtV2nlLbWamNZYLXZkOmnIYwhCCmVrVaUuACnsR+K9IDctDXnJMxKIZdijW2cN0TTuQdgLuV0Ordt7bwP04iIMUal1DSMwsVZ55zRxiqtCoMiksKn44mU8nUVpxBDUkib9RoRPmwfrDP9+WyNTSBtXa1XHbGc+yOw5BSmcexPx+3mp9VqNW8gVrtB9Vopa52IcGZfWW1MikmjXnUbZdTxcA7TZD3lnGNIcyPSrmucc5xYGYVKdevVZr3llL/88XUYBgEIU0SFd3d31irnHDBXdTVN4zROzuq6qqcwisg4TNbYFOP5fPZ17Vx1Ou5iKk1Xp5RQ0cvry26332y2Hz9+2O12378/1V314eOH15fXp7fnqvIllv54EpH7zbaU3LTNcXf87Y/fbG1I6Hg6KsTdbvf68vrrv/zFKI2oQghcMqL0Q59yZpS+7/eH4/b+7oePPyhlnr9/e35+ssZ8+e0PIPj86aM1ahxHra0y+vn5VRvdrtq+H/t+nBdW3/fWOZpUKJy//jEO44+//DIM5ykGQTieTm27OpyOTdv0p+np23djNCh6eX5RiD9/eEgM//v/+r9tH9bTFJBAWLrVan/a//GPP6y3rvJvh8MYg2+rjz//kMdw3B9iDMa5gVNJGYG0NjFOoAgVvO53f/vH3193OwXKOL3arIZh+q8vf9tuuh9++XEs5dvrQd//8pdx6PvjPhX23qV+hEppUDyFyIUZ0HpDZOpWRGmqlPO22zarVbPebB8fVvf32jtVe1E45lykAAuqmbKinApkmRQrREICbeYyOSTsW9a5oCJSRrEIomgtKRVhMCQohQiUQpYCc1UxpgIsoIwKKQkIZNZGoxLmwpwVas4FkEhACl99sASAAmQMAqDWxIyFlVZA2lQSc8nOhZRSzsCstBJApjntaOZCWQC0JuFL4XyRa0KKICJdqvos2/cioYQ/oaIrsvjvclFkMaiXgxa1zdxa8YokLp+5BA4ueqJr9rwgIBAu/SOvEaeLNbhs67eagrPIGt+JWf+7r5sjfpWILqlgFywis6BH3n384oBfw3PvsmWupuxSR/HyO0HEuXfFhejhmUm7ltJb0s4uSttr7AIQhETmUSEjAiFZQODivIE4Qs6aU2u0d1VT2/ttt24rRaIISowpJuFCAHApZEUAUkqUJIKilEIULmCMUlbP9TeXTlYX7EmEsyYakYg0KAWRcoHVZnPu+8P+NI2xHpuqro+Hk9YmA4aQqtqXmADBWIcIeRinKSiljLbGqHEaxmHytUPSAmQtVZXLCEqJN6r2uky5pHzse+OrVbe6f7w/7d5Oh2PddXHKQurDxw/H8/E8nE5DjxqtMVVdceZ06KcxOutE8Hgc9brRxjgs1ll1v6qNedodTv0YWKzS1jouC225oGJcknNgrhW0TLO5EcmiRYcrlQfwZ4Ry40OvKOjKXV6kPLIkeV2PWbQ4l0WDC9jnRZn0nji60pC31bYQM3+K/sJy6DKIPwuuQa4lqN4t08t45mD15efv/RC8XvOK9C4rZWGHQUCgZC4sAupSqLIUyfM6n7JC1EDISok2hKmEgFDZeoKyj3hOmkKazsGA/XTfnvtwkmlzt65qa1DAoGKZhmmCSTsXIBejKr+qqirFNAxT7Z3xhohab1PyUbgxpjZudCmWoku2wopgHMbxPBShDFyElVYFckzZGZ2m3Jupqb2yWillK58SD3GaSiHEpml93cyt1+eCiilzGoYh9CGEkHLOScqm5Lztun5/ePn6slk3VumSYt+fhn7SxrjKoFa+rQSlbZtxmKrKsfD51MMKU8o5s2+qFHPdVE1dxRCUNgCQU9FGNY0/HI4gfL/domBlfUrx7m4rRQ5vh9H2ylBOue/7qvL/6T/9J22Ns2b3ugPA2vmmrmtfDedh7kL/+pzvHrZGW1e5MEVC8t4rpUhRinkcB2usiOzednVdT1OACFppAIgpIbP1jkWGfuiHwRg9DCMzl1y0VjHGoR/GYWy72mhTClfee28RqbB0q3VV10DgauedPxyP+7eDr71xrtusldaZRTtLRh+P5yJApGIJpZTT8TSce0I8Ho6r9Yq0st6v1l3fj8IyhgmEh/Pw7fmbr/1/+A//FsLYHw8ExRo9jdMkoe7qtlv5qrGVVdpqrYy1pfBxOlUue189vbx9ePzgqup1vy+FUZN1PuVy6vsQ4jgOVVU1bXPuh1TyeRwzl7vt/ak/xxTb9erbH1+Hadreb+um1cZUvuq26ziOu91BG4Mi/+W//Vfnm08//rA/7JTSUxz2u4MgAcKQgmvrzBJKDjk5agpAJphKTMwxTHEq3/94blZ107RfvvxhvWfh/eH48ra3tft//t//X9aat5fnMYS2adcP9+cw/rfffjueRv3Tf/yf4zAcd8/nwx44H1/eSp7GYWJy2irjvfEVkmpWrataUVo775tudX/vurbZroyvGKSgMIoYJUUUEgkWAGRx2hQoMwohBCAsAHipJUiCMBcRKwRZhIRBEy4twrNAyQlZEAGVAsCSklZEzLXVTJhSplIQQAlIYeCil22bZ5tNyAhcQAh5sfc0l/RFEJJShBVNOcsMtpQSnJeT1lpx4ZzLXJFkzv6ay/jMtPpNyLlshbhsi0s5EFjElH/2aS8w6bZPy6InkgWl4LLH3qoHLpGw21EgdC0nPddim3HJjZy5nOladuVPmOZKJSFeCKpF5yNXAzCrSt9ROxfYc8l6W9ziWQOxhACFrtnqi0XA5XB4b1YuXSQRZwDJcuMOlriJAC7VkfnidMsyuKWZFwAWJBYNTAAmRYhBK1h19q72d13rrSMCi4KFuWTkTCgFS2FQNOdzIRfmUmZbiEQzb3AhvphRRClgZiQu81RAggIiiJpSypLy89PrYX8kY3KRv/23v//86891U3trwxSmGJ1xVeWIUK50ExIDTyEYq5QhZVAZSmmCAKRUTsUYZV1FnLQi66pxKjGeTsOERcZ+ilPebpr1dnU+IrMASyyxxvrjx4fXV/n9999W6/XnHz6tmxUUAtCH03kczkbp2tlTHzJL5W04nNdt096vnNIv6tznLOMYciGlSWskAppZNpS5EsRNh3PFNvMzukBquDJ67/jQdxN+WTR4mwlL/tSNcbme+kZMXsiWJer6Hphf8cbtg/MY6RZCE74BrRvKek/w3PyS5bSLpOmC2ucxLCvvcie3wc5Ifj4Kr+t3oZ2Wy6JCUagKAAojEVq69MEhJAElCMwcsyYEZREZyIxl+hb6+PvTR09rbbrtgxGhoitjpTAPU1HAqaQpKWURlRTkrOq2cs4KlBBykJwDN5Z8ZWrUkL1CQiCKedV1g8bj2+7tORpFh+NZa2O8KynlcSIEESxFbGuNsrmkVKRZb3IqwxSPh/Pdw7ZuuuP+mNKp61oglFyAVNVUjihwPA9n77V32js7nQ9tVd2tV61R/fHIKYw5hTD14yCIflUx87dv37tV5yoXY3p+eXm4u0PAzXadSw4hOu+MUmiBSylc2q6Kqby+vGmrP//449vrLsfSNfVxd7q/u1s/dLuXN6fdsT+WUgj98TAYq5u60mYWPvjz6UxIp/1RmtKtViDFaqNXq3EYsnB/HkDGpq2YZRqDsZoAFekCRZE22ghKnuJw6m3tjLUplfP5mFOufLU/HMdh0ERV45XS4zicj8f1emNr8/by9rrbpZT6cVx1HaKsV3frrU8haqMF4XA8hpS227uqcalIyViQ2/VKmTBNE4O4uvrr//Af//f/7X//8v3bX//tr63tDrtj23WadD8MoigzF+Yf//LTqlvv9/u//+PvVe2auhaQzaYTSZxDiBEKe+tQwDkzxvj2umtW3fp+a7Sf4ngee+383f2HKQzWmpzL6m77sj9MYXzevaHSbVv/9v1bXdVVXTWVJ2vWq5XSigE3bbPqum9Pz//+j78rhdbbytfkTB8mO02kjQGZpunt9W339ma1Xa83OaQiDHj8t//w1/MwTGFkYSCMJR3701t/PI4DIBxPp7f93vxuPv/02ZBpat9t27vHB7FYr7v//H/8l//1P/+Xx08P1tDT96ciUHU+Cx/C8X/49T99+suPv//zHzmkfzz983A4vx13x37Qdz/+oBA+5s/97jQOfb/b96f94XUvzEqpbr2uVisAVTX13cO9qSoGNFVVNU0hRENjzilHvvY9UgqYM5eZHDDkFKCQYmEAQQIWYBbgi/dcRECKgBQE5qVtEQPMgY3ZyZ4ZaRRFwJwKZ0OWQCFyiEErNbdJLcw0HzoXAZ5xFMvlQgC8pHIRYWQBZpYiRCCglJ77V1yoDplbnLEII9FlTwW5+IAXfkIAgGkhWGBBDdc9etnub37wBeXAnPz1fv9954DeSP8LppGbKnQONOGCe5b+8tfN/x11fxWN4txsbKH4F13NLcAEl7Syd1QOLEbrfX76IpFYzMdSqO7Pvv31ryVQeIVbAnJrW39RyS5WEG4Gav41zvk0hCgwt1Kj2VjQBS6BFEAWAAWiQRSzFsAUKlN8o+raPGxW67aypJHBEJaUQxiQGQhJoVVGBEjN2t7MzMKiNCmtLsIfERFOMQtnpQhEgLMAEBGRLoVFhJQWwSLlcDj/8e3b7nCahmn7uHW2RqG6qhHRGBWnjAC+ctM4IqEII6FSikgDCHMByaTBOZ2zABdrTBboh8l7s952oDSD2rR+vzuFU19IZdQRinO6a13dNv1pqFoPIR4PO2O2P/zwSRt12B2/f31J6+hM5b0bxjCcQ4SitAbU8ZxSkbq2YRh8VbdG2Ye7wxh2x4ExISFnUEZrZQGRhbkoBkaEucw1L/nqF+YG8UaLzpzdJaZ5ybBapsM7iAIy+0TvuJgrX3MDFu+/EG/nu+Zg3k76Thi0FH2+nlLgtqAWjvJP+WCXz13jznRB9rfERbgODS7JD7J4Exc11GX0V9iPJIRIhfmaqCk8pxYwkUYREWZBBQpnl1DN9C4TIlyEVgDeRki7PPGYc22V855FVUhxymlYdQ1qev72DAW2dxs0Zrc/jFMYYrDOoAYpRVmdQu6niUniFKyQ964/HIWLe7i3SmtrUs7nEHtAp7Q3rjAxCWpltcmFXdMS4zAMqB1oW1I4Hk/aunZ1X1V1yZhyDLnEKTaVXa1ba9X53HMZHx7WIPp0OvWHg1Zq8+mj0QqtUW3d1A5ZQhirqrbOVU3dn/uq8QycYkwhG2ds5SRzXXth2Ky3zjsQeXp+fn56AsSU8zQG5y0SSZHKu6p2SqnT4VT5arNdlcJfv37jkuu2LlD6vt/YtXNumkLWmjDklLiUpmmquglTCFPIOQqDryprXCppHEYdlHUupSmm5JxFAGV0RYSI2ujsJiRyzhlr+/6Qc6kaxSCCwsxotHXeOZdSTDFPMY5lmmJyVWW8ncZ86seffv5JGRXidDqfhmHwlS/MjHA4Hl39oVu11levb2/73XF7d3f3+BhjOByPlKJv6p/Wq1//8i/DMHBmZOke2weEwpxTBmQgnUXGMMWcWtNtNneV9+tNF86DCK/WHecSxyiIVVOT1vvzYHwFoIYwvby9hhCM0du7dYeb3X6vjT2NY7fdrNSWKn/qh/3xwIpe9m93dP/TX37ZCBx2+/O5LzmpFNPhsD/sh3Go67oUts7WTTOG8MfvX/7t3/4t5mH/tg/TpJWu68Y6a7XdHw59GF5f3wBhrv+pjI45jSG4ujLaHo6HDFAAYz+u7za//uVfjvvdlz++PR336+3m29PTaRjqrtk+PBCRAP344w8PHx7+y3/+r69vu//3//K/WOf2h93T129FRGnz+vLSh6ip9laTAW+r7k4wTWPf93GauBQU9LV3dZMZyOq6rY02mTMjJOKYGRICkda2zP1KQeZakJfsVSRkFkHmNO9dLAKogESECOd/RPjqbAEtnb0FkAhECArPnVNxTsZQBGhBIKcCgF47xEuRGkIBlksi6hxTEiHEIsJcYA5WwEK2QBFg0jO4uWT4zyhOkZHZpxZWhIRUZggBCJcMVygkfyK8GW46ksU7vNDgcAUft0164TeWbC64CaAvHNNls5d3Ditcnd8bsMJ3jvOFCoI/E/gzIUSLVbjs4ouCA/68w9+2erlQLyjX0s8L0JN3R87u/yy75gtPdO13DzRjqLnAriznvYXtAEDmoJdcqz9fua652hHPhgQEQBh5FqDM7Sy4zAwbApOwycURNLVa1X61cU3rKqsJEWLSaICFSySYs5EFQKPWxEJzSxFAJNRaKyK6iH+kMOfMwqzmmBzAnHaGohAIeZZ3Uc5l93rshzGmopStGrvZPDSfq5JTu2o5FUA0WmmlEJhQGEUhMYAhpZUyWjFzSUVpUgZTSUWQGAAFFWlnUGlA9J6aqLrGdZUbTqOQWO/604ggq1UNqEKIWsE4hN3bW9v89MPDJ8Xq9XV3eD389PPn9WZbV3WYcj+Gw2nqVnVT+9M4xJLaypzPfdt1MbMxjdbqNIWQY0Zk0KRBgAiJEEhrLqWIMDMgABAII7BCuqzdC0V4Zf74CmZmZ2GZcjO2UEtW2HX+/vfzUN6r1i6pOZfaV5fzy3Xp3DT2iyuxTKMb8/OO8bzCpUsG4wLXLxTqLU0B3h33HuHcYtk3GH/bDq7gD+dVgyAgBAiKRECjAp55NEFgBEZRBDDr7QQSKmVEiBAKj6loayOUWFJIHEKpBTbGQcneVK5uz+chJG6brqqbfX8+nc9K05RiOAUyyjsHhRkghDhNAxBAVU+nY56iVuownGJhsBU6SgWijRkwZkJQbl0pZJHkW02u6Y99H2HbOlCmXvu7Tx/H0zCGqJ1FbZyxfT+ehmCtKans+rcS8rpaodJEilBOb7vVdmNElDAa4oSogBCVQixiLOUcqtpWtU8h55wy5812W9V1nMI4BKPNatuR0dM0IiEQ1HX17ct3IrVatYf9eff2djjuheWHTz/8/OvPh/3h+/PreRrP47Ddro7nvmZeb9d101rnCFEp5Z0DgcP+oDSx8BTC2+trSunxw4O1JnNRiV3lSSvSChSFEJz3xrkSpjhNIkKRkJQxer87THFExJI5hSQsYQrdetU0rbZaAEjpfhyO/Xn9sGHkKYW6qX/69IETF+TjNBij0FjB2E+xSLm7u8+JD4czMwOQs9ZV/u5h23brf/7226kfTsfj/cPdarV6eXmpqurDp4/98WyNtt798fuXwqy02u/ewjR++/bl7m67XW+en58Ph12OQZPylQdSUz9O/YAIzle+aR/rdkppt98zQSplvb6bwvhyOgCg89X5fByP++f9oW3rcZq+PX1nhqfXlzBNb4fjMUwgsFmv66Ye33aHL09V48cxfP784w8/fD4cDqUkpfT9ffvx06ecEhJ++uHT+XgigU8ff4gh7na7tu1+/be/5JyrtiWlMufj8fz29vbx06e7+wdj3OZuW5iz5H/87Z//9T//7XToj/3JKPv48eH16fXp23PTtR8eH+u2e376/vb28n/7f/xfu9W6W2/++dsf35++T3H68vTt7//+j4cPj845o/GwP2m0KjLkxKS1NbpqKtN1Sx9jUUYVQQdQCAtCKgVw7lUIqAmuJgqJc54jMsyzWoCkXBpUqkXEg3PVvouFlkWceIl+wLW04OzBXVS3F93JBRcJEqnCzFwUaURhZsZL5vSioVmY6sXxWhgO4bmoMMtCtFwKhggXumyzsy1HFtGoCl+K4Cq4eKCzt0eLAb9xP0u0SWROar9SJ7dNdAYhsiTfvsMx7/JjRJYHcKXr+YY2LlvvjSFa3M+bbyqLHy23/80y63dk1LU6z+3riomuFmQhsS6gCZZ0sCvAW8zXEmi7GK0lBjBjwKvXf+Wb/nS/VyuCIhdyRy5wlwHmDnIMiHN/ASgoCGIAFCESSBZIwUBptHrYNPdd1TbWNQaklJiQSCmVQ4jTiCyo0HpLNGMeEOHCgACEighJzW/xMjhCYOELLTk38BVCRGHkAkppFjqf+hjT4XBiwLbZGJucs8p4Y6u2aWpfBx5OQ09zowQuyijOBUAKlwIZCAFQijCLRtJGUcyAAsjaGOutc5YMCBTm7Cvz4X4jrI/T1yCQ0zjGBCTNekVe0jhYQw/33TCll+8vm812u9lCwd9++/Ll21Msqa267aYlY56fd8paU6P2zTj2ANkqOuwOrrLeusYQFjtpPoxj6COykDGiFCkzF0ZmLogkwIRISIgCRUREsBBonFPmZqdDLrlPF8xzebUXTD/DjevUuhGly7q9aMWuU0mY5mqdl7W8ABN5N3EvoOXPlOQNoSxL8E9z/3rZa4x4PhnehHS3FbL4HvP3lwvLdSTLeegqdJNL6915Ec6sKwDIrG+6uHogiCwiqLCwCM0PEwiQpRRmUCTOclGllDSkjdWBi0P10PhR2xFG3bVF6O10nEJErWztLDZcBBCwlJACEhirckbrjDK2FFE1VU2bCcYpZCFUrihDWIwiI+CUNLWGHA5v+yyCGcaCrlmbqgXhAmirFtAej4fTGBCVs7YMwVSNctU05Rji/WpLRKfjiTW23v31X34tOcV+ME1lDZLXYz9oUkorCPG4P2mjlVbMUlW1sFTeN01TckkplxyHYTidjk3XCgopatv2sD/EFJumfXl5nQ0BoXK1yznnUlab9evr63q7Xm1XYRqVNa7ylfO+8l3TYNMeD/s4Rl/51U+r/fE4TdMwDoXFeueqOqQ8TqN1ugCnaQKiwuy8s95nLsfD4f9L1n82SbYtWWKYu291ZESkrqqr732iu6eHgwEBkDR8Ag2E4ZcTNJLGwajume5+711ZIlWII7d0fjgioh7S7N7Myow4YsfxtZcvV9basqiqugrRN6fT4XRkTHd3D9670Y5gkQRd3dwAQ4L4+PQ4diMD52XJCIF5cK7rh9fXQwrp3RfvmuPpm+++rncbEgIQlNR5mZ2OTdcN/dBdba85QkoRgT5++vTzzz8Doo/ul19+MVobo7/86gsOEoG7prdudN4NvQVkqZR19vr2vshzZXTTdodjc7Wpb65veuvaj5+6U5tnmRQyK5ULsWl7l6ILoRuH2/s7D6l37nW/N7nZ7sRr3/784y+buq76su269x8+cYr3bx5Ep6x1v334uKnrerthwJiYtNpsdlVWXl1dXW+vog9t1+x2V0VRnJrj/mW/2Va3V9e2H/u2dd5XdV2Whcnzpm+fHl+EIqFEsCGlUJRFvalv7+5NZn777X3TnD58/PXP//IXRKGF3Fzv3r39QmXUtd0f//CHwCmluH95ef/bb8HHf/zP/0Vn+bfff1cUWX1Vtx+7kOIX33yFBNH6ZnS5yWRkFBIFagb2BJETK4oAIBCBwkQP5mxHnBqhTOAQU5rUcIGT3jJtgDSxl8SAKCKfxYhJCaClPSCnqQBnjgiswfyZAlzsnMCASCnxNC8iMQOQIEqcEJGRIvOcWjEl0Jy3fYap+mLeoJd2JGfew9NgbJwkbQSYe3fMgEwkFoib1Y8J1iadinGlHp8xAlzYy0XR+QS+0xa+juW63P9XjIWVdix/mgD34qArxTm/eUbhNUcBlhDVQmp49tGXgly4IDlr9GA98VmogvX9vJ56WYnzxeN0wqX97vR6XjaN+W/Ls8Aw7w+w0CdaxSRkQIHAIQYAjgG1yoA4hgSIKSVAppgAAgSPMQnEUuNVnt9usk2VVbnRWnjvQgiKSAKmaXZz25gsL/NSKglIkCJMtYrTJ0QoQCRInOJEv6ZIKNGUeESAxDxdo8CpDyJjdKFv7TD0IcSq3mSGjqcWmHNlkDlTilKSRBzj6H2WFwhAiFIgQ0ocYhAAiChiiiGBBhQkpJIpAcRIkrK8lFoKlbxPkZNUcrMpCNX+1O77oXGxLDVJ8bI/KE1SSxFTlhulwstj44bn29vrm90VJ/7w9Pjh/ac3b+Fqe1MLPTg32DEdeFNXpihjcoG5b/vBjnVV7cpyU6sRUngM3no/DugDIGllVJYTohQKCFJkxAQpTmUAiNN+TYDJRy+QLp+tixKByUYnY5kbKi2P8kIjzqxi7YvJfxVLPldCXtQbLrIpXJrXAj3nJgznK5gscrLtNSy2WOActTt3kZ6pPfLa2woWG1zD3Su74eXieKlTWGUjOGdJwcKRgCaLiMSJ5ruIKaXEhECSfIAIqIWOIsYYI0CfYsZgx/gaRyMyyLA5nowmnRkjBQjUSgkhhq4LMRVlpbQmiafDXkipsgp11ndDB9R5boNIqDApD4KJBKCUsN1k9TYPdui9Hds+oszKrZEyAXg7JIj+aa+UZpENISRm1DQyk5AxCWIoim1Z1GPfRW/ZM3LSSjHIGMZh8GqUUlJpcqV0jCkFMaQ+jOHYnsq6eHt/P3Zdd2qx5rZpm/3x6nY39sPgvHdOKELC/X7fNC0zD33/8Ob+sD855+8f7lNKiWPf9+2padoGBQohGPhqt62rWhuJjNZ7iNGNzvJQw8bURkl12B/G0bZDt1H18XjKi/x4Om42m8TJjlZImThpqX10Qz+G5H30zy9P7dBqo6RUD+/eAYC3MQRWWmutI8e2aT59/BhiQEKl9f710P7228Pbh7Isd7udt96O4+5mB8yZMU8fn4nEdlvXdS2F+vT8ONgBiHxIKCmrTNePP/34S+Q0Fcw/Pz9nJt/Vmzwz3b5pE1tnpdZbs7m9u3v/24f966vOTVEWm+3meDr9+vG342EvpSqqzebquj21bdd5xkJqkrIbRx8DIIaUrHcv+/3H56cYOVI8ndoQY1lX3dB3p44FeUIp1buvvyJEpfXbd18eXg8xhu22toNFwM3VDiMXZSUriCEKwOhdbjIS4nQ4WW+//f67zWaDDLubKASGGEjS0Lm239voqk0tlBBaMMcArLUCglN3lIO4vrki4uaYf/fdV1VddV3bd8cU75rDGKzz42iy7HQ49kNXaPP919/GIUSy//gf/pNQ8sPj46k5Rmsjp4f7m5t37653V3leSCSalJg0kxdiBEi8aBO8KB8XODRbL05JMwmIpuZ7jLz4NrgE6le1ePHMVv9pKo1YmhQvmvP8ilmaXnfZuRsLAMHsbDESThNIiQiWUg6EeWrWEvoBpDTB1lLFNCEyAkIinAjTcgU0RXOm+0uzG0qzVATnmvR0vqxlMWCqBOZFX+clG3IB5s/80DlN+OJf51etiTZ/7YHC5THmAMIS0TsTojOXWSZGXETnlk9gvTBYatxnteksAq0vPO8i06Key4OW5+PcV/FM+pbL4FVTwlkFOpOiKV6JDAgJYYppJCJGRC0FAyqSCTBxisSQohaAmJhDdL0OMUOqiux6V95dF3UmpBSI4K2PMUhE8K5tu9Prqet6Y/Tu5loqxcAxRU4RAacifwKAZV9LiVNKiEkQppgAQAoJKBkgJgRCZELGFLkfB+dcjDExmizbbLeJZT/a9tg9vCmUQIZkrYvOeh8QETgAEEMiohCZgRNHQCQi72OM03hWFkIkDgliAiRIQgAnRhTSQLTMHIpK39/W46fRM1KmPdGhafM8v6pzJafc0KSMGGzYn067qnp4c0tafPz0uD8cI7PWxbsv7z98fOm7sZeCilyiGL1LSH7wRvm6JpDsfSwkOS18whCjj4EjxwigpTRGkgLCGO2aOSZJIIk4WzP66AUJXp7yNXgEi2SJwAlwIe280IcLTn0OQfFnzy0sj9Y6R2997C5kofmEl6X156d3tq/5dEul4oRCBMAJFiEZl8S1+QVp7Q+0ps5dXDIRrdFk/PxiFsqGCymaL3ZyKtKcrccwBVkTI1LiaXCHIKREkFJKiEgqKTkgOxe6yK0LZa62RqfgOp8edjsUIsXgRjvaKAWPNuRZvtltjNFutM8vB+8hv63cMDTg7OhGFA6lMCWjDJ6Jvcakc729yssqa/tktlVjUwStpHLRc3ACSWV6GIbO+bysu9EicUVSah2d660VMWJmEoDJjFKKU0rOjd5mxhQ669qm870UOi8yJU30AWLUSg1dr40qivx0ODInTunDh/dusDHF7ucuhFhvKpMZ793hde+83e42wYUsz43Rm01tnavrUioVQmhOp812U23LX37+5XG//+KrL7OqMpkxRhOA6wY/jkTkXXh6ej7sm6zK6u12d6s2/VWM4eP7Tw/mob7aCiEV4Wa3G4eh77pp4FcM4XW/378exqHPi/Ltl18Cu2pTIsDr62tIrsgLY4y1dhwHEoRMox1PbUsk797c7652CND3g0AqirIsyxiCNjrFhJikkIfDEZAfPz22ffftN9/urnc8FccChxS0MUTUHE+ZMd9+8/XVbhu845SGbsiNvr67RUGnpkME69zrYf/p8fHhzZuiKpzzzkddZyDEz+8/3t/f3ta1j4mlUkXmnd8fGyZuui4yN21rfXDBS00+BOf9RqjNZnd394YjZ0Xx+9//UJVV33Uvz8/e+Tdv3u6ut69PL1HF3W7jre2Hljq6udoljClGgeRD2O22Ugqtr0kITKlvO6OUubvjwMF7N9rX07Hc5FmRt00nkgDipjkNfV/VFQM4591ob29vbm9u3719Y4cxQ/P26ze2H3fVZlttvPPeB5Hgqy/eFWXZtF0/DP/0z//CIr3/8bfA6e7qqh+G7Xbzb/7Nv/3DDz8UxuhMSmQGiAgo5r2LAXgqhJmc9pWjrG0vZhib7H7OOwZYarkXkjCTglmj5hUuLrfwBRdmyRlnygFL8H995bqnL8CYOOHan4+XDq2LCgNL1GwBlgXzLpvqpcVNpfkla5hteR8DwJTwSTOMLfc3aRpnavFXfGVZuYX8wYr9sAT/zszkgprMOssM8DO3mmpqmFcms5JFXHaIxUE+a0oz8n6WKXrmXGtqEa9Fzbie+uITXq96Ota0OSyLuDj0Z583zYeZPr5V8E/z2k/JH+eQCADTdFxclhKZOHKAKEgiUeRkvSciJSVxguCZPUafcbzO9U2Zbauy3uZlITl5hBBcQBBGKoxh/7J/fP/h08dPVb29/f33UmuEqYUxJOZ5lhciERISQEISU1QWmZB5mnqLhFMPXyIpiLzzfrD9MFjngURKiKSqqq6rzTgGKZXUShspEATDaPvgfOKklJpEgBSjVgYFWet9CEgKiCJDTOxjEoIIBXIETikEThEBQkgoUDCC4MxI52NdiU2jxph617MujdZ28B2K642RqFK0OtOyEM76w7G5VfL6qs5L/f7x8f37T2VZf5GZ25tdY7ru1PcMWknXW6Moywof4HhotCIbXCWVqCoXoXPuNNoQvYuJLYnR60xrhYKISHNKiSHGyGlpzjBrZQmZeLrt2erPKs4FQ56z7KeBwWtB+mozUxUXLOLKajJnDehziJjftyRBX75gLk2bvZ0pN4hx8RLO5QsIK7e6lJ54IUnrv2jRqeYbOQPWBZFbMpZgIjTzIWli/+vdTHZOCQjn0X6MhIBACEgAQUkhSKSYgDEAh4QeqU+uc9hxQk8gSxmFTpSbcnDYHA6ZkkYXOsu7pLyFGCiJHCWNoDsOFouUIZCOkb0ynICYMSSSSRshRRLgg7MxQQCZAkUAjGy0LEotjZRZNvRujKkZXVHmFlJWlyLlydr2ec/evb271kpXVRWcY07j2CuBQiCn1He9VkkZfdwfXp5fEKnalNWmEFJUVem6QSBeXW8P+0N5c0WSTvvTy9PzOIpcZ4BTXriJ1t/cXJss2+8Pm91OG+NGezoc96/7EP31zQ0gaKU3dXVztYUQpjGBHGOeGUkYrIuR4uiFkt770Q+Hw/F0Ojrv7Og2u1pptfqlWksADiEaI533RmebzS7GKLUG5hATAFR13Rxb8DCOluGY5Zl3/t3bd23fvr6+fvr4uLku//h3f8uI/akRJLSUry+vH943V1fXiDAO41dffYmAnz5+Ohz2N7e333z9FSP3fdeEEzP2Q6eNKYq8rEqTmbLMr693fdNrKbVSVEK9qY0pTu3p08ePZV1d3179+O9+KurqOvgPHz4S4eZq+/z8bLLch8gvzymyVLQ/Hj88fhKEgOCcb7vh6mb35t27w+losuy3X9/f3dzndRFjEkJlJhtHe729yqQxJFnpm93u9eXQd/12s3XWMfDxePSj4xRvb26kNMPY2NFu6+3+eBz7YVOUT88vUzOhrm3fvH0rlUyQnPWMwWT09PREe/nrbz9vNptqVx2PrwSSOW4326ZpXz59+uG7b+u6fvr4dLXZfPf115Ejba68d4wkCgKCv/2bP5KUUpn/7X/7f2ZG3d3d/vbrbxj5f/y//V9yk6EQb988fP/t77JMRxtS8BKnhhqzDjBlE68Nx2ApQboo91m6tPDi5PD5T5eoM8sZq3kvDGjNgZ3RjFcGdAbGNXZ0ZhwTiC2O1yRrL9rE+XSLfHSheZwdywsvcVLgp+1w9dvmvNwlFjZv9jgVuJ5jdBd+5/n7RZLlcsPACwHE+TL5gvGtgH5x3Ut5Oy/guZKqJVfz4jamtydIF87z2eOdf5jzDBCXlINlndLasnb5uPDyMuZrX+5r9lFhuZG19gfOvCjNhTlL4O3CD+aFkwIspTbL0dYko7TMHSMSEnXk5K0DTJk2SIzJRzeAsyL5Otfbur6ps/ttpZQATJAiRx4HR5iU4ORtezo9Pz6Pg6vq+uHdG1MWQBA4MhLOM28YEotpm5me/JQQYcraSAlSAgIMgQGSVAZAeOuHdmzbxvmYEphSMQEmkEoKSVKRMdJ7GUOQSiFhCIkZtM5iipKEEESBgEEJGYidD6RmfdH7SNJnpBEJeaq3B+AUQ5jk9+QTkQAp4jBKAff312jG57ZrxpApk6K31p+atK3zq6urKvhD26cYIcWh7xKmmzd3LGSKH513f/rTn77/4Yd6U0QXOcHYj9GnGKLWRmo9jo4IkdkQaqMPzShDMsAO0aboXAguGue0pizTeaaU0kjCOe+Dn8gOCSFQxBR5kmIXIRcvkqLPguf80PFMkFYrw7MjxXMMbaLKn2WyffbEn7OIeLV6nt921nomYXp1pHjxomCObJ/fP1MjPp9oDoAvFjw7QFO/thmRLoBqxccLvwhXtACY9aVFkyZG4qmb5KRTU4SYEgnBKSVJAhNDiEAyMguSSCoEMXLyY5SojJKvYzICIM8Hig1Lz5KVcR6eukYmNkoEk5OWz50fWQ5CoxSOpcc02oREuQCJIonUj2PXheDxdBraziWSKPQwRkVKSfAomTGRJCPYORSi74fk3a4qqkybIodtIO9eX/ZFpoxW7H0CNkqNXe+staOVQgGSEKpv25hYa0opaaOUlkIgINthGO348vRaVuW333/nR3dze1sUmSK52Vzl2jw+PtVV+fbNw8dPj/e3d0Vdvjzvm+MppiClyAtzOBxubq4zY969feu8NUoQ4HF/kII4pcPrnlMqstyYXEkdEr88vxwOR6nEt99+9/z6/ONPP15dXxVFngK3pnvz8KCUzvM8hehIosGH+4evvv5qGEeTZTEGQkJApWSKYbOrlFLaaAawdmCAuzf3eVEMo/XOSSUhpTzPg3Xb3bZpmrZt6k0tter7QSsVkmdgBiYhBmtDiH3fA2BMcb9/RcSizG/vbuzgPvz64eH+1o02eM6LwhiTUnh6ehyGngSllL748ouiLD5++Oiir6rq0JyGfvz49CiE8s7d399zTMEHSCyl2O62QogvvnxXVhVJsdlutdF2dCbLBInD66vOjNFZlufWuX/5p38ausFoeX17czoei6r45eefGCAGD0WGgqQS2uTayP2T3b/s89wkji/Pz1rLtmm++fbr7XZztd0KQYjkQmxODdCUdYBNc7TDeP/D91lh3DgaZTbb+mp3HW6DJoGJg/N5prPMtE1TFEW1LYYODocjEHz11Tfehp/+8iMzcPBv334lSf3t7/7w019++h/+238LAbIyN5mOzrZ9Z0gRgpyds0WomVUTWHBiaju2KDdrquDybTJ2OqPPkp77WfLLvJ0jIqZLb+qczTj9Zi49BVi8rc8i66uYQksY/nxOXjfws0e28JIVzlYutGzeeCG5LL/ky/bHqzCS1nueWCHPyHdWXubsX+AFOC/mbS1JC6tis7wcYBXKLjjUovkALjLcsiRLdvj0GVGauSBcMJkzy7nA7Qt6tGz3K0DPxHT1ec+vWD65+X8Ln5y89WWdGXiqZsE5SriecOVh5zIwnikf8xTKxIkBQDyHSVMAmMJPRhtFCTnF6PzQYQxbbTZ5tSnN9W5bFVJBIkrMiSMoSZhksEPfDoenF+8sIW6vNpvtJt9uSIiYIjASMQk5J/9wWJTCSZTjxIkQkQUASKk4MDNraQAlh3B8OQzjGEIgIZUSMQSAZIyWCpmi0FyWElj5MAAmMcWudC4YmJNQGSCFYMc4KG1iYDuGDBVNXYhSTFGklMRUrhcjzZ3yPC/9j4DJjkMIUUpZEqLMnOPmcEgiZTKzYzi1zuRZCYkwCU4QXL0pKFEI/Pzb0+3bW/Hlm98+PB1P3W+/ftheb8oys4P1UyN1qZ1LVoExxWCH3BhFKjFc7yr/5JvBUaangiYlMXH0gVM3eOuKIjPGEJKUCoBjiAghrTldvARZE8/B8XNh4/zIrUPeL8RFvJRbEMVf5cQtpOmzf85P4irXfPb69etcl5CmdtZn0FnBZxGbZoBbmT7/NapdRrbxgoRdxoAXCjatxWJzaemnOBv96kfO5IxBECVMUxEQCWJIkFgCUEoISJ5DitMAlggyxcgCCeIYkxuTj+jyynJ0UUhCF33yKQOUJCXq0bFHIF04F6wLZDQKTDE4ZkGi9yM4b6SXI58GNzgGYdCYkEIIHiL6PoZopZLSSKFNUZTd8RA5jV0HdgzOYfS7PBuHLo7QI5S5zrUegh9sHHvHjFKJlBBRhoRZWRS55hiGth2AETF4H2JsT02KPlP642/v2+aUZcXL87NEEYNTWlVVUdVV13R1VefGEOD1bvPK0XrcXV81pyb4cDjsEakfurIoMqMhpSLPnR3bYzMMIwnB49h33W53hSQQsa6qrMxNUZRDPXSjFFqrbAgDAIQQi7Lquo5TyvJcaCm1wRAS8GH/mpmMiH59+VlreXt7E733wSkpmdg5nxU5ERZlebW7xsSffn2/22w2203bdofjwceAAqUWRZWfTkfvw6ltGJPOTIhhf9i3Xfvw5j7G9MvPvz59fOyarqyrGEOu8812U5RlWZbN6dR3w/71cDgeizr7V3/3r/b7g3LjZrMb3NCeOrbgnJdaSxXef3i/2V5JIV73z955geLu5na32wmkLM82dW2yrB+G+9u7iPzHv/nD8dS87l/bvpXBWj/+7ne/z7Xpm+bu+jql+PL8UtVFSvH9+/efHj9mefbD99+9e/fuzcMDJhzGzvuxHzsS4L1zo0VIbx8edvXGjWOeF93QCUk3tzuVqY8fn6SWX375xsf4/fffSCleX17e3N5Wm41A4hQ5hC/evgPmPMvDaPfPL8D43bffbne79nQK3gOCAPzLz395fn7cbnf/8//0f//xz3/++u3bmPz/9D/+X5WR4zDWWh0Pp/3+WJS5zEtGlvPGs3gnPPv+aXG/LnfPWY/BdYu9GFc1mTtekKUF1fi8ia/hmnU7XTXvC6pyBpVVY15DOXCmQ7QUz6+vvrzehbrMOLvIRBfnWlN/Fo2Ll2DQNIZrpQDLpVxwEVrQeVqteWNP54jTtAw4DQWZEw7SCogTfjOuqzqX053vG9YQ2CLO4HnNVnVq8ZfPlXKXC3/xiayxp/njg9WlxbUkhgGmfgQrN1tAPOFyTp6Z5oTksw50if6XpI+ACWgWhWYmyzzTHVx7Ls28FRAJ0tTEgBCBMUQmH2yfQl9I2tXF7abelXlVZkJOWTXTDgbIHIeRY3Bt3zRNDA4JpdZZnmV1rY3xIQQbpFLAyDFxSkAw92eJCRFTiEAAPDdCgIg+xeiT0tqHmGw4Hk6vrwepRFGULkSpZIxRGZOXuck0EhOkPNfsIxPGEEZrIUG1KdZJ79Ojl2IQIoepyxBAiCHERIgxxhDIVCaB6tqI4BNHRcLHCICCRIyp78fjqTW5YRBllu82Zdf2z8fGo2PUaLLes2w6iDa5QClF51GSMSb29vB8MFVxf3dX5MX7959SDJtNzZGN0YJE5BQjDNYnZPCx6/urq01VFClhXWUBUhed90kKJImAIjJGH4MP3ndKuazIstxMox5SjACRUKylAxzTkjOTloeOcc3G54uH9vyQL+zhr35Yjets2njxlxlBVhSZ8nhgNf3JIGasW1VvXK1wMYRz9H2ROSdXZ9Y4VxNeSf16ClxOy0vD9HPl2IJowImnNEI8t4pm4IizuhSXcg0QUxwMOSUCSQgppslvZiIUiImkkqMdiAikCDH40QMKyPJgLbPAwEwKTRZTgJAkckIROWHkAKQynZgFglQSIQUOSAqUGaIFH8YkI0EiEQG8REgoOCGBDwkpUeDR9bsyy6D2w7jNMyGgcxYRhJDlxlDw/ek0cIhCjkPPIUnCBBBjEkKemq7vBpWJ0VlMCRHbUzsOo8kUIETvjTFKK2TYbDbMwMk0h4ZT+uKrL0yROesQMKY09v3DmzcxBEQwWkFKu6srAFRKGmOur69jik8fPppMcUw0jRAEIClSAufDy+u+3myCjyEmThysK8uc6D4vMmY2yux2W61NJN8co5Iqy/Iiz23ww+iYY2YMIhdFNvZdCvH58dM4WG0MAJrMINF+vychCBFSCtYPbW+kurq+KorCRX/q2ueXZ53l3759W262T58+6T4jondff4WI7djb4PphsNa54EyR6dxIJZl5e7UFgKbtrjbbhzdvYkp/+dOfpBZfffUNCmGM7vrWxyQIN5v6Wt+YzKTEx/ZUFOXN3d2u3jw+fmpOJyP19W5X5Dkz53nRHo4tHh/evlGCxrYLzgEnpeRmV//yyy8IaIz6t//m31RFtqs3hGiM/PDxw1/+/OPr4QUQHz9+qIrsi3dvxqF/fXk5HU+7avPlt18PXWeienh4QE6bsrTj2DdN37YMXFUbRVIAFpkpNqXJTAixrAo7jkaI4+mIkaUhALje7hAoxiiJqrxAwhhjDFYQbraboqh8cH/+87/8+U//UlbF77//3gi6v73+8ZefN1X9849/IiH+8PvfS0DbniRH3w3F9gYIJSzR6zRvJ7gKNCsITHxoFooAIU1qByOs7GV1vFYgm6FrSrxYN11kTOeOyniGJZjFoUuX7hzcOUPhyniYluKOBV8ufMJLLOMVLBMuXtY56LZ6f1OjjoWdTcc8k5IJDAEuqcjipC7ixST582UYCxbCsDLI5fLmHHE8z0lclpGnwdpTEs3KSVfBa/FL5/WYZ6L/FWG7+CymnWBJ5zwLRfM1wOL7XvrOZ0J7vgecs31wXvwLoWfG+il5ZvaiEddpBVOpTZoSfRICTenOxAtLxbkePEZMIIgEAjGH2A9NUxnaXZXXVXFdb0otMyVIIHNAQmBMyUPwvh+dt0YqAaiVyHXlI4QUTJFLrZhIGEVTgi4yT8lfU2upNPFHnihXAoCUoksEKIkQxTja42vnvO+6USljsgql4tiHxOyTyqXRRkpiCAgsAI3JumEMKXjnmbnkJBUhEzFNKtOURi0m0Rw5xCkdWzBjDClFQhYpMikxjdSeDMTF2DbD0NsYox2s0pnSuNkob4vA9rm1gZMUqu26/mB3m7zIpmTJFpDvHrLbh6vTaRiaXmt9c1tVV+af/vOP3rqyqkjJMs8YkvOuH4Z+TNurwgfctz1KqRCl4E1lyCOPrvfJOgtCkVAkZYrgrBtdb7131udlZrRxELy3hAxTRcT0cKcpzg68fGMEmlKycMoynDUdPnsri0s0lZ0u9OIzi7wAnMtA8OIGXVKf2cQWdWY23QRMkAAgMa0nXejNlFk4XTXB1Mho1oYnIjfnRy7VarDCAV8C6OLDLRc6caQFUQGBl7KNKWRIlHgikyAYmONke4mZJjkMGCmJKVorUmRHimNykERMCSAZrZmJkQNRijExK6MgQAoBYkJJQqqYIpKKiQmlAAYA5y1KmZTaD0MUUpKKTBaDZ1SEHqIQSRmlgdPIuZQxeHTWc1AEKYUyU5iSKHOEWOWFQUwAxmR27FlEoYXJjbUUGZCUUmYcvSBKIR7bFiDW20JqUYo8y7Kx77XSSktj9M39fdu3Y2erLQop+7Z9eX0p62p0vqgq34/A/PTpsWm6BHF7deWcIyGqTeldKMsSEKSg27vbn/78Zzfauzf3MabEXBSF0ZkpMkEiLzKlTdf3AMyJt7ttXdcJ0tD1gSDP865tOUVgHobejoMtClICkPMsR0SjVFkUYz80h9PHjx+Loqjrqu+7x6dP0mjr3DjaPM8KbYLz1tq+75+enhMnkPTVV1+Xm9q6set6kxmUUih1fX31un8loqwoy5AOr6/7/b4sq999//tNvY0hdl0TY2xPTQinl5cXQVRXtckyqbSUsuv6p8dP9/dvXl5fRmc3VeVjLIsixCiVzLO8qqrtZlPm+af374usjN73p65tGm10Suydt8O4u705nU4fHj+Zsnz7xRuZqX/4h39A4E+PH/7d/x4p8duHB0Kydmibk1HizcOdt+6PP3wniF4+fHz/40/D0JV5Vb951/btf/2v/+V6s/nm22+GtrND/3B7Y3a7/eseEeqqVCQVyZvbqxj5+HxUWmzrylS1G4fT6zGFdHN7Mw3ZkCQJyY5j177c3t/2bf/TX/5sjLm/e9P47j/9p3/ftc0ffve7ut52TfNMlBf5m7v7rm02m3oceg7eZHmZ5c3xo9G5VJKUkjOxuQARPm/UvKSwfLa5Tk7MpVu2eEpLITSu2y7ANENnxgEGWHOMFpyYmRCswgZcSgqXmg8Az1USk9xxEZSfd/SzYrQoHPPODQhTAf+CcMuJzo7kUihyyV4+YwsAS4LkZcXKmZHgZdLzWRBaTjJd+dnpXQ6Jl7xjDhSmtDrFsJDBZZX50vG92Cpm6ewC+ldnFhfovSBn5xed8fwzunk+w3rHy6c2N8FbcnumHGeGM8liBsQ0dzBknDhHWkrCkEAgkUgMwIFTBASJQkmixNHaFH30YybxZpvd7Ir7q01VGElCInAMnFggEHAMfmjbseuUwKoosiw/+UOKkUlU20poLY2Zbl8IOXW2TFOrTKJpKkUKMcXICZQUHBkSe5eQQChtbXAuNu3Q9INzIRFmWZl00QUnlJSEQsisMJIAUgqBkTGGBAzNsZVaMUPiyCkRERAniBxTjBE4AEeUAgBiCCkmISSRiCEippSYSBhT0NTdHKWS2I9utL4f7GgdIWmdCSHDOBaZEbdXDGTdy8k6iF4K3bfpcBjMrVHGSG37tmtOHRDlmSHrvfNGmdpkV9tysMGOVqFmRCkESRlBdv3w+toUdQ5CHJouV0IKyjKJGoVE7EbuQwrAIaUkQCgppU/YD9ZaF1KqigylMCZLiVMMuNrt+oxPc1cQE0daOALz2ioHppnrvJrfWouweDFL9s30bF9a4QoTuHoLa94hrNHnJbY+XcxSUzoRdjx7cQiLMrpo4tNNEC3NxM4Xf2ZNnzk6E/YsqvP5v+nXExjSnO8DyEDT9FSY3dGES+kaLs7VFLaLkABmAdWnMDUwCxBDSmkqbwwRmInEpNAnTi4yMExhVZ6YnJCQAAmn1rWAoHOTQrQxFkXVdW0KwWQ56SyMA3AilRB88iG4aICkD1qCVhJjiIPVwMmO0VmT6SKvIKb968EPY3IOOCUliZhypU2GUhKJGCHLEBGZ2IWh6zpsARMrElmWSSQpTFZk17d3UilBknl8fn0d2j75+GZ3FaMXUpks22y2bXM6HRulxOhi17b1dkNS9O3gXQgh7D+91kWVYtDKKCGlkJ7CZrPRRmuT5WVxOjbD6KSgTBmpKMu0HWxIUUmR5fmmru1oX56fkTmlZAcLhMwstQohArOQGEIchqHIsk60u6srpaRUsjkch9EWSgoptDFEwmQZx5SprCgKPzqXQiTQeR4Z3n/49Otv77/8+usY0+uxGX2cJmQqpbphIK2+/PZrgaKqN0qrtj0dT6fm1L5791Yr/fNPP0ol6+3meGyctTrTu90OIgik7tQUZaWMOrbdy9NTVdcppU/vP36iD3/8/R//9m/+lSZqji0j3l/fpId7YwwA7F/3h9NpbLub6yuda1MUbd/+9vPPUvDH9x+iG5rn59///vdd29RlUeW5Bvzb3/3w9PT8zddfJ47PTy+n00lLssiH/ev/+//z/7LeSyGsL07NqTRZpoyUQkq8v7nxKeRFJqXK89yG0dmxKvOiKpKPh6eX43H/5u5OZ1mmtCThBvfavNzcXp8Op19+/vnXX35ixLdv30SX/vTnP/30y0+n4+Hv//bvr7fX/dj3betGu9vuNhXe395KosH2BBBjAOYQwvPjr97Huy/eyXO6C/yVTHFBcFbrXiz9HGhad99lV11ABGdkW/fV1S1aGM66489y8SIwLTRsDb4vh5vQgGYExKli4q+Uj+USAJY8owX6Vt/yHGSb0XcVcwABlz45vET48LNijYXMLOuySurLCWEdHjHV36/LBxeJzOsqX3zjFS7hnFB5zu85g/GUv3zOWp5/i59Xv1wkTvzVCk0rfP5inF3clcn99Yd/GV5M8+UtVz7x0CUQMN/i3EEaEk4tX0nQlKkcAGBqkgmIkOZRboIBvSdIHAK5USNXlbypy+ttvil1pqUQFGMgICDgmCAEH+I4jm4YIEWpjCIVvA8hAJM0Sue5UBKE4MSTkCeQEuDc7ZunHGhMnKaevTElTMABggvOB+ax7z1KGkYXOQotpJAgI+PI6KUQUgiFqDO10GbkGGNKTdvrQgslm0MTQwBCFswx+sjIQIRIUioCoJRicglBIpHU0vYhjLGqMNNGaQWcEEiQYAQXYjd6FwGFIESVSYEypIgxFLm52W263vH+2PgRCUmSD/Flf9pdb7bXO2l03/Zdb+/uboo8jyGOg3Wdu9lU3eCtT4lj27VGy+1VpTMFxM+vx4RcVwW7GKzbbioJnJGUhjSJHPxgw+iTSxyBGYQQAsCk6Pum9/1YlHle5oREpJhTTGFO7BEIzAk5IsDcwWt52qd9Os0iIzMgEHMEpKUA4SLNf43QXjzEfP526basvacWq8fPX3AOrk/IMgHTYr8XRV18TgS6cDCW/01QtkwOW653vS482/iZzy3ohHOrCsBzSI1x6omPzPPEu+k1zMAJIyNEQEBOiB4iARBRmt1CQiAAAuLEESIQspDAMSROCVkISoA+RhSJGWIChZQwEQqAlDhyTJaD0QUpRqNJoUZOPGJwin2p9M2mKrUeDk3wXmoBIUWmuiqRU++djwFId117POyLrNjdXMfgmkMTggNSJjcQ2Q19sGEKCmcmKzelkJRiSslLbfrOCoBMmzKvpVB9N3DiGJPrHSJd3W8TIgoR2R/b9uGu8DFVdUWCqjTN7oa26azzmdEppqEdTy/HIs+qTaWlJCGFkiGlrhutDZvtJoRwOjZ1UW6qGsXkfzkX3Mic5RkZGIYemKWSKUQ0RgihhCSiwGHsB6kFJAg2GZ1JhMyoIi9jjDGGcexHH96+e7PZGQT0/Whd+PLbL7TKnPfSiEPb9f2QQrKD/8uPPzbd+Hf/6u8evvzi04ePoxvatnt+etKZ+f0Pv6/zTDCd2vb15Xn/8qykCTEe2+P11XVeF8661/1riGGz3ZwOxxTiw8N9ptTVZktSFlUJSN1ARZa/vB4kEUlh7fjp46d+7K9udxtTjeNgrdVGhxASsMn07d0NIL4e9vvX167reXR3uyuVONP66urKEO2qalNXhc4H05Va3/zwnbeuLGt5DYYoxvQ3P/zxeDp+enrKijJG3w1dDLG4MsR4Oh4zqQEgMXgbAIT3/nTqpJZ5ZtzoXp6eAbg/DVfX5vr6qmlaJZWzY4zhw68f7Dh6590wVNv69upmGMOnD+9//fGn//l//n+8ffPudNgTpKvdlhH9ODo7SsGBgSTZ3iL4m9sbYCrzjTKZ817iCgpn1WDx8y90ifM+Ou+Da98dXu131hku9Y0FaWYg+D+Ufy9s6vx90YbOnGqN/Swh9vPvcYEJuNyD14KyGVDOu/nszcGCZLNHiGn10hjnyQtneeac+TOB6oSNC7+Dcz7OGYbnimCcSc8lZOP5smYEXYWuJcPgQkfic/7NmkswRc0WBxMuY19TC2WGi0Ve73ymX3zxq/P7ltjAZ/9fkJvPqJ94XvElu+Lc63fVz6ZDE0ACjskjIM5j4gQwprjojSlQTFIAEUMKEBwErzGVpdpV+e1VXeXGSCJIHFPiJOfODDH6cWj76FyKLADKPJdSHpuTdxZIVFe1zjKhFANzSDElIUgwx3m8CRMgpxQTc4jAMIs0CYGh64bnx5fBemOykEBIiSQiCATSJASDSF4pIkgASEomZmCWRrKP0xNh7bi9uWKi0+sxpRg5SZSBY/JBEgktCIEQY2IkSsAxRmaUuWTAthurOgglQkwCISZOIXS9O54aG4GEystSgeAEo3cmUwJJaRkyfXdzFSEOnw7d4QgyU9p01mNnr682WVXHhGPfn5qWAcqsUDEqZiWIWNSVant3PB2zPDOF0lpcXW+8j03TdgzRO2Igktc3tRBCRAafRIYZ0gk8BXbAAZIPiQQJNN47mxx3HGI0WZYZw4CEggEAIqcp5xkJITIDcExL8JcRYJq5t3oI03Te1Q5XAFpKBC68oovvsznPBnwRE1tetRrD5T9nR+Ozf8GsT63xszWnB1Zy87kABYsstSLEBaauLsxsNrPX8DljQ1jLwiZbW7KoJktb7oIBkNbhLCgm54UEMIipwpGRUEybmRAgBUVGAEzAcUI4ohg8ICQAzyyJEFlwwhghsQAkKZ0dPQQlVC6IIyIxOacFyRhkhFyiDUEi9XYwUpS5QgCO5rB/DdYWVXV1c2OUMVJ1fcqqkkQNzNb7cRjGfpRSTMnOZSxJkZCCE9/e3gnE7tRaH7UW3TC8Ho+REwBrZW7vboVS0qjoIxGipMR8bI82OIkik1mWmwTso48xEqLOdEyxKIuek9ZGCEFCoCBOMPQDM+jMIJLQcrvbGKGFpLbthrGvNrUC0XZd2zZCiKLIt7uNHWziWFZllhtgSpBSisNgGWJe5MGG33573/e9lFIoZYy5uro+dR0TlHXFgNGHcbSHw6nc1DfX2gXfu1EoKaQwRdm2ncn0P/zjf6mq+vru/tR1f/npx2Nz+vDh/ddff/nm7dvTn08PNzdGqaZp9ofTl198cV0VP/70868//1pv67v7u+ZwHPpeChq70Xv/8HBPRGVRjs4xpyLPTKZCSEVmfvjhB6m00fLl+aMPvsjLAe37Dx9f9895VgTvg/dKK63V6/715fExK4q3D/fv8KHvevk7/OrLL/qh3242wXnmsCuLQsmnj4+9FErpUud1lsndtqo29Wb7mOVXu+uq3nz49KE5Hb797rsw9s3+aJSyDF3bSSUDc1HVPvh+GHCE5nQSRN57SPH6egcA++dX70NdVta5Is9f2tdhHIo8/93335dlFSL85S//sj++/i//y//6xZsvnBubpsGUmBMQRuZMZ+9/+c06R0RFUUglD697APzmi3e6Ljvr5OrIrH7KBdicCc6aiLIY//zD+a+L6oxLZiufgWsFqtVfmk9xqTUshGRFgwU2lvDLqpOsteMXPOJST7kElDOyrDd3FjBwBhRaQOdifMVKTT7TT9b3IVzA8vxyPK8HLsi1zMla02mW166q+rKki/M3/USzxzjlBWACpikjBBe6NLExhDX8CAAw7zMIa33voqvx/MJ5sP2yWLikdC5pzp9jNzLMrZ7my+bpeqa0oFniWsKkeH5Kpu/TUCv2KXngqXGwIJKEMiVEJgHRWsCAyRdGFoWpM321K+oiy6UggSl6SJOcRJgSxxBG58aBg+MYCSjXxqgsQhr63oe0u6mKqiKhUJCPDgCEEoQAs6IAxAAheec5pelDBEYpJBEeTqcPv316fHpROkOZA8oYiUijYODEDJJAYprCCMZokynAJCQBJhRALKQgpYUPDklMmI6IKXFKDIBACBGYprGhgASSCADH0XNCIBrH0TorR4REKNBZ56I7tsPh1LHU9bZQOpcAzaHx1iJwUQhin8n0cL0RCGPv3dPraB0rjVIeTn1MvNlUMjMGeRzGcDwBwG5bo49j3wsjdJWbXIfo2r55/364ud5dXW+utmVuxOk4pCRI0qnpYkq7bW2k1CQJvCCBmgSFPqXO++ACCKlMJpWIKY3OWue1dYNReZbnUz1wCAwBEZGR05TVywCJSBBjTCGmRERSKkQM0xAHAF4rs87ewmRDl6roauyrcMyr/Z5z7BfwWejMYrBzg9elKnTOeD4nLi8ZQfNZaBWpzqdd9aWFdcHqMCypAOfLOWdKryBBNOU/4oKH058TzniD00JMiQRTuhQlTJgAUEx4kJIQYr5zhhgCSSVQR4gR51klgFOPBSYUCExCMDDGBCmRYIVIzABMmDIlCQJSxBSF9xKSgGCMQlDbUhSKdfJ2PGZCDkM/dj0VubNBCjRaCxRSyaoqhmEc3dicjoQoJGmjAYS1fYxsskxp2Z2iFKCkNFqPh04gZFkmSMaQuq4HqWyIvbN91xZ5tt3UznNRbkgLYBASi6Ly1vdtF2IY3QhEQKgzxai10QlSVVbNsa2qssgyb9042qQSA1vrdZYxgNJGm0w7l9ALlG3THk8HqRSnmCIjYwieELx1AtGNdhgHIiqqUgjRNI0PHpB9iP7YMHCkZMrMDZaQ8jxHId+m+PHxcf96ePvVF24YszIXJ3k6HpvmNAxj4HR1f5vl2ThaRAjJ71/3/+Uf//H2df/x5en9x499GLvoHl/3//znf04u/AUw0zqmKFC+HvY6U0jYNW2I4fnpEyQWUsbg7+9uM50LEoIoz3MX/NAOEdLobNt2KOjm7m63u/r0+LHvuqenF2aq67KzvdBK5UYXZgpgnLrWmOxf/6u/D8E/Pj3eXt98/fC2yHOTq9fn50Kp11PjvUt5tcnLRikEvru+5hTHYRjHodRFf2pS9Ff1xtqYSZNd3SoUo42SppGCILUahoGFKLbV8XBigrqsXl5eBOHVbgec6qpqmk5nWpkYU4qJMcSyKpHAS3d/eyu0/o//8B///OOfv3j3xW573fZNis71g9baOSukzKs8pEgoJIlJ3/eje35+1FKWuQTyj+9fJKz78ipSLARn2c4+L6aajPic6bfs2ecDMFz8c2Eusz+1hJDWU10gGK55PWda8JmMccnELsqiLhFyxivG8yWdq5NmypGWgqYzfi1Qc9HODOd+zzMAr4LXzLvWm1xOu3AsnBqgpKnLGp390Ys3MPz1DcCSc3CxmryIS/Mt/lWo8ryOM8wuvG5mNmvh1awT4UKd4K8/tc9WmVfkxqWv9cUnOLPECe95Af4zVZxVJgLgJJAQIZEAIJ8CIkOKCFIgIjEELzgqDEZikeXXm+JqU2iJWhEhcwzRs5wGgAGk4EdnU/DRx+gcMGspmVEoYZ0jLavtDlBkZSaUCTFgQkGKgaeWGMDMCYRAQkzBh9HGxEKILDMxxRiSi6nrRutjVW/L7TWzSgCJmZm0EhwigYcUMCICZIVSmRSSfPQEkhMLkhwSAxd51oyWEAkxz3Ni4sjISII4YWIWCYGJAaYL0CYfbed88CEFBue5SCCERAHOpd76cXCAJJRCohBS1/fN8SgAMyPtMKRAgKSNfvOw64ZxdPbxOLhxSFJZH1MzIFGVa6EkRWGtO7WtkjIXsijylEI39puqku9u33/k/f603x+YU6blrq4KU/Tt8HI4IcA4ulaOVBRKSG1QiSRSUixpdAyJUPTOuyEqpViA0DpYPwyjDz6GGKyWRpvcgEDnbAgxAUghpBQMxNPEB2ApJBHFkHDJT/7seVsMNcLZkVn9js+g4tKbW7XoxZDOKLA6MRc+36UMfo5Wz9a6WsdUEXIh2kwTBmfPauZn09/OCtaCIpPXtHain6wS16tbUx95hYtF85or9hfuNtWOTY2smKfBJDhNkwfwHBERJUWGBBGn8T4QE5AQKImJOXlPxApAAFIALVABhhAwxFrLotBO+uC8AE52hDAUpaw2xVWVaaA4jj5Yb23XWyAUSnWD1YryzJisQMTToR3GERIjCR88OBZSakF5lttuZI5SUFHmiFDmGSQuMhOBQwhktE+AWieBypgMY9e23gcXojFF13fX+ZWUsmkbKWQz9M65els76/q+PzVNWeUmy0yugw+Hw1FJFROfmpPtB+/9zfU1IjnvbYxFVRRFMVqLiDGyHdsYPUnhY/jw8aMxWVnkZfXgndu/vggSOjNSq3EYX55etFH7w0EqVVbF6O3Qjd47O7o8N8Vmo7Ost7YfDhE5L4rR+z//5S8pcpaZ3cPtcX/49OtHU2SRo32KSqvffvl17IemOZlce+9fXl/6YZBKEtP1zSaM7r/81/9a51llCqOVVubm+qqsit1264InhI8fPwXnhMQ//uFv6rK8v79zoyvLYrfbaq0ZuWnbGFLfD6O1WWaOh+Pr6+upaTilb77/rh+7H3/71WQZGfnx6fF42L95+yCRmuMBgP/mD3/Dkb64f5ubHCCNQ8vJbMoKAcoiT14TI6b07uGNdx4Tj33ftZ1zrqFTUZftoRma8euvvo3Jc4pKyTwzWpAQlFLMSQijpdZd3yeCsijLunLOCiIppRTCh/jm7ZuyLkOKdnQxHo3Ru91VildSyOvd9evhta7L77/97o9/93fP+092GAtljDZFlnnniqomQc3LPtMmhtgP/eCstdYO3uzyMcbU9d5ZucDJatKXus9skxdSBS+7/dTMft7Z1631UtRYhOYLBgHnLXyFMbyAi8WtW7y9pQfQou6sJae4KkKXKHj+1eUNwVrVP5+d1gSjM+0DnuqU+YJkXB5+IRLnM3+2LNNpcG03uy4Ar+0apxvASRS5vA+egXU52ZxVNOH0DL5rd4E12/IzZjjzvKlnN8KUSwlL8GzJhLike0tJ10pwZw86LZQLEWiSd3B1xBcfe3aCEQGAkBInRmJmhEQAiPOIdR8CCDFlNAgkgiS1ghCDC5S8iqE2uirMtsi226LIhUBGjIARGVACMkFKyEyM3o5D1wvEEDymqZoPmaG3lhMUWudVhYKQZIJEghInIDG3Imby3gsQyMApeuvc6FAIpTSgSCmkEJ33QpnN7halJpX1g3XDoLSWQkhElUtMQJCICRNIKQViSkFryYlTjKRE3/eH/UGgMEbFBFlOwBBjnBYDGQSCICEkAidOQEQAJIRAEn3f+ZSQaBj7wqhMypR8N3iXglBKCxkAU4rD2HXtSeeaAmspU/JCZADoQyez7PqqsP7apefOgReY5yYlsDYQoVIktU6Ru67vm/5mu3n35rrOq3iIfXPMivz+ZisBT+3p9fF5t9lggjdv7h9jiqm2zjJziOFwOikhqtwIQiOFEiSUUBL3pw4E2GkOBxMzECIKjCl2XT8KmwUTotGZkUJOOXaAHEKceh0AQYaGGW2ygohQprn5KuAUV5/sABmnYWNT+9KzJsSfMZUFVRYpluf8mUvYuai2+Kxl6iz98AVCnP2dOXl6HfJztt2l4nHNL1zQ68zS5mqNqRx21qVWDrSY5XSPwMwXuYcreE6vX5tqYGIWKKd+9kiUGJDSbPQCEyVgYAhTah8BAhBy1EA4OgMgOBRGKQR2kVLKEUViF7xE3mkQafTsPPvcZGNIQz9keV6JPCOpBDVjHJMNNtoUqnqrq8Jb7xjYeZQKIljrnQvDMAJDZrQdRkiwqUsJkGlpB9c1/dQgpzkdhq7PdUZE4zD0/YBKjb1rulNdbwBjAL7abbJ8Q8i1MmPXE6EEGrtOEFzdXEECD54Q7TCkGIAxpRRCQEKtzeF4evz0JIFijHUdqk1VK/W636eQmtMpRbZ2FAD1puj74dg2bdc776nrSd0yglb6q2+/Dd4/PT11TTsx56Ztq011U1csSJCRkW0IKstMXtTbmoFfXw6vr6+js1mVJwCS8uOnR6211rI5nk7tqX/qjTHjL24c+7ZrBdDbhzf3VY2CbHBl1JmiB717fPzoyN3d3+429R9+94fx1Hvr37x7qDc752OZV670f/zjzdPTe2De7bZZZrquTz6MwxCqsi4rBiApXw57EvT23dvj6Widz0tjn8fj6SQzc+ra/f7VZIZI7F+fP/zyK8fw9u0bhVTn1dC0hTGE4Ia27zog+PLrL+ty8/L65H0oTVFV9evzCwFKKT5+eCTCEILSSmr5+PxkTKGMavum7zo7jF3bVmWGCNW2IsCuH0ojT6fmLz/9KpWsy82vf/4FkL//7lutdIohhGjHsSjzqigznUkpQ/BVUQTnEjMRHw+vP/3lx3/zr/+bQpumGSjFrj9BJALcbncoqe9tUVTkse/7oe/ffPkmxLg/NG03FpX3SkGWSVh2+oWHwJIow7Dsc+dK8nM7r4WQ4OXbJsOdf720mV82zjNQzRktvJj8rDKsCLZgzvTDedvHC7UKV9ziRe84v3qBu7MEvVzfmhgwi90XvtxM59Z7Oss8wHM1/Xyz+Bn/mKhBujg/Qjq/c+ZxzDzFjZaxHZelJEvQ6UKsginXh2GeFIsAaynVhZs8JQmtyA7raWF1dc/RvmXf4CV4tu4Ylyu21u3zNId9XfIpbpY4TXlS68eTGGheLEqcBAIKIiChlE0pcaIYJREwRzdg9Bh9JmhXmdttdb3JC6WkSoTsvJuaIGulCABSjD5E64IPMQQtBDIwEEqaCFDgKFDozAijUAoSwoUAISECCTGVGsYQU4jIQMTA0Ldt27ZSis2mEtowQ2J044AkTZb3I5DOjsdGSAGAAtFIhBSVICFldF4pIQVNg9ClJgaOzIgQrbPj6Jytyo3QhgWFMQYfVK5O+8Y7r5TebCpBUgoCEsknqXRkcCECoovRJ0AS1nrnY26kc7F3AYUAACWEVhJS5BAFIqR4d3+bgg8jRxeKKgcOKabC6LurzeD847E79kFrbaP31qGYh5kKnWxvo4uDc4NzCJDlJoFPdtxlmbraQIzHUwtAY+9++fF9VReb0vhMhpCatokh5kWOCEWeE6fkQ51pgTJ6hX1kBsccXJBKxRSZAQmBKMbYtn3fD1LLsizyPM9zE2MKIcDU/5FEJEZEySoxJ4iIOPW4mOj/LDSe3Q9cRNFpt//M15lGJX/2xWcAWXBu9a/WNLc1hfEMBItmdAFmK2G5yBPAxTCmIxNCugA6WMo7AOcYFkxj3hcp54xYOBk3LDd7rotDnlLGYQE0BABJguMcYwWcu7ICcQJmAS4FiYKI1rmFyKAkiRAM80aLDFRq+7o2TFESG3SYUiSXZ3qTQfDeo3fgclQxjHlV5Ip4DC4NSWF0PjPGQiSjgUQEACXd6JhJ5QVGjkI4OwSkLNcqM5Hj6KxouMwzo6S3qIU2mW5OTd+0WiqhFQjRjrbrx5uHe7Mtf3360Fu73dY601Vdj9bmmRmHHjjGGNxoq02dFRsXwuF4bI7HelNvr3abepM47l/2gPxw+xAZX/x+s9lWRT70A5IQUtebIiurx8fHx+cn74JS6vbmqh+GU9MIJbc3189PT4C435+C91fXuzpVADB651JUSm13m2boD80pcIwxmSL74ssv7794e3g9fHr/qXMWCU6nZoyu6bsxuvcfPhabqut7a72Uchz7tm3aU1MWGSNzYoni22+++eqLL6+vbtq+PR1Pz08vWWFubq/7b79rTs1333+7qWrBOLZd27ScgEP86rtvTscjpFDk5e+//3YcR++sIHjz8AZTOh0Ojx8/ap2REk9Pjy+no/WugMo633Td8QS//PqbyTNA/OLLL5SW42ifPj0eT0dGUEpXRbGrawjsnT10Q4pJKxlTMpkmoOOxOR4brdR2txvHse2GsiiMUlme2WGsqookWeuMNvWm5IhutEZrYvbBpph8iIf9QSrZW2fyTBqjjIrRo0gvr8+ZyZ31KfE4dG/fvgveP378VO+219dXSgjmOPT9OAxCiv/862/74+vvfvfD7d21HW2Z5SPwOMSiLo3KXo770Tup9O76GoaARf7l1fcvLy/7wwGFJC1exvb0sfnx/ZOERaSYcGUJkk9b9MxTZg4ADHMfDIRL5Qfwwh2Chd5Mqi2cYeRSu1noyMpFLsjRwhtgzQnkVVP5TPZZvy6lGTwjyiLcXIg35zdc5OyemQDwPG0VJu8UL6SOC8fvwnODpTszXrCpiwotAL4gXWuw6ZztM6cmTGu0eKa86t4XR5tFstVnvaBsl+twcZOXaZgAC9wjEGNcnOp1jNq84cCiyU/JltMZeYqGETED0jQydk77QQRAWkjhPKE2+BiihSmtQwhIkcOokAG8Emm7ybd5drspayMVAIKFxAwsJSVG5ITMkJi9D6O1wxB9yjKjtYrBAwoiijExgNSKQMhMkyRGYGBBPI3UmB4d5jQlgQgkjmzHoe8HIagoSqUMIvmpMJ5EZGgOrR0iO06JfWeNVlIKYmZMk2tfFlogAbAfnBAKgJb9loL33gZEAYKIxLTQQigkEQG6fsgyLEOSmUAkjsCQYoyD8zE5RCOktqNzzjFhiNEndgmOgyVSVWEyraQSnOJofaH1Zltur6pmf4xi7rWvSyMEsEzbUn7z5X2MT83xyQUvtXGemyGCBBcxU6qsqqEdmm543rfbOi9Lk+ssesfO1dqYNw8fSH58eqrKSikZU6jL/GZX29Fp5FPbjn0/jsPo7WZTKEI3dMRQGVGUm9bC4TQSeyD0KHyKHKf2TpRS8iF676ML0UWOSQpJjIiERJxSCFaQVFIHTsxphZqlJgIQaNVcLi15jV2tdrQm33z2+oXinE0DYNGbVzq0/HlOAlyzj1YKBDirL3N68gIFs3OYZnNFAlpw6wJucHF4kHkqGTuLO7PxLXd2gao4zXuGuXP03ESNF/V20pSIECOkaVwvMjAnhhQF+hiNVIIwcghhBJ9Uggzllcy2JkmDQgSW4LpR2FgoDQYyw9J1pcSEqXGhf/1UGmNyiQl8241uVEpIoxQqD4mUTJEPL6eua7U0ZZ17TsgwetfFKHNVXu2itxGTEiC1lFL2Q3c4NdvruqxqOzi1VVKrthk9pijkAPCf/uVPkjQq0w/jvc5VXnZtX9fbos4/Hl6Cs1qrvC7yrPzlp1/7sUvAXT/oIis3Vdd31ltTGCN013TtMHTdqSprBkCBjNw2LU8uHKFSOs/yyPHp+dl1g1AyrwsfXTf0EGFzVZMUr6/Hx8fnGIPz/vbuTkr18enl9XA8HI83t1dSCexa64L1bhxGKST28PL8+rJ/RUo2uHGwL6/7alsxoVJaaeW9BWajVXTh7buHr95+kZvs22++ZeYv3r777cOHu83udnsVYqzrujXZ7777blvVzf50fH3dbOrs+noY7G6z25TFaX/QUitBRikl6cc/ffzu+2/LskjBp1C1XWf9GMY0DIOUwnn8D//hP97e322vtu9/+dVoWWj9cHN7e3d3tdn+9ONPY9vWdXH39zdvH97kxrSnZltutJa2H7JCFSZv26bvh59++tloQ0qMg3/dHxmSUBIIT20rlMqEuH24G/sxxAjMRVY46xFoW5TNqW37EEPMCrPf70drrbWb3S4r8h+++y6v8k2x+eMPfzweDpkxXdeaLAMByXPTdjFB3/an00kpqXNjTKZ01g3d4/PjD9//gEDEdLW5lTfyn//0T5zocf/CDJ0dmVzKCw80CPPc9r98fP7l559O++Nmk5PEw6H95cNe4trXZrHAhW5cQM15p77YYmdNaHGsPo9uXZCmzwJf6zDkS15zhh+ExFNK8gRQ6UKkYJ5nny8K+aqUnJ06OJ9t5WRLaI7ncRzA82HP7QHhAiZXTDzziDM/O6dKIgBDmvbZOR6zKlIXxzinAZz9xukYOFMSBpgaMF/oZNN4+wkr52uYeNiEj2ei91ecBy46FM2Qyot3yXBJv2amygveL1xpAvnPpr0tQtLiAk9LN+8wlHD+CGiKfEBkjEQgtZzuLkVLKVAKpZHbTbUt9bbKcikUJgEcnY8hoAQllBSCEyPg9MuxH1IIyCAFCsLofUpxEpwYUCpFQpKUQkkkACROiYGZk5BEhCnGGJNSGpA4xqFv27ZXksqyFFrFmDhBTMAgYwr7U9s0o1IGgSNzAlBaEWL0ThvgEEkJIUQKkSEJiYmjYDkzvgQpMDMrJaUQMbJzPrgkhAw2+BCcD3mGMSIwAQrnnQ+x6/q+t2RyqZVUWsbkQ2AC613bY9N0TTdUmwy1BuBgbYpeCSrL0hiNlIQEwNS2vXBhq4VC4hAE4VVl7q6qtusPnXXBs48J5OnU55kudG5yJRhHa5veskAbY6VkoTUnjwI2m6qqSxKy7XpAaNtOKcqDLozYFLtMi8eXV584ptC0XVUWdZYxAMlgY8oEFEooKcaUOAWUFANHH2NCRBCSCPU0CHPoe6V0VVVZkWshvLNIgpBCihNViJ9PwYPl55kVLeH3Ra88P/qLpS/P5+Wcr8mUeMGIBbQWArOQl9XyVx1oMZUVz/CMFrz4P7Aky63XvDh4ayePld7wLEqdT7bg0xklV3Sb9ffV3UEimt4/i0UAPMnNxIDAMSIjQVJSRU4UgyBJAEJQTEIyKAEYUoxeIGlJKUak6G0fQywU5bnKCyMlCUzeAgEH6xJACAEDuq6P3m23pRI6MnRs7TDGRMPgx8E5kZiENCIk750f3OhbF4NXAl3flUYn5HYY2lOLSkqdo9Cb25un355e28aUNRDb4J+OJ53r65vbKs+1IBitFlIg7TZ1iL4o8iCFs1aSPO4Ph+MhK3JCRLJ9P242sRv6vu93261I/un5ZRytyQ0CN8fT62Ff1qUxWe9GIpGXucmy4/HYdgNwTAJHZ8ejZ0QQVG/qCDz0ndYqq4qmbY3KWdCpb09d+/j6ooz8+PQ42kFp4//0JyRiwLIqmuOp69uhG0L0WZEpqR7e3DZNmxfl3cO986E98psvHt7c3UJMt1c3bx/uqqrqjk3TNE8fHyEkLfTt7jors6ZpNanSFMR0d3MtAWIIZVlmKtdCPT8+ZkrlN3feu+P+2PXNdrOpqvKXn342SpVFrqVEoqbrszzXyCFG7/13331TVpsyy5rmVJXVF+/eNqdT87qPdvz+66++/eYHIdFZJ4Bzpcq8SN5H63bb7dX2Win1/uP7Yej7rv/iyy9krUdrvfVZbpRRIkklJQKMoyUtb7bboRv6frC9VUYVdYbEXdenFI3V4zAycF1XbdscT6ebu9s32wc/psRptOPry0tZ5lmWf3p8EiTyori+u2mOx/1+v91ttzdXSsn9/uXp9enLL740Ze5iGN0opDg9tZur3TjahGwyIwoz+vTx+fmlbZ6eXz58+vDnf/oX6/o6z3/78NP93d23v/tWZqU875m4aCirLwQXVRGXqACT7nveT+Ec0Pn8pbBk7l5EwJDPO/K8gV9g12fxnFXPOWcBLY7d9LaZpKWFUgDPfTxm2KIz2k2do6czIcPSfTXNP8GFT7aKNxcu3Ixhf0UKl7KTxTFdI0tnbJuuc8a3pdhkSZCc3Lu5SPW8bqveswD1OfPgApiX9Z0Z5fpJ4gXpvOByiGvzoPPXXGWynG5pSbeod/NSLwnYvFzisgPQHNRjjswAKRCCRCAiDmGS9DWHQooqz3dFvq2zXIMiAHDIkRmkJqEVMyMQJKDEwCmM49CPth+EEHmWEVHi5J1PMSGRUKSMJlJCSdIiMTAkJJ64GyES0SREEdH0sFk7tm3DAKYodZ7HFLwPkTElZCDruWl9REFKAVIEUpoQOYxeQNAyS95J0ilC8CEEl1e5UJIjR4AYWAIGH5lBCi2kjjEej010XFYVADgbSSoAEVOKkVFjjJEBU0LnoxQRVUKELM8RhRBgvbV+DJGzbWW2G5RobR/HnjiVWbap8oQQgkPBMaXIoIQkEsyslYyRGdOb+4ohfXw6PL6eVCGslv0Q7WitdjrLVGZA0eh8PwbnY8oEJl0bI6TA6HOt373ZPe9lO/RC6VPb9H3z5ZtbRXlp5LuHm2PbH4fO2hiDDzZXSm2qGrz3brzZlO3gwPsE6FOaZUxkSBhdkhqFUMF5H3wUDAljSpkxJABJcUwxRZobR5/ZRzrb0mc/4PmhhiXRZ33Ip+d6biA9mzuuPYEAYA284/pcnx0oPLsbDLxKtQthWjqPrf7NBXbi6lHwEkFjwKWKc3b4ZlI0t5kGgDl8vqi7y8EvWk5PyMKMOM0wXgx70qmmOfMMYiLYKQkAiJGADZKYlKkImMAoWUii0Q5+eDkEdEORo5DccwjecdBQZoQiAEUXxt5HUiB10w7j6MCzYM5yw6RASC2pZEZrI5PMmNTgbBCZQkWu7WMKSoqxdX2TNlVR5IUAcNZhApSktYwp9f04encYBla6HbvBh9G5KCSTNHn29u3b5EO7f9kWuUIxtu2pPW03tdqU+9d9Pwwp8f27++jj8XRqmuPjx08pRp3JvutsPxZZVpRZlhljjPe+j8F5xw3nRQEI7dDtTwcAjCn5FPxoT4dDlhsJJrgwjmO9qSWKtutUMAHh2HXNsRntn/Mqb07t6G2ZiceX/eF4LOsCkMdhJMS6r4wyd3c3cIuChNHmiy/fFnX5T//wz0plX37/hR3crz/+8s1XX33/3dfBuf3La6GzTVkePj1DjIfnZ621yKCsSyWlvt7dP9wKokwbhORH60ab66ww5F14/PRcVZXS2jmnJG2rehrJtymqjx9+82XFCIf9sR9HXebHpmna7u7qOvlg+/H6+npo+yIrxr5/eXz8+P7D7mr3+29/V5TV0+N7RfL6egsAbhzGsRua4z7Zq7p6uL0GDo9Pn+pdXddF0zftcX9/91DWVXM8JWaTF4AcfRKC3Di2XetdLOqsPbXpORR5nuf6/fvf2l+bP/7t3zBzCOn26ubx+cWObhht340//elH52xzanb15m///o/SUlVtpKCpe8N2t5FKODt++vD6l5/+9Obdu9//zR+klq/7/fPrS96dGEB4MqZQ2rS9fTkcfnr/67/8/NPHw9GnxIiH014i5Ln5w9/88OWbh2+/+/rLLwa57oTL9zmT5/PfLpUJKxFYSczMSHChEAuh+eyAuPhSKwWBpQACzi9bwOmzcBJ8FuNZ/3dWJ+Ykx1kYxvktF4i51nUt7iPiVIa0IMcKfLNThgslmHSxSUpZhJT5RJ/1d12/kC5pywWDmgWe2bXjRQC7QFGe12dG7+XQCOf+cJfvWjN1zrd5PtXKVfh86lXomX1dXhb6/5hbcRktmAafXko+yPPwaz7fZqJJepk+kpB8dJi8Qi4zsyuLqzqvM5UJgRCJQ7SBOTKyFFII4pgkSYjM0afgY/B+tBiiQJJCSCVShJTSNAhACCGVlMYIqRIzIMXoEZHSlIoNDJwSp+gIkIii9z7Yif3U21pnGRMEDzExI3kfrXPHdmxGh0p5G6c+PYjgXRApFGWmhHTRA3AIITGgFEgcnRNK4zwHGFMCZiIQitQYQt+P0YMyOZEgqTNUceoxj2CMEEIgCKOzlHo7+gReaCrL0midZ4II23ZAofK6YMTeWXSOfagLo5WElIg4+CgUoSCVmRCis0lrkRVm7AeOoczM3a7EyJx4THz0kSWmhG7wVkidCaGMJOTA1jkOARNqk9WZdsMYvRWC7+82tIfX/cF5y1I+vxxud3x3c20K8/x6oKfQDMPYdRxSlhdIo9Qq18b5UGeSFODIvU2cklTSgLA2JITofbAspNTaIMI4usE5Y1SZm7zMhVQCeRrIhETMTERzv8Q5IgxpTZ8DXrXT2cQSz5H51Se7cM5WDgEL7CzyymzavCQ4LiDDZ+axMKHFHOCvw3GfWfki28yMZR71dX7p2S2ZjQ8WHRyXPOcVbc5aECdeZKNZFF8gY0aC5UAJCJkVIQcvIREiuiS1Cp4lgyFBiDLXlKg5WR6DZ9CGopIxppeuB61tCNF6N1hALIqc8pwCgwujGwSRFtgMo01RZxpISG0IMAzWxpAIQamI4CIIFLurq6vt1g89TZX2JJQphEDy2qVggbwLp747xXA8tVFgiBxdfPNwmymZCRnHwXX9piiS9013TCGMTasIdZFVdXU8NIjs7dC14/F0ionvHu4YwFmnI9KAdwABAABJREFUjAo2OOfqTY1a2HE4HZu2bbJMbXdXWZZ147B/fR1Gq4y5vrmWWrVNl9clI7R99/T80nd9JCaix/3LONqu7/qxCz54n25urrQ2LnoTY321BUFCUFFm7amtyur2+irP8rv7ayWMUTov8u22Vlrd7W73L/u8LlLJiqHe1NGnFCJN3hrjw5v7oe/7rj8cDjEmpFTLnVDSSCGV0oKaY2et1Znq+t5al2UmcXr//n1RFjd310pqTimG0B6bqsqzrNCZ6btu/7pnonxTEMC2roRU3am9+uqKgW+ur/LMuH5IwddVUWZ5dziOXdseDtt6G61DhKHrvXOI4Kx3ztV1fXtzazJlcmOtddaSICDox8EG+/z08vj0eHd/V1XlaO3h5eBjQMC+62KMUomiKis/ZnmutBq6sawLo7Oirqp60432uD9Z7yKnaruRWpZ56X3K68317U2M4deffnXejd6NzclFdzodEcXN3e0Qhm4/Dt4O3qcE1ttxGKUUP//009Pj62/Pnz48fRpCZK12Vzc6y8TuKozjN19+9d//N/+6znVzOGlCebH9LRZ/Yckz5VicrrN2s/hHsNKQS+9lIQqfpd6c/3EWg1bYOGsLZ0Zx1jgu/r2oQbz4aiusnF2oBT5wVYzWN1xcz4qe56N/Jo7MzOEzJF3udRZ00pk0Tf4epwuUOxO2C5q2RPUSI0zjx3AdqkYw5xMsuL1i4SLHnIkH8KXju3KztBa4rKder3BOVFqWfokr8pTAMC/vpSh3fiBmVYrWT5XPr0jEDJCIkGDqtRYgjXWub+piU+S1MaURkiMnm5IHBKkIUE4OeQxxkm04BQ4+2nEcR05JySlnQJKgRDCMTiIpraXRJCWjAAICCimSIARIKU73N40OjqMXUpKgse/3hz0hVlWd5wUqkXwiBFJ6dHEY7WD9vukOp05obUzKMq0FRQalBDEgpRhCYh4Gp+SUAi0n4SCliEJoMjEE5zyiyIqcpEgjhJhSQmdjSiMJych2GKSkLNfepxijUFpKxYxN2+sAWQ5GayFJK2Ey0ffoI/d9AOc0eQUgpTTGXF1tlUIbLKSkVZbn5Tg2/Wih68tUCCUSJEEI7OtCZ/JaCPPbx9d27CQnafLgUjv0BeVSCSUVp0BaWWtf2s5jShqvr6vgnY4pRtgU2f6ZM53Vu7o9Hp+OB6HENdaloq8ebtvOHXu73zedH8beG2OqMtdSMDIpxSkBJwlkfYoYJSJIEVxASSmlEAAQEkJK7P0YrLXWV3Vl8gxpHrjFyJwS4QIZuPg2fH4icbaiJTAMuLTpmfJ+lyd0zjDEVddZ6BGuFj29ny6l7+U0s82tEa71lzxb3XLMBVZmKfYyV+ACA9LFYZc485ThxDMc8Wp4Cz4tHO6vHcGlNePkXjIAMzFgSiIFxSEXqIidHXQyYGQMiV0AI6WWyERlzho9eJ9isBFiypRquzZplWyIKRBBHKIUIqsKEqRNRogc/DAM1g3KKhRijMGFaF2IyMKobrRCiJDgdGq1EPe3113Cl4+flJD5VQVSe+Y+BiYZCX1yL3b4rz//PIzh7VdvIYFA2tb1rspefvn46U8/fvn2vjY3waf+2JIALeh0PGS+2F1d50X+53/5Uz+MVVnf3F4XY3W12yLh48fHcejv72+ij+/fv9/WG0Q87vfW2nq7EQSH19f94ZCAN1c1CXk4HoZ+bJpTSGG/P356fe7HoW/7l67pulYqmWmTYuy7IcuyP/zhe62VlOrl6XVTbb/86t3QD8fDyVl7XV//zR9+f39/9/6393meaSGVVm8e7ptD0zZDlsk397c+xEN7unu4LYq8yHIpyiI3w9DVVS6Jyix3o1VSA02TEVN7OJq76xj84XBSUpZlcdwf8rwCxqbpD8d9DGmz23obBErnrBvHGLwgiBycdSTk9e11iKnMyl7Zm/vrvrNEFJwFxrvrG2ftp6cPCLAt63EYfnp+LvJ8t9tJIYZhHLqeCIq82G2uSBAqavq+OR0ju/51zMoChIrsng+Hu4eH4mr3tij6tm27rqqriMklnzBppe1oN1c1CfGP//xfUwq7q+vEocwLRKqrWhqjjB6fHp+enodxvLq9vrq64cgx+sfn18Of9t9/960d7b//3//9199+s7u52p9On/70492b6z/8/d88Pr08719HF7K6PHbdT3/5cf/yajJpx+Hnn35OnJIQQojb3baotloZpXWQVVXmf/u3v4dIQ9u3py6rSrn48fP3FSMYLtL4ztoFLNnMq5IzSQPn6oqldyqeVY8LgrIEYnBVhFff5iLedYaPVdH5DHg+gxZccnrOrtsEeLxM41w9wjPhmvUiXo88+3y89DZahB5aCB8tKLaKWDAj18IreAG/JUd4PiR/hoZrfQssE5BmcvFZztWFBASLdjRTlTlIMIlYn1G4VVOaNwz8XMBff/wclBeZf/m4l4I2PH+I80qtRWpzg0NGTkSACClEjJEoCU5Fpurd9VVdbkstmTEFCN75gIiJAxEpOXMIDmnKEgreBuuIOXoPMUICxiSVBE4xMEkymUkpohakJApihhATICCSIIwhIiAJAcxEGCNLITBB1zZd3wUfyqLK8hwAU0jBRyUpAXZNF0K0LowuoTYuIiVUiUEgIUoSmoR1rnNWEmZFRoKmZC2lc6DEKSmlYwg+uBAjzC15ERmZKU25USikypxzzsdMRRIoBDADpyQIizzrBhtCCi4M3YCJkaNWmdFaonacpIBMSU0yF1QUmoQATookcwoeAMg5L6WMibu+A4xFppRRKXgpZFlnhJpj9OxfT12wllBwpK4b8sJkxgBglhlO0PddOJ0YfZYrLVEijUOPafzhu3f7ZrDO3z3c719f/vnPP+ZavXu4vbu92lSbsh2ST/tj61Mg4CaGqq4Q2Y59nZU3N1dPz6fDqY1ISUHwURqJEofR+hgwUSIhtSDK+r4bnQ0hlL4kJbVSaXqOkRPyKhJP/IBmJXSCC1rdslVVnU39Mn9w8dLgMy9tSuSnMxQs1H5xBs9mi+eCrLO1rriCS6nGhDaXetBCvS5yj2afbUarxR9ZQ11rBG3+JSNPdVxnarZKSjAPlOYLhkiAQjB5Z5DviywX3MbRxY6MspFBKiUEB2/HkYClFNF6AuCARpmi0K4ZQKA2CkCklPp+CM7VdS0VKmGC8yEk7wYAjskwUjdaz1DuNkVmQFDwqJWRSnkXEkkGkUDovHr39o2Rqh/Hvh88QD/Yfj94dqeukybbZXJTbCgBu8DOJSvc0LP3Q9O1UpRZVpV525y01kKJtu8RhQ/BOe+9z/JcZzovYRgGO47D2BNh3w591wFAqvF0POkis8E+Pj+O3oYQQ/Kk5ND2KMn7uD/u27Y5HI4uxlPTAvLd21utVb19++7t26qqiOHl41OWmy+/+PJ0OqUYC53dP9wTUnGdb+vty9MzcLy9vs60vtld3T3ceetTDFfbqzqvfvn5ZzG1AYtJALne7uqNYGj2Jy3F/ds3++cXSPD06bG3Y5EXmTFGGSVlE3xzOpVlWZQ5MDRtU5TV7c3d4XA4HI7XV7cxxtfX19/6gQgf7u9ub26UUs9Pr9Y5QlHWdTf0CePV9dWHj5/86IosA4bDy56Z3715yykCw7u7N1VV7Q8HP9rtZvf27UMIrmk7a63JdJ5lRVGhJAZshuHD8wsJAKRfHh+3d9fPp6Zpu5N1d/d3dhiePz0SYUL03ndt56x3oy3KPDF75//5n/6Jmf+7/+5/uL6+/umXH18fX5VUjEBSfvvDt7//w+9//eWXl9fXENl79/z0UmR5BP7zjz+ToKv7uyGFrRJjCP/f/9+/++LrN7effvv4/jGkdHV7M3j//sPHxw9PwY5v3zyUZX57e3t/f+t8Qq3zuj41bdv0wcd37968efP28Hr49XggjIXKuj7IecNfEkSW/fGSaywiwkWV00Ue4CUjmZnHeYeFZeNd92a4KKRfq9RxSXucNZv1BJeXBDD1GJwZ1pwyfJnvsqDKvIkv2UAMwPME1kULmV5JZ0aw+m/rK5jW8jRcClLOuHc+2RkOcXEXz0xjgjC6ODbPe+Tk5q7gN/EbXK7mYunnJOvlI6DFKV3UorSW+Z+jAp/n+syJ1rBSu7UVJDKnJf961psuEqGYE9O0zRAwEyAlSDQzV8aUEAEjY4oaIiZfKV0avauL3aZSgoljii4FzwDGKABIoIgIpyMTEjCHaPvejhZSklIggBDExIiQUuQEMlMIJAVhZkgKADFXxSw6VAwREhMJYCSmNCb2IEk5Z4+H5vnpqa43WmfKaO+itQ6Ao8e27fvOT2UsKLRSRhgpNSFGTklnxkjJwUcfkRCFAIYYIzBro6VRKTkSAgCCd33fjf2QFUWWaQbuun7sHYksRTTaROCQwjAORFH1LESpNI4hgKHyqh4Sj2OQUgiiIs+kSsBTiyAE74fTq9Ci2FRFkeW5BkZESSTYOx9j39q2HZRWIjEKSYQJUoqeUwRwyKI0+OWbUpnw4RmeXtrImjLtEkIEP7hMSwLOjdCqGPuub8bffvsgCa+3tdby2tQxcnACU2z3TaYKfVMeXl8fX9ss32yLmEn64m6zKdXz/jTaUakcKfkQBcjh1A3dkKHc5ZlLzJKsitYHF0NeaKHIjiNHx0kTqDIrQopDP4yjzfI8L3JTZtPQtMSR568EQFP6y0IqOGFCmBSQOS06cSIkBGQIE8rg2ZtaJJbJzeBZNFn17rMkNKcVpQsaky4REM/Wv9joYjKr4DyXa062Nhnr2SDx0sdb0BKnEyHQkuK96rWrIguTeS6nn+oP1muY74CQJVFGfFMUV5lo2I3JB0h9DJiXzDQOjn1kgMhhPA3bTbbdXtVVYSQ62dq+td3IKQEBxHB4ekLn3r170KhOdmhOx2HonPWk9f2XbwspOx+LeqOLIhETSELtvL9JpJUQptRVZCKRF84HB9wFZ6Nvh2F/OIxjT0J8/+03t1d3RsjorLN9obVt27v7awksAJyztmuvtpvb7MZ7nxASYt91w2CFlLub7ak7QYcmy7TRGAQJoZXsxzEBl2VxOB1eXw8AyY4WmLNcO+fb1yanYrMtdZa9Ho/X2+tvvv6264f98fC3Uj49Pt09XJ+Ozd//n/51VW2stSm4P3z/O6moP7X7p+e6qjZlqUi1p7aqq91uZ0ggspYSYnq4v7u9uXXWjsMQnCvybFOWJAQgDP3I3u92m1xpQlJAikV3OEGEGAIAVkV5d39XbzZdN7hxvNrsRtf/9suveZZ3XRtT2u22MaayKt9++UWWZ+M4wm/IDIIwAVSbGoFHa50Pu5u8t8Px1G6329GNV9e7oR/1LssL0/Vt3w12HEngdrPJ8/x0atxgc2OurnbMIKTeXAmZqdf9C6Zo+wYFAQokKerqw4cPp779+Zdfik3NAiDBU9/Kv/xFS3E6HLRQ3ZuxKHIEICNLrYaxf/1ln2mzu7rp+pYJx+BcBGGyRLB/fd2/Hgbv/o7kfn+oy3pbbf7pn//p6dPjf/vf/5/zTb7fHzdXm5fn/dPr0+N/+cfffvn5MDThffz4/Gid7Yfxl4+fgITKTH2129TV29vbTKopjeHYdlld6jxr+rbt+yzPGMFFnwRu395BjK7pgWjOAVob/Fxs9JOystCDxbKXkDksURfkacclYkh0VoeWsoZzeffKUWZ7XpOozwLTeYrgBGwXqbe8ahh8phO4bPpLLelysSusLNs+M/ES7F8PAgv5WNjEwuh4kbWnQlSGs183oyrMeEoXjAhwPe8ZWRf4Xe96jt3h1EAWl9q0uefPlDswY/REfZYFhbNIdiGOn2F72hiWaNvy3+ptntX1pYYdeJqvNc3Enh4GnmZ4TZ8Ara7ptEQRE9M0f4gZIEEMAlhwyhRebze7Kt8USgBDtMQcY4wpMCdFNN2yFJRiYk5SCOLkne1Op/7UImFZlsAglOCIyz5HqBCFlFoxEkoRZyFsagcHhACRARIiEHGK0Tn2o4s+EsFhv2/bNs+LzXaTGRNDDM4DJELqm6Ft+sREIElLIA4pmiyTxMgsiCUhQkLiRISAKjOcUowRYsRcISKRBE4cEzO60SVIUhMT9OM49Ha0Li9yEkpIOQ5D1/U+BhvBx2xwLoFkgR6iLlUVi/jSRe9lkRHJLEeSkgTZwUJKCqHO822d50YIYo4JpQwBAEkw9G0ffJj0idwoQE4xeReLXEfPHJ1WKjDsNhmKrSJ56mMUUiQCEt7aiEkaI6UcbTBZ5mz/6fG1rspM5wBY5wZSKA3V5XZ/Gg9NA1Jur26a4/Evv7z/+uH+9qY2CqtKI/LL69G6oT2B0EYrHbx3/ViUxSbXPqXBOSIuatNZ53wQHI2SQsLYuwhRK00IiBQjD30/WKsHo5Qoq1xnkhNwYmBCJEJKKRKJNMeOUmImBIFEKJjjZFwMCZHWPJoLXXW18NkwERfJdk2MW4nK6sTwaluAC86srON8uMUjufy6DI0twtJEbRataMXbS5Vo/rb2aOT5LpjhwrmczJhne8W1UI5BAHpBBJwk4vUmG3sY2k4z2sGOIaBPipNRKgYOAEaI29vdpiggBEe8H/tudAwJCYe+CW70g/RD5zy/Pn/sTo2QSioxOtt3A2WFMXm12XpG71xRZpQE2EhCZWWeSHigZgzU9YjgQwwAzickWVSbqq6jtW+ubqsse338lGemlLIwSlfXwTkOscqNGwY/0DBaEojMKYEbXXNq6k2dl8WHj4/DMFrvlNZffvOlkHIYR2sh+Xn2R4gJBeZFlZelG6wUxlRZCikr8roqiVRpXF3Utw8PUptPT895oT9utlmut9VmU1XPT4/W2qosiaHKqjT6IsswQVkU2832erPN8kxI4QaLkILzupAE0BwPV1e7bV0+PT6NXdcPvVLS+2DHURAaZQSJFAIJFEqkxKfTSUv59u2bYXR5lkspnLckxPXN1cdPzo62aRrnrB2ttZZZ3N7dK6P//2z9V5Mka5IliKnqx4w5C5qZl1VVV7NZ2dnZxgAYiEAg+0Pwc/GCxc7sDu3u6q66VXVvksggzox9TBUP5ubut2fjITMjnJi5Zeixo0ePqu4Px65tBeH7X30PAoTY9f3xcByDb5aLsq67l1dSKuVsjC3rahg8gry9vvVtJ5xjjBrMYrEIMRyPh7EbY0hFudPG7o/7oi43t5tvfvWrL89fRj/2/aisrZaL//aHf/7zzz//9OXTbn9ARYv10o/j0PdW0c16Uzt3u9lsu27XHnPKxpjaubH3iFJUlXWu/2n88vSckZVW1XqVc761lowpyvLLp8+r5eLx8f3z19fnr8/90JVVtX3btn1P1nx5ffnd73//6dMnkZwhx76togMSRhxTXG+Wtigf3z2sFsvxeAwplqXr296nEI+sxnH0Pkps98Prrl1+ffrVr39d1/UYfN/5sWv1HKvT/XWO6bnX/FQgudKSz5F2KYhdaMAJNk7V9BOdkDnY56ms12WbKyIyQ8a8433OdOYZaDLrzReKM//jpPXM1Ox6nPN8mAu4XLmUccrNzpZrufgAplvtdN/Hy/tdAd3sWZ6GAv7C0owoJ9Vn5pV0FsvOr1c470nl6Y0Fz9WniXmJTO6c6ZsZbAWBTng6CV2nNpNTfnp6ZK4LzKLP6YPI1YkRIEw202m2MiOgEKpprj5qTDnHFAFERBSC1gqVQBaE6dePjYFS66bQC2tXVVFZUpCZI5IAgHZaQImkUw8MZxDkLFopYuYQuv3+7fmVkJarhbFag0ZFSRIAgiJShJpQKUYFigAViIjkSQYkBJKJnTISSYgck+9C8IkU9D4cD0et9ePjY72ocubkk7GKmHdv+/4YckzVcqVs2R76EEbSJmUPWawBg6QRCDkzM7BSSpRiZhJWCpQGhDx1veUsIeaUJUtmYBFOKQ2+Z2ZSpBRqrYAk+AiigE0KGDSjktJpJ8yI1iitJqWNCUSRZhZFpBAyJ0OqcLpy2mhCZIGcBTIAEkHm6JMkVJVZbZbW6BiScoazpMSFMylBlKSsamzpFkVR1a/Pw+u+jd6TsT4MPiEhGms4yRhyvdwUwr7rX7eHEApNoElKR86ZwjoC+fj5awRc3W7CMPz+5598enh8WArkh/vlal2+vfVv27brB+2Khw/3vo9d32kxBkVZk0UiZyQ8xsRRbFFkImIdfIyjt84abZDAxxjGOI7BFjrnVHhjrHWuAAAfEgHjFH85IxEKIJFCzCkRKTiNkkfA825jPEXKSQGlX+o6U74wQwbASaYRhvM+eDg/H2Y4nKv6MzAJTBLvTNqnitTcfnqCjUsbxumf86wggNnHeEqDZlVq1pwmoOLpJQDCACJ8sT3hzJAEJ4QVAFA6Zt92x4WYmxIXle1T2rejliCDVyzlslAG/YDNqqwLozjFcQghhsHHRKCscZTGMfSekLWFbjjuX3e7lzdA1ZSOFKWc9n1f2wIVtX1E54aAURLHGL0vXSmo+xC7lNnat7GXnAtXmGUj1hQi96W7v13vn142TU0cCw2lUq60xlCKqW+7zWbpykI4v72+DMceEXMMN7e32+0uhFhUJXNSilxpez/k4J++fO3abvv6opUqXVFYZ6xhnwBVTrJar3IVkUhrvVyvY4jtsQOkuq5Slpfn17pprNKHl23TlKToZvPt0A/73d5qY0i1bWuNsdqtlmsCLIuickWXBmQAhlXdKE1VVU5TM3IIR8HN7TqO/rDdO+cU0acvz2RosVwmn77sPktOm5t16Yoc0+PDvbPOWvfl+evT03Pk2PV9s6gzZ+b8zbffdF3/5fNnuywWiwUAHNujiDw9PVljjTHd0Fdl5aM/Hg/b7ZYQQ0h9NzLz5u6mKmulbFM27oM7HttPn56I8P7xNuZYVGVZFrvdQTv3zf39brtHo6LkbhxfDrsfP/759v42xDCm8Pq6BaWe/vfnH3/++fmwe3p9FcKqrrv9G7AcDjuNyISb3/ymXC2GFHNO3bGrrIsuWWMWy4WyVgBdVTy9Pvd+LOpqsVwUrgic//J/+Ffv3z+8PT3/+M+//8e//91uvx9CuL+7fX1+QSPPX5/+8Z/+8ceff94dDsfuGHM2WpWFtWV1f3fjXPXx4+ft8ajHWC4WiWU4HpP3kGIKuaiq1XKx3e4/Pz3turYdxq71zXbx89evyqiUMgoZjfqqVjKrFLNMci3Snqo181+/zFlOdj44a7/zW8os5Z7fB+BMYy7Qc4UMeOJPs8Bxbjm7sK9Ts+kl87qcDsjlw/wiG7uiQnB91BOpwznZO32OWcW+QrELgl3nfefMDmaSMZ/Lhfhdn8gJPGdFh86y+TlPvSovTj+gOVGdIW9+yWwCl5PiA1OL1sU5faXeTLRNAKZdHLMuJwDMIIqQgFgkiwhnIAw5QAallbMKJAMAsuQUJEcN4qy2pGpnF0WxqMvSoOYMOUKWLMKclUaltSJMibVSgJBTSiEgilEmjUE4tvt26PuicPWiqasKEKadsagUaVRagSJEZKCpmsCchJHU5JViSJkTQ2YREeAwxqlY4pxhZj+MSqtqUZdNCQicGRCMLWTMaQycUl2XN5v1yMzbDCIpJUgiyKitQtIICJCZBUEI5/9DVlojZJkIUCZmzFmm1e4gyIljSCFmIBQkBkwpcco5ZaV0Tjj02Vnj2Eyjqq3RWmv2MYxRUmCEzGbKXCfXRenssiq0EqQknAAwc0SlUMgHj4TGWeds3VQIEofMAOyT56mRbSoGsXXGMFGlaalyiMgSAaA0QCrFAFpbVwQwCQ2i+NRxCgZVqrhpnDEwDF1VN3/xq3ck8vHpuT/sSVm07g8/ff7y9etf/eWv68KUDtdLQsHt/hhSfPn0VVkrwjnFpqm1UT6EbuiY47LQ0ZJnDkkqoy3pnEWAU0wxA2pySiVOwcfofWeobipuRCmrtVGkmUNIcaoak0YCIiRU6OMowFrZWdyc5gdO5IfOwuwpDBAvIXfKTy5F56nDYbb1XMW2nNbLzHnQdWTJxTt0isRLuf0MNuezkHPmI3JaTjw3JMyxOb2VzHhwtkNf6nkn/JphQeBUaWcWIMoJD4feeeWi0TkNh8E5U5VmvSp2+86PvcbaltYURRjCOI49+rYdQmCl1ACEY+QxvG13yXfO2pjzH//8U7fvlqt11Dohtq2vqChvrHbVrg2VriLoYxessqBMlzMnzpkDoFlUfdf2fWfLwlntB18au6ob9tkpk0ffd8dV1aw3KzIQhqgc3fzmexHpdoe37bb3vlktUMgPA6BW2tTOEam27w/HI4PkLN6P6816sVykHP0wxpStBSQ1DeQCopAyAQ69LzYFIQgnIl0vmvV68/zyuj/uRaCqK42qPR5vb2++ef/+54+f7m9uN6tVXTfBj34Y3z+8a6qm79r20D2/vB0Px/V62Syb5XpdlVZpddjuumP7+PiQU9q/7Yeuq5u6burtfusqF0I47I855xjGqijbQycxb1ZrV1itzdenr8fjUQDabrDWGu3GMThni6JMMdd1UxTl+w8fYk5t1z19+aqdKau6H/rddvcmb/f3d8a5b777Loz+cDjsdruyqcqqKorCD6NWFMbYd91iWZdFwUGAwFrrU/j6+lIUpRAex77/PKKmt7fdy+sLOfXjz386tsfRB1vZnOTr65YKm3JyhVttVklkHHtQaAprlQZNyllyprKF93HwUZWuHUYdE1oDWh12h69PX98Oh3pVH5++VIvGGD0OQxfGPgzH17dj26HAct3E7X673//444/H4fD0+vr561MXp7ZhYYCQkhUXWPb9ELaHl+2uH/rMchi6uq5LrW8263LRaFR9P7wdj2/d4cvubd/1PqXMkkL79bjNDKgBlZEQT6swrkEAfynwTA/hxX343/0544AIwGl7+Tnm5z+uOMhZALomF5MWI3Ocw/lk5u7UiVnJTNBOoCRXh5gZyMRvpmLc3N2EAPPi8mugOdOqGSDPJ3XWffjkNJxHu07U7cJ2YBadpuLgPOcRTqyQ5g99dbFmQXv+6eVS4hkiz8zp5BiYABJn7ft0bc7saxJ2zkVHOCH0yb98zSDP10oYARmnrJHO9EsIEMEZC8AgDDlBzsiJUDSw1lg7uyzK2tpCq8Jqa4AksoSYRiDSRpMCIgQEzlmhKFIQM+ecxxERbUl9exz9GIaBQC3Xq7quUSvOSQgRAAkRATUiIZ+odQZRwkyoFKCkTCI5ZQ45RA+CnDIZRahIIwukGFFTactmWQPi6GP0mUXEJD/kYUg5pPLWWWvbtiXEFENissaBJBI00+pSySxJEIEIEJCIhLRRqFCAMzMKIUgWBtSkLCgjgIAKUAOmEGNIwQfJOWmllLGcpO9TXRI1DjNRRo2sNS0WbkRs2z5HVoXRxngfrNGrplnUZV0VCIFTQhYgZFEEipljjEhQLWxRWkXTGauc0tj1SiFzVZROG0UikDMhOqurkm83C+fMEJMulynzy9Nb9kEVpXU6CQ5DP4S0tLosqhw4D6luLCtk32qUDw/Lzab56eOX7WEAY7Qru+D//On1/e3aWlAg33+4v1ktPj29vbxtNVfNckmke9/TiIXTdWkLo3Lil11bKF2W1RgkImUFMY+ZhRBTDikwEWqNgiBZ+m5MUVxRN1WtDBAoQkZSAJKTZMkiSWl01hEgA2RJk4iKJ3M+CM6Gw8lo+IvCvMyi6kkjmv3POHWSEc4CyxQlAjM1mRBo6nO/gJnMASbXP7rg5DkVmv0BF3vP+etkH5jxVCbVZ4puuUYJvPAfATkVvwVFICXMoqhoVG09hZQTa7JWLZYVk8pMvE/Okqucz7nz0dZlSNKxDoTawGA9+5wyc1Fmlpc2SjceErrVDS1XQeuMBFWhVzdQL7Krk6iOdUD0iFkRAYY+eGaF2VUlQhaEZrWoFpUSxtIZgdT2u92+KSxWWhEZa7wfw2FUhIBwzHEchu7YJR9yYmNsWdWuKpmlWS+ZYfR+DMH76GNsmqZUtVJaO1sMo1amrsvSlTGkoqxAK0IqihIFQDwo7bR9eP8eCReLJSA+b7dVVW42m8VyIXe3nz59XK9vEdRw7JVQ6cowjm+vb37097f3Ren6oS/qShBuH27HYfz68gLPX1fLRWFtGr0Ig4g2SnIy1tjS9GO/Px6qpqyx3h+PTx8/L5rFu2/epxjCEEKOmFXIqR260YdpqKA2plk0QNi1R+hhf9gjgrE65TCOcfe2TymVdWmtBip2Oy5cGUNSCsvSSWkWuEBAEByHcej6Y9dphcvVUlntwL17/xiGyJyNNb4P69uNdW7b7t+6g1Hq5W2LAGCUj3EYfdePgBJC5CR/8zd/lYWdKYRwfbve7vZjHH2InWkRxGj18vx1aLu7m5u7h/u/fP/X//if/95otX63+vr89rs//3hsj6OPiXOvuffjy9h1x1aExxg+ffnoSH33/sNqvfjDP/3ROnv74Y5F+mP/09ePLFCULnJOkonRGoNaKWu3+/b5ZTv6EKKPnN/Grqqqu+UqKikGByKfPn45tMcoaX/owBnRNPpxGAQIUsqQAE12RutzpiLXsXoiACg83ZXgRD9OmsJcuL5anQ6zNHNGlRNQzOoKnnOcy2zT68A/EQsRJKSL+eiXnRdXEDJLwADnQ8CZppwOO+2skmsogmst6qyVzMc42QxPVbdzsewyM/qsV00wdYYsvFKfrj/bRfOeE8SLc/Hq0p0PdL6WUzOZnHxCJ3JzbgyRaVPpTDURzgPgrvSryQkxsz4861tAcNqPKIg0TVZL0zZHARQhFAUIkjmHFEYlbDUtKrcoi7pwdWGcIiUMnJlHiexjEMnaaFJaGTX5pYXT6bNEjoNPOSTviTBbQmECqOpaK+PKAo1KKeckShMpBSQM+XJfwelmwJqQQCBHiCklZk45RADglElRWVYg6H0Y2m4YBgZZLOq6qcfOx5SYISWGbjhudyGMyMyc/TiE0bvC0mQtVoiJCYSUTEX9mLIyllBNg6OMttpopZTkzJkVoTCIgNJaEJlViABkbFHSyELgfUh28qigsChtgu/7ITURFGYg8MMACrSmsimGcRgG71KpjQXGHNkUhXMFEQmz5KStyYmBBEU45eBHRK7LwpXWWq1IKKs+pBgzsx76CEL1UmutYuQkgcBarUqrEaxlPA0Qqu3gMaSIopW1ZAzZInEch2AyHVPMcagqQ4raw1tRNEVdyONtUw8fX/dDyPVi04fcDvnGVVpHhbJaFCHV2sgYIPuBXAmcu25EKZerqmhsiIFz6n1MOShj+5CHFK0ltGoM2YALEk9DgJQSJYzU9WPfhaEb6rqum8JoQ1qBcEqJ80TvkQBJEUrmcwxdt0dcVF2A066us19nsh6fLX9zLJ6aHuUi3kzRf0q9Zm3mClOuQnme/nwV4NdJ2smCfSqWXfK0s0dpimqaNl0AzUZqmJsb5KRTTXUzmKaXTmVzQI2SKYLuhPeJhWjoRghx46wF7Vy5vCvQECI45/p2SKAyg2eSqg5j7lLCeiFa+8hqjXYlXdfH5O/+4nHRLBJDyGyUqYwtFguvTWRF1nHGKCBaDzFJTkZpEHaoFGMax6KsNsumtDQeW1uVVmTYd7Uxd7drTFKZEgHGofXDYJ0BAH84Htu2qpv33z2+vry23eBz3w+9NS4zDuNw2B8z55uH+8yiSLHkEJIx7v7hfrfbI2Jm8TE4VyyWizDGGGNZVrnzu7e2rkskcs62XeujRwKl1OhHGywhvn//fhyGT58+G6eP+/b5+VmT6vseEb8+PQvJMIxlVVar5dD32tlFtXp5/vLHP/1xWTfr9XK9XLVtb7W6ud0wCAunlJpFpbUbxtAs6+/MDzny9rBbr5Yp5tftriiLvhuMVe++fX84HNmHqqlRq/1+H3wQwM3tzfFwHEZv+zGGVFSubCrvx5QSIj4+vtvttp8+f2Lm9Xq1Xm+M1s4Uox8///w5cVyt1u1xEABhQaQwBqVV6P1+uxtCdJXLzMd+AKOj8Nt+76riw/v3RuvDYbderZerhR/Hoqh++M0PP3/8fLO4aYc+5vjwq9uQQt8PpChzfn5+Ph4PMYTDYf+y3z48PPz89MU5s/PH3Xb39robfCSrtTN/+vGPRemUIq1Vexz+8Y+/v79ZP6w3VVMmyDcPt9/98KuQ4j/87neHoc/MDLBZr2xZbHeHY9vd3t69/+aDUvTx05fwshVLMeGYgUgkxrTbfnl7JQFtdN+P4+i1s2IoCefAWampXQatUgAMjIjzIMQrX86Jo0zRSviL2/rZn/t/ZvqbrIlnlgAXV/J0Oz+pL3jFHC6Sy6Q5n5Zvng9wtrWcoUNm5YcuydtZWjmRqInCXOTrc7Xu8gkBZmbxL/jKGc3mzzB3XpxlrV+INqdDyxVfm3vgL9nlVfFPZpoHADJdXZxk8DM+yvWxAfCiB50uDeOUFp7O4AR+5xcwnNZJi9CZnc1wySinNhMAFMinGuM0L0BIIXEWzgKCORjgwmDtilVdLuuyVMpoNCgokVNgZo0CAEWphMlYC0Qgwgw5JxKWyDnn0fu+7QQYRchaYC6KolxUiESkAJABTrYXBEZhmWYeCs4mcQCkqVst5hxTjvE0/R9AKZVRa2cQNTOnlGPMAOicJVRjNwzd4MrCOKtj7vshhVQUrrDaaJU5OWNF67IsIYMCUQRWozYQUxzHgQGNIU1aAYlkpZQxGglSigBEiIkZBLV2DMmHTJQiM2lrXAYE5pxjBmZFKosgKVAaSA99jGNwToyGnJKprGtM39txDClLSqyMnsgpA3MSRYikFJIgEClOEkef/GgU1nVhnbGKOCcC0Ea5shSmGFkrlKyEUIEQoSFFGo7ZpzA2i5o0KatxvTiOvOu894ETatLWWfF5jOHx5s5B3u1efdD3j5tmWXe7o4nhZrFeLJYpwT9vn16Gt/Xtzc+fX9rW/fq7hyF6icFQ+O5xM3h5fT22x15VlhC2+y2RUANVVXzzqI9t/7bvB98XoARZFLjCAQRhckvrfQgxceYYOXFEoCw55JQkjWGsy7KqCj1pcQTCQsJpqtgiqQm5CADP04DwpBafEjm5IjpTXE7p1lXIziUtuLIHnmtf58i8BOucYJy1peuWjV9+nSvj55M4B+jpu1nfnngO4Zz74NwWdinonXSo6ciT1suCEkGAcB9lbMNBYUqKAAYP26+7+wdaLRqoamQGa8GwmNgnSmSCUA8YlSKlQVDfl/7YaVJ2mRSn5e2GiPzgc0xgHBkbrBl94gkzAEIWBEgELFwgKqWIkFPUqCyhEup2XR5GCMnUpUalbaESdYfOFapZVQC5b3sf4mLVCJHLXJa1NVVTZySbUhoOrWhs++Hry9f1er1w5TgMLNy3vdG6KAulDAgjKmbRxr6/XceY+mGwzmltMsvqZqWNIsBxiJ8/PaUcjDNIVJSFtmYY+r7r3l53ilBEgvd3t3fWGmYhhd57ZdDHGGPQyRxfnw/7o7MaDVjnXOl++ze/LVwxHFsSCSl8/vh5t9+VdYWIox/b/q2q6rKuy6LxfuScirrWxhwPx9GPQpkFY4xZmBQdjl3mDAhVVXLm568vShFn/vTxsyucsSakcbfbl2V5d3//9fUrC3/77TeHw3FaRiEMb7sdcxIBTWZzsyrH4rg/OGeaRe196LveaL3fHqpl86c//FE7UzTVoq4/f/682701eek3YwCEzDeb9XKxaKm11krIj6sbvKGPX774MRRFxVjhcrNcr7txIMaqrF9fX56+vPjE//zjn7vjoXAuxmQLzTmXzSIBbNvjkEN7HCJnrQmZa2cXHH9++nLYHb779rt//W/+dYD8uz/+/j/9/X/9059/qpf1X/zlb1Hrw7G1RdEACsKXr1+3b4fdcW8X5Tj4BEG0Zg2i1JgzZ+aU4rGrFpW1Tc7Cc7eW1ZBjBgBCzCmz5ACk52Ca3STzxqfZqCNzhXrKoObqC1w0nV9IGGctZJ5RKLM9cBaP/kXWNGc88ot3vCZGF/CZ+jtOxt0z87lAyRkaLl7m2ap0LU2fH5lR7sw3Loc8nyHPmHieEiBnuWd2XcIlpTyzxanhbEam02mez3HK22Ymdh4Ce8HI0wXH06ygE2ecy4Cn/x6clsNfwbkIwMksCvPQ2Kur/Ut/16ScgzAhESEyY2aERMAaWCuprFs1ZVPa0hpLiBxzDJGzIpjKLkojp4xAaAhAJKecExIRcI6Bfco+jMPox0Epcs5prYAFFSmrp/JBzhmSoCLSSininBFQKQUCzCzMIjBtt5CYcowpBE6ZUGlnFdKkFQApnxIADIP3PlZNqY0Gkb4blCbnLJKODL4bSmdJyaqp0JghJiSDLFqRRZHE1qqiMEqR74cQAymjFBmt1LQAQZFSBiRJZqWtsDCzsChSiDh2Q2YWoszTzAUGET+G6c4lAiHHLKBtlYTHzueEq5UzSiMLilRNNY558DFlYAaliZmBkEGs1pIhJyalFFmOMYxemKu6aOqCSMUwphQ5sSatjAs+h5iMk5RYa4UCDAwgCMKcgx/qplCCq6ZSLMrG3o9p3yeVVFljylXpFpVbLRvM8XDYH3tvD8N6syiqWjgReKfs9+9vC1f8wx8+7t9enTXPb+MwtB/e3d6tm8ZpQ6owqi7c88v++W1Xl6XRxfbtLcfIaXG72ZSF06T63rcxQhcSKz/GZVGNI/sQC6uN0ZEzhcQ5pJysNaRV8CGMfuj6pqmbpqmrsigM55xiVIoAT1WgkxoCs41G5qnRMkf9XAM/Dz2bQ+OCJ3M8/gI2iOhUjT6F5BUozGnM+Vv45YrCa1T5BSu6HHcyLyEDIxAKnbbwAkxTi+Z06IJVfN5RBHIqlCEIiCgApbzwGHI2WlVNGMeeUQ9hOPQ3GeM4lkpXRiVTZivDEEXrIYInwxo5B9LIiOpmOYZESqFw7wwL57rKmQMQTCvwtAYQZBGBJMjCymplkUMIIRgQk1OlyYLafX0NfbtoKk309vLmUEXm3csLAdZVaZ1eLJcx+NfXF1sUq5u7omrG3vvEbrHEsmqPnV3x+uYG9od9DNX6VoGMx6PWanN/2x67LDL0ozLKWFuV5WLRxBizJEEsi2q9WSOjH0NOyVkjzIqorFYph5QSKUSEY3v8+vXZaktKHQ77sfcgsGianKJxdrGwIcSU07E9fvzyZRiGpmnaQ67qgoWrutLarJrl7XI9tMf9bv92fD22RxZer9fRJ6X0olmGnP74p9/v99uH+wcWKEsLRMLSD6MILJeqrGtQlDP7EK2x9aLZvr6lxMbaEEZrzXK56PohjKGqyrqqysKVZTkMQ1XVKXNOafTeD6Gqq/X6prDF4XBIMeecjLUxp0ZpV9iUstbqeGyPh8NquTBF8eeffwKjVuvVr379K++Dc66u6zz60Y9fPz+Nw7hYLFJI79+9B8RNs2qpfXvbIeHm5saI2n59jT7crterxbKqF4Lcj+Pm9ibG8ftffy+Qn748bd/eQGtGdKVLKUv0Rpm6cYqTM8W3373/7a9/QFH/+I//9PsffxzCEFPOhOu7BzLmy9eXY9tabQ7HLuY30noIMeYsObXHXoiU1UjY9WNVFdpgipGIAjNz5gzaGtKaOcfIIKDUaa9ADqwtzSUwme+rc4Re2h1g9qCcHpJLXeqqbf5MK2TSLGbJ6Byxck6mru7zF0SYBJ9rtnMGo/mEAGFyrlzU5dP5Tt1lp5v6zIwQJrUD5k6vGbnOhuvTH9flln8BUL/sc58eoNPerpM36l8oSARwbjaZiJLg5MSc0lC5umoTTl8X1wR+QTEBEQhofseJa80fFgXkPKCIAM9jHy/J6ORCmv73+LT27HzJT50uBHha5SAsKVoFpVWlsYvCNIUrjdYEJJEyC7JQZhJEQoUEiAjKUkoZOAOwUcagnipEMeSxH6d/a22MMVVZFXUZU0RCYD6xZAWkIAsnmdacMgFIZgCEdDJ9nqkbp4wIWhtjHVoF00ZxlpCzgCDS4GMIsZQqxogKbKGRMKaoMIU+GARLYIyyVmWCNEYROByG6PuUsSxcXVhXOICcchYGZVRROEMYxxFJtLKoFOc0nU1KKaUskkkpEBhHzwRIKqYEIArIEuWUYs6MGrSKKSeUNnaFEArHBClk49CgtqS9ElQUo88xE5Dk7HPwQdnKACAoJRkUaJQTWS0LV5SOAIST5IQsRJQBGCSkHDgzQE4ZQQNjih4s2qIiEiLhFKuyCH6wBhvSN7Het10bRn8IyIJKWVsiZWG2Vdn38vLWxSRV4ZzTKY+K47qpCayGx+fd8Wl3SAJd4p+/7nzkd49Lo032KQ7dw025bPTXtz2BYOmGsdekJOfCmZtFtahd2XZOcedTRDp2rQYTciatnbMx59K4pirHcRz9mPqgjEKtck7H9pg5+3EsyqJ0VmvLLCIcckRknLoGcBqaOKcPZ/zCOXQmTDrlMueQOYENAc0gKHjOZmT27lzyiGtQmw8hc35zRpQ5fzonTFcQc+kmgQtsMZxV5Ss4uqDerEWdW0PxVLoXBGKAyKScQaeCUAwCug4IzpZPYz7EXmJsSnISEmDHqpMMCZMQk2QCRpc4REAQzVYJKZbcswgjADHqGLLSioiIBNTEvYSVCEDiWKAYTSUq7AeNgjnlAShFpxUBIwhH7lNqKlc2S44pMR0PPkRmJoUmDKPOwoyMWpHyIY2ZDz61iV2G5v7xTqsUhvbQNrc3TdWQSNWs2sOxOxyWVVE39aRnr9ZL60c76ru7+6ZZpDGM/VhUzirdHtqH9zc++rY/Pn9969quKAo/BAP64e4OEPbbvXPu5u7GaMOc67o8HI4///yxXlRKq6aqFMDh9a2uq+7QEuB6s/r86YsGvVo0RhtrzGLRpJRQIKVorbZIKaa33cvoR63s8/OL0iblkgC1UgyYMu8OB1K6LIu2bbevb0abqiq+/f6boiyePn8hAhb5+ePP2qiHh3eJE4AKKTbLpmyqzKmpKwBo+94VJiZ/OOSqLIvS9seOjPrxxx+1Nka76qG8vb/p+/7xwwOzIOLHT59zjAhgSvX+3ftj2wFAd+wWVXV/e7t92+YqvXv/+Pz89o//8DujTdMs6qLq7dAsFvcPj1+evmiN7x/v/uov/1Y59R//83/eHfYKVdu279795d/89V+L4J/+/KefPn0eY9weDp8/f9ncbFZVyTEVSg/dEO1ASD5xezx8fvnajUOWnDJ/8913x7bfH7vd7qCMqio8dF3X96hVQiZtUuKMoi2lKEpRs17GEFISpa1zru8HIiXIMK3WAUJNMYWUWKOCKbdGnktgeNF9r27eF8UXLmE6CyEzKbo4YS6sYbqznxTaWfadbsOzTnPOoK4zrysmNpOKy/OvNCE4i0BwIThyOfiVt2dCkivh6Wq163y4i+x8IWbn48v84U955YQEcKXhTM8+W6Cu2RWeBSCYFfV5uq38opHkrDHNgtVp85HIVIObruVcRpwemTgjIp3SXmQAmm1DMpNXEAC+OJ3lfAAEwZS1JpCMOWng0tKyck1hF6V1mjSCpCghRUlaUZasjDbqtLISJl88i0KSnIkQUmKWGGMKOcXELEjEgjEyEZAxAKi1QRLOQiCoQJQ6XcwsyJxTREIBIqCT+SxnAYwhkCZERQqVMqhMRkSFKTIwZOaUkh9Czlw2Tc7CkpQo0zhBziGOY5LAi6a2ViNmQsyAiBRD9MMInHPIblm5wqIiSVkAy7p21lqFwFmRALE2hAokAykrQCmFlCIgkAKtCEGUopQBcoaclDKFs77nGOOQPFkzhqSsThJ9Ap3ToR+V5Lu7pTUuxaSVdkUpe59TZgKrKfqQy0JpnSUJZyKtlMlZYkw5M2myxiKh8NQZLaSIBVPmBKKtDSmFTDGCQRDJqHBq0csxKaRpw1ZmqWp3o7DtK9y28dBrZUI34G2tDcXMtiiSoDB3XWZO2pUaIfgx+pEZH26bolAxx49ft8auGN3T66Ef/W++e7eq68IVfmgR0nrhslA3xmOHx2O73x+aqqLbm7K2d+tFXdjn7eFt19okScm6KccUfe8B9WLRAFKhVTRmDL7th6H3xtmk1DG2LfVG6bqqmqau69oYg0qJMEuewmka3zkxDv5FP9cJhWQO/xntZI7jc5/EpQQGcv3NFULIWQU/R/l1GndVc5vw76rNXU6S1Wy1Ptu159GOKFMjZJ4nguFp9quAQD4JW3OugyCIOAXd4EdrlVYqIQUkIoWIxumQYsxZOMXEEofMKACsVWYREFbIExnURgRj4pOhABUhMzMAESplFClUSJwTCCqlOSdlFWcWRM4pI7OkwqnKKBUCcCoKmxKklPwYyKjFallXpUbikDnmotQ+9olTvVoopQ+977rRlfXh6Ldt38XYp5TB9S+H2zsttuy6vmgWdV1C4hiDLW1Ny2rRLJrajwNItoUr6poVgdYZsR8DCruyAoRuGL8+v+otLFYNKbq5u2n3nWR+d3//wkhAxtj37z70Q9c0CwB+fX41iiRn6ywRffPhG6PNYb+HXwFkfn55XS8Xtzc3ZVGkGJ+evnb7HQEultX7Dx/6vmvbbrc/NMsGwHf9WNcLznmxbB7fPezedm+vbyEEY0yzWnSHIeYxc+ravqrq9XrR9cPPP3+y2qxW68WyOuwO3ofVcrnaLPbbNudcV5VCsta2x+M4jGVdlwLj0Hf7rmdWCNYZBPX88uxcUdVlWZcvr28hxPVquVguxq7v2m6zWjpr+hjCGO/uH242N+3xcDx2d7e3d7c3N5sbznkcB+sss9jSfvv9t0VZ3L17JFLH9vj2+jaG4bd//ZfNsj4c9uMwLOrm22+/eXvZrhfNh/uHwrja2He3j2MIr/v9y4dvXp5fuuGwP3T1ZvHD+/dVWb5/eHezXvdte9jvitLs29QOfQT0MWrt3r//cGyP29eDMhoRfBhB62lvds6ZvRBpRMwpxZgBJCTJnCexBwFCiCjAAsZojcoUzpIByVqPqOfZdzALu9dfeM5mLnTgpCf8EgmuX3KBgrPcIufYBcB5qs9MKi6+3+tU6vyDScaZMAIvPuq5xD5XoC4a1UlnQUDheZrzzGrk/Jbn480Sjlz9YCq2z9LYSYm5iM3nizGtl59WO8t8SnDuW7tkbBcgRcTJjTY/KgKnET8X39WJXtA0jkdO1f0TNp7/Z6a3wNNFYQAAniccThcdpuExwDN/ysKTnoUIIPk04jgFq6CqTK3Vpilrpy2CIoYcEFgrEkRBPY3gRgVAJ4LLzASCAEopYU4h5ZBDiDll5kwIknmqGqgzKRVArUDy1LErPP1yMQHmxCIIKYFShEQoSCA5gwhImvp+lFEswASkEBVxzCmlwplhCDGm7eveFZUr3HF/zBwX67qoypgDxyzCiVOhCmMtKUAQjqkwJgx+co2UhXGFVpoIKQMo0qVzWmnIWTgrQlcVSlFOSQCNLf0Y/ej7YSzKSikUzuPYg0YBnWOALFpra0xUMQuEmFGQFBlrBJgzd31rgENQOQuREhZSCgDx1ESp/OAx5qZwuSqURUYUhAzMBIkzaqWtEqUSTx4jAgIkTQwgkFMOKZlFIcDTzjmtkXNKIUsWpTQhTVOWoh+0coXDD+/XVVGgvPiQfGLxaewHROGURHgI2Y9h1/UZ4N3j2inVbneC5Aiauvz19x9cUf/505cU4mK1Orb9//Ff/umHX314uF2iUrZyTuzQj1oVTbPo+7TdHtpD33f9w/368eH2dnNTaLeu6o+fn4/RB5+tcqRk9OP+bXBVU1e1KasYYmOHfdt7DinnLECkRp/CGEIIow9lVRXOISqc1rRNze4CAkLyL4BM6DRAHRGRhU85w2loEJ8W6p0Qg/ASxXDWbmHu0Zqi8hr3rhIzgHO+ddJrJoSYGrqEcEpV+IR5iAjIyHhuM4UMQCQIMI2jxgtqAZ5Tw7M1AQG0oihcF6UI58QC7KwFEWaOPiEAIIGynVDOGUWsMSmxnEaKgihgEMhASEarkBKAALAS0DjhCGsiBBTOapKdQiICUpAQBEgAYs59StpgyKxZYj+GftAalEbIYi1FiMfAGpDHvKzqalEdn9sMsFiucoZuiCMUPrudD6m8H032ANqauHvbdWIUleVmvayGbp+814RjDHVT3t3fSeL2oPr9ISO2/fi22zU3y3K13L/u0xgw4+Ftm1NQClMS0qQKCiHVi6ppFoa074fgR2d00xQA6bDdAbDkVJRFWRXGWADwIYwpFIU12gKAdrYu3GLRAMvbdrd9eTFau8Id+r5pGlNY5YPWxo8xqFy64vHD+y+fP8cY27b1YRyGPsW0Wq2csdQQKjruj86Zx3f3Td28vLwdjntlMOT4/PomiZumUdpIRmOMs5YYJMlhOOSYRHAY/TD2lS1hwfv9/vOXF9L4+PhQL5shjO+/+bBcLcbCpZi8H3d/+okEsqTH+0cQaLvu17/+YbFcdv1w3B2s0WEYfvrTT+PY55yHbiCtlqsGFf78+eflclUvF4fu8PL2ShrRqz/8/o/j4JtV89033+63B38c3t3eKYT2ZWuXm7tmtXCNIOzadvV3//ann3/abd+2u9emMu/fPTAnQPr88U/b7a5eVcMQxhAO3dGG/Pj4/v7hXiu9qhdWuT/++U8IuixMNyZUVFhtlaQsApDGCAiaMDMTAgNro3PORMpolRNbawTxvEHAD2NMniLpq9vp/8nXlJzgLGXAOeG4fslEEOa9FFMgX8gUzksIT1UXPPVYnQZuXB350r/FZ50JEaZM7qyOnIzDKMDXKtEvGNmsaU+W44ubmmZOc7I7nRBR5g4tmKXx8webAOOigs/vPj335Pa4tICcdJyr9vpZirlwFsCTlnN52dmzfAXSMz+aWdkEdKdvzh0g56olIiEhy+XiT20wM1xnQCSFBIIswEwgELPRYA2uKrdZFI0zBkEhc4ocEkyjGiHL/KGM0SwsnJAIYJr8d2pKiiFw5Biz94FzJiRQkGPOnBCUscoYCywgAolPd5EzqWSQnFBYGIhUSmwsACJMVTIQBhEWbbSQ4owsqEEgiTBZV3BKyYdx9DklpajvR+/T4HtXOs6QxqxIGW00mqIuAQmAOTMKKFSTHbyuima1iCmLMBJCFhDgJGVptYboo3OurksGAUJEQkWThlI4W5TWltaP0VqTQhiGdhx8URSFMdaq0RghSolB2KIiAU2oQIYYlEIGFMSYOGcQxJSYmZVC60yUJMDRB04JC0NALBkEU+SYGUlra4HIxwQAhpSxNmWJOfsxhhjC4MtCZzYxM5FCUjmzHzkmVsogKUQSEUWUQiCB2iq1qpJfHgc/9MZplUIwjgDS6IcxqjHC8dhnQNJ6WWtdVpITx9GVlbNVVRWltZ++PO9eX5erdUb686eX17fdu7vNqnHOqgo0g4QAbuE06aPuRu9ft3sfw2q5uFkuvl0/1HXxsj983u57P3LKhTYZKHTHPI7OVouqaW7L9Xq1PR72vfcxxJQJiYUPx7YdBueKsiyaZdPUtTUGgHPMp99SYECFMxGZooOQZugCkPNELpFpqP3JODTzEDhJy+dRIFdoI2fkmtOji01ZTm1cvwCo6aBzyX7KWs5y1MUkeMbAS/Ijs64+t41N2SjhlOkggEzEjlnmQr9IzgSiCE/SGBIZyixCAoCRhQFIE+QTtaPpYjCziCIQmAYMZBBSCDFlpQAAWNhozImFMypkZpCsDaAgDzEl32X2g5d+KI02hgbvxfOirhLDtu1IqbKwfhgDQip0RyqjOnbJFhUX5TEFn8iriqpm8DkqBQqpCshRKQTJKWSrHehUFKZpqq5t+9ErIrCmXK6M0ca697dLVxaKlA3p0Hah92VT+kGGod9slvVy0Q+tVrpuamZ+27+JkizZR6+NGccxZ7bONItFU9cppaIouq7POddV7Zy72dyIwPPr17fnF0mcU/JhXK7X0Y+H45GFY8w3d+tqUSXOwScfwmK5RIEY4jgOJFBWxf39PSG5ojDWMA/j4GOIUeLz8/Nutw8pVou6cuXr6/Nhv6+LylhjrI0+KIWa9GF/eHt7Q0RhrBa1MKQQwLq7u1sB+OOPPzLI7e1tWZXGmNfXt9u7e4uw2+3bwx5YFlXje3/YHwHAGbteLsfRvz6/dv0RUXX9UJbF1+cXZmmaWkCUVszS9t3L23a5Xm33u912XzfVEPrhMO7etqub1bsPjzH4sigwZRHRBYZxVFqLT2Pyi8Ktq+r9v/m71/3Xuip3Ly/Wqaenj//+P/zvb/utskUkcKb6/ocf9u3h5ub2r//qt8jo+/Dbv/zN//Q/qP/f//ofhrHfDsevsg8pKwWODBP4MXJimSxoihBQjPJjrAonDN4HQpViEgbjnFUGYi6tbapKF06fncgnLDgHsZyK1XS2C8+uZsA5umb9WKYm6pOMcZ4YdMUi5CyxyHTzuJJvZmcinN4BYcami4hCeNZ45r6weegOyLRa/QIcV+QFYar0y7wU7KJGA+IVEfklf5rzPZlGus66y/XgxJOkcVaiTunmbMrBGVrx2lg0z8q++Kim9z3zo4tt+lJem8RtmGdOT2A48R88jQIEmBr8MktGJNICwiBaKQFkTkhagYhkyQly0iSWyDpalMWqMo0zlkRRlhgBxWolqHIOOTHnieiRNYYIgUGREmZJDJlBJGdOMeXEnHNKU7EGp9E5xhhNCCiaSBECB06MRKhoIjenlDszAQIDM4CAVkaRAsKcMyIgIgnmafMqZjKEgJw5jdFoyzkd3vYheM5srB69HwYfY+ravi5L34WcE4GwcFE7tMiRJYkkRlQ5cgxRJFW1tQb7btCqyJE4ZklcLYpqUeY4KjDW6el/JjMLYhbMDDmxtgqBQMBavVkv2348bFuIyVZoDAAyEKJWoLHvBj+MHB0mbZRYo5u6aJYVKEmZGWGqbcnJgmOcodh3KXgRPg/CZMkps9I6RB59lpAYRQBLq5TRMfrRx7YbBh8452H0VWNBF6iUQPY+Htp+HIMrCmU0EaFErVDhaQEVGHq4XaxSczgO2mjMCbMiSMAxZWStqttNl+Ifv7x+eFw/rJoQjykMtaaYBqPNh/vlZll9fnn99HlnClfVTUrx58+vr6W6XS83i6qwFrJv214x3KyXSeTY7d/2b/t2P/jNu/uH25u1srpZ1tvd4evLtouhcK4wNmQIfnweemtdXVVNURjjssju2PZDH8MkX3CKPIyjj3EcfFEWVWkVKULKkvgUlIKzgU8kIxARMYhMI0BzRgTmTESExKcC9Bx/MwZcbYw/l91xhku4hgq4dGydTEazDWgCLzkZ8uaZ0zN4nVDg1PY5O6NhGkyEMo/cFwTME1rKRODohM6n8z5t1kFAEBYGyJOPGhGEeZJxlQDkzIjESQhBUFhQgIlPQ+5BgAWQCaYeMxZFWhAYOEHOWQiFCEEySIYUCm04Js7ZKeOI+9illOtlo6zutmkcEodUV6Uryszc5czWtUh9N+76RM6gdig6oxmUYqX6KGngdgzWaYf5xulGW0ohpJE5rprKLBY5p8RZyPRjBkgislqsqroq66raFCHEpy+f0dr1w130oTBGiYxdZxWWZVHWhSZFiIf9nkiKsgAlfogxZ1C4Xq+WzbIuSyIahzFS9H4UQT94TQYVceKcuCqrsqqaph7D8PXz0/OXp5Ti7f3tmOLr9uDHQETLm40fxn7sVovFtx8+dN0xpRi9v9nc2KIYBk9Ihau01q6wX56+vr7sEEEbtd8fqqL0vq/r5v37d4Q09H1KEYESRkJcLhdNU/sxjCEg4jfvv/HRPz1/LYvy2++/7fr+9e113x6JYInLTx9/Hsb+T3/4qe+7Dx/er5dr4+zgB20sKfVf/tN/7Ydhc3fT98Nuu/+f/83/WC9qZbWEFKJ/2+7HwQ++d0XhQ/wAUFblfrfPKddVfdjtl3e3BtXuefubX/8QU/ry0+fjbt9v2rIolqulIB4PbUzp5mZTObMDUIBvz6+F04ft4bg7pBCNrUvngPSyWf3bv/u//vGf/1gqo0ndrOv3q9Vms/43/++/Hcbu//u//vvn3S4KA/Pt/U3I+en5BTQ9PT3v9kdXu+OxTTkLSGkqYXi8fxx6P3QtM67v1lVVFcb+5V//Zvuyjynqk8nkkmzMFelLJWf++bl1aNZPzl9zZeZUPjpBxC88RVek6NK4dD22+OwcvEada05ykWvmihJeKdTzozKztXNJb1ag8bRXYj6dK3oFAFcNVb/4OnE1vJKwhaaLcEIsgZnz4VnQOatlM0Waz+Y0CWnGwVOShzPpPCnhV598plcM5/diYEGaNXpkAEVEihARBQ1RyjllFplKAaCEOWZAtgqUQq1U7WxT6NrqUiurQBMLJw4ZQBQSZM4xxpAQBRUqrZRSkBMwGiJhTiGmkEQEhDlLjglQOOcwBgHQSpGaCJMyRjEwAnNMgALAwoygJw4pKSMJsKBSMPUva0SiqUKWAZQCUmqafESokJCzTGCrjBWm7ti2h44l2bK2ZLfbQxJAQNKOmXJiBAyj146mBjSGnBNrNCIwDP04DImTyjh2mXNAMRBEomili8IiAhEqq5SmEEdtjIhEYRYYx7EfhhKLeqEVkXFutSHOsGpKZldWzljMkLJmtJhzjiEGAQKx2tlKb27Xy2WtFCTOWjKAGY7D0I7MbK1VmpxWeehg6oWXaVAAcBYURqSU+dgPgw+2dMoVaA0JHvtx8HkIiUFp5/K01kwZbUyMMXMefU6CpXGCKgurqTSWMgPkjMLQLBY1UFXVMYTjbud7TxpvblfDNr6+dfVimRWNkl4OgSg0RbGoFzKOyY8YYr1YOWMIbwplXvad70ZtjU8Sjj6nYxjzatGsm4bIHPctS6rqsihvlaN26F52h8NxuNlsmkX1zePduqkqZ/bd2IfcBebIqE1m7Ia2G/qmqWzhCmOMXoamPPZDOwxDiIyQYvLbuD3srTGr5WLZLOvaaW00wtQPIiwsgkSaSAQ5T+uwUCllnEXEzJxiiCkopc9V/nM44gXqZKYlOGMEnlO4C2T9IqmSszcI5hi/qL9nVJyr/AhXKvo5XZxhBGdYmM/wlLBOL6DTnsHppXwaCACzzHRuKjgtIySctXGBqZh+FssAGFAyzVI4AjAKIzICAeUUAUAjKEFiyYlN5DhGzbConaRQVDWUZSSImaMzkbkVKItStB2OnU9cNAtTlNtD/zKyQnTOoXKeZWDRDkNi4VQUymq0zIvC1BqJ2WEJOXJkcaobfTeO1aJmoK7rSesCjWIliUvlEqZ+zNa45e09pxy6Pvlxsb4xhFahs9r3w3G/jz5o0q4obGWP1HXHjojubm+dK4zS1hgRPuwOy2YpCp+/fI0hOmsWq7VCigJPX5///Oefq6ZEonLRgMj942OIMfigzNSz4UBgGPqcUlW4sWu7YUTAw+6w3OD9/Q0pG2OKKey2h9VqvVw0SPT1+evPP/1c1eVysby9v2sWTQ6JQ9RKOedenl/LoiiszSkVhQ0xrG9WWut4iK4oSCljrfLh0+fPIvI3/+pvc8wfP3+uqrJeNilFVCqkSEbHHMu6clXx9PWlWtaH9tgNfdu3Pz89lYcyo0QRq1Xd1Fppbalv/d397fff/QAIRhsE1KTfPbyb+m2FAfhUabm52zR1nVIex/Hu4Q4FPn75fNzvckzDMA59X62a3evr09eX1eamiKFZ3azubv/w5z/94Z9+///4d//u3/3b//sf//4fVs3ifr1qjDWZb5rKbBb0P/+bPkQ0auzG3/zlr7UxL9sdKf30/HxouzGNX56+/u73/3Rou68vb2VZ//Vv/+Kwa7WCY9vXTaOdtdau1mvK0nWdntTYCxW4VHOumklPZZ85gK7Yz/z3fCMnPDORE2U4ZUDnG/qpqHYqgpwfxnNSdXkiXLom/qWTGObJrjJTlOmPmSSdiYycc7DT9zOdO2laV8r2v0C6EzUUvKZKE9uZM7yzVHR5+fwgXJ/XWSGfX3D2SJ5SwxkHcX7dWVS/8n7PpElAISBP84mIQCSDpMwAwCI+BqXIam21kpQBWCEgsVXkFC2qoja2MFRapSECR8mREyCRIkBEnsgTZGUVIiCCVoQcITMKZeEQYowZAJTWKebogyLSVgGzUgrxZH/RWgFRniQjRUKAIkQoiZnTeT2BZBEQYkAgpYC0AqSUWYBzlqnbHjgLABAJoDCPw2h0SaTbtt9tj8wMoJB0GMLgk3Wla2xG0samxBrAKK0AiJkohxgyKW30cOyPbZdTVAqs0Qh0s1mG3sfRW6XXd0ujaehbpGQ1IpO1Dgg5JBFkkHH0IYR6UWtjlFIWiBSNhQ1lQYRlXZGiMXOMIaaYUoKJvpFGsq6sbh9vi8L0h/30u82ch2H0Y0g5FYQKETI7a+rSaWsAAYRpEkYl+9GPPuz33aHzrgFXaQYfLIaQRx8zoy1K6yxITCCROQuyEIsC0oCgtDZaCaSYk1aACjlKFPA+UkZrLOZMIoQUWRZlTWUdDaOr3t7aNgQW6Tq/2x7f3Szw3U2prS4EMsdxMK5YN8WyKd+F+OV5//K6y6Mv6jILPm/b/WGID9yURbOuwjj6Ya+se7xZL3nxtm23b/vXP/70cLdRiFXpvnv/+Jjz9q3dHse3fbcfAhmtaudjaLsDDlSUZVU1rims1VVZtGMYUww596NPKff9OI5j23Z1Va6Wi6osiZBIAwnnjADMknMmImfKaelSloyEMaWcT066q3xtLi8hwjSp7GpZ4ZUSflX2P8HnxXg0WxWnp133eJxZzBk4ZzzGySI0i8GnHwlcIOKs95xx84SW89zVsykBZM4uLyoUwty0KzOwwIn9EIIAizAJMTFMnxoEIcFcwhZWGYhEI/DoJaUCpcisWISBx+R9VEqbymYWn3NGUqZ0psiuPA6hiyimdvWiQ/QFKLE+MYF21lKOYFnYL2prlDaEnJJjBX4YQqyMMsYOPuzGAfthCEm5AorFmHIoQKE+RBxSxMFD5YZxDGKtafogeUzZo++zOH1/sxrb9svPT4pAEQhbH0eyYl3ZLNR6tfbeK1KcY+Kcg2+PR+8HrRUSTQNZj4f22HUppUW9OBzbt+1bUT+uFivjdM55CH69XI80PD19IUVW6eBH4Xw8HsNo+q7LMXDmcRhQ4bvH92hNP7RdN2TIZFCyNlppZ8q6MNasb1Zl4Y77w2azKUtHgsz53eP9MPbIOAa/P+w2m1sA2O32L29vSMhGlNHffv9tWdXH7vDhm28+ffxU1fXdzd1mnd69e+za7th1iEgKUSkEun28a/uufR5dVdBB/f6ff//Db361WCxGHbXG727flc7FHP2Yirq8ubt9fnkFQWN1VdZjGA5ve1/aqij8MALyerXQxnDm4HtrdV3U377/lpl//tOf7x7umcDHUC/qbduBde9ubvtxuHt4eHh8v1ys/yv858f72+8/vLchrapmUy9uNuvjfvvy8afFslnV1iDEnDkGPhxVVZUhAcqHxfJ/+ou/RK2UNf/xP/3np9fn3/3z79thsKOnoQelStKlMVVVPn16+f/8/R8+fPNoS6tnGvDLr7Ot7hdsZCYq506mS5H8yms8Zw8y04W53o1wMr7ObGmWaE5VopmOnHFlYhTnWjbCtWfwHPSn1GVOquYjnYHiikXNBGvmfHJRuq4EbbgYlSZf6vltzhrQDD14pi+zXWfGpQtjgwvu4LVf8TQN/3qi82R1BDjh7FkTnyT0y5vCBEmTo0VAOOfMQgqUokY75gw5Q44GwCjQgNapypmmsLWzCkRjVpIAEkjmPDUNn2pqeMoa4VQnyULAcYyTLphSFhajlTJaMsfMyigATBERjSu10jD9hAGJkEgRCaGQJcmcUxRhFAKlEAmEWVAQAWl69onksbBkQgDAnDNzVkoxSwiBQDtXcZbnp5e3193b2/abbz84bRTZkEJm1K5EUgIjC/hh9Ck2lUXAnFIWnjaU9kP//PzaD70rq7opXeVyzgTAY3LarheL5WrRHrfM2RUGJsOUImZQSIiYYubMpiq1syyQc+IsglAvSslZOyqKkjPIMIhPoR9DShkVoImCPklGSkApszbaaCUZ/Ri8j0hITFqjNSSZC2eLqjBWI2YWVEQIoFBnSSGlbgztEHvxNukokkqjUQ1hECTUBskgZBaOOfuUR5+6MYYs0zZR0oo4CwAKgagQUjut79FcWInDMEWSs4VRhkWQsxaunUkAh8FnUIfdcRjjGPL728VmWWqVOGfO2RoixKKi4sN6vaq+vuzftscxMhkVe//Hnz43pXu4X5XOQIoiWRJslmsiV5TVl09fd9ujH4f1cvHu/t45+8N3726P/qneP+8Ob8duzEFJBkMCOPT96AMoTUpZ4+43q5FzO3hUlFL2IcSYt9v9sW33h0PT1E3drJaNsUYpxZyBGaeOVGYiRKSUUo5ZKbLGzGh3xkWc0USmvgea9Ra54NKVsHtGmDO2zML2ybwMF7y7pGxyKcfDLCbP6DotP5az9WB6m6slZ2fQvmRe1wB+ftG8mWcGroviPndpAAgBswgAKxEQnpJAEUBhOclLp1XECktrKMcxJknelkaDJBFSyCBlVZHVgcUui+gDcnbKaKX7MRLZYlNmrbgoj92ItqpK7Xwy1jhSOqflejEtH9SSFUDi0YIEP3TjkOpyUddU1X3bA5A4J2U5ajfmFAwpbQR1DjGPIXw9KKu4WByzziERGG2NVi6DeFBDkl03WIXfvH8Azm/bVz/60Q9VWTlnRXi32x72B6PVw91909TG2DCOISalaNEsACFJRqIEOXHSzt7e39/dPey2r9576+zmZvMGGRD7YVDqWJbOVaUiFXNERWVVxRABQaN6e30dwrjd7ZbLtda67/vt2zb6QJrePbz71a9+qOqKUzJaO+tEcgoRBPq+N9YYpUfvQwgA4sfx+eWZBVbN6nhsUVOPw9PTl9H73XaPREbbh4fHxPHtbdcsljHG46G9vd0UVXk4HrPw1+eXwffjGKpmsVmvyqoqy7qpVIrJlu5mc/P2utWNVVo/Pz25ovjw7n3bHdvjsWvb9thVuYiDt65YLBpEGIchhKRIKaTt9q07tArpbnN7f/egCvP3//QPn37/9LLd1k0Vhe4e32ujAfBf/c3frhbNy5enLz/++bv37999/2vNorJooIWrlaAIF0Sp9wbQH9tx3x6P7eZ2E/rhx5fXb779bn1389tvvvnbv/jN/+1//NeZ8e9/91/++NNP//7/+I+2bgaW7969u/mrxadP5Z//+MnVC43Xv/pzvJw9eFfCx8kLLHBZd3WltVwZpU8pCUwjCy+8RgRmeXZGgKsQhQtzuvq66CszGsxT4WHWYvDqiVfAhb+QkPkERGfzzdxyesG3y6eVWXA6wRSeIWA67qkzS05SMdJUpLic+1nVPjOq2ep0KQvOChSAnJe7yqyOnZFNTuuMEHAaPsTTBvTTxRCZevK1MkqDIiQQzElYOHnFuXKqMtYpKp1tysIQSgpKiSEBnqbdCBIphUQkmWGSfAiIQANLEswSYwxjVHRapm2M1tYgwhgzs8SUUuSyLpRVSKKJjHFEmCULCTGSAGRJKdM0JDqJoqn5fXJ/TqavqQUHEVVmBsiEeXIac0pWaRACAINGKZMjx5y/Pj2FkJWyiiqltdYu+H1IYquq3R+8DxSDg7IpFHAwugSCGJN2RYjpeNgfu4MwVJqqwtpCC2N3GFaLsnIL53QYW6VYWTKWgEG0REkAShEByzD4mJLRlkgRQeIkKKS1dbi6r6w10ScffGUNMXCQlCiTorKIAIcx1CG33YilKrQyWndjGIfQD0OOUWttNQlnraFwTlnFk78OiFDL6fdKt12IiUQXfZCDb3fHfL+uN3XFoohAGIEzStaikHPIqR/G/bEffLDOotJEBjjhdBcD5Tm9Hoau83VdM2glKo2j0lSUBjL37S53XLJiJfsxYEJdFO6hyWP39TCQ1kJYUq4dakoyxiRSNMZVRmtdqMWmMt2Yxxi8cBJuu8GWRRQloPcvx82iripZG4PKq8e7xPzy+vr56+757fD4cPftB2WM+eH97c2yeH7b7rr+y/445MyobVW1/Ri8ZxBXSUmIpJzCdzebrhu55NH70XufUteObdcvmuF4PC4Wi6osrLVaGa0hpZRz4sQgk2xpRVhEYs4KaVobfBFqZkTBC2ABnFtBL7h1oTVyarq8aC5wSaKugHTeY4/nqL8mJjg1hZyPK6dZGvPTZuSc++9hnokxw+bVWwnAeT/i/C6n9FHOh5sglIEFMePZbD1Xx7JoIkjRKgWQNEtOkSQVtQGWY9tH7xeLum4a0poJo49BEI1TgKRtzsKOjCUU9Dn2PojRWhFH1goKZBuDyUlzcs62Y1AKYgzZ92xsEMjGjqSJtFiVSo2aGHBk6DMkZTMa0FqjSgkD5/YYF0vLWceQjC4UsqJstdIcfD/ENNKydEZ7yZZwc7Meh14kQ2LQEoYxjF4ya+tcUVitOQGWmKW3ylZNtd6sfUovby/Hri8X9epus9xsFOnlYhGtJSLvfVM13//w/ev2ues6irC+3SDi7u21WjW3q9uh7f/05z8N/de6roFZMiuNRVkACBHeP9wtNys/jKRIKUJRpjDjOATvCeG4b8dhKKuysLZZ1NvdlmPufO/HUWubctrc3SDh89dnUvTwcO+HUFXlommstaUuhOHt7a3v+4f3901dvby+ve3fvPdPX74w8HK5vr+/X61WgGSdDaMPQ+z78c/tz96PVVWnnJ+evmZJm/XN7e2NQrRW//Cr7/bbnQ/h3fvHFOJ+e7i7v9XWtIcu59geO+C2WTZ394/kTNv3ddX81//2D09fnpab9f3DB04oSG/Pr7EbDOq7zUNw7bfv3g/7PWZ+G4bHx0dN+PL6IqAWy+W7983YDa9fX8ZxrBfV4eW1aurlspE0PP/0E2kFzCbG7z+8vy3/7tbVv3r37d///p8+fXpOh66uawrp8eFm8/5+7gK7YhHXJGTudoIzR0A4eY/PadE5yuQisl7d/udgP79iNhJe1OE5GblKey5AMFtA4V+WhC7yL9LFYYSz3gOz/ficEl1Y1qxkXbQYOatHp4RtrtCd5KFZIsLzKCOZxR48VwfPHuczRs5qz/nsTr1bfEYdhGlz9XxeMAteM3k6Gy1x6v5iBjz5Ozgn5qyQCLMQUGDOWYOUVmnttHBTmKowldXuZEdmLEg45ZTD2IWQrHVF5RAkxYRTLR9FCEhk8vr4MQ79yCJaa6N1UTpTWhYefQox+hTHPlRl5VxFhAxRADgzAwAyJxZmZpAYWUQpQ0pniQCSMwBMTfKQQYQZEZEAkYCAUCulgE9DBlApEYo+pZCco2PbPb++MbNx9t2HR6JCAA6HYbs/+pxyin3fjW23WNfOEAIrUpooCyBRzNKPw+ADI1pX2KLEqetewaIuFSrhwMAsyZZmEqUmCpzSaaZR142Hw9B1/WKhlNFMgESUGZHRoCTIOSqkHDIzGDAFWmdkCAlyLko3HIau98d9T0nrpjCKhj4NY2JQoMDayQGeKmcrVwICEgkLAsFpcLYkppBQuUJpip0fQ+Q0VEVRWhZBUCqmhCIGImEhQD7w22F8O3TMuSisUsgcJSdgIWNChn0fvrwd2nYsWn+3aVZ1AUSoNKNGZK1N7dihdkSszPHnVz/6RaGhKHOO2yEhjssCrascEqicxtH3CXTQSI2F5rb2CQ5d+BK2JGiqMjEce1+VhTKuG2L68nW5KEqnlLE+SlE3Qn4Yhx9//vK6Oz7e3by7vy1L86vvHl93B1va12O/Peack1GkrEkiIXM49kRKExBgqUlpR4KShJRJwjGlYzv0w3g4dkVRNHW9XC6M0Vopox1Pe6ZFcsoAAISaVD4bp+fon+d5yCm7Ois8s/RNv0iq4GT6kZM0NFe/+QyDp66JC0qcZaJJgWaa0hG+bqM4lbROIzNQ4LR9+kxmTiTmjG54ztPgrHmfWM7UazJDzjVwIQEAIk9px1nsn04GQAkLZ5GMkvzo4zgaja60wtD7MRNGpamqxjEIIloXYoqCqAjAoAKljWQWkRAjEVlnEZhythoxR+AsMSTmOLYhJEDsug4pkTHJWNIWStdPl66ygpQy+8TAJiNlBcyAAEmIiiKixECAKivSqFBYCVBITrhE0MapksloMSrmRAmKoswpjMP49rYdhh6QHh/frW9WCOi9L5tqsVwoZV6en9vjERGiZB9GY83N7S0Ik8DQtpxDilERFmWJBPeP9/Wy+sOPP+53e1Gkjdkd26auyOiiLhdNE0NSZLTRdVlKzjnF1XK1Xq8gw2K5SEX98aefNptVivn2dlNXdUwxhmidKetyHIft4fCuevjrv/3bnz/+/OXLU13VytgQwnK17oceAe/vHzQpYwwwGqu7ti3KUhltjN3vvsSUbu43n798fnp6qpvqm+8++CE0zWK9WhltXFntd7uX59fForm7u4s+HA67vu9CiNZqJGUU1XV1e7M57PYA8OH9h+VyUZZV3/XOOFJUFXXyObN21sWUgHQ/DP64H+LIzJvVzTD673/16w/vv/n400dnDQo71O8eHu/vbitjFXN/OGJKGmgY+maxePf+mxjzcrXURu9xf9wfY4yEtFiUpGno+t12t16vUIwQEfN//d/+w2qzeNysvv/uu9/86tf/7R/+4enlef/80m53GdGkjb7c9s8cRy6em7Mb7hTmUw8Y/HdfVwTkfN8+377PTQynZOc6W5qZCM1C1H9Pxk6ndKYdv3zOVI6ms+A8ZTByhQdzd9lZwYHrJqyz1H1OvmaIATxfm/PHmXaR0kV6OvuTTj7Ec7Xs7NKesWjaTnbKCOlKJYJzMe3aUMAic987CORpUTqKkEwbyhE4GpqaPCKkjAqdIlJUWW0UNWVRFpqYFaICVsAKBSTlEFMK0aeUQl03RVnFMHKeRAYliYWZFIhAihxjDj5xFlKESMY5XbhM4gcGQrIGQ3RNWVcLbUwOCUih0RlS8lERGEM5Q/YZRZFSMU8Tpy2gACpAQUVELMJAwpJQmDmRMgoVADGkyBkVcZYcsyaLRJ8/v73tdikFZbW2xlhMIfc+vu0Ow+iLynKKSmJdqvuHJYakjSnqWkgBKg6x7cduGBPDYnNbuoqsGxNDREOEwpyi0gogqUKBxiwoDM5Y5mljpo4Z9gd/2I8A5KpaWcOcSYNwRlEIYMgEH8Mw5gzCYo1xxjWlasMxjj0S+344vAn5fix1vl+tVouQKYLJmJnQ1U5pQQ6GtFPAkCVG0koIWUAycEYWFZgSWlaUJCYQW5SmqiKQSDbWIki3f6u0WHPDjPujf9323ZCsISLk1OfkchhJW2Y6jun1MHQxdzG7WmdSmSjl1I2hDXnRlMpVSkZicIVD67bH9vXgh67NiJKlH3jXdevKDiwP63pdWbtQkD1MvdkCgmidWSitjQ6Rj4ehG3xIuT1069uVs2o8tLuuX20aZ60A323WXRn70e+2u8Mwdh+/vLSHVVN/83BX19Vvmuqu7Z6349ddv0vJ56Q1CarInHPkDCFEq61mdM6WZTHG2I1jts7nFEJse9/50I3j/nisyqJuqrqqtFKKlMA0Opshs9ZKzbODZtYwL8c4BfVlgOv855ynXZovYO7zglMCc4JHmTnPDGK/cCDIDGgn1iMo0yqMs0RzRrHZkHh+mzN8XRLGSbmZ5qHhBZgverTMmhQCTXMAUIAACCgDK0YE5KkXUVCESQAka1IpeINAmlATapVBm8LahlNMbMzehxizAqUUMSgAyUmEs7UmcRJAZcg2Rc6MIClGgxJzQkSjjUQRYFBEFXT9qNbrutSj58PokblxZIydlGMWiConZCYSUokFEGPMKYMw6rKIVqPSWURy1lZzSJhFc7qrHLAvjKlc0WWfxoFCKhQpljHyGGMiKYvC1i5Jjj50x2NVBcDMgj56pfT+cJgUwod394UrhkMX+7E7Htr9UZgfHm9dXb/sXpucXWHruvn9P/84+Pib3/6mXiwOu/1X87JsFjf3901VKaWGvidSry9vQLBcLQtXte0xj76um//L3/3d09MXP3hNigj7rs+Zq5uNcS5n+bz/WtXVcnNTVvXm9ma5WL5tt2GMx/0+xBC8L1VdOBdT7I6Dd46UzjkbZ7vuOPju6fnzdrtUWn149/725ma5XrfH49ANcfTVsjREKUQFtF6unNXd8XA8Hono8f7+9u7ueDh4P96u1qV1y6oCFm3NOA7R+9Vqudmsh2EUlLqpPn769PX19fb21pVFzPnQtl9fvvbDsNw0v/mr/+fr89vu7a2wbuyH281KAS6bqnTOKBXHMaW8Xi4WdR1jSCFXVWGqcrvdpT7nnMjoY98d2/Zv/9Xf5JxfX95GPzLzu/ePcRiev3599+6RNOokw267Wa7/9le/vt+sX7ZbhOzjqPyoz3qrnPXROczwHM+IICwzXfiFRPOLu/jMd66ZzFmnnUDikkOd8OLUj3VOhGbWc/b8nm07Z9Yx52WC5xX1FxiYvdXn0t78VnSafztbjmC2BcHVoX+h4IicIA1mwRmvPo0IzAr3rA/D7OY525kEzv0Z0/PopDjh6TJPG8UBAPCU8skJO5GnQbAiggon/UaEEICZRICzVgiZlRKlsHC6ssYY7TQRodVCHAhEIxAKxziGFGKfQiiLoqwKaxaIxCnkEEmRM4ZFJMlpCeU0b5gzA9iqsIVVWqNWEYCzkDWIyJKUKUkgsBx3x+BTUZmFcVobIzr5se8jkUYwLBiHKABAIgi1cyFlFBGFahoGR6edrFapzFmQU5bEWQQ0WMkUPAdMXz6/fPz4yRbaWjMO/qasvB/9iIfWjylqS0VpcuwN5qLSmpg0VrVTVuescoLo09D2Xe+1s2XdIOj9oRPJo9GlRcVZEy/K0lglk/AuYowVIWCULH6Mw5jaY584LxZ1UZSkCGCa2IucGYWAJQzRj8mVhQ8sCNqqWsFGiu2x05J06RRKf2xlpGVdxLJkUP0Qjt1YL0pXlcCBWYQ5JY+IoPW0MCimTKAYYfB+Gk2JpLO0RLBcNdoW3gcCLKzBHHOKVFhBGqMcjr4dQkjJ2dIao5GQMylCpfZtv+vToRtJ22ZlqqZoVhUApKh37VEyZFGFIcm5cNpq1Ml/92G9vpG3130QYkdjSEMfOXk/RsmgcNlYNKiNIcyZkFEyIRmrCu2SUGG0bofdoRsTa1ugUWD8oT0kju8fH0EyCa+awhitSAfOx/b4sm23+7Zt+7vNerOoNstms75tnvef3nbPu7YLydnCKOVDZMEU85gCc9BGW+cU0rKuJ8EPBBVSyin6FH3s+6HrhrLqi8IWhVvUlbUl5SzMIgkBmIUIAacVM3IazXytUM+C9zkrxGsYmZPG+Z8nCDhnVeey2VkGP5MtPAlOgpO8fUrJzoRJgFCmIWTnBG4GGARkZJoK5QCAs+I+A938NhfYuyjpiCI8k6hTpR8YaZo1jyIAzEkZTZyJlDakEIiQEKauQlvVljBnToLkDJAKifM08VEYc05eQIEAMIOaOmZy1AycM5FioChKjMopK6tDYik0FTpQ6sFLVabEgxCTIk3AGJmTcFIKiQTo5LFUqACyQEQKLCkFAVYomLmySmuHXkYAZUxOCYbRScpj4mG0IBxTXZVFsxTfhZy7MQoqn3Im2h277e7oqrKu6mHsnp6+3D08OGcR0A+91qSNa3esSCltCJWPnrP0Yz+kGHP67tc//Pjjn/7hd78rC6eVCpy6oTNoUOmyLkVAd13ftZvb27vNjbaOQFzh6qouCnd7c9P3fc75y6enlBMp3Q19KaAM3b+7B00suNysq0XTHtu6WeS809oorZlFGR1TYpaiKKxx9aJ2hW37/g9/+EPiVBbuL37725v1BpEUUXs8LuvaKt33oyaqivLbDx/GW7/erMchKKUe7x8Wy8WyaZaLxbKurTXGaMksomKO7W7fdh0qOux2dw+Pm/V6TP5wOPbD8PnpyZZOObNYNJ8+fwrjyJzZp/3Lyx9/90cg/OGH7yvjvn//oXDOksIsAlxaq1fLqi5AILOEHAssty/bjx8/CUCzaKqmWS7XpCjGpJR6//7Dbr/1Yyisy4qbqrHGNk398vJ62O+7YVzd3m3uNh+O3TePj//0h9/9b//+v2i8SinOwTD7Xc5/XCsu5yfPMsov+p6u3EMXrffCY87C0vQgTbvNp7gFnqaqzJF8ll0uTuHT2+EpbbpiQucOixMwzQVykXn1hcy9Xpd86zpdm9EIL+W8iyNxVsRmHQgubfRXDqqrC3byeE9jhM41fbkMDjqRKDgZC+ZRP5M1YJrqgcLTiq9T9UoAWaa96EpYIyJz4bQmLJ2x1miFwlljLpxROO1OD1k4I8fgc+QsuVosq6ogIUgpjMeh69DooqokC2Q2mpII55xz4pRA0GiylVFaCQkqEBEiDQIx8ODTmLIfI2cEAckp5ZRDNlqDSE5JmEVJ4uRDYp52eFH045FbBVxYVRWFK6zSMg04mu40SgFLVgQKNWcg0AxqHP3Xl91Pf/5SL+vVzXL3ui2LwpYm+nDogxcRw4aMIkghaIWltVppUxomihkkc9+P4+hTYlKatPFj2O+2ti5Rq8OhjZrWqxKVnmenTIYqZUhxBhSjDLVvu9ft7tgec8p3tzc0/bJOpQpFMSbOzBk4ZWcMEjGnmIMxrCQYCssCy8oWq1JLHg6HslBVXSiFsfdZsqCgwmnDPaAaxwhJmqYyWovkLDjtOR5C8CGB0ilDzDnlCMJV4azVu+MxBk+KKkuLTeOc7sY8pNRHFlJEYG1hrVPEwXtjXUyya9uXg/dRtDWSMuVclWYYY5fS63FMY4oZFqVVKkVJt0VlMW8qtV64RnGXpO2SJTRS5RRjzrvDaBSOhbpdF0ophWgUF0rnmEIKIGRd0dwvFzcL/PTyvG1fn7chpqo2xaJWJFmy1jB0fR5DWRTiLMaIi5WPZfTj877dt/2yLu9uN/e3m3d3i9WyeNwfnp63r8fu2GeDjqyDymXBEHMWOXZDYY3WqABr55JWhC6OIYSURHLK4xhHH0hTVZV+9E1VW6sVEqESyJM+fcY0IoUgMnUpiCBeGkHOAu6sds8NqnPDx4wL9Eul55xrzqUzBD67CU9NYyeOdanR45wvXsnoF5l6biG55Iq/kJvm784HnmHwoiXhxHkQAbOAwhOcTvMXMgBpxciZWYCVLUjAFHYqacUEQBoQUaPAvL5QKSKQxJoQJKMkEkAA9lkBGUBgQRAhjaRiFJ9Aa+MZDJpAiZxNJCGJW91IzlmAgcfTJBJJIBkQ5kZ+UiQpExGCFkXRqTFFhaIVqiySBXzInCxiTCklMag9cIzJucq6KrSHYzcUtxuW3HVtYYusi6B0RN52R6tNGMc2xMNxeHn6qjVWdfX999/1Xd8fj3VViRCw3NxvrDUpJFRmdbcJIe7btqobIkvw89gNVVEuFo21LvqknLalU0aTJkZ5fP94d3t/93AvIhwjEhBAGEbIokkNXacUKe1cUaaY9odD8L4oy6qsn56+KK0F+PnrCxDc3N4QKiCcbM4Asrm9qcoCBDglERNDKIuyqot39+++//CDUiLCReGs1u2xqzf1zVqcKXPi3eHtsD+8PT0vl+uqKsMwaEBJ6fnpadnUCnS723HOKbExuiqKuqpCiMe29eNw0NAPPTMBoYDsj0chfHl+2W63Cql2xcPd/eZ2sygbP8Y4pu9/8+0P336zfX7rt8dVUd2sVylGJeBHH4bgvdfG7A+t1ub2/q4b+pBSaYv7b96t16vh2IPwarVERfvdXgitcavNqj10wlw01TKzKFUURUxJCd/Wi/D4zeFXrb5SPM7heDHH/fLBWa+do+z0o7O8gfOkiSsz9DW7gFnYOdOFc+SfpCU5izgA5+4wmJWcS5CLnA88K8VX53/NbK7tiZctFZfc68oH+MvrMJf55+txQZBJeZoLZ5dq/C9J5AxNl7oXIJ0fRDhN54AZ1kR4GnNNAiCMIAqRcyYUyBmnViQWrcAgOUMacfJzakRbKEUEOaERZwkkcuAU/Nj3wkwIZVFUy0YZpbTmFH3Xet/7sTdki8KRohwTAqacY4xt26UYtNZl6YqqAMTMmUABEqDyMfsxDr0PPg1jGMdgyBSlI22879tjp7R2zpE2iDoG6WMcI3NmIjFeUtem4dg4fbNe1EWFkxOX5lG9IsAZGMg6QI1IIcrx2D99ff346RWNvv/wfmyHulm//7BJvvc5AmRjSFJGJTmGorTL1fJm2VhnATCkzGPoDv3x0BFpMsqW2pZuaEfhQOKij5wSaFvWdeEIKIcYEImUUmQ4U0oQvE/Mh/a4a/dI2KzqqnEInGMg4JyFUJHCzKyMrpo6Bd69HbbHPQPVq0ZnO/pBCdWVKayN47hcle/erW1B3veK7HJRMUIK6Xj0jTNWlSlFUQoQWTISKoLIzCyj9z7GlDKzzilKjoWjzbIsKrvbwbHzxriiqJY3awLsMxzGdBwDKyydWSydUpRzzDlyVj7DGPMYUsrJZlqUbr0scshtH1/2/b6PWpmvu34Yxm/f3xZl0Q2jBpBxQB0bCxpVsTCtj2nwYQyLm4qs2rWjH8haC6RqV0gKDKKUUEw5ixINoI0ia0mABz/2Q0C7qJoGJD09be/vN6tl3bU9ZL+oChXsGJKzJhijBjWO49t+HMPb4dBu1ovbzfqbh5vC6mp7fNm1hz76OGQSQmWMKrTOadJLxRogTSFwjllrZZFCzoEwATBCSDkdunEMbdsXzlbW1XVhrTHGpJRzjlO8KyLAfC4xwSmhOrtxTlgwEZ+zKxFnzzKcbDdX2eOcoZ0pjEybns+PnBQjOKMcAMjsYb6I1Wel/Kqh9ZyG0iRa07U/cZ7af/mSK2idbN0gwEiQeSpWswIUTjRNqCUUBOUcapNiACTSJufEAqc8RpEQppQApiGoWiRizgRMNKlXAiBGE+TpjImFQgRGlQA8A2jLoIQwppw4ktKEmrQWYGZOMQOIIkoMQnS6V0wuAUJh0UqBVoGzAiAAkwVilBAIGIW1JQ4Rs1SLZWWUPxwJpCydWKfJ4GK1e3nxVCyXa+Pc6AfRpKoVixBR9v7Yex9zXS9vbu8mMT7HNPSDHzwjKG19zDHxwhbaaZa+KEVrO/Qvv/nL37jCVVWlFKFIHENVFa50h137889/doX74ftfW2MVKtK4Wq3GfrBKaWViCAi4XC7rRRNiiiGOowfEu9u7lBOzaK2R8PV1Bwq0Nm3XN3WzWiwBKKVsjFaK2rYrq2oYhtft283d7f/yv/y/DsfjarH8+vQZCW5vbjTWd7ebwpqx99ZZztJ2rS2M8zbEdPtw8/Txs/ehKguOqrBms15GH/u29cPYLBbb17fVejk1VD7c3bZD//Gnn8q6LuqmWVTej09fPmujJLE19ptv3sXgH+7ubm5uHzZ3JBNrFkpYO+eFndGQue+6r09PsxyrGmsnZQs9GW1i6A+7g7EWVv9/uv60yZZsxw4DAezJhzNFxJ1yeBNZxWK3xCLF/tj6/2YytVFqtUxNll4V35x5hxjOOT7tAUB/2O4nIinrm5Zxb5zw8HkDCwsLADRtiPMszCUXEMlLIo+isD8dm8ZnLj/++OO0LIBo1YzTPE3Tr7///vsfv7ev6as3C2TLP61L57ZEbvDgl6nnFQuovgUBdU91odHb373JlG+zzHETW1cggEhvj/cLJeJrT5436mTYMmmIsI0CfXuyb3/j7fX9Yvn/4s/torZTeCWkcLVxv9hat0jplpC7AZ1b1uxG9dQzBIJ1WPV6A7S2BJJtCqiiiiEwNdgiMKDeYrDUWNtY6z2F4JSzJUAowqzCjowuJc7LNM/LsrRt2zRt8ME5j2hRNC9zjFOZkqq0Td+1HXpfWMGoqs7jUooQuaZrvHc2OEHUguQ8GCgM4xzPl3lZUrV3KZYYSyZh1GCdggWH6Lz6wGALQAYdABIUa00cR17G3lPX9Yd9f7w7utaTFcCymn4ABcyxEHoAEsSc5evT9eUyfH2+MGLXtS+Pl8a7jz98UM0plqYL47xM1ysg7HYdZu6te3+6b5qQcxEySvT585enb8+lyN3xdOj7pKwqikW4XB+f9sfD8W7fdU3bBueRJZZUi+0MF8NCSeTx+WUYp2mZrLN9171/f9/1gbRU2CoiSjV/gIRkrS3LnJbIufT7fdO4zpLR+2lcmi5Y68yp8QZOh26ZhsTZG6NAZckpZYdkBZm4sWL2PrGAlGBd5QuZZRzmeSopiZJDFQdwt2vuDoGFVSUJXpfSLuyDb0MbS5pKvE6Lcuzv2q41TbCWZeGkakOza1p1E3irnaHTrtm1zZzKy3X5+jLPCdqWrDFs3BCl3RMqnZ9evIUQpPFh33RqbSx61/uvX8/TPJEzZM2S8+cvl5Q7PJEnjCIkQsa03oCFZVkymBCa/tDPLzP6UJRSMaHzkgsAGItIuiyjBznt9rDvnp4ucUmHpr8/3o3LMg3D1+freZqHJbWh9c599/7jaXcaluXLt+enyxILkAnOmqbxibMKECKKeG+L8DJngwYQWbSI2sZbb4uUInwdx3GaJ+/GuTkeD6EJZAjJ4ro6WeoUZHiTNFqJk2rfhLQqAUWBiQyvLPXaH7+aohtI2fhtvdmP1QCvZgRvlRY3A1zhVx0YV4+/KSpvGfWKkPRNVa7eLOtmK9+WfOlmowSIqq2tZly0qKAxhpBQQHJCBRQphX3wam1wHhEBCcAUVTBWiqIqEtXxzMZYFWUWIDWABMaA1vSeIhDWMZTr+FZAQoMiqIRCaG1VWgMIGDAppZQm37VkUBhUjCFSBgJCQBFAAkQAUUAkSyIszKIsMUJiMuBQPRkQNWQC2aTcNGHf9yjCXcfCszVwPHZ9OxRdwt7vjrg7ROFYiCwcDw+oen5+Nk369KtdGq+oBX24zrO35NrOkD10OzLkTEg5Q45i7Djnx6dz07fjMA7DsD8c3328N8Euw4zC+747P718nj+P0/jt8fFf/6u/2++PhHB+Od+fjk3wFokAmLlpGlBl4V3TPc1nZXn/4d3z81kUvvv+u6dvT4hkrVnm5e7ufp5n74O1Zpqmrm0+/tt/KCxPj49xjjnG3a4ng8fDcbfbWeMKJ+cNKr5/eDdP07cvn+9OJ2zC5XxFpCb4ftf/+MP312GyBofh/P79u8O+c7b2Fs3K2Tt7d/zQdu39/f3j49NwPoe+KSm/vDynsnS7Zp6uv//9/3m+PP344w+N83fv77zzH9+/z3EK1jpSVY3L0rbdbn9AgEPvp2FcrpMBHM9nS2Sc4Sy+ae4e7lLkr1++WqJlHlXFGeMIh5dz8B5Vh+HqHP3w4/fC7IMzlnLKLvj5HOdhENVxGvf9/scfPn75+plyPO2P9o0cb11NuC3KjXrdVg7otlhv+avV/W8oBLYFvq6rX+KEGx6pv4Y3KldFbrUGNyblLYe04qTKPr8SvTcLsh5dbyzPWsCl65K+HXaNyuStBXo9r/8LEnqz0frl1vH5xibdasVwDd1gu2mrLnGTGq6d5QFABbBWvwPeOC1CEBVDWtslEwCoOgKj7BxaQGvMrvEOKRh0VWKaliZYUM4pS8mccxSerhdnXejaw25vnDOWCI2wiMw5x5ILKoamJWMRUI1NGVJRYBHOcU7kyHlryFsfCCgnBoAYhYWXOV3GaZ5SZjWOAFAEjHUE6JsmNKGGm1k1irJgTGWeYwYB5cfnl8bDvgs/vH93d9h5I23jFYuI1jIcs0bXBGis7xTMNMZvj5dvz5dpSQguNMaSbRr/7t2BpFxeLt4gKZR5ScPY7/u7XR+M69rWmBCjAvlxjs8vl8fn4TrGw24X2r4JrYEMVrKl3a6xYE+n/W7f+2DQaG15R8ZZ8khNmnVJ+dvT0/P5ZV7mpvGHw26/3+36BlWtIWtJuaTCioJgCjMWdUYNwf7Q98c+iSxlNmD3ned5RE0Pdw/O+1Kyqoqq825Z+PHx+XK97vZ7H5qUyhSH4uH+7uC8QxQgqO1q5jnPS0pZjPXLkoTTaefvDx1xHsdpWZaiel2SG51tmoL6clnGJStBE8L9ab/rgndkXDAhXJaSCzOYwuKdvTv1h12bs1yX/DTGWcj0bRYxRCZ041IOCSzSdYpda4Eol9j1Zt/bw77tWtN5HKc2s17GqRR5XgY02DcdBQMIjXEKXIBR0e/6kkFKzEqMJhsYM9M4G2qapgVrQtMoKT/Ldbgg0ek+PNztU0ypFIu+bxtDpigXzp8fr1KeG+fu7o4Pd3enu33b+O55eLxM08KSZuZMAGSN9YbAEKmgbR2JQCziHUWFa4qIBooCoLG25DIM87zEVErThKZtd23rnDcWRZJwUZBXEQ2CgqBStSabCy6EaNECYR1DhkivusS68jdzulqYrdPqiljeWJu3/1iz6gg3xc+tA9lmUQHe7AThzT62FNpmm9/8qVMVX4n3ysOrIeOMjWlJhRtjnSNJRZlJxZISGQBhASTDikAEAAhCqCIswkpQB9pU3TQBIhkAFURGLipA6EUsEhpk1axFjK0d4a2zqnAdBm9s17YKqhljLsI1/4iG0Bqfc0EAIlIQNMhaRwaDqY1fOUtKWDJxcWQbAA/qvAURZGnaJrSewGRW8F5EBinOh2vMwTf04KXwoMYaY09NWvJVNATvHlxnTBuM6XaS5qcxYklY5N39A4ASYVwSEtldFxbfdsfnn/56GabzddjturvTfeiaw/6wO/ZzvyzD2LfddB2/fv368O7dv/vHf+y6DgCEpZR8vV61SPB+mpf9fkdE+34nomiwcJ6W+fN/+fLjr37tnH16fGqaIEViSsJSSqlT6C/nyzhOgFAKu+CLZNe4ru2Px+N+t++ahpSUWQq/v3svLJzz6bgTzss8e++9N03Xp5RSzuJN8ObPf/7TP/zbv2/bxqEN3n778lWZd/sdomZOrekt4eF0PJ6O8zJ3fddNnRZAwjgvMc0ppTa0nz59FJbjYQ+iXWga7w1C0WRC6LwPzjw/PRk0KlxyKslfz9ci3O36/d3BhzZljjHu9r0xNM2TQbo7HUVEWdq2ScsyL/PhsPc+nJ/PIrNvgrHmcj4j4nC5DOPY73feGRVuvY9DnK4Xu3XXu80lxZvXf8Pqwo3GXTkhNLd1tMmTXxsbrsBkC09uzNKbHcO2SrHWcG1x0iv4WRHLq7RnSyNtK//N9PT/hnba1v5btc+qS77BvNvmv0BBrzTPm5O+RVLr3YHbFLLXHbwWzb5GZGvSHiqHjqCiSEZUgEBUVUTJAKIh5FIqqWtRRQRBUMUZdITBQBPQGdM0ziqE4Cyq5lJyNirLdUop1puamUvm/f6u6zvrHbCknKZpIQQfnKoiqyFnvTPGsaAKpKVWUhdlySmBCBK0bdP1IRdFAkZKSx6GaVkWVp6XJKJN2ylpihmVfGMPhwM5WzMChWGYlus4x8gKqswq2ZG+PzXHff/h/vCw7x0Klxl1FGEFQiAGBQYCQ+TRuGXWJPkvf3s6j3NmiEkMYt83+1O7O3Q5T5eXYde3wDw9D07l/d1hf9x3oWlDT9alAgJmGJafv3x7fDoX4PcfPh33HQLEnNBLv2vbXVtSOrUHUhApVc1eRAAMgFPwKcrzy3g+X788flVg52zft7u+3+27StsZa0vOJeeSS9MGQ8YYNqZ23+a2deT9UjiIQ1QpnNtgW+89LXGOKRs0JYFxYYpxXHJ/d9yfDpZc0SnnlJBY1XjLkEVAlVSkMAiYUku0kaXEw2l3aIMDEFZhUEJx7pxEz9Ge4/XlmuLSNub4cDruD96awqxkC5ix8PP18u3xch2m0673zhmyEXXJ85SUjXWhkZhZuAgg0mUq83S2oXX7XqEsMUFOdjElRc7FY+yOQSgQ6uPTFcgWoeucUsbTriPrOKclMnkgo89j+vI8fHmehrlQCLlwfL5wTr/61YME//nlWXPqT8fmeHp5OvPTeb/bPXw8PX975iUKoEUyvvMqiyk5L2Oc0tN5yaUJvmmaX//w6XSK47ScL+MY0xyzCBY1hoxrXNN6R5bQzqVch5lSCk0/peiMyYU5syGixhLiOC05c4x5nmYfXHAueGctOO+Zy1brCQAk9WkACDCigKoqKhkBVkQRQaSVTt9MzVurpJvqGTZ10WaObjETAtTJN29KzCrMwY2uucWbWxkprXu4BYivpwBAN+ZoNbZvKl2qwScwolKYDZIl9NZ4QrECoEhGWAiJhZGMICohIEphBLEKgEZFFYRFSMmAQVFUrncGDAkBgxAIEoEIGCA0aYlMQNYyakqxJE6S98cdEC3TzITirRpRIEILCIkZCEWNKoAxrCyqQEIASgIgKrm1gECtbzproGTIhZAAMXiHgCUWEVhi0mCWwvOSmp2Jxkcgax0CLwKd8SCSyaAnbhvUNk7LUtA1vYDpLJy6d+lynRRE5OXrS7/rSXMahuPhmBE/fPrBuvbLl78h2sOhO5yO8zip5OPx0BgrRU93986Htu32+50Kg0rtN51Syksax6HxoXCxzjlvbWi+fP3y/tOH5jo+vH/4+vlb0zSFy/Vy7Xf9l29fgwvehb/85W9d1ypQt9s75/an4+eff/r29dt33316eHh3ujtcrldDJFpEkuZsQyBDL4+Pee5LLMG6cZyct4ag7xsdJadknDucDu/ev1OReRiXy1AkWTFEtD8eLufLf/3nPzRtW0T7rlOAKcau6zWCs+Gchrbt/h//w3/89OHTw92DcP729esPn77rupZE4zwriwosMZ6v52WJu37vvDXWIOD7T++H61hUgWgcRwCUwpfLhZlzTE0TnLXeB1E2hnCtV6CcGQ2VUlzmvm2mccwlaWFOOS5TmpqUS858PO5c21m9sbIr0XJL99wAAcA6Kwb1/y+sebv57acrbVSby+hGeGxwAqGOXNat0GqFT/IGu7z2xnhNWm1jCF/5qtWsrKmltzURutFZbwr636C7tye6Hol+gdJuH7/WpW3Cb9hGg7ym9lcBFbxucPu3QOWGEWr1Zg2yajQpJRoAQ4SStYgz6hCNw8a6xprWgTdqLBIoAaDEIiK5LMPInCVzCL7pWgJT++p4F0T48nIZh5eU8uFw2O8O1RAaa63zojjEch2m88s5pixIXDgvMTh7PPWH/b7bBRCIWa7D9XpdSinCWns1O98Yi0gkgm1njHOu8db5ac4v5+ucS4yFswiitaakRFL2jbnb9+8f9rsmeKuaJ9Y6ThQQFQ0BEYkFAALLbErBz99evjxez5cRnVvGRAqffny/3wewBWVZhgFBQUuaU9c3be9B5fhw1zS9gB+X8vR8nYuO8/JyiQvT/rC3YUfGBAPBoeucNwiGnHEqSRVUWQqhJUQrQrnAXMrT4+Xrt+d5nlllf+iP++543FnnTX2kZFLiLz9/Fc4PDydVElHvHSqxWctmmEvbeKBQchyWoe97G3yMeRjGackK2LadJrzMKQMedp1rGs15mgblaExnna29sjMDsomJpzmDcWShqAKUrrWnQ3s69ABMSMYaIgXjEtPzkEk4L0VLuTt0XWgMEZJVpZc5Pl6uL9PyMszD5dr4sOt3bdsX1efr9O15yoJIbpqSN+CdSTlPkseyIGhw1LB15Cg4dPbpeVRO3mHbBd8ZIAxn2vet9X6O8elyJcDHl3F/6H1w05yzRKF4mfM1ylgoU2NMUJJhTMvzKM4eDwFFGxuWoYhqZFrm/HL91naN71pVKonHOQ7TYrxr+q6C3SXmmAZjyRLtDrvdrv/w4c431l0HvMo0xxKT3+1SzrnwcW+dN40JzmG72CkuljwYsxSe55JyAQFFNNayyrws87wggXe2bUJoXNc21pKzjgiZC7MgYJ2fWrgQWmetgMx5wbobslqb59zsxfbfLS+2Rkr6S0NaoyrAVxTzyr6v4EZ/oaNcjRSs6aA3eqDVBG2qZLiFj/W3FeB1o9WaotYklLfWoxjJVlQgAyAZSiwADAoqtTc2MAspGCQEERFEFdE60lq56naEtoanRgDQgigpWLKgIiC73l/inObMiKLahEYylziGtkWNHl0TfMwzsIBBNaQqqGaz8FLVBKpgDKKylCI5W4HWuUCGCFhK0wURLarW2eE6qwoVZkAQjAwFiJV838eUp8ROAQGtJW885MKos4izFnwzlLT3Tes9pwlCYB+HebSGmsMOvRMW9GHOOYgQYNt3+8MhLZP3TZrneRxQm2RDLnkcJu/8/nBEhJiilBKC73adWczLt+eUEhL0rns5n0Vhf9jviBRgmmbrXC4RCZ5fnu5OJ7WEiN9//70I1J5tTdsCkbBYY8+Xl5zyw7uH093dbr+LS0pLrK2ua31fnJeuaUDg65ev+8Puch1V1BoqKS9p8qHZtYeYkzJbMopARIponW+7ruv7FlVAhzke7++WmP7yl79cr4Nr/MePH0R4uQyllLvD3d/93d81rpmm6eXlyaLZ9buuCWVZplRUxVr7/PwEBo0xAgIIh9MRCQ3bpt/fvb//05//8vjyzIWn63A5n9um//TxvXfeWuu9nZf89cvT4bA73d/FZVHQ3/zmV4bMX//8l8swgvJwHobL+OHT+xjTNEz9Ye+cN0jMtCZiYV0MN7ywUby4VQisGAJhzYgr3JqNbiFGXdX1s9cuqm9RwQZoELeicpW3gchaVXwLgmArqt8W+pbr0tu5AdxOZqNe1vqtG6NFv5j5tV3W26DoFexsoyjefK0nw2/rwLYk161S7EZig4IqbjZvtWEAAAy8kkNUWwqoQVSp87wVWbnExlvrIHjjgNrGNz50wRvNwBFQlIuKzssUY0xLIqQmNKd3J1PbKgOmObHwdZxySjGnnErb9W3XC4AWAEC0DtRMS/l2Hh6fL9dhFiRjgw+d2bUYLPbNLJjHVFKe5ziNyzQtwtC1ffCNsQiiRGKtQeOAoAjHUuYM0xyvsUxJU1RjbBsCcGw8Hdvdu7v21Ppj57Vk4KKiDIAEUsA4C0o5CTkParLosKSfPl8er9MSFX1TUun79v394f37gzF8OU9MuW3pcHeK4zyN2aHpup0PHsi+XNPC6TLx48t8mWIRLeDafb+7P3hvmCcw6BvfNEap9lgERZU684jVWsOC05DPl+k6zueXIcZknbs7HO8fdvf3O28pF0FAArpcro/fvpWU+rZhtqWASnbOAChzyVwAyARf71gqyhkQjTVhXsq0aCZ3GSYduGk6Jktdg23LFmSO8zxYzrt9b4yRIiyKFnORx6fL03mamZZYFs5AejztDscuNDZGMdYqYEoZQRRNYkVlAvQ2NKHddTsFvcxlmssf//bl63nCxhXlLHp36H3fDam8vIzPQ3y+Lom8Eua4dH3ou6bkfJ6XsuQuBJNxWl6CMU1rT0eH5F9errvO3XWGC3hLHz9+bC/zl8fn8Tq1fVtYX57Ou2tUgus0obNq3Rglg1XqkiDPSpai2CHP5z9+3e8bQmictYZQRYXvHk455+eXYb/r+q5zznYWo47PL8/X62hDQPKuDamU6zSppqc57oZxv9t56+7v7u/v301xeT5fhnFMpSCYC7KzvvG+bULjTOvNdYxLykhoG8fOiaIAZC65FBERUS3CpeQc3WLjHLsuhNAEbwHBGItAqlyEqxHMWgDB2wCqqqrbIFK92dUNbrzyyzczU6HI1jvx1TLdLKmiomw2rn6+qSjX0FQ3SKO07kJvWbQKshDw9VRewRPAVoe6Th8rrCkLqfHUIC7DVUvs+651PoImlajAiMZQzmyhGjYAkMpqGazlXUIAKkxoRBmQjKoBQRZCDWQbY1OOKS5AsrOamDOiWMrxzMM1hKMX7mBBLKFxA2uWAqCEXgBEizGGADRnABIUECBVAwBIGILkIgJROIogYAbMzGjddeGpCKuSqAveo0MiH6pcwKnDMo85LYdds2t014aluDHFzDJOM2ZpAs0pNyGkzF+fz0b4eH9CkaZx1jjOeZqmPvicUppHKRzT0u86ADBku7YJ1imXkpIjQlUR3h8PuZTI0u92hkjl2vQ7MNMyzV++Pi9xbvvWd+3y+DQvU9u2BpAT73b9/d3JWm+Nnee5qOaSQ+d/8/7XT4/PZKiUHGMOTTjsd/vDfn/ol3ninLyvmSZy1lnnGu+XeYk5NV0jopfzNTTN3UPHIrpgSSXbmJd06I8qmpkLi/MhNM3x7gSIcY5c5NN3HwXINy0rfHt8+vf/4d8vceEiLy9Pbd99/+GTUWrb9vzyIkVPd/vxes3TFLw/nk5xmedlYebGN3cP74yzcYlZZInL5XwRhSFPiTMD/+2nv/Vt9/H7T33T3Z2Ol+fL0+PTfr/79vVb07ZEIYTWont6fvqn//wvxpiU0jwv798/GOs/fNff3Z8ul5Ezk7FAiuiSiL259Oq74VZi8KY+HG+AQQEAtbbbXHngNRtUFyMqrv3Ptv3qrZjrlVqqIhy9teTZlNArUpIbNtnyShXdvIKMFafdklk3avmWzVqjH9hW5kZx1XozWRf7G5XO6w6206rk8hsF0drfEDfuat2itjdaN6iX/MoSbf8LgCKQCFeYKSyCgKKgaq1BEgDT+dA44wm8oWAtiORpyCUbq5xyjLNwFlVE2nUH3/gmBFBY5ilOSylRi5AhMo7Q7A931nmwFEtMc/JNPwzztEwxyxTznHhJWiBYG6JiyWgtINBlLmmaJSXlYoxRBedavwtN2wIAp7zMCzk+no7g7JL4+TxMMQE5JCfUqBF0RqVIyad9/+G+v9+F1mWIS5yvKmyQfNORIWUphTlDUTY+oGmmJb+cx6dh+dvjNRXsuw5y8R4/fbj/7ruTReYUG6vOe+cdIRbn7t+/7/tDzrmovpynz09DBjcmGKPEYotgaIPZtQXNZZoDpLvDqWtbS5wlZVE0xlhPaFhKjOXyMo1zPD/Nc8o5Kzl/1+/brtmd+q51K0mw5HlOJXFcluGa7k6H+/cPzlouJaesTAIlpsii3lkUSYk5S4xM1otSFpoTJzVjgYFNTNpgMQqh6QBBQFOKzsHxsO+74CyICKkhcPOyPJ/H65TANYIQc+l6dzodXLDDOIIaJQNQh2Cgc04AcsmqEPr28HAHITxeLt+eXoaYny7zMBcL1nvrOq/OPy9TmsvL8zglWbIUI2hl1zR3u65r7BXKojxnjpqNGsgFS2mCS2q61iZoXoaUYfr4ITRNSDOnkgC46bygutaH3f5lTpF5TkWsqIXEhIbIYhZkFmTR0AjB5fllyJMhVFZrTROcMi8ULeE8Ll8vy+kQj21wztl+57LOS5qnmCUZ6wExihEFKhjP6Tw8O4Onw/50OnR9sO6+7fvzMMYxVl3aS+G2cXfH064LPrjzdZozO7RAtjCwSlFNMeWcmAuSrSYnJy7xOs+j975t2xCarmvIGCKDqASWC7NkUCC0WCFAtQM3ieAbCmclXlaMgpuZWc3bZl8rsLk1PNus8GoXzWampf70lVKCTdrwynP/4gRqPX9tR4KEWifuqBDW7JkigffOqEhOS4laEqE6AxY1CYMoChgypTCwKgoZEgUlrMInUFm7xiKFEDgXS6QinBmNYA06BLKoMLfWIJFAtlRiYVXsCPu93VlxWshB0iJxcQZEFFBQVVkNEIEACwjU2dAIUjWWpgq6waChelmlFBQoYJxzihRCK6pSBBCKklGDqnERYzhJZmYDkpaFWkecHanVLIURJTSWgHleni7PTqTdd8YiGvS+MZa891F4niajEqxLOVnQtgmWDAv3rS8Rri+XxbkQvDMOiFofSipPj4/drlOAnMvlOhTO3nsRiZqGp7Hre6i9Y4FyyqH3Hz99PD+fc8nOmuen58enJ+Ps7ng0xlalx/nlxRnjnTvu9wBqDE3XcZnm0/0pSymlTEv0zocm5CWVnIdheni4K0V8aOKcH789P7w77Xb9+eWChgjp7u7w5fPnlBOLMJcff/wRkZAopQKA1tnLMKug9/5Xv/1N1/e//fS7//ov//L8ort+d9wdzpdr33YoiIqcyxCvwtw14dPHD4U1xfxw/46sbbu+gEAuY1zOl/P1ekVDL+Mlpjhch5TT/d397373OwKM89L3/TyNT9+efve731ln5zlO49Q0vu26aRinef7w6QMqMJf94fT8/K3t+67vpEAtox2XGZ21W9rrFTusWSGkDWJsQujXH8GbuOVtYRZslekIVWuMCLdSr7VWdNVQVyj1emR8RSJby7BXNHMbw7NJrG9QQ2ArK7uhFMXX+vlXqc6NVNqycLUw4kZNraLkmrp6jY82uviGBisbhrfYCvX2cZ1ZqIpvrM4NH9aCBQSoYx8MIVTVHqEl9c5447vGWwDkTCJaskVIS1zGiUssJbtgWt+EpiVrnfE5LZeXYRoGUSEEFWhCaHcNeAtIRokBi+jjeZ4zl/NyucaYJBUSIiCrxlIw4mxe8lJSANQlL6zABQVQCAmBxQfse8uSS1ETrCFfCg9J07jEzJdJlqRo1XhAFGYhVU+4a+zDrjkGT5yn5aJ5MYAWCa0VtCLIDIRGAACRMQxD+duXp+dxuiwyoQVnrktsQD7c7Y4PrTGlLLMuU+vRBU/WFIYmdNqEQv46l5dx/vnr5fESIZg5K6MVZ4VViWziJY4yPN/17hSLj6m1BtAhqorNYFLMy5KmaXl5Po/zMs3J2LDfHe7uTru+QSeCdma4XJdpWq5DfD5f0xTbrnk4vWsejtp1S8kpLXHONjE6NBhMsGApFZWcFUApuM5mpsucHi9xyCXakJvdgnnOJYj2FmApeSp5vFqEh/d3+2PPLCoCSCz6co3DIgVcaDvvOCAd7veh74d5WobRdu3MiDa0HSr6xnkGZTZiCrT2eZxepuF6vjy/jGy8UiPWxUioZFp6vMY4zyKakxamAhaEvNLDcX+3b0qZhzgLEIOdi0VdKxSnOcPz9Z77JrQvT+PjeSiAywPE6zJdxxD8/fs7AFQwvi/6PCzXqQhlQgGba4++nOrMMs5sWiuEpm1ZGLy3zgrgNRcpGs8LoUhmVLmW4auZvTOh7Wzowbj5OsWSoLACMSsLWEfOusSsJV6+PH5+emq6sO8Pznd95wimcRycd2q5KH95fGybtt/tADDHUrtWemNzEWOMabyzmBOpyloYhcBJOEksqWROocSYnPfB+xAcIpl1iDoLSG3lBYK4Bo+42bGbePFW+rqlulYUQ9WC0RYy3viftTPQm8YjAIBKAKpYh5ZibUx1M7a3IA/XQ67VYHX31TiJCt4C2MqDAwiLrf2o0akR25u+sY0PSJTKnEFzZilMbUBCAWSAghVlIaGSoEFEQhHIynOaPZG1pMqlCBESYJLMGi1q13kEUcZg7Z7QWXKWkiEgJOt2bTcmHRMbVC8OySqAIQAREhIBIldKgaqVI0JCq0SGFpPIWlaJOYsxQIRITBbJIJABUM45JYSCRaUkH7xFmFMhQm9cQ+AQsCzBKFKJkIGkITWotrPTwrsufHp/+vmvf30eXt69e1jGdGZZpvH56XGy4cO7hxQX17R393egylyGYSo55pyXKcJhl1FSzi74ruutdZzl8nIZrteX5+eScnDOOAMkHz992HX7P/zLf/30/Qdn3DAOCGgsWWuHYRwv1yVGEdk1rap8e/x22B+QYFlmdeF0uCMiIkiVYulDXBZA2u13ZxZW8E34+tM3S4hqrtep3TWFeVymojm03gYzp8U2zhq8DJc5LaDgjAvOX1+uOebT3V3Td2OcP//xLz/8+Kuu6y7Xl3LNnz//NM3D588/vX/3/je/+vUwXPKyPD0+Wmvu70/CvN/vlBlFpynGOaqqcc6FkJgvl4uiGmOmaXYhJE7nl7O19v7du+Ds3eHeWHt9ubZN8+H9+2kaOfOyLBBhGufz5frw8DCn2TXu0AZDFIIfx4k1H46nnErVAjq01/NUUiYEu62Ht/0ptshjiz9qpPLaAeiNZuZNSulWgbVJcNbsld4ClnWvrzLr115iN5yiWzPltyztjWzaDr/ZgC2e2U5yi7R+IfJ70zpIVzgFG23zWpNRkdZNEIWwRV1vNEXbr2+waB3ofrsnAgDb0NB6+RWd1BE1qECIxpjqRlQUgA2CIXREzhhUWeY5z7MDJRRgURVlEBbnfBP6ft8R0jTOT9fnaZwA0ZINTRNaj0g+OPIuE2bhcVjGKV7npSgVhesQWW1iVLBEHtEYiwVEIxOpt5ZUlAUUrHeBTLAWtKR59t6RwVKysWQ9KjVi4BrLy3mYl4w+mK5lxaUwSnYonaNDE0598CTj9WWZrqqp79q2bQCtgE0LIxoiE0JYSp7nkubl22X+28+XSAS2oc6WVGQpp0N3d7fvgpOySEnOWVUtDCCAzgG5VOA6xz/+7fHz83VMWtSSmiEnJSAjZCgvOc7RaQxISejL0zXF+PHu5KxJXMY4zzEN05yXUlRzFlYfdrvGh9PDKTQuocQkl3mMwuMwTkse5zLHkufScS4+x+fl65A4xxKXPC8gcrjfN02DKaOqZiGAELyiLlMUct9exucxLoK081EoIpRSioiNzMtMGjtLx/54vDuGJqQ5xSyiOsb8POZRkdqWmqYhU8gw2vOQrpdLSclGnRiTkgmtglNSSRk0Y4AI/OfP34qUlDgldJ1XMITWW+uMppineZmnCY0DqM0u1RvYebdvAxKOOV6nqGoMGlYH1tT0f4nzeWGGiMrzmEhVvgzPkyhrXmLT8MmHXd8SGTFkQgMzM2oWBeMYhIvWYbdEwKBFOTPbJqSYgByRRYAMDNbMRQnJ2NYRTsJjTKDRz+JDQNBclJEMGRYUgiKaGYVM7ZRMwjHncZnPl4z44kMDBMOcVLXbdSF0SDjPaXq6GO/J0jhFTRmNUVCyxntvnPfGCIsoc+aS1ViH60wZuV4HHMg6G7zzwTeNd855533wiChSuOQ1KNvisZvY8maYYDNgNWar2EU2u7fR8tv3m9BAQeskr1eZs0JtEbQWya87XBNla1YLBHRtlwy/aD5yCztRZRUU1ME4S0rBESD5pjGNE4S4RAYupSxzQmd9YxCcdS4VUYOlan2QCNZ6NVFZUpqXKRtrCjrvADVxsYQGNaXcOJMLB4fOWQfGEUOK08sFkGy788EmtaTJEhpnOGqRUhUQxhgFQDKCBGCRAYDIEiKCKBOyMRkk5sKIaAmRkExi1Vw0MwnUtqfGgBJicNj6pFoAraLxAVVTZgtKhTXGg7UlFZ1j8Ka1bnfq2y7kacJSoMh8Haw3aV6m65UU+raVUuZhcoT7vkWAeZnisIBmYFFEMlRSGa5XHYBZmrYR4ZeXFxHp9/0yTNM0eXHG0KfvP708viABsyAKF355PgNIKXy5XEJw+9PeegeI43UEhJSitbZtm13bH+/2hmgahvE6+sadn4e05G7X2+Cds6rogg9tq8wmUMq5UWIVcq7td4nLfF2O98dKsZ3P5+PpiEAGzel0+PzTz3Fe5mZShXmc5mWep1FUvQu7HbxcXn7/+3/a7XZ934cQpsk475lZFY53RxC1xnYhEKIUNobGcboOU1BJY3l6fiYkJf3Dn/4IiPfvTtaaTx8+fP/DDymmrmlRsQkh52gMWeOWZbFkHh8f+75v2+bl5aXpWxVwjSNrvn37ljMrlx9++N5aO1yuNTiwSHfvTqw1BfaaMNIt/fxLCR3cZHq/YEje4BTd0BC+LnBARan7JKgT1bc6cai92t8gnxVEvH60waeVgkKAOpBpQxzrjlZCZy0qe5OYgg003UKlzRzcuKuN3dpA2xtA9przWj+4cdd1x7R+3ZJ9sumabl0A6tmbWgVb8+KElsgHS5ZAVEW0KKogKJScU1xyIlVVnmLkkpTZGAq+3e8Ou74HxetlGIYxl8wC7e7gvBeRVJgT2eCYKV7iwjIucZxLzDolAGsYqJATRa6DNVWQySiAEVLWUlQzcSkqrTXBNo2jvnGEDnfBOUtE2Zc5p2lahrkU42KBMfIci3UNCYiKqAYQC2JQCUxcZkkiXDiLCS1Bl7MRBi0JUOoYdZ2XmOXlPE+RhwhjDqbvgUhT1swEqIpxLo/xyVE5HvrQNNfruMzFN85REwu8nMe/fLv89DJcC7IJgjbHMgsjJQfWqjGiKYuxzrZtQRmihGCXgtO8nIfr1+fhGhOTISRqggu70DTGkIBeUv66TOdxmhMvLIkhJy1AGZpiVJyfVF6+jebb4B2Bsha2BBaoLYs1C4JYaxvbGFDUhEZjkax4iSlGyEh5SIugkjpyKJAzL+N47Oz9u/vvPt6BMVPhmOR8mYYhLUKLmlmdFpjGyCrLHMt59sZN82IMyDBFQRM6JhOXSIBSMniKpcRhiVMGJGs7cTpnJeB98H3jQXia5kVQXcNoAUiYUcWS3XfBGDhP0+M0jkUIGyIjiipKzoiKGM+ET2Oe59mR61o/Zjo/xsTFELjM3+ZvFjG0bWFcEi+ZC5giCgVECFUNQM1OGBtmEWMbUabgVTXFqMwGsGrbBFCJihgWBFIDfogCcaYaQAGRQ2OcGgAqKhBLLjmjYBN8aDsUjSXFOeIYAcQGL4Bfny7GGhecD421oQgqKAMULiUnQjKMoOLIGkPOGlFiRYvIUkqps9lJRTLnlNIyG+et9y4E34QmBB+ctcYQ2i2fr1rTVDfieGWENjq7Gts3taWItR8hbgYKEFA2qLMFdJtdeyW961feMvybFVuhECnULjwqr5hsTYStp7nFgAIKRMZ7QeFSkuh1Ts5onGZA4JwBGBRLzNYYskgKSCQKBIqiqlA7ZCEpGTLOxZyExStYa0rmFGdvjAVgZhEVdY0l62rqoFjXFFUlk5iHpSyxgPNcsOaB1hsJRsEooYCY4EoCJGAAZZaUS9KkrA4YUBC0CCKSUUnijSe0yAUVRVh9JotgMZMmZjHWWZeAJS9xWYqzgaQzuPcEBtWK4WI1dX2rOcYlH3o/j8LL0rf7LBKM7Xfhw8OdcEl9m4Y5t900Dufn5y60zpmUirWGAJyzPvhpXp6fn/ZyKKVcXl7uH+77Xbfr+rjM1tiY0nidc8kP797FmF5eXoIPyzz/+Xr+8N3HpgvzNLEwIJIxTRvGcWpC6Pe981Yzd6G5XC85J+tpWWZh7vqmaT2gsdbFmFPid+/fXS4XADQhPD2/KMLh/th3nbUmLYs1LqWZAaz1llzTBO+Dcabp2pTSMi2X85ksPdzdoaXL+Wws3e9OwzB437x7eOeDf3552h+PwzAq6DTNT9+eHu7vuZSXZT70OwUgZ1wTgMvL5Vyzac/PzynFaZpA9d/8/b8iMF3TOKT94fT125e+6+/uD8N1/Pzzl5eX5/v7h/P5TIQxJuHSdy0Z0/c7Vb1ex5yKb0Ljexa2aJV0WaLm4oI3CNNc7M2p/yJ/DK8E7QYGtgzyG74GbxHK1ojwtgOFleLAVRj9tjZrAxFIUqOW7aPbBggbXfuab8MNqG10zMrP4Cuy2rgfvMVK285uB904qxvfBYSbZHvLgt3OB28mZaWxX1uT6c0Srfu8Jcvq5EGtzf0sACBYQ8YYZxARDSmIGAQGybzWSGguKgyqoorAgATGOeed9caYuXB8vmYuuWRVRNOZxhQyS+SYUylsrJisufCS8rSUwlrAFKWsHtGIAhIWXONEQqjN0kBQQA2qJWpdHwj7xvaNb8Jan0YEQJSEY5FhiufLPMaCoStqFSm0nW26Or5ETcFcVEUEpzlGYOfAWku2SZnmkUUys5TMYBRQgCSVXBhyNokxi2cTSGzJhePiSYKhOfHXLy+G57tT27Z9isuSWZSI3DKXIZWfni9frvNLglmM6YMCJSiZlaioCkEwSESeiErWWcT2Zmb88jTN0zineB7LVYAaD4xeghGf2HAuaZlyzkXKFDky1CkVgFbUsAvoEIzLJY8xoggWRlQS8sY4pMskjtQaco5sES1S0uKMoqUxCVvLZIrgvJTITIRitcRFOd637W63a5q98+35fB6mJSc5X6brmMR6aPqhYEx5frnmkoTRmoDKImgtCUgCscDG2SjCpZCwtaYw5CRCxpiGERkLixACo0YRjnHOWciSa1JitKR1hhRB5FKG8XkZLzEzOGFFg6pQCgsoCBMRkEFvPbnGEGKdL29mBRIxrJoSFaZLEkAGImsVEdGuQzVBQYWzECA5QlHrTcnqnAUWxaIiFonQxJRriwIDkJlB1VlSNNaYtThDVNmw1jFzpCgiAqjoqABBIktEhtrOK2jhUkpGa9BiyoVRhmU0gMpi67viGuACAFLyVCZC8sYG76wxts59A0POsAgomGBYpJQiKsqyzEuKaaTZWmpDaNqm7xoiYw2J6toQCAVuGsdVHCCAa8+glUa/GWQFwVs4tVLscDNANz58hWNrk6BaZ6pVybhZxI1Mr7r/1/IRedO+5EaSr+kw1aJgAEXQGJ8TF5WoYo2RJALGN4ZZqBLvuRAgF7U1aFbwziijclYRZ4w0QaEmPCXGzFxUIJfSeJuZl6xT4raxvTe9MwaD3/e5cCYqagYpbJwAZQY1FkzVZmgCZSlAWFJBwayFFyZEUZZUgFBQDXkGLZlJAJWFFZmMtc4aKQCFCxdOEUUseiFER46NJQLBolVrJCS6a7zLUqZ5H5wFSCmWc3FNgJKmcUBCZxwvSXPZNU3fdVqYc+lCg74xBqfr0IX2cOhrFG6IUsqqEJpgnT9fLsu85JxyzufzmaX0bWedLYXnZf7Ln//y8eOHMs2h8TGl63VomoZVxnF6fn5KMYYQSpF37x+cD3f3d23boEBOaR7GOM1kyRtXcu6ajpl3u13wIWYGhrbtiGwuRRRUlZGfXs5kiJxvW1piSildLlcfAqDu9vvzy4Xu7qUsKZEzdoxT5LnbdS/PZ994a+zx1Gbh6+V5iVPfd+/evRdmQqOq/W739PR0uV4BdF7mtm3jvCgAiory/nDQDEREloaXcZnnfrf7v//3/13j/Yd370rKaZrLHL8+vVyvV1Q1BqdpvDyfX56fL+fzb377m8evTwj54d17IrgM4+V8vn94WJYlNGG/253P57v7+2/fvpChcZwMkuSEqTS7Fv/ff53wrZz4bfbpv/mzKeh0++ZNnukNcloXU03ybEsd6Jd71S1ndMtwvUKUNcqBzWOvP7qxx68YBN4AHLltcxuw+t9ey5YE2wDU9pFuXA5uWbDXLJ+oCqyDBzeYA1L/WnVJWBvEy0aAoRYRrvOcDaExGMg23npjmAuXLIWFuaRChkQlxgJcjEXhkmNCEmdsCL5tW2tcypxKKalURFlYFTCKsEARYQFjnCKmWFg1FWGuWgHLYIRIQYFIlQWVsHbiIBIiBUAhLcSpIXPqurtd07XGEiJKFpmXWFhYYEkclzTHmDkb74sQi5tTMdZQE4wzopxz0iTewK4NDohLMgaAobDkJLr6ABQEUWZg5oKWuKiiUyAFL0qiCCDIBYT3bbhrfVOSyUvXUbBgibrDnpowZ/n52/PXy/gyxgh+EDcXBe8BEa3mFJGECnSuM2ycWMNsOLcNHA4OOSNzziWrZIVirDqnQoqYRUQlcwEEMpgSK1LtoY9kiEiBEqAgoApCbZ3NVOWWDAhICMaQs4AA1aYoFxDxBslRLCAGWXCJWQW8swASSCFF4vLDu/tff/fekeQ8PL9cpsi54DDFJRawQajJKEk45qwghMaSp3oKKoAABhKrgBYVU9lVoXr+PrhYBFJCREFCBescsFIprKrWAUFhAYMgYlAdglEkkKScBIUIhQSItS4yrUwFEpFrAMGIEGqeRnI2O5sSE4ghMsykJLUG0xhRYAEEA8ygXAXClbjNQGCJCFmSEXBEyMpcFAmIkqi8psWLQUJyhBYBQUVZEAgNClQVEDsiVJFSUAyiEQHjTOMCgApITlGAySKLlCLOBSkihY1FJGOtKyxAAly4ZFSw1gTvDZmqbSHElKOKEFF9WwWVhbmwqHIRrUNsyLZt470LjffeO2eNIzKVvRBdzZiibFIgUSKjayq/qp6NVlULoLzW1GK1qbjS9QZvN/EWnb4JXGXFSa/Eu9RJO4AbV115al2nY2w2dq1kEUWsk+HBIShnA+pI4zSRBS1QuPi2BbQKVBQKAFpDqtZgcIYAYoxLitY6AVhiKgqcJc5RWL2zgqIiqFJitgQhuD64NrjgKPgwphSLgmsYDRhXRJbCggQWRYRLKVxUFZXRkCqwaozRAJElEnTeKBIi5pwtAIooExhLtY2iAGUhEMYsJqph6yw6I6xuVodoDVCZTV5O3pwMuRTvgkvDlTi33gpnAW3a7m9/+5xKfnj/sNvtM+dlnp21hLiMU+M9l9KEYA3mlAFApIzDxCUjYNMEACyFRfXr18euDd1uN45DjGm/65smTMP4+PTkglGBruseHx9Pp6N1FgFLKc7Zp6fncRy8913fhtAiwOnurj5RZnl8/Bqcq8HA3f40XK+P3x5/9etf7/e7cRyXOTZ9p4jLnJzzuZQ6qsagKaWM07DMsW+9KOdYnHXH4yHn3LWdC44A52l+uDstKca4kKXrZQDScZl++9t/PcX4P/9P/5O19u///u/33f56uczz9N333+fCXz9/UaLr5fLty5f9fv/p44e703G6joBorTncHR+fn4br9Kc//nFa5l/96tf//j/8O+/CNFy9d5ZoHsfpOqpo27VkzfUyJk7eeWdd04ZljIrgrY1zYmHvvQ+BlZd5NmRC423whnAcx/P1Ml2n490dcNkde/vKuFSIUIkQkBuh839BQfiKJLZ00itRtAUnFcFsJfC/4I1gW7O3FNgrRbPROOuxt4aDW9CySQYrn3Tb760S9FaAdqs7g40LVn2lgrdDvKqb4DVrvu1wg1nbL/GaGFSsE4Y2u4LrEcESGkCWIlxIavbKGkJSJCllzlkFlBFAWDlnZtEsMdZuImqysY4OpwMhIREh5MJzXuaJYypVUZ5ZU2EWUDRCRhXRWhQqDIVN4YImCLGCVv8HSPXMyRjmjEQiAiwKInUGoUjTdCE4FxyDzjGhgyRlnFMumgukJZdUR2Qrks1FihTrqbGejFECLpmZQdgHb5GyEgsq2LxkYVVEIFNEkAwQCRIzqwqQB1BwyGIUAYAACFmVgRxZNKzwMsw0LbtAtvdoDHpbQjPHfI3587B8u6aMFb5YY7BInbSGLgTO2VpLxiGCFCVEcDaTnKeIqCUXYQFvCyiakAVZAQCLQs4KZIgIANg4WefRG6A6stegAoggGYOqmQuDQURTp6RtvQ9UXuN6NASSQVGRCQuIACiBApSSvDUlF4fUnk7QtF/PY4zXl+enJRZwTWIAYzNijiJUAJGCo2BFBQCLkDNOVXLOSAgroViMITSEampjOAXIRRARLKmIswSCkTMCOEv1jVYBQ5RLsd6ocGIVKQSKSAoGgFiZVcg4UGQu3hhCE3MhiAwiOTtrAQGKFhRBJDCKxKi5iCKiQ5VVOSfKqIxQW4Pd6iQUVQwaIkuoIIKEBDarEJIxCso3CrkUNsawZtzsC2ElW5XIaBWOK5AxSAZgnVgbS+FS5ddKhhSAyFkHhcFayyIsoCKlZFY2hiyRIQOqIhBjISPWkjdWURVUFKRkQEAyoEiKaInIZCwiSkCgukxxWaIZiYzxwbvgmrZtWk9EZFBZasgmyii48smkorLBEREVRLqZW91yP4Rr5v3VnFWjjWu3tS3sU9yKcG81r7SFlDessyb6665vCoYaQRIoaJHaHZFUwBkiALLBGlXhJgSockZDWBgRhDOogqqxwTmLYJlZEa21HkiWRM6G0CnLOExgrCLnXJiAEQubnOkqYqKQ0aKSGZ0iGAIBLoVLVgC0AMyyRJBiEQkJLRrjiogRYBFLJjivKKyCohqTZQnWEFHOzChkwCj64IQTS6laTZBCsdgkPdg2WJUCwFpy2zlNKc1zJnDeL9fFG+usB9ScMqgaMpYoeE8FJRdgIQOOTNe2JSVEKLkE71OMIpJiqoM8nHM5l3maKzRtu84YU7I454yzJZfqhq1xDx/fxWXZ7fa5lNA0COB8UGBjzcvz+Ycffjid7g0QAOz7PQufX16ez8+73a7vdqByPj87ZwlpWuL1erXWTsOEZJx1y5JAIeU0z8v9u4frOJA1iIrWxJxBuevbtvUikpbkvN+fDmnOAKIEza7PV2mI+kN/9+7hz3/+a9vvLuP4z3/456/PX//h3/zbvttV1/j+w0cEvF6GLKVrdx8+ffrx1782iK13X7987fv257/+jQnRIGfe9f3/+D/+P//wxz9+/PTxu0/f/f6//FMp+fDpY4lpHqYQ3K7fXy6XGFMpuZT8/t37EJp5mbtdC4Cc2DnXh857H9p2mqbL86XpqG07NNi2zTxF55wLPqMMw/Uv3z7j//bX6QYWbgjnplj+hfTlBjL0tTrsBnzWf79+dKNyb3DiNQX+C8ZpDUTw9hVeSzpxwy1v5MkbiNJtVyvf9CaNtyXBbkhppZEV5LXv/AbKZMVDtdljJbpxA0CiSACkWzukWmdJWOsjQJlVRblUYhMVENVbY4xBEUuEwpyzCucUAZCIDJICMHMRTTGJorXWWFMDRWsNs6ScYkwl55w5F1QwgIZVkggLrU2QDIkqV40jIIuI1LhSEVVFlah2kq1Unb6GhkJIVEtAVLw11lFDSFIAiiIU1SUWRgNIWlhStiqNN8FbImIomYvxXcqyxFxEAdVa66xDoMKssjY6UsDavh0IFaowYHviirL2OMAtiWpAQEQBigEgRcilQWgb1zTWGROC8W04n6/DspznOMzFtF3MUgQVCRCqCLLu35ABVqtkFA0qAgMIFAYQJSRDipiLqHG1uy2AyNqdG0QUiIgMCBQpq8CfFJFYSXh1LVTZS0P1xmKdioRAKus4bUIAAyCkqgpZtYCAAgurKIlYS0YRldsm7IKP8xiXYV4SgFXrGC1Y4urz1IAAWSOqQvX1JVyLCyQJE60a1zpVBsDUOZgiCoRSAbwAKagAWqOIwMLChGZ9VKhcmS00AApFRVWJgEiAWUWFDBERoa5i26JSIxZCJFAWrTlksz5j0UpiYCUwCIFW2md1uLoBIKOkCGQMIQiooKoKMgpseWmRmrYVVCA1m9hvi182NnY1JsK1GggBhasgZW2OvFLEZm0WKKL1cgBQuM7nE0KDNztXizoJrCFrLCAoiFT4UvmZemQCVSQyIiIsBKgARZi5sCoSOudd46rswznbNo2z6KytMBCUmAtD2UwxGkO1kbQgWGNUoUZoqJpSxqo0rv09arnYZrlvZm3r0PHWWr7S7VVPqVrjDlmfCd6QEQooA5t6KxSMIgo7QAtimCXPnqjrQs4FCSmYzDrEnFJ2lkihcT60jQAOy1JYgKwIxiWTIQRKSxqnWbw1wZakIgig3nuRoiqqoqDGOCUK+52olMTIWfPcBGMRMGdNyap23iEYIgCkKUYgYkQBMNamlEChbZs8LLZkb0gVCxgIoQAyc9+3qpwkqWHmKHHpEA7WB1FCsc6kOEHKd7vOljI9Pe/bcOg7T6bxRrUs0wKswzwgEhJ4571zhESopWQUaUJjAAvz07dvhFBKMY5SzoTYhCaEgIjPz+dpmpzzTeO/fvv6+Ph0PB73+x0qIGmM6e7uvtv3T18fFdRY8/jtGwA0bWsMLfOSU0Sijx8/DC/X3WF/f3cfQnh8fFrS3PX9PKfL5QUJgvEinHJ59+4eFaUUAGTmw/FUVGJMTWiKyO//+V8K5yzlcDoZ6yQuu65HUCkSvLfO9fsdIv30t7/uD/u7u7thGkJwYPAyXBXgcDr+p//5f/nzz386HY9/96/+oW+aaRi/fvl6fzwZ62JKw3Vg1R9+/B4J//SHP1jE0+luOF8e7u/brss5AcJuv7+/v1+WZV6WXb+7vlzmZbBkNJcYF2Po3bt3hcs8L8wCRP1uJ8LjMDtjdvs9CLCW4Tq2TXv/cJ9zfnp+Mtag4hwXH1wuYoL5l9//yzgvcRp+//s/vE6Dv7EpK8lTkcVWcLnlfxA3pdzttwA2zuYGKm6gZMM2+Ob7t6AK4Jb/hqrm2azjilJeG1/AFp+syTd9xVy3OAhfd71CtNsnWtng1zZFaysfvB0NZaW0bsHRDYGpqqjopqBWQQZQAwgqwAySicgIG+MaHywqgTIXLkVzybmICpFx1gEYIJQ6s1ZB0ZK11jtjLDpTVMcxTsu8LHOpyAKIxQABkoiSAKlBIGXVwvxKewFprYfdim5FlZVpVU9WQQC9WsM17Y8ANJVCogMICmvtNa/EYgENrrcJnbGhbQ5tSwaTzMOwlJyZRVgMGesrxwwKzAwAiFSzKKKWBTemj7YzU1JFrY3TNidaLTIhqJKiCoBxPqsIw7xk0ahnRgQBzSxJDTaewRTVzEog1lLdP7NitUkICsooqopGERHQqiqjoiEtwIprQQmpbi4ZkYwxAiSiIIprBydBBZQKlWtSFEWVkGphzfoGrlNaVETqqwGkBFjfHNH19TfGAKoSiFTQjeMSl2VWkSJGXYtomai2rqzzwVFIhbUUQSgKa5WNytpTE4C3vrsrtQmoAMrrUsBfNquQmp+rsE5B1+KjGgkgi27tYQgQWUUJQYloy4wggogqK6gIVOqLcHWyqFq70xSgbcYt6pZW3l5OoA34qm6/DVqbFeOm+6vd5wFRAJAA9YarXyOsm8JFVXF18YBAKjWRpAoIBLWksj6filqQ1oRSffkIyRhgZRVVqvOYCZRr1FRHgzJnRCBTl1mlGyqIUxQlMCIsoip1iCgBEJFF5sJljsuSIlUtoLdNE4K3wYW29c44QiRjpYJCEABkUSIkMgZAWBVUmJnFG9P5RgETJ7hpEG/SRK1AvIqr195jN/59ZeVfTS8gkqjQ2yYjK44URCJAQKiMmopYMAwKrCDKWYzVtCzKqigGjCKSskU1oLUldClpmuO4LGQsWYdqLEpe8rKkkovzrqh6IOtoHlPXd6Ftci4CmnPMMRtrrTU6R0tgM3StRyqtRSrFEpGzvben3Z5ziSkB4XPkXHItpQaWmBdj7Q4FAjWhTdPERaht1MFlHFIpRNl6MlKcN6IwztN92//u/sTzdD6/IEIw4nfh0AWNmIhSiuHdXRsC55QjMIALNnBIKc/TlDB2fds1rfe+xCQs1/lMhHFZVJicBYDLy9UHd7q/N8akXJjZees5NE3DzNO4GDLLPFtrgvXLymqoQ9N17TAMcc7zNPe7jgBKTKfDQUGH6yhFuPB4uRrAru8MYfBBRS7n55+/fEbEu+Pd8XS82x+JkICcs0/fnhHhOl6M80q65DiNI1kdh6lpW2uISNG5zAwsjfNI5unx6enpKbTBOHf/8F5RLtdheZoRcM6LKvxv/5///a8///U//sf/+MMPv05pGV6u37583fX9dRjHcWzbznk3j0OMKabl8dvz9x8/Wms+fffpeNp7E1RlGAcCuL5cyVLXNCWmw64nkjguMS41GS0iZFBEcs7kzDhNcYkgakKDBps2XM/XaZxyTrtdj0RNG5YppRRTyfM8tX3/+PXly9ev//T73x+P+7Db2bcFBQhwC2rwxgPhjdq55Yu3LX+RhoIb8ljN7tqzFNa6zJv3fdsKaFuWW8LpzT4RYBUJ/SKRdtMdww206Wbibye9neONxNqOslFb64oHANo61ONr5ksBEKssEQFrGxAi2jCVqAqAEoIxSMaCoFFFFatqclKOsZTqB+udJLJkrBrLDCmVJabCwkVyEbJCSyFLxhphyTnlzLkAoEVjFaFUp1bDPwJVqSGrAG0VZwggtUhky+2vwzY2iLg2aa0OXmFr/bFelwFQBCOKXC0hGUUkQBaWuHhg2/iu9V0TMqc45cySijCidYaMRaJKESgiEAFWvqciA5KKf0hVqmFWRVqp+urMaHV8FVKo1s4rWlQIQViMADMzs4Aaa4BsLAJEgEToQXN1dAQgogRKiChaDbgqMChWWgSJhbMCqBBQ1XgjkIAKSJ3lvgpRq1S0gpoqHF3ff0FCUAJBrIAIKx1igNb3hwDrPquX1o2ZXN8zka3bOEodkLKWJRMQIdoqa2ElQRUWMKoiykAK6zwoWt9nqKoa3BKxiohmLY6ubwKtXGr1q1SRERoBXDHfDSzDls6tZ1kzViv+qFAZSQlBGYS0Zlbrot1IvbqwQRS0KFamqaaUccMx9XHUiEJuVPHGyOJr+LQmo6kubMRaQwqqwHXaltwKJ3Qrk1iJaNwqQNfz2iqpiFbzskVRsjKgb8lowNofovJKWzV6BVyy7lsg15OCtdsFACACkgqySBVHZeZSmAwpVhDkUKgiYy45pTRNszM2eNc0vgnBO+edNxats+vZAahKpa+I0BhrnaVAIFKYpXIk6/z2td7iTfxa72Ud2ghwQ42/mGGIm3FcpQgbrgSA2hpRqVJKZEQEiNaAjCiXbK0BBWYxiJxLyckEZwG8d0QGFEQkTnOMmVNWkmAcAEPJxpDvrbEeycSYrBUWtU5bqw4lG1DArMRC3qo1rCn1zpGCFw5Gg5V5GnetbRxayPe2FEnJZOO9X3RO2RmTNDHDwvFwPKFG7/DYNFMZBZW8JEjecAYGHnRW56m3TUxpZ/Sjx/cg0Dm7YCYpLIHUQUmafcA2dC64aZ6G8+CstYaE1VkLqKqeqkxe1TnTdU1e4nkYuHD9NoSgKiLSdiE4z8LjcC2lNE1rLV2vl67vP3x4XzGrFPHWOWviEpuTd9Y2PmSbCuXj8TBPc+Oapm1U9Hq9fnj/PgRvFOd5istiEAszGjONY9P4+7vT12/f5nm6ezgh6DjObWj7tmm7VqUsy7ScX5q2LUVFyof3D23bLLF45w7HwzROT9+e+ybkUi7P59CGcRyncfndv/6toozzeH655Jz64w7B/PUvf/4//st//uGH7z88fGfJfns5Xy7D4XT67uOnZZx//ulv13F82N27xZaUf/jhu+v5crw7/vjjD5yZpTSNe/fw/k9/+dNf/vznD5++cxjSEpl5/3A/zaO1pmnb3a477A6i+vj8WDj7NiCSAjZNyDnN89SlNnjvG992wQU7L0uMMS5LjPFwf1wucUrLP/3zP//hj3843p3ev3//61/9+OHT9/ZmhW7TUDd8sdmB1xTUhiSUNptzW3W3RYVbleKrRdvYBv3Ftjc65QZl9EbBruEk3CodcMM1G36BLct140BWW7zFhqvD2sRAb4LGzdRtV/qaWVvBn2KVk6z2mqnOcwZVkNrNEIkqK20BqlnTklWFFVhEhAlrh1iqPAIrxKwlppjyEnNhYVUAEgVOERSsNWSMsrCw8x68U1UF4pryQIK1Rcdr3q+a4dvJV2mIQs0/VfezAVUFUCWqTUYq1VYLUgSBRBARWQTQ1ep+ZijChgSUCcFY2+wa62yWNC3LZVxyYUUjUHuRiBZBAgVz6yogKgAkIAgg1ScLbL1n13Yl9eVQEOXVFa88jIhCjcTXIDgXQXToHdZKOUWpyTUEALTBMwuY6uwECcGglMoi6Tp0FmRNaiDUclipwouV+6i6Xt2Eb7r2ySVARSKtqREAEKjKEwLaPO8KtpVuZATiyp29LiEVYURbv6tcBRKAIa0QiNb2mCy6boPrXJhNV19pFKq7v1Vk4gqM6dV5Vd5ki1Bel9/67eb/V1Edgr4ZL7ymidYNdIUvFX9vH2od8qSKr3eg+s71OPU2rPvC26pdsbrCRjVVlup2eVVZDSprH5sNgb3ZC2JVVYnIahi2AABX/nkNiARWygsQqSblNsCl23rX1WzUtNJ6mC00w5qorMsFAKv+GVCVoTZNRkDA2vGrvlnrQCpY8zmIoFKr0RFA1RgLAKwiyMzMRUuOMcZhMt5Z75zzftc1vvHWOkvGOlJmAK4mkZkNEJMiSg1ZSUmAAdY4oxJzm0HcmJzNVALCOmPxZnbXn8It+KteQNcHpFgxI6iIEJKuMF2EITQBMyCLtRaEFVQLqzHGOGW1jkpmESZQh+jaxjlnDHEqANwEa62rYZovYEiATOshzVcLJRhrrSuEcym9BUfgGkAZA5nGWQvJEUoadn1nVPM0X/PYeN85K8J3LbWGUpktZyA67KzF5LyVJcoUZbmQgBf1xjmvAmaOk0DpfENp8lBs7zrJ168/nU67UxsWzS/XuXD5+vIUmuCc7domxvF6Puel2H5HYDlGH2iZMyF2XeutIcRlnpUZSfu+U5XQuLSkeZy6fXc47kDx8fEp5wiExhALk6GUY3yO79+/SzEtywKq+0MnLCNaRBiH69cvX0X0cr2wcNu21tC+66/X6/393d3dMcVoLTlnrXFE2PkODISuHafxzvl3Hz789Y9/ZpYpTwRUMmOPd/dHZpmWWeDiggmtdc5P89x1rXNFVNOSQtPcP9zHaco5392fnHchhGVZSsk//+UnQX14d//0/AKG5ssyzcvHD59+/P7Xn3/++XI9i0rf7QEwlRy65nR3R85Ow9R1jQsWAf/9P/5jWpamaYd4Bhbm8vT8lFL6h3/4v7GUZVyWZb67O3398nUYrpfzufEBEYJvAKAwW+farokLz9N02O+Px2PJhaXM05xyqgV0xRUf/MvlIspPL08//fT52+PX6zChob//u3/zw69+NICpsN380IoobmSQ3mzhxqrobTmB3iDJGmm98kWbLdkCj7qzN9wLbEmotXZhAx+vSxJvJrse83WjG67ZLO0WCOIr/NGbdYdXfnhTUG8fbUH0Gve+pbTWcFpvUXv1RFJzNVgpZgEVUS6Ji4qAijeGKpdCquiBkJVykVwkMheWrJpZWCAVFSVAtNYqIgOjQlYhIVFFtJmBqWaUav0LIaoW0U2QoLg2fX3DZ+MaqSrp7SnWXJCuQaxuoAQ2cwiKVfSiCixIRKgGFKphFZG14NmYxPoyzKAxxrIkFjTGOFUtIipira/4mDdpxypIBlMbjsgGX3XNOej2Z/VKG/JY5ztWkRMgVaUoIygoKYqoFEZEMFZZcsmA6LwnRGXGVeWgwqqAKDXCr3hLEQkEkXDTXMv6UAEAoTbSrwrX24tYvW7dhgCr8IKlbMO213O+veu46fP1dr11GyUCFKl4nBAAaPNUCMICAMAAIKqGEICUkATqfAsBRCK8eWZdb6BZ4xZ4Q/KsMO2N9mN7GSreqEtAbnxWfddvy0Zf19dtQStuhUX1wcLm3m8E8Prkto3WHOyGx2CzApuaT14RCGyE8lqRsB1ki5huOr8buAQFgJrflHVDfV3AAPXqbggAAWqN5pqd1NWAbZQHbkQR3PhIEbltpyvjVvXbsGLEutc1uyYCVeRTBw6y1M8AENSQqdNvWBWUkQgAAIgQtYoHWYGl5LRQNmYZh9EHF7xv2yb44J211lpnVESEixQptSAVrbVkUOX20Ddc+dqzHt+a4tXmAbzh2jejj7D1VFwfHgDQquqvN7aSqgAIoqiEVZouKExgyRi1BND4IETjvEQtwiDKAGqN8Y1LS0Ixu8YnYpBIJYsqsuwNWUQupQHBhshkwBKMAvHiiie2Wu4OXZ45jddAJljUXEy5GIEuNDMrYUEyIpITIwDkiKVwjM670LWoCxY0KNaatsE4R2A0xp+ahoiurORNv3Ml8xgXyuq9D86cnx/RuWGeY1xC207DbMk663JcygKenAsmEATCTMAlCZfQ+P2uJ8S4zCkuUriUFLw3ZFNMLFyUl2lumi7FuEzjOI4PH98fjsfzy1lF7+/umrblwvM8T8PQtQ0ghhC89SJlHKfQ+CUufd91Xde0oWu7YRj3u93hcOBcVDTHxCVdzi8pp8Px+Ktf/1gAfv58RgARnsaroQ9tt7POxHm+nF9Op4NBbRo7LbQs0/5wbBuX4vz87bntmqZph+s5xpJi/PBwbxp0hsbrhZVd4+Z5PByOf/jTn1jVh/D8+PzT55/3h8Nvf/d3UvLl5Vw4A9Hvfve7aRweHx/zEu/v7hGgZPn44f5w3Hnrc4p3p2PwHnb9Ms/LvAyXgbnM81gKI+Jut/vy+auzDgF3+703puT85z//ue/6LCWEpg29odK0oW0aZ12iPIzp2/PXlLMhWkNYgHGevn398vL8VICHcfy3//Df/fpXv8kl35/u52W5PD7bGxHyCjFeUQXcDMXN0b4Cos10VEP1JqJYLfKb31mzTxvE2gI2fVXVbOuzNlembRf4CrWqn3lNnumW6sb181UIjTezVsEUVm0IAtwk1Ssm2DwCgMIWHtEaB93oMENEeGvto6AgpYo0WXMmAGsJAYFIRZJwYWbAEiVzziVnlqIoigLIgqxQBYUAWKSWtJK3ZAEV1BqLCkUlZQYEQEIiqaBmfTAqeAvkqmpCgTaEoesHVatRq5lehVOwKjFWsfTqfVamCMlUil5YBIQInLFEhFJEdByXKxRSIXRqGwBUY2qiiwzV5teyMgT11GpVLYBuZXWv0Ie2kwFdvVjFlioqtAFTrvFmddgAoJBKVlnb/Fe1iXPOWlN4ZYVWv6v1AQogyYamV8qSUEGLAkgBVqqzggArLMFbDL15htVbbCm66rAJjYgSIqJ9feuRVOXGKtaE7A3iV6hQp4IjAK8TCLaRcysnh6qCeMP3CgDrJE3ZoviqphMAelWuKd6OuIXwG6i5ub5XwLM6b92axFSIB9sjeotesCKplSi5LcGqScLqEtdYAwBpPXVUlO1C15f2FRHeTncFjL+0PCu1WclWXP+GDc5sqElv9RC6MUS4yp5uVkpvF7xdYy1DgzfdOFSxNhAQVUtmzbIrUFVrAepGeay5PF1hmTFmhe3rC16TvHWsCwFW4oeYmZENKBEpKIusyVkFALDWkaz6SwRlkVwkpTzNi7XWu6kJITS+qYrp0BhjrK2pYcFKM7OSAUDaokS40VXben9Daa3PAeD2Dqw4aL3L9X2jlXVTAK1R2vrAYYODCIAYpXhDIggi1nsCD2h9aJCQWXIp1oCqIQJrLRGVUk73u65t5gFLLlySgrStRy5SUjAmcyYkA5JTRp4a7/oOOM4GZI8NdS7bIJxIZImj1QQl+74Px2O95Hmc0ZMkifPsvA/WEpJTdZaYS4qpf7j3p8M8TFwKEaBkYD14Cr03BueUx2W2xh+OnbPmn//Pr75pC3NwXllOx4O1hnO+XuPpsGu9j+Osc9KgXMr1egl907cdcJmWucRkrXXeLfMU59kHH1xgLlXl9fXLl+Nx37ZNFeFdzi/vHu5FdRhG790YU85RhIV5OA/GUuP9MAy1cCbOC1lzOOxCEyqNP1wuueSP794v40xEIloKl5y5lDkmtEZBliUO12uqvT0Jx+vYNr5wmuc5NF6FU4w5J39nCFBF+q6t5qHvu7/+9ffztBiQ/a6/zImsaVqfc/r48XvrjQKQpYf3Dy///OKc++1v/lXbtz//7W93d3fGmdPp9Kc//DHn5KxxzjUhWLK/+c2v3j3cBx+meRQRBPz29es8Ds5YVem6rjHN15+/MoiI7g+Hruu+ffnW71pvXV4yADrrT3d3RfPz48vjt68P795Z16SYhnGYx4VLASIVbXdtLvnPf/rLFKfL5fr5558+fvr4H/7xf4gxlcSh8c8/Pf7xD/l4f++stXCLDf6bgOEN+LjRJtVyAFWRhL6xo6tRw9fldPvF1Zbhuiw3L/P2YG++Wc/lRmJsAebGsFep8ho9r+dzW/SvMd3t2NvyX9fvxvTcLO565VVCWmu84HZdCCgqIFx5BeG1ZL2OtrCEiChAoBJTKZmZuTAXBBbMzFJH9ekaNCqhKkht5EFUI3sAFdVSi9JBlUFRiUgr11QDS1VVJSJdeZ+VsdZqxn/RUXtthb9SP68wc/U0sgbgq/kWUWvQAApoWfNOBQEMOINkiBAIkUVLYbLkyLma/qnVSWhNdb2y+ev6wFh580M3rRGKVi0NVxNcs4AAVTirKrXl0kpRyZpSqIE2Ye18T3WWEhRlBVAoJWdRISCDVRkMa3KmurhXJoQEWZVRqYIKQqwiIKzwd80bCooiEGMVS9W3pbIDsqpyYR3qhhv6WcFMfX9WVwMrrlt9OG8+aIWuN0Cz5YuQCEFJRBQrQyOrQ0atD/TtwlgVSnU2+IpR1ldifblxS0D9t4QArUBoxVagUimpda1UnTHepEvbp3X7G85AQEQgANk0QHUHtIU/twMjYEU6sgG7mtkTrRCjgnJcKaUNVJXadqCGNCtI1ls66jXdo6BIG4GhcPv9Tb6EaF512/VVhI05XlPGQIgiQrSNxEJClKpCg22P604BQaFwBiAA1vXW40pt1qwzIhhiETLIKgJSZ35UyMHbWDFArG2BAKoWjFVqT1QtqeTMS0xmQGuM827Xt23TeG+9d846QFFG4FJB6np2N8Spa7EBbpLHN3Tf9qTeEP0Vva7B4nqZoKCIKMAIhrQ2EqufowIWIEAlpMrugoBFyoJG1DtT3bAwG0LDQob23rQgLiVQNp1dxmxsCM4u11RS6g9ddzqluCzz6KgQaIfeEUVeADVen6w31oCqLuNsQHvvjMg8DPvDyXo/DnMW2B92yWR5OfvQuL2VIo01jnSOZZjSssuubdyupSVxXOJwbbzzhiilkmQ6Xx1CCPY6jABYALs29E2npGmJJSZPRg3kPBhQSQtqzqnkZR7j5JtmWZbg3fl5Hs7X/W7X3AUA7UI7FBHWBPl6GZ2zd/en88sZRNu+ufPeWEq5PD8/I1EI4Xo+Pz4+IkjXNsF7crgs8+XluXDZ7Xdfvnx7fPpmyd2djoXzMi3CPM1Tyqlvmn7fAsk4XUpO1+t1nKembwQJWJTheLz74bsfS+K/fPmjdWa2TkRDE/ZwAIDGt21ouOjLfL1cBiLDXNDYnJNBfLg7EUGc4zwN7z++f/dw/3I9D9MZozsc9wL6xz/+cRiHTx8/tV3z+aeflnkO5P7wxz+E4O/u7/a73TRMD+/uT8fjb379q+eXx65rDVHM1IIfr4O39nle2NoQgoio4v27h2EcRfR6HXJOxpjrMBARIR4O+13fg0Gjtuv7XPI0LYhLnFNMC7Oc7o/Lspyfz08vTzGln3/+mch8+vjdx3cff/jxh++++/R8fv6n/+M/7/u+bZtlnuLVAou9mfCbmcS3hvrGH7wNjvW21nS1U2vGTN8uxc3m1nS+bobrFrjdNvgFEEIguZVlArwWo27R6baEAW9C1ddo7w0SeP1TRwO9oiN8tRWrnKGKZwBWdeZqwKu7ES1SCifJAqA1+q90hhABknBW0cJKgEUgFcg14YBWkKX2bicQrjtb2QjVddIgAQEwEaaUgMAYktXjV5Qiq3xhvRGrtUVFAdWqcdFNs0p0s3S6PRVVBZRVd0qvj6r6EiIkQlHNUgoXUCJD1hhHNqdUiAnQWYeGLDkAULKFGWrNOQCCoJCisq56FFWQ9Vq3863qMtyklitGoVcGSIDh9jNcYRrVK11rqbeM5CoPvYFxRPTGCgtrUaHtiRPRxjAgVA2OVFaoIptaBiWVJWJFFeQbx7fKWPAVANwc4fa2IW4JpVfSaHvxdVsG9eYj4Jpxw5WouS0RBEAwqgyoUmOH+oaSAihRBXt6411At0YuW0Z5ZfDeODpEukX/9bTXOqftjr9Jha1Xsjq9+p5VNLDGIlRR3A0h4TZxoU7yBapzO9+gHYAtzNDNbigCECEoSn0Aa2ZZbo9wbSlxe28RAEhEboQxbHrCG8e2YhxYE2Xr5a9t2HFjoF9n9qyPZbuQjQmuMFehvguAiFhzN7Bl1bbKLN0QPtQygsp4QS1JWJEP6lrqd+v4sOLlei7rVKD6lnFGsgBAQMagM06MQeeEGRBBhYWXVECSmeM8Lc4Z75wPrmuC875pHK3V71RX2Kb+xjfgdQvufoF9tr82LhwI1pb92+3U7ZWrlXIoCip4q7xFNM6qCngE5SVnKGIVATkYmKY55eKctW5ttIEsPC+zcFTgkk/H3bENcUk5LShF0iIR1WG8nuM87ndtE7zmmIZoCBFgnkYRCW1om1YTOO+afauIL5dLXHJ/3A/XJbQtqlHNAJhiJFRvHarGKY6XEVSXcWYRUTEMmrIyLFNSLt2uJUMoKEXFSgEswu1ur9ZmAGEW0ZISZwnWdrtWRErh6/naNqFpu1nKdZxqkMhcQFi4TC9nZ/3+uEOEp8fHZVmWmLzz3vmcck4ZUFjkdH90lp6ezjGlu/u7ZVkuzy9tF+7vH5Cwa5u8xMy8P+1F+Pn8QoZ+/a9+TYZSjP2uE9ac0ziO87w8Pj/llLtd+6vj4X56+E//r/8lpfz3//bfiEAbmv1+37bNMI3O2b7r5nme5rkwG2OICFhiSufHy5xiylkFQhdiTNM0O2s/fnhvEJdpOXz36f7+HpGsdT99/vz+48f3H9//r//pf/3//tN/effuXdovP//1b8zl4/uP18vLt29fP378uNv1d6cT3j0cjvvhchXOTRMsYYpxvg6hCd999935cn737h0zA4iIxjj1+846d7lcEfH7H38gQ8/fHudlLpmtMUQY50UR265pOFTGtN/1oXHXYfz67ZFLEWRjbBvMv/vH//7T++980z49frPW/O2vf53jvD8efvvb34ryzz9/uT49i7BdI/DNkuMtY6GyBXu3n+lNLXfzAzcydQs9N9ukb43PmxrcV7CzMhHbmryFklxd3y0dUK2IrKEY0hbMve5vc3Wbva0foWxVtZshWA2EgODNgoJixSK0oQlhFWEWkTrkCkSVhZVBtBb/SA0SYbN9olpYVUVEWY0SahXtbPdiVQWsNolWsYgICwtA0WKIjKVq4teWLgAouJLYWCN1XAWwr/d7rfQQBYJamlSdhr6SZhVDsSKiMlQNigJUv7NGpaC11yGiElpQFMnWIJBT0Tq8rzIypZSqSDFU1RxQpPbfMQLAIMKgqGsPt5Vnqp4JZEWW1S0LIG7h8AoZBGSNOFc3sdL1ukbz9TEZAFWk6kFrI5cq0Lj17tyknHDDsIAAoqiKlfVBAyiEWrm9zSGornUyooAg66iWVWGzaU2rz94GF1Sy8NZLvKJy2cLlG6yQ6jNrpnUDMAiCVWeBgFwfJG6ZsgqHVGm7msonSaWGoF7sm1hDAdfBMmsJFQCoMqJZH/f2wqyucfOXq3tU2OilNbd1W6Db1cPmZ9cXTIBXR6nbW1r3j6oqBKaWbuktxb3pcIhQAUhXcdWNlL1JAuv/VehTUWJtxl73vrroG/sClZW6LfYbU7XZos0u3eIn1U3ZvZqfX2DZitdpayi1xRobBF2XtGzTANfdEiAg1eS5gKy00xa33Mj0entVFWtTgdtIRKxBQW2kpISGjDFAIGIIc+FSyjxHMjh43zTBe2cQQmO994aMsWuLJkBQEdDXVh96qyPZnvN2/+qbvD76mvrX15/QCodkNavrI8Q6RAwNWRBlJSIjmBblXPgaszAAObLeBeMJ8jCVJR7aLjQGVUvUFFMcx2VafLBd14I4C6BLXobRO3N3OIJyKmWa533bWTKkzoXQtrvCpXgRVEZrvUMT5yWyDggQjMnTGOfJG4jjOF8ufdd2IaR5ymnxTfAI49M5pXI8Hpy147iQKBeWITZNcORD14nqHGNz2CuZaZxByjyNw/my64I1KKZ0bdN2/eXbtyWnft+fh+vTy/PL0+Pd6cjHw3F3DGhRhAQvz88oEnNchtk27uPp2LbdPM4//uqHWnH78+cvdWiXsabkPFyvwzh4bxFo+v+x9Z/Lkm1HmiDmvsTWoY5MdfW9QFV1Vxutu6c5tHkC0viwfAdyfozZ2NiwiKkCUACuSHVU6C2Xcv5YYkei58CQN/NExI4l3T//XA19U5cvT0/AAJg7nY4f379/fn65Xl/lWc4QBRe54OeutXrqzqdP1vpkz7wuzv1wOhxurm/ImTor3ThJwc7b7ZhJlGK9Wtd1LWXGkUspJJKZJq21EFIKfmwn5+D+9eu8yPb7/bfffZUX5ecPn4euz4ucaTMa8/5vvw5qePv2LVj89z/95cOHj3VZ3V5fk7HD2L57+9Y4ez6fvvvum7dv3uUyW9YLxhhnQNYN535RV9aY/W6LiMumefz88Onz56oqMt/RclKOwAEprc/nc1lVyiiYyBizXC0YsrqunXVDP3Auxn6oqwo5csmW62XbtYDIGZN5eXN3Y7RdLVbNoiYgpXz5UzuZqWnq9Xr98PT5q3df3d1dlRlIwQReCEGEQNdEoQqJP50vkU83D8IzRNcQhMiC2UaLQjZewYRLoiwNVvVFZqb/Lm9qz2RP1OXOy1pfGN4rfwgUQxjkjKcQ4v+iQR4n6V+lGDTMPNQjiwTkrHXO+lQsZ521zoe2OGB+4C5iMO2IQswyEJENzpvAWJANNV9cQIwYBhnccCHHCIAYA3JOchHkNIKh8KGon4Lpm4qwgFd+yALHgkA+ScyrvSDukaKZS345fUpHzOxJhVeQkfVR3ATA0Be648jJWgIAi1Hska8r5+W7c15FofNlT2ie++w8mD1QPlYiMHlRMKdIDh/v4XkF7o8GOV9EJ4BUhqFikGfpWCq7TAS+maIv+xg8g+CzhEL0q9eZzvl4KIhRLQihTl48YwEch9UJmh45cOcPzIzhkSgkQnn15yKoIF8GOfJTAcskqoNm/4J/Cwv3JKjVC7Xuo8IDNAgLFeMzwioGVISRtfLTY5Ci5h1wJoiCN8y5pK4hPRAAUx+X6PIJ5w7TbQ8XPYAyjNcKKQ0fIO5idGh5FspRYFBYPJqU+CpM3T4jS3Fh0WBAF0lNI1IgPMjbQBgNm5iLToH+pGiAxWMHgPHEBV47jgBSjIsXEy46vhljYb39k8NhgJCn5hff7y0FUiwSJ37siJxTqK94ubkAgUTyh5E5S+Cbl4EBAAeOY4yRR2RcMO5JGG8iO3A0Tlppw5BxBkL4MDjBBS/zLMuLLBMExBF9JSznveMYL1jiLQONFQ9iwrrxgHiWTpHl8xYHlAvkCJlx1lrihIwLnnNOCOC06pmUCOAEKEdAZImQ0XKzqUuJZE+HXXc4CQZMcoaMASyrBgHa45EsVYvaaav6HoxBDUxgXmQiy7K84CCHaez6UWuVN1XBQOQZz2QuMiBy1jpjjFJZJsDayRhwVk0DIDAG7bkFRMmFLIUzardrzaQ2q3VZ5HrSHLgQfFR6nBTPhVWmHzuRCVlIPeJ60VSlRKJx6PWkTK6FlMvN1WjUoKdpGoms02bo+mwlOWPTMHbDyDnr29Yh5UWWFYXM8tP53B7Pw9hzzq6vbnzWpnNOj9Pt7Y1WOt9c5WXRtT0CtV0npeQSz307DuO7r99998O3v/z1108fPr559Wac+qfPAzIcx5GAhmkkB1998w3jTE8akf300w9Fke22BwA4Hg7jML396p0DN/Y9MizrMs8lkbPaDP25rIqmafpBOcTjsZ3GabFcXG02i2aptPr88KnMi7zK+37U+onn2TdvXtX1ouvbn3/5m8j499/97u72rj23Ly/PXdue+5Yh++Hb71+/eS2FVJNq27NViiNe318D0OlwHLqxrPL3v/zGuBRCPD0+E0DdVItFM/XjeBzLusqLvG07FCgYBwSlNQcmNuK4Pznr6jrvh/755aVpmrIqhq7nyPIi31wvAVieFX3XMQZ933Vtjwxvb2+ruj4cD33bkaVuHP72t7+So+WqXl4t52aoEKR7MAUTPknoZ9YA4S+zpRhl5MWTMAVFxgCg+UvifQqGJ0IsTOPNSQrBFHghfhj3ljgDRF/wntCSp21iaGOwcj1JEliFKK8TSU8EPIpAL8ucc85YIquNIeutTRcZbmbJ+TRm78AK8SsUaG0AtCmVCMEBOmvD93uTlwWfTlCKzFeHm50jjIVYk1g1iYgcYzyQbSxNx/P05Hy2Lbhk33lo4lGPQ5+Hy3xsKwX4A8nkJQo+B1+OyYfaeNHPgAGgT+AQPsADySF34SR4a9X6isngiMeoXESw5BwFK9zTaOAdAQGp+FTrcC5mCg1iJMxsnhKiN4WD+mCMoYMQqozRoPXRmBDUrncA+tgHr2XJ93wFYoCe7uPAAIh7XsEHFhEiMofk0PrEdUgVEHw0C0UMEiE7XRCOs371PI0nP8AyQM8/AkPmEEDESggR4YS74EsxhX2mdJ+IAMBXdURPLZDPzonzhcQveaXGnG+06S2TOP5AbmBA7ckwCSApPiC6uGP0THwpLGO6geGDcJEnZC9xC0Rtz0JYLqVviOASLtyviECpAFcELP54+Cz4AP4jhg8eHox2TIr3pfngBHgdQWKUTPO3UrDqZu4MiVzAsoSA5MAxCDUFQguy+OAoLdIWhllAuGFEYMPeBWTtzbYAnZNd6ReSiCwZ5Oh8waqw6b6MU2j9hb68exBlgCF+C6yzxllyFpGQTYwxxlgmRV7kUggpZZHJLM98F0KGyBgjIrLOC58AiAgAgCcvI3oTM4T7+8EWwMNM0csZdJBc04xxYgDWEeeciAERL2si4/131lrkUNQlWjlYgwb0NJ6HCaWsmoo5mvq+G/WyLghgmHRdL6qy0pOeRiUArHYTqkW9EAKts2M7ted21Eo7A0L5OhoykzyTTuthHDIuOKAzNs8FQ+IMrNKMo1WGA5RSFkWh1NSfBzP0QMQR8lyA1f3pjIw5ImdMVWbOGUk6YwytytEVqwKdc4Yyxqah7ziUWc4YPw1dnov1coXW1U2D4NQ0uHG01gBQURXtuQWGopB5mfd9N3Q9MDrsD0rrvCjGabTaFFkpMy4zKWX+8vK03x/efPV6t9sf96eyKoQU4EBwfn/32oG7u+vrupaSn1tljK3rKstyQBzGqe+Hpq4nNQ7DwBA5l0ppY5QHx19/c5PJzFrXVNIBTP2gjSHrCIhL0Y8TMsm4GPspy7K6Kp0xjLHnx6fdbs8AGWN1VRdlOY6jsqofxvO5f//pt6Isfvj+x9V6Y43p+6Gqq19/+/Xu/v7tq7f3r14D4dD1zaIZ+260pm+73XZXL+tMZtqY3Yf9crm4XjaM8alUwzggstP5/PKya9tzUZRSirpZ5HnGUTCBWqnd9ui0YwyyXPiiSn07tMdTWd9Z53gmsiJTk8nzUmuDiE8Pj+ubq/Vmpa0VnPdtXxZlkRccOTKh9fTrrx8/fNwV9VLMPEP6oWjVQVQzF5L7It5nFuUwC5wAQxCDLPrCDT+DqCSqgo7x5mCU7HNqA3jdjJ5QcUAYZIJnEVzwXSXeycuklFM7DztYgcHedOSI0BpnrbNGuUj9gCc0gtnMvEBwSD7bNUpy8k1mAhPjIDq4gAiAc/AlRAC8zyIZst6uChRHXCQicOBS3TyvlBwRYxxjNGN6hnMQeB+WElsSIPBLmvr+eEOcQmmZOH0AcuTAhSZDlBrWIvefd0QYo3e9pA7P9lgRyCE4CqGsjCEQJySyNm6KR1rRoUiBjw/UuXceMUbkwyjCjgUfQNLIkRaI/6WgESAqfQw8WjRmCYEBssg3EmIqkeQjyT0Y849wEQtCOCSetpm1rjfCA4sWCvIEtIZhVhgPPl54DiJLF6BrvDbeuo6kJoZbkLiKEOYeb4lHih6yxMipkA0W30bxWgTagVg6WgnL+BGGwCu8uE+ABNaDbwzO1gAkLt1iaaFnAAIzNJovdEp7gLgA/v7hhSkSL1+0RiL15b/Te5iikRQqJEbUhAnyhjhxigKIEGPBRgeRCLsYG4sZ4SFjzEWM55Io8sAyHdlZThEkpokAfN4FQbTYQklzD9/8dkZoD4SALJqC8VLH6+gvMvNxw+Fu+CbL5AvsIMMUSe0IwZEjRhD413AuKBTAYpwxRP80R2acJq19E0EhhJQilzKTIstllknBOReCwNd594P1bn5iyDjnyZYAHpYWvXsZERgPADOUmufOm3CAxloEZsgiOHCAEqxFDjx8GwIKBkbth/HQa2eM5CIvZacdcyDyykxKIbPWiKYBzlDKqsjVNBLZ6mql+/H5fBBSIqI1pNCCZFXRCC4dWJ+IMI4jRxiHUdZNXmRDP6hBkXWyznklp2liyMoyyzk3fd8eDozxV7fXxjiGYJVy1vRDR46EFEwIMpZnmGXo1OisA7Bk0CgrJW8W1TggOtDTtN8dGIcqq5uVFILVeSk5M5MySlVVZYu8H4bJGskkOMcZR8CiKq3WZVUWrGoWi91266zNs7yomu3LXhuzf3k5dq0sMjWp8/nsnLm6uVmv133XCS6J3N3tvbV2miZw+Or1aymFteDfv93uwk10wJno2nZSw3K14MAlZ4tFoyetnVHKTJMZlQLGMpmVVamlHPdHYqxc1GXXn06t1mYYBm20lIJzlhdFlhVccOMM46LJ88eXl19/+Xm32/3Hf/7n6+sbNamHhwdjFOdZ3SwWzeLu1R2Qe3neGmvzMpuGaej7LJfncdxud5vVWmQCGWNCvOwOp/OZceiHcXvYVVXBJSvLnAiaZlEUJUdeVZXWygAyDtvty+3NLTlsz60jV1alMQYZ41wM/SBymZWlEKzISq24HhuwbuoHWeT73c4au77aWOtQMDMOYz9qpaSUD5+eRQQ4FB35lzAlyeT5Hkd4ERUXXjiZAwgK1neIyWFBaAcL+0s5E+RqEqJEMWmdBS4EOThUZDzViQxZyPhhUb1C8D8hIDJHvmVBtOC9LvQ8PwMw1hEpZ4y1zpLW2hhrrY0OOSTnHAESGSBPyjhPpXgBACkawWcy4qySCKN56BmG9HsWBwmXQQReC2D0xiWfSxqyj1r2k/BVa71hTUFHUgxwIQAWAzV8GgtGtto7PpIHymuoQGoERBWZMb9KBM5nyoe0ODdPi9AmezcCNbAhHQd9f1UI0NHjLJY4gBi4ArEjExA55psRRNURF+0SfCfDG8i3dYi0IEQFGw4ucgBGzkWNC5FvSseSCI0DIHCxYiQgMQ48IseZ6vRMWkA5RJFKCcuWUBjEucXw/AAyQqEYirvrNQtEkIqXTl//iNkHnJQlYGBEEQldKCgEwCJE8x7Z6JHwyAcjKItjDSgtbla82A4vsWXAoSmpGwPpESF92J9grcRTFHD4xfP90OOhd4H4A0/aBhxGM6RxUXYEX14IIArgKXjZEkhNnEs8AX5HGWOefiVnI6Ua0UtYyRDvThSLbqexhnXyjloiIBbS+wIw9bW2wsp7FgjDn1FyeXqJcI678q1Bw2YzL8TmY0hAFCQVpVPqfM0dxoQvIBSAVOI4yfk4Lk/PWY+h/D1j6GGhI0vEjHHeoUZOMQ6Ss0xwIUSWCSFknuecszzPhBSSc8AQdMgZGm1iUxPf8ATIeje5rxwWiCzytdyRwDObvsszWSRkwBxaH9NHgMB8jxZntUNLmSwRhWFWk+tHi46kEJKASYmcWYcjYD8pzajOBGVCyEwiaqJzP1ZFxqWwSAzLOsuaRS0zqaaRnHXkuvMJnHXOOrJ5lnGOjmFRlZwzsLYsczLajUphC9ZJgqYq6rIwRFprIgdkMsmQM8bYNE65qBwDNSpwtFouOOd6mlAKhphJWQmhJvX0+HA8H26vbzOZjdNYV2VTVNaooVfWGGX10I2fPn1cXS2zPGPIzsdjWZfjOPWjYoJd3VwvFsuqroUQ69XicDhbp/M8/4f/+E/vP3x4eX65ub4uyrIqm1e399OknKZpGOu6WtzfPz8/T8MkZV4vamtslsmqqnWupcyMcUbZLMuqqpRCjNMwdOOr1/ef3h922/2r+zuGeDi157ZzAEyKZrVcb67atnUESulhGKtFpbRC9GV93WLdqHGqy2K5Wm9fdv3Qf/Pd98TYfrvrh+HdN99UTfO3v/38T//0j3/75W/jMBp1+Pqrr+/f3I/jcNof1DQqpX/75bfz8bjb726ur7NM9tMADBiKQY3jy3R1dS1redwdTt1RZtnd3d16uTmd9gDs9v72dGq11sbo8/mcCXFzczP1E+d8tV6fjqfPnx8WywVD1reDEGKYxkbKrMgJnbH2cDoqM7X9eexHa+3921da6cdPj+vNWgjeD/3Tw8Or1/cvT8/Hl4MIQjhIVS+653iHpJ0invjCPvwyYCBExFyQvfFhoY5OsuLjxyj9N4gD78uIGbOA6Kt7hTpcgnHy5hdGAIK+rzIhj7kPhOgNGoe+H0MEDo6IjDHG2klr55zz9I810djzWp/FIYXWX47AAtjg1oEYx+rr7TAM1WDDC0SEBDwkt4f5BzLFYwy/ICkaIUC+IHu9iAxwLYhtF+ovxsWnWbOG33l+xUtYhsh8eJCLqMeDiPCNlHwlMIO3UC43sB1R2GHY5Tg9Ioh5vL6qHzofiUyE4CwQOATuoYK3LB1Z9OE2cefTQxmyiI4isROQAVE6Q1ERe0QZKQlykSqMKo/Fw8LTsWVRn0Zl4in8EAIVhoToQ40YMAuhio8/RgjoPAkU3BgX4AQQQkJ1IqsS/wgQcWs0l73BzWJfLiK6xIXzCQk7H25cDD+JYSURZFzyFAww4WwgvwqQPujC0l7gNQwfg0BR+ZMTzlPysdF89eniYxBNhGRwBOiA8Vq7cKQwTioMJZzqABYjgmW+yRoE/7hzIbwG0wCiseC/PMa/AfqaTXHwAb7EhqYRwER0DBSNBIzwNcqc+A1zSRyIlh8FF3H4bKLFaMaGyQhI5htDJHQMIOSxRryVhKGN2xiBBHkZMPNzCdr59fZXgULNkbi9RN4Pbsm6SGoiAPrq9AQMGUMGYJ0dR02kAIlzLqUQUmZScCGl4JkUWZ4VeYaMiUxGwxOInDEOGAlHCIx83SEIwIYDOvQOvln0E1mLBgCAuKfrDYHv92fJciZ8WVSHlktE4ay11pIBKErRMzQAhiFnZMZ+VFhwVsuMc2YzVKPJOYpcAAPumJRSZBzBcUbA0BqHzo39WBQZkrXKCs7Lpkak/txbq+umAuvA2JyLuipMoY0xp93ekAMEmWVCML4opBBGW0RqmsI4050MMsw5J8Bh0gxgnCYlJBIppcja++u75XKBHHpPTlSV1sYoxQSezufT8aStYUwUZaG1csaO/WCdZQyKvMikRGRff/fNYXtwxK6vr9u+NcYcjydr3avXr9pje3V1fX214ZxnUl5fXzvrti/7aRrzIr++vZZcTJPSytbrhbO26wZHrqlrqw0Cz7J8tVoSOGst48g49wGejHGG7Kuv3jHBJ2OZEOM0Vc2iqJvT8di17TSquqnLqqammsap63qtTZZnQHa/3edVOanp519+/uOf//TTDz9+8/XX7bmtqnIcemfd2A+OHCF1pw6AijxbLJefP38e+qHrz+DcMAxFURRFPozjMAyOwf3dXV5Utj0uN6u8zBeL5vb2thDZ+XwsisL3namrmpxjiOvV2llyypZlJYUY+n4Yx8VyCUifPn2WUrx69cpZu9tvjdJt2wnJiyw77A6bzYYIulPLOB+G0bjtnbgDZFXTkHXffv9VU+f4f3zuMRroQcDEnyhfgviLzpAgMmaQlARlqiRB8xOi7GRBmnuTMRjlALP1HKx9YL5wDjpnkw0EgJx5utjNlWwAwAHnHNE5slEoMR97CYDO9w904MgZa60xzjpjrbaU5CIEiQKBeQ8101hUnuAALNk0q8i4MEpi0SssClQ2AHCEWETOS7WgiWY9Gpc0Rmp4Thmjg4vAIz8i8kDLA9PZIvbrnTwJgSYJ3xPTvChWUInWP4sFP4LiIh+2nFQsej2KRFZEP5gjsCyE9iD5VDGIWoDFzYlpUJ7UwRCh5JPMfRsJnysUvIXkMUg6an7ZAg9kwYU2chFfkyP2RS1xmNMKQ18FSJAcCAEczrSLb5HpEqDybBpGTxEjcMhi7aBYJ8fvpgMCsujCjOJP8GVchMciAc2OUJhH42eNzpGLgDMkk0WSAyNGJwJixBDQIcSC3qH0kAUAz6P40t1A4Fh6lI9BR4x5U4kBRIjN4SniCkxHxnvvyHtFPIjw55zilqTQvgB8cIYG5IBiFlh8PfqS0AG52K6LfARavLD+IQ7JUwsA6OOvvba9AIMByOC8reC3NtTEBnRkIdJWyWRi4Cu6UYC9jij6eCFVlcL5SoIXIuSNh3ShiCGG0wux3UUwegJ4iqW5/Q33NLM/EhDjyn1kIoYhEhCCdRSdyNGOSulXPnDdPxAByaOnsObO+Rpv5IIR4sgRZ3zOzEePtsmRFZxzH7BnbOifg6Hsld9GzriUIsukEDwTQnLme9RzIRhDLjgDRtZa54isiYFnGNYMEZlzBAx9ZzZnHaBzCEicMeGcY75cNACRQ3TgrC+thAiCMSmBETlrjRslxxyh5GwhZS24Oh2n87mQzCo1DB3j7OburqgrZciYiWuH2pG1ZLRVSjImJB+HQStV5JkU0jnLicZxRIRMCmes05q0WdRVIaQ1ehzGU3tmggMDIbOyzq0DY6zgol5UkvNpHA+HIzDGmViulmpSu5etEMKRJW2t0QhYNw2B64ceCbkQmRDWqq4dmkV9Prdtey6r6vrqpiyyw35fFSUAbvdb51zVNGVdcS6Hse/abpqmsiyUVn03GKPrprnaXGVSTuMADvI8z4scgcZ+nJSexsFoe319XVX5uW2l4FoZpVQ/ToD45u0ba8xhv0eGy+XSOs2QFUUBZIahJ+2EFEbpSaub+3tgXCmtjLbggNAa+/jp4XQ8v3n3pijL4+Gw3+8BIROZlOLzw1PdVLf3958/f/7twwfr3Hfffeec+/Tx0w8//qDUdHV1jYCLZfP48NCdW8bw7Zs3nPHnp8frq6vddkdAr169qupSmenx83PXd7e3t+vbq//jD//66ePHq83NP/6Hf7zebDjC+XDq+1YImWe5Y4CAZVFaa4e+l0zKzBedY4fToR+Gpm6qqpS5sM7ttntH1mqLDKqq7tq2qavnl5cffvihLMu+HxAxL/NJaaNMUVd6UoSYCQ5ai6jNZk9+0i3RMwGESM5FkxIv3pOuto+WgIh/InIKGinY6BCeBxdPSsjJ/yaNhRhj3pj2XUh9wy0Cx3xxZt8P26MgIiJwzjkC3z/Qy1RrrbPWOjLWGmN8xpIjIsZdRAwU4YULQtwPxgWgE/tREEQuO7A0RCHeM64cRsGajCmIaGMO4olCN4GVEJsDBBSL3RBA8hBgsj8D3gp75E3/1Itx/i4Az3VB8L54CxsZBrF8CTmSsvOdw/zKezXmo7xDgVtHkff3y+CjTyJXQBCyn0LlQKKQDOV1bCDJ0xQgkg5xMhFX+r9i1JoQNFhgsTxKS6Y8xOM34/agQgBiIHaAQpQYqORSTJHMia2ktIAELqGgkOnj/bgXfsxwL5ICjD8EYeIQZgGRnAj0Rtx7SPfFK0IgcmR9XAYicxAmnPiHcJqcgxBA5uFg+kvcmjkbACnaK5GoiOmTHrTRfDgjsA9ojDFMIDxxjZfHJh4cpLk0QCTU4h0J3EbwGMaQQAxbi75UJjIIxTG9LzkxwTHePIT1+2PgUwcCho6t14LvybvxPNBkwBiGoK2411EcUfD1RkwC8f5jLFDq42vR+VQIX907iamwrRSgJl3+3Tuz/dlzwDDWiYy4HcmFnsTgvHuY/AKkFQuY1dPoLDjK7HzoQxMy5m8TZ9yQM0ZxLhCAcY4IyJhAZrS2ANyzzsHD6fP0kYicJWOsUrbrB4bM15HMfKWaLCuKIivyTEjGEAUCcI6I5BBcONCOyPkUUR87ZzmPfQkdWGcBIAhnAGLMWEIUCI6L0GnQWUPOOG1lySVntu8Hq1fLJYJVfScRSilHNRVClk1RlRkRMZ+2PmlQrswE47w31tiJGcEsuUkT55Zg7FtwVBR5UzfIwBltGBpHQzd05lSW0u/VYlEx5Noa1Y9FWVRVAYCqHyyytj0XeU5E/TBZrfMsr8qKc1STIsHqqhra9rjbIQNr3NX1ehiGbhwWizrLhbW2rivnbLNoslwCQZZl1pq7u/txGvu+BwLG2aSm0+msjQaAfpw+f/7YNM2yWbx+/XoYhqqprLYyF1VVvrw8b192jDNjTF3VWZZpo09HJYWoqnI/HNWkMykducP+kGUZE5wjM9ZOakICmcmmro11yk6AjAthuvG0P1ZN3XedyPP2cD637XK1+urbr/a7Q5ZlWqvj8fD+t/d5kb1793a5WXx6eBjG6fHpcZiGelF/8/U3dVN/+vDpP/7zP/3x3/50d3cvBHv1+g1ZS7d3Y9O07ZkxMFqVVTmpaXO1GceBC+6cI0NlVVRNZYz7+P5jez4ppYTggvMiy6ZxBKIsk+CQC7ZaNkbTNE2n0wmJLDOTQjXpzWbj10FrDawaJzX24zSO33z7NVlyQGqcPr7/NPTj1fX1pLTP75GZRAzV6nz5t+PhJBjbrJo5C2y2x4OoCEIooKJg6QarMXrpZ9I2FqxliUgP1m2UnhThEF7+ayZSAgfvRQhjobeA5yocUUyHiulRAIDorNPGEDnjjLPOOmctWUdkQwYoOeccWEfOhcaBQWdTkvyQMqGDsqWIf9AFLmOGbsFAQ0BkzHPckZoP8hBCX9KEMijEmWJwEDD/HgdxrgAYrOCoIIN7xWGKjL5wRELw13veCaJapogDMIhg5vNxCIjAhRZUFAqNRKLOa5zgnwzwBryHI3BPMxSI6+NDmL3SYlx4yR4JAoIYlYWALgAjSIADkj4Iyx6YngvkTcmrEiFOBH2pB2dozA2BTfD6EiOtCEldhY3zGYWBngAftx7GQQEYRlACBBhSoD0rgeiTxeLZDx4PSGf7wkEcgH5CVJ4PnWFBMCVSyCwRAENmyRGEhiZh2WmeIMV+FIGw9DuYAOXsK/NL69C3OkF2oa8BYkUAiqcQI6SigPkCgcEZ99/L/YkgG9befy5GTKftSQsSUpeYb3kGcfdjmA2kQOwAohgwB0ShqZ2fnB+zb83h3+pYqFMdPG4BX4NvesvAp74zQmAYGQp/GLyhEcKmMRkk6USFkSBgjEsMlaXYBa+WwM9sfcx7DiH4y7tRQ9wSC1scL0P8Myyiz9fjsVqZA2LA4qWElKAYTwfFxfNQAxgwIsdi3TaOKLPSxR4s3u2LxCWX1lp/BEL0lWPIgDPOgVk01llnCX18D5LSdtIj9iMXXMosy2QmZJZl1aIQkgnOBUNEztB3qPFFYB0gWOeQhwJWznfMYwgOtLE8JgEIJhAJHEmGkjtuCIzljjjHIhN5xq2TrtfY9ZoMDP1mveZAMpNOcOfI9QNIYYw2vTL9UDKZ8xysLTkvqgIJ+rGXdQkEZprMpJy1UvhcT0JHZK3IhLPmdDyfDrooiklPtamyQiLy0WiBqPp+GIfN1YZx7si+vLwUZaWM+ctffr662lxt1kqpl5eX1WLZLGqnc611ngvJpZomq/RisSyLvK6rw+F4Oh5FlgsmBOdD1yutrtabqqk2V+tmseCZtM5OTFtyXd9zyU77k7WuqeumWTDOqrIeumF1tWbIHJl2GIEzpbUjyst8US8yKbRSalLtaSjKwgEsFgtH7uV5yxguFsssl9a6aVJVXWZZqQ0JmWVZbo1R41A2JQA8PzydzqdmuSiqarl8ZZ3jiOM4DH0PAMQgy7O6aRzANKq3796ur9f//pdfHp4er29v716/Mlr99A+/I2f/+T/9x48fP0zj6LSehqGuCoHorK2qAoGZrZnGCQE4433bTdPU922zWi2r6vH5WVn1X//LfyVw59N56vvt9nkap+v1hqA8n05AtFqsjTUvz6ppmqIotFJ92zHGhmkYx0nKzDpQSp/bc5Fnd/d3VdUYo9u2J4C7V7dqUkRuGAZrZb2otbHHY1s1zXJRO0uSk11U3bnb744i3c74Q/MvLkoCBeM+gAcvzWd5Ej+Ns34Lb0loJ1ruSBe4yQsTipgrqEIEJGdTrKi1NhTXYOjrrzkDzlpjJyKw1k1aOV+q0Dlrg+MnKZnYPcsXzvHGMIsxMiFM2CfTxyaXqbWEBzSI6KvFAxFzCL4QIAaflFflgXWZwVLSS17MBs2FRGSjO4AiDknrHNQy0izNLsEZBGyTZHKEXhAdUzEj3BfXTerJm7M2aM24Pkjzk9AzH2NndesAAQAASURBVHGTfHBqmA9G8OF7YnsI56OOvAHLgLmwsv6YIEvbjAGgYFJF6UBFvRLAT1in+RX/Tg81XMxFS0rOvxV9h43Lwxs/O7s4otJFBPRt3AHSyQwkWcQCEYD6TfG5YyyhXgiLDDCHM/mHBRI0wRTAGFYV1jT6SMJv/NQSQfVFKzGGPJ2/gH58ojtAwu3x5kGIkwsWRdq/AOLSqQuXLzqvo2KHUCUy7A0SOc64Z6f8B+JBCycV0ozCTnyJCgLaIMAYAvzf5T0AJKYjLH4AixHc+ToNBBRRLc0BRnEkMXcsBfVEJD2f1XmhKM0/HozkQY0B12FoGGJzYjRk5IcSRAb84lJ7rJXaokH0qwZTwDeECTco9S3xUWBo03qiv1q+HHhw/aLfjkS/xhMbjAXGiYgDB9+amayPWSQEH7VIjhwhZyJEHTIEAGvIgAndAhlHIMaQIXAhCYLZqAc1DAoZYwjsCJKLoiiKPKuLQnIuORdcABIKnxrmiJEFh96g9KYREDmwznHGgICcI2cyAcLZjFxGjgNJQMlRWpdb5pAma7jRZhhyciWDsR3UMBRVBsCEccZOdhrNqMw4QcnRWT0ppxUxGMbpfD6JTFRliYhFJpUCJFLDyBmM41gW+dgP3flsnen6jsiVVTG0ndOKiBzZ427kjJtJ6WGSOUqWWXMyWpV50cG577u6Kq01fdchuaLMLDpjTJ5JJhAUbdbrZrUg58Zp4pznWbZYLfOyOLfn0+GY5ZnI5Mv2ZdRKMN40zTAO7dDtdttJ6WbRXN/c/Pjjj9MwOWvAghBCTdYBOWvO3RkYFnUFRFJkRVlVTZMLqeRgrUNkalJ1Xa3X6/3+AIxlRc6FUJMahnG5XCyWC8bY8XBQWstMcMZ5ViA3kuFxv88z2VR1vVgMw8gZa9s2z7OHh4ehH401VVVuNktrqK7rRvIsy29vr07doSjzp5fHZb24ubkGopfnrZRys15tn1+UncZuVKNabZbTMFrjOMO7+xsk7PteMFbkWV2Xq6tNd+42NysG7Gq9ObYnNUy9bY1SRZELIaqyXK2W+93+bz//VU0KEL799jul9DiMt/evxmEYhmGxzLNMnk/t9mVnnWGAV1flpFR7PiMi40xI2Z671WqVFzkiaWON0lmZ56U01uZZYZ2RmczybOoGcSlRg+SEmOsyv8QwxKlAdG0H6Rk0LKCvOEIXuS7JxoZoEGHQHCkEJYovRB/3RMG2dsHjDMQYR45kyVhDBgLHYx0ZY5xzjqy1Bsj61t4uxOh6Weysi3a/V0AeBjkywRlCRCnYOVjHGMUvxHw4DGXZvPiLBWmCLCUMtf8QYqBioM3C1ILRCwGfRG2NMTgA5jXGixymC30RH5tgA8wzvNSCFB1YgVlLehwppP1H7ZGQCEuCm2DekbAPYSMTtoVYZNu/iWMcHUHguyEGa/qxxoCwoOgAAlEUzP6I1ijp5Kju/WddXIfZWRqmG6cWgM5las8lbI9fm1RQRAEQIT1ePipRM+mkpi8Ok4rniIgSWIm4FOJWBv0/j28eSvzytIEXhBAL5zOAlflkhPeyuEwUeBMAjMUhAqkDGLkHF9Ht5f5S6OFwebbiyaEYJO9byOEcnsXIZzgHzR6P6uwfCyIjIPdQRoZigBqkAwAAMWOAkBhhsEsI0o2i9AcQcGCI4JwBIIbMI79UPNp7xyBaOsQAkYMv0BCtsECLeIKNAsaL/jV/YQFjnr0P//cZTzPcgUCDXgB1ShAnLvBMKYVVm49o8PqF3Q7hWOCrT+GFkeGlJoOQ8sBC5YjAQYai5xQlb7y7hOAdu+hCGFeweJCHrjFIHug4cM46gQwBGXIgZ13oW48ARNa5ADjDETNA4IzSgAOeulyKjIksk7mUeV5IIbI8y3KZSamtRmCMgeDCkvX8EDFAjoggkaGx6Jy0pmBQoSuQMnLcgCRbCV4gDlqDHus81xycslPb1pmkCZh1BI40IEPpnDKanNF6nBQb+5aT04JOx13XtavVmqwt8qwopdYOyAx9Ow1jludZzo1VRFZbzQUuVk0mxdj3531XFVVWyv3huFwtlovF88NLVpbVsr7eXE9GWasZAiNq25OxmnG01mit9rttd+4mVW42q6rKLZnD/lAUhSNarVdCisPxJPqeC15UZVmWhND3Q9d3jPNuGI/H07k/G2Ocs021WC4WVVXmWXbcH7gUnLPtx+12u11v1pZIZrIsi7punHXn4/Flq683ayAs6zqXsu+nsiycg6zOa1X1Xd+eO2RotM2yzGjbdcfu3ILAvh+EEIumPLwcb282y/Uyz/M8z7W1joxWFgEF50JIhPFqsyHnqqJcLFdCilN31pNerhrOuNXm9vaKAX9+fi7yvCyy1eJtkRVlXj48PuhBNVXFAE6ntqrrLM+Oh9P9/R2Bm8Zxvd70Qz8MY9d3N3c3m83V0+NTXmTffvcNMBjaoT2etttnWl/VdVlkxTRNu/MZkX/47b0v+7daNACuqkpEdj6fydmqrgBJctH3XSazaZrUpISUeZ5/98O3WS458N1+LzJcrJq8LJxxFly9KLu2G/uhWZU3NysRrfYk2tJdp+gciaKc/O2l5PahGdZADKy4+EA090OQTJDGseb/LJ39Y2PJE3IsVvtFQOscERlrjLbTNBGRNeT7VDhyzpEjMDDLsxRJ4OVkkJgYbTOavQyzYg7jiRgJAGLiaah3kdJtvPqNBRFd8Jh5iemCjvU2YqTxowvJcxUOfHR04LlTnZaoq5I8pdlIxpQAA3EdwzDwEqB4tRBNW883hBgRssGP5Hmq4G+AuSFmwg8BXsQzQDNuDZEaPuyXohnsR+nSPyKWuXgkUFDYFLd4dgJF/gNcxMoUQRIQS+Uoo1bxKxtDWS/O2wwHEwsVJxEQ4SXKT7j2y9nPcCW5OGaaM6IhvJioByN0gX1hPtFRP4ZhJvwTHW7hndE4CLDNa+KEkgEDkmGxqEzi/6IDFDD2ZkkLzpCHXEWaAVREKTESGOALfBnvYqxD4wdqiYhB6LABEAqII0V4G3BVBMUXFy8iq7gM7OKqXyC7cFjIYTC8Im6Ka8pY2iqiSLfMy+4lEAE6JHTIOF7eOUCE0D7FkPGls8JXh/R7oND6g9B71uYRw8Xm+x4eCfrMx9w/KSCPdCcoHTwIgsYf7wvmEmKpkNkzGMqXx9MTMVfCXqF8dFyoMH0H4CikbCACgrWWsZiA6ciRQcYAkKHQdmLAMNRHBIqdDb2IJF8CjSEiY4w5B8gzYw06HCanQLNJAyCDMxfIGOZ5XmSZlLzIMsExz7Jx6Lng6CvKC46IFowkm4NlaiwzXEpRSwbGAegMbGGYPUy2HyoGzGk19tIXb+S4Wi2HYTi3Z3tyMs+ZL5bPGBnTtZ1zmglhjC2rKiskAEzjME7DoqnzLNPKjl1PzvGyOJ8ODFlZZ8hqwZZXV1fd+ay1FoJlhQAgIbkyhks3agW54FpzzpwyztL93a0hM/Xj0A+rzWK9vkJwMs9u6zrPpFHGGAuMnY4HbczN7fV6vR6GcRzGoiryrFg1m7IoANBhB5yf2tPp1I3TCICLZjFO02rZOOf228PhsCfjmmXNmFitV7++/3W736+uVnmWi7xwBIfjafvywoFP09QsmirPldaTNS8fPhR1+frd/RLWh/1Ba53JrFlINajd81aZaej7uzevgOOnDw+PT48CsSgymUltzHa710a/fvdGnbvn5ycCXC6Xy+WiKIppHFertZS87XpnrOOwfXp+eXn6r//tvwFC1/Xbly0SbdYr5GyYBuOX69VdWeSn88lMWokRyJ2P5/Wq8SZlWeRZJpVWgjMz6dPxmGVivVplMndkmWNFlgvGHLmX7X4cx2bRLJdLo23XdgDQNM3z80tV12WVnc/t4Xi8ubkWQkxqKvOCiFbrVVGV25etc7YsizzPrTXd0F3fbrq+10qdTqdm0dy/uj8fz+fTeb1ecMQ8z0Xio4OIvBDmkc6BqFSTeiCIhH9Q+Bgbgl8QBilkFyiKd4yBrBRvOcXCq4FlCh4HFxIdaNLaGG21ceS09vRgyIH3XCuFNg5AwRflYnllH5yLCAChyTgRkSXHfYhhSDtG9CZMUlv+A4nASh3UMRnmQOCbvDP/TKQQshuUdDTrwlSDcRyySaJzJOmgKN6DNZooIu8CiEUBgohLG+K1TFQj0dSM7D1EvsdjSooPnhWr13WQfpnmP/8LMWIyAIq2r9/1+YhEKQ7eH0bkaTEicC56oaL3BOYBRLgyW8gU69+mFyC0lfBHxwWvW+C6wqqGFymCtcRdUtqAcNQSUXGJGS9hz4V2u/hVnGtQ3MnFdYET01ogxlDpi5+gkiPy8wiS4i2b2auZIwo17zz4TlyOh8XhHoXYDj83H7hzQa8SQgz5jmfFWxxxQ77YvLmrSHpixPSeqmUMAdHzEXGRghUUDxtdwjnAWavjHAoNADNQiFBhnnwgO5B53xkwYgQIPhUL0jmLWx8lSGSMCGIcc4SYjGHAwkQMWShLiHRBLkYY4R038c5H7Og//EWVefAc8Zf7G915CfvH4SbMR3CBoAF8s7DASAF5zhtiJkHArWkedDFh/zjnrSAeQ7m858vPTQjh2ymSTzL1YtJZRC5RImDsgoE+wMs5AIznB30THwytbgC54D6aBwnIWUtE4HB0xmnsBoGQCVZkMhcik7I/nzlnno7MqizPBVpbcbitiwLcEsRdVVYZG3Wv7FQKhGnsjwcvkzulj+fzZr3iQgLjWqlh6PWkAJii0XaOcyEYcI4IxAXrum4cuqaqqqZ8/PiQSWm0tVplWeaTRouq1GrabffX11fNepHJYpqGc9eSs1yKpqmNMv0wcikP53M7TVevbjJRGGPGvlfDWC/qelHtd3ulprLMrm+urXG7ly1DXCwbp52ySlmzapbW2k8fPw/F+EhPxpjVagUcGWOTmoQUBCQruW+nj58/j+P09t27ulpYq6q62r3s7u/vh6FXo5KS//bre+fo9ZtXq9Xm3J45stu7OyHE6XA8n05393dZnjtj1DQJhpurRblafvzwm0a96JssKxarRgjplNNG5WUG1p3PU9M0VVXujychhGyWnAEw8fnDY57lWSGft7vt7o9fffOVyHIg2mzW1pgP7z82i4pxfHx4Ukb94z/9E0r+8fNvr16/WjY1Gry9vtmsln/99789fn68v7sfhq4sqtV6CdYN7eDdJRK5Nm69Wtdl3fW9lFIrba1liIumstad2/Oru1dajXqalFLkXFWVnGHf9afjoe06RJRZtt7Up8NJ5tlyuZxGxTkf2uGwPwjGjDbWGM4YWDcOg1vWZZ6tl4tJKcHF0A2Hww4RVqsGiLquG6YRgJq6UePIETgQGNeeWuHF2aXonGUUEABLyUNR6ofqpYApmwLDhYohNoCzFUbO+uC++EXRyiGgGMGaXvVWiDbGOmf8j7XWOOus5+nDn9HTEnDQRUiJZzicdT4MxT8SQ+EKQmQcOfOOGLxoM+AVdLQQgUJ4ro9O9exyDGXBJN2CNkjRIEShZmGiQiKCSG6IS92YQGDCMpcQEgETmLmQq1GnB4I9Ok4S+R48XZBU6IyKYmQFAveb6ekg70K6gClfgiD4O2kfkcsFXIj7mTRh0kvJgI2Toi//mxxas/qM+hvoi2+OXErkzPxS4czK+Df5MrmXEC0qWrgwoyECsi9CauBSWYdVxpSoFZY+AZe4yAhxqMF7kB6U3hy0aQhd/fIQwBwZTTFAJ+rNi+MQ+ZuEbkO7r8gIhMEm12GAEyE4iL7EffOapUgeIIDUG8vfTTvHJPmoNOZXJ63YvKdJXFy4DDGIlARhZ2SU/J/grwqG2srAAiSf7wwD5pu8pkIPMBsCSOgTxy/cehT6ugOkHufhILGYqA9zUNfFDADAx3sFh2IEyzPzF7cuyYEohy6PS/iMizdnDjIK1zxYmCFYDxhwH41sGWMuOjPjboWbmZyu5CCUsgAWg+a9BIglFP1XsWjweCjsBPq8Vy+jLQEhMmTM+jIBKenVT4QRBMbIIqILhQwAvIMUyVhdFJW1ipPT4+T60UgJTeWss9o4radpzMuMrStJbtITsvWiKWvmKkEld44bg1pNDrSSUgAAcASGchQE5JwbR3M6Hvq2K7JsuVx2Xa8GzTM29sNiWftS9dpM++Nu6NtrurbWYCbqqkCi7tQCueVymec5U1MuBTjnLJxOp9Nxnwm5XC5EnkEmrDYWwDmjrUWism44Y6pV/Tgg4jhN5uXFKJNnGSAapfM8B8T9bnc+nsuqqKqq78YsK4oiX69Xxqinh9Y4c3VzLXg2jpMhi1x0ff/584e2a4Gz9WazXCzWm03fdtvtTnIpBe/a89B3HTkAGrru5WnLJc+kzIuiHwZn7NPzY9d2XdctVsv1qjmdTh8/fGyWxWp9CwKrph6G7ng8FkXOBVdmPB1ORPbV/f0w9jKX/dgrPS3Xi7psGEOy5nQ6SiGXm2XbDafubJwx2lR1lRV537ub2xsmcLfb99OwudrsDvtPnx8+fvx8e3+LjFdl/fT0tD/sP376KJDVVV1V1dXVDWMI2lABzlqBsGgW1lkhOENkDPOsdMZUVSUEP5/Pu/2uaeosk6eXU9ee/JVpz8fT6cyZXC2Xh8PhdDxWy/rp4bGsKq01ZwwZPj093d+/Kopi+7Lth0lKRESBjDH+8YNar9fOOQbYnk6OHEMw1pwPZ57xIi+8BBjHoW1bq4waJ8kEcilS5EPUxEE3YMhZiIZPwCfhns8KYcYuFhGZF8FEnIWoBgcIzhdCdBeaGj2J4kIbRt8+xjlnnaVJaWt9oXbfaNPrdHQ+Yjk4pCIQgahefJOqKBRcmFVgDUJVOmAMYy1ACOyNl7TOWQj1azDVBSLAQGyEZyVV6vETJnuRorjxCiy8Mqv1gBC/NB6jVA1rGIm06JUMMn5OBrm0UEPLofgV4QHRuwbp6xEgdhEKutlDwWjUUlqiyPakf17AoaDkCZFd1Kv1hIjfDU9sQGxskA6Itx5nQzvCsjlmNS0YBNU6B5+GKI8Lzmx2wGFckRmfxKfDvARfgJIZiUJCiXi5ehAXICx3nEtS42EzZ6fkxfpFXsd/FCGh5Li9F++G8LzILM5gJ+AVn18d1ytdzuDhCxvivcnxMlA8T+AQOVJoR5W+O6ULoa8jGlRqyloKFzrUfIp+p/gixDvjENGFeBQCiF0dABBjQDq7wH94gYtCXLw/SABAnuJLwV/hrSEu22+NBYpBwBFOQUxKBEKGzFJkvDAduSTKwpnmLBRljtsWeR1vhiUZFhnEdDYo5vElT2G89Oks+L9QMoQoXmWKg4wHjtJNwpjz5UdjETlxX3YhLo83u4KrkbF0pkOGKflMOrIMkShWX/COrUS5BUDGyBFHBmBDMfEYb0CRBkaGLng/GQE5cOiIGDhHZDxHyAA9M+SQgAzZSVV5nlVVfzwR2ZxLWQjGyKrparlgZNdlwcxIZrhfVNd1Rl07nS2T7LTfoQRjrJrGpqqqshJC5MOkJjUN49i3nPFpmpRWZVkQQSYzuRScgUBC6/pza51BhFxkjFAw1iwqM2mHbrFsikyejqdpGHMpsyxfrtdam8fHJ6VGAhRZMSprrdYOiyoTAOM0FYuqWjS9mk6HY3s+SplXVQlEwzhdXV1luTjsjn3Xa22kyMqiGvrRGJqUNs6NSo2jBeQyE7kD1SmttANQSpdN7cg+PH3++Zffrm+uv/v+h6Ioz8dD3w1E7upqk2dZezpnuazKYr87vvv6TfFNQQBKTeM4kTGf3394enp68/btarUah16PQ8vg0+dPahyr5qv373/NMl6VJTIcR61Hs+/3w9D1XVfkxTiN1zfrrht2Ty+L9bKuG0ekjXn6/GgA1DiMz/rq7lqe8+eXF4fEFf/48dPN7fXtm1vG2IcPH9uulWV+OrcPTw+Tng7H88dPD8tV87e//dyezsfj4fc//k7KfHNzNYy91fb+5rbMM3LkNgsCsM6eT+e2PSFjQvLFosky6W82IzJaW22WTaXHUWSSC3HcH8Z+KkoEhpv1tbFWcHEcjs45IeXHD5+GcSQAJlhW5UVdnI8tACwWi1xmWmsg17VtWZbb3Us/jETu+vqqLutze+KCN4taZtxop5SyxqhJceBWWCaYmA3XqOSTyGRRxxB8Idnn2BVHSSiE9FGy4fPOOfQpU0xK4cg5B+TA+K6ijsg5a3wnbzTWGOPjepzz5buS1wnRe3AcuZSAnXQJRenorT3P1AQJ5/EXATKeVJKfZyAo5gdhLARJDqKanPVViCOZ03dmteRFn/9wavodpeD8XopvvcBGmF6aUVrMK8MgvCKWCbQSksd5zBPZmJwps+JNCtvrHx82EEJtKJp3c5U5CAnSUXpCxBlRC0A0RL1Ijl5ACmALIs/vh0DgWT12AUEwkXUAEFuUwryUM2sQMtk48ohxyfd9u1i1OLKEI2dclQafVoOCCe2xCHzxk9iUyw8CBFoz4ZJLfURffPaLQzAzkjN/EPBKWMAYJnJ5EuIhm70wM97yLyBEXwlBVJkzUg3J5C7F7wKhL8HinGMpJZuAWOBB/cdcJHJmOBqRcSBa4kJekBcO0zQp1jyn9GmaTwKEcJoA/V0irxKmDlwCRdTleTZ/wBAjq/X3FGicPDAiYoiWjO9ZG9LCWQzBvjwYXttHsRZj0fxoIYKsuCDBYkvbR2lGCcAx5ru1z5QrRTkEaU19RgBi8h+nnQ5nmUXbKR4bf9p9Gwqg2NwZADDlwtJMRcXaUYS+GV+ExX5iDkNfxUQohmNp4yYn2zDJekyC05H1h8EBhJAvzgIPxEAEdEpje86Y3ZTLqhC7qVeG1Dg0yzrjcO6P14u6QG77c5PzbFHcLYt1lZ2n1kzd4TSqYSxYjs717YCIVVVPkxqHvjsdjTKmqR1jjJxkzBoNQFkm0REDcFwTWcmZ58+apm6KatE0h71qh4GXiEhSyqosp1H1fZ8VBRI659Q4AdBmvUFgzplhNNr0KIUBJ7KMIZumyUxu97z1x7leVFVeOmcZxyIrXr0q9tutUjrPstVqtVyurHXa6CzPiWjoBgCoq6IsN81qgcC7aXDk9rsdHWAcx2+/+eb+9b3VVqtRMP7w8SMAXF9dZYIDEEPinN3d3xhlBjtVVYGIUsrlZvnw+Ki1ruvq5u5WTWPfdtuXHWP85u72/v5e//aRC26U4YILZMtFfTgcjTKZlHkmrTVEHBHyPJdCOmtHpZRS2pqXl5f1ZiUYIsO8yO/y+3pZ//rzr9a5vh/OXfv9j9/zTO5PZ5blm6sNMj5ps5KyaOr3Hz9vD4fNcr1YLX78/e/7Uzf2Y1UUshLOGNlUHHFUpu/HsioW6wVZl0lpnZ3GYeg7a+3L84s25ng65XmRFxlnvMgyAMjz7Pburm+HaVTlojoeTmVdra4sObLObp93yPGbb77ZvuxAUN1U7bnN83KxXDmlxnHIZM45TmoYxqHve87ZNE1MMKW1HYe+75FzmUm1001dlWXtyJ12J3VUIpib/rLNusSnbHoTNtpOhLHGLvIAPnC2tZhPuODRRPavMCAwgd4hY6x15IsTWmONtb6qVghntg7QoWMOQ5YQhIBCTkneepkZ+gHGeh/RLuTIrbPIYp0yr/aDDPCYYLYfIYYteTwUOlcEt3qooINJcpGvo4xRLlJYq1AVN9jrsRjwbOiH1cTYu/RCWybBGPPN0u8pYAgPKqJWj1JrzkKiSOQ75wCJnGPIIepvbxomIRu+L/WIDz2nISqXRKoFyR4JDJwzped6lXFFY0WYFEIWHnJBEc5aICkBSNw+hKZvHjsRIbCEfSHCkRnm0Kx45iWM4wdKi5heTKCeojZIft54wL540mzXR8SAqc7w5c+XXx9XKawNEoWywj6f0LcX8fsSdhAi3xGOWQyGxXhckrZMNFIYuc/WD5tC3vSA2AkixQYheCI2uakR0DtjEl6JNzr+I54VDBcfHDgO3DkLiA5dcLaQY4ix4pGN2WcpUifemGQq4Hx0IboL/Tso1IhMdFdkZPxyxNTKiC8IwCd4WQICx3x1SgAI3dXDjQ/GTah8FI4aImBY5OiS8msV3h8KKUZxgZiEAyQyxzMlfv9gXqe4jT5PjzwliSGsB+L3RgBOAKmqGXlB5o8KYarsHo2aaLPMyAri6s1UGEWs7Y+Fp+ADiEr1PD3287U+GCK6kFbmfLVGhoDAWCjC7gUOA3Q21JnmACFymjnijDg65qbbzfKHr27b/WEQ1uqRAwcFRSGLgt9w2tTZiP1Xb2442swONCmBWmbMUiaAyrxopw6t0e1ga3047MZucFqXeVYIabTOGHMIuutNlkmZ+RSk7nRW09Qs68WiHPpB62m9qjMpabGUnGulT8dzUZQiF0QwDmPfD5xxRFtICQBWucWq9pm4yGHsOqVVVdUArj2chODffP/Vn/7t37We7u5ugCwymoZ+WVdVVR23wJGqMrdGd11f1XVVF13XOXBFXTpyFkkKJIvI4e7N/Z/++KcPHz82y8Vmc7Ver+qq+e3nX6oiEzJrFvX15mq33e33u9f3b6wxt3e3VV2fj62x5tx1+/2hbhaVde++/ur1u9dciPe//Ho+nsdhyHPxw4/fPn5++pf/7f8rBN69vt8+P9dlCQBnIATIi3xzs9aTeX7avnpzyzlrFiVytt3vnp9e7l+92lytnTN1U5VFdTwelVY//viTlNnpqtNGnU6tsvrx4fl0buumHtXwsndPz8+rzQokTnb6+Pnzdr/96R9+t1ost/vtcO4kSrtoVsuaMd6dT9bZw+lgjLmCq6Isnvd7KfhqvULCoeuUmpCBkAwwOx2PtasnpYaxIwIuBAI1y2qa1G57ds7paRKCD8MwTkNe8kzmZZFNY+cMvTzvmiZv6vJ02LXHg8ikUVOW5+TIGrvebIw2SmkpODnnHI3jSIh5lnEp86Lqh3a/34OzjqwI9zgqoSCGwm1LFlXKRUIE5sspQ7JzCZLXnvk6f96IduDIWufrE1qjbfByWWcdePKHnE/8jAY5IQAaa30ALIX8kFl7BgECyXiLmiS6fthFPoxz1guaWbn4ej++sG/Uqo6IkPn5xIYFGNWQVz8MkBy4qEXwQs2msjwz0pqjC9LykUMMjRtn6BNE2Kw1ktk361iKAQ+RYUcA/yjnI6iC/UghfjR8P1KkLOgLARqpgwtlG/+4SDbz+inpqoiJE1rxg7x0hPp+GBB1Z/paiksSFXS0SxGi8yZUUriAjIRzkWP/MQwiPHEoOH8gavSLqXxBG1wg5fhwr3ri+s4AOqq7OF+AC1IhOA8v1yM9kubdJIxAOW1iIqRiyFZ8MSnPCHDjGMJmz0AIKJFJQY+z0AGeIvuAES/Nj0egGDUSInkikJiPQ9yssGQUN91rUCIAsL5/6qU/bQbVaUEQLjYnzeYC7c/EZGI3A5MIkfyZV9XFE+ORqAcrEUiFU0bzhiTsTeksJ/AU8V0EeRGdBwCZOqrG48Li1WfOQ/84+EimEgFEx2vwxSWJ+Xc/4Ur4yKZIsiAigYXovo9t1aKI8mYPRof6fJLj7AKuJoY8AK70rsC3RWEaZxoEa7TAUr0N/+DojAsdGy1ikLEInIEDcEiWNBFwS8pMi5yVgn375uantzf/y7//CfszU+PyuoaxbYrF/ZtNSWZdZgaL+zq3VvXtuR/01A2srpqqGpyb2mkaBgG4WjSFFLkUoio4Up6JTAgzqSKXDKnr+u3zsxDy9va2rktnFqeDAyI1TGAdAzaNiowzXrVYw7noh84ai4RCiGXTWGvbYwsIZVmsNmtHNI1jUzd5kZ1OZz2pIi+sNdZYoxQ4e39/k0k5tH1rdN3UTV2fTsfHz4/D0IOj9nx2DqTMi6JgnD89Pq03q6quffHP07nd7/cik3nbjuOYZ/nVZt0saq31bz//PLT9sqzubm7UMD4/PQ9DzzlfbRZt2ytthDEiE6pXvhPj6bgXEsq6KooaGVPVuN/uZS7zsnz49PDh/fvbm+siL8FiUeacc610e2zzMr+5vgLAfuyLPENANU390C83G865dfTw+eH25ubq6goRp0EdD6dpmrq2r2pWL+v2DFJqnonD6VzUFS/kbrc/PzzUi6pZro+n47/925+GqUeC58cnKYRTRiklc9FPXf/5DNbVTZkXubGm7dphHPMiz7JMCKmVYsi8YZsXxTCMeZEhoHNgtDmfWyG5lDk5Yhx3+2OzWAAznz5/JgJfcwFIlVW53W6fn5+R4WZ9NYxDP01aTQaIjKmWNWNse9gVVXU6n6TMirrR5B6fnpVWVV0B4uPjQ5aV+/oAjG1fXqzWUkoR670kaT1rGQAkuuy85SUDC1c51B5DQocUYgcsWmfRkXPGGmOJnDHWWBfCe+Y2FV6OobOR34jxMd4jHQIigXyR5ICPgg66UGaX3nuKnopZB8SWUEniXfw4nzMf2C2gL6ee3oyhNUDSkD5wmF04niLGgEgBzPAwSSaMxhw48E6ipKYS9kkG+qxoZ50zR/tEGiZW5fYr6eW6j4H2KxULHpKDFFByge4ii5V8Kpf2IgRYnEYQdM0FOEhSP+if5Ky6CA7F9PZwyhL48xoWIAU9pacSAfM1buKaUQS5aTT//U9a7gS/wslI05qPOKR5YHrwBRb4YorzT1ChFy/g3/2R3CHxIEOk8eK5iHzPxRdR0EkY7f3gB0oAg+Lih+C1iBgAAyj05FbouDZvSHxUPDMucEgIEVvO+jGRMv9nq+S3ZEbr5MDTS5ESTOv3Jcj8ux+KqZseh2DcouBh9lf14rRdjiHAP0fEEgkM84vhAEQ3bIQo8cBG6itOwF+s4ETy5YhiQ7nggwOPVplf1WgM+PVxoWKmx2f+8aGOI8Y4ckREYLE4alwd32EDUpB3zO8E8nRsMo8wGgAJSfviIEAQi1w5Xy0TGZDzFTKtD1ZEAgAeKtiTZ4J9AhzG0fgCUggQW7e6dHKQAXfogJARcOcYoQUyDADIEhFDLkVeiPvNvVD6+PHXb27rTw9nGOwCHaG5ysWrZS3tuPvwgZOCVZ1L7KZRSiaLHCyNbXfen52xVhsOWAhu1ZAxwEIaNSGhI91356osy6JQoxqm1jnrnHHkZMaX63oclVETIOS+6jGpw+5grLbGlGU5KTV0Yybk6mqltfK1cZEBQ5z60feGQ0HOWI68zMqpG7NCcmSyyJ1yy7rJi0JKkWWZFPywO56OR85F0zTtqR17lZfFYtUg4fFwlFISkHWOMey73hgNCOfTqes6Z11RlHXV7Lf7u7v76u6uLc5FXrx8fi7zXCs9DOPNzQ0iK6pSKbPfn4auG/v+9u5uc7U6HU9G61VTZ0WhjT7tYHO9qpqSNH3+8Mlpc3d/U8gSHWRFXpaVLc1xf2SMCcHJEjm9WFRCiE7b4/FMgMDYV1+9fXx84JxzLsi5sipWy6V1Fhk7no6//PKzmsybr9+e+lPfde3Q/v/+8CetlTb6/vV9Nz0ddrvDbv/999+9u3+rhvHxw6dvvvpmVVdqVIKxrm9Px2PXF2/e3cs8y3TurMuznJCOh8Okpv7cVXXpIZExNiuyq5s7o+0wmcXV1WKx3O/32+encRxElt0sy2bRPHz8NPaDEDLP86aqZSbHYQJkjLFTd16tV33X7Q/H9Wallem6oamaPC+GfqybGjg+PjwSApdC9b06nCy5ruvb9mFzdVWUxfP2hSNbLRYCgmBLUnrWbRjMBn+Dk1J0gvMAHULpHuacc0RGG0dkHVhnrQfl1lrnjI9e9kiGYRKf/sq5+PgYeOF8nbRolWMy2iCIaxYCdWYkFMeW9G6ULOCSWkooJYUJB1kVG7xfRDx4gwlmPfQF4xCEVgIu3shLRm0YdCSF0iMBYp3bC32P4InwRC9AkHNAAKnvdfzyC10zxzDB/J9gSfsXGGKMxZg1El3YfxjprtlBNg/5QpXgDPXmSeMlZxiVdXotqIV5zIGU/yJII1VzC9r4Ap+if9GlpcYYHnFRpiHplTD5GaP+3V/S8lwiD8S/V4pxfcLfMC3IzOckMi6NNe231+IRtISDQxT1TdCpNL/jAh16/YSB90nLGv4ZvvgCvkSTICLUaCAAzlj88snxOmDao8CmJbqLZsIBLicX2YjErATC1l28K+1EAugJ5M0RXuCtqfhecin8DCHKIKCIVuLTMUIYiGgeIGHRhNjDTlG6AxfjZxdhahDtkohEZ1IMKQk7vLwE6Xb4ODxfzZniis9oC8EbIV4U+I1gCDYgnguoM5/BeZg4y78gc1KpsDhdjEaVvwjM+8k9+A2IF/2pxZDA6gfvyAelIyLBhZmEGALcfSSZ8957AmA+vIGIuEVGxMAxAItoOHOSAXFl9DDYT497lsPrq/qn13ffvb0/dp1ypmYqc2Mt8LE/Kz0cXnJHzhi1WC44F1rr07mbJiW5XNSVdcZqNfWddXazWatpmsbJuRyQtNFFWWSZWKxXZVkKLk7H4/l0bJoqyyXnYJ1zxgHX7XnQelJ6MtoyhnmRO2MZsqEfFLA8z2TBp35S45RLwTmflJtGcz6dq7ouilxrXeZ5med5kVdVjQyt0ctmyTjr2rPWqqyruqgBiDSVRZUVGQeutBr6QWttyeZluT8cunM3jmPf9pNWq9Xq66+/4oLvtvvbm5umqdrjWTAuJCfDp3HMhFivlkWWPz++VMsmL/O2a/eHw+31TZaJXIrrzer9Lx+2n1+qVbXd7c5tt1gtGDDt1GK9eGXu7eRGO+ZZNnRDluW+Eww5QGBMopS51ubhb79cX11v1qunl927r98VeXV3+4ocvf/1vbH69evXhFgvlozz8XxWSvMs++39++3hMBntwCoyGpxx7tOnx7opi6r4T1//p5urK2PMfhykEHmekbVKTZ1SQ9sprYqymJT1xjgi6/uRMeja7nw6AXkmmmdZeXN7x6VQ2rbn7th2eVHY0+nTw8N+t3Xkxn68e3V32h+lkKxm06gAIFuvtHFKm/XV5vnpue06QjDaHk+nzfVmsVpKLjiIheT9y5NF1566/fG4WC3LIs+mAoCsc0+PL81qdXf/yjnXtkNTVjdXaxGNziiv4u1PQsgva+jAFE1FSwTO1xMNcEdbEwGQs5bIWhcafCLFfkwAweLy8ot8/xjGkrQLeiGZhi46fi61XpLhBIQOo26YM6RnqeHL/8TPEHhiyfmUBgiYIwiyv3cBzYnu7EIpxDZSCVHE33+JqvwTLiBNsrkxtnfHGFOVnhGN8xjlE3u3p5VJkhS+iOC5LH2MGH8R1B6mb0/bGr8sxkZf/ET8e2FIQ3QwUBxE+jK6eB6btwbmoUW8GKNc5rxziph6ht1Jf/i3uBBif8nkA8xQM6LEQP5dvidOwMv05JxDCHVlLlwD8bPhW/FiUmlP59M33wqCiDcuFj7Nbf5PBLYEgU6IH7xE1v67Z3rpS4AVwRR8ieMjHApTxOTuufgozMAhkhwx1C9uftwQH62El4v45ZIgJnyB/6fTBrhADvOKUVoO8N7bwNSkou2z7qewWcm5ekG8pgfPD5uh3cUJShjdYxsXIYLHR24G+UQEoaBHRFYucEIxLi0BwlAo2cX7ganUtQ/xASAbI7SQgBjG8Em/02nxL84FMp9RFS5YOFRhLkFCpn9Gjz1CTB8LpmA6HXE1PUpN2BDTVUNfFTLEOgWnJiY/ol/vcM3JMQLh5+aDuyQzDgyCtQa17oW7Wy/eXi3eNPnp8MwzKRTBUtZkXLvPVotX95uh5cbqssiUsoftri5rYIDOZZwjgRScA1VFqcSklLbKcMS6LAWyuiwZ42ocydkyk7ngQ99abQ4vew6AnDlnh74fhr4s8+3L/ub6ChHJulxkmZDZMgMCLnkhMzUoRgCZI3K5b/eay5eXnTNmuWiIiDHmiG5vrwTnVVm1Xasn9fL4ZLTuuk5K0Sybvm+HbgAEKSUD5sgdj4eh7xwBc2zoByGlIzcO42K9bBwtVysAOB6OdV1dX19Z5yzZru8F41ebldP2+el56Aa5FuM4kikeP+76aWwWtbXmfDixunbW1lWeZ8IMSg+6zAsy7nn/Yo1hgEVR3d7e7nf7aVJCZsfDUUhRFHle5L6y5WK53L5sh2EwxjDEZV07bXenl91+Z4w9n8+MMaVMUVWn07ntekdutd70evj1b78dTi0I/PT583/4z/98PLT77cs4jrkR93dfv75/PXQdWWqauiwLpcaPv37su1Yw5qzL8jzLCjVZROMsnfanrmvv7u+EkLf395xzq01e5OEOk+v74Xg+ccE/ffrw/PxMQI+fH+/u77gQn99/Eox99e1Xk9Jd23MuPn16MJMe1Zjl+el0VJPaPYMoRNcNHz883N3fjcPYnXpD+vr6+ulpy7mom4XS2li6vr2dJuWs+U//l5vdftd3fdM033z7XVlm591RAJGnJBKzEWQs82YBzmVcnXMIAIwcWCKjjTHaWGecI2ONp3uIHAW2O9E8yDkRgXPONwqN3I03jQmAfApmNK18xEzQB+HeYyy0iHNrzySGgwcMZqUWxWJifaPqwqCSEOdoj6RRov8iya4gvRLXFPVQEIJRPkYlGsJRktiaf4JVhwCELPRIuhDcUa/GmF9E5mVcMEkvQ0VmNDjDkcBmBFswUUapnGOklHD+hB/4JaPydxAzsWlJkxICkYvpflGvoV/SEBY2a+CokCNvcbEO/o8Z211sdMB5Kd4kDWIOW5jN+ATYWPz4xa7En1RPLkwLkVGwgaNVHRcHIH3PBdoK00wTi2rzEv9dQDG/CI68tgn+yoRFIEHPi+2Lk7nU3nPEDUEMEIkYAYL9Hh6L875TXGO/9BjnSMHripEzSBOEBCa/OCARe+DcKjW6geNdmM9L3KQvTIj5O+L+zfc1Ll0iTfkXn8VU8Trp5rQdUUYlIAJ+tS8hGoTObhTj9xFC03YvamBezdCTGDkyR+TzDkOFHl8Ph3A+6pCKQlE4dYHABgrxWDTXsQjtA2NbEi8eZpQCENBH8OVhfFSad2yVDDFuDTDFhsEc1kZEoVI3wJcVtwH8KAjigXO+pwr5aaWH+uoWUfb6DUIOjoj5lrOcOyBGyIE4AlrTHvfHDlUhIIPM6M26sgedFaLO8Lh7YVOXZYLVJQJkUlilp2EqsjzjcrlcOOu6Y3fc77lgpczGrmOMnw9HS3axaKzWSFTkWXdu9TiRFHpS59OpKMu6KZVW5915GgYhhAPLADbrpRTcGqzrsihzNU6M8+vrqyzP9KStMQhUVQ0DZrWuyoIsIrnlcmG1KfJcZPL56Unp8fbuFoHGbuj6Ns9yLkTTNF3XffrwuSgLKcQwjkVWCMHP53Ycprworq+vX7Zbzvj6amWUzmWxWi9zmbdd66wFR33b/dJ1m6sN4+z6+gosjcMoGReCv33zBpFpVM5YBiiYaKoSie2eX5i14zgd9vu7u5vFZrNarRzYtu3J0tV6XZYlEKxWq+PhqJQC1OdTV1blYtVIl2ltdK+10QTIOB/H6ermKi9qpdW5bZ+enprFolk206i0Ma+uX+/3x6HvqqYa1PTzr78c23bU008//f6H3/++2Sz/cP5DNw52nG6+/frrd29Xi9VY5hzQWgtEZV58/c27/cvOWdv3Q1VU19c3zaLpu75tzzd3dz9ufnc+n9quJURLUDRNXZftsf38+VEprYyWRT4p/fD43LXd199/9frNawRW5hk5ezqcfvv1vcwzwYVx1tcOsOTOp7O1jnFxc3s7TePNza3Wum3P/Tje3N4xztY36+E3/fTwdH9/t2jWRVFcXW2stb/8/LfFcjl+mIDhcrmsylxwzKUQgD7FPMpaAM/zkiPBBAEBMEvO+oKEZMmC0aMPZrbWauusc2CjQ9sHtaLv8Yy+RojHQ6EIHSOMlhRE85IYRlvSKz8bKtqBJ8p9flmw4ACBwGLMPwKAlHTrHdtRLUV/BKaXZqEbhVpETRiVdZTXGAQ1IhIydDSDEA/eIhM0I5MgueIvoqQK0mhGSDi/FD8TKW+KYVXBQk5ICGPEJESGKxp+Hh3OZnH8b+J/aI7wuVh1iIo5/evys/GjUVFQFLUM2ewAimAriFFIz74cyyUSDNI7qneMkUsQvXnJlP27H3cxWpifFkFP2OcQ2hIotESNpK+cvyPuzEUcd1zXuB/BEoin5uJr5wdBUuqRxIDILM4+DM8+hEyutNizFy2engA/vnCtBiiECSu5APYAY4N3QCRnGbJLVowipvaRKAkhIYA/zBGaRhgY4MN8LtLgOGMXVacTmKS011ErQzwI/kSGl9KRRWS+bxnYiDLj+Qnd4S7WMuY0hBV0oRx68lEjOUpZa/6m0MXFS0XXAWIePsTux/Egon+c8zwUOeaTHPwl8RE51m9U3GyaV8v7mPygZsyBDBFQBC6UHIQC9XGDw30NXkmcVzOZZ4F9oSA2HTGEGIUIzsX4egcMEUK9bgrUuh94QGAXdpGj2IEH0CM+v/kBV/vNJiDyDjtvDwAz5IxzkglAtNaBwIxjDsSBSc4kwjqX61oyp7rdVrd7o8dKroZ9b/rBChwnVHqUQg6HNs+yuqqyTI7DCJnLZLZYld3ZcsDt88vxuL++vhacq35qj2ci4pyBsRwgz7K8KKzWrSM9jpZc3VRKqb5rBfLNcqW1ffXqTgrx+dOnuqqmYbDGlZKbSXXHs5omLnhVFotlQ8YprcahU5Opy8JqpZEJBtZN25fnw25PjppFwzMwZ+0Gc3VzLYRwjrRWx+PhfDp98823wzi87LZlWUjJh3ESQqw2KwA6HU5VUaKD7tRdvduQIy55VZQPT09d2wsuurGXnC2qxmjgiEKK9XpVluXD4/OohuubK2OdmkZHDgUcuuM09OfujFsghsDY4XhCzl6/vS+LslksjdK/vn9vye4PRymzvMz6sW8WDWei7brz6ZQX5XLV5KccBNPODP348vK8WK/efft13VRXVzdq0sBwUNP6bjN8nrbHw+G0//DpEzG8urn+5ptveS5//e3Xh4eH9tz+0+9//9XbrxixqqjcpJ4eH96+fTdO4/5lv1quVosVIVVlfXd/J7NymCZlXbVYlqtG1nnBFpPTWulp6rMin0Y1TP1qs/zttw+fPn+2jrgU2qp6Wd/e3C6ahTPGWv34+Lg97OqqQsb0pO/u7qpFnQnRd8NJnZDw6uZqsVjudgcm2bffftud+83dnVJKCHk+tXmRb66viqrKi1Ib/fDwdDwebm9uD/vD+mYFDp113bllBEhWOOt83y1vI3mF5ogQmA0ZW9Yaq7TSykczg1HevrooI+rtJkfIfWTxBRUTbirzwsRblBSESRKSAW8AJD2RQiL9y6GpYZBHlGTcZehHBBcX/3RRckXlBIShqUKEIf4JsZ5GUmTxQ44IgGEwhSGOE5hPCaGk3i6xTpTkGHUmRAEHKY1k/kEWm/l4szA9Jtricb4Q9VAU7rPmScZiVMZhNbyY8+0k0xfGN4WPp96ZESHN2IcihQAAwBONNFuxIXJkzqKZUaGfwvyt0ekY4VVS/XHlooKJMCHCLIjfGaOKwGPY6AMLsj6Oc1578q9flMjDixNy+SmanwNwQen99xCIiEI7qqTzAQIcD806Lo9bNAvi8qSdS2DOtyb4kjAEAN8KM048xifHcsaxQB4ABFQaWQpCQK8fwwN5DOKPdGvQcUSJ7sFAWoQFmXnBcBBozkebwWpYYM9DsXh4g34HSt7ntCTJxiFkFLKMLioSxUvkD4G/ii6p9kBOEAsHM67tJWT2HX8ZY35soWAAAAK5CCo44wyYP4fOWSRiiC4YaoQMGUuixzM2vurWjPF9EOPMNVEQRx68IKCL2xGCbuZDF9nOyxswXyhiSM6nvXqJCuCsI0AP4dCRC5USOV5mmsbr4ogYAwQUPKBehkihpIcvqUXAwIGPDSQAhyzAaM9s+eyyEDyOzKAlBoIzBLJOwWRzoBLNSsLV3erbTb2pS96f6irjANfru0EN7eFcL+vFopmGUY+0271srjfrZaOUHbtea42WyNo8z5u6tlpP/VBkOTmX5fmIMI0jAmR1paZJa4UAHMgSSSmKIj93nVFKcv7N118XZU7WdV0HRNM0aqUVGxljZS6rsujO5/PpvFgtyzIXUhitnbXjMBRFsVov9rsDIq7Xi+Pp3Heds8ZYfTjsrbOAME3T6di2/XB1vRFCOnJ9NzDGhRDPT0/Pzy9EVFblYrV+fnkpy3y5Wiql+nOnRl3X1X636/uhrMq8LDKZ8ZVwSPv9QUpZ5CU4q4Zps1mNk+JCZIU8taenx0cg0FpraxaLevv4cm5bJhgxBgyts9raqsz7fmJMUtseD4eX/a6uq2++/2YcVVHkh+Nx1Moej8YZC2TJ9sPEZd4rBW33+PR0Op6I4XKz4lL20yil3D5tX/Z7Q3q3PZyGMwF899MPyHlZVZ8fHv745z8Ddwzhzf39q/v7qixOp71E2D6/WGNeHh83V1eLuhKCK0BwkGWZFLnR5sPHT47c9c31dn/4+bdff/9Pv3vz9dfHw+F42F/d3pyPx6fnlw/vPzLBl8vl4XQax8lo89233xVFOQz9x1/fV2WxXq8EZw+fH8uy3FxtFsuF78NzfXuz3mxOp7O2+vnl5ebuWmYZ51xp7QY67Pfntr+/u+NCSJm1Xd+2vVaTtXaxWCwXzdj1jIWme9OklDJlKfGPn3sCF/haACLnfLt1R9pqo50xzlprrDXWeilhTRSBnh6hmVUhjJjlQnlFx3jSePHahnBgB46+vNGxBAsR+FqwkPxQUYF5wezfFprjJAWLyfVOs0kN0W0fVWyU/RSIgsugiKQlEUOJQ68+Ei1NUU0mtfD3Gmxegfh1F7LuC4M24j8Mawjea8TiQl16QVjirpIFHkc3i9n5xUtw8eVfIA7m78BYtCkDb09pugGRhGCmsFg+/y/uexTGc/hUUpvh6RF1XmzEjBCcc0GvzSQXxm+clwBmYJoQ4DzKS7RCX/42sUIQtSbOEbvxgEaMduFRwkvSCC5PB1wepTD/VIs8vfmSqPq7BQFImO+Lzb7EZF+0Pb+8KNGPBhAbmSNQIAdm7AXhNs3Yy12W/vNFpPzjIqs6w8uZ5IsMLznyHb4gYsTgSMIAUAmQXOTdwsmk+ZHMQeg7St4rTo4AOIpAPZBHQoQRpoQEMQwWFBE4cmQdIvh+yLEncSoU5uM0HHj2GAkQnQ2HxloLAMiQISPnGDLGfJBi3KSIn10oGBjiojwdy4iFvl3glzoyy86hd0QhstStwq8NYbzcGM9AhPZE4Eu6I4+ckk+TBReoG/L2F0soNdanne9+fJ4va8QY41wSGgBkjAUwTGCcJrLkyBI6Rya44ziFQKRYxAzBAXOOkKMhxzkj7cjqnBFTU2bUbSWuM/btzeIm46sM+TRy7sCRFNnxfNzvd0Ly6+sNZ+x0PBxedvf3t7c3N9bSw8PncRqrujbaOrLLpqny4rDfC8HHcfIAlDHkXORFZpTxjqSyKMdpJEdFWYyTctaUVVVVhRBiv9tpNTVN07Vt3dQvj0/L5eru7ma/O3KGWS7zPC+r8nQ+jf1otAKA1WqzaJrn5xfGUOby6eHFWcszxhj2/cBFdjydjdHTNAkum7rhjB+O+7qub25vxmHgjDPBfvn5V6XNj//woxRSK03WLpZLPSkpM8aZmfSopsHPlGi733/49OH+1f2bt2/UMDVVxQE5RykzrSaj7fblpe96xvg09tfX10zg3/728zhOi0XTNA3nghBGpY2xiKyqy/PprNS0XC43683N1S0AnU7Hruv7YWjb8/2r+9vbO63UuW+3Ly9FWZRVef/m9f/8//mfD7vdf/0f/xtZ6oY+E5Jz/stvv/77n//6wz/8VJTlpPU3P3z78rz9tz/+8en56S///pflavGf//N/udtcr1dLq6ap65mlPM8F55v1VdM0VVlprU+HAyFWVWktOoCn/XacJp7xosw/vn8vMyk4rxd1XZaLZqHG4eMv74WQZVE0q+WiWRxOp+1ul2f5crFUQ799es7zrKwrNY7KmLIul8vVu3dfjWp6/Pww9GOzaIqyPJ9PXdcvls1+v2/b8/64L/Py9u5Oa3t1vZFc7nYHKSVnfLt7scr89Psf81yCIzWqvu3KIkfGu64DsMJasOSsM863EnXk09atI6O1Mc74huxeZDKGgG7m6YnIxRBCStZDxB+JB4DAuSc1nD6dRHt6xCWjHsNYKL2a9Cqk3CS6VDYw29Z/17UQL/+8ZAIYoPUuNopqEgIqCuoKZ1LlAg/M5BNcuE/+T1Vc1FfMa5AkAFOkQxp8RGUeBfqyZrMCDXY5JkkKEQUk+T1r7qBz/RPjUC+SYubRhl2KH8L515jS0yiAXBceA/TFakToE2c6r8GMI8Kb5krEFytGAMAYi5iSkib26hjRl+qfZ40Yag9e0m9pAJcIFoOChMtg5zii8EuYD3R8ykxzXSKctF+RmpnnTjE2I/IbX5yJBEkv0FL80hnTxMEl3xwihmNAc/3PMKoYJpdYK7hY1ugF8/Aw9JGdlykSWwiIzPdJ9wvh8atDlsCVj8tnCf1j+Fx6PqWVSich2ioUD1rEQh4HYOzxgkihKpGXE4gMwRECMR/hS2SdDeX7kLwccs6GcYQfj8YRyKOWgIjCtXIh6trPjzNgjBGQYJxYbAqG6JuiO7LBVcb8ESekVAIbwRGSSTuPoQJjyCLljGOUdoiMIeOxXQhRNAEhjnneforriY5COIJ3fru42I4sECIQC3jSWwuheqQ/1ETA5i1Md9VxBj6mGwNKI+IcGZJlFC8BQ0HOOURPoXHGiMhZJ4VkDEbV1RmXVo+n/avrxQ93q+tCXOfctUel9FXTGGtHpfa7PSFILhlyxoRzVk92tVxVeaUG1fed1SbPcskFI2jb0ZZGqYnI9d3Udm0ms7zIV8ulsVZKIZAbo9U0MsRl0zDGOWd93wOAnqbn88kYbY1pqrquKnTEkRV5gUR5nldF7t1t5bI0Rvdt357Pq9V6c70Zh+np5QUYaGve/+VjWeb3r++dc+f2XNZ1P47Oua4fiiK72lxxxsd+kFJKIcBRLnNjdVkUb9+9bc/tarkSUjx9fjwdjghwdbUpi5IcUkHZOFrnZJYzssYaxrlxdOzbUuTd2F9trsDYYRqrsjyft/WiyTJ53B2Xi2WRZ4fzqazLsqm6btDn83K97k+dKHImRdv3p74F54Z+dEA//fTTMA0fPn7Uo8pktlqv+7E31k5qmkYtMvnDT7/b7l8eHh/++Nd/3+32u+fnP//5z5vlZpwmKbOb25s8K6+vrn/30++YEMf+/PH9p19/++3X97/1XZ+L7H/4L//lx+9/vL7aGKPtONmyrLPy9vb6+fGl6zrOeF4U1zc3RptPnx6nSf30+380QBNS+/EjIm/7rp2G599+WS0XN/pW12rsR7L2zbs3N9fXh/2RIWeIi6bp256I1DSe9gcphDPWTmocxuVmfXV7vd8dn16ehcy4FM1qCQBKT7vD/nA8fn78bJxZLZev7l/f3t5WVam1RUDOxN3tbdt2m9Xm7Zs3H379bf9yIDKvXt+NQ39uTxyXddPUTXk8HsTucPKtuMg56xxZ33CLHIALlQrjNUYA55CcCxw6JMf6JY8ypxVAMri9U8x9qXoTexLQCEXFEmyviyBlIJ+tHtRzFGjRqqcg/b1ACQVekWKaCc1pUCGqOMZif0HbRI2LQCHrNYoblxQqXfw/qJk0wks/0oVijNI44ZaLdDOM6muGVUFj+b+7mIJGs8IKI8Xo5JkBYQQIKTwyjNDn0sV4Xozq3htdUXklFTHzM0CJdopuJJg9dBA+/EXA8hfAZl6yGeRcPHtmBSEp6ligMJ6iiG0S8+Ef71/3ryQGheiLxYM0r+CEiMwZXEDKi2Em/geCU/CLgpZ4gZHSzvvQlgTivwBdX/zK67wvIOOMTtKJiZAzfWM8Hj5OFSzauIzzu+blC/cpLlwCXDEEDAFCrE06dgAAxCMSgVRAARAgVLaO+AIcsbg45MeKDB255PCN3KXfNu6fEyL5gEcAHYALOGA+lAchNo33EsUBgSPnfORPCKaaw/lTNCARkCPrXAJqROQbRAeQ4fzZ90GJyAXjUmYi45yHnjuOjDbWWSBggiNHRoys9WQzCzLPxZpkqWJaQiwRPTMCBI6Mcwy/JERAzkO3Nufc7DOLstNjmlnwEVn/HgbOtzX0e4qMfAAAhbI9/vpwljY5wD+/944sOV9hm4DQOrQAnjpjwAgDhSWS8A01uJkLgQzM5/sSgpvGTHJB9krK9aren59vhdvgtCJH58GOJ5bnqut3u73Suu8H4qJpSplLIUV3HKUQRSaEFBzRWdtUFSGNPrcrz6ZueDp+bha1bwFW5nlskGQdA85FmWfOaKNVs1gJnh8OByklgOv7ceg6aw1DZFVjtCbrhnEqsnzRLNrjmTPGAKuqOZ/P/TgUTXn39g6R73d7NSkEPJ3OQPTu268//Pbb0+NLVsjT8dT1w3KzXCyb7Xanxun2+jbPsyLPsz5rT+31tViv19uX7dPDi1LTcrnYv+zHsZe5fPX63horGBfIZSFFJrMiX16tTl3XDcNiuTz17cv2BRhr3i6Grvv1/W93NzdW6V9//vXV63urrRBysWimaZomzZBxEMDZ3evVNKlT105aZwKRoB+GPM+Loux6ZR09PD9nWYaMLZbru/vb0+lYlNWHDx/btjNkqrK+vb19/NPLw+MjF/zdV+9+99NPQsj1Zm206bvBGiOl/PF3PwCiJUJgx+Px3J4XVdNk5fqb7766e+2U1sNQ11VZN0PXrxbLRbM8n9rT8TROk1IaJbu6u+mGQVuzPx0N2U+fP/76yy/P2+27r9+sr1Yff/lQ3lXXV1d1VWZC6nFaLtbOUlU1nDFrrRrGpi7LsjwfT48fHxjD/+v/+D8ILv/07//urCny/PHhYZzG9dU1Z/i8fX54eNjvD0VeXN9cX796xZG/enVX5PnxdNKT3qyvtdbb7a6uq7dv3nBExvli0TiyRPb56enp8+NmvZGZJOu2Ty+ikKLterLOge9x6CjWJYVIsQRvfbAkwRFpMp6UTSgIL9TabH0jpK41ydhJ2gdjhsaFTe5FnJf4SUURgI/aYUlT+Y8ko54i0ghfgRg76FyIrLl1ESRRlORmQjJJOEVjOIpa/1QCnL9x1rgIqTxkgAKxSKS3LdOaRK0NabrxL8llkDRmhJ0BskTlNlNX6S8JhRFcTCQsif9qF0MyaP4jkAIR54TvnTmQmf2J04eI35L69oZl3O70kC+GNcOxmaoJJwzmXtleenv6B+IXzyOA+U0X6O7Sf0RxlRDmLYSEfiLepnCcE7SKH0i8WphKPAL+M4EDgEvgDum7EBEwNBYNmie+fkEUBh14cfouRns5y/RSCl0KlRHAw47ZPRdwT9ozmieWeMDLmDOkL47ZvICYDlEAHQAYUqQJGfMILGjlAKcwdlel+dbE7YrZUpCG6RcSIZ41TOYI+T5eceliy2MKYoAMkQcLQSL56qwWLPikDCQfuIPIWJ4J8K26GPpymgjOg1QuJONcMAHAjO8+aI1xxlgH5H1FggFwKfzyM7LgPABKJgUyFlE4AiIxhJBe5gUUkR8HAIBzQRqRJ7TSJfAHIXByPiIw1AsJWDW8nwhCo1aEkLcIMO8eMhe6tQS548trsEitAWJwp4Ww6uQ1DujLAQFxZGSsYYScMQ7I0Pl2GOCcJJNpnVklB/0PP/2kK3b4+GHaTy2DdVPoYXCC77vu3J7yori6XvfDJKVwxrbHNs8kkFXDNODgeS0AUkpZbcdxLKsMCPKiqKoaCGqqlVGg9dD3zXJxOk2LRUPO9cOAgI5ot9sfDvvb+zulJsmVy7Pl4kpKOQ1j13ZkneAcERd13fe90soZV5TFpNR2t73P7qx1CMQYq5sFIgAXH96/Ry6Kqv7DH/6Ql8X9/Z0mq7V58/atMbY9t0JIBDYOfSbl1998VVWVniZHJs9kWeX90E/n883NVZ4XRZmvl6vdy64/92VdlVXpAI21/TAcu5PS+uVlP5lpUup8PguOzrpxmjIhLFA/DItmuWhqPUyPDw8MWVmWxjjlrMzyvKqP3TAq9bh9cda9+/rdomqstT/8/vvVct13p2Hsr+9uPv328eHpoR+7cRi10qfufH1zs1jI/fkICFc3N6v1+v7u3lkzKQUE9/evdrudUkpm2encDvrT5vbq3LbW2vVytXr3dX86315dPX38LLJs6s7v3n41qHNZlUpN5669ubv76pvvwGE3DY9P267vWJEXLnt4ejiejp8+f94dDqf2uGh+t6zr7775qi6rRVl/9e7dNIxnOD49PF1fr6uqen56fnx48kHcpcxzKdbr9Xq9vL2568fh5u5mmMZu6FdXm2bZ/O2vf82K7Hn7rKZxtVy8ev36zes3r1+/eX56UpMeh8FZV+TF1XqtjFaTknnWd93QD8bYus6rctmP7dPjo5BSGz1OE2ZgjDkfO/x//b//xIABi/XV3RyvAATWOevFo1dNRARkwUX2lQUVGsMVv+iQCMH0ndU/RlOeAHwf6SA9L9RslJXJxqZZLQXvCEX2ASJljyl/IyInF03lWfZDgEEA0RAOE8UZaiRwA/EdUcfBTHHMA4NLfZzwEVwCjSjufZ2iKK+C0qYUn8tmlwtFq/3iq+PA/NNTAEziuOY/45hmXoQgsOV/90OXKz17QIIig4uwGP8Lh3N8bASPME9knm8YRXJO+eekKtXzCCJZ5oguKlVTGnxc5Et4cIkYIj65QDFf4qXLAxDBxMXccY4Birufvi96yOIv5wP9d3AlHYxEa6UvimgDCebM7PCYtAd48RSYdzWh8wihLmyLixknfOMCw5pOUfxLeDSBj9eDEJsbKkinskDu4lvTDMPqIIR4FBesAaDQYOPiRgRG8dLKmfd7Zj1DU9d0zfwHAu/soUDwinmeBoBc6A9HkaJEAAseOgEyxrjggnNALrggcN7qYL41DBE4Z52l2GTLOrLOamWNdYhorPfiMy45Q8qkkDITQjJnkIiFLi+J9Ukkoze1YqwSWCIia5MQI+dC8DIkyeYXL1UIIgoAiMj5Zs8Bwns0QxdHiCD0RgMEn2XiE74QA50XzLTwGZ/Sjw587LejEHgVs2+RWYDgRyQvx70oZ5nghOCcc3ri41iQu12UmR2vanG7LLnVwvWS3Kubq/Ph4LS2SmujyrKuy8o4RwDn41EKfn2zGcdx6kcgezqdyDrO+Lk9bTabuql8sUXOc6P16XzMi1wrfT6drbVv3r7a7w6MseVi2XZna6zVhnFhrCnK4nw+FVne9916tSqrsju1i2YxDn2RF4LzxbJx1p3PZ611nudZmT9vt+MwXl1fcc6tc4ocOmi7bhoGS+7u/tVhv+37jjOWl8U4jGVZ1WVpjclkZo3b73ZFka9W67zIx34Y1dg0C5GJru211Zvrdd8OQFaKzBkruNDaZFlmiJ5fXpRzIHk79A7xX//13x4fnxZ1c3W1mvrh1d399999M/T92Pfr1QaR3v/tfV2XP/7ww+6wO51bIbOsqbpx6ocB0L1//6ko89/9w++6cwdEr+5fN3XTd+cPv/66Px9+++W3jx8//uf/8p9fv3ozjSMAvn79uh/6cRzu7++Bw2RUd+7Wi2WzWFhjZZY9P7/st/tRqaLKu77f7g+DnshRLrMffvhOtyMS3d5d63EsywIIyJl6sWjqZuin4+n44z/8ZAl2233bD3qchn44HLZPT89//vNfrm5vbu/vqiK/vb75/vtv2vb04ZffXr95bbW2hojMZr0hY/t+2O62x8OxqRfvvnpX5uXpuB/G8d03b42yf/7zX7IqX2+ujDVP2+3L/vkP//Iv33zz3e9///vbm5uqrLXWWZZVefX4/LB9egbC1Wr59t1bIjifz86REMI4ezocj4djVRfLpm7bc9u2r1+/klJM/dC3fT+0jjFhHThwoRgxRWMuqERGiCHjO6iwIL6TUz3a6ykiB2dLN2myBHKi2E43ddZqQe4HjABwKR2DJI68S7SfIdL5wXjFpDspUMDzswDSoy7VcwpMjFpq1kohdwacj0FMsMgzVLNHP4GASMRH0/dCS35hOUOSVXHmM8L5Ui1GBBcpg4Sr0nLNK3gxWUrQKUHPUGkpoYGk22H+WODYiIB5JEsXU7hAG1EoJ50WYNxcHDjsghffPsY2QjavDf/et4Tz/Cha0qnVJXiDNsbthqXCcOocIguoA+cX4AIv4gxoZpAJcUfn1U9xvXEsiQOMj/nylflkpeKWcc/mRQYgQh9nyyBUUU5K8nL/5uvk71fwAsd9CmeeLtYqfSoW90P0PYy9mXCJhQM2S5NjF2Ar7Jfvpp5oMAyROfNihobzF2MmIpaqXM93DhjzrEc67uDZ3nRvPd6KIAEwrKB33RAQuFA3nggc8/3IQ+AyMo6AjCMRImfMRyVyxpngQGCcC85vH85IxhpL1lpy1hIAWcfCdwbUBygYkLPG6skQkdKmLEg6yDlkjDHfeC2dldi7OciIUFAKQuQ7IMZeYt49Ch52pVUGAkhRbhBrXwAhMGSBLUYC8H6rtEPoyBGGtfKFeny5Z4RoplAIrbLWIUNL1rNKwf3tyTAUvvKXC/eEABkh+GaNgAQWlbNCcsEAGHAyFcImF2Jiu/fvX/34brmoVAeZyNSorQUmRF2UCFaN0/G4axYLPWk1DizPrTWc8bIqj4ejGjUTSBaAGALkUjrnJjv1w3Q+nh255XJZ5qXgQmudZ4WUMogO64w2nKM1FhHac6e0XtTNZnOlpsEeLQIIyW6am6EfNpv10I/b7VYKMU2KCSapqMtq97Ity+L27tXxsD+35zwrGMNxmh6fHhfLxWK1RGRlWQjOh64/HHabxberm1utp+PuiAin01kru7lecc4ZF5zzvMjrphnGwTeZstqQI2WmYRjKsi6r6tz3g5pWV1eiyrsP06ePH4qy+L/9T/8TQ1DTaPQ0tv0f//ynTMgiy4EdkbBoqiwvHp6etTHNYnX/9u3Lfvfpl9+0VlxwkYvNzaZvO+Swfd7/+uv7w3H38Pnj1XrlnMuz8v/x//y/v379br3cPD580sYUVWnJWmdubm93x4PuO2vNar3Jq2K73R33u+ftNivyYWj/9X//Y7mo+3Yo6/Lt69ccRc6zain0pJusMJw7a/quP7ct43JzddMO/fvPnyZneSarsm6Wy789/+UP//KH7cvnsqi///77m9vbr9++qxfV0LWfP3wwWt/f3hYye3h5yUSWZ9k4dOjYxw8fhBD/9A//NI5j13dVXVtA5Uzb9cj58notpHjePR2O53/9tz90w/DP//E/ff/jDz989z1Za5XOOENkfds2ZX39w1pm8nQ6G6XzvBj6frlebbe7x6enq/VmtV4cTyejtZCsaqqyqodx2O73apxevbnplREUb2F0xweDM7LTcHHpvPEWBTIiADHfBRnxi7gHZH/nY5jZC3IOUqfiGQdcmNSzeqGZ/bnEMsFIDyhkHtDMq8Rvj+bWxeeiVgkzi0z7PFci35052vQXqCEiMJjplbnohtcIwT4l8qZhWI9k2IX3MsCYz5/+TV9goBRqExm1SyP6AsAkRQYw0ydJ0URM5pDx5H+JS0HzwsEFmmXBvPUS3U+JglckltkPKdQYupxDgA4JP0PU1hBVKPuCa5n33WOd6OyJL83uxzA9hJnC8tgo7g6bj8wMfi4Wyc82tMqaFyvuOwaSKQx1HiOGNwUlniBv3MqI52YAd4EpItjCtOUIQAzRzaO9PDFxAz2gnruUz5PCGTZ9ST/F1Q5Diy30WMIfc4LjBU7Hi0A0F9F5/BPTCnn+IJzRcGEw8K+BGwsHIP4mrliAOZEXCr8mIEZggYh85WTwdgIyAt+wKc0E0SIgoGCMMYacc844F9yfOs6RnOOMO3DWOnI25DU5p4wKfQkdWWetpdANL/hwiXNE326OSFnjyBGhQ/SFXI3RSqtMqioThrNcCiaEI3LWkSMkE2OPwwUSjCEDa8FRiCx0yEIhR566pvlAJYZE4KsSEAQ/YUDegADkrAd6CIjA/MFzQKmiaQChISPF19R2QDFayu8AY8pNHoEFSi4eb8GEh5qEjjH0RYasI3JWCMF8V1YkwQGdFZyqSr5elDd1Xjm+gJvp1Lbj0DT51A39/lhWpcjlNCnJMZMIDvvzUXK5XFZKTUPXTUqjg3HsLVmt3LJe1Dcl52z7vAMG1hlngTGOjk2DYR7cCjEOE0MO4Hbbl91uy5CtN6u//OWvb9+9JYBCZoiYFZnkeD61WSa00krpplkM06S07rqurCvj7MvzrurGoso36/VyuSgK0XGWcbHfbgc1Ho/Hm6tbUm63f0EOdV047aq8rspaWaONRWRZnpVVOU0jl6iUMsZYR/3Q132zXC8Z8KGbeCPK2rcGO+33h7tXGUpxbE8iF8vrVdsPIhc393c8E+MwfPz06X/9X/631WIhOCzL5j/803/4+ttvmqb547/9se/7m7tbIDg8vyyu1900/OFf/6jJbq43P//156yST8/Ph+0BkIqyFFxsX/b3t6//8affr1dLxvDt23fAcbt9Qo7Leqkm9fK8/fTwmQu5WC6FyIim8zAUy3rUqh+nbFlbawetfvv8uW6rKq9WywUjV0oxnFvBYVHXp/0uL3IiJxm/2qzJ0S+//fqyfVksV+++/vbp8anrhr/+8vO//Mv/ftwf3715++27r77//pvz8fzy+AnsDQrs2265Wt3c3ArO8yzLZS443+93H99/LPLy1dtXy82STvj8/kOvhrJpJmcft/uqKVs1vP/zL3/961+yvPiH3//T1Xrz048/yUwyov1+N43j/as3DNEqXZZV+f9n67+abMuRNFHMHcDSa+tQR4sUVdXdVa1neIf3ieTrNePvpRn5zGtk35nunq6qrKrMPDLkji2XBuDOBwBrR84wLPOcExF7KQAL/vnnn7vHqVTq4fa+qave9MVk8tPHjzc3t5cXl83Q3l7fLleLSTmVEuMo6s2w2++atjOD3mz2rgyRQXYxMLc9+jpexDzm2YyCYQ47psCQ0gEQLCuOAYgnUYDRDz0xNTzujie7MYpwvUP4JGPsZMXgqfPt9290+kInRAzXDW7nyRP+BbsTzvgEXJ2wyekmHBsRLMuJQBmvzU+OCpggGDIO5nV8Ai9uEt7CiqckwujY+0Eb5dfhKr8Af3yyx7+gA07RRnw6rBiaavwCZQI8lWt5exsAiO8LffqNs36neAyCT5/2IZ4AR/y1x2I+47w9+TrhzwAoTnGnceh/gdVCtGYETfAEgrCz8TCKfPxFBGAoFjWiLgDwnSvHEXVWOpj/cabCd44XcgeCvyTw6dZHQDLSMwgYsJafJf5l1ttpWYZ17cm8cE0HnIXHsT54GpiTE4ANY4OnG4CgExovHyygcGeCADF4nE/fd93Ddp8T73qkM5FxMy59FVPwJWMAmKx/JTwb7GCQ4yGIQhl4T8XwOP7WP7ArVBOK9iACohAChZB+FFA5pCGlQBRSoAhbkwUiYxDAWkMAxhhrw0QjGM0uf4PYpXH4oQrFFBGZpUCnzxYsXW9Xp7shy2zZWG0Ga1pOIpUliYoi4erlEAsmF09yN40CpI/yAzkSy3pfRUiUqLwsDBGZBaCQ+GSoRzfA4SaSAMxALBxlBogBubrE+NNLQUBAFMRg5DtR+32DhEDr+wL5wRXs3wIiQkRXX5YMM5C1FsAKRIUgBEgBSAaMZdNJwUkk5tNStsd8Ndvd3RSTRSyEAcA4ns1nkVTH/c7aIS+UEtjYdnU2Y+C6HW5vbrquB5RRrHaHg7VWCZVmC7K2qZo0j8jacjqLouSwP6wfHtIsHrQuysJoHceR0dQ0TVEUiHg8VtNZaa2JojgvCyFlpJSUKkkSqUTXdHd3d3m2z/OyLMvlxdl+t++63hgjzVCqoiwnejBD2xWTfLPd9W07W0zfvH5ttGmaZjqZxFmy22wmk+l8Pj0cq+P+aAYzDL0xw3Qyu3z2HAX+9NMHBnr1+hUiPm43D49rBEyzNM9KAOx0H2d5d7+2Ftu+3x6PhPzl+kalST4pCfHT509tV+9229ls8pu/+vV8OuNuWK6WQipr6eXrtyqSutfX118fHnc9weJqSRKqXfXhw4f9YffuuzfTuPzu+2/qY7NarS6vnv2Xf/ovu8c1W3t1dSkFPNzdRGkax6rIF3GcNHXzWX9azOf3t/fL1XJ5tjoe6o8fPh2a6vFxo5LYCry7va/6pjV9s27fvsonZTF0Q181RV4sZtMsS3trm+q4XK2qoX7x/IXKsg9fvly9fJkmxc3tbdM2//5v//bDn35QUvzTP/3Tr7791dlqVh92XVNNJkXbNEWRP7u8RCG7ptvvdmfnyzSJ66qezaYqjvMiv729++nTp+msJCk0cSqw6ru7Dx9B0G63Oe73lxfnf/v3//D88gURHY671y9eRZHcMU6KSSJl1/UC2eih0kYPOsvS+4eHcjapjoemqq01u/1WCoUomEkpCcyP60elVNc23dBbY7Y7niwWKmSGPNlDIdg0RIbAUaNwRI7frxlDOYoQ2XIeowg1lXlMcvDxr/FDEMqRumZgCBCqlzpLi66IWtgqfrnfj0bbM+VuY3UvtQ3xeAy80P8UwfGFe/gpwnDH82nDADi1/HJiCb8PnYxYwDAniuLkFp7YDRzhXLCk5Leqk9V0tSGZ+ZdnoMBHBUCGARV62uHEZvBYjugpZnGz5B5llACPUTQYJ5nDnYbbRgQAYnbZsKcB9I6/+2ZsCRAuOzJpIRbq7iCAVQAMuVXe2oZiw+5cwY6KE+/ox8dTMSfUecJTwcz7q8IJm/kR9ojH4TMcW5c7zgZhPGUAI0EhAeO/HVcXHsL71CMQfkL+gb/bcF0+5ak5FIMjlTJG4k6HBKTruDaPmVCMuA0DuPZjhmNcBQJ74Bg0BHhaNcgvFv9cTIDo8uwwBE8IXBoXAiCjk9qAFAgIAlFA5EggFCKEMUMH21D00X25OmLSVQlki+RkuEj+pqUlI5zCFgAAhBAoUAohhHTkjPsOxrlADPnbASxYAwhkrSXruvI4TCwAhZKAwrI1llGwJSACp3lhAI+ErEYAQKlQWdCAghHZhY2IjbGWLAMTOtLGWj0YLbQ2SZJEcSSlIGPQNzBkz/sJQPcsYSUYa4mIiSIVSfLFZaUUI8IdEZB/+YEZ3HOSGHsOMZJXInhPjsYdKaxv/yqTJ0xHF4qAAIXw3Vpc9A6BwbU1MmSkUCBQSklWKyWkYAGChl4P3dB2F2eLLE5Aqk4bM/RVRceUSzKzTM1eX/Z1y4ORCFGUKFZ902/vN3EEPETGDhLlX/78Yzf0s8Xq7OLy4XEdxXFTt0JFxti27chwksTlvNBDa9kwWyktIBkzdJ2dL+ZZlm032+p4yLJ0Np/3Q4cgJ5PZ6zfF+n49mU2SPGqO9fFwyNK0nBYI2NQdAOwP22JS9KZr6uZwOPa6f/XmTRTFDBjFYrfbNXXTdV1VNfP5fDKZTYuZZbvd7lBAlCWL5TkQM/FxfyzLApj2hwNZO5nO277dbLbFrNxvtn/4w5+ePb9MkrSp2liJy4uLrhtufrpRKirK8tnr5yDgfvtYLubb/fanv/xFxbEF8/XT9aefP755+zpR0e/++m9+9evvF/OFsMhIzbF5OD4aJhlHh311u3kc7LD98uWHn36yQD//5ce8yFaLZS6Lb99//+Ll85svtwBsezObz+vD/mG3WR0n5Xy2r45x1716/fpidd71XXU4XlycV3WVF+Wr1692u33VHuM4ZmaQouqatu/+8Kc/Huvjsa0TFZ1fnpVlUaT55uE+EvLy/HJSFDWIRgjdD3EaWSYpYLZcRllyPLb/9t///Vjv728fZpPpr7757ne/+W2RZ5GIAaK8LN+8fR2rRPe6a5v6WDe6vb+7e7i/e/nypRBCJbIfht3+MIBlKXdNy7E6du0P//XDjz/90LXdixfPv3v/7bPLCwny5evXkRSbx+12u726uMyy6WQ6LYv89ubWGjubzvpBV9X+eKini0lSpMaa/fYQJ+r586vZbE6WHh8fh364u30gq9f3969ev3z37v3HDx/W9w9ZkayWM+X2V+di2tHcenM2ooCRmQZgFr4iu6fYvYVkb0+9b4eCPMvNJ2vE7nX27z+H40aqhKyrsUYCceziNJr1X3z5SJPPHEFXeuMUvJMw5uv6+xupo5EvGZ360ViC1yaEVqPMwI7ueurCO/zhAN2JN/DnAUACK0GEoJG/JgVX1McY3VAFcIJPoMGTE3p9wSkmdwqN+Qt6SwGeeAEenzAE40Z76yNyOLITv7jzgKW8VhtH+gROFxzx0knI7j8KT2gPF8UJSCO0NeCAMU5CG48UAvrxoM194ElI5WQSmdmFEcKMYViS9Iv7HKNGflQ5wGT3kVF4Pq4iOF0IEQGJbbA0/ufCa5IwnCA0ifLDIcLzADw5kb8eh+AjjkjPf4RHUi0EJP2U8SgDClM9gle37kMMS4xZAj4EfRrcIMAJsUkfu3Q9/cQ4W8TkOoCSd0yQiAH8FKIzomzDnboCw6dQDvq3xN2aw0uuaMLp6YQAISMAAMnel0IAQOG+UDA7DCQAmVyhQ/CUhRCIINhVGvTXCu7XyDMyEJElskTaOBACjOjELsxADEK4XWusu+12NiLjUuKtq52I7PhwBJJENGhDgIZJCek3jFD2MQS2QDBLJd0AWGLjyucTSgkoABHRoGAWglxVRonjm+2kzSx8/Wnh8/OZR0DLXsvs08AE+p0L2Td69ZugX3/krui22eDyILOVQvamUyqWSmg9KAsRkgIgoyWwAJuXeTQtEikFQpaq2kb9oap37VEZGcl5MmWy1gxCSIUyjSKth+3mUSkE5MOhFoJjFRni3fEIQhmiqm6wbtIsy4s0iZSrmzedFgC6q4/WaIUIBJMyVwLbtosjlWXpXd+2TVcU2dB3CFxMsiLL+0HnRTadlYBYmcPhuO/bhsDGSsWJms4mk+nLKIrqurZkzy5XN7d3X79eX1xcMMNsWhIgWbvb7ZMsS9JURREhxXH0/v03AFYIoZRa3z+2TTv0Qx9FWZkzgza26fuuH0Skdoc9Aak42u+P0ykWWb6Yz8nA8bi/vr7J8kJESdu3ddv0g25097jd3N/d1X3DhrqmKfP05eXV+3fvgehqeX714uru9v7u7u5YVdfXt5+ub8rlREXq7ua+rbtikh23ddfWaZr+8z//47ScJElUZumHv/ykpNptd0WeffjxL33b/vr778/PL+qmWk5m5WQyKSZa677vu64bhuH+5qGcd+v79eevXw/7w/JsVZSFZjbVsdpuNrttVder1dnl2arI8tVyVRbF1fmFAlkUJSJEcZwYa4wZtP746cvzt292+3193//5T3/5b//63yaT8j/90z+/evECmfuhbapDGsWzxTRVq0k+KYr8+ut11/dFWQ59P53Pb29vP375kudZPsmrup5N52me7e8fP3z8dP946xRj0+ns3Zt379+9//7bb9M0+fzzp6+fPp9fnAuJr16/ZhaD1rP57Kc//2V/OD67vOq1vrt/iGPV6+Hjxy/Ls/mgTZrny+VSSjkYy2xWZ6u+7cnaqhrOzs8m0xkzpFn27PnVarkQSinPObsI/bh1OiTgNlfk0/s1mp3wv/c2vV3GQLAEYzaaH2838MmWdbKpJyMU+Bn2W9ETIZEHEt7acwAXTozi+9lA+GMECjwqmsLjBXvKwUQ8Ne0h1iMBQrDEuXvjnThcxAw4iidGMxwGEJDQcWHhiYBBIDEBCydhIadL8Fqgk7V/Yu2ejB5D6KoYbE0wrl6rjeLJjx3IGCGqILJjc9kwzCds4034k3DJiFlxFIjg6XoCBCMwk/CdRuDp7bhDnwTlAuExLpzxujziM2/yIcwsnsrdjk3mnzzZkxCWu8OnRBWKp9DjKUYNlYT4hOw9G+FWyLgMAQXKEaYEaBnQeEBLjlphZgjU3bjGRuzhIPcvoItfik/r/WBY4OPI8JPx8icKZYH5RJ0BoCeKBHtxFsApBnfinGCEtj68iicw7KggJgYbSQVe7sc+xd3lBgGAL4fBgBC4P9esAwW4Qook0UnZWAklpAwkK6KQiAIRLVlXdGf0OogcGiMAycQA2lNKMNYIJSEEAAFbt0BdeUQVSQBgYmMMMRGzITKGLJF1lVuRWUgGwa40DoPyWIAogGsAywxMjEyCrd/ohECBSkgpFFsDQgiJ7DNByL3T0nV3HisIoLDkAmFkDGlDTGSEFi6z3W1alpSSjvGKIiEQpBBgyVexB0BA63GYA0e+ZRsiIEoGAuvWiAgOpYNBnikUPriIwAJZMFiBQEyCkZkJSABKCUqCQrBEADoWwna9RJ0gS6KzrLw6X/VN07UN9W2JdPnsLGHzbDHpD9vdfltEUdt2mCZlkQvFfVcJpGPbKCXyPNO6r7u2KCcoo7qp4HiIpJAIEULddUgQC0hiYYfeDlogT8p8Mp0LxKbr0gTatjvsj1maIYjpdJqkSd8Oxpq+bur90Rqezqdt1ZClsigcZ5hFad/3VX1M0yxJkrbp2qaTMmKEtm3JMl+eM+KxbgarszyLi3wyncRxOp3PtRn6risnpdbD43obRxEAZHn+7pt3zu0YrLFkrTWDHr58+kwEcaziJLVsBGKaxGRs1Ryaqp5N5vm0HEB/ub0FKT5++tTq/vb29v72tijz2WTy7Zv3b16+fPH8pRS8fdwcNpvqcNhsNvtjleZZq7uOht3tzZfPX5M0Wc4XQqqLy/Nv3//nrmmVwNlkena+/PjTh6Zr/u5v/+7s7Oz/9f/4fyZZ+t03b4tpeftwz6SlVHGc7o+Hpu26rtdab7e76WJ+drFq2kYl8ux8RQRfv14PRj8edrf3dyISF8/OX148f/XseV/Xj5vN4/rh+cXz+XTa9I0dTN83SRRNp/Oqqrt91dTt43rz84ef//X3/35zffebX/1aogTGtu2uP38GoydlvrmPXzx73uyOXz9+3B+qYTCv375czs8M0fX1zXa3m58vs7J83B6u7x+2h/2X26+fPn7Ks+Ld+/e//u5XSaTqqjpbnhlt/uVf/91ovVgu7+/ujdZXz5/ZWFeVIW2auiNjsjLd7Y6WDKPM8jSOY2BZH3e/+tWv+m6o6toakkrOJtPyWS6VvL+96/v+7GxVHY+xUquLSyBzrGvF4978xAj/wkt2YCQwsDB25PJetq808UsWBE6mlE9SmBPC8rt0ME3gSA7h29Cw9yWfeuGj5Qn3F3S4TI4qP6GFE21BY1CBRysaInbh4uiddO+TObDkt6QnDEggrk5A5ISlTmcF56UJBrbj80EIFHgdBoOrbu/Mq0sADxSHPwUHGBmm5Iks5SmEONkSGK0fwIgffHRHiEC0jKeGQLazEMLnlIB/LPeo+D/BpNBR2wFjZ4mE94jdPSI+mSS3rE483wiQcFxaTz4WptopGwJ6GE8SolM+XjsWmDrdG4x2jciGYffo9+m1+MT3hREbW4WPGNID8DEVi3FUooYpCEBoXHX4Pz75Lx5jDFOeYPIvhvakuQJEwWBPcNtHPgNwOIGpgIQcGxWg5BOOFcOqCbDCH4kuR9uBOLdE3KiEMCGi63obgDE7ziEc73C7D2ABE7MEKYQUggFIoHTCF5cvRQhORGytGYaeTkXXQbieehbQ7zDk66Sjb8vh2+0xk7XAhMxSSYEYY+IItMEYYwy5qBgzEViyfktCZhYMDkuM7xigqwYA4yJnYBaIzosQSiCIyPHJKjbE4PU/zETWaCGly9N3IUpiZrBsSSAaa/UwGGvZMgtwpaGFp8VYEkkppCQLAhmk8u3ipZRKIKLQQ4+MPqDmGgQyI6Il8HQPscvzA2JXMNExUL7jO7ge1q5yie9OzUwuDKbNEEXCdI1UQgFJi6mSFk0aCWms7tvIpjlykSeVaZuuF9K+XK2a7U4yZ0nc7Q8WQUkkO7QNWbJJHEcJSglSKWLue2OMna1STWb7eZsm8WI5z9J0t9u3dZ3GCZMFpq5tB91HsVosZlGk6rpCIfq+74ZuNpk1dc1ASogiy8HSbrvr21YIsVotpZRN05phKCdFkaVJmiKzFaKt20jFu92uruu6arI0H2yvYjWdzKWMLemqboweVKSuXlyZwSRJqhQy4cN2s90+lpMijlXfdFEcA0shEIVomiZLi1bUP//8USVR1/ddP3zz/t10OhUASqhh0GmSNn0rlJxPJnGeH9o6ThMWuK+OKo6ms0ldVZEQ716/+fX3vz5bLWIZ3V5fD31vS3t7e399fwtKiC76fH2zOR6SPJ0tZnEcn62Wz84u/+53v1vNFv/1X/6PSVG8ev6cgc/Pznvdtk3zpz/9eXfYXKbPpZTbx/X9/cP52SpLpTamN8PXm2shZVXVxtL51fLi8tlutzkeKmPIsN1vj3ePD1++Xlvks9UqjdMsSSMlSCYff/pI1hy2h/fv3lljsjRu2y6KounqrN7sWKFUeHPz9ccf/2KG/uXzZ2fLRZREeZ6slotXz5919dH2XV0do0hW9eFxsxVKCCk+ffmqolgKefbiqh/0dLn8/Onz5+vrnz99ONZNFEevX75+8/LN+2/fT4sSmeeTaZali/n8zds3nz59evb8qmnq/WF3f3+Pl5dlUbZdG2fx425zf/94cXXZtPV6vYui+PLZRVN1aZqV5aTIWSpljJFCqjiyxtTHKk0SpaQQGKsoncUXzy7qw2HQgxojHYgQGiZzgAgjse3cDb8TAyP78iFPA0v+H/z/d2vn0Yx57DSin9H6IYBw9+CzjoIrG37/yzSo4J3/groAAEAWDMjodEQjbODgjp8c8oCHTpgisMcn1zmgJjiZLR9QOHEEIz0QBsERJyOrNWpLxHihYGrRj8sTmxziQe70wrn5T0r/wNOHfXoL8BQJBTv3dDYxiGlGXILoW0H5eF2YjRFMPr0Oh4CgZYsh3An+jD6lx8/vCb3wk5EZOfnAKgW8GYCEywj75dC7v0cwHgYKwwQGLugJkg0DEeYK8SSQh/DZMOueFQpQY0z25nEiIIxngD/hxTgNfDjXCd54yBKg8cglnW74yeEQyFG/HGEcwhBmGqd91DGjXxjsIykuuOPafp4cGh8eCd+iS3YIrTsBwFeJAUQk8ilRAMDsQKTTNlsYH8IHNFmg8I3iGcDxGeC6igqDaK0h/8WGyHnTlshqba0NgTQppBAu95tcmhWFxE90b6xvI2iJjAUmgaikFFLawPMNejDGsnXICR0v5QopExO5mfUNfAiAkUE89cl8yBEEAshxuyAAl+dB6EYUHLoiYCZrDbGQiBzinpaZGV0YzliylojIMlhGBIGSAZhc/VgUwnHuDMhKSoHgwoCRisCQAAAD6ETowGyZka17DgAAtEDodh/hdlEXt0PP7rkVACR8KSCWym/AZIw1VgAJVApJAZdRUU4mtuvSIrYpCNPVj7dXZ6s4w8ygVBFV++PDTTKU81nJSkQSZ2ezan+s60pJmSQRk82L5Hhobm4f9WAipRarmZRiMikP+218VGzs0PWz6TTP8jRNmrqdTSb9QEx82B2BlNZdrNKha2IUy/ns9vYujRMi2zZtEkVZmkol2VKeZm3dRkIU07KumySKJkVe143rb+oYRwScTCfMEItkNo3LSclIj4+bNE5VpB7u1s9eXFpNUgijE2Nt1zZD32dxujxbNarRWnddf6jaQWuphErEcX388uXzt7/6fjafr5RiouPuOJuWgLzbb5uqErHK8qIbBpXFDFzV1fXN7XQ61da8f//Xz6+e9U3zv/6X/7U+1p8/fxaMbdXOFtPV5cUA9sfrj1+/3H36/NUiv3r7+ur5C2uGs/nZ+XJ1dXE5n0w/f/z86uXLKBFxItum2e0fo0h+/PnnL58//V//b/+X1dnqpz/9KIC//e49AvZ6uFvfxlli2LCxWZkP/SCUBMmo8FhVaZ4vVrOH7frL58/b7e7N27evXr9GxiSKSZtpkb38298CcKQiMtZaqupaJVGcJ19ur6u2Mlof/nIQgr755g3RK63N+dm50f3t3c2LZy/QGGTIs0JINGzyMje67+phdrZAIZu+557rtjlW1efrT5vNZnfYaaO//+7792+/SaSyZAVD37cCcLqYTstJ33aDGfq2e1w/zhaTxXKRRomUotedtmYYhkhJPXRKiqIoD8dGCiGkmC6mi8VMa31xeR6nMTDqodfG1E0lpCiKfPO4Wd89TMqSGY6HSimpIqUAPal96i7pt+iTofGmOoiFnb0L5t/bthMvAqOUmoMr7fmFJ5lFCCEa8gu4BCiES+x6YheDqRgDBycjE6JIY7TKM1eBD3gSG2EARhY0Jp0+IQ3GyF4AC/4qo4sdKCQ/JD7eNO6iAHCy3OgrzoeyYx49jMTHeNgvEIbfS38JkE7imBB6A++0j2M9DlyI5zjrHFK0TiY/MBDhSsCAgsgKIQM/ENRIfrLhpMQ9WWtf/5eIRjPylGEJRNxJcTPe3IjDTjc23jT+Es+c4MsYQArI0OMkNxqB1vJNxHzNIX6Skfc/ox8/o8LDL/fsApGYCW0IMPkw1sip/OJoDjA43HMIiARsOo6gx5rhlsPzjSf5xS0xAyL5ji+BBz3xqS6faDycRljk4yFjrQp/Ga/CIeevIAYaiInG3ndMRNa1uxqnWfjn9TyKJXbl4REBkJksEbj2ECgBHC/owjwCgK212lprtbPMRGAtWevQjYcRzOzqFwoh0WVYOeTCo8rHL3PHdDAzkAU3xQAKgbVGACI2RrsTuxtwuC54R965cSV2gI2H9uMexyw8SXeCxGTJ/9phQ6KQGeffJHb5ZASIhF6b7N9WBBQoOABRthaEYBcg5cAhWZKMKICIrOU4VkM/MFGaJBFKQ0SWmVgqyQxkLQgkZlfwSAjh9wD/XhC7GtOEwCSFQAAlBBEJARKQiAWzIBbWSOYIxLTM00iYrpVklom8XE4OazObZAqz43bD7Z5ayV2jdJtHKenhYl4UeSqsjQWQNWyVkiLL0iiSZO3QdYasMT1ZipPE6n633eVplmXxdPKya9qh6yZFcX55JkBZYxIV5UUKaI/7fd232pDROkuLoiiZ6vvbO0QoysKtS8Oc51lZlvvNtjocp9OCKEIAyDIpxWF/2G53DIBCTKdTAmKCNE2llFXdDFpHKibgKIpUJC+vrv71/r9+/vDl/HwVx3LzuElSNZ9N14+PcRwZPdRtrfuh78368TErynpffbn+qq15/vJFnuXfvHt/PBy2j5s4ihBwUpZpnGljprNpVVdfr7+e24tiMW/ruu+6JE9fvXr+848/vX33+sVvfp2V2frh4fb2XoGI44Ql3q0f/vTjz+vN9lBVURL95lff/6f//J/TOPnw8afFdHl1cdbsDz/9/odEybIsimmxf9zd3d0OQ7dcLQFgtVhKkF8+Xh/2h4vz88fNlhmO1XF3PCwWy94MKFQ+KbM87/Tw8fMXYru6PBexvF/ff7257ofu4mz1/NnVaj477o8RiKHurl6dT/NSCMEAfdOCgKGl2+vb73/za5Ri/bjeb3ZZnr17+xYR4zQ+1nVd18R20MP19Zf9w+b8bPX+7VsU/PjweDzWi7NVR0YbEyfJZLX4l//9X3768KnXDRv79t2bspwsFou3b99LIbfrzfr2fvvw8OLli/p4rKpj8v7t589fjtX+8uri7u5uOiuFENvdbrvb5XlhjUni6O2790YP+/1RRdGLVy/I8vFYXT1/LgCiKD4eK61NmsRa60EPy+Wy65ooUnmaRkq+efPm65fr3XZXTnJEoU6NLEbAEvZQZg45XSeZnYv6n0QMAQuMtnbk671t5CenfLrfnxztcB73XvuKHcF7xtNH3HlOO3XgnEZrGygMdLaJgE5CnEBBjVcNYRmPecaYHQS2/GSFHBsAp5+KAE7Qx8uCBQEAIGCf/DGyFQwswCnNR63Sk006MAw4BnpOjxtaeXslsadhxpELptXbYDciYYf3pIj/cQAMo5KKmaVUECr1ubIidBJ7jNMHLhpBPDLqjKHREwcYgadMOhhnHH0OHTwZCXjyoTDoPFbcIz/sI/J9AhRG+tB950KNDOwbXgaGbZS5+3N7oooRxlCTQzQiCILIepgxjtE434ENe3LlEVT7Rex5MBwv6QraADCA619JfqACCApvBXjUGVCOcFYcQz1zn0rJLiDFwEgYJtljH8+i8cmH8Qvac5leBO/4FwenPQ/JyMCWyVpykUehlA+KSfcRX0jZkmEfUQFmhWQdx+EYKGOc+Ng6vAQAgyZrNaMrxYyGLFnrURqjJRe6IUGAghAFnnIzx0mgJ0PlKl06+S9a195cGwBf79CnFQh05BVK54qg8HomB+u9fhkRhRjpQgBflNnjFwdBmQFYaCZmttZ3aHc1p/EEdj3MCnJ9BzFRIAIhkiQ90mYopWQhHARkMiAREMCCNdZKZAZr2EqybJQQLoIW/AUkYE1WAEZCCEDLli1LoYBpsNplzTKBEDgYDcxSCGuNQEiTRAL3TZelCnVXIL9cLc/nMyV4e9cjw1mEqtq+XiaCdH3Y59ShsnKoTN/Y6ti34vz5ZVRk/dANVS0FRkpIptk0rw9VdTxGcZoXZdd2ZYFlOU3z7NPHn6vjochTYu77braYK+mqJwiyzAhRFA3WqiiKktiS6duu7bo0K6azqTb648cPb96+lUr2fYcIlmg+nUkpJ5NJ2zRN03pUSVZatIattcba569eCin0YJMsRZRdPyR5qkwklNSG4jhJslRr/Vd//Vf3dzdxGlkyTVVH0aIsyyROVKSatt5tHpu6T4qknKX7/X672z8+Pq5WZ69fvZ4uZmwZEV++eiUQj4eDsTRdTFHItu8hErvjvphN+o1dna0unl3e3Nxef/r8+aeP1A3bh83/+3g4Pzv/zd/8NRv74ePHj1++PO4Pd5u1SuK/+d3fLJeLspi+f/P65uuX++trXXXNfnvcVUrIV9+8++EPP7x5+2bo+6FrLy4vlIpURC9fPreG01R98+07IcVut48TVaoiLpLpYr7bH7p+aLsuSZK27aqqFomM4+jDxw839zdt1y0Xy2/evV0tz/uuy1ScqogQedDpLD4cdjd3d/PZYn/c13V1cXHx8eefJ7Pp3fW97vuXr14i42w2XW8el4vFpCyMoTIrbr/cChEhyCRPzy6X1vD13S3bvm513/Usd5+/fPrzn/+82e6//9W3//C7v3vx4llf94fjsavrqmmeX10Vk1T3w9nZHJjI2M16k6bx5dV3ZMyrV6/iJDocDk1Vz+fLLMvq9nh1fhmJqNfD3d09AUdpsl3vPn/+0nT9+cUFimYxm1aH40PbCcTJbBrFyug4SeLVedx33dDrxWJxf39/2FbTaaGERLa/gCej1X9KcAACPMkKGnfv0WpDyAobAY3HMV5+O2IYDEQGn04WjJZ3xEZbc8I5I4ngreCITIKHfboxHv9EnwETQA+e/vBGB0JcL3z/y6/RSo0Ya9RVPAUWT1AVBBMc9LAnUoCDuOhkLQPzdCr768bQkWroMzy8uwpBNuULoniNabgwCOeNElt3k8GnRd/51T2sb20Uxt7l61gKgyH8JCIQs6tZNILFECVykaqTKhwBUIQkqSf41GMel6s82vzTuDqjE+iVkbngMUPJQdcnkOk04iMI9KyGR9Aw4pDwY8/nhaAbuniLmxgK1QY8nPCRJTfurtNneD4emQmvDg5z6nEtjFydU8C4wXQ/AEQaKcpxTY88khsOZgEBCTmxbQjtIko39iJUgAQmAdJ69iFAHGYEEdaiA6w8tivmU/a4h6TuLqwhABQCjCWyPSIgCuEbe7JHl2THWSAKLdMZnyAQa7QhF6lhJAYLaI11Y6OtZiDh1NIh9uobFRMgWHZJmycwSeNEeuID/f9CAILwETwXunXp8w6+AJP1fTDcAgvlrNwwhtF7wkS72XBBQGAI7daBAYnBkgUgX/qHGazLTkUgBGBfxAjDf4BCADISCN+01rkSQnCIWzJZkNgbrZQSEqUFNqQHIyUiwNAN8SRHY4auT4pIKqWBGIU2Gi0jSiTDzGQ4SqTRnVJy0JoAVRJbtkQEZIZmyNJEkOXWkDWZEEJ3yg6lwotMvj4rSXdZm3SNLtHYvj1sbrXulRBKyjyLEjZSsB4GUCi11n1/2G2VEPmkjCIBZBGkQBCAaRKhEB0Rk5ktV0qoq4srKTGJo75pNfV5mkolj/vDtu3yosjS1Giz3Wz7rlGREIhRnM7yLMnSums10Xy10tbuHx6SPI1AtnUNLM7PlpZt1/Zd1zouUAhMszTLi4zs+mFzf/cwWywGra01ejDamKwoEDHLUxRyOp0SU1NX89n06upZ1zRMdjabMJOSqpgXWmtLBlA48dinL5/7wQgpL68u87yM40gKud/vFvOFRCSySqr142PdtbPZXMRyt95/8/13nz98un98fPnquehlhCKW6p//+Z+GrovTZPu4mcymy/PLuqomi+XDTz99ubnLy/zs/Pz169fX11/++N//cPvp8/6wO+w2Ly+f5VmaxclsOquqar5YrDePx+MxTeOub+VgiqKIo/Rxt50v5wKRwLZdPxgtlHj95o0mABkxcD/otul7YzCNBj389OHDf/zhP9IsefHq5fPzi2kxTSJFWqoYn188q6uqzLOha7uuq6pq6PXF1cWLF8/IUt909f54cX4xLfMsSl6+etkPXdc2YMzZfDlok6WZeh093q7n56ve2vphYxQmk9JIuv74p08fv6wf77XRq7PV+/fffPf+3bNnV4Lx7HyZZvG//9vvN5sND7qclWCp64dnzy/7foiiKMuncRS3TTebT4euz7P88vKy7/Tmcds01WqxssDb/Xa6mEdRdH17V7fN7GxxdnUxLWdfvnyOpIySpK4blSTa6P3uUJSFI5whSqSQqDBSaRIJFScqWEkYDSwDsN83fazBZ2B6IpcAAVmEENXo1POJ6g+y2MA2+LTMMXYEv6ipM1q4MekKvBbyl18ncvt0GIdICEJgeZgB2LKjYnz+DgOOfwYI5c4RTM7/eCm/PY62M2yWXpL6C25qhD8Omjgq5YSJAlDw34+ck7eYxB5MiEC6eFDFDOBZfRfbcO5/KIn8CyQI/q6AJQoX+3OxBnT8P7Abc98OCgNuw3Bg4I+E66LN9EQX/GRYHGx1UUrPXzheDcdgDQaxF7p7HiXq4+zD6JgHqD3OxSlVy31PPkTrVh0GcOiXp4c0JwZGuA/5OQqg06FAbzI9jA5QzAEoAcK14KAn2mEEhT5pHBF9AWEHMdllYrMgpgBHPevDQGwBESz7FpgIQglBo1aNHcfn44tuDQOjQ050au5hHaGBQjIDW2byHTfBTaIULofLsptoN5FoLZOx5Np9emIGXBsvJy6BMVbo4Kllq60rHOgBoxP5OZzBI8OK4DqOObs+St490vIT4VtFeCkVuhoOloEBJSAiCiHIxbZG5pIJAVwTdyYAFCgEMwh3u9IdJX1bYXCds+xI4rnPucsLERB4CMwDjOQS+DSL4FME3MMegqPLvRfCRZfYvyLEThzG7DQ5DmkBSSGVUNLlwAGDRAHKYU4llZDCFbMmAAts0SIIKZS1w7jjGt0nUZInioj66hhLsZzm1ZZQ6VjiYAaUUkpIUkF6YDMwkJRKChQ0GK2RIwmMgHboVByhICCbxgJNJ61JVERmyLM4kmi0OSsnEyWG/WOiMBMWWJvjRgrSxz2zjfJMalIKsziBOMFySqSPm0MUK+oGlaVSiLZu+7pFKabT6WK1QMSmbgXApCwlCmS+ujjbHw/bzQZRLJdLa0xdVXVdleWk7/vN+jGO42NTtXUlhczypFAqUnnb9cZYYpYqvn98VFGUCimkHMzQ9Q3jkgHqumIiVMIYkhLTQna9Zoa8yGUcRUlyrOvtZjufT+M0Nlb3/aCtXp0tmSmSsYgiMrba74GsiqO+65IkORz3JZZkab879EOfZklVNYM2SZJcXl5O5vN+6OMk3m33WZYxQtt2XdcPg2bGw7G6ubm3YF+8eTlbLtIktT/88evnrwLlq1cvF9PZ6vxsuphpbS4vn1lB//Jv//XxYW2MJuSszIUSfdv/9Kc//+WHP0VKTb/7/rjbTfPy7ctX8/lcG7Pf7VHgu2/ePKw3Xdcu5vOLy0uBIlYRCPn+27co5H673263xPbh5v79t+/ny9mPP3/UZKMkPVY1o7ACv3y6vrm9rpsjWb68vPrNr36Vx1lXt4CgJD47v5pNJrrvNuvN86tnyHDz+fp/+7//b4PW+8NBIv7qN7+yRrdNN7RDnmXL2fT/87//0PXNdD4fkk6q6LDbA8rZaiGT+H5zaJv2UG+/3tw8bDc///yh75vnz55/8+rdi2dXyLjfbXTbQZx8/vDJGDt0HQ22b/rZpBwGm8p4NV8aa7UxSgliiiJ1/enL+cV5msRsSUIsUDzcP/z048f5fI4S0iTNinw5DACQZtn52dlusyFr9rttEsedadIyElIMnc4zG6cJEahU1k1D1kznRZzE1rAK3U+fABJ+igx4NBR0ctxhNI0B+4RNJ9TBc0cJlDDyFA4FBBvnK/j8Ir1rvBb8D19uo8WgvA6wYpSSjJAAAr46udfoMko8tHhC6UCgSJ48yNNLjiJs9pwVQwB9Y5RkDFE56EdPas1BGJHR3I4b8WmsT3ojPN0XPB3mEdMFKOq6OJ/oFQyMiLOpwQqHwCYCCsSxKqXb1zGQ9uy/3EGu4Kyv9RvwlZ/ZE3hBZznQz3AwMiMUhZCgBxy6OoTJh0DioIeQJxDp68s50xggoPOaneVmYhTs8J+zQgF5eETjgz4hcT+o+8NyCX8hoM95crgJAjI+rVT3pI4nY4m+WLFbDSPjAgCu2aQ/QvhCA455cNjSkUME1qlZR+CA3tw7lAgeUgAzgxCCkTSbQPC54pmuj4IQQjCCdS2vQIDwna2IrCW2xNaQtWytttYYY519D9cCERLmyWu4mMnlKzp1ih3fYRqbnMC45P06H1f3SIb6xIGwBhwAEgLAgRglBLtGVwIBMJLMcuwh49djuEn2qmXP+HCYGvRr0J9foBi3knGhIp8WXtgYPHE6Rgu9OiwAUTiVPHX1lRlDBr4v/epBIrCXePmthRgQyKIBUnJEvUQolJBSIktElDLQksDo2nuxQJlJhcBoLbGRKBbTmdVD1dXLfPJsXt61XWyVkMTGtF0HSgJa23UIREyz5Zw0ajNIhKFphZAkEIQ0xkQSTdsggrD6fDG7WC4kogQyfdczL/ME7dAeh2PbKKSIje06i5zHajKZxbFiYjJm6FslsMwiwLiqa93qWVkUZWGMNYNBBGuHzeN6vlzGKmKyQoBE0dTVfr+fTvKu67q2jaOoqTmOYrJ2uTxLkvhh/WiI7DAQQZIVcaRUhMNgLLVnZxe5UpvHTdU0s/nicDjUVdsAMUMUJQ/3m6FvZ/O51nq3PeRllhY5EVlrGCHOs2HQlulYV1VdG0tZkZWTApj7tttv98uzlUS8u70xg47jeOiHbr9XsYrTpO/69m4oypwBhJT39w9Jml1dXqZZfnl5xZLbdbfZ7CyRsfrrl+tYRWw5TqJyUjZ9v95sRSS7fuDH/aD7JE6yJJ1N55OitMZGQuZxcrs7xpH6cnt3s77vuqbaV9Wxuro6Xy2WEjFW8vtvvv3uu29evXgxTbLdfoNAVXW4u3to2/bi8nJ/OG73OwZerlbAMJmVfTfc3z30w5CVpUVu2oFJvP32/Ys3r29u7v/8809FWRIgEWji7Wb96eun29vb5WL5q1/9+ur5ZZZkCNA0bVs3F2dLIeXD44MxetD9MPRD15+tlrPpZP24meT5bDZD4CiOhEUFosyz+5s7JSQb1l1fH46o4m7Q08Vis9kmRrdD99PPP/7lxw93DzeRUGfnZ6v5N7/65ttvv3nf1fXHnz60x/awPT5/URZ53nf9r779Nk3zLM1UrLqmjSLV94MjljfrTVXXUgg72I3YLBazOIqRWCr59u273X5nrV0ulvmk7IYeEOM0QYmfPn3SWrddu9vskjTK80zJZL6cDW0/dEMrZDktzKD7oevazlq7Ol9aYvXU1oa9H11NsKfNESF41Z7RwVPUJpg2DnuK+1GAUSHU5W0RhnKnYWMNlifIRZ15OVE0p7+IRiQTOKqTQtpfFFkCCADLo7gpmGB21/Tm8amahAM4evJ1Ms3ukoFo8bhNQBD0hBHwht0ZyJFi8kgMn9wrgDORYYyCFXZV832RAXammoDQpaAEVOG3/JP2wN+g8KpV8oEbQKfsQSfvtQReuex9eh5x7pPvAH3N2WBI/BicEGOgrcYfjdG2kyMdYB/4xwo9q8HVCxSjQoZHMoZDmUbwQMCSAR67JQWI7b98LMPV30Gv2vDDSEwSREC9I66BEw4NS+E01afGLk4RIhBR+NLn4BLAfScFYvSBDX8Kt1YZXDrOaS15+g6cdodcmNBDvxNwAMdwBUDlcSYjCyGYWPhPu4NFJKRPRRIAANayJbJkBm2M1passdZaMq43lkf/QoqRnAJCIovspC1+kaOX3RKDEGFOwTVtCLyRb9YQlox7Ogro3g1M6LfFDDyylCAkClcHSCAAMhkpJUMIu6NvXOrrlYOnf6RfKCIA9JFDBP9ah58GcZCv4igApJDeN+Fx4YQMKedDADqlGZH1DtjJcwJmS95t8D1T0FXbIYTTqPrmMiLgbgj+UXinyI0EARsyBoBROIUXAii2YE0aq6yIEyHOZylYsW/VqohLtn0MPSkDIAnA0mAM6UHaIYlEqtTVfKp7Xm92EtmQBYBIRSIWyFahjVjnTHkkVoK/OZsDkWDaPQ5dCrMMjve3NHSH7eO0zOfzwpquzFMiTCQKa4TEThsZRwLBaJ2kSZIkADCdTRC5P3aRknGRaq2rw9EarQn6fmAmIbGp67qqIoF5mZdF8fCw5naYT+eUWKHUsaq3u305mUxn07ZtjdZFmZlB13U7m2TamkNdo5SLs7PPnz9vt5sXz58VeR4lSkoFxECCAaM4XlyuGKgbdJYmrW7rqk7zrKrqpu21MUmW5Fk2mU7I2iRJFsu5FKLIs+N23xzrSEVKCd0jGZCxKpJ8aPXusO/1AMiWuB+MiMysnE2m84ftRg/95nGrjX7+6uUwWBVFs8W8b3tm1payLH/x+jUotGQZgZjqqo5kdLZarRbL7WZbbY99O0RZjAxD18ZJZIyKYrVcLlaL1YuryzLPu7q++vayKAo2vFrMLy8uGezxWCVRXBbFfru/ubueTGfPn7/IsqxtmvXDo9ZaW/3zzx+I8fXbN0kWc09CisfH7fFwFIDbzW66nP/88ee7u/XhcASEq6sX88nk+bPnUogPP3+KpELJiYq1sfvDYbfbCYJYiOOhyov8r37zK6v58vwiTRNmuv16IxWmWaKUGPqhq9vlYrFczuu+PdZtXGAyyR62j7e391+v777eft7XB0Lx9s03ry6fv351hZbZ2vbQdF0rEF6/e/Hs8kp3/fGwn0ymRVEWWTmZzohIF0McS6Pt/rAXUjBxpKLZvFQoqqrp2i5Js+liWlXVeVnMVrP9/jBoA4hJmmhjB22sNX3fn5+dFUX2+cNnAMjSXEXKGIMSZKxAcdPUbEgIqZSqqna/qaIsVg7rjKbnCYQ5IQL0hnJMEBppnpN/HzgW54+NtoxO+S9+h6cRLmFw5QPH4a0qjmZltFM+awzDTTquIVwlOJMB4ITYBwQDNcIZ9OqM4FgGhOKd2l/mLnkzFzTdNIqpAUYhMSIRjUV9YFTweP/9lBnECEAUWCeEUe/BAOiTmNg//QljOApNhv5IzkLSeGfOBATGjMiSSz1z8QO2IxFmrQEAsuSwgnOwIbj14OXDPrQpAABECAt62OZCSBzKzYyQY4RlDCcDMBI9LsnXETMBPpHB8CQ4PpVffsyAIF3VGJeAc4LLxGHw/N9CIEoZgBUjCkBCj2QsBzPpm7GPBvWXzBOCjz2OxM+IKX0MyPoA22jdrA1k5NNFFDIOPVniFrbwS4VBCE/2kKXQfcJzHuD6nCOgywAgtCo8JgMzgbGsjQUk60COYUNMljWRJdP3mqxLMyfrUs+BUQgpZKSEkL5RQ0i/AmvtiFQDRmAGAhKWXQMJDNCRfeyHPU3lX29iZouAGHqMgZcMBnJRCvcrKaUQTvSLjGD8QLpen2HxoWQ2HJwa5NNQ/w+QOij1HQ3F4AJSKNi9QU/0+ydEDODeQvLlgNyrTOAaY4WwP4+FrxkYXHaYqwbuay+7ZHYbVqNns4QEBA6MKTgClQjAupeZmK1lKwCl19OhJaYBtV5OF5NZ2dWHAng2nST7apHF8dBPJfSxsCjyCIss7o3d76xmMc3TeVFezCdN09eV7IyRTvfNLImVxAQ5nSSJsS/P5mLQoj2w1lKA7PY5W1vt28M2jpDtYLQwvQJryiyFiCIJQ6+7ThNBOZn0g1ZJFMURSKzrpusaADDWADBiHKfpREomatpmGDpreRgGILtYzJIoXq3O6upotEny1DU4quqm7frpbDZfLhnFNM37ttO6i+NknuQqUu2ge2OlFGbQVdO23QBCyChCy4Y5iSNq+864skPRfrvd7Pbz+XQYzLFtNcFkMUvi+LivqupYTCeIaAzlReb2gaFrEaGcTKw2xlCcJCikipQFQSCapjUEKhLG2DTLirKMo9SYYb/dVXUVJ4lg3u/3y9XK1nR7v2YiYC6LyW69juJotpgBwGw++9MPd0U5IW0Xy1WSJnGcbDdb2xz7Qd/c33+6/ZJPJ2fnF1fnV/PJJFXxYjqZTcqh7efTcrvetXx4/fIVMTxu13owaZ60bb8/HGUcLxZn88V8fzykUYwgB62FgL7rLaIhXp5dfPjw8+3tY1bUq8vVbFhsf/5c395+vb6+X6+TKL08v7h69ixLUmutNbpv+172ehjms1lPNlfSAqEQWVm2TbvI5pOijCOZxKo6Htq6Lousbqr9rimKnKxVkUqLLE7j401Xda0E4q797//xw5frL7d39wzw9s2bv/qrv/71t98tp9Nmf9g8bLIsy+IY2eZpPs0nkZSHtgMAMpYtAUJdV84BZlJxHCslq0MdJ2oxn8VxjAxxZPpu6LqhqnsQmGZ5Gkd13Ww220NVLVaLOE0Xq+XD/V1VH8syLyeTxdkiT7OLs3NEoXuTpREqMFq3bT+dTVNAZp5MSmtZMip8ksgzusZ+Kw8blP8OgtPm9phfcibjZuMOYQ5gCfBJUpWrX+eM/xih8OzAaGSYYcRJEJDC6T78x57e6sniMjsVJrnQD4a28078wie0FW77l/E2DDEODunP7ucuu3WMYYyGjphdqsuTQB4Ee4CuhVGAhiGYFAwhM4ZG0Ai+Nh0/+Zi7Ga/09PXgwMcXnBU47fWnoB8z+SLULlgwzo0zHW6omFlJFNK3BfDWN6DIgINPrre3ecQh/29kVE7VkFyUKgAU99yu7q+3Sb7RFJ90ysHGOnYhhKzABIgbpGhhsVliDCEMRLAEgsk10MRgiBlYW+MfngkYhBBSSgeYwK+/0y0yOlZylLyIUHNOWy/+9RjYP6fDKG5gT6K18GsOum10/dSQmVFIALBuKgUqlODjcB6xe7wfMs+tz2pjImtdkhWT0a5vtx8WS2Ata2utU8RY40sYkQ9fCWKUDkwyIBAQkQ+eWmsFSmaybL3hBwank3Ygyb26GLhMH4cERBiLYYJ3JXzpdMAA4gCdosq9NSiki0kRWLfAXV3yMAteWhigScCUnk0epylUYwyp9J4NCu+yW63uvRkV7hgcqMDkePeHAZCl78oXxI4eTnn/BRlDTJaFz/kEFFI4CRaeNkd2RQUEAKLrx4wAZC0gW2bhRhOlFBIREMlIsIlACTABOIsjlmUmcZkoWaSZArJ9KbmIIozi1thj0xVxZCuuO13K8mI+VZaGah9LbYCBjBSyTOOsTJC10DRV2SwSq1leKimGFkl3VS2HKoqkbihTeH6+mhWZBLZDb4xJpErSiIxmQRiJOEssAaBMypSJu7o77A56GMpJqaSs63rQOkkSBjaDsdZaJiGEIdu0jZByMZu1bdvU9eXVRZaku90BBCyWS97tukGvHx+LyWwymaQTgQ0MQ19Vx7Zr87wwltYP665p5qvF8nyp4mQYbFnmWpv6uBcosjQ+1FW37VHi/nBUcQQCtTFtt3/zzVsmQJBJlnT9YIdhuZx3bdfXbZJG1po8z/My7dpea5IKs0kOCFXTGGuzohBS7Xd7qcR8NY9UhgK1McU0Tyc5MN1c3yoT5ZNiuz88PNw/3j2+ev16Nl+QtdtN0w/DZD4Z+mHodFGWs8kUJD6sHyMViVgSw83HT3cPd7YfruZnv/nu1wiQpIlkYEOm03mamsGmUdwNXdd3D4+PdVt9ub4x1ggVXb54NlvOp+V0fXO7fVz/7m/+BgCrr4fqUOdFUS5mFvhYHY21qDDO0v2u2my3X24+b/eH/fGQxNmvv//+7Oy8a/r5fIaE2gxZke52h7qq+0H3uq87FadJmeVoQcVqMpvkcUaW9pud1kPfdbrv2rZpmyGW0XK1aLrWktkf++1uZwXtdutPN19/+OHHzXb7+vWrf/zdP/zd3/yuzMqhb6UxSohikgoAPWgzmPlkKhjWd2sEyONstVz0xn75/DWKosm0kEKoSALIru3TLJ4tZkpGZjBpGk/KQqComvrm7rHu+sPhePXiajqf7asjIBwOx2GzeXxYCynI0na7u7y6evP6zdB1WZoBMYBN4giYddcrJbMsYSLd66zI4zTpul75yinjTh/2DO+ie5YHRngxmq4RJ53QQ8iocg6x301OG7v7DAfI4jamMePnf0IQzsAHnewJA43ee8ALwV10YMnZWSeiFoC+zIk3MwBE1jUxxUB6BLt1SsU9PdkvksNw9B9H/xmCMMFBIJ+WQ05yEwbKgxkBgQNhb+ApjAUxs3B77ng9FK7hpEeDPhxARNbtqmTJcw3hIcBfFdkXqGU/KWHsXE22MYrkmQwksBgim0zWS18tkVdII7gEFymR2HXnHhEtwPhUwE804C61nNHjUHGC097P9oNgHSXikFKAvOikPuxRt3D4D0CIkQ8Io45MgqxxS80AgiUDLnPZ+ppAUkpiVlJacsFTdonXCHjK/Qdk9qnd5JGfM9Xo8Y2vNcXoqcBRwwQjHH+ycN3Ne0DIIy0EI9uFxIQEY10ctmDJ19Cz5AAn+Xp6wrUOFQ4XGbJGW60tATOisdZoA+CuhCcOBkEI9HDHsRWuIjNZALDGELElS2w9eHe8oZcLATnIA+Q8B7KBvAxrTqCQQob0OA92wjvl5t1rc9BruhggBBZD0zFGFL4FKwfg5f0mR6AIEADg429+rIiBLXPILgUCcuXUJQhrLQhfx3SU/Pk15ejBsMAckwdeUec7bbm4sgDhW7UTIwBS6FOMiCzATyMguAaxTjkuEAUI9L6fZ6KFGwpCtMRgjbAatcmKdD6f5gJtVU/LGI2RWqcSBetYqSxORCRVkmgGofuu7+eRVJGaJnEZCaF7ag9iMJIxlahUlCBkQa+US1gWWX84LpezWDpYb1GAZM6SaJonaRLnSZREar/dHLoWAaTEw74i4jTP8jxHFN1g9oc9W+6aOkokCqGkYiXpWDd1tedDmqZ5UURS1U3bd3WcRkoqISQq0fd91/XGNnKp4jju9YCAcZKCjPNIMeDjdt/2te5aYm6btqqrM6kYYDCmatrZapmXUwkwm80UAibAzMvFomrqums3291iOT9/fhknMQBaBmNN03ZxnMhETbJpdaiLxSwSQvdaJcrorm5bFCotEpRy6Lq+1QiYpImQanc8Ho+HJE52+30xmaR53vXdoTrEKp6upjDo3W6vkmg6mz7crYuiePfdN/PVajaZ3T9umq51ghUZx9vNYbqYEVGUp03f7+r6/HxFSjzerYnp/OxcSfXbX//V5fnF4+ZRGs6SiJF2jzsuM90NehjyPP/48+fNYTeZlov58nG3OdbNvB8s2eub67vP19NJaS0R28Nu33bd+/ffLi4v7jeb6693DLbIi7Qorr9+/fGnn2/ub6VQF+fnRV4slwtgGNo2EnI6n5Cl29sbV3Wz151SarffA9nVbG664fziPEuzMi/rumHmcjJhtuv1gwCRJgoRWOKxbYixt7ol+/n25uPnD9vjsZjk79++/T//L//Lu5evZ5PJ9acvm/vHJE3IUt/35+dnL549r6sjMzV1raSazibrx01V18djQwzTxbTpOjPoKIouz6+yvMnzOI3TY9Xsttsiy5+/eMaW6qo9HKvV6gwl/P4Pf1itlk3dSCXjJGZkKUQUx6vFIo7jSEkz6CzPgLmujpGSClFJ6cxM1/ZFUVTHBpjzNOnqVtEpEMFjemzwl54oVYOtGxlyjxSeJGZ5uiKkWZyOCOSS489HWoIBfGX3E5EDAEyWXTDAb6VETmHqNUkhSOdA20hbnLhpEASC2aWKALpogMBRYgBEAgWN1mp8RB6jbOB2btcq2zIBkbGGyFofEPFiFEs2JMO6x0Q4GVBPTKG3KgQAXnw67vjuloVAQOPHIMiUgFEgkO9kxMyIwte59aPNgCyECsM8cm/MzKETpUdUiD47GFGQI3McuqUwO146DAjCVRXzs+mOBASBKKXyk/gEMDvhFqJLlUEUQjg1quAQFhkthqv07w72A+HhlicbOCTqj0FJh6kCzoAAPIWTWBAzaaeaOmnDiVz9Jw+2LDMQASIbQNdxGz295yqzGLYwJvW5A9nF15TA0EIMIMizfYYdADARClfx0hON/jnYJ6+hEAS+dZQIqe02NDQ3WjOTozodp2ettdYijv0QUCghhJBCCiGstFqbrunbtrWWAIU7D8MocxaAKKUQfsmjfxB08M7/bww50E2nmCa4p0B2CfAoma3L5GJyLdyJSaBj0sYbRA9a3K26RrWBS2S/CTCTCYuSBKLTb49cIAXIfsLprnm7m1B8og8PIiFmFkEKf9KgowAAKSQj+n5ZxEGHzsDg2Txmdmyrj7QJR1CJkDPoAB2F94uZZCA4EVzqnyeAPFkkEFgAIKHjg9wGiEJEbloGMIaZyYI1CTESF1Hy8uI8V+Lx+oZj0TYd9n2WSLImiRNEoWIpBKdSxOfT7a5KARZ5YkEP1b5Mk4i01F2ZlGkZt63Wx702bSSI27rIz5TVm7tbPD5eLeaRYOq7BCGNIhmrgY1pqjzPUiXEfIJ2sHaojn3T1EIoBqjb7vnLV7YbDrtaKWUMTaalQDxUxyiOpvNpWmRD36MQj4+PfderSFpr46iMswiFJMtSqX4YrOWh10KK5fLsWNUsBAFnafrzzx/3x2r9+JhlSZLEWZakRcEozlbnk8Xij//9PybltMhLtnZSTpipOhxAyO12t93uttttVTcXz66iON4fjrP5rCinlqiYTPquu7t7QOKz87M0zdjQ6mKllDrs9yyFSmMZJREqczweD5UFa7d0fnl2v76vjnWW53EWR2lyc7sG4MmsaJuON/vH7aZp26Ism7ZdLJZaWxXJi8vL2+vbm9vb/XEfR/Hz588urs6ZAQdBxprBDLY/Nsev//7VWJ0m8fPXzydJXhZFrtRh/dge9n3bX5ytkjyNEhmlUaf7ZJLfPW6jSMkoAinOlhfzy7M///nD50832+0hTeOymKRJsn5Yr5Zni9Uyaqq0yB4f737/+z+kaTFbTOuq/fnjz1/vru8fH+azxcX5xXK5FEKQsYh8fr4YuiZbLSxws6uPQyOA0yj5+vl6MZlVx+M237+4vJrN5s2h7tuuruvV2ersfJWVGQgcunZ5Me+a/u72/vF4kFm6Oe7++OHPv//jH62hl89e/Kd//If3r94UWdodKug0kgW2Zui7tkNAhcjWzKaT9XrdNk2apVJFURz3up/OZq7NnmDQvd5td4vFgqy+u9lJKVGKyWwSq2R/OCZRfDgeVmfzi6uz7f4Qx8nxeCwnRZKmTd2Q4fOL87Pzs2k5qeumaWqwHOcFGMryRPdDfaz7oZNKImDTdCggLVMitIbJsgrVRcPLDIHG50AWBAMbvsbSNMGb4pBeHupEjz7cyTMOJImPYDAABrg1Bg/CcQFNjJAJMFTr51PFPBivI4Lf6AJsfg9lZmAppDNRlgBdP2ghAQEIJAgO+7QPQzHasehrkNAwsSYDgNblHpAdE6wC5Hhinjk4pRBgkntQl/07uvvB5PvLupzyUF3NqQsAwFoK9HzIrkKfYs4uI8ibSV/txWWxPIFwpyDmk/ElHAf5VAPJJZoDsNNmgJNvuEcIHbuFE7D43Bz2AbpxDMELTX7RA+1pQ/PAr7kDmYMyCQAsEfoqAP44zwYw4Qlhu5mikWJAQAosAI/ECzuYJyS6CjJ+GDzhZi0wWxxrHztu0iefuy8IBQkCHgrxGyJLFkOPYH9eax2hNjoM3qw66CTBEhljLFnyeI0tkSPY2Ot13P0J/0Mmowl8e3PrAZJbP0Q+v0tbSxaF8LnxAtA/rrPnHo8TkRBMjGCc7sexWo6xYAkopASUbn4EghRqzGpgIpRA5OsdCIkKYyFQogi4wydb+cshO7AhxEjOBjDBARy6eQrvPITwalCbITgcQRYBiXmkdtjvByE7wLWakV7s5141ty9QADkeMPHIbQGFBeQYTc8UO1QeEvqCVwbgFWOEiBZdnr6rEuQC69J5iAAAri4RCvf+em0SkaMUIxULiEBYIYVhkAqzJJ0u53GWI1pIlAbsLCUkstm0OR56a/NUSmQ7tIf9QUVRDFwmAhhub9faZElyVgpkIVCJeFLgIjocDrMyH5rq4eGY4fk0TdJn56lgq/vtdsPDMJ9NBLLtexXLNI0jJbq6MsZMyoKJm7Y11k7KUqC8ubsXKiLEOM2YGa0ees3Mm/U6zZLLZ5daD/0wMAADF5NyuVq0VeP2EK0HrQ0gqDiJBRaTqVSiqZu6btphuHj27Mvnm+12Bwqbrk+LYrpcnp+v2qru2v7x8TFJor/93d/FcayHXqI41o0EKMoJMt7eXvd6kCo9v5iUkylZO51OIhWRoGmelZMJWeqHoa3rosgROI4UG0mALMR8dSZQWEv90HaDxkhKEm3X3tzc94PBWJWTyXw5F0IO2i7PVsvVbLvbDV07A3IdcaVUTduSgcPhmGXF2eWFjKPpfjZonWZFOZlmWc5EXdf+5c8/7qv9p08fQIih696/ez+dL149v3y8ffz88ePV5WUaqWfn5wKxauski1Dhsa6jOO600WRnq2XTNtvqGEXJZDZDJSMpl8szwfbq4qKr62N9YCBXDPDzl68yEVmRHY/VD3/54afPPxPb8/Pz777/bjZfWGOsMUNnXr968Xi37pput9lNymmeZ41ulqvzOI373jw8PEwnk0gqa2nzuL2/uYuUTJKEEffHY9M2cZEmebLZV1JKjkSt+08fP3y+u/709atE8Z//T//897/927PZvIjjanuQIDIVF8tVFse3N3dplmRpJqRou+5xU202G621Zd4eDsQ0my+UUJvtTkicTkqpIjL265eb6lg1XTMMw3Q2nS/nRGy0rQ67rtcs5fXNjYqirEjaqlNSzeezaVEO/ZCkSZGkQ9dX+12aZrPpLJZKIIk0GqSwRg8a4zQhYxl4v6tUHEmlNo8bBlbBQDwBOCdEEIyXD/aMkSFgX+ME+VS1zFM+T0yRD2A5M8pMI8k0fsD5bSMx7U4SzsmnmmY4GrdTpMRZKNfEIHDsAlE6uYIQCp4EtRAk+BRp60gsj0C8rhkd5+/Tf51/zN6KaE9WOHmB9M8dJNvAQf7JcBoiB3wC4yJQjBKf8Dxu9xWn7uVjKryrtD92KQ8+p9ufpW9k6eAguXw08m0EUDj/OKAlH9dz18ITF+P+YnYtnGDUUvhPuHAYsBCn0itgPUjWRo/rgE8E2uilhzSokYryBaS8Bigc4q7rhajgijYhATGOHchP5/Ej6maMHaXDxPykpyygUC7X6FSGAPztOCzFxnhA6ekSwBDeYEfjQShj4/kCl/jlJbNBSgIsPMp08mIERN/AO5jbEIRCp0kerDHGaNclyo+PC70wBWU9MziFM7kYGLHX6Fhm9gyodeiTSAippARAkAxCosRR5MSBXQFgRCSrkdAph1C4BcMIKIVyQ0petu+ZVHYMoi+hSO7d8KDqyYSA06Q7Xg8REMhaD4bJsVHe22FfF0P4yod+5fkV5F8x9sFTN1+OvfHqGUdRumClA/F+d8Gww7gVdWqB5qNl4RoYShc4IpSRBYvxfSK2QcJF7JVOIcbHNJ4E/CuBCiQIIdwO4haeI/ZC8HscTyIgY7UlUoqk6LW2WkdxksWxkfFu0Gj63WAP/SCFmpaFSROJ+dA0Qg+Cpek6YTQwZUoZ00oUpcKXl/NZnuq9sNZenM2SckYsNjx09WGZxfmz5TyPIrQEUOTpUBsEmC8XZZmaTjdVk5dpFCsahv1mR0Qqifp+SPOs7o09NovVIpsUbdcRQ1bmYLmlPkmiLC8A4P7+Hu8fh6Hvuv7s4jzPpZJi6LUQQhuDDCqOEUgbm2WpkqrpmiiO15sNM7RD//i4zopkwYsf/vjDcjE7O1/OFwszcBLnkYzq+lDkRZ5m9+v7+ljNprPjsQKyf/27v67qxlqczpd5nk9mpRBSCrE/7Ah4kpdSyoeHh6Iorl482z5uBkuFUgRy/fAIALPF9FDVeZZtd9uHh8eu7QDgbLWIIvX7f/uPs6uLy4sLJnHYN4Q0O1vJKP705SsgSYT5ajFbzGxvrLbTspQqOR5rQxDHydXzF5P54n59vznsPn+9Xi0XRg8vXj2bLSd//umHx/U6SqLvv/s2z5PVap7nxb25W5zNtG6vzi+TJF1v1je3d+W0FHG03e/Pn1+snp99+PFjq00+zfq2zxhUEk/UJFIizWI2pmmrpqmdwX7x+llWJIuz2YRmP/704WF7v948zqezsigvLi/ypJiXs0N1uL+5u7i46Jqua9pYqdevXj7cPyDQN+/epVkqlWTE20hcXl7OssKS2e12xSSfTibDMPRd//Cw/vT549WLqyTP9rvjfDW7Xz/+4c9//uFPP1pBz6+ef/P67T/94z+9eP68r5v727vt3fo3v/725cvn15+ul/PF0A5CiSiK8zxjgrub+0N1eP361XJ18enzR4HSWuz6ZrB6Pllk2XQ6lch2v9tfPDtv+/bh9kHJ6Mvn227oZrNZlqTlbNL3w369zctCxmq5Wq6WZ1maPD48JFECljf3j2fnq/fv3m03Gya7fdydrVZdNxjD1vLy/CJKoqauyrLcbvYqihBRKaWtVoGDh0AunOBQqKiCnm8JJtRvQRx2w1EoE6zoaEl9AlVwjN0WhqePcHD+wgFICCik9KJHDBzKE79xtOEQ+AIEsOAZcuckjiwLAzubAid5LjJYl5/sOlaMJtztY24bIwZyRsqJD7wQRggW7MGeA140RvDCZnnywTHspWODIWehnWvr9TFOJ+vpIuEskEeU4Rb9jwDgyXMxWUAXQ/C/9dSON4Ac0J/b35/k2AeACgBeAvtLAOxnFoHJjrMaglzg2ZvThI9zjqGvqse4oZ4QuLukAH4YUYyNd93Uo3CzdmJ73L98flxYLS4q4perQK9PDTcfGra4Oj8Yqhw9WSkegPnjPTNkMIigXUfOp0e5+YMwuyHmwihQCl+xwBd4AU/ocFB7IwMxWbLaWgb2xXu89hcB2BIBg8vbsoaso3zYZcx5ns+DSPK0jcsRB0QppfMUpBAyUkJKdiImppFS8VxIWCFkANg3qCBLnrNxSBdAIBqi8LqNQwVhAALexrBbQHhGYLZsycJpMQinOuLg/oyRTrcphNP51URAAkfM6jM0HQwLpK/wuCaAbGYGCq9ZcI2IWITOYew7IfMTJ4Dc+2WBxvbp/CTvkz295Jc/sSsM5J9XIAgQBGCZBbMTPDnttxNteVZQCva5CwzCSoGaLIJUcQooe+RdZ7rP13kkEoGm7xMlWfcQdQPyrJAyiq01ddVczGeZEE1dxRIgVX3fny+LMlao+0mi8ovZNI819Yeqnsacc5TnUQ9pKkCYAXlo6l7XjYpEFMtIRiKGNE2QgXrd9gMCx2l8bOqm6S2wAWr6QR2bcjaL47iuq6Y+VocjIzOytnSsjsMwgAQVxcqYNE0QYH3/oI0+Wy2yPItVTMzD0E+muYriuqrv7h5kJJfLs7u7OymjfuiTSKVFNlvOlVTT6TRSUZFlRZoLYLJXbdNutpu2baIotkSD7rum+/T5q5Ain5aIIp8UUZwYrcuiqI4HNsQWqrp6WK+vrp4ppZI0s8bIKBq6vus7a4iYQKI2+nCs+95YwfPprO0GY+zrt29kFFWH6uFxc2zqsixv7++Xq6W1Q32sz86Xq7NzNtbAADHkaQEgW9EbY8xgNQ+D1kSstZYKb25vrDZ//MMfNtv1Yb9/8/b1arH65tu3QECDRobZfJpHSVfV3dB9vv5a1TWiZIC6aeI0BhDb3Xa9fQQQ+ABxkuZF7oKPeuCh65SALsv328ckSaSSqCIQaKzZ1dVfPv6labtvv3n/zbffNVW92W6HQUsp2rrdbXdD20dCFXl+tljOZ/OHu/VyuZRR5NyFrmvOz85mk6kkKMsiknIxXwBz3/eEPFi9q6qiaRutMRJfb+5++POffvr4SQ/6n/75H//+H/8+ElEE0nb90HTtsZ1OZ5FI66qpm2a9roSU1b4G2USJaqtOqmg+X8RJFifJbL4ctN5st4fj4dWrl9PJVCWKDNXHIwPnRd523Xy1KieTh/vHOElVkhaTyW6/i9Is0nq+XBRlrpSaTaZm0LPpLIpk3/axlFkS67ZvjjXxIc+y66/XRVm4djxZkaskGow5HlslozhO+n5QUcSAarQfHKzEaPNg3Ohw/IkXgXqDBCfz4GmgkaDBkW1GX0MMQh02t5czSwxn94fhGHNzYQzvLTNgUDZ6f95dkJCduy1QeimAj2S5psxaG3ZFTiyF4n8e4bGrpQboDCEDCDHKjtg1GSB08RYPY/wmCj6xyZNH7PSzviYQAwsfbwpKKQZPOHk8hAAoUfgiwYBAgK6sMIRzILjWFK6UsGsgiU8plhBkABg5F3RCCi+tGSc04LDRqXa6DT9O7Pj7cfMOmdIQYIyDqKFGC3qSi4IVDwIOfxteT4rAoS0lBPLFfw587v0ILgBYQEA1rucDB+Gwg2kE5CvTQahD4wwSiGD+winDt45FYA7EnfvViNQ9MQcchtuXK2S2IcEIQRBTaMGAp9HwmJ/IkjE2zEOw5Ayu66e1J/LAg37hFe9SqJFadVhLG22NtcayZ/IAmIVAByfQq1RQSuFgokMU7teILCVKdPW7XeKhEzczAAgZKi77t9IzWi4eSNYCg8vWdOWmQsUAv5jC2xLuI2Q/MTCwddyVmwwiaylUDGJwNYzC3DjxtQe/TqoVUBB4oMgwdqCDcJiHIz4XncYtKABn5sAfQ9iiANlnQfhlB+NQj/kLjjy16PklcOgKgMEXjSQ4bXdPY8oWHYvrSk9L8K3oQAphfZjeJ7eR6zDLRgpmgb3RkpSEiFlYtp2xddd2aVTkKaPqCIbOdA/bpkuOKUwllJITMvF8nqUZ6N4YPS3jXkGkolhAc9iD7ublROnWaAN1VU4n+arUWhNpNK3WOka2WhPrKJUWLEsZSZxGKFAe9ofD/phOszhOYmOlioWQ82UmpVJKZXlKlo3RZEyaJcdjfX+3LssJCNRs62NbFuVkNm2rOoqiJI2n6VSijJRKk+hYV3VdAbJQkbFGSEizhNDu9vu8mLx7//b/+y//+rjZRFGUJtHmcR3FyfOrqzzLlVKDNcfjQUiYTmar83MVy+Ph+NNffhzMgFb02szn827QTdW8evXi08dPcRyXeV63VVU1sYpvb26SNLHGAIoPHz9sHrbLs0WURA+btbX08uWLcj4hiXVdH6p6Vk4GrVlCp4d+GISU9bGuDlWSpjdfvr5886LIi7PVuSScTRdQ0OPDbn27ViqOs9wQrNfrQ1NPptMizXlqSTNZ6vru5uamKMu/+4d/WEynk2lptRECq+Px7vambztMyFi92VR394/T5fTy2XnVdIfN5sWrF10/3F5fKynyoswm6fXXm5ubm7fv3wsl+qq5Xq8nk+zdu6kmGzFnSbzZ7fSj3m43/8e//ZuQ8s2rl5fnl0kc/+HT7/uuu7i63G931pg4SqaTSRzHkVCrs9Xtza3p+qvzc23N/cM6SiPWxGglg9EmVtHZq9dMvN1sB2ONMWmRXz6/Mszr+/Wxqbb73Wa7nZWTf/7tP/32d7/Lsniz3vTcTLJc98NqtTo/W6Qyaaq+qbuiLOM0Qin6wey3h6ZqsiIRKO5v10Nv0yL7en1rrJ1MppPZfL1+lArzJLXEcZI0bXuoKmtoMp9dvbkaeh3J5PG4j2J1/fl6NptZZ8oZD4djGkVxHPddl6aJGWRTtVVVIWMsozROkzhr2zZNk9liZrTdbHZlUYpckjHNsY7iaD6fHqtKhT0Hg5IEgmfOCMEvO5lUDkxzCPgEcxs89qfkzIkjHzkMBOGYABTosAePLMXopQMH7OTJpcBMB6w2khiOdPcuNxjr66EYY4nJaDMS4UEN4wSPiAIJrHDyDQAhgIhRyMB9nCS13kl25XHBMRjjFs4wZgWzTywKx+EYCHCbsxPSjPYyQBDHOFlgcHSGH3pm8r0JLHMIsAS0ONISHL4HAAayZNFVBWRvS0L6yhPUFPCjA4uuo0BgPJwRd1YGQ7oLU2CUHGTwaE94sBh+54pnuhGDIFsGdjlcMC4KBAw95fw6Al9JIKyakUZARAr3FwxW4IKQRkwVFqy3nCG4dqKphJDj7IyhL5+y7ayrtZYZESUKVr4mnxRCSOHSrkdm0QFEawwDjWqeMICBjWBfiYddGzAxtm4D/29mYrbWaK2ZWGtD1rKrcOjF6Wh9Xp73CCQiMglUliyABRBSgFRKClRKAQpAwUJYa6wr12cdYnA4lV2dAGAnbydrDSLIgO1cNJGtdUM3voqu/wMgo481S0cPeTaHCDzF6yNmp33CPaL3JUAK4TgZB2b9sg+z7fXjCIGmBe+ruNOi9yXCig4XYcDApnk05G4Lwzqg0Krj5Di4Dc2Vl/RrnoEwkF0OPYVrBEjtaHBksEAAREY4phwFCSZiI4SQnk5mCwSWfDQN01jWemARobUxxhJE37ZSYaQkCqnirDHtenskYwcllQB97LSCfFkmafz4sJ4VaRqpw6EhJfMkAWaJqPuh63qJmHKqEBO00DeMnEgVTUu2+lgd8yxNk4isHPouzxJCw0RN0+RxbMlYtqYfKI4lsozjLM+bthv6noyBIhPASgiZxnowyLhYLRbLVde2XacBAQVYY49VXZZlmqTSleGylqwBS0opYrDEQor5YmGtfVxvRSQNsCaYLRciioZhePf+HbO9v1nf3z/st8dJmSNyN3SRUuVkEiUKGAh4fraazGe602mWT6dFva8AYbla/OXPPyJg27bH43G6mBFT+9gxsFBKCvm4bnqtH+4fZ/OpECpOVdP1MlZ12/TanC3PLs/Pm7o+HvbH6misXp2vkiK5u3nou4aIIhGfrc6aqjFSS8RYRXESxyYDxHI6wS66e3gAhOlsggLiJPr69ct0NjVav37z+mJ1+e6b18iszQAJaa3L4vKwO9RVw5qSOMZIvH7/qu2HphmqpgEp+mGoqkoIeX4xe/XmTd02XaufvXhZTortbnd3e6uUunz2QkYqzlIZJxhH24f1sa4e1nfz5exsdXH57JkS4sPPP1qjh6G//vJ1aPpnL15MviuzNEviuKsaq81gzdnZsq2afFosV4umrpHJ9EPb1Gxc59pX+81ufzwIKW5v7yfLmYzj7Wb/w5/+sjtu0yJ/8+rN+9fv3rx6Famobdqh7c/Pz4a2P+6rSVk0dddBv10/usrabaNRYFmmfavjJM7zvOuGYeiZIU3Ty8tLQ5Ysa62JbbNv1FyszpZ1XQ/GlGWpjTGWIxZCxZvt9ljViFx3XZqlKpoboxGob4b8bMmIRhuBkKZx3/fz+RSIXVPCrulcS8Oua/eHqut6FKIoC20HoZRUymhDxipLwQf/pQN2Mpb/81cISXlXnPmJTfaW//TZkSLytHNIv0AIpYA8QArG7QQQvADFW/rx90DBy3ZbqbGamJnAuDJx1mcSA6OQzo6z7yiJEKCJl/YGmhwECvtE4IwhixeDt3oCcs5unww4eNMqEMC3eQytoz1O8iIKBmaw5Agmj0t8RAkB2P5ikAMogZBiNT7++Bf5BgLh035Td/VehDMrnlcCH2jjAETGNlsE9qRTHfENuH5WYfKctsaBIWRiEiTYwxgfXvTFBZ6wh44hDL6+O7UfYedZe0OISAAuI4CBjG856a7oKEQGL/8a1xz4TqPe54cgckVEEgIVSva53MDk2b4nS5HHKSBgjwacVQyFcJjBWOPEVW7GmK0jCFwZJg8VPLPBAHCScwE6dO9XCgTYDeATvazVWmtjgVhb69LW3G2BL27AEM4U3gkGtiPxg+i1/w6juAYX1lqyhq11R1gWDCxBIrpl4CphGgISjlASiMBSIBFaCFIuP2kB/QCg79zBwk2ZT5gKSNxVqRoxrON5XBSKCVEYo33hKo9U/Hp3rwiD9TG7QH/SWD7jhGuDWt+hdreTYCiR5Ze9BYDQSNXtUgJH3nbczBgsnCRHAL75O4c397QhPaWOEJHFCPYts0SfkeqakAghOSBeROV6qWlkAyJSShLFZASxBIBuQDSWdCtkZ4xmiUIYKRpjMoVRHC0m80UitzfXA8JkkqVRQr0VIm67liPKJxOUQiIeD8fVcp5IlEC7+7uzi/NZOWmb5mgpjqRl07V113VRJJWUZOh4rHWssyRZLCMQKKQk6sn0nCQCoK/rSutICimE7QcppRl0miUg8HA4JFH68uUrRqt7rYdhMpMIuHncSoUvX7xsqtoOViqZpam1FAvJUQKstbb3t3ez1TJO859/+nhxdbVcnbe9Nhb+8tPPtjdRHMdZUjeNFHB1dTX0Q9O0AHY2nVX7YxbHSkgtdFpkDMIiqzR9WG/yvCCyZqDe6MfNo5SRBdaG5tNZluX39+skSbI8VSqqjkelZN/124f7umnTIj1/dhGpuN08fvj4cbvdvH33NiuKh8f1bDa7/P47MjaN0yJNhJDPnl11Tds0zWK1iPJ0sLaYFQY5L/PIxve397/9u7/ePG6sIaXkX/36r5ar5fFw6PseLCklJ7Npe2xQwKQshq4r8nxaTL5+uRZCzOZzIcRAVql4tzucn58VRRElydAPEaq/+Zu/2h32tzd3TdM8f341Xcw22/XXm3Y6LcBKHMCwqbumaprV1dWr99/utxslwbJZna2m3aTvB6lQSRQgkei435d5ftjvy0kRK4VJbLoOjMni+LDZCiHaY6P1ECuFFtqufXi4z7I8KTMVRe1u97h/XO/WCOL189f/8Hd/nyd53TSX5+dZluZZ1retAJjNJhLl7Zfbh829EnI5nxtrddc9f3GZ58XQ74uijFRkFE2mZZonyGI+X2g9/P4/fp8V6bfffvO4XhszVIfj3f3dfLFYnq3u1w+HarfKLoZBb/dbFSWrs3Nj6ebmtjlWz54/z7IkzzJGKCeF0T1b6vvBGD2bToehV0oBsO4pitVkWq43R0s8mU8ZoOu6pm6TOCJr26o1NDwphPgkhuA2wVEVNO4o3gfD4I15QCGfACMEAF+PeNwPQ/fG0VNmEDwGCQDYdTEMXI8LovtaIZ50cpwIMvgsYiegcCLTUJkXQhgGnWhASYXKi23HBJ8QYpBey+TFMWgtoRA+vZmZEML+GYgDD/LEaNKZPb5wY+F+gCgR6BQWCqn7ThBD4evJFv9kLP3lfGEC55Tik4EfGRIHC4WvxOuTY5CRTv0KvN/sWQ4vb3W40rm7QORSucZ58LyUgJD7zV4kGyg5j1NduM39H4KDIVTIyO5xGYJRD3bFjz54zQ2EtuqM6CskO+m38PSej8H4tCsOa89fa6QqQuTFY0ICZjAUGpUIVFJi0Pb6+lAjjwnAo9YNgMH10iJrrXXFBcEFUcNiRUYO9f4CQeOnLcRPx2f1uJ3Z+mYgwAzWWGMHa62xxK4OkLXuPj16EiCFuyX3Ro5KMkRBSAhCIIBv7Y4srGAQQipmMFpbY8epB/CviXEcJrC1ZMkYsiiEElJIKfy0ksspc/3WHQ3jkxHRaV1CtpVbb2NWPwS66LQ6wb2aZJw2yi/4QOCNQB0F+mKF4/CiP1nAguA9s5Hkc+DQ003wZNo9RHyiR8QQ4wL/Ko5lyRyUdzPo37/TpAVc7H5DAc8CIDOiCp3peGR5nYzIeZ1CgIyUK1Fk2Q5Dr4QSA0nLbGwENI1FFKeTedZ2XdUPbW9SFQslYmTbtTKDMk3zLM2TqHj1HOwQSZlGUad119YPD+vpdLI6WwkUUST6vifgJI7TOD5ujmQ0GWN0LxUCAGlL1r8CKlIWCBAHrdMsc26BADGdTfpO60ErgVmWA7Rm0HXTRYko8pwsDU1reguxzOZ5kiRD3+vOJHnWVlVVVYM1l4uVkJIRjseDVFIlEWA0DHq33x2PdZxlq6urOE5aPSRpGqfZsaqePX/2+csXpRLB8uFhAwCJjGKloigqskL3w+Zuu1/vozRuq/Zj/SnJEkYAEMfjcZKXnz9d11VVVcfpYjZfLbXWDCBjWR2b1eo8zpI4TeIkBuC6qpdnC0u02W6jJGo2m97oh/Wmq5s//+GPcRw9f/HKEguUb1+/SZI0jmKt+6+fv1bHw1//9a+LPJ9Oy8+fvhzqSqgoy/NDfbi7f2j7umna46G21jLAN9+8L8vi6tmVEqKrGz30WRIba/bbbVu3bdtqbcosz/Oi6ZpyVkoVdX0/aF0UBQhQSpZFGUXxZrNr2gYEHqvKkm3rZn3/0DZFPwy73WY+XwyDrZsNM7uak89fvBBK/vH3/26snk6m9bEtc/Hi2fNIKuuEh2Tbodltd21Z5mkydKohMQzdxdU5sGiaOn39qiyLYdCfP31u6vrh4X6/2xJxlCfTvNgeDo/7zdfbm9l8ebE6v7i81IN+ONxVx3qal2ma9F273+33vJ/Nphax6Zs4SWb5NC/LOBJoYbGcdW1rja3rmoln88VqdZZPJkOv274jpvV6/aZ8zcYKBAbR1LXuh6o+/vbv/y7Js//2r/+23R2SLJ/MF5NyUjfVoTrKSCZ5MuiOrZVCdJFioiRJNo+btqln08nDw/1sNunbLi/zosykUEYTME3KyXQ+6freaE2WmqrN0rgoU5Cpcn0yfW2O0e30zg8FkOL9sGDFHEoJttU738G++u0Kx30I2Nfi4GAigUGg496dUAN8oVv2PyIK8SNPt1smcEXzvJVz5L53OFmCq8UKUgjhiuiFrGNEEEJ6DgAQXE9GZiew9byUEwAYHzdxDj6PnIJvUuEUvoDsSaVgpUffErwKwVfQEWEDPzXhQgBDhM5ZdHWYGYUQwa3HAEIQAIT3qr2LG1g0hhNPBUHfgZYtPZmvEZeBByoOQASvHhHAlW1hCScB1cgDec4NAX2bUhhbUTgLMa4V4WY08D6ucl3AwaG9AHkKJ+ijrEAFwut2A8T1kMKQdXEjROGkNO46zrK5z/v4kLsSOlkGMnsGhZmEww0CAJmMa7NA7EROECwmAAI4oo40aTO4PCxnsy1Zo60XurqMeuffC49RObwybjgcj+Vnj0/ackSMhAQAbTW5CK0xxngWENgxdR5tSHdGsr4KELJAl2Ht3izyON4b75PqSAATgSVtnN6NBYwQltiycSCErA2MSpDVCGQeC0mgJQtAbEL0DBgRLTC48s6+n5fHc77wtPNNIDhRli2ztQYhMHdETFYI6V+KcdScFmn8t8MehP6iHACXW31hztxCEf4tG9v4eM8AQ8tZYPbLJ4T2BSCCS1Y3jApDl1lXsdMlTgIz+fXOI7xFRCTfpQQoRHSRjWYUggGEVIgoGI1hC1YqBYiAKlFCMCttYqMnCDMpXlzOppNscT5v+u6nT7ft8YHRxlEKfZsLfTGdTDNUojOmnmUJkDoeD01dSaW6phXEAkRTtcfjMc/TOMmsgaG3QKYoi7bqm+O6rg8qkodDPZmWKs6IkVjqAYBVlpVsyWiqq5qAykkpWQ1at223WM7n83maJHmRPvT9vqr63shIxkmcpklWTizZx81j0zRSiETGgzVN3+dpAlJ0Q1eUORndtq2I1Gyeb3fHftCGSFqbxPH9/SMoMZnNmqZFlDfXd2mav37zFpnRUhKpSIpqf7y7vb86u1jM5nawxFSWue6G3f6Q58Vud7i5uZ9Mc2Ys08wCHNsumZXGgDEmiiMCubq6+Onnn8tpefHsMouTh/V9XR+7vq/qenWxavp+uphLJbfbnUIRxbGUCAhNVRdlURQFM2+2677r7u8eFpPJpw8/W621NdroKE7jWH348HPddJZofzgIwGfPL5no8vysrhoE7Nv+0NZlUYoij5Q4Ho/rhx2TbwXX9/10OqsOLSOfX842m91g9Hwxt4aaui2yIc2SWKl0uVivN+vdY687Q+bZi6skTX/8y1+EhLIsUbKMVFu3WZYxgIqiL9fXehjevH0jUNjORFL2bTtbXWZlbol2m73W2hpT7Y+plNX+wJlGRjOY129eG60fHtfGGImMzFEkD9VOKjWdTfbb3W5//OGnPx+aY1HOvv3mmzcvXzbHtm96RFYC1uv15nFdFpPJtMySTKA47PfHunr58uXF2cWxOqLkLM8e1ts4Uovz5cPtQ9u0fd9NpxdA3DZ10/e77SZNkqHrHjdrIRGB+37IsyxNst1may3NZvPV+dn+cPzhz3/u2jYv8slkWq7O5rPptCibY9XUVZHmBq3u+yRK5pfTJIn3u33fDkmSGm1jpRjQEuV5aq3VugfgJEm7pANDaZZmWbzd7FTwmTgw2o4B9w7faCzYWTnPU3hQ49FDwD0oPOXgEUPoYcAAFLKgXSF8pzM21rhqnt7pDlJJF6IagVfAQBT2Si+kRd/myJFLCEE35HdCYCUFOJ4k6Dm9486+7lwoxOIfzqVkOwDGASCAa5Lkkmf8cHhaHHzF4jBmgONujAAAvhRx4Ehc4MCl4Dr7JjzICLYqIJtTCHGMg42bvN+nGRCBrBOFe2kzEwuUYejCl0c/Y0TFUz7E1ttYn9cUkFco8+RkroyAoU+pCwqycLQWjDeOAAQshfD5VT5rhwFFyNgHP3Hs2Rv2UnpUThTMjODKJIBQwj+tY5i8GovQNXMlyw61BFzo2n6FWKIzaUTGBILHr1ZiMqEHVqhrDEwMAqWUwOTQiU90AgDmSDpcLX0E0NlYS9r4oQvMoHA0Frlagp4joYBBmQ2BW1iWrDbWWiAW4BX2HCI7AkM4VQSK1aF2x2UwEVvLxnUVC3AkeB7Gww5jXCMNAHZ9hwEACay1FsC3kYhVjMxsrIGwMJ2CFyVIHBebo0xdRMs1kgcLAOybxgN4xtT7Q24KvFZNOArHkyuklIsHYhRFLnzm1ppj19ilKbg0s+AlSRQIaMmMgx/WowAE3yIuEHOeScXxTeHgO3mwLoDI0c5CIqKx1kmYmRkddAyOAyG7kom+RQcwsLsD4fhQCUKgIGsFIpIFFKwHoWIAICDBqm97kSgGlFJaaySzHjoRqzyOXp+V7149N2h2La8VP59nn+73ErRtqvOr2fuX5y+X0363PlRbSlMmc9xXbdMtz5ZZlhaTSRzFbdsikOn78/MzZtu33WF3KMqMWO8Oe0tUThaM3LR1miUMrKLYEiCzYWKmaTlBKXvdDdrQoIdBS6X6wRhDWpuUUUUxVZUVlJe5BYFSVk3dVu1uv3dBzCzLokhO59OLs9V2s1MqzjI1nc/jNGMEIkqyNCnyKdHDw1qQVYmq287uj4Ol3X5f181ytVwuzxg4K7NIqqGu0iRp63Yf78u8iCIVx1HX90WRRXFUTItDU4tYHKvq7n79t3/7W61EZ0lbsgib7bYsymEY1uv13e3ttJ6hEH2SbHf7rCz2h/2HDx8+fvnUW/P8xcvF+QosXH/80vbd0Hd117x78xYQP3361HVtliVI/Ne//RVpfdgevvJXFKjJvnn/ru+6h/U6ywsGLsri4ux8MZsfN/v82aUCEUWqOVbWaJsaZjjsqjhWeZ4ZY2OIp9N5rBQAJHlyd/fQtB0ipmk6aD10Q57lZK1AMZ1Oj1U1nUzm8wUBbXa7qqraqsmylKwlpkhFx8NhsVhMppPD4XA4Hl++ePHy5Qsm3m22yVIMrZYg4zialhNt7dCb6WISR3GaRBEgG3716lmZl2xJd31eZHmSbuvN4XicTIrzy/NIRVGeWkQS4vPt1z/+8Ye3377/9rtv375+A4YA7OpsmSaJ6fV2s2ELZGwUqel8SpqOh8PFxXmWpR8+fair+vWrFzoiEalyMU2SNFJZP3QPtw+Pm422Zhh0Pxit7fnZ8sXrF21Vt1UjAM/Pz4qiZCmOx2PdNkR8e3u3Oxy6rmnb9uLy4lfffx9HsR2GIs+KLDVaS8SmaeqqytJkNp3EUZQmqUAo8rSqW2dAojgRQNpQ37aAQkQQx1Fr28EStEM3aGWJR/Y9xCn8/oYnrQ+DD2A5q0Mi5CePxVNd9RYXL3c7sLPKzh4QgTbaFZQjy8a4Cv7GYTRmF5tAgehquWrjuhAE9YynP0L7bzil50Comwiei2ZXo1YIKTy97bZIYmYU6MyDIcPMZMjXhA0tRf1u6p7NAp9E2qHaofBOqqMmQtlAEUj0QN8wQEh4cUzAGNaCEeOwJ4/IOnWFhzzecCOKwC15SOTnQrhOG2TJpVMSkCskCCjHwoM+LgVjT6QxxuBB5RiaCrkw/mMcGD58ogQPUMpPg0QAFkBESIwkWCIIa7UUCk7PT0DefUcvNCU3g84WCqDTRX1UjhFd6T0BiKGXBUgpGYDJIrDvoIWO3rOO/yCyZNjVzyEC4wokW1dPySeGW2vcU/shGAlM9E3CPMBF31rMNSQPdQOMM9NjYJfYjt0PnkSJ2dVe9BTjGIwB65E0swBUQrIAAhBABIxjjQbPNkpiG6JpjlZx1t+7B2BdGgQ/+bI+5d6E0Fp4WQBYCMnos6wQWClFpLV2tIfwBZAQGAygQOO4GN/9QaAUUgISIrH1kUTLT9CCF8mwp4JOUV2XvCYcBQREUkilpGAisMiIQrgEevfiuZoCgU/zrwoCKOXqGwkADKV2HNQfCxmi1xfxKCzzHUndW0m+UCoKYmZLRAhSCEEQSq8DMVsHyAkYpRRCWCJDhMCuXoV35IQERAts7IBMaZIAgx40MqOx6At+c5ImGCWEwlqbxJkXGRFFCvfrh1s77OtNNi0WmbBG9rUQCtrGZEbnCDFS1bVDrznJjaEsL1DKQVuBIk0jKYQx8uJ8qaSIY2EtJ4lqDr0x0g46z+Lz8zMhZVVXbaNRyDzLGMCSQcZeGz30URsxMAGCkkpKErKua03cdf1hv3+r3oo4ifM8zRKVpW3dtrVWUbQ/Hhg5L/L6UOt+mJQLo40lmC+WZM2gbRbFlnh32K8fN9P5fDKbd4djmmQo1bu3F/tjneX5evt43O/LyWzoBzMMKMRqsejaTsTpZJUPTVsdjm3dxGlUt/r+fo0Ky+nEWLs6W3V62G42KPDTl69NU989PiRl+t2vv8sn008fPnRNvd08TmezNE/v1vfbx0cBeH6+vL2/j5Ok6/pB9wx82B/6tldxPF3MzTB0TXN9c6tN//nzJyD+3W9/++zq2WK+YLKL+VIIkWbpv/63//7H//jBZWUf9sfV2dlysbi8uOi7brGcWa1JmzhL9o+b2+vbi6vzi/OV7c12X4EAlDidlCpOhJASpRDCWhoGbayZTKbX19fDMLx580ZFsq7rru3jKM7zTCjVNG2R5qvl4vzy/MP/j6n/bJIsy5LEwHPOJY8bdffwiEhaXbTJYAazgACLmVn88SWfsCKLEcgCi56ema6uqiQR4cS4PXrJOfvhPvOsqGSSGWX+7LGrV1WP6g8/vL68fHj/yMIQeL1csXD0sT21hrQC0koR4+Vwfrh7d3e3yTI7dYOyxihSqJq6IoVhGpt1nTeF0oodE0mY3GbZuGG4ni6b9Uoi7877Zr3q+u5l//Ll+UtTNb/+7te/+v67Kq9ePr1cztfvPn6zXqzHqXfT4IaBFPpx8oNbrZdKfTifr5fL9XA8HA/nqq6/bur+2p9+OOd5tljU0UdQAMiX0wUJ68XCTcPDw31e5kPbV1WtEeu6MsaCxuPTkYy6v9sez6f+ejVKff2bv/n9b//w4eNXbpziNF3bawi+79rT/ljkeZkX4ziczsftZmMzHZwnUtaawKy1KYvchcCQuGXc73eb7daz3x/3uc20Jo0IcEv2vyEg+OXN+7YCpgSR9MYUSm/PtIgLJIULbiHAcpuUvW3RBRgwxOidD6nNOiSVgX/5mYICTIiRIDVuAvJNAwJE1GQA3nS3GRmk44a3WVYWRJJbuUD6b3Pu7iw4pLLm1PSQ5qxktn+/ETECN6ZGRG65QvNx3H7w7J1N70UUYvjFVgnzrC+IzCMnIOn8Uyq3SEc1b2KT4ffmXngDPDCjO7hpTrfN7dyxBUBEaUTppljNcEUwUUEINzPrLA28qQcJDSUxajbh/LLWCsBfy5V/PROcSql++Zbz2G/6N4yIc4zNrDTgzHjR/HtnDDqTFiF95EwAgNzCnPl2H97wQKpUjakSZC7sZJYYIscQeKYPb9ZlAMEQ00i5JFqH54Ethlk5BUSZS74RiEhrjaSQSKFCgjR6HSRxSEkMTd21oDDh0hQgE+frlL7TnK2Q4M98K+FfA6GZK029aolPmFVYfONeAUBkbtgSAYHIIU07/VW44ywZpkcr2bRxXvTnICPA+YoAYow+3d0J9nHk2dvC8/0ESMKYgiiJCFA0qjdhMR3wrBWLCAvNSHoul5XZboOC/PYw3fQ/AAGIkIzLEmNMQ1LJDye3I515s0TszbuqG+aXG2OYZjXSU8NvXDWApJYbkTmpWQAEFGp1w0vJuC9IqepNFCIiMcc3lhsB54ymdOJjhLcysFQjDwDEJLdNCFL0njRpEfTTum4Q4XA6ks2KwnrFnRtIW0Io89xgpvXiN19tv66r4eXLH//Lfy5K9e5uFadwHLqFeIPq6w93D1VmhadrJyGWRWmN9eOU57nSxo3TMI7MIamey+ZOGzUN09AP7eWiNGbWMGKUiIB+cghgMyNIPsZr2yml8yzrhiFG74/HEKWpy6au/OTaYfAxbldLILq0l7bvlotlVhSTd9fXPQOst2sA8tG7yWdZXjV1nufWWK20CKBCN4S+H84cEVFnWQ5waTvQOr2v7u/vTWZ95BBDkZfr1TovytV6RYTDNP3440/CvKqqVPKXZYW2ahi7w/4wukGTHabRncOlu9xtV89PX/bHw/PrLi/yh6/fbx8fjpcriZBWZPV3v/pVCHG1WuwPh37s7+/uj5eL804b/W/+7X+blcW1az//9DS58f7+7nzqX16fu2t3Ph+EebVs/v4f/v794yOIuGncrFfe26Efg4/r9fp4vRhjbV6MvdNGKUXjOLGPhc0kSLMoj7tD33XNojzsdhJiU1fBM2ksilwEv3x5un+4a6rF/tNxvVp5H4/H0zRNIQSbZXmRs7BzfpomZdUw+LbrmUUbU+R5bvPNam21+vjVx6Hv67LkGD3zt19/fbfe/tM//dOP+MN/93/5txLi1PaZtkap6+myWKwghKHtQeE49rvXfVFkRVWOPnRtfz0cl01dF5VECc5vtmvUxKBI6x9/+vF4OT+9PFtT/Lv/8D9VzbLKyqqstvcbQ5TpXJG6nC7Rx7v7Oze5sZ3GfLAPD9fQvrw8G2vX600U6d306fPzNPUxxtFNzjujdVGV3k3a6rqpizz/9NNEqIDBWlOVJcQoDNfLdX885FW5WK5YUKnLw8PD3d22aZrVchEmN/VD9K7vOhTRZGLkrutWy6XCIs+y9tpu1pvrdHaTM0bz5LUmIrI2W+bmcjyl9x4qNJlFDcfTzmZW32oH0rJ7G7ZKnDy8LcJwe6+lDp54G7yR214tcSMQU0yvCHOMPgaOMXCI0Yd4K1+UyMwhrW7JjExvDImARMa0iGPaIDOTSgp7shGkqZ95aZmhGgHdCAMW/1dqDzMzzglus2Qy92mnzazMCGaGP3j7njOpPk8b0c3a80aTvaUb31SL+ffPn0YkcpNg3py8iDhHzhC8tcAnayYkLgcJiWeVUeAmxs2r4tvKd2NrUCCmlrSZnPsrWSdN786G0vkdnw6RZbam4oxz+GYyffutkDLmAFIWjMgN+qFQ6oWaJ9dAUFCRUgoTmE3LmPwViSYiwHPO0c1xSrcompvQemuIEJjbqtK5So6MBD5iDDHEVI4eoo8st4G/wDHOUQVpdD9pfIA37P5m8hee5+wQACBCAnyEGOMcv6nUbCufke0NdMhNigxJ6yJgkb9KCYK3Wy7eXLzpJknZUjL77WciLxl0eF78Rd2UquSYn+HErOdEohveoBsnK291swntpIcxzLQLzZ2fOMMmhqTNpRY2ZFSpFY/kNj6FMjeeqrnPPSVKz0KVSAB+C4qcvcOznSYRXelJTs+LqBTZjL/k6wCoORsjufiEb6FPSALCMINwSWAMbrTO7ZbF21P+V39L+O/28hHEX1LT4e1v860s9KaWARAApe2DCAFInFu/iAUjMABFSYZtLTFtf25jZcwMDhEigNFWZ1og8jRaxdtS3a+3P2E8dlfle6LSC1hjMm1y9oXC4Xz9/Ofr/a+/WWxqd80eHzbLooqTf6iKVZYtV+u71RLdmFGsMlvebf3kjrvdNI4sohTleQYgzrngnPe+LXNr7TAMQ9e3bd80ZVYUI3fig/MBCPthGqepWiwpM7GVfuiLpiwXlXfBexeDd8xPu11/7ZAoy7LIAKSUzSYfpxCVtUJqmNy17wPz8Xhqr9dFXedZZowGIEJKL77z4dxdO1QIIGVZlJnN8pwv3TQ6ndm8zC/XS/c8GJsVddGN42q1BMTz8bhcLsX506ndbrchSnvp7+7WCLjfv16urS0ztnLYn5x3y9WyKsow+mXd9F33lz//+J/+6fn3f/eHZbO4dtfL8TQM7bu7d4vV8tPPP8NR+nG8Xoex//nr7z7aPO/bruu63g2fP325Xlsf49OXp7Y7Xy/nu7v7qqyqovjb3//+19//jUB8+vw5TOOiqpt6dT3/HEb/7v37+w8fUKtp8t9+9921vUQfhGNVFcFNQz/WdRmiD94tFs3YjUM/3N2t005qdO75+fMw9l3br5pl1w0hBGCoyrKq6/1+fz6fhn7Icqs11Yvqeu2c91rrzFBRVQR02h8Vwv3mvj2dq6pqL6frpY0c/ehB4Fff/Gq5Xlpjm6r+5uuvyqKMIRCSxFDVq7Dwl+u1KZuxGo3RmjSh6ic3ja7H0Wpb15WPru9HYyxLZIh/+ctfnA/v370nbT9++PDjXz5/ERWcr6piu9paa8dxGLqBHRdVDkFUjopw7Puh60BktVoyw6Vvy0VBSonHIi+C96+7XfThfrtN+wltjDB+8+3HxbJxborMbpqMsVmWG1Nc2rYoyujD/nTq2r4u6++//xX7eHh5zTK7qJsvT0c3jXcP96QohKBJLZar4LwITtPUth0LdN2AiErT5TyF3JdNqQCTPrBYL0xmLtf25fm1v17ff3iv0wb+trjf1v7bQvvLNm5eC2+qCCpJby94CwvmOPdZx+hjCCFVPoYYY4j+zcCTloC036Ib8QxvcIRBUpDG7J8RiQKSJnaVmnsJaa71Si89ApQoIZkqo8gbTyS34P95RAx+eRXiG9Z7+xjEX17Zb/LDHBYNfFsSbgTRPJ0j6aNmCgz/SjW8Efnpj9QMNYsNkvgz+WXdRIEIgCnEl5O8CMyzG2EGUnK7NH+lDCanN/6yHiQc+QuMmn8/vMHYWXybr9mN/Zo5poQYBGWOZk6b75SUeHMK/UKdMSii24xPio5M6+dc8CEzuEEQiDOHIZIq1kDSKhdn+1dCMzHGMEcYoHAU4bex8QSAbm20t1l0jm/VY3KTcVFE0lA9EKoUNwUAbwbtmyKZVJPkd07/d0xlomnOOOV+JxjHieMAAJJ5YABYEJMvnG5kRBphAxBmxF+m5GDuDUURufV0prU9nYTEz7GkOT4GAabbzTnfA/JG2s0abrLE/RJnI/PpndM902UHQMKEKmCGWyBxbv+Y9aY3LxeCovnunckRfIueZJC5NTR5zJP5N6bihxvslxvZJbftkMxIWRBukwkxPT7qFkMqAiq9X+I8Bii3rcjtk9+eE3y7d2d4Pj+pMwf9lt1423TAPFcgs6N5DlYQmVUgRJgNaIKCxKBEEIBiQt4a5i3eTGsxsxBhmJW+WGVWgeLrYML4+2/erXP1z3/54dj1oNU0xcKiclOemcfNovf55fXp5z+HbWWJIzu/+/JclPk393dt11e5VdPgh06VOYLkRdGdL8MwZplljj64PF9Vda36Qdf1MHRd2+7HsShL0jorcufi4XhSRFlZmDIbxvHaDQxcISIpZawBcp5jlBC5Hx1L9OdL2/cSY5blpM2170SAtFbGaGttpsZ+ImXKuhaOgJjZLC+Ksq6zzAzdgATAzBGc8/WiNpmdJh9i8AHIwGK1BIFr10/TeDhdQgikjbzC3cODzUyIzIGBY5HZ7/7V3xdFtn/d//lf/nQ4rTKjQgimzB/ut6fj6enpeRgGa3RdFoLw1fvHEPzp1HbjuH/d/6//8f/jvRNmhfT73/7uhx9/OJ2OVVkDYFlXwDxOPgo/Pb0+v+6i+NfXXVmU6+2mu7bb7fYPv/2dNSZ6/vD47mF7N/Sd91OVF0qroe+nwU8+AFLTrA7n0+VyXq6WWWbG3jo3FHlWVcXV+2kchr4z1r5793C5XIqqKPLSuUiKQvAco7Hmcg2K/OZu243d2E/1ot5sNy+vu6ws/ubd3eTd4Ibr9do0dVkVOed5nisyi2WjlDodD+wlMxrYns+ncRgza0P0itBoo1BvN+swOvbBKAWRtVJap5kKvLu/08ZMbrq/v/felXklkb3zNi/ImMAYkVSWWVSL9eKnnz79p3/6p5eXl2+//f7x/Xvnwml/qcqSAC/nS/BhVa+Pp7OEQEplZXa5Xolou91qo07Ho1K03Wz7fgIlgXlyQVdmdK5vO++nGCJEaNtutVpmFjmwKXSWLwnQjS6zlpRWxmhj8qISwpf9y3W/H924XKyW65UfxrEfhq6vs9KQyqxur+7HH39yblouFg8f7wnV+fQ69P16udwfjnf3Gz+4wMFkmXiumxo1RJYss/0wMHNwPrjJGM2i/AT65pCdX3mJ8U9M/21jKog0Z6TJvNIknSVhnBg4BPYheO8jRx9C9CGEW08lAJLiW91h2hADp+VDOLo55O5tBee5fGLeNt9CDgFQay3IhEopRUR4268iiiZFihBT03gKaU1zQDgz7skPDfO8scCth37e59JtCUupfLNRet7Mz/9LW/GbMDNrNImlnxeXX37vL3aX+Y+UEJ2Mr8loy7e9LMwEzpw28/bpb0veL4jsF1bixibM4TuAILcJfZkPB+aS0BnaCgPhbXWSm9PrBvj4JtUg3wJU0kKCt28mIKJQMSCQEiZM8iklXkq9hTzPq+EtLk8AOMxBMJFZYozztJ+E+faZe2YT0kkxRnMllkAUjmGui7idKkkp4YoU3g4Rb2mDsyHkZkCXCLeApQRWbtLXjXRMF3aGTrMXXIABiBExiX5vCcoICKCS+5jfYOVtNABn0zKKpIr4FFadrj8oSNniAnirykwr60yaveFuEeF5rjK54+Ct2AL45rVJ9w0lqkXN6Jzne3a+EOlG1ZSKNCQV1ieQJ7c4A5j3ObOJPgHg2wMnMx82P5A3gvB2WfGX+yxpgum8ARCKpMq2GRAxhvn8zQA13nzoM1JLtkKVhhqQbiWAtx93G6dIsJDh7fjgZnGbv4jcLPPz60bSZusXwReQGOc9F5HM2AgAk08dEQBU2q3Ibc9w+6ECAhCVAEsUYJjCoswlaN+e25enD8sq++79Xz4977o2BrZdrMuy1rhW/NVXD25TxP7SHfbv71ZKwnjtH1Zfl2WpnJvai7Y6V1RX+dgNcVQhsFL07vHxeD6z9/04huAkcrPcklYvL1/2++M96Yd3722W7w/70/W6WC3Yx+OX1+v1wgLGmpfdAUg1zWIczufT1Tm/WjVlUcQQmSW3HEIo62az2SCi90Fby5Hbvj99PgPzZrt2/XW12jTLFXPItGqvV4KKEKMLKdR1uWyI8HRuh2EAwrbrvv72a6V0CIFDdONUV3UI3sXY9YPE0PWDtdlms7Jaeefa9txd0dpsuV54N708n5B4tVpOTZMXxd12+9Nffjq+HnZfnt+9f7dab9fL5W9+8/1qswCl/9M//uMwdIumFsb/8//3f/z40w+Pj4/BRZPlk5/67vqXn388Xw/Oh2XTrOrFVx8+ToNbN+t/9z/8X9tLO1w7FfHh/cPXH7563b08bLfd+frx/UdA+PTzTx8+3rPCyPDp0+dr31XLZdcNT1+ebKbzLNsfDorg4d2Dd+6HH354uH/QRt/d3wGIsba9dC+vOwHe3m373QFE1pu11npR1xLBZObpy9PxcsrLAlC8+M1qk+UZET0/PWVZTgTMPs/NZr2J06QGkBAzq19frt65+/t7rdXxdO7abru5gyDH47EoMu/FuanrO0A0tTakhKUqS++9UZpEOIRPP752l8v9/YMy+nA9Pe1f79/dRwV//unnf/mXP07T9PXXX//hb/8WkYbu1Tn+/ld/A4g2ywhJWdN2HYegCLM8FxGjlVI6MhtjEIkZTtdLN/ZumAbSING7iUP0zmfW3D3e5cpoVItFkxL2p37oYwSUulmIyDAMr6dD1vdd33of9rvdcrVUhJroxz//qFC01XmVO++Px6MmCsFP/XAVWDaNm/z5eGzqerPZ9H0/DVOeGQBNqPLMMnOYgtEmhKAVIeDQtsiyXa/ev3tfNUstMbUaJkcvEACQSpvHN1shCKby6jCvVuxC4CjBhxBiiCEE9jFGn+aN03ouyYhMRJj8GwjzLO4clQsAxDzLHnLbvs0BJgmZ3CiX+U0YAgsjxrQ7nweqAInQKHWLlgZSSpOekVFgovk9nz5qtjWk7fZt6OrWjji/dAlJZnPwHNs4rx4zEQN4I45gpnzwNoCeyAuY0c+82twWSLwNUQPx7P4BBogcZU4vvOU34rwTBmC6GZrlTYBI1qK3Xzcx6Y3UQsQ3c9ANvsDb9FyihHCWq+SNIUorDc3RMCBJRbnhMACRKICCJAKiSCXhMy1OsyEpVYmm4vRE28TIItHzL7+EY4iJJmGGxL7Mdh3mNKd9+0cGwCjCqWdKBIBEBOfEg6RxxhmsCc5sxwxBbmvnDWHO8DHGNwz7y40wr8zxBoY4ARkVWZFGigTqxl0i3ZBjEqfkZt5HnJO+AQQVzTk+tx+VUEMiWnmGNkxIf2V+mu+cdBUSoyPJu/2LojU/B293mghg6gYjEgAFb18YKEUJEKIAUZpdJ+GU9INAcOvdSLj8LfH65pwBkITa5455mI+BbmhEhJRKe4KbQXuGg+zjfFfdyLP5sQJKanfChTerHBAiqnlYc4az8x09826JM7uZ0W405fyXlHQBb3ez/NVJmN3RM4RKEaWK3z6GATEV883/UQQB1Q0JzwWst71EBOEYnFGqyE1h86ltK8R6vVTTeHr+si2//WrdqOCr42HfDoS8qXRdmAWx5lBm5LxabNfffvUh9v2x6/rLeVkWVWbAT5XNUNE0jv046mSbQ/IxItEwDrv9QArWyxUpAxQAlbGWSOvMUvBCilG1w0TaHw7HcRwQcaFWfpyyPFOKrM3atgWEa9vHGDKb1YtaGX06nbQ2mc2jxMPh1A/darXq+/56vSLh8GUIwVdVWddV210P55MEBomr1WrZNN75aZxCCJJAvlJIFNldrn2Vl5H9OIyK1Hq7GobpcD4/Pt6TIu+dUkoZGsZh7PoYI0cp8iLPs77vI4ciy63NvI8CwRj97t2DAiyrvCiy0+F4uJzK9fLf/4d//7/8v/+XGBwBLBbNYXf4lz/9adksptG5Mez+9MPu8GysKopytVxvVqvf/uY37+7un59eDvvjerPKs+yl/XI47B4f7h/v3uWZ3a43dVHebzaX47mq68fH94CwWW0+fXk6Xc7buweT29P5PE4TAK9Xy7HvX5930+DGafz22285yvF0QiLvvHM+zy0SojK71wMpevfunVbm5ekFFQjwtb1eru35ern23f3DPSnVDe3Hrz78+JcfT6fTw+MDQ/TOHw+HIs/KJg88DX2/e95FDnmeFXmuNFVl+e7+oSqraXREmGVWIV7OlxDCZrtZr7aIUNdNPw4rhn7s3TT2Xf/05cvh5ZBlpc7s6MP23btJ4ufPn3784Yfr5fIf/t1/WK+31trg2JhMKSMMz7vXtmsXiwauF4VIWk3OuRDuN5vFsvGj2+92SRsVwnzIu3FUVvd9++XL+fHx4fHD/TiMVpnc2hgCx8ghAoEbB0QMIaDCruuGcfIxAELX9fcP9/00kFZt2xljjNEc3GK1jNE/f/msjdVaG6Uf3r1r2/bp6Xkap+VimVtjtW0v7el0AMSqLLPcFkWhjdm97ooyp5KsMqYoJ+eGbsis2d5vrS18iFpuNeksEW5vVo7MwiGGtFOPzCEE712IgQM7F5IkEW+By8w3awClfTCR0oRv7dzypnOwzKJDmtFIISvzawtEkpMRZyiTIMQvij5AWhFR5phaSdYIwugD3LCM1pq1KKWAVEI5b69gmfn79Na8MTqCAMkhISKScmFUSn/jJE6lTeFNR5h3l4xzD8ZcwJ6wUloF6NZBMRMDMKeZ3MzIom4sAoKoxFu91VQjvIlxaac95xrNchylPfC8GgLe1I8ZiwgLEOiE+5gYSSAqUOkMJ7CgbosywNtgGgncCswARJLoBzOR9UuiSmDHoABI5rxAltQ6wszxNn8V5mvNEqMAprTcOVeJZa4Nn+FJEkISZmaRCLcSdeHZqAQiCkDSNZohhZmlEUlVlG8uj1kNTDfhHBM5S5Ozn+Omf92QI0kUnlvvOSGVMEtCbBSGNHOujAJGRXRzv8904Qy2iDAFysyjVzcCIe0sYsI96QzeJg4RWeLc2vXLup2+HzELorAwx9mGjvPdTW+SLiKplCVFmGBh0i4lef1m4I+zBKiUiKQi+/khRyTEeINfb8WfImkfJLeQZE7RyTQzqDOYZpDA8Qawk24dmRlnIzO8MaOzes4stywpIpDb3GWSCIUl1ZvAm3g8c8+JAyUkjDy380Zg0ummn7W+2zfFWRjDXx63dPcq1IkBjfO2BCLElFwgMhsPQVBT6mwTFBJISQPporAl4hCM1VqZ1WJR5oVZr2XsY9fHcVw+3GkIKsj377cfH9c/f3nxLiyXTV1k592+WVS5zS6ue3h8F4b+tN9LjMf90ZA2VilDk3PXvnPeKa1ym3k3DpO7tt35cgYBF0OuLWp9bnutqaoXxti6WTgfT9d2CiGCuGksbWWKfHC+auqsrLZ3D0Pff/78srnbLpdGW9113f6wF8QGF0iqrhcsPPlpcu7L07M2dPdwrzL7sa4UqpenL33X/fzTz3/4/R/8GKbeffzqvTUaAEkriWF0Uz9MTV2v79e1j1072qw0NtvtD4izK+98unKUD+/fD8PQj+Nmsxr6qcgtilxOJ0UY/DQhr4oNSLRGP757+Pb7b3/+8cfn52c3jGVhm6a21hLhh2/W7icviK9PTxLDVx8+5EU5Tv37x8f22v7bf/tvXl9e/+m//J+fvvzZmuzbj7/67a9/vWhqBDTWKMBM06LO7lerH//4xxD9737zN3W1LIvy2l4yY5VSfTe0XedD0DpfN6vj6ax09vU333358mxGa2z27vFDbk3TFIuq4cjt5UxGk6Z5Fx+FQa7XLs1barDVovbBd+PggldKAcPu+TXGsFgtdaa0Nn3bMYcvX77sn5/P18thv393d1+YvMkL58LleBz7Ybd7vbbt5KaiKr768L4s6+P5sNmujbHRMQsrrZTSulQsvFwvHh4esrz03r+8PD/cPxRZVrocGH784Ycsz//t//jfOebLOLzu9rvL+XA4fP786ePH97///d+/f/91Zs0//eM/lVXdLFYgMPgpMp/P7fF4YeBl0ywWjVYEEh/z95755fXVapNXhQgWuthstnWzMrX98x//dDodQoxKm9U6D5MTYZaolemH/nQ5Pz6+y4pcZ3bou/P5PLipaeosy69dezgcnp6fx2nYrjZ1XSHLcrWoquK4G1GJsbK52wQfstzabOOdWy4XZV5IDBxD217TUnY+nvKiaJqFIuW8gx6QQBntnZuGAYCVyiAKxOj6UbddK5FDSpCdY2+FY+AYp+AkCjMnqSu9oNP6NvMgMDPWAOom/sybxbmqAuZVNsaImNrC06aPCOYeVpl1nBkFJDqIEIRlnjO7iWA4r4YgMpcSQqoAgLdXYRorFu8jkSYFRKSVApEZmSkCYEoptoQ0byFZKBVHzJr/PL57M0en1TnRBQDzd0yMQJwzD9P+kxhum9wkwMEbB3AL0UlkDAgyMQoJ3CgB/AVc3YAVgyjUcBtLnqWUeQ0CfGM4AGh26ySWCNM7XQBo/nEgEgEBZyUS0koMKUwvLRjJxwMAyEmqmsPxiDjObbYheJjdSxJidLeJvhD8HB2YprFkHmCfEdot6SCZXdLWXys9X+nbkpqElWS4gRsOlttmHN7MKvNql6iThJ+TTThlOMmNprlJh4C3ijUGvB1UInpkvqOQ1Nyg9nZ954slnoVQMAUNEEWa4cUsXM3r85xIJTc5C29/Ir4JZEnVRRFIE1cAlExTMxKYT0YiUfCXyrxkHEKYhV1OH5JMWpFBlNI+eCKdgKPWOI+a3eYY09kgTDnhcjszCJBKQmZ0OI8r3tRoEUz5iAig1W18cTb+p9oTwdsYJs9SEsAs26X9Q9oXJI0SZ6zInEgkYJlDjliYI2Aa1U9s3C1KAG6lsDCr7YgzqZXAtGDS2ecJ+beNQlp+53uQIAaPJCSCEQEpSEj8IYPAnIwwX+8YAqECROaotAIRIgKIyAAcNAGxAPtFnmfW+LEjBFSky8o5/+nnL5tN89Xyw3g6hcsRGItFiWMYTodSR1RVU+bt5cIhVMu6skVmbNu2h/MAIMwwOqe0Kks7uOn56aUq88P5tN8fgaVe1EXZVNWi7a/t/poXOQuFGMM0Ti4wkK1Km2WkFaMqqqYoC4kCCD7GsqrquvQhIlIJ+PD4DgG6rs2LMi+lKMq+7du2e/fhYRyG67WtmooUCUuzXJzPx/V61fctonz17VdVUXrvDvs9stTN4uHdu89fni7XtuBynNww+tVquViuumtnjF5mlpnbrh/d8Pz0nBcFAi2Xi81KLVfLIxwJMXr/9ccPRVlN42RIqar68OHDNIwhxrzI/Tg2y6WEeL60WW6ffvwJNCDGn3/6yWjz3bffVFV17a5ff/yaRJ2u+89Pn56fnn/9q+/+9vd///H9h8yasRti8BQDBt1U9cP9HUQYp+7rr7/+1//wb65te7keyyInpK7vh37IilIpdTju9+djXlQhxqGdTueLLYvNdkVI2ui+G66nk1J4vVzLqjBrKwLamBikakoXvJvC6XSqm/rb77/98vnzYX9aLKq8zFOswrlt0VAIfL0emUP0bugHo9/fb7alzauq2q63bhohdkapPkat6OtvPvb94Hyw2gBI1/ZjP0WW3OZ1UwPIbrevqjIvCqWIlBrHYbfbhcD7/V6YtTaEaHO7WW+Q9GJR/q//8T/ujvvnl+eub9nz4+P7zd320+dPr88v5+NZKbtYLTd3d0VWL1dLMgYQnl9eBu/G19ff/f43TVV/eX7q22umjHcucCiL0scoil5eX85/vgjIN99+t2jq4/7Ytudlvdhu1u8fH63Sry87RMyKwuZ5iP6f//mT9x4Qx2larpbM3A/9P/zDP5zOp4eHu8Lm4qMPTiEumspkWVGWfdcHkbbttNZVU9dNHSYfQiDE5XKZFdnldA7B5kWBiOfLhZmdd/7oUOFi0VhtiXDoneumh8cHFNY//fAJRBjiWy6gyM1iml4uHGTei82RxUpruQ1spE4hhFuPtyjhmMZ50sD57bUYb0udIKCaB03m6qM0pipzMbVKpUtzquttyZ4hxbzLmzWFJGQBv1HeCb8ERUgUSBHCHNRCCEZrBVopilE0EUpqXUgURgSYbTtCmKwnIiCQDDEJBvHbjFz6svI2w4JwQwtzGXwKgnsz0SRGAW9LM8w1VQwCMc6AA+aFCd8CGAUk9U8iCMe3EocbAkqDyDgLWnBj8G9Zx5K+uiICwjQTnhilZONNV4ITQyMiHBExVUAwxznomBkEInOMERg4RhEJzgOmaeaUxcMcOfgowBLnmSMRQHVTmWaZUgFHABAOCJRSeZRSiWSIMQpwZFao5ObaneUHmX0eM4xI+UJz4KEgqjlycGYeiCWJYuneEEkB2TelT2ZgiQCJ0aAbC/RmSZkB5VvKAQMTAJPgmxiXlLIbvBVBpdKsVLp2M5JPopjculASAotxnu9CUixMpObkRXwTIvlNcpojnwmI6KaksaTpvxm7iQgToMSIRFopnjkWuN1xcksXfEvFktstk0LS38zpCVxhyjxMPGLa36TKXPwlxHNGWCEikhIRgZhO/i/8KM3xDekpJqT0o9LeIo0FJvGMEEipWY+TBMuZBSGCMDgIIICERhmNdIs7eiNfYY5XmGFu2nAxzFMTCCCRGbROxisQVoi5MQzoYzBaIwn7CMyKkJLXERUzA83cs1IIIqjQDZNwSNMkp92+Lsvd8/O7u/X7j49amPt+aPvLRR0PJ45uXVd926F3oFSZZXH0P7/8OLnh8fGdNZpIM9C5H9rB7Q/XLNNKq7bvx7HPL9myqacQKqWzvKyboBAB8XW3c24qqjzJli749qWLws77KBCFSSnhiErZ3E7Bc4jn/akqKzdNz7tDZvPDcV83dbNuFKp2GDJjSanJuRDj+XwKPiqttNanw8E5n2mzXm/Wq/X93b1Sqq4rH/w4jYhIpJ5fdmQyhZjnBQBNk+valrRl4ePxePfu/nI6na6Xqqy2D3crjsbavCqePj1551d3KxA4ve41wuNXHzNjP/38U57n681iHMOXT5+HcSzK/MOHj/D44XI561xbiOfT6cvT83q7/vVvvh3H4dOnT2MYJMa/+dX3Wmcv+y//r//H//10Pv+bf/Vvfv/b39/f3yuQ3cvrcbeP0f/+d7/dbDbn87Uf+kt7+ff/7t9/ePzw9Pm57y/WmDqvvPeHwyHLsqqpIouPMcaASMM0ec+LTTN4//K61xrv7zen3UEj9l2XZ5nSdhi892OW2cDTMExNszq4AyAZk336+Us/dD6E86UNINfTmQmKuhzG8Ye//DA599vf/frhw1f3d/eZMRLFGq2NFQ7aKEQ4HU7jNBqbOReqsl7n+XKzvpwvRmco6J0zeTa0U6IktVECzAx933359CQISuvX512SXZqmPhyPZVPnZdENQ7NcHq+Xl5edztS333xz9+4ds0z9uNsd8jxf1ouyrDSa9JArY3Sm86ocuqFr2/3++Pnnz1bj+8fHKi/2r7vn5+fFctFex+fdS1ZkPoaqaaqmicxjP0yDu8a2KssvT89+mI7nE6B8fn4uq2oceu8DIhmtyqKoynKxXO5ed6fj4eHxsamr4Pww9rm1Vpv1/SJE6bouoY2u66uqKvJ86AYQ3mw2BNher8f96XI5W5NlefHHf/7jNI2b9TovCw6RkJhj8H4cBiTUmb4cT+31qq+XAZAZIwL9Ms8ELIJqNhZooZQClHL4E65gUPPKBoIp1PjmpiCBNF09vzEFZO58hvRuBmEAmj2XcrMsvulH819meuCXzeW8P77tKGXmNpiFaS4vn60UkVPKIc4jOiiKUERUDESJtxRAiLeEFUQgDCn8llRat9IyzomKgJvzAgEUpQMiACFUN8koSWEsydrAPKtZAML0drBJAuOYIpP4ttV+C8AFAIA4C0I3VwUKiiStgmfzzkwUwG1TfzthN00JiSB1tMX59MpcnDYH4oEIh2QuTgURc0drjGnuKgGmlAeZfFtRUrRg8qdzhMTSwHyxgRQmHgKTRx4g+CAsadxNmBVRspFwTJ8sAkREKcmGJTJHILit1ulUpUWa8KaN4A0AYqp5B4wAhESkZk+JAAjPzRh/BZ/ngJibmxaAEd+youLbv02fnf5I+CMRCTOfN5ui0o2JN5KK0l4BKFle3vISbxdE5usvCdDPWIcTAnjDiEl/QmSFCtNTk4jJFClIKWdIAc1R0TGGmdsDVEoDMnOE+TOE0211o7WSrS7daW/w6a/sRG9lVjckqRBJKaKEUmaBUWYmB+cAcUyXiVnJjawTmceybh5vSYwmAnAIpEk4OfgQAFKkJiDc+mDglg4AAMLAipAZECBySECNkIxSAoKKbvygulGfOM/fAcT0XhHItBGWwFFrBUyaECKARE1AINFHDQDAPAUkpRBD8EhKAGIIWmsGAhGlkAU0oVLaWH3t+tPpQACD96dL15QZA44CME24P1iFErluamP09XJxfjKmsHk5hRiBBh9b54K/iuD5cgWDx/bcnjqtxCpSWg2Ty6vSZLkgNotF33bX7rp/eQ0ctrQ1WUZaM9AwTt3YbTZrQdrt9i+7XVbm1tisyL1zwfu6albr1c8/fe4v1/VSEemu7b98ebHG9MNwOV3HcSrLoqwKpfR6s7lczibPpn4Yh8EurM3M/buHoR/yIq+bWmdZ3/eX47lr27vt3eV6aeqFzqwFdG23XG+VVt6Hbhyqusyy4tp2vZseFu8jx6wohqFHpL7tf+5/IkANWOZFbjNgCT4culOzXA5td3Rus90UeaWVJoNKa1LKD14Yvvn6q/O5RYG//fu/VYgvLy8f3n9or+1//F//n//853+2Ovvv//v//tsP35Ciw+tzbnMIUuVlXZUKVH/tM62LzXq1WDbVwk9+vVk2VQkATdO0XWuyjAWmyffjZPNcG3O9Xl0IOstgmhDETT6zZXvtvA+MoLXN8tLafJiGYRyHYSzLkkghESnabO+aup7GKXJsmupyuR4PB0102O2Hqc+zfLGol6vVtx+//vj4SISvX56V1svlu+h57MauayXGvCg0KR+9MiYvcjTKTQ4YFouFVWYcXaayfuytNkWeg4LgfbOuSalmszrs9vvDschLH8NiuVKKtLGH46n3rt6sTG6yIqvq+sPH9/+3//l/zk1mSP/Nd782xh5ejx8+fKwXy34aLn3XjeMwjgWWWW4zqzONpPD19WW1WFwurUKlM5PXtY+MmmxRFGW1KXJlNUcp86xa1FmeVXmZFflhdzgfTs2q3t7fT95d+wsyfPz64+V03q7XZVULSBAp8uy//vMfhbn59a+Zo1Zq0TRWq8PhIAxFVYTAZVlltsiyLPjg3LRaLKyx0zT5EJBwvVl7H7xz4zjleQFEiGQzI8DTME3j2LZtmqDSKpWFKogCs98RkUgh3BLwRWZ5CFEpTFgn6SZIkMZ+bq/QmUYWmEd1AJPqRDAbrDFN/rJIUklZ+JaVnzwLN0kBgVAlNukXsuO2ir21c950DRv8AAEAAElEQVS0htkNkeiaOY6EQVAYAaMQQnq1cmBhAaXQzMPGHCOlfT4LS0wvZaV1qnkmQsTkl2RFs7/65khCEkpz1MKJrrj1kCZOHdL00Y2uYoycXCmpTn0eJJ/7zBGAOVWzJ9WQ3/qIkt9nFgY5nWHS6qYqBpS3DGrkeXpOQJCFY4wzgIRExqW0QBaY02NmBg1gtvbEkKAUR2aMCRCJwGzIJAUIkSMHVkoBsCBIkNtVQZAUC4xam/mYQFBpAU6IBxGUUjEwzRvr+QQCAJAiEomSeByel/w0LojpHFMyr8+8W/LJzjhLz/RamoJOWg2npM60FM9HmFZ8vC3lON9tgoJCb340QEjZv8lEnIDljCrnrPO38cbZ9TbbgDAhDCFQN8oQEAA1CUd6w/KKROTmCfvrKbEZPyFoYhQBRTRP0SeQwPN1xjR+P8cqzZcYJUaJs5IowAwYE2bjlAsloGYLUsJC6WsJgFYzHmQmBUQKRYQjIChBYpinFN6yPTHlV/5yXDfomETlOZAHZA56IJWoRgIAsAQgyEB0q6e93YM3sxa8BVrKjGspcCREZogxRI5GGaUV0uwRTGNwacIi3SwAM+LWiIRAwsKRWNg7FEGr2EeOTAq1MbnWcXLRjySshBRprakfeyBCbTwHBVoAnOcQPGhUotBoBBj6qBRe+mHy4ZQpQ1QoBQKX512mVZNlatUcr23XddPo2n68e3e/rSvKzOTctXPp/roGHzxPPhzaqwX5+O5uvdnkNhMJCDhNTiQCYZ7n3/7quzzLtdLD2MfoOURjTa2rpmlSEmmITAqNMUAQJldXFSAMwZncIkcnUefZ5XJZl4Ub3fFyybRFQpub6/kiAC/Pr4f96z9st2Kyu/v7zfpu0dS71+fz8bIQzIpKacUMXT9MPkZEibg/nQlVCE4Rmcxs1htA+vHHn378/OndwztT5kabL09P/TAIcwght7n3k9FmUTdo7eV8vp7b1aZZrhaH/Tk9m01dLxdL792fP3+6v9sYbRaL5or0p3/5U5abu/X6fDzvv7w2Va0eqL2c//M//+d/+Zd/rqvq3/2P/9NXX398enrqrq0mpRdquWrKIsuMjS74yTeLJjNZXpWa9P78arRe1IsoYX/cd21f5mXkOExjP/T1oum7Ybc7ZGURAa+Xa1EVVWmqIhOObhitNZu7dV3Xp8NptVrMz4dSIch1f0CEui7rJieS02kfY1it6hDD05dPL19+tln23VfffPPVR2tzBPFu6vvudD6m7XBRlk8/P43jdH+/zcvCjU6QsjzzLozXnhTVVWVQG6XuPnyIQbI+q+oicrxer4A89J0L0Xk/TM7YvFktF0DL5eK0vyijCyovXbc7nX76+aeyrjer9Wa9zrSdhrFcb47Ho7Z2tV5Zbadp2u13++OxXDR5bl0//vSXH6qygBCnvm+q6u5uY4wSYaVUjIwIq7uNzmzfTzbPyZAbXNuOp3ObGV00dVnXp3O7/XB/t91GlufXV63Vx3fv66bCyBKiAnTeTcNkSf3+N79ZLhdGkWNuymq1XPhxJIBr17lpavshr4vMZqTQhzSFJUN/bduLNdrYLM8tIo7j9O7dw2w9IYocuq7brldFUQzDMPYDEqmyiEz6l0kQSWMRDAiYol8TeTLzB8keGVM4HkIiPAQJEJFnUwXN663M68MbJ/6LxRNgFuf5bY88v45vHPaN3L5x3PNrXiQNzsxeirmH/S1z+a8+GW5MfyJyQmSEFGghMdlgE3MjMQQkmfWstEoDAgARMiECp7liTA1b87I80wMMt2Q4AoHbzhVRABPx+HYgyDPfD/LXX+YXF0PkmAZwY4wyT0TNTmFFlFaEKTilVNLsJM5B1kQkwumAZ9luHsFLI1Tzbpo5JoNqwl4pGxsEaP5KlODU3E6edtK3k5FkC61IaTNMgzEaBCIDCmij5m22IIjQ3JSZms45xEBI2qjIjEiKSGJMp1EUKEUAxJCSKoUJIFnOU6rR7YImMksTEqqb1Dij5rRaQvILzQ4pnZgWFnXjERIAfVvzE/f1Nvo8q0ogSMklM+OaVJJOmLw3KQwIk4MJRW52oTk56A3CcOQIN7kLBABpNmehzKE3mJRdAAHCOeEhMUQpE0uiIIDSiqMgzCiZ57IaYGaV3GnMSittlIhobVmYASJjjMGHGOdngySmkIJfqDBBkYgESctLj0xIdzdzQNAiiESSSD8URcmZnG6rOZYTAedy2/mKzMg5pXMR4Q2CACKKUiii9A29JumQIyAxh1llB0DSwjFtEuaM+Lm5DCWyzTPQFAlI5d5HQzi5CYiASEDeSE0U4hhFfIJ6SAoQ2XsIXjhqBInRqiLLlffgJUJ0pVWsBFAvmjIz1to8K4sff/7SO0fGjM6TIudcDBGAFRofGXwwinSeB+edgFJ0naJRgqVyHB1LjLAsq4HhfLwUuUELh90BTV5UJXn2MfZBtMHD67Ft26IqikWzRer3h7paVGUVXJAIWWn9NPWdq+vaaL1aLbQyLDGyH/oeAMu6ELB9PyBCZnRdZUVeOO/bvlOklNKn0yWyoNZjOxFl7dDtDscp+qqo8rzMbbZaLJTB0+GiDTrniqoqq8pmeZZZYzNSZvSx2WyX62U39D///BkQVpv1wlgRBA1xipfrhZReLioBeHp9RYCX3WvguDuc8iwjo87H03F/1EbnuV1UTVEW3337kNt8bDsi1Y+j3zmtbZbno5vyLGeRH3/4KYWLnfZH0nS3WS8X9Wa1PJ1PdVUvm2YY+uD9y9PT//6P//swDf/6X/3r73/9fWHzw34fnFdId9v7Oiu0pv7SDu2wWDWZtYf9qZrK0UzOu8Wy4Ri9D+143e/2PgRtbNU0h9PZ5IXNi8Px4iRaAhdcZJ4mZ60J3mtNeZkJg/fBuWCyTNmsVBoBJuf77uy8884DIBEM4wgAxuhxGnevr9frebVa/OZXv/n4zdfROfYjAoxtcNNolAIAo7Qwk0YGPl3OLoYiz4dh7LousxkQLBaNIlVVtSLwzoPINAyn40EbMplZLJbDMEb20+QfP3y4nNt6uTwdz3/6849lWdw/vv/f/r//2+SncZoe7u/zIlvUdVmVx93h7m77+eefz6dLUzXbzV1EPh/P+92uHcd26H7/u99+/vLUlPlXHz64YSCi1XJR13WyQwhqY01RliIYAfphGJ2vmsIYczgc87wwVjPicr3anw5PX56qZjGNozJU5kVVV1qpMsuQySCyUJ3nVVUXVSXI0YXCWKN1e2kVcoi+H3o/hdV2pYj6tvcuFFVJip6+PE3TQIjWWmszTyQSQwgu+OBCvSiJsB9cksVJ4Wq5upJmCOM4dcOoCYWUkvTyJQRJ9AhSSvnVSTmAW0KNQkgD8okznw0rabA9+YHmykRAAOSUOCMoMfE1aYyakn6UqAOBuW46sQUztX6b6E77REr6EQDMEXOzIAE34yik+k2St9rwhMhuEy+gFBGSIlSYdncKIGWwzWYmFEgTwnMYzM2GA5LmWyQkDy4RJPP0rCwIC4eQcv44CvOcdjvXkidD69vqncxRM0hJv4M5lUzMm/dZf5x/tlaprVZG51CRUQYBgpuUIp5N68yR1dx7lg7irQ0KYM40kjSHhrN/dqbQZlFIIiERaFQUeGJhhaiQUGFkiZ4DMIEyytRFBZwYncCRkxDD864blFKpLT0Cez+7JWKK1SWKMSISA6AyIFGESBuFBMA+BBTWRAAQ02HfYBlh0nvmaaYkEkpykrAQEosgzTNfMAtHacwcAN/iGAFusGXmZX5BLTPkSUZpnJ1u6YvMHMdsySJkSNlUdHNN4ax2vXV9ABNQ8naRojQaCAw0m8uSzpesMQQgpBURBua08BMiKIgh8JwVSZBSk5JihhhigBS/EYNKjFqMSgsgcIwoTAjWUOAkPgZEhTAHSeONmYRkfE5cEQCIAAkiKCTkVJExF9SDMIAyKX30TZJNUl8y9d0U5hRgBbOFOQHiW+tIMsJFBiQiDMlOJiwxYvIDocJ5DBLTOyr5rYkQ2IGAIkVIwQf2UVslPiZIDJgegWSsRiDkORwz+dBicjJqRALJM7tdLuuqVgrzzMQY27G/XC9D167LfLu5+/j4Ic8y50I3jafcRu8Ce/ZTcJPzXpHSSqVXwjQ6r5S2FgEnAUsqyy0KtpN3fZ8bUorGlJSUmzGGsiiKqrl20+u+88CUaapyGp2T2DkfAUxmF8vl42r9eLcW76eu26xXhc3iNK1XC6XUYXcdtDaZzvMszwrgqJQapzEEp7VVZIZhvJ7a5XIBgt3lKiiH6/XStv04ZEUhiKf+om2WLcqnl53Vx7u7LQg+v7zeb7er5XJy4/27+6+/+ZqZQxxEYOzd50/PRZHZsnzZnw/HncnyoizO1yFyu2iaPC/yxapcrK7tdXc450XeNNVPP/+sc+PH+OMPP643m7/713/PIIfz8Xg9vfzzU2bsP/z9P7x7fAcAyqiyLoHZ+anrepMZI/ZyvhLS7uXl+++/M5l++fK03qyvx7M15v7ubrVsTJZ99fHjp0+f/9M//uPnp0/Xy+U3v/nNP/zd3xVVedjvCVFCeP/w7quvP3bnrr1crbGZwaIoOMSua8u6QEXs0E2BNF2u12HsESgGnvxUcLVarUDh68vOB7dYNMfjWQjXm03XDszifUA0Wpu+76dpAoGizGPwIDBOk3OeJShjFKkIfDxexrEnjdM0Xc6H/e71w+P777/77vtvv3OT++HlL5potW4UohuGu/WqaioGDI4f3t03y6nvhuPx3Hy1KEoVgq+aenLTcXdsFk1ZlihyPOyncfLBX8+tsRoVDN0weqdzq40uypyM+enzz6fj+Xq5/vY3v/vLzz/+6YcfMmuyLLv7emutPZ8vy6ap6rrrhsP+JCL1ogaNX16etTY2M9j3Whk/9Peb9TcP7+7W28Wift2/WqUFQOXZNE0OfFHm3jsX2HsvAMM42iJzbggc0SiV2XPX7/7xH7PMrO/vn19ep7779puvsyyL3rt2sMaslyuN+ipX5zwHz27yPoDCpqnyLHt+ebocjt77xWKbb7Jm3XTtWOaorXEhGG0mPRUqn4ap7/s8z5DwsDsprf3ojDFGmxgFAMu6mrznMRJhtahOx+Nxf/QSNBFIlBgiAAKLSp1ICEIQYmRAkAipVpAFQbRS3kdDWpHitNQJK6UxmVt8QIV0ixhLE1QsTKThZsSkOUAG5j0yCKWJDHyzbLxt1ROUmSeBZ4NCEr3kZmmdcwUhfTrOQ1VAChFIEwKhVkqRIgSliZSed+6JH4qRk40U5pThJAXORA1AiuizRIkREOGbgRM4Rh9iZM+RI0eWGOdpYkDUMHs6JcGQhCJB3vLhbvpUorZi8jyk5VjmjzAqRjc5F2MEJFIYKCpNEiIzhxCSBzltoBXe+gpuzVgIrJRGQG0Vc4SZjkMACIFBogLkmGCrGGtBUGeZ906iWEWkVWRBqyKwZ3Z+MmDSWsshMnP0kWMERlSkSKVGUhHR1hpliJAxIgoS+BiIFIBEZuciJijNqT4sxUIxKVLJcjqj6hkACQgz3HScBJ9JJbeqUmm4Os36RYmRI5ACQSRkuPmRJAG1Oc54dpT9lYuFkObMQQAFCAJEoEhxjDecfbsdkhCV2IxZnJzXXSRkjox8A4URIfl1SCQVuAki6uQgm29ZEQGlFCngEJ2PQJgSkdXsPyZrdIxBkgOdY/TCMXAIEYSjjyGM06BtFpkDR0QyxlhSSmOIAfHmnZpD3QUwmfFEaw0zkSOoknt6lvYQRSlKLKFKgD89XYLpUZ3PnZkn6ARBAFnSszPb4xAhuf3SNUKUECICGkoVHMlGJwqQtGbC5HMXZpQUJYBEAKxEWBFICGPXBe8hlgQobsqUiiBMIiECIhGBCKl5H4FJdZRIAuxCXWTrRf39x4/vtneBffDTNI3rRX7Q8uP5mFP+uGrulkWZZ6/7849fPrv2Eqaxm8IYwjQGJDDGiLJExhozTiHyVC/KRHNCj541RlHCLOKGMUSO7lBmpsiUMQaszuraX4fedQHBGJ0r1fe9mwZS0LZdmZu8UnmVF1mGxojzCqEqCzf0MXgObIx2bjoeD998+7VWtFg0iMAx+slVi7Is65Oc+ksvkVfrDRl1Ol9CHHyIruttWRlriNnm5cPj3f9xPvbXdqrL1bau8hIRtNU+0v39AyAySD95wSwKv57P/dNQL5o8L3ovfmj5dBmHKXK483x3b1RWBI6Xbjyez1ut5dqTMXlZglav++Pr4bi4W4/DBFoDqbyugUFZ8/z0IiCPD/cf378/Hff703GaJmuNMVYrHTn+5rd/s1mv3eQeHx+KInfTeDrukejbb75pu/7L509PL5//+M//dbPd/rv/8X/K63Ich+BdnmVNWa2qRqIQkNHaGqPyvGnq9tIqpbd39+vVJrO5H1/7buj6qzFaa0yuqSgSQowQnp6f94d9UZaIeDqdTJZ9+92vlsv15Xz2zsUYiSjPCxaZnOuGzmSZUWoa3TAMZZmBkM2t877tW+/d8biPPiwX9X/zr/6bZd08vLuPzhe5XTSNVbqwOcd4f7e9v78PMfTTFNiV1UIZi6gYoG6qcfLBqRiEiJbLhVLKOecnNwXHKA8P95v1phv63W53fXkxebZuymF0X55elpt1P7jn19fT5XI4X+pFVdRVWRTffvMVCbXXrizK9Xpb19V+d8irYrVa180qcmSEoipDdDHGwmY8xoeH9XK5XFQNYko08SazmDqaWILzfT94hhihamrsR1R4btvj8XxoL3meT9MkwNv15no6L5qyzHMRZB97d7XKCiqOnJUZ1ND3vQhHF1JJzjROICIsIUaldGZt2VR928cYi6J6edlleW6sWawWwfngOS9yFrGZzfJ8nMb7++04ub4bi7JYrhYpl06ERxcIaZomVKCAdKqaUEoDoGgUlJB8wQIxMS0MwoGIrCIiBQJMysfoY0wttyzCMSAIA+rUjxijVppTLbywIiW3RSSJR7e0juTYnF+WIqIQZh/27EGah37nCgNCjpFIzSYamSUSQlA4J8RAOmJERYRzuSUopRGEOYoX8HF2H7zpciIiEkMQgcghKU0ggDOtAgoxRHDeg5AQMUDgtyAk1pok5fkICydhBrSCmxcnoOAtEkUQKPIcGhSTTDbnzCgETPnFyamcVAoicj4yR6MRhYjAOR98MFohCyEqo9JXcd4jotHa2sy7gITzmQ8SXBBhJAwxJq9tCCFlElhjM2N9iN47Im20MlphsoUQKrpN8oiIROdnAYNDjMyoZm5P0TzP5cOklUYEz4EhuuiIqNCZVRpYjLXJxB1DkMhp5pmUBohABIQhcsosAJ7NIYmOM8ZIlJnsQQJARSrhbVKoUKNCAGCFqRErTVGr+QJLMvVoJEgoaKYpZlKJkFgYUYCSBTc5tYAYUvGqUiQiqJCFgZBFSGlgAQarjQvBGisMosTNYXoxxKhV0qoQSAbvNKI2FEOUICmxG0U0EaA4jmlj4MeJBYVjXVUcAwAIIwNzjEqR1hQiAXMIPkY2mjiyQijKoiiqfhiS2QJCDAAoVNgy8TtKqRT6IJEDBzIUJEoUIjKGkpEdAWGe5xJBiJGTDzuEICHhzmR3n3cvClXqPQEQlabZY0o/SIacmRtDAgWGk2IaIynFLEYrEJl8SHnU0+BVZkQohkgKCTQIh2mcxylD0NZwFAo+R9ouyhhi37cEOkRhFBGIIunOJ9TGmKQCak0AEMZJwEsEjYXF4Ibjar04HsbL61MI0fdtxnE6nWK/OX/hKcsIaFHa153E0WdklDWWeHawkVbGxBAskZc4doO1Gkjc0A9nT4goUREUxgwsOgPXD7vg/u4fflM11bl79gimKR/ebV9eD8fzMUxTnZv1dmNIx7E7v+42pe3Hriryosr7oQ1+1KS1Me2lWy6bybnrtf38+Zk5LlaNsDBCWS8E9DCFwQW0WSTTe/aM2uZlLTovlneb1Xq9f919+fRTVU398cV11yrP1031+HCX55n3/nh2Jstc9Jf92I1T1Sx65ml0vZcRqDteN1vbRxhG33WdMUYpc508Xbq2d+fDQZC/+va7RbNoz0dblqf2ejqf33/18Ye//Plf/vgn77yx9v2HD9989017brd3d9fTOXh/LYoXs/v804/j0C8WC+fcYX8syyLP8qIqTGazzDaL8nw8tl2Xklnb6+WHn3768vnzpTt//+13v//DH+7v7z59/tSeL1mWZ7kZGUgpAjy9HLbbrevHcZqcnjiKIlgtl9dr99zustwy8N3dlpn7oZumCT0oY8epH9x0PBystpmxn56+5Hm23m6990brwHzt2syYu/utVtT1Q9e27bUbd/vtZgWIkWPbDTGGsiz6ftBaDe3gJn93t/n44eP9duun3rnJRd7t+mmcitUSBRVSUy/GbjpfLz5Ebc1+f2CGPM/v7+/Ox0tm7Lt3DyGEw/FwGa7L1aLrr7vXvfdxvVme+otSSmWqWjYwgMmyoixO53aKPo/VFKbd6Xg4Hjfr9Rim3//d391tNn/5059++OGHGOJXX339/PL6/a++7/oeBLOsuLSX19ddnmWfPn0mwbIo1k2d+uevh32pzel0vOz3CFTUJQgMkzNZxgzO+aKqTZFP0V+HqR3HLrg2TDFKbK9llV3P3fnaDpfzqqn//ne/L4oqz7RGNEoddwdmMHleLmrP0Yegs0wg7vdHEb7bbperDQgqxCyz19O17a7lon55eqma2oVwPB6bRQMspGmcXI6qahofohqMMqbJc+dHBHF+spkpm8W1vXbHybvh9eUwDn3RVJrTdi3tsAXJUExBhXOqStBAxtgUuQuzGReYZeyHqiq1IYiCKJpASFDYOdHapOAcJSDAwbM2NrltY/Qi84BSama4OVUAbsbONMI8KyGQhssx6WxWmTReDorSmDGmkZe37BWY/wlBJMTAzCJuGhPdkvbxMYZECeAt7xkEOOW7ABDdYBgpRZjAiEQmVAAQWEIyJwB45wRQRKVZsLcxIRHxIdBchwQcI+IsDzELEXGaV5/t0KBQhxiR01KnFCkGkRh9YKUgpVAiYFEUyijnBxeDCGdaAXAIzDHmRWG0HocxGYc5BmssihIAFxyZeTY7mcaZWRORSkuO8jGSouAiamABROX8FGJgAhZWSrPI5AKLGGu0NggCEhWBQoUGRSXXMmhlVIlVUQFSkEgah34Yx8ENfZHniIgcrckUqUCqa1tFZLUxRrngXWAGUBpFOPiAiAhaG621BQRGiMwpkeWm7c2SU4wcJCrQiOhD5BhRUYCARMKpkkwiSIxAMAfw3EYTMXGGASJzQKTIDCyWFKISECEK7N8G0ZO0I8zKqJSaRERapyF8EJIpOGOU814RaGU0QCoE4Cg2M8FH54LEKFFiFGBRpLxEa5UCQcBx8hChLgvnPDArrVEEibTWSeryIWirOQYIyipT1lXw0Rrz7t2DMfZyvby+7plZgQLEwDF4DwDWGk3IUQiYgTOjBCAyKqMUkjKYHCdkklcZBdAHzzGm2TtSiAo5RhGOPshcQkIsgUARoVY6EXJKKS8cfBCKMTnpAZWi0blEO0bnFKIizVH5afIcCTC3mVZkDQ2jAxYiRcDBOwhBGU0oTKKQhX2mpMjs+/utd+6nobVGWQtjYIMYUqoBC7GLwxh90Jk2mAFAVmj2Qgjn4+GP3WW9bK7n5TAM0Yfu2p2Oh2pRa0Q/judhxLvVMMb9bjf0vbXGlI1oezpdwKTXC8bg+34kjSkdwwdG4OCCUmQLGybvQ1AoZZHXy2UYpvP5dDyPg5f9tROGc3sdIV5PR2vVN+8f14uGKJYmuxwOnSiriDn2Q6sYXAxd2wJzqh1w3iGSseZ4PGitr+3FWFPXdVVmzNz3vY8xMO+OJ9mfd/tXY03ZVNbqIqten1/+yz/95667VEXmnQOJv/ru683mLs9MdF5AEFXe5Md2uLRdN06LiDorTsdTUDoyK6PGwIOPYwBT1sn02gdun/fCUZNYY6KQi+Ii+8CXS3c8nJeL5R/+8HeXy7lZNavNKvgQfCzK4nW3a+ry/ceP0zC87naH08kq1XYdAk7TZI1hwxBlGvr1aqFID32vp+H9+/ftpXXe++B2r6+//cNvm3rBHP/8L/9yba9lUW7WK6P17mUHIk1d51keY7C5tXnWXrqszMZhAuzP55YEtCpERBtNREgwTtM0TJXRKOCGadFUq/Wq7XoQKfJCmDmGdhjay/V8Ome5LcrC5vbaXS/nC2n07A7nU5blIHI+nUBgt98vVgtTaCTKivLu8Q5QXncvKFEBLprmeu0B+Hy+bta6LApmiFF8iFlZaGvQWhYpbFGVVae76ELXda+vr7vDIcRASjHGwflmsWiH8XpumWOeZ2VVmbw4HA5O+GW/cyHuTud/+fOfR+9ciGQtMz89Pf/lzz80VVE3i6osfYiXS/vnv/ywvb9rmuZwPp+Ox7uHB+HYHU8PdxtDuqmbceiJyI/udNiP4+gml+f5YXfQWmujtcqN0sbkpGZGOaszF/35pRdNRVW8vLx2h/F0OCqOPE7Lql4sVopou9607fV4OLR9W9X1tRumEKNwP01j8ABQlFWILoJE4bKu/RS0zaSfto/3l/P12nWo6Xy+NMvFNE5IVNUVCGpjkMhmNsaQZ5lStFhWHMPz8zMpiH1sL9fJTxyl7ae+dQG0ZknaDgGiVipIBABtDRGiaAneGiMxcAguBGstRHFuEkZFpA0CcFXmBAAQJcbgXGkti3Rtq7VJOj0pBanKUpjQKEWzc5lxzoflt3zAOTDkbSgsvZfTvInWcxExzvEmKbEOE8M0i2gSWSIhcYgiEGcIJHPQzkzkA+IciXOL0Em4SziC1vNqx8BaKxRURMF7MiQEETiyhBTzKKi11qQQwHuPyMlwKkKMUUgIlULFs18HMXlMMOktiIiktIgoNXMTIQpzEKVDgl1RgFApbW1WFPliUSFpZgiRCcBkRhF47xE0IcYYVXLGImqjtFXRhxgjISDTNI3aqCzLomelABGNoWTriD4gKtQKFKJWMcYIBGiYQ4giIMooZdGQSq3CYRgVUmZ0kWVE6CY3Tt5qUIqcoAEGBSgREQtDOeaaKHgPAhyC8xOR1kqtqtxoDYBplpsIgChGESHIMhHxKUMqsoteGY0Qbw5xYZGoDAgIoyYdOUbPiAAkOI+Cz+6ZlJ1ESgkji6RecGEREhRANduoGSKzaKO9d6yURGCAuqyyoogcjLWIKCwGOfgAAs4HNzqjNSEG562xLIxRyjLTIn6a+u6SGaW1lhDzqhid98NojYkxWp0ZRcZkmrBvOw2QF4YISWAcPQpkNlPa6Cwbh8n7KCJVUyGpyTltdQgx10orVRVlP3bBud3htKwqDq4wJpGdHNkFJIgCEEOI3gNLZmyKDWUQBTINvTUaRCVo7FwwxrCwtRoEe+eN0il3Mbo4dL33Ls+LGP0wTFlWbrdba2yM3LcDC2pjSECB1xm54EPwKJIXhSB059YaS0QSwhQcARZZLsHnRldlmVvrvHdjXwCJRlI4ujH0o3O+XK+M0cG7qesJuMjsqinuFgsXQ3tuCbGfBvHe5lkYxmkYDFFZGoXIFLtrK8ZoY7330zA2dUEaT223371UVW2Nfv/44fvf/Y1zX4PgYbfvAl9Opx/3ewZ1uvadC2Aw6XGD83lmiry4ni/jNCVOsllUxmofvPfRWEtEKTALlUVrKMs9aF2aD3f3HqbLpQvWTtOwv1xMe15k5sNq869//Tfb1fKnH/9y2O2WTU4Su641JKbOyrIklNM4eue1NsaYp6eXvCg3m03kSET7151EIaRre71eu7ysvMTT9ZpXhdI6WxQQoet6omoahvZ4tdrky21Z5YChsOX2/qEoyihyHYbR+2FyfhhP1y4ijQyaxUTZt0PXt1VTY3J1ZBkwRJBumJz3y2XtvHv+8gVCWC8Xry+7sshXy2a7XDTNIsa4XW1ABIJsHzbvv/rQXtqX1+eiyP/p//xPBuE3v5vGcUKRrz58RJHd7jW39v37dymuS2lqr217vShSVV2SUufTeXfYg0hRFv/tf/dv379/3/d9DMFPU9MsFlX94d37aZxkPRcK2iydtGdmXq5WnoMg+sikyaA+nS/CPI395m6tNSlFyVw1jiOIZFm+3x2zInv/+BijsEB0YdkstdJdf23b9phZk5n9bjeMY7NcfPr8xCGslus8N+21t9Z8883XLHw9tafL+ecffvzxL//yt3/3t9Zqg/T9N98wQ7NacgwchYVChEt7VUSb+4eszIdpCl1XljkzRA6D6621gxsv7ZU03t3d2SLLC2vL4nK5Ds5FBf3odpdLWXZt137+9KmoyihSlGXb9+fTpazr3/3uvQA6N/7lh78YY//wt//D2LsYw2Kx7If+5fUVlbJlRcFvH+6FmYPc3d0tV40f3eTD5XSu61JIRBOj6MwyAhmV1xUhGZ1ZU7DAue2U9yo3PvjT9ezj9Pr6usXtdtt8+vNPmQZx/O7x/u//9g/I4XI8iJ/GvmvbdrFY2MzoTPVjT6ieX18AhBQ9Pj6iUYfjEVCWy1oIf3r+HFygnkIIq7vN9XwJMRZFTqi1UUaZNH+ntcq0oaLo+y6zRiScLxfvg9Z68sPQ90VdxRi//e23bT9010EbrUE4Tj5yjKRAK5MZBPTOGVTtqe2CQ+aqKjUo8GyMzpVBo2LkQpuh715ed3d3d1WdBQEydru9K4syBrl03fly9iG6EBmCJkVKsSAnVxIQESitBG+NnmlQ5ua/uf26zUoT3sbOBQBJkdVaKQIWF7xzPpk9hTl5qVPAYYomYY4SABCQeO5Cmr2tkQPzHHINREhzlgsysyB6x4TKAysAH0KMHGfyCa3VIMmPgigx6WqzLYJm7/U8zAL8FmXHzGlg2QePBEZbEghuHL1PA1kSwfuImpQCrZUAKKXywpZFppCC84hSV5kCTPqFIQwxuslFH422wU1oNClUKJ5DiN5anWdlmWeeIwjaMmNJQ2pzxLciDcjBO8VaaTX0IyJkuc1U7rwXEWUUkYCAFqUYAosClaE1aAyKsZYEEDUHHq6DH11WGM8RRAgwN9aP0zQORVVYY0PkEEPyYpMipRWBkshIRMZgRqQNR55csEQIxMIyBeEoMSqMgQMKKESRCEyaFASmWwqRCMTIlIz8JEiYaiaQWaEGxBQLJTjn+wIiKCFEEZVMZrrInXOkUBMphUqRn3j20qt5JlApLDJrtbLWMnNZVN7HTBGCidGHsc+MyppqmiajSKEUmVEq9XUpdN6QLqpyvdqsl6t+aK+nI0AIwRP0U9dZY+8fNqvNZhj9UU6Bo7VWa53ltqqr0TvgyWitkKZpHLuhvZy96y95UZa5UopIBTdx5ChsM6OMFhAFRIBaqXFwIboweWWVQiAQiUERuRBIYZxijOx7nsYRCRTbKTj2Ps1ylkZrEBfDOA0YuCWKno0x4+CSjwSEPXutNBAMk1MEGlEADEBuVJFl0eqx74WjRC/RV1Xx9ePD/f3dte0+f/oUYgSkGCEiBa1iDAjcVKXNln7syzyvihwFxqFX1qy2q67teRiQRaZJBZcTbFeLLNdhmoApI4rASmsfGZTEaSiqtcrtNfj79/eZyaYQn3Y70sr7eDhdpnEYuhaMEiEXhUl553t/osxydOl2MZryvM7z3OZWWyXIz887N02EuGwWUaAwhpCIIEROq2w87ExOzDyOg+s7gVhk2d1q+auvvvpqvWbv1OTWVSWKx+46DmNm1MPjfabs6XAEog/ffENIQ98jdkWRK638FITFZnlZ5NZkXX/yIWAIoJUq7am/jt1UL5vlsvGj7/sRdod60eRZPo0jKfj2+28A6enLF9O75XKxv3a7/Uk0DZPvRleuFu0YTsMOkEKMrBQDKcDBjcPged74cdsPbdflVmdFcXrdZdlY5tk4+WlykQWJjM5Op5NWtNkst+s1RsgzWxbF7vXlsH+9nM7OjY8fHzerTZZlwU9lURjS1mhm1KRym2mgy+UEJFrrh/uH3cuLGyfStFqurMqenp7v77cB6f7+YVHXzNBde+eGsihvyZXw+cvTub3GyIMby6op6yppvoAQYwSUwHI6n43WNrMZ2tPxHJkXixpQeeeKLH/8sB56dz5dQohzGlZkQnr8+P58PXngvC6cdwI8eqeMLspy0azKsqiq4nA8/Zf/8l9O56MizLJFUefv7u4lxqKsiixjlqEf8qLASMwRFV2uHWoqWXz0eVHkRTGOw+6wc5OzRSZKyChxbIwlUk/Pu/3xcDyd+8kJ8P71xMTWGGbJy8rHgERV3QQQbc3Du3f1ovn0+VOZV3fb+8xaEFqtVkRKZaabxsVqjcYoq0Y3LJpF3w4I8e5uM167cXLX0+nx8R2i5NaO3g3Bt12PRjXNoljW0csUuKqKhTK6rCLzdWzPl8vkJ1LYtW1e2E39/rtvvvLj+LDefv/1N998/Ko/n3dfvvhp+Jtffd8sl8/Pz5+/PNeLGhCtzUxhxnECEFSktR6nPrjIglEYSJGFvu1DdEtY3j1sEdEoU9eVc85Nvl7UIXJ3OEqMxmgiupyvNlPCMbe2a7tr2yqtxn48n68R4fVlfzr12g2TRrakBFX0MXLMC8uBo3MgsqnzOt8smoWy+nI6X68XApicn+KQ28wKgjLOUGZIiYTIhc1ybasiN9aazAzDtb92RVkyCQgKCxGQQUlzJwiK0vol89T1bA6CW/TIHN+CAAwEzEopjoyAGkiD3BoM2Hs/R/9HoZTqmn4WaFHAitnMHiQBYADmeX6bSPOt4pwI0mCR3KaafYyAIcbYlIUABo4sqJGUQq0NMI/DIIqQmRBslhEltcJzCixWipAU6uQbZYkMLCESqcyaNHMmgRWCBTTGALCbXAhRiSKyxqCA+MlNvRfnJkXTMPoQMmuKPNcM4ziFGIggOqeVXizKcXKJyWIRo0GhsVpZQ8K6IHSTB0IXvVKgiDhEEqnrXCl1vQRAKYz2CgVRk8qLymaxG8YQQ3QBhCVCFADmomyWdW2VAmFQrMzkfHRjVEAQ0WhjQLtxmtqhWdqirOqyKOo8ZR2eL9ex67QyudZWGdTAPkSALDNzGapAVeXW5lFgGPo4AYuAUkQUAJ0PAqCBlDUadYrrQQQg8OIDQhQ2mYkiImA1RBYCJNQiMuf7qCR/wRxBiRI5JFOQMUYTReeccx4JtObgvcKUThQj+xDA+aIodaaNUUPnMMOMiANrkq4fDUpp82+/+zoy715edrtn37eL1WbZNMJ4uVza48UiUFG69nR6eQlhMpmFyBAlz21T54W1GkkrzKzGIAQytF1wTms1TJOIoJjRO2EOzmmgyNJ3F02sSI/DtFhuUCP7KKKIBJA0KRGZ3CgUNaDKs7wq/JTq2gJzIBYUnsaBiMZxdH5CAV1VGQEqMrkO0btpiE4h+1LrosgMQOdGIiwy5VyIfnKTY4i2LIs80yBVVWhlnXdkNTNmiHlT+zwD5uvpHCTkhnKjFEBwY/TRjc5zjFGqZmWsTrk/Pk7sYwxORhYJx/2x7/qyXLAyKTodhPtTWxZ2s91+/f5jXZfX49G53mY6q6rXl+PT83NB2lrz4f6xrLJPiNdTa98VLPHleX9pu74fx7EjIjeMNs/IaNQaNEzRD8OEgwJBRXGQqBVWRZlnGSq4HI4icbqc2MfIiDbLtJlGr3Kj0CiRGPlyPqFGnEQBZ7lWuSZH7x42X9/dl9q8fHnKlBRWBVaXof3mq48MUGUlRH04n4KLhDpG0VaVVY2olqtFe22HyRFCURXL5ZJIKWNNd22naXDDGN0f//yX9nzdPtwtFwurLDIAkM2sCPbOuzit+6nthnZ0udLD8fpybj1ADHFkiEpfuilEHic/DC4rirt322ZRj8O1OxxTb0nbtiFG73xV5wxMilZ3y0VZvn/3/sO7Rw4ThGBUPl76fnLntv3+u+/aazv0/eG479puGLqmLrvL6XI+/P3f/2G9WhNCkeWrDwuBOHS9MmaxaBZ1015bPxV1U6XcFaX0druJMWYm272+Znk2DmPfDUpTYfOqqT/vfnbOicB6vdQI3bV93b2WVem9H4YRlaqawgX38vJUlXVe5rnNInsU9N4pTX03dNe2auqmaVLNtg/hvDuGECF6rdR+/+KmAMybu7WbpqdPX/q2XSyaPC++/dW3q8UShD798ONmu1ksmz/91z8Zq7766uPD/f1XHz9utuvNZkUMRGAyi6QUgjCez5dlvQKirCiGfnp53jf9SAR37+6HrgdEHzxpen3dlVUFBJObzpdzP47XvjucL9euE1JAYOpimMZuco/v3pVFyTGUdV1WpcpsOw4ifDgcpn54t3m4W65j8OLi9nHNAv/4n//z56enZtVsN3cxxPu7h8m5cRqmYboez199eJ/ZbN0s3j0+nk/HruvOl4vNbSDMjCWjx9G50RV1rYtcpkAhdOPU9qMitaiaaRh/8/33y2X94d277Wb79NNP7x8ePzy8I4Zl3YSm1wq3yw0A+nEsMuMnt98f7x7um2ahsM3znBCcm7puGNoBEcuqBGYE2WxXSlFdN8ltUlcVAE7jlBy03gXnvEKcxinGSIghxLLMh2G8ni+RmRS2XTv2w6XtjDHvP9zrQiCMbrlZrbfL4/5yadtchEG0pUybZd188+GrzXrZ9t0zopFwvlzBT7k2q7qA6LeLxW9+/R0Reuf7vhWBw373808/VVUJpKbOEYEG8SGKMKVJ3+RuJeYoElPR1WxNTUQMgEBqDUOUuU4jhZ0BcARmFvYcOBDR3GWhUASYY+QoinTCOHMVPaAoCCFynBklTYhaM0cizTEKokSZ4UqqklAQGdjPUchaKWuMsBitgzAq1bfDMI7WKIhhHKNIrKoizwoiHMbBucAAmKQm0iCScmxjCJq0VnMMXpql4hirMt+uV5k1wfluaJ13SBqJlDZIOIHE4IMbSRMKQ/AuBnShqLPovPd+uVmoFFTEXJc5EUxuctOoRMqyCD6MbafIZmWuEGMUCKIzlReZJiRSq9VCk9KYstTUoqlsnsUIqHWMoI1VoIIge8/ReRfyLCvyrGrqTCk/TZMb/Rgm74h0VuQ+BGZUGkSkKPKyKLd3m9V2iYRfXr5cztfoght9sS6zoqwXTZblxl4DB0Ec3ESUYiyjBMcceRo1YggBQEiBJgnCo3dCookAyJqMENJ1w4DGUkyx3inLjwVZUCLOFfcozDevvIgIsITok6fLKNJCHCP7WBtjlY4+ZESKWQSiC9M4ee9j8HGcbGZVWYAP/jLlWTb2vUcJo6+qAoJ/WC9tXkhwu5cvCDi2bVYUIshuGrsrsj9KOCs8HY+IYqwBVBK5LnIj2J2OY9+hojBMwXsXo/dRV5XKC/K+LCttdOcmjmyNKpvaT/nleuQYFeoiK7LM2tzqoQ8xKBagiCFI5DAMinRVVjFwTqgVOmEgdCwA3o/OgPjJZcQgkYNkKHlmUaAoshj0hKSV1kpfz60CfNhu2ix3zitjJxrHaRrcpDVmRhmlqtqulgskOp/P4zSxi0HiGKYiy21usk3jQ04Cu6en3fPzMI1955wLbvI6MxojSBQ/+DC24gChO7XIUtdliLG99OMYWBmbF8Yo7/04tOBoWxWaXZPXzePyj//8MnYeTvvLuS+N/frDh9V2pTTtD7vX/X6/O20vl6Ko2qG/XHoGIJMTEmjoxhBHj4qKukBFiDx1gyJEDZP3CKhijH3HEs6ni3NTVpiiLLSxllArEgXsnIjYuowATZm7MPlx8uwLUyuJWZV/fHy432xXRTUeT4XNq7J8et0rpbK83GzvCOTL50/n02mzXLth3O8Pq9WyLCsX4rXtkMhmmc1snuWTC8wuq8rQ8ZfnZyb0HAL7SDJ6X8Sgra2rqtkuBeh0PT/tXpvl6k8/fYmCtjB9N00utINjBtSki8ISng4Xo7XWGsEp0nVVG6V351aEl4vF5F0erADalWZ243XIrWmaOkNV5rbIFJusO7p+HJpVzeJjDK/Pz8vNQmKsi1JCeHy4f7y/+/X33z3c3z++ezeNw/GwL2ym6yZ1JpVFXlUlx5hZo5QKIY7T0LatCC/Xy+ulm8ZptVxt7jZt23rvh3G8dO3gprws69Wy7/rR+9CPzo1FXWuj69UyOH++Xr98/rJ9uM/LwmamWTZh8u25B4DlqjZaDTA0i6osCjc657zz0zhO17Yfx8nmhc1zN/p+mu7u7wV593qIMeTW5rndbrd1XV6u1/3z/uX5BZCaqqnrerVqMpMvlovNZtN1V6NVmefJFt231+Pp1HdDWZT1Yp3nZXe9aGu+ff83bmzPp9OXz0/M3CwbY2w/DT6GrhvJ2qwqPOM4DNd+QG1EadL27t0dkR66fpx6q21us2ZRny+X0/FU1MWH9x+Ox1NwbrveWGunfpzG8X6zHfr+j3/8459/+Dkiru82d/d3Ly+vl+v1dDi7acwoQwBb5nleLusqCorSjqOPopjyptHKeMZhcAgEkx/3h9zmz4fd8+t+8pMyRglpweVqXebZsqpXVW3efwTmy+m4qhtkrqtqs15K5P3hdRp9jHG52dRN3dQLQSyLQimltYrDkAJcijxfL1d5ZhGpqWutlXO+vV5IKUBgH4o8R8JpmEiTzfTYDczxejpn1hil3eSCC8aY3Ohr119OV21M1dSL5aKoSv1xs7BqZTOzXa+t58qiCHd9rzncrxeZxf70dH36wWY2B2wy7RRW98v1ehsiHw8Hi7xuKmaZiDj68+lyOZ9P5/Nxr4zNSGtjzdhNpBQZJECJabiLea68iHOgHc49CSkjBTXOrWQpnUUEMIUlI8qMS4Q5JrUrxoyQASNwAIYYgAVYlFXIEGJgYYmAAME7RFJGCfgUVcLeJ/0ruIjWICKDKNKKyBpNCiIHQgrBp5BAQrJoyVonbho8SAQOJJiRtUq74L13EGIawuIQGT0pbRQKAinUqUUiNYuI+BgMYlPW69WiqSuj1WG/DxyMtT6GGIWIXOm8mzjGZMjoWKIERIk+GmWKvLzf3E2TPx0Pp8O+rMqiyDRI4KgQC2tQ2851LDFOLjgvSuVlBkAcBYCqvFgvlpMbs9zC5MdhsllmlBWJp+t1cgEU6Uwro63SjkVElNVoyUU3TsEN4zgM/TS4GGyWM0FA7txAXmIIi7wibVxIkiJEBqX0+w/v97tjnlUhMlmrswx1HyZPRMro4L33kxsmCVFYFOn1YjUMvZucxJgpozSRoFaZVUahhhCVoirPWYLR0HWt1irleke+IUyOIEBKawWCmOz+aQCehRWQCKMgxSi+JwATwzfvH/O8eHl+TgGLnv3Y94WmusrHHsPkFQMRGZFkMnPtBUQUqdKUl8P185/+TFqTwbooQwyH3U4Ayzz3zpVFVmRZpnSWGbvdnM/Hoe1ccHleAohiRoTYtVVVa4MOFCiKROtVs95sE2V1Pp9J6bbvAcKiKWxdi2sFoa6bpl6IwOQdDAMKR+9IUWTQinIQjUBhcsPkvCIEiwgA1irHNKDkeYaFJaIpyxHg/uGOSCmlqjpHCcogRDi8HlRwy/Xqw4f3kwsxyvF4OV8QI0NZKkNaKdcNoOjoQvQx5SJYrYnZ916x+EF8cMJcFJkP4XxqI8eyapI64f3QnnbaaosMBo3yIbACLyxhGkWgsFZb40GN4zhNMYz9NA2AGP00De3Y6ZfnL09ffiatIhOCev/+YVkvukvf9VeBmBVFtQjM2I9+mILKs7zIopcYGGMayAw+BgoOgDgGiV6ByRBtZoBBA2vhqihXRbbf7UBgXVfbuzsfowDFqmj7QVvt/dQeLhy9RXr/sG2agtlrjSSQK8y0UoYev/tgif74n/+rc/7SXz8/vYj8cb2svXOZzcu8JsRxdMMwGZv1Y//jzz9++823QnjpuihyPV+6vnv3/sPhdD4eDtVq4WN8/PgBkDKTrVbLGEUiOwEU9ookz6TMrp7dxMPpGgC2d/dehQixzHKB6Mcpt1lwLkxTXRVVU8UQ27Gf+lGCD37KFJmmVIrC5BDM9797XDU1xlhmlgiG61kpPfk+M/rbr775r31/fH0tmnLVNIQUJRTZXf3/p+k/l6xbssNcL72bdpkyn9u2u9EAQYKUIqTQCd3/DylI8YAggEYDvff+bFUtN116px/V5yJW5FyZY7xP0979/vdGayFZKTlaQwCiFJ+vp+DCw8NjN/Qppm1elZLee2ttSD7nwjmnhDl3GWX/3Yfvcq1/+Y9fbpfru+/etX3/KnUjgpkUyzQjCCFG6+2mpMo5hxSc1l3bMEKVkqCUFHyMPiVPKS05bVZzzrx3MQQlBVXCXbReNGeM9yzmst5mxAlnBAKwbSaXdHc8Agi8MzkGY8F////8fxHA+7vdftxJzod3jV43SknXNvM0Xy/n/cNOKlkhTLWEnJjgjDMEyWtuNXhbQaYUgSJKgWYzFVbrPGHEp0gZxZQ4G0XTORf0Zmdjj3f3ar8/XS5PL6eh3333/Q8UwV9//Us39LtxeLU5SipD00XnGinfv3sfY9rgAkFdl8Vbfzvf3r59EG2zLJv37na7IgBqhT//9HNO6eOvH//n//zHH95///zyrcbcjSOl4s2HnQv2fLp2Q9/sOoTJuqyTtpvWr8ajajtzcV4bhtGu3SnO7o6H7PPXXz81SuYQEBeBMJBy1zXj0McQpZCdjK8LQrth3w2ddz5gzDiHsHLKayqpifd3D5zyVijGCcFk2Zbg7OuoQ3AOQdSNnd7Mss0Y43lanTbD2GOE5+uilMQe1VoIpT54vWptbNtRIqRzMfiF/PjmQXEKAGy6FkYndCmloOhSrIohzqhdtnW5gQoQpojSvlFUMoYQBbA2nVn1l18/UU61s9umjTE5VcF58CmnJDnHABEGX//mvq4fp5pfi60FFEhQBQjA/2uEGQAICvzrvc1rDgTB+rokn/FrT6dChBB+vWQAr2H+CmFlBGcEY4Q5v4b1IHnFQCuIOdecEEYF1JLjX4eYa021xBgRxIIxzulrEDLmgmrFGCUIcyogF4hrDjmGEH3s+mHYN5ztNq31tq3rWkNhnCnBSC3amOI8xTXGlEoG4HXMOaUEUyq1JJ8rp0xwRhACDBJUgwvJu+Wa5ssZomq0QQiptiOcor8e2kwJsUxThZUICqqqoEoho08FVCkUwxKy1zWoGIPlFCOEGKaC0o5xQhgH2FqfK4wAEIyVbAooOSdUyWG/O+73L08v0cWY82o0S8WE5FPYrK8QUsZABCBlQhkTDFNABI0wL2Z1xrrNvRoWiDFAMKUMyQIhqjkTnADC22Yv19vpchr2fcghAxidJ5gMfcOVhABcL5eX55OPHiIECay1eGNi9KAAmGHXDIIyQZAlxgePGaWv1RfCECSCS4oJgbBtJMI1JIdAMsYooVKuGZBKa0UIQBBjBggQ8kqG1VIKes09UwhqKTEAmJ0xjGJYqwv50DWSS3vFPoYKgDOmWEMEQwVwCKUQBCKcq+DUg4RrobVCBJVkLZf8QE7Pz9po0TfRJx99iL6kgkCljPVKMcwJxkJwjGHwkjPuve+7LofcMso5c9aNjfirK1fAtmmFAEmRcXY6Xa/Pz4wRr+dlurnp2nXKx/z2/TspWr2uuRTrPUiRUYwAgKXUlGGuwMeKY42MldoqDgFIOXNBmRTOEIMx54RRklKKlEgh2q5Zps0si5sLgrUfWgxx8Y5j7Bbz7+u/AYj6cYzRpRxfL2OFEIwxyBjHuKQCC7y7OxJKUk7or2GLvK2L3XQtRQne9S1BNKXAuaqgTrcYtKOSDko6VlKOtcRtWf3qJW9oRTFGTplsRITwdptqKY1kvbqjBUgltNYx6uvlgik53N07Fz9/+rasfwYQIYIyqPcPd1K1APICUakIhAQR8C5q7UosKSUAASIIQFRSxbhgBCWnLVdj243DQDFFANRYlOAQFw7hMi8NZ4e+Dyn6kDAjghFMyTRNN6eDt999/93/67/9N8pQyn57/b04++XTx68Q7MddK+RlWUuKbT/Yy+XTb7+F+/uff/dzSeVyO3POuRJN01rnl00TIRClKQZtbEy5FiDaNoPqvT/eH0NOgpAffv5p3I+n54sxtrJ6erlcphkjvHmTIfLTTBB3JsRSVddDxkkpFIGSc861lMooqbE2krdNp7rOxjBdbwCUGMJ0uyopS42oVAzh3XH/4eGhUyp657fNaK24vDse3j7eGWu8t7fb6eX5W6d+fLi/h6V8+fq1UfLN3THnPN8uZqWE1Ie7+3fHN9qsIOYcEiF4W1ZKKKH0cr6dXk7jfhRC5pprAefzpR86pZrfPn6CtaYYfIzn07UC1PWdDf75fKaUlJx2ux3n7HK5bVqrXAjFu3HHGE0+csqc894HQnDbdRii4BPGWCnJGXPOxhCElFZbjNEwdNOyeOeJoETQEMvL85kw9Dd/+/sUw//6x/+1rvMyL2/ev2WMCS7/5m/+hmNxd3fUyxJpdNa9PJ0xxm3fAQCvlxuoMMSAEdzt98FnQmiFJEOUILqt19UHjklFaHc85pKnZXLWAwRb2TDVvFznAqOx5ny5McW73RgL2AHkneOUG22O+/3f/s1/kpIbrQUXpcnBe7Ntp6eXYdgNXZ9iTS4SghmiXIjvfvixGVqAcUxfL+crpVRv+vHhrWq6dZrP15tgctbaWF1ScqDux53AJFe8bK47HAFkPsbTbQ4hlFpTzUM/SKG4EP/6T/88PBz+7//tv9ptC94avRIEGaYRFVgBIzTlcno5rdPSdR1GqOv7DPI0LX/69i+Q4KHvHx8fzabXdVGN5IyiCvS6zfEaQxyHoevb4FwOiTFaYQ0haK2bVul1XaYZIphzZYJaYyVlTatqrTEmbcy6roTSCuD+7qBkY2LcloUxQg6CjmPnUzyfvrGSe0YRxUrS6KJULIZQsxeClYKsCwhCADEDpOTcNqpvu9vlZqzzWs9mszEghJu2hRBZ63BFY9cx9jpDBkFFiCAAasypwOKCjylBQirAFYICYU415gRBKbnWUtFr4acUWCEhGEKcYoQV5pIQpoy+PqUBgAAoJacEEVCMuQILRAhiCKGgAiIYfHUmQAAoxJSR15xdSa9L+TVDTDDp2kbKBhMSYtJGAwis8wgBgSHEnFLCMF62JdZ66Nv90JWKgo+Z8SRT9h7DgkuMziSzUAgRxRwRF3KthQtIGEGI+JBqpbUCDJGSEpaqtcUY7saWUeydnm9zRSDElGJpGs8bUQHEBKcYc4olpUY1u8MoFIgugYK88z4EJYeS0WtEdTfsKEeCEoppxbhvWiZJdLFXHNXqYkIN64cxY7zqNYbQtU1K8eHx8Pjurv5PdJnmaTXahaTN69hN2zTgtSIIK5U4R2I3V0usoaBaE0gJFZAhZpx10nlX0+vMcK0pUQggAAXmCLNfFpMcxCjEUFxCBUrKMEAh6/PttmwaQhicB7gyzlwIEJRGqexAiHlZVyUYIbAUXHJeN+NCqAhJ1ZacKWOtFKF6AXByHqTYc15KYQQDRIy1jDHCWUg55QQAAgBwxlNMCGMEQA4BwUwo9CE2Q/twd+es3abZzJfh/rFllGHgfGAQSoqTD7kmLgSnZH/YoVK7RtUcz9erOuyE4AhjKSXbj7eJ3qbb5z+9SKlE2yjZ1FIZo5QQhBBAZVpmbYmgrJQ4jkOn3iCIzGJArjBkVoqoOcbICIcU++DdNU7fngoA87b5FIXkJcWS03qb7bIw1Q5N16r29O3JGU0pQRAqyXfjTgpRUkQArtNEMMglUUoP+713LoTEJZNKWUYsIxUU7xyoqW1l3w8AYaSEX28pRoJB5li1/a7vQijLppd1yQAsRtsQIcKYE1BIgbhAVEtNPlptai1y7EiETjulOEYouMgoe/PmsW9bxrkxhpJMEAzOlhw5Qo93u7fv37RSbc5UkI2xrEL10AnexRjmaY4p0hKtdX6dOKei7xkiQbvNalOq1poQ1I8DE13FZdjXed7WZRWtDCHcpkW1DSEi5GydLblCAKKP2UeEyOuTPKyIccYYfl2cwIAQCCnCDGEhKCMEFmD1tt3WnBOjKAX39PVLP/Q1l9t8oYyX6BtKD0NTA/nh/jggvOuHitKvZm3a5uM0Xa83LtXxePc//s9/vL+/E7ITXPzU7nrRj7teKqm3dbqtbVNEw2Py8zIVUFOOn758Joxep4lz0TQNSPV0PtcKGBVCQaEUJzS7QCGsKUGKc84VloJQKlXtGgRp0DGHNIy7dr8zIcRcMADR++Tduzf3BKBLCN5YA5aUEmIYlkgR7JQkGNWc1kUThMbjqCgGITAhgnNmmjBClGWOACN0tu7jr7/qbfnDzz8dxh2FIOc0KAVhhiW5dfV2hZIfdg/busYQAahdP/TDaJ1FAMeUog8V1W7XueA/ff2GEMAYt11vrLXWD13nfTgcjk3TlVKDj86HEIPetru746zXX/58/eN/+mPJiWLatx2lBEHgvYu2YAhBSs45xpg2G8YYIaAaiRAsqFCKYw72ZhnHqhM+2qfnJ8TYw+Hx5XRZN/Pw7n4Ye72Zf/mnf7xON0ZJo9S7xzf3x/unp9Pj/cNuv9fzNu4OpdZt2fphOO73t3kiFFNGjDUhhRDz+Ta/kk2Cy3G3Y0qkK9rmtWkEYxTChCmGTASjmeBiGEtFlTLrbIKIdy1mdHY25QwAEKrJIVwu106qZrez2n78y0fKCEEoA5RcZIgpJkGujZQrF27x779/7Hbd+XJZVhOSGY/Dl8/fGqX6fuj63of025evqaL9w92wP3Z5N8+zi9HElK4LIOjhuw+saa/Lpr25rtu4G4US1trVW+MdRfDx3cN3b94wRDIhXz++tErc3z9QjOccIQSny4ljYoyNITRtSzBChG6LGfvxdSKxVU3JcVvmkgvFlHC0pey9rTmDUhkjetlSTn3XZVCmaYohQgAv5+t0vUnBfYiSc0oJgej0fBKClVy+ffvGOIcYyV7hlK2Pf/rzv7/97sMyLzUnUoM3l5hrAk4LTptGhJzH3T6FeDvfzDQ1bdd1g7F+M1Y0DRPCenc932LKTdMgTmoqMUZC8TgMBSBBWybEUEsxnkKIMQgx1lKZ4JhAjDEFpMIKKQTOE0IgxBlC51KFgBJca4WlJlAoJa+9QkIIBAAjhBnjjCGEXmvMOSbn/auXxDgvuZSCaq35ddUIIUYILDCGgEDNpTprCcaCc4gQYAUinFIsxWICEQKMIYxACB6jfLlcS4VMikbKtu+GvmeUbXq11g7toJRChGBcztkHD4UgsGavlxgMhrVtByYV4xJTYo1NOQkhnI9KAClUrYBSAiFCFbSNHYaha9vbdbo8BwRxCBETxgWHAIdYIILOx+B9LqlVPKY03WaEUPRJcmW9fy3yXC7Tum1NS5uhkQ2L1nnjx659ePNAMbGbgRAwKa/XWwKFMVQQPFmTUkyZXF7WX/7jF6mks6ZCkCvYjO13AxeCMUoRMZsxZgOweFxjCAiB4iMUEAKIC/QplwRCchWhkCNhjFIK6itYkmNIxnkfAoYQIphrrqhiBKN18+WiOIeg1hQlpxhhToiPwRsrJd3t7iSXOVZUCSE415hzDbWsq9bGpZK1C8x41bdQw+utCk4PQxutw6AMY7etulFM60BzRjmghHDOGMNaqnM+v6YFIamlRG+d2zrJleRKyZ9//C4E//T56/l0mufLMDQhRRklUyK9ZHO5vHv3frc7DGM/DB2GtVdqmq4+asb4h+9/gAQ9PT1P08y5+P6Hnwj/BjEqAGFOvbMYQ2tMcD54vy0LYaRvW0KQsy6FhAEqIXvrc0zjoG4X642TUh4OR8nIq++yatM2rGPSrLbW0DZ81++Cs4jQYPSWIoKZEhSDhwCJw+7d28dGiJqzkgzC788vL+s8V1Bz8m0rcyne+22eAAQUg1wKyBGVOl+ueln2hyNGaD+OMbp1mefrFeaKEN42u64aQEQZ1T6EGJmQMZeUqrYBG0AILn/dvYfW+eO+BRVWUG/XyTvXdDKFtC0aIZBLSikhCEvwGNS2bdq2GZTcljV4O+yGSsrD735HqAwhRx/uDmPTKhfCn3/59fziCsrJs82Y4NNQeyl4LLUUOK9uMd+4VM3Qy35Uy1oR1NvqYkzWIJCcD7mU4CMlGFdAMWWUJVoAqJCAWhMCAELUd32rmrFrg/bbsnhLIQQxBFCrEKz6UirCGIXg12Wa5slaX0DZ7XeCM1Rz3zUoxZcvH3E9xhj09UYlg6UMu55LVTEClImuF5Qm7xFCfdsM/RBSYJQKLmJIhOLFmHmZ53VdtxUjsjvuz9dbLeXNm7dcshIjALVvG0JpSD5ap6el1AJrAQl0bTNrw7gYMFV9l3xGocq+iynW6AWjKfp5Whsl+76HFVljai6MkuTjt/O3fuxyjlLyRnSNkiUnlCtF6OF4B3PGAL57uP8Sgnx88Ma8nM4I4vuH+22dD8Pw/uHh8f6ubdR8mRgjkhMECUOYEbQfh67tMYTzps+XEyV0Nx4e377t0e7Lp89P3577vm+a5jYvMSTKWNurtmkhgnrdMMFN0+RUCYExFC6Jda7mWnNRSmljzWb+8u//QTktBahetV1DEDSrRhV1feudqyVLyb59fV7WjRD0+PZhWVaj7TC2McZffvml5PKHP/4hlny7XF4Jm+eXUwYVMwwhmG5T9L6C2jft28eHn37/O0Zor1ij2rbtvPXbpru+AwCoplFNs2waAJRK8dY6740LGGO/aetDzhkAsHOOMlIpaRqJILjOG9ZuHAbAWDK2xrpuHiAMMAU4UcZY28YUtXWEEkqZ4vK66RwTqODb12+327WWwjEPJlUAMCLHw/Hd23cE0fPl4lOElG4xhXmLtUJGnr59+ad//t9//5//HlLijIWYhJwwp/1+WLSphKq+o0phjHzwy7aeL9cPP3yIWk/TfLpcCMWXdfGnkxBUCg4h0kZzgp6+fTt/+UooNOtKMBzHMQUfY7xOS8n57eO97Fq7Ldfp9vs//oFQvhmDCfr5599jhG/X8/n5dLg7tF2XYgw+MEq7bqSE1gwYRTc7GW0wQdqY8+nEBXu4ezDGglKVkjkWQjCldL5Oy7pgsis5U8EBgm8+fHDeQVpMCE3XGrelWqSURK9bxIVR2jGGGQUERB/dbUqpwpT6vldtRzEt1QIAOBMI43VZS03alS34VPOyLgACqSREKLgQ/dyAwiirpdxWXSvIoBaQ66oJwwjjWgpCuEKQcoawApByASGnimCptRTwukSdckEIlVwoRhjBihEjDEDqQ4zBl1xSjilmAJGPARMCIarFe+9iChS/NmYAwSjG5F16nbMLNVrjSy3N0FYEjXXeOljtavxtXQlG3toYojHWWnu8vxubhmEMMUAcVVNrqdu26GUhBLvgzW2KzjWC1gKDtdG6rmuOu7Fi1vT9/nj39PRcSyYYf/36GQCwuzs0TYcx3JZ1nieOYCMoJRACVADCTESXY0wMEoRANKntGyqojyGGpNc49I3TviYouIze1hpCTN+ePxprqGCE99CBblCQs+k6YQSo4JxwKVpnbayzC9bFUGoJuQRvlWrG/aBvq1m3GIJUyhXddK3oh77va65CUq8NyCF7ByFIoCIE2lYVH3HFJaZobDWxFogZIxUWiLJPggtCUAY1xVxKwhgowUrMlGKGcMxRcVUQJxUgUBklh7GvCGNMAATe+9t0UX3TdS1IgGHICC8YbR6amj3AV+9zLhWCLcZc0igoISganS5u24a7w45gYp0bOsUIbvfd+RRd8BDC5L0NESAMEbquKxccFGGt1noFICFUKqlpyV+/fgnRXU/nnNN1ukrVCKl8jRnWkFIBABOCMQrOPVvTSFZzXN0qB/n7P/yh64d//ud/+fz5y3W+NV2HMCOcOeed9yg4jCAljHGKAagZcU4po+3Qeu8u16tSqlEql3y6nFOKAI1NQzAFVGHA0sOHPSjw5XxJIFrrigcx2Zy8Evxw6Kdr3rS5XE6Y0Kenb4SQXGpJiTf0dh00xdv1xhipsC7L4o3LObvoEUAIIYzRfr+rJTtjYgwQVABRitkZXUvu+13O6VU+sd7mWBgTxsXoA286xCgM8TVJiRkBCMRot8UwxjAqKQYmpAv+fD4TiGsuRhvvPSG4kdw6X0tBGHHOOSeLM96bXa8awYa2k1Qs60YAXq+n6bw0bSdbtd/t3ny479rm2+evz9/om8MeE+pzBKXsdoNqmpIq4SKEaJxJqco2dz3GhCQAon8NYcIUc0k+lQIgaFulGMu5ZFVizikXYy3DFAAYoxOCDWP//XcfMETbbXZ6iz7UCs7Xa/Dhh59+6O8OxlhUK0UoOptj6psm5Uhqtctqpunx+7dSor7nL1+/eO/6/bgZRzHOJc9am5CwZJVgzHhKaZkWUkBJxRnrvXfWEYybZne5XGupqmkgAtNt4Yy1bXs+X7S2b969uTyfKMZd2xlt9bw1Ut3tdl+/PcFUCUND02htzboKJWkufdNpD1KOnMCg5/34zrolRZczUWNvnYOlBOcbwWsJEiMGasGgBJcrafY7AKp4T477cZ3mxzdv+q795ddfYa0f3r312sSQcIWo1E4qs27v3r5TgoOaCMWCYcW5d+Zyfun7LnmRfPz88uJD2B+OkquY8/PlNIzjvBlAqehbbaxLgVBijG1QCzCJMcaUUUibM5ACH4M2G6vMhzhN87AbIYGlgOGwu9OP26aPx/37H94lG432iODjfscFz6VDlFZQdsc94bQfOghhiiGkMC9zjKnWSjib5iXmYqwXSmrnV70git+8eXc+XW6323/7r/8guSAAHnf7/W7/8vLy8u358cOHl2/P19vth+9/tMblUikj5+uVYBZzpBwv62qtgwh2Q08VIrJxPrw8nUK9dm3DOVvWDUDYtG0I0cQkhKKNmpfVvZz6cfClbNYxyXOMqeTgQ9/37diiAmOIx92YYrycT9ZZUMH5ckYISSkQxeNuDxC0zl2uF0yoapvNaokkJkQvy+l8ul1vX788vf3w/nh8YFJZFyhXeXPDblcYCrW4HIXgPtbLtukYX24LoijXTJTAFJ2vN4QAICWZ6Df9cNjv29Esy9g2p69P4zjuxuG3336dp0nrtaT84d27XMvtdvr66QujNNbU9zvKSCrhdPomuHDOXK8XzhjnbN3W4ELfDzmmdZoRJKVkAEFIQWtttKm5lJghgPv9jlLmjIMQrPMSYwQAYoq3TVNBmeLzsv2P//H/a7sOYvTl21cuZLiktmvfvX9LnDMRVD6ycddXUFdjUakhphBTSZVy7LVb4jIvOpYKMPYxfXt6QhhhLm0Km7Mxp27oACU55+i8j8n5KESTnPfaEUogIbFkHxK0Bf6VIEcQYUJILjmGFFNKpQCEIYa51hgTRpASQgiuuQSYas6gFARR13allG1dQogIoVe0wzofUlaNBLlaawoognFUYYyJCVpizrkIzisozvoYPECQ5FIr2IyJPnBGC4YJVufsNi+M0gpz8N5p46SpuXhvKkTWmJIyyLXmwhiutdbsc3RItKUARrjq2Sv/mlK6nG/WhmVd37x9WJdlnmdKiY+26OKt+/blq/dWyXZZtgwqQGzzzobsY6oVppAwhRBC7zxGEJcqGRaMvqYId7tDN3S32816vWkbU8ilNEzF4Ev2dpBD3zWt4oRaGyLISkoAYPAxl0owDjGkUu7vjm/evtsfd263peABBLeX67psXHAum5ST0cYsyVsNQu6laNtmtx8gqCBlWzdndKkZYiI7DhBxIXGCGcGbttk6SHCNqcRQcyYIMsJEx8b9gBFyyUshaSUUVlBqyLEfJCbch5RSbnY9YTDWYow3q4altkpByhYXM4E+1oqw6JsCKowZQwgwVW3rAAjeFghVozihtIDswzj2/W7Xq+63T58qRlhJCKFoVK61bVTXtaVUCEvKoVYScualAoK+fnta9bxrx7bvN73N6/bl+WXVVnVdtx9iTl+fvp2eXwAqlJKmVV3XlJoALIfb9O355S+//nqd5wzAvGnnbjlD1SqhKMZYUFpBiSmXmFCFitNay3y5YoYBAgWUZdM5pkqgd/423RAejsdRNMpYb3xklIWSQ46b0QD+1dizMSx2u63zclt9zFw1PmUmZKOk0du6Lr/88heCQA4hpwQqiDlghEopLnrvgzeuaRtjNwgqQQghxBhJIXLBCUEVgBBDKQUgyJW00buQCggxZ8oYFyJBIJWKxYAKKKYUoRxziRnCChAAGEAEvbWbm4MNoBSIag4xBY/vDhgTwhAhRHBKKTIQhpTW6YYruDveN7IJLn97en55vqRc9/dQtE0GdVm02bbr7eTMKigZdjsXoxKy6VsIMcIkl3o5XysIVGDMsIs+WsulALXWDAnhFWTBKUSEYEogxLX65BinNONYMheklGSNKSFs3tWYorHjOGKCY6mrMbkWIpnP6bJMAEFEIIYIV9gddo0Sb948ogqWaSIEl7d3+7F/fzyW4KXg7949IkJaH8Htqk+X2zqFWNquv81LkpHWKoV6czzM86S3lWBCEOraNsfCGOeMCiVjim0zt03LudyPx1orJez923fWmOk6+eBrqTUVCOHxcGedW8y2Llqvm7Y2+nB/PL55vONv350+PRtvPl9evv7yF51cjjlYorXpGqXtBABkhPz+b//onL3eroThZVn0otsfJSPo+UnfXk45xHP9+vw5mnXb7QdYC4W471spZPYR+Hgcx6C3+XJqW0UAijFE61OMzroUY60wlBhCwJiVApfNvFxehnE0NhRYhl3vnHUxNn1XK7jcpk1bRElJZTX6dL7M69K1zdAPd28en5+fnfPeuu5Da+xmtB134/3/7R/+/C//1kqFClSCm3keh35oFUDYRQdhnW5TKWm/HwCEKeRSMgA1hAQA7MdRSGmt08bkki/nGxPqD3/8w8v5jBBCCL5589g1HalIcMIZA7kSTMZhd3p6WTf99v072YiYUtF1M6YCKHj1zt+erphgyhjE8DYtFYCu75qhPyLStM3xeHDWGRtTzalUn3KsfrHeGFtqLSjPq74tt01vdQMIYy5ZiCFcL1Ybr220dlCKdgOhtBidS5nXFWFYEMAIh1q3y3Xd1pQTQJgYTQTVp29627Zt+/TxU8VoPO5/+N3PXMjrebpdJuf8cNjfv3kDGT1dby8vTwWUWgBl9N1P33358hkSLJUKNZGCc821VmNKw5ni/LDbjar74c3bGkPLBcZIcP78/PT09A1j/N2H9/u749OXz5jSputArbdpyrXeHe5KBcZoq/Xd3d3hcFiWmXFKOOU9c9Yu0U/XCRaolDwc9wTj7FPbNF3bYEwa1XhnU4xm0z55Y5y1znlXaj0cj7Jrl3lBFLNG7R4OXz59nea5Sfnv/8t/ef/du+gDUa3MzpdSY8ghJmciV4JyiH0w2lkTnHUAQkb569p0TCHl4G1SCNdaESRd30opQIYlFgQQLNAZF0L1LhIIAcaY0IowwCmE+OpBQoRyiiEBwmhOMCMEICKMAlhzzIhg71yttYDKGS2ppJyT98H/VVtywb9uyscUvU8VwwJAgbCAbJyPMSSRGKcl1eoBxZgwUkEBADBKpBSQ4IKQi6lkiCCFiKYKMYAFwoLRYk1KLsNaKjDGBRepo1Qya3TySQlRcwUFK8lLTjkmCGApcByPjKJlWYyJMdXbvCIIc0k5+VVv2lnoIPz6JJWKIZwuVwgAF22w5rbMFTLCOGCYKAIBZJQhjHMq0TmfXtM2QRAAAR733Q8/vy+pGL1KQQirEILdYWy7HoKaYrSrHVTLOcUAWa1Brt66XKrWTgjZNsoYZ7y/v797//3b3TCWh/j0+dumtTHmdrtx2SKIb9Ocg5eclRBQrvtx3O37RklGIMpVlzpHz0SDESNCUCVO07zarYDCYK4hY0gJIQxy2bFWKclF3/dtIxe9rWYrqWIMCEZuc6teCWeqxaCgnOKkN+ONL6mUOl1uFJFGNCBXWCHCJISAaZMhzrUWxK13dbaKt5y1G1i5bLpx30gRlzUGSznb7+8Z1Z++fkOY1JwQAqUkxhilopR0vdwqAl3fUcIgAqDm4IN13tp0f6fGu7uKiTlfXE4+hey2gmAs0VvLCKMMgVwv0/Xby1eEYT+0/OPHUioA8N37t6XCZdlyWiAsJUcEMEYIpmq1Dt5RQkApKUbnA+NUNj1AMJXsnds2m2IkHOlow4tb7CqFwpBM11U1UrXNdNus87vjHuBCa8k5b8aGVEuFpZQYA8aEcaZUAyrw1ljjWqUwYhXWcRw2vfngOWdM0CBj7dq37x6tNsH7vusJQQhABNGwG0oB82JCjMbZtm3Hvu/2+3XWWq8IoH7YMS6nZWWEogqyT0iUWjJMsW8FQhBTkEJEiBCCUEXBJggBxVj1DYIgBk8wKgAlBJxP2+YZw2I/eGufn54wFn0/rqu53WYICSEIIEqVgow8XU45GJBBK1sl4Y8//7h5G1zEjOZSQsqX6xVhSDhaV52s5VKFWELJoAJrHWfIWl1LFkwoKQmCIOYcU8Uo5QIIbocmhgoEBZVAABQTBML5elkXC3JGGPgYCygYkZyyMQYhmJwdupbCarb18gyOh8Pf/P53GIHkDcEVYxBLbFpBCCSUYMER54hwncKfv/7CqEghrXlVhLZqAAClkLu2wwi///ChlGCNuzvstDY55VYq9a4toBLKCaXTtMRcfvrp599++8vL6eX1fL1cbj7mh4cHgNDnp6fT5Wqs5Zxzxry1GAOCyx//9qd//Od/BiXUAqOzoEBAk9s0TDEHt9/19/1AAcAE0V1LOEMxKIw+vDnqeY2tij4QKVJwz9+eHt88DH0TvJbdCEB1ZmuFOow9ITR4j2vpWuW1vZyvCICck1TSGtP2vb26thsgwsZ6bfRuv797vLudbzEkjMLp5QURklLcjLldbuu2NZdGcMEFcznEKXElfIkvzye3uZLj+/dvKYbeWFhLzTmF+ubxbjf0MOXNaG8MHroKi3N+3daUPWM4BR+cw4QQSm6zdtbvD4d+7Od5cjaUDBhlIaTk8zAKycVu6P/0v//08Obxp59+qDVzyabLBIceIoAJooxnAISSJWWnDReIc5ZSrCBhmu20bOvS7zohVUXQOO1D2JwBEMumpUVcbsvlfJluN8pJTOF0ugIIY6oA1XEcbXC/fPw4L8uwHwgjjCJrLEIoxvR8W0oI1cWvEYxdKxT3UfromGKb1W65jru9jV7b7TrfAIAFQhLZwMZ5Wa6Xy7ZtQkkmmHF2s2aal8v5Oq+r5M390N+WZfo8XW/XUhIlBBPMFX16+frx429MCiZYToUgfL6+9KptBB8Uvxt2BMAcfMQIlHI8HkCtxqyUkuP+ACB6eHiQTIzdLqU4fv/jm/dvvn362g4dxTD7iCCAACIIHx6Ot9sNE4wQ9N5rbbjkb969MatmjNxuN29d0zZt19QCAADzNDnnlnUppaqmabvu89ev5mZlqwgn19vter6FHO4e7qUUmJBaKqOsa9qx3y/LTAhnlOIcgDEplhRKzTHDCjGmXFRtda1FCCX73ucQaqGMMCGMWyHEBAGaIExVXxdUX9l2WOPrsjRSrUIAVwQKQIiQmivABSIIX/s8r/oSgJRxykBKBSIYc47eQ1iCda+xQgJA9J5iihkFuaTgnfUY46Ztaq0xRIYxFQISkv5qgSMQwWuiHkKYYsoxMkadDzFEJSXj/HXkNjhPKqgA1BBTTsBjTICSPHsfUh3H4eHxoWEy2lBBBSGjVBvBhq7JMdcCKWH9QKRqnPMpVB8SwoI3TUhxXc00zSFGzhlhDFPWDbsUcy7IGI8g7sdDicXYknP2DkAOAKzRBWc9QSD7+AppC8kAJk3T5mBzcjmBtmH7XUcpc3F1ad3Mum2uaThG6RWzqCVPl6tzOvoYfeqaFlb0OreRQKKUY8qn5zM/Xbjky+0Gar7d5uttermcjLUIU7Mhp3UrBMeoEiQlE4pAkPV8i7gOUkhS+a5TXdvvdqLrNx98DT5v1gbBkJKqVY2UDQRVCSE5gxBwxo1z8zJrs3kXog/H4wFUYL1HqfJmgJQu18lZW0CuBIm2wZulmOz2hwpB3qwrmSBSCQi5lAradoCIlpCiDaJh7969++nnH96+f0dAmVL+9Od/Y4xaXy6XC0JoGIaXy9kZm7VuunZNy+nlJYbMG0UpF0r1+wFj+PTtZLbt7njwr3twsVSEIETrqmUtIIN5mmuugoumaQso3uhNeyEoIXLTrtSi2g5UdD2dAcL90K2L0euaU5GcOwhKin3X7cYBAWic8TH0+wFRfLy/gxit81oBvF6vyzw7vYUYXMrZ+ZpDgqBiykSHaUwmGJcAyDEXpaSUDUSYUooRBRARBFIsejPeu5zyYbf/7t27YC3BuGmlc856A0BpW4kwbFRzvDt8+/y06a3v2hiitUY1rZSNdQ7SYLVJBWkXcgHN0FJZktaUi3G/p0JMq55ui940QmhOLqVCKH64eyOVPNzvg/fT5abXDUB4f7ejjIACrTbLfAvGDGNfEUzelpxyCkPDG0lLpiXXkPyq13VzXAlXKsAEc/L12wt4zjG6HJ0STSdUSvnp27PxZuiGisDtepuW+XS5Us5DrsaskArZNiUka6zq1LBrS44hYqetts6tC6OUQkwpQRC/JsRSpKXkCgqjpFGyVx0oWeswtooSmksKKV2nm7WmHzoqqJ5WbzfJyOrsdLtstwvO+b/87d8wSs8vJgVvnYW5nK+3ZWbDuGdSggJ61SjKYUzRWW+0iUGnqh7xcrsdDr1qe1QBBLVRCtRattA2IqSUYuJSikZOq4YIIQSN0afLxcUMMJZNI6Q4Xy7TtiLGQ8ra+wIhIgwLzqSalvnL58+K8bQPANeHhwcXYjwlJtuQwjydbzkpSr/7/R9QyXq9Rav7oeEE7gcFQAO8H5sGpei9G/pu27ZOquPdDoHXkHqpGSAICalGmzVEDJFUInsPakEAUkZAhBhhKZVQAq/MOM8ElU3TdB0XLMVMKH3ligihFdbL9TqvW8op5oIFqxCmml9tMsL5L799tHq72929snzRhb5tSykYIhDKu7fvMICwVj0vlNJNbwVm62LIcRyHWgBQMKTX8j7MGQCImrbtuv58vuZcKWOKdxVRJmUI8eXpCSAAAQjet6ptlZrnufQtF/zbl6eU8+6wxxCnEGwwZtNCcYiAUGy+LaZqqfhuP3gfvPOI4LZVvCht3LxqlzLC9Gxup5cXQolL6ewtZRQAEGMEBT5froTgWFIGMJfaNgrU6qJrBHUp1Vohgu3Q7fa7aVliDiGHkBNRYpsuy6JDrceHR1JqC+syrdroTtDoYwoRgPq73/0sBP/lLx+XbTudT3d3D/dv39CrCC6FEH79+HHVM0I4RLvf7eymb9eTlLLWbPUWHB764eHtXUkelrIf+30/oAqy9bo4nkFKQRCitf786bMQ/Keff/766QssgBJ6/3CXY6qlllDfv3svpfj6+VPN+f7hvpYSvOVC3N/dFwhSjjniYTdgjKWUvWp98HazSimIwMvzCUFMOV6mNecUQxJKSCFjTIywt+/f7u+P27rGnFPNLy8nE3wFQDXNjz/+sN8fWtWcn16Y4AQAjAkBIK/WZgBcCGlxTFBMECEIQ9i3DRUCIODWYHIEEHAmhIyUEr05kAuEiEGilCAIIYg36yMo3XhUXRdDWrY5lwowwgJlRp21JSSuJOH49RvIGkspy6CazRRQIMw1l7ZRAORsbUwxpSQk6ts2MQ5BdQhjghljIQQlKYKoVOh8KLlQBDvVMIogRJQQAGrwoeYEKsf11V2A1troA6wAxiwIAhWmEDCBXOHoPaa4kUxJdjwcD7tRYBGIr6+dXF6l4rDUEH0paF2DLyXG6Jw3xtd5ZZzLhtWcY0wFQJsyICBDSiDNMfmQrPNcCKk4l11mRW/G6oAZ560MwTlrQE0UMwIh45wz0Y+d4GLoVMlhXWaIEmdkut5STDXnH77/0Hftn//8l/n8Mgw7wpQUohvbWotohFk0xsT5CCA2zl1uk3HRhnq8vw8ZPH17ut0uFabgAmSUYBpSgghRxhAGGCPrtHc1Ba/2+5xSrZhzlI25rCsqpW+bXgnJCGfkti23y8v1dO76btjtx2FsVA9r9d5SALZlcs6UUjft5m2tEGrtnPOQC9koi0BOAbvgvb2tllAslYIMcSUQX1PJs7WNFCgnDqAA+LDf+1JmrQGGr02tGhzO+e5u30qZc7xczl8+/uWXz59u81U1fSngp59/L8f9Axfdbu+dW6bZbQH48uN335mQlnnLKF6fTozTdV1zTLlAbVwBl+hDjHG5zoxgTjGsSTKqF+2t3SCgjFJC+64buv7dm3fa6NPpXAqklARvGZft0I/9OM2TnrehaxklEKKH+/u3jw9KCOOscw4zwhr+9u1bAMHHX3/DjFL6x19/+W1eZkIRAOB2vukt3D8+MCI2Y1jjyrpZFwmFABHMaMq55soIRwgzIfoeEUKCDyFVVGHXtGM/bBARhECBSiqEUUqOYogQUJzgAgjJuYSUU4VgM876jLBe1zWELNu+Yfx8On358owopIRCBGGq2odeSGNt8CEGBwBw1sQY+6HdZgFqDE6s6zxPZ2+st4EzVjLDkDi3rctEMKYCt40iGGnnrdlK3pxnFGPVKyKp8y6WAFOxZtPeR+ifXk7LekME7sa+VT0s0BpHEGxbuV5uPsbbNFdcnc8IYkooIxhgKBgjhFrjUnBOJ1gKRkBygVgiEEmqBKeMMa5UwmXetPUuxZhiyN6bdV3gtcR4PB5+94cfu2bY1uXldmWMrKsmAEbngjPBmKRk37XDu3eCEFDy08eP93dHDmCpWQjmNxOcY4gUH1ftQ4GEiTzbPNtn85vtb7v9uB/HirNbt2nKPoSm4QghBIu3dlvWUjIkOKYMMLLRW5e2arzzWuv5tlinj4c70TSQoP6w9yFq723wTKmW0KINItj4wBhclhW24NffPnZD9+bt22/PJ210gnW326X9gBGswSNYWiW6uy5o4azmBMr9IKWksHACimIEJI5h4fiw22/LXFJGCCKIBRdtK758/LzMc9/3CEG9rTUXzqlqFMKoH3hOOcQ437YKqzXOhfjuwzsAUElhOk+ykYzQ7OP7t+9tdOu6Ecogwk3b97v2er6eXs7W2h9//L6CGpJ/uH84dLscvdk0gfDDD9+9PL1s6zL0fY6lQmj0SjkTgi3Lsmo9HHYl1ut1nqeFEIwpI5TFmJqmrRASyhmVDw9vr9cLonTTZlq3Ropxf6AM11p/9/vfYQwxRN652+X2/t2bnKIQXGu7zkvO1fkgG4YoqKUCWKNz27o0QnApojcpxNO3VbSKcam67v7hCBBeNrNs2lprQkApXW9XgGrbtpgSiBGBCBQ4zzrlxCTnSm6rjimklOZpIgSxihvZHHa7w+EAcl3MvGzbt6dnQFFKedNbPtVu+LIb95uxPsZt27TRH95/9+OPPzw9P+UYAwAIAYJgiYkiWisEEKpGaWtKTZJxxvm3r1eDMMgRQzhK0VBirNtWXbxDubRcpBBIRXbauFL7x310YZ4nCMF8vTZtd3d3ZJRKJt48PCrZUkwhwBXilFJyoenb5DxntGbMENbB5ZwQgLWkEGMIkTLOOIMA60XDXBgn3333oYJyuV7Pp3NKSTVi23Tbtk3T5pKMNowzhFHXdxAC70MpedyNhFHjba31++++Q+CDd44gGEMMJhDvYiGolrRoVyuEBIWYQ06gJgQrgFUIhilJryZ2rBCBtmsqrN7HFELbd33fY4IlZ5zSWEq9zj5nLihEoIJcckwx9cOICA7OFeuoYI3kAECpBEToJUQIAeGkREypwARhCMdhOJ2edV0F44AxIXjDqS/FWdtKvt/vAICn81kbn3KtECKAEUGgFoQRAKQWAMr/1RNChGCqhKSU5pK1thVCQSmFqeYEQCWEKCX6XT/NN+stylkqwRC0y6zjBApQUjprddB6BQACggkXKpaqvfUp1VIBxiXWWAoOuaQIABBSVsxqhTFWZ/Wyzt56TFEFGJEMCgghAYhF0xZQc0qYoq4TBKFe9YKyYRyVaiAAEJUcg5RcqWMKNoXw7ctnTNjh8f54dxdyJhQzTB4fHriQ3dAhUEHJiEBwPCy37XKajHEhhhCTT9G4YL1vhyYEo7XONaWUOASUcqlkrjZ4jzIOwQbnaw6glJUR1TAu21E1Sw6Xy6VtFJeyQJARcMGt67xt2vswYMw4a5oOATRdz5fLS7A+5WCsjrUiwqRqci65VtkrE61bcwQAEx4qjrDSVpVSdUjR+XA5RR9xAS+X867rcsgxZwzI3bibrbXW55IppaBkCHirCEx1Ol30cvvt11+/ffoEEbQp+mWhhK2rvq+VMY4gEATTChTjrRCSCATjmz/cI4o+/vrx+vKMauFCgFKC98E7hIDVW8mhlayGgAm9P4zt+3fOJbPZVrWE4lwS58waU1JilBCMxv3u/uHBOQcAVFJKwSbGlJAYgZpL30vG8KaX23T1PhzvD60arpdziGHb1lzrOOy6rqVKqLZNMVqbIPbH++N0ndd1qqXs9kMpKefEBG2EAjEBCOTQdf0QYnI2wFwbqTghtWTBqNk273QE8Hh3ZIwyj66TnaYbyoVW0DctwQxAcFtmKbp2tw8p3y7T5TKrrsvWLafT+XytOUJcaoFt15bsn0+nVKrxDmFQa/HOG7Nu6+rdVkEZw7gsN2t1dF5wDkDx1sYQGKM1JYwR5xRB8AoC55QgABCiilBFuCKUcog5FxiDty5p4wz3nHKqQFdBLRUXgCAmhENYC8LEhWCsriALoWRDFutqisaZmDRlHBEavS+lQAgxgRBUjKDA7H53OO6PlGEXogk+puK8XZaFMf5aFssxIlyVEt9/9/7N/V30ec3xuOv7Rtq+aZsOQfA1htMywRQfD8e3bx6O4/jt00e93CaQKEFtw5UQV2OGrh2Hfdt0xoWQE6H8+zeP23z9enoWBLaccYxqjuOhq6UYu5ptIpSM3YAgHId+01tBsMDXnhEmBGijX7shL9cTAlB/+7oPO8opY6xCOG8rxIRIDgkdGKeKuc2/vHzFBwg0EIzGFDFCgrNG8q9Pz06vsmke74+Ls+PQNJi0jYSSLTcQgxu6HpeakoE5CkJl3z0/v2zbMg693szu0JdUzLYFa+8eHijBXdvuhgHAWv5qZmcmeIwJQiykXLVZ1k00XLTydlsut4lzMXSKUGKte3h8hBVoo09PJ8H4z3/4g3FeNe31dnE+xJL7oR/3+22zw27XNS3GqGQUfXDMN6phjMWYN20gRIxz5wIh2AS/agMIQIiUWk/PJ2McIfT+8Z4QbkMECEGIKsAVIdV3X56eCUCX2+35fPq7v/3bpm0pxYKxnMqmt8+/fbTWOuvHruOcfv/D9+fn8+V6wwjd3x/XdSkxsw4DCOeLx6BKzhCAyfp5miFEOcc5z/B8YY06X+fVuHF/VwDgUjy/PL1cTwDCzbumaxhjFFKMMEC1a7qQktZaa4MpLDWnmBAAu34gnFkfbUigJB9TyEU0ctjvAUaP333/5euXL09PTy9njDAlpAAIC+CSl1j2w05KYYwpFXDBU4x/+pf/7VxQbfv2zQfKWHRmniZGIIfwbhgf744P9/fjOFzPl+ttenp5iTmv59vj8RhcEIQc92MnRInFWbssS9e2jDGj9bgbhn6MIRzvjtbobY2CcVAK5wxRmHzMOXFCRSMAAgQRIbkUIpUUNxNCYIzFkHL2nLMaU0l5S6vz4Xa55hJDCKpVd3d3nAuCcfAxpJxS3B/3AICnby+b2bjgXdsfjofn5+fdMDSN3KZFr9obf3d/ZIySBHIOMaccauRcAggRw8FZPS9KCgRrZBFCCAHsJQMl36Y5lAIgaBQfx04ohRCJOVScV+dsjJOeYwGulJDiOA7j0JptkwiUnJP3A6O7/UAZd96OXQMR8sscYkkxdYwMQ5dLxggIAnrF39zt+65zxgbvi4+IkRqgoPD+MBLOU3LrcgspuRBzAUxwgECFoOTMCIcQ1Vqk5IyxnIsJTlEEIKSSS6JIqcG67CvCmFNyOO6llAiCeQbBu4YLCkr0pqaSC0g1rFa7mAhBEEDFOeLc6tWEgAihHQOhQB9AAbWUkkECAAumGCGEIgQZY5hSAAqhqEIomAAV5mq9c5QgRkiFgDEmOWMYt1xQQqXkhMJt3bQxxq6qEbBWVCvI1QY/Hu9YI58v15fTlVD27uHdrt9jCFpBIKwxhJhy8CV6B8ArpwOx4ALjioGNlnGBMG6HvtaktQ7Op5BgLRCklAwqGIDStAICLgU77keM0KYN59TXusWwbx+b42Ex5nw+Ne2YASSUdX0PIQkh2+jNak7fvjqrjba55FBSSOnu3a4ZD97aDJE2+jrPqu2ZapqmrQDflimVWAGIwZXoKUOcc5hzqUnbDSE8z0vwVRBJJd8pUSDR3oQaHt/eHffdOk8EQ2s3vS4QgPvHBwqhdzGlfLmewZ9xCSFF/3B37Nt2P4zOarPZ4+HABTtfzoOi0WJBWyp4LmGdzNAPnODzNOGcJBTd2DZNgzAex701ARwhISBYVyByztnbuj8cxrd3EEGliGyUM2iaF6t9cJbAFLzZ9CYFi3mct8vXT19Pp5dlXn7+3c9ckF9/+wIx4EwAAD5e5orIZty6/UYIDN4l7//0T/8UoseUQgjGgS9rRLXcH/rDYWwbZVet5JBT1tpKIRjFzrltsZDknAymXAJktXHmVjIXUt4fDl334be//MfHj79N623YHQihNrjlPB0e750rk46ry2uY53lZlith5P27N+s2m01nWAQX67aUmmPy18t1ut4gqhXEXLPx9jxdESFjP7ZNR7qdECzFZDcTXmHB3Y5SXGOCOet5TrlgjA7HQ9MKCEDOKaQMnGeMFACZEIjWfpSibXd4BxCpFYUQCaGcKeecXuYKEZNcwoowARUpqXzOq3E+JISQ2RbvAiZkvz/2Q++DSyFhXBpOh1Y83g0Q0//47dfpMkdQnPExFCGoamRROQVPIBhUK0QzX2/X0wkDWGspMUpKWozfvHl4O46/KkURbChG2SW7vX24my7n5XbejR3D43qbt3nud6NoMCa1H+XL9WSsOezVf/mHP3YfO4JpPw6g5hAspsIYxyg/n27JR/gePjw+FJQxjrkE60IvlOjUZXvGgnHKC4R9SssyxxjO10s/tNYR6z0kGAFQEiCMUyEpZz7WxXgAJsWopDj5hAGOOVKIfvrwvXMuRPf0l98whJzUFDyCDeeMHfdWWwxgTvl6uSoha6390MKa7+/uGiWlFARDEwyEpW0Gr+3d3bHkPAwjJXTZVmMMgAhAVCsQShpjl21NtRgXfAwI4xAjJvR6vc3T1DSKYCI4fzk9CyUQlv/+539v+37V26dPn3PJP/7u57vDwRv7+dsXAMpT+NxyJRgTnHuXPn/8gjlph6GWop23MWJGFm30unrvxt2gfXAxE8YVpJSxpuspZYsxmImmlQXWyzSlkgDFv339WCH46Q+/o4r/23/8+7u3j3/8m7/Ry/r12xenHefs+w/vn788cS7+/u//tm87zrlzDkIYKL1ebzEGITgoqZOqpGS9KSkgUDBBeltrRcumedtUTI/H/XDcTfP2/HzGnA/7nU+BCi4aSQiDFZScC6k6WABRSLESOK1r8B6WiiuosdRUetn+5bffOKfLtjDBMoKrdQihBKrknfMhpdTvW6cdhHToW71ZvZj9YQAZSi5ADzDCX759O51Ph/3x7cNddFvDdoehX0/ntlHvj4d9I76/f5BSdoR392/e7O/23fDpy1fn/b4bi0wEkw/vPsCU5svtfLohUL77/gcMoTZaMK7adrpd/+1PfyYY3t/dI8kXrX3AjZApBEpxycVZh5GUXFRQY4wppwprhcAYCxGCoFKCCEXBx3lZIQTdOHRwpIwKIY3WMQRMyKuB6I2HCFVYQSm7cezGPviYY/jdTz9ijEFMJcUcXDuMNaeYIAkpJ+9LrQnCFHzTdI0QlBGEoFLca7dp21ICAVzWzTrLCaEYQ4aZkhARTKmP0ViHI1618SlM2lAmorEAg3G/G1TjjXWbmaZVayMFY5hIxg67jhByvV4JrLIRzgVMcKOEWY035rZM4258++4twnjFxGKoY6IA//jDd13XAwy0sTH4rmtKAXVaQkqEgpgyRogJNvR9jHFdNGeUS3G+XI11MWchBBM8pQIhRITEmEQjEYQZwgQr4axpG84IgRCkxCmsBGUAXcgmBcIZRrRmkCJajVvWLaE6DG3OJUVdQoAFkkYSikGujDLGBaYEFCAEc8YRinJOPniCoZSqGZr5OsUQGsWlbGDNsJRaSi2pVrCt06a3Zd0oZQDBy/VGEW4aBWqdltX4jJhMpQBI94e7mPK2LLuxrSlAXDEBPiTnPETo8HCsFV6nBXIUUkwl15oyRKlGUBlCHJOKCVRKEYwoRSkDiAjAiDKaXez6vh/76XS+3G6X0zNn7DLNnF0e3n2wIadasjEv59umDaaEC+59/Pb0st7m+XrFGORaQ8xYMEhwguAyLYyxmItzbl22dXVUtluTIOXn2xRiEFIoxWsBjVQ5xlIq4RhhnEoKOaZajF/vB9VymSHy0WHO267p+x7VJBhZ53rc7VDOBJNakvObXq01ettmApGSjRBvh6Ez21pL+K//7W/HXXt6Pi/X515ytBtl30/L+vxy4opRAse+m5UMsB53Q9+3NSaMEK9l2HWUsWWdUUKMsyl77zwGVTHWj8Ph8f5ym7TZnr59HcdBNtI5F0saH/ecsFCrXdYMqhq7kHOBMAPgU9K37bVCnhKwLmht500TjKUSjIBlnlSj+l6+ZiP2+75rG0awZKwRvMZMKLpcrto6hAmmkgpKPMkpD/u2a5XV+nZeKQGUouPhvdU+Rn+7LLfb7GLcbJTtEAv49dOnP/3y0bgYY3bWhRCM3ULwQjLGuXXbfLuyVfRdK4T4/OWL1hqUiilUUpUch2Fs+8b6zBjvuzbHSDATUuEWckK89ZTgRioESo4h5eRMgqA0qhmGHmKUYkwp5lIoLjknCIuQjDXdsmylhFzLuBv6fgcxds6jSoQUoGQpaE1pvp0ABH3fW592Vt+WlamrXpcSEwa1EfzN3bHrBwhLKiE7V0K0xnz9/JUqaa22zgBCMEKMM8EkoUL1rMTkjN6M/ct//EpgjsE1jHWKEwiz9d39YddwHMOP7992jYrOb/Ni5/Ww270ucHFGt2W5XSbOGCH469PXu+MdF/JyeV6W7XC465r23dv7rusJocs2z7dr3x1qrbfrhBAkFJdS5mlKKVlntXO+RISJL2Vdl93h6GPyOamuKxDcbjfCBWbsdpmmddnt9wQirZ0LNy5lSvl8OXnvMILRucSoYPzP//anP/7dH0k3IgwNqLxvrxVCCFAosNbgHKSoxkQQrqVG7zCAMYTgvTVaKdkpRQhGkN8uN8rw8XBgXORUSkqYsJSzc26eF8aoUJJS6ny83qZ104TxbpSnyzXmPB4GJmTJOYR0uU6bNvvd3Wbsps08LwCBnPP5ck61GmcJpd77L1++HQ77D99/f7tdl9Nl3Ta22795//bxzdvpdlvnNecsldTanJ6eASiUEYRhxcTGjHyIIUvZFFb2xzuhpJQSMhZifIUnUy6CynB6mZZJSFFRhQhvm1aq1ZueblOOabcbgwt60wTTUsrl5ZJyLLV47wmlhOCScvZp0c5azQgJMYYQ7LbWXFLKIMUQkuKMM0pEk2udrlfKJYClVkAJPz7eO2dzziW7ddn6vl23dVsNpkQpJZRggaWUuCAYVGNtrSDFBCuknqScsODravK8VQAYl13XHfaHYRgIIdN1Ns0Ga6m5Igzm61RialoJcvEhYgCPu/1//rv/LBv5268fTzYIwRspKIL3795iiJfbbXo5rbL57sMHBBADoJNSSeE2Swg83N3FEN6/e1tKdU6P/dANfYxB4uq1O5/Pz89PXz9+OeyHx4cHximhRK+b15ox2jS7QtB8mzmngotcs7Vu3VYXAwBgGMZcSsppWRbFhXMuBM84p5RWAIVqai2Mc0IIhqhtGwhXhPD1ckMYvHl7b4zz2lQAMYAUIVBr16quUW8e7pZtLbk4Z8nz6SoEp4wmDIINiz4xRglCiOKEEWml997GVEpxIRLKu6EvCE7LZmdDpfAuPJ+uCRYixaxtQQBwoXY7hMntevt6fkm7PQPUZxBKwYxjwrT23vkYJWcc5ioJBxVRCDvZCsYhzzD55DIBAOQcU1rXxWqTQlCcS6VyyufT6Xy5Oh9k21IiuGxcirnmFCMhOMQYvDPWxBxiptXDUisAQGubUiE+EsqQoBGCTMkaE8g51NqBCmPwLhEISyqIogIKYhhjRAjkVTAqGtWBCJzxmzY+RtZwLqjdNhQ9J0gp1bcKQrTZEEtpJC2l/JUZ88bpkGNKJdXkJEWyFRpHE1YyEIZRqWXdtvm6MEa6tiWUWmtrBRChXIveXI4p1RpCeHk+UcoyKN77YbffjaM+L7Gub48jQ/h6ubjgKiKCt5CTmFJISUoUUiESh1D0OoVUQ0pcNEJ0IZTgMmeJt4oRhhEMscACa8xOm2sKwLmao2Bs7HpGyaY658M0L7dtxYRkGz5++qw3zQSTqsGYrospOcuuM5vJuYhWAITWzf36l08h5oeHOwIAgIVRHELeptt2WwskRKqu7aWSqNZYQ3Kx5gghAACptt/01vatUJJAChCMOT2fzz6Frm/naeUICIYFoVsskjNOsd82AOJyOwcfU+CNoPvDsR9Gn6wvNlZ3Oj1hmB8f72KIY9dQKubFXNd1bLsYozV2Ot/2w3B3d8cJFowma+2qu1b1HPcNLwAGBJHgudYQkt7st29PQm9cNYTyh/s3H3/9YoyjnFuXfYEVEl9gLuD6dNbbulwXQrG3IeLZgI/X62QWTTkN1hFAnHVcilY13lrJOafseLjjUiCErLfX80nIign0zgRjzs9nY9w4HgtCVIrxeGhUO01new2dklSKSuBlvm5mE0q4EL4+Pxntf/vzv2/LUgCsFgQYaIMJFinX52/PTd8jUIK3IcWYAiCYNU1CIOQKMAuppgJU2wnewAr7pnvz9i3n1Hmv2gaA6mNSDYcxT5uJMGJUMYSw1L7rCELOOCUUbprgfSOVCy6XHEKMMUEIcsxMUEpocKaATBCQTdswebpeIRZ8nxnIFOHX2UGMs3N+1usyzc6tjPGYSkxl2rZUk+TY61oJEEJSjHEOLYMQgs0E54w1QSjhYZ1v62VaYwaNkgnACmpJ3pkEq6CEEExNXL/NC6eob+Xh4c5Mt5wjQ8Rv63Q6cS4P4yAkf950KWDTiwvu7nBoux2C1W2raLvdOM7TYrYUB0gYJJgJLqyz22oAwYJSyjkATXLBblYyhvfDrt8hiLZ1ydG1UmKUMK4hYYLgOk3bsj09n31BhPO267pxVwjmlHTD8PJymeaZC/X27s7HMD9dCGHbtrngP3x4r5Ss0RZvtVnevX1UFHMhS80NAoig+/Gnvm+fvny7vztigr5+/Cap8MFIIeZ5evf+DUY4Ru+NbxqZUwKl5JIgqBghbwOjvOuadTGY4k3r223W2g5jlwHAhECC9bb56FHGiNLX4M242wslnTWfbtemb511zy8vXdvkUqxzhJGmbddV55IeHu4hQKeXl3VZv34Tv//x5+Pdw2Hcv3p8ahgWY3R0BYHn54uP8eHtPaB42wzOuALAME7eVwAJITb43W5fQM2lrNbs7vbn23Walv3dIdf8z//rn/78b39++vL17//hPy3X+ctfPlGCp+vl+vLSqTaHPDz0oIO38zQMXd+1p+sZI7xME6Yk50IpOh73JcfbxSYXQrGqES747JPRuuvblgtUXAGgYUx2DeQiFGBS3O2G0/lqtNZujTFCBCmhCKLoAygVABBjmJewrBhBcDjuu67LMXz7+C2VGFMUQlBGYQJ62TglwQeM8G7omeQ1J46xEKJ2KQebYxWMQVC9NUZvyzylUoQQUkhMqOSKId417fO356DpOAyS8zePD6iC6fQUrZuNfcZISKUXnX1sx+7zl68px9041pL+8tt/rNv6d//wn//j3/798+nZbBvFuITsjLldr+2uJZw57y/nK6Yk5sildCEsxjSNABQnVG1y1tvoY0wJI9S1HYBACGZc2bQuqRJKEKGbNttmmq6hksaYnA2NklRwHwJESCp5qLCU7G0wqx4PI2GUUto07bJMpdZSsxAcG/3t8xfWSDJvS8G9ZARgDCkxejvfLkqI/X4MuabgY4oZoJIzb2TT9k3TxhxDKqUWJkUsQIkQQDY++pBl1zadAghv2qSYz89XvzoluhiS1b5RikoVc1zmdVrWvm/3u1EUME2z0Wa323POGy4XikHNnLJSinFumucUconJrBYjwii11qWcAYYAYZ8CZFgxqo2RkiCMSq3zPGttaq1CyJwJgLWAUmuGGRpvIca+NISwkHPNFcEajEmw0FqdNg0jnZRKCUxBxsWlDClSqI2uBBsJxCXlGGMjlZC8WJ833VA8qGYYO0ppyhDAslkvGUipQgAxRECRHAFqpPUm11JrBIVgDDCpKbiEaorBWUcZE41MBXDM9gcVQnLOLbPW2mKEc6k5lQpALTl6l4O306QIrNGv2pnNlMSiLcYX1jLMeHDBBldKSsWW7GoB3nizmVpxyoBzzCijjMGSS4EV4FpRKRVhWGKOLjitYWKZi1bK3djfH/YIoV2zRxB5H2/nq2wa610uadi1y7I+n14o51yqh/t3KcYCTynFEGyOOWWwORczmFfbSAEgwVwKClHMOcNKWDfu+/3+9dRHpaGw1BJzTqpRTaNKjY+PBy759Twv67UUaLYZExw1RMmf3NYIvEJ4vZy10bCUWnJwtqTcCNHvBtVw70yQbM6+ggRLTiWEYL98/lJKUbKBNQnJh1JuZpOUBWBD9OsyYQD7bqcYXUPCStEKrk8ndCgAQJByCXk1WwmZIJJi9tqtN/3y6eXdD+8ZZd6Hj799xZhCimMuTIi2bQGqi9bGO5Ko95GYUE+Tcz5XyBDrdhKEBAHAnHIhouIYESnaH7//YV6XnNMyr8u0YtwFG+ym+66jTMaCfMkIw5jzpjWllAvRj0OJwfuQU5hWDTA1PodinqeNE7XoQIhommazdr1umG+lQoT5m3cfjg/3y7Iy2UJQY46Es/3dMedktrWmQghulXq4uwelXHYXxdnD/QMi2DrrnHPed40iDFnj26YhBBMCYQGCi0YqkHN0OXjLOYYQNH0DNFzmJefMGOVMBO9SdBUXwUSFlVEqmaRYxlhDygQixWgsMVj38nw6nS7Xy62CqtcNokQIwYSlUhGllNJUE0SIEpJL0eucYtr0th+bELyznjGplOKNandSDE2ItdZa58n76F0UAhttx93QtI1khGM8tAqjkkN4fLhrGCsp5RDstjGCQSXX8+V6u0glKWWXy0QIZUJgACjhUrJgc8246wZnAoJkaHeH4e58OXnkm0YRUGHOgvFGSZ+C3lYEsZBKClFg9c7GXCjnXIqKUQGwaAMvl8WsqSBWEySwaWTTKljKy9OzNpoQLBU38wJzaZUkjCnJ53mK1si+yQAz0YOY744HDGvJNjg/DKOUqoRUU4AgRe/NFrzx432XM44xHI4HQkjJGWPcD13XNtfrddm0aiQEwGx2POy44N77mDMR9PVZgKsaUl5OV0Tw+/fvd0Lqz5+mZb0t693jsR93OZUY022ejXOE0vs3jyVV48PucBj3O22sNva7H77jSpVcnk8nAKDR5nK+HoY9YXTXd9mn16jV+XR5fn7hSlprMMXn6TYvS61ZUJxiHsZeSrGeF86gEPwV3v71t4+bt9/7732Om7X269dPnz/967/+S9+1/8f/+//48OHD+fl0eTlvi52v0zj03/8//x8Y4dv1tt/vf/7djwThkgtBBBE8HvfOWpJLrhFUTBEdmxa4WGumADGIkvUwZ5AzxoRBZHzwm6FMYAAhJpIwC0PftN7YTa8++N1uL4VCGAYTOGOU85jituoYPcEYQ6jntdZ897BPPnoXm7YZd+Pp6Wlb5uNxj7vh7u5ONEJvxhin54kRVFO4nc611ubxfhxHJ+nlcokhcskxhBAgZ80yT103Dm2fx1xKPIxjTjnHjBAQTBz7ndc2p1RyHsdO9gpzUp/Kx19+fbmeEIYlx4eHN7mAb1+//PT999uy7of+zbvHL799IYwxgu/uHwglseTlukzTJCXnin/69vnNwwMkMOWEMSqllJoZJ9GnEAMXvNaKECAUEcb6rqu1Gm0wwkKI6OM0TzkVhCFE8Hq+UMqllJQzY8y2aowJoQQAyIVclgVAtOhtWRbBeC6JCgopIIiTiiDhjFDmgcMYM0ZFI6nkAEFnstWmHzEkKIISYYqoVoAYZ69WTi6la1UCCBoXElSiAxjPywpq3R/2IJf4+vXNOYrFx7K6AEG2ITm7QYJk37jgz9frNm+7uyMmbOy7Ho4xRYjwvL4mrTepVK71erkSirqmKbBijAFAFeZlMzbERjYhxhQjgCAkl1J6Fd0JprUWQSlGMKUCEbbGAozjXLlSzrsSEwCZYeSDVRTDXHwAQ8cBpj5HbVwGFTGBKs42rNZRQjAEu16pTmEMc/RCiVbyx7u7vm8AwtYH5ZDcEIRJKQIrBhXgQpDkmJJ5LTEX722qHuM6dApUEEMoJTNGGeGEUbO44HMtIKWMET2Mh/24zzkyhj2GMA+M0L5vSxI5xejWkjIjUG+r80yqEfJqgP/89GS0aRQVgoKaYrAhlW31KQAppZSSEsGoRATpeVusJZwVAKzzABRvNaUIpkwZbBlXVHSqkUx4b97c7Y/7u//+3/+HudwaxUsOnOGhVyX7edUQgXE8hphPl8tqbC7Z2VRrle1wlN1tWlyKBFJOWc0og4wEJoRTKZuuxRQbp0uNDWOgFAAAAijEPM03JUnXCQxJ9JuzDhO6G7gzPixXyDATCoAm1UIgUkI2gpcS1xusKTWdarrOaEcVyTmmGDCEetnMuj0cHnIp22YJFr4YHyLEkEAgKZaP+xBaAkGOXhI8NEqAWqJ6+vw1pRRCePvuA6Nomq8lp8Nud7g7AohSLT/+8AFzPl8Xr32wMZcEIIpbZEpSRKLxbdckEwWTj49vEEKyVYzx6+WccyaMpBjn2YRg7oZD14rL2erNccjtbNdpxRj41TJEdk3fMB6hiTEDVFJO29WGlHLJnbcEVlDAMi920xign3744XBfv3z+GnQIWbfNMO7Gx+9/8qtpO8mtI3bzMa6rJ0K8e3zshzHmT0JwpQSTzDpfIMypCC5hqYxigpAxNjoHIUghnk8vSong3fU6YYoRrNscGMGHww5B5K3xIZAGU0pDLpRihCR+ZTcKUFJxxpquw4hgTIxGVlelZNdIgkmFAGIkIAUFbc5SRGJMPgWEQYhh2dany0Uwum0bhoUxXAFmTAhCtlW76IZ+bHdjycWF6nM1LuLVtq1sEL2/f2z6cXU6hOJCMtaBChAiw27UxlJMcskpxFrBbuhIBUOrYM0up8Pdft90NWar11xySjHXZI0BACCIEEa7/YEQfn651RQbJc06cUoRw9F7B6OSveBtDA4BjCERRDRKGmOiDxTU8+2KMO2PYwbZxVDJaxLWK9UwLnyO1kbI2OHuGGC5rZuQEgNwPZ+FIMvt0ihFayEFhHVrD0xIgVPOqYTsFx+ssZ/WJQX39s1DI8Tt9PLu/k4xhkuByVMkMi7X88wpA7CWmn/3h5/satu2gxgSgm6XeV1nBMH7t+9STEbrkrNqVMqREMIZZZS6EDEjm7F6MUJxn2MBINVCId7cBioahvF2uwCIrLG1gGVZvPdCqZzTtllGKcFsMdt+GOdpooL98ccfmGDLui3L/P7928vpNN9ugolxGDBC27yVnAGAX79+zRAAUrXTL6dTBfXh8YFKcn5ZjLP3jw9U8GXREOOKwG1eY64DxiEGSpj3fnPGWJtSupzPINcPb9//3d/8rV6XoW9/+O675TanGHb7gVGKAEAAJB9zirLhGZcKql7XfuwIQdMyl1IEEwDjEsNh1+eYlnn22mBQcal+1YWnUgFBwK7bpi2RQg5jf3ekqDwc95LQb09PSaWffvrBbGGar8fdPtXkg1dccsyM2XJI+rbUXITipSAMKR/Ufr9HEB33O78ZSTlGuKYYlsQgHvdHo816vqUcGskgAEPfcoK3GFMMx92hH3qh1DTP3/7929D0gjFYYCvVMLZ923798unTL/9htX44HA/9OAwDACDX2nFqc7hOC4Qg5PSXf/vXUkunejXu/89//af5env/7m2uWRtdcnHREkwe7x6Grt+2mVHqfOCSE0qFEEqKvh9qzd5ZxQQntPjMOW8Unm4L5yKmFGNmjEmpSgYIkt1uV2rGGJnNOu26rhOcXV5OMSTOZAxxniZrXT+OXdvmkhHBwzBY626329v37xMAT1+ejvdH3KRpWUg/dADhkHLw5nI655B349CNIyHIOrOsW/C+3Q8Yom3R2jplA8XQbqamWgHKABYAMJNj0yJMmFKpVrxDhNIU03KbUsywARWCVJNeNNKQc0pQzQC4GJ9eTsHbWW8heuM8AHrTm+TUprBM6+V2W7XDjGHKYojLvCBYfWepIAAAF3xY5pCrC9Eua661FsCUSDHXiqVSfdfJRpZUYw7rsoJcEIaN4D7DXFHOFSMMcS4ZBO9rAEwpRkiuIAHoc5lu0+aMGjrJMASVCYlBhKA2ghGGavQ5Zslo1ynFed8ySWHbC+dZfjG44dYGDFDKOcaYYkAZhwgArBCX4DNAjDJKhUTg9QOolAyDC9Y4UIA1xUOk2rZtGykFBMBaE5ODNddWCc6VFNFazHHNsb8fjncPt9ta//8s/eeyZsmVoGe6Flt++ogQKZCZAAolWpE2PeTMrQ9pNJI2nG5Ws7sKKBSQIiKO+uTWrsX8SN6D2zbz7Ws9L8xMCobIdFlOxwtCmbGSR8wJIRD7lCmikOBCyJCys8oq6KPvrqdpnpaxrCqRQsIYpBgygiCFppIP93tOyGG34pjmoGK0fXdRy0BwpgiWghUFgwi065qXUsg6hfDLTz8u3tb1ppJytSPzMBNGJCMpwxA95SWlrKqZ9wZhJMuqaCrBq9u1+/Ll2Rl9t91XZeGUTsFpNTW1yJUsBbPWWa1iipJyghAvWUBJLwsV/H6/QQCPanLOgJyUmhfYc84YYSkGkFOzasqi8C4gkLXRs1pe3t42mw2hLADAGJWM3rpbvapkIREm8zQu40hZQQkKwYVgQUoIIxBATJkymqPLIFZVIWSJKJ61yi4SCOyy9NMSnCUIYkzb1RZTxgSPIczLlFPAEBitgnEII8CYUm7qRq11ShFgoBZdVmK1bQsuMIIUi3W7qcvKOKWtstZACDAiMcKUwDwqQoNxTmu76GWYJnGl/eUsBPfBUUTadh0ATICU7TbkbIchABwgLto2JDiHhCgDhg7dEADCgjEutbHB+xhjCaE19vnLF5/idr0tqsI5Ny4uBu+MpRjttlsQvNELRRnkWJWcCQExMipgSnKOMYZlnkCGICfvvNEGQsAoBSAxyqWQjFNMEMTYGue9dc4JKeqmpgRpbVwIShmMWQLQ+ay0n+0AEdzf7RA57va7SanucgUwV1UpJMcEF2XpfUopMVE93B3Wh32MoKxXGKNCiHVd1aX0ztZ17aPvL7dhWs63m3VBFiUXJeM0J6CdJRSN/U0BoHoIvVdt87sfvv/u/e8kBTgDiBCB5ThNyzCFlGQhqqbyPsz9AEAGIGKECcAx5xAjxNgOCuRc1WXIfrqNWqucI8YoRg9S7q99110zyJRRTHkh6uDB9XYFGFZNs6saEBLEEAV/6p8CggmCYZqeP39pqgZlqOZxu9/84Q+/L6X48zxtqmq1au/vHyhhwzB2fS/EYdvUr6+vnFGK2u16TREUBBMECYIZI2eNniEhRAqaUlqv6pzqnCDEgFPW3TprTSElgDDGSChJKSGEE4jLrNbrDcY45rQoAzBU2r69HjkXkUDtA8Zks9sfj2/x2ksht9vdZrv/+eefIcRd6hDCHz5+7MfOunA6nZTVH99/JYvi7Xya+rGoZb1qM4A//fTTssxN3YzDsF6vvvrwFcVYa2WUQggMw3D/cG+D625DBDDG9PLy1g3jv/m3/wAQooS3TWsWYxZb12VV1wgRZYyNMUIAYHbOvzy9vLy8tKv6/bt3BRMow+TD28sLI3xTNR8eHlMKRVF6H73zD+8fMIBGaa10SIFQggL23lNKtdbe+/ahmoYRuMCkgCB675ZpoQQFDLXW2tiqrkECwbtRmwqsi6Y5Pr+s9jspZck4TBFR9M2Hry+3DmPw9dffOu9Pp2OI4W63vd2ul7czhWh/txeS5wjbdU0ogRlaZT68e79fbctSjONwu1wRhKvV6rBp8X73+el5UfH9w8OHj++9d9frteuuKUXGabtpqrKBAFKMEYCCEq10jLEUnGIEYlDzXEiBCboNNzjCw8NdzvDaXQljGIPdtv3bv/19xnCax3/37/7D8XT8y5//3Fbtp8+fCQRyd385X3NOq/X6/sMHo6brrW/ban9/qKpSLerz89P7d+9tDBTBsqwoIZxTSlgMiTK6Xq8AgjBFkwEi2FmrlWGCQoL60y14L7io66IsJEoQAoQQLsvCOg8AZFJQJggTbSUJwd3tNvQDZTyjLEQBMOkWfT6dfv7pZ7Iq60xghnAedI6ZU0YwDc71l3maJ4gyyNlZJyTXzqScECWzcznEtqkZ5hDTkACAGBKKEZi1ccFhQaO10zjM85BTwiRTylIyPiwgAMJKSnDM7nI9e68hREoZKeRsFWJYTQtBKacwzrOLftaqgDi4ADOoSykJFQQXggvJjdG3fqAEEAyWSU/jDDGlnP16XlNKiJD1eg0zvF5P/eUaQ9zsN3VVsAyNj4gRjFjwSE1jjgFhTDCghEjOZVMSTOA4QIIJoRmgoi7FWsKQYnQ5WhDc0Hcgh5qvKII5WaPH6ElZIkoQhUkZTTL6dQLLuQBSzhCHkKigCGBZM4xJCCGnDAnGlGbvIcKYgoIJDJGzgWAsGAMhBmsAADhFRDCgJEeGcnazEpwQmDJCnOMMAhd4Wubz+amQDQbu15U3hjFBKEYrJa+rTYigH1QMAYIEvHOLTShT7CWFIPjkUAzAJ1cWMgZLMd5s2sNhwwgMdill1UhhjDsfXyhBX71/MMEwBB8/fBRlsWjz/Praj0vOxEdDMS/KllIKEKxapLX1JmYAg48ggrqty6ZQekYkMUFz9tGroiR3d9vb+ea9l1xk4xMIEaCaczsvtyPgQuQQ9Di1RVEJpuYRRFsQhFOYb9f99q7mvNNLiC4667WhkHAqAMqbdSGZkExWAs3TRCgu68KD4KKnjEUQEZdlU1ZNoY1at621ejRmGYbDfmf1YpYYrC2k5JLPWlVUnK8Xn8Oi5oY1ECat9fV0dj5c3nbdMLgYYfKl4DlDSRGhUI3DskzWGwrWq7o8a3s9vXEuOISEMDMNEMG6KgGGshLVqqQFY4ys1rvt9lCWDQbYeIVUyq8ZYaytsRZAiBiFIAPJKEYgA4dRiXDmLAsKKaSUcEbZNC23YRRFOd7G2ziXCaFugBFcL7dh7BHIRisbLSYUTAhmgCnu+w7kTClKMRqtQ/QLoYUUjBKtlhQDobiuGkbYNM/R2koIKZjklEkZUzbL7IyOXjBMMUAZpF/HDoL31lopBGeMYBJ8QAhxxlJOKUSrfQoZYAAyuF0HH0LIcRiXBHGGCELiAYUIHe53ZdOsd5t6VR+vx7eThTAjURa1KEUFEG5qfnegvBC77T4zvGgLGCWUOuNGpU6vRxDCkTKlFGZIOw+8K3ghZQEgoJgwShNGEGRMaC1YgTOJrGZUAoCDTSHHEJZ5ygAwSi2FOUKEkZn08e14Op1SSj9898O7D+8KLrKPRV1AAKbRhhi45F+enrrbRQgBIdjttgTTsR+9NSlGCKGkgpUFo+TcD//615929wdaNxiAoiiGabzdbrytnZqGqU/RL9NQYHh3d6g52q3XP7z/qiiKx9Wuv3XB+RqTSsqW0I2U3TA8fP1tTTgA6fvvfxOcBTmWBXdagZwQANGFbumauqnbGiOUfQo+vLwcU0wAAFmIpm6l5CCnX63znHLbNikEY+zpdGrb1a3vnXOH+7sQgiyElAXlfJzm19cnIdhqvSaYcE6vt7N3brfdcEGdR5vVximVfKjLovjN10LInOI0KqXnL0+fV9v11998/a9/+dOtu5jFHN9e26bZrjYwJ8kkzDForZblcNg7Y5XRRSG4lJvNt4e7w7LMw6WrS1kKmX1q62a9WuWQtLGAwGRjzDnBbLS69Zfr9eydvT98//D4UAlhtZmmwTvnF11s95//8vP9u3uHDMIQYeiswwhmmIIPwzhXVVmWEuYMIeScYoK6W5eCBy5ep8U7Z5wuCpFzNtb64DOEPrqEsLYmxViWspRiWm7zdaCQZpDfP9wVReEXg2PgkEjCSsmD0cYZSmlTltvfNCCldw/3CILgPKWUUq61Mm5IzjWl/FVF+XVeEyMEU8I4FZwgIGPKalmGvp/1NHW9i54SXFVlWzQwBclIJcRusxtIN3YTAhCBXBZyu9lsVm3TNF03dMP18HgnRfHl6cs4LS66Zr3++NA0TTNrVZaVmqZN2/z+h9+raXy8v//626+Ozy/B+WIjn58+vb6+xOBj8kVVPj09/eu//pkSdLe/c9bSsiirAsQUvAcpIgzVvBBOMCYJQMZojGmcB0IYYai/jSkFjGHOEUJAMRKCbXfrcZyXeYYQYUyWZfb+drncPr57yDC/vr5giouqOR0v7Wazf9z/6V//crmcEAWkYGJWyueIYG7bCgMCQtZ2MUohADebrffOWQ8AIBRTJpqm9JbM/YARaNoSYRZCChlAQpfr/PbyNHst6krIMueIMQQIUgqFoBAnDCsAMmM0OJej88bE5BljCCZj1OvzF7fZCVFAhBnHW8ru8GFV9VprCmNVFw/rbzlBktGiYO2qxhjd+kF7fxvGI7k6a40N0XvWVJTRruvPx1P0rpQiOrdbtUopby2DmBFKJJ1mZYNHIK5qCThx8wK9L6qKC0oZklxQTqGDKQaYIyGwrGX0sb8tGOb1ps3Zq3nw3kOKhZQAIRfdME2EMO89RTTkzAnDnCNsCaaQYON8ptiHKIoyA+DsNE5jjhEilEJEAFdFUZclzDCJjDBEAAbvx2GGIHPGmKSM0IhDipFSVJZF8g5A5KxdpgkRQim01igAIczbVauthSGZeVmMklJWdbMoi4lOIAmGgE6CYYgRKAtJOYSEcOqcB5lAmEVZcYhkyb03XtlgFolBISsIgCuLO0avt+v1eNrd7R7vdw8fPmRE1P/0P7++vMZEcAaQIGuWYbAxAc650cYF111PlGBUlpUQkjJr8u12M9ZYYzebfV02m7rZ1u1wGZIPbVkW6wanTV2yaegzjIKSMURonV/mAIGfZ0FIURQw5bm/3e93j3d7ENzPv/zoveOU5pwlo9b57EDQ/jZfAAAApHWzZpzJsgAAQQyd88M8jctwt98QBF4/fwrBzeOIU56GPpUFI6RqKgTgpBZM6WQUYnQcB0JQITlGCcOEQEQ53E5vEYKmWbV16a1ZtAU5ddfLMHRqnqmgCIHHh3exrY2xOTqrlE4qhvDu47vtYT8tk/GGCU4IaNpCckEZ9F4lRBHNEOWmqShBGOPoPQQ4Jr9qq1XTZACqpqKUeGdC8iGmFFJZ1taHfpr0PF4v50Xb6+329PxcV6+Ucmu9XTQmOaZovYYQxpit1VVVe+cxgjDDqiq2m808jSBGkBJGyDtHMZK8qKSMwVmtvDFaMgR4TCnliImoyso5BwBIOUEMQARaqapqqrogBNdVBSE0epmmSRnoQwEhhABjggXilJEYIsZEVqUyNkECMLUh+5hZWa437cPDIaYAETROIQy2+1VwnnEGIMS/Mqw4B2/DYKdbd+lvOkRRrurVar89rNcrS4UeZz3NIOdgLIipLsvt4SFjpLXnnHG6IgQbs0Srt3X5brcuISYxMBjH07EuCwCy00qWheQU49rF7KMDIAGQGWdNXReFTCkaraZxxBBVZSkKHiLlnA3TQChlnCs1K2MIJss8LVrt9vuyKAGCl3E6/fzptiyLDcvb6WpdihnknGKsqxoTdL2+3c43Sdl/9w//liP4h9/+DkLgjIbel4RMVuu+Z4S6aV6sgwBxCNdFua7L1W9/k0LklPZqrqQEIappDoY2dVOXdX/rjDKFlIsxKWUXXMqhaWofovOWc345X72zh/sD4xyCDCK8TdMwjGVd+pwAJdG70+WSMcFS6OCu4/j6dozBP7x/BBnGlI7Ho1LLYXdYte00Dtv9RinlXGCE3h3K1Xb7l7/89I//+T9Lye8fH6u2VMvyv/1v/7u2y6Tmpmy3m40zpqmrFP04DgiBopCcUSGEgzYE93h/P886xcQZm4a8vdsCCKJzKUTn/DzNRmvrnHH2b//hb6tV88tff1r0dZmGqqorWa+bhgLweLg7nY7jrWvLCsacUyQEO20Rgod3eyl4DHGZ577vYgguRMrJbr1LIfa3a8qp7zqYc7AOpeS1zzmlGHLOGQJECcAIMxJgdt65FMumjCkuatlsV7d+UHpyxnEmCIJ//OMfQ04hAABBu2qcdzgDPUzbTfOH3/5+7oZlmnAG2qdK0rqu3pZpU9VB6XFZMMFaKU7Jqq44ZTABb2yOQQrpouu72/HtOE4DyCl6M/fj9XTarlcwx6G/6bs9Z/huv4/Oe6clIeu23u/WCOJFLy5aUXIAMGVMFJILuTtsL33/9Mvnfp5lXbx/eJ+83zb17374/dzfmqr+3/+X/3Wapt/98Lv1dq2mBWGkjZ/18sc//fF8OqlF/c3vfg8QlozlBFPKRiurdfBBSkkpNdqEbEKMvBApZYhh3VRqWVJOzaqBEM3zvDtsC15EkL0L3gcIEeMso6ytRTicjxer1G6/gRByIaZxDDFDhI7H8z//6Z8+//LpYX8gUzfaYBHBKaYcYr1qogkhYsaoLAsh5aKWaR5zSpUsq6Zs1y3IHmWfoU/AgQyUUojwQvKQA2QZJZhBQgwUWGg9W2MRgFYZTBDnhCDkjFbDmLO7u9sVQkCIYE7jMA79BIPnDDPBo/dVwdq6qAi4nT2G4OPj/v5+77VW0yAl3a3LEBxyXDsoYbsui7qoLrcBYFoKviwKJEsYM2ryei6k+P6Hb8euez1dUnQpekjouuKM104vjEAqKWkk54RRMvX9kJ0vKm+WuCwAQ8qxm9J5Uca67tqtN+3dw30J4mLVZZh2hxVrm4SgtYbTkhQV9xQY5wbNCk5L4cY5ukgIxRn4FGOI2YeQsjXWOx99RBjCBBHBIGW9LN5azpgspNZ+mecMYQZgWUwVKsmZEGUKkVLkXIg+ckZgRjDh5MEyKiGLu/sdQdQF65yLPkIIRm1GNZ2HzhqXQQQwOmdiNMZYCJDV3rkkywoiTAgECFits4+MEDVr51xws54HYxUAyPuIEVfKdv3NO3+73frxWo9NSNA6TRAYukkZV7YieQtB5EwgGOuKxkQEPVCK7vb7w6qq6obiPN5udVF+fPfuqw9fz+OCElq1q0HKqesZwtumtONUEZIx4qU0wbdCgsJKBFFwBcMYgUJSirAxNgbDSF635V+dhTmv6kopbReDME4pHp9eF7VACJpV893339093BvvL92tv/TehXma1DT2D3dNVUCfjFJSyNW2AQhiChFGspDO+rKpIQAp5tu1s3pu17U3muICpUhBhhhxAr///W8BxDZErVRZOW1cfzaSsnq3scnaZRw6zikvWDWMI0jeGZuDkRSjFPQ8IowoYG1ZFIIhkIOz3geM6Dz3zppvf/ORIBJcVPPy/OVLTP7dnSwKgSH65sPHtmmHoTPOKq2VXoqmXNT0l798trOx3jsbgzPj0PXX22a/L+tmfWis0SDnOPvgA4AppYBQgjkgRGJwTiXgIkpA6+kC8/3+vi6LuqzePXzAEHhrayGtVozinH2KOcdMGaJCGGtvt5sUrF21hRBFUWBEndGUYIKRNRqA5L0HLucUUgKHu3tJ8ND1Vulyu6p5aa2P3hOEmRAcYuMTRAAT3N967ZfbcDm+vF4uZ0IIFyTnGL0d+xhCcNYTTMtaAgi1mhPEBGfBMUhhWZTXBhG6P+yNWnIKITgbnSQwYRRxJihlkHLwEkMVbDAZxapZVSVF3hgbbF2IEEL7+IgJDiloaxBA8ziDDD589X4zbxhhD493yQfnbLMu9WSU1iF5IUVZF2wmsuCyKDDBAIJhnkBO/P/+Oym44KMNwHkP8hJ9tun2fFpmFX1cr9qm3RCEBZaVKO82mx++/s14u0BrQEosA+Tc66efX55fQcrrfTkO0xxjWZYp5+1+G40qqzogb9XSvZ1sKQHMKUSUENuwopIEkRgiBIgQprXWSh8Ou7IqhmFigeQcjTXeOaN0rmtI8OuX0607t+uV0gZS0qxW7Xb7888/X7rjerdNMUohH97f/+N/+i9ciLvD7nq7EkAIJoziti7V0L8+PX391beUs9fXt+EySFkvas45Pzy8K8tiGLuK01KWL3/8UpTFP/zhD/3Qk7quq/p6Pp9ej1IUD493u+1azYua5kLyer1iVIyLqst6u9siBLtTByFYr9vu2l+v16oqg/dlKS+Xsw/+px//aq357W++55QfDpvb+eIxtt4DY1iG94c9xmSe5vVmzTlT1qSYKaVlVSTgpxEFmMtKyF832iVe5rEQBTrg0+l47vqSMYpJTmAYl5yzthoRlAmyKQlGMwgEUQ/TdRp2gvO6LCsZs6/XlVr0l9fP/XQLMe92++iNVohROk2DVxpFd61egnPRB874bt2UUlwvl5rzh91+1gvC2HnXnU+Tsbt2XVclSLAbxnleCHVcimWeCYalFJIzsoCqKFZNiUFOIdZl4dQSvG3q5usPHzAG3fGkjGrbVdf1P3/6eb1p7+4eIISn09FoE2Mae1ow8fB4B06g3Wyk5Nt2tSrLWor3d797fXkexl5KWTSFC6HdbTZqXIetNbrv+u9++KGtynlYfvn5x8262a13b8c5OVcVJcbIWts03AxaGVs1NSFk6MeU0+V6vl5vlJDtbhNzkmUBARymWWstpCzqYpm10pYXoqzLWan1ft2sWlkXGad5nhPKGUGlxk+//DyNQ1Gw7WZFFrU4b+umLkuJGlxQoYMqK+lD8DEatRCE6rpEEHAheEFztN671W4dfAQYGWsXo5mE2ShlFlnKommI5KKQ3loEQLDGxLjb7da7jZTSLHNnTCU5Y9V3X39T11WOUWs1FLISBaGiYEJb77xblRymEMxSEHjYbz++3wEIl8GIikkppmka+j741G5W28fdbTSj8VSWytphHMd57vsro7Stq7osm1KiHJq6NFbPi/E5r7erVbvOOYG8rktJUXbzPM/DNE4ZRKXnru9jAhDC5P3cDzFDyDhANAR/Ph0rIX1UPkVZ14iJSWkIQM5J+pQmPYyLUnoeNGZ0g7ch5XlRUCGYMyYEI2K1NdZ54wQV9boGCCQfIYQo5+id0TpYl2Kw2qtFIYIZY944BWEwThYcZEARTjE7n22MklOMmHHGKPXVh6/26411lrqwbttVtbE2nPoRdecvz6eQQdk2OYfolOq9txZknFLOEMqiTBDGGCilYz8GZbd1EWI+Xa9m7pa5Z4QY7Z1xnFbNarM73Bd1fevPf/6Xn90SIgIEovu7Rwz7xXlMRQIAJxiiwQjhX29jbnYOzCgXECZjtJlzCEIUh80dBaQUIvkYtLrfto/r1fV49Go0c3ddUrS2oJuSUbaqGArTMOslV21dV0VZSIJwMHq8XYIzxugcHCZ0vanLUo7jkjOYptkYTSBKKWOIk0veOOvN7XIep4Uxhikcx/5GoMD3tRCIc05oXZaYIWV01w160UKIqq4kk0M/7nfbHOt5HOwyv7vfj2MsOfUxE5jPz8/H05kXJWdMiIoibdumbmpK0azml7eXZei3u+16tV7VFeM8J3Dnt7/97ffaaevmsq4Zp6uyIhBBCGP08zQ76y/nUwZ5v9vjTH7lRPpbB2EYugokT2B+Qfklo2mZKOcQ434a0vk4zv35+IoR26y3UqSSi8N2rbQtqpZLEUMAAWEEC9YSwgglZVlgjLtb37RNu1qDmEopvXf90IfgCYLvHx6lKDhjKboQbAYAQoQwSQAE42FIcVHTspgYEEI4pIzJ9nAoBF+m+fjaqXlJIWCE1pvVfrvBBPoQtHEphpTi/625Q0wwWoLKOUGAQc6MEWuNU/rt+cV7b50a+ts4DJzS6EMCKSQAMOWceudyihkCyipMCJ9JAgiHYOdJEpIoqZq6qVqcEkrrquTeqG7oASHG+eS0cybGQDAiEJCUCkwExfttS1LsrYYgLvMYQhC7HYJZzUtwrqjr3WZzvnVG6egDYsJZm2NS8ywkC9HN4yILgTHq+yHnrK0BCEKCZ60pxpSSDIDPUTmXEV6MNsE9vbw+nS537z9kAGXTcCKaqmqatcCIgbwtyn3bCgBGa/vrEQHUrlqvlZoXQRmnVC+qKovL9ZqAKMry+PqqtWrbtixLCICgDCP4a4ubCxkTQJRWbTsOw6LMssyiFBjjGP00TcH7/eGAEV5tVufjWRt3PF1DdLdpQEIAykSB+2mcrXXe//Wnn4111vuyrK+3AeQ4z7NWKgTvrN0e1vvdNgZHMdquV3VVFpJVVbNqV5fb7Xy7wZT/+//u3394/2Gaxujcer1qmkbN6ttvv9ms1r/89Mthv1vmcb/f77d7QiACcOpHhKDgLDo/nG/1qmW8xYQsSuWYD4edd45xdvf40KyacZqZEMrq8/n8j//l/zy/HT+8/7Dd7iohgjMIgOFy0WoRnFV1k1N0MThrqraWQqQUu+PFWb3dr/1iPnx4d7g/xBQ///Lp9enzxw9fN00DACBadX0PMUkIZoK9Cy6nGGNC0KVktMGcPa7XH+7uu/F2uXUQUkjxohXn4nS6OOemebl1NwAyJaRpayFljHEcl3mcGEQY5LeXJ8nFdr2miHrrdMogJYghzKmUEkFslsUoBTMY+o5glFK6db11nnHOGZWco5wqyZd5oajZ73aH7RZlSAj88PGdmpTRSnBmlS2liN4/f366iYtLEQBAidDK9uMXTnlRlM/Pzz/+9S9103IhSlm+u3tspMTb/en16LSCdfn+8ZH/v/7HT58/OeerVeOiBxg5Z5hgouTvP3yAKf/y8y9zPyX/eLe7M0phCBHCCJOckrUuA9Cu2nGajqdTP/SLMt989w1hzHvvrG/bBiOUAUo5ZgABQgyTVMJ+GJ0KGcKcweOHR4aoLKWsZOvjbOanL09PL0/aLnVZ3e0P7969J2XdwGX69Zm2LCvgcaReLyrnHELMCJRFIaREGAKEvLHGaB8DphQRmiEICDsIjFaq68Z5oVLIUqSckrHZ+IZLXETKGIXMLYGCFE3WsxWUHFa7w2ZLMdZ6tilXQqYiGxvNrJVZ6nXNCI8+GOMoJJzL26VT1lR1TQppMjAuzhEDgHQ3hmGMmd469fx6hJRoa6y3ECNrlMGAoohy+3DYKaVTCoIrbc2+LjBMi1ZciP1ugxF8mee3t+Oi1cP7jx7kc38ikNaiwgBjCITkiBIfUrBGqeWIn4jAv0pf1pjucmWUKKWefnmCiFhlh2HSJrSbdcaYS4mpiDEijHwI1jtjjTbGOlMW5X6zIxRPfnTeSsa44CBW0YeUAIA5pYQyxBAJziDM3ru4RE5olhQTjBACADrnK0CCS9M4Y4AZYQVnzuEcI0MAcwZDHK+9M142DWQ8eI0Jk0VZFYVejIO+llWzWfsc/aUXBYcYoYgYF0SweVbjbRinrmlrRvmveDkDucACczzOx3m5Dt243rW/+c1vQ4YQ8fOlWxY1TrOPgQkREdBKCU5h8k7by7KYScUE+2WEBAO//VH/ta3rui1XdfP4sP/6q/e382tyN90t1bYZLxcEkptHURfQBxoTg6lsSlnwouAEAz1PTV2kmJahm5dlta4Y51IUBQdSyBDCer3Si9JaE8pEIbVapoFSRhmAleTzon788S9qGoMedqt2+/CYQtBKeW9CxOMwno5H79yqXdVNXYqKIuacU+NIIEQhP//0mQnelnVRVLIsjufT9XgKKd/dPRAmYYyP213KwQe3a+uy+Pp667jgCARZcABzCOG333512DbXLu3XbVGXb69vKDiE0WrVZgBv14td7K8rrJ8AhBl7H6KP+dfKPAHRGy6590YvrpsmykVV1QiSYZysTdvdgWJCMGcsHdarsmoxZ8Mwz/OcUlhJAQCgjBCEIMLr9YZxdi4rxnlKUJtZcgFjWtettjrGQBCmGE1D9/TlyRmXU1SL2u3WouCDNjQQb6315qvf/CbldHp7mz8pqzUjODmv50UwljIBIIGUhKRlUXofM+jmefI+VJVcr1dVVcAMlFbEISZ4UVY+giy589kYBUIcLr0UcvXwNRNEz+r17cU7Kym7uzsUxQghCC4lnCjFj3d3UkhKORWCy0oWJSRCa3U7HttSHu6+OXzzeOvOL89HmKNlyNuQg69kKTmFku3X7bqpUE7emaJgnDd2sQSR6+kScwQYbXc7WTTWu4zBOC3LPAtBl3nxTk99DyAQooAIlFWxWrXWuevtYqwNKSGM+n5w1n74+JFJ1k3zNL2UZYG4UNYsTtOCj3rhouQYi0r66H/+9GlTSI5yhWmy9jr0OPrH7T7FmAF4+eVLUVfrto4xJQAoZ19983XK2TnjQvC/YkuhZxiv1y1jVBQCYkwIiiF570EG4zRdLxdrHOO8agrjLII5RaS1YVRcL722XpYSUQJ9rjar0/l8e35hgp5PZx8CpcynNE7j4e6uXTX+dLbG/7v/8G8OuwOCOPpU1hUAYFlssNe6riSjUgrJWMhRUlxQ/N3HjyFGEOO6aSWlAADr3A/ffyu5zCA/PNyXRVGWdSFZypFjmiMAMf70808QgsfDHcQYxiA4TykBn6zV+6/fW+u7sb+7f7gO17/+/FMhZQ6xG67LuBy2dx/ffUQQCMH+9ONf3t/f//Xp6eH+kTGklsloTRhpmkYyEo3NzuHoJSKqG50z93cbO0/9rTs/v8hC6nGctepuHS+LZr358vQ2aeuH2XmHMUoQI4oJQCWVrBTKOtSNq82eFStjrNL6+dNzUVWU09PpwpgACZWyePfxPeeSUKbNMp6GHGO12W13ewwgTNDHeP9wbxf79Omzs4Yx7qxvVs2ips+ffqGYrtZNURXzMl8u10WparWKIWKEHh/vh+sNYwRCSol+9e5du1pP8xys09MSQ1TLTDA6H48gxF27utvvIEYQIcxYUdQueXVbsJTbzXaeFm+t0kqp5eH+4fXTl05KtczX8/Xlc3zerP7+7/7N3d39otWi9I8//3zrrk1d1037j//Hf2KMvHt4zzErpZSUff3xa28Dwhik1PV9UZWUkEvXOW9piN7FZVJlURVVU8lqu9nNy8IIlbIIzr+8vBljOOchJ5RxzFErtdput3f7663DFC+LQhS0bb3eVXjE//P/5396O789PL774bvviqJ8uL8jq3ZdFmIY+6QNAgRn0g9TDL6sSoyz8zY4x4TkjMaYnY9ORyiocTkYyygABBuf5nmZZ4UIFhDN/TCNMyW0bZpKSA7Rsti5m+oGJspRBhiiuqjWTU1ADnoJRhOYfc6MsZS9sb5dVdvdBsTgrCdMUoh9QsFEn9FkXDebRZuuG0DOEGTrvc3e2rzMblaG16WsKhp4TjJHG53hhDzeH3747pvj6TqN46Ztfv7l9vO//oVLWRTVMozOqM2q7m5Xow1nHCMCMUQA5gxEUVVF2TQFJkhp1fU9gXDdtvvDvt3UlOEU4i8//6TUUrf17dYN/cg4Tz7O2roAA0SIH5u2LQoZYkgZG+OMthnkFLJRDmZolGUUz/1kvSNtQ6WklKIMGSMgpUIKTDHnDCOojAUoc05TiM45nIDRJmeIAcZ4MlbfzrfrrXv/8X0hBULudu6NXggSIKd5nJdZQcoQZxnAYZh4zpTTaRoHbXlM9WrDCoEoVHopCpYF5UKABIz12nlEOREFY0XI9Habhi+v125xzj1/PjLO3j/uCg1Ob51PESC0XreFFBghZRbEYHA+OZNQ4JIUomCYcSGtDdoj56NZFCNCLTOC+d3h8PU3j0t/G2/nUlJgaIFJAXfX4yk6O99sUVeC45z5erVCBM/jBBEMzsdAKaYxOUwQBDBlMM5zVRWMEQiSWxSlpGnvjLV9P6ScRSHaVcMY1VZHb5LzkgkMccq5Xa9j8EqbcVpSihEECHJRFpv99nbp+ttAIQE57FfrQohFjSkmwXhVlWVdQwT36x0C5O305owmmBaUV2VprB0miwDgGBeMQwgRhN656+UqCqHNdh6XqigRJdMydl03dH1ZlQ9370IMVtmcQNusKCUggXmZAIBlUXz33TdSsuR0jNFZl4tUlPVigw9JmTAuy6J9u9ocqg/LMJ1Pp2maORcQiY0sg1ZumQnGlODgPMZQTTPEqC3LZrNyxn758nQ8nkKId4cDxogSvN+v9aKvx6OpypyT9y7njBARRYEIy5AQLhDBCOTo3fPLa0rBGMMYmdXMCIYhy0JKyjFG3llrnTaKEsoY54zNswrBh0BjjCFEa80yL8usAABN015vXYiZULZuGkLpN1993O024zCmGIpKqHl+O72NQ2+UWualKARAabj1dVX97R/+8Jtvvw0unm+XRbmuOx9P3TIuMfhaCsricGvnuYcZ77erw93OajMNY10UdVEQBNpSlpQSBBBGXJTOW465tZ7keDqetoe9EFIr9eX5CWIshMCwgRC8vL5gClNMmJKcE4QgRQAgwpRxWSDOQ4w/f/pS1uW7r78apsUPPcZwnpZRm8mYTHGCues7at16izFGb28vOGeGoKZ0U5VQcERJVCoFK9drjKAPgVKScjieTrIoNvsdwIgQknIeF0cYXlerghfO2uh9TCECbJ2FCE+TzSmvNlsCMYSwqGoho/dBFhIC0DarkFLX9cM8am21No/vHjmGL6dTyOHp9fnL56e6qdp2/fBwwJBO89g27TfffOOdL8sCA6iGJa9T2VS7H74jmASjo3SF4IzivutziLnNSimj7apuJqVutw4leLjb2iUNXV+1zWG77frBGr1Zt9vtVs1Ld72O03DY3UkuTLKIIoapKHnKaeoHxmXMWQre9/pyutgQfI5sGv781x8v/bWMhdfWGv3+w8dvvvq6LIoY4zCPm+2uH8evv/1ms2qN1ufzmSDKAmvfN8s0X87XShaMkOiD1Y4Skm3ql+vbyxsnrJTFNI/joodx2pWFLGXZVGM3hJyM9yUv66aQUkKIOGOY0b4brpeuXm2iT+MwT/OSM3Iu7Pd3lVwRhimmCCIpCmud98F6AwFEhFDGMKEIJBCB9e7SdWZeFquqoih5Yax1xqWY23aFCK6KMiagjC2qotmsU87jML18eZYFWzV1IaVd5l/p0fPb0XhblmVK6cvzl2WZV20rhXTLAnJ+fHyMMfTzxISIOSljMKWIkEt3ZYz+/vd/M09z112lEM7589uxriqMUXfpuBB//sufMGNvl3O9ap7+8q+n0+nhfr9fbxLKOYPr9bxfbe8ODyBFyqlWalmWVdMQxjIE86JcCDkD5/xuv2lXbUpJyAJiBBFcrVYpJm1sjgEi1LYrjHHfD0JKJthqteKcI4AQhl3XO+sIw8vL0g23Yeids9//5ru6av/2H/5+nJaUEskx/oqvZwiM00tv+lvPKNnu1oTgRcGUY0whJpwBDBFQIRHnTumc87RYbW3wIQQAAMIEL9OyjAulmDMcjCVcRBthyqtVXTc148RGt1217x/u3t3vs3PBG44BhsjoKCVpVzXAhJWCC3E7XSEmZb3OIWUsmeBq7L/88pZS0tZe+5lwKiuRcpwWHWPebg7Nds8LHmNWepSSwuj1NNaS73c7r62ZRq8UxsQrkxJAAmUfEMiq69Mym3mqBIcEWzVFhCiCEKKYnAtI6YwxNFqB4JtCFmXBMIrOO6PHvpvHmSBMEVut1xiznMH1dMWUbNYtoWxeZhtcsUgIQEq5KkvGEKW04IxCghAMi4UMU4QgoSlEp423NvkIEqEIFm1tvU3BsUJkQQRnEKEUseDEKuOczSmBjBkn1tuyrTKMMYZh7IwefTbAIyK45ExwVshotF6sNXZpJPUpROUyAgAlY+a31ydWFMs45pgQSIxQPSU7pWkaIAhCCjU7gxLEOGMyzsviAkSYyEJyXtZryorPX54pZZRyWZS85lIKm/Q0zTnm1bo0Rv/q/+72ewDAPKucwTguVOCyoiCBaG1/vnz68a/J6s16NXaXvrsBWQiMS8m8yz4llPPSz8qaw/6xaErr3dANCUSMiPOaS1aL0oeQEbr1w/VLJwgZ++F6ue4Oh3/77/5D3w+n11OG4Ha5aqV8tE1ZMIYJ+Cb4QCAqyup0vel5uRzPMUVKyTgP/W1cbVY5ZwShdkbZ0NZV3dZWa6XVfncQgjnvze0GISjKarVqvfPjNOcQKUfzMArJEcrTPChrUwYYw4fDDkPW9zNCdBiXarXa3t2JELyN+90jBLlqy6qu9WIY5lzyD+9Xzrnb+eaxgwhSginDOcehnwXD87y4mIqyNSF0w6zsdVaLrGQmenYxm6hUGgcbgx469fGDvl5P3tr94cAoHY2BKWKYQU5aT9bUnJHb7TjPQ1GURcFzTil5zgjDZdf11i3exuBdVVSYcohQURbGOWV8yoZQoK259d00D8GH9boRlO23u/WukYyaabbWMM6cc+Ntcta/f/9Y1433wXqdc9R6Cd7M85JzIhSN49D1Y9m0p7czE/Lu7l4WIgb/y19+LMtC6fnly4QxtE6/PD09f3mqmhLjTY4Z51iXTBCAYvBqOT1/7rrxNqvLbTTaY4SNYJICvV1BFEtRecW5zAyBklMCkiREMEwySNYp7RhGxrppninlWluAwN3hgXA6j3PXd9fLFVNat4233jl77c67w2Z/fyiKsuu76ALCyFgzKxNB9iFd++54OZvn526cMUE+eq895fT+4eF6PF67/jKOygUWMqMMg0wxQymn5Md5Icm1Ymu9g9EFb7vxVkpJKKsq+XY+TUo9vHsfQMII+5THeXx+e7PGrNftertpt+0yzAiCcZkKIZTS1+uVU4YJstrGFNfrFaMMEdz11xBTRuj19Ygw2dzd/fXHHx1Iz8fj5XJ1wSSQlmVGBJdVXdfNw8P7t5ejd+G33/1QCPHj03NKQSs9DsNvv/8e5CQpY5RnQpqiQCAbbSjBKSbnnTJK8IIyii1dtU1bVtH4ZZi8M0EzrZa342tZVGUuv/z0mVGkZgMzjDY8nb4oPR/2u91hZxedQqrrWsgiZRBzEpxb48Z5Rhw9ff7ik/fZf/r0BWO0qtsMUcbg9fR2vZx2q83j492oZ4jhQ/neprjabWHOCKLrtXt9eoYAVrK4nq+M0c22zSFbpdSsMMaQEGu8iwZLLqVc5kVpXVdV27YI48v54qODAEIIV+uV4AIjHGxkMe02my0iL0+naZi//vobWYiY82Zdn07HEHyO6fxytM52XY8IKAoppXRWH4+vlBBGCARALzqlEGJcrddN3apZQZiDi4xwxlmKyShzvp65EFWD3t6Ov+Z6oiuAD2fzAmHmjJ/fTsYqRMlqvQMoq0WP87h1G8poQVaCkm27cjGcr5d5WbZ3hxgcBADCnGLshhuhqGkbLljOyWiDMcIIAYDKqqrq+ni5JAz++Oc/G21sNPM0LePX7He//f777xkk1qjj9a3gUlJ+Pp9jDBAAH4J1hnuRc+aCF7IklOy2O6WU0gsieJqXX7EMkIEzJqW43qybuvHOAwBDDH3Xbw87inEM3izGGhOCN4vquu7L58/rTfvv/+2/2+331jo1zgxRADMZxh5TKIRQwV0uVzU6zrjW6vV0bOsqpsA4TSAuer5dR2NC1TTARW0cgNjbYE2gHDOKCMZKzWpRjJG6khhCAFL2rpKcc4pwdmaOAeUYKAVVKRhBxjhrVIoRYoRRjiAiBJhkEIEYrY8OQhxABBibGINxt244Xa7O+mazaja7DHNGIHiTIhKC7w4Ha611xlkNc8oxlkJwjDgE3riXz59/+vknbwNkctOuhayKoowxaDUbO8MISilg8uM8W6Ox4CUjsiw262a9Wcfgnr48xxhTSggmDDKIYenVPI1aKxhT26wYJCqCddsAAPWsESPtfosxARlAhBGEOYGccojOahcCgSATCpumVctsI0opQggySCH4YANBAIEsuWzaOoM0TzNliCUUYrLKpBQhYCkniHMCmSDACxZNEIIRhqZ5NGb2bkEYIEgzyCknY/XQ35SPEUK1zAvHQc+MAkKJ1bZXM2W9kBWCKDoLc9pt1tEn50LwngsaPXQhMIFhSrwoGkK5LECGvjQIgkwQ4dL6C0IE46T1gjwOMdhg1aIF47Ioi6LMOXIqg88uOGMtyHFVF5jzZegAhN56pwYA7b//d3932K9/TYtroxLCAEFZSJJBjNm6FFKKGRAuV/u7hEgIHuSsJrM+7FMGYz8gDH7t1mXGVtu1sQZiOE5DUZbvPn41Lp2xOiS32bVlVTjPKYbTqEpZNOuN9UGHEBHyyXtr58VMenFnH0Ferdb1ai2FoBC6FPp5hAR74C+dQggyKpwP0zwXRcUkTUNMwXtvMaEhheA945wXRcpYNvV6vaNU/g0rlF64EJRLZf2itWzr7zdba0x3u769XQimVdMKLiln3W0EADAuQvAxR2O0076qa4JRUmoxzqXJ2GRcmGatvfMA9LMCEErCAIBF3aYcV3Uly4IOFCGw2awZYzGHsiiNUdM4nV7fjNYZAhAix7ipC8Fx9Fm70F+vUjAzTyEE7/OyaEaoQARjknKexjnGHGLQ1qWcIcwYIcw5yGBeprauiuJu064V49fLZVoWZ+0wTYsyRVWt16vdfptgjiGCGIdhiCnFEJdFvbweAYT59XlZTFlW89yH6OdJEYSk5CF4bUzTljGGy/UUs48pTtPonZun8XR8dYuupYQAtlWxXa2v04LJs9EuBXC32X398XFdV9bOzjgzTTBGQvEy9NdFV79hHMoIstEqebtdrxCCIIMQQoy5kAVESC0GEeRdRAASjGKIxujr9aqNEUKWVU0ZrZqWEe6D//L00o3TsIwxAeP9qI0P4XzrUwqUs7qsqmZVr9c/FMX/7z//J0YoL6qUcwrOGV1upKDMLAsCIMFwG640xIaxupTWWuQQ9H6cptswAIxP3e3lduGFfPf+YwTw1N1upwsgX3/MyKcMKZ7GWSvlvd3v9t3tOi9TzkkWxXLr4jLXdcsJYVzcutuXp9dfnj7zUnzdlAnjn55+DMGPw8g5kULud9v/+P/8H0KICGGtVFGIsnhcrdqi4FIwY0JZiN98+w3BsL9cWEqrdRudY4RiBPWivPWP7/fzrAlnmNFhmpOPkjEpGSUYg0wg4oygBDerdrPdEoyPr0e9mLZpNutNSmGexugTAJAzURXVMi8AQIxRymCZRkAg5gQn+qc//el4uVJBfXDGmfcP7w67vRRymKZbd3t5ftFa3YYrxTiktBk6QmHMeRmnQgqIaVHXBRcZ5kXrEGOb6lktYYyYYICwdX6eexM95RxgbI0y2gCAKKVc8HbddF0fXMgE1HUFEhRc7O+wc15wsb9/6Prx9eVtv9sjApVaYvTeWqNUWZR1Va1oJaWYlyl4LzmXQhRCcsFePj8LyRc/vb29/d3f/4OJznbX3XpDIOKUA5hCjOvNOoC8GH0+X8dFBefncVqtaiFZd73EEKTggnHCkPNommaICeEsw5wymOZFELZarSShCWaIQd02+nrt+wEAYLyrMQopvby9Xm7Xv/u7v3/38V0/DC9vR0LJYnQ3DUXJ//Lp56Iuzqdb343jPLpgOCNVVTzc36+aBgE4dtdxGAvBv/74VQZp0SbHFLxXWt3d3f8qLgrBm7YBEC5KjfMkhKCUhBiHvi8KWVSlVtqH4LzLGaScfi0Y5gyss13fIQzX6/Yvf/7x008/F7U8HPY//PYHDPE0jsZoAsnD47uqqckyT8syM05t9Ebb1WpLGR2H2/w0dgXnjG73G16wZdZvL68AkpQggBhATCmWjKWcMsiSs5i806CpRFOVVlsIU12XCCJCmAtRWY1AhABZtyAAYzTjmMbLLUYrOGecB4gW46Z5CtOIMO76ARFSlW1McVlUkQoEwKCmcR608aJtNrtNzMF7C7LDOMfox7Gbp+l0OmaQYE4Yw8NmxQgq20ZynpzHCQnGIYQlF9F7GD3O2S5LyrZcVYRCDEKOQRkNTG7X66Yptiv5cL8euv4tewBTzBGCyAgqGXUpuJwhos1h17brmJI3LqXkcxCchpyzc4lETimXPMasF5syNNYGH5TNIOe6KjGFEAMfnPcOQRACwglwgsuq+PVhparLEGzweFlUijnGFJ0PIWCYGaWCsQyzoJyijHJM0atlVlqFEEMG2YdV0dSr5vp8cs4Yq7zLRVmZDLwxGIGUkvOOUMwo1naOIGzXu0X5UvAcIiKkWdd1lNFHACAXiXAeEsiYsKrAjA7DvJgFwkQXTDj+FbNerdsMknV2nJZFKymkNW4aF4Rhu2r0pL0Pix5TCAxhKgQIPgWrtJmmJa7bvTn0w5xBCjlX7coMY7COIRAzUMY5HyDnwMcfnz7tvBVl6TLUxvddP48z4oV1xgcPAcoIikJCAHgpvvv9996HxS8epWpbYQlfXp9xgRLOyi7eWS454SIFoJ2nhBFZUO9PTzeYc71b7d/fd7eLh8lESxlDgg59dxkvDKC6LKy3zhiMya+ag/dxnmZjbc4pgoQIySBN85IR2u4Pjx/eOxczo97DCPHh4b02xnnvQlLXPuTIGKc4LcZa67tu8D5wxiCgL09vCcRNu64zsMZACJx1kJKibGEGADHrtPUpQ1St2snY8TYDgzNIhFFcrzAASJBSVqv1hkkeUbLeLVqP8ziNM2Mshphzii7cTlelF8bI17//zmirhqGUnMEcjB6mMTnHiYhRS0YJRBhBjNE0TEarsq4hEi8vT0XB21LsNyshBWEUZBBTUlbLKBNBg5qHbsg5Y87ruhJSxJxzCLfuWhSFXpbj8eSddc7xglOOQoqvr6/auHv6kKDru76QZbvdgpQRilWzKqU0zj6iOx9c8NEZnXMcxj6Y8BNEq7ouimK/3b1/92G1mGBjyOl+//D+8WHbNm5ZuivSeaGc1m2JKbHL4rUOwaXMAATLPNVFIQvedwPjLKZctzXC+Ph28sE+vnukhEAAg/OE0hgDl+J9XWGIu76rmyYDGHNyIb6eTj6mrptmrYu6Ptw/Kq3Pl3OMab1eMZkWa+fZjuPycPf4cP/hNk7KKet8DA6ARJmwKofggeDWB7XMgWJCYcbw+Xxy3i96RpQBBF6fPt/6QdaliTmBNFtDqxIxNurF3kxOYbfbi1qqZT5eLtqb1Wq1LAsvCoBAP43Xrm/X7aLmmFIhCwfi6/OXXltIoAd51ppJ0bbVul15ayXn+4+HGPOPf/nrNI2Pj48ZJOPMx48fnp++1HX9/W++v57PnfXRBT2qeRwKweumMlpBBAHMPgWll+7adUP/1buPCGJnTMywkkUKgWG83qzW6zbmTCml798F4zAi09CP44gQev/+HcjRKl3v99baRenxOlrnlTVY0NPbCyCknybj9PH8umrX333z7WF/+PjxI4Ko6zpl5kGNT69PjNJ/+Pu/va/LUc16WQjEwzQvSpWF44yGlKJPoinHYdCfn60zEKG7+4ODWQdnUpiVGY5HysV2v6OUrrdbNS+n08laUwhx/+3Dql1RSvWiV+u11kZr211uXz49z3r84ZuvqBBKK5RTjGHXtpLg7WazP+wXvTzs95+/fPr08y90v/72w4dVu7pcjqtaAggHNc3zAGB0zkEIUvKYyIzh48OdMZ4y2k3Tert2MQzjKEuBCS4FU4sOMR4OW+/9NI3tqpVVGQFQSumuk0LmnAglUhYAIxOcnwfCCOSAlWwcJ4RxSGmYe2NtArnr+y8vX7TXGQBaixD8rZvmYPvreHw5ffzmq5DiH/7N75ZR/fGP/1wXxX63SzH8/OOPm2YdnJvHgZF1zkmWRT8MFJNF6xSz4LKuamusc+F0OjvnY04+BDuOddMUZQER3KzXBEMEIQDA2TAOg3MuprTdbquiSDmPENZNgzAa5+756embb77aftxJIcbbYJZFa9Wu1in6cRwJxpgyPqtFFGK1LSEA8zwjhttyVdYlhNnFcLleXfC84iATyqkQEgKMEJn1Mg1dSpEJFqMvBIMIUoyKdd1U1dR38zILzgEhBAOEAUjBGYUxTinEADMCBFFZlJTRmGFCSBs3TQphAiCcpoUQRgiNOSozE4ytsYjiZehv/TkjXDcVp9ClhEFKPnmjQAzZ+5g8gVCKInkXIgIxpRhLUTw+3C2LttamGMZ56YwGIDmjhCQpxJBAIWRVlsuyGOsqwWhKSanpeJyHEQXHCcMY3Iax94GmAEDGILWb9bsP71ME3TBySrxLymiMMYYIZhhdDBnlZK3186IZ55gSTDHBmBIiawkp5lXBUvLeemujd96GFLBgjBFeliUC0DtntfHWwwy8D03TMEZiChDCQhYAZZgBRlgkySgd+5F9y4uyGpfOOeVzVsaFmKqmvsPI6di0m/1my1iuJF/UtKgZEZQQ0M4t2qzKVYHp3A/Dta8f9mVVaKVH5TBCTBBMCYIwYxJBBiDl5HIOGOKc4zT2XFBZsKoWIUSll2WeIUKMcYxIjDn6MN7m7tYbbyDMBGNaVxAmQkhZcExghkkWwgf386dPTVsikE2MymcEYDfOZja/SjNEFIO2t/F01bZumxTBPAzTOBZcQM6WaXLOMsqqpsk5DrfucrvVTd0Nw/HtZLyvmzqGlICjA0YwQ5AKWZRFDTJZZuNdhAhBgKy1yzJZY4qJ/YrTEIYv/Y0RQhBFIFi1tLzc/e53nJOcw9SP3hopZUy5WhdaLSiDddus9+thGPRgRCnbZvX+3YduGH9+evn85dUnSGnhvFPWeOCWZQ4pgAyMNvM0MUxzTs65QpSccTUv94dDDkAIQRC0xql5cSFYHxhnEGdrrDGWcIEyNUaF4AkG3ruckxc2QZx/rQVHR2Duxj75+HY8ZZgIxNZ6a6yznmJMGYneE0xWdeOIXeZpU1ewLEOKl+O1rkRdt904I8JYUZjgrbPOOVHwpqm4IM5rgtJqVeeYlNYxRICgsurPf/lX/gvnjFFK79+9m6fxxx9/Or4dc4J1W2EIlDHdrTsej2rR7appmtYn164biOEwDyHFFD3B4quv3+13O4IxwTiEkEESggcfxUS9dxCjvu/Ox5MPxgf/djr+r//f/2O32f7+tz8Y65UJt+5qjL0ez9kbv90xDK1auvPZOb/ebu4e76pSWq2Or68DI99/+83h/kAgAhBRShetRVGGEPrrLeXIZWGMAwgiDOdlMc5BjBBEZVV754bb6ELETDDOb11vQsgAQop39d3h3eN2v399PdqYIIZt1RBKRVneP74j9BKv3hhfSJFBopRDgqZpTMEHb53RBaOYoEHNDsEM8mSW4TYZ7wCCmBBljHIOYgJC/OvnX7QxlFLJ5cv5Os5KCm61/uX5FcHICTGLef/ukEA+ns8x59VmlwBwKbgQZVX5FI7ny+l2PZ0us/Wb/Xaxumrrb7/5hkHorQ3WjeNYVnXf9cM0Xk9nb13zh78JIXx8/z56Lzgf+85r9Xh/V0pBMQ6G55jGbsQQ8rLQxrpg344nZ21K+dPPnzbbDSN4u16XhTRaNXWDCAopjF1flVVVlwaAHOHYjxmktm2HYQAIHu7556enru+MtZzLBBIgyHh3vp1NiN/98M2f/vQn58S7h7sP796XhWyqOuX45z+/Xc/XlHKzatU0Y0zXm822WQ1jn0MkN3Y7na/Xrm2bw+EuBH85X7x3RVUCipdZ3X78kTIevBeFFFUxqJkwmlIGAEEAfsU+U6Trzfr77787HO7mYX5+eh76oe8HH0IC+dMvn7R2u9Xu/v6uLotx6AGAq0rGuF+v2xB8f9N2WdZ1HR/uPzw81IXsLyejVNtUbbsemqYoi6ap26rxPuSUtZkRyCxB7/Stu9Tr1Yq04zTLokAIWW2sXiCG691aG+ucgyDbECghxlltHRM8+jzO03pRddkM0yQphTGaedTOOB+rpiGM5gy+PD+P0xRAvv/4LhP0+eU5gkwZ10Y/nd++fP6SQGybpt2tfn/3+1VZHU9v3trDfvf73/2+v5yNUnS1e3x4iN6fT2dG+N3dzhhz/9U3VVkYY+u6yRmknOdpdD6klLb7LcTo+Hacpnm3362363meGGNM8Lqqhn5URjvnUkpVVaWYZFVUTZ0S+Otf/9UF+/f/8Ler1Zox8suPP338+DEGN/TD69PL7XhlpSRl0xIpIoQhegoAZcz7sFo3VVUWVRlS6K+dUjaBDAnJAVijAAjOBme8DyEFDxBQs+EFIwRxxjHMCCS1TNM8aWW9dYiSDDNEyDmbcqhrWRZlyQXIyGrtU4YZYsI4IYgwQmSG+NbdBj+Ny1DVVcY+AqinybhFcLLfbWMMY3cpC0qoYAiRnAFEMIRtU+cQprHfbteEZK9N8j5Hf7m8zpARSkAOCGUpaU5ink1wvmmqlPwyLVzQopSFLCkWKQcEQXZxuXTm1iOMGs4jRJgVflG3a4+955LnEAwiYz8obebFGu+c92qxBDNeSMpYP0zOakx8hsB4a6InXBAMEUrWOz0Z0N8QQITiGDyIKfmQnE+EKGcggV0/YAKdNYwKKQulTFnTFKJW2gXHOOUS5ZhhAgBDSjlIOPo8Tgul3GVkElzG/qYt50W7Whfrdu4XRvi6rXOOdVlXddv1N0xx1VQ+uWmak40rUfeIKzOLRgQQtdZjf4MAlmXBYowQQEogpQBkmEJbS4ao4IxgiAEY+gsA3gd/vQ7Be0TwcBuKQnKGTfTe2RQ98IFwihFIwDsPinpd0lL6iBjlXMxGgRHOs4I5q3lhBIGUj92Qc6aMIIQCgiaD2QZ765eYAIDeau0todTEkCjKmdKyyBBwwbd7ejqd1PGirZ3n5daPXT8qM8doIQIQJgQB45wzGQN01v86n44Jo5wSApMLbxcLfi0cUqwXU9aVcy4Hh1N6XG2/+uoDozXH1DOKIGAY+RTmvlPzWBRVTu5yfPs1i9au2oeHx3a1fjte/+m//fN//ed/oaKImVjvjXeEQeUU4xQjaGdttWaYEUJizHUVheQ5xHGago9CCs5w9NEoHUKOGY2zjsl5ZyghNCVjQzCmEkwb69Xicg7LImTBOTcqDzEl4CDMIbrpNKtZvXt4SChzSkQhKynbunY71w/D2A1Ba7uoyMR+v19vNvt2P4xDCLFgpF6vA8LQOSyirLngJURwUQPHyFnjjQcwM8YhQoignNI0zLNWMcWS4MWY2zDOs3LWfXp6eg/uCykFFzGk7Xa3XeeilDEFOxnvLUB5v9ls1quilDAhwZlRC0S5qmsIc4x+mqxzdphGRmiy6XY7fX59uo5jChFDPVqNGNUh6ZgAxZQztShr9OntrZUCSy4FX69abZTgJMewTFPfdQRjBIqY4HrTwhghzLzgs16GobfOuxju7w9Gu+PpiAhCv7r1zq62a0oFIkQH3c+zh8DGWFS1WcxsrbGWcFq0TdE0LqX9u3esLI3XBGNOWSFkzJEKzASLAVgTdqs7Xog//flfrtczQBFBUFDCAJpzbKuaMfLXp+cAM6HYADzPi48ppAgRwihZa67LohYtpWjqpqrKiNBglJpm5yyI4fe//WH3cHf/7j3FBAIAQC6b9nQ5/1//5Z9kXW0P+//6f/23f/5v/wwJFk1hY3h5PeYMqqq6v7uHKRxfX1eb1TiOv2I5nz9/Dj5YbR/u79ar9nI5y0I4pcdBeWffv39njYGM7bbbnEOM6XLz/a0v29pZiyBknFtrjFP9gFZtRRmmVK5Sczq9auOqdSUYu12v5+Npu1nHCHZ3Oy6EMvr+3aMsS6WmSam//vTp/vEQnTLOUsGevjy/PD37FA6H9dSPwVhJGAhhvPTH5zelFsroD999x7lw3qlpqqryj//0zx/ff+j7zhtHCP3v/8f/OA7T9XK9dF0GOWE0jtoh8O79uy/H4zRNmNCyKi3IMabZGCqENmYeJ60VyHmaJ1kUjLF5Uvtd3uw219vteD5Z54wxPvq7d4dVs3443Otl1npBIHMmcFEZZ0CMh82uEOx2vUGEfv/dd7KUp9e3y+vL/cMjFwITvNts/vA3fzi+Hbvu2lZ1VUo9L8swde4KMYopqmUOKbV1/fJyXNQiBP+16OC9wRBNy4wgUs4TSqdl3uz2dVU/vzxP/dQXfVO13tnyrhjnOWN4HsYQ4/5+/3a7jNOEIP7zj399eHdPav6XH39aluV6u1EpeFF0Xdf72fkAGXE5/O3f/R0OSSlVSLndbD58+EAT2NRNwcTleAQ57/abGN35fL5/eEgpZAAoI7KQ1lplFGak4AwhmHIsZLFq10PfBx/Hbrpeb03TpBT7fjydTrfLta5rivE4Dl13ZYKttuvL7XJ6exaQ7Pd7IcTr0/PhsP/06Zfr6QIRLooi+ICDJy4nwsV2S2VVApiV0xGmy+VmQmhzYoKJuvQTgDB7axc9eTvEkGKIjLGUE8IIExq8iYsXjJVV4Z0fb51WCwCQEuqCz95HEBFGIcZpmnKGIYEIEMBEe6+Ch9pgSpjgISTKmLOJYAYBAgmADCiGyUdBSFVwgkjdtHoxPiRJUMOpLAvsTAZQFnJ/2BEEBYZtXafkWVmWQuKcpm7orSWY5Jycj0xwSlBViGq/SyhNw5BBNso4G+lB1nVtjemvV2+MXRRnZLfbc8mVcyHEshA5VkVZrNebcR6fX16fXl8pk7KojXXKOMQwZdwoN036duuM8xmAqm0ygvM4xThCkiEG1hmEEcyQc04Ijd4TBL112XmC8LJS61U7j4t3NgQvhazKwlrrnDPaCM58cEzwelVzLmCG82KGeTIhuNn8+c8/cckzBi5aiDAvCgwGxjnKARI4j5OUgjJx7UYfnayaVVtjCpZpQDESiNfbzePhYZw6F5UsCwyI02YeJm8tKxilFCCsFg1ymi63tqiJZG1d1lW5TMPp9cWbRVvjI0GETdNibSxlATFYpoUJyrmUQmCKMUnGGKV1RGCz3rmYLl0PISaE1bXFEMEIMMKc83EY+8Uwjn2vMEHOD9Y5D1BK0I8qxRCcJTAb556/vCKC6qZpmrYUvCwkRigm8OXzlxByvV6X7UpInmG8Xc+E4pxDypFgghBJGerFMu6cCwBBLmlKcRyHBCLDFEMAMMoIjtNgrUcAbCrpg399fXNGF4whBAXnVS3Oxy7EBHKmhKAMXfDO6nmenDNVXXIuKWUhxgQyoQRlAgnCghCCeMkhyimGUhQgp2BCTJlxJplkQiAIACIJZeMMgBRBCBkmBCYEcsrWWsIwYRRimLKPyQOQGIEGJEwJAhnkRAnCCGqtvDXzOFpjhZTWuu42ehcLIbartXeREMYxn/qhP19hSks/4Bje3e9LwQ3Bb8s8L9p4v7iQCbnMk4vxcLiTEl5ub9frKVpHMCnrWhYSQFgUBYQIEyxkMfYDBNCHGL2BiGwP+2A9o8yHmDOIMQguH+4fNuu1Vks33MqqpJwoNY/9wATPKecEKMXee0YIBjDEMHSdc946E0Is9tvudvvll8/n7maslVJSJpz1izXXYSzqFhNivQMQrrYr533MAWOJIYtS/NrzghgrvVDGVm377TffkgysdTDH5B3GqKgqoC1vSsyJ1u54Pna3vmyKzXaPBRunCVEKMHq7nM7XyzypgMnpeC3aabtdY8FyDNd+Pvfqr58+F2X1+7//W23stMyMUlhh58bz6RK8gxDKopBFfev757/+pJQCCKQEKCOUi7fj2Tv9/W++7afx5+eXzf0B+Hi53hBBSqkMAMI4Z1xURYrJhminZZr1drNZtB27LsfAKfvw+PCb7394//BQC0ExoQTGmPpp9jERyvppFv34cjx2/fj1b75d7zbn66XresHFar3OIXbdra1aZ01O+bDfex8El5GEpq5PpwsTDOWMMIAxKrVIIYJzalFqmqsPJSHi7fgGYG5WjbZWKbPdbVbrtXN+GSYAoWDEOkcItt4r44w1eKZlXUgh+9swDLM2hjHe9ZOy5t37x64bDo97UlbdPE3T+PmXLwABJknfdWoeZVXQDP/f/8N/1FpdX89ffv4kBW9WtYph6pf63SMjuK23ed0+P71Qgr48fRGCt6v2dDq9vR7rpqnK+mZvEaRJqVnpAMHL29ustfEOhjCpBSHkrScIqXFZrVvBhdEWohxjKmTx8eMHa/zLywuC+PX1dZ7nDIAyeprnDACF+Ea4tcY509Q1CLHvO8rIfr+tCr5u30nMlFGrugwhSkZ/+OE7gqizLoXUVKUsylkImFNTVjF6xsjF6K67VU1VtY0o+PnahZwOd/s//ukyjuPdw1ZgMQ1j01Y1bb0PfT/q640XknLuY0w5QwiLsqSMGm//5V//aqNrNqvrMCqrf3p66YcOU1pW5evlanL89PpyPL1BhKz1CUFMGaY4QGC9006v1+s///FfVkV1Oh7P5/NmtfLePz6+W6ZRDSNlDBG8atdFUTjr7+8erDFvx7f1am2MHafx+ekFQvju/WNO6Px6Wm/Wq3WDCXbeTeO82W6MtfM0m6v21hJGc46b3R4i8PZyhARNwzhN42rdMsKup8uyjIKL09sb55IQHCMILhaF3G1XZDFp1RSUYZ+jsqrrb7fL+fj0xji7v79XxgrJQo4QI2/iNGjJGOUc4yhrwSh11meY5zkYtQjBESbOu0UZaxznggqOMU0pzWrGhKQUjPfjpF9ez+vNWit168YUApM85YQ5yyljSK2OAIKyrLmglSiGm4LOr1YtQ1BKcXf/oBZ1OV8JxZXALhBPGcCIcUogpBCWgleCYyJBClKw7DxmdJynZRq3qw0gKXmbEqzqmnFirY0pAgDmRVnr5kXvtuuYwnC9eOMKLrzPXT9wJgNI4zxPZsEYM0GZ4MQLbf2iNCK2CFkWBSQYQEy5CNGO3eC8BwAAAIIPCBOMcIox+6gXE0JgjEKYF+u19dZowUlKCYYIY7ZWG+u2qzUjxIfsxtm5gBAEABDCmODZAW0NXLCxHkCstJmNbpu1deG//ss/pxh5wZu2woQvSu32e1mUKUeMIETJGLMYFzPohq4o5DxNgiJBMHYAggRjQjhjgjCkhBGC6Gazedjv+6Erm0rbwDjXy4IQoCBxDB/vD1wwyTipi+6YGEwBRoRh1ZYRJGMnbS3CJEOKsCAU5xRSCDln54OxxroYE4WYLTpiiivGUxYI45QjL2QMSYdAJAc4B5unZfIOpAwh4YyXMcVxmIKxgmJvXIjp4/uvVvVWiLLdr1Z1fbmebuN4HXqA0vV2FYIXXhBCECKcCwQzZoRzyQjLCbjaA5CN8yFEAIDzjjEWsxeUg5xABjkiZw0AkCLkQ8SUV00TM5i1hjEa6yEm177DiEBIUgJaqWFepmnhjDHOYwjjMOac1m2z320JlREA70NGKKQQM445BABzBgggygjNECGIIEwxQAxDTCb7nMBic1nIDKC1NqmcYvLeVbSwPtjZxhQBBDnnoi4ggTnlDBOEAORkjBmHXllFIGScCibKomKI6lkN55vqRpRANFZyfjmdOGWEIG/t8WV+Xq+Or8/jsJgUZNVch/H585fN4cCbWlLqvf389LP1KqWEMI0JdMOsXGCcWO8BBAjhZZ7VvDBMMMI5ZAyRZNJDkoLLOfnkj69nnHEMPsXIGFu165TD5XaNIddtSynJMRFBpmGCCBey3O630zy+nd601rKQdcNSzrfxer1djDVSlpRxLoQL+Txe/8sf//H59MSpXKaFEfLu3eOgdF0y+u6dFMKBgDIqqoow+v7jewQxpywEo7Ra5kwBTs5BhLikzaq9DpNRC0LEBA8o4UWJCIUkHM9X9/K2KNX1Q9ePsiir3QZL2k+L9VlZE2I2LkMEknfjcsn/9OdCimbdtk0rOb9cL8bax8MjwvDt7VVI8cPffPfLlx+tVff3D79+Q3L03obVerNo99MvnyCnl35IOSmjIfy1OZsRQiH6pEzOIMSUM6iKIgK4KD0tSmKGKV61zX63L4q6WVVPnz8v42yt6fqxn8airgCCcz+XovzuN9///u//Vi0aIiJlOQ5jXdbOupyzYLyUEkF4u95ijF999XG13uy2W2cNyEEtE0h5LaumqWJIOeUMwDzPwzgQTMZhSiBtd1VRlxmhlBMASHCZq2Ss1cYN/Wi0SjHuDztM8Oly5gPnnNfrGgL48nZKCe7udgWtP316RgRfh74bBybZer/FhLw8fb6dLinFSvCmKO04UUZWRZ1q631oq8otWo0TJmTpB7bG2vtpmsw8iVUz9CNs66dhIoSczufj8RxTkEL2/dgPvbXGBg8ywBATSEKIGCGzGEIp5xxBjBGRQjpnl1mVTbler9tV++XLi7oprc3L22vfjxBAXgqI0diP/3z7l/u74atvPq7aVbBhMTOEACSwjMtQdJv1FgEgKcs2qGXU01QfDjGmaewBhGapIUCSMYoRSOnnn39BCE7TaIPdFrt21UKEMILzbEVRApBiDDFlQhCkxIYgpYjZMSFcjBnC1+ORM54h2Gw3zaqhnPMYbTh9fnnq/vnPs1XKWB9DxtBa73OMKbi+Dz6kBCDKGeNJLzgE7DGBGWFAKfkv//h//j/+w79fVPfpy0/Pz8/e2t//9ncf9u9ul2t24f5wf3f3IATNCYQYQc6UssP+viiLaZxeXl+neaqrGkAUY6jKKqc8T0tOiVGuwuK9dc5CDCGEGYCmqQ9398H5l9dnLgSm5Jdffv706dOHj++ttx8+fAhp+9OPP7btw1cfv/LBXc89gHC720pGyPV2O74dCSE66uvYdf3Ne7P0U0755XyBAOeUWMGaphGyBJhAJlkhrFLKBuXc2I/OaaU0ofTWjeOsvLdSFryqQojTYniRMgDDMuYZLGoehtnadL51CeHg/bDMOQOJgdEOIEUJA1F7lzHGQvLk8/V0MWpiGI/DtN2sKWV6UXqag9HZQ5MSTqBgVDmTrCEZ3O13PrRWL2pZnFGa4FKKQnLOeE5JSilADDH6kCWn8zJPy3w6vUFMtHEpAmDtsMw5xsmYgsmyXcEMEMI2gRDjtGiXYluWyrrQdzGmzX6Pp2Ve9DDPLmXGhXfpdutDSj4GiDFFBDOCIHI+OG2cCQBmlHNBOcY4huBTxBASTDHmnMPkfPTW+uC8Z4I/PtwTgMd5hjlRQhEEGCLvHcI0ArTMBhEfEjDOAoxu/aCUmvSSQsgIQWakwN57pXR0AWKYUsoxE8rGUffT7L1vqtqphSPweNhLzEKIIOUcU/AxweSdTy6G6CmBKUU1LQli7wNCyBlljS3ui82mZYxFH5bRMIJ269WouXKpahpARUg4BZAzaBpunVPK5BQowZxiCBBllBBpbEAUl2XTNuuiqkFO1hq9WB8iBsA6n6LjgmCO/OKNzhDTSjLKaLKJUXG33cMQ6oJzRj9++PDhw1e32/n8erqdz6fz6+enL113m5ZhmscEAqUUQQAhqMoSwowILsoSApxCzglQxmPKCGIhBUSAcxE8iiE5YwFIEP4aC4EMY29ds9lu7u9xSmqepv4WnOFCrncHQrma9WwdIshFQEWRMYAQLUbnqVuMygQknGc1Gh9C8AmAjLJzAaCcYow5Bu+ySxDCGCLCBBOMIBKC5ZRzSinluq4JITkBmEmOGUIAsMGEBOcQgrwqYow+eMyJt946Z5RyUigzq2UhDC1LaOq6LiWC2FnHGNm1B0G5M0qr2SlVVcVq3S7TZNwy9t0//UsompIQsbt/eP/1VwaAT5e36zjUGFMucgqfv/wyjV1ZyOgjghRgJKVgnFFOAYSMUmtMcG6/2UrOffTLPGOIrNXOaV4Qbcenz0+ScpjTPAyEYoiR9zalKCTDgPD/P0//8Szblaz5ge5LbxXyyCtwASQSSPHq5atXglUs0mhs9Qf3oM16QJp1t3XTjMWnMl8KZCITwBVHhtxq6eU9OEmOYhAWk4jYa7l/7t/vq/Riu76/e7j78JEKDHX18HCfcvYurFbrdtGdzqdv//CHD3cfEhHjAjiPOft+AC6A8+fD/jwMHGWMoamaRNEOk/eOSt5sNl3dbK8up+CLm2PJOYXJjf3+lLzfLJcXq3XM+bjfLTfL/TAe+gEYjLPd7fZcyMTQF7DBupIP/fnh4UFpY5aNqrr9MI3eI7CEVABTzpvL7Xq1RcDJziG4nEvXtkrJEKPWarlcfP7Fl4t1t/m06cdz1Zi/+w9/9/33P1Z127RdjjHa+Wq9VZKVkufg98fjZCc7jykFLgTjiIwhRywAQCkVJkRdNZcXW4RirVuuN8umidM8jvPp1K/Xm4/3n56fd3aapsn20yik7E/j+nJ9cXWtTJV8HoaxELWmK7l0dauFOO5OMdil6SpjgvenUz9be3lzXdf1/nCo64pyiSFJzlfr1fl4fDo9Rx+UklVdMy58CoWREFJolUsWUjR1I6Xe7XZSi0Jkoz8e9qXQZrtRdWNDLJki5qaRVLAfRqGUqbu6W4zzNMx2uV4tN5s5u+fHZ2NUCl4JuapaU8ngvZRi2B2W66VuF9tlx7lgjE85Xm5WDBkBTqdTARqHsa4rjiglf3p4RMDKGAAEAiFlTumFMgUAVVV1TaMEnxkLLsYU60UnlZZCKqVyKvM0+hTGYSAs4zw8PD4MU++cG/rJepty5FKUUq4uL25urv/07XecsxRj5nx2U47x6nJb1Tra0B/PrBBnnHOBUIJ1h+fDPEyff/n5sltY54MLJfbH05FLlUt2zvd9v96s19sLKTUwlnLeXGx0VR37YbVZ7venabRNZ7hk1nnnQ4xxnGbk3IUwzLMQYrlc3ty+2l5crtbrLobTPHz8h/9tf+5tCC4lWZuYU4wppcgYsyF2Xd1WC+Qs5Syamgik4MFNihsE+vH9RyxUa3M6nYXR9ardHw5+tE+f7i+6xXazWa5Xdp4Z4u3rK8pwPBwXi6Wu1PF4KqW0XVdVTXDRVJrzIrg8HY/EUBtVgN5/+KSUuLq63GyWH95/zLkQleNp//T0hAw36w0ifP31T1+9eZ1CCDGWlL755mcXF5uxn33wdVvVbQuJwuzF7779/TRYLkVhxcYwu5kQKmOI6GTdcr2QzDDNHVF/PA3HiTIpLXKJBBmB5tnmEjnnVWV8zjFHZ11bL+rGpFS89Zxz5HgeD4DofZim+Xl/zoy/GsacsvN2tVoW5wsA41hyCnNERPJYCvkwnfbPUmBXV1gYB1FyeX54DN4zQIGi5GS0FFKXuRCDvj9WVSWktDExokXXpuCRSrA2BbdsGyN5irnE1CqjpThFNwxn52wE9DErY6RkcwjeOi7F+vbiYnPDGY+5jP00n/pURNW1sjPz5Gy0TDFeGR4zhASUmZamq611dnYE1CzqQkAAQgiGrErFCJZNIiAAkpIDYymXjICcI2eIwBnyQkDZSNVU9Xq1ZMAAiXHKEQoyZx0iYwimarjUk5t9CjlHpZQLYRyGYZoEF7Iyy/WSEFJKlansNIpu0VXNNNuM0HX16GKBwhBy9s4GoWXXVLU0zgZVVT6nQgWR7DzbYdw9PBqp7Dy0Tbe9uSalDodExJq2nYaeY7nZLofhPA24WC5v3rxpQ/rx42MIhSMXnBUkwUVMYZhPJUHJibhSXHHFkodSSrSzyrjsVhfrS0I8nHZ9f7bjyBgoyafxFKOFc0oxhBSRjGKSAYXJSSGuP3+7WbRG4L/55S8//Pijm0Yp+HK9PH04P+12958+nU+nmEPOhXFM8eW0wVIKMCIojPNEhMgFMoYi2pRSAcCYQ8qZChElwQVDFFxLxZQhQpBccEBZNzZGJVlUOOYQgn+77pbrbX+aKOd5dBq1XpoUhXeeKSUrhYoRJ5/80A99P536vhAAEEOgAlwjQQFGKWeKBAglF8kVF7xkCkHllAEIoEzzyLnoutViuTa6QkSptPfehinluOANIkFK0qARUrKUbORFLI2uBK+q6sE+VoLfbNdG1Yf9Ppf8+uaaA3fWAGXBuPX2/u7jNI+BhyhLH23OvDJqZvnHp/ujGxIhFhqGvqIsGF8vl4IgpTDNPRSaZ7febHXTwoQM2Xazak3F6+bmattWdQ5pMIOzVgsKCrrWxOKbVl1uLrbbJQKfhtEOztqx7eopuaN1i2UjCWotl6tmsnMsIYekjL7ZXksp7x8efvObX//xu++QC1PVXDHG+Wy9lEppo5UKPvkcSvFQMvj8w51lhD7H8zR++flnn7/7fPvmlan0b/7xXzhi1zY5BRfDctH6GCc3V7XqYHHuz1KbxbI99f35PBDng7fjc/SASqnXn39J/M4G2FxuVFX5WPrhfOr7GOLnn7+7fX2LwDcXF5cX13XdPj0+D/1JKXl1dam0nOe5oVoo+XH30b63p8N+GoeU0vF8KIVZtw/Ot1Xd1Y1R6nzc/+Trrz778vP/+X/6n523XGImBAAAfAFsSsFMpQQrutbL1VpykVIwSmulEMFB3A3H3/7hDzGF8dRfXmxev3s7jdNlTKXQ559rppEKrBaLj+8fPn74+Obzt381nxI9Pj7rl6UnxlbdKtdZS/283yulxmF4fHzSUqTk37y60ZxDIUa4Wm0AM2c8OPewe14uunbZMYbTNAHD7WabcpqmYZ4mu3dCcaX1crsVgl1eXmmhpNRN083zJIUexvE8jFXTbK8vhmHq+3mx7Fab5eXt1Xk+f3z/j1BSValFVX/5+VuGYMcpeD/4QQNO+xMAmGVbUjZSdnVTVVUhOh4O8zxdbJZKagCAqs4+OueCdZwzIorO5Vw4g2VbCymlEiU4lkolpQQIgRhjdpptLlVT+Rh8DACAALvdcwF6yah6enyq62a9WTHJxn4WjC26rqlrVjCldDweJiG4wM1yU1V111R6JefRAgEC1E3lfZjGWSnZdS1Hvt1ceB8zpeB9TjCPvWmqV6/faHPcXG6Wq2WM4difF21X12qeZij51c1t0zbDOAEwqXTfTzmn9WrlfGRC+pB8SpmIS726uO42G1cyCbHYXFxcv7o7DXPOWYiciAh1YzSYaINUQlc1IcaQEXGxXOWUUgoSpR9ctVC//OUvnz49fffn94JzKVk/2B9+/Hi5XtamooylwDzNKSej9DTM8+SsHff7/XK5IoC3bz9PKSGUfhimeXx+2n351ZfjND/tnjebjdSyFMqlnM59znG321WVSSkiQsklupC7ZOpmvVwx4JWpEAM3qq7bFHNT10ZrAlaIiEhqJR4OxxIycFRVZdpWdHU/DMyYzcXSz3P0EYywKeU4u8lb5xFY8TZmVyAhAGfIOU52OpzPQjAueIzp4WnHXp5HxhhjAJAhIKIPEQAlx/cfP02zM1XFOcuEzaIpUMqU/ZwYoTHaDX6WIlOYZysFU1I2LT8P4zyNx8MBiKQSOJKQfNk2bWWQQd+fp+lxtVotlqucYkqhpCIEJyrOh0TFeS+Z4AgIwBCmfhiGPuSkugoi8Yo13bJp21zSqe8pl1upHBArZG3YnUfvcxKKMsz7YfazMmrcz9Y5pauCUC9bxvg4jSHEWGJVV13XAWfzbEvMlTFd09a6SjEpze1sASGkOPlQEAsgYyil4Bx4IclF11RGyOF8HoIXgsWcfCgupeCj1kZLKapKM2Ha9vnwrFTFGIp5CrNb1FW7WlxcbnMha53gIueUnF+Y6vXVzWinCIQM83rRtrWbbE6xlXzV1W1tFONatj6WXHIumUuefPTB5ZyYUTc3N5vt9uL6eoppv99/+PGTqZVR6nzqS4zTPAzj7GwcXc5Cdes1oRzH2XqvpFRGDccBGZpKWltiysQYVzJZC5BKIU6NNrrk4rxPIdbaSIbacCm50uAc7/uTtZZzvt4sKt0hE1wIY8x20UGMwNDb4fD08OnjY0plue68n/rzaTifAaKbp2nsURBjiC/pIoIVKESlMk1V1VIqIxVjohTIuXChQvDBTsi5VnWlK8kl40AE3jtCBCIfwuE80A/vq0rO4ziN55ST/OGjvt8N/UQZGVNSBy7F4EZiJXKsl1276t4/3sUcpBEm6w66QoWIpIBSiEsspRAjAIQMBJBTZoDAEAoKKYhKKeBDyLkIzplAIgoxKlVJXQETj09P0zjHlIRgOTjpkQMhFspZK75YNJWuukX7X/79f1wuFkBgJ3dzuZknN576w+7Qn0+L1aKuqxA9l7xZdTNOrITF9ZVuq4fH3Smm1erKl7S83Dofum5R1y1RoRyXb5r9bqc5LzktF3BxfV0K7g4Hl5ybTbfdrFadEYqVIgSnSnOgSksUTbuqj6eotOKMIQKUJAXTq2Z70eUcxmFAyMNwpBKR4XA+xxJXi1W7XCyWax/Sv/zLr7/907e7wz4VqBoDUgIwzmXTmRhiSlRSkFpzpkOMkHNGemk1xuDC88PutP/4+HAc+m9+/o1u665pjBTROyF5Zaow26fd8+ub29VmpbU2TTPYmTO33V5yo2OhcRqfHp/rtlusECXvNotuua7azqdYEPpx7LqVqaqU46vXN+vNJRDcf7o7HI4ph3QKu/0jYUbBCHC28/F4CCHEEF6ScpDhslubSvfnIyv57c2XN1fX/vaqWXXPu2chWGX0PA85Z6G4UoILHmOWUgIjJrEAuRDGNHHOMINPXggp20pqbb0LKXDNQAAA16apWxzHORXKuZwOfck5UOBa+hgLUUY6HQ6c8JuffhWsU0qZumbIcsnyPMzj7LxPMYR57s+nZdu8+fqnbbschxF4ksKkUkIhH+1is4w+MODNoqFEJad5mI7Hs+Dch5AyM3VdNw0RpUJGCsEx9IOPUZlKaoVcSm2EVNuruggWrN0fD4+7x48ffzidd0bIWrNFbSolJaJsaC5FrRasEEEyVSWRgWR1pahQ8i6EgDljJpaLriUSCES+hEkqO1nOGGcYYwTGcyFEKM7P80yUgRhRIaIYU4wxxFiI7DylkguQUMIYrbQI3o/DMM/z+XxcrVab9aaumqkahJRKyrpu3rzRMcZ5nlNI6/Xq+vKCUh77MSmhlbST41LkUp4en/t+5Jys84VACJlziT6eTkMpeXO5fn46cM5vbm6EVnaOsxuDC33sx3HcHXZ10zWqauo2plwy7fcHIUTdNITs6uZmGIcChIwZo25vbxmDp4cn691ivd5cXn3x9Vd/fP++tw6Ro+CCy1ySd76ptdb6fO6ruuKcz9bbGEqKUOinn719fX2zXLS1qSrT2hjGcZicp/2+M8vNYvn3/+k/7D/dc86Xy2UpdD4dP336RABt11rnY3o2uqovGib4+XTigp8OZ+us1Gq1XfvknXfH0wEZFFDn49HaebVavn37xlp3POzbpiGot5stItx9vJNSXF5uuRTBhxT7V69fMWBt1+RMMeXj8RRjKZo/HwABAABJREFUFEUyJljJlCCnUmZnXQy6Ni/WLRdcgZKIiFjmwCpptM45g0frZj+7kqIUDBn47EvOeSSjNBCjUhC5kJJSLKWE6CgXIVVVVYyL0zCmgq/fvNZGF0RrnbMegBBACTGPkXLJrOQcpJCccwQ5TTaGOAx9IZqmiYaXvjmObbtatinn/jxO49Sfz9vV1LRVir7k3NTV7JxRqjH12A92mI1UQgrnYgLImbgQCMVO8+ryghvlSkYA0Wg72T//5UetnoVQp+MwTbZbLd08h+AmOxEWJplzDgWq4KFgnWMhGM5TCF4ZzeVFKloKCZQQS6EAkJRCLJSTLzkxjpQTxQySa6UYx66uiHLyHqnkEF0I3g1YqCiFSpva2JB01+SUj8Nwnsaua52d94eDUbrSleFqWTc5p8aYmrNEqV7UUiiGmH3QWi0r0xoZUtyfz8VO29XaK7F7fLzebivBJEQ3jQINEi85cyYYQ0KavdeN+ezdu5urayFFs1puGDw+fvzzd1Oeopbq+x8/Nqbqh9PsXAjxOCZdd4XhanNR1W3XLYJ3BNmHeba2rpoMfpzGAPN6vd7evioIfT/64Pt+YIkDoiZhtMS24YoAYdFVLiybvhFCehc4F9IILXVlNCPw03E8HxhS//RwPp+kqve7++Nptzvtp7lPKSBAKalQSi7oSmojY0yllByi1MrUWilZChESIDHOmJCc8xRRCmGMBoScU4oeGRagFFNMSUqNgM+n/fP+0VQ6p8KIiMrT879Gn3RVL5frrlsUW4ZpcsWqSv0MAaVMUPppurt/fD7sELlPoZQCQMgElVwSEBHFUjJQIWQQc+bICCiGzBgrpSBiySUTMMZyzs67lKYcT9Wpd9aNw4hYGBQqUEr2AaBkLTiCIGIMhR2nFOZ/96tfIeH/63/6f7//8ePV5c1iuTJarzcbzhhy1nTd2+3njEHGcpte2RBuXr9eXm7//KcfmJQ+lO/+/N3f/Ju/W6xW43kah+FwPuRCBNAt28XNtanMhw8PShoqJfh5Hm0tjbi4dP0UTkNTGcFZTrGqa8aZi3Ye3WKxPp3Pkxvis8dYOGPaKMG5szZTJEpU0u75EThSgdro9brbXl7dPzz87o/f/uZff3ceJkKhqo5JExMxKTLjBQpwTsgIARkvUBgXwBkAUgFCJMlG609jfxyHp8Puu+//fHN5+bNvvu4WN0yKXGianR3GD9/9iAl/+be/KATPu93pPPiYuTEUCwI8fHr47W9+u7ncdpvlMI529jnDbaufdo+7591ys2ya+rA/eOen2Zrqzjl72p+nac4lB+9i9LkkF3zdNrmkknMI4ebVDWGx0eacckpi5BU3F8t2vVoIRg+Hp9NpvzvspGQARSnFOAvJ55y5EFxwAAgxxlwEFD9k5wJnnFIxRi8Xy2VTr7arX/2Hv7+9uHi+f+BC+hBCDLsPe2u90hoRSgFT6e2FBsECpefHp/O5zzFqIRMrt5/dSuKPuyejtVSyrs3hdBKM9/sTFcox2nFkgDnk5+fdbJ1pTCj5ww8/bi82X3dtphx9nMaZA+5Oo/eOI283y1zKME3nUw8A6+1aanU6D0+P9/1pkEq2i1W3Xsq6Wl9sddPePzxVTfXhhz8/PT7sds/j3BspNstu1TWMyM4zSebmucRYaYlc5EKNMav1KoR8PBxDcPNsnfV1U2kpz/tT9rFbdG62pWQFgEIQAANQRgspD/ujDz7EGEIABC444wwIChAK4AWwUC45pyiUhJyHfuCKvXr1+s2b19M4C8EYFpZzpUQU0k1uJiGAdV1bt53kDAC3621wzkdfSuzPtpQ8T3O7XJhonHem0bvnPZ2m21dvZmuH8xBzWiw6a+3cWy2V1EoyKYUkCrvHw+Pj/S+++Wnwzs+eCsaSgXPB5DD3Ifq6NgQ0zVak5GJQSr158+bi4uLq4poVnMaRACABFODIm6qua1ctu4LUn/uYijTSxxBToEyHw1FwjlxEZ/08a86Q3vx3/+U/d3X359//CS7B2vF3v/tDKcSlWl4srm5vxmnyMfSPh6vba8h5msdCWUophby8ujgejsM4+uABYRqn6+trXWneiw8fPrRte+rP43mgQkrLt283r66uP3348NWXXzVtM8ophThPk5Bi9/RsKv361W2IwRgtJKeSK2OU5AzFPFs/uxBiXWmmhACOk7VuCm1bMclLJqGUEGoawuP93tpJCkkMM7FSqESqqwRIKQZnnQ8WMyGTHBAZRwKCGFMoGYWQL767ymjGQAmWfADOfIilxJgKY9z7sNmsm6YqVHwIQCS5SCFRorauGOOSZGQeEIizXOA8jClmZWQhEFoiUAwlM/S5lFJiiowzrXQppeSyXK60kiG4vnecZyUkMDFNowtpsVggB2BcVU2htHuaP94/PZ37ZrV6QSbYeWQISsrgspSmH2yIUY+nsR+AEVdQSgEOpRQCwhFCTEgAgKUQAWirGUJVKcEQqBhjgMphtzsf9vNoYwylkFY6lGh9lHXNpZIS3ShiDNF6htgYA6UgpLrSw3EMRBH4w/PR2iCl4IxXutqsupLSMJyC1tiC1rKU7NxkjBj7PuciBGdVtVisnnb7w/2oC7797LNCKkU7ncGOJy5lpUQlWC04p6QgZx9Q6xhToiJJRJ9zpkbXt7evv/7pV5ObZF2VlE3dtKvVMLoi1d3+yPE4T0OKNE7zp33fLhZ12zFTffbm3WIexh5eeC3WzYRFSglAs5837GKzWVsf++MYnBvL2Mh2tVzJrisl+uhKzD5602htWhkiylEUKYRMKQQ7ZWeQClLpz4eurmVV5eR3z/um6TJRgmyMXmyWdaWid9M0MiWo5BgohJByZkwUgmmwyVNOyVcaiSEwQgRC57yPQXCBDBkypZRAzhRLKTLGtZZImCW4kRIwVelVt0g5u9lb65fd2tQVk4IBtFqKpKWSpmkm6+cQkHEfgvc+J+j7iSgzZE7yFANy4IwpJRljuRSKlEuJhQgg+MCQpZSZYJJLEAIBiEgoxriYY5xni4y3q2WMoaBgULjUnKOUXDHetF1X15zzFOnh/un/8X//f37+7jNgbLPZXl5d3755vejWWqt5HJ11hIlx1i2r69e3Uoq75+fM4Muf/bwwPU/O+fzx7qnbXKzX22n48LTbD9O5Unq5WKbiMJdS6HQ6/fjj94Uo5VzparFsESnHzAVQiT6SUrKuDTJug81UOBeXF9fD+ZBDRCxGyZzC+Twd9gcfrFLC1FIKqYXebC+6xSKl/K+/+80//fOvPz08hFiYUEwYLhUgciGI8UIIwDkTiFSgxBBzzIwRIL3MiTJQygUZqqaiDM+n08dPn7q6+u6Hv/zy659dXV4m50uIt9dXX/3im7atB2v3T7vHxydpdEzl9LR7ej4cDsdM5fricnt9gZJzLpZrtrnc3n/49P7Dh5RIKXU+nXIK43nc7U+A+L+jYlBIjhwXVTfMPWZKMTDJu6a5vHqHxKZp3KzZMI45xuDmZq0UZyXFP377/fl8qpsaAbquPZ1Ot69uuZB9f57mUUohlQwxEWfFJwLGBJOVNloLJjarTVNVfhrO5yGkeD4PVze3DIABe3h4ABTbi0VMcZ4tMFSVmYZRtdXUH10MyHEa5ihkP42Lbnmeh8P+uVbm3/zib25vX8cQUkoX2w1n2HQ1Unl+2rFL3q6Wp2mazz0x+Okvfnb76ub79x8BspLSIDw/7+xsF90il3I+DtqoIOLTfnd5fcmFdCH0fX8exky50fU4zzyyi+vLp8enxB73x8PD3cNf/vTHHCxDNIKv2uZivcSSnR05VU+7YZ7mrmnaruJCcimAQQoRgIbx7IPjxKUSlAswEhwRIFg/nM8xRsFEoZxi4pyllE1lOCBH5ARaCkBCzhhjCBw4FaCEzDvPGHItuOKztzEFQnF9fbVou+E8SORGVm3TjuPoJptToZTdNOccBcpUUtM1sx3saHPO29UysDD0ow/JxFytG37FY0zj6IQUIaWY5/M0csGU0QSEjCplUi6MsZRKykVKKaXqz+Nms5WyIgTd1T6WT/d3T0+7XGKKIZWyWK5Op5OdLQP2N7/8ZaWNFqqrm2XTHY7HnFN/Pk7jRESVlpVSIRfBFee85EiAfrbG6NbomHIhWDQdr9v+sPv4w4//9f/3v/zdr/7u88/f/vkvPy7aVkvlrG+7DhDrrns87D5+/50S0nz7LedAAF//7OuUyzxOhahbtNb7eZiEFFc3V8/Pz8/PzzFEE0w8RmPUqnsdfGjb5tXNzfZiC+Ul9sRTTm3XVsY4Z/dP+3EcIdNyvcgpC8GN1kIIIjidTtZahtguFsHHp7sH4WOY7Mw44wIYAyZYVzVtuxJCVu0yEJX/vSMtCYhYTIXxAkBQMoVEACkhV5ozTZSFUFrJkkkqmRMZLrTRMUTCwrlOJXJE8kkIFJz687423KgbLgSWAgyk5EBFGqV1BQAll3menZ+RYdNWGYE4K0Sq0nWtS6ZuuVhvForz4H3JNE9OKLXZbIyuuBSTm+bZFWKji4ABoDBjCkAfU5hT23Wi6ebD0cZSgO2eT8fzXLV6HIbZTlxCDinGrKRhXHIh+vPJO0sAzMM4TFJxLlAqwZGHECkTIM85a1Npo5CXlH0urGmVEMJOfrYWIKcYlZRCiKqpD+c+Qc5hZsmXIiTqVMJkezu5V7fXm/VaS7VcNBngNEz702C0GmcbbFwtF82ylpq3q+b21SaFgIhVVVWdAlgZpYnIz95o3dR63bUtvvrzd39K8znbM2NCl/Tm+upop3Ge27Yygm+aRrMCpopcOC6sPz7vDpXU1to4JHW5WncXTdWM7uzGPmayPhWusyRHYirQNub29ipl2j/vh3FAIzMrhWUf5348D1N/dX39quu4kjlmoGKdjqmEEE7HQQh9fXE7qpkBr4ystMqpUEYjahAgpWGSx5KFaK9u3lJJCsnbcZhGRzl6RykbLZbrxWLV3d1/mq0tVJbrdUmZSvbeO+cRoF3UmVIMoUBKuQAiE4yw5BhRScYwxuhd5IIzLihDLrlAyoUgEwAKyYgjMvbSYVvvvLXLxer69qZe1CXndbe5ubmVUs+zs87HmJ3zmfL1quOK7Xb7eY4fPj5c3Vxd3b66vLl53B1zKYWo5IKIiKSURA455/Ky+iNkYYWXzJARkRIilyIzcM6rqpKVQeTeBcC50o3WGgnrpgnB7eZ5mgatpKp0pWQklNxw5KZdcQRkui1sfbm5/vKzr3/1t0hcasOYLJmGfvj4tNNaCgH9ce9zu9puxnG4v7snJvox/u4Pf2AgvvrZLzeb2+eH0+Pd8XQ4HI69EJxLCRwLIZO4O+8j95F55wJjrKsq5wfv1VdffVlxcdg/D8OZYcUk2OgGO/rsZaXqurbjcJ4O8zTyF/hncC+jBy305fXtarVUUguhHnYPf/zTn777y5+fn4+ATFc1ExqlYFzEXEougokYIzIGSKUUIEIkoV62g5EIEBgQIrJSiotJ8hexkx/O/fDb3z0+PGxX6/Vi0TXN9nKrtOpna5oWtdSLNufSmEZqHXySXGwvt+2iHez06eExuri5vewWzQ8//MVP8/bqKvsECZRSt69eZQDG8e7uyTl/dXEVQ2japqmrt/VnUongfb1ovv/Ld/M4p+CZ5AJZa+o5z0JxKdk4jncfPyKjuqpjzLEkIZSuasGlELKqaq4kIVlrbYgEEHPiXKU5AyBnQtWVUoZxsd8d3TBp9r/++3/7b9tmRTkzyHb2VdvEnE791A89IP3hT398Ohy44heXF4wzzrkUauj7/W4vuXZ2Gs/n19/8gkv+u9/+Ztidci5X11eX223btef+ZEPwOYEWb75498//9I8xxfXVagrOxyi1+PKn30z9GQk0l9H78+mcQhQcqkq2bY0cTsfTbr9frrpMWVdGVfrUH1LOwsinw/P33/9wPO8fdo/R+uvtxdVmTTFqzgXjp+OpxCgvGBM8E/nonfcSSAmUKIZ+9CHEEAWTy8Ui5Uy5ZCpd11ZVZecZGRCUkhMgQU4pYyHy3qaYELk2OqYYQ6RMKAoTCAWwAALUlWGcEUEmypSJ4fZye3P7Klonubx5d71eX3z48cOnj5+6pr25vSxU7OzBwvbVlhjd3d1zZLe3t86F8zDa2Wpd3X72WpsmAQAXlIpUUmoZsUjJ0PDZ2TwVzrgUPKe03q4zwPF4HKYpQrp6fdXWramMK/l4OocZXr15a7r6cNh7D5WpEGHoT5fby13eU6HD027ZLtftatEtBJfHwylYFyDl6OtKxihaXReOpZSSkrc2p8yENFzEmJMLyAWJJIXsTO2G6bt//RZs+rd//6vnx09+nD9/96YfppzKOEx/+f4vy7ppV+vNanEezwhQV/XHj58QUGs9z/M4jAxxGqfZ2Riv3v/wwzAOP/nJT16/fh1DfBncQ6HFcgFUvv/LXwrlmKJ3LuUECIyzbrH46uuGcUwh2tmdT+flsru6uVyvN+M4aCWnaZymWWtzcb3ZbBciEYHkSjIuEZC01LVpOcoYSilMoEBJHChFIolAyBARMMUYnRMCUnphAVMqJcZYCiCyQkAhccaIirNzCJEJTiUjR6l1bSqlZfHB2eHjh4AEy9Uyp+yjn6d5sVwQQ58yAMzzPExTCD4kIo5KSsb4HFwqBD7lmCVRU0BIiRxM2xXkyaXH3UFrnUt6enxkgnEGqaRCWQrZNJ2uqlSySyk7l2b34e7pw6c7H32IMVk/u2myE7JCKYUQgstGJQBkgpeSSylUihCCeElEWFgprGSCl3wQjgAcADnnzvrHh8eqNgDg51iAKAMAKSkKZE6iTBSjD8kiMsxIICA7ayc3Wzu7pyemjHz77hfbzcZFP9gfpJA/+eqrv1utfcrPj48f37+fFXZfvkMGIXpCbFaLq5trwSDF+Pz0zJRQUqcYz6fjzWp9tdlYOz3f3ZUCtvhmddk1NUPM3rVGL7SG5OfJCi0UZ1wgMnZxdRODvSvFVI1pmrvHx4+f3heiQDwkrLolr5daG11VbrDH0wSIojLbynDOU8qP90/z4A+nUwFwmdVaFRLTNGDJHIQ2EgvO49w0YrteXa4uQww5l2meBJfK6KZpChFwYJL305wSKVQciWUnU4Kqii6yDG3bKi0FF+M0pZQYI6KCHLz109jPdnbOEWWiwjmbky+UpeQ5F3xJzUmZctHG0EtqNwNAQgZUSi45xFAyaSWncRKCm6oKITKOhYoUMpe8vbowlT6f+sVm1a6XSlaiin63y9ERE0DQDzYWv3vcLbv1q1dv94fzMPTT4IZ+KplSyQyRSgGEkjMnBoiM8RgCUiIiICqUSy7AMIUEyDhTSEyA+Ovaa8EUkpDcGLledwidqWSk+LI53zaGC9lWtWCibRuBLHinm7btzDTH+4e/TJOTSjeLjgp+en93PJ4YZMEoxblrjPU2hLA/nVGK/fE3u32/XF2u10eNot8dC+H5PDAQSgglNRHjQnENwutmsdBGCcaglEXbSsZfvb58/epSMtZ11ak/IMOc4/l0POx3D88PP37/F6NNCPa0203joLTs6rZp61fX11VdSaGWy4Xk/HTuf/2b3/7px+/meU6RiAvTNEprHxLlVGLOBFDwJQYGkSMAMigvYRwADBAQgBAYACEiZMr5hSbJAAST3DDC8zj2w/BJiLqqrA+b1apRBiTvmpZpZaSqdKWVYgydc8vVum7a8f2slOBSbDfrVbe4ubpKLl6sVqv1BhnuDwfvfdfWADh2jkrvgs8pMocPT3ddWy8WHQB+unv/6ccfgdNmua3bWquag8yKpBCcG+vS/eNz09Qll4KlH8fj+TRZO09HYJhT4lIAQyIGKIGAMVFVbd22UkitVAzx7u7OzpZizNbf3T8dfzJ8/PTk3TxPo3eec2adiyFzjqObDsPoooOC7LTr+xEKrdfrGML+eHraHYKzV9stU7Kf+mkaF8vus7dvm7a5uLhAQKIstCCG1ofHp8e7x8ePnz6otk6pnPuTFuLX//xPkrOrzYVgHApcXV0754UQKJiPORfaH4/Pu+cP7z8ILS4utoxDCL5u6t///rc/fP/D6XiOKWgon715dX1xKRDCPGMhVnKJAQhijEAgtEyA52kGO7Vte7GtSozWuZKJMRimMfiwWLUllPNwPp1OQz/EkrTSmivCwhFfKBQxJSjAJScq0Qf5sqqGiAQICFQ050SUMwGC5KyqDHmqjBGcF8E3F5vVYhNDLCU3dZNiOu5Oi2W3aLuua6SQ+8Ouqeqma+vapBxDIl1VTdNsNpuU8n6/Pw99Sml0M/OM15WuFAh2cX2dYrDDVFKiDNM4Z8Tn/d4GfzqeulX99rPPnx4fh+hG7wXBh/tPl9vt69evz6dDXTeLtkWG6+X2eH383W9/e31x9fbV23menHU5zYwxY5TmtO6Wl+tVCik4m4nNxwERL1erd29+DhDvP34sBRfrranbcRp2D0/bi8uaMZ5LieH3v/7th7sPum7rpl6uV/0wPH58eH56/OXX33z+9s1gB0blYr1mwKZpllIslh0C9OczAdZNrY1q6+r29mbtVz//2c/ruh6GniNTWla6ijE8PT3M4yik+Pjje22UEPJ8Ppu63my3TdsyBMrkg18ul4yRd/54OMQQXzhP2igfwtBPzs6iWjQ0E6eccxJYAOm0Gyb3HGIQLGMJglNtNBgWAgFgCJ4BYAkIGSBLCUABClEGJTgRR87gpdkqFLNnDEqJKeYXFkFO1Zs3r1P0s3Wl5P7cBx+urm6qugkpplRinrq2SSHEFFPOs/OFUk6cj66pMZc0DQNlYoxySAQlU1l2HQNKs48hcCati8M4++CtDcgh5xCSJwZcCEtQMxhm653vMsSUz866lGefciEmxfPxHLPv2qoURiB1ZRgTIcTiAzJgyIRUnHFp8OUGihkwvyiR4F1E5KHE03HkHBnnjOHLS8wxxURAJRYjeV2rtm3Pw3meZyZ4SokL1jYmpyyZCCl9uL/jlVpf7L7/8X3f97EkKSsY7DB7H+Nu9/R8fKo5r2slGT/s96XA3dOzUEIptWgaLVUK0U4WUqiVWFXVxeXFccfGYSSAatkJZIJz2XYkTSWVZJyIUSwuWm8ylFw3plksABeiMo02nx6e3n/4S98fMuZAIhBDYNFaXhAYlRKDtzFERFitVlhoPE3j7FQ3NYtF0ywGl5/2D8PpFPpREG3Wq9Vi7WJiTCDR2E9tBYxDhowaESGkBLMHRlLIEmOYHAtIodhpFMwrTuumObkz40byqtJVjjTOsxBqtd2WnI024zwlwJRKIeKcxRBiCrnkmCJnDAlS8FRy4iI4yRgvWAoVSoDISyEgUFJxzXIhrSQCQ0B4kRQItNKFSFeyaWrv3TROw9gv1hsb0v759HD/jMBTztM0Rhesm+vanA7jhx/vq7Z6/8OPx/15tVkbrQtRcLHknHLMKQMDZMCFgLZgwZxLip5KISiCc/qrgEGcM8YIGdPC3Lx6c3V1E2OWSmy3m8ViOVu7O+6dj8BEXddCqNoYzpAhI8rBu1Lyfve82z3FRJO1BfjKWs6kJ1hcbr77/R/uPvz4+s3FzZtfhBifD3sf8nl/OJx6xmSI/s9//pObPRfq4uJKS8mR1ZWmUriQjLFxOkujl6vleC7Zh+168cVnn6UYhMin87NWYpiH03C6+3S/e3qehskF77x7eHhkDC8utqvVcnv52e3tzXa1aZqmbRfep+P59PH+6btv/3D3eH8eRhuSqRvZCMglg/AJMzAgFlMCIMaACBEBKANCKVTKX2tFAmAFAVnK5YVORAyBIwEUfFmQF4JzhBKc9yEdp+E4ngVj29XqLw8/tlXTNK1RetF2y3YhJePAIoXC0udfv1ue17FQVbdA+Ku//du3N68PuwMHgcBut9fv378/PO5zSXa2uaTdficEG+3o7EgUx7kvKVaNIYiLdnFxsWJSCWa0adaFrLUMWNs0jLFxDtbOVW2UrjP15/PU96OqqkIUJyeFrkytm44LAYhVVbeLNlp/PJ2Jig9x9j7YuZL6aIf9cFK16k/H4Tx0XSNQyloxSdM0PT3vY45d21Z1BSw93p3P5zNQ0rXKKU7DiEic88fnx8Oh1KYqsYTklmZVsOScCfPp3MdEv//97z7efdrtd975/W73pz/89u7Tp//07//jZr2uKyMFx0TJp5vr26brpnEM3lLJXAlAWG1W3z78oVt1/fm0f35mQD/9+qvH9x8WWptl25/Oy3Zxu1oZBvM41y+Cbi6rtkmZck4+Rmu9MhKBxxjdMdk5GPVSWjTH/X6eJuRweDqUQhlzjmSdzUCATHBBBAkLYwiFElGBggUY4KJtmEDKf92xA4BSChNimiYkJCxKKib4MA05xuCcqQwVRGDT1Dddc3N1w7koOTtnfQjtolXGDMN5f9jf3Fwz5EB0dX3ZLRfDuQ/eUinzfOpPx9XFainax6dnM/QpK2RoGpWxzN62bdOoKuU8zS5SzJi5ZvcPDzevnj88fvzx06d3776QlXy4u3PTeHt7Y6R4+/bt1fbS2vlwPPzqb355dbnVQh/2u3PfRx+brp3nabu87DZdEfnY73/47v3k/e3rN/ry6v79nW7Lf/O3v1KS/VZUQvKf/PRnwjTPu+fT8bh/fEhuvr3e/g//w/8w9fPP/Te6af/whz/9r//wX4d5JsjjsccCf/r296tF94uffLVZrtpl1y0WOeWuXsiV5EyUnJbLldY6en9789o5t1ltf/jxL6XEQlBSurl5td8973dPl9vLuqmGvmegjdGMrSpTS8axUEy5pCykmIMf+0Ew4byb54kSdYtFymm5XDprz4eTkFxKwSlkoDzPU04hA08EXVdXmpU4xzBLAYUSMEqJnHNSYYaoNEshQSnAMaZCKJBLQI4vRzQWRGKIHClTASi5ZB8cF7DbP0HOOWbvPDKY/Xw8n7iUKASlMlkHjCGAtZ6ACkIMpBRmgGM/eGcRSGullCqyhOjn2cWUBBPgM1DhDBExEBQmmFJCcYkGgg8lFIF99P0pjbN11h8my5nMhM2yczlTRsaZrioJEgUqpqQSUmjK5HxIIRqjmUAkzJhZyoSEgJyYeLkYQ4k5IxPspfUE5qznXEgFhVKKKcRQqHCGpJnzPkbvUwDK3tmcsypqolJKrqtGG60Ms7P7w++/fXi8s3au265pV0b1wFkmOvWnmIMHsdvtjVIhRe9iKEUZlWJ/ZIeuaY1RbdWQD9H5+6dno+Q421Jou92gENMw8mR0XQHBNEx+f0x+nqZZVF2hKofIOdo0FwISHLm6ezq+v98Nw1Fo3m0uq6apF7BY5mBtTFE02gcKEt08xxAosZI5l61ut936yugKRMxUFkgeJIbYVo1g0ChVty0RRl9i8prLWDxnWUkVIs1udtFVSqcYUy6tMUJg7yZvAzFqagXN4nA8UwLIoCoTfFxvtqmkTJlL2cSWMgkx+0h/Fe5yFowRY/Ci1REUKjEG7y1wIMCYC2dMSialyJlijkJwTCXHDFg4E1QSw7/6yDJQTGmeZx9C3dRCqOfd/uOn+/NpsjbWpkkhOu9SSMhgKXSK9O3vvhOapxxUpVWKpZTyUjgXQgRApFJyLqUAUkHCXFIpmSGTQqWYGWOUCQAQIcXoQ+q61eZie/3qhgiG/rzbPfdD75w7ns/WBaE1ACPCkjMi5JRzTiUlzqNCUkqouu6MCYkKihCTak2YvW7bi1c3m+0WmZ5dCYlnZBkkk42z/vTxXohnxdVmczEPp5yys94oAbn0p0EZPk5OVhyFiCnvHh7s+ej6M0MK0RdI0ftxHLQUMaTzqa+Nudiutdl89cXbaZo32+31q5tFt9RKv1DmP3z89P37H398/+HUH8d+jilkQmGqhJBiQc4QWUgJALlgwBEACIAoYwHkCIhQEBkgMkRAQHx5aF+kIARkIJkoJXPOSs6plFISZ8iVyDlJaQrAoe9n7z493iMi57w2RjCxXa3bphbIu67rliuhpAtJKq11VVK+ub6KNnAo5Pz17SsQPFr3+2+/tWF2KfiYuRAvJqN2tb66vuz7o5L63/37v5MM+r4PPmbihViI5HyqKrFeLS63F8PpHKxFLmpTm6ZKhJOLUrWJIESXQ+LKcFUJWTVNq5QSSlxdX9y9/xBiIorOO4SsKnHYPTs7/Otvf306vy4pI9D90z0S1G3bNm2KSVVSEBoj29qUkmtT9afTxw8fOWdS6qvr6//+v/svldLff/vH4XzAVCjFHz589/rNZ23blJx8tFLp593+X3/3r5c31++++EJryQUXSn/11dchxM3VpjWtn6wWcr3Z9PNUCvl5PpxOhQMJBEZc8cuby81mc9ofjvsdYziez3//93939+P77bvPSggff/he5QLeG451VSFn1vmYeKGMQtjZeSre+975ruuQC+C8rmvJOAF0i65p6tnO/blnnCuhUHFgNDnnYyDAQjnGwIVgyKgQ5pwzk1oxzjgyFBwBSuFElEvORBx5CEEYLqRIKSzabrFYcsbXq81mw6NPPsXlYsHor5YMJXiMsanruqn7pvEhhBDarr3Ul3VdSyFmBB/s+Xi2s+3aFgmBaL1ee++d99KokJ6ttW3VOBedS8BYKqDrqnicdjsimr0NOYYQ/+s//m9AwAr+u7/71Xq1WnW1YGw8nc79uWuaZdcGv/7ww4fD8fT23Wen8ykj9cMwZwf39Pj84If5i7dvXYi3r1/lCJ9tLvvj7uH7H//jf/i36ue/cMFdrzbCmDgN2/bN2+167I+Ci93j87d//OOxP379i7+pK/369vZxt9vtnwRndaNbY96+ev3lT75Ytq2SqjWGCjAOnLG2rkKMWkkl+XB2ulKb9erjxx+fn5+MVpeXlznm/nzMMV5uL1erlZ2nzWq9WW8KEbSolXYxTNM8jiNDbNrGWqeNXi6658fnaZq7tuv73jmXctZKCSmE9w6oIJacc84klTLSMMm1lJXmjuzYzzFCCDEW5LJmksccgw1cAgigDAUglZwJfHaIkjPBmeBInBNBJqBUghS8cG6MUErsnnZNUyslCmQkUJIiuTnOmtVcCSYk48JZB5BrI1OgeTiPKWjFkQCBGEDxKRESEBJ4GygDKh5CSiE1jWTIfCJiEBlmAAQWGQsFcyQXrA+RS5kKKCmXm9XxeJqnOWYnJTe17tZNTBkZdm2jtOIgSire+xhDZSqlFFERmoeQmGAcRSUNL5RCpJQRBRIHQATKVELyp/6UUsoxJZ4qqUtJKfvs55CjFExoKY0ZxpRSjClLUzV1mxOVgl1XaymH07H42DVLXRlk4KLVrJKKC8Gkkoxhgjz5WXLeLVsplJI68ZRSBCLOuJQ8JZGCH30YZ4ul3N7c1nVtndOSE7EwuuzC5GZ/PlZGAjLGkHHRNS2DkoIHIaRUvqQpZtUtMRXVmour13XbMIAYvPeDs/Nw7hlFibJ4Jhkz3RKhtLoymwu9WBAAAWzW17hYnth96gcGIICYIg5JCKMET1TO58Pj/oGQ3d6803UntSyhFJaZKDylWgmNUq9WqVaGYSmx0e3FdlM4F8K4aPt+8CE4Z4ERBJcoAYcCpZQEUBChpBSyZww5ZwT08h5ACsEDIpOcCiNARJCcc0HkcwiBMQaAREVwLrkqRQiB3seYkmCKM2k0E0pyIUMMT8+7/jzmTFKq1Wql/WzHOQR/PJxizMv1ChNN4zjZcejPucQYI0MEwpxzKSWVnFIqpRRInDPkyBhKxpFBcIFzjsRyIaV0LhRzYcKc+1HtjlVjfv2b3959+pgpFSDkzLtYmQoZ77pOKuFdIMCU4jyNKdm2MV3XcmFiTpzJSten0xCsTyGaSmwvbn1Of/z+44uBSqiKWM2FSDm54JmzrG44JihOK1FiDr6v2zbGEnxxk/cRSwp9P2SA5/3ueNitll1Vayl5XZmbq+315bYSyiilmAghBJ+Qc1EZVdWT8z74593T3d3D/ePD+XQeJjuOjhgJzoFxIpBK5ZKQcyYFIiuABSiVXIjwZbUHOeMvkg8VfBlrFiAkAEJCREAAIGKQYuYMkSCWRAAlJ8GQgGXAnDKViAyIgzRqGkYg9GGczZxDOvQHLrCk0tQNICMEAN61i6auyedNu+ya7os37z5/+8X1zet+dHY5LJs6xnlZd2h9s1hyxhdtYwy2dV1J8dVPv/q//l/+z5fL1WG3++HH9x/vnojLSHx2oW5aBiznmPM5FYopFQCp9BxcRqba5np12daL0brRjsF74EzXnY/2/v3H77/78+tXlznacTg7O63Xy3maGc+qwmk+fvwYqZS6qgC4naan58e2675497mSzePTfX+cHnNUUnCkm6ur5XJ1d383zQ5KPjzv7Tz8+U/fXqw2tdIuxuNunyFfXmz/8qe/LBbLz7/8QnCxWW1eXd++ffu59TYm/+7t513dxGC7btHWXXBhsV5tLy6Gs90fD0WwxWZVOO0Px9nZ58fH3dNuuV7oSvjgri4ul+vFctH+/h/OsuDldlWrmjHMKUklnQ8+x8mHydnC0OgWlIo5eeeij0Kqq6slBw6M60rP45xTMEYj1FpKRHTBn85DDAGIkCNACTE4awGZNJpzjikRlQw5c+ELSME5Q0RGhXyIwBnXnKMgpMlaYnSx3X7906/rZZegRJ+kkC890jQMOQTN1Wa9IgZGVZzJq9sbVdfBOyJomvawO/Snc4lBG8kALzebEOOpHwoV6wOTYhhGGtnF9TbGMmM4p9lZt1ovYyl930cfGePr7dZNdrvazrPvuu58PofJXqzXRnEOdYrx4eFOcbFsbmw/JWuXy2azXTEunp5mHfThsLvQl/d3d9M8/uTLdwz59395f71eX15ctMb8+h/+OdopzIPmSMg55Ol8KM4775fL5hf/4d9/fP/hf/n//n+O5xND6cbp4uoipVxXdafrlNK/+7d/98tvvlZCsuAFZ945MJWUYjifnbU55+jj+XCsahNCGAec6+n+8U4pWem6qZuh70+HkxSCa71/3nnvV6tFbaqUkw8hpXg6HGPKhKCMeQk2zRlKR7kUrUzbtav1ave0CyGGmJarTvTHM1FKYTYCjWmVErrmOed5HMezn8bD89OjYKxpF6rrlNKLZZVSPEEKwXKumMBMEKkgMKEqhlJxhUBERUjMJQAjhaClEqkwIZWsb19fUkn9udd1k1IEZAiw3z3rerFer6UwpjY5R8GN4KyUxCV5N/cDM7oqhVLMVErfnwGY1tIYIwRN45QJkSFIEWLxRCUV77Ptp5BCygEAuBbWRwT22RdfrFarUtI49uPYn88n52bGKyZq5Jh8rE1t6ooypZT8bJ33QFTpSnDGuKhbk1NRRlfKVNJoIQXjHDkRchRSyJJzAcoUHx4ej4cjwQuY14fgUw45hpQC45CpSCUFihRzVTfb7RaIAGC2FnNpF2bVNJuffbPaXvbD9Hw6ppyJcR/idrVsow7WSs4FAgJSyFLwRhjVqvN5EAwhlek8TkOPRKvFAoBygcyFp9LPVkspuej3J4akGBZkl69f1V07h5yYGIcxW1dvqqqrvc9jPyOyq5s3VbcVmhdGw9BryUqKJUdGBUqehynlWBtTVc1svVANryqhVUCyPhjBTbeoRCNF7oFqBpuu9sEdDgchdUg5A/kYfPQhhof7j81iU5mGqBDxoe8pJEFp3dSKw9XVdt01h9Ph/nnHhVJchBTuPz46PyUKqXhViXn20zRDQSqEDFPKwbtCpRBRIsY4AgAU9vLPAyg5I0MplVJaSgkIMYScMufcGAUFc6a6qqqqSaEwTgCeG377+l2zWJ3P55Q4ES+lSKEWi0XfD4LDYllph0g5l1ByQU6IhSBZNwQ3c15yTkYLzhgAlMJLKTnTyxgxlQgMAKBQppJTKinGkgsXIuSUXAohEWOJYob86vWrdtX+629+m4FO51GIl2zdUqSklOwEgG2hYl+S5HJ48XJMBQzjUleCi5QgAQWA69dvoJSubYhSCkkLUZlGtx0gn50N9N2hP0okJlmBWCBIgVUtcqFh6HPKk5smOwvFQ7DeWu8cIszeYU/L5etvvvnpm1c3AqhSnJfStVV/GIahz95P4ywoPR/2u9Pp++9/3J8PwzAN00iEgIyQMSEyATOqUcpZzzgHSsEnxjkA5pJLeQGSvUSHEMCL/ANECdL/gQmkl0uLXhhQUDiX0QcGiBylkMQx51xyQs4ypReOmVBqsjZDkUrUpoo+MMWt9zwzAvB9DwwF50Iozvh07ilm8OHtzfVmuTBcYAw8enLucr0czifdtIvlxrSd4NLZWSLPIa7aZa119K5tmq5pJ+tOkzscJ+ujTXF2IfgwjsN07rUQWhtT1YXouO93z/vFZi2Uqtta1TUdip2nFMs4HBgD74YU/ekIx8NTiqFpdE6eM7i5vry5uqyMnvrRet/UhjFgHLJPzs6co7XT0+P9PPSNMZv18ubqulsub1/d1lXz/sMHo/Tj3b3W8uuffn29uWiNttNcV+bqZjuc+vE4aqO7ui2J/vv//N/aGIb+fHV9WVWVs9bZmSFa63Is1vljP+i2q9fdyU6nw65dNM7PLlhnx+BdLsGP82LR/uSLLzfr9c31tbPuf/y//Z/+5R//4f7xSTY6lWxDwJQG52wILsZQiqi09xGlZKXihD6mAiz4BKwcT+cSPRRys0sxKamapk4xz/NcUsw5I4DSSmlNnIUQCIBLwZAVllIoGVImyCEKxoRgla5yypOzXEoCKITWuUJUtXVVd9c3NzaVj5/unQ/bzTaF9OH9h1oZLWUCz3nRxoAmN9v7h/vD6UBEiMx7+/R4P5z65bIrU/IumEZLJbkQ0XsCiCnu9geUkiRPiQ6HT1VbtVX74e7+eb9fLjqtzMV2q6TsmjaX9MVn7y4vruZ5vvv4cbPazOPUmEowcbFaL9pWcdSas8VSSSWUOg89MDqeTuM43Mjrzz57e3f3XjAGmf7mF9/cvLppq9b103/zH/4+xMlIpZngDKObvLWc4mbRppQe7x4+fHh/OBxuX91+9vZdRrTDXCn19vb2p+++FBxvrq7fvX6ze3i6v3tYrbvLq5voXQw4z9PQ95vNljN2PJ4ISrdovQvH0wGBLjbbbrEqkJhgVV2lGJ0PCMCFsNbfuYfNxZoQY0ohBB9S3ZqqMnVbr+LKOXvYH3MpTdcIqc6nngA2243W2ttZKCgZs49uDoULkYrOc6CcAVLfH8/HQy6JSV04mLrebDar9WoaZ9OI0/lgx4kRq6u6QT3NIRXQummrGolSCogll0SQBDdS8gwh+7xcX3zzy58NQ/8v//Br4MiETKnYGGKMo59j8m3TlRKV5FTK8+POzjNB1koDFTvPRMgIAIAxIYU0UueYHYXZTiEX4Gy0gZDlHHMiQBYzpQSpsKauFuuVrurVavvFF18O4+kP3/7u+798ez7tQwxtW+Ucx+GolLbWRjf5aQDE4BxkKoUQWQxumhRD5AdeUmEc18vVu7fvLq4ukHAebFXVTdMioZ0sciRK3rcpOm204GwepxBtszApFmddTjHmQEQAWXL57vN36/Xm+X4HSP3Qj8O4WXRt3aUQwHvD0DBxGudEiIjby01McTidmtp88e4tA5pPNjhXmbaqK0EwjAPFlKDkFDarddM0Q39+2u0I4Pr2CgVPKQc/h+C7pmZAzXpx++4LEmQPh+yT4rytKsFAlGJdzCEybhiTQH7/fPBzjxQXi0pJjpSlEFpKKLmpjRAqxdj3U8H45uISpDm5mGIZZ+e14Qo4CGO0xkI5AxFAjKE4H4CzxbLr1s3ueZ9LcdPEuWAMp2n0fi4+9tk1ktaX65//8psS7eP5ozBlGPrT3eR8PJ56U2lpJDeISCnGnFLJZLQhysd5Sikxjoi8UAZgiMg5EIUEpeRYqIiSOZdScCz0QkZJOUdCJBSMx5gilxxizsA4lExC68ur2+vLSzsnzjhjOvqguArOu2n4OJ2DPXeLjqhojaVg12nBYLYuBt+fTrMddS0QGb7wRuBlFAYlZyaQKCMgQCklC845kKw1A84EZxFyAcEEl4oJbBbmy68/iz5/+cVPChF7/5ELpFzq2iyXnQ+xZGrXK+RSKh1LMV3VbRZ+tvNsu3ZRVS1lij5d2LDoupurq8PuoJVSiqcUXqRGbnTMeb97fto9KVNBciQgURqGIYRQctHGOPvyBHvNimLo5uH08JiirxqVC+2O5ww5Rvf08T3D5MbBSCEkQ0LKgICJwe6P/fPhcJymY9/7kBEZE5wICoDUiohyAWIYUuQSAYhxxggKFQDgkF9UnpwLIhIVIkDGgIghcM6oEAISQCmJMcYZY/SyYh45FQaYE4WciYgQqGRIQABSipQCAyQibVR+wYgzpitZUiEArRRjPKfMGa+k5gCyksTZxWb9b37xy+1ie9of7oYdFCq+15hYSsWnm5vXTNYppGph6kpCiabm0Ybz4YQ/4Yzh48PT4XD0kQ6n6XA6u5CIAIGolEapbrXoVgvBRFWb21eXKGQpKWYnJK8aDJ/64+m4e0glZ2PUet09PXzybqoqnYIPKTMEUZlS8tSPOUch0QcHBadhSDl3TfXnP/2pPx/703m77C4vtl9++eVPf/q1kOp4PNbafPOTn4YQnu7uX7++/fKzLxplvJ26trm+vKxqjRm/+PzdOE7jqVeS39xe/umPfwai5P2cy9CfTofD1cUVSHj//kcjjRDyT3/8zjT1MNnzNHy6uxvn3lQKcvmbX/4NI3R2Wi2Xr69eMcSc4ObV66qung6nP337Bwk49JNU0vk4+BwJwBjkvAgxJSgUc4yFiEljXeppuLnYFu+fHgZGtFwtOeeUcrQhpcQZrFcrJqWPIaQkpRRSEFLwHkrJhaRRBaEAgWRIzKecC0AOgvGM5IOTQhWGoSQArJoGuHzcHVyOu93BuyC1rurqNPT1ZS21NIJPw3zYHbcX6wIUkxWSp5xDCv3uxDj//CdfTP15/7wruThvq0UrJMfCg/fOB27UcZhOn2xBJoTERGkax6HfPR+7drFcbz5/9zkSPHy4U5X8xdc/67qls/Obm+t/+ed/mvrhYr1erhbXmwtvnWr4cD507YV3fvf0jIKtl4tPD0/n81kpGYPfLFfXF9u6as+n87g7jdhLxl5dXxG1kguCfDycHh4e28WyMU1Tt4Bw//iJSnx9c3tzefurv/3bj3f33/7xTzHlV69eXyzXOYU0+8cf7zmD9XJppEwuBO/HcSqlwIt+K7mp9AtviaB472+ubrSucg6CC2OM5HLo+6ZpvLd2tqlkxmCcJ1NVrIj1ZuNCICqztUrptmk323Wwfn/c31xfIbB5HLXWUiopuM1FtKaJJb77m1dAL3heFUKY+iF6zyFpyTlTXEnINA3Ddr3lwKU0XbP2IQ3nuTbN9e2rQtL57FyKIeeMLwCVlFIpyLhAVlKiEHKK8uLy9ZvbLx7F7uJqN86DHYcYox9mxEJE3ocUfQxOcGmkmN2EDKSURhkmWPKka82BeReVUkYbrdQ0zv04HIcjIGNShEymrpgQQnClNJZWaRGDU0av1+u6bZWofv+vv/v9t785HJ9L9jmHxaLq2s6O8+wcxQRUEMEIBgwhQIiJcuIoIEEKkQHLCXOMOedKMqOhqdWiXS6+XjLGGArI6J0PMczTZGqzXC0QUCsVozufjt67Mc1KyoTAOSLD4GfJmeRMS3F7c7Hb7Var7sWh0p+e+8NAgE23MHW3MNVpnKSSldQK2c3nn7979+b1qxvF+Xwen+6fPr6/O+2ejJaIFWcsx1CpdaW1d7O1M1Ee7QgPCAw3bfdSw0nJEUB3VeR0HE73+51kGhmHmLPzIDRnhFT8PA7jue/HcRrs3AtOc39oW51T5CBm647nvqHWaJCCm0rvDnPfnyilu9PIhU5uSkP/6nJV65xLeT4cOqXaTmulhDTNqs2lcKUqXTV1O86+ZCa1ZgwrrV5dX4zHkxt6pRmXECjFEhOVypiqamMs535ou7aq9OznODtggEB1VXGU2qhhVNZOLwyYRERQChSG4mVM6WNgjBUuhBA55mi9qkzOKcaIAKVAigk4WetTKn0/ATFTqVJQcSOZ3m4v7x92L9KenZ1z3s02hlCKP54hU5BcScl98MgyQByn3rkx5RBiyLOjDEIwJgQCQ8KYYvQBEHIuXHLkAC+UaITG1AAcEAGQM0TOmODO2nkaf//bP9gprbfXn4NcLC+NliXFzXbNkSHDul2gEIWwIHAh6q6SjRytP09TpWoEXjJBQTtbibzqViuulRIu+TRPJVGwTmdIMc7WcyW79WI6RVPXpjbJe0BikhEA46i0UvoFHWEV0tW6y1R55zN4xHA67MJweta6qqSg4txUShFCcy6CjxkgxOhzPvdTAuLIC1BJGRkKITAXoowAmApj/MXTB4kBAhQqhQAA6OWnLUIIBChAQIQERCUnAAIERESODMvLZ4iIiAphIWTIgIAYQwJAICYZ54Ihi3814pUcImOohGCIOWYEprRU0gjGffbZJx/carH88t27VxfXry5uFqYtPmCOdji/fnWzWpvd6cyE3J/tuluiMH0/IhBHFlOR3KSUzqfh04e70c73j8/eJ6mb1UoXLs/D6H1gnCSaumsTpaenXde2Skp/tJM/7w97znjJMaY4nvtMkVLSWi8aLRklbxkUyVlOKQSnter7vuQkgDMkzrgbJyFkThEKTMMgkA99r4Vo63rVLVbd4s2r25zATvbV9c04jE/Dkx3mrur8NB/u7r21WnA/zdvtZrlavbp5dX9/f9jtr6+vGPGuaUvO0YbBnZ8en6pK/+LnP989P95lmlMgNhCww3A+nc993x8Pu9vr6y8//2KzWteqUlLM0+i9N7JCRtNoY3neHw77/oiV3h/7yQUNWJDNhDYRZxwYh0AZipvnYKeuqrum2bTdxaJTAPM8I4DWmgoBFCFF8GEap0Spbtq6bkQUYG3JBYAkFxmjtS6lkivlYwjeG1NxoBhTTIngZfEGYipCIheSC6VNVTVdu1j8+P7jGC0K9nj3/HTY/eJn31xcXy6Xy2TnefYlJoA8DL31brQOOGOcHfbPMSSgEoM/H45QitY6pBCHMUM5jeMw22axmHs/+LFEzrSOdj6eT26elODKqLptLq8uq7b9/k/fTfOwFMunh6fz8bhYLIINm9Xau3kcp4urixDSNAzD6bxaLmbqu6YOKRyH/ovPPp+sLSn/03/9x8/evl6tFkYoLXhrzHgeENEsu8PuebHsqBQkolzapsZSlJC10bO1jan+83/6b3NMT4/PdrI3l9c552mcl4tlcu502C+7bqEV50JxedgfnX9ADsFHIYRS6uHxgTNWCuWcCAsyBkBSy+enR+CgteZMNE0jtfrL999P01jX1c3NjWBSCt00tRDKhyCdG4aRIUjJq6oukBnAu8XbH394fzqc6rq+ub3RysTo6saIb/7mF5FycINSQkghONaVPu+Pf/jtb+04KI6LpuGm8jEZo9fLFUfRNHVMqe8nAXrRLBfNUohKVbWL+eOH+74fS0ElK67+unrJGFVaV3UObWyby+XyIhJbri9tLKZlQsmCJQevGHDEMPeQ/P9h3wAEo0ypARlGn2NOguuUcyQaJldeJgQlJ0CtNReiXS3aZceZ4shKKnayTHDNzdT3x/1hmqcY4zhNx9ORC9QClRAlxvHUc84qJZKPRquua+uqRiCVYcqTi54zrLVhiEIKqWSOMuVgJOvPpw8//PDuyy/qRYWJA6Xo0ziOKaf+NFhnMyXGOMsICEKJmDgBZSpaK6lN29Xn4zHGxATVjRFLZv38/PgwTz0iLptmtTDz7CGFVqtamxxyojLtT5vN5mq9vd5u111TG/ns58YwIB/8BKBLTrnkZdvWVXU+ns6HMeWiOOuaJqQQ5lhLWVWmrtuubWMKXAmb4hTceRwbg22z2LZdAsoFpn70sy1EMXhFqRNsuVyk7BMEzogJjpxvlxegeYgh5JSiG0bLmDzsnqkaGa8kMs6Ft/PYM6j48WlfhikqiUCJUkHLuYgppRIZYaAMOTMUkoNA0ZgGKIXgQvTn4ZTCnKFst8u6Xd+9v1+sqi9++sX26lLruuva95/ez66vu/bT3QdgCJEN/Xkap7/iPVLSUoRIMZXEAlBBwNo0SkgqZEzNuQw5Jlu8DyVnJSVDlFIiMs5yzsARBReCywLIMs7jNBx6e55Op14Z3Z+HqZ+jT7WulWo4J6Ri7Rgis/N83HHGxG7/PJ7OqQSGmRUExpQUwMQLJYExrpQiJF4IERlnjIGUIqcUXCjppWJLXMhMWUjhJvt4f7/ZvmqWt5c3nxe9bpfXq672bkzR5pSqtipE0+wXy6VpDBEV78Z5tgVTYpGrmIpz3tmghSgC55QTorWWGAZkXCABmkVDKYY0tV3N2PWJ42a7UIzmaSAgxkUuEYApJZUQfj6HOdxe3Xzx7/4j8PT0dP/09HE8HyDBeOwrrgSxlAJFMdspQ+JCApcxZ84458zoShEhcu+8D75gYZIQELG8YFYyRcaRKJcXCQeAEKnQS23DOaXgBRNCcCoEQJALMiQiBsgZAyh/dfMRAQMABoUR5ZdqSHD2YhRLPhXKQgokJAIsyJDDX0NGI9cvtCghQFAijKxiuqmqn7774pff/PzNzW0Y7e7+ruJq3S7ajpbSLDfL24vbr76A3/75+yljSDHnkHMchrlrq+CCT+HxcXdzOxz7/mz9uZ+7hQYSmutFxwYcnLNzskoxpRljhakaMNl5GGfLBGMMgUoK0TTCzR4EODtMHKLnTVMBEGeojWnrSkslOddGuWlMMQspldHDedRGr5ZLI02Oqavr8/EUY0oxHnb7b//1D7LSKSaWC0twsVl+9vo/X2w2u8fH5PxmudRCeOeTdzmEUkrXdI0xVVULwsv1dra2qqvVej190Wei56enb7/9Q86lapr94fDD9x/GeZRKrjfrm6vbn3z5k69+8pWW8v7jR7NYaa4TBYHIuKBsh/P0ww+f3n/6IIw6nHshMOTCucCm4SUnwlhy8EEbJZuGSdG27bZrf/r2LTjvTmc3O4akTAOlEMI4jiXnEIMP0fvoXChAMcdCBAwhFSzECuSUxjGFHL31PkRTKc4YY7wgvHBK67YBxkLOTdNd3Fwv1svJuz/88TubXL2orbUxVd7HZbdw0Z4O+0pwKfg8z8dz1FUVQ0TJsKDRRnJ53O/OhyMHrOtKCM4ED6WM4zRZK7Ue5vG7H/+SALLgvs/H/UkjX7UdR3axXj/vd6/fvjmej6OdgeFivdwdDtNw/slPvtxu1j/76TdvX79BRslHhaKEyBLtHnY//+UvCpa2bW5evxrdfHmx+clP3hlj2ra+2mwl4xLFxXK7ahcpRC3E0I8U4Hg6MI6p5P4wnM990zSM+Hk4e+c63SbIWODp/v7y6mrddtlFO03eOQDoT+f5PLx5/aqpdIje2qlqasa5VsZ5O4/zarVSWnpLp0O/WCyquj2f+4fHx+ubayC8v79frVZSyn4YSi5AfLFct2099MP5NFRtLaSqm+blyBZS+hCcnUvOpeQUMxfc++C8B2TDaWgbLTZXN91mSSFN0wlz0EZU2my79Xg6fPzhLwjFKGHH83Gwr9923jkPhQktlTbcXGwury42l5sNl+p4OlMmwYqUDFBWTSuE8M4BojZCSw2ISqqq6z58enje72Ip7WrBsPPzoLRiEMM8Qs6Uco6hEBHwmJMUWkiVAf0cYgz9PDMU0qi6boQUBKxpF8aYlKI2lTSybVsE1p/7yTrv7DD0UFLJLz7tRAWm0RpjLtZLabjRsq6k8zaHXDfVZr1C4CUXKGUcBgRat9315sLNU0qhakzKWUqJCCEkINPoKlrfY393d3c+9ch4DNnNfhgmJRXn2A/jMPVGq67ptFIxziF4IdHUrZIylJkgqUoQpGnu7x8+aF0VTIf+sNs/rVfLulqZrhGszwW1xLpZGaV//evfOi42y66WimVihdwwKcnqVhOkeRq5ZFryEgsrCSkRxcf7OyHVZnNZVYpHPg6jc45KRq2jVD55AbkfRu9TIRxm17SbwhUCDeM5U7q83OQS+nOu1m2t6phCTtHlmZD6cTpMoxtLQT67AFRaJaUQhIxLbLpmdfO2Mt3+6WEeT5Jz7+Z5doyySGBjUlrY2VasAihS6hjD/nQceyu1MVVVEkkpzsedm0YphFvpn3z+7u1nn9vZEsyr7SUi1nXVtA3jnAFqI1S9Wl9cHE9PuTAmaDhn7+bT8cA4GK1iTkSkFLPOITBGTCrBGQeBiAwBUo4lhb9SxRlyJqjEUpAxFFJKqYypOBd2dl2tjUTOcqXFmZKdwtT33lohwVS1EtzOc0kIiJNzXPDRuxTzeexjClozYAWAMyEK4yGVVHJOAIWwADIsGQAJUgRGOmfOmeA8JyrIuRDAWY7ECRmT1kVkXJr6+TikXHTTCCnHPoznk+S8rY2dR2v9xeVlJWtrZ56ZQSa0ysWVkIJPp+NZCHG5vVx2HRfog0vDoIxhWgkhOPFFWwH5H3787nm/c3N/2D3356fGKOssZSiA3mfBRFt3RsriR0ju5vrV28+/uLnZxjAWbwUDLPTw8f5f/+nXJWcUpZ8Gn/ynuwepamZkXbf752fn5turJSOYxgm14ZyP08SFKIXlkggBBQBieRFp8IVKgIRQiAiBCSElK6kQvfB+gHF8MXsRFAQUXJTyEhzKABkgABEQEBWATKUwBkSQiF5WOgABkaeUU05IiMiVljE7qSQkMFWtpTbKdK/aZdst2+7d2zevbq41U0RhnOblsmqkmqbx6ccPx93j8vLKAZyOz/veR5QFuTYCGYYQGIfZzaYyVdVOPiSfjofjODgpDVMmprRerVOp5/kcfTjsjzm6u48fjsdDjD56yzJWleGCCyZmO4/jmREggveMMq+rerVaeu8BgDEsqdRVVXIsMWMuivFG6/bGUAYJfL1Yvn71ytp59/jctW3bVFLI+/t75LharjhjL1/U5cU2xSg5u3z1etV1krNpmqQSJcUS46rrrq+unffTOFJKHJEj2nG0s+OcxRSXi4XzabFcLldrhtx53zT1u3fvELBtaj+74/AYrffCbTab1aLzzh9Op6qqeMkFwDQdcs6FN51E4iGm2UaSvGo6TpmrWFV60VRuGlmOddvkFN3Yb5bt4QFzym52dV2lnL0POecX7lfOue97LhgiQ8YpF4bAgSkhC1FvbSHSlQJgpaDS0mjNGEcCxsVitZqt89O8ubp4+9lnuqk+Pt7b7G3w9hgvLjavr19po511/TTHeVZNE0OYrfM+FAamNrMLJaamrqWUvqqjj5VWVWVSyowzwZkSarPWKOTutBfIhvGcBbMxCY6Xq4vryzUHVptqmuZ//vW/lJxKhl/89Jtuu5Jafnr/wz//wz/96u/+ZrXZCCUJCsvU1G10YdFVlxcXbp6FEkbq3eODz+nyYrverD/++OnF55hdcJma9XbR1s65HPLV1cU0jEZrbfS573PKSispxOlwNJVebNvD4YgMtdIQ8He//Z217uHhoQAtFt1isWqMruqWCcxAUqulVpwJQGibthwppmzqqlsuGODueVc3VVXVLribVzfL5Yoha9ou5TLPw7vPPxeMLxYLKcTxeIohCCGmeVIqCqmBMUYEAFQKEaSUGIer60skzDkjQ84wpfT4OIrl+lVBjHEqSbnBlojkQ63l519+0ffH54fHaRh9jinl4Xx+fnpm3BDx7XbLqFSMKaBWiMlOw/Pz/5+lv1zWNFnTNDFnevGDRcEZSbtgF3QLTNJIppHmNGRjc46j/zKpWy31tBqqakPmTojIgAUfvegM+hF1Dm5u7s9z39eVEIQlCEExYpJTgEAImUtJKEWElYLGdRnnKXmbcsywRBC998GZ4AzCGUJICMkZBB8KhgUgIWsla0yZ89GlAgopKAulmq5hQtZNAyCSUnLGCyzTNEaQng5Px9NhWafoI4RfiiHFa1NXgnEAItreXddN64Nbje76drNtQ/QUUUqZ16Gk8vLl7TLNbvEIlkbVV1c7gtBlOHHOfHAp5xgiSp5Ser276be7AlFOYJkswaRknDzcNFeMsxAtZowLGoKnDH+pE8XiS0mQABfscXiCIGOKrLarHQ6np2XWEOPH+4dlHo2drrYNZxChPM4zUVI1TV3Lr169FkLsdpvxfBIERjMzjqqGazOnHFWjMEbdpnHzukxjji5azTCEMK/rwBa+2e2EeLYMszUhah2MmZaJMJw/38u2hhAdz5dM6S1/jin1GKpt++ruZTDrB2+jczkhRnHGBBaWUMYAQQC5VNu+g5/Rw4ePwMGm2bRERYyVEBwkUuy25hLWSsDofFMrN2dCCcJEKkW5cN76mAAIOSOrDeUUc7CGCSLYVruXz3+3jhNI4M3Lq++/++bm2etl1TFAJq3V64cP9yFYiMvxcLhczgCgWCLlBUEqCKsb+td//fW/VX+bc4opPB0eP328N95mhH3IEIFSUoiAUBpS8N5lkJSsIYSr1uALwqGUAgBjmFCEQE7Blog3Xf38boOznYfDdiOCU+fL6NcFxAggThhkCjPGvsACqPNRNSozuughAISYijHGCDL819ZdhjBDDBBCGDPEEEIFAIAKwjnDyAmWXFDCYWGYcERZyCHmLARv+03fbVYLwmVOxJIM5/NhV4ldI+92GwJz38qWY9uVl3c3LiYzjzBiAFLRRpaSQWCYWAAwQvu+rZvGBZ9KqtsqF5hLBggXiE7jCIIfp/V4Ok+nR6snDFNq25izMZ5SsWoPYvCRXPfc6ggCILRp++uScM702++/bVt1/HQ/H+evXr7hnHR9e57Ow3R+8/KVNtYlTxl7ft0djoebq5sSs1lWBpCgVAkRQ6rrbllX403BMMFcAKSUOBNyKqXA8mUUBDNi+EuoHUIYvIcFUM4QhinlkhOj9AvhKaWYAQTwC+4T5BBhySAnDCCAIObkU4KYQIyNsbkAIWSIMbjAlcSEMEERgp8/fCaU3Fzf3d3e3d3eKqVgLpxSgoBfNCipU00lhF3s5XA8HO+RpDuv70/nD58fbSEOYFlvuu5Z2zYp+KBto+rddkcQ4oRwwkqMEdicI4w2FjBcHs/jyTuds7dWR2dWvcICbPTeB0apzRkhxAhCMZJSKCW1Upuu995SjAnKgCJQ4DJOy7CgTYAgwxif3VxLWa3rstnuzGqFlC+fv1CqIoi0X9cQwJLSZre5//DZO8s5wwiVnJZhOtAHzllJqa1ryXkKvpJSCL4umgC47TeNqghEsGQAoV4NQOB0OJxOp9evX798/qJvu2U1OeWqqZ/fvvjCI6hUFWKAoICcSckaIghTDqGA4r23RjOkGOfPnt2++Op1LvB0OqtKeueOw+Xz09HEiBFGlOWUtNac4pSiXpYBoXAeJQQKoqqqlnkKObhIAIAxp5hS8O7LOyOGjLEopXCCEUEhxlAAwbhTbUbQhIAIFEIgiLx11vumqlNMlLJ/VV5C2Gy6br/Txj579SqS8uvP74x12257e3vTtLUZZgCKaoQPPrqYQDbOIIalUlLyZQ7OWghKv2kZIyCXlKIPHhfiQlCC86oSSpWYvn7++uH0ZEIc1+Xq6vp/+D//D6qS1pjz+fTLL7/81//6X+um+j/+d/+nUOJ/+P/8h6vtJpd4uczGmnB4RBDtdzsIwMePH2qhfPACsZLA6TBmAO4PD/12jxAJyW/69un+vnR926hgtXNMciw49jkFb2MIdV0xwbVer272gstSirVut9kgTL4oROquWq1d3co4RwQNw6AX3Tbtm69eV7IiBKEMIEQlp75tcykxRMbIMPj7+/sIspBcbRrKGECQMlJVldG6bZubm+t5mRmlzjsmq1TiMKzLMseYEIIpJVHJ/e1ViOl0ODFCS0lNU4Xgp/N0c3NTV/XpeArOE0pCDBhjYn2MMSXtYyhWxxRSfd3cPbu5utt/++13v7775Yc//vlPP/wQplUoyTkNITptVoowBN6sboFumlL0XSNCBgUUEiDCOLs1gwKyBxFmlBFCNqZ5nd26luQoJQXCmIMP1rslBQNh/oIz50zAgjLIVNapIOuSgIAxJSvMGaOc7va77fXWWBtDyiXHkIwzxprj8WDM4rTxwTirIQR103RtTQnUIxKMgVQa1W43uxTz+Rz6TXv37I5xEkOQQsCMhjCKSux31wzzh08Pwbtl1owxBNI8j3jT5uidCRAiighnnBFWiUY1TcoZU0EJty7mlCFEpeTLxVFKpBQ5hpxiTEnrZZ5HPU8JeIhiKN45W76UsmMuEdo1QEqct86b+88XHMNXX70GGR/PR5tyKkUQ9fLN89cvXytR/fEP/+KNcbgI1eQCfIjtti/TEryHACGMjsdjpYSUvGmrVduUorG6LT2gWNSqhBCNiykUAACCAABtdCjY+WCs96UkZy/TFL0HKdxuNm3Tem4wYBSznBNNNJRY5ZIERaxiVV1VoxISRtA1tey2h/Nk9DJNI5e8UZVguGSfUpCKkiIpAlRQ7+M8T8u6UEYRxj7kvuv2N7d1W4cUlKq+ev7qmzfffP74YZnXbS+ev3h+PMznYUgQplQuwzCuE0ZFz/PD4YFQiBF8+vSxqoVq6+ABk3y/3d3e3gbvxnk0TjW9CidH0RfqMow+IZgxBjkmHxzGmCJAGC2Ff8nkYQIxov/KbQGIMoYRhTCDFIbL4+n84F0KEYSQt/u+3fY5lQQyRAARFkHy3hcIvUuyrmXVEEg5oRhCCBCmFDD+BUJMCEWQYEQYlQXCgjLCEKJUSkAlM4wwIiUTTCTA1CePCIYQMiqqWllnH46/UCFxKm65FMHvvvlaEbheLqs3qqlhQQ+//frrh88ule+/+3tKiQgBABhCJEKCXM7LPF4mG2IqyYdAEDTrPC8LpCQXsI4jA/j589fPbq+W4WkZTiU6znhM2RhPmPA2TrPZ9v3bV69h8vNwutptp9m8Oz6tejpP5nrfm2E8DfYyWCoQVdXts5eMi8VNX3QHIQZMyfF4hhmBkLMLYVlRyX3bBhtub5754CGChcFQsonBOTue5lLAv8J6ESywIEogQXpZvzjlYYGMC0y/6LdAjhkCmGFx5su3u4KIAFCCcSV4ABLDFGMEEbLBxwIBwo/+qa7qb779BmOyrhoTwoXs+n6ax2w9RvTbr756+/VXAvOYY/SBExqduxwODLK73TXK+eO7d8t4RBC+vHmFqXoqkyQVKKDkAnJUUnRdu0zjpHW27sNfflnOE1UcgyIZ/eXXd/M8L9ZASgpCIXuKYfAmRa8qxSXV8+qtkZUEBcECKAKMIFyY3G5AATf7HUA5uLjOc7CzklJKWXFeXfFnN3dNpXKKz2+fFVCMtcZYTvjt7e1+s4kxjdZqo71xTVMJIbUxBMPHh6dKcCn45qs33337dfJxOJ8xRM4Ya3Rb1W3d1Ko6nU7rtOSQuOTrtECMGSfrqmEufddKznKMknGMsHce5RKD6zd9AnGdxpjS1X4nBB9T0uO0GlNiVlJxRruuG+YJhXjV97JrT+dx99Wbpu0gKrPRH5+OT+fTw9PxcDxqvQJUUPAIZIFQW1fIh2jtsmomaAWqVevzOMICKcGUUUyw1qakghAiGBNKCMa5ZG8DKAVCkGLkgqdSAIaMshhjTkBJxRgb9FRKABiFmLkUlNDT8XgYzjaFj58+/Przu/3VlRRy020FpXKD3apLDA9PD9ZZyggTDEKUcgIIeOdijMFJygiEkGAcY4whrlpniCIAbb/x1l1v9oKzu5vbDIFPCRGyqWtrbasUSOHSd7/7q++OhyOC8OnxyXrNEX7z9iuYMsipVo017sOH3xrVEEJDzpKjh6dD1zaEkrbvQww+RoJAyWgwE4awq9v9dX+4fzg/HEEsu+strYQ2MIaQcjwcxpA847xqa+cCE0JU1TLNPgRVVVqbuq5vrq69C5i8XGettW7aqq5qu1ogKOeUM44xqZtmGMd5WRe9LKtetbHBv3j18vb5Mwrx4fExBg8SVErmkhEijIqn86P3niBCOT2fB2MXjIkPzhgntAw5pVy8dWss67q8evk8hsiFLLmcTpdxnoLzbdNWVUUJJvcfnzAnWbt1uijBJFcYiZQZ47LtJOEVE10o5Mcf/uJdxBBQTlD0GLjgw3h5KlFvq0pU1VW/SQDSaRnGpYBUYM45IxCjm6InSYRYUEyu5Fi8X6YJUxZBAKhIyjLF3toccyYogAIRRoBgwpWsMOFUMIa+7JRwSul0Oj88PsQcMMVMMMYk5VRU7BrvSu7Oh1N0wmoBYN7ueyUkguDl7R2BaB0XJRRBLIF0c3stG3V9d4UIggRRRBDAb7/9ulY1p/LTuw9K1IFQguC6rus0aDNDnI3W3qW2bRnm3vlxmqq6pZwxJquqCj47awGA3voc/ToPVKCSfbCTXrIzS8o+RLfOx2E+9bsaM5CSCS5KVWUUh3FyOkLCnPHOaZTi0+mpriTnVcgBIbCs4/346f/17/7dzf7qf/y//U9/9w9/Z/XCOOGSQAIJlbxy5nSKzhtrCUEpR4wxZ7zf9F2Mn58OABXtjPOJIMwx8TmG1TZtqxqpUxiWeVjM+TRN0+KcP51OxuntdodS4BBKIjAEGFMhm2VZ1sUGEAshDFXjul6G0RstJOm7TS7peH4aF005JxRbHaO1JfiUPCzBB4NLrjj3juSU5mUKzldK9lWdEri+vnn15o1QLJcECXt28yoFPM1uuEyX4/Hz57NU8i8//rwuy3bT8UZuSWeW1dqy2zQl+8WsnJWmJlUDBaUFZL8cf/iXj+fzpSDgXIjOQ5BLiQWUnBLChFOqBE8lJggLSDquOa4wQ84UowxBGJOPEedcIEAZAsbAPOnotKio9zn4gghHiBPGBZeQQcIwgKBCyodija+bftNtAEalz4qLWkmcASglF2xjiiUFQCHmjEuIcYw5xFQwACgZt0SvUwgpAZJR9BnTGEEw1rgQcg4gg0oKjJFzkRKMUxEw5yhFylUhIVq0OOcslNWwns/3j7jbLCVn48Hq911PYKx5MyBtxqendPQwUSGqSj672qHgdAoIF+PDx3e/gpQIBZtGUZQhgqmUZZm/ZGuCyxDiTVcBGC/Due8bQPHT+TSNk3PmdL788P7T65fPUPRhNsZEXlC+zAaDVHIAYLGGc045TRlQIS+n0U6rGeeGs75Tl/n88O7hn/9///L67au3X39ze3P3//3n//yf/st/SSGlFJUUdaViSMb5DFHKhTBSSpFSCsHHcTHaU44YYwAWa10KmVBkZoMZ40o6F0ApAOTsDMKoriTIEBJkjIu5JFBOp+H65vrtN1+3VZVCVlXVtq2qq59/+OnyePzu++/vrq8YQGaatF0oInXfc05RKQSWeRz0Op2HAwPo9fPXr1+8+fD02Mku7fjjPENQMsbzchGMmGHWlxmV9PPTRVRVf7u9TPP9h3enx886mJBzcQgQRCmSsgEJMERQiSV5CKKSFOUkOOOcc05TSto6xpAzZjgdUwgFJFwgRYggSAtSddOoqq03V9teCQFSPl3OCEGQCsHIGTeOE8EYI8Qwq7uqbio96uvddU7+y4Zou9l0XccoRYRtmtY7s04TZ01b1wiWZZ2cNYMdhZL9ti8IQFAux9M4jgCAvu/ny+BWzQWHCEfn1mUNMXmzVm01jCNCyChmjU7BpxiDC5Ob+rZv+y6mKBwTSghVUS79sJhpwAxLJbdX+7qqKk5pgRyBy4DnZQDeglJkXe27jcT48vhQcnE+Op+8S9pZjAiimAsGQqK8cMEoJiknxlny0awGUsgIiz5N65Iw6nYdhtQHH5N9/vr582fPckgh/nq+XPT53Lbdpu/nafY5D/Pw+f7+8fBknJ6GCwFw23aogICAX8yqrY8uxoAx3l5tKWXragDITVNhQnPJxtngQts0iJCMUQ4AYwIKDMG3bT9cBoYwR6jp293N7Y9/+enHP/xhXubb65u2aXEE0EdF2J/+6Z+vdvt9v73ZXf3N7/76/reP6zLjgjmhFmDOaY7pfBq8Ei64BtV91zGCu7Z5OhxBTFLwEMXtdldXTc6RIhyS8c7M44ghVpUiWC3zOo0X5z1AqO6q3c1uHMbZLLNeYozD58/bbe+dpxBFhLxxbVVvtq3VNoUMAXTWresqOaOUGm3WRccQo0uvX74y1l0uAyw42Ahp6XfbFDxEAAJ4PoxCcsGZVHIcxkrKeZmGcaCcXV9fUUq0MSklIQSjNFdRa9PWap3Wp8enDPP/6t/+r81qvfFSiq5r274x2pKcveLcmFIIKhhlCGdr7YdPlGGIE0CF8Ppv/+4fCeXjZZCCEYRxyQBm47Vzq0HFWQsQyCBTKiXFgWJnXNc1AADt9GLtbFdEEMhIMQggc9mihJigREiIAYQQEQhjzCGkEEpMSlWxFFZVqqoxZSmUGAIsAJQUo13mIaW42ffdpmeMN21LKau4SjF2fW2W5S9//JNzrts0Uop11QTj/XaTQxJYRJ+88976uq0EZynGfrvdbDc5ZYxo23UgI7PYVPLu5opijGC2Zk3BYwbmaV7XJSUAERQ8hVhcDADDy3Sp264x4+W0XsYlR1Ay5ByGYDZUIZAEJxCHedAhuX7f1PUNPUbREu9WAA1EqQAEAJRKaD3Nw+CMV4o3XccRNs4zUbd9123aSvVKVLiQAuG//4///pu333311RvvnZ3N6XI+ngefIhcSYexiGpYpFiAq1W77GJN3PsQECWSMJRAZ47tuY6XS47jZbQnD6+WspCqYnE/TcDk9HR7G4bK/2v7u7Wsp2DiMUebRrtOscyrzuPrgQrbWGZ+itraULCjJ0eUQEObTanUIqzYheUYkxcQbSxGqFCvFw5ItIXadfXDGOsGkMf50nm/v9sH7z/cfLudzgWV3fRMdyhH8/Os7py1COeentq+fTk/DOHrg6Iq810rydtNvNrW10/HPn3KxCElOcggjQjADZPzqks4RGRt8SiHEkEopOaWEKalb1fRtKpG5NYaYSjarhhkRQiDEMYKUIkDFp1hSjilExX0MxszcMCFkyaiRTd20nMlSyqp18AlTBgpMIVVVgwkFABFIAMmwoOhChrDkGH0MObsYXUEZceyM1a4AJKrKl+yiW+wcnEUlYQgZ5iUhyopzAaASYioYIoocwoIQkktxuhbiqm1v+26jyFXfyLzVWgdEuKxvmz3rb347X2zOmLFo3HGevbWLcykngpFd18Es/W6TgxlgDus0PN47746X8XI5Xc5Hq2fFkZIYpaj1lFNKKaecS4FS1qDAmLzV7vr2GWecI3Z3dydU9TiaZtNHXv/5z//kpuXZ9spn3FUbmxAXdNd1KWkfXbAhJqCarumu/t3/4//JILzpmi//Y8zpeXzij4e7F68olZ8fn358/4sgLFh3e3VFCJqHxTqvvZ20BgBVlWrbdrPdHpfh08cHgmC/2RCM1lWXmDinnAlo06LXxegcExeMlMw45YJdzgPiZF1NSBkTtnoTSuRKtl3XtB0hhFM+z+Pp9JRhDsHpdamVhLAQAAUhuEApxHfffrOO2ozL+XKRSl71u81+65Id5nG1RjYVXGYAStXIeRimwwnGBFLuagVh1m69nPPHh/vH+8+EpBqxUFJIOeQIMwh2JTBzTlNOCYDtpnfBl5QFZ4zQUjJIhRDstPPGVVS2TccYoQh3XavNCjLsmkYQCVKax3kZ5pyisY4Lvt3sYk4PDw/jML569fqbr78hEKeUhvOFACwlW9f5q69ebbs+5ywo98Y0dYVhKTlBBAUXMafxeDDGUMYgRtbaw9OpamRdqcf7+1JypWRwDoIMCUEl55DXcfLeq0p1VW2dwaiUEpd5KTmjAhhnCALvvDaaS04owQjmGBFI4+EhmBmmMJ+fnObghE3KNPm//fbt+uL2w4cPP/xgISxX+23N5dVu08lKEbKMw3gefAiirpCkJZcMinEeQ0QlKxBCit3qTHAAgADSlw1pAJlIClNBABMKT+cp5eycZYyLRm6nadUapfTs2TOEMcBISmE/GgLJ7fVNVzUlFUZo8K6RlZ3j5XwZLmeMyfPn15hiziVGMOWMMAaghBBjytY4xtli9LKsjPNuu5VKjeM0TbO1jhI8nM8+BlVXZlmnyyU6JxjbtC0EUHGWrN/2PRfy6zdvGabffv22r9qlqirGKMCq5pyxZZo/fvxkje3a7s3br7iUx/NJMo4JDsEv07yhm75pEIAgR5AAo5S0zTRMPjilFMAFQRxixJT4VWPOTsO82JhT+vz5IQYvpVjXBaJSyaD10m82N/trRPC6LinkTdcJJS6ns1nNdtsLIdZldcZhhJRSOeVNu2mbXipJMbN6ZZJ7H2MIKSUfAmX0w28fc87f//V3KaZlXa+e3XDOCONMcFnXzlrBWcl5Gt04TJRSCKCs1Xa3/fjxw+f7+6ur/fZqH3N69+4jJIA0ikgGaC9kIziVBCEIUs5JBx+MidFzhCvFXzx7XnMRkysxCUlyKdRgJkjIwXnLOJ0vgxAeYVxhuN3UlCAAQC8bG8XH42WYTqEg450ispEMK7G92VdN5XwEBTCCSwgQlpJTzglTbnywMaeUGaJyIxCA3lsEQC7i2e3++ma/3W8JwgVAkEv0gRMWQyAQNW077bcxpbvnz3IB67rM86QX19atvFLLuDwtj8uXpHAlUgglRk4IoijFErRfJr3oFSG03e4IQrXiuYSS3dOTnY1LJSNCtDHGecIJzHlcL0TiqudtqzIEhBI92+PhlHyRCoMU+k3TNcxYu1wOMENECib01ZsXixlCWDCBCSQAglQ1o3hZ9XlwBeSUYskJUQIgHKaJKbUDQNayUs2+v0aIIkzfffzN51Q37ePTw6/vf5W13Gz7drONNi7D5fFwWFd7Hud+v0GcRpN4xc+XgYiqvdohgCMu12+edc3XJebz8YwWrLiUsBvO6+V4rGtaatQoIKnvm25dwqin3w7Hdz9/nIcxgQJxCV4bPWGCUiq5xKaWGBS71jEj7UOEaJ5MTB5CqKRABUQAYWaME0qxT345ToShStVKygTAw9OxIOCc211tUQGrNtbnFKnkdc6o7jYQ+mE8H89nFz3lLMRogldCNPUGgrAMR0bodtMZe9ZmBGD1TgNU6rYVilIDrcu5xGVerfMQwFJyLinnmEHhnBAmuAc5x5JhpZj3IQUXPBCixoRCAEUiPniEgKCoVk0IASEMAAIIDdMxBFO3reBSKVp3HYAYYyZlkwoy2kGIECQYFooRxYCAAnIsJcYcbcwmZ1o11Xb7+HB+eHrMBGPEAERuyZAySgijTDBRIsCYAOqFYNZ6RGBBAGN8vd/E6cICebnf3DTtRikGbfIFIQiYCACuIWvnbUE6p/nDL1wIPxqCMKf00+MHzphel2lZJ7N8fvdTXclzXW2biuYwnE7Ih5bj4zJls+YMY0GcAAqC9Y4RlgnS1jqdMcZ6nddlRDDU7bZrd0iwNWaPKK26Z2++H5fw859+WDGPCJ1t+t3L16+ebziKej3N62hdGJa16jcppGa79/OCBPMlXaZx8W6Onpl19tFliDAvkCZEiGT91d12eyUqQzn98Ycf3TJjCBOEhIrnd69Fu/n44dG5WDctI3iZFwDA9dXt27dfG6N/e/9hWWZQgBDym1cvr3Y7F51Zf6CSr8Z550HOACKIKeEyQ7xqw3CJGFnnIYarttoEggUjEhRabMoh4wIJQELWEvEH43b7K0EoQ3SxVidnvU85e+sAzBSD4M08DafDofh8s99fbdsEotMGBVxX8u7ZdfAhhOxhLKUAhDCFtap8MJwxgIr3gXDmnH86PPngjTVKSEZY27TeuuT96xevCIDeGoZJq2oGhHO2Fl1bdefzZXX2+uoaoSJk6DZ9LnlZ10pWSimGiaLCGavHObl4s79yzpCqUYJDUKJxCNOqqvSsvbGlpHmaYd8QjFerBeeY4MfPh+CC92GXdpLxtmsgKBQRwTllODgvOLfaMYybTc84ZxTZUNZZQwQoZghBCGHwMaRMKEupFAAYpRjheRrnaZjHiQvmvc2MwhK9j/5L7AkVSnFomnR755N//fqFoLziTAmCrzY5ekpJu+lizD5aY6w1BhOilIopzdMya+ODDyEACAmF0bqQYoihlFLV9TBO3ttlXUsBTdcN89xDiBllgv/tt99XqjpdLt22sT7cXF8pJcdphCErLhlG8zDYafbWxhgwRpxzpWrKiHM+xdK1PYBonAZtDIIwQziO8zTNlFOuFGZcW3s6nVOMVas4pzGHmMLhePh4/+nz/W93u9ub66u+VpQwIejLF8//8ssvb7/7Zr/dgAQ4pSmkvm05JQhib13JEaXSSLnd9JvNDiEwrRNG0DqLA2qbJsaIC2SIYwCd1hhCTsk8awBKiP7pScPzWSmZYsq4XL24OZ7OD4eH65u7YRwKQykjLERP6eHzQ+xS37el5BgdRoxQWqnCOBWS55KMW2NqvAuc0f1+u65aVkRyyRk3znVtOy3z4enRJ19LGX1WSm633ThNuZTd1V6p6nA6XqbL7e2tqivvwzRNIKeub3Mpnz989t41bSVVJaUMPpaSDcLdfpML+OGHH7u2dd4LxUmJ/nRYIKeQyJxLKyVBBZWUXM4FQ4hSjHqOGEGKsZmN0UYq0bYtLuXwcG+d5oI0be2DhwURiDgn+22bgseUCql8KiHG6XKJ3jNCr/Z9xeU0z5xRQaXguORSS05RYRQu01IKjAXkokPUACIMwL7r+r6FOYfgvHeE4L5rcQagRARRDhHlzEriCFqjIyhdJWMuglJKRFM1TvvLcL7a3ey327VarNbTefDWNOqOExqtX8ZJSgkBPU/n8Ty54GtZowJjcIQSwbjkijEOEXBrACAQRgtAkiGEIabw6npzd7MXvBJMpA2Ghfz5j3/hDPZ7GZ2uKoVJKUOulIQuHh8PWi9VT6xfp3lMMXDJus2OYHF+nKwzGaRSCgAlpKytlzJrY/Kilaq5qouHjPDb22f9Zvfh8+fJ6vbqZtIeEL4aXy4jZaykeLhchnEmGJrgT+dpf7UPMT0+HiZtTtNcfapDSoLKrq4EJTnFVa9WOxuCVE2BoOlUVXNGAcz5cjy+fvXm5q77j//pv73/5VdjrKqV9t5ZhzG/uroRnCAMUw4IlBQCyBAhXNUVEVW5RdbqGJOQLFgbnKMEYYIQLDmWAlPJ5YunHWGUQRrnBUKEEf32u28IYofjYV7mZVpdSM47UOI0rwBEWcu+65q2AQi0ba2nZTg9GGvahr14+TwBs5jLaheMig82TYVxuS6LCzCk4r2LoRBKYYG5hJRjjBEhWFeCSxCTBxnxwLW2wSWlas4kKABBmHNmgSKEhBRfsnt60TZ4hGApMDpbigd1Syk/PWnt4uvX33zz3TdMVJ8/H7zztaqFZAwjAnM0a3BLDg4TvL+986DYDCAXYZ3nATAMXI4peAARQJirhlIKC0QAAVAQwN6F4BwKUCiKSpkux9fb7kZ1N61iubjlNC8zApCIOov6cTEGrkuEOqSLmY23qIDkMqdcMGKXRVJZ1ZJmF8YTB5hGlHWxMARnJCmbpj2cDrtWlRrnYJI3VrsQjFJSKeFTscvcdBUjDCVXkuzbtu377f4KYQgz3O86kEqw+c3X32uXNt2GEBjd9PPH+6enh7fPty+e73a3dz7lx/Pw6cPHaH1V1cT6mjMQw+PD/fl48ckap7XVzjspBaMCIfLdd9/+m3/4R0GoXq2QzKx+XCapZNtu3rx58+b1673WT58/r/Py9cvXmCA7rd7ab79++3d/+/ePTw9eu2EYMEabevP73/3N1X777sNvrarb6622bpy1UEJKjhEdx9mZcDkMlOD9/sqH1Worufz67dvdbg8znJZlXaZkXfKha9sU4jiOw/lS102BaDbLPE5VVVEmUEzOhVKic+F8mLVZtZ5hLC6oy3halnHS6zW7VbUsICLcxpBnazBB2+02pphyXBaASikIfPHQWGtisDBDSWktm91me7XbO+0k5999861fzfl0tMuqVP387lVMyfsgVV01/dX1TnI5XM51U0/jQCj9q9/9jXfu08cP27bHAKKcr3c7QnBOadtWep3neUzWUoQVE8n6EgKjOEbABY8ppZQwIZhizrgS1RQmxuiXIWvbtdHZFGJdqRhcLAWkxCnp2ibngiGy1q7LGlwY53Ee51dfvc6xLFrHlPbbjazkvCwYw6qVlMOnx0MpBSHojFdSNKpGFT5PA0DQTVNKiZb07GZrjOYABD0/XA62a/uuqyoRBVsXHY3GCKMAMSeUMkSxYDTEOAwjFQwxnHKJyScMYypf5LrWOkxp3TRt3zvnNtvtsi4fPnw8nk431zcx5U/39z74aVkwpZurTU7gfDzvNv333/wVZ3QchnmaQc6UkKbtpJQ++GEacspd11PKCaOpJEJI3VRamw8fP4acCODBp9PpeDldOKcph3ma6KZv2y7m+HB4+vjpU4rRe0cwnMdRStVvuncfPyzz9J/+w//727fffvvtt5UUyWs9zx7jTd9TBGEujNBXL14AjENMw3BhlL549ny6XC7ni5Jqv9vFFM26lJRjdDllbbTzDhBY8yaV7LQjjGPCKEJPx/NvHz7dH55k9fOqTd22KcSr7f75zZWq6/3VPgR/uQyXy7i92t49u01e+BDCMK3rarT9/PH+5vambpSqqnlaCQGUk2mZ19lgjAhGzjrr3X6ziTxbG5D1ECJIUIYolpIxiDlfxsnl6Kw7H46MMiFk8BFRut90GBEIQSoZUWKtubq9rrvu6eEBeJdKqrpqHhdyuAyL8ZmyAm0JE4GMYshpJjhSmilM0azLeAHZm3n2TnPGGELBrnqdQ3QYI6541ShqUU5FMd7XNc5J9U1V14QLl/PHpwdcQPBJcIEIwYLXEGPMMeaqVhAUBHJ0X1zuRKoaYIQwzjla45MzKAUOipCMtsoYnVPmAC/TgiGEqXhj2lqJDDDFCGYXIwPQrnoEZ0DIrM2nD5+CC+G5BxkqJl+/eGXX9eXL25evXxBG19Usw+ytzwAO8+Jt4FR4a61e52FcKZacIpyrWj08wdWanJMAVFV1BmmchpjC/f2nZZkopQjS6KC3aRoXzlmGVQz2PBxDtNMwOqd9NNaty7w8HhafbEiWcdIA6E3JJM7zEmzkhLngSwIpAMrxaRgzyADRjw9PLqO2bV++eNlcd9vd9n44TNPy4eH+NM2Ph2kaxxKDM6auCIIFEbLb7u6e3eyvd1VV/dOf/jxqPSzT4/noQ8QYckY5IjCXlFMpCRIiqlr59XKZgvM5JYTgzc3+vKzjvFLWmGkZHz5CiOvtNuToY6QclwxiKDjBFEvwvoDMKMMQoQBysjkXmCPDGIRU0hc4UWQFlxS8tynFTCACgECUMtHaQ0RevHphvXv3y/uXr15td5vjYQYIpeSttcl7VECBBSMkBBdShhDe/fp+GQerR7NcpgU2Fa2q6vPjB4iTUgwWYl3UdplWjRDX2pcCEcKE0FJyAMS7EIMHsKQcffyyH8vzuMRYmqZjjDlvciyCcwghhKCUvCyLMw5DTBBQDOeQACqclujWwVvrgvMpfCHNECSqGhPOeOVKMNoQgGDxbpmW8ViCrWsJBYSY/vTT+48f7zMsd3cvfAbzMJSEcknBpkoUBMsyL8l/gYcHyXEKTlCKicAoS0hv++pZI0n2Vo96uYAQBRcu6R9++HX0pb974wAezqN2q7dLiXG330qJQYgZ2L6pXr280cvKix3OFz+ert++3Wya9+/OSrCwzNTHGuLVOASSW9dlGSlHPhcOCSWsb6pN08SY14QU5qwURRHK/nJ4wIVJRLOdP/3wR9X2MCa9LKqTpcBl0S+/fvkP//hvczL/8//8fzcuu5JLSAwkf5rAMPFtJaV80e2ffvrEIQLBgWRL8BgiyjACaLfb7nd7lHOyTiHcK/l8c7272vWbrq5qCgDN+abtoqrvdru2q8fHw+P9YycVBYAVVFHOIMohcwhrJgWmDZMVk5u6vVSd60KGCGLiTfj1p1/7vl/HFYJyOZ+NXdd5TTEPl/Hx8TEaa1ZttYnWnY6Xm+trzvmHTw8xeJsihLD4dDqddxC2fUuBGOfJOptgASAzzKBsK8mV4M5qaw0jqIRwfJyXZe02e8poyXEa9HAefPBfkuCMUEhQSC6VHJxHBb598/bF8+fDebm5umaMW2Rvb26uru58G7hsHx8eEIRUVNuuNd5pbUspkIlxNQ/HS+8TRuDu6vp6d70ui3xDrDbT6Sgo23V1znkaJzPpFBwFsGsaigjKKTl3enxUlaq6NgkeY6xrBRHU2hjjrq6u2qZNJRWYQCmUUFgKxmSaZ2ds8hF1iHGxzKP3kX6J4HHeQBxSLqU4E6qqQpgIRiFEh9PTOMxt18hKpZiFqpqm99a3LVvGVbJ8e7sfhnlaxq5DWs+fP39UlUo+Dd6mFBAAgWINwGU4T9OstcsgE04IZakkY7QPvq4aJnjbtYwxay1ApO1bqRrvLSig27RWGxf88+cvnPf3D5+XRW+2eyGqVVttrEtpe33lnBmG6eHpc4K532z//t/+m07WKWZrdPCJEMoJhQAQjCFALviHh0Mlq+cvN6pSKSZKOOvEdr9z1hUIBRd13SzL/OnzI6cig4wQghA1bbvbX6WcrffRRSXkrt9ACG3wCYI4lGe3t9aaH3/8wZg1OHs5PElGQ7DBFIYggIVSrDLjQhHJQogQZM5YjnHV6/F42G33VNBlWSCAwYemrdbFGGuIoM779XSOKamqsSHpSX8BDp3nadL6h59/8TFur3Zd21DG2rqSmCCMYACI4uPhVChqtz0MKHiHYCGYEEpBKd7bw6Np2hpzbLzLUykAMIUv0xlkiBl6fvO861utTbRLTCkjiChe9AoxrLt+nOZff/twtd9+++23XdMxwkuOy7wej8fg+1zyNI2bXU8J06s21lZVnSHQqwUFYIZTCuQwLYAxiFAGkFfSmaK1A8FWsmw60VZ1TEkXUMvqxc2+lqLt20+fPv7ll798/PjJaH17ewNKtlafjxeKcH19zQiUiBMIkln8uo7GUJBfPrsJHx9DSOs8gwIY45xzyog1FqLktLbr4vUKcrm5uu42G0FIzXmyLjjrzRqMABE5BDZd99Wbb0/DGcJScgYhg+grTnolMYUuAW1DDN57ZrSejD2cLufTxWmf0x/f1R8rxbtG5Zgll9NxXL2+XC6IMReTNg4xSDEvsaQQYM7ROoQLLGmaR+9Mygki4G0oqBS4kBi8s8fj4elwD0opAEiuckTORIJpyYVyVFW8gGj0Mq8ro4hLpu2yLKvWBlOIOTEmLct5ONu6rqOHQsgQ15RSRDABYINflhVT2rYbzKn2Ps/LcwxkVyHBfU6Pp6dfP96fz3OM2Vibkl+XcdGg7ytGsPV+mKaQ8u0zCAkJMUOEjDYueEYoBiCDEKwLyQNQMKLW2ss4WOONtVJV274nhGNCPn74fP/xQDD83XffQgAhpdaXkHJKKZcIIAApgUQL595bRhnnwrkUU4Y5wwIgyjADinEkKHnnXeAcM0oJZ4QgkEHwZp5tDHC765TkIKfhckGY3NxcN42yNpxOE4SAMJwDqqraWn94PByfTsN5mJdJCAqKDz7O03hAHsFIqYzQrMZBhAim4zR7n7lEBcCYMkIkZQAhwgSDnLWxD58fdlddhjnl6HyYlxVAjImBBTHGEEPRR4Sw4BwUuBojpFJUYowAiBjjDHL0EUBMGZMxz6s1PldKWrvO60qoJGKhRISUvLfeaD1dnL4ojrZdZ3zsNy0CKQVTtdVV3/x2f89RwULYVEoOgmJOaWHYWl9KpATgFHAOEiGFUgq2rVnLcCOYQGQJFgfV113ddb89PbkUZ+vS+egyAKlsFI2QLJeZmKV4k2JEMZmTJzfb19cbuI7ErpGjl1f9ZtOJEgtIkivG6cePn96/++l4fMwWF0bnZb55edX3m2+++75tN5fL8JeffmL7m5CD1bZYP7sjZoxAihARQqynz+t0dNa9OxwQITfXV3/3+9/97m9+T6r6158+X9b48HTsdxuFCCkwmnX8/OlXO3RtXxH+YnetvTPewBAIzAQUFFMGMQa3zAMFCAOQY6gFv91sr6/3+6s941JJhoC4u9l5GxSnm6Z5dnOtxwnmkqOvlVCCwZhKDMlbY9crvKEYVpK1svqb77/fHjf/8sc/xxC8cT/88Oe6qWHB0QeEMSKFQLDZ96mkDx9+s8ZKKZq6UrUy63paxg7UkGJE2OodRIBRgZrKgOymSVtnok+phBz7rgEJlgQYwhBEBEElFIRQAhFA1tms88KlCj4vi161ySBTzAijgFOEUfIeE4olQUC+ePby2bPnqDxY7RjhjDMI0eF4pEwEgAJEy7KcxqWaFoCAD2E4D/fH467vx2XWq3714i64sMwTw2j1wVuTnM/GvlsXKVl00TuvKsERTtaH5ApnOWVYwMPDE71chJKiVghR5yZKqOC8UrKu6uPpgCCJwctNDxh11tqoBWdMVXVbW+MAAAgjyhiC2HjbtDXj/DKM79992O62Ta1ySpdhyDnGHMZ5DCnmUqTkGBIu8H6/e3p4VJUqpahKEgq7TWv8+nj/0PbNdrPxXn9xq0GQn0739/cPWnsmBKHMWgORSzmHEHzwlBLKBEBl1mvbtkLVfd9f3dxBmFPOCCFnDCSwUtX940PKaTgPnInXb95utvt5XbTWnx4eqro2wZ/Hsbu5vrq9SyGsq77//IlT8ubVG5ALI8Q6ezmfdHCNap+/etlVjbMawUIomec5xagq1VTNtu9RgYKLtq5rqaq69sHnlFKMVVPlXDb95uuv3r56/so7d311Zaw5HQ4l5xSD5Pybt2+/5E8QLhCUZV3WdeWIaL1utn0OJTiHEGQIUSUQRt7aaR7XdWm61gT79ONPVVM1XVsQnBftg88YDssyzjPCSDV1hci06p9+eTdMY4Yw5hQLNDEiSlTdcCYJxtM0Pfv6a+P9vCxMUEBxSllrI7nw0U2XyTnHONndXCEEjV0LBFVTYeesNkIKTAgt7PNv9yn7F69eAIDqrtts9yHE8zSM8+ST4001ny/naQIIhpScCxQzIeVwPo3jeDlPGBMlJcGcUIYJEZW8v3/C5CQFN9YZ633MQlLiCXI+Be0KBgjnvtsQRbNGRk+ty7xj1gbF+duvXtSKnw6PCIYYrNVr8A5ClGI5Hc+MMlhKjsmu6xBjFixHX3JEFK8+2HlqpXp+s5mMLzn4ZWr2+0ZyTFAA2fkUYsQIIggQLAwUlnOKcaeURHgYR5DKPM3rMhdQ1itd1dtUCiACAejjQhjruvZm02NcECGL9UxIAE/66UAAalWDCrqgcVyHRS+1lMskc8jTuK7LfJyOxri6q11KwzB1fUcwdsYkFzFAjGBKkLb6/v6Td1YI2lQKQxRLLKkEF2LMKaacC8HIu+BIRITM8yyYFIJ5GwtiMYbgfCxOzx5bCjHKiABKV+eiiaUUFzTMy9U+X++u67qJqejFlpyMMZgAyCBGBBE0DqO2frvZ/vr+N9XVN7eh2jTtusmX9UZUCYBpHNdlVDVDJVeCYQJ9icM8HaZLf7Otusb5EGMCGHPM2rahkOaYBOc5J4jKttsACE7nc902dLtPIKfkgzF9u+FcLFpf397+7ne/LyCb4HwoPkXvvxQnnTELp5hjGqIRTEheRQ8IpSlnG0LIERKEMDbeWD3nEhhB8zB4YzCB3gejnWBItGrTi+imqq5BIesyvDerXsx5GNZFV00lGA3R7a92jLDostU2urRrt1UtcrSP6+JNZKq4FAtAViefAoAQoTwulkAaU1lXHSKguEAEvhDxUipGu5GACAMhRFUKIoox9zEu2kCAMCGU0ULLsuh5mjfd7ptvviWY1aKJIWiz5pRAKRBCxkVTtwjTyejLqCGhhHJMMCAUQOxjiiX6lCIEroCMed33z16+aGW9rjNj/Ob2mhGmp4Vj0kmKqhpC/ME8rpdH0e2hnVlOWykFp9Fpb9ztpn7+4jqFEIN1y4Xtml7V5nLBkMSUtY+Eqjdffb/xXrs0DMv2qiWwLDB+td9e7XtQklvdcL5IqV7fbhSX6s2Lb1/eLcvycP/5cv/h+vqKUYYgIDk9322Avd638uef/CmEm9e7F89eMSle3724vX31w19+mLa7umohhjEmUcmnp0MqGeRyt98opZwNP//2HiDyD9+9tjFo4376458JgH/+WXAmSrVd8kWEfNWrlkL6/CUaJ0IywaSuq++//ebXd79RgggAlCDJqKQUIMgxSs4qqagSGJSbm6uuqYTgjWwggThnXMDVZosQFkJhAK/2O5hz21QlJE7Ji2fP3N/+jbWGESYoLTlXVbXf7bumvnv1av90df/58TRcun0/TbOLdnt97WK0zvCCN1XDlDDOLssyDmPTNLe317vNTpBmmqfT/WeEMCWkIEA4CQVmRg7zdDycIESqUaKWNJeYsguuEiqH6FwgAMKClVSU8FrSGJFLkQK6aSQoAKAxAbDZ7BCiQnHnfQJUSOqNSTGqqqtkTTGZ1lPViss0n4ch5tA0LYDEh2RzmFdTVu2sFZIF54niHx8fk3fPb25STqfDoXhXghdSEAK8dgDi4NJ8vuz3u65RRFDngo+xqVqEgAu6amoTvNZatXXbtt76pm0RQCWl4XLhlPSNOh4PTdtaswynE8W07bocI0QIgkww7jdtSiWWuBoNCtTTrBp1fb1RkiklMSIgA4LIsi44ZcY4IWQeZkEppKnkOJwshMV7czrpcR6wwJd5PpxPl3leo1VNhSDQWscQcgzampyyUKzd9iGmEAthVC9mGIcCEeNsMeZ0Ps/Tent323b+4fH+Lz//xQUPMuBSCE6FlMu8rFpjjK9vr+9e3DJGC0QPx8e//PxL0zQBos+Hw2kcbp3TevZWH+6fPr7/+PrN6wSKjZrIhhSqrV3XhRB6d3f7/qdf52W5urqOKVljpBTLNEnGlaw4EyVlzsT17to5yyhlnKzLkkt2Ia7jnEPyxuWUJOOV4l4vBJOmrXHOitHdpj+dTt6axJVxxgWHKcqgrHp1q4MYaDM7Z7mSxhoEoeDi9u5undfj+Vz3zfXdrQ9htcasZtUawLIafTpdVK1IJc7LOK9ae69dzBTWbYViBIS/ePXi2+/eRmv9ZArj3bbPIa1G2xhiii67aZ3naVnmkWGGKGq3XczJ28AkSzDLSsWUCoIh5+xyLilDoGRFCQkhgBJ5wwUVLe58Dsb7xZnf3n/45ce/DJfL/+X/+t8/PDzZVV/t9qCU7Xb/1duvV70giF90lfFmnQ1CtG6bnDIhdLvfhBA5521XEYwFgciFHBJIMbrzwBApdg7TBTguMJjOl+S19wnX6N37X9VFrMsacywAQgjnaaAEvXzx4vr6OlmHMjCz9tOIQN5uO8FFBkBxkhGspeRSpowSQHXVgJKDtwAhTEtDGIMMNgoX8Oz2hjNxHk4Q4uvbK5eeZ4S0tqtPIKWI+OMwZgABRhBCm4HkPFN20aaqWM2ZM+E0zafxsmjdbfdffX3rYz5fxqfzaZ4mhshi1hLiaV7XeV1NlKJGkOW0UkogAD74FBLGiCCECS4QUMpurm9C9l+Iam1XQkxf8ivLqgsABBFKcalK9B6hIvZ1CrHrOEbce0s52vZb6/04zbHklIEPLmaQI0wZpFRSRIQgb4N1rgAUYykIFwASKCkEytjVzZWUap610bNTYhyH//af/+nZqzNAtGDcX2/n0YQQr5/frLOiOEeznh4PZlowglIICNCvP72/jJcMAMiobRpIYAoZUNL2Td81baWEYN998w1C6F/++Z9zATmVaZxO5wuGQBCGIc4+5RiMnZ2zq3c5lwwQZUxVKgaYk5OS7bs+BNvWdSWazeYKQIQwDSku1iSQGeeIYlhCAWkaLg+fPhwen+Zh9CZ2Xffmqy3ClCteEj6fzl+CnwXA8/lyvlwwRjwBbSClZLgc66rtq01bNRBC74xQrCRYIGCCeb9M85RRAhCtq4sp5wRDSrCknJyxoWRUcmAIl1xSyiCDWNI8Ldaubd9XdQ0LFrIBzgXrvSuR59kZZ4wPsURYCQABA4Du9zecCx8dYzTnbI0HCLVtr1Q7rYvxzrp4mfRmt6dKQoSadptzmKcxp2zmxc7Tfrd7/eqOYfpw/9l7R1m1ruvN7fNNdMdpjADJbYe9EVRUkl883O72N9u9FKykgErZ77uuqwhC3tuSXLDm4/E4nI6SCcrksjpM+M1VrYwHjF2aoZIclhwVf/7smmMEomeEzPMeFJDW6XB46rqtamta0sopUrQROCavlxGAsttt037D2C0p/mcAdle7v/nrv+ZCYkxO9/fJ2at+E2JCBb5+9QrQcr3rhmkCpZSYc7bny8G7+fnLV50iSNtQnF3Wf/6n/4YE+9/+7/+7YV6XZSXJ+cMTditYB78uozWHy9TUI0PEBU8og4jEkKQSV9c7yvim7ykluWSEECiga9vdbssICSEYa1GKnPMreQMh9CGGFPtN3zQtKMV4AxGoqur3f/e3jLHgPGPYB+9zarcdZpQL0W/669uriHK/7az3PsfH42E1RipFcDXq2Tqje2OMNdrqaHWwwzIrIZwLwQdR8exMARA6kBzgQo7WLCkQgikAuEDKWSOl0YYSAjOwK+GMQVAIYRAhgjARYjUWQJAAUrKr2m3Vdapph2nmkq/rmiAhBMYAAYwZklW7RRsX4+eHg9bOepdAhqcTY7xuu4JQREXrlVHGOGtqeX29D6tlFD6/vaWluHV1Vm/aNoO0XmYM4WbbLpc5GZCdgxTlEHNOXxYKlFMIAcBwu98oL5uuUUpmnmEpwfkCAQQ5hlByrJQShLjVUII5I5RizGlMKeUCCRRM5AyM0SFEiKAx2ph1e7XvujqlAgpIOQGM2q5HCEYfuCAIlJKT1jb6AHKRik/TZZzH0cyYUKnUcThTRV1wnx7uUcmowLZuJGcAgKqtAEIFZICSC8GHCCDClBQI5nWZFr2sa8zlNFxM8Cklax3EiFFMHBOMp8sZluJ8uLu7u7u7oZT54FdtplUv1mQM6/0GYDQt+pdffrbzyhgmBSGGVr08HR7meZ7b9vXL11zJXz/81vSbVZvZaCGlqupcEqJQCDkvSy6ZM15yfn73rGQwjhchWAxxHgwEhQtaMkjRUYwjwf1uxxldlkkwDgoIPjDKSimVkL5W6zK72Uop2771qz9fBoLg1dUVRlhbY60exhFgeH1zTTDVw9mnyASvmoZSNs2LcyGVEkLCDF3d3Yq2nlf98HiKKRUMm6ve4VwQ2d1cXb94yZq671pr/Xg8d6pRTf3wdHz95hU3q9dLwnh3eyW4tKuhSlCM67oahllVanPVlZQfn46UEFBK3bchBm+Mdx6gItsKEjSPcwzxPExam2bb0rpah/Dzr+/e//p+9QYLjhhNpRQIXPBd0/R9X9dVZarT6Rx8ZFRY7KUQddMKKYIL8ziVUoTgACaSEikF5+hCCS5lJnOBmVHoo7vMVuIEnKMMAUZIK0ktbPCrtYsxMWcfQ3BWcFFVattvwqpRKF4vXlvCaN/3lLKU8vObmwAxOk8uFcJELCBGdz7Op3mOCbSt3DT19X7f72prVy4ZpZQr7kMKMCLJL9PydLlorZuqmVwKl2lZ15gjhACActV262+PKNoXz25ecJUY0dn/9umj1lY2VYSBVepGPIOEpVRyiAUQF/1iPCG8q2nTNymngrAQKuaIEKq3NSMYYxS8t8aIVn319VuM4bIsVptUghCcce6ss9oRyhgVCIMvnJ7D4yfGQMmx5Igw9LbElLigOeWbm6tx0etqrHaplJhgKRhDkhEsOS+rj/nEONfaxZwRAAiBFALmGGPYNPVmuzHaLIsJRhsA//RPfxymVTTt/uoWIeatI4yF6P06O708PHwEMVdKLMtKMEEIKyX/+m/+SmudckQIU0wEF4IxJWRXVRAmTgSAcdv1JYOYYsUFLnBe10+/vt/sdtHFIafh8jSvi/URY4aZFFJRxs6nw/H4iGC5vb6qlbB9i8swjisijAsBIJy1dtEihAgnFGMAs15mp4OSDSgwAkgIW31AMIdSmrbDlM/LTAmhlOyvN00vCUUE45IyQmCddSlOtuTq+uq3Xz/MYSKg8X4htPSquv88WG8RKRBRqVpjrUshZWi1yQmUAjCApWQIc0wppAAQALnElIMOBc2IMKlqJiWJEDAMEbYmwgyDzyUjjElK5XS8QET7dt9tiHVptSmklEJJBSAOsGCrR1V95eIIgBVcCMYxw7tOTfO0JtCoqpVyJEzWbcp0zVG12w1nWi+fPn3qdvt1mfoQffAY4eZm/7d//beM0/c//VRzWTEBU+q76xDdPF3CZZHtRil+vEwhOLfq7W7fVS3GDMfoC44uoAQEJGp/xRllBFs7UYi9XZK3LhfOGITwdHj0LhIIcImNYP+bf/uPIThr7aoXAjOE5WrXb/tuNeZ3v/vm1YvnqYC2qkpBv71/fzyfbq+fXe22ORchRQh+OF1u7q5WUAjDl3XWRh+eHp0Ldpk84yQlHG3Q2ujl6s3L//Kf/sPh6VHQpIfxcj4N959uu5qh7J330wyO50YqigHJxEZ3ni45w932hjBWdx3GLOcMIcgAQgAKgD5FH0MqGaYIcy4QFoQiyN46RjnmJPhgnAMQMJKl5IyzGP2s17yuxjnv4+rGWN6dxou2xofw419+QpSszgJMFmtnaya99JVkBC+PGiKUc1FQrc6CebYpIIxtcJfTElwilErFlFJFIt43/ItinpMASo4JpYgoiblQQpAUCZIQI4wFIUApgoRDUoZxND5BAkFCPvtJj8O8cMERQRArJjmADIEiVCeadgl5NMEOMyaEMA5gtsav82JTYYwzxjhGMARgCKcEhSgIloREbRij0XmX02UIJSUMSoxpPJ+D8YxijEr0vlJthuDhwz3n8ra7dd7pVXPB+11PECEEEsamy7xMM6WEIopwwQRzyTCEIXhSMMbEOCs4p5w556dxDjE1dc2VbH2JOTatjCkGb6wLQogQy/FwhhDu91d93eMaWrvWjYopjhebYbLa5OytszkmRjgkeDFrBuXm2c00jl47BAEjpMBCGMGYWGO0NrmYkKKPkWASUv5SxRrG0YVAKJKcE0JSSVQQE6z1FmJ+fLg0qqKCfv/97yBAfdvFFMfHp3lehmF8PB6DMY/jmFKOJdZNDRGKOSgqh/P5cjpVUiWQAAKn80AotSlc39w0dZNjkYpXskIYpZwARKqu5mksuhQA1mWtqhoh+HQ81FJBCGOIlGA9mwyKkrLA0tcNoWSdJmf0pmlTSvM8zy62m27bbVCGv/32YVyftptNKjn5YFe36TteqehCTgUTZH2mhC3Lqpf1eDpiRAhnOZfj8ey9p5i1XasqlXKGBLVtlwoo0ERXUs6Pjwcbw92Ll7yqDofD0+k4TVPfVSCXpu18TIfTpW66z49Pnx4+KaWIqnJBqzUlZUIo5gRyEkGeZg0QmLShjBBKZSXGJ/P0dKmaikplffp4f1Sq8t7pxV4u42TXyeqQ0v3T03kZCca3NzdcqlYphvcUIoyQC0Zk1m6aqqvGec659Ps9QhhBwhhRCvVdzwRFCDzcPxGIKEgoJwdyRCVTgCWGu76bk6VxhbgUkkPwx9MTEsHnOI3T8XgyzkEEASjOO+usDy6lEFLc1PXVtnd6FYxQwZ3zs7FUqKartPNA2xBMioVLRhthgp61MUu62+6atueUzcv64f5IK+FDst7ZYcKMz8Yep9G7XIgc7LAlkCrFCmCSKikUlfPpkH3uA7AZ7W/v3ob0hz/8ULCHmDw8PdoIN91VzIUxgTimTNp1gRgzxqSgdV2N6+jnlHNenXFGV6KqlIQgO2unYSwYSF43jWJcUMYhLJTguq4pITEUIWRMyRhtrUW4YJSsmeflwiQJxuYUc4pOrxhTiFGKyfmQco4plwwLRIQyiHEILufkXUgFeh9iTqBkAgmm2Dl/OB6bpunaVklBKR2H1ccUQjbWupDNagiTAKDLZfmSWHJmWfTy6vr5br/58OG9ce767vb22bPdvoshppyapsEIJR+cdiWlHMLx+PTp/W9az3VVffvt98asn+4/I5z1Mv88//jcvdjvr6taJJBCpqwStepDBAjieV2s1in4pm/bpoYgz8uSHJwXiwhFmBRQrPeLXVJMmCCEQUzRG6OYqOsKUYYIH6c1lSxklTOhLCFCc0Y5Q4ggo2S37RABzhpj1nVZY/Teo1WP88/Dhw+f6q47j24aTwjnGHwCWSix6iWXTLlAiAOQg7ExIQxhyQAATAkFEOUSQIEQllxKARBglhJaVoepxPSLTwqlWCAmVSOpZdbaFEsqOaTMMPr8+Pjx8XGeDMIYM5oLihkeRifU5Xg8fvfd9z74529e/cPf//2vP/3y4fNv3jlZqf1+x6lwIWiTXCyPx9Flu9/0V7urydlf338+nYbvv/u6qerD/Serj5uuI36827948Y+/P9w/LMOEIUCJLpfjPA2U01rVx+Mwr9N2t694xQlJGRi9yrZVVIVhst4f7++rqm5ur6bhbMzEthslZYAFpdw2dc451DWsAKM0R08VSd7mFKM3qMRnt1eYkGVeY3bBh+vrG63WEKOQkjPx8cM7WNLrl8+ubp6ty3w4PVlvvTPvf/4l5FxAeTqe5nXlXGxkNZxPfVPnlJJbUXbe2Id3GkISc5CM1Q2NsG1p6aVkGHrjlnUuJddc5uDHy/jrb58+Hi+ztYvXLqaH01EJCTMEOZcUYUEAgAJS8CGVVL4Y3zHMEPgQQwqE4pKLdy7FiDHGCKWYOMXrMkOEAMQ+BEopxHiYplgyQMjFFHN6+erN87dvjHOfH5+GaXaLDc4wimCBAECQQd00fdcDhsIaCSE5lZiTjZ6gHE1ZQ6xj5pwVgoN1NMdKMkyoDcF775wHAORcSgIFQIQw4wxFDDJctdMuAUIQJTGhabHIRUCYiQCBjDGlqoWE2HnOAFLBharc49Nq3fV11/f9PM8EkBh8MIakhAFoCFYV27S94BSFKDjbbzZKiBKd3G/G8+nh+Ljt+6u7m3mal2HsqnbTtbjkdbUlFVBQtemvrm8oYzrGiAAGhQspGAUxZlRATggUijBlyPtAIFGcgwyyVD56H4LR2gaHEMEU6eAggMY7gUDTN3rVMXvBuXEZAShFVYyJIXifauWjignmddagBIiyWTSlkFLsrLXLSimp2ipj8PFxcT6kkqZlpgi3bccJiSXORtd1DRAoEIToQ8iMMVggoiRhDDH2KSXnMCIpZ4xggcCGkAEIIdKu+91fPX/x4uU8zzc3z5SS5+Pp3bv3w3DBiPoQvXf7/ZWPflpn53zTtDc31zf7KwxKMA7u4WZ/NY6zNib4ZJy9vrm+fv7seDz3dcuE0tYBtGRYlnVZzOqcY4Ttdmkap7prJOcFwWldmqau24pANJwuECNYcvKp6poYAiiAYKKkIhgjiMdpWKZZVlWMiXHKiwQQL8tKKd1e7Zqqnhedc5zNghFGEEJQzocTxIhQltIXEl/0PkgpYojRRykEQNB5n3PZbrdNCk+nYRjH4TLo4HhVfbj/fP/5c8g5qyqc3bbpq767vb6RQmmjPz4d/usf/th1jeia/W5/eDooxjAhOngieUppdTbmnAkqBB/H8byu0SedYqckhsgs6zLN1ab9+MvT6Xxikj8MTw+ncwA5hOByygAUBGe91JVot1s7rT74dZpTTjGHum3qpo4pG2u9jwRDH3IMAZRcEwUL5JySGHIMBcbCIZSk8GIVyDSnRsKGthIlM0+Xw+XHP13evSdPT4/GrqWAAnIuCYCCAPTWng5HSZlbLQOwa6vN9u5yPp/HaZqXyzB0PWJM1Fx4YynBoq+ZlDpE2T5bjIshddtNAviyminmgOig3TibXFLB6G7Xff/Nd39DKCi4Vh0kSNWCUZ5LyTgHHz69//Du8wMlWa1NfrznTQ0xxpR2/fb5sxezXv/zf/uX82HY7q77q33Fq5T8x3e/IIRU3UrJt7vdaboYaxlnQiit18WuKacYojGr1msp5cOnD23TUkIIwdFHKZkx9ur6SmszjNP5PFirU4kpuZQsxGmYlzJ5VAoEOYZIaJE1W4w+X07zYlNMCFNKWQgBFIgAJJAgjAlFECGMCMgwl4IAFFwYo72z0zTVqsoALMt8Gc8FYi6qtq1zRpBgShFlQtSibutlnh4/Z0Xi5mr7/MULiOF4GV69etl13eHh0CglpLDTEmMCqTjj5mkCKXmvvbEpRblhBBUlOEjR6hWU3PRtTnmZZy6pqDkXTLscfECYOu9LBnXddHXTtEoIao32PmHEbMwwB0gy+HKbFFBgyQAEH4wxRi+floe2aRmjzoVlNU3fi6aDEGtbQM4AEIAIRiw4h5pMUD5dDtqYdVlTKQilX345T8vy8us3ALr7p+Pj/T3OkXMsJMZUhOzHYVm1j6nkmBAmHJKSM0EYZIgwziGhAihBAJScICgQFYQQjSkti44RUEJhRpTSpm3qWpU6GWONsRiBUhJlZFkNxBhzJpTKiMSEzGLsZVauhIz7/S56TwkNIbi4DuPp6fEBIPLs7rVgctV6OJ+119E7G+zVfn+ZxofHz4tZknfDeawYYQBLLjaCm/NhRODV3Su67Q8leOfH6TStg3HO5kincdIL5zwFQCjW1hIACaEgFcpRW1XrutpZu9VoPT99/qQqcrPtii8UEVWJvm0JRNlHAgkEcBjH07w6Z1NKlaoySHyz89798utflmVqqibF65hSiMEFK6hklO63W8EZAiDngAHEBSkmQAHn4WRcMNpCRGRdY4yG4TgNxxRT9m4dz6fLYH3Y7vf77Zam4rTNzmUQFpcZQQCWwjHI2GFUEtIgf/r423ldI4SMMxc8+A2gXCAqBcIv4iQIAICwZJBAhgABCCHCAIKYIsJffOkg5QjSv0KZUkqc4JJKAYVQEkJiXBQMtDYZZIhxIZgJ/vV33/79v/k3n+8f+Y8//vzLz/M4xRCtdggjhJGzYTbrtCxVpTAigou6aTChCaQQkvMxhGCdUUKmmAglLoQ4LRACVSvAsXMppZQSIIQopQjhAEDnAygFSE4ITgUDRgGAinDOVYYQIaDNmnPSJnjn5sv544f3UqCmlgwThtDN1b5SVbRWESJEV0IAKbZK7TZ9o+q+6aNLKQYpWSWVoHQczHi5nE+PyzQTUF48u727ezYwxgi1yc+X0Tm/Rl9vtlSKT09PlLKHw4PV5h///veEcgRgCsY6XWLuuw1nLEUPAcoplQgoxUJwnDAkOIJyHga92mevnxHBGGWM0OATphli5LSPASGKN90GFjKPuiQICtBaDxecU9DrUnJwRquK28URBDGCBKIUUgyxRIALKDlP43h4PO23PZNcSWmMdiYS5ymCbdcQylMqq15hBlwI5/20LlWtYs4+xRATiBHAtK4GE3J9d/v61atnd3f9Zvfh/cfHw1NTNyGE0+U8jdP19U1wlgh+d3e72W9/fffu0+eHnJMQ3FrDMP7q7du6rWGB73979/DwyBlnnM8/vasb1dQ15pxkYrTzIRBOPvz28XA+9Nut93E3XPqunbWWSlEl3KIBggSTFD2hOMZkVsOE8DZprRGGUlXOB8gg44wLDiG01oTouRQvtlvC2LosjFK1aayx82nu2ibl4p2rKlUKIIxJJVRda20BglyJWBLjnDPuvc85OeMwRtuuW501yyoZ/zQtw/mcMPjzH/+wGtv1m6+/flsA+PMf/3h4OL549ert7ntG2Q/vf/7Du58+HY+HecwY//2/+X0BKQczfpjsD+blm1eqZj//+D7ksNlsjLOfP9yvq3719nXOpRyQYOLh0/2qFwv9j+9/sc4Z52xwsRQpJUBQ1hWGABE8TRODIPugp+nVy5dVJb11wzCklKuqhqWs47ysuu02jNNhHHOKABYlOOeE2GVFiDeSppRBich7AJwOI4ZAtDVyfpkuT0+f9boAXHLJhFLOWYrJWQMBFEoUCLTVAAJZcx/d4XSOKX16fFz1GnwOKV03Febi9PTAOBGqIpRepuHhfHIl21Qo5n2zn8o6DfPxPASUedPU2z2XoqrVm1cvbq6uGUOQ8FwwImI2K0QII4goCjZe/uVPD8dzU7MIyh/++KfxfJmncRwHznhMyVm3rov3sYAirV4IW6b5w/t3qpLsJWu7mnEWfFpWo1BRUm2vrqILGJFc1gKJVC2lBBEWcskhxZT1qmMKiCDGeUpwmg7n05BzAjghnIzW1s3D+UQIgKWoivvgXfA+xcnYeZ2tCSEjSQUEMJeSogc5IggLADGW7HzOAAKIICwFWOMBABChaZoRhCnlyzBOyyxkfff8RdfvQsyIUIJ4KtmHEqxnlF1fXxewkU0NELq5u7u5uv67v/u7w8M9KNkYXUnBGc0E55hhTmfrggsIpxi88/Z8PhMCq1qlFDDGm23fb3ew4GG4rG5pNk0uZVo8SEioWnKVSzHWtI0ah3GCBWMYfGYC5JxX4zClMXkAofXGOYsIRAg664xZl2XOAFDMOFeUSQipXUIpQQgJIcipgATWRVszAeAVQxAUxvBSol415wQRgHF5+vxpnJdlmaw1pJQtqxhvUkSUhRBH63MpSFAmFAkuG2MppSWBkgsoAEIEYckZIIgyAABC7z2BFAAHIcIQckrrVnFBOKVEKSGF9C6GFHM4nw8Qc1X1EOGUMSKylGK8JhS0lL948aJr6nUdrVlPx4fz6XA+HB4fT86Xy2Aq3kAIcvQhWWuWcRmjcxCC8/l4d3cXZj0Ng+j6Xb99cdPXnE7jIdrR6QFjShDkjSqw1DllpGdjTE5EKETpZZolFyjnRghZqRTyMl4wV/t+Y1d9PJ+jNU2lEI7D+cwIgaVEF7fd1ns/DhMCECNijWGES6Gapjba3N8f9Wq4ZCWnr796Symv2nqcpvPHs09+229ub25lVevFvH//X+ZlRhA1dX19dR1duJzOtaoygAlBzNnh8Hg+X1DJ275lAkMQS7LX+y2n6PDpg7PGravVBoCilIIA5JxDSTEkiimDAOTsS3ElJcSsCyUERgCEOJWcE8gpAwTAlypmgRmgAgEEBeQCUckIAgRjzggigEmBpUCQcwYQrDEQiACAxjmEUAw2RQgIjBlSSkIIKWfKWd/3l8v87O4O5vzjn3/0ThOMU04QY0JJSmmYRmMNBIAyzqeBMV5KQZhyJmApGSQfQnABQ4QwJpjEmFS0jHNfIiYUEkAprzYtwmSZ18k6QSsuRSJhHtecSyY4ukJCzqkoxY2xKdgluBg0K3GZp+PD5/EyEhj7WgmC/LpSALqm6dsKgWymedPU+802pxK0gQU0ldSLtvNqzHo+Hb0zkrOb61vCSMrAx1i13TxNWutZa2N9d3Pb7LZ/+ad/Pk/j199+vXt+V3y0Lj7oJ1wiKtlb39aNECKllGJWSoBSYgjO2QIBQDDlJCqpHx7WYB6PR0opRrip6pLzfFm2m+1O7R8/PUAP6+vOuYgRAhBCAEGBOX0Z0gJQSrChMEYwlpx5YxFEjBMIcAIZAZRdkpx/9fY1QcisFgOMMSEVSSl6FwklfaVQLuakK9VQRia9OOchwaJSSRtCCCLYOW+cZwBIpRChn+8f373/+PRwmKep69u7m1tV15WqSykYk04IzgUGcLfZWetiTPNlioKr/V5KVcl6HMdpnLQx94+Plaqqqg7Rv337zc2z26A1o2wchxDi13/1zVv47cPj05/++GO97VXffXh4WKy53m0zLsM0Ki70ssJSnHEFYiFRjGmcFoSg91FKsSwzJezm5o4Q+vD0CCFUqgopW+sLACHl8+lScgoxxpykkikmwqg1NpeScikAYEoggggizpkQghOyrqvVFgMoKO9UI4Vcp1mp+hNjuIBlXiPIdVU9u7sTlP764cNs1+zLH374MyDEaPtP//zPv374NbjQSfbu0wfEYPbBWlNL5a39cHx4/vL2n//wpxAjJsRYq631xv/8+WNVtdc3eynkPMwIg9N/nRCBRNF5HYdxUpWqK1FJeT4d18Vc7/aIodPlcj4ev//2GyIxQQSi4qxNJep1Oo+z85EI0u3aqq5ExXIKPgRttdGGCJxyMsFEhDNGDqGIS3ZGI5ym2WazXsbjOJ5zjgEmThkq2HsfvLfOM4oBgJxzxGC7bdq6jsYOp8vxkrTzGSFT3PkyOPhus+mfHg4xBQBhyhkRbJw3MQ56hZl6U+qmRUiISlKCMJdV00FM+s3+7u45w9CnWU9TzDwWNGkPAAwuCMk3bVdX7ffff3t++vSf/+N/gsl+/PnH5JPzRnD2v/wv/35e9OnpuK6WCXl793y/3a16dW7N2X/89G5dh+22FxXDFC3zorXJMMMEUkzGGgxxVSnBOWa4QGSNX7WGADBGrffDMF3vb4fz2G83KQVjdAGBUIYjFUJyhQmEAJWQUgpxtXrWJqYEMQIAhhhLic57ACDImRBSAICgEEoZwcHGECIG6EvT31kf/WQXzSSjlCohAQAEYAohgBAV4LXW2lDJUsrGOWsMgqU4//nj+xLTP/z+95UU/duvKSjnpwNMAQAsGMskL5NZl7muK875ukwxulWXH/9yqhr15XxQJlKOBRRjtI04lYAJgYVtNztE+DwtzlkAoEMu58gFgwQXUPTiuRIIg1UH1VQQluTd6kLQVnJBKe62Wy4VJiinsr+9RohKVmNEjF6dtnrRwTmgeIquoJRziiVflouerfXrZbg8Pt7/7vffP39988d/+VFb663x3mYIx9Hn4vuuryoFAUSlIAgJhCiW5H0OPqaEEUGUAgB8DDmlL+9LgkABIJUSgwcpBlAyw4xzWJJ3dgWZZZ5jDiGEGENMbomEKAhVKgHzQgW0MV+GaVlGAvL/4X/3D29e356O0BmSo6EYvXrxIkbw2+eTS4ljWCvFgMxBRM46KSnFwNqa8W3XjCH8/3n6r2dZsyS7E3Pf8pMhj7w6M6uqu6pQEI3pBkHCODT81aQZOTYzNkZjY8a6ATRaVaW4ecWRIT+5pTsfTg7iIR7DLCJ2hPt2X+u3/DzCsm2Wi6quq1ICtdn70/7gfEKpbt5cg2rGhLeXrxduQqGmcVJWRxKe0UgzJVIub1bterWa50iIIUz74+PFxbZsyvsvX86Hc9vUFGnunEadYni8e9ZaU2Jt9YTp3bu3OcVMXDVVW7cuuO3iYh58fbUcu4kSX1/fSKWfH593u8frGxiG6evnOymFlJpSzjlrVBRZGbVcLE79NI+TmwMqeZ5HF9xy2T4dD5/u7m4Rt+uLYZzmeaQYSAIzzBSklITsUiRBgXMmYbWixFVRjsSZMhoZiSKykApICAsv8cOZYs6MiEgACIwAKCRKqQRSZgZmFgp+aX8BpABgZKLalgyQgQQiCgEpopSlUCHEL58+/1P795+/fBZC+PP5w5ubYey/fP7KlEPIzAIBc04hAAqcg1fOISAzo5RSKimVUUZJzURaibIoTKEBoHdnInA+XFxeLlerKczT/QMlHt1kTG2rdvShH+cs5ByCn8lHVlK6OTR1qQUZxcmNmEJRSY3UHfaH5x1kUloP+2NTNa8utsumkYIkUdU0y6bJLozjPIyTlHKzWUut+nF0bo7EQpl2uXn/7l1Zl7Obz+OMwCFyBCHr2hTlBJC6IWopq/rj14fjcf9/+/f/rmnqz9//sG1aa0stXmZXXmFmogINAkirz+c5ExHyFLytS0YY5/E89GVTaqm7/twsai00CXLTfDyejLa2GIwtm7p1LoUQq7qs23IeRymFsXVV2hQdExBR8G6ex1W1lBLPp85PA3CKLkqjXYrTdByKXipZWCsQU05DN365f4w+KKnUtYk5jdMMRqaUh2FkKTmT0Vpp0y4XCHA6dmM/MYD30bl5GIbn3fPuYbe5WqeQC2vfv/tQ1qWWJhNvN5vtZn04HIPzy+VCoDgdTo+Pd9YWwYf1cr1sF0+75+Px+Or2tjucS6vbsqnrZhpGRrh4dZEYxxB//xd/yJRH74/d2fn5eDgoAdvFygdfVSUTS1VMs5PKKK3b5fLpeUcC2+UypOhzBiGFQKmktYtmsTiezzbFaZ4BAQiAZVVUzvuqLLXR3vu+HwCQGEFgCLGqq/7cV1Ux9ePJewSwRgtrpMC6sqWw33x4/8/f/1iX9jfffvP5/mH0Myoxnk/dcPz05eeYyXv/sHvq/vr/l4H/9NPHaXJlYacUj/05UtJa+Hlq21YpsXfD/el5dzqlxD4mHyMjM4k8z9U8nWKvlYouNk2TE719/0Yae/nudXt1eTqfzsPgc5xiCDGAwmbV5NmtmwpEPnWnyTlrtFJqsaooMMawulhM03Sez2hxjLOANAXXHY/DNKnv3l4En5lfKmmHMgjMOHCI0/3XR8wxp2isZlCCUs7J9WdEZMpCCCEx+uCDG6Y+czJWaay6fpDKri4v/u7v/uHpsDscTvj56/XNddO0DNi27fF0Jh+I+HA+nIexMMvd4XAeRsrAiNWiUWV99/SYiP/if/jX83Sl20oKpRRKVaU5F5Uiwv3+4XA4nXaHqe/82J+envrd09SfCy0Wy+ZivU4xfP74U4gRQAhMyY93n386755STtM4W2NTdDG6L18/TW4izrYwKAUDjMM8DKO1hdY2s4gEglCiKmprq6Zt68KIeRqatv3wzYfFYvn509ehH/aHZz8PY6KmrtumBJGQs/MuZ2LA4HzOmYhSIkBJlIiRGRBBSpEppRC0MuIFdyWFzJIoaS2AtTYGAS+vL9ebNTMO4zTP7nw6eO+lUFeX10VV+nFMs6uaRgksja4KSylyDsM0nI57LfA3v/rmd7/59vHL1z/96Y/73Y4FIkIMzlhVFFYpMYzjNA4uCKkkDeS8m32UMSUGIfQUvCBRNFohrherV69eBR8PzzumfHlxZY0OYTalAeasEEEAoJRaWyG1GcZxmBwDlk1bGqu11kZaWw1jN07j17sHKfWq3uSY3TTEEIRAo5U24urqyqcRIH3++vXHH/64Wm8A0/l87rvu7emGKZ+Ph2EcYwxCgNUKAFEiIMZE8xyYkDAS5RRz8JGIWBqWIJXMxJiZCQABkIGQgAmyYAEIOSfv3TwpQMiUY4hi8owcU8opx5AV2/V6K1XtIguhhJKFsVc3lxd5U1aG2GuD281KQGOkudhcGF3830H++PP94dxLobRADTk7x9EJASgxp2wKm2JutJn77vLi8vWb61LDcD7Mw6QSJM5M3GwW8zgfD8dxGHenwTTVqT+ez2chRFGWnPHqYq21Pg4uZ9baIuO57+6+/Pzxhx9+/vTjq9evBUFb1wC4XK2iD1++Ps7zJIQQgKYomPnr54ecuaz0arX87fs/PN3dHw6HEP25G07H88ttfnt5UUrtvO9Og7GlNqooSluaumqmcToeTpcX26K04zxKo/w8noaTFBCd3w1HIN4O6/O5L6uScv788Wc/TUwJiZXRrHh2UQpZ1zWCytGllIHQex9ytnWptcQMOZFSyodAzFJIIgRg5gwAEjEzMzAAvoQqEOeXG64UgokSkUQhhAAmZtBSEAPwL5ohF5xWFlEgv4iJi77r/+6//V13Pj3ePyzaxdt3b2KMZVlNbko5pRSNtRIkCkBEpSQgMYBSmgAQIaUUfbTWMFCI6INPR6+1LovKhai0ORxPx0NX1nXbLjjD0E+ZA4sCAWOiRAGQATICGWnKprZGa8mSQjIqsQOCnGMiLsoCiDkT5XhxsVzUbZin7tQ1Vt9cXV1fXvX92I9fTFXMs3c5Ldq6NUZP82p7qQQ2dfV07tJh/8237/vd4XQ8f/3yhRCqptK6YOdEZpfpYb/7+PHjv/lX/5KFPHXDYrN5fX17c3F5POyGvmMiAYhCcM5aaZRc2FIo7KdJCPTem8LsDvuY4iIvBAgEXIzNxeXF+eefIFKGzMDTPNuylla0q2aanLaaiFGAtsYaYXTVndI4DJFJaiGNdN4rziF4YGzrZrVZ9/O03+2kUrYoiPLQ97a0wOzSHKektVFWd2OHQtmqIATXDWVbd8Ow2x+1sXXTIIiisDGFaZpC8ClmBgjep5i2mwtk7E/d9a9/9e7dW8p0PByPh/NLRlhMcblY7J+ec85SKiH4sD8KxFevbo022+0FAJS26M5HLdFs5Wa7pvXKVtX6anMeB2t17+Du4UG9NS7Fp4eHZdNslu2rq5uUshDExEVVS2tBSls3Jqairm1txxAI5TT0/tOnlNJi0ZRl7WbXti1lKsrGu+l0ODs3Ga0oEycqS0sAUitiFkogCsScU3LzDJQBIExutV68urkeun6cpzDPLER0zghxfXEljS7r8nA+n/thdzo9d0dl1Oh8N8zi6VFJPTtPAFKLDHkcR6HE83nfNhVTpPFsC8NC5qmb5hRT9imlzAxCSrSV9ZB+vnvUShTWPp8O19fXU/QRBQOf+vPT7nnsp8JaLREpfX14MBogxtXvf7M/HRKl5Xb5/c9f97vj7dtXq/XS+6iE6E7n1XId0R/2h+54fDzsjvtdpqyMO/vBaWNVKziHkEbgOJ8fz4e9T7EsbJgdSplTzolz5kwEQBSj1pY5IyJRPp/Pu91Oo2jLZrlcNs1yvz8zCGOq5Ur4lCeXr99u33/3DYP4+v/96+Pp9Prdq3ebrVRKCX069/vdPvhY2bKqBPjcj0PK5Pp3bhqKwqDRLLUnkYBiyjlmoHh6ur/vO9ft59Pxdrv4H//N71Nw93efi8JeX92UVfl3//T3//m//i2xMIpTDog5ZEIQZSUAMqrs4zSMJ8ppmIaysFdXt7Yo4QIOx4OUhjNqraqqfCFXWmP8PCOALavFot1uL7aby6Zalrrth3P7WD/e302uFyJqJRgTYEKhiqKahjnEM+dJoFaKGZEJmEgJBAAgEgIFIgABAiAIJQQBsGAkrTQASPWi9TFSaSEVggBmNwxV2aza+tX1m8vVanBOamPrUhpZGA1A//SP/9DvdxQDYqYc+nESwLW197Ob+t55d//wEBOUdZEZ+6mfptFE2a5qoXScZhcCcRicU1LliNpqitnUGjgN3SHE5OYBAIzCslDB5TC7ojSF0cJaVTT7Y5dCOPvJhZkoEtE8OT/PymitJCUCylLJfhiadhEpXV5tfW85pYuL1Wq5bJbV0+Ghvz/sdo/nbh9yJMhW63cf3t+8upyHsTv2q/Uq5hi8i5xQoLFVjOLL16eUEmVAQCZIKSci4peqSFJpZiDKjCCkeKmUKAXFKISUKJVQ1hgtdUhEky8LyVZQij5EZhAoQSjKcp5StTTSgsup7zpTWF3YmOh4Pv6nv/4/zofd9cV2s245wd3jg+tnoWR0sSyrpm4KUyhlvMg5ZK21NaZpFmVVPj0/n05HkYrn5/vu+GBklkzrYlGhqqrSal2WZRJQGFGVhsYwHs4//fAzSdWuNy4FpcxpiLkQ/eH8TDDMcbOqp7EXBm7fbJ+enx7uPn/7zTeA6Xn3gCJXZeG7/v7hKxMQw3q9LmzRriolsTt25FNd1k+7x/PpcH19VVVF3/WoZYgxzL4/dkrBm3e3RPjw8Di5WRjVD6ObJwB4OuzLpbVsCejqzcXn+0/zOE5n+fx0IuDJyfWqdbPHxBiDoSwTl9ooVUwQs4iscPI+hiCAOERjCsGkjeKckAETN8ag4FoJACSiTACIhAoYEDAzZUFMjCgImAUQMaJgIgBWSgIBMwkAZkYQUgpEEBITZaNMJiImAIhMYYopp91+54O/vLp4dXOzWq2olKY7kgJijjExAwhCAYKRmHImIiJiACCRU2KBmF1gBmA2Ws9uMkWBQoGQSpkYqS4KIvZu7rq+64eqXA7n/Wa1Wl0sMuHjbme0bFbrqq5vrq+T8zn6x7svbKUjWZbG+wDA1hZAPPUjgkTGFOLUD/3hZLdrrfSibdpFy4ifHu8x05hSAUgSghRNVYcY/+nL58Pzfr/bff/pS7NsEMXRzd3Q0xO+e/9hOu5nF6Zx7Gdfrxbri4tPnz5JyL/57oNH/8Pd9+tFq0tlpFEokg85pdnP3ruqKoumcjnN3bFq6rIsmqb8p3/+xEi3t9c55tPxSBQZxKJo2+UCGYvC9mPnnCPE61eXtrCH3T5kr40QUsQUjNXnLighqqrq527qRmON0lhJe//YLYvNdrPVUr0AEp2bp3mapqmsyvV2TYTLxTLk2HV9oWVRFeM8Z8reBwGopPTBzztXFKU1hRCiKovKlsvlUkvdnc/73e7Pf/1ro9XtxXVZlVPXbzYX5U2ZY57G8XJ7u1wvH+4f7758KSrzh9//y48ff7r79OUPf/j9crk+no7b5bJumh9/+PHtmzevb25qW63bxaqpQarlZlNW9cPz86e7u4fHh+PxaI12XX91tf3uV9+lkHzyJOTpeG7bCFKi1CTVFN0U/eHxxJz//Le/ffur91PX3X+9G8bZaGutCZNHFFYrMNparXVrrQnOzeNcFEYgosAU4jiORVVqK8+nU1EWRWnbprFKt22zaBstZYrxfDxLo/f73avb66fdoRtHBXixXBllpuj0JKeQmEGXsp8GawoltVSCAxBnApaCpZRlXQKZEGPCHGISUhECCgmYiSnlnAhBRso5pURChmFWAmYf9sdzjAdPoe/6rutSIjkICaCQ/ey+fP5p3VRSwdvXr6cw/PgPH6cpfPzx6+fD4+VVmyhXyj4/PhVFdfN040LYPe2eD/vz/iCVUNQP7tTPCmEg4hDjpCz7/jSeD6Cwnwbvo5a/bMQBGYCR2VgVQ4hIWuqiMN6586GrTYWEPuZEMhFcXN3cvDF13U5h/vz1AaUR2j49H07D0E/u1I3Xry7rssqBUvKck0AWCq6vL64ur01V/vOf/jiejv2pG306T653oR/jPLkUYg7RSJr70/nxSeS5LdRFU/7mw9u3r1/tDo/DMK4W68lPp2H/40/NNDlj9TQ7FFIpKaWq6xqEBAYGqBfVm81bl0MKvmmrpmnWq4tv6NthnPf7ow9eKiMErNdrq8wJDgi0WK5yCl0/7o+HzeZitdnowvR9Xy/qD9V7IUhADjxP8yiFQMCnh92pn5Gl1logE1NiJspMLAQyAhMBMzPkTEIy80tGVkZgQBinl6wGIIKqLH0I3WlomtqqMvnohsm+1deXl43zqIQ0JiQPGdpFvVkt66quqsJI9eXnz58+ftQorNFVXQ1Dz8RCCCE5pIAZlTU6WuKcMvuYUEoiIAKmLFAgSGAWQiqpkfjwvBun+YWOfdg/IW8yJcokJfhATaMlQtMUqpCzD0WtYzaZiZFBYGGMeNk0K6W0buplURR1vbjcXuR5gpylgnmau/749Pzw/fffn7ujUbJtV8xKmZJSdEOch5BT1kpWhQ3OOJ8Egim0QM0ZgbC0hS0KIk4xBRcDB8okhZJCMPMvNeql/2RAIASQQjGD8z7mmJmrUmTAmeZ5cjETCmFtVRSFFCJ5mEPYVrZdLU5TF4iUtaaoMoRQm6pufEgfP3/+eicl4A8/ff/Tn36SKNq6kIxtU7+6uX3/9h1TNkqVZbFql2VR3t3d754epFK1Nl1/+vL4qJheXV0X67IUpZSojIrZD+OsrWxEUbaVPPXXl5ckbbleoZI50ezD2I0pOMmsOp1yrBq9XC8zp2bVaq2aqvaTK6Cc3BRzdDE0q8XsXXceZu/bxaJQhpmNVsT05ctn76bLq8vFshn91C5vx3E+nk4xBanl2I3OR22LcZzGsW+XTT/2OYayqru+K6ptUerMyVqxaov5tIfgb1brRbtg4r4bwAVglCFtqvI377+5WK9n5//0889nDt08MpOVWggs6+Wb25uqsl/v75+edoikFQhgylkJBcgg5ItEhICJAQAos0RkBEZGYmCWIJgTMwhEZgIAJAAhtJSImHOSQiLwixELkKSQgBBiJKKu65u2qerGFGU/zj99/LzrDznSYrUwRqFIlLkoBOVMmWJKWgG9OAsBgVkgFdYyEIAgJgAuysIURWYaumn5bvNnf/67eZj2hwMxNE1ri4JShDTGGdhgUZaLEqdp1mzzFE+PMcyzsdpqMlVlNI99v++GxaKuy4oz5Zicc3dfHzSCBEDGsiirsrJFuV5vQepPj4+H7jj7OKQAUnbnnmLW1jLl6uJCVlUmMssFEIuyrKRartdFXR2Ou3lyZVU1Cq/s+j//7d8UAteLertoMUYtab/3VljbWiARQ3JuyinGFExhjLZG66atFqtlmcr2c/P67Q0D3N19pUyUyLnx7bt3yqhTdyyLKg9Ut02zqqbZz26MHPqp2z8/IvK6ba3Vbhza9VJr8fXTl5C8sjJL1Fppa95WlU+hWjbCQs6UYjSlKRrTxKaqq8PzgQHWF+txmufgE1E/jIAgpQSAsixf1/U4+a7vpVLRh5urq7qqrDY3l1eLZvX0/Hi+Pv3Zt7+yhR3H6evnL8fxuFos22bx57/+dcrZmiLl6Ge/XCxev30lJbp53m42Sojf/OpX0zjePdyvlqvFH/4gUHSHE1dh7vuYw+byYnTDy3zFj5MAPp9Om836wzcfLi+uhBDjPN19+nS52WpbnvpzN0x1uwych2ka3PTjTz+Mw3ju+rfv35aFKcoCMmWm5XL184+fdsc9A7eLVkm53q6mYSJKVV1orYTSMafH3Q4Bb8siZwKmwprSFn5y7UUlhXh+en56eIzRb7bb89AFHz5//NSPY1GVV9utKszo/f3+yY2uXjQxUcxaWS2FAGKijJwZmCWbulpUxWq5YE7dOMx+JBaFMUyYiBLqmFEACSlyZiIigJSZU5alOZzPp773KTBzjJQjAUBCEgzWyPM0nvvYrkuwsB/2P3/+eHf/tD8NStcimunpXBg1KjPT8PDl6/P5Udtqmt2QPKy0klrdvL0ya9sfR4IgJczZU8qrekExPR+e59EZpTNzSkGgEEIIpWKMCCiQAFAIgQwpUCYGqYc5zmM4H2dtisV61S5WMaZz38Xk7r5+/np/d+6HOUxFYbr9cZ5Oi6ZRqJ2bhKRx6GOcD7tlVVQmpjC5J//4x+p7L/TTrg+Mx/OEzEZxGIeLRR19F8YB/GCTOcXz49ePrcHhfCQGzKnUxs1BoZGYpNRYSluVQooQMggEZqMNo9BGW2vaqu5TRkBKuSjtarHphhGFcM6nSGVlm3YBmXzwfp5jCvM4FFaXRQOgvn752vd933Xz7LVRxiqtoJRlUdRa68zpy91jP46z86gVCKCEOScGJsjMgCiIMyEjcqbMMUilUAptlFIq58giuBBg6IQUWumUo5t89H7RrpHEp58/t9VisVwRwnZ9+fr9W5RiGketRVlYI/XtzVXTtPPQl0UlAa0xV9fXddNKLV9N7z5/vQsxOedWy7UAkWIAhpQy8MsjC6GZQRuJwClHQQBIMc7O9chZEE1DVxTGFkYb2/eTNGZ7uWybta5KFoIBUEofgw8BBGhtmCHn4N2cfGQmYywBTGP/p90uuFN0/u7r1647N207uNGnrFS52WzXlysl9ZdPnx4+P11e+Q/fvD4eD19/vhMCC2ODdwBImYTCzXZLnN3kpdSMkeLLCoQAQUh82XcgopCCXppQBibQ2jBgzjFnijEJVFXVWmtjIue8i1EJXRZtUZRSKwdRa/mv/uXv/vCHfxU5OQqqKIqiZeRpnPzkhvPp4w8/zTku62rup7HvhWQ3kp8nznR4up2602LZ3lzftE09dOen+7uH+3ulZGUWhbEKQBEZjYt6QQyZMiV086QKmZFAwHq5SAAopTF1YNnHOI7JGGOMOoXZ5bBdt2xEF+e6rtrFeiaHIwsphr6viqqqqhTzOM7WlqvNpqmax7vHFFJZmLkfBPPtq6u2bJ53z1Wlt5fL/WE3jP1isTSFyRS6fdcuFyABmLVGYzEcwtcvX6q6LqyRWty8voJM09DHOPsel7XRl1fGx+8+fPPu9dvd0/N/+7u/o5Q589PD3bqu6pSnr/eZ8rUUxZzLSEKZcrlcX17uhu7L/X3d1j5EpTQKllLkRFabDJApp5wTJQGAiABIwAAgWGRiQGIihRrhBfyNCIKYCUgIiSgoZ4mgtXyRCyXMmZNA8YuaGjhDJqB+6mOOMQZkzJQBsKyKGFLwSUmlhEBEIkBGo9XLqIkyoAABgoGAiTiDYMCcAYlBA/vgg3Mi59vLzWMOd2Pvw3yx3SjkYZoCEVlKXrqxm6bRZ54kt2172J3Ox6M2yhgFwFKBD7OP7nD0fnZ1VS+bhUDcPe+NkE1Zvr69lsJ8/fqkbBkAu3FcrldXFH/6+HkYZxZitz/N07zcrq6url69fbferEJwT0+Pj1/uj/3w7t2bv/jLf/3xh0/jPCipmrrqzqfs5kbr4XTi0krOWgjMBABRhO58cmNoimoYZ2QuK2u0STHN85BiECiUEBfbTQju6/1dfz6H4I3VWvJx92xvTNefprHPxKtpWa/acZyHYQwp5Zy77pRjjPni8mqLhdiddnVbP/cHo01d6MP5CII+/OpXmNP+/jCcXPSemWJIdVWWVdVaU1Y1IIz9NI5TWVWb7WqefIo0jdMwjCmzAFnWpW6t1cbNYbtaf/P+fQ6pKksjlRJ4e311td1QSJ6yZljU1dCPj3cPcA1XV1en87mbTtrquijfvHpVGnvaHa83G2NMXTeVsSn6zXIJBJvFcpzGmZNzo5v9MAw++OV2Vdbtul1+982HlMLnL3cGVVVUx+PBd/319cV6sxVaL1aLcRylVpnTn77/0+QcEYcYZj99vf/i/PT2zau2aigliYuvnz73Q6eE0MYu6jY4/+WnzzFEIFpv1gA4DsNut5eI2hijTaZMxNM4KxR+9pBz09aH5733vlk08zxP0+ycE1KWhVFaLZr2PAxhdouqXtXLlGDbrrjvMnDOiQlSzolTZhYoUWhTlKgkUfTZz26uqyUqiDnkxEIDugTAOeWX36YUSqBIFP1MWadMOfiIAgDky00GpQTmmCmEaA0IKXVhWOPgptG5mRJmP9x9Lmt8+/YaJczgsQSPPiQgy4lS181GZrW8uq5vNmGcsuuTm09CxhwuV0uk9Hh3r7UQSEyAiIycKL8YlHLKAChQIOA8zYXxfT8OwyhQjf1ktImJlNJfjj8/Pj4T5uBd13enrgMppRaAEgD8lBxA8GG/32dCALRF+fHTp+fdfrFaF6ayhenPHduqUKYqSkQNlJIfitIUisAnUFSVFc194Hw8PvyTG3JOSutuvxNFtdsddoeTMVoLZbRRxuacU04QslRqsVy5yd99uXu8v3+4f3A+ppiVFEM/Frbu+ykmElIKFG7S5+MJgZ+ennNM5164aahK+/j8rIz9048/3t/dGW2EytKRcSxEJs4pRW3MNI5fvzw8P+99SFaozJxfZoL4YmzATEmgkFICIAP7GBWxtVZb+6IsKGqQSueYZh9iym6eiUBK73d7ZFRaJ85lU9qyuri6UMqUdWVt4d3IjAiiP49fvz64aRz7sbRFTJSIGKWyZa1V0w2Pj08xphxZChUoSBBCyHl20UefvJLJGDZGWlNQyn3XAXFIcZ6d1qaqqnl259NpsazHkU/nYbleDt3ZaL26aLthQkQCEbwfx2l0kwuOInk/xxji7HzwXdf7EGJOlDOkWBpBgFVV27qcUlivL25ub6+vrsuqypmUqrLHi8v26vIGGX/+6VNIXilprdGmIELvvUAoyhIx9eMYfUgx5pQzkRSSmaWUOREiIjIg50wMoIRElME7BrbWFmVpbSGFCoFSykwgQGaCRDmmzCD7aVivzGpT3dyuE6XAOWaU0kppGtsMakgubS+udIESiVA4csn7ZVlLraQRs3Ofv37eztu6aqqyyaHbP+84pcos4uwoRS3F9eXlsl1Q8G7yKYe2qQHlOM71qiFmP08+ZOe8EEqTXJZloZhRuDDWjQWRtNWmVNFlBtHWTVi5jmE+DwqEFjoHzomk1FVVCMAc8+XlBRLPw7hoWqskEgc/z/MASF1/rOpCF4ozzPPkQ8iUY0jWGmDOKRZWLxZVTMkoGYM/7PbtsraFdvM0dMfLi/WqrAyqpmiW9eLV1c2ry+vb7ZWbx/uv979+++7D6zfRzf/T//P/dX4+LOrm1lRmiiGw9SzmSN6f+9PoJ2MsSAw+aC0BMQNFZhbASghWggGBQaAAAYyMKARlZhCMQgomJAQABuREnDJLTJCMUoTAQEIgA3MGYGCgDFkJzS9uTCGLsgwxiUxayZQZUXqfmZIQImEWKJj4JSmXmbVGZiRiPzsgVlpIRFsYEJBTNoVhQKUlSXi9vL2+uZJAnEPwY0z+4f4rIgpkztx3CYAo4jgNkUmJGN3JzdP5dJBKa62NLYqikAhVZWMIKUUp0RYKiHVTVUVplWrXC2Y6nM7h+x/+6Y9/3F5dvv/mva2qcz+hLWNIq81mfaGrphFKPOyeH4/7aRyUEqq0uiiCz8fdSUpxudmU1vpproUySn3zl6+n84CQbq8utRCcYblYumkaulEJFXMSSmot1xcbW+iHh/vH5ydb2LHvng+7i+1mvVkpLX/8PpRFsb3axNmP0zC70ft5153btv35/CzuVMh5nOfZuWGcUo5VUZz64xRHo9TptJ8/z4t2kQB249mza6p21x3vHu8nNwmhkSnGXDflaQzH4cTEhS2BqTC1ttaH6F0mYuKMIJbtqm5aY4z3UQi1XoJz/pt332ghZ45tWRllToc9M7198y6E8Ph4L0A65/a7nZAyhrR7fsrMQHx5fV0W1TcfPlRVlWNkSofnXVk3bpr8OEUfyqKQKATAermsi3KYx5h833WrzaqwxqewrNrtYlN8a9+/+5B8cOOwXC6BgRhizF3XE4Ety/1+9/j4UJTVYrFYLr8lTmHySkkl1Ol4bKoq+HTsxpzT1dVlUVZCYkpBa1UVVkkRUzodjyElbVRZVduLrZTysDsQU4hByHa5Xp73p67vF4taaOljgIwuhMV6oZUZp+ni6lIbI5XKQH/xL/9we/v605eHL48PldRTjBRz29ZzmGgiRIbMkhiAnQ+n/jR7lzIzJWIJSCElEEhIPhIgCCIplJISAKQ2lHMiYmShBQLyy9xeSPw/s7NQ4rtvbv7NX/3bm9fXj4/3Aah3XlnrE0klScKuO7d16SmgRmXRhzh2PoaEWgurlSkX0Z8QsCnbcx8kaCFg7Ebyua3rPvRh9oDSFMaHyC8RdkIAs5IKEFMmAHE+DT9//BwDSSkps7V2PI8IYrFaSE0ve1igIIWXQnHiOcacU1FIKpGAGBJKkzLoygKA82EJoimajKgRUoitKojinCerVQbJWnangxtOtdFKoqoM+ylOfo4gpYAM0sgQ+34epuBASY2AQsREQirGjKhjpONxAEo5peVyWRZ1XQlgAIKcsod5nseirIuyFBKtscQ0T2NZlaUphMAD5BB9zlzXLaI4HI9CiZj81J+NJoAUg1cGAXCcxvuHx2kOQmhmBBYIDACAAhCIKGdiAfiCpCEQQhLnGEPKSSuFKIQUxIBSZqJpmMqiLAuDDLNzUpnR+dM4NsNQAMenp/Hjz9porbQSojse59Efd8fj7uT8BIySQCnJiCGEzNkW5nzovZuNVTElgRIBU8qm0CBBGlUaoaTWWguBwYUc0zgMs5texkJFUaGSJFICPzqADJncOPCXL3H283k6/fTjp8PxBBJAm8jc9VPXnTlnwCQYt+u1VCrGlEL2cc4UV4vln/3213/+mz//9PHLP//xe1PYd+++u7q5FmimMQhhTLG6uHoLNB9355SyNYUbZs9JKNRGmUKPo08heU8Zckwx5wwCpVaKQUmljJFCgiDKkRlyZmBmoBgZKBijiUGgZkJAOU1eCokoAKQSSmrjp9TRLGScxoDYTdMYgvPBE6OSpZKKPPve+8H7MZ53XQZfVNrWplm1j08jSQYCoUWgfPf8LLT9cvdw7kekzBkabXfPB2SinG2hr64vRd0qZQKEOXgdtBRw7nuSwMCnrvMxycICWq3rdlWvWptyPpxd4NRoYRCSm6Jz41lpinlyMMdN07aLOkfR9XPvek5JMU7DVFVFjgGYjeSqMFM/Pj3sS1skjim5/e7h6uZaG7s/HL1PPqWQoj/ucsoh+rIuri+vvBumMYSpG4Yxxjwc96iwLAsBnHzePR2dm79+uf/+n3+4u3v8q7/6yzfvPxwPexRaC/373/2Oc3x6fAq7blEU49D/EH/6ctyPu250cZbRoqBIRBEESKnoxQhGOaWcmImRKSMiCASJgn9pgHJmAEkIjFEzYCYkYgCJ0kqVMiktMkOMBJCFREAARP5lHQ2sUBsls0QUxpQZYgKUUihlNQEldi5abZRRCGhNoZRKMQqFWikmUEbmTNGFuiy0VtraiAQKq6oEBCkVgnh1c+OC+9v/9l+68yllLwVTYiWllIgaUwrzcNbGFgbBJZr6sqoi+9qqsirLqko5K8lM0LRl8AqImOLQn6WU69VquVkYqZNga/SyXB13x/P5LEt7McfgM8V49/lr1/fNarneXvZHlzgrY0KMs5+UkoJhHEcR6eP3YIx8/+bt7dXV+XlfFcXr21uFsFdPl5dr4Hjc7YQEgVQYwxUJIU6nHgSilCSwG4ZpGgtjX72+PXcdhewnXxTF7eVN9rEojXfeK71YLIvCSoXD0G0ullXb3j08NsuFYx7P3XHoyqqMkIJLz8cdMh9P+2W73p+74/m02LTLzWLIPgcc/AwI49gXlcmCbFNggmEcQDAKniZf1G3VVtMwLRbLtq5P3Xn3sNPKvn31uiyrTKiM7s/94/1jmr1PWQgstDHGjFJYU8QQx3FYtMu6qj5/+lrV9du3r6bJD93w/v2H5WrxvN9RFpvN1TiPTFkK+frNm812nWLOKUWXyqJcNE0KIQRfVaWtzOPDw36/X64X53P35f5eF0VysZD2u/ffTPMAmUXO59OpaRqBuD8eU8rXN7ecqa3qoizevLopTMlMfXdWSi7apmNomwYB5jCuFquqrEFAiD6nbLSxSrVtM88+cTqcz0bptl0BgxtnJcVms0ohIwihJEvS2nTTdD512moAyJQKXQJCVVdKyM1mrbUax2m1XOWQJHGh9HUO1arZHZ6Ox4Opl/d3DyGnsqmqthIafJiDd1ILRsyQY0iMYEsDLFNCLjIj5JgZOOaMGaQSIOAlB5czC/jvsyFg5swJFWghLq8vm83iYb/7u3/454en0xyI/CyNZkDnKOXggpcCBSCnnEmMsw9zRIHaWLXYbGw02KwLlLW+KMqH4IYxfCaUi9XCPc+kEnHOlIVEfLFxo2KQUkoAfrEdTpN/OuxNYau6Low9nVwOsamrHN3sZxfm7XaZuIh3ozVFoqgUx4DMsT93KZMQKITQVlfW2KIWqITAObr+OPeDK6q6aVY+5t3DVy1xHgbnJgmkFFssoxDTdMYUMgFKlTOXVdk0S1kUt9fHT9v7wrZV2zjvfYgxkffJzYkZx8EH568vL2+u67JorZaLxcIURgpVFpUP0aestBFCaCO10afD0c1Oa13awlr55fNHIfDy+uK3/+JfTN7v9vthOCk7IUZkdNFJwnmah2HImbQpAIVABUgkETO9tEGMBADMlBNLqRBRCgnIiRIQMpFRhhmZmRIJRG2NVFoIycy2tEVRjdPw448/7g+7etnWi+X5OIzjLARbpbVS4zQMp9M0jFVlJYrgQqIsUCitmAGQlRAShAnqZRcklQLMMeWciIlRCakQAFMCziQUMjMBZEg5JhBgsgUEZVTTtinEwQ2H/dEUThdmfzgAc4oeSebEpNRqtV4tF9M4FVZXRWGkAgAAWNQtShjn4f37N29ev5ZS/vjx+//0v//1//gf/+Nf/vu/LMvF3cPuOD1Mh+50ngJxW5TI3g2jEAiIYz8qjQgixBATMedhcEwvwBdEkC93cxQSAZlISCFIEJAQmBkQUAiRKWFGhpf1nHfOE6EQsqora6wyVhvrfQZGIv4FL6MUAw/9OI6zEoUQeuz989PpcDh043mehnpltbJ11SyXmxRzW5bRTUCUIyitldHn/tx1nUSxWW2mBEwkhYCcT4/H/X43vu2Wy1aiRISHp6cYvNBClfZ8PkulvQtxmjcXN21blYWKyT8/PZ26Y6YkJBamgiwy8mm3Oz08TH1fF8Yulhx4tVqu1tvzufvjP/3z0zhebNdaCgB9OhzKytZlgZnOnWAEKaWQJlI8Hk7DMAGKoqmrqsr90M19SnEcB59s21Zdfz7sDzmRLQpARskhBq1kXRf7w7HrzsM09Oc+hlD//JOLHgHev3/3/v0HJdXDeV+b8l//u7/CcV4K0z3uP9y+/Xz38DT2Q0oP88lKMYUolExMUMiYQnJRoWStiShSzsAEggQwIAK+dLUIggUIYilQML+MhxgAiRlBCQQUBKC0RMIMyRibU04cjTZKy2F2iEIaSZmRYbFaEqDVEgGRUTC+ahbLdmG0AuC6qilTZpJKUsrMYLSqF83V1cVw6k6nk1AiciZBiDhNDhAKWzDwxx9/+vzzJyVkVRaltrpUVmvmnCkzsZbKKpklchKIlKI3QtbLpbFGKj05592cU4YchBASRQhTTp4yzW6a/by93GaZw9EH76NzWskfP/507s7f/vrXb9+8/vzzp+F8Sjl2546EKNp6sV774PuhY4JCyLkfWXqR45s31xx86MdaaQMIs5+CQ6Kp66xViECJzoe+KC0K0ff97H1VV4vNavZ+v3tcLpbezRpNWdS//vX68elp6HpKtGgWb9+9eXp6SpTqppmmcbVc/Oo//j+eHu+Fwm+/e98NQ8RyFZeyKrbb7Wa9GccBiCQjC0CA/W5PAh6fnu+e7pl5s900y7awxvnHeZxjiE8ZyqJQUn773beXF1f/+Hf/GGPsz0PTtleXl8iiMHUpyn4Y5mEuVbVctSnkKWNb1lrIN29eRZ+mYQ4ycM43V1dCKDePZVGuV6vgvQB8ffuOic5dp5SeZyeFWi/X9/d30zSuFovb6xtbWIkYU1YCv/3uvXcBmOqqFAgppaIsbm9vATDFGBLtdvvt5dVf/Nu/SCntnp7Lwq7XawphdjMzpMyUoawqRCyK0hhbN/Xj3WPT1DfX11YZH5yfHOd8f/egpCyKQhuTKM7j5PzcVnVTLIxSVVUgQ9VujC2GabLGlmV5TMecU4y57wam3MIChRrm2Ts3OmeZyrq8urq5uLwYxvHuy1chJT3zNE2CuT+eNotloa011i7r7e317vz8n/76ryOHsS0iU71oMkA3nAlYFxJRCGYhpPPBu6C1pYyUWaKil90zw4sQFgmJMiAQg5IopWIQLxoGBsopo0S0+uFp9//5f/8vROGw75zPwZNQnGKyQiklYmKeclkXKGCefE4cQoiRMGOHg1pfXLPc1tKOT/3d539CvTg8nxxJzxgySKVl8kxMwUut8WV7g/jL90GJEQkYjNZlUS6bsiilwKoujZAUExA1tVm0pdRyTmSUCH7WWoKSCJAyBR+jTwCiWtZKF0pKBk45H49dXXMi6venYoptu1kvm//8N39DPkjBiHlRl+R81qobM0ZSUjoPAjlEd57iNspX7y6W9dXV+nVRL8qqnH3s58EH7z2hEkIgZE6epDQpUQizrM3t7TfWGCntZrMNKQ7DFHOOmaZpPh0PnGKO89gdjkSHw+F8PP3xj/9cN1VKXJbFt9996LtTNzTRj1+//jT5SRARp0wpU5RKv2RsIUpgZAZihhc5ipAvXzpl0lIDM7BAgkQpI01uUtIAsACOIUshPTnvqCwrQNFPnZR6jDP10Adv+mnsRwCppJjACcQcfUhRaBFzZi1ICTe5GJMxuqisBEbBzGkODgmFQGGBCGOMDESU4hxzslUhlTUMBECAbIxGgQmkVDIlPw3OT26enXN+mpw1ZVW3wOrf/Ot/U63qjz989imDVCRlu15rZUII3o2CIcyzHyZBUNdV3ZQuTpcX6+Np/7d//bf/8A9/d3G1XG2XtrD7Y/fw9Lw/HjUXTbuSIr97vXlzXf/wp3/8/PS5KA1DKZTwPkjg4JOUoq5KBNGfeoIMnAQiE2MApRQgMhMxvYhFgBEYMmfKOWcSQr7MNXMkXWjBihODwbKomEXdlFqZFwC0NfaP3//Qd8PhsJ+6OUWaRq/QRE991wmN7z+8vdystFXjuChsvWhTKWWhNadUlsVqtTTSrFebHPNpdw6JykZBJkAQWvUHn/o5Unj96rouaiAa+tm5KcY4eH99fcVI0+mYEjs/X2rhxv7Ll8/d0OlCZR91YQrFtioEh9PuvH96QobqYhPnMNBIEYqqys5Bit7Nhbm2Rj497oahi1Evm9aWxXK1GsbxdDhtt4ub17fRU73wp3Ofc06Un/fPo5tQQVXbRPHv//EfGXLCRIIyJqEBX0Irw6BK8MnPfgrJl3V58/rq1fvbkNMwDXjUIwYl9OXlxe9f/e7Hn348f324bds3F9v1avnh3TdTClHgIYw/3n+92z+zlSDFEMaYQxq9VhIAcsovS21CkRWilDlxijGl/DJMRUChgXKmnI3SQiiBMubEIFBipmyMRgSGLJUKzs3zJKUGJQNln3JIhFJf3N6Yppm8N0oVtgw+Bhdev36llOZMRWWt1s+7Z41aSERphmnY9/3EvlpVgx9idJUtONPxfE5EzvkQAzAUpvTT1NRVeAFCU650YazJMVHipqy0tt555xKRzDnlmKQUZWmjT91pYMSUElMegtNSllWhlHYxpJT6eZjD9LB7Wq1XMaYcokCBSAaVMtKHabXe/A//7q9O3enj5zsUQhbmNJx+/umHcRwp50Xbbq62qpKVMiLlVVFdNEsMUSGRT58/fn+x2VxfrIAhRl8V1trCeVcUlgnmabYm11WhpZRWv7q5aao6hDBNsxKqMFVVtWVdW2uHYUwc15tLKeXpdAo+brcXH775tq6Lp8f7KU7T1E9uUhoNQU6OKRVl8U9//0+coawKZp5DyCkxkQtTJrLaLprWDzP7aKQWkPPshslJqe7EXb8bzsfzNLu2WaZAh6djcPF3f/bn/9f/y79/vH/89PkuhOAn3zbN6sOHsqyW9QKYj4c9EZ1OB6Li+Wl/PJ+NNReX17asv/3uu5vrV1rooiq0MQ93j5nTxeXl1I8p5avrayWkC15b/fRwmue5rKqhH19kA0Vp1xfrHHOM8eLiYrFaZ86RKAIyyoeHxxjCOAx1VRa2CPP8/LiLMS3b5WZ9QZzv7x+J4nq5madJgtBaD13POecQ5wzMJISwRSmk7M7dPM3D+UQpV2+Nravj897PxWa7jSmX1sSYtJRESWmZM6dETduashimaZpGa+z64mJzIRKl3fM+3O++fH2K3tVVfX98QCGuri6A+NSdrozZtIvj6bhpGk35ZtkutDwMoa10Nw0So1KqrMThdAqRFs1idXETYzqdemmACOZ5TikjSiApEACQ4SUQITNlaYSWKEFBRhRIwAwvCDyRMo5T+Pz1OYfIDLYwmSF4gghlJauiKBpFKSkptDIh+EzIBECIoIxV0+RUQkBWPlA3T7IqOGVWBQk1zr7r++B88D6mIJWCzDmzVCrTi2mbckxSqRyTkOpF+y0FTv3Ihbm4ut6u10qij2F28+cvn/anY07hfOoAQEqZUlLaoBBGK1QyBp8CTfOsdNEu1lJIhWCsFZwAIgUnrFw2plwutRTSspGi606I4tgdIMV1u5Cq1LaaQzgejvvTdH/qD13f94OydfBxdm6aHDMTg1FSS0NIukRjK0YRY1CmaZqKMz09Peyfn4l5GMdT1536oZ+GlFOaZu9nN88vIe0A+PR091/+MzsfRjcZY2c3C0kI8eHpeRr7l086ZxZaTbNnFMYYAJkS5UyZMxCjQIHyZewuBHJmlADIUgihTMoZUFHOWkkEkVKiHFGgVioTZYrT7Nt2KaxsFot2tRJCF2UthVwullYrwUwU3DzlGHPMQkKI6Xm3Ox5PL1corWSKIUYfvTemUEamkGKI2kgAoYxOPifO9GIUJ/YxpJi10YU2RktllFDKuTCMo/OBGaWSUsngQ8h5CpOJ5vbmhgCb1UpqPboAiIBynobudFIZylYpFoCsGAupDk/Pj/vH4+kJmTRiIfHTDz/9+OlpODuX4m++fSMhzRUu2uqFZiFZrhbL7XbjvRunSRg5Ky+VipFjSNqa4P0L81eiEEICwy+6n8xAzBnEi12IxcuZFEIiIjBqbZTSpS2V1EJJgWCKQhujpCEpNDEC/vCnH3/84WMKgTMhixyTltpKA0DRBy1uXl2tlSnmccTEHHKxLIEE6mys8fNMIs9mSiG5MM/zPPRnAFAv6Q3Ic3I6yn4auqE/7Q+cEYDPx96ntFovZz8CMEM+7p+ZotJ69udp7C3pdtEIBOemcTjP0xiTV0ZAJspJGSEk7w9P3c991w9lXb55d5shPj7tzueTlNh15x+jf/fNt6zEaRgD8+A8jEII5VOanJvmebfbR4rn81mX2pe277u+G5pFo7UWSoxxTikCsXOzm303dU1VCy1X1epye7HZborCzH5ui5YE3+3unAtkWP70x//yz3837U/u6jbE0KAKvbOV2VxdrJr1at3eHq/0aiEr082dCy70LkyzsUoAAmPIMWZiJXRRIIsUYvQRAFFgypmBGIgRjbHKGClUSkyQGSCG+LL2tkWBwCnGaZ5DTtIYXdgppGM/FM1itd1E5m4YY4jr9doYu3ve+dkZWxDQ/umxO58Tx7ZtV6tVUZhzH/eHJ9nJ0363Xjer1UJbOZ3GoT8JrYkyQO5Ovd6qdx/ePj0+7p+fJQAwzfOccjSqFFJrU1DmGIkIUsgAYCpLlHMklKiUQolKoDVlppRiYmZEkIieMiAO80QEwziCwPVySZmmcVgv2tLq2A+Xb5bffvMXj/fPTVkdzufRx6gLKqJiICbfD5+HPgzTr9+//fDdnxVSawH/4ne/zT788Kc/RWYlMMdATDnnlLKQyblQFlVZF7Ib0jh9/vx1V+7fvH2llU4Ax3447o4xpWbRxJwXbVMWddcN8zAnyrKQq+UaiBBUf+oFCInKquJiu817vn9+eto9Z8bd8/7V67dVWd9/vbeqaBeNNQYoI+PknCl1WRWFLvw0W2FqW168fg0g/BxA4jS5Pve/+vAbXajg4zx6N87r7UJJEeaIJJqirpuaEfpTp7VdLpYEdH93l3xYLNqyKE1R3H352g/9drudhj7HvN1spFJE3HW9m/3lzRVx/vzzl93z0+/+xW9Xi9X5dBpTVEIUhdFGKqXmcTal0lo5l16uk+MwZUpV0xJyY40yxf/0P/+vDw+PRVVoFKFt/RvvZt/3PTLkuq2quhvOYz9UdWmMzllzyuSTMZWtKgQQDE3bAoqyLod+mPJgtFosFloIiXB83oXgUwhEjFKGlHPOoiiQYB5Ho2VTV2VV2qJwzgspiUhqI1Ao0Jlonvp5nhdtW9UV84vchYC4qkrn5i9fvuy7o7Yq7UI/dZv1cnB9pYwwbaKcsk/Jv9BHbVlUdeXnZG0mmlzwKREQgkD65WVfLDjwAnWkREIKpbUqZCZKKRIRIxqtpJYphGmKSoAUIiVMKRMBA4eYvYtSCSWktCqkfDpPlHNVl5iiImlK08+Tur/rkLIhCn5YXi4nB/pg0ykrrRHlar1wo/TBv2xMtBQo8Be76cvMAIVgQIlhnudhKrUupMZMQ9dDTFIK59z+uD/3JyHEYtkE75z3AlkgArOSIgExMVGWSkbv66K6XLUXF5dVuyhsmTKjwJRx//R125Y3FzemLLqh83OwJkbvGHiahqYppBVXV9erzcrY5wCsbJmm85TmfHgWRg7D5Fy0xuacfCIoMIUIRNYqpaSyypR2HN3hsP/5x4/ISMzDOLkUBzdHigDcH/YIOcaYcyyoVFpPPj88ZOfDMI0pJucDSqIUx3korAkxeO+BkCCDBIEYoyMKwCgE84sOml8i7RFfUO/w4oR/IbUJRhljklIyipwYhELkzCwRETARoFaJqOvGxXJjq4ozpH700UkGuWy1FMBUlYWoLCALIYMLtjDW2BCcBLBaJgkIFIMjTt5FylkomYlypsgQCVGIjJgpz/OkjAREYEEsmEBkJGJjSoHq1etXbvKTm5SQxpir64sY0+FpjwzEfO7OxBAZUIiyrG1RVEU1uZByHqdhmoab60tbybEbvnz84+eff8gEWYqvP34S2a5WV9PzKALdbi4EhX9+/Pnz8eFBjB8//9iPZxp4e3XRNI2Uag7zS4pCSmmeRiBEJEQQIKSUQiIzvRAIGIiZ4CXQEl+wjRIQAAgIGIgJOaEqYbGsUShgGUMwhQUBIUZjrVIqxqikQpRKyRR8TtPUz+vlwmgd47h7/hTnb8Ls4uD8aYy9mwWWhWJOx33nZ6eEfPj6VQiVEwuUSugUgjFKClFWBiX3w9kojim5cS5UmWJkipzjab8HyS8jEBfc8fAslSbMRSWZyAe3Wi+VFA8PT26a6qaqFuXhcf98TuurlS2FRqVIY8CMeXBDYe1pOIfsJAvP4bzv5pyk1n2YnJ/354NANkbNzg/9wAjTPKMAZZRAMU9+mNzoYpbOWmbMIYYYAhIzUE4p9ClTlohKoVCiKGymeDqdfPJFVXofnx+eKaan9uH7zz+VLI5zPc4dTdH3vj8e66p48+6NtoUXfL1aLpfL5/Pu8+e7QmoJAmJmYokKhFISCAEIkdkYLZlePO0RICZEJTMyMcZMmRNRRgZgEECcKedEmSSKFNI0uZiSrUVMMM6Ocj7vj4BitdncXF6mGK2xh8PptNshspIgBLh5OByfEEFrEHJRlaYpbV1qZs7ZeaeeHh0y+Rj3+0NZlcEHYp7n0bvCDcoK1RY1URIKg5u9F1Lltm1H76dhRgapJCAKIbTWtqgFCCnx5ZkNKSWJyLGjTMAgpZKoU6ZINIyDljKGiCFdXV7WZZGCD240CiSlQuCqrj+8ee3n+XA8hmmqi3K5WA5dl6VutG1e23/5+9/+/vd/lqa4Xi1yTF3fEWeUeDgfT+czUWaAdrEM0Q+9P+w+29LWTVPWC+eJ2QxDzHEqKhsjm7Lunp+liX03hJDHYX7e7a0xStipd21ba2HiFEY1TK5z3otCoFKRyDblEjaHXb87neq6/ebb95vVYlkvUkzGmqougwvd0B+Ox37fyxV8ePPuWB+645E8Ojff3r6+fXX7N//5b7aXF9/+6tuc89iNsISqrMaht9LM/aAVX2wWVbvY7Q+ffvoEiJQphlxXZY7p+z/+dHt7o5RYtG1hbdsu3OSiy5UtUo6ncz8PU0xxsVp0p97Nk7EmhbB/fpqmqW0arYzWahqHHNN6s7JFOY3jNEybzbqq7dPT49NuVzRdpDzNvqzK7Xb55t2rtml//vGnaRgp+rYpF22zWKx+/avfDP1olKyKsqnq9XItUZx2e87p9vqqtBYSheA4Z5CQU0SAuqyWi6Y7noG5LmvSEao6pnQ8njIASlnXdUp5Og/JpUTZSFYoIbOS8oXS4qdpHGeizEyr9fLVq9u6Lk/Pp0XTrLbL/fN+nueb2+vH3fOPP/3IiO8+vF0vLxmoRDpNp9Dn9bLt/Dj1HQi52V7GlIjoeDxDEkpoI+2cIr5sQlAgcIoE8ItnExilEsZoa42UChBCCDlxSkEoIaR60TYIACEFCkgvok9EQAKieXTB+6Iys8ec8jzO2ig/hZzIaCO0sIVSyFIIqhp7VdXjOJZLPPfLL194uWzC3KU05UxEDPhLABciACEDILJ48UkI0NoYJXP0nKkqDEK2Eo1AogSUtBGLZU2AiWNVVkQkpTIlEKH3kTMJKW1RIWCOUBf25nq7Xi+Lolwt11IbYHHoTtnr5BSAa5vW2pUtqvuHr5IhxO3D509SJOdcprhsG221S2l0QTxlij4gSjZECUVmIMH4Qn5NKeScY3I+aGAkxuN5Op+nyWUp0XufkKXWFpgi5hiKqpSSEMlNM+Xcj0M/8HZ1YWwhRErJCYWZCJUo6xoo5fTi3EMh0Bgbcw4xCaFeUsAAAFEQ5RdPHzMTMQICMgMwMCIjotIGkIleyrgAykTknRcyoRBG6ZTTYX8kBu+jkZZSBgKO0Y2jVoIoSYnMJBAQ0Tv/csi0VPwCIgKplCyqKvkkX+TtiCFGlEKgoEwvFPlMSJkoCUSplRVCMbMUEgBRglWqrUorpVZYlNV6td2sWmttmN3U9yCENBUheu+PxxNK9f7DuxjjTz/8CVJGypQTZ9csq/O068ZzSlEpNY3n+6+f3rx+z8Hdf/nZVpUbT6VmCi6EMcNkrDJadeM4TYPSYnKz8z7GlIl9jEQgUQDTCw4YBeAvYVFARPjCCc6ZGYgIEQHEC31JCMBfskoEEaUYtZFGi5DYOwcQIkNZlnXTBheJCBkWbQmcugPlOAR/qoq2KdGNp48//AlITXOstSal0+QjhxCcm+cUIxRFjHNZVcCojdYSldBKSgQ+Ho5MLmUX04wISqpaVymxLdRiUUvBmbL3jpEV8maxnmPsukFabQuTczoeD8x8OO1SjFMYOeUYogj805ef26YOMU3eB5/yyE+7XV2X8zQeD7ucU0oRGYfgQkpdN0aKggUiCiYQkFMi5uBjpqSNiTlM8zzPjpBjThwhpeics4WmF/+hVFopAsyRUpon9/lwPi2WTSZ6Cekj4PV6MXT97uF5fbE0gHenBz86lYVE/PHnP15vt1nmFIkLY9bt+s3lT58+/i//2/92udxWZUU5Rx+LqiwKI6T2bg4xWWWEQIUyhZhSJAEgBSH4GBMTKEmZYgwSEdLLe0Ni9i5opRJn5908uqKuQiZUEpSeXFqsV99+++1qs1kt20Q8ns+cYyI67fdSCcFcV/Z8Pu0ePed4rOp5niTw7rAPIZz2mjJprQGAmKIPwQei/KKcCKMzRmstgEyIQb8AR2Icx9FITUwCkJmUlsDsvF+tFxIFiJdjm5jEPHhb2MViYaxhwnGYBaamahLl0pZIHNx8dXFxdXHx6aefOYTtYiOYxtPpH592w+BMWXx482q/3w+URUpaqQ/Xt6+uX31487qtbGm1nyck7vvu4cun4+HARIAQQ7i42Bpth24g6jYXG2VVzFlqq60xtiiKypaFVHIchmGc2kXTrBQBMnPVAANMky9MWddlUdppkkpIrTQiFKYwWtZNe3+4e3jYnU594HRxcX1z+eZ4PF1dXLy5vXl9dUOR+r5PMSrQrPj9u3fv372/u7tTEr775hul/uzh7uuXn78U2l5fbN+9envYHcZp+tM//MnN89t37zar9f3dw/lw+LM/+41R+nweh34+HjppTbtsp3EOPpZFtVgsgKAqK6MVItxc3zKQlNrP8+Zy653f7Q5lVU4IgHDYHRfLxc3tldJqOPe6VMaa0pbtohmHkRgoETP7eR7HsW2a4H2K0pqirCoUIvj54eFuHv3Vq5vffPsrYOgORyMUM8/j2JR1aW1RmFW7PHX1crHquvM0DMG51WKxWq6UEH52tjTjODzv91IioxAoLjabFCICpBxjCFLiOMzECRClFMv1KvgUXABkbXVjmsVy8cJY985xJq11TFkbfT6NVpmr7YUxNqd0++pGa5lz0lK3q2VR1e3CL5dLAlouFsvVyhTqv/y3/3r/9eHu+blc16JU8zRXy6aw5TC6oR/77sgolSxSoJQIhULEnF6oKeKl4QDxUiLBGiW1lAJzzjH6TAkRmCnFKKV6ubvGlJjAWGW0BkQWBMQMmQi8iy92X6m11IqIhZBFabRRZWXVb/78NdMAydeF2WzLY3+4vlp/XbUcusHqp6PrxwkgS6mEUoCEKBIBQybKQKwQjdYS0CAcH59lzN4aq+T2bbNY1ICgRog0xzTHGBIRCBZKEhNmoY0KIfjoJUtLNlPOKeYYwjTNUknmYrtREnKKBaTGCl6WVVMuW3s8dqf93XDav/izgBIyjf35cHiYB9sNHStkUBBnCSSQrJZKVzEEq4uUEgAaXdpNk1LSmObpfDqNIaWq3ph6VTTRzf1pOg++z5EjJUKYxqFQCOSrQvsQgDin7P28bldFYYvC8iWHGOd5dt7v96NzU86RAbRUmfILNUAJxQKIcsoZQQhAZgZkRMmQBQEDIyATZyAWQAIEIIAgfFmOcGYgAgTKiRAEK0DAlFJ3OBaoN6tNXTcSlZSCmYEZWQSfgHOOKaY4jaOUQiuFgPCijkGUslgUFTQA+KIOi/BLUpL0PmbKlDhnFFqzEEaZsixecLqmMEqImAIwTv2ZM2vExupKCXc8VZebUqGqCiF0s1hnAR8/ft7dfe3HaTofj92pP52uri8KpUCyriTJ9HzYHc4nF31bqhRyxhTi8OP3T4+PP683l3//X/+PsoDSiHfv38bQyTvaPx9SZjf7nM/jOIHgyTuBUqJEhRJFijnmJCUCMrxIfn6ZtYEAZIFIKBBAABMLAKk1MOacmBAVBR8mGJXNqcgo1TwGKTUL4dwk0GhlCqNTCApFWZauAzd2pKCywloVY/zpx39cttvl4mK7bupSxeTH8QyJFHPdNFJLrAoCcMG5KRXtwlqZQkYAlYClyiCmcV40TV3VKQfvXKlU8I6bOoYQQ2SZm6olptFPHz99lkYx8uznvh9STsMwKSGrtlIoxrnXUn5+uBMCQgjD5BORspYyLapaCBHmmVJMMVSl1U3Zjx0JCD4Ypeuq1ghSSu+8m2dZ6hiROSfOUgplVAqJgXPOACCtciHFmIxSUojClFIpR05p3ft5fApf73erdcMUlRI5paos+/N56IbdXiiWYXZNXb2+eiUU16/W29ttu26/fHwQCWJiKRUxD/PEJFQ3+NnlmNtVa41FIXdPj7MLddUYY682m5zj/d0jGGwWDSB03UhAujQCMYekpHTTJAQKqcumdpMjAYlIahkZMMZxdrapp9mhUKfT8fn5OcZgpGjbpjBKoaSUYwp9mHKORaHrws7zfHx68nVti7IwRgIKwBSSlIoSAYqiKFPInBkZC11IoShln0lJJZXIgUKMSitrrADQShZWMcM0TE1TV2VhtVUCKRPl6KZJClRK101V1Q0KmTJl4ovLm1ujDvvjS+4Hp6TXF9YY17lff/fdqm5eXd1UWnIOBYrH445T21bldtEYxJtXr5q2XdRNW7ffffN2mvrPH38ezqd3b94Zo7xSbdsA0HF/zJFSIoAgtHIhnLsxpWTLoqjKtl0BZe+d0ope0OlKvyg2iqr0zjdtPfTDZrPWVo39mDOt1ismJoZhPCXK28uLw/GIqK6ubzY3V6N3wzjlEC832+HY3f/89Xe//d3N1W0/9I9f73f75+BcUrqp61XZnk7HLx/v/vAv/lC9/XZRLJx3/XmMLn3z9pvdYR9COmU+70/jsXv1+rWf3A9//EkqySzadqEFaG22243GYbtdrRbr/f64XizWm6Wb3TxOKYb1ZnM6nYZ5lEdV1mVRWqP1t99+6Ifh00+fvZ+J6vO5A+J13VZlBUyIqLUmSkppBPQhWGvKuuy7fr8/Wmte39xmANudnu4fFtcXr29vh1N3PB7cMEqE8+5Y2uL6+rKwRZzdqlkBcZh9cPPgo1Ty3bv3y0U79AMDBeelEDnmlJLzsSqr7nTaLJbQlMFhonw6d33faWMzs1S673shlFCmXTQxkzWmLKpEMXjftHVZVY+PT4h4fXWphIwhCCmt0XNOVV2V1kTKRVn3wxhjKMvi7ZtbH0PXn3/68cfJD7OfN6u1LAwW+tCdOeL5eTzAmBliyjEBAMTogYQQMqeYMxMhSvF/spZBIEohmYkyRR+zgMyZmRhYKgRGFEJKQcwpZn65xiISopLyBZ+mlLbWMFGkgAgUeY5ZKbFaL3ShYwzKWFVA6OcTpCTsUgohY94u2+8+vI2nQ1guMcW2Kcd5DDERAyG9WMIYMnAGhgyQE7o4ZuVaU1ZWL4pis1lcrJdSsAs+JjfO3el08CkyCFPYxbIGVkoqH8I8T5TTiyFcgGibqrQmh2AkQg7PX++nYTwfTz44YVXbLksj+uO+P56Ox1OYnchpdqOfB1YieufGPvspx1DoWkhTSKNQ+jkoYaWWgoFj5pwoUwapytaUUmkRc84J5jk7hykz6rItq103hDQkAJYWhWjWVnEymCVmZs4hMoDVxfby8vLqqu+Gru84kTUWEZXUlOkFkkQMRIyShNCgNAMBwwv5G1GgEABILxIPAf+9OANAyolZIEolJTIQZYnCKMOSiDiliIDA/GLXAqIYPDIbKauyttaknGMMiOCDSzElShQJCYzRCJBSklIygzEGBSKyQMn88r+WXpgZPsayqJ2bmCFHUtIEHzMCwItwgjhR4owASglkLsuiqsrLi61ErZTJ0xxCQIGR4ul0Htx87noEvtgub6+37dJ8Zqc1SglCCKHZRXc4nYZxSkzj5JQ1bh7v7j+dD8M0H3kfhmGX/Pz21c12+wch2HuXU9BKUMzM1DSNC1FhNtYaU0zDwPnFYccEWUslpAR+yYEHgl/CwynTf/c/v+SwIWLK4oXyGXOUpLXgoihsVU6Tz/QC4IIQvZLaaN2URVtZa3APnHLgTKfj/oUqdtwd1Hu9aBfLtlaCCbBt9ND1QI0yMsWcKAUflcLSmOurDWTszz3lXF+sM/phgNtXV9ZqYBjPvbUqZz53XVlXiDDOk7JynMafPv28704hxsfnnQ8eBKKWlDnlmGMW3amua2N13w3TNAFQXTWUBQMqo8qyWKzWMfi6qiXi+XQoCyuFvry8XKwW4zifdseyKFZtmymdT7012hR6GIZxno+7s9BSKtHYOuTg5wACI2U3e2aOMSmlAJwxqu+mqioBhbVaII3Bu3GoCmuUzDFmjmhhzo4TSo122WzfXhXa/P53v725aE93h9NxjCQi5XEMtiiVtgB4ffvaaHF83rdNs16utdV+mIim9Wa7qBdvbq5SitMYMvDl1ZWUOI0fc07rZrNomhwTc777cldas1qvL64un3f73emoGS+uNm5wZWnOfX+aJoGMApRW5+5sCtUPnSl0ypkoKwVGl9bK0/koAd+9edt3/fG8p5xzCNPoBEggtNLUTfPCia6KqvO9AgkIlFkjKmWkQM4sWQjA0lhtVAhJaGmkFAIRULdNURQSZVkUzHQ+HWOMRElIVQDaQnkXlDbzHLVR2+3lerm4WG4Pu+fH+4dCm7fXN9vtdp7Gi8vLVzfXw+GoCts29bt375Lz53GkFH797XsCrKt6u9lyShfbLUdHfkbITVVZbZybvHdSykxQVNVipa21KZCbZ6110zY5kZRSK9Odh8LKvut9iMyMUpSVDT5678uqqOvy86efx2HarJZG61lA348EUUnFyNPs9qfjp69fXPIsSRpTWtUsFpcX/PmnT9F7rbS1dv/0vH94SjEV1t5eXx8Px3mcnu7vpVLv3rxdNO3Y90jAmdwwj8Pw5edPujA5JKP0drOZpunnj5/HadJSE3NTlFqZ1XpVFiUATrMzYJZNi0RaSuZ8fN4vFm17ffGCjz+fz7vn3Xq5Ksty6IdhHKuqUlJ9++2H1XZ12h+9cxfXW62Nn53Wynl/Pp+9c82ylSjPXbdYLJ6edkKiLew0TUIKUxZN2ywWq9JWpSlC8IUxTV1zpqauC2spZTQgQD4/Phz2h/uv9+f+UFf1er1u25aItJaX283peCwL/erNTYjx089fDod9Ze0wDdbavh9PFLbbzesPb/phfHzcffr8pW2bb775Lvo4jqOxRY7xqX+c3FTYgpGJSSsFAqMP1moEHroeiKwxQ9edc26XjTVFU1WjF6fnE6N46VeEFMYUk3Pb1WYhVmMIfTcpVAiAL/mLKBOi8wkYlRIACCwEsnrheQGzAM6ACAyMUiRK0SeBhAKNsVYgMvJLkLUQznmldEpJIFBml5xSCoBiTFpJykw5vxzFHGOGXDdFzjyO8zSNZVmq5x//6PxcVuWAoIRk56SPFWKl1Ha5zN7lHJwTiMg5EzIACIFCKIEKGIAJOUuUr6+vf//nf/abX31XKbPeLJMPHz/+MAzHzIlTEsg+zsTs8yxAN82yKIxSapwGQI4pjOO4bJd1WdpCSUQ3TpBt3ZrKKq7MkEJRlL/+9QddVH/80/dISTIuq6YsbWWlpsQ5Wy2VEET5aru9uX7tCXbHzqgCBFpjbW1CinGIQggE9G7umHWhmrpKmQRKJfU8uLu7u8NhX1Z2jl7aarFYgRIhJsix0lgXMoeJD/spj8qqpqiaZlUWjRIWAMdxGKcx+GALY+aCIHFwzrm6rADECxwfGAVKhUCQxQu7ljIAM4GQ4qUsc+ZfKEEpS4VML7lFiAKA4ZcMKyGFEAJFlgycwzyPKE7K5BThAsrmQklIGaUUhSiziFZKqEvKDQKllKfJEQJKBVKFEFJOAjAGjwCUuKi0QJFiRgKNSgBKFBLRWCUl5JSQkWLCzForBFBaVMZebS+rqlwt2hTJOXfousfHp5RosVgLqX3KyLxe1Mv1QgnGnJqqYIoBkwB8fLw/D/156HyI0urZhRJhP0zMGaUqGyswJsqn7gAYi79Jv/3tdwIwBO+cixStKrUylMkUpq7qlCikiJmZSchf4HgCEBBTTkKInDK9jMheHNIkhJCMkF4I3cgIwnufiRKRLvRyu1yuN/PkQspaWUTlHVGKOWpblstFIzFXdXl5cZGSC8F34xSDL43tuoMgLqsKCFDkoTunGKyVUkgSIBmVQhNZS5aQm7qxAvrzEHwoa331zVumHMOstLRaAcDx2PlMorCIvNsdlFVGyePp4OZQ1lW7WC6E7MZBFaasyhDD1893EiELPPWjn4IuC4H4+v2vm2aBjIWxxphVuzgfj0rxatGeu8Pz00OMaXtxtWxWpfWNLf3sOKMWxhpNpIL3ISSBsm7qbhhAiOWyFaR8GvzspMKmrYKLziWUyoU4eTdNU+SotSRRKETOVBZlWRZVaUWmsq5koZRalKqqFmVbtrYsK2ucn7XdFHVhqhISKG1yylbrylprqu9+9e3FdvXlpy9aiIvthdT6uB+acXrz5nVb1q8utznneQqO8/WbV0Dw9cszM75/+912vRm73vtpOnuj9Jubd7evb5Wszr231r6+edOfuqq0WulpnkErllJp0Q1HQEophhQo0KKtm7pys5vm8bDPRzf+QvEo6pwpxhxDpJSNUFpqjuRnXxYF+WyEktoQ8TCMKYVmtSrrIsw+5bxeLYBxnr3IuayVFoggmNlqK1mE4PuQispKxECktFJCNnXNBMMw2KIULMLs9vcPrbVvb18ZIpX59vLyz3/75yH4r1++qsySIXpPpXWz2z0+v3/37j/973/7Zfr8b//qL6XVx/1h7s6V1W48aW0UwqZtc8oxuruvXx8f7pRUAIiIMYRf/frXt69vpZQpppQpRxdD1kpWVdmdu+Px3LQNgjh357osyrpIOVuj3TgpLcvSPj8/1vX7qi0Zc84wTvM8z9qYbuofH59BoS1tq2xZVABsa9P+9rdP9w9uck1Vu3Fy47So23ZZKKXkchWaRiBXdbNs2nkcC6P7U/+8e7bG3tzcLFdrHxwilIU5991qvf70+cs//Le//w//4T98+PCtRMEMAoSbfdM0wACJjTBFWZZl4V1gIm2Vm2cUkihba5u2LgqrhVwtV957N89lWWplKFFdVcaatq7d7MuicG6ex8k7R5TPx7OQwlgjhFBaSSmP3bHvehS4lspFt14tS1taq9u2KoxZL5bb7SZT3D3umLhtG6PlaT/UZbHdrpwbjFFSIMW0XLZmtUwhbrcbKSFlvru78zwMaV4AAQAASURBVPNUlNYUph+HlFOEiIJdDJ+/3nfn82K1/tVv/kxJgUJobcZxmAbn3ay0zpTqqqqr+nw+b7cbBhiHaRompaS2WkmpjXLOn05HH+N6szaFrXXZdXaJi5hC4ri9WD/vn1erpaPoQyiUeHV9kT47YY0q9LEfd09d8lmxfInoy5wF8EtMFeELq4RREBMTZ8EoJMYQiFkpqZTQSjEDShFcRCHK0rrZMaKSiigzUcoRhRAgU6ToXc6klQRBLxaoaYhAA1FEJI1STcenaZ79YI97nsZpHoYwzsmNGmg8n8+nw2G/9zGhFOol31YgE4HgF3xNjpkoNU39zYf337x/u14uMGYB5Oa+746n08Hn5KPXWjZV1Q29nxOKZK31Tjkfuu7snIsxkYWyKLsuc+I4BauMlupyvXHjTCk0VVNvrGLA/z9Rf/Jj2bpkd2Jm9jW7P6034dHfe9972ZJMkkVSFKmBClANakBAEPSHStBEgIgCIUBiJZNJVma+/rbReXPcT7P7rzPT4PhNTSJi4AhE7Nb2srV+KwQM/nK5/N/9i3+NqO8fvihCFBnHkSCVWTYM/bJcGNAhxWXZ/PKrX+R1Xa1q1MSSxtPQHU8xckxs83Lyc1kV3ThMQ4zR2Qxfv3kxuf5xdxc1vHr39tW7r01RJE4ZqVyxGw/JTZnJP0wfk5tZaJ7iNAfmcDicpnEcxzGwBwClMQUhPDPPSAQYJPggIM8+qrPPCxERJMmZZHsWgM4dFKDOndXAKQkIAaYIIiLMCKiMPjcWWaJEyEkEZH98HMZhcnNM0WZ2mhyKaK0UYG4NB2EGQJCURNj7JJSisKTo3ZxZ47w3ShuTNfXSuUmTDt4DiFbKam2NIUWIiCLBp0zrqq4Ka0GkLPPcZpnVfpx+9+lT27XjOPkYZxeVtjHC9nJbFCZ0gQhiiPO07/pOOIYUdo9P2mgUObbtGOcz4YFI+ZiYU9e368328mIzz/PQjsaS0rw/PAm/v7rc8N9H7+d+GLwPs3UhMCmVQprdTKhiDIRkjYIEhOfLn5VSLKIIEAggCSJzEhBmVgpZJMRARKSQkSNHiXjq+2N7yooCCAQSpxhDCC7Okx+7dmxPya+BfQz+xYurmOLD7vF4ui9ttl5tvBvvhyHPy6qqUeFh/+jcXGQ2y3JrrVKUvO+7Ns3zXkBWWwLKrVotagbOrR2G7qfvfsyK7Ob6dVnnWbGYvBOtYwisaJhnbyiriqpZlHW9RQKl7h53URIhoqKbNy9PXRsSH9re6Pxydf3m7du3b95n2iKgVpoAM6sIlCK5utjEGL9vfwjeC0ibjWWV/emf/qq05fFw/N1vfhNDXCya2SsByYridf1GG/3jhw/dOITJobCxBCwSIqdYFCavKuccsd5eFMKstSZAFiallMkSY3AMHFGrpmyapl6Vi6ZpEBWBai43P/z6jxftpIjQaFRAWqFBpbWxeZZnWmtt8tV2q5FslieGZrHMymq9WRtQQiqE2KyWjdWLZuHnVFaLqixfvnhV5oU4IaFFuazLYrO8WJSrVTVvm01e5atyqSOG6KuiKvLCavQpaWNj4slN4+fhaff0b//Nv/6TP/3l73/7+x9/+tH5eRi6ruvc7Oq6VogAMnaDNfZqtRr6eeynrNTX202eF6dTh1GyzGjSi7I6o95jiixCQFZZYRAjy7LO88wYm1IcxilEJ0oTCAKPbR99DKNjo8t1sVourc1Wjd89PsUYEOm4fwo3VxqkMPpPf/H1//BX/2IYht00fv32dWazsiyr12+2m+XhsL/fPZVFud1uj93JoDJkMlKlMUrktNuVRXU87FGR0kaYOQSttVIqMzkRzKiYef/49OXLbXs6FkX1+vXrZrGo8kIYQKTIbfQhL7LrqwutVGYskR/7cRoGFFAkb9698z4cDo+oKDE8Hfazd69ev9RVfv+4j5y+eft2tVpFCA+73W63Wy4aY7UEbbRC0s16e31xpZQI8xzH1XKhFBGpeezvbm+Vwr7vp3Gqyzqzdr1YanPRDm0I4Yfvftg9/f7d+6/fvHr94uamrqoYoiJltV3WS05CRKvFUpJIiiIRIS1WzTxNu4fHxGm9Wr28uSnzXCs9TZObp2axSInncRq7IcTw6uVNqQofAhIioHeeWZaL5ThN4zQtV4vVZr3b7Q7HY/ChKkplrLE6yzMhqBNrY7xzQz8Ac11XRmuDatE0MUSNpISc8zazeZZdXFys16tls9Cahq6tLi+bZbF73LkpCsg8jYDCMbngwhDzIg8puml62O2qZrFaLhlgGofNZl2dtS6j53lybs6snVw6Hk/9OCwXK0TMi2Ka5nmel8tmGud5ml7c3CDh9mLrve+67uViCSiLxYK5QAWnrp3DRKB8mMuqCDFUy2qJjZuHKXgmzLU2iqIGBfpseFUALkVACCmR0cZorTVjmvpJEhOpc40kAnJk79wZDS0gKYlWIbPGOw+AYFASpMhnMysiMiAzE6EIchBSCEAxsJ+jNlgUpQDpz3/8zTi5bpjzIivKnBBuP33WKhHK2B8JeFEXESQJBGYBiMyJmRMTodFaA3gfYvCfP35wfbuoKuS0Wi+0pq7v277rx0FZUy2qNJKeXYxOG306nu7uHrM8I0BjjLWFIj0MffJJBJarZbNscpNlZVaUmVGmLqvLqwtSehhOGKOf5m7/sNlcbpdLY02R58yp3R/GtluUzWq1AoY4z6+vXrx7/9XN2zc6M6MfhJkStF0bHAPpRCqwzGF2Yfry4fMY3Ps3l4JI4BROE4ciV8HPkUUb8+r9u6aw0/Ep+KHIy7u7w7Eboh8RDv0wOzcdD3uBhCQpRBfm4ENKSZFWCDF6FkkshBpBmFmEBZ+dzkSUgEE4CZ8bjZBAzgAoIKXoHLU796OeXbpnwCCZzCgjIABsjSISAZn9CAMu3dIUhhREx0qrPMsUYfJOa9LaIEDXjxxjADinSIiQWRQpFkaSssrz3LTtUSuK3qMIinAKiISEnCSGVOe2LDIFyMJ5nnHix8eHaRrbU3s6tT4mQAKFgDj6AU8oQpE5L7LgvcmobsrR4f7LYf+011afa4ATcEqsUSkiRQSKlLExpuPpMEyjH73VKs+11jjNo82tsTrzVkqx1p7dSsHHeZqNtgYJjRIRTZoUkiKG8/6YAM9S3Hn8PIcRhSFxAoWklTrLq8YYImWLXGnq2k6h8t7Ps7O6UKStyTDJ2LrxcOoeH2yGNiNtKCXOivLi8lKcG/qhqkyKaR556DqTnf0GpEkZoqYosiJHjliXhbWrpqqsFoBxilpjBOxOLWLkFInKdhqNlNvtVa2zcZ7H+ZS0juTLRVPluQjHJH3fd33nvI8c+75vuzbEmBc5iDF5QWQubl796Z//00zl+8fHPCs5oE8xRYkJi7rOq0ZlOVgzjr1/PFg7blKTgD7d3Y9u2PftNEwX1y9ev3sHKPvjcXJT1VTb9QYRCWDqek6xqSulkLBKLICY67woS6N08P78IJvmOcY0DjMWWWZNtVwUuVkuymVV17ZUSotSUTCr1ypfjB4LMlHAc/TsEvGc2INkJN3QG5slEEUkWkXvbaFhZkJBraLCQIiZRUJUSnSMGCOIEDGDtTbGaG2RIhBqa8rc1lplhiyBscams+XN5ImTVhS9265Xm+0Fofjg2uPp97/+/e9+/8dpGmxummZpTc4pnZ6OddVYrdIULjaX33zzPgb56ccPWZYvlgtmsUgPMRht6qpebzfG2NvbWz95rVRZlpzSME0isaxK5JQbw1r5aRyGSWfFcr3sTh2nUGZZbhc+xNPjYVUv7EJvVssUwnF/2mw22806jMNp93jcPZZXL2T2FOKmqrLMpsQGuLlYp5DWm01ZNs2iWV5cOD8n4flwutxsizy7//Ll9HTo1REAh3GKMRVlmVu7ahpA2Kw2i9ViGp0P/vD0yCmURbFeL/PCEkhR5llmqyZ/fHwauoFjEkV9O+8eds6Pm4vNer00I+3uh+9/+DYvi3Hs+2kSoLZvhTAqyJrq6vVNWVfrqws3z4fjnjnleTb2Y5EZ0GYexunUZ5sNEqeYOKWqKLpDG5kRw+ePH28/387TVNWVIuAUhZOAoAKttXCax7E9HMo/K17cvDJKP+6e/DTnWbloljY38+hCCCBQlHmK/LTfl3WegRXgFy+viNQ4DXmRfbX9+rg/POweiJR/fBy6wVh7eXXJIY7jwAI2s4jonDNWV1WdUjy2J5Z0PB73x+Pnz5/HccqyDK+vDod9lpuqqpbL1aJZPuwejqfT48NjVZVZnk3ThADG6s16dXFxdd6PT8NQ1UVeZQpos16XZZGCE06k0FgtKT4dj9rQ5eXl/e7h9vbu4vpqmCfnPQOkJJnNrMm1NjM6YGQBFGCGxXK5WW8Ss/Ou7Vtmfto/ffOLXzAzKVpvVyklVKiV+tu//a+r9ebicjONszD8rv29IihK0yybELxVWumyqkqbGV1kIYW6LBPHl9eXx/akbf7mTWmyH0+HOUVw3qcU0ChjaZxnFMlylWU6K7JxmISTNQYAQYATS0pEyIwcGADPFEQ3z5yYQVJgEaeUIiIGBk4IKCJ4DlzLuQ1QGY0xBWHQSnECJKUXldmsi2+//9wddgqapqpe3axCcLvHp6LOIgUmnn1gThziME4sIiKkyBqNSimjtS4gypfPX5KbwmbF3s9hOOfo8ir/srtrzNLHOI7jOI5l3SDgPHoAjiEQkTHW+6g0MotPcXI+K4rN9jI4NwyuzDP2wblD5JR1Zv/09HC3m4bh2LarxapeLNuuI1KcEofQVHVZFPun/fHYMkLVrDPMKqOUQYNnOUaTJGk06XyM7DgtaJmV+u2r19rSd99+3/anxMP11eY4dMuqjGHujm1I8NXrNxyVQiWgi6woy6qulxhjEhp9SJG1MSFwiF6e4x4unaFOiACQIgNSTAHhGXMJ9LzSOh9PYUbEcy4b4PwLAgiIMLMAnMNMSiFLEhEiCjGEEAhAKS3IAinEQEYF9qfuRIqUUoKijLZlLiEBKUJRWhdG5fMcx0kxmiyTSE5SjJEUWW2UwtOxtdbGlMqiqC8uiiKf59H7QAC5zThxiqN3rj12RZVN4/Rwv1MWOUXnXAw+s1lVZi6kfpwig82KaZrPbR7TYfIxArHN9DiNj4+P2uoQQ9v1RJSQYwykUQQ5JUTISB1Op+PplGIkQFNVRmOzKA+Pj4BQlYUA1VBpo5/27TwPShltTJmVKaU+BEJSSmt1bq+L9FwFLymmJJwS83Npt4iAJjqfrJiiQswyi0gxBABkiZMb3OQQVGaNVZZQkyYUSD4YTVarZVMDsgve5DZM3rmQZcbNzhBqq+ZuAFGLRaOKkgiWi9XVxWVMce46Jp8pnVtjFMWUonf7xykRTNOkNNX15sWrl9003949tKNvVmvnQzeOx/ZAWoY5cPRd3/rZjfMsKSnSSJg4zs5Zm+e2qprVw+Ojd0mbTJt8nnyR15nJp6FDQGsyqlBrsz+1SOarr3/Zdcdv//DtPA792Lbdf+y7/vXr6xevX7X7w6nvYgyXV1utdbfrDvuDMupyvVnUFbHM3g9di+fyFKXafgCiVV0jw+wTS4w+CYnV2mbFernYbtfNsmrKwgJQYj95Nw+9d6JUO00P+4MG3C6q3gdtDZjMFJWg8jH6EMZpqpcekUxmlTVpcClxjKyMsXlubJaAs8oKgNII/vxATMxem5wUKkJEAVEmy1Abm2dFkWujCLEsqjMExWZ26LqI4mZ/82a5XK1fvXrFcf79r38XU7p8cTWNAyFmec7M+8dHYFnUDUGSury+vHz3+k1ZVZSEExtrZudMXfl5nH2EyGf/02l/AIHtxVqjHtouR+V9HE59XlhKabVar+pm/7TP86w7dkapm+vrxWLhgp/GsW275MPY9bmy0btXN9d//hd/rlE9PTxu1stffvXu+z/88Te//vuvv3pf5UXimNys84UhjCJnUcb7QKgUmXb/pEmN/fh4fw+cyqqYx3m1buqmenw81FWZWfu0j13XK6I8K6bRzcOUZfb6+hoE+mE0SlujEcVYcj6t14vXr25uv9x759w0AILROnEa50kbvXt6vLu/21xth2EcnVPG6kxro59OJ5/CcezKZX04HYdhGMdxvWxMVscpoDCydPsTKrLWGmVsXnrvffAXFxf3d/dItF1vLy8upnn2LjTNYnuxzfLyeDq1H0939/fjMATvr69fFGVVloWbXd91HGW53ABCdxqUosnN8zh3vVosam3JaHV3dwtKX24vZufGeT62J50ZY81qvdrvD8GHelkbpYElL/IY4umwV5kmRBBMzKQNAORlkQY5te3ucbdYLZebzezmU9/bIi/L0sVQcELAJHI8Hetl3VRVWVbWmnEYOKXyqjxfrzevX/gpBPZZWXTH4zzPVZ4R4jxNfds6PzdNbU1GiqqFAkUPT08xxYfdQ9+3X7376v379yCQAgPIYrHo+3GavdGaiKq6LKtyHMcmX5RNc3v7Oc/sMA51vVitVz5EZjf64eHLrTGWlDoe2hCSJvI+WKOXqzq60HbtWQRaNIuQ+NAe20N7OOxdcoFnIUgAQ/SEUNcZkXbOHI4HwbS9WNShSMLMkFIKfibCZlkLQ4wcAivSIMgihESIzGy0FgAGHgePChAgpXRecZwjWudlCsBZ7AfSSpFCAkzofUrCVou2rJWw0XCxrnuV6sKAn6axnd3s/aSIjNYh+tPpBKhJK6MVM0dm5hBZtCaFmBIrpS8u19vtusizsZPIgIpd8l0/MGA39N0whxStySBJFDbGZHlO2oQYfZyQMMbISaw1VV0RUeDYDd3YjVOWs08hhDk43ephGEBblcFxmFwQl8S5yWjtQhhO7eTGi+0ln9LuYZ+Q6XFfVc1qkb96dY3gxn52ibrTOCVizFiphOicc2Gchh4hCfPQnobTwebFN2/fmbK8ezzu7++6wf+9tW9evMgoQQr90FVlCQCawGiTFxkSt8f90HfO9fM0eM/GKkxnsedclYg/54/wbHVmlpSe5x0EBDwH1c+LMARABEFE5vSP1l1EQMTzG86HoLRSipiFIcV0jtHj7PzkHQC66I22nKQcZxRSCOPkcqtNZkPwPsowueVyU5dl9PPQdW52eZnlTZ7l2dj1SECAqFRZlUoReiKUsiyzzMzOMfDgJhdikjrG+Hg4GEPa6izP8swycxJMIoq0zTPUepgnQQCkGPnc4NQPKcQoIsw8TzOizPOAijJtkJT3/iyGTS6ISAoRgBVpVOLdNA6kQyjqYr1qBGma5+CjVrSoa1IKUSUOIXKeFQBCRESYEmtlWRLLWX4TEAECAQFBIg2cGOHMG9DKKFLIgAjMyfnhMcY8zzOTLRfLps4N6jDF5OOmLpu6uXp1WdcVktze36YUg5tcbnUKudEI1s3OubC53GRK5zYX5uC8BmryPMx+09QqRo5x6jtPMwBUZdEPUwhu8q7MlrYux4ljgi9f7hbj9OOHn/bHQ+TEICYjJEgpOecKmznvCMkYEZEUxZq8yEsRLLP86zfvT6dhPg2//u9/l1n79euvby4up6ZOMaYYD0PftfuuPw1jV1U5CK+W1eFpv9vdf/ny5eryar2+fPXyVZ5lh/3T436fEq9Wy0XZ7B6eiGm5XZICdl4kxeUSlSSO0zAFrbKyWlQVEV1fbfq+A6SqrC8vrrTRRlkAYAicpJ/m/nDqTsM8z6N3c5xJ6antw2U3rTeTj01Zi8qVrYq8UmAlAQFSFAQWBu+ii0nZghKGhDmiABOAxEREhdGBYFHkhVFGEoWQEYhRRZYjKptnDKwz0zQLRCmqnACjpJr4nJBng0w0u/jH7783xqwWtfP+eDrdvHqbl3UI83g241t1dbldVJUf52Jjr64uMpN9+uHD8fFptVjmRNromZNF6MZxP45ETErFec6zfDi2ucks0quv33THE4P0fee8225Wuc3Zh81qkzYX6/V6u922bb9Zb2xmP376EGO6/XzXHg5a0+V2+6d/9qcfvvvxF7/4ZrteZspeLLdPD7fb7cYoPc+ThKRRje3oQmjbwbtgjA4hZMYAAyn86aefTof9zYvrzXaZFRkiTKPbXl2sN0uNCknKPF81C/ZhaNuxH6qyCiFoRUgco9+8enF/tzv8dkcam8WKtwzC0zzevL0pF9WP3//45fauyG0/tI/7/eicHYfEjBp3xz0pWq3WvNvtHneHw+H2y/2rl69MRojYD5OaQRNF5zaL5c3VC2Ku8lISR+bFYj0MkzJqe3WVW6tJZaUd+v7z51vnQkzMbpIkMaYsz0LwdV3Xy2XZlIwYk9gi12TGaVJa29Kem+GdcyklRi4Km4CrpjCmABClyc/uy+mz92G5WnrvtdHbi21us+Tj8XiMMRRlToaYue2HlGLTLJyfmTkxK6PqRW0ys7nYIqr7h939w91f/eU/m/z061///f5w+Kd/+c9C9MfjUSt1dXMZUyyr1Wq7inNILLvHx5SSJp1UOrTD/f0DJy+RqyxPyfd91x5Oq/Wy77v9fjc7dxoGBhn74eM83dzc/OVf/GVdNe3xuGya5cVqHObjoVNE1lhSqK3uxv7psF82DSq8uLpyyYUQur53Me73T+2py4vs5uXNxXb1N3/93yLwn/7pLyVh3/YvLjcIkOW5Ish8PvQDiQlT2L7YsvCPP/ygcsWBQ+CEHOfYO9eNg7Z5RqQNVFUmhFmmTWZCTOM0p8RunkGUVtqH6FxAUoAgDMLAkIDOVQrAwgCQ5RoRhUUEUkqklEg66/rncAsKPJf9iUgCAASFidkFL6L17vF+qy9ySyNEN7Zumlz0kTlEpxRam5V50aoOEEkpUgQiMbGgaKPyLFcAflZFZrM8E5CYIiMniMGlvh9mH7TJEvI0O2ssELBAikkYlFFEynECAG2MG0NMMasLQnx8fByGgUMgoPNLKsvtYr1gQVuU4+iWa2KEeRwSwfWblyySUnrx+lV73A/Rd6fRQ8yyYhpnnZxIKnPjj9H3A6tSdNaP85RmLxJiZI7Bz31/GvuTMVjX2fWrayBdljXqrKpiVdfOd33bT81oSxuDSxzz3LQdc+AQ0jiOIc7ODSm6GN08TyEGJJDAHBhQAIgAkQBJp5TO55KZQQQBnqNHis7dGGcKOCIoVADCQML8c4obQCTGqFDnWY6IcK59jCkyk9WkUBKnxF3feR+JtFJaBAGvBTGwaIG8LBvTZFW1Hqb1ZiPRWWMuNpf1op7nMc+ypmm0whDj4fHx4e4ekY+H4/FwKKtSOQ+QpnGMblYmm+fJ+4AEeZVbq5FQZyal5LzT2pgsE1LKWhfc/nBEpRQSKlJWsQALAAkq8sN8xmAKsEJFgAR4LjuLKYF4pUgrRaTLPKuLSgFG5wMijBIFUcQYE0J6tvsgxZgkgjWWCEKILAxMRCgiIAQMCfhZVxM84z1BhBDPQW5BUKjPnVEKOcUgSN675ANnXGbF3A35atWsF/Poy6LcXqzWyyWjHLtDN3TJu+RCUWQGJc7zMI0g502xssa6yVmjrSJISRMVdQ2QSm36vkfAEFNd1dvLF4fD8cP9Z0XUlKUpCqON8bqq8mFou2FywQWOiJpRFJG1mV3myEJKrZbL5WLZ911my/VqfXf/4HwgwXdv3ql3Zv90mIdhu1hbrZETO993LZLM4xA5KI3jONw/fCGQssiub66bVdP2fWaynz58eHx6urrYvvv6K0z8dP849XNm8tViMbk5+diO/dQOm+3yqz/5pWJSij58/Ljfd1lTbraXF9vtZrvRSrvgnQ/e+1PbjX3/dNgfD3ttIExzGLybQ4gxQIzgJKWpmwrANMV+mtopUvlFF8X9l6exn21TEimtrCRBIY5CpKuqMSojoBhT9D6FSAAa0QDl2rx88cIqY0kBJ62oyIqLq60wKq0iR230crUQjgigM3tZXXv2keTu6SFJAoan/XGex4/1x+ivjM3HwbvZA8Hd3W6cprooVsu6sDknVkrXTamMeXzc//TThxCiMWa5qAFg9/QoKdZF4WMcuk4ZU+X5crHws3t5dXV9cdks6vjihVZm9/B4bI9umJ6+PPz47ffLf1J//c3XVVlZY9++fNMsmi+3d+vFerVeSUpfvty1p95Nfprm88Jx/3Roqur96zdNVabok5+1VlVVEVF7bJWxWqlmuxjHUaHOCztNY4DovVNa28wi0jj0KSVAUkRd2xul6rqs6kIixpAI1WK5tLmd5nl2c0xRaXPs2m7osqo0ViXk/enQHk55kZ/a4+e7z7vHp7Zrx9ne3d0tlvWcwhRCvVjOfa/znLR2nHJCbYzSpqprpcxmvSGNY99bq+dxACBjc1IqyzMBcHNKLiHaom4ix21ZoAgR+uBiStWikX4sqqrt+r4fsiKzRYnzXDQ1k/IpPjw95Tb3Is7NfTfsDoeyLJNP2lCZlTGEw+E4jJoU1HVlsurHn37a7w/Nslkulqeu7fpehENw4ziuFys3zaf2VFXlw8Oj976sS6VUs1gtFssQ4+7+rms77z0qapbN7f1d8HFwc1nXYEiiyosCTvtPtx+zLG/WTX/qv/vj95eX274/vXnzVgENfe+Dt5RxkmEe9vvHw/64WDRZlhVlcTpM0zAtl4vVavn49Kgze7lc1d795g+/L5tKW3t5dbXZXpRF0VTVNE7RB0N6e7G1WRZCYo6zcz545/z9vFtt1u2PPwHB+ctwmqe8KOvF8vFx9/33Pz4+3sUURfDh/lEbc7HaFFmW0nm9rNzo6rpWzp36DkTlWV6VdbUox1DuDk8xOOfdODhjrTFWa0JRm83Sed8PA2jtfUiJU+IYg0DilFyQEJPRSmlkBg5nlBsBgDAjAgJqrQEwncG2guemMKRz3wXCuTUekCMLpsSJzFmKIBZBUvru8+3Dw11yPPbtctkopc63AcjY993q4nLox6ZsmDAmPi8NAJOgGKUVEXAijQgw9mOZWUBwzicJIcaun8hgFPExJQYW8XMweaZtNk/TME6CQRDVmeeoEKJEH0iJ0jKNLQIsm8YWSIx1aZWWaXA+hFM7NHVTLeq27yF644N3AZEyq2bQhvQcU7ZYXb95fTocFaQhun6eQ4DTacYqi6Z0RjmNEXDsO610VlfN+oLTHFJnFQUfhnGKhFVVvCpXtlj99OPnuiiWi0Wdqb4PTWMEqD9ND3e33dCNQweQCBgppeRjcD44FCZEpnOpW0IgYBQCVCQpiaRnNA2eBQlN8LyylOegIJ0pbSCJERCJ5DzTAgEC8tnDIgwESkhIndMZ0SiVWWOsPW9/lDZ1XdeLmlCFEDJj15eXV1eXpNUwzb//9W8N8uv3X13fvHj5+qY9diHMmnSR29svX6osr6oagT9/+tR3Y55nKYTRuxSjJEgSRUAEtDJVVYboh2GUcVaKYkwxSV5oJAoxuuBdcgZtZEBGiyYyk8LJTX0/JomoUIEmSYzMLCQiwkppTpGTEAIqRYRlWWwvN5tFrVIK/XA8nCKDKKWMNkoNIYTggZCIUCh6f0bPAQgoAjyLPXKW0s4O9GcpTkQwkSik8+iJAgIMPgat0BpNxmhjMZGxJsusSPLTXGY2yzCE8f52/vLl0zj3/dATiVEKUYosUwQpJhQhgqrIc6MJOPk5JrVoSoLUHg9VkSMnQ6iEjTFNXrz76v3li5f/29//w+np0adwud2Upl6tlvVyOQ3z7//4e5ZeKwOos7Is6xwE3DQrRGN1sShev7pZ1IsPn396/+b9ar0hVO2p19ocHvdxDotm8Sd/+k1ZVCnOMUxFhsFBUzcEXlt16g5Pu9tf/ep9dzz2bfvm7XtA6vv5cfd4e/tJ71VuLCQkkJRkua5evXylEIdp+HL75e7+S2YzEvX45ekXX7379//u333/3Yf9qZvjXNWr1Xq9vVqf2tNPHz98+Pzj5y+fd/dPznsfkh9cmRuYU6ktIWhOCGxJBUmiaf/41B3HSCB0Orr5+5++n6bBGDLGkCgSAwTClFiIqbClYjJoIEjklCIbNERqdi6FtF6uNWkWGNxMSIRUlBmIcm7y4lNiJE6c9oc9EAnKqe+/7O4+3n1eLNfbyytbg3MNCh4OJxapmlJIXPDjNGmjy6byPs3DsS6KxaIOMd3dPiyapmxqyWGzvbx5fcUc+3m8uX6R12WzXHbd+N//9u+I8N3r119/9dX15bUC+Pzx1mSmqZt3r96kmOYw/5e//uswOJWgzoq6qJq6ubl58cOPP7aHQ1NWQ9utlstFs9rtDw8PD//9b/7bn//Jn52Oe04JAf7wxz+sFos8y5l5HKaqLIuqnH0AoCzPgUAT2SIzVhVVGUO8uL6cxzGv8qzKx3GweVYUpbH5OPTtsQ3edV2X5cXbt28oM9M0hYl1ZvwUb+9u+2F8Oh6ub65evHg5ezdO/f1uR8LgeBjHtuv3x/1ivRr67vrlC230oe/3h+PjobV1bopivdmUeeHdXFW1JlMWxdfffE2KZj+lmIKbhUErc3d3//Tw8PL6+v37d3lT9WE4dsPoQlkVqDA4lziO4xhTCClF5iAJjRKlIsC+63yKH25vL1+8SMfTxeUlWXV4OLnZdYcTR3n1+qW11s0uBs+cJIopiBkeH56+++5jDAEACLUAAIvO1NC7x4enPLN1UQnx4XhkSSGk9tQCQllVHPnpcX86HXePj0VZtF27WC6TpM+fb0MMeVnWTf3dD98XRVlU5TRMnekXy+XQtoA8TeP33500UWazMs9vb2+/+fqX6/Xmw48/9X23XK42m4vLq4tVsyRFxprFoqnqchzHYRyLLG+aimZ9dXk9RXdxcZFnWYzBTUCI0zidHo+X11d1XQEQizseh2kcg/NZae8+P/TTFFJcbJpFvUSNbvAa1Jyi1rrvOgC8fnld1JUkTpI8+ziGFMI4UQqcZ4UPwfsgjN7FsqheXN/MzimJGmyYhsfdyWO6fn1VLxccQuQQOcQpzc6FcYpBsqIwxnjHPkSfIqHKM0tApIgsKIzMQggMDMjaGBD0IXJilqSVIUAGflZ/zruvs8EEQIARJAooFmHJrM7yXJHocl27cYwpaK2Ntog4zZ6Dn6b5eGiVyZ2bEcEoQgDmJCIIQnheqUcCMQoFEmhEiwyJiV2QEJIgCYAPMYQEiCFxAmCXKNNZng/9FGMShJhS8FGETWaQBIBTiiEEYe4JAIKklNLMIs4LIHjnRquWxZWpU+fm0HpAystSTKbXZZZlimOWl6lZcJQ4D/enrnnaI/PjaSz0MiqVrdfK5GRs42YlQhwBAmJwrmcO66JUpFwIDEqSDpKPE2tAJDs5HxI2qwWTaZbt/e0XRBZkRIkxRjeHNEsKgAmFUmQQEQFhoGfr7bmLGglJCICFBUQA+Vx8IgQEpATx7Ew5N3YiAJzNuz/DgkAgxoTAWitE0FqJsPNBKQohYBSrjdLAyUfnW3t8fNzV9WL2U0zJuTBM0zTNj0+Pt58/v7i8SgxIuigqjuC9EeGiLJbLlZvnzXZDhFVZAdI0Dm7ohUNWGqPNNHkGOUO9kCg4iYm1VSbPKKq+HXwUYw0jeB+UNXTGEaIEjjElFAopuuiJEEGMNgwSggOExAlAUkpI52IuiCEklOADImbWQvABwbsgikLwPFOMrIjQIBAiEIuQopRSivzstHo+ivwzCvH5I0EE4QxhQgZBQhBhARRGpRQAR2adWIgzY63RRKAVTmPnpyF4D6gQyAXngweCusxEYQwhzGNmLQFXZblYLAhhGqZ5mqwxWV6kmATibrd7iFErlWuDIkWWLZdLRTr64KZREU1dP3bHy4v1elnnZfn1+/eJ2X37u2F0Ly4vUWmlaJ5mMbJY1NZoQvQhHtvT0+5pUS2Lqrq4vLRZziEm75GgKHOrVHDD6XhK01hkmdLw+HB7OD2Z3OyPTwhxaE93t/fzOM4uNKvlubWHUM3j9PBwf3g6WqULY1OI24vLi802r6vj6fTi6mVR2ocvdz98+fHuy+d2f/pX//Jff/P1V0+H/anv/+t//n8fTofbu7u8zMZ5PJ26vh8BSABKbQrSZFRpdAwhIiqtQmASnfyYzhKNLno3nb58BiQgBpC27b7/4cfb2wcBQCaBs0eOUoyatDrr5YlZAhACogCDMAikxDElrTQJOu+EIYGIJgGUFFKKIfhxmrU1U3DT7Mjor765+jf/9n/vU/zjH74dug44eecOh1Z4j4aMtnXTkNLjNIxdCwBo1dgOWtObTCcRY4wuswi4P548S7Fqxn7YPT4xSEwuo+Lm+ubdu7cKybD5iz/b2Mz0/TCOozWZD36z2v6H//Afvvn6m7quQoh93337x35/OGqty6JcrVdzCC+ub0599x//l//ldDrdP9zGkC42axA+tQMRLVerPnX9NIWUokjRlKd927bdPM/aqBcvXyqly6qcp9HkFbC4OSCMxtgszwBonqZT17bHFhDacchZvvvpJ9TGeT+MwzCMx9PxdDpcX9+8rrLvf/qoshyQP3+6PRz3ucbbz7dKEydBBc1qqbXV2jjnsiJf0lqbzFTF5vLy5uWL7nhs94fonAdYrzZZlj887O7ub2MI1mgE5hCmsXfj+OOHT1lRbLcXghRS9MPkY9herY5dN07D6XgMKQAQC+6OXUgxCvgQju2JJdzePlwN3fbi4svDvQTu+wEFFVBZlC4GARCBh92Tm4Zvvvnq4vJyv9uTUTEFZmmaGgG601AtKlI6hPDy9cvVcnk6nb7//jvvQwihWTTvvnpjtDmd+seHn5CIjM4yY63ZbDbbqwtt9cPu6bA7/v7bP9osI6L1al1kebNsVsvlarm4vrjY7Xb96TQMsGiaz58+3375crHd9Ff97FzkyAKrerHcrKLz9w/3TVl454VlGMe+6/M89zGcus77UFeFjqapF4W1y9VKYkghooBSyuYFKeVDfHh6fNofBMD5aX6a90979fiYWP5y8+ez8w/39yF4IqWNVlpdXV8/3N+/f/+1tmroujMQwc3T0+Nuvd5cbK6CpMf9IYSQl4X34Zx5NFaBEheSj4xwEpaHu0fngyIYhj5yDCGlwMzSVMusKEOMM0VgjiEaw2VRIJC2lJK4yacYmSVFSUlEEhIaZRKlFJ/NIwoopXNxBbAAwhmZ+Py1qxXDuX8cAYSFRSPQ9c11nZdj3++fTv3QP+1PYKgdh+B8dzx5NwszMJV5pgwFF0kRaQIBrbQ1mjEF5xKnp/1BhBWRUloIlEVhQTw3USpAUApT4mn2SMRAjHGeQwwxpJTbTBmSGE+nU3BzZi0pGEafoiMEN01IRKiEEZCFAKwxi3UeQGWFzou8qLTRxmhrrRu6QwwhEpbLyDADHsYZfNR5mTfLY9IjwxTiufEkjkOYJ+97AY8gxqiZY3Jz9IEFhVWKAKDmyR15jH6Ifp5jCmnePe4EAkOc3MwcgJM1ZJSOPnkfOMVz3B0F1M/GHXhGEtOzDxoJBfgs1aGcQUH482aLgROfJZ8zUhEABJDOliJAEMGQkohoRQCitVKEWltri7LI87wCREioDA2nw3Bq21ObIizrRZ5n7enU7g83r15uFuvI/HQ4qJ+MNjrTpiyrvChfvyutzfpTe/9wGyJXdTOPszbaKGOsgSTWumEcY/DBa9La5hYJQowpitbGZpnzETEpSwCgSWulRTgxJE4xMT0LYJg4AqDCM98oO1es8LPQqABEEhOqyK4b+vuHh+Sm3GgtrHINpNgjx2QyXZqCSIuACzHFFCKnEBQhEioiOC+Jz/1rIHI+0AKEcm5jAwEiBXBeQwoSCTCnFKP33uc5S0zeETLLImkko3TkQJSMNhYky21KKYbJu/4MaXezJuBlvdAKY/Bdd5yGKc+y5aIuynw4tYoZCQQwSqwX1es3bwSQFK3WTdNU11eXY99DYku6O5zu7h+qZvsv/8W/UJl9OBxev/sqRm7bViTN83Rsj23bxRjvH+5Xq+U0zd9+9+3+cLDG1nWjUSlDZVYapY+HR+cnNzgKPubZ6XT89OEjKinrshvbeR6HqUekssq77vS035dVHTl556zJbZZ/89XXf/bnf2KU+a9//bd/9w+/SyH65NarRWRZb7Y+hMfd4+2Xx93Df5p9/ydf/fKr918vLtaHm4tfH25hbLtOiiK/qSuf5UM3TS5ohYUiAhLnfTs4YJ+L42DImLwQ5igpjEOIwXHyAkyYWTsNUz98TiGhJgTFzAxCpISfm1uUomcdT+HZhWe0CRyZObEoRfScj1UxRVAEAArPlakYUySnI4gg5MqsNhfvv/pm6Ic4hu50iuxP7dGN8fFpPztXLcq7L3dlVS7Xi0YvD8du356MUQgon+6MUuJ48n6zXU7zBCB+nKdp3N0+3N/u3r9/9xd//pdNvXq6b62xb1++RQDvXYo0jbHv2r7r37396utffDM7FwVmFw6Hzs3OR58VxfXV9XK1djE+7nZunF9ev2y70/c//HCxuaSLy2bZCODs3W9++9un3cPbd+8xhg8fP15eXTBHVGc+qtrvHlarlQ/eGp3l9cVm3Xedc3MIHEKcxvnxcX/qT6v1olzUM4coeH84uBiUNu2p/fz5kzFaKfr1737vOb1+9fbjly/aYDt2eZnv7+++3H2pq7IoijqvonfLxeLu4WGYBmWtQtRWs8Dnj1/a44mALzfrTCsO6eHh7sXNi2axuLu/R6S6XrSHAwhtN1ey2gx93/ajzeZc5xHi3cPdZr2ecfzw/Sc3zc2yZpAQvCCMzt/e7ZrVevITaH1qh8e29ST9PGfaDm0XfSzysirLbuiHcdis19cvrhebJnorJKf25MLcHo/b7Waz3jaL5TAMD/e7cZiCO+ZFZowex+F4OvrglVK2zLIin6a58/16s16vV0lSCGEYp3pRZXmRhMnod++/Lurq9mn3/aefMmWf9vv3b968e/9qOPZ925rV+vrqxWa5EoFXr28+ffz44cMPp1P74acP1qrVcvP61eu7uy+//cPvX1xcxhhvmVeLZVnkStksy21maPaH02l2k81yCN4QrbdrJEVaJxXqRY0Aw9g7721RiMjl1WWzaIZpOhwOb7963x6Pu90jMzCL9z5x+sX79zFFFiDC9XajSAcfs6x0fm6WS60ppggAH758CJFtYcVi0RRDP4zTGEIoqnK9Wq8vLjbdMSn5ww8/ARALhNl7H5IwktKaCDHLMo1qchPHZJUVhWdwizC7OWbWlmUOIiml4NPkJueChLPac27/Y6UUIhKRCICgPoeQCOBZbXg2lhACsMxuMkrr/tDmOfnJ39/dz5OfvfcxEULipI0WEEWacmRhbRQZQEk6MwLgxsAYSWlk8MwhOpaYYtTKaGNEMIboQ4qRGQU5am0VGSIZx3mefUpBQEJM50y/CxKTYo7jNLVKVVWRW1sU+apaKqIUwsPuYfZ+sVi+ePVuc32zXK9rVbZO9p2bk0pBa9QSgPspiKDSlPRquUjBJeKQ0I2+qleBpev7L93j51MbQIzWKkWFnJJHEgBIIaaU4ujD7JGhLCqFqm+7MM2GEEkgRXOkkMZ57IFEOAKnlIJScs4TMbPRNog757bOtV8iZ9QyoBBCAiAEFgFEwvPp4ecfBAREAsKfTT+AhKTUs2D0bN0FSQxIIowIQMBJbGa1kLV6sVxeXFwQKR9DCiwCmcaqrF+9fHE6dMIxOC/ARimjdOD4sN/t21M3DotlkxlT5pkilBgfHx6+fPz08aefmPk8lQQfKFMqkSJljFZELMgigOeE/jOb0xizXNpxmhInADTWCItSCKglJARk5sgxJWZhSZIkzZFJFNGzNUpYACAJE6IIa01KqxBi1/WGgKvcao1WSwJUxCFwSCklZazWGkBiiiBMhkgAgJBQ5FnzERbhM80aGZ/DkefFGMBzFxsCIqEIMaESAqSUgksJGRFAOBnSVVkigjUKgH30wBJdVCQpRiI0RoHINI7RO0CoytJoM9EwTP3peABYxsRgqCnLPDu3zNuyKYl0nlfbi+1me/l4PK4vVlmWWWNTTMGF+kX1/he/3Le9kGafNtvLpmqGoQ+VN8Z833VEahiHcZo2F9vj8Xg47K0x49hr1IrUi6uXp27PMVRFbo22lqaxb497wLRaNUT4+Nh576+vLvO8YJHlGpyPXdvHEOpFnWvbd91vf/Pr0/F48/LVMA0M8vbrt7vd7unwlJiHP3673ayzqqolXV2sfveH3/7u179+/eL6//Dv//3/6X/8P/7Vn//Zf/mbv/77v/u19z76oDkpo2AYp3FsAdhzrnIDJmGIcoYyMCfWhEQYfKAUFYImDIom57RwYgCC53sLERETpHguCQKBFH/OWCILA2A888JRmPhcmg0IAIlRzkR7JPn5AgBARlIxJRf9l4e77779/uXNzfZyu2jqssj2+8PrG3/3sNsfD/3Qntp2nqbofYh+HAerzXJVK21OfVdWZfDh6ac2f8zywnKIpc2rMm82Kx/5m1/96s/+4s9vrl91p04ry0ofHg/OO2v1HOLl9cvVNoQUfv3bP3746WNeZX/1z/75229+edjvnw6PTdOwUo7D/e5hPPU2z25evHCjczyXWebcnFIZU7y/vR37Ps/sOI0Z2yzP9vsDsqw36yJ7MQ3jOAwIYDLTNIuiqGLySmuZoR9GUsgM2trEXDfL0c+Htg2J87zYP50uri+/+tXXb3/59vC4/+1vflMuCkDx0cV2Ph6O/dgrQKPw9etXktJ2e1EURbNcFUU+TOPkpjC7fhpxmuv1Msvs8bCXEMMwXG4369USiL777jttMm30PE+7x0dDuFw0F6tVURR5lomk07H7cnc7jVOWmcn5wfl62Sw3q3EcDoc2K3JjsofD7aFru+CCsAD049Rcrsdx5OOpyqwCRMT1Zi0x7R8PIbhpGsdxuL66tCYbutFoU5WlJl0vFgDwsNtxijazZVlKWYzj4Gbngh+mERAWq+Vmu6nrxiodU0SBosiRqO97Fs6zLPowB59X2S9/8dVi3exPR+cmESKW1y9f/uqbP8lM9nD/ue/aPC+WiybPChApiuKXv/ilNQUB+Oj6YUzM+8OTn2dSujDGO0ea8iJXSMWqDD7Mc/v0+GhtZjNYLBaEdHd7552/urxcLRauKI5PpwRS1/bu9u77H34EBWVd7vfHEP0vvv7FerPN82LRNIRwcbEd+n6epma58N4LQ55lIJBnpsjz/f4pzG61XgHA5y+f7x4emPH1+zfaaJ3ZWpHOlNF2GId+7NEqREbmRVnky6peVWPfWgOA0HaDC8GFJAFJm8m5mJIipTXFJMEH4RQ5ElKeZ9ZoFpn1LGQAISVWmoRRgARYPysFeAYLI6IAyM8vFRYhOkOHEVGEJUnQddNEj33fD5OrF40MznlWSluVFZuSCdKpExBrrVYUQtREmsh7z9EnUMGBNcYoElGKiLQ5dw4wwzz7kFgpJQzjOBUlLFcLQAwp9cNwLv3QhqIPiTn6KFoppRExSnIxxJgEcfLzcrFcrtfOu2Gey+Wyulg7Sbv9o2cLdmnySlGOpnApxshu9kkSobipf7y9x+EYS6un2SJ5d5ifOru5aDKNUz+PUxuDn4bMojFE1iTGqXcAjJEhBfap2z+l6IP3GkAjWmMJ2E0pQVBKiCQztq6KmDBGH4MXYX0GeqMVlnPRJgsjnY09KJxSisIiIIRASAQKRBLwcy8YoIDQ+VGMwJKADCL8PF48p+gDRA1aKTTaIAopJYBM5/TY+aQn4BjPcSpNdZ2tN43V6Ce/f7rt+yG4wHxAbfpxjDFdXGyrugrOZ0Z7N/enU1Xnbpjvbx/KMqubIrhx6Ho3a20MIrBgElBaJeDovdIaCRWQMiqlMy5ch5SYmVM8d21AEkIkJEWUYuTEWmkGSt4jgkhiPhud5JyG04QAhIqQSJFWCkFhSGnyUQQQJYR47iU4O+ud80oZrQ2wpMhKnZcjeJ4qgRCZBNK5BP48sInwua9H5KwjnN+B8PNvrAjOTRlaKZuZPLNy9iVJIkCOIaUkMZIiQ4IIyigRqYoSAcRHgZRSQMTFahE57J8Ox7atFrUpbXfqQwiX18YS9vP0+e6+rMoqxj/8+D0YDCn6yEmgXixfvHx5e7e72F4EFxCRWWKMOrOk9cePn5Hgzet3trAPD3faapOpYejPrYE+aG2Vd24apqooN6t1lukYXUgj+5GQvB8vtsvXb1+mmJSGxJGUmpwPMZkse/nq9enUPux2WqmqKoZu+Pzx86lvXXAvbm7qqv7q/Vc6NzrTDNK2+0+3d1DoTX2htTK++Lz76fb2U9eefvfrX//y/S//6s//6p//6T//7d//3d/+zX95eHrUgkuC3Op2nttpEhJiZp0iJzZJozYKMPg0J0PKWKsS9ylGAEVGQYjsBQGFBCEKCygkEnteYT7fRGe7HIhCgvRcgIJnJ5gAIcJZHTw/O5EwcUJFjJKEFZ5JIfzTjz/+dZa/fv36crN9efMit6Yo66IsXz4d9odD13Vt353aQ9/1p9NeRDimcQzGQgxzP8wCElJARwRijV4vmnbsNdHFyysmQpurvDJedo/7xcV1eXmx//CRSF2/faO0VslJN6+MjUZ//PBpYF5aLVWOc+FE7vcHeXqax37dLFKIbhyurzd//hd/st8/+uCHvo8hWGP1YnFOUBRFUValm70BEUlFlWfZgk5SVZnNinEc+6HLrFVKa1Lbzebh/gEJl8tyufxmnOcPHz4N81gU9TBP/Tjs/mFvM9WPnR/dcrVIMXKMBEwgYZrAh1Pbvnp984tvvlktGjd75/1mtTTW4MuXwGkOPi+z27vdbhxd8ERUV0XPocxNjPK4359ObbNoZjd3pxMnvrzcKg1KocktKZrGqR+HfhyAKcuK5bbp2tYYzcIwu6wsQKv9sW9HN8XoWudTSizMUtTl7HkaW6ybRdVcrZvrq434CCkZTSlKXeUvb65D8H6es0wv6saHmBjGYexOQ9PU1bKsyiqGFCOfTket1Wa9lSRam+ViYaw9HdppmvK8VCYTiQJSVuU8TiH5ZbOo6uXD7f3xdPqLX/3ZzcXNr3/z62mcyrIE5iYveXv55fOn/dOTVlSVzTRORV6+e/e1UUprfHh4UmiGqSegt2/fvn7zypAe+o4QTZ5pred5VojLzWa52Z4B3UYbZuna1vl5DxhmJwzG6CKz5y+03JrZzYf7Jx/m9XYNwkrjZr0KMYYQn+6fpmn0U3CjI6sya5IhjiyaJDNllvdhhKTyrCrKuqrnp/3+9v7u6vpyvz9kWZaiuHlwce67UbQAcVNbk2+n4A1EKg2QThGqqiBj9BxFaPJzYGFASaKUEUEfIgCnlMZpTighERKxJG2o1rkAIJH3zHOMUZJEZnj2ezKfV19nheWs+ydmo0gRKcLIiYj0arNh4HYY69Xqm29+Mc7uj7/7I5GYTM0hoKKiiM57P3sQUEo7juwSCCilUISQtFEMOklIiUFAGURUMcUQzkFVCj4AAig8h7rOX8mAGEMQlCSJRYiIWQhFWRVjGsbJKCXIuIN+mLcbrxQFFhfiw9PjMMzL9YVQ1bojU+FFC9phmpxLAhGJNSmtUhja62W+Vav72+PXb9+ISIpTqRKGSYXJpMkAQJr9MHoBlWU+KhFEhjCOY3sijplRHDwiL5bL3Njg5xRcXuZFWewe2tPhiTkgMKQYnBdJZ/tVApAEnM6d48gonBIAalRn7h48t47TWf9hAAQiYhEQljOlBImYGQA5JWY+N8Od6zISC3FCECKlFJ6J0kppSRJ87LseRPIiBxCFOsuzqqpjTO2xIyRAvv/8KTGXeWO1CpyA4zxP05CjAj9O0eiqrJaLBhE44+VmUdc5c5xnNqUJLglHc27cZYgxcgSltDaUOHk3cwqcIMREClkgpZRSVFoDoCIFz84mUYRCxKTieRPECMB43gw+J95QEjxrQizaYkxpHCOklGKMRhOh90EpQ0ohPx/K3ObKGG3TPLoQI+A/DjTPSy6MZ1IE8jOQCRgEGJDOUgHA2Sb0nJpkFgRgq621ZrlYlmWRzqomiNEkkkIICMAxGKsJSCtSimxmDemqKDlFY42g+Bi0tdWiKfKCEX1Kymae493Dk1HHLLdP3QlEMpNtry5Nnt/vn4Z5Nvk8BWezAkgN89hNjowOiSPE/eFwudnmef6w2/3yl7/8sxfri6tL5+bvvv/DYf8UJcUQWOT+fme1IaTPd19Sim/e3CDjYXecURW5RSXeTyn4vMi3m/Xk5rKqEnMQ9j6NwyDARZEFH/zs1+vV1A+fPn3R6sdvfvH1v/o3/8Ptp9u2O1V1WVTV1c3Ft99+t396fPHisqisegK5/RyifPfDT7uH+z/87nf//J/+1f/0P/5P/+pf/kud0u9/95vD7unu4T6GpElnShfGYMoC+ABMQEaQQ1COkcmabPJJiVhSrAiIMGkQSRwFAYgIFYsIsgAqonOaAABE+Lz7TymhAJ3psIKMoOjcOM0iYoTwmTSBKIAA1tjgPSlNioZx+M1vf/PjTz+8efn65urFer26uXldlPV2uy3K0mY2BN+2p/3j0/6wPx4P7ek0TOM0TY7j3E+CLChFkZNS8zzfzc5oe7nZTCH89ts/eoa3r++G3nXtdBjnV69fzyi3Hz5oTdqosqleXL+6rOvDOO374YdPnw9T771rD0eQdHNzDZzcMJ4Oh6Yq5nnywedZfn15HVMcujY4/+rVK2vU54+fry8v62Xdn1o/jcWiGodZUuKYiiwzxrh5vL/fOe/evXtdlFoZbbNM748pJe+iMvqnnz58/nzXrBbG2PvPn6dpvrjcao2JfWnMcl1LkKvL7eV2C5wyZZ4eHpdF9fbtm/VyNQ0zAlxfXDo/Px4ONstWzeJwam1t+qK/f9iN87xcLzOrJcX945Ofw5e7u2EcxmFxJoz0pxNwLKvCkOpsftqfjvtDYi7LusqrssptloV4HIZ2GMd5mhlFkO4e7qdpZGClVJgn5yNpXZNerTa1NS+221XTkDCEZJT66u2r89Lkzds3kmSe5tza4swZ8kGbzBqzvVgbbX0IMXhFqlnU3ruL7TovCkJYrddN04zjpK0pNDWLpj2dxnHcLldGmZkHJXi13q622//v//qfGfHF1YvCFFVRN0199+mn02HfPe7LplwtF8jHPMtya7Si3OZPT09Px9NyWTd1XRZl1hkFKi+K0+FojMnzjJN0bU8Kp3muq9raTClKzDGyNSbG9NwOGYP3PjM2y7Jxct4HFLzYbJzzWumqLhfLZrd/fHp4KPOSFO0eds7Pq8Vie7ElJEauiqIoS6t18K4uilXddO0PwqKIlovlYrV6MY6Bo7V26IeU4tD2XdcVdW4zw8hd35VlWVLhxdk6c9HZTomgMtqH9Ph4mkafixq9BzFdO4XIpEGLACAqZA4hAohiSMJMhDazShmtrTYhSVQEKXKK6dn6wyjIP0NlUADP5GFFmhQCgCKlFOhyvUQFSWtEXSzWvXvQ1qTkq6bWLqIiInVsWzd7ARQApdQZcGOMsZmxxmh97qgIzs1K0XO9AJ+BQcLpjGxgP7meegQA5qqsBMRYPc9z0gJJEPDc/JDCczdW5OgRu9R3XT8NQ1VVWVEww2F3RNKLxert+6sv94cv918YbEhKQszRVGUuwgTJaj7G4aJZWpv80GWVVqQpWO+G5HryE81D09SXL9eT133XJUpVUWiTGdAZrTBcZoophXnq53lE4euLZQxx7EaTG2119wTJzUBCwprAKnwOMD2zZfD8IE4iz+wZZo25MJy1+XPi65wHFwb+WX7H553M877r/BoWAQClCJ9XmsigNIIoxHPrqrbKKGKE6JkTxJAcxqIqqrJerFevX70PIf70/QeRFKPfPz01i7JuNgBiIxvKFaemtH/yq18gyKKqjdan4+Hh7mFUVJbZ548fu7kXSRAjgQArTJDluSScnI8+FmVhKE8iEpkFQow+eGOt0lqQIydOiM/RRQgxCrBWGkkBoVIEiBQjM6Okc0cXEoIQ0pn/CCCY0nnLxiGd8ZloSTMAiSBSXlgRIKUzk7NAZEZNkM4XPQgLIDCCJCYiAUwsCPgzaulnvQDpH2cvFEAkUAAAKXFKSQCEBESMtghAhIkZRTQpY4gQAIiZTWZTSsFHWxml0I8SnOfEwuKDB0KVmVM3eD9nNiPCODnvXFUXiOjGiVDtx86HdGzbq1cv3ez++NOPqiz6fh5TWG8u67oBgLvPd9pm5vqKgX3wu6fdQuq+74sqV0o7F7M8U0p55xHBxxiDJ6LJz8M45tZsLjar5VILfvnyyc/zp89f1qsVoMSQZnImy70LAtBUi9PpZLWp8zKzmQ9+vVkJ8KcfP/6//p//MQZvbTZ0fVFVhcj+6TjP8/FwOJye6kX503ffrsqyuVyWOs+J2rb/T//p//Nw93RzvV3nzb/5t//u4eHhb//Lf59irDfLv/tvv4HAGhIYMChunFbLbQIkn4QxV3WVEYU5+TE4h9agABIiagGIAiCiBETwLPf9I0+CUEFCAVDn3N8ZOYqoz6KgoERAefbTCfAzfBQBmJXWgJgkpZSGcRyncZ6mz1++ZJm5vLx+//7rq6ur1XJTL+pmUdd11dT169ev3Dzv9/u27w+H4/54PBxP4zCwRCKV5doRjN3gY3R3zihDqMff/e7D51sXo3fpaew+PtwzcPu079puuWi2F9u73cFN8/3DQxem//r3f7fdrrVR7fF02O0WTVkWNtdGC/zpr35xdfHidDoejntOYRynaRzzIluvlwT46tVNiuHpfjd1Q1VX7aEd+vG8l1ksmi+fvmijTaaSUNu1j0/7GCMzz96VZSEKp9kT0bt3b9YXW+9jVdSZyb5+9z7GYJXOlFmum8uLy9VqKQmOh8OrFzfLuvny+XNyrEStmkVZ5nVVtqfOj7MCXFaVm/3hcLy5ugGBfh5e3LwUjtbowuQiYMj2Y1dW1fbiQhm6/fIFBV9fv0RF1urkOcszALjaXtisMFbH4JerxTjYEHiaAwi7aR67PjemrPMobIm6YfCRwzguLzYv1tu3b15ebjYQw9B2EtJyuQDA06EjoHmaFegiL5umHvuhHU/GcAjJ5hkpnNqJABeLxqDc3FzlRS4pVWUBHB93D0AKNH78+OnpH/ZVVSyaxauXrxZ1A8JumkDo8e4BUlouVmn23fG4XqxsbuZxyLO67Xsi+OYX37x/++6wP0Ufsrx03jMnAAw+Ga1j4CzPyyImTt9/+KCNefXmZVnkPoV23zaLpihz5/z3P3y0ebbZbPtxHPp+vV7bTCNgSoFFxmHyPpjcGqe7tjdWb9cL0uru7suX29uizNf1Eg1qhU1TvX79sixK5xwqsnkmIt65Is+j98f2ENwcrbJZ/vrmpYvJmvbYnbwLY9eP44CIWZmnmMosB4JsY8ninKbHdheD00YyCzGmpi4ArFZhGikRCWA/eeDRZJXS5MYpywvSep6cMChFPoRxnFLimFAppRVQbojqmNI4TOQlBiBU8RxTFhZA/Pm7GhHTs6VDzlkk/fs/fptSKIsyr+r2px+6Y0dGoxYAqutaa6WVQVSLpjGZjYnHsXfOA8HzBxVw30/ezQKRNCICEaXEIqC1SgIhRAAAUAAyDgOLlGVZlEUIMYrV1nrv58kHH4gUAKSUCJEIlCKbW6sNp8QiZVmv1qtxmo5tO/uoSK9Xm/3dl8PtLqsW5WKZ59Q0dW61805iIom60Rl4N46EMMxdlmW2rCXwq6vt9eU2pMghIEYGjwoi0BxNjJJpuyzLDCAzPHWnp/3d/e3n3d09xyHPLAo659pj68NoC32uvHDRz7MDYHnGGML/H/bzDPf5x+i18Nm0cP5pQTjLH/Kci2cWFPi5FEPU2f98tqUApMgCifCMtJSz5G7yzBqjiQBQISpFIuBmp411OvbdfDy0wzje39/PbiSRrjs8HXePj09VmeVZQaTHyRWl7Y4H71xYT36aD4/7rm2TpK47ff58m1CqqlAoCJACG43GWmTk1LngMsmI0GoVCI1WMQSFSiGRIKJhBYlZIgMSR04xPTfDynmUQ0XIhGc0ECCfD9/P3bEiLEgQU0IUFEFUWV7UVVXk2Ty7FBMnTgJaKSSKHGNIzgUAQEVn4tT5L0qJ/3GkfP4mOJuwlEocf65nQzyjmZ5FIwIUJEop+eC7dqAayyK3eYYikEQkKEWEhChJUkx89r/7JCxJK3W+UUUYkJybnfNdP2Z5lmIimoL3mTVFVXlJHGGO3jt/msa8KFRuXIzdPD/99ONp6K+uXl6aq6ubl/7uDgiUpcenB+Hw+HQfk9+fDu14+vTlQ/S+H3pAWK83INJ1vYD42eVl+fVXX797+/ru0+3hcFg1TV7kkjivKpOZ6P3k3PZymwvvdk8wTIKYmHObE4DRZrNeN1XTtkdDmGV21SyHof8vf/3XzvvtxfbN27ff//Dd7nE3DtP+cEIj7dzNMdze3/+rf/5XlTb9YV8WS5nCf/6b/7Uu8m9evvnV119XVf1/+b/+n2OCv/nbv75fNKGfBRi0zg0NKb7cXsU5tvODytW7N+/scvHj/n769MM4ThhJzrJeYgAiAXq+feBcC0OgBJgQUYhBAEEY//HxJ/y8YgVABGThn3fGgGfP2LMTDwSEI5MiQtRaM6djexROt7vdj58+NHW9Wmxev361Xq2Xi6YqquWiyWzWNAsWcD6M07g/nB6fdo/7h9Ph2E+tD4EJU+KUAEgvFiVl6uG0n2ePpJqp7T/Pzs11ni1WtQ/+u++/c7/7fVmX64uttllkOXUtc3J+AgX74x5h/fL9i8tFs1mv3rx5XWbZbvfY94MwL5eLvMj3T/ubF9fNour2pxTiq5fXwfuJQQoxVmdZRoqUoqIotFExpv3+iIpm7w77w/lRdnFx+erm1TBNKrNVXYUoeZYZo9fLFYdYWJ2b7NXrm6IoxmFKGJuqEhEfPQCWRVXVlcR0Vq3LLN+uNoLok9faWmO6YcyyrNmu6rL28/z+3WtLuqmb/fVhnmdldFlX2ujr9XWMoayLcZwKk798/yqm8Mc/fn849NfXVZaVIACzuthcXm6vgOD+/n7o++ViQVr1fW+ybPJuvz/d7XbKZJvVMjcGGMosz4oSE49dPw+z0pqA+rYvsiIr8+VimecZiaQUmXGeWzfP1tq6LqZhGscxL7LtxcYY3Q7jNLqDO/RD71I8Df2nz5/2h8Orl6/+1b+6yfOcCKw1YZ677tj3AwEW1kLyp8Nh9/DgglvWxcVq8+LiIoTAISYfu7broEuJZ+erqtxsViEGRBrGMUSvtQ4+gVLH0wkArl5cKiJt7TTPwzgprUPgJM5513ZdDDHPJ6XL1Wo5TsNPP32ap3m9XK9Wq9wWy8VqGDutlFYUZieRq6J8/fJlO/Z+7ZVSeVn0/eCDXywb4TT0vbB07VFYiGixaoa+T4ltllVF4YMfxn4cezdPQzfUTUnIqC0AjsOECobj+HC6NTVViyxycsHP/QzIdV1qleqFiSjTFInieluZLAsxGGvyMhNRgBx8QqLClFlezrNnSSHEEEaltCKllLLW2swGxymKQEoxnR/T/4gbhue3piAICiRB/ff/8N+FWSkNaM6dmtbossg0kY/eh+BcZBClCUEhImmcpvn8gtFKk6YYUkihqjJA9N7FmFKKSZg0oSAzZMYgEiKFGGJKSitOnGKKHJ/fQUY9m2gFRCDGRAoUaARSSp/RRM/jVz8Cn7f6PLedG3qUmObRAR+Px+8Ht1oubGaz3OSZbUrthtPxsM+svXlxA6iySitJi6a0eWmNEY6z6/vumGJMopzSswQJ0R1PwzQoFYb21Pf74+Gp74/IURBCiIlhdiF639RNiDE6p5xSqEL0MSYQAaJn+gBiYgakZ3M6KiImUIDAks6lGWfyHwDLz051QSEAACFEbQ0hMfN5lwTn9JhSiMiRAVkSJ9YCAggpBQBJLJw4MvuUxnkuxnm5Whdltd5efPr4Y9sNPkRgDqEb58FmuVLoQwri2r5t21Oe5SkkBWgyrTUO3WAytWpqZg5uQkGTFTYzSqmkk4hoQ5pII2lrpciVIhRJzMpoFoiBgYVjQkTkxMxw1gZj5MQ+hhhjPAfWn2WiZ2fyOQB/nkMAfvaKAzADKAWg/DlyhhIlgk+RNEBCQE5nIzuHFEXOHmiFAmesUmKRBHKW50DgPB+dHbACIgnhTNB6dkaf+8LOkum5vXV2qACZUww+Oa9QWWsVQZJUFKXzIUYPAkmECOd5PkPZiVQUiALDPDMCIUhEARRSk3Ntf27JBUQEEh+jRjr2bTeMx6dTP0y7p8PboUNtO+dMbgKHP/zD75bLRbNaRk5unn1kEBjHMcaY2SzFVBaF2dqhG0tbLJeLy4vLoqyvrq+7LuuOp//tH367XFRXFxchpYRwmsb5gcuiHOdQNVVdlV07fPzx49P+ERAwJoWUZfnUDXEO33z17ur66r/9t//+m9/+tu/a/W6fV9k0+bzIX7646abT6XT85utv3r66LnTW7h9PbvLDXBsbMN4fn4au+/Hj9+9vXr5/9cICtz/8tBGEouymKSsL2yxuD1Qt1lARBOLoq6rMmhJPEmMAFCJkUfgcfkRheR53EEXkzEsXoMQswuo8zZ7ZTudTzoAoCMgCZy/8+QKT86WFIvQ8ACOCNooTn738qPAcVEiRnx6PQzf8+OOnb7//tsyzqqpWi+V2u73YXq5X66qu67q5unpxefXi9fBqt3vYPT4cT/vj6eRj6Luu7wci1bY9LNCWdvJ+HPp5HlWpQgyKSpYQk4/BCfNmtTBajZCaumROKcXk3eT8m1cv379+9Vd/8U8qY5wbNeL2YjXP8zgMF5fbRdN0py7PbPCuP3VD13OSqRyNNpuLzbkNDQjGcbq4vowxKG3zvEgAu6edMfb65mVM0WhbL+tvv/+hH4fVdpsxaG3qqubIkEChksgMsTv282mMMSzXC51lp7YPzq8vNuvtigyN43h6GhChritjrXMuxliXdb2oZ+/ffvN+SnG/O2ggDDL5iX3KjHlx88K7MMyjn2NRFJyyqR8XZV2WZRgmZlnXqx7nvCjLoinyqiwWIEkrmOdxUVQFqfevXylFh8NxmiYGebnZvrjYRoHt5QYCX2yaRVUYojhPYRiQyY++PXRjP//ZX1ytNytOPLbjcltvLjYxwdX1OI1z1/aEeDyeEqcLuz22p+OHnzJrTaHmCI9PT3MKh1OXV2UdY71sbG4fHnduHJP3JLLfPTGwNiakSKDfvH19d3dfSPbV21e5MahkGIYQvCQIkxfAh4enLLdNXd/d3zOn7XZbLsrDwR+7ljQt1ov94elu9/Dl/m7R1HVVLZfLfhqVUibX1lpAGudJIU7eKUfU0vFw7NtOAEY/6bZNLEQY2M8etNB6s9hsV4khQayq8rjf53le1tXx1B72J2uz7eVGQIZ2EMHE6eJywwxD37FE58Zh7B4P+5ii1bRY1JuLtc20ImXzkpmPP7Rt13ZzO4VpWdTLek1WYYLkIggPY+fZo8bZhckFUGhyYHSiIiqYwuhGmUc/u5gSK7TW5CLovQQXBIAo0NnefFZ5gUJ8bpg62/0Q6fznc5c4gJDC89Zbf/XumySelHazB8Fh6LVSSOCdBzj7TJ21OQIO40BE2tqYmBm0EEAqsqwoNQYUFKVRPHrnQ/BnBi8AGGuIlDWGlFFRTeMcQ/DOJWYXEjMQiSIFFoM/162CkERmZJzmOcQgIJJ4nOYiLxCV0Xa9XV5cXtTNQj/s6rKwNq8WixgnjKnQqq7KqqnKrLBKiGdIIoxPT8dhcN7L7LxfBZtlZ4JO9FN7PPRtL6ICaxEypEKY/Tgipq7dj1N393CvlPjoh2FwzrsQQFllTWEL8t4araxSSoWgQ0zCLIAxRCaOITKcN1hEpJQmFkJFIgIJkc7pMDgXYAAiMTHxeVA9Y5M1EZ6FsZjO4gWe/SyALAwiSlOMMXgvirz3hASASiskJSAxRkBUWr24uSqLAlG++/ZbnavcGqWIoxdI2hrUanZuGMbE8XzeLVFMyiitFJV5ZjMtLGGeyJi8zJilH4bog9aaRCFISlErVVVVCF4rBYTGmhg5+CQAqFCEQ2BmISJAjDGGmM6zj3BCBXTme541mHMs6zwd0/N0QoTGZGVZEunZRY4uCRurWTCxKE5KQ0rifQwxxPjMikRWqBjObfDCMXJiTomTpDN4QIQRzrfHeWF8joKdl1xnxAwjamFwc1TKi4gSAmGQBIQAKCjKGkM2L/Pg41lgQEVEZ5yBECIDA5KxFgAEkYUBwVoLhHPw3ntOyRpTFaWxJkaZZ58VhbbZ+mLr/Pzx88f98enjl0+OIURo+w4oDUMHJDbLvtx9NEqN06QUGaW888f9ibZYlnVu88WqcZPbPTwS0aKuxsGGmC6uL4/7/W/++MfC2qIsMpuJSst1YfL5cGw/ffhitB7bnlCKvPSTG/vh5c1Nr49GqcRJWF6/eSWYPn++iynYrEFUVVW2bUuC6/Xi6uKibpYa4aq+0bl5vLvb3+0kIxASomFyn+5v/+//j//b1XptLV1c1u1h9O2cvDJ6zTr79PAIqOZ5iG46/OHXSdPO9b2bwjnHJ3A+uAAs+BxrRST5WVuVnwOYz8ECQSQSOf/s8/1zFnkAUVAAUZLIeU+KKOq5dQiBAVFrFWNURJETKcoLE0MEjZUpGeRwOu0en2xmCGmxWBZFWeRlXTd1s2yqKs+zPDfL5WK9XiLhOM8xxd3D0+l0cn52zqUY66ZUSPM4RBfKsjztnzJNeZGVmVkuN6umub27b4/Hqqn+8i//YhyH/f3DzcX21YsXv/rmm+1q1e+fhlN7HwQJo3dXVxcA8Lh7LItisWwwcZ5lxxgkiVbaWONmB4IJ0uHx0A19WeRIKvK4XC/9I7sQ6tXq1et3Sqlxnna7h9v7+/XFlkVCilmWHU8HN07rpsqz8tX166enh+PTEwFm1vDZdQdSVxVlKqS4e9oTChNnNhvcNB72/dCTos1mW6+WhGQ0CeHV5cX95/vf/+bb1bqpiiyvq43ZQuBhmABAaaMQ37x8VRZ5DNE7Z7VeL1YpHv04e5sjESLNwxgVKKTLzbbvT5nWq/Vy1ZTtqRvnqajry2Hoh7nICxAudOb6afAh0/bm+kV3GozNqrJS2hpjM5tpq6K32hiTmUxZQX58PPgQpnlCBUWZM8Dd/UPf91or5jj04/5wNGV+/fKKgSYXV+v1NE+s08P9fUZ62VRCECLv7h76eb559dJm+eXV5Waz6dvDx4dPKfrgwmZ7ebHdLBaLGPnmxphMf/jpozLnMmy4fpWd+u7+7uHq5vr24f7Y9YRweXXZrJbRh4fd7tR1m/VaG7vfHwfnAkey2eRc251WiyUq/MWf/IoTd+MwzTMSEqnZu6osUCNEUsZC4vuHHRnthedTO7g5xkhWPex3SGiMKoqMQ3rqh+Opret6sVoJp2Honw77buhjStWirpqqKHNOqRsGWxYxxBCCD65eVLXOwSIzWzLCMk3z7BgtYC5xjqPzSQhIi+EUmQwll0KQxARACnRMycU49j0nUaSV0ilx5ATAiMLCMSZEBDlHw37+kMbnu//suT3D54gUIej/8D//z4hY5PXheGjq5ePDYwh+9tPY94vlYnLueDys15uiLu7uHx6fHm/vHpx357z87Nw0z97NoEQp0poARavzf2wkVEorhYqUYgAQ1kpro0KIwoCEeZbJcx8oQIigDCiMKcQE56QUozgfIgdgHodxsViWZa2U8T56H5RS6+Ui07pZLV68eLlZNL/++9/dXN8sFgttjCKqcrsos019xSQJYegdSS8kqfCBeZ7n4H0KgX1QqKzNQyQkldsicsZFbnO7vVz/l7/+m34KIc63T+0ZQxkhBj8KsFY2xOjcHGNgZmE5x7eEMIUkcg63n5UfRepsdBHE82conWX3s8aQUkIiJDSkEIEZEOG8XiFEUkTWighzYhalFAAqZJFkjZF0XgmgVhpEQgwsYgw1dTU7Hzh8/vJlcqGw2cX1ZQg+cZIUYgiz6zlFk1kMqZ/7YejXy9VyuexOh5SiBcqtVlrFmIxWWVlaY8PPbQbMkmI0VkUXJmA1a6t1WRQIGFMKMQmgtlYZrYU5SgyBEVgECc/HRGsUIACFSAIiFAV+duz/40iIKCDCKTIbMkTK2MwYa7SRpGOMSJBAGFPwISRGoiTAZ+DkPyYiWYCYU+JnPp6wpDN7En+Wl+Lz9AOklCI6+7Dg3A8nAkGIUuLAfYwxK6zNbWZtrRElcVkUeZ7bzMzOOfApMSokrRDJ2gyTEmFhsEaxJEgCRPPkjLYi6HwI0ROhURkSISpEbSyWyxKRRDnKUY10PB7bvg3M/TjXi+U49CAskLrupEZ1/revlktO0Q0TIa3WTZnlEPn1y5fG6A+HD+3gri8ukaksi/Vmu3vY+cjT7G9v729evnz9qgGtRu+b9cbq/Pi4V4JNVRZl/s/+yT8b3Zg4eeeKIrfWRB+OTwdOMdPmYr2+evGChb/c3XfdaegHrbCsa0N02N1fXKwkpu2mub5afaiKD9/+uNhuKXABSoF8/+Hz/f1jRcZPPkTo/n9M/VeTJWlypgmq6seMHOosPFiyomjMNHoa3SK7sxf741dkZ2QGDaCBArpQhcrKzGBODzX2EVXdC/Os3osUyYuQzAgP92Nqqu/7PMpljIfd7mkchuedOgItCkX7UlSzceI8CyMYQ6bkbI1BQGEFQTCoAiwKqvJzlGu+/v+MgwWQuR0CiCQgPI/HqmIQAJBUQIFQCXh+2oj8DNwCY2ziFELFc5aLBQlEysxWCJUnoqGfStmL7ETF+jAfznxw3tnVuvXeh7pBwLZdCMvNq+vCfPf5S8nZGAqrtj/3I/dvb69d2wZD19eXOZW2XVZ1NXb1cDgsfchdZ0UC0rKpvn3/pg3+dNiTcOVcfzotF8v1YjGcOi5St1WwdjwPbVO1TbNsVylN9aLth/55d0ypAOj2arPZbsdhGvpzVllfXEXJu+Mpirx5/1WW/PHz5z/+8Y9fffXNcrPUGYCLOqa43+2so//6t/+lrv1+/8isy+UyxnEu1a8vNtViY4ObUvz85XOO+XKzTeM4DD0Xds4vlosk5e7unow5nXrrfVU3kqWum3bRjLHbPZ2ehv00ZGtD2y7qGqzC8/65PzkCbZpFMHbqe6Pan/upyzFPq9WixGgM1LW9vNlyGYd+eH5KwTvv7DBKydmSuViulqtVFWzs4u7xCUDe/+KXZKjxXSzpzZs3ihRjRIO+9mMc+tOwpY1wfn5+HqfROLsIK+PDl7tP3TC2yyZQddydpmFs6vo3f/3b/fl46DoXqr/93//L4WH300+fL9YrBW1XzXK5AoHj8aAE++OZ3PPmcjt0/WK1OJ+HwmLIWUsIpILLzZoIS+Z+GC62W+NomiayOIxDKvn27Svr/GK1uri5AtZS0mK1bKq6ruvFor2/v//nf/znq+vrQPUQRwBsL9t+PGfkdtE+HJ6uLq7rRaPDSIbOp04QwqLa7/ff/+l7QBSRqqkZ8HQ8jt0YU4wxeec2q2XqJ+8sIozDhADD0G8266qpUozTMAXnzWYzxIhopikNw2CDA8T7Lw+iosBNW/vW1gt/St3T7omf8jgNzllApqBqNGYFhLatp8Jd16fI3lfGGGtJsjBZMkIEqXBOBRTUvuiMEA0iCvAc1pwHHZyXBAIEPzNlEF9OAkRzBZuZbXc4MpeD7D59+nR5czX243F38FVIJcVpZJD+fColhq5OMTtjrCHwzlg8seTc5ZxE2BoLgNOU2kXjfaWK3hXnnLGOWaqqYp7hdgqKOWdrHRmLiKrA81GEZQbxIiAhqjGiikiKDEDWWTIUfGWtQ4VxGI+H0/F4KDnlPOVkkBNKevry2SoM67Vz3nlb1qtl/Xq5WnV913fnvh827apualThmMoUU0yowEXzlIrHzJpS4sJjHERLu2qco5hj3VT3P9wJKBo1ZI01CtAPg8ogheUlszyza+ZRBOYNwyyxAEQBAIHZrqjzs3d+/XzZtc//KM7ISEMiysw/Z3JB56DMzOAmdNbpvIEQdMYrMQERGBesCCfOzMUa671NOecYx7F/ftbVYrNer7YXW+e9I2Mt5jwej8dpGoZhHPqhrpvterNaL4Khyvt1u2irSkFzyZmLEhoyxwOPaYwxzn+decrKgIilFEKKMSuwzJhBQEJjrGLJKiqgxlguOefy8m2KL2HwXPLP160ZdD1vwGCeFOexhABAZJriruxiXTdN470lIFQEKSSQctG5AwRAxkjM81XEGESEeb3z8gAE+XlHAAA0t/II52PIzywmlfm/o6yiADQ3CFAUci6oYowJ4BFJlMGoMcjCh+OBueRSoJDI4L333lvvSimliDHAiQHQWuOdt84ZQyyAaPDlp5OGGGlKxlpvg/XkrRv6vl3Uv/r1L/u+L6LGWgY2FkopBiCEwKxTmjbr1e2r688fPpHCZtW+f/3GBd/3g7fGo33z6lWKUZkll2W7ury4IDDzOd+5arFc7w8dkhoym/UaWTabbeMrC+CCI0PjOH6+v2vbpuSUYnTeikgIvg7N6t36N3/12xhzCNUf//hvJccmBMOybpvN+ip4muI49gOrNG37zS++kzHH8zAeO/RBPNwfjkERgcBQqW0nJZ/PI0h2lK0ICwJQsKw4Mcy19QxaJFuHMjN/EOe1jyoIkaqy8mwDEuTZJjOXCIBUFcAAkQqrArAKzOQIUJnRQC8Dz0wJmtFqJIUFwDnHUub85PxJNRMXyZhUsgFTLwLMQg0mVRbFlIQ5j1pO5z0XNs4RkiFbVdV6ua6qQAbymISgruplqNar7S/efn21XtbO5RhV8fb2Npdye3n19ur64fGhDOPXX73/+tXN2PcX7TIY671/9+pVdz51XV9SuX96jCktFsvVYrVcLKahO+z2bVMvljVg00/jl7uHMafLq+vufC4AqDpxnkqZUvwff/zjMA374/Fw7l59/iKqp3Gwlf/v//xPddv+6jffBR/iOO52T+fzqeRp2S6Gvhu77u2bN+vlKo5+6PtxGs/ncwHRCY6n89PzbtEujHdxiqe+W65Wm4sL7/3xfGQQUXRNMNaehy5KsbUTwma1eLr/8vnTw/PT0YeakJaLxfV6I1O+WK5uLi+cNQQcp7HvzwCm67rt1bYKTgw8Pz08PfWH43PfnUXKcrMIxTtnU07Gue3F2ruKU1FRUYlxss6OcVgu1+vteorT8XTKJU8pFkmLvEBDXT+MY1TFUlK7XpxO57Ze5KEbYry8Xtk67B8fpmlcLFtfeXI2VLWZpiTcDSPVPk79jx8+XG0vYi7obBwnqvxivZqmxCJDP5bCcUrDNFp0bVt77xbtwhjbD6MhIrII+Prt63EYuEhdN92pH6fx891dzmwqu9G1Iby4vLRE52E4j/3Hz5/O5/P1m9uLzUU3dAw65fTh86fzcX84Hm5e324vtjwrBhB++ulD4TwM3cPT3el87LueWYZxvL19PUxTSgkEhn6IMW1Wq7ptY0rn88kgsehmuzbOnfthdzpN41TVwVpL3rZLnwsXlf40Yim+8kOcUi5krUNw3vfjkHgUUATTLloURavsyjjFEMhCzYLKYslPPJYk1lcqmKYpxsSiiFo1zgebM5csioJECGAsouC8HEBEABQGMlYVpLxcuXEOmiKACBgSFUKwu8+Pzpqu654f7kkUCE/Hg4vueb8bpklBnLUhhJJLTLldNpWjfT+O0wggwZEUIIt1CKI6V7JjTP0wKGhdN2TsMAx915OxOSeY04qEMUaNEVAQjaiySMk851BFFBENkbXWIFpnjBFv/Ga99tZYY1Uw5XzaPX34HpHofDwednp83i2Wi9WqevNu+91334HS+Xwapunj3eftanPaH+7v7kNdW2ebuhZWIppl6YbsUIYxjUM6x1xO/RlAh6FLOYaTi3H68nCXcrTOFc45F0atnHHehVINQ48EBoEZWJSlEFnCl9ETAFhERMiQsmEqiAgqL6dBfDm3qIqAzBIwIv05iwvGmL8MBzP2BpTmYBCXrKBVqIJ3XFgES8msxYN1zjpjYs7WGVR1hkqWOEyoNMAZRIRZWdrN5vrVtQovF4fPX754X3nvVGSzXC3b1qwvq+AsIonmknOcJOWieuo7ZiFnNcZcCs0zmSIYh9aQc0lfgOTWuWpRc9E5Bi7K1lrrXBHRkgGgcLHWkDHIrKAiQoT48gx6QUfOwOb5amaIQFUL58Kjogpw5R05QlLUklgFFdU4q6pcsgIBgDEWac5TCSjMI/jL+Cnz+u1lz4Q0UyKYJYNkBPLWFRFAso6sJQJQNUTWEnljgvNV5YN3eaIS8zmdFSWlSIRkzIzhUlARNkigMynSIBlrjbHGt94HPyP+HDoiMpZKnNvahoWHabqsG+U0R7abemHIHbuTdRaKrNuV27hSckp5yrEOYdG2BPD29a0h/Pbrb65vXj0+PT6KSpxef/N2uVieDsd+7EtO1pgh5b/5m79hhH/4+78/Hg/rzeKwPw7DcDyex3G62V4McUDQd69fGRseHx+fj7tz1x2OxxDcsm1zKXf3d9uLzdXVNRGCQhWq9+/eff7wYc9P67rdLtt1FTTm46lnLSx5GKbufHp18wYZ9g+HYdSnbmAuomZkqSrfxzRwTKiAImQUSQuoYhIhQ2AM2LnwR0Y1pQQGSURQWAXxxX8iIEWZiACVCJSwCIOKEhpjUFBVRYXgJSsEL9jEl3z0S0PhZyWKMUZUVICMQXg50eLLlKzKSmikiCp7a0qe2ws8K1bczGUHNIigJCIF0KFRQRGWnE/P+3B9hYYgMxgyit9+8/VvfvXrb776pnXuYrPY7fYAsFlvP3/4FOP05vLq1cXlp48fgzHX11dpjMumQWVnyKBYAyVO/bk/PO6A8PWr26vLC4NEwufdscuiwC74Rbu5fHVTQDOXPk6Pf/r+6fCsCq9ubjc32+en3fP+8N1vfr29uHh+eo4xMcvhePzp409124RgjTFpGLebpfNGCt9/+YIATahzSg8PDyG4uqmrNhyP5y93d7GUIY7Wu3azYkLxxizqcxyhO1nnhmmo6nrGjY45TZojpofHu21Zv//6zTe//c3d3ZenY//h8cthd3p7++ryevv+/VdBEUCzpPVi6drKNPZ8Gq6vrxdtczodnYW6ccNY7u/uj91xe7m6bC/B0PP5/PnufrNd4cKywv5x55yrq2p5tebM+9NJCdu2EeEUJ1Z+eno6nk/vvn4/jlPV1rdfvTkcTp8+fM55msb8pw9/vrt7uLy6vHp703XndrPsp2F/Pra66IbROBs1H6fx+GE0SFPXQSosnEsJTR2HKVR+jNHXIaXcVPDq+no4j8G6y+uL4P00jLmUdrHo+7Ewc8pIYI0JITRNfffli6+anNLuebfcrKdh/Ic/fv/LX/5quVpnkDhNu+fnFNNytVyulvdPDz/8+EMI3jr773/8ozemaev7x4ft5TaN2XjT9/3T8zPnvFlvb2+vb29fE2DhUtetCH/88DkYv91eGLK55MWiXS0WXXd+3j/XVf3q9eu2bWfaWzqeD92hHHtraXOxIYPtauEIx6fdFOP25uLy7esvX75ITqGus6TT+Vwot4vKe1s0cikTxymlfoyZiw1VnDhlIK05JvRWyBEQQFLOzlowOMcbPNLLR7sqESECl2IIvXeIFhGFNWfJOSv+/3kgCRCBkIwxOg9A779+s2kX/+3/+m9X24u3r15lLiQClpglpQdfV7fXN0D49HgvUry1qqpQhIsieGetXcQYlQUQRHEcszDHmEPl5+xojPF87o11s9A1pVSkgKDORSjIqi/XelWlGWRtCAHIIGcWUTSIjrz3qLOcIOfMvmlf3VxcXFwcT4fd7inG6bgbb25W23U7dvthGM9dl3IRNk8P98H5ug3eueeHR2C21h0P524YmrZpmkWMpYgiYQFBSywpcxynUyw0jeMwnhW0acIwikixzjGXGFPOpW2b+Q+u8FIpSjnlnArz/HCdRZ5zAh2JEOQFUfAXFDQgAhQpMz9aVQsXZBIVBDAvGwgVYdSX5dPPvnTy1jljtSgrcxFSAguWDBEZAmA5HvYKaG3gkuKEloyzxtvALCmn/tyByjSrNKsKVUrKhBinGKwVolhKHMcYp8LFegMi4zgCkXVWETKzM9ZYy/lluycooppismScdzPie7fbFeGqqoAo5gQAzvmUsyPnvVd4eRHnUmbYNICAzOdamL0VhKQqoIoA1rtgXahC8M5aC4ozL4CZYb4zkkk560vmQ+YolYqCgshfNlMv9OCXMhj85Qr7spEiRFVmRhbw3jdNFYKbY3Rz77ENoQq2CsEaKliY05QjM9tgEQyI2spaNCIqImTmgK0aQ95bIgBAa21wAUTJ1iAgotYSQSlFiEyepnGYHsuTczaniIAsp/3hVLhUIbx9fSOq+/3eGrvdXDw/PR/P5xyzQdNuF2XKwzh++PHHvu9BZLVeGwTOyRJqkboKnPlwODRNfXVzs14u4zhxkcvt9uryojudFu1yGIfd82EMw7u3r20IoNpNqV2vu+50HPpXt7eIOoxjP0602yloZubMKae+PxvStqlub28NYU4jKJKiD82iWVehqULl0OWtxqSH83nourauyIZDP0xc0NlSkgMNjrLqDAJX40phVTGOFEGERcUaBWWYVag/72NAWUHmnDMzsyoZY5F4hmvJzz3Y+V1QVF+C0YSEIkoAOLcQRfDlR1pmaTG82KOBUFHUemeQxnGwZH1wmQuwLJvAPDfxoeQCnAEskkFUENHMwAJIPgTv3HK5+ur9e4u2O58WVb1/PFwsNr94/+1//A9/XVmPOXrCq/WqrmsVXDW1Q7i+vrHeTafTt+/eXV1c3t/f5X4gALAwjmG/2x2Px7quf/2bXwrCcrlGlWkch657dXs19MPxdPJVxahFpZ/G58Nhfzzsnp+P3XmzuVBLD/dP+/0hCQPR837/4eOn/fFwfXVD1opKiolLXi8b09ab9UqWJfbD69vbm1c3u6fnh/t7luK926xW683KeJPPMae8f9odjqehH65f3RTQmOP9l4fVdr3aLu/uH0AVDY5xGqepbpqU0u70/Dwdd/Hw6s3rIUfxZt8Pp6m7xivrnau8Uzg87tL4lHjaXGyrxjaLK4n69Hh3ODzXVbW93FiLP338qVm2zXL5+f5xfzyOeer74Ycvn6739wass8ZZv1lvVRQEF1p1931TNVcXF5c3m58+fuzGbtgP/+c//N379++Xm82hP6fC91/uQHnop9PxeDydl5v1x08fRFVQNlcXJebT6dgPw9Pz/jCcj3FghCrUyiWdxsvletk8+7rerFZozZAmX1dtWzeLOk3TeJ4QZf98/Pa7b5t6MWuAFqtF1/Wn3YmVre2ct/vDkciu1+vM/ObtG2vd4XT67X/47Xq13u/2KnJxsb1+dZNimqbp+fn5fD6DQl1Vi8Xiq6/en/aHqgqbzTrH3Pd9pdXbt+9f37457g9Xl5fXN1fO2amfjCNRnYbxze3roRvRmqquF2ahiM+HvQi3q3UIFTqbBcYc0VBUrTbrwsU5l1TTENmY3W6/Pw+n81m8P03p3I9a8nkY2011/er2afdIYJyxJae+H7sYhxRjljFmgRwji4LzTeU2IjJ0SQqooHfeBW+NKapxTDmXOU7DDM5ZBdAEIsoiIRhUVGEAgZfk8/w6rTN8x1hjCEXAOWsDVqT0y29/GXMGhBwzCNW+/vqbr9AYJW3bxTgOBHaxcJvN+tR1Du1ytVCE87lj1WKMgBZmFp5XGohQipQiLnjrgvcZyYhKLmmcJgWw1s57DmFh1pkJOL/J4XzQAwIFRVVVAiCUnKYmOFIIwU7KwaKk6enh8/F06oeu5HkhwR++j2Ro6AdCy0wpc1XXF5vt0PVcpF+t09AF3+TMAoA1WGOMMaUUcoYcBmtE7OmUAIojh96s20pAUbEYUEsvh3+Y6YYvv/t5t5ZLKbnMex07X75URXT+Ncry86Q0l0leNI2qOrsu5t2PsAC8fFq/yE3+5yuqIioaVFEuIjbPg7+KeOcAtXDJ2XhrXW3mJG+KUZ2u1pvVeuWsb5qq8pWIcEn759009khKKt74arWO41hKHsehWLNsXzWLZvQmRFe4AODheJo769MU+3HKUpwJSkasdjEWPa1oVXLOUyJAMxlVBUVWIWOYOY3TmKamadfr9bk/KaA15ufjF+pc4UH4C/0IdL6HgqIS4rxII5xnFQayZKjyHgHiFBHBIFlnVAqiMmdDqGhEBWX+vhek+X8x0x9QeJ6B5iQ0KsyAaCAgAlSUlEdrg3IC9YTeBUeIIOKNKSmmWFA0BI+E8+/UWoeoJSXrHarkwmgMghUkRRBEICqFlZWlhNoJMyIxy3y/KZkBITiXmJEMMwsgEFkbXmJVUopyZcxisSCi4Ku+H4/Hs/fN+7cXi7atQs1RvA1Pj89xnOqqIiJH9rDb55yCDZaQZP66yuePn/dPz87hetkQGhfM8XTMKd3f3U3jmJi7p+Pf/f3vLl/dvH13u9xuYxx3h+Mw9I/7/c3NlRIdDofj8fT2zRtD9h9/90+756cUp4ps4xbHw3j7+vr9+2/r2s9Udck8jD2KYoHL1fpmVX/7dnn/8W44nWPmxteiWBiYqykW59yUc1SZcjEgClC0qPDsiGEtMM/JIIDqrccCwoqC1ph5EMoiCKgiDGwAaE5z/Uz5eeE+vWhp5iFanTEks9MF8eV7DQRRRHxwBdCQMQZTjOu20SJXbTX0U11XU0rGGlu583kgZwmxWCQgMpZZnDFNG1SgP3ek9P72tqmW2832//X//t/HPv77H/4Ygotv0vXV1Ve3r5euGs6n09NjWS+ttQ7wdDi1lVsvWmdNnMZfffv+5mIdrKkI0BoQHfv+7Iz3brls66pBa30IOfOX+7v94xOX8ur2ZhpjCL5p6qfnh4fdk68Xqvr5y+eHx4e/+uu//sWvf31/f//49KQEHz59/uOf/n3oR1ZOKR/2B2fIIH3z1bs3r19f31xI5uHULxft7c3V2A/Pu8cpxt1xt91uTufT/cM9ElahijF2p27qx9xPp6eDKp7GfsxTYfnx8QurduOZS0lSWHWcRusoxpRLvFhv8w9x/f1GVIcpFSNuWY0lfXl6BJYaYLNqGejPP/x0ce5uXt+kdB72EyisNytl1iKrxfL9V1+pRXT2cf/cPz/87vf/FnN6ftovPrbTENfrsFluF83SkP/666/M4ir1Ux97hjx1w8fPX7LI7nQ4Dd3f//N/3x+7q8vLuqpCU//yu29e3d68eXM7TfHjp0//3//P/7FYLbZXl8tlM43TDx9+2h9OwzhSY4c0MmA/TSlGieV5v9+sltdvbq9eXZumunl7+/T5ob6urMXYx+WiGcbh/tNj5ao3b29BYYrTMAwiaivbVm1OJef09t2bYRpiLG3TVlW9Wq+7of/408e7T58vry+2F9tpisMwXFxsSyopxVc3N+/evgXVtqovN5vd0/NisXj7/i2SEdHz+dw0tTH2J/rx+upyHPq7w2G9Wi3CYuwHLfL29e39/dP+cFQXlGwu+eHpuW7qqgox5c9fHlihWa0EAY0xTR3H8XTuutNp97xn4H7oGYWM+/AvvxfJhNq21fuv3jXLdXc+nE59jGaYTIGyO01gbEpmjDKMElN5YddKbuq6H/uUSskAiCKK5OafVlBw1pKhkgqBWEtc1JJRowCYc1YBkZf8wssLEiggGiJRRVbOBRBUxI7jeRx12S4WdjnFKXJql23MSYFX282Uxt1+n/JkrIlxenp66vphHEe0pATMooDOu1yYp2yMYZAZvoKWWJmYDZl2sSjCJbOIOs9cmAgBMKXyovkUEIC5bCwiMbIxxoEhQLIEACnn8/lssK5DZZF88KLly5fP++NeAax1iIDEXFhTqupgDVlnCNyCXKhCCKYUm8acpul0PC5a8a5CQ2kaShWA0zieZYJjt495UikpjqAFlSrnqutLQEwphzFMKcacpikKiA8uxYLGOGuNM8KiCqWUGbU/a6fmxzjRS0H356jTX0JZf2HdzDFMQMDZsQVEKjojf9CCKCmLiJSUBdhZB6i5ZGaGnzWoIqqsGRKoEJLzjgyWrDnFaejbponDkOLQNK2qEhnvTH86G0JDKMV55zhHVLVE3npHxlkXjXUVaIR+GLphTCmVnESBDGmBGcBCiBmEVcZhJAIgyjmzMJc5PGNyKlRTu2hpMgDIIggkLFlzjDHGyCUXlpf15DyUwCw6e8EiIAIZVITMRYR5JichrtYLg8Qijjnn8hLsKMLMOHMNFZVVX/whon/5oiOSwRdOFgsoAs3eDCAiIhR5iU+zQpwmAMycCYAAM4IzxKpD7kspy7a5vrq05AuX591zwSLCqDivZIkICbWIsMZxUhHvffAeVLthQCXm4oJDBIPGOEPGeGMQKUsBkpKzc9YZB4baKhcupHo+dc7adtF460GxXSybKlgyqOKsa9vmdDCyWKQU9/vDtFxeXV4+ns9qMgA+Px26oQtNaNvl+XAiB1UTNldbAjgdjqAYqkpSWa829U0DBDGXz3ePlzeXRkOzWo1T3B9P33733XLdDf2w2a6ubm6I8Hw6FS7v3r/9r3/zn//r/+Nv7+6eBOTt+9ch+JynKQ55HEPwRnUZak+q+T2idLvjMIzk6/3+cDyd8sTjEO++PO6fDsLaj5FBzyUmlCxqjEVDihYNASsBGbLWWW/djPPhwojILDI394RnAKIKO4sGjQiQAUNmPn/N2xoFQmsBwRGR4At/U9FYmlUqKWfnnRqaGfsG6fb1KylcN9Vw7vt+bFaLi8tNZj72PVlCIuedIZtzkSLBh9rXlQ+H3d5b9+79uzhFQ+7d9Stza1pjF2272ayds92+kxjb4KJxwbhQBeSCwt7UiDiOPTMbpO50fh4eUpyuL6845/587vvJOuOqWojiNH65vweAlFJVhTjp/nlX1dX1q9do7JrIVl6tM0dy3uVc9vvd3//d393fP1R1bZyzBi+vrparSETL5eL+8/3j4+Mvv/nqr379q6vrqzgMJcU3r64JVFlzjp8/7T5++rTb7//0fbHOAUAI/qt370DYkVm3bXDeGm+IUoyxxI9fvvR5OpxP4EFY+2lEwlCHMjIaYJDH7pTGcdd1SGRMENTu1PXHflU3be0L2tPnU44xVMHWfhiG5+c9ZNmuVm3dTNOUOVlXBx+icsr54en5d//j377/8DGpGO+H8xlU+uN4TJM+3DdVm6x8fPjMMV4uVx8+mtiPSGBCZStXLapPf747dRGdWZT2uvL39/dP90+b9UpVU86h9Ynj8/Pj6WQfn552+0NK+TyMeZA+xXpdSyEBQGcYYQL+9x9+MMb81W9+1dReSUMIlmhxsQ3G911XUhqGse8HVvn04UPmUrcNIQ2HcbFcelu5OpiS8nk0zoLCYX+4vLzAt2/vHx9jH5/TEyKJarD+66+/+vDjT8N53Fy4tm4BJI1xs1gvVu3u8Xmz3Yaqctb13TBzrqWIM0EYzt2waJdfvXmPiAZtSWKsVTLH/vz09FSAP93frVbLV6/fWAHrKuP9eRwed7u7+/tjdzjtDgAQp5w5x5SaZevb+nA6x773nqre7Lpz9ScPmhetf7O8yjE97nfHcUiiXZcEKJciIIS25BKdlILjxJyZBQEg5zIldcYYa0SKvEARWQozD4CmsKIqQ1GU+Zwn/PKh/tKeFhDVWZg6+zQA0D7fP/djv9psV6tlKSxCPlQx8/FwfNzvlFRySil2p67rzy54coZhjtqWPLeYUYsUlsKqOZecCxJ5olI4pV5ERCHlrAIuOFf5OMZxmmYp5SzsQDPnGJEQBYFn4T2wqiKQNdZayimdT5xCCi4gkrNeyTbNcuZjW0eqVEqh2ioQMyAwEJBwHrOm5L1Rq9YAAVuC2htFQJI8dKfjLh72y6ulWTdFXI45GsM5S8m5ROtsqFy7bqoq9NPUD900jlLYV5VtnHHOkCWizFkUUkoKrCogc7Naf2ZDw/w8NwZVBX+2Ls4dXUBUZRWYd3PGGDI0t+C4MICS6kwcB0BD6CwhknNu1hUxiyqjqjE0V1eCd5X305SUxSJxzofn53GcqqqKywUX5swKoqU4MmiRi1hjmHMdqtViMXX9ebc3xpy7nqX4EABAVMm6/nREImOtVyU0M3aIgAixH3pDNJ8gDFpjbNs0AKqMVzcXRfR4PAzDNI7DHIQGUC48F6+ckqoIMP6cjZ6/cRVBcW7OwczqFQWOCQCFxZHxxqoCWQNcEhdAZFZjDBdWVqIXCPBLdmMu9+iM3Z4n759D6wIAKIqW5iA1eFsxM5DmUiCOqRACGELNpWmq2ntUSDkitnVVeeeGSas6kAEWZVXrLMfEXEomFTYgwgIIzhrvLKswFDAYc9YkCBBCQEEhFoCcc8mFoSCCNaaqKh9C5TwYL1LOu0NVV5oZieoQmroh5e50dERuueAUt+sVs97ffQGWu89fNsvV69tXD1/unp934zipCrB1Dr76+utc5OPHz7un41dv3t5c3JSh5JHXi7V1zlchSxmG4XQ6PR921zdXxtp22TaL9nn3HEu5uLnZbFa7w/5P339/Grtvvn7/7s2br379TbVt4OimYXg8HG5vb+rlKrR1GfvSu8bgRV3XATertu+O/8fHP//ml7/55d/8b1ng8+ef8pC7p9PHHz5Mp6lMPE6psBSLEXIXp1IKkikUjPOqagCByVhrjeXCMzAzeJ9yEQRXeQDIJbdtXXIilZm7Zb0lJMnFGqMqwgWNA2vAGAOqLCpCgM55a42I5pITp3GaXN30cepO3dXl5dfffEsEp8MhjtPp1H37628vL6+U8KdPH2NKi+VisV5y5vOpd86t16s8iTKnV69e3962y/bhy32eEqRptV5//fqaDLVtEFVaeIC0WCzcq+vgXBWqYRqruglNYBUtKfg65zyMY5ym9WoFZIzDzcVlBlaWcYz1oiZrxzEiqnP+13/12/uPnxB0uVoraIxxGM4KsH98Ovf9+zdvVqvFsetAdbletm2z2+1vb2/evnt7Pp2tc8H5i8Xm1dXFN6/f3Fxsx1M/DucqeC3JOr8/7z5//LB72vXTVDg/PTwLwtWry8a3P/z5z6vFAlmbuipFpcTgVgCcUzzsnotRsJoz58x1W+eSjTeMIKDncSi5J0Sv6p3TMsUpc85g5OP9F29p0y4wy9j3X3/3NdS2G+OUUmXD4dzvD2cUtdZUTS2IQ0xDirvdqRvTaWIMtq78nHnPXMYxceEq5/RB4rnzhLfbi4vlorF+7GNG2t5cfv2Lrw/DmOnp27/6BaRi0GQuw9SVPB72RyBIMXbDwMqr9SqXlFJyzl1cbp8Px6oSLkWFXFNxEiRQh/eHh+Vj8/bd63HAi+utqymVaejPnNh6vL5dWw9opOSctdSLehyHh4eHXHixaNebDTOL8vpi1bTLlNLz0/50PDVNtVq2j/cjsNZtdX1xsWgWTdv8h9/+9dPz7nQ+PD08I2opeXmxRUBO0p96zkJoqqo21jRtvVqsJPPUj7nkzWrrQ51znlJ0wWNvj6dzN46uaizpxe3tenthrH24f9gddg/Pu4fD8+N+97x/ZoU8pKoOxtqiXC0XYs2+HxIU8bYvJU065GHqH1/dLC4u2naxCHXY9+fx+Xwcpn5SX1Wofq6uF9aYdZymmYicee65E3Nhw845ZmGWeV0irJmLwVlnhMysykQgosD6s9cIX9SACKo6F4JhXrGTsxery7ZeLJarXDgdjsfHo69D3SyoO6ExU8mMwKqZBZitQUACEgKLKpxLjFlIyZlpnITZBeesB9BpiogYqoBocmFFtSZYZ1SxlJJSJmNEZAbOEdG8HlARenk4gXfOGB8qF0IgURQmQkLy3iOa8/mcYnLBGjIAxJyGaVKAKlSi4kNAVkfYtDWDaiRQrII1FqvK1bVDJOtJAZ+eo/daB1MZZ9wCRKd+Oh8OfdcJZC156DJNU8r51HWpJFUxDlk4hFpACyfJEFNMMROCCEhhNLOr+n/C/OYJD1QQCecWPAACCoi+ZKURCedo8CzmBH2RXYiys9YFZ8khoDFkrbXOGjIlC5csWuZovwo4Z6q6IoIgqqizApc5W4tEkqexlCIqREAGyRoyIJyVRDknhhiNsZQZYpmTC8CobdOCoXhEhY5F6uCs8wKaUiq5GMQipZQiQMYYZ5wIGGdDFdKUN9vlxeXl4XAsuSAK5+K99wCFMyIhQmEpKiIFZ4fr/KWCl6S4Ir2o7ADnsJsIp5y5FC2lbZrgvSiqYskiKgTGWMNaEJEQDeGLUISMKMvsP53bk/O2R/EF2P0yE8FsymQu1llFRTQzIsbY+beD0zghi7OE4HPOu+c9AE9T9N576xRgmCZOBUUVWKgYJMF5wYnCRcgYQ6EKRcWKyakYIpasBYSFX9QhgDCr41BZNUvtXVPVAHg4Hm4uL7lwPwzD1COgtyaNk6k8qp4Ph/XF0gDV3l19+81uv+u702r5yjtze3uzWC76btydDmTM48MDGXd5sZk/Dn71i196Y+/uHg0RF368fyogxtA0xFBV3jqs2zSMfdeP534Ye+/9MPYl5R9++pEA1+vt9vLyX/7wr//8x98NfaZgbl+/zoa3myWnGI+n2B3jab+ydLVuL9fLf//T7//w+z+QoeXr20mYSUyNptLlprq9vpyOURSN8db7XsbzdE7jFDMXExQdAOU4cea6aRzZGItwQUVnfRa1lYsp4Yt3V4NZSMylFPRWCec1KgE4Q1qKGovegjGowLkgqLOOgLxzMadxYh8q4ZLSRMooXNWVtc45K2WPioumfff6TV23X+7uz7vDeegMQE6p5CKisUdv3TSmp/vH9aJJcWqb+tX11WG/d6hfPv50eXkVQshxCiE02+X5eFYuzrlcyuFwn1IqyiuQdrUIdVVVtbLknNebzapdPN4/AqjzjtS42qL3MU7WmndfvTMzCklksVgM43B/f9cNQ5ZyffOqrhtuyvl0vL1+BYzr5Xa9XY1jeni4r679t7/4erFceqDufDzuD5fbyzfXF91uV4ax8a7fp8fn3cE/OqLH58fTqbPOrTfLKWU0JuWigM/7Z1MkpTgfBKq6FoDxw/R82J/H4ebq8vHwLCLM2RKUkhC1H0cVCE2DxuZYuGjKycyE9yzOmIL46f7xdDxeLJcXq40UKT9+VGuVRVNZ1a03FhW8tc6607lLUsDQses/f7k794OpLFs8nHtBNJasMwimqHAs2vV56E1R5dLWfrtZ+xAeD6f94XD3tI85bjbLf/yHf+AYV8vVdr1cL1YpTn3ftau2cF4smszZWvvVV+/rto2pjCnWueIMWTmmnLsBAAtn4WybZR+nx91jQPfNu3dTjPdPzw6pO3SvXl1vLrYp8+F0IGsXq/Z46na73ee7u/Opu7i8bFZt5jQMQ/ChadumrWOMz4+7OE4h+IvLbcrJoBGWlKIxNoSwWDTHwy7nvFou0QcDpnJV2AQRbeom5pylrJabzXYjLFPXOx9CXZ+74cvDw3F/qBbtxdVVaOpXy0U99Lauxime+vPz4fDh06cPnz89Pe+mkvuYUskCYIyxjc8q4zT5xouBfX8uwjlnUeGiC/I++M2Fq6ugTIWhNr4KC6MHZYNSSLFqAoP25yllAQBmqIKvgyl9X0pxxiOCCpaEmQGAFEQKKpAhQ2RfKMGgoCAsCkBkZgcTvHix542wziw9MkYA7cWb1/vd03mcNq+uNGursDt0LFqEyVoB3R3PMU3Wu/piAwDTOLKIglpra+dCLV0/ZGZhDq5iW+q6maHPaYohVNY678NMh7beiigIOOtnfRgizbUpVZgNlaxCisaSs84HT8YY40DROGvIOSKDiGSE5wKs5piGnFQFQFQkxWSt4SIGjXMUU1ws6ypYUEPBhmDTlI6HXXDknJ/GAoCVN8YshtPpOJwQwForLLEbpmHIOQmIIqZS+mkcS7bWE9AQJ9aYUilldnoJC4gwqORcVFFEjJm72/pz1nlWEQGo0pxCUPy5FkeGkIgICOdqtwIQOutAtWQDJSMZQ856BwAvlXsFECUQATVkwSgolJyFeeyHKvgQvHE2xshFQ7BVFUDRe6sqBGitJYS2qb1zKnI6n6ZhJGvW62azuTgcTsa6q9ub593+ebfPrGmauEhoKuZC1iJhSank/OKqI2Mrt1wtnPclZlEwxoZQpZi7YVjHbKxVAWFVAW/dvJ8spRQuc4h6Fo8qoIIQvvTOYT5fIbOyITefP0ARCIAwM7NI0Xm5hoQkrFkSqRFVO5/3kGY3CDAWAGVBmBmJf4EQIIDFF0ctAIjMJf15chKYdavGGPsiqWUpLKLCgBattSmlNEUWBgBDFomMGlEmIgNk5ynPGAAqJXHJbAjJAgGwWnJkiQyCAEuxrrLechEkXC4WhkiKOGcNkPWmbWoiM/Z9dzpeXl6ez+f+3ImwtcaSFeGH+/sQHOx56PoQ3MXlm1DZcZge759UxThbSqnaqk7heDi1y2UdQoqx70ZL9Mtf/ury6jLnfHvz5uHpodxx0zYKcPv6FRGhAarrYE1MUZXP/YlFum6IcSRrlovWWHv/cPd8eAqLYF3FWaaP0/P+IXhCkdq5dD5Dmr65uXrujtbTsT9g0MfD49/98/9dnPN1HcSOh9PDly93f7q/WF+uNqv9/hzHVEwKtYEM/TQdY+FiAE3hSAxNswjWzWQNFmVWRjXOiczfkwjCFiFPk4jYpooguTCoooqbv5fIkHNZi3AhY4kMKdF8qjYIABdXl0D4+fPdw9ODQXP75l2zWPTnzlpvwRpj81jiuD/tDrWp3NJ7ct2xV4X15VbB9F0c43DsjnkaN9vN1fXVZr0C0OF4PB6Py+VyXh9W3pfCp+NpOJuLzdXp1B+ed867EIIUyLGogLPW1x4ROPO56/b7gyFjjZ1SXKyWvvKc1ZAuFnWJqa6q2I+rZVtyGommcVptV02o69BILtfbCx/8b3/9q91x33c9anEE682q8f7545euO6GiU+33+31OZRpJy3qxPu/3x+PROQrepHF0xlRVNcYkos7bqaTD/jiOXVvXKuyMBaW0fxYthMZV7upiS9YEg4m5L8NpGO4OO7YgFqu6RtLKVRpw1HH2YUsRAEiFCQgs7sc4MR9i1MwPp9PT8QxcnNJqsbh9c3V9eYXeFc6q2o8xc77f7U7dKebEIilJYgWLpTCDoiIRkrdjjiXr0uNivRzTePf44Mikko/7XR9LEhYGYe3GCHjkNJ4Ph6vNRdV6RHWOtperbhiaulm0TTcMhLFIqeuKjXAcAWTGz7d149CGKtzd3z18+vTXv/r1tm0Wvp76sVotfvtXvxBhKWka++Mh21B1XV9EFOTd1+/QGjJGjeljZJXpdPKuury4ikME0XaxGMYBBStXXVxuRTTnfD7dC2vbLtbLzWa9XSyaHCcoumhaY8j7iqw7HE+IadWuvA2pjNa4i83VuTvf3z3GnFzlQ90CGRMqQaTAHz7ffbr/8ucffth3h3GKseSUxXqLRE3bKmmccirMUkCRxwkAC7MIGGs1Jx8oxjj08fZ2OUzT075898vvqtDEMefEwVsgMCRQigH1BphEBImgrkzbhiklLiBSXtpEBoK3Jc/XEX15zqroXPOUF4/RS/bvZ5TMC/WEiFWIjEFAQ4BgfRPyY/7www+nvnv77qt2uUSD9/dPx/6oHq9vbxDx3J/ruhblw+E4QzLGaSwi1tILeQh0HMfgw8+0+EJEqpBztjmRsQogKjlmnjc+czcHCEBm1YAwMPPsyQKFnAoBiiqIWmeIyBqDqk0drDEISVJRFWuM947AdkNvyRgikaKihMSFEUWkTONIQE3Tem/HfkixxGkqOVUhTCkO/UgWXeVjSWMa534HF0nDwJllrpYYY51psOVpKMqsPHc9ShZAqwpAOos3C8vL3wCqyBxBBwBFecn7wM9lI5qjLgQGCREJyFhLRM65mdVGFp0xKMDExSAZmiFUUgRUiyQQEWOkMIuQsZ4sAKiWF2uoYynGIAXvhdgZ8tZykeCcMhtrrTHOUl15EEWDTQiVtQAohZ8en07d2drKhLo7jzmBd2axbNWMXckpMqNWVVAUa4MhKDkO/XBzc3txeZVjPg3cLBrv3HK5ENZxnFLORKaqK0Bl4X7oM6dpSsyi8JI4LaAsTEjwMpfQvAKa68dgFIBKUXqB2ZF13ipY4wxZRSi5qMI8Gc3FZ0Jj0FhryRAomnkDA/ximp3D1/qyh5tt8KQEQAoMikR23hixaBHxgGRepB+CFIy1BpbLxWq1imM8FrHonZs/uDNZtOSQyBojzFzEe2eNiwlnQHucchY23oQQqAJhTjFbY5uqbtpGBVIudfBEFHUyRIgwjWNJ2TqXUtw976Zhst75YKdxsMYu2oZLUeUYS8mx73pr6b6+E+HzqVPVtq67/ZCKOOeqRVMv6swZxgEAwUBK6b//4z+cj8frm+ubm+spjqp6PJyW6+XmYnXY72OKgFo71wQf6gAA5/NZQVnlu29/cXm1VZXD6cSsuaRuGNjyOHXHE6ZhUOZ121bOr5uKmhAl1dvN//pf/5/DeBQwk2Cydrm9qNAvN5f3D8cPXx4vr9/Egn3Mn798oSA3N9ubq4vhKf74bz+eukkArAEoxZJbto2wEtnCMDcKp3Hyde28k8zCGUXilKwzQiZZzSDIYIkQtAl1ySWlzEYKF+er4IOw5Fw4s3N2uVpi8MGHXPIYo7VWVa9vrtMUSynb5erV7W3l3d39fezH9WJ5eXVJzn6+++xsePfVV2DMw/3jD//058PpeIhlvVm/vr1NIRkkVby5vOFYdo+765ur4/7Ync/j0Buwm6WK6GazCXWoqlCYu33XtPV4HkboV+tVyak/d+2irUIY+jGlZMl467wzkkrspypYQo25DAPv9/sY02azvry5Pu6OT0/Pw9D3fe9CVbVVjBlYnDXOWIcWWce+I1VUGbozF7bWdMfjp08fQElKEimbi/XV9YXx5tOHz8dTF7UoGEEkSwwyljSdog+udJJyIUubzRoAk+aSoxPz7vUrRdifT+G0jxzPaUwIzGV3fAZ1zjfGODUa9+fZEy6RyTg0aKyCtadx7E/j1QV9/sMfnDEO0Fu/vPvp6mK7bJdtqK+319YgGVqslzevX+3jefelI2ucRTWkiFwApFTBOxdSFHSQASPLOeVhzHWoU0r7ruv6yTrbNov1anl9uZ6GwRFWVRU5np7PLGWa4ufHex/Cq9tXXey/3D2ygPEVGROaKmqhqRhrgq+ctaTYD0PuR2J9en5+eHzyt6+3N9vh1I8xrVaNKBrOJHjqzvf3j5uLyzfv3iw32+PxGGNkle31xXKxCMYD6E9/+unh7uHq6rKu/XLRzviqUPnPn78c9gdDdHF56b0DxLqpnTGci2vJWmO9reqKQY03i7AAB4/7593zE6G5uLjwKps6DOOYOLtF+3g63T09/enPPzwenh+eHk99F1NhFEBSBDDIygYVJOfMXDKSsYZUVFjyNBHNBxYg8EgQIxtDiIYZUpLLq+vvfvHtn//80x/+/UfyrvKWiNAgiyyXwTgVVgC0hlWKtdA2Nk6ZRWB2QQSHqJoKIRpDhVVejOL4Umb5eaWvOjOP4GUTRIg6rxnAGUq52H//H987j03bDv34pz/+uRT+9OFzlrLYNMdx+P6PP6Q0FC6iUricu35uSsRUSi4As6tcLRlCKlzm9iiRRUNksyikwuPxVLggoEguzMLCUkQZcL7LAct8kAMEmqOmhoilgM5leaD5ooQYp6TeOUuI4MhYZ0jZOmOXS8T5IshmpuipogChGeJ0HofFOAXnhj6KQFu1XT8aQgUdxpgl+7qOJfbTUFXBOWcQqHIueJnlIoQuhMI6MaehTzkhoCU7Ay5FoOQiIjTbRQhfQCGzBArn1+efAX/6Uoifs9IzysAYQiLn7MwnQEJhVtWSszVWVY2xznlrLZc8YxeJQESsMaCqImQVVJwxWcXZeWFBM3OIjEllEpY4RS7SHU0VKmONNVQFO3a9CnsiNKTCzJgyk3FTXwQH8qdmsfzrb3/rQ11UMsqXh/ufPnxQFZjTMO3aGhk6RJgMqlEE49pm4X2tKmRN3daspRvOKed+6LOWMm9KrLNeIGcWLKUIFwGZ3bo41wEVEPFlozkrDFCISFkV0JIloKr2vgqGvIqw0yKTQYMCIjofE62xhNaQIQQBFVSJYB1yKZlZXuCIoFpmjNBsBAcQQgOAIiDCKqAqzprZLVNAEYCsASAF2642xo7dNKJi29QxxlN3tNZZ61xwIjwOYxVqALbOOm9L4iQ5cy5cQDA4G6wpmKWo965p6+3lhTL0w5DiNPXTNIwh+LquSuFpipvter1dNYuGkAAhsFXlRVOFYL21KFi4xBjJACLGnIQZCas6GG90UlaehjhxyZxVIJcsIsGFMrWAWiR9+PDx9//6b+++evfq1e3bt2+mNE398P7N6+WyTTHdff60Px7C0m4369Pp+LR7tpYutpfL1eL+85fCXNUhlh4JQGQau6qyl1cbKTnHmBixXt13o0pqzv1Xr2+X67YbzhQjFHnY7XJP0z7vT+KrG+NWwiYW+9Pn5/XF4vbd4t3X37rQ/J//9++eD+erTXuxXkvOeZos6el0bprWkavrCozpDaEx3pnd+VRirENYL5vldnXoxu58mEpBMlebi9qHd+9up2n8+OHj7rTPpThfby8vpik+3D8VLkoYqvbNu/ellD9+/0PXp1DD0343DOPF1SUpB2Or2i3qxS1rHCZj8XK9Cj7w1ItIQ6iIeegD2hwLlJJzkQLKRGpf37wFACk5TYmTjOckCdbt1hiDqsEYzrmyjkQ9UbVqlqvl/vlYpHx4fFZQY932YiuszrvXb6+buhYBZ3CKLJKJLEAh0tP+bK21wSGZc9c9H59BqA51tHkcBrTonLfOjHGqK/f69rpdNnHafvz48fPHzw9PD8vlom3rMU3742G5XqEBFn3e754P+2Eadvuj4PzjBWgMGSSwDJSBh1zIkhjjvR1Bc9/H4dQfu9e3V7rjtm3e3lwtV3Wo3Zfd091xLywGcIippLxcrBXRkpvhEdZYVpEM3lKOmZmxcscUk4iwEFEZRuyP1eOTQ7rarK43F8u6vb662F6sRdkgXWzXCfh4HnIujAYMWsKSyzgkQGOoAQP7MfUjNY0nZ4YEo7BvKhU2JG3tENF7M43TkBMAFGYAjAScI0nqPqQpTqLkrbesYGnKcZqSIhgiZ601FkTnR7Uh/Onjp83yYrFYCbYUqh8/3teVu3l9U9cLgNiP02K5aJvakBn7Icf09PC4Ox5LLq9uby3ZFGO7rH+x+O7p4bE7nq6uLr3zpRQLGJyrnJti6rtOmEOoDeG8YoxxPPU9TlhQspTj+dzQEpxRq+BdzGU/9OepF9WP95+f9s/P++PD48OhO3XjiPTC6jOVRxAu6pzxlUWVqZ9UkqbsvTHGLlZN4dL3g4jmnKSAALpgCYlqt96s3759ddzt6mCs88E1CKZpqtXF1jijIIJ6PB4BsK0d0ssJDJFCQC0oQg6ttZZeVJs8Y7cAZ7fQC9PiZ2ItvgwPswyHcL7EcCnGECApAIsQgZ3GrjA574ZxUs0IVNdVG0w/9vvdMzkLqMbanPKUpmEcUoqFuXAhJGPnczMYMsH5fhqN87PsSWR2TYqwpFTKXIufs76qIqyq1gaY/yyKoC9XCQSyZJwzooYLE6KxRETWmuDdTP2wjurKOzuHOFBFSykpR1QMNlRVRTg/0ZWlxJJLRvYwSoqlGCIyZtG23gfn7P50OhyP8vPyxlqrolkY5zYeUhHmzLUzhZkIXeWHnJiZDM3ip9ne8FL1QkAgMvO/6/wknq92cxrX0Mxpm4MpM5cS56vefP8CAQDFl9gvzZhbLiwkRZNwUVVr7Yxxm7dNBgAVShEUmWl9zhDAXKOCkguzxjxaYwnnIgtZssH7YG1Kk7KStYTEhJbMFLusEJoayaZY2qW5vLy5vL6eYlSL3/3yl/8lJuvNH/7wh7//u7+LQ9/Wddi6aRimYTrgQZVC1XDOjw9Pw9AWTgoMEcdxGqZJQBDJWlRV65yqamEiAmtZOeesKgCEQHNFC18YPQiKippKDs5b6621oCCsImoMkDHW+kqxlDJPMDBjXGanhYoo8jzKoKr8rMyDecZ62c0B/IVKYABeOvNIxhjrvQshkEEpZRpHS1h5ryCK4HwQBrJOGZp2dXUd3sDbGJNoiXEax1g3dc6FuVgXAAEIrXFUJBizWi9LKX3XI6Kq7J73wjiO0Tnfd0PKqQrhJV2XU+RsnemnCQFCU+WU45i6brTOVJUP3gfnRdJwGHLJOSVCPJ9OvvKhCUiQc6kXDeYy7Y5W5btffHs4HP74++9jnioXdMUxRQIgNOM43H35Uld1KVJy2m6Wq0Xz9vXt0PWpPwuXd2/f6qfPTV2hgrBcXF4E770LVTCh8gU8C/dTd9ifpnN+d3396ut3P/zpBxA8j9OY9qK66//9jx/vjJVp6g6H3TBEwKApBKhcgs3VhYL3VUW2dvVyc3m9vLhMmXxYN81qOfF/+k//+ebmIk9RpTx8vh+6XNWLq5ubq6tL64MoWGfGfvjdP/3L8/Dw5t27b37xnbHmNEb3/Z///OkDKr66uX37+tX19WXfd5z5eDxlKRcX29/+1V/df3nY704xJ+vcxeVFXdcxxsVqyQ9PYMznuy8//Pn7/+2//O1Xb2/vfvyYUzTN6vrmuu/7jx8/dKfz+9+8Dc7uj/tpGIYpTn3/i+++vX33Vkr+7tvvXt2+7vbHyrn1ajP0PRkbbKVarKU8KYjWbW2RnLXn43F/2F9eXGwv1jnFpy/3MG9Zcuq6zljXVD4XGfphe7UGlTRND1/ujYG2uT7sDmkab15du8r1x0HFsOZYMrOGYG9e3VjvDodjCFWoqxgjJmwWi8Vm3Z3Pn77c/fDhw+G4H0ssZx55Yha/bgbJUor1Jo45xpRyMk2FAMYE66wiocVhGH1TxWGYYlKDzllkOe+eJI626LJZDOPgrN1s1puLCzP4/enchCaYjo1hMChTFMXuXNWrum6mcbRowELMEwEBuJmLkTLnLIDIzKgoxgDqwGBU4u7wdDg5xNWi2a7XofLNcjGB8jRZaxhYiax1FrXvhhRzU9fkvbHYxzIB9yUf+yQsaGbmhcacT93J+4pFhQwrxJRZiqooqAk+l3Q8HUS0CrVR4JxL5DHFXGS+o+fCOfEM6AOWqeuvVpvXX91evL4azpMxdPPN2+HY7c9D1z0cDsehHy5fXV69ub3//DDG6ermwtZhfBz+7Q9/TMK3N6/GcUpAm9Xq+tVNSVkBYk79MObDHgmvbm/ilFJKxrlm2QDhaejWqxVZ46swTJ0aNc7efvPGVtXDw/N5HL/sdv04fvz0eX86jrF/Ouz7sR+HOGcNRMXMAwegFEaE4HzwhnMWzgHBWfPu9soF38fia6sqBmQYJ++sAoJFY0kL+LbxDkByFUxJ04/f//l6e6XKJUVJk/d1VTW5FGkaMjilZBwBo7eenCFrpyGSndUCDo1RUbJiE0piJAKlUhjAKKLKC5ef0KjMzHchQ0BYRAxZULBkrUUpan2wYxm7U79/Oi03i/fv3+fM5Jai2o8dqFoCH0IRHro+5hGZLQAC1HXlrAfCkvMYx5xkfvxbi6UwGc2ZU4rzcy5UfjyMJSXE+dpAxppcci6ZkMgYY/DlEWQNEVoihRfItaqWUgyZ4CvvLSFwZmOs9d4aYwxZMiLctE2MSQp75xUg58wZinDmXFXh9Zvrqe+rUG1WDlWvL28uLi+aplmtV8dT/z9+/y8P+12oVuNoQTSlWHKZ06hkLSDkwolAi2YVVuXChcU566wvnI01Hi2LiIojR8aIFs6iSsYTIcFciccZukbwFzaT6DwOIRl60dWygii/YE6kcBKdd3rOEBhCmPkHOPtEizIocMmKYMkwCyEhonUOCEoRzgyIzhOSLSwKdrFctMsFKPg6eGunXY6lWG+WbVsKq2hotaj4UHHWczdIjsP5VHkXS3nz7u3r92/HaRqGgb7TfO7/7ff/Mp77HKemrV2oQlX1Xc8ls0KMY96NOWeRYpxhlZJLYTbGGhtkNl/MsMh5i4hqrVUBmIHQMs8uc5AcAQlQvHOgKKyFGAFywRjLjCecLaf6YoBRFSE0M3NJSlFWVi5ahOUv5bx5MJ1vUqozZE8RiZUFWEUJLaAhMkQGEJll7q+h2vN5vLrcWu8+fPwQp9QPvSF7//xwwau6aYwzKaZxikroQzXsjsxy7M7OOSmiCEW0aZfTmI+nHQEsmoUDw9ylHGOOdd1QoGmMx+5sDPZpqnxIKVprXWCDFE+ZmadpKqy5xAPR5XZrDacpExpnHaoq6LnrW1DrbXfsVGGxXpA1rBzj9D/+5V+RjA92tbpardZNCKXwcO6O55OyeFvtnx6//u7bVzfXp+fDw4c7mdLN1dV6sWjb5uvvvr6/f+RUJOftxeZyc7G93Kjk/nQkq2psjHE4n0tXBPL5+WTBDMMYE5d9r2BtHVhl+vdPZIAspDgqFKud9JFGDclc1tv3t++c9Qb9crFZr6+MWfYj2nq7efUG68Wv/pe/udyux3NvLXXjP9LDUZy/ePf66vK25GKs22zWcRp+/Pjly9Pz1fu3X//yV6fD+farJYXq0+N9SXxxc/WL3/yax2ytf/16uP9yd+rPb9+8fvv2DRcOlUvsAIQlD+dzVVe3t9ePu+en3f50OFSVX25W377/Zky5Ox0J7JvXb26ur3/8/s+nw4mBnfeVr1PXDedhPPeVX7x/8/rh/v60OzyS2T8/Xyw3Rk1OU3AOVJ8fn6s6XF5dNG1j0HAu7aLKuY6Pg2p2Dg24SaXvegYx9gWjiiAOdVH5gIZU4tRbR87a8/nsnANDXx4eyFiyRghVQBiqtmmatk+jq4OZfJ8mv2iSlAScx/yv//aH3e7pX//1nx8enhbrBVhSMgVJrJmm/njoSs6I5J0JoRKAlDOQMQRZRYVRgAGMMcvVyudMhlKMUkrlHYO6ChbrFlTDom6vV+ro4dPuPA5jjAwYMydmESCELBykoACqWOuQKKcEILkkYwyIznlJVOT5RD2/CyIKYVbIsSjLmPNpGG6urytfBVdNqRCgQ0IAZC3AQCAKmbNOEFWsMWpp6BNoAhUDaFQrb8hWxy4RFusdIiYuwzSVUoiADAVrAAyQUy1ROKWJixQRIGRQFZgiWwNE6NDwJKiKjkxlP919ySo5yml/quuGSybEcZqe7h8Q9Tv6xfb2lVbmeXcsz/DTp88/fbwfh4kWFQZfVzUAcGWruo7786AcfCCodAIw2Kw3LdL++di0TbNdqUiZxi5PwTsbHGfcD30WjflwGobf//GPXx4fjufTmKe7+ychVIUxToWLNyZUnpBSKlxyU7fb7YaU4jQ6Q5tNM/Z9nobr64vLy4vb21f92H18uD+ezgiwXVdVRUJorLPB5ZRIcLNpgcGioMXTeXr4/DH/9V8t2tDUngBUSsnJkFkvl5mFEVOJbV15NKmU2gdDSIMaImOtAJZUlou64ZDGRBZfMqBkhJVFfpYgmcLMRZXEOoeIqWRgtYTWGENUsiihHUsuqLvTISwrJRpiF6cJkcCKDxYR67rxlQMFHWTG7U7TKC/nG1QRnuVOBNZYEFQQAU0pppwNUi7ZYiAyZEgV5jgPqILFnF8CRDPfeK60gQIrzzzAuf2jMhspxaCZf02aslWDHrlogfKyQaG5Tk8llzyVVDJZu9ls23bRLpbd/iweFqs6DTnNKxwi533d8HqznlLqh94ZE1NKMRMhElpjkYhBWZhLAYVSOE1zGldxnjUMvbS2BYwxznlrrKgrxCCKSDOJmFFmqONsDROdnQwgLKyALHO7bR4Q5/zWnG4nAkIkUELjyIITwtmsXgoXIjJkVIGZnbGhalBePhAIEOe1lEFhdd5iYQBylfdNKLFMsSCi8S5YMsGLoRSnnLkITyln0eBCu2wswf7p/nw+bC62yq+Ou+fPnz6L6PZi+/rVq/F02B+ejof9ZrMBgcuLi5zy7OKYxsGpZcm5FIngnAnBe4CYc0wZXgRwrCysRZiZC9FLoW8eY17cTDrLXXA2x81GCyxqrCFCEc6cCI0oMIvySzwfZ/4VQCmZ56ursoC8BLEUXqafWZKhikjGWPOCyJN5YCUkYwkNlflwKwKKPtQEStYez93ueMoptXXrfWWMlJL7YSglI+B6s0KEFHPmDIDWueViM8UBUdAYI6Aq0zimiX/z61/+r3/9vyjrhw8fPn/5dOr6x+fnlLMSOu+stamwsQxERTkPU9NULGCtI5MtqhYshYd+MEiq0rYNIhAZY22MyQWbUmSBUAdAAtBQV21Vdee+H0fn3eXFxaubV4RkkOSa+25waC6222bREtDT5wfVosKEcnN9uV61f/rxh7tPn6eh68/naRjczXWOJfYDMEPhYRz78TT24zh1jQmvXr//27/5T2Ocum60WARtaBboA1jbnyMQW4O5TLE/n54f+uc9jRk69ptSe1PKYAz4KhjnEYOvl0jUNKssam3jqxVRKDnVi0212BhnrW/qxZqFkYyrGnRuc3W92e831zery4vQtDaEmzht15dTiqvV5ub2tWSeNX03d3fhWF1eXYaqaZfrZrEkY2obXt/cvHl3a4293z0B6DROWeT7nz7+4+9+F3y9CNU4pcfn5/V6S9a8fv9OWb58fqjqeoylaldvm2XXTw/3Dw+P9zmXy8120zbXF5dpTM+PjylOq9XKGROqsN6uq7oSZhCMcWraan25UdTVclFy6c7nlCOLGGctmWZROesR1FeWyDPnw/N+mCYB7Yfx8mobgu/HIae8XNe2cudufN4dq7pqF+00pa7rlusVevvw6f7D/R1LORwP5+6US5rG6e7xKZVcgUoup/FsJw9ki2axZG2oqwYRfRWw5PPzPo6TU+ucm+XCgIBZloulr0LOWQsX0SoY29RS0rHvhNkugv74gVV+/PDpOPSncexTSipFXkjcc3wz5cIiTgGVrPEIWkpOudDM48CX3f+cLp0pawQoIIAEVhKopiwE7XZJaepztNaTAVIthRXRks1SYi5FBFCd8xa0iAirCCuDIzDWZEEVTXGinErmzIyEzjuyRlimJIbIej+cE0lBZGEQQWMNITFozlwKG8KcEAEtoff+OPSPv/td++P3whCnUoqWIt6a4L2CDkN31vz9x08i5XzslqvF0KfMOaf83//193/+6dNms729uV4/PxsyKFpXrTFIRIDUD/1zN6hIijkMNe0eVSWV3HV9KSlPQyzxcD7207h7PuxPx/3hrIToKGVOXOq2tsY6cFjmhzsbxOvt9vrmxtrKe5+mdNo/G5BAdHl9+f7tX//qN79YLJd3X7786cdHS6UOarxzWdAYJbLeG2OLpeBscCQ5O8KqCnkwKByc8cbUwYfKymxba1tmAWEVJhUQMYE8OiVvRckoATnvkQznoogpxhc8bZ4F71YEgMAYnHWOhYsKkqMZvBzTBAxE6q1BIAXspslWi6b1i/3huNluh6G/f7ybhsn7EOMIoJbAIBgCIp1DuogwAUzD6L0PVeWdjzFxyaBojZ2JzjN43qJR0BzjOCUANca+XBvwJeI0J2Bo/u2CijIXLioEpCCIL9QymD33WRIlYFURJcixODKzGxYN9t1AxlQuBO+atvVXztdhe329Wq0+/PjhdD6d+9PusH9zK6J6Ph5jil3fPTw95FS4lNWy5ZyGqeNSZhyfITPjYZi55EImc9FxmjKzEgIAFwYiQ/M1kWfknSGar+FkTClF+X+Kx/WFWfDiAiOk+cjCLCryMwePSA0QzJcva9GSNYQC4oz3xsQUi4gxaC0BWgS0xoizCgCWeL7cFM6lqEphFhVGYGbnvLXEIt3YMQgZREXpE4ioCo9ljENMcdZuDP1QRC42lyFU/XAGAedCcPbPf/hDKmm/32+323je9bvHVVsRbEqceMoAuN4uu9MZEa0jEJkDNpYQLfnKllQYsKQERDOibm5/geAMFAVAfSEVzxeqn/UFL76K2VQ5Z4II58kQEX6OVxGiEBGptZaAAESEpagUmYvu88QDAITIqjwfiWf5qQqSfSFGzPBoVDIv4hhV4SwzJRoUWAVZmCWVAvPHsaGYEhurJac0phyRcJpGax2rWHLVtnn/zdf73f6nn34yBMbQOA4i8vr29W9+/R++/uq7x4f792+/qqvmeb/bHw6f7r5MJTa2RgLnHRBMU/Le9l3va9e2rTc+x2Qt2spUwXtjU8mIUKaxbmvjDABkzsjIovWycVWVhohIr1698s5vLi4Oz/uu60vJ0xTXq9X792+buh378fXVzXK12u/3x8MhT6lqjAEEla7vADRO4+m8t4acJWeNI4zj+Vim/nD0Boz3aSS/XFxvt5UNi1WLQqvV8s2bt90Uwfopcxwk9kmVEeR0Hkocc3+CWK7XF9dvF+cvu21oNPcpMpbUBCeiRUVJixQGUbCKRGQBMqBBa8FQEhiikq+8NYU5CYgYdF7BDmNBG3xtchEfwnK14sNZGMax1FXlHC3Xl027fX46F8ZcBNHW9VILbDarpq6RBY1O4ziOE3rnKnPM6fc//nD1+va//se/Wd9clZSykePTsd2spEhS4Jz3/XBRhUWzeP/1e+McgIzd9OrmZtUuQ/COiBAMKaL4EELt8hRBJNSBnDLnOCkDN6vaOXvYPX/48GEcprfv3zfLRbtYLqTknMYxDtMICsZQ5tINIyhsthsBGqechcnZ89gPuykxp5Kx2NPDY9f3i1X9h999/8NPH89j/7jfMRfnbIxj5b0h0ywXLaklM6XkvFWQ8Xwe04Ro6roW1qxlyCVzSahiMbOALdbb8TzGnFQ15kxAZYpVXS3bReE8pSnneO66NHEy+Olpr4BjjudpmjIXAAEDoIbIWceszMDCqFg4IzO+SPsIlGdkPs4wU3y5lcMLIF5ZWKXMfZT5sTpN+dx3w9RnTizIoMwiMweVQQWIEIly4ZSKeXnPMjKnR0ND1hNhLDhMqeQiKGRRiskMqspSjCFRnSKQEWsJhZyb3zRm6l4qLBkUVWb4Zu2DQWTG89OZixpnU2ZjXF+yETYGE8tw96DlDghT5Ophj4ShdmlKd4ezMdi2deWDJ8vCbv45NIYAEGfZL5Qs5KzzbpoiCytpLmUcpzxMLBlUfahzkThGNFSHAARK4qwTZYmFRFZNqH242Fx8+9W3zlas5fPdQ9cNcRzHqTMsm8ZeX6z/03/8q+16naV8+vCn0+EJlZvWkyFjnQ3EgEhGFYI3lXeckmpxxiASql5er1erSqVMcQAE3wQgM6ZhRpmgiCWwRAbJecwsouCNQSJnLBqaAf5iyZAjIFsBGZrFkYiABKLKWUAdoTHeIJnC2ZDhUqxBg4qkwrBovd0fji44JTwNXTcNu8MJGNC6XDIZQ86UkqZjPJ/PKSfnrQ9hsVhUdVU3tXN+Giey5ng6p1LIErwkcmSeuQozg5SUiMzLhgaQmfUlWzyjXeBFiPmzsEdBXmCtMKsMZz8YTcPkrbfGWEsGDSJaa42ZzWdirQWCEPx6vUbApqk3q/W5Ox9Px5xzXTcl96fjqV20aKioxBh3+wOoNG3DhY21UoQIq8rnwnPuOzOnklNKAiisqWQRBUWy1tgXojMBMjAgqChnBkWc1ZkszAwAOgdPVEopoAKoSOblRxiRiBTAOUvGIJKhF+si6EuWW3Cm+1jnLWuZ+//WeoUsIqxqjEODhKaUrCzCLMJzMkmEFQkNFC5kPYsM4xhzng9vyCDMwoW5GENV8H95o7JkELXEmCXVIRjjn+7vFR+BSKRwnPaPqKApRkIFLv0wLpbL2rvtdjUME+W8XNaCM1tOQlMtmqaw7Pd7zgmNJUMiAqCEgAZUzMucCD835+aBR/8CRZxdFS8fUQhA87hpDSHhXyI7LzFzmBdqwGAVEaHMiE+ctRUvJ8h5XARAVALEFw0vICrOfngVYRAuAogIBkWLiJKCsohUoaqDr0P99VdfF+bd8zNzbleL1eq9Ier7LnGe/0zO+5zLNMW3794vluu+6xHh7sNnZrm9fb1YrD5++PSH3/9+uWzrevHtd+tfGPv1/ulx97x72t/fP7hK6uALi6TMqsfDOcVycblNXLRAWzkgGlMW5jmsnTslHAFwHCbrnSEK4Of3mUUTnDEGsW4aAsw5D8OIuLOWnp929+lBuFxs1ktAg+by+spbApU8TefT4Q+//7eUEzm6urzuxmiQmqrtTr2ksr68lBwdalWF64vLuqrK/JnL6cMPn4fcH4bzWHIqcjoOKZai6r0f41hSJNXGmou2frXavN5sHvtcq+mOz9ZVzgFLijkWSYwQJaqBUHsfnKIqoSjWTauAeW6XBt8PU+Fc+cqQoRDCcgHGCEA3TgBYNe3l9Q35SsmMU0Qyon6xWC+W68VyjeTP51HRLBbrp89Py5qH43AvD1UbVPXq1XVXeNAylfjTl0//13/7u6YK3rg21I/Hw4ePPwEgIa43a+v8ue/6NI3n4c2729/81W/HvusOp812BcD752cpZblaNIumO/bTFK+uLuq2ySU+PTydT6e69k9Pfczx5vXVomlcCO1yQcYWZuM9eY8FrcF4Ph13x7ppXt2+gpRgmJwLJoTT6TyM/TRO3rtxGvfHU1XX++ORAclQKvnPH//8+Ph0//icuIRFULJqEZi6cVg07XLRKEt37gDBGluYSyokQIaGbjzuOjUAROSckgKpgBbGoe8A0XoroMMwWGMutpvLi0trDGs5Ho9WgjrbD32XCksyzo4pdSmLoqJBQ2Y+HCgCaowTgCCanFmlWOPnSKsxdo7+zNcABFVhBAKj8PNyd+41EEC7WjbLRTcND4+7Mc26RxRQZgVC5613HhQQjMwSZIH5g5d+5mMokqABxJmxpobmx2pMcbYbG2ckZ1AFC1kABA0aMARKLC8ZoBf8qgAIGAtTyQhUeQsIxhGziCHjiQyVwrkIeVdACwuwmtozGgQ8T1lYjDECeOhHPff6szNIVMgaSxYV5wkQCBXQB88sMit6AYTFGStZnKE0RRYB4Mo75DwOU7uo16uFtWTJLtv2+uLyYnP19s3bi6vth4+f/+G//+NPf/7e1V5ZncPNukEjYHLK/d39eSrT0/Nzlrzc1GNKMSYVIQQypKg5JeMdqjhj6mXjjBPV5WWrBP/+/Z+U+OJ6rYJqUVFyyqpIiM6gAkmRggwIU0ysrC9AFEaDeUrzE8GgsQYMqkE0xszhGeacMxuLRAYEWAuqWKPVqmFmBNBSWJm8a7y1P/70o3dOWO4+3bkqVKFu2xpRwdCUppiRay6iY47Cgmo4plAFRJif7WmWYSkIi3VO55MCCBEZawozKhmySC/M45l8aIyZHyOKoDMGqIiyIKqxbp7wXo4RRRhRihQWax1ZM4+Y3hjng/fWGWstLRZtYU7T5JwnQ08Pj3/+87n6/kfRkkt+dXNbe2+tFdHgg7fOICJqcCazdn1fcmYpYKBMjIhAasiAAhQB/fkFxJAVqwREFs387ASe1zlkCmcRVc2CYtTNavE5F0Xznp11zqUbMjOeb15FGEuG3Nz6nucheMnxvhxdODMqLpeLUFdEhgtPsU8l51Jm+ZoxLhg/h40QUBCZAXDWRjpyRmGeNAwRAOj8JJ3z5ioqyiWnCisyBlQl52BdCL6tKi6ccy5xKsbkwtaHknSaxmQMAuSSm8r74DySbertajUcu6nrT4dT07aXFxsBGYZ+GMbG+ybU1tsUY86pqAAIIgirvHhJFZCYmejFyz1/QdQAiMzFurlGgUgi4J31wRGY/3mymi+LoiJARGT/8rWfNe8zZvp/hqJhfl0wL5TQeWyClwEKUGmeu4RZlWEui7/YWkhUS05cxHl3e/vahSp151DXoVoBc7NoZ4mdccZbN00jZ0mp/Nu//tt6vW4W7fXljTHu+LjLsSybhVEcx2maJoM21I33jff+P7x+U1j+6Z//qZumklNhRTIpJwYuSs+7PZd5RWrHKfbj4J2tgldRsoSIZGixWhCZmKK1VhimYdpebpxxYzelNG2326oK19eXh+ORcx7G/tPnqKqn43noxrfv3lpLdd02VXCOkBlAiNA5u7nYNk0LCpzZGgCWOE3BmOvt1en5CYpu25VB88OXH+7uHr483u3Ph8PpDB6Nd1zQGue8V4QuccnFV2QdicjjuZPjAMfeszpLnPPm+vL0cHp+2r9ZrwVAVAFx0S7CJjRVxalwVlLaLC+uNtdDP1xutijzzbEQlGYRrl+9Ph7Py/W6FEk5A2LVNLev324urq6urtt2aYhSys1i9farb3xol+s1OpuHeHF5Rd8pSQk+LBaLYRyVYXt5cU4lnw85xvN4/v7HH+I4Xq63t9fX4zjtD3tnPedinV2t1qv1EkTufvx8+cP2b//Lf35982pZ1XFKTV1VwU/jOIPXm9aHKnjvU5pO58PYj4aAObNkKWXqxpNS8NX19avz+TzE9MOPHxfLRbNojrvDw9PDZruu14unw+lwOtqq2h9P3//wfc6pO56vX1277ICUVR53u+f93lh3/eqaUHKRq5srG6rHp6fr1zdTzJnL0+O9EkZO2MP/j6n/6rosSdIzMRPuvsWRnwwdkap0d1U30AvEDDDkYNaQi7+Sd1zDG/4C4IYggAEIdKO0ykoR+tNHb+HuZsYLP1Fk1U3lWpVVkZ8427bZ+z6PSNof9kUP3FT1bDJxnvsujjb6ms2hkInqMCZDA0QHFkUQEbIwe++D916UxIjZmUDVTDB5CiEbPmy21bR+WO/VIIsBo6ExUmksxyQKBsQGWB4kzJ6YQLVsdE3EDEpHE45SY0QEEVBQBHTOoYkjTtk2+0Pfd10/ipmoIZIxIgERgqEjF0IAwBTjmME5PL6vYmGMWTeMMQoxdeOoZuWOXo4DiGZoRF5zKnh5AsCC2RQ1NaTy0VFopmRkiAYKKalzOKQsYmaKRIqQVVUyGRKTqsWYioxFTXMWJFJVVUFQx0xExGRmIKoGzAxogJaP9gN1zoFazImYCvgxpyykjDkQzJqKACrnp9NZ29TTyax4dc7Pzhbz+Xw2rUPVVtPHTx/fXt/9h//4n/7wlz9cP9xkiRV7Ijq7nM/aWuPQ5+73f/6jI+xjN2oPHmOScYxZhJ3zwRGzogEIoJhlYopjFoZmUj9++mToh1//8Xd1XT179rSPaYhD2ZcTsWOnqillBKyboGZgNmZLOZsJEpgcp8q6qhwzE+aUENU7CA6IWRVyJsfewA6HQVWJMAQfKi8mdaj3u50ImGhdeTcMg5g1TUPB5SxW4Xa3F80AaqCiujscsuRsUlVVljwM474/pBhFIVSBkcZ+FLUCyYDSRVczAxPF0vkWteO3Ckva43iQIBAVU0NE54q8CZiPJsLik4K/6roLEAhRRDFpG6oQPCGVLRECas4ppYeH+9V6JTlXdS2WD92hqRti9ODPz85DCGlMaYyH7lBmEckCaOwYFXLMw9iLCiL6KnD56iozO+cdQAknAREgQlZFOsqey47KLB8f3p9K26pajtUigIjeOaJS8TaVUjhC5k8UPjBV0WK0guM2hBDUBJFU9Qh+Mum7QUTNFPDozVIDQihfQDHLZUNYPNlljUJFlZpFhZjKP5IPgYsjdCp1qCrnVGUcei6fIwjsEIGz5CwRwAiC5jGNhy7LtGmdo2Ho6mo+aRsRaeqQx7Hv9iKRabqczQUE0TQLITnCynvHHEKAGFNKakBIJbFW0AHekYHCEdHMBbgARKpylNwjIqKvvGNy/ImsCIJQrq4GVrpxErMyEgDkLGWzo9mISzEO9LjHw5L1AS3+NkQzOoayAY8tPfjria0canNK7NkxIxgirFfrzWbXHXaIiMxpjCf384vLs0eXF97xZr2+X92jIbMbUx7jkDb57ub+0dnj4MP67uGw3QffLJbw8sXzzz/7fHZyklVvH1Y313fDOJjByeIkpxRzHMc+5SgCoSooIj49OYkxbdfbMfWnp0tiLrkz9k5FXPDz5Wy9OvpAmNnEhGToO1/7Q3dgR6EOE5045yftRLLc3dxxRfu4/8Of/+AcV75xjNNJfTZfzNr69OSk6/urj9fIPHSdQ8/gl8tlt9+/e/O+qevr67tuvz0/OZm27bvXbz98+DjmIcaBCUGQsrVVdXJyNg7j/rDXlCtCi6nvUnaEY9oOOkV3OplElev7m+zdh6vVfjwMaUwp90M/mbWvPn9V3hyGYewPXcV+Pp1cnp/6x5dPLi8Cu7apRnFMzrF7+uyZmlV1E6OklJmcGf7sb3/2zTeviVnV+q5Tk/ls8eVXP3j52ef77jCkfjxItQhTqNcPt/tt19aNGZydXdDQh7CrXN/OJrvtFoEe7lepHz++e7/d7JppU1fNw8ND13Wz2fzzVy+94/ffve32F48vLh6ubv/2Zz9t6lBXgV1FgCnG3XY/m02qqvLBpxSHMQ5jZEf9bpjN27OLi/1m9/Hq9tmL56PY++u70DTeV7er7QmTON6N48Prdx9u75um3fedAmaRjx8+nF+enz9/0kya3Wr38HBftbWYTaazpm3Pzi+6vleD5enMfbzuhv7+4b7rezHtx95Uco6RRkQUAAELIXAIlQtMSOCXp0sfqv3Qbw+HKDkYRM0qqlkQEcyIyNSqSVienHT78WG9LpyU6bwZYgxNlQXJBTV0VchmnLnkIYsS2IzIkaZMTDkJHAG5lnIiA8cOzLiqmFFBU5RPy9pCzCAiQwCVbIYcwnZ32HcHyVlFAVEV2AEikwdVi2M2j3XjHLucxSCXB1LB1CEisg0xq0QkKM5mFSikTAUEQ3LovDcEyHmM6h2KmIk5hzFF51yxVZkaGIqaY1KREAKimUH5KCOHmMHMUI3pGOd2dZ1zRsaUs5oRIDAiMgBmM1IzM8cIgGXLYgoSS9DQcdlqlweMSKhDRaQ5M+j5fPbFi5fny9OzxeLx5aMXz5+lKM752WzGwcUYm6apvMspS8wY0357f3P3Zt89eGfNZDo/m5tBqAidzBdTT3xIXTx0Ctm3DojIhYaPyRAxFVUOXNdu6IdsqplMiZylnAFBwPqxF9CWSgWIiRkJPDtmR8SS1Tl2zpmhp+DSkGIUVHYOkaEx51zwHlQIKecEpp7JB2R2kqlMioXtr2bsPCK6ynVdFlG1MqSyqjgjSjnXYJdPz/fbLuVht9+owGQycd6JxH3XJclZJIn4EJIoASiQmg1DIgLn2JBTjIFYQZnIyBSwYIqZ2TEAApWtixqU5zMWVRxlFTNURVNgJu+cmakKAhAQOhQRdhxq751TVSBQS2PiEJwi5aSixa4KIVSl+I0IRJCTlJ3Tfn9o62a+mDvidVynnLabTY4pVD6NaYyxmTTe+7auGWiMo5gQomcnAp4V0Bx7EUEFlSy5LEsJDbQgg9XQjJE8+zLnIYAnVodH9LNaoe4RFoyBEmF5xyoLpGKgKt3vcg4UlaLCcOSYWVXGYYwxqmQrC9qjQYTMLGkmxhRTjpJzFJXgvQ8e6UhDPu6U1BCJHYUQXPBM3rI6xrpuS6BdVFGxmG4IwbFTEQ44joc4JtWN844RkIFIACTneL+6C95rKUFINtP5dHJ2thjH4fbhDsGYwSSOwyAqOY0gZeQlBEPE4Fw5mzrnAa3oXY+XMEAkEFHnPHwCNSOQmqhhiomQrXyBC5zDjqglFWVjcyVErwBGhN77ktZSUQBTU9OCysJPAw5AoVPasRxW/hNCucZisdgqgoigmRGK5N1+x0w5SpZc1w0TocPNdnd3fycx1VUtkhzxyy9ftvVkt93d3NzN5tO/+4effXz/YbdfnyxnTnUc4nJ6+vTRy0Hians3DuMff//H1Xo1W8xePH3+6PLR7cPNf/6P/8lKOF60qeqqrtt2qrZ33iEGNM3jOMYxOCeS+66vt/XyZDGdNuMwIgCZ5ji09Wy+mKac2NGh7w5dpyIXF5fEbKqhqURSqP1+t1/d3Z9fXlbM96t9cPzi+ePnT16OcfgP/+k/vnn99uzi7G/+9m9/+ctffXj3McWokhazpRIOKd2t7pfL2XLRbh6YegLCipmJs2bOSXdbHWMlOqtrRVBRc16SmEkcx7v71Xa1VYv9fmzfvmsmp+bs/uEuWn7/nifzaT+M08k0R80pDdvdyXSxnE6CSuMrbxK73X67PcQIzm32W9F8e39/dX39LX4rZYrMqWqb3fbg2L1ZvI3D2LbtZrUxgLPLs/u7h2EcweDli2f+Ga7vTle3t7t1V02r+WxuoXrxEuQtbQ7bQFXNeDKdf/b8xfnpxffffbfdbqfT6bRp97v9y5cvfviDr4Z9twxtcFx5rmqX0ojOd32HKk3bVIF3m831x9vuMJ4sl4i4PDlbLoEc9uMwDnG177t+6PtxN46uaSJxyrkO7uGw26sw04C47fths3729Mluv7+5u5/Op8uLc0FS74Rpdr6oJg0iPtyv025zcnYm2SSL5PTh7bv1Zq8mt1c3h6FDRgNjpJwzMnjnDdD5qmpmztO+OwTnQh0ggDkkx+R4UgWXgw1dtASAlXPAkGIcc5zSpJ1MUyozDaxXKzWZTCfMPF/OdYerzXbMklRU1AWPBKB4dEhbia8iIqkaobnytgbYtnXpdI5xlJhBFJ0jxCT6iV6BZoBHBsnRgEneqybJVjDfAqZJkdgxgKnkjNmIMHgXU4byClnucAbZFMBMgJlFhDwhMBjmnJFJBSgJIBKRc1AuBhycC2zgU05ZxTtHwIAQqhrRkiYE1JwIIDhGUEJyAIagZfV8ZH4giplBYJcwIyM5Z2UFCgWYz0nFsU9iTOi9czVj0RFgKcACMzDCtK6a4GdnJ4vp7O/+5m9++MWXjQsa03I+Ozs/E5HDoTegKrQJKxNIg8RxDBX2w/b+4cN85v/hn/3YhXB189DFYUypcti2wXuOw+gq7MYdOSYfhpTpuEknE0xiYrlizFFyyqWRbqDdIVLPVR00RclxyKlLIyDmnFQUAbITYgIwRPbmxnS0NCIZMloGzUYeCp4EEAzNUNijJUg5KyB7ULGcVTWXu4BjVstmqmCENIwpjsJMzC5Hc8SoJqvN6v5BcpZQVwY4ppj3G+8CO3IhEDgYY0xZ1Ji5/Iggq2RJo5ivUszDMIpk51zpbJUf5zLgI0IWETFEEsk+eOeKPl0BkVQ/hc+QCLWs8rI4ZnZF80HAJCLgAxhkFVB1GFMopegkokBGcJz7RLOZSSdIhIQiOadEbatZuziuN5ucknNuGAYDRTNCjDEe9vsYx7Lnh6MqVMrOjYztqIsCBCBHZsXfhWV0QUMBKCrpovZQgWNHDFFyBgJHGELtnBcRVSk5aGYWFSKmIwSpbJIsZxXNqgKqpoKGmlVQRCSNw1EzjsTOA0GKolkykoqZGR6Dcc5VAQ2I2YcQQogx4oBg4JwvuEUQcUzBO8uSVcHEOXZt1R06BBARZmJHqiJS/JxZtXLs6jogmGTph15yrqpATON65atgaiIYhy6nFLteRCQlNI3WpzyW9xJCA0YyLlYzMxMUteKh9GqqImrHQYgQJWcs4XozRUHDlJXZlXepMgCpFPnXp1wZ/RWsaSLlhk9Axw9KZCJjUTEDJDruhFSB6BiXNjjeNw3+2s87oqoAiDjFyGZZJMfoQ5i007ZdnJ6eL+cn03m7Xa9fv/4upvH50ydf/fAHjFRVVfD+m6+/PTs9/eqrzxzhMPSXF2c/+vGXX3321R9+/0ch+dPv/3izurtZPcwX84vzMwQIwT86u3h0eQGQLs8uVusVVVWSjIim2nWH7rCfTltHs77fAyEAMHFT1QQYxzEnoaKD8G7x6HSz3gxdX7dVf+ins7Ybhs16U9X1bDlfzBbX19dV5U394dB1/WG+mL95/WY2a3764x9NJ23TtMg0pvj85fPF2WlVt9dXN3XduBAeVhsXnK8nfcrrw/7sdJ4ls8K0ch58wNSl3jELu+3ukPuYRJumHfuhgEYRiRi4blgBmQfJh27shrTD7SQhOd9df3z39s2hP0zmUyOumpbBExrlPA3NyWwqOZvh777+8yGO6+7QpVT62Fly1w1mmobRNLFzMeVQVUgkSeuqJgUEnC8XdV0vTxez+fLLL74Y9+Nf/vjN5y+eXVxcni0XYx8vnl5EgPf3D5fPXpwsz799/c13f/m2W+0+v3z2i5/9/Ksvv/zpD3707s07IowpgsKjx5dPHj8aDr1++YNud1jMp6GuCeiw3yOR5YSE7aRZnpzuD904pt2+V4CTs0XdtKv1ykKQrB8/XIHBmOT9/QMwbVPOQ97d3onI1LJjd7fdXt/cSk5c1YCaAfbdMEpOMd9v7itfL2bz+Wx6+/Hqu+9ep5yAnaptNpu64bv7+33XH/qd5tyGipgMLOVkBAgkKjmrEQ1xNHM5q2Ler3sxIOeBEACNqKqbZKoG7Hgxm4nI3f29ig7DeHN7Z6reh8lkyrvtOKQxrpx3/Tju94fy3uedy+WSM6pjYuesJJTFwDIhlERkIBe890SO6dGjx4zUDcNmt767WeUxAxAjGXC2XAgjRZauojFlEXVMoMbeIRKSt5RL30KyEtAwjnEYEYiJETEnISYEUzH2Rz1uyrFEV9mwYGbI+RImGIY+ZfOuHATybDojJJFysFUEkJQZ2XtvaipC2VBtWtVnJ4vJtN6vdjllrstOp3RMyVWevev74TAMwzh6pBgTGZbSkIkhkAuOBSUmRqwco6GllFImAEZczKeeCbMu59NH5+fPnz968fKZRX314vnl8mzY7zfr3YDYOb88WboJb7eH9fXdZDav63p36Pv+cHv7sFrfi44//smXSXKyTJ5uV3djYiTb9Vs7ZAdEI2QTB2Q5K2AaY9f3VV0xMxAS8hhTGpMhpWMyFQwA1Q6rrq2DmeYsYxQFA0N2ZdsXCZEYgVLfaVJj8giIRKoyDKMhMjMRx8ighghN5YnZJKtaBmJL7D16gqwIwKVEjIBG5Yczi+73vQsODJjIZcnlaCVJsgolKeWdoYviNVSu4GsQgJGIQSSbankg5JRKqgjhKGJCQ8Si2iBQFFdc5QimQOgCsYYxRhQs1x9RI2YDFREiJAoEpKaIpAXwAuQYCMDMiJAcSRQDE8kxjoiEaEhQ2hDeueJLEzFVARNHx5bm7c2t2nUVqnEcUaEKQVVArdQgiVBLhg0ZEdREVFMcY84GCIxQ5OwIRJhTUjPkoho5Dm/BeSLy5IoarPypmBwAZABV9d5750sQXBQRMfhQVZWZxRglC5QUJUJWBRAEYwQDS1mNVMVhcIGZQlWFgETAZIpJMjsgLDxG4MCOgpkQooqpJBTWrI54v94Nw1BXNbCpw7qp4xiNKSB6T0lUVCQbIXpXJKCgoscvvUFBYElKCuaoFpE4DippjCMxOXRxiOUjSCSuN5sY4zgOYEAGKpItOvQEEDwpciq5Q8smRQf3KdivR/aBmh4D8YZqpZZBSAhmWQQRyzgPnwQjJd6MDoiQuHCW7FM9RMw0SQaFMhkhIlhJFAEAiGY73gsFEQul0446MDsmp9VADRiJKKdYeXLHtqUF5+aNPzldXF6cLeanzrnd3cOkak5ms5dPn798+nR1//Dx/UfNCimeTFtI8uabb9+9/na/2fwXdg8f1+/fv390celDXQdezKaPHz168eLVmIeh77e77fu3rwntyy9e3t1PttvtarMeh84RpNQfdt2jy8ehqUPwKQ4NN13XpZTrOozjeHX9sVRE5svT2Wxmqof9Po46mTR9148pEqGK7rf7wFWWPPTx4vLcn9LbN2OKw/NXjyoXxnGoHp29v3p/83DXNO3y7Gy2ON/udhePL7/68Q/863Bzdz1q3vT7ru/Mg0HebG9fvbj8l7/48W71kFP8cHP15u3NQz9sIA5RwdE+xWFMPsYsmckxcht8FoySHbKr20llfRxvH+4Dcc3M7HTMm/WBJvU2y2HbSUoeqSKqvG+raowxiwwSR7EEwMyEBIZVcMagSUyFs4pKzLksFIs/Mo7jw24dnH8uzy8fP33x5Hk89Lv1FgTZ3IvPHqeUfV11Y3rmAlbh1bNXP/3qq1+e/NPHt6+fP3nU+kDJXj5+8uzi4rA/rFebrj+03kvfn8ymnt2NKqB2/WHo9qvbh+XpaVtVNzcPj588csFfXj5Opjnr6zdvu/S4mbYfb64Vcb8/XN/cNtOm78ffv3mz3W2nJ8u6nez2XRyjrjcqOQ5DHYJv3NXDw6Rp2IdxHB9Wq7ptL+fni8Uy9+N3r9+A2WQxzzGjURz64DxYroLb7WK/203ruqrCZNoSuZTTGJMSZJP9vh8l5RyLb3vskppFFR3GcsQncj5U3dCnlENdpZybum7aNuaxH4ck2bMnHHKKTKQiaDh03TCOdRVqpn5MY0pQDuB85I6qKSMVyKtjBLVxjFkGBlOwoTM2vDw/b6t6HMJ80uRsmhUAk2rtQswRmUBSVjODsgEXLY2QQg8RJCVkFcsi5Ek0I5EVt6DKp8wgIKOWvyQMIRgR6vHlp+BUVdRAkMh5qatqOpvMpvM6BMm67w7bzdY5pzma5KPXUcFimjbVbNI8vrj4/MtXhLi+uT9s9yGw977vxjHG88eXi5OTIafvXr++vrs1SeYoOAbHgGyIBGwKSSIb+uDRVMfRMVTOV7P26ZPHF6fn3hMT7e43y/n0sxcvPnv1ovIheF+x261WfX+4u7u5v7XNZvVcniPQoRtETKLLKNv17fXN9f3qtp4HJlqvtuzdaHGzWQ19V0RFRJwlW6AYUzS1YWAfUhZVFbBuGI7gNEI1YK4QLB0RgEIIkrN3wYCDD8Qoot6X+Go53aEpEKoRZM0lrGlmntGIhUizSDYXzEAlCzMyEymklLKJ86zRXKlyf3LFH6vDYARsBgYE6GKGnJNjdDEmA/COw6RBopxFEoTKee+quvLFD4XmnFOVlFPOsQQ1RCWnbFicVMQlA2SI5bwJ6NBbwKHvmRHZs+M6VIVD570rBR9iw6QxK5giMCEwEyqYkYqUfDQhF1iLc4zgAElydg4NQXMWyVVdIRE7YkclDoKoRQLinWubGhD3u30/9sH5pqmbtiVEU0xjMtNiudSsjomJlEDNo0jWUVWJnStXrUxKCmbIvhSNkOjI8AMrdTAiNICcDcwQPm0jzJIZmHrHWJK05Ms3W8q1zgCZSpQ3p6wqYOCJiFnJlR4Ul369B+9IVFPOkoSQgw8YQLIlyWLCyCXmDOU3XgwtE0AaE5h575oqFBGuJ84IkIUrYERjLMtmFfXei+Sy9RCRslsmIkeMCuzYVHPOSMjE3rkQfPHdlGKFGQz9EGMkAseOGVNOBoCo5UeDmRQgZxERZUTFI0aEj+14Oe4QtQy4dKzN/1VsBwVcWM5Tdux+qKPiVfuUnyrsgcJIR3TECoBoBYVOjoGORCVGBgc5Z7ASqi68ISjYKkTEsqFHVQXV7Jw30JzFswu1N9X9ficikGH3sPfePdzd1s4v5gvN9vrPb1McC+YgpYxEWdKY0mQy2e02Yx6axi1PJmM83G8fnj9/efnsyWw+jxKJ4bDfptxLih+uroZhOFks5rNZ33f7/a4n0k5EZBgPVVXNZlNG3O/3BFhVlamllKvgZ7MZgPX9AAaPnlxuVpWKsPNjjIQ4mUycC3lMNzfXMcYf/+TH/+zv/u7q/btZ20yaxtXhD7/5/e9++bvx0P34xz9+9vSJio4xhTrEdbxfrU9Oz7b7/Wq72m73232/WMx9Vf/xz3+5aavZP/zNT3/41ePzU5X06NGl2R9Wf/5Gs5RxJ0oGFCkeQBBQGzodxwQsTVUHZjJI3RgULmb1hF3btotJe7Xv9jH3lsiRJ09Gxrzph8HAyLJKMlQCZkZmNfTOgUfJCQKCcJlwCdF7D2ZpTEToKm+qiMzOnywXl48epa6vfXAEs/l0iHl1t5ot5rOTZTufZYWqbX7w2csp8y/BTWeTikK/Pcwfn3NVTetJ66s3r9/EQz8afvbsJRIc+n0aRwCYzloiMiMl2O8Ob96+OTt/lNEE8OPt7T7GeHXD3u9jt9rutrv97rDXGyPmw9BfXV+fqVaHTlSqqhrGaCmzo9OL84uzk2+++W633RsCMbazSdcNb1+/2yy3zKQKj87PL588Xs4XnsP11dXVxw9d13vvzs5OCaFtJqHyJ8t5CFXMaT/0+74fc0L2NPRd1/W7HhHZMTKzR4mSJBuApkw5mRkS5qxJZFaHKtRtPVFQU93vDsuTk7FPpnK6XKSUxnEw0apiV1UillJ2QKJGRMXiScyF5wNqKeW2qerJtK7CdDrVnA77fey6m6sPWeTQdXXdXpycVFU1DnEYBvI05JiTJtUsmb0PdZWGMcZIPhTevqE5cClnBlAikSxZzMB5r6oGBbtrqkqOTMBAkUqvxI4vSOUqr4agJaiqYIxMQCYSx4QIKUZTAzGHpGa1c2gQiBZn84vTk9Pl/MXLp9659f3qbDGfIKNCO2lilZD5/MmlEb39+H63WuU8Oi7sMqPydAGUJIVqjybBO81Cqi+fPfr7X/zdV1989fLVi83D+urDh5TGdHp62BwCkwyjqE0Xbd8Nb777frvZDPveVK+urj9+vK6rRlQXy8V6dd91g4BeX127iY9JN7v9ervq09jnfkiDqzCECsBMlYlVrDi1yDkVMICcxbDQCITIFbHDJARQJLRCOgERIKrbJkdJCQzRu9o5BtAiWmAiyeJKPsSjN/QhxBhVjZgrX2XIJbMLCiWkQcwGlrMmFVWVJNlLEWCrZs2moKagoo6c8wzoqnaiJv16B8ru0HXOOyCnJQoGZPipKCzZiLHEjFUkC6ixY0Q3DkOMGdAcs6EpZEAjJEBTK3FdJGIEzNnYgXNc+eCdiykygmenqiK5OA5KRp5LvNiACcGRQlkJCJCamiqrCmHx43r6K8EXTM2KCyJ4BABmLtl4M3DM5XFKTO2kBTHLkFNCQHaURVSlGEQKa1FES1yJgZ24zEbO+cCIlMnIISXWbMYAAMgFzKiIJnK8YwNAYYcTUnl8KiEpO3agYKDeh+B9ltz3/ZgzIVZV7ZxX1RhjGZrKo9d5z4zes6jWVUVIIpmJOHgEiCkjITtSBbDj+4pjFpU0Rq6Cr4IjJsS6rtBo0tRI2NR1GbarOhRWNJiYIKgREgFklZL2NUAFMwUp2A2DJFLGgNKvZGZQQODj7ZfIRJFZTXLOalLaEI5ZtICakYiYHThiB4BoY0w5G6AaEoHJMbJT6JdmBmSFL6WmCmJylFfQ0acmR0AiGtHxTFVIU8RgYn/tojIRKasKOzpO6ERGINnw/ycMBjMr168SLSTyR0LVsWBWXoEs5+iY61At5ov5fAKqh0OXRU4uTgMFjQJKs3b26PzRq89eAtrN1e1ut+u6w2HfPTzcf7jCtp4Qu/Pzy8XJyfnj05dfPP/w3ZuH1YphPDs5E0v7XbfdbM1g3HUBcDmd63z67OXz80cXRrr75a6qXM7kOCDydr9VleHQ913fNhX3icDadnp2elrVAdR2u93Dw3Y2Xzgf+tynOEymk9ba2WxeNc16tbq6uopD+uqzzzerBxnT5dkpGIjqv/7X/+M/+/u//cPv/vT27bvCDR3Gvu9HNd3tD3VTnZ1ffPx4dXVzJyqTSfuzH/30H/72F//4n//Dv/13/59f/rc/n83aL16+nC2mQ5Y0ZhkSkPi2bn1AVVFjJQ9IwDmb814cjyCe3MQFWcOzefsvfv7Tf/7zX7Rt+8u/fPtv//M/fn19L4xZNYsooHPBnBtMa64cMZrmnNEQBACBCTEpZiXPdPxEQMc+oGNH2Zx3LpsSkSnmMd1c3/z+D79zxhcnZ8+ePVnOpyrCntu2db7a7zt2jpLEtH92cVH9wz8HNBecJduvtinlSd0y4PnZWT90Z6enVVPnHJuqnrezUNViedZOs8J69QBIu33vJ9355cX9aguhznz4cHV98uj85n7dj8O791fzxVQJJaXV/pAQrm5vibiqwnTaBk/TSdNttw8318tJ9dnnr373y9+w55Sl7/vddrc7bPL3eblcXFxc9t2+bZvqhz/6/uOb169fD11fVTibtUzU1jWaLeaz6WTKnuVg/TAcDodBckxp6IahHwtOlhlJyRG74HNOorlEg1W1coEdDEO/ukfPfHF5FlPebXau5abyqFiH0Lpq14+Pl6fd2B+GQYfoASqiPkbvyHunYtPJBBnLZ+nQ9YBWh3B+fvY3P/1JW03evnl99fFDHMdhHDVlzZlUakc1U9NUUvnNbsdJJrMJOjfmfDj0sesli+SsWHYLSEw+OEekZoSYsx7BvAqqimDsXDlEmCoTIDpVAxVDMYVSVitwGufIEZlpSooq+/Wm2x3qqkG0YRjzGD05zwHQmsqfzmens8VnL57Nm2nOcTmZ9Yd9zVRVNXWZzB5fnFdNowBC9P7qervbDuMgIohYVd6pJdE49J597SsQU0RQIEjLk/YHn3/x0x/88NVnX4DpuFnv729rAkeuqm3RtmcnJ475sN+9f/v27v7u6v3V5aOL56+eSZLvv34LLmz3w6RtdbVhR3e399PFLGr21GQRIxRDMXCh8QTZUk5mJGNKKUdiZmLi4LwzBcgEjhVEC4iZOGUhICpxb89lTZ+BPHPKqoaSsppaMOIKEFQRDUqSSYmOlBhgEyDgIyLZDBFE1RJ658iTAY5j6e6RCYpZTOoBAMkUklDOcgzVqnDlxWAcYj1tREwUQdUhQ1axERAzM6ckKgKqYDqOI3OPJZJl6tgVpDQ7l1JSGJnZ+WB2rHyX5v3xzV4Vofzjg2giCwVUFWNMKRNFRJQsBW7nmMpJiL0rzxhSFMBjmD0LAIikfhyOPSDnC5rZO2bnAaB8XUSVAJnYewbAcYyqhibdMBBhO5kiYN91KScEQvbsSUaxYtvwNOZCfEAkYuKqqjg4A1RQlTLWECGhh9JXFFUquwJEVBARpb+6Z6m0qhEAFT1THQIaqAEBMCEUpLtz3nsmyjmZWXAM5OlI/AMDYEfs3NGIpRrqULsAiFaFfowKICopRkSa1LUhkmMVcUjBeeedYkbEnDMDAZkZjOPYNLVmExHHZOS9L/pVMLOcsokmFVF14Ki87iARgWQtOTUASCJJs2QdczLVfhjYudJJJWYRMQDEEhvLTHS8dwEikQsOiEQMUcq4QiXEowrHbU0hQIMB/pV1UUJlBgCqCIh8nFjKBaywA9SUy42qpIXMgJCMkKnsVimEUios8CNDyMewlRx/v8DoyACxI4Zay7UNTI5HMSJCcsH5R08eX56fL+YTUBvjqAons8ViujwcDjnnFNPvfvf7r//8l/OLs81m2/fDyelyupznrb578+H5i2qxnHZDH5r6MPR17SfLFglublbDIBdPHpnpo8ePDQAuHyPKx6ur7X633W77MW42u6admOTNbvfk0ZOLi8u6bomgrzs4NSbe7bZNO2nbyXqz07W0TdO2E3Jhvem63W7fddNJM51PQgh107TTaR1qFf347v1f/vin/eru3/yf/ucnj5/stqur65vtdgeKL199dn/38Otf/8Z7zyHM50s1SJop0sWjy1dffj6ZT1frVU7xYbWpqosXX/zo2YsvWkfjbrcdcq/bGGUxafzl6RDHmLNmbWovohqFBVMURCDnx3K+QIegp9P20enydDq5uDjZ73sZRs2Ds7ysZ4cYzQdABGLvQ0qRkVTVc0BfefZlRA8hOKLyoalaRmTw7EzNe6/+GPlCJnbBAL//9vXDw+rVy+fPXjx98uJJXdUEVk9aSdIdOhVViZazqcwW06ZqNpt1qAKobR92Mca2aqbTifecxvb8/NwhHbqBjdGATberPRK2k8n5+UVVTyfz6ZjyrhuoCo++eP6b77+7Wq0/Hg6rza5pa3MhkwPS/WEwdKGZ5BRD5UPtx3E87OLgDjIOBxGU+Ozly+fPn9zePfRdt9vviLhuaxM0sPVmfbJccnDfvf7+/bv32+3h7PQ0uDyMAyCi4/3+4A/V7f19zDlr3nSHbhjRsRgm1QyghD74QtygRHUVyPE4JDRk5qLbi3nso2y321k7aVKrKojI3q3vNj/48ouf/fgn3XZ3OOzruhpTNMRt393e3yvjbnfYHHYKwN5N5tOyVk8xIqDkMdRhMmknk0ntq6auLi/Od5sNqpyfPGna5uHm3gE6sdOTZV37zXby/bsPnl3dTEbLkmUTR0AlwiOE1gANY8xowsTMngHHGB1xUzdN04YQuu7QjyOApSSiAmCqyTGLmCMgMDOFrOQYBFLKJpJyrmtu6rquK+dCHKNDygrecR7zpGlePn78/MmTp5eX86aVFLeruLl9mMzbJ0+fQLazdnF2spxMWlHzTbUbhrfvP/aHsZlMuk2smrqZT9IoqpJSYGZJYgo5Jc1psWh/8Pln/9f/87+Zhvbbb7777i/f9Ifui6++fPrkaU45x/Tk6ZP5bP5wf//QDZvNdrc/hLqq2ub88tF2u8fK9Skh4qxiQ/t4fV03wVeuqutu3y8fnfqmPXSxTzkEjjkNfT+mTAFSzjmrMzICJEQFREIj5wCdSzHlLGDgHTVVo6LsyrsI5GjeOwBMKakUzKylPBhKyYqomKBpLpsWATPHHswhOgJQUYbifHClUPXJQY4FfE+BVUE5ETlCTpbBCIoNXokRSlOvH3sOlSXzzqWUXKn/mYGaxbGXrACGYIwl7MXM7BljijHnbECOrMSx1UBAFBBBjo8HLl1hAlJQtYzogmcRICs6JlWRoulWFT7OeQ7Kicz5UgUyNTJGSGaWLYtmAMiSx2F0Jc4GBGZMaARixlC83pY1o6GoABWmn4mIIpbsdgENe++Jy7/Rh0CcUo4pRi24PBFEZDxu1eyTqRRA1SxnyTmXM05Z2JQ4MyKCKSGU0LaKmAHTkW7huOC6ExIiIRGYaU7RVEvnT1XIrIzUZsalOGeQsgBh0WOVu1hwXAWfswwx5ZSI2bPHGhHJOdcNQ/BBijMLYByGnHP5WpWxwhOjp3HMKcfNPnnA4B0RurK/AZNsSFhoyMf7kapzXCqXiMLEjggAcpSsgohGKKooRowFhFTIDcXwlrMgF6Ll8V+SRVFjTjGKHQtXgAileU4ASIyA5ZteUj72KX1O+OkORgRInzjRxESqyv9/JzA7cp+t/DXAEflaEvpZkuinkzOAZoFP30VTPWbeyv8XkgEZlFifKaKCtXXFSNvdQcSur2+8o3ZaEzkV67vx5u6GCNvQphw/Xn0c4/j8xfPnX8zVJGd1VTU9mbk67LuBQhUm7a7rJKW0708Wc7ggA5eGnFO67W6Wp2eK8N//6z/utuvdYc/O/egnP3705FHM6fX33zoX2unkBz/66vMvfpizDP1hNpve3z389pe/WS4X54/Ovvvm+w9v3w1j8nWjSFc3t2cXJxcns7ZqRPTu/l4MHj95en91O+66hv3FYvn45Gw4bO4/wnazXt3dA8C+7+vZ9LA9/OXr7yaL9sc//knTTG5XNyUtnrO8evnq8dNHf/zTn+6ur7/9/s+//NV/ffHk+d//7OdnJwuQtFvdHzb3mPPT08n5i0ee7Ztvv39/cwfIzD7GyMICRHUVwXojIyS1tD8Y6NXd6t/9v//bv/uP/zVp3mfbjAmJx0PvHDeTKidRBCJlR0RI3pdp2DGS98VqjICSpbxRqaoB5ByBju0McixmhM5MJNu+27+/+njo+6qajCk+fnT58sUL9F6S9kPcrHaXl5fTSX3oDnlQH0JdNyaFPoPz+TRUvgrVcj4X1TTGcT+0vg3TKscY+35ST66uryXp+eX5wOlX//3Xp48ud3Hcx9hF+cvb95t9FwFny0UXDas6KvVdBPLNvB6GgUPVNsE7zMMow9jvDiezybRtPcLV6/dJohFryppSO68+f/784WH94f1VPw5VVUXJm4c1e2pnlWLcD32KsZ62vvax07vtuu+6wzBESUOMYuCqIMYxSyEK69EKbAYikrMgIzKTdxW3pCJD3+dsyNYPnYg4dlUVEGCynF+cnn71+ecO8d337w77fTWvTy5PH7ab38Y/CIEj3neHnDORxjiKWUzRe++rgAQp549XN+MQp00diKdt68z269UXnz1/9cUXv/6nX/eH7ovPPjtfztvQrLcrAFgPYzfGfT/s1ruUUxVCM5kgYsqxG2JBlpgqojGRQyDvCSkwzWbtbDZbrQn3eNjvmaDytaol0+DYN3XOudg6VMwzApiCkMe2beu2ASPHHuEILw4uePTzWfv88ZPPX718+vjxtKmd2nYYZ/PJOAwEaNkI8NnLp4vJfL/rYuyrxqOM02Zacbg8PRXJQ46N8xV7zTIaN21buTCfzlLOu9364mz+7PFzZ67fHUh01tTLyezx8vzF5VM16bsxkP/47sPqYU2OLx5fzk6WXddfPnqswIdD305nw9AvFvOqqSVmZjdfzmezGRBtd3sQms3nZxfp3dUVjugq710lFiVlQnQ+MHnQQiAiyWqqwAjHxu0R21Y+snPOxWqEDEhKSF4gVFyFKqYYU8YSMS5BTsacRMt7ECAhsOPjIsFKr6/gllHVAAitWFGY0TGTiIKBqphYQQg7RCAiRnaFcGKtd5QTIoOnylUuxQxIPjgEYHbEWEzcjOi8I+IqVOQZeurHraZE2YXqmCpKkikVPxkAYM4CmgGJPWssUEoEYi7gJrUs6tg5Zu+cCIH3IqJZgbBkXBhL/1DKExMRQU2zIiES5ZyJENlSttINKyoFdEYGqppyMgHJEmIMoSrrinGMoioqclAE8M57R2XBwM45xGE3HoY+q0iOBsbMhE5E+2EwM+c8eSako0LcNIupgJJJzmbKzETI4ByX/z0sGzBHDrmU21XVNBcwtIFpSjwOQ4yxBHubuplNJuRoHFNKMafMjomO4rOcRbIQovesYuMwishut40iVVVPZ7VjTikhgHcEpp69iRZtAxhmyXVdEVP5OsyqCpH6YThaOkANrA6hPP1TTkioascEDRTBPBAzAJTSFBKX9+lyAVYt3fUjJ0egpK+ohOHLYue4oVFQADXIko4kHmRUtZKct/ItKfMmGRxpmGUTCghkRZRRfrPK1k8LQeAYuzumpuGvlb0S6CmLRgBFIYWSsLZjvYvRtJgvCrsAtag5ShOzfPOsnMMIzETEeUoxC8Bhd1ghBl/mLmDn55NZU7fr9a6qwounk9OLCwM6uTz/0d/+JOb0y1/+erc7JIkGlg3OLi6r4PoxRc2fPXm+u1t/eH/NzjPbOMTf/vGPb68/OB+qpo7jeHZ6mrIMOf7yV78iwp//3d9dPHr061//5v7+4dvv3+y6fhzT0PXz+YyAkRmJ23Y6XyxX9+uu23/37ff90K3Xm8nH6cXl2ZPHj89Oz87Oz7PkcYyvX7++ub766Y9+9LOf/ZAUrt7dXMMNITpfcXBvPnzsbm6u72/uV3dPXvz85z//u81286vf/jKLPHnyJN2kq+uPh8OBHEzbJvYHiOnu6ubq9ONyubg4vyC0NO4PoKBp0VaLtrEnQ2C4vl+B6rxqa1cr0ah20IjgBJB8IGdpHFcxEko2yWYZECc1CXoFZTIzBArshmEgohizFSgFGAKaKiKYGiMZHIni5QP1+COMpAAFQ2cI7H3wAVCxcXfb+//w3/73X//+1//iH/7hX4ItJtPtat1vD+xdHYJmRQRfOVVFgrGP2/W+nTTnlxdxGGOMTV0V7DuzA2bH2Ez83f3gg3/12YsPH6+/e/36frX+zW9+P7u6/uxnP9wP8e3tjZ/Nhv04v7x4/OLZ1Xcf0jAG4lHIzLqYxiEC5DGmtuE2uNls7uYwq6vFtK2Ytrv99n7rQpjNJ1XrRXW3OxBR09aa1DueTpux67r+ACb77UZBTDWh+eDX+11MyTlHFWFkG5Ec5ywxJQNwrnaeycCMs2Y1LTt5z46Zah+IaZChrZuT+UnWKFnAqG2apqn6/YGANenNx9uvXr364Zdf9YfDGBMwLSY6b2cP+w0K1K4SNREZx0FM+2H0hRbmvQ/+4e727vb67GT55PwRI07q9vHlo+dPnj578uLj2fvJs5d/85MfLeumP/Tbh4fTduqcv9ls+pxOZ5MxplBV8+U8xbTb7qJFBFzM5jn2qBZTjFGaJrDngjaL/WAAGhOqMdNi2i6Wi6aq16sHREgpdl0fc67bZjZtm7qZNM10PnFID5v1arW9v7sVyd7VjFSHetpMfvDZq+dPnk7apiKeeNeGathuZ4tF1/erzabyYT6fVyH0hyFHaarJfttvd7vnT5/NTuZd7J+vV3eb+5PzU/bu/ev3nR9/9NMfPj67PD05JaRuOPT7TcP+4eqOQAOFpxdPq9CcLk4Dec3EDd/c3N5e35KjUFeb7RaYCPj+7mF/ONShevnZSwAw1dlkMg7dxaOz4P1mvd3t910/brprXK1iHObzRTWtYxpFYlRVyVkzIHLlmNkxI0KOcuTpGzAae2NiVctJwJmIFtGREZiqZ3COREQ0MXOAYj4AMyOH3nlJWbM6Lq5zb1a4dqhScMjZDImAudTliZDQUEXK53POkQhQmQCdYwUAY2ZAMlCrKx9cJUmQsSIWM6eqgGZSSMSAR5UGKEE+bvyI1XLOmo6mMvaMyIQua0qSips4pyyWwcBXgZSIyQDYMZgplIdHVlVmZ6BjHEKoCo03abKkiOQdlC6AZFDLOQsRsXceTKVssI8rI5GcogXvgveFd4fEpKAZCpM6oSBmpjJBQckbxZhCFWKKOGAV6qqpBGSMcUgx5aiFV17iw0Q5KQAAYZZMZs47FUUz7wKbAhA6Koxx5xxRgTU4EVE1x474k9AKQRXUDD1KhJyyCDhHgOirqiTB1SzmjIpZcrHGlvmPvavZD8M45M6zq0NVhSApZVNmDkglfOe9JzM19C6YWdd1zru6rau6ur2+G4cYfBV8SJTZ8ZASEhji6cl57DvNSRWSiifOIlmEke24r4FyO1VQNQGArHnMiQhDqARN1BhcCCQiJQMEKGo4xiFLblxdNTVElJxNjQCZaUyKYoxI6BSSlGYWH2/scOSCg35yoRAexxqAUsIoFVpUBQBhQijzNZGVg5mZFSAQHr1f5W9QE5VsZiUqH7xPMZfJpohD8Nh8t09k6HK8hBLEZueJQE2IqZA2gLCqfc65MBTHJBTz2fJkNm+rukaGfd51h+5u+7CNXRbNoDd3t+xcM52oqp9Mfvp3v6jr8P/6t//25vqDDw6G9N3bd03bnJ9f3m+2fRx8Ha6uboXh2bPH+9jdb9eq4qtqNps2k6Y+1ER4d3+//sf/hgRJs+PggNRs0jazZvb63feq1sd+SOP93X3X9672h/XqkMft/vDy+XiyXGzW64f7+dn5+clivlws+iF5olC3p+cn7aS6f1h/+PDh9uH+0HUnpyf/h//hX3z+1ZfX93e//d1/v7+7OTk5lxg3h+3DzXUchvly2tbVxXLhVXKfNw8P69X9j3/45Q++fHV79fgPTt9+89uHbmM2OqaT6dz5ULe1rFPcpyg5WQYGU1PkhCSEqcKRMKXMLhCHmHPOJkmqxiO7hCyqpALMQmhlN8imImgAVBillq1k2fGoVgYgJmIkMDUjxqRZFJzZOKY4JmLXxCirFWZtZ+2jJ48en19aylUbnlw+moV2t9rsN6taq6ZtAbBqm4lAlnRze9NO6xDC/rC/vrqdn8zqaRvj0B+6dtJUs8lu15lJhNyl/uzJ5b9Y/Mvfff31YRgnJyePm4lM7rfmBfjj7XYwNAr77eCrgGBjlCRgor71gGzE5lJV1QZ2GDqe1tUkhH2dc1S1ug6hacDgcDicnZ6E4DXZcOiDY62qnJJ3hI7Hbhj68XDoxxhDXQFAjFkFptOZCy7nPBzGrhtk7H0TmrbKwmkYU46MzsDIAJUV89jnvu/btpnNJgTz1WqdU6pDvZjOtVdPRIb79S587k/OTq/lahhWIfj5bH5xfu6qcOFoeXn2zevXq+12HKOROSYzGVISyYjkfd112xy1advnz54T4Lu37//bf/mn+9XBFH7645+czE9ngfvdHpJOfaWSzz970S7mYvbmzXuRfHF+Ear6+ur6bnVfhSb44AMNXbfZbmNOLjgf6iQ2itzc3CJDkkgIgSiwnS3a+XSBadwfdlmySQ7OT2ftcnmyXCwePb5cLhZvvvk2dn1FNglhtx8ntbu8OPNAy+nsb370JYFdv78KZ6cR8vX9G4n55v3HbPr81YvZbDafzRxyO29pSXXTrneHrGm6mJ2czj7e3J6dLH8Uvqzren/oQkJTe/Xk6ePLx4y83+2enJ2Ok6auw7DvVrer0+kiDuNwGG4/rpxWzHh1dT10nXduOp9F02FMokKOggvtdOLANU0DIvvN4e3Nm8mkZcWHw8P9/YqDn07mGeHthw/v33988flzzNbtupylPAvKIUViJKoU2FQJCkUOiJBAwZCAsqSYEkQrZlhUx8wZUQ1jlpxyShkQCgTDDHIpiCSJMcaYHPumCWgcx8TMBY5jBeZj6p1n4pyFCCdNTQVpSzaOOSf1LhTpmAtcYLaeXYpZVaezSVU3fdelHBFZTV3RqGcVSYJ4fD0CLKltQ8CYkowxp8Tsck5EVAQG5JhFEcsxQsFATEAAcyYoz3EuDy8tIGREM0sp5YRVHZxnRueYVdWchRAcu0/3CAVDQnLskFDFmIAYvXPMDtQkQ5lOzAAInfeMrJ9IechkCjmLYEkoEzGJYRolS9fUDRImyXEXDSGljADsPKpUVRNjEsnDmEpcV+RIWxZVyRmKIt5hzuqDBwSRTIBEFNg5dhzCEYQNIKIp55jFwJgcEYrGLAKIjARAmkUkgQEhpySIFmNEwLqpnfP4SblKBvPZvApBJZfokEWtQwBk70NVV6o6xpREhpSYOaeYUiLAtp2EqmpVHz15LCLdzZBFUs4xRSqdCO/y0XxOCkUjYQRGRAakCoCopiLquYRuUE20NLhSoesgCZZodmmLiJoYGELKUhJaiCSiSFbiaEjoOYgqq9ioBoDgSr8CufAUoJDMAMnAQAHoU1AZofQiEI8AxCPE0Ep35Fj+KlsiwvLDb96TAWU0Zk/sinzNHIxxjCkVNnT5Oz9RD6Hczsqm6ZjlIkQFM1MRsePvhqoOOSNgU1dN04DZ+mEtQCK5PHQns1ka88NqN1nOXNVOpu3F40fz5eLLL3/YzGd/+tNvv377ukK9fPzYGVBbf7y/+/Cw2u87cjRfLBYnJxTcavVw/3D/sH7wjkOOaRx/+9vfbNabzWajpo5QsiChSu6TOPb7fdcf+tu7u6auLy8vffC+8jPvMioRqsrN3d3dzU1TVYvF3LN7+vgR1VU3SjL0VTVdzEez99+/+d3vfrc/7JPYGMcqxZ/85G8Q8b/87//562++njTN6dlysZjtd/D02dPAJJIRpKpiHCvxRJzW69vN7uHf/F/+Jxl/eFjfxGHvZHjY78dx3PWHNAyb9f24lQprQYtqMaeo1puMWRJgRigpAMmKEpFZVF3t9+NQVw0ammEao3xiJCBAgRE7JkIyJBWBT5/XRTunZhkEVQnADByakSGgaEFPWU4pS3ZMkOS777/51a+W+cc/OT87I7DDbuOngj4nHdcfN5P5tJ1Mt9udq4gAdus9sDVtM+bYpWFYjY+mF9z6/e4QDzKZtFDR+mHdLqbNctJOFqHv3ev3H2/uLp617Wx+Am6Qytiv1ruBzTFnceh4NmvnC2NUwDhpmSz2h83mfrPfbeZtXTFlHZu6np1MxsGlmEwheIeO+2Fw7JqqypTjMHrHkskFN51Ncxa/PO/juO93T18+dc7f3z3c3d95hufPnj6+fNzUdRzGh4fVw8N2vVkBmSfPU+q6johyyp4YABjR11VTN865STtr6mY6m+aUPVd91z169Ph0uayJq1A1TWspj33PxM4551CSTCeT1X4HhpIluBA8mwmRc971MXb9QUUuLi7qJ09ndevItdPJ2dlpW0/evnv99Z//dFhtJyGcL85ePX5UkXv2+JGhrjbby2ePQ1vv9ofnp2cA2NTNbDa/ffLk9ubOeXdxcWkAu8P+0HWhqtDher9f7XbfvX53qOtu6BmIyOrgdRz//Ns/PLp8dHq6POw2Jtk7HHMS0UM3OtdNtofDavvx3bvtw2q5nJ0u5tKli+X5j778chKqNlSQ4zjGwLCcTyUpInJA2Yqr/Pn5GSPGYcjd6JZ4cnJS142I3TuSnIY4mGQUnIVF5arl5WJeNW9fv9ch7e4f+n5Yni68o23XX739sHlY/cM//4dnj5/vHlYfXr8X0ZTyoRvGfpwsplXbGMB6daeqcUjL8+VysayqOse8X+8W8xmaeecuz877rhv7YVK36J1vJ5PT5exk0Xf9+enJ3f11HjtGMVVkIk/k2JNPo0LW8sbovTNjyZk4iKoJeHBKx3I0Ajj2rnIYswqhRQIjJSSSrFpyF0TjEFM6OO+JGJCJvKiRd0dhUSnkqahqFnSeQ+0IgBiY0YqwsQ7oIfiKySGiFeIzAJKrJiGEwEDkuGkbGtAMAcHhMQ9fAg/lQURcKISEknKpLBoCOmRjcqzH/76CETOXADIgMrCS5pSJyKFHLKsXKceUQnuB4gjHcicxwGNnCkoyI2tMyczYkXdMpRdQ6JxKACCaJUshLhKS8x7BJOWijZdUJqPyJFM16+NYhSqQAwEzZc+FHyOSU8rjOOScCm87S3ZZiQmAinivAKxKAFdBBVFViRSNAFQlOUI2ZucAULIAKLEDZjMxNSbKZjkmduRrFhHHzE1FRMyExMWaSoSTpmHHOWVmQiBHXHBSZiai5pyvXIpxt9k6dk1bFzaNc+y9897nnEUlprGtG0MyESSbNLWJeO9i9je395plf9iZQFVXTC5JWq1Xk7oSUANFKUb2cvWh4hI1U0JOUjjWcDylSlG8ZhNVkKxqaimJKz8wpjnnYuDr4uiOHX9FBEAyUwNjx4ZQvLdlyDsetuiv9fPi9ziGnsvgf1z/FBiqqRkClGycmemnH1w4/kHxr+cvI0QmAgMXanSuHL9Eyj7BHLpcTBpY1kX4CSuEVn7ZRAnJ1Mpajh2VIYkYHPsYtfYh1CE4v5zP7z9eD8NoxmcXJ/PlqSEuz05FcHay8FVTPazrqn706NlXP/4SHf3nf/zPv/nNL1dxez6bfry/uVieQoWbbq8COec0ZOx2oW7aSYMKaRi9dwAmlqdhcv3x+vLy4uzk5Pbu1iE0kyZn6fo+eN82E+8cE/ngp+10vliYzuq2mU6nXR/H2Mc4dPtuv91c39zstrvtdr8/7E7Pzp49fXqzW8vK/NX1/rC7ub568/r9yel8cTInou1296c//qmdNcvz+dP+CRXi4mTifTil00ld7/Y7BF2vV999/3a33X3+xdTI/v1/+g9i+uTJxVe/+Nt//b/+q3/6T//xP/zbf3+zuQ/oR413qxEz1C4bQz+mBDCIDmYjZCHMagqf2NuIchQaSPAhi5AgMCkjIWtKpiomgIBCY1YwI2JTQTPBT0wEJEOjEiwzIMRcnD3lJ9sI1BwRADIyB7y/vvvz7/+0nM6mk5or+8tf/jyp6vPT89DUXZLVerdadbvNliuYn0xd7Q79CPe71Wp7v1rvu+3IeX42o4nLQm8/3kZMzqGvsJ1Nvvn2TT9EqsPQ9Xer7RSqxfz84snn7XJ5dXX/5rv34yGJxs3DxlT1x/JoAADCkklEQVRD5QFi3w9x05l0fbfZrB9S1x8m9XI+NTdl9UjAjgADOxKVPCYxDaGqqgokk3e+afK0liR1XSFzitnXfr6cGLrdfjf2BzKdt7MvX3324x/8+GR5kuO4Wq1ur+/eX394++EjMddtM45RzfquG8eh77qz07OnL5+1zaSP4263y0l8Feq6Hg4RCc8vz37+87/hDMvJLFTh4/sPh31nCF0/3K7uD/uDb8Obb9+sD4fr65vl6eLlq2eH7R5Imma63R+8QezGm93HSdUMbd1vd7Hv/6d/9a/+7u9+fnl59uv//t+/33cPN3cT9hU/PZ3OHegw9Baz7g9jHJza6WKZVapQe+a9Ydru/bQ9n819W98+sPOEAHer1d31zcN2XTOcny36rt7utmAybxszXcymz58/JYJxnANav9kMMXF3WK83H96nfvdy2c7QoK2q2lejpvls+ujRWSB3tjgZDofDdreYzp98cemYhXQymWw3m8+//Ozy8gIMClZGk24eNpL06atmu1l1+12tDSFgzg/3m9TnJ08f98Nuc/eQ+/EgdvPm/ZPnTwLh3fvr66uPphhcNZvNTEVUp8up9y4OUaJePHs8mU3u7x+Gcdg+bGaL9svPPu+H4fbq9uTk5MmTp7fXt6vbh6ap55dPHp8/+vDxIym3TSsOBXG3Xg/9fjlrFq233KK0k1k7juPt/W0dQsoau9iGygePDGAKTDnZKKZZTIy8B6OGg5FScKqCRCZoAiBWu9o30yo0OaWu60sWQgiwCuyi915VgdgFZ3Jk4xGjY9JKfA+qWlXBOZdjzjlKAlMqzRsg9r4C9N0QmenoVMiJAJzjlDMB48BEZmLELqbkCsKo5IgK9kDMLCuSlQeDFJsSQ8HmSpIimE0pH42VaipWXCQpxpIzVRMEVNGcxfCYQSYkIzAzSdJr75gkF1Q0xjRCxCNBCAkMiyasTEjl5T6lrKKlt1ysWYWzU7xaAFCGhtLPM4CUoqrGOEIZ1hyp2jCM5dlIxAbAzpNz5fkex8Tsqto77wkRtACCDYGYyDmXRYq7lQw0aUmrMHLZCyQxAiCmY6j2+IcUYkxRJCdmCqE+/pFMqlDVVeWYnHMmykRcVVVVTydTx5xyHocRwQxNco5DPCZaJHuHgL6Y/EBFc2biaTtdnp4Q03a12x92Xd/vDn1KOVqOY3bePb58PJ3Nd7vNZr0pjKK+H6xotjwCMhoSHRNNVjgPRGU2N0UgKI7bssVh78XIVBUEiBQMQUVAzMgxgkmMaoDIZeAzVWAKoQbEvh+zqpgCIuiniIYeXRPHIyzYcfIBLZZXACRANT3+iByPhUhQIstHjBmCMbEdiVdFXkhIUGRqBUlabDDsnIlmkeJqETvezgCP55Ijlrs8iMkIEUyDI0BS07EfpvMJGOx3u/lsfn756PMXX9S+6g7jZNGsNrus1k5mojifnfiqefz4+enF2Ww5X68efvWHX/3mT7/eblcKedNvfvOn309C7YAb3yym8ziMh/VewJKkLKN3YbmcJ4maMyJ676aT2cXFGZjFFHOWyXTad33OMmmbk9PTOlREHGMcx3h3f4uGSVLO0k6nVb2ow3kdKpF89fHj+u5BIL/78OHj3e03r79T0WGInrGuqzikaOrqSoHCxGuf7tfrbXcg5sls7hCT6Hq1mS/mIjmp+aY+bHfdEOt25qrq1RdfquU//f7P//f/7f/xf/w3/+p/+df/U9WePXn145/9izj9y58/fPe2O+z9sn5+/mzatuvDto/jZjXokHOM49F4WTx/jMiGwEj2ydGGYAaah1ziZYyASmBYgu7KZTgu4F4wVCBVAwICQ0J0zEhHRMUnjimCHAchYnJgbV15psViPnT97fXtXSkSnZzI+haAo0i/H4GoWYSUx/V2zczbVacKTTvp8rDpd3D18QJiP8ahx7Ef79f3deubupoupu/f3viqqefzaV13fepvV7NTN+WqSXq+vHCf1avbraI01XTo96L5/n51e3vV9yuwHmGU1BPEVdf3cb8f2pPFwrKSEiEuzxZjzrvdPou0TZVkXG1Wjujy8sxjOOy7TbcJoQKFnIUD3d3efLz6YAbeeU9ECtNJWxAubVXNJ+01kamCLx+VrCmXmIQBZE0p5QN0t3f3q9XDp+U7e3Y5y9fffntyujiZzhfz2e9+//v9ev3o4tF8seiGXtGmJ4vNfveLv/v5arf7++oXb16/aXx19nQ2jp0ItKeVN8u1dP3BsWPDOviXz55qyjcfPnjAr774/HS6eHJ5eXmyJEQFMclNXV+cnn68vg4aTs/PQqjW682hSyml7WbDBrX3qiJZ1g+rNx/e3d3cPWzWUXR6OhUxzeKdOzs9E8279ebF82c//dkP7m9XvgonZyd9jrbeMKEUEl+W7nD44sXzH3z5/O2bD8P+4JtweXpWB3/Y7Luq2a7XTRVevHwlOR+6fV1XsAfn+PLioq7rzWrz/PNn6+26Wdaq9rBavf7uOwXz3jGjr/zSFpp1NmlzStcfrr75y7ehql+8erbb2GF/uP6ggNhUk+V8eXp5bgp9N8SUY86IGJq6H2Mza999uPr++9cpjS9ePnvy5AkaPNyt+n1/cXHpiQlgOp0/fnTJTEX3OZlOXn322f3D/f3hYbNeffj4IecYwuOf/eyLnJ4N/XB/exvYRNIYs5tMNZloXixmSJrFxjH1pEMnyQxyLpvIqIYGYhAInHNewAUWUTXUZGzOoVMRclw5NwJ7x8GHlKKAAggg5izM/Il4Y8x8fL1VE82FA6eqcYwK4KuaFIwsifRjKvzilEeJ0TmaNi0gqxg5Z1lUAZicGhiCmjD4kn3VLGI6pNGzp6NuwEBNsimomrng4hBNtASyPyVVsRxBSPkYQLUSPSzHFSWPiJ/6NWaW1YjMFI/tniJVYTPIBTxVnp2OS2/ZTJGQKySmFHNZ55iZZKuD8+wJQJ1KLn4WVjtaRNQgiqCBZ2cGQxxKxaCum+B9gcocc7jg2XnvmZkRSvo4l1oWGjIiMX9aUJCVZJJnBkRyGSJAPvrJVUpyGI7/bFiWh4YgosRYVTUBes+MjAZHBg8hIlTeV96JaIoxxUjsSmBhOp3UTSU5E4Bzgcn5yqeYx2FQhbryvqriMIqKmjR1E3N2jGenj04uz09Pzy8eXcRhuFvd/eF3vxtjZMeIWMY7Q1VTLPhNOs4Rjl1WYSbPHhGzmKlIzoTHKFbxnIhIyjGLheCJKOcMgD4EU41RzAyIDECLvKLgrUxjTjlJVjUEoGPBHNCoIAfBEIG00IfgryHWMgMxExhAWdE5Vwbm0rYDhFLaP/KA4HjPLb0wUZUMZQQqV0oFSGNKkr33SM7ECveSiBEsSSIDy0oEoIZ87IgZcxzGEIIL5JwfUxRDA0oizz978fLFy4e7DTA8GuOhH8ak3X5om9mjJ4/n8wUwXV1/+PUffvmb3/1m1N7XvN8ftjGz4DA2E9cuFstmUoFpFTwyx5Qe7h9UbbmcT9tJiqN3zhEuli2onSxPc85932cVaAKANXXdVM1sPi0P+3EcNpvtoTsMw7Bd7ZDv2Lnzs5OXz19MJ5NJ095NF2McYhq7Ybi6uUk5Z8moWtfVfD7jyl3fPuSkwfN0Ngve37z/cDjsVfXJk6dcB4w03kuMw+GwB4C2bUfFxeX5yWI5W1zO5ot6evr73/zm3/+n/xZ4GkeYtPOf/uKfP3n89P2zb+9u3/b7DQqGprFNBZvNxeOnb95cjdermA2QjH1hZ5qRGWLpHzIhgUOsfCAmUy3OQyqfFOzQOXTOgNAhAHAZ1h2Wk7qVhTxRufsDEiEBAQGiAiE750ByFUJbBWKsmpqZ3378uF6tveevfvDZ2enJ2Of3b6+y5M9/9EVYTGG0cej7se91QKTDbowxUl1T1fSi37+5urnZAVnUAVYa+84Hxy5MFid+lGh86HLbhqYO/bbL8Xq5uFi2E5zpdr+f15Pnjy7J28frJqZd16/HPELqCSQEPhyG7WF/iN2u6zy72teEmBzGFFPOqqKgwfMoI2ajDVVVpazoUEB88JpT7Hvn8Ox06dmZoWVb3d2D5t1u2KzWojLE/ub2Zt933XoMVZ019odOVYBIssSHu83h4EMYYzzsu+IpB0ZGZsSUq3/8p3/6+Y9/4gQD8snJ6TiOYxzOLs4vXz797vvXQz++fPWiG8a6DV8+e75erWLXsT+vm+bq5rp/2Iyii8XZ2elZjON3X3+zX23C81e194zUm1tMJs+ePE7d8HD/sJxNLy4eqYoPvp5Mkqbtvt/thidPn7dN+/rN9/317aMnj8HTX77/tmpbdO707Hyz29W5bpjv7zfr7c7Xfnl2cnZ+Bipf73dV5R8eVt9+/S0HF+qwXe+Dr9rptO9jzOOsbT3S919/+8fdwdBePX9+/uickcdDvLw8m82nw/4wnczm89m7N+/evHnbVFVVVacnp9PJdBgHMIvjIDGtu0EBdpudITx99UzR7u7u3eCns+mXP/gii/TdUFXVZ59/tlgu4pjPz8+RQbPO5/PZ5Wx5ctoP4/ph9fTZkyqHu7u+67p20gjkX/36N0iunU29W1ycXfTrrgph0jR8fhnA3by/Icb5fNqPw+Gw3213ItkzZRDwmSA+PpvO2+eb9cPptGo9zM/OP7x9v0P74tkTZBiGwdT6LjZtfXqxMNBhGMcx7rt+7MZuiIZoSNlg141RkolgcZY5dM5FTV0fR42hCiE0CobE7AhZuqFLx5MRmGhWzZLMXIGXmprK0VrEzEheRQ2c876hqgAPJcqQ+mEYHfvidkNlVYrRtnmom2Dk8hDzEJE8B3blyiCiSMpGf706ZFVTZXIIR+xNyllBEUAzFcUuIjp2gEepNxj4IwvYTDVLtuMHD6WcUbHcrcpGmomY2AqmAaD07YlRRBDMecdMiKV9jYU3aAahYgNQNXYhVJVllSyZgIAMQfLxQlbSr9nE4KiXJypPdmjaRlVTzmAGBLWvmSjmGNVCcEX7dPTYIzAi0PHVsxxhiKlET5hZ1eomePIIkHNMKZdGUEEAEVLwDomp1P0JDU1SRgMfgmdHiCYKaoxY17WKimY0i2PMKcs4HlFQ7JxzVeUkJqiCqYU6HE+W3seYAIQANMs4xH4YLx5dPnny+PLxYzOYzBePnz1xvr67u/2vv/vDr377y/12U7etge4Oe49IhN5509IHNxHLJuAZsbjAPICNY2JScqSi6ApivKjQVFSTmoi64xAAYOINk1hUNTUyIwTLoqCpRFLBUk5idizBH1nOhp8WPsewTxmi8ROY8FOlnfCYtmOCoyeueHTKnRTATFM2K3Ry4LI8KkscI2UEFVSF468SGSNlS6QGoMSIeIyslaoLIBqoQDIzZMfEMY6A9PLFi1/84u+/+fb7v3zzl+ls1s6mq/Xhn375++u7LSn54BcnJ0SVD3b2aH52fj4/WXjv//CnP/7jb/7ranOr0rMTMA2eMygAkOfFcg5oq/V66PoMWWNar7djHH0I93dxPp9VwRM7NIhjvO/v66YJ3vd9l1OKQ0REIlKV7Xozny9m89lkOqnq+vbmzofQNk3OIpIR8P27d6CYc6xDff7orGr8erOdzCbb/b47HIbuQOxUdLvahuAX81MiVrXKN1999YOP11cfP76/e7gPIYxp3O+6+WxyenaeJd2t192uT3nMCabTk368/93vfv/tN9+en529u7oOv/vdcj45W8wvnz7/8oc/fLj5uLq9rkI1vzy9ur393/5v/8/rm+txzGbskKvppJ5Nm7oJLjjygITsqsaX1rFDrqvKIUpOJfiChEX9C8RUOQWMMSWJGqML7NlphvJuMI7JV8E5J6JmlpIaKphhNkRC09SJiRjrENN6t8baXd3erNZbF+j2cPf02eNuM2zXe2aiOQs+7feHcehni6mbBOf9/n6zHTv2jofx6uH+9dv3/SD393d96pE1eKqr4FyYxdFgdb/uLi6fXT55fnGx3G4OolYHnE5mJ5Pparve7/btpKknHmlcrc+6/vbuft3FwTnLvQCoORoh536Pxk2dAOChP+ScgQxMoqY6eDCRFHsbqrquvHeBWRRM67m35IJLs2lbhcDsNquN9/zxw0dVi0M8Oz9TZgH0TcjDYCIppd2hcw7b6aSdtmIQxzyqNJNmGnh1vyYkBwxMzlHXH7YP9188fU7nj37xi79N+/G3v/nN1YcrU/jBz34IL182TRtT1JiSycunT56cnTpDQ6mqauKrs8ni9OS0adth7O/vVkHxq5evTqfTmh0h//AHX91c31RUtfOwyWm3GxaLyeLkrB+7+dnZ3eq+nbvNds919eSzV9d3D5fPnjx5+vT9x+s3X38TJf39P//nf/ujr5589uKbv3zz7u27xRJffvn5bDF3wavJx/cfJ7PpZrv+8P6Diliv6V59Wz1/+syHsN3tdtUW1TQl17iXL1/Udbg4O59NpxLz6dOTZ8+eSpRFPZ1OZjcfbzfrTRzG/Xb31Zc/ePb8BTEhYFVVWdV5f3v7YAgnZyer9Wa3PTST6aRNyMDkctKU82a9Xd1t2tnEkRPUy4sL7zwzV5VHYgTIKccUv/7LN3e3tyoZAA/vDkS03XezxcnJYoFmfTc8ubiMY9zudznmw/6wmM6ny9kYRzXZH3ryPoHc3N887O+WJ56dPnp08bc//x/3u83X3/zh9Xd/inE0hfVquzybP3l6MZlPVrerpqWnL86rEObzdow9kW23hxyTCCbRIeZ+TLtuHHMcR8k5E7nMcNh3OYvm0cxQgRjAFE1AEVUcZVEzFQB1LoQQJBNgaZHBmDMYlC0jEyWBPAqDQxDvmJENTQAZpHG1le64YyMMrjawUpRWg5zFcWUOfVU5KQA6sxST+aNGHowcEyPpJzScHcl8liVnyeVERczl/bvA/4oiozzTjkeEEpgAAGVGKogZOC5PTA0NNWcBQ+eRmNSAiAkA0FQEsagqi+xLxTSlklY0EEpDhNJKF8mUigDITHOR15v44Jlc0TUgoWQhInKYk4QQDIwMp5OJD3693qSYVSVLZkd1VanKOI5mVoY/Yio5ETPLuYxHhmZsZV5SZkL0LngAcCJmCgCE6LkU1MpbKiI7M0NDEwHmynsKxI4r7wFATNCAEKsq1E2lYKUJDwCpj545VE5VCSlnQUTnqa5C0Zof9p2BVVU1advz84vPv/h8vx++++77P/zpzx8+vLu9v4t5zCk7F1SyqwJmKPkiFzwBIwAzmZTBJqOBZs0US24dvZF5Os6CWKo1Cojkq9qnlMlXhiwKYgAxi+SoiljOEGYAzC5JKiAAPWJ6oLBkin+nBJ21vKMjIHK5PuEnE2lJp30qapVYGQJicX0ZKH1Kf9HRrlxMKlbkhKKmAFKGISZyRKKkJiKkCojgWEVzTgDAroR9AAkNyYxBpdzZDCn46uXLz/7lv/yXaPSXr78ehlQ12SCNsZsuhi8+/2y33a133Xy5fHxxHupquZitt+tf//G//+qXv7y+vfYVBkdZ05iTpFSHKg8pp7Tvdw7RAWexh4cNERtSU08DezHJUZLE05MTMBm7PsbcdZ2obLc753xTt0mzcwxgD6vNw/2qnUybqnbMTaiXiwUY1FU19DFLatvaO98dDiAqUZNqxc3lWXN+erE/7MaxF8km8PjRKwRsmiZUQSQ/f/qcHQwx3d8/HPaHd+/eucAiOFvMun44dN049inGvjuUT5CUxg9X77PKZD459Id/+tVvZrPpyxcvIjhfnS6f/Kg5e5Fi2h72bvZkevnqvvt+frFYvvRG3Myni7PFrJ0E8s4wZzHCDGYIqrbfb0UzeidoY47j2LNzMigoiBnXAQBzNkOJQy8SASDFbKSG0O3GImEVLfB+A0SHZDFrzhpzGkZk5cBJ8q7rXFsdUhxy8rX7sL397vZjd+iatq6d3/1x//rj9ycnCx/c91dv1PDJiyfJ4O37d+j5LJ98eHu12e64Crtxuz3sFOJs1nC93O73H+9uFsvz9XZoJ1OAdH/zwfuwmC8CZ5CurWqYBkYex93Q2W5zG4fdYbc+7LZ9dyDUtglMoGJDlHGM3oUupzGOoQoxlfarZSpKq5xjDMFPp633rg4B1Wbt5CycuNrf39/FYbh4dDmr67quBfLN3Z2ZzefLxdmZ64e6aYf7B8l6errcHbbkuhACoTMj71zbTrb7wxhzjEkMkiZBratqsZh/fPP+ZDZjhPFw6DdbG4VE96t15at337917J9fPNp1h4uz03Hop5OJNhlVJcphv6+Bn56d/fBHP67b5vrm+svPXv0v//P/8OHth0kzPRx2s9mCic5OzoL3Q98lwQ9319uhudsdyDEHh1X9/TffX3+8uV3tPt7ff/f1N2LpfrX+cH/z/cc3fR/XXTem/rA7lFbDYnmqkld3990w7La74nn8eH3DTBVxeSmr2EuMgVzrq+yqvutOLs7Ol4vAzhGB6axtq0U1n8y69Z7ZvXj6fL/f39w/VFX96rPPvXPz+TzGeHu7efn8hZpudztQizGGpp5MZ/Vk2o8RgJZnp/vdoe/TdFqPXcfklstl07axz9PZfLmc13U1X0wP+/1+1/V933X79+/evnv3/vrjzcnJ/PTibBhGImyn89lsElMc9317WTVt01aTq4/X++1uuVw8uXy0XC5HTTf3dznZycXJH7/+w+3q5vHFbDo5mU7ay4t2s3pzdfdhf/jgQr/vdw93WxGQ1TCkVWg8GjPX333/DQI8fXHWNH4xrZtJdBNCrpgqARrGGKMAchxl6IdC/F+v10C06/YxC5IzhHEcU8zIaEbdkGOWlPHQj8jgidVkHOMRrVwWtoAxJXJe1VA1x1Eym2M1LMpGiaIK3hM5MlXLRmaiRkwSMyJOKhaxUaJGdACmolgua6YAfMy7OueYRTKxkyx0zBKCKhAdX9GPvrHS84JySZeS1ygUHyYyLHYLO8KtC9j3yPgtZF1TOYJ3i2XXzCRrkoQAqo6dAwNVNSsuBlDVIfYAELxnIvh0KHHOISAhR86iEoJnx6AGCCKiZVoyc855H2IcY5b1dlP50HeHwrNxzplZzoJkaiKiDp0pkCNELNkRlYxEgoYAWbPELKIAWFXeObbyNLXykpAMwGG5sDMC+OA+sWWMmZwrOGguX0wTzTkLclVV3vnyBY86xnFQFfI+g6oWN5855yRpKIwn5pxS7semqlar1e9++9s//PmPq/X67m6lDAYYU2rrMJ9OY47d/iA5G9oYo/PO1NABEzsmI5OcUhJHjESlz+a9yyJZLXiPgFkEgQwgW4H6KCBqEokK4MhhNlRgcsEkx5SJKFSO0AFKllhAA8GxWcFWHQk8pbmOZaghMDVCBwzlbFrWn6aqaggIiuxKdr5sosRARK1ElIulB8kZmHyCSNtR9GOIxoRqqqgAiqTk0T6hj47cSVARyBJNEhefmZU1IjtWE1mt1t98/d3d/R07hzEdtsPk6cXJ6eOnn3/147/9+W6/u7m9W56dTmZt3x9++8fff/f263fvXz/c3GVLqJRllDgaA4hoTs4xKY3juNPDcrHg2tXTqWTxSJNQE1LOUZIwu9PliXfcj30cd33fOR+mbdsPPTB4Isl5v9kesQwAvvJNaEpNYX2/BoEcs6q8+MGrs+XycNh//HDlg/fBdV2PDtVEqmYxnc1ncxGdL06zZEDYbbcPD916szk5nQOCD34ybU6Wy9PT08l89u03317f3D6sHgBgMV82beubin2omubvHz2TnGI/GnkO9PHu/urmLmUD800dhnEgh0Mfc8rPv/zq7PHz+fx0MlskTaOOHEhyjIfBRIgKg0pvb+7u7+9v72+9d7WviGAYRk2JHCFhzGm32wECIAPQYjnzTN1hr6pFNVW3E2PaH3ar1RqJYs6hrhzyyWLZTuvN3QOA+cq5iqpJNeRxkw+r/XZ0IoxdTt77/erBM0jW1S7e79cX/dm7+xsEGw69AX3c3AP4+4dVVVU5SGJtls3+0NGEGVzqeyXjwDjavtuIagiTOGw2Dx9IOkKf+22aLH3VMHpJOsRujONh2K/u36e07fYrSSNCRoB+6ENwWDBdSEnKh5BITGjG3hvYZr/PcSRCRzCqRJPAPgT3/2XqP58kSZIsT5CBiCgw5DhQZiWoaljTO+h2Z8Hff0QzR9N3czvT013dVQkDeDgyqEAAM98Hsai+TKKkoEinCHc1M1WWx+/93mbVDWUeP92bZkmZ0Q1xLqbOudM8vfz0Q2iad+jvH5+7Rd/2i7Zpi9lmvb69ub28vHTEOcfj8QjATdu7KSfJokqOS1apLcoGt7fXf/273zYc9k+7H//4p9vLq99+993333x7miadYmaJji0V9NQ1QUsqOfeh8Z4iAImVOe0enr0P2+cn3zV57FFg2fV9297c3BXJj/F5d9ifTqfVenW9vPvll19Oaq/evjrGeP/p85AS983/+Kd//PT4eff84j2x4/1wYueQJYRGrFxcX7Zdl1LMWZ6eX2JK4zgxUmjD4bBPOW/6FRmVnBeLbrVYbJbrbtE3bfPkQlxM7169Do6Pu2O76N7evdKs43S8WV74vt1td7ay6TguFovQNCq2vliZSininN/vj+zpdBx98NevbhExhEA+AE7AeNrvUxQVa0KTQrfbHdfrtQoYYxOacZg9u5KLCsQ4v3x+uf/0+fHx8/P2xTXu8uby9Zu7+08Ph+Px4qZ52b545tVylXIe5nizvvDeSZHlsn/97o0jKqeDmvzV3/7lz7/8OI3H1br5zXd3X727IsoCx//2P/7xNJwu1qubqy4EPu4PYxxvN5eLjTsNRwQ3x/x0f4h5fv/w47ffvvndd2+zzsfdsV8s1+tLIG5bp5DAsG1D34W2bUPToF37pjtOp1SUXTDTw35/GkZVyUVijAI6z+lwGpGcc2Eap2mMwzSpip1XApjFRBKhNj0hgkgJ3pVSShJVIQDHxOgISMAM1SGiKROImGRFQlNxhnmaHZjV2HuN1xORqRaTErOwJ+fhjHVkM1OpdmlSqcBAVBUEMrPaGklAZ4XmfBgnV8WrFNWUgBBRKlAAEa1g/SJWNFMpGbBmNJAJjdSKqrEBESkICNamutpeT8SI4L0jQ6yBbRMkNDJk8M6xc0RUrKgIGJRa92BqYPVRNk1TSa6W5aqpD4uci6kWFTAERGKmWuCOpioiWheENQXzZQVTmYMIZjlVmI4yExsQUy7ZcdM3jYGJiqlKHcKYVCSJnh1eUkG1NbgtIiWnFHxwyGRWCccqmsWIsT7MFaTWcTh0pZQmNPOcgGw4Dc9PL+bwcDi5EBbLLs5JERkpp1SkiKrzDhHCcgWgMSUp2nivSqCqRcCslAIAPjQlJXJeFRTUiESMXHDBz3OSAoZspuM09X0jACG4ojpP2cyYHSG4llFBQIsUI2Lv0ZQIidgUSUFV6jvnPAJ9Mbhp/bKzFRYrShwIuL496EyIVtOauwfFL/UhgMjOeSICUxEt55Q+OGYwQ+dKkZykSCkqUPHcCFmyqYam6Re9IUkqc5zdwnt2TdtYttAEU5pLklwOp/H/8//9v3fHw6uv37Fr2DWXN7fTiBAWGXteNldh7TrYHl9++Pmf//CHf3h5/hzHQSA5D9MwEBsYkGIgP48FMDeuY3aT5PHpofPLy+sbQhwPg4iaIlHje7zY9P2qbX3DEz0/P5uCI+LGNcEZQi46z7HkapQO5N2iDVpkGMf1ev3VV++Wy9XFamViXb98ur8/jdPpcNqsN651f/UXf3X36m67f3l5fmlav1quX7bbX9+///zpMzLEGI/H4/bh8evffHV1e3t9fVNyaQIfj8OHX99bkfVqpbkY4d3djW+cbz041y2XzgeNbtEtnPME2q8utk9P4xT/+OvP8zi6EIDAk9897kzyeJj2j78WeC9sQxrnPGPQtvF907TeB/ar1TKm+f7+4/3jY2hDCM1yuVherDA7BLi8vDgej7v9cZymLDm45vWru2/evR3G0+Pz591uh4A3l1c3NzeH/XEex5iyI0Sx69vL337//UXfPV88lpzZ8XK9WFysjmlwP/zxjz//nE1nyWksmysHDFOMCdRUjlM8PUqOJTQhOAeKnw9HJtc2Hhv4/PLZii03y2hZQMiBgo3jGOOcJSHoPB4JdPuQ//G4f/fmTdcvHDcGDtA1bQ+Ic07IcJpOD4+PD48PIHmz7uZZh+HkHJdckCpCv5mniEgAjiEgmgmoqCDkAiDKDJXJXnqOkqcpew+Vi7vul03XRI1pSqZ0PEzjEFVtmuHjp8dXb+5UdbnqjPX56dPN7avL9ebq6uo0jf1xX7KmXNRQMnjXiiAjqlpMebs7NETDYbi6XtxcXSIaMzSOvQ/e+TknH8I8zkA47KbDYd/1zWF/kJLX6wWCXF1d+cCXl5vVetNv+nGYXp6eu64LwSNSzllMfNPuPz8Y6pCml4+7zy8vL/v9f/uHf5hLFAPy7teff3n89PCbr76+vti8e/fV9e1VTuXltJ9ivrq9+dMf/2WK89Xd7el0un/4fDgenefFsiXm03EYh3m1XF5f3FiROE+b1er68qrrFiJyfN4tWn93dfl8/xSn4W/++q8b5ySXvuld2w2nExpulqthPLx79+7T/ac4x6YNzw9P0zi/+827rmNVdciXNxdPT1vM6fXrt6dhfNl9vLi8Pu3Gz58fr26vX92+ahq/fd7lubykXd/3TdvmWPaHXZzH09QT4f542O22yLhYLgHpYr3+5rtvCGm1XCGxiYDp1dXtcrHUUqKkzOX6zbVauXt1+8uvPw/TMca0ubr4p//x36+vLr9+c/PwcPzbv/2e3fTTzz/98uuPcR6YWcx3Yd2EsD8e5jkXTUy+bcLHjw8pOjH/tD1NcVhsVt99x1FkOxxeDoflad90zTQkUQ2+IWLJpetc6+j68mIaYPv4rOZvrm/bvm822DrNsQAAhya0HQALsPeN45DnPM+paEGDUiTOsxqJSlFJMamZqEBNZeecShHTnISYEB0A5mJZBRHVzAhiylLEIZqZiKV8qsUGpGpM1bxsqmZiCpZy5nP7KX7JlkMt0zYrSLUlV6luz78UwYNILd/B89YHASCEEGOswDrVcn7Sfak/MKlwOQI1Ra0Z6TPP1wzqD6lgqrVznpl9JUo4UtWcSg0qB/XEJEVVpZaxDqdY3eNqVltkSy45ZyJS0aZtVherNjTJ0TTP7J2IFAPR0nATFn2K+Uuc69wPawiI6Bx7xzVAUrIYKJiBkarkkgHAOWaiIkwe6/dpABJFVcCMCczUxAxQSlHhc8ilEvrrxkfJUgQKNeBUI+LO1RpQBLBSpDrQ5zmqWkyp6zvfenIODgdumpu7291+n1KOc2ZHTeO7tlWEI7uUUmgaJJ9SVBFTzTmDOa7hGIBpnpvQGNI4R8ceCXzogDnGBChYLKVUzMSUHF9c35ILTRtErIhQiPMwl5ydY8d1ZDdANdAzuBNr6TowE3OFRAt8CbArQE1Ai9X0IQKcKdwqgtVUhaSqVgpQraA1rO+X6rDnLy3BpmaJ4YvhFSFqBjFRZa8c0IE3kBAa73xtb23a9uLiAgAPu2NTQtv6y/XKe291JAYm70sunhrhvL7oAcPV9c3ichPn7LwR0T/+4Z9P88QOIKT37//0yy9/HMa95tlUgcoUI4CWrDmJY29qqqakRcai4tgRON+o73wA17hw2h0RKARuvCu5fHz/+fLyYrHq3757N8/zPKc4R2Jkx+vV0ns/nCZVEREVHU5Divl4nPp+eff67ubq6rA9fPX1b6Zpftw+/fTjT7c3rwzhZbu7vLxRUVR6dfNqtVl+/Hg/jdNwPI7zsFwuuq4pmouW0zgu15vVcmkd7F+2RUsT2r7tr65ujrfHaZ6W62WSLKU49t43OUmcMi5ajRJa/uqbd+v16rDdbndPJnn3smubcNweHTEqHF+O3gf0fip5KPNhOhnp3Zvbu4tL7rvOu+uL9Txeffo1dMGlOAPzzeXlv/lffj8eBhVpmrBrtjpP799/LHPu2/7mYvPNN78ZD4e+cS0HBPrmq3e3N6+f2qdPH+4HioDYtt23v/nq9nLz5u7u5nIznIamD82ihUDzY9Fg4tWSiAg3VHIJITC7aYrMXLLGNElRlxTAHDvP3HhNOeaciMw773oqlsVKaN3COi3leDjGadKSL9abrgmoetre/zq+dN2S2U2xDGN2oWkWLXiOKZ2G0xwjOvJet9uX0IYQfIzJOS6iJUdP3pGr1HQTETMo9V5yviGbgSKVgjYWdgSS1VLbhkXbKTEFr6iHl4MqPW+34xAdddfzOKVEnlOezSDO6dPHz8dhWq8uDoeTIfR91y3bH3/8qaTMRH2/bJsu5RxzBJAhRTHaHY7/j7/7u9eba5YiJoqFfROAyTt2DFHRM5GV5EPgvm8EnAuuabqmaRzRy3b79PSy3Kzbtl2uVqfj8eHh0TfB1AwRmE6nU5Z8Oh13+93+dDgM08vLDj20i46Bdk/bu6ubv/vrv727uv7rv/nLy/VaTR93L0lz2y/Xy8V//fu/f3l+etntHz7fry43oJZSRsglp+Vyse77v/jdbz051SKplJjjPI3DOJymtg3T8fR4//j61d2ru7vT/oAKd7e3w+k47kcEuNxcXFxdqkLTtMwcgp/nGIJfL5fTNI/T5MHXEAcANG0YpzGX4p17enqe4hxTRMTDYSgiV9eX0zi/fv0GyYbTfHt3++H9L7v9bnW5yDn3i/7mrpMijw/PJpZS0mIxRjC0om/fvFkslmmOqnKaT/KQ9/vdu+++MpWnp8/DcBiG4enlQynl3VfrG+qur75RG3754Z9/+PkP4xivLzen8fj4+FQEu/aibboplseHp+3+s6jMs6i0h8OcChm1wyk/PByLjbUpGT0+bbdzLP2itdNggl0f9sfTcuH7NQ2n4dePv06zPe/vN1cbFUs5TsOcU2mXznMIXcvMIrLoV8QOHTlTZu+NVpsGidh5JKqtEuzwzIczY88GWG0cRmwGRThrDdDAPKWm8SbWBIoxFgH0ueqoRsTVQFBnDySiimlBEylIVIpUSp1Zfez+K5rFzlSWL4QUZlGtDzlVqUd7AwO0+lPBOWl03pQB1P5YMjAEtirSmDnHZuy9q/ZqA4QaXKp/V6UKQaVhM3FtMEdTPC881OY5VSUD8QxZRlFAzKU4QhccAKQsqrOKTFM8TdM8z1ZktV6FELIkMCUm1cqag9q6oKaGKGqoVs6J3fMPD6ZmSsxqQgg1puSYpaiq5pQQyAdnaiIK1aki5hzXUBUgVKdUdVGoqbI6YjIGhz6wq8hjBBARAXKgAFIUAELXNl1zrr0iOg3D8TRM0xyCW/Sdb3wbWud8KbnxngytVqUQV1J2KQKAFFzfdwCWRVMWk7oJyk3ji6ConMaJ2RMz+3a16Im9IFxdXues5FnFnAuiZb/dD6ej6Fyk1PB2cF7P9AFUA6lAASTAavohMENyYAZF1bT6nmvRHVZpyNScr9Eu5vN6rga/akUuoSkYE5EjPXvGRKQAKCAzoUDxLYJByw0S1N4S77lfLdumjSXP0+jY9X0oJc++dJ33jhbt2cwOADkW76zpl1nl6enZAF+/fuedPt9/eHzehX51mk9xls8Pj8jSrvzu9HzabxvPJgoogGhA5KikDMBipmjUMEPlE1PSYiXzwI9PzxfLdRca3/rgXWACtfGU4pwMdgWUCUMTkMgHZ2DznOY5ESE7sqIIOAxjybnr+7u7y8bDn/7wh38uCmb7/X65WgHiYrW8e/e677o//fDjr+/fx3ny3r9+88Zx8/HDp93hYMTL9frVq1do1B72gLi5WB8Op+NpaNt2vzvsjztCWHRdlnI47HJOm81q1S26VX93+2a1WE0x7XeHcRxKzk+Puz/94Z/7LqyaFmSedgcPMO92ToqalKytZyQJHpbLZgmunXCYJpSMmhtue89e7Hqx/ur21f37jzKm0C42TRsKON8UKg37sLmYj/t5d1w3YbVaLryTOAd0dxevWteawaZftshO4HZ9cb3B43DyIeg8PX76uGlC1zdxgiwxDnk6xQ/37+8/f94fjhh8F5pSFLKVkgBAC2qpi3srZpJzCA0SF9E0D2haugAgXd+7McRUsmbNggiO0bSA6bJt39zc/cX3v21dyDGS2XKxbBpfsqZssWQKjI07HE+/fvi43e+LlsOQU+uQ0HeNc1yKaSm1xZEAv6AirMLy1bCeG0CtcpvNrBRUyg5MwQyEqcwl+xzZ8ZDzME6nMq+uVo1b/PThp81iYwQIllJKqsA+iZ3maX8cCK1pm65tD4c9Iq/W6y60YuY5gVkqcbFeTS+79dVFv17evzxCjN+8+7pfL1XscNiVXELXTnMx1W7ZXS77aZ5XfRuWbp7jYtF5H56eHn/55dfty+H27vbq6to5HoZxnmK/6BHpeDr88sv73W6/uVyvL1aOOY7T12/f/B//+//6cty9PG3zGL+7++r733z7H/7tvzctr66vPVHKKVzdcONeTqf1up3G0w+/vhcwJXh52TK5vu9yyiGE9Xp1fXF19/r1sDs8P50adiWl4+HkCN/c3sScTofj999/85e/+8vGB1j2t9fXjpmRr64vrq+ux9O8fdmLlNVm5X2QUi4uL1JK6EhMHh8erm6vkWh9sdls1iLaLvvr4JSwv1jOkg+H4Z7uT8Pp7vpmueyGYYwpAhoHaFpnBs/Pj/vjy8VmtVgt0HCc5iZ4BHp5eFmt12g4nqbFzcKK/fDP/6JapmkKwd/evQY1VFqs+tXV0rny+Pxxwfyf/o//MA/PiNPdm9V2e/+8fdq+7JaLNRj17eLz40NBXHXYtN1KAdgOwyGW+M1X3+4Ocvj4OGUws/tPh//0v92++er7//7f//6nH35KorHofj/Fz/vNatMvehE6ntLLPO+zmaRDVKRwKko5m1kG2Oc8THPczg71zbtr0zKcdstFH7omxjwNE7MLbUvsnAumME+ZyIUQTJWZ+0VDhmCG7ELgujSfpiTCTds575g45Xw6aBMcLjvEKljmemeXL/aIKpZUzuHZxVxDWBW1AkSi1f0Cf1Z3zpmnuklARHCEWqAYgKlJbeip/go7U8gAwBTQVYwQnjNNiNXqo6IAxs4xIbNTkZxLzQSdKcsIpqhqjOSZ2ZNKLdzCmjMiJiASKSnX/g323gFBLkVNmbmOZiKa4r7tQhea0LjbV69evX4DRYdpOB6OLy9bNfPsiUxFz09rR6SklXANtQjBkKgalQDAsyM6k4G+yBVVnbAmhGrdNbWaI3PsEJGZJEt1eJ35JEhI5J1j5CIiZrVpDBChOl6I2YOaiagLTgTYO0ND4mL5NI8vz3si8m1o2iURe++dYyuqRZkcN6ymMaaa8y+51BeIWaZYcs65mHOBmJ2RGJhzEXAa5ma5WS6XIQQg5703pCmm0ziP01ykELuLiwvnfNsv2HOKY5zHpGCmWQ258stzZQSYoZ2FH1A4v3UMEJnPri5AZiAiBIAz8tDUimgRQXZVBzJQ4DNqyLRWaoBWloKBAdcyOVNW56jxnfPk2HtPpobMjjkE773rVk3s3ThOw7if5hmdLlYdGAzTEFP0wRGyZAF0HkBEkLKI7Pb3z9v7l/0xqaJrFFxOsjseupV/t3l9ddFAJoOiJZkZMbPDaZ7RiBsGgtrKSgDs2DsHuf50eYojM8YUNWss2LJXgaLm2saIhznWkjbnCYhEYc5ZIQfvwXHJRYqYSsNNCM2rN69Xy/5P//LTPE4A8Mv799989y37ZnlxWUxfDtvD6eBDcMGB4Rjjd999N87zcTwZwZzy08tL3/XDPN7e3L1++/b58fl4PJ2GcXc8zGN0jrsWCV0IPREt+3652fi2bZvO+3aa4zwNw+k4jcOnTx8f7j+9fn3XvX0DMaLmzWKxXK9Wi75tQyk25zylqGCuaa1rhPkwnmJKneeWHZmUNEmMjmmzWqyXi7ZrQeXp/lNJCQ0WywUAtOzf3L4KXQihWfaLaZgALYSwWCyHcRqHGYwNYH2xAUbfeiSapimRPW7vXzU3kwzHYRhLehn2v95/Pgwn9OScQyNCYmLNSsCIlEQQScRCCEDA6JhIRUHQEOaYc4lTzFOKYuocBeeCD5ptiuliubrZXH/zzTdv3r55dXWDBRxR1weHlFIGZkEdYjLv9/vD8uLi4fHh0/39MM+bzbooZFWkDFjEAEWh0o3gS7qg3raBsJ4CzIAAgfTL/xJTRFagOebd/iiqPoQkIgar9eb2+i7GtN1uKY7p8QFAlv0SiEPfhSZ0XSuNSsrDNE3T3LQNE7eNB1IQ89515mVIJeab66uS7J/+8EcyXTfty/GwWCybJgDDOIzWVIMfGGQAWS27/Wk4HeY5JQO6uVkUgCHHQjbEaX74fH191a8WWgp5Wq/WbRe2u30pedEvvnr71Xffffubd18tVqvf/uVvhzT+/OMv6TQvuvav/uJ3i9bnSU+7XdP6IuL7brt9+S9///f/8Kd//OGnPwpQt14dxsM8x9Vy6RwxeQLs2+7q6urx09OHX396uH98e/u679q7m5tF36kaGfz262+//s1vbm6uTvsDLJdXV5eePYKt+lUIYZ7T4+fPTdO2XTtMExq8fnVnAE+Pj/M8XVxdVj9D1zVN03z49Gm1WR+ej7nsV+u1kT49bvenfRsadEjO+cY/PTwfjvvQuOPxMAxDTaBIETAzkJyLYx+CH4f5dBxDCFebi9VyOY9jjGPbtuvL5a+/fjichn/zb36/O76M0+7qank6vnz3/Zs3X11M8ZFYmOPTbhenMQS+ur4Yh3mcpq5vNxfr/TCMp3sDu7y6AISFdP164Ti87J+T2JiSKgwjF4FAjWWSwh/eP7ardQGeZi0Sd4dS4KnvHEJ6ej4uV51mu9ysRPDhcZJSCpTTNO33pzjNi2WzKXbaH4f9KRXrReY5TePM7FszYid5ijHnooSsomTIjhfrFrJMp0ieumUggnkux8OsxS3XCx/caX/0LflAPgB5C66bpkRoroa4/lx7hIRsXPNcVWkBOJPhDBFQ7Cz6fAl5wRm84jyfczMEaGRYe6TMVGsXZk3kOHZEDPCluALP+TIFrXWYqlLnGwBAJDURlVxSjdyfazAr4aUiXkBL3XmbODAVUlUAcd6pGjFy5Z4xY/VAlcLeMXFOgojMgMjjaX791at/92//4+3d7R/+8A8fPn04nY4Kqga5FAMDZkAsKYtp8E0g6peLnHOOsR6QCMnAmL3zhERSH0IIakLCzMTs2LmYU0mFEJu2Zaa622Ek8lTzUHgeQoGQATAXKaUAGBJYLhWo7ZgVTVVzLnW6FJEsBRIvVj0xz1PMmhZdv1j23nlErEpIHZ/gTBkErHTHrESAAMReDErMKZW279vFIhUdjpFDw9xcXF0tSvLOhRBqsdrxsE8lxZgNIEuWbM65Oc1t6BrfdG3nPbNjdD7NUXJhYoBsBkz1R1RAVpNSy1cJzBDOLOjKXa5Xg+qGse5KpdRFGBoaI5sYoInCF/lNzBSJAZ1jIkdITkoBUmIkItc454iIDE2kqMgcixxFTRfLBTue5zGlnFIhB1OeVSzn4phc9t55HzjllDSbGricy/T5aSuiMQn5wJqy2Dxny1NPF2+v175lLMf3H34tRZAYKQCamRKBApgYAPjgCZEZDYwQ0DE5Zw6yCKI472OSIoWZsxSNVlSdqJk479rAJcqcJRVl75quZ3JmB8duvVloVkecc3l63nfL1dXN7TRNu+1ue9iZo2zy4fM9mA1pzs+PAvbuq7ftsh/TNKX4st/HXIZhyOVT13feOXbN+uq66bs55XmahmFq2ubm9vrq6qrvOnUwT9NpjGJH3yQCP43xtN+laYKcHcB0PDgCy+nx06dVCBf9aj6NczykZdf4IEWOcTqVib13IWBohPg0zgKaWp/HYW778TCOU9zudjnlfrHo2r4NjXOunopSyQTkvF9fbHzbOPYGbooxm7qSUyxTymPR2ZCYV1fXpnp9d+sCj8NpGPeFdD8PEfKpnF7G44f7T0/b/ZznkiyNEyg4dug9mUOilOeiBoTEyKigYBpFyMRAAQxLsVggS0l2ahwF19cG6KKghaTgYZg+fPz8/LTvuyA5W5GmCY33zGyAWctpSIWgFBvjlHI6HIc5ZTMgR1KkiJoZOzRzJsVQtYLLzVSEz/I4mlk9b1bdnLn2YWspIqrZ1QUsOpor8WTZL6XYNM/AbAzc8BzTrMkM2mXbNo2aIkLbt8DISKHx0zCdhoOIknPL1aLGTqZxCio/Hn8+vDz/9rtvPZft6bAcFmtYmgPXOaXSL3tPvoiUbGIaU345vfi+ZcineGr6bn11Ye44S9KY2tKtlwsB4N5hg3fXd2++fvv+x1/FZLVYIoJ/dWdIJqVh/vrr1yXleYxZsms5hB5B5jkVKcMx/uO//OGf//TP//B//2GWtL7ezGk6HYbVcr1Zb3Iu69XSoQ8hzOO43x73u/1i0Xd913fNerU01ZLz9c3N9dXlousd8FfvvjKRGOen50dGsmaxfzmkGJfL5Tzl3e4kWoL3h/1wGo7H48k5d/fqVkp52W63z1vvm27RzTGSZ0Q7DPvD8QAoV9d3aZqPp0NonQs0pVOUMY3ucDgR2fpyKVKmaQakrg1NGxbt4nQawWye5tVmdXVz2fedmlzfXcRpIo8ffn3PaI8PH5xz3/zm25fHe8HTN9++NZjf3/9yebuc83H3/LToF1cX667nH3/8iZ2ik55bRTgeZna0WLQGiEJAzf3j8TALNmHVdvM4+tY1gRzCxarXVE7bElrXNv1RDsdZh+HU9DTNOc+xSL5MrmvaJhmCDWOMqaDDVGicOecAk/90P49DKhmUMQOpNrNYno2TsMOcJaXM7E1lPsWu831PcooIOM/iimWN6DBGGiPFuRzmwQeex1Mp85uvbigrsohGE2JWV3Kpu6wihZgdc50tahbsHKBBrFTk+mtTq6ZpsBrYgdrqDaZ1TVbTUlXnqFVcpkak1WbkmEUAAEWUCE1rBwOet2mIRFRMVI3QVKH8K6uarVYc1ENOrU0ARAQfnAOHgCXVaJGVIp4dOC8iUjSlEQGc98vF0sAcMwEpGCOa2hTnecq/vv/1P/+X//zDT38CgOViwd6J6TxNZ7eKc0UVBNnZctm3XYcORbNnTxXThlgXfLUHAz1QlSNEpIjzrkbCDayudc7pJFXnHBMR15wSnLN8UkqBCvh2XCUuwdpUSlpyKUnEFIlyKjnVrjsXWjcP0zSOppX7j6LFB1/mnHM0A1M5d8qCNU0wA2wJiWpjayqarfSXlz50i/Xlm8vL3/2+SSLDNOVUuORpHA77U45zjHORrKKqws7V11qlzMOQp2jLhXOAyD70AI45mEjJxcw7byUlAHOMIJJLMSvEWOdvYjKt+o8hnlthRUxB6QxCZKzeZwUAZWIkMxWVBGBnChsCe3Se2YFjh+TVimlRAquai2QRMTFiBsMxpZRjLKVt2hgnYnKNy1lOQ0y5AKpDYsptG8YIKWUzrU2pWoqYEWJoWKHUI4P3RTQHr4GzpJjGIcWpFCP2pSgYtU3PRCllA2g6D19OGSICCEAkIFEzkXMcXOtC2+Qoc0xJVaSMp+wbdh4hp9NMORcRCcGr2DDH4G1K+fKi31zd7l8OMefjlHbbl1ev3ywuLsN69bjbP20Py4v1cZ5zKZcXFxeM42k8jMNFnMk78BxBppLJe993mjh0fdd1Y0r/85/+qWmDFg3Bc9umIoIwpZxETnPMKZuzabubYrz//LherXygOY7DaT8cjsPhUPK8B5gcT77FK4v7w7jbXfQLUJtTTCYJc7fu+uWac5liiak0fdt0je/6pluyC41r3vad67vQNIR0dXe3XC5Ox1OFQCJQyklUAYkdA6KiWhZDAODGBwIm1xBx7RXp+gZIhXWGaYaYY9wdj8dxeNzvtsejIiAyWgEFVYillITOAWCOJRnVvlxKipqLCRCBQ0/2Zyo/GpKo+tA0XcfMKed5jExhVtk9PD2+vATvmCjFWHImJOecDw4Vp2kWIyVUhWyqpm3bFRQwk0nnNGMFP1JgUi2MBKpSwKz6L8/vTzybMg1Elc4yERJ7M1UDKCDKw3iO0wZH8xzHcc5FiRgALi6vci7D6ZQkm0FoIadUSkHVXErThKJ5TtM8T/Mc2bkYR8csWlTT/eNuuVy/W989PD/g9fVf/OVvC8Pzfrvf7ZrWY8QCQgo++OE4H/bHl8PhlCY6uWY6HsYxZ5lVng67/W7Xdh217vHlsW/a591TcO777799++rt3evbaR41S87Je9ctuu3L0xhHdDwN42F3INRX726nYSolffz0+TCe9sPxh59+2p62/apvoCfijvDrt+/6frG5WM/TPI+z73Ae07gfgveIBAppjKu+275swfDVzc1mtT68HObjfPHXf+mZs+kwDKK6Wq8MgAO9vn5zOE7H4cNpt11v1m3XHY+n4zC0bYtIjM55IiAGnqcJGV+2WyNcrpYPj49A8M1vv71//3H78JRSGqa3r+7unl+eixbv26YNRcrpMIBq04VpHKZh6JeLzNm7sFgs+h6YnJTy+PCZA64ulrvDM5Ft1t23v/mmlHR7e7XuKS/w+vbtPL4M4+7menE4Pk3TkVG7hkPA4yEuumazuRynyE3wbWu614KBJRtoKk+fXx6fRuBuubpabdanw27VaNu4xlMah+Cp7fomrPrV1fNTyjL7tvcdPTw/p2Rty21ySPT56WSgpQgiWaFxTqdJzCBPovs5JUV16CGDEJGaz6KIZNmmWMCoaT0CDmkuaO2yOYwTgbWLJs2zJPTgKQQyt3/ZTtO4vliFpj+O8YYa33jJ03iaG8+uaRzV2aXKOWcfrtbntHOuYumqqah+Ta2bgDPqjxBBzrUUNQwP3gdVqYshQv4zCrnSeJmImc9sHzjHnrCWOWOdq2orOFjdOwGdTTaAKlJ7SSsMH8CY0TnvmFOR2kGRczYzROoa54NPp6gGzAwEquaCX61XpppiBGdpnMYU265pOv/88vTh/v04TOyDD86QxKCYClRIUmFVRqw1C/OU53hQy6YavGcOtV/EAZZStKhjco4dORFNFc8IYOeJCEoRLQpojl0TAjNLkRovd8zO+xpGq1jAehVrtRlgmZOUk9T7LxFQsWrwVUNFHefpeBqKZSLLOc/TDAbsvKt1uCU7ZjBkZnYEAM6z860PjRGmrDbGNKck3LSLsNosb17369XxOMEwjMNYptP28/P+sG89VfcWMTWtl1IcoSFKFtVcJB+PJee06NfkHDJ7bh1hmktM0URdYFMxFSTyjsGHqp85JkQoNdyWtRKCrJazKqmUev+GqpQYOqbgCRBNEUiJrFKsxMwHIjIkMMyGkCWWUoBQv1jKJRsyNewccAONiBI5UUV0AJBiSaWYYSpFVQkwBGcEJVfwWAaFrmm8oyZ4yZpyRqaUSzEDUwTJadq+PMUUd7sd/JkgJQWNuhA8ewJGYkCb5xkAkOvkT4CQUsnFsGVFnrN2bYfEmchCYO+xVrYxlpSOxwFQvQ+GzMFPcxqm+XQaObT9aSoMiH6QkpB202THwxznsUieo8U5gWEICSEslrNYNn3/+NgeT/z54ZByu7kIXatqwzAuFn3bNqp62O1KFu8Zma31ZbLPz7sP9w+h9TlJF1xuW0l5mqbjMH68v5ecTIrlVGJUKWkuDMlaX2TGcfrNN9/+zf9664E0FkcUOq/OhjKqIVOYYhLBtus5EKC2TQNIoVjDOAotFkvfuKJ6Uh3NuL52VruGAAGwaJEsqmNKghJT0aJoRMCqIGqucaB5GPeqA7pCAZTkOE6lyOPzdpoLkgP1Z5cjnZt6s2V/ZkRhZaapKBJJFTTp3KVbGwwZWUsl3ZMUned4PA3e5a7mCUTMmRUVQNd0SjyLJgHPbE1jBkRcYhY1UZu1xDhXZOgUJ+fCatW6EGKK7FsiELGSRaSUkqVINQDRF0B6TUyKACB45x25CrsHpYrqqOUW+Tg4doRUci7IJUvJZZ5mBZViu5RinGtbDoB6oazFTADMh9p7XRCJgcysW/bryyU5G07D8w7++cc//s3v//KXn365/3DvHX//u++m53k4DqYa5+y8N+eQ3K8Pj8efBgC7vXvVtf75sN8fDwuTfC/LZXf1+to7giRP++f9YY9EbWhAbZhHVcURXrYvHz5+KlJMC5iZi8v7cP/h6cP7T8+H/XGcjsMQmnZxceGabp5zCE2zaLNIjPnlZdc04XQaDvvD6zevLm/uDi/7pvE55rZrFqt+PAydb9+8emUKXduvlks0Ou4HsTKO02azvrq6OrzsmUmKIFrbBO9dv1gE32abHVPjm8Wi945Ow9i3bWjDHGcFC97NkrpFCw+KAIh6f/8BjZZXq4fHB9Xyu7/63XEa7t9/enz83LcdqDWNN7WUUppjTgXWuF6taLkiZhE5DcfPD/dFUvfUzNPp5vry+2/ftsEuLq9V8vbp4+tXq/UFn8bpNDwjdvP0goCby3XT4unwGNNpvVkeTgNSSGPJKS0W/e311ek03j9sS84p5qZpT4OUjDlBEZhiRLLvf/ftxw8/jilfRX56mnYv++F08q7hzqcyEZPzSNzGDE0bjqc55SwgpWjKMo6zmDUeu66FyRCDY5wijikH5xyigiNypdg4JUQUA5FyipILkp8cW9e6i5tLKJbnMo8RgNIMMeIwS2/kwXPTCTtTmKeSEpgZ9945dklzBZlXaUfNaoOpFAGqEMaz0bdqQvUDVbE9Vr9Yte5Zzl1RiAZQ9R4pAue4slku6D3UzDyRFKmyEhNVxzUAqJqhAAIiqQKeazPRALKISh0UkD3XXvo8T2fvEZGpmaqphYYXy0WtVWCi9Wq5utjEFIfTkHO5WK9HxHEYmGmeY9O2RG6cpr5feN+ImgHEUiQKoDVNk7MggwEIWM4xi0zznEpmh0zYhIYpLhY9KIAoArrAaKhiCuaYxXFRdUwhOKkymlq9JnXXJSIpZ1VBI+4JEb3zSFCKICjSmR1QimQpRXLO4gIzsSoQEBM1TdsACmpMMcXIRMwhuOCIAntJpWnCql8S8zxOIoKECpZzzkVbcqQeFEWMnQstZkFFPkzx/p/+JWZZX1y+fvXm3XdvPnz4Jf/8KxgWESvZoHgiKyolnwFOqoQVaJnnUYmcEbRtx+ybpiXKSFRSYSZVidOECA7AuRrSghAcoM1zlJIxnCPwtc5XtJSYgFRFgNhMGIEZncfahwaI5NAzs0dVJTbTkgqASRFJORpW1zXVhawqMHDJMueMiCWKZ8yiTCxZpyErCJBDpVoCpoL1ac7cgGMzqUUvKtV6b1nyNOVynuqwlHL/+TEXqUIOqHnfFpMYc5wSNOjYg0EuYgpgqgLeIyHBuSIWkVBNRDmKOGZ1hOwYmT15R6DATTE/EyEj14caOdEiLXn1/tPTMzmnWTk4cvxyGrbDFGMsUlrw+TgooHfumHODiG1bSn45Di4mMxUD1/hMLGjWhEl1nmZEyIypJBCwcQQADixEc7YswJ5HsDQnQhPn5vFUUgKFNjhRaZaru7dvmiaAQuja5cXF6nLVtX0RPRwGRIKU8zwWllnjNOfpNM8plyhGWCznnETUwFIUANNcLq4uFos+pcyOTQoTfXEvFikqUsxMShHRAiBYchYzRSVQhkpTYETNY9z3S1qu2s3NMmvaHY7kvHmeS1EBSQaI7AkUxERNjaANrlFgcufkoFjKUUtWq9qlKYgSmAGqsHdmPM/FTFOSLABkneOL64vGNYt+cTieXnb7ORVAj45Mkoqlkg2AQLOVJJmYFERE1JSIyDEzEbGpWVHyDgGYDHytEAY0QgCptMdKDkUEgBpnkQIIDo0MBIyQGUxTyirinQ8OQQwVTOz54SmmmQDIOyZIaRbJxNi2gZH7vpGSAQuxJ2iCC8vVAgD2u6EJQSEblMeXZyIogzz/w/Z//vGf2uCmcbpcL2+m29WyP6Th5eklNA0njqls5+Fxd9ifxrZrfVyMmYc0m4cpz8N8etxCkuwdXq02q76PUzTQGPM4xWmah/FUchqm4TgMTBSCbxoXf8gfnu5P03w6TNvtcYqZWvfN3Q0US8Mclt3N9e04Dw+fHqdxnseZvTOVNKbALFmCc361sc6+/urdd99+e9jtrzaXbQg55lW/XC56F/zj09M4jYD6sn0xw65tH+8ftDyN07y5uLxereY5DdPgCE1hmqb1xTpOiZH9wr+8bI/zePvq7vr2dsrzMI3HcTidDtd313/3H/7d88MTmI3H4f2Hj4vVsu87QEOkxWLhHIkUMjIz772Zrder5WI5xbTb77t+cXV7vd1vX16OLkET/OtXN1Cmy8t118I4TRfX/uLK7Q+PyFO7LD/9/I8C8uruVd/SaTiG1l00mw+/PPt27cOi6xdd13QdX10s/vjHPx0PLxZ6MItTPB1iVkt52u2fVp0N8yPBvGibu8vrKww///jfH7bDHA28xnFQKBeX10UQEKeY2tbHnHPSohaLpYRzRGKPbcO+jSmzx9D1ADYPQzTxTLXUOhc9jUXFEJIZSAFseDjpcuUNgojz3rHkaR7FdJ6KKoN5zYxd8GGZoyslmlIxyFl0VpdSoppsV6GzmdfA+yIlpXQ22iCKSA3C1H+qI0jty0IKgJmr28bVPwGQiIqUVNKX23pl/GitqiDAqglVH7EDJHJIYOXPBYWoqmBQE2lmUJ0QnglqL7dhztnABAQNA7vQ+RSzqiJSTuKRFosFAC6XCzKwXDyxiRJT07SHw6np+tfdwjGnkpNKPp0WXR/TXExFCiJ5H8ygCaHyAYpIjAkpN613DmNO1YfbNiEnR8iVhFG1ajBAAkYKjUMC5jMym4HQoWNXSjEAyVJXOFUjiBmKmGMXnD+Xpqme935Yg2Fipg49AYmJmJhZ6/zV5WXU9On+3iB77683V01ogRAMY0zZcsMtMxXRnAs5Z2BGnEqGOTI65z2jgVqo9hEgzSnnZOaathfynx6PL9u57zeQsso057zoPKI6BDVlMBWlusITMjMlPp62SugAm1UA04a964N4AUAtxWMrWhCA2NghkqmIQfEhhLZxjk0NAaUUUxHl4L2omIhZMVOTzARMiAxGFHPSXJga73wcIygYaCnV/2BSRw0wQHTOIwIAOeIiOk0TIhXVcZjMkGpZlNUPnIMzGkklCmrN5/lSFACLmRbNYEhkymYEZM55MFTQonQ4zkBIBGku3jUOGYxERUWKZqn9LlJqfwURqQkwGGKMmYlPAj40oUXJjGJiAEbBMxsU+YLT7jojLIBTyngerc03QYKPU/IA5jHHaAaOnYEVyQhY2xzFlHIS1XpBECCVbJKISMQCmMVUShFRJHKeGUmrWosAjLlkTTm0ntqWmBWREGYRNEOCyBwWi0DkCcl5Ex2KbcdjKTKnFMufCiuxqzR2VwDVhERNOTCgS7GYohYgIg6kWkzNBw9GiEhd2Bc57IaSsxkSGymIpFKKaqlVbwCGBrlEMTCTohUUzmROgdChgZhl9NkK2wwuNoLpMJ5Aw/EY51mAzACwIDE7hyAIRkTgyJFhcAEZU5SqWBMwkSGYqKkAMpqaZvHeAWClFYTQOO+NcE6lWXQ31zev795u1lefPz/9+sunp+ddUfVeh/2LIT/tXrxvEKFIabEpMbPzWrIoOArOh5STgaUYJWViBgM1VdGiimZYOf417wXnlME5X2EFEFSKQUWkgKgh2pyKePPorWgX2kXbmVqlR5hJyllz9EzB4aLtnGMwySIEEBrXNm2/6BBpHpJjDMxTzofjMXWdoSHBerH8+ZcfAvNi2ffXi4+7B9rB0+fHRb8Aco9Pnz8/Pu4OJ3XBNV2OdvzpRyuSytx4b2I5zsfDcX84OMK/+O1306ovJc2pfH7cPzxupxRd61KMT487F2C9WS0d+gLH593xh5+HcWQkYj/M0wVdPTxv4zhKKQtaHObTh/cfptOxb/rLi0WOBQquL7r9w0u4uvndb78fDwMI3F7fnPani/Vmc7Geh4kQU0p7KSWnEJrAXqHsjydPpxAa58Pz/qlf9pcXazM7HfdWuxEQ1uvNHHPwPksxAUVQ1Q/vP16+upnL/P7Dx1zy1c21AR5Px5ji6XAY5nHYn/7lD39iouD57bs3i65Lc0QMi8Vinrvd83a1Wi6W/c3NzcfHh91xz41fdJvFqnv/63R7dfnVV7c315v7T9tFzyFAaBrfwG7/2C/p4/3DNG0Xm8AEbQspHS82S0F7/rxbX9xuLt68evX17e2rrnNZTtuXX5Bkc7F8PMzDMMUR0jx2fds0MLHdbGjhy/s//dO4fz4+fb5/Gcp8CsBC+HQ8moPFYhlnE0BmMm1etnE4jWbmAztukEF9aJq261qzEudis7SNZ89oYkWyABI79CVLHDEnRTQiNEPsQkyKowLCdpfMRk2y30fXeDRm5Da0JhRnmaaU4u7ionPBj+NYFLhdu1oQwV9arOq/X37Tnc8PX1B1IrUxuwbCq+BriEjMNZNf12RmUAkwpPQlGobOuS8xrsr2yTlLPcpUbollq6F3+8KYrqYgPg8CJgBSpKluazOk2rspuSgzO2YEDN57H4hwHkds2/VyXWPU0ziGELq+H4bxdBzMtAot/aIvRfJYO9ZsdzgYqqP6hzAQGtQ6B8i5qEpoQ2308J6btjkch2I6zRGMuqZFR0VEi3jnqToOQZGY2YhAtWCtWz8nvcgxEtE8JxEhJGKUosWiNUaFTFVKBkDnGQGk1o0AEVPb9UycU6wXvGkbAxiHcZqmtm03tQUGKKXsyG+WGySKKR4Ox3GcFIAV2DtqnGMCNQFtmIgg5aIi4+Fg6KhpGDHO0/0vv+y3RyWfpyFPk+TYtayRHGHKERCZTKXEmM3MeS9FfNMqgaDklMeJjSy4btEtSyrsfIrJzKrcUSFNCmRWUomIldatWAEHAFIEwXIukguSBecMchEhVAIVQzKs1lNVQTIRKSaSRFWBuJRSqm5ohgTEDCbEyIQGVlLJpSCRGWQtZmrFCLjv2iY0gJRzGdOU5ohUDwlaikkWVSEEQvTekYEqpKRFDLk2j2kZprYJQDzPE6IjcipgYo6C5lJKUUkqhoiKwkTkEVRzlDPl0VQsa7GcS2jNhdbI5ZKSWGUkqBqgqRoTOucMoO6mDTHlMhkAwpwSVoI7QDZBBGCHACkXIEQkUAWCYlKX3gLGtfKFaS4ChIqIzhlCAoUzXqtO44iIwDypkUoUcUhMWLSAWeOYutax26zXXRs05ZxSybJgzilNMU7zFEUUzXmPgKRIQOAMAZi9cz6EBsEBYDnvdLJj17bBsSOycZzmOJUsxjFNEZEz5jmVUjIiEAGRMxUzUOIvXkOHYAZkQIRkBKqQRLrgrl/dbS561+Cc2Wg3TckM1QBFVcCRZ6YiAqJARoD1/QSUTazkrGesK6CRKVbiGAEgASJIKTHOtaMXwFTVxArGmKaXl+ecy3K9efPu6667dH/66Y9//GE3H4CSanHOE6OKOXZglGJ0jnMufb+odevDOJZSHLGg1LuzmqmYmTFTdSJq0fMHjeCLexLFBAHEpG7Z8EszbFWSAGC1Wlys1ut2QUjblxdDm9NUQBiha9vNZsNIYplQm6YqaoaWS0LvnGPrQmBCHSVqnktxzpna82FfGF5ehr+5vcimn7fPJcZF37u+8U1Yw3qWeJqGqcxOeTgNUyqO+Xg8OkTv/GKxeP3uzV/9zV9KyqFv7p+ffv31vZjNinMRI8qiUUECJ5MynE4xB+/6rjsN0/GYFr1v2GMID9uX++eXpm1yzOvTKgmknPtu1bvQeAJvDggMVsv1v/nbv2u75uMslnXaj13bj4dxs1i3oQtL17f9eBpmxc3F5lXXvmy35JvgwzSnKaar66vbu9tpGB4/v7D3TRMWixUzO++7tiGCP/3xIUu+ub1sFt2c8vJi/eEf73/99cP3f/X98nLzD//zHz78+n65WNXj+uXlZQjBRBb9YprHeZybJqwvlsvFkhC9800XDODD/ceH7cvlzXW76n7+8Oswj1e3V6vVar1cXV6vhlP3T//83/76r3+LWNIpxjx+etznNNzd3azWbb/0z08vSN533Wk7LPuru+tvL67fXV+9IQ5Eebt/eHx4Ca756jdfHf/wi/fZe+0a3Gyw72Czar/9+uLtq816FVBP4/A4TuOru81y4vuX003TX1zfDHP+9cPjGEsT2q5fjtPhdBqIXAiOnUelpKaaskiR4hwA4PGQur5RdWCECq1vPXvJOYSld9iEoKqAxoHTOA9jYQf7Y4zjBAZgni2ISS5FC4zjfJpVtNisCtZ2PE6FkU+72fngq4RTVy0ppzoD8ZeqbQMTUSLSesAE41oaCaDli6cCkJlNFOgs26DWEkw5L6ARkM62XwAAQ1FDQFPQSsUzcN4xMyLVvwYAS85N05xryGphO3tiIsJzMwgSoScnWCvECZquDSFIFhNdL1eXl5thGGOMwQdAmKc5xliKOMeA0Hf9ol9+/vxw3B2bEBRwPI3kHTAjOzNQMQDLpRJWfBxz8FSKdE3o+rak3HWdc8TkmCmlJMo5p8Y1wFBZk8xGHsAozomYDTKY2bm70wCrGgG1yMwFzqnU+JyaEBP7ulGmkgqAEBIC+caHvvPew4RxisvVctkvU4wf3n8wtO++/+16s5FU5jF6lwmByRuCFDlXmIJBAd+Gpmmc5JzyNI5pnMGwgEo1H3PQWYoYZB3iNI/jHI2heEyk6sA1TSgljadRTAjrvc9XCzO5arLRKFlVRx1yyk3o4zA6aqosX7E9RQqiGRbLIFhinABMS64xFVBlJMecc/mCDLI4KUAhR21wzEQOrKITQdCRgk3DGNNciromgGjKUtSsgAA4z8yhrsByVtXZ6vNAgInRQIGgtmpYEkEVTJLUCtVXMxdAMDFRqX0sRKi5IJKKiRqjE4EKvqs7YnKV0WglC6EZAIiaGGRDA7JqegY0VTEBLaUAAhIjslEGIotohoaAvjGkYgWUzquNKrQqoCkjU7XpVZxEzgD/CrIgIjaqFE+mKlCqkRIyGlZoXn1iklh9WoIBGVLlLYn9OWhXkZxfOmyRjATq21lzMWCTkrMUx1BEp6dnzxiImbjpgvM+NAHaNiwWCoaOnQtIJCIll1yylEKGBjwnLSVWS0sRLRpVCpigidZ4QE5aVERURM/Ap0xYywmx5iIJSFSQUU2wcnFUAI2QyQGTMcuy6/rlggjHeZrmOUYdpmwJHDEzm0OPDolVTFTUtGTlIgiQSwIDEwOr9BA0AFNFJEKtf13dbs+DOGZ0WIaoqsgW2naeT9M8bPe7l5fDZnWzWt4wc7doh3Eb42iWzaxk9Ry6biFaEA0BCIOWjISOwREpnmMTZzndzLS2uGhl39eaYKx39lqSZybVIo0MaAiGBiYAjMzkHRuAD6EJ/uJi5R2WeTjFqQkOoKmyNIKp5jnPHslQg2fvqOSSojrq2qZxhJSgaMACRiyq7Nh5Byi9JGrCJOl0PMRh3OSLdr1Yr9rf/eb17//u92bw8PT4D//wh49PT3YqUvJmvTQxJu4X7cXNRbPo3Ybn0/DhcfvxaYdIBSCKGKCaOd9g41hZwaacp5KHlBzx8mKtBscoORdEmqc0zoUZxufn7cv+26/evnv3LhjOx2OaYhOay4vL3/7F92/uXj8/7969ftOFdrNe8/nhBfcf72/vbgj5NAwlyXa74wM/Pj5NeX737m0pCqQhNI4cE22u1k3TqiI7t1gvStHDcGoad/P65ng6itn2eAQin9LTy0tM+ddf3z8+Pn76dP/08LD+i5UUqePCcrHQnIbT2LWNgZDjlEXUhAyb2qNOx/1xjuNxHB5eHnaH/fbx6WK9DH3YXF58/nR/Gg//23/6j8P48uHX+0XXsOfA3eu3d8tlMMzPD9sp0eXVZZphvXr1zTe/k9L2i6s0W5bx6fOH0/DIFOa5PN6/XF/dNqs3f/9f/iCi3sNXX6+//f533399+/pmYflIMF5f8PWbN1Np//DHz6anq/Xm3dubj08794lYWQvM46iWG6LQNog2z3MRAA4la9wndNS2Iee4303sgAw8c9eEZhLyLmeNWZh833XLZTvPMyGRY8OSswPol6slMY3HYZpzUQDzbRvYuWI2zdM8Tp/H/Wq9aP0SzPbPo/PelSIqyozEVHIhdg17ACAgIKhHHBcarbAgA8ds9iW+LlLLWhEhi5CRgVUus6hKKQDAjut2WrUyDs/eXiMzNeeZwNeazNohil9aDqDuyAAAgJCcq/q7VbqggaqoIYDVbnZJUcBMS0Gj1ap//eYVIcW5ZMopxWEc5xjrLUHVFyn9om+appRiBl3TzTG1fatqtTdezCpWkhBUhJn7RTsOkyMm5JJlHBIy+r6dhtk7llJYqA0NMgJCzuKIRNVy3SSInXHZUHKpvldVUSB2jGZEzjmWL/XU9bsyMe+9Y6KGFMwbtB3GUmKMohKnmGM64THPaZzH9WZzsblYrzdd0xQgQJ2OOc6ZvLZt2/YhxpBi9alwcN5KSdMEBgSWS5Ki7Lzj0PVdUShipMKgjqlr+GqzaoJfdDQOh8fPH6WUxXKxXPQvhxcmKiWLKACBKTKRc4vW+zKrGaHzrvHetyEEH0yMiKVkYhBFYlRw4CyXOn5nNVUp50p3oByNqWbf0IpIKd6hc0xOXeOYQVVVwHkHCGIwznGOEYC0onKqSYIcIzjngneIUEoRs5IFCJCIgZznSqlSYURT1eN4zFnAIITGd8EUxUyyKCg6AlNTLKp1gjKpYwtbfUdaHWoMspiYoRUtNXMMCij1wXmGgZ6d3gpghgKGhmzEUOdvQ8tzFAN0mUODxAaEQEYIQFXyYUQFq0RTJDxjJAm/0A4qxEIr2bSYGVR0e90T2hkoijW4VMkWgIg12GBmRGSGprXA1uqztC6FpQja2ThI59geqFoqUkBaH5iceTakXNQ0SS4555JLLqWAAJAh1qLaYkWLQAEpKlr55DVLWhSK5gJWTJLVu4QB6J9nsho4NTuzUdDM0EBRoepataLZDM60VDWwXJLv1DkDy8cxHg67Oab5lCQCCqFnJg+GoFByBhUGIwBVMJMvo2B1LaLK+Ve1IpGQKvMc1CqEVtF0zrloaLjvutVyoSq5FBdomEfiY4zKFNbrtWGaZ3c8HES0bQMaAViaIyASoBZV1UPMRLUC0ItkRPr/o7YBAEF1I4ECAjISIRMSc/0CFjFEE6zCVT3TIiKqlSKoMAxHbxaIGkcxTykl8uy9JyZgm+Yp5yhm2Hhiy7VnSM05EhGEokKm6gj7pjHiaYom5gMvL65Wfb8/HJ53OcW5a5sxxR9++eX9h493dzd/+zd//Zu3XwHi85sttn67PT0+PK0vrxvvSy6n0/HHn3/98Pk+sFfR02lKxuwpTtkU0TlES6kggQ/OeWdFFST4kGIBhFxEiqQo7Mg5VjEt2njXOAeGZHS5uYguHOhwuVpfXl02vj1s91cXm8aH1rfe+ftPn3LORNy04bQ/pSmpysXlhYH+/MMv94+fr26vYioll/Viw0jb3W44HvrlSlSfnrai+n3/3WkYP/76/u7NK2aoJR5PLy/DPPnnx91wPA3HZKnrmpjS63dvV8t148J4msSKqBCh9+721d04nJLKYRg+PXwmQmbmm+t1483BDz/9cDiNzK5b9kCUVJebyzmmtu+u/c1pmJp+cXV1e9oe1stNf/Oqa0OKx7nIMMJyfce4ubq7urh8Rd7HCV6e92oc55ijrrpNyTjuk2M+TuPzyyBy+uabi3/z+1e//d3N5WXz+mYJ8bTbPTe93Nz1o4AlDSFtVsQOp9P2sN1aLpCBGbWU9WYhTV6u16D0+LQz0qbpS5Fxio6wCJr5OE8Vh7NcoJS4S7GoIHskAoiHMS6XfcnZsesWjQ9tKTZPyKsGjMd5HI657dvlZd+2rRRNUmIyrNsIt+pXfeOcbfdOa7e6ZhFpqVFVgKLKBiBSSPHM7rMzpUb/jAAyO+tAogClFCqlsHO15bueQvRcLVmXWFhZzQBgaEiERuzMeUdIkOHsYq65BTMREclU9V1EBOJKsjGxQs45MxU1okpOoRxVJE+jQBOa0OSUX15evG+KppTS4Xg0VQIkx3OMOWfHzjt3Gk7H44EdI1FKyQdHiCoKho13ZkCGIjLnmYicc45c1zU++OVieX19dX//IKI+uDzHtmmYmL1XLWd0JIGomSgSAmMphZDO5SNITAyGYlJPakzOkVMnhMjMgKiizjvPnKWUXLCSbAJPqRx3g3M1EC7b58HAFqvlN99865mGadKcNauBIAAheXIV1d30zcrxHCMaLtomptiFxszYkRSVYr7pmf1ivVRjUZuzjmNckH/15t3br7/u2j6X8acf/2X78rQK6/Vmsej61cXFPE6nwz6n2TnniFxwl9e3i8VyGAdDrBJI23eSJeciRVIaj4ejgZac0CCXIpKLZNGChExVYUSol82jc8iIBlaykTPfcL9oEIpoAcIiopIBIYuWucRU1M5dY7VoBYEBKm2BqoM7xqgK7JDBOWZVqRDFWttBSAKWJEtRYgS2c9NLBeuexwkAM1RQtaJiighc395c36oMKFQNbnXJW59eYIiKVfupHymTuges8oyv/eR0FrxAEVELJECtOz7PPhA7FazI76pDmEGGYgD8JaZQRyQ4DwjF6pDEXCUiNLQ6pgFgNcwI4LnuBgHQ6ldIrZ612joLCARg59Rm/e7rB7bCKMgKoPIZe+ocMBURzQIqaRrzHCVHVUWDrJolq6GQSi51CYNAkBEUavFttTUDKmD1HwNgQVQAMFEDo6pE6TmWUcwIyb5wBc7uHCRENTREJ6UgAhOFQKqyWrWrdY9OS57nOKdkLoSOWKOVVCSl0DSMmGIpORMB1dmmXoM/w9HqXbDy2QFM1So2kahCPdBMCwAje3SOu7ZdLvucIyRzjprgsswlFd90V9dXd683D88fY5xqNoqM5jinFOEsGWuVwg0V2AAADVUNEFC/vJxfhMH6UhIQUbUxMdWUZUExLTWBAYiEjGQAOQt4cp7VbJjGHGMXnFqOKlQ8MYJDAMwqBYwcoXeAmrKQQ0AQKRLNoRK6yuIKRGpQDMRKsKYjjyjHYZ9KnFMexrz3E5BZ0Q9Pn3/58KH3rXcOEJNBjDmLZs0eQjaZUx6ngSKrAAMDA3iXRMWIiAwYwZjBTIJzq+Wy5DKniYkYsUTJOWtRh+jJEaOaEiAD9G0T5+l4PF6sVgLAzqPj4+Hk+Pndm7eH/b7v++XNIqdYSlERR/z6zducUoxxtbocx8k7/833v7l7e8eBty+Hm+urxXI5Hk/vf3m/2Wzatnt4etrtdpvrq5TFmFc3l4fp9PzwcDodYkm+614O+5ef9zHFWNLLp+1qs7zYbL568y6Epm+72+tXofGH3eH50+P6YsmOQ9uZljjnSYrEsli0f/r55x9+/unTp/c///LzenP5zXffN134PM1Pjy9//OFP795cgk53t6vTKC/bY8nl1avfLFdd0wTnkHyzu78PdIOy2Cy+evPqOyN/mg4fP963bdc1oQl+9fqq9fDjn17Q8Lvv3v2P//k/F27+3//9V6/v1v/u339ze9d9/vxp3M2WpiKpX7mk6fMfP24P2aH79pubpr3ZHsZxu7te9pinnKbf/uVXMZdPH3el8ddXd8v14niMJcP2cCTUEmdT7ZoOqHGNJ6C2RU80QdI4qwKQlazH4TScRjV1npe5b5tQclIrbev6bolkMUqRFAIYaUkiRUG4dW2/XK42K5WsyoCNAzPnXM6iImpGRCIqIuy4lIKAzn1ZeKmpqohUEwxUFg+ioUoRYSkiBlZpPdXrU6PyTFT73gkJ0JS0rrOcIwBkYsnlTEO081GqGkRFjVVrXxSiGcC5CBRUi1QjtmPnHYEBExmwZAFA550U+eXnX9lXWraFEErJVpQcyTgBWLtYzFN8ePi83W7Xm3XThrYJolbtTNWJoSpIbKDBeSIkw7Zpcipo9H/9X//2N998/V/+83/9+PGjC273vEV2PgQwqBfCe1+hkNVYq2Iqxu58wK5x93rNK7DVoJpsmYidc8g0SmTnACFHSTGjQyI6d8mqzjGXnBEhTrFddou2Dy6cjvs4z9j1jlgygFjXh+B9zEWLeEdmCOrY+WW/aIN3jmsVbiwynGYfQtsvQ9OpoQI2Zog0JR2Ph+f7e4WyfXl+erqXknKcYxzjau2J4xxVrG0XRKiSAXA4nfb73TzNQJSLlFxqw2kpIlmIKuzAtGjfNdX/DGqkyNXpVgQVsV6+UmJMBuqdq/gkQiMUJM0lzjFVphSRU7BSJPh2TpHIE7KgWdGcSx24qXFaNOU8z4mIPLeErAopFcBSlUvHLMxFtSiwY8cOAGPOUuqQBAAgWRBd3fyqIQBVC2pFkBMSMhjav5KpFeCsbJ5nkop1rErneQFcg19cO2HOj/7qJKEv+2bLCgzE7lxtxwhiVaU5e6gRxZTIUTXJAVbXHYBp1ScqS4EQgezPOIm6HzGryc0KrAA896oBYI3d1Yd9ZR+c1aM6SgEBqKgq1BlQmRgRELhaX4iAgIl4mobTYWeijskQQxvOyO6SldDEzIiBUdFA68OeCZDBTIyMkRTMVMCACcGwAjgqt0zhjLrBmrAUMzK0GlNHNXE+eNeIqPPBeUBrLy7W13dr5TQnYnSeQFnSDHkqpUhogkop2cyMHBPVvRgUrTBBMTArYKCIjGcwx5m2fB64qyol1e7mTLOopBJjJXKhzTkWQ8bGhFyJzsGbN6835aLtFuP4PJzG4J2pVpoGmqoiADJRlZeqlldJs2aA+q/vry9bL6R60zjfiKp17DzsGgIaECEAScmIoArMzgUvReac2FnXNTHN05wooWuIiBUxtK0PjqlSWZGYS8o5SxEizF0AUEtzCU0gIjIjZDbEAgwUXAOIYphNkgKTpwCnqRyPn0PdyAKHrj+N6TjNtjvGUJDPW2op5n1jiqWUXHIuxUCJyIQQ0XkmxlzK/nAsKcUYu67zzjMBglJwznOaU44FgdCxKkjRdtma6cvLNk/zarkU0ffvPxDSq9vb03EgqP5NreaMxbJvQzDTGOM0Tsf9cb1ZdX3nvC+qnkbP7vHzQ5ri9d3NZr0pUkITbt/chdBst9t23X/+/Plf/vRHJE0xKooC7Q6nIuaCu7y5jDF6H7797rvNepNTYeTV5dpMdr8cxjTjhE/bbehat2igzKeYS8mfH5/uP3/Skrs+XFzeXF9f3726Wy0Xw+6U5vT+1w99y+tlkML95qJr1uPpOEdoFuQNc4GYtGs2zbrr15ebzc3Ldv71/U+ipe3a9XpFaDFPiuXz4/MPP/502O82V/6rt9evXl2/e/fGcF4uJU7bhgqbZUspTWIChBdXa+XoBkMVTXuH+u5Vd331as729Lhbb5rtTpdt0zkOjjDwsJvGYZinyRHPUYiEENfrVdt2IYQmcNeEFMvLfnvYnoooEXdd8EzccIzzNCQRlJKn4dS0jq+bnOM4TI68AoT9UZNJUSI2sGmGAuiIx2FPBK7GtQi5HgZ8CJAqrpeYSNXYOSlSjzkVta4iNXdwtkgDAdbmBwRAKXrm9wLa+UEA5+MaICIjmoJWWx4xEuKUkoo4x977+kVF9dwjVuVdJDh7vs//dY7UzrcEMyNEMSk5t023Wi8JWDVf39wUkzhPRYvzQUSH4bRYL713FxcXm80ml3gajn3bBu8aFxy5aU5FBRGJQUVKLkQKZo0Pjh05R0TzNLd9/ze//ze/++1vU1QiPp6O4zClmAkKMyKSSimlgFU7qxKjFIEqC1XnBxOexTPwwedkKWX2WUQQgbSiI3GaZxNVUA6MhMBUEUsuuDiV03Hw3vWLbr257Lp2mk45J3YMVqM9ZOZAQcUa55oQYk5xigTWBs8EyNgG7x0DUlABNTFgR0XLnPJ4mhVB1ObTtH95/PDzj8SY05TyzE5TihJtmseKf/TMgRkRjrt9Eem6LpeSZyFPxgSIxM4QiNl7L0URkJkcOmZyyNAtfWAEYsdmmmKahjE0HFoX5ynOEzN2beM8qhZiDW0oZSyaETm0nHOpBvOmaQuAxViyFFSomUMTImbAFAuQqSnWJaVCillNUsrIZHZ+6KNJTiKKTdsTQPWa5FhEFYD4rC1VYmWVqRAAxITJiRhB3UOdJw9UPNukiK3O+gjAVeLBP9vsakqSmYDA6gcNa9CLUEFKQSZVII9KHs77LwU6dx2YAmNVSAkVodbNEmJdgn0JK4BW8ecsk1gVf4DwCx7JAAxNsVbKIgEYmqHWqb1uefTsdgHF+smuvKo6dHzx+RkIFgViQSTXNqEJPk7jdDqlGKMkA0gpqRo7BhNERFPGOo0TIagZAooJyBlzUBANtCYkxPRMzqwVNGaVYgZWPWGAyGCKVGEc5DkooCE5cqqQcmHKTesXy3ZKuQkhBAbTeVYQ9I7BoGSRAgzEBIgcgnPBsSMFzDEmMM2qVDdyWqUzs5r4qWqN0Rd0CJyvJxFDSvH5+Xmx6BUspaLCi75xjkssx92uCbxcLt+9eRPYD6fTOI15TgTgHTN65xwyzmOsAVIExKrGnYdwoPOMTXU6Pb8N0FSrz+pcCgxqjlhMvzD9K3sNrZ48TVSKI1SPgkTOKeYkypkRChAjB0TIKmhQFSP03hRUgB0B4pwiEosUU/bsAdE7l3JKKWspprZoeyEzIhFV05RmJgLiwzARloZ4yhEJgAA9zHk+DqcUgQAUzHMTgguNr8M5GCKxirJ3BpbTXHJC09u76+uLy/12t31+WnZLQpYoUmTZL/rF0gUfnF8vlpv1ctE2aYq3727urq+1lN3zTlXiHO9e35ARI7FvLjabh8+fxyO8u3vbL/pluwDT66ureY673W65Wi77zq4vYs4E6IJfLBYA8PDwdJqGxWo5jMNxHOZf4uPT08/vf7y5vu76Vg1O+wEcXmw2V9dXx/3u5ubm7bs3l5eXTQiEucTy8dP9NIxisLhYtm27HYYOTcv4L//yx0+fH9TKaXcEk2Xb/P73/8ub12+2Ly95in/8+L5r/WLhpWRk1y82YL4IOGITPs1TzNNq1bAHBFh0y+vbN117M4754+eH+w/7zdXmt3/xnZZxOD6Rnymk7f5z0tO7725evVl33cWyD8sliNkcT5Lm64tFyvMwRWQkcL6xrnNv+1VMfNjOxzGZTd9/c/3zzz+tL69+/3dvfvzp3gd/dbVq2m4YTsNT2j6fTmNS5L7rCNGQSi6LrrciV3fLRdfN01ygkJhKERXfNEboEJm9kORU0AIhhqDLviNsYoxFfdP3w+F4OM2LblFPUymVcU4xRef4dBo4sHOOY4yI1YNMiL6ec4nJsRNQx66yWKiCv1RrxIDOtksjwopKrp92KVLv30iAdZGfEjOrAcFZQgeFIkVQfPB4/tSZGRDz2ZSAX/L1VUwGU6n1mOexKYRGTbVOZl8OjGrQtOHi6nK1WBXRl91uOhyGaQJQ5x15ntNsR3j9+lW/WIqUcRz7rru8vBpOpyLFh4ZLLrMpaLUHNj58ydrUdEqbclosV3/z13/jfPtf/1//75jmzXojZn5/SHOp9WQhhAxnxmPtGXXMiKgGRPUaCAKKWi7CzCGEmFIuxZdSilRpIeeCTHOMJRdEatrQtS0QzXMMjY9JK7m7bdu721dd3xOCmq5WF5rzHKdJtGsb33WqGkJo2q6Y0jjmVMTEEcVhNBMoRb1nH4iQAGJKI5wEIOYSY0Ymdi54IvYxzl3XxUlUR0BBUlDr2kXX9845UCMzJDgejlnmkguYee/ZOwH0wZN3ovXZBG3rHPrgmza0fde1TROCX64XTLRYdKaikJ8+P+wOO/Y6z+P+eZtLbDryjGJUSs7pRGRN8OyaUsqU55SKC54ZcioIBIQpZQNjxw6DmeUUS0kK4L13FLwnMUu5FClgamqMBAg5lnqURyBTKKbnz9wX+34uUoGd1fOEtXgOatUSGmoxJSNmqlmbogpmTJ6YkZGIRY0MiKkiDU3REJCwSqdypom6OgEpGKiCmIpgFUNEsFp0zcCAjVWNkOsoc67ErHsupXpAMbA6WCHWpyX+WSk4Cxb1NGNWHXVYn4amVulJdnaXWNU56tRldUg5i0F4bkjGyh+3c+eKFrOCRUw8QLe6uFA77LZxGhAM0BhQclarRcuoqKpAxEqgagoVAc8VEVl3O1w9LmZVKDo7b85iWq2lMKT6FqinBam1LwpUijjClCL6tFr4Oc7DcCiS6v1hjiknKQVAAAwYWbQULYTgPZUixChSXAjsvQMrmDEKGp5HiDpvANifxbE6ghierUBMjhlJxnkWVGanQt5j07bBt+IEjGJMnufVarXsV9Mwbrcv++3ucNyXkkWJ2ROQdyHFwo7sTEcF0+rPqmcrQIRiQkpYjXN2JvMjCjOrni1cX7AaVtEPSKhqOZd4Du7anLMA5KJqQOzEMKWEWASElVU1l+y9A7PggxWhajySWvjr43H0wS36ll0AgjTFaZ4BufG+Xy0FJIkU0dMwEHtES0XJMTtSM3DgPLoGs6Q4TwbAAZoAfdc03ImdTzbVJ4BoqgCAqlJyKSluNuu3b95t1mvPTePCzdUFAUG2xWLRL3tR3O0PzHR9dSmp3N9//urd2+9/99s4DNvT4euvvwrs1uuN937cT9vt9u765mJzkVNGg7qfVylFBcxijDW0eTqemrbZbLqcUow55QQsMcdcsnMMTJ9//GGYx93h4JtwdXsd2ubp+YnY3V1f/u6v/jJOcfe83Ww2r796/fKym6fp4upqtVrCxIbYEz4/Pu8eHg7DyRwU0F/e/zocJ/beI3/11bvffPXu5tWrbtHP8zycTqFtP/3yfhhO3373NTs/x9KG8Px87LtmP0ymuWPfCDkHntz2MG2P76+uNSU4Huf1+ur26qZ3/f3LZ6QUHE3TnHN6/fbmzdvLw8uDd/5ys0y60zKVcVr0PQMMx6OaNm2bk07DIcaoYICdb6kp+PXmcrXZPD+/f33bvP7qapym5+c07E7JKE05RTEBUOiX7aJftE0zxzyOaZpnLeUmrTPj8+fHOeYkERkdulLO773ArgjOWS1mRF30y4urKyTuFEQGA/ShkQLsA9acsNocYy75+vLKuxDn7KYpVuuxc6gi1UZQiuRUakq7pjdFlZErCOVLqKBmL+tJhLz3ueSK7amwZiJSJVWpVgEpBdkBGhGqQtFChiqUROruwHlHzMCQSwEiZFLUelOpxFUiVLFaR4cGnlgcFskxF6jjFcNxnBbDqek6ZkeMOaecIjHOca5aS9M2SPTy8nw4HL33F5sNAMQY55Q8J/bcNHyOxAH64E0sxlQ5jmoyTfE//Mff/6f/8//89f2v//n/+Z+/evPawPq2u7q8WnTL9arfPj1N49A2oWrMpUCRgoBIhu68lkdCqSF/MGJKJaecSyk1GpSLsOd20ey3exFpusaFENrWDPb7AzuWIuMwlqKr5erVq7vNao1oKcU6i2YpKUYEakMIna8nEkBEBZMCqm0IIbQAVnIyNSLqmkbM2iA5yzQNY0pzSgpGxBxc8O26XfiwdsjD6GI6HE4nYt6sVt/+9nddv3x82vrgV4sloEWFp6cnTYkYV4uVCKyvr9aXGyM0Q4ehrvcW3bJtusDBMZUkOWcmUC1X19fXl5tcpuvN4k9//JfDsGe2m9sVN5s4n+IcVXKR6Fu/WPQpyTjF8TSUnJ1zqBRjKrm4EAAwSWJHrWuqKW3OmZFMCuTCgbAONiWDWuXiOcSz08UMgVQtQ1Q4V9ohEgGZmWpRBTjvDhQRKsVJUEUiMnn2hISAiA6RTRKinnfBQMBKDIhEhGaqAuDqWZ21ZnpMFaTk4thXlIuBsScDIGRFUBWu4QAkVCMAV2eCehAgqgMVAHxpGTYEFDBDdMYIdZH1rxsbqxEmOMeGCKvVRxURwcgqxeSs/tYHfNWDK5bhi2moWmzPR5c66lfPoILMJc2m3rFfLRsQBS3zTChqygQEEJyTs3er4lUB0RySUr0m+K9BNdCzabdyOLA6oOlsTzQBJDA4v2QuIKJKETVCbJsGkcuU26aZ4jhPYb8vgIoEmqUWvJOhGagaMXhkRTUzLSZF1ISDa0g9M5IDVVMTURWF83U4rzaxXndVO5+DAA3MNBUJzMwupQKoZtQ0RaQolUqQKkWGYWzbpm/bzfru+vbysDu8vDwfjofhNDj2pnh9e+mb4zDMJWVyVKNeYFbVsxoJqwCP8wxbv7dqY9OzwCf1xl19ROc0Ip17qhkBKatI1FRStbebgtQ8pZT4/2vqz3osS5ItTUwGVd3DGW3y2T2mzMjMO9QtVvUl0ESDjwQaJEiA4G/lY/OhwOpGd4NVdefIjBuRET6auQ1n2pOqiggfdJtXvUUELNzNjp2zVXTJWt/qEo3ETGqaoyBhjsKIjmnsBmdu0TbEikyMzOSoNPcR1MGzbxAYDEhJRdHMGYyTJABfubqqnOeYEhrUtW8a74iYg/eZEBbNYrXcgtKpG47HceiiEYpomTKZXEmtrDYbJtrd3W0X6+16XRFvVytGXC+W27P1setur2/H/ljVTY557AYwqF314z/98OOf/vibb7/5m7/6N8u2vb/9nIdwtjnTLDc3N8t6eXVx6T0fj4c4Jef4+uambRbLdRtq3536h/3+5esXzHScxnGMfd/vT4ec8vZ8++T51R//9NP15+spTRT43//tvzewTx+vT6e+bpsXr19O0/Tu3fvFaplz/Lv/9I++riTlY9c3Td11wzAMfdedjqe7u/spR/ZOwNj51WZjCgzIHID457dvp2F48uScCJB4ud5ePnny4vXTcYj3nz/X33+7Waw+ff682i4VwiB545ZV3Yz9sOsPDw/XJ+GqagS0CqGpw9gdY+qqSnOyaRgrz2fbzdT1i3Vz9WzVLL3GPE6H5bKtAj3c3U3T4J0GJ93hCBaZSpnTaFkXC/fNdy9DW326W4EMebh/8/Js6m/fTUPqoxpVrpFA05g16dhP5IgJUSWn5BmnrpdxmqYByXlyPOasGZCIuG4aX9V1jSEEcK4/9iEsnauP+y5nnWLMOS6Wy8pV5eqoaHXDOUvT1JvNJt7GnKOLKZapNsdUDAyqaqYpQwiO2SFTzhkAiFDNmIiYRNRMHvVdLGeMYzeMw+OENC/MsNRHgIKBFOsmIpa1uAESqJipISMU94NqFgHEx+edgaghOMc8bwWKBxGJnZmITjEmBnTBIeIwDu8/fjqcuqapydAAlus1mOacTbVu2tV6fdgfxjipKSAmTabULtoomYkcu7oKxAQ6L/WIqW2bKaambt5/+IgU3rz+Ok7xh3/54+l4/FVS27bfff+b569f3F7f3t5cI+A0TmBaVRUC5FT+EBQxZqemaGwGWaXcmFPO/TgMw8BMKctjVgVSSnUVxnGMU6yaZhj6/f5YbNo5iXOuaZs61G3bgFlKScUQte96lcRcqCeWYjSxCqE7HWJOwzRMUyp9Y8xOUmbvirEKEU2MERyiR6yWC/KsYl13OnU95LTdbgCVUWrPJzUFq6v6yZOr5eK8rpeI6NnnnKuw2Kzz8f7BOywh529+811VNUaUs9ZVW1U1AUE2Bg7eVz6omvM0Df1udwcgTcstNgL1Zhc+7w9cGROcTnuRqJhDw9uLCzMS0Swp55RSllwsWygKRiTZECxUoXhz1cRA66adRQzQlLKqUwAEFLFSOK+ld1dkrh4ByCkXE7cZ0OzN1ceGErAyIOi8/wFEYg6+LkNAyZmJABM7CkRoalFzMTcDgX0JRCKalaYWKJUyxRUW0wRmwEzkkIjZSQm8OAeEMCe/dHb6PE4givo4k5TdF5b3E5buGZtLwcu1BR73NfA40Dz+jzb/m+EXi7bN+24oGW+bxaBHyhsAIBUVxlQJqWzOAIyIxAyJ1RH7ehGYPO/vbqfjkU2DcwoIpd6YoAgqRQNGQFJQNEJQKBoYzTZjtSKj0mz1Bvwyj8FMUhI1ICzG9cDM6AiJ2XsX0jSutysAnMaU0kSOYlRV9MGfhonQKQiqkgEBGVp5CGkGRZmm0QUvAoZIhFLsUjRPGQRzpq+8arMSDiZaQAIGSMiOUHMWBRlT/7DH4Jqmagk8AkVOk+QxRufGtm22Fxfrs+1ud+iOnfcOEA8Pe8DOec6aRcVR0c3nLaWIGirOGzGaAfsGaFKmWARSEbA5ikH433g5QWNMZua9I4fBMwePoiISY4wpIVHOZeUqEMV5doRkJEqAKFkhY2AK5Gvni6s9TXmcjgri67qumlBVxBRjAgQdxzTEylfjkHJOarI4P6uagHEgD5v1atE2YGqUzRIztYu6boIkcNEhEXBBe6ApGBqBEZFzzMje++Nx+vXX96tle9of3v3yNjCfrddNXSHBOMYxjvv7Q7c/rVdLFf3hX35om+rFi6evX75aLFrveL1ce++vri5zzLefb60x7x0y3d09DMPQtnXT1Iv1YhiGYRpWm9Vlddm2zfX1zcPuYRiG3W7HVVisFu1y8Y//+M/Xt58vn1z8+vatJE05//nPf+5O3XqzbZbN3d3t6TSYWruoT4fhw/sPzNwugqqOQxrjOI1jGpMWnhOz96GpQls3y9XysD+klD5+/Ljf3z978dQx//nt+zSMjLBql+vNVpHHnPth/OXXd+dn54fTfjA10tV6OWaCzpBqrtQvJYKIjAEdswZvUXrRdDwMwWPOfrW8CgGqDb18dWF8evfxj5/vf1k09PSyedjdH04HYmTH+9PDGHNVhyHB2MXFqq0WjMSGOYs4ks/Xx6Zu6sZvVn69DodjbtolhVrkECqbdAI1VAZmYMrJVk0bx1Rvm9VqlQW6cYASfjEhoiyGUVabtQpmzdMwHg8nUZ36XiENY9/WdRNq550omNnx2I3jtFytN6vVNEYCDE3tfPAxJXYOCKYUHTszExUicN7TY8BTTXPOOFMRCUFFDVGcK/QXy5KLfUdVvQ9zhAWISJHApNx3pXClk2QAYCbnXDYhx1iYv2ZZNEsqHk/PgR2DgoIlkyzm2TE7ZhYVywXuhUQIiFlVRGKKwzj0/dA2TfCBiZarZVVXp2OXprhcLtVkTNM4jiEEdjSNsa7qtmk4JSh8GgJHqICqoCLssG1qxwyIq9Xqt7/9/vxs+/btL3//n//+5avn/ekYY/wv/+nvHu4fnjx9WjsHiO1ioTmDgIDYnI8AM8uo6/VyGqdiVCgqUz8OiASE3TBw8JvNJk7T3X7nENkMEUXkuN9Xbd001el0EskhVE3dLBfLuqoki5qimWMCsFR2T8zMKClLSinlKceYclZRUEMb42QIFWISmVI2iFkJHY1jKh7wgjDKkk0Nssg49WqekZi64ykQXp6vhyl7wGF38lA7o+40JIqi4oEDeGI2gxilWdQm4KhanW2TSE5ahYYRw8LXrriaYRhHJAu1Q7a725u2Nq7S58/vD4db5DFJmnKiymRK6MCFUDLVx0P/cLeXnAiprisiHsYkpSkFNXjvyJUfA8AKfbIcEsX7S6pFJCFkgQzCULJGZqIzZhOBcG7QKA7R4m7BeaM07z3Ku4YdAKMjKHE/EREwpTLdIBf9MJtS0QjEyEpefc7uKGKeU0OkYKpFx1EwRnCCDOAwBGAyIESHZUYHZZ6NtzZHM0tdGpQUEBiyzYdbGV7KwDTvl+HLP31Ja5asAQFBKdUszIoyyRSfS5n7SsChmNnRqBT9KgiQIqEhlBA9ISWZh640GZOgqrnKL5aiouOUymIUEaEME6QKisVNU6YaICAicoQq6tgzQrljMTEhOccASCUpgYXKyoBkCIQmqozmHaIRGBMy4Lqf9t6r96Q6dN0kWmACPnhHPEpOBpBVHBUQKthjck9MspLlsidVQCV+fC3LCzO/rFA8YgBFJTekAqF8/AIrJnjMSSaMU7IkRuByUipmo5ER2R2PVcGiA60vtsvFsqrr6/DhcNofu1ElE2G5W865NC02fIdFnZ+Hw1m8K2at2ZgPc/YCkeGxnkdRCtHIsjlzxEpiOWvhGqQsAKqAaOgci2rMouwcAFhGRUZqK++MK+LtcjEeu2Eci187SwaMoGUeNWJ23jE5BFJJgUkKjypN5ikAAVLlAhGlJIYI7EQtZuNJhtN4GsZhTDkZEKtpQezmlJkIgRJGEUGgruvv7+5Px70JtIH706mpqs3ZWk3Hfry6fLZaL7erbXfY/fzjz5AWf/vX//a333133O+rpj3fbkXkeNyD4vZsw46nNMU+zxVHROvNJqZ4c3PTrpZZpGrqKSZAXG5WHz99fHjYv3zzarvZppzef/hQL1oE9CEcTodf//wrOwbCGCeX+Ob6Nquy9zd3t92p74YRyYxaxy7laCDr9TKFxMyr1XK9Wq83Z4vF6mF3j0hNCF3fDWOfRO53u8oFMAXHanZztyduomnbBPTuw/XN/eH0sNsZ0nq9Wq3b+Aa84c31tW95sVmuzi8BaIhTqJyFjJgC+93xNIywWKwW7YIgL1a8ai/H+PDLn/+X3fH45qvz3XHYH+4kS4VuGtKxHyq3iBliHABRc27a1rmQc7x/2C+aCp7yMJzIwrrli613RFVTsQ9xxGyYT+nUR0EArCShIzeMmmPkahKRpDZlSTIbI4lh6PvoYhWqnOKpOxJITklV6qYauuTZeedjnBAgK4hoSslEh35gxsr5UNWWsjMFxyxZnPdfMirlymhmopolGVoBJZdr3rwm+AKINsTiGjBzzpdqMMMiZ6uo5SxgwDyjFAUfDYxEpkBETCwqKWdSMyj9GBBcQEJTK1WCBgLZMCAisTGhizGaiaoW4arrR2YKoQJUZm9oKSV1lFMKIQTvm7pGAIlpHKPzPtS+WJoUlFzwCNM0gWiXomMmJO98qL133rKYGoD+5e//8D/+3/9vv/z07ucffyJS1bzZbo+n02533y7aly+fL5v24/t397e3EHwVAhLh6bTf702mgmxwwaeUC++udCAg8X63Lw8UdtydTilFybJcLhvvbz7ddOOwWK+aRZPiWAe/WK0cu7PNhtmBQRwn57gOlfeOwJgEwco9WWT2GueciYCBSyk0M4Xg2ZEMKmJZEg+OHGdNKcswjsfTCdCIzPvgidqqUoU0xRCYTJo6+MyQRhnT+19+/fju2vvaDBerZV35ZQgJwQNmQ2RH7NMkq+frp8+f3d/v727uLQ1N4ypPIpqm1B0Ph/0hmziPt/fXMZ4eHn7lJu13t4jqaz3tdsPQmcFisap8I0n7/el4GlJM0ySo4OqwWK4de3Zj13Xx2JV+3xLMEZHyWDSzFLPkgs4piBhDIGIQ0aiZgYEQkdU0q6Iilx1LWS3po9e2nG0zcaUkxx8ZMIgAlpOKKOjsRzUzlQyAxSljioQAaFnKrg2s3GCRyxpC1QCQyRX6EbF3LqiBYnFXu9mGLI+6DSBQ0T9K0gvtiwO27KPM5lO3iDrzCY2zH2+ePrDE2r9stP4ba808iOAsIxXZa27IofngR0AyUCSi4osC+pJFeoybmZpZVkJA4sVqQ0jZDXno2ZCIGLHIaMSuLE/YMTOzZ0fOe0+IwYXZWwPzDFSM5ERUXlYocmshpjtiRwbiPUJOphZ8nZOwt+sbPB7upymKxGlSycoOvbciBwKbGIDMnnBCUCRTI0DHXJggOjPNUK2My3PHXMl9FLHHrIyN5cgvshaVvrISiVWBnJVZiSHlZCZxEhDPSZnI0MiIsK9cCM7VdZUUV6roaHu+Zc9jPyKqSYpTnIaoagrGVoxHiogmCgAKMr998XEUgllhB0CEYjMwVSker5xUyURUQKeYRAQBcxYxUDUgJGJFBkQDSlkzgGZxyk1gMEYBBqp8iNhZyr4Kvm68utIvFLsoohQcO5dFY0wGGrwnR6IiMQ+5yybDOOVovnbTOAKo5CxZ0gipgeO+H8ccUwYgRpSsCApoaCRZxiGFkFbt8vxivV6tnKO+6w67++5w8qF6/uY5CXRd99vvfvP61ZvLy8uffvwJDS/ONl+/fP3i+XNJiQGWbRt8EE2Hh1PX98vVcr87eBdev3l9gZdV03kfkCmN8vLVy8Vm2Q9D1/VZcl1Xnz/dT3Fab1dPnz+9fHK5O+zX23U/9cfjacqpXa6Wq9XZ+Rm8hKy56wbdUpJ0e39/2HeIVIqSA/urq8urZ1fTON5d3yLgsm1DCE3bXFw+XW83+KMh0dOnl3Vbd2P3/sOH3cNuf9hvNuvnT55Nw/jhdLPv+tvd5+++fR3qZojjze2tr8Pp2N8fDt67m5uHmoNIHFNnhH8YpjcvX7euZuc/XX/abhvnKoPKV1XKsDtMwQNV/Onzfre/jVNzcf5tHarjfpcSqkCKU5aUldvQVgxIe5GJGUMI3oW73YOINPUix0Fzcl4p57oyXXCWSUV9Za0S14vQy7HLXZ+Zg6kcj51jzCDIltRSSlPMiMhE5exOKqfuOKUppQigIfgmBM0J1BywZ5qGUWImdilJnKKBTsOoktfr5WLZcqhcUXGLB3Z+WhlgaeicoqrmFEVLKJmKF8dsvlIT4cwQygJY8ploxcqI8+et+Ifw0W5QCM5MHhFdVRmA5CxWugoMPRKhI0IkMLNsMUXP7HwgdORL6MJiyqJ9udkzc8oquZxzgAjsPTGDWJyiB5dSnqZYWEHHY5dSBFPHTktQFkwkx5wY2QFnEAQQEfZUVd47N43RNw2hbNab33///VevXr/9+V2OabVYHw/d4sVy2S5ySr/73e++/e47Ten+7lbUiBGZQ3A0OmRGM++9c8FXVRZLXW8IapJS6oYBHVHwlWNVA7Xnz5+3dXt2tvmLP3z3P/2//6d+miaddnefU85XV0+Xm83QjcF7732MERElZ2GqglMRM/G1R8ChG8ysqjx4VjPJamhsokbOO+edc76qa1HVYciWKcM4TimmnDOCEpNjX1XBBd8I5Ch1470ntmRkOgmQDf1pmiZfNc4FZr9cVOvF0vMiOKsWwdeLYRxBkRnJISAPY/z13fsmVKtFu3eIJsfj/f7hPsbJV0FzPHa77Xl18/k+5uPxePfk2UU37sUmRVG1mHJK09jLNEp/iqDK7AwMlFQImKpQxRid4xJTEslznBw1pmhWgD1mCkggM6EHHbGUWi9SMiZCnL0zVrylc8xp9kAXw1vh93y5zNv89lYrk/KctnqUjIrvrSxkEaGsw0y1pJ9MPSCU16jkyZCZiZi8GhCz896AoigyAzs0VBV9dNk8Ym8MreyNyGgOt8NsiS3TTdnN/FdZZf6xZkA1AFI2nYUDA6BSJYxaNkoIX3gzX8ptsiZCYEQTLbwZNMICRzIpnWEqhVY6wwjLY6Re1MHxZrX2zkHOkMT7QGWfV1Qr57wv/XAl64P6eMihWZZcvEA6v8RqSXQGTc5nfFZBAmJEklVbr5ftcrt0zj/c7sehV00pp5T6LFESiJUuVVE1FzwCSVTNYvI4R1oZzcAREpKBSM6qgIrFfUXzC66lfEuLJ7oISESoImCOjEpHhQgylWlDDLIio6WcQTELZEuYy0WFHQGYjGNyDukEh9N+UVWr1eLiycV6s5qmEUxMcn/shn7sxnEcp1IBC/N0auUj8AiutJLbneuNAMGsPPgLzGm2cCloEYiiAKmo0gx6IkJFNEIDsVKjgWRa/iObQZJUiK4IWSpiCQEIyBGYhyxSLGYAKaUYU9KcNFdVE4IDhClOfT9MOSvBMFjMA7FlEe8dAaUkeUpx7CWbgUMkRw4ZSxUNGhE5U24W2C7CerFoKreog3MkcfLors4vV+0Cor35+s3Z9uzu7u6bN69OfYeqgfwfvv/93/zVX15st7/+/OfffvvtYtEedvvTsXPEwYXTsR/66ZBOl0+fxBTrRQ1K9w8753yoq+OxG6dhnMb96ZBiOp1Obd2cnZ8770Tz+/fvhzimnG9u78ZpOr9c9P3QLlfbs+3bn3+5291fXl2Oh9GTX7UL78PV08v9/Q7Mnj97ulgsO6Mje0bYrBbH4+Hdp5u3P73bnp0tFssQKovaTSdX06Zd7D/f7m5vPUH18vW6XcuE4zh9uvm8XtTPnlxst2cxZVeFw2k89uNXb75iH3anrl2GTzenY3fgZnk6xFXd/OUf3jzc76a0QaH1+iIK3N/eVQG3m7Yf4Pb2+vrmnfPrulqYKjGopSkfwbAfBdFnqepF7f0uRgl1MLOhj5It1Ivd7UMcp8WyapcYkzhO600TEyaxlbmcYL0MZ2f19V1vcnIcctKYUxYbJwXSL4qylaypiGOKOQ29GEoIbGKMWdOYkphqzgLADt12u15sFvd3D8dTlyEhoaoIqJq1TesAgJhmIE2BF8L8iRinEQFyzqrqS9UXwmPkE5gJS2GOSLHLlEpwKK00KasYEpiBd87KjbwAoM1KoTGoZZVpiqoZRAEw5QQKoa4AUFQYqAoVMzFxEU6ZWUSzzN9SqCozMdVkSoQAJqoSzTklRAObxsjUI6J5ryqSU3/q6qYys5xSCJ6ZTTXnBAzOM4rPkjUXg2xCgKqqVHUYxtVKfag+vHt/f3/X1hWA9d1p7FZt23rnhq53SBiqnDWlJGMuxqlxGg3N+1A1dVPVznlyWRFjjKoSUy4d7zHmpq3uHx7Ot2fn5+fr5Xq7Wf/FH35/uju0i/bDzaeffvrpdvcgKR4fHph9miZGdISjZc35lFOOCdFSzktqEakfejMzqMs6QEHFNEqOKWYVdAgESKBJVUxIFErTk1W1z5K890WZY8RsCUBMqdRyIWBTe3ZYhYpdAKRpSKo5TgeVymQkzOfbrWtb+RxJwGS4v/5ERPc3nyXFyBRzbtsmx3G/u725/VhVQcAf7h+yTFXVAurheAwu9EO/3z+EileLVg3SCOOYDvsxDqaKBGQKklU1JTnWtSdCFfAuZMlqZlJ0RwaxEp8sb85iizD5MiWUdqjSiYRohZsImku0Cb4YXubj4Yt9DcxK8hnmRZaaEtIjl09nFK/NDh0iVgADkARE5JkIXRZDDMBl9imWorl/bibfCWacbSblTm+PIS9QnK8ZX5YcRCXtBbPdp2ySqKTYy1LMZqZWYUyUmWyuU6M5hT4DLqT88KY4h8Nmm3RhDQMCl9WZzcIwmJoY4LwfBEPJomoEwOwK4aoMGnlM6HS5aAOzIRlkxIKUNMumZjKOYHNxS7ZsUgQkMTOajVhipTBGS+bUVLSkmsBK0YflHI2R2C7OV+23X602Z2oWVvnu4+2YTkBZNMexgIQoq6gmdhy8R3CCWRylSbBsi8SIDR2Vv8PUJD+WvwM8krYFcE7i24yNhUeRHImgSHqSM1BRFRWIqRTMaZYMRM4AVcseExQsZwVTUAtGIfiYMxFAT7VnzVlNUbVpqyoEV3Wysxjj4zeBgMUdXSbYIv5RMauVsXhWAv+r2PdoYcd5bSYKXD4vhqXetRg41Uxy8s6XEZyBOJBK0pwnlbryZRPhKq4gALCCTTElzWaWVFJM6DiLlghVcK6p6iw5Q2Lyk4gpVqFGopwTiImiETmswXA4SYFsmyIwm2lRVRHIex88i6TYpbv+rq6qeBgW67br+qZprs6uXr98UQVnWaauv3734b8k/eabN6+fP61dtVmvH27uMWXLcnzYd4dD8GHoTi9evqwX1vfT2cX5YrW6+3z3+fr24unF5cXFBunu7i7exeubTz64/fEwTAMYOO9/99vfXVxdfLj++B/+w/835TTl6eP1591+/+Tp09Vq+3B/3/Wnse/HOH777TfjOAYfPEau+OtvXm+3Z78my2ny5Id9zwCvnz8joIvL7a5p+313OHYHxKqqckzb843znh3UV5eoWUt0yfDp06uzzTYn+eb1048f38d+3D5do3v2519+bZr21Wbz/fffL+vmf/vf/9e3794LwrEfV5uzH3/687A7IsbLs3pMeRpy0xxOXTo/2zSLFblKNXe9xEhiYUyhUqprt3/YO1pMaRyHNMZEkOpmu1qcN1XbtIs44mF3xMBxyOMogFhVzJzJxXZh0yR1qFiwblahqoA4qj8eYyBwAQExpzlpkKOEqmmaakqSUtJyKzUws5QjkBV9BkzTFBHZMSeEOE1tUyKbQMhVxYGrvo8AGKepQ0pTdo9b6YJ4LndkYyYsQGQELE0XXNRsgxnsQ7OmowZzYbtlEbbCgWNVFc0mwMzEBITOsZkVjUGzlEfelGJMEaFcerHkXBWMiTx571zbNmYw9mNKY8riXMiSHHFTN46d985UVBSoYHsEEHFGsJIPnFNOMU5IZtkJm4rzDAhDPy6WLTtCQOAvkWecO39A1SAnCaGq6jAOcRxGAIjj9A9/948//PMPwzRq1LEbDvudqQ7dePPp5k/1j+fnW1/5KJLGmLG4prDYNZOoB+umcZjGMU5ZYsqi2YwRlU79cblauNqtlquqas4uz/74T388a6vffvumrqvXr57/9ttvfvjpX//xH/55/3DcnrfOcU4ppURI2TRJmtJQBQ8KKSdTSzJJNgNwnmFeaWKcpikm7xwyanG3OqAAqlGzqmRGIkZEzXliJkwSR53GgZkdo6gSARH54EJ20DJ7L1EH1GmKqT/ubo09r1bLdnN+e7873d2er9fWHxKhDivQcXu+VCDF3C6bZdOc9p92e4yxm8YskkLg02knlmJM7KrDqUf2oaqqKiBycjSNXYxiSogk2XIUJEDRnAZQaZras4PKbDITyypmVhYToI+D+7yamIcfU8tZASC4QMgGmrPM8wcgqAKhKcznSTlX5gP/yw17xlQVLahwTcrSh5CoxIvnZZwiYlZDBHK+iKVU1mqAJlCsbOVGDmYqUrJEYAgM6IqD1gCQgWeKdNF4CkmIC3g6k80SsYgZGjACoupjMgwMtfxVZTdWhjkWzZ45TUJkTJwkISGQOGaQLCrOOWYWMUZDAEuzd7kg8eatODnGMjCoITBwtiyimrNz3kjENMfoGOMY7w7Hqe8IjUt6S0DsseWi6G8F+QlS/r3kTk1kljJm4NAc2Z8P7UIzUkNEK/RokpPL3XHVdY2RjNMu1LrmCjkfjsdxSMwes5b5VUUJiF1pfgckKcrV3HFrJROGpnPPOiEysII8zqv/Vegqv5nymAZEdoxYUvol24HMyEbzA9cU0BWkDRkrlkpEKpxmx5hTZiWHNI06DXsTQVAwY7R2cmgwjTGlVPCxAEDIj252KBbuuUWoLEHRDGZ3txTB53Hf+fhEt6IVqoFzQbV8IoyQjUxEzTSDajJECN4BcCmM8674OXVKI2Qxs0Khn1IccyaeabYq2bHDqkopaY6SCBEq75AwTuOUs/MMpmOU8rkrlM3yCSuvumMiMCA0IjOh+dvQwKFd1KF2RPIX33//m9/95tj1t5/v//Db37dVuH73a78/xDTVwaWxx6yV85V3tfPivGU9225TzhW4w2m3aBeH3bFqmqbyVdMSYowTOTSwu/uHse+d9x/ev28XjUCaUrr+ePPdb7979uzparu+39///MvPu919VhnHqJovnpxdPr366s23/vfhcHw47g7bizMGevfrB1VZNE1VB8kZEvzu++8ebu/WzUJCGvrBe7deLZuqWrxoz8623XGYpjQO8Xg8VURfvXptpjefP8GYGsc376//9MMfnz17Wtfh4+3bJjg2+fjhfdW49dkaEdjR1fPLod8HspfPrk773f50evX8Se2dWuqm8cPNUZRfPNucXV3+r//z/3Z3d/rbv/2bqg5EiijdkNE1x77zJ31yflFVE/rF/cOxP4xD1HGU2um0xs36CULqpwFQQ1PtD8cUcwgOACvvwbLK2FQgWcdpGAarW3++vdjtj9NxZJX1MuT5AS5ABMjk5nYEA1UTBO+DSzETsrJmEcuRkFzOoaqDDwBgAjmX2p202q6JFUmJuG7qnBI7h2Cq2QGiqiBjCRLMi+vi65mDBcUO+ojYByyNpymmOUyCgEgiWW1mGTuHOeeUkoqYmYgwO0RTtQLxJCADI2IwY2Ji9sww5+3NxIoHoKi2IXgCRMYp5q47GUBwrg5+zBmoZipeDQehIqY5kMJz/sE7TwBEmFM2UxFtmjqlFEJwzhUz5Xz5McspiwlTKe9zTE5NYoyAtt6un7148dW3X/35z++IqGlqvrwwkDhOHx7e1YvWVH/6+acf/iX62k9xUhWNiog++CHHcehPXd91nQ9eRMdpmKYppkTEvvJixiGw46/ffPU//J//hyZUP/7ww/XHj+8uVttVM3bcLFfffvXV7//qL7/75rv/+T/+L3d3+yo4SRKzuMDGTkHjOEWAuqqIKEkSUQUoVnFTIGYfvBYTL2NOIjKWmXUax4IqZkc+eCQMlUcix4xgUxYk9ME7piwKXLi7gAQpJs3ZObdZN+OAKefuuFfVFCdf15fn63i8gJQWVfj661euWSa19fmlr1vv+PLiDHXoTrtx6t6/++Xu9v6r169evnqx2993w+Fut8uZDMLzV8+c02nsmd04TF03FCNVnIAQzGUCYKKyfCq9KIRkUlq3jBBzEvjyJp2XvIWJMh9RZV/gg8M5DyxghZpL5VYPs7lYC5a5HHQ0n3GkhXFuX5STOR6ORbEBJEZCziIAbEDeoxrkrOiQmJhIvwTgdW5wKjOEFVWDubjR2YB8+UsQgQtM+RHOUASh8ml9nAHEygZGRAGQnStHmJni46VHZ74XAFhwPsfkHbvApuh9UJOy4xAR770ZgEhbVyZqZvIIcsxZHTIBseMsFqMAASDmMUvOjrliT4SOHRJoFh8oOD7tHw7722kaUIVRQcsPS/O4WX6G2b302J77KLDMT6nSQvqIYCKm2QgsSowMJKaEbAZgsnu4ndJBIRlb27beewQEATQ0BRUhAiKMSQyiy6VU1YwUAMiVWG5BYSDYbBaAR6sPwn+tW5sHoPn5aWaKyMDla0vCDazcsIzFBJRE1QCYDbmwtAiQkDyVHi80yQLAMakk4bLhVGNEQhAR6wdTjVMcxiklQSCbLWr4qBBaISTO3k4oD0ikmapalnhASFaMbarFD1bWuIWmUHKAyIZKMJeIKSI4ZgSkYmxw1DjfVA2TyynnKYuaDyBmwxj7aWLvmrapG6diTVOT4/1+ryoxTt77ULnGVQSSAbPk43EoqV/nfEFCIYL3DEghhLLUQ0emLk3AgGjiXXjz5vW3332tlvv+cPnsip3/fHP37u0HVHSqv/7xxyrQxers21dvzs632+Vqvd6OfX/a7V+9eHl5cTZ0/c2nm/X5No6jY6rqeoqpXrSqKsnI4cPu4Xg6bc/Px2Fw7IY49WPvAhNivWiatj0/O7/9fPvr+18f7u+vr69DFUJTIWOcUkoJ2Jbr5uPHXx92D1Xv9w+7t7+8ffbs2Vcvv6rrMI2jxOnf/Hf/dnf38Pnm5nRK58vt0+dPnMOuP6HBql4E8svV+u76zlIGzW1d55zqEF6/fLlcLe4+34pM49CRyf7+FhcNSMzDMPTd01fPzi82P/7pz+v1cpjy4fb2q9ev/F/87h/+6YdXX716/uzZj3/8qa5qX7eAtQsLH5r9qdsddz//+uswDYs2pDg0NRvop5uHcUrPn5xXdaNSx8nf3o+hbZrFJmsdM62r9TT23fFErFXj/cSHw6Fu/GrZtE0AJlAlhPW6xr3e3x9SIu6kO43dabJkjQvmQ1Y7TSUrzXVoHPuY0jhOIhYCsfdErqYmaYpxLNevpl1Wdbuom4knMMhDJKRQ18t2cWsY+4xODMkUwbCumuPx6FTyo3Fyvh+oqWZAsuLyUVHvvHe+YELMyAA0l7IvAYQqVM65eXIqx0PhUSAZmZnGmInSNAE7H0IoOzIRMTNX4gDOUWEFieAj+ixnlZSnmBdtU1ehqetQwXK1DiFITm1V73Y7EVHF0ufHjoEp5zxf2hCKq3RW9GcTpgKgDx6JmGe0GiGWeC0QoJbCUjBEQ+vGqRsiEznvu34aUwq1X65Warp81n79/at/+Lu/ZwfPnj9frjZ3t/f7h0NtQMgFolMOD2aXcoxx1Bwn8YCcJPfjlCUjUTIlgqRye3f/6tXLOEXp46Jp/w//9q8btN3tw9Mnz5aL1fnlxdPnLxahefuvv3z88Cn2wYeACIomYOw5dlIsA2pasEJWELUEABCosozjFHNOheuvKQGaZJGUiyAgZjGNzK4KnpnKBZAdsTAoJpGUEwF78xVzHYJnAYMqBOdcID51JwDrpng6HJFvtucXF9vt/fUtMbWL9v5wArNlqDabTQghpdh1nQstuVYtJPVnV89fvvr23/zb/+7Pv/x0c/s5puH6+sNwkuXSO2pTTN0x5oRVCCokkjfrxTSNQ9ersKHmZDEn7z0zzUsi4hmRWWJa5EXTowN4hksVI7+IiAohl2VAcUcDFcrP4x36kdCMWPoitESu5hUUwqPJdK4ORSxhbEDiQpBetMt2uULnhtMw5uQcObKcMhIpqCax2WZtXGihBsSMSKk0jWGxjQGSI1bTPA8A88LCHHHBMyIzIhugmKKV43u2C88EHUQzJSB0xa1cPq3MDkQ0jwJg5LxmNVQqlb0KUEijpXgEKU0ZsfQ88GgRkatQ+Rn8y1XwYR3G03C22WzX21D78+3FctXe3982Tbj9fP3DP//j5/cjWDQT9EVOU1NFKH2qhgDMWFbzCFCgOnNQfmYvwixnlBXj7Oa2Qi7LKoikKSLR2KU72PHRFiu3WDU5jSmOKSUAIHamqFrEFqoYwR57tRCZUEy9J+ddyhCniMggZo+mRin8VoC5rL1U2lgBZBawshHPWzEsf0nxrwNJUhFF4rnDg1FUSoCfiQBoXlIZInkENRExBUFkIyY0NVRDTFm03D5hnnBUDQoyoKg2pWDoCyRx3hcwAjKDaBnAoLREmxlCYc8CETOVXIo9fpKAyIhQDCRJqF1JWyyWy9qHABQU27pq6hrUUhQRlTFGyaraLCpido5ccGC4WNTEzlROx5OZ5jw5V1Xe+fMlOD4eegTzlUtZy4dZTRmRPakakWrOWcWhZ8eaTHMapjFzpSZjN7179+7Tx0/778aXbxIy993w/tf33nSKw3qxfXJ5/t1XXxGTZmm8V8fU1pvNahzH4N352SZLJMLjoXOhblerumn7YTweT4S8XK19cGPs3759u1wul2fL2+vb1i+WqxU7B4bH0/Ht+3en7nTsDzFOV08uXO2wJx8CmJ1Op93nu+P+uF1t3v7yy26/b6vqq1cvfvvNm2M3HvShsEienl/8+V9+TGm6fLl9enG+WCzNJE7Tn/70x/vr281y9ezq4rTbgejpsD/1h9vP18+ev+Dg3rx5bWhx6nPsgwdJo6YpeB76PsbhxcunN5+uCTVU3O8PsT99++bF7efb4TQsl01dB8vWnfZN4MN+r3E4HE83t9fLzRKILs/Wp+PDX/7Fb0798XDoc0r3t0fPK5G6qi+aRlwIT54+S0NEalOubm7ux4x1Q4iyXIVpZJFkzIvVcormvasqevrixcMu3dx3u/0hxWNWN02A6BzRlHNgroIfxkTgqKyisbx1ywPBQh3QIWd2zjEjAjR1Q0gCalQArkSeneM4pTQmFa3qylUBySFhzJqTOQNUMRdYzfARiFYeq2VV7bwj4kfvHJWW0iIyf4EiFjS7PTa3g5masWMGyimX1QMzO+dKr2S5UzLSl0OoXKGdc6pqACmled2WdRiG0iofqubq6cXl5RUaTOOQcxyGTg0ATETY+zo4qGaznWqxX6uKOkIAIOcULMVU1aFpqpSi5GzMxM5UJQs7pymJKIMzyTEaM4Fh1/UxprZd3t3eVlWz2W7u7m93u4ebu+ub6xtD28apFWnb+tmLJ13fBauqOghISil4Xzd107YxTrv9gRCz5HGKCkaes5jmXHkfggeDX9++z+k/vHn18vtvv7s8254+35ydXSC73e60WA/3n/9JVN68ev32/dvuOKB6JpqGPEwj10zEojqNkw8+5Swzx+jR6EKsYxqnIacsBqEOJsal8oyZPZmYZEmqorJcLsAgTjGlpKYAlnMyUEVTERMFM6oaS2qmxkzMCMIA7By2CzWbum50vql87d2yabrdKQ6xDov957vTwyHU3lUeGBbtAowX7erZlbt68urbb35/fnG5Wl2NcUhx/NOPf//HH/7hsBvYoxloRh8cIY39VIWmaSsj7U9D8bGUYmQ1Hfv4RdXT+cJdBARi9DY7dIBmlQUAkMiZWrZU1gdQAE0wW6FLxMgeXcBlnwbzR+W/ppofF2xISLMVmsjMshgjAWCzWF5cXIa6vobP6XRqmkpzTDGRzlH7R6lfc8GIOkaERz+rA0TNivSYAsM5PQ4EzFzGXJ3ddW6mDwMAEigaFolC1RQfpaoyoxWF1gxVU1ktdMc+BC+CKqpoBVaRohAjQsFqBiYOAYL305RWm63k3DTtcrUs1I2mbhZNa5q36/WyqdOUmfDFixfbi82vv/wyDr1jvL2+vq7ejjFZzikJlRzVo6O8nLs5J0JixPKaz40Ss2KBj/E2xEfBDB4R7sXNYmaOQ845TsAO2uBMyJQsz+8ALa83ACApGqoVd1dhCpoZMnkmZNR5vcYlc5dzqRThcvUqOG0EBCs87rm0FAwAyBSLA7L4CorbABBVDYxMyUzJ+dLWpqrIhqZouewGcZ7vBBCQ2NSSCoJS2eFmnDetTE3LjuscY4oxZ+V57z3vtuyxJA1mOxkhgBS8JDw+9h/tX4+sByYkAM2SywhdHOkmAqZVCM6zd74O/uL8rHYO1TiLTTJO2XlWoqQJEJSRfBBVI9SYxhhXywUgxGkCs6oKOScEdMSO3TiOla+WbVUHn0zHlFPOgFjyLkiQUsoS45S0z2Zq5pjVUmZ2y1X97NnVm9cv12cLV+Fqu9gfdv/yz398uH24WK8wxdWi2WzP//v//v8UGP74ww/Ldnl8eCDiy+2ZxKnr+u1m/eTpVUoTGu52B0fkmfrD4eF4QHJEtFqvfOW6ru9Pw2KxWDSLcTU578Bgvd6cnZ/tD0clSJYd++cvnldVWC5X5xdXvgpTTKnvRfTs/EJTTilfXVx89823X7163Z9OJlI5//Hjh/3d/Xqxev36Zc4pxunDuw+//f67tq2n/vTk6rJp2jRObVstl/XN7e0//sM/nPo9Inrv1mdnz549yZqPx4c4jBVRu2iItGl801Sn3XHz9Pxv//bfSUyrqv7lX38+3t9fnm1ePb969+l2GoZXr57dfri7+/hhOuw2jYuDS5KMsOtHII5ZCB1xqJuV876qq2x2OPX9ZHV79vU3l4fjCa1eb7fO4emQT0fhqlJNBpMLeHax3T0cJSoqLdvN1YU7DZJyjHlqWn84TlEUgaq6Iq65au4eTnWozqrAh1GSTCmaJRVlx5Qt5SSDpaxIMAOEwbx3KR7AkIt7zEBUAFBFT30/SRI0QzLklDI6FINms3IqQs4hEpbwVvESq6maMVARcsA0y2ynAGRkDGSgpsyOASznUtPHX3ZeqsrE7LiwXcGMna+qAIilYpqZrMBmAXLMCopITEjMqgIAohmRfHAGMMQ4xVTFzJ76U1cF77lEK6CuPCLllAXU1Nh5hxRjNABmp5oNIGXl4IuSrghGbABZSpRVCYQYkUBViBCIDdEQppQ8uRTjFKduf3rY3Z9dbr755ttxHB7u765vbz58/JA0uuA/f/7cd0Pd1qp5Gse2qkNwx+5kmOM05QTIzoCqdiGWYp8EIM80YUKiQ3fyzjV1dXN39/bdu//0n//z//X/8j/+v/6f/4919Tf7u4e7m/vtorWob39+3y6qr7/+5v7h9j//l//SjydQDJXPlvf7IxMrYdTU9b0+HvnEpKaSNcaUsoiogsUUDYyYi9AtoJKVy7HBaGYxRjOQkpHPQkih8sxsADMgKKZuzGiU02QpRUd1E7xnE6mDd95lBcjR1dWTpxfb9Vpzbl1VVw27KmWxpGp5vd1U6LaLtb8EuqRnV69kCuOeX1x9p5BPx91wPN28//jp9n1oETD3Q5cnJUYoZRoOm9p3IRBBaaooAoyIsPNVVRFySmkYBgCYm+G/hKPwcYehWjoTSiFryUMV0F/hOxTDr83EFARAJiz9tY8Lmi8aUBGOZmHJZicIpCyhDWhwPHYiJmoxpihJYgIVnPnsM81WvwTsS2Ml8azbZJqLyIDBuKhKJVBZqloIiRjL9qh0HcxeIuVS04o4I/2QHnk/xOwdApbK+bL0bNv66TNPBmnKq83aFLPZYrsJVdWdBuerxXohKTdNXVVNcH4cprPzraZc1TWYxTQ1TZuTJEkap6pZP+z2hPD06knXx1N3/dO/vL3+9P7ps21btc+eP/v4IY6SAbV4xVVMwZBRVeyRq6NQaDoEhgJzS+vjLnBe6MBszcJHX/uc8VdQRQPJQwSaQkYMy7atG2c4jEeYM2Y0+3VmoRhKRx8xmaqrPBpoTmBaRLisXyTl2fiDhTgEc5zu0SMGc68IGM6YpDKzEhQElWixKyoYWgLi4oAEKj56VqN54DYjmnFOc/OcYdmQghkbOgJizwCE6uYu6qnokmAwz+04O9nKCrvY2Urjrs0OoPmFBDQAmWtNCFVgbkAyQAQVAbOCASWARdvUPjRVxYDH44HUHGKMiRTTlMixC2WPYEmSlXWamomM3RDjVBbIaOh9qOuGyAFJ348+MKGSSiDzAYnZBXbOZ1VC9VDxLAoAGimZ51DXi2fPn50/WRnluoHzi+Xd7aeHu93u/pYZD4f92Xp1dfHkzZs3p9Nw//kGMtauerh7+OrNa8/u53/9+erq6rg/xnGqQtW0C1Gbckwn2d3vBWS93opC4z0wOObvfvddu2zTmExhf7+r6ubFxcWYpg+frqcc37/7dPXk8snV+p//4Z/M4cvzV/vDsdynrq6uHu53nz59yhJfvfjNv/t3//7JxdXPP/7p9vZmvVxsfvc7BpKU37x6ZSrDMNehvHt7kBQ3q+3zJ0/v7x8qX11st6r2y6+/TP1wcXkxnAYgrKtqSnDY7Z5cXL64ejL1nTydbu5vV5uF886R74YDqZ5dXZwulg/3D8fD/vL8rF2txu50tlzUz+H2Lh+P+zgcF+dPttvN9e1t1/UuVMvN5k/v3h9P42JZp6ztYmnOZyGwGoU35xftIh9PO181KU79MSIFU0xTpppJMPhqUXtfOeSFCaFMKHI47Ichbs7qKWaFBBp8vcjmI5ISZBFE1ywWfdfnnGKKaIRlEQ2Y0lTCEVmleOFjyoyWoxRimQ8kmrux3x9Oq+2q+NyyZM3YdyMgVosqZXJgxghkUKxtplrutlwOZ4RH7zOWZ0o5aUpjmZk59llSkannSzMgEZYKwflEKW5JmmcdBGBXjNkEMy9kvqeomcYyaSk5MgHJ6jwDmWO0nPZ3uz08sONFW6NhVVfOUZpyUW5jzJSLkULLE/Wx7xEdswEaoHMMZpKyltpRsrm3CMp3zoCYRbPlmKOCqpY1FuU0vf3zr87C8diJCKOrq8oHUkBkVNSUJlRo6roKIaWYxgRgjJiz5GkovwDJGdRIwdHs1tScAjsCBAPJkifx3rs2LM+3K9+IcNMsN5vNdt0eDwdEvLy8vLq6Gobp7uFhtVov65VKlpipQmI3TVkiluUjMSORRskqoJhyypJF1SGKKjqM01RKLQmp2EjMiJmmGFVV1diR96GIK4jomMAoIZV6LEZ2lRNTRy4mkSxMzERpyj64Eq6tq2qYppxHhqoOzfn5ZQjNNKUxjyxA4N88exnPL2NKl5sridRZltQjS9+P0wRIVVVVYNOpO/VT1AiOfPDVom3NtGnaqhpjTvroWDND510IlXdVKT+qqmYupzNA+EL7hy+O5mK4eDz7FA2JHc2AwJluVZQkQPDeEXEploQv9+b53Ch/PpFjkDkvJSqzgJFtjGM39CrGnpm9gTlkxBIN08KbAZz5ETS7N8igRBCcGRF79t6M2PkyNRXjCzvHjsiRGTB7IkJ23lfELvjKFA0weM/EpW0GqfyxLgTPzoGaqFZNtWjb7tj99b///XgcPrz7+N3338TJrj99Pn/ypF2t9w/7lOTy+cXHt9fNolmtVw93D5szl1NUTa5ubj5++nD96etvv0GkX39+2+0Pr189v3738Te//ebJ69erxeL6w8ff/NXvXU39cHJN06xWIuJwHjjVMhEy8PyCImKh2DyOJlpaJebpoww6ZegpGsz8GzN4NKlbKRtWcI6RcqIs+VSNbdN6Qo3JO1SHqqjzCINSHFWlSD4YEmsRYlQBkL1DBc3KxUWss65ScvLwCJXUL9/aPA4hFIBgViAqAqLqXD9SWkYQzcSYyy/9S0BvrnfHYsYpHTpFhgdTAFEtNbhZteT6PBMqQ7m3zq6G/+YN+mU+UzMTmwW1ovTjHG2cvwiJULKAYZKEc5ZfDYEMGD0CMbLnIEnGPNymiKaaMwMGdoQIEY2MWcVQkoiKoaAhAZhZliwiKSZQJfaM1PiKkYc+TlN0zqVJcspJsmgCVk8E4Lq+H1OZgJl9VTVIYqA2ZPU1L1fN8f7+f/+P/zFNIiJoUNVNE9x2s7y9efjdd9/99tvf/uarr796/ux4c2cRLjdPNu36+fnLU7fv0nB5fuG9M7HrT5/PLrZNU0kWMCCGzXoFBEAU++F4OGa1ul2cnZ093N7nlJd1u16ufRPGcby7u7/9fCtsYVEf0wgHBwIgkOL0+eOn3e74/e9/X4Xq3a9vh3FY1Itvvv365YsXm9WyOz473D1sltumrkhBYh6hL46yp8+fHXf72+tbXznn624czXR/PCG7xaI5P9uslo2vKvYkWR7u7g6ng/P+/PJJs1x6Judxknxzfbc+Wy+Wi+PDPqWprdzQT6GqU8673R7Y1aumqUNQHTs/9YhsbRvOz7eXT6+Oh75qvKp8/HSz23c3t9cxdqeD3x+Wtl5ytdnvD4ppuV5uzjcpDWNOu/3gfJWi6aCcoKq9TmDShNXCwA3jsD/04zSxr5qFnyw2S99G8xTIh+vD9HCI+66fMiA5QGeqlhHJlQtLVgUBIJjhhCKP9n7LllIWA2JmFEpJ6kqNtLQTlabtFKOqMJPlrMguVC6mxK6IPkoFVVGcoqrg+DFiiyV5mnNGmpnqxaJIc+2poJUTgAogDRFUVfN8O1fRqNEUQnCikFJiQmYwKpStuRiAiJgepy0wQBBVUTEDdhACFyPnOEw+OFKaxjxNEwCUqnaVuWOrhE8BrSC7Uk5QSEVzBNUI6bGEVQrcxTlEgFTW1iLjFNm5qq5Uc+Etd13/+ebm8LCPMS42i9A1SBU4j8TOAJFdYEeUUu77PmlOKc1kEzBDy2I5z/c6z2yIpqiSRbJ3IZCva17UlaT09/+/v///XL76mz/87ursjLy/+XxDdilmeRqJrG0Xy9VqfzwYQz+NYupqT+zSlLMoOks5mqlzAUyTZFHRbApGgR348jOrqJpZzmpArFyqyA0sW+mfIi6zASKRlPLxnJmd834aJGVJJiEEcmxIOYsPnh2LwhhFAdtF2B+PihizulBVDLDb1+3y2XolCoeHW7m/54BnF5u2qU156GEcpxjdw/3RoL96uh2HKcYck3T9TizlBJogePDkUC1NM2cBkM3MOfaVUzVKaGLJpqxiYkQ0p5URiBAZ1UpkuiB0TWZmCwKSc5WZViEQUo6SReb04lxlYMhcGjeLBwgBgAqJ18weUXxQBmmKMSE5AMhZCtSPzHI5MKkKPiB6APDkDNHEnHeOHTzu64iLEYR9qMgHInbOh6opIc/gPBAVlDYSsePSG7pcLsdxilkcs3O+alomN43JDJxjHxwiZYUswiXaR0RgMeVmEVardjjFnEmJiF3VNkZxGmIccrOknG04TuM6x8n64cCuun841lXo+hMh+aZOWWJEg+r8atP3I3H17V/9xdOvXx9ud3/39z/UjV+vV+1yEQ3+6R//NPa7t//6S0oSHImAc5Rz8RgXU/kXnuMXrOPj3QtmozE8/t7McC7qmNWh8hLOFaGMTMyVD8aYAcZJhzEmNDEgx8RfjOGFwCoKhkAKCmpEnIrKUjZxs4n4cfuGZqjzN4IKSGTzyFzsCrMCMxsjCxWtLJgKQYHLF/AjGhMUALkgDAuLweYrJQMWJJMhkRqWiroSdJPiFiM1KJ4k8N6DmeQ88xxnKWi+JRQjJxQObdkfEn/xt+EssJX+aRG0EvwvDUgKaoDI4IwkZWOXLU05AwATBOcEIWdjR4hErgQlTUjFJMekho4geAKknDLOjPVZYRr6YUjCiN5xykrOOUcqOKZxt+sVBdCFKlRODTRmEkVWSFGOU/RC6w22i3bspsAshOdn26snV4eHu8P9/pvnT/+Pf/37b7/57mx7jpm22+2qblD04f62fvp8uVze3t6hmmQBT+uztZEdjsfleuV8MNM4pd3DIWepF/XFk/N+msYxffr1pj/1v/uL3yyW7WkYfv75F5F86DsKFOpwuuv7/Xhzc/fdqxdXTy4RsPLBA+/u9vvdsTuezi62v/v++z/89e9vbj4Nx3a5ai4vz/OUCLCuPBFbhrvbW2JYbBZdNzzc7dDhYrkBhM12ne4PQz8cjx0AfvXV1+16cer2h66r6vr04SM7d3e8v93fXCwW67Z5+ebl6U8/TsdT1zx899XLP/7LH3/95W136l+9euOb5nQ6aU7G4JlfPL96893zf/njH/txPBwPTVtvV5u6rherdv9wuLvf7e/3Wfu72/vxeELCr7593daLttkeH3o1PH9y2biwv77V0Yiqpmr6MclkItB3/WbVypQP05hlGvqxaWuqglOaMnZBmjbYKMjZMGdVADLAMcYkWTNVIXi2nCWnNNv9ABGBAYGdgmIJcQEDgQAYKpnUTQAzZu77QdTQMRGKWsy55dqTZzMnAsEFA5PH5EJZ99K8GzYEcp6lRD9KIJJQVIjIOUeOqNBHM+aUcpYQQsmCEVGGpAyYjYkRQUScd4bgfEl4qWFR6NVMVcU5psf2dTIwtmI7ySkTgJGTrDwXjWFKIjKVfjFEANVQBfTWdT0gBu+QMQQWFRFNUyy+P8uqDMQMxA5IRMwUidl5LBWZkgEMTJjMEeRpBIXKNTnZxw+f0PyYxzGlpLGuwzR1wdcE3iQj4DSmyTTGKadEBMw4xgiF+mpGjo1QVR871CiZSpYYY+UqVZGUCQmFch+v3/16d7npjndpzGpyeDjUTeua6vPDfdMs33z17e39wzhGYu2HUZHqhRtOA6KJJFOTVIjtnFJCMM1qhghGHiXlObptyp7KKghmV0CJjFBKCaisXIjJFXWOyRMiE00KpYw350REOclisRCFOErKWdWcWYo5xjQ93OcM24tL56GL07sPH/oxmuHN7edTv0PS1XK9Wi4Wy1V/shj1yfMaNd1dX+92H2KciHyKogJAvgloBAwupdwPg6iOpwGBvPNVCN4RMKecrXQ9WtmkmICiB8tGRGqlZKEwf5CQRAqBU4hdKVNUQ/beEYeKco4qRkRWCFWl/KHYVBiRqKw15npyNUQBZFVzjjhQKi4rA+ecI1c3LSKpsm+azdnFYrV0rkJy5VilQlhRIWKA0gbKhK6oNaLmHCOxZAjexxir4NHQREtcR1SDqxBJszCSA3NEaBqHsQS1VCFnnCI670VADYjRZUfsxHTohyy+qjhU7sMvH3yAdlHdfPiESNvzJUDa3d4E5uZy1e33dcUu1A715fNLJs556ZgWTb12/NWr1+S4ofBkvTqv29Pne9HUBu/RGs+729vDZ7Ccnj07v/7YV4ta1KFlYipMO83yuFCch4xS+foYTcXZuzWvm9BmA0t5TM2zUbHrIhcQkhZrN0K2rATZG6chKpMoWgk1MQGg6jyAze8NJoAZ75yzoEPNYGA5ZyqPRkItRWwCJUBQNpcAAIimilwGI/oSEyujmZb2uLlSpOiWRbMu+V5TQVQCMcXHjRzNJdSPvO4yaAGZcWE+A6CUlSiYCjGxcwiomCWXsWme2woQc/4my1SJAGUVJyZiTPQ4XT5uzEovdNk7CgBgTjl4B6amEdA7ng3ZDOSYVDUncR6Dc549EJEkNHVVSCkRQOWDIw4+iGQCy4JmGCWbACPVjZecVTVrEoRiwGfgaYjrzar2lUocppgtxSk3zg39pFkRaXe3h9UmhCBOpz7tu1P6IKtF89d//RdXm/X5ZmNJ7z5+1pT/5vd/2H++v7+7U81dd/r+D9+fnW/3u4dff3mnJk+ePZm6uFgum6Ztmub29v76wzUyiUIFgEAOXRz2Veufvvy6RP/a1fLi6vLtr79+/PhxfbY+Pjw83N65pu6O++Xyu3bVnm3Px5ROw3R3OIyxH7tutTlrm+Vpd3r7y4dvXr20RpMIeDr2w/biAkCqqr18+vSnH394+9PblAQQnz9/UYXK1w0Cb7fnADD0cblavX7zKqN8fnjYH8evvvn6dOi60/Hnn9+ut6tV0/z89tNqu724enF3/RGJX7/66ubj7Z9+/MkYnr54Y2DH4yBZ76+PjMCKRnY6xuXm7P7+sNsfPn243p6f726Pv/z8i2+q49BXhJv2QiQd7vr7xSGtqXY1KH3+cBuTXF0+y+rDYrU821SL9oIv+uH+7uadsSTVw/0uW6pratZt09aClEdrGz7bkmmMzvb9CAarOizCsh/y7tg/HPqqan3g0vNoDgwyFXJ8KWpU0XIJQETEir0HBDBUoIzsKIvoBCKZmc3Qe6xDFVwgg7Zp/v8gWFW36PfWLAAAAABJRU5ErkJggg==",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "prompt = \"a beautiful photograph of Mt. Fuji during cherry blossom\"\n",
- "\n",
- "# warm up runs to stabilize performance benchmarking\n",
- "num_warm_up_steps=5\n",
- "for _ in range(num_warm_up_steps):\n",
- " _ = pipe_trt(prompt)\n",
- "\n",
- "image = pipe_trt(prompt).images[0]\n",
- "display(image)"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.8.10"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
-}
diff --git a/docker/build.sh b/docker/build.sh
index b24029ae..33f52f55 100755
--- a/docker/build.sh
+++ b/docker/build.sh
@@ -1,6 +1,6 @@
#!/usr/bin/env bash
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/docker/launch.sh b/docker/launch.sh
index 2fe9d299..c1b5d05d 100755
--- a/docker/launch.sh
+++ b/docker/launch.sh
@@ -1,6 +1,6 @@
#!/usr/bin/env bash
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/docker/rockylinux8.Dockerfile b/docker/rockylinux8.Dockerfile
new file mode 100644
index 00000000..dca7208c
--- /dev/null
+++ b/docker/rockylinux8.Dockerfile
@@ -0,0 +1,105 @@
+#
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-License-Identifier: Apache-2.0
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+ARG CUDA_VERSION=12.4.0
+
+FROM nvidia/cuda:${CUDA_VERSION}-devel-rockylinux8
+LABEL maintainer="NVIDIA CORPORATION"
+
+ENV CUDA_VERSION_MAJOR_MINOR=12.2
+ENV NV_CUDNN_VERSION 8.9.6.50-1
+ENV NV_CUDNN_PACKAGE libcudnn8-${NV_CUDNN_VERSION}.cuda12.2
+ENV NV_CUDNN_PACKAGE_DEV libcudnn8-devel-${NV_CUDNN_VERSION}.cuda12.2
+
+ENV TRT_VERSION 10.0.1.6
+SHELL ["/bin/bash", "-c"]
+
+RUN dnf install -y \
+ ${NV_CUDNN_PACKAGE} \
+ ${NV_CUDNN_PACKAGE_DEV} \
+ && dnf clean all \
+ && rm -rf /var/cache/dnf/*
+
+# Setup user account
+ARG uid=1000
+ARG gid=1000
+RUN groupadd -r -f -g ${gid} trtuser && useradd -o -r -l -u ${uid} -g ${gid} -ms /bin/bash trtuser
+RUN usermod -aG wheel trtuser
+RUN echo 'trtuser:nvidia' | chpasswd
+RUN mkdir -p /workspace && chown trtuser /workspace
+
+# Install requried packages
+RUN dnf -y groupinstall "Development Tools"
+RUN dnf -y install \
+ openssl-devel \
+ bzip2-devel \
+ libffi-devel \
+ wget \
+ perl-core \
+ git \
+ pkg-config \
+ unzip \
+ sudo
+
+# Install python3
+RUN dnf install -y python38 python38-devel &&\
+ cd /usr/bin && ln -s /usr/bin/pip3.8 pip;
+
+
+# Install TensorRT
+RUN if [ "${CUDA_VERSION:0:2}" = "11" ]; then \
+ wget https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.0.1/tars/TensorRT-10.0.1.6.Linux.x86_64-gnu.cuda-11.8.tar.gz \
+ && tar -xf TensorRT-10.0.1.6.Linux.x86_64-gnu.cuda-11.8.tar.gz \
+ && cp -a TensorRT-10.0.1.6/lib/*.so* /usr/lib64 \
+ && pip install TensorRT-10.0.1.6/python/tensorrt-10.0.1-cp38-none-linux_x86_64.whl ;\
+elif [ "${CUDA_VERSION:0:2}" = "12" ]; then \
+ wget https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.0.1/tars/TensorRT-10.0.1.6.Linux.x86_64-gnu.cuda-12.4.tar.gz \
+ && tar -xf TensorRT-10.0.1.6.Linux.x86_64-gnu.cuda-12.4.tar.gz \
+ && cp -a TensorRT-10.0.1.6/lib/*.so* /usr/lib64 \
+ && pip install TensorRT-10.0.1.6/python/tensorrt-10.0.1-cp38-none-linux_x86_64.whl ;\
+else \
+ echo "Invalid CUDA_VERSION"; \
+ exit 1; \
+fi
+
+# Install PyPI packages
+RUN pip install --upgrade pip
+RUN pip install setuptools>=41.0.0
+RUN pip install numpy
+RUN pip install jupyter jupyterlab
+
+# Install Cmake
+RUN cd /tmp && \
+ wget https://github.com/Kitware/CMake/releases/download/v3.14.4/cmake-3.14.4-Linux-x86_64.sh && \
+ chmod +x cmake-3.14.4-Linux-x86_64.sh && \
+ ./cmake-3.14.4-Linux-x86_64.sh --prefix=/usr/local --exclude-subdir --skip-license && \
+ rm ./cmake-3.14.4-Linux-x86_64.sh
+
+# Download NGC client
+RUN cd /usr/local/bin && wget https://ngc.nvidia.com/downloads/ngccli_cat_linux.zip && unzip ngccli_cat_linux.zip && chmod u+x ngc-cli/ngc && rm ngccli_cat_linux.zip ngc-cli.md5 && echo "no-apikey\nascii\n" | ngc-cli/ngc config set
+
+RUN ln -s /usr/bin/python3 /usr/bin/python
+
+# Set environment and working directory
+ENV TRT_LIBPATH /usr/lib64
+ENV TRT_OSSPATH /workspace/TensorRT
+ENV PATH="${PATH}:/usr/local/bin/ngc-cli"
+ENV LD_LIBRARY_PATH="${LD_LIBRARY_PATH}:${TRT_OSSPATH}/build/out:${TRT_LIBPATH}"
+WORKDIR /workspace
+
+USER trtuser
+RUN ["/bin/bash"]
diff --git a/docker/rockylinux9.Dockerfile b/docker/rockylinux9.Dockerfile
new file mode 100644
index 00000000..ff00512a
--- /dev/null
+++ b/docker/rockylinux9.Dockerfile
@@ -0,0 +1,104 @@
+#
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-License-Identifier: Apache-2.0
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+ARG CUDA_VERSION=12.4.0
+
+FROM nvidia/cuda:${CUDA_VERSION}-devel-rockylinux9
+LABEL maintainer="NVIDIA CORPORATION"
+
+ENV CUDA_VERSION_MAJOR_MINOR=12.2
+ENV NV_CUDNN_VERSION 8.9.6.50-1
+ENV NV_CUDNN_PACKAGE libcudnn8-${NV_CUDNN_VERSION}.cuda12.2
+ENV NV_CUDNN_PACKAGE_DEV libcudnn8-devel-${NV_CUDNN_VERSION}.cuda12.2
+
+ENV TRT_VERSION 10.0.1.6
+SHELL ["/bin/bash", "-c"]
+
+RUN dnf install -y \
+ ${NV_CUDNN_PACKAGE} \
+ ${NV_CUDNN_PACKAGE_DEV} \
+ && dnf clean all \
+ && rm -rf /var/cache/dnf/*
+
+# Setup user account
+ARG uid=1000
+ARG gid=1000
+RUN groupadd -r -f -g ${gid} trtuser && useradd -o -r -l -u ${uid} -g ${gid} -ms /bin/bash trtuser
+RUN usermod -aG wheel trtuser
+RUN echo 'trtuser:nvidia' | chpasswd
+RUN mkdir -p /workspace && chown trtuser /workspace
+
+# Install python3
+RUN dnf install -y python39 python3-devel && \
+ cd /usr/bin && rm pip && ln -s /usr/bin/pip3.9 pip;
+
+# Install PyPI packages
+RUN pip install --upgrade pip
+RUN pip install setuptools>=41.0.0
+RUN pip install numpy
+RUN pip install jupyter jupyterlab
+
+# Install requried packages
+RUN dnf -y groupinstall "Development Tools"
+RUN dnf -y install \
+ openssl-devel \
+ bzip2-devel \
+ libffi-devel \
+ wget \
+ perl-core \
+ git \
+ pkg-config \
+ unzip \
+ sudo
+
+# Install TensorRT
+RUN if [ "${CUDA_VERSION:0:2}" = "11" ]; then \
+ wget https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.0.1/tars/TensorRT-10.0.1.6.Linux.x86_64-gnu.cuda-11.8.tar.gz \
+ && tar -xf TensorRT-10.0.1.6.Linux.x86_64-gnu.cuda-11.8.tar.gz \
+ && cp -a TensorRT-10.0.1.6/lib/*.so* /usr/lib64 \
+ && pip install TensorRT-10.0.1.6/python/tensorrt-10.0.1-cp39-none-linux_x86_64.whl ;\
+elif [ "${CUDA_VERSION:0:2}" = "12" ]; then \
+ wget https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.0.1/tars/TensorRT-10.0.1.6.Linux.x86_64-gnu.cuda-12.4.tar.gz \
+ && tar -xf TensorRT-10.0.1.6.Linux.x86_64-gnu.cuda-12.4.tar.gz \
+ && cp -a TensorRT-10.0.1.6/lib/*.so* /usr/lib64 \
+ && pip install TensorRT-10.0.1.6/python/tensorrt-10.0.1-cp39-none-linux_x86_64.whl ;\
+else \
+ echo "Invalid CUDA_VERSION"; \
+ exit 1; \
+fi
+
+# Install Cmake
+RUN cd /tmp && \
+ wget https://github.com/Kitware/CMake/releases/download/v3.14.4/cmake-3.14.4-Linux-x86_64.sh && \
+ chmod +x cmake-3.14.4-Linux-x86_64.sh && \
+ ./cmake-3.14.4-Linux-x86_64.sh --prefix=/usr/local --exclude-subdir --skip-license && \
+ rm ./cmake-3.14.4-Linux-x86_64.sh
+
+# Download NGC client
+RUN cd /usr/local/bin && wget https://ngc.nvidia.com/downloads/ngccli_cat_linux.zip && unzip ngccli_cat_linux.zip && chmod u+x ngc-cli/ngc && rm ngccli_cat_linux.zip ngc-cli.md5 && echo "no-apikey\nascii\n" | ngc-cli/ngc config set
+
+RUN ln -s /usr/bin/python3 /usr/bin/python
+
+# Set environment and working directory
+ENV TRT_LIBPATH /usr/lib64
+ENV TRT_OSSPATH /workspace/TensorRT
+ENV PATH="${PATH}:/usr/local/bin/ngc-cli"
+ENV LD_LIBRARY_PATH="${LD_LIBRARY_PATH}:${TRT_OSSPATH}/build/out:${TRT_LIBPATH}"
+WORKDIR /workspace
+
+USER trtuser
+RUN ["/bin/bash"]
diff --git a/docker/ubuntu-20.04.Dockerfile b/docker/ubuntu-20.04.Dockerfile
index 0049d4c2..7498c124 100644
--- a/docker/ubuntu-20.04.Dockerfile
+++ b/docker/ubuntu-20.04.Dockerfile
@@ -15,7 +15,7 @@
# limitations under the License.
#
-ARG CUDA_VERSION=12.3.2
+ARG CUDA_VERSION=12.4.0
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu20.04
LABEL maintainer="NVIDIA CORPORATION"
@@ -28,7 +28,7 @@ ENV CUDA_VERSION_MAJOR_MINOR=12.2
ENV NV_CUDNN_PACKAGE "libcudnn8=$NV_CUDNN_VERSION-1+cuda${CUDA_VERSION_MAJOR_MINOR}"
ENV NV_CUDNN_PACKAGE_DEV "libcudnn8-dev=$NV_CUDNN_VERSION-1+cuda${CUDA_VERSION_MAJOR_MINOR}"
-ENV TRT_VERSION 10.0.0.6
+ENV TRT_VERSION 10.0.1.6
SHELL ["/bin/bash", "-c"]
RUN apt-get update && apt-get install -y --no-install-recommends \
@@ -84,15 +84,15 @@ RUN apt-get install -y --no-install-recommends \
# Install TensorRT
RUN if [ "${CUDA_VERSION:0:2}" = "11" ]; then \
- wget https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.0.0/tars/TensorRT-10.0.0.6.Linux.x86_64-gnu.cuda-11.8.tar.gz \
- && tar -xf TensorRT-10.0.0.6.Linux.x86_64-gnu.cuda-11.8.tar.gz \
- && cp -a TensorRT-10.0.0.6/lib/*.so* /usr/lib/x86_64-linux-gnu \
- && pip install TensorRT-10.0.0.6/python/tensorrt-10.0.0b6-cp38-none-linux_x86_64.whl ;\
+ wget https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.0.1/tars/TensorRT-10.0.1.6.Linux.x86_64-gnu.cuda-11.8.tar.gz \
+ && tar -xf TensorRT-10.0.1.6.Linux.x86_64-gnu.cuda-11.8.tar.gz \
+ && cp -a TensorRT-10.0.1.6/lib/*.so* /usr/lib/x86_64-linux-gnu \
+ && pip install TensorRT-10.0.1.6/python/tensorrt-10.0.1-cp38-none-linux_x86_64.whl ;\
elif [ "${CUDA_VERSION:0:2}" = "12" ]; then \
- wget https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.0.0/tars/TensorRT-10.0.0.6.Linux.x86_64-gnu.cuda-12.4.tar.gz \
- && tar -xf TensorRT-10.0.0.6.Linux.x86_64-gnu.cuda-12.4.tar.gz \
- && cp -a TensorRT-10.0.0.6/lib/*.so* /usr/lib/x86_64-linux-gnu \
- && pip install TensorRT-10.0.0.6/python/tensorrt-10.0.0b6-cp38-none-linux_x86_64.whl ;\
+ wget https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.0.1/tars/TensorRT-10.0.1.6.Linux.x86_64-gnu.cuda-12.4.tar.gz \
+ && tar -xf TensorRT-10.0.1.6.Linux.x86_64-gnu.cuda-12.4.tar.gz \
+ && cp -a TensorRT-10.0.1.6/lib/*.so* /usr/lib/x86_64-linux-gnu \
+ && pip install TensorRT-10.0.1.6/python/tensorrt-10.0.1-cp38-none-linux_x86_64.whl ;\
else \
echo "Invalid CUDA_VERSION"; \
exit 1; \
diff --git a/docker/ubuntu-22.04-aarch64.Dockerfile b/docker/ubuntu-22.04-aarch64.Dockerfile
new file mode 100644
index 00000000..ebac9297
--- /dev/null
+++ b/docker/ubuntu-22.04-aarch64.Dockerfile
@@ -0,0 +1,112 @@
+#
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-License-Identifier: Apache-2.0
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+ARG CUDA_VERSION=12.4.0
+
+# Multi-arch container support available in non-cudnn containers.
+FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu22.04
+
+ENV TRT_VERSION 10.0.1.6
+SHELL ["/bin/bash", "-c"]
+
+# Setup user account
+ARG uid=1000
+ARG gid=1000
+RUN groupadd -r -f -g ${gid} trtuser && useradd -o -r -l -u ${uid} -g ${gid} -ms /bin/bash trtuser
+RUN usermod -aG sudo trtuser
+RUN echo 'trtuser:nvidia' | chpasswd
+RUN mkdir -p /workspace && chown trtuser /workspace
+
+# Required to build Ubuntu 20.04 without user prompts with DLFW container
+ENV DEBIAN_FRONTEND=noninteractive
+
+# Update CUDA signing key
+RUN apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/sbsa/3bf863cc.pub
+
+# Install requried libraries
+RUN apt-get update && apt-get install -y software-properties-common
+RUN add-apt-repository ppa:ubuntu-toolchain-r/test
+RUN apt-get update && apt-get install -y --no-install-recommends \
+ libcurl4-openssl-dev \
+ wget \
+ git \
+ pkg-config \
+ sudo \
+ ssh \
+ libssl-dev \
+ pbzip2 \
+ pv \
+ bzip2 \
+ unzip \
+ devscripts \
+ lintian \
+ fakeroot \
+ dh-make \
+ build-essential
+
+# Install python3
+RUN apt-get install -y --no-install-recommends \
+ python3 \
+ python3-pip \
+ python3-dev \
+ python3-wheel &&\
+ cd /usr/local/bin &&\
+ ln -s /usr/bin/python3 python &&\
+ ln -s /usr/bin/pip3 pip;
+
+# Install TensorRT. This will also pull in CUDNN
+RUN ver="${CUDA_VERSION%.*}" &&\
+ if [ "${ver%.*}" = "12" ] ; then \
+ ver="12.4"; \
+ fi &&\
+ v="${TRT_VERSION}-1+cuda${ver}" &&\
+ apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/sbsa/3bf863cc.pub &&\
+ apt-get update &&\
+ sudo apt-get -y install libnvinfer10=${v} libnvonnxparsers10=${v} libnvinfer-plugin10=${v} \
+ libnvinfer-dev=${v} libnvonnxparsers-dev=${v} libnvinfer-plugin-dev=${v} \
+ python3-libnvinfer=${v} libnvinfer-dispatch10=${v} libnvinfer-dispatch-dev=${v} libnvinfer-lean10=${v} \
+ libnvinfer-lean-dev=${v} libnvinfer-vc-plugin10=${v} libnvinfer-vc-plugin-dev=${v} \
+ libnvinfer-headers-dev=${v} libnvinfer-headers-plugin-dev=${v};
+
+# Install Cmake
+RUN cd /tmp && \
+ wget https://github.com/Kitware/CMake/releases/download/v3.21.4/cmake-3.21.4-linux-aarch64.sh && \
+ chmod +x cmake-3.21.4-linux-aarch64.sh && \
+ ./cmake-3.21.4-linux-aarch64.sh --prefix=/usr/local --exclude-subdir --skip-license && \
+ rm ./cmake-3.21.4-linux-aarch64.sh
+
+# Install PyPI packages
+RUN pip3 install --upgrade pip
+RUN pip3 install setuptools>=41.0.0
+COPY requirements.txt /tmp/requirements.txt
+RUN pip3 install -r /tmp/requirements.txt
+RUN pip3 install jupyter jupyterlab
+# Workaround to remove numpy installed with tensorflow
+RUN pip3 install --upgrade numpy
+
+# Download NGC client
+RUN cd /usr/local/bin && wget https://ngc.nvidia.com/downloads/ngccli_arm64.zip && unzip ngccli_arm64.zip && chmod u+x ngc-cli/ngc && rm ngccli_arm64.zip ngc-cli.md5 && echo "no-apikey\nascii\n" | ngc-cli/ngc config set
+
+# Set environment and working directory
+ENV TRT_LIBPATH /usr/lib/aarch64-linux-gnu/
+ENV TRT_OSSPATH /workspace/TensorRT
+ENV PATH="${PATH}:/usr/local/bin/ngc-cli"
+ENV LD_LIBRARY_PATH="${LD_LIBRARY_PATH}:${TRT_OSSPATH}/build/out:${TRT_LIBPATH}"
+WORKDIR /workspace
+
+USER trtuser
+RUN ["/bin/bash"]
diff --git a/docker/ubuntu-22.04.Dockerfile b/docker/ubuntu-22.04.Dockerfile
index ebe90f71..a7e0d6a1 100644
--- a/docker/ubuntu-22.04.Dockerfile
+++ b/docker/ubuntu-22.04.Dockerfile
@@ -15,7 +15,7 @@
# limitations under the License.
#
-ARG CUDA_VERSION=12.3.2
+ARG CUDA_VERSION=12.4.0
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu22.04
LABEL maintainer="NVIDIA CORPORATION"
@@ -28,7 +28,7 @@ ENV CUDA_VERSION_MAJOR_MINOR=12.2
ENV NV_CUDNN_PACKAGE "libcudnn8=$NV_CUDNN_VERSION-1+cuda${CUDA_VERSION_MAJOR_MINOR}"
ENV NV_CUDNN_PACKAGE_DEV "libcudnn8-dev=$NV_CUDNN_VERSION-1+cuda${CUDA_VERSION_MAJOR_MINOR}"
-ENV TRT_VERSION 10.0.0.6
+ENV TRT_VERSION 10.0.1.6
SHELL ["/bin/bash", "-c"]
RUN apt-get update && apt-get install -y --no-install-recommends \
@@ -49,7 +49,7 @@ RUN mkdir -p /workspace && chown trtuser /workspace
ENV DEBIAN_FRONTEND=noninteractive
# Update CUDA signing key
-RUN apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/3bf863cc.pub
+RUN apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/3bf863cc.pub
# Install requried libraries
RUN apt-get update && apt-get install -y software-properties-common
@@ -84,15 +84,15 @@ RUN apt-get install -y --no-install-recommends \
# Install TensorRT
RUN if [ "${CUDA_VERSION:0:2}" = "11" ]; then \
- wget https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.0.0/tars/TensorRT-10.0.0.6.Linux.x86_64-gnu.cuda-11.8.tar.gz \
- && tar -xf TensorRT-10.0.0.6.Linux.x86_64-gnu.cuda-11.8.tar.gz \
- && cp -a TensorRT-10.0.0.6/lib/*.so* /usr/lib/x86_64-linux-gnu \
- && pip install TensorRT-10.0.0.6/python/tensorrt-10.0.0b6-cp310-none-linux_x86_64.whl ;\
+ wget https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.0.1/tars/TensorRT-10.0.1.6.Linux.x86_64-gnu.cuda-11.8.tar.gz \
+ && tar -xf TensorRT-10.0.1.6.Linux.x86_64-gnu.cuda-11.8.tar.gz \
+ && cp -a TensorRT-10.0.1.6/lib/*.so* /usr/lib/x86_64-linux-gnu \
+ && pip install TensorRT-10.0.1.6/python/tensorrt-10.0.1-cp310-none-linux_x86_64.whl ;\
elif [ "${CUDA_VERSION:0:2}" = "12" ]; then \
- wget https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.0.0/tars/TensorRT-10.0.0.6.Linux.x86_64-gnu.cuda-12.4.tar.gz \
- && tar -xf TensorRT-10.0.0.6.Linux.x86_64-gnu.cuda-12.4.tar.gz \
- && cp -a TensorRT-10.0.0.6/lib/*.so* /usr/lib/x86_64-linux-gnu \
- && pip install TensorRT-10.0.0.6/python/tensorrt-10.0.0b6-cp310-none-linux_x86_64.whl ;\
+ wget https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.0.1/tars/TensorRT-10.0.1.6.Linux.x86_64-gnu.cuda-12.4.tar.gz \
+ && tar -xf TensorRT-10.0.1.6.Linux.x86_64-gnu.cuda-12.4.tar.gz \
+ && cp -a TensorRT-10.0.1.6/lib/*.so* /usr/lib/x86_64-linux-gnu \
+ && pip install TensorRT-10.0.1.6/python/tensorrt-10.0.1-cp310-none-linux_x86_64.whl ;\
else \
echo "Invalid CUDA_VERSION"; \
exit 1; \
diff --git a/docker/ubuntu-cross-aarch64.Dockerfile b/docker/ubuntu-cross-aarch64.Dockerfile
new file mode 100644
index 00000000..eb2e100b
--- /dev/null
+++ b/docker/ubuntu-cross-aarch64.Dockerfile
@@ -0,0 +1,134 @@
+#
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-License-Identifier: Apache-2.0
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+ARG CUDA_VERSION=12.4.0
+ARG OS_VERSION=22.04
+
+FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${OS_VERSION}
+LABEL maintainer="NVIDIA CORPORATION"
+
+ENV TRT_VERSION 10.0.1.6
+ENV DEBIAN_FRONTEND=noninteractive
+
+ARG uid=1000
+ARG gid=1000
+RUN groupadd -r -f -g ${gid} trtuser && useradd -o -r -l -u ${uid} -g ${gid} -ms /bin/bash trtuser
+RUN usermod -aG sudo trtuser
+RUN echo 'trtuser:nvidia' | chpasswd
+RUN mkdir -p /workspace && chown trtuser /workspace
+
+# Install requried libraries
+RUN apt-get update && apt-get install -y software-properties-common
+RUN add-apt-repository ppa:ubuntu-toolchain-r/test
+RUN apt-get update && apt-get install -y --no-install-recommends \
+ libcurl4-openssl-dev \
+ wget \
+ git \
+ pkg-config \
+ python3 \
+ python3-pip \
+ python3-dev \
+ python3-wheel \
+ sudo \
+ ssh \
+ pbzip2 \
+ pv \
+ bzip2 \
+ unzip \
+ build-essential
+
+RUN cd /usr/local/bin &&\
+ ln -s /usr/bin/python3 python &&\
+ ln -s /usr/bin/pip3 pip
+RUN pip3 install --upgrade pip
+RUN pip3 install setuptools>=41.0.0
+
+# Install Cmake
+RUN cd /tmp && \
+ wget https://github.com/Kitware/CMake/releases/download/v3.14.4/cmake-3.14.4-Linux-x86_64.sh && \
+ chmod +x cmake-3.14.4-Linux-x86_64.sh && \
+ ./cmake-3.14.4-Linux-x86_64.sh --prefix=/usr/local --exclude-subdir --skip-license && \
+ rm ./cmake-3.14.4-Linux-x86_64.sh
+
+# Skip installing PyPI packages and NGC client on cross-build container
+
+COPY docker/jetpack_files /pdk_files
+COPY scripts/stubify.sh /pdk_files
+
+# Update CUDA signing keys
+RUN apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/3bf863cc.pub
+
+# Install CUDA cross compile toolchain
+RUN dpkg -i /pdk_files/cuda-repo-cross-aarch64*.deb /pdk_files/cuda-repo-ubuntu*_amd64.deb \
+ && sudo cp /var/cuda-repo-cross-aarch64*/cuda-*keyring.gpg /usr/share/keyrings/ \
+ && sudo cp /var/cuda-repo-ubuntu2204*/cuda-*keyring.gpg /usr/share/keyrings/ \
+ && apt-get update \
+ && apt-get install -y cuda-cross-aarch64 \
+ && rm -rf /var/lib/apt/lists/*
+
+# Unpack cudnn
+RUN dpkg -x /pdk_files/cudnn-local*.deb /pdk_files/cudnn_extract \
+ && dpkg -x /pdk_files/cudnn_extract/var/cudnn-local*/libcudnn8_*.deb /pdk_files/cudnn \
+ && dpkg -x /pdk_files/cudnn_extract/var/cudnn-local*/libcudnn8-dev*.deb /pdk_files/cudnn \
+ && cd /pdk_files/cudnn/usr/lib/aarch64-linux-gnu \
+ && cd /pdk_files/cudnn \
+ && ln -s usr/include/aarch64-linux-gnu include \
+ && ln -s usr/lib/aarch64-linux-gnu lib \
+ && ln -s /pdk_files/cudnn/usr/include/aarch64-linux-gnu/cudnn_adv_infer_v[7-9].h /usr/include/cudnn_adv_infer.h \
+ && ln -s /pdk_files/cudnn/usr/include/aarch64-linux-gnu/cudnn_adv_train_v[7-9].h /usr/include/cudnn_adv_train.h \
+ && ln -s /pdk_files/cudnn/usr/include/aarch64-linux-gnu/cudnn_backend_v[7-9].h /usr/include/cudnn_backend.h \
+ && ln -s /pdk_files/cudnn/usr/include/aarch64-linux-gnu/cudnn_cnn_infer_v[7-9].h /usr/include/cudnn_cnn_infer.h \
+ && ln -s /pdk_files/cudnn/usr/include/aarch64-linux-gnu/cudnn_cnn_train_v[7-9].h /usr/include/cudnn_cnn_train.h \
+ && ln -s /pdk_files/cudnn/usr/include/aarch64-linux-gnu/cudnn_ops_infer_v[7-9].h /usr/include/cudnn_ops_infer.h \
+ && ln -s /pdk_files/cudnn/usr/include/aarch64-linux-gnu/cudnn_ops_train_v[7-9].h /usr/include/cudnn_ops_train.h \
+ && ln -s /pdk_files/cudnn/usr/include/aarch64-linux-gnu/cudnn_v[7-9].h /usr/include/cudnn.h \
+ && ln -s /pdk_files/cudnn/usr/include/aarch64-linux-gnu/cudnn_version_v[7-9].h /usr/include/cudnn_version.h
+
+# Unpack libnvinfer
+RUN dpkg -x /pdk_files/libnvinfer10_*-1+cuda12.[0-9]_arm64.deb /pdk_files/tensorrt \
+ && dpkg -x /pdk_files/libnvinfer-dev_*-1+cuda12.[0-9]_arm64.deb /pdk_files/tensorrt \
+ && dpkg -x /pdk_files/libnvinfer-plugin10_*-1+cuda12.[0-9]_arm64.deb /pdk_files/tensorrt \
+ && dpkg -x /pdk_files/libnvinfer-plugin-dev_*-1+cuda12.[0-9]_arm64.deb /pdk_files/tensorrt \
+ && dpkg -x /pdk_files/libnvonnxparsers10_*-1+cuda12.[0-9]_arm64.deb /pdk_files/tensorrt \
+ && dpkg -x /pdk_files/libnvonnxparsers-dev_*-1+cuda12.[0-9]_arm64.deb /pdk_files/tensorrt
+
+# Clean up debs
+RUN rm -rf /pdk_files/*.deb
+
+# set up librt.so symlink
+RUN ln -sf /usr/aarch64-linux-gnu/lib/librt.so.1 /usr/aarch64-linux-gnu/lib/librt.so
+RUN ln -sf /usr/lib/aarch64-linux-gnu/librt.so.1 /usr/lib/aarch64-linux-gnu/librt.so
+
+# create stub libraries
+RUN cd /pdk_files/tensorrt \
+ && ln -s usr/include/aarch64-linux-gnu include \
+ && ln -s usr/lib/aarch64-linux-gnu lib \
+ && cd lib \
+ && mkdir stubs \
+ && for x in nvinfer nvparsers nvinfer_plugin nvonnxparser; \
+ do \
+ CC=aarch64-linux-gnu-gcc /pdk_files/stubify.sh lib${x}.so stubs/lib${x}.so \
+ ; done
+
+# Set environment and working directory
+ENV TRT_LIBPATH /pdk_files/tensorrt/lib
+ENV TRT_OSSPATH /workspace/TensorRT
+ENV IS_L4T_CROSS True
+WORKDIR /workspace
+
+USER trtuser
+RUN ["/bin/bash"]
diff --git a/include/NvInfer.h b/include/NvInfer.h
index 7fff86b1..c921ede0 100644
--- a/include/NvInfer.h
+++ b/include/NvInfer.h
@@ -1282,7 +1282,7 @@ class IConvolutionLayer : public ILayer
//!
//! If executing this layer on DLA, only support 2D padding, both height and width must be in the range [1,32].
//!
- //! \see getDilation()
+ //! \see getDilationNd()
//!
void setDilationNd(Dims const& dilation) noexcept
{
@@ -1292,7 +1292,7 @@ class IConvolutionLayer : public ILayer
//!
//! \brief Get the multi-dimension dilation of the convolution.
//!
- //! \see setDilation()
+ //! \see setDilationNd()
//!
Dims getDilationNd() const noexcept
{
@@ -3716,10 +3716,9 @@ class IRaggedSoftMaxLayer : public ILayer
//! Two types are compatible if they are identical, or are both in {kFLOAT, kHALF}.
//! Implicit conversion between incompatible types, i.e. without using setOutputType,
//! is recognized as incorrect as of TensorRT 8.4, but is retained for API compatibility
-//! within TensorRT 8.x releases. In a future major release the behavior will change
-//! to record an error if the network output tensor type is incompatible with the layer
-//! output type. E.g., implicit conversion from kFLOAT to kINT32 will not be allowed,
-//! and instead such a conversion will require calling setOutputType(DataType::kINT32).
+//! within TensorRT 8.x releases. TensorRT 10.0 onwards it is an error if the network output tensor type is incompatible
+//! with the layer output type. E.g., implicit conversion from kFLOAT to kINT32 is not allowed, Use
+//! setOutputType(DataType::kINT32) to explict convert kFLOAT to kINT32.
//!
//! \warning Do not inherit from this class, as doing so will break forward-compatibility of the API and ABI.
//!
@@ -4343,6 +4342,14 @@ class ILoop;
//!
//! \brief This is a base class for Loop boundary layers.
//!
+//! The loop boundary layers are used to define loops within a network, enabling the implementation
+//! of recurrences. The boundary layers for a loop are created by class ILoop.
+//!
+//! There are four kinds of boundary layers.
+//! * ITripLimitLayer: controls the number of loop iterations.
+//! * IIterationLayer: iterates over an input tensor.
+//! * IRecurrenceLayer: returns an initial value or value from the previous loop iteration.
+//! * ILoopOutputLayer: generates an output tensor from the loop iterations.
class ILoopBoundaryLayer : public ILayer
{
public:
@@ -4526,6 +4533,8 @@ class IIfConditional : public INoCopy
//!
//! \brief A recurrence layer in a network definition.
//!
+//! The recurrence layer allows a loop iteration to compute a result from a value computed in the previous iteration.
+//!
class IRecurrenceLayer : public ILoopBoundaryLayer
{
public:
@@ -4641,6 +4650,12 @@ class ILoopOutputLayer : public ILoopBoundaryLayer
//!
//! \brief A layer that represents a trip-count limiter.
//!
+//! The trip limit layer sets the execution condition for loops, using kCOUNT to define the number of iterations or
+//! kWHILE for a conditional loop. A loop can have one of each kind of limit, in which case the loop exits when
+//! the trip count is reached or the condition becomes false.
+//!
+//! See INetworkDefinition::addTripLimit().
+//!
class ITripLimitLayer : public ILoopBoundaryLayer
{
public:
@@ -4662,6 +4677,11 @@ class ITripLimitLayer : public ILoopBoundaryLayer
//!
//! \brief A layer to do iterations.
//!
+//! The iterator layer iterates over a tensor along the given axis and in the given direction.
+//! It enables each loop iteration to inspect a different slice of the tensor.
+//!
+//! \see ILoop::addIterator()
+//!
class IIteratorLayer : public ILoopBoundaryLayer
{
public:
@@ -4715,6 +4735,10 @@ class IIteratorLayer : public ILoopBoundaryLayer
//!
//! \brief Helper for creating a recurrent subgraph.
//!
+//! An ILoop defines a loop within a network. It supports the implementation of recurrences,
+//! which are crucial for iterative computations, such as RNNs for natural language processing and
+//! time-series analysis.
+//!
class ILoop : public INoCopy
{
public:
@@ -4809,7 +4833,12 @@ class ILoop : public INoCopy
//!
//! \class ISelectLayer
//!
-//! \brief A select layer in a network definition.
+//! \brief Select elements from two data tensors based on a condition tensor.
+//!
+//! The select layer makes elementwise selections from two data tensors based on a condition tensor,
+//! behaving similarly to the numpy.where function with three parameters.
+//! The three input tensors must share the same rank. Multidirectional broadcasting is supported.
+//! The output tensor has the dimensions of the inputs AFTER applying the broadcast rule.
//!
//! \warning Do not inherit from this class, as doing so will break forward-compatibility of the API and ABI.
//!
@@ -8361,13 +8390,16 @@ enum class MemoryPoolType : int32_t
kTACTIC_DRAM = 4,
//!
- //! kTACTIC_SHARED_MEMORY defines the maximum shared memory size utilized for executing
- //! the backend CUDA kernel implementation. Adjust this value to restrict tactics that exceed
- //! the specified threshold en masse. The default value is device max capability. This value must
+ //! kTACTIC_SHARED_MEMORY defines the maximum sum of shared memory reserved by the driver and
+ //! used for executing CUDA kernels. Adjust this value to restrict tactics that exceed the
+ //! specified threshold en masse. The default value is device max capability. This value must
//! be less than 1GiB.
//!
+ //! The driver reserved shared memory can be queried from cuDeviceGetAttribute(&reservedShmem,
+ //! CU_DEVICE_ATTRIBUTE_RESERVED_SHARED_MEMORY_PER_BLOCK).
+ //!
//! Updating this flag will override the shared memory limit set by \ref HardwareCompatibilityLevel,
- //! which defaults to 48KiB.
+ //! which defaults to 48KiB - reservedShmem.
//!
kTACTIC_SHARED_MEMORY = 5,
};
@@ -8430,10 +8462,15 @@ enum class HardwareCompatibilityLevel : int32_t
//! built.
kNONE = 0,
- //! Require that the engine is compatible with Ampere and newer GPUs. This will limit the max shared memory usage to
- //! 48KiB, may reduce the number of available tactics for each layer, and may prevent some fusions from occurring.
- //! Thus this can decrease the performance, especially for tf32 models.
+ //! Require that the engine is compatible with Ampere and newer GPUs. This will limit the combined usage of driver
+ //! reserved and backend kernel max shared memory to 48KiB, may reduce the number of available tactics for each
+ //! layer, and may prevent some fusions from occurring. Thus this can decrease the performance, especially for tf32
+ //! models.
//! This option will disable cuDNN, cuBLAS, and cuBLAS LT as tactic sources.
+ //!
+ //! The driver reserved shared memory can be queried from cuDeviceGetAttribute(&reservedShmem,
+ //! CU_DEVICE_ATTRIBUTE_RESERVED_SHARED_MEMORY_PER_BLOCK).
+ //!
kAMPERE_PLUS = 1,
};
diff --git a/include/NvInferConsistency.h b/include/NvInferConsistency.h
index 5096c3f4..32bca28b 100644
--- a/include/NvInferConsistency.h
+++ b/include/NvInferConsistency.h
@@ -19,7 +19,9 @@
#define NV_INFER_CONSISTENCY_H
#include "NvInferConsistencyImpl.h"
+#define NV_INFER_INTERNAL_INCLUDE_RUNTIME_BASE 1
#include "NvInferRuntimeBase.h"
+#undef NV_INFER_INTERNAL_INCLUDE_RUNTIME_BASE
#include "NvInferRuntimePlugin.h"
//!
diff --git a/include/NvInferLegacyDims.h b/include/NvInferLegacyDims.h
index 204d17a8..2725d184 100644
--- a/include/NvInferLegacyDims.h
+++ b/include/NvInferLegacyDims.h
@@ -18,7 +18,9 @@
#ifndef NV_INFER_LEGACY_DIMS_H
#define NV_INFER_LEGACY_DIMS_H
-#include "NvInferRuntimeCommon.h"
+#define NV_INFER_INTERNAL_INCLUDE_RUNTIME_BASE 1
+#include "NvInferRuntimeBase.h"
+#undef NV_INFER_INTERNAL_INCLUDE_RUNTIME_BASE
//!
//! \file NvInferLegacyDims.h
diff --git a/include/NvInferRuntimeBase.h b/include/NvInferRuntimeBase.h
index 60006e6c..3624706c 100644
--- a/include/NvInferRuntimeBase.h
+++ b/include/NvInferRuntimeBase.h
@@ -64,9 +64,15 @@
//!
//! This file contains common definitions, data structures and interfaces shared between the standard and safe runtime.
//!
-//! \warning Do not directly include this file. Instead include either NvInferRuntime.h (for the standard runtime) or
-//! NvInferSafeRuntime.h (for the safety runtime).
-//!
+//! \warning Do not directly include this file. Instead include one of:
+//! * NvInferRuntime.h (for the standard runtime)
+//! * NvInferSafeRuntime.h (for the safety runtime)
+//! * NvInferConsistency.h (for consistency checker)
+//! * NvInferPluginUtils.h (for plugin utilities)
+//!
+#if !defined(NV_INFER_INTERNAL_INCLUDE_RUNTIME_BASE) && !defined(TRT_VCAST_SAFE)
+static_assert(false, "Do not directly include this file. Include NvInferRuntime.h or NvInferSafeRuntime.h or NvInferConsistency.h or NvInferPluginUtils.h");
+#endif
//! Forward declare some CUDA types to avoid an include dependency.
@@ -864,6 +870,8 @@ class IErrorRecorder : public IVersionedInterface
//!
//! \brief The length limit for an error description in bytes, excluding the '\0' string terminator.
+ //! Only applicable to safe runtime.
+ //! General error recorder implementation can use any size appropriate for the use case.
//!
static constexpr size_t kMAX_DESC_LENGTH{127U};
@@ -982,10 +990,10 @@ class IErrorRecorder : public IVersionedInterface
//!
//! \brief Report an error to the error recorder with the corresponding enum and description.
//!
- //! \param val The error code enum that is being reported.
- //! \param desc The string description of the error, which will be a NULL-terminated string of kMAX_DESC_LENGTH
- //! bytes or less (excluding the NULL terminator). Descriptions that exceed this limit will be silently
- //! truncated.
+ //! \param val The error code enum that is being reported.
+ //! \param desc The string description of the error, which will be a NULL-terminated string.
+ //! For safety use cases its length is limited to kMAX_DESC_LENGTH bytes
+ //! (excluding the NULL terminator) and descriptions that exceed this limit will be silently truncated.
//!
//! Report an error to the user that has a given value and human readable description. The function returns false
//! if processing can continue, which implies that the reported error is not fatal. This does not guarantee that
diff --git a/include/NvInferRuntimeCommon.h b/include/NvInferRuntimeCommon.h
index 65a3c220..13e42f4f 100644
--- a/include/NvInferRuntimeCommon.h
+++ b/include/NvInferRuntimeCommon.h
@@ -28,7 +28,9 @@
//!
//! \warning Do not directly include this file. Instead include NvInferRuntime.h
//!
+#define NV_INFER_INTERNAL_INCLUDE_RUNTIME_BASE 1
#include "NvInferRuntimeBase.h"
+#undef NV_INFER_INTERNAL_INCLUDE_RUNTIME_BASE
#include "NvInferRuntimePlugin.h"
namespace nvinfer1
diff --git a/include/NvInferRuntimePlugin.h b/include/NvInferRuntimePlugin.h
index ecae2ce9..5f97f4a5 100644
--- a/include/NvInferRuntimePlugin.h
+++ b/include/NvInferRuntimePlugin.h
@@ -18,7 +18,9 @@
#ifndef NV_INFER_RUNTIME_PLUGIN_H
#define NV_INFER_RUNTIME_PLUGIN_H
+#define NV_INFER_INTERNAL_INCLUDE_RUNTIME_BASE 1
#include "NvInferRuntimeBase.h"
+#undef NV_INFER_INTERNAL_INCLUDE_RUNTIME_BASE
//!
//! \file NvInferRuntimePlugin.h
diff --git a/include/NvInferSafeRuntime.h b/include/NvInferSafeRuntime.h
index 1c322c4e..6dc503e0 100644
--- a/include/NvInferSafeRuntime.h
+++ b/include/NvInferSafeRuntime.h
@@ -18,7 +18,9 @@
#ifndef NV_INFER_SAFE_RUNTIME_H
#define NV_INFER_SAFE_RUNTIME_H
+#define NV_INFER_INTERNAL_INCLUDE_RUNTIME_BASE 1
#include "NvInferRuntimeBase.h"
+#undef NV_INFER_INTERNAL_INCLUDE_RUNTIME_BASE
#include "NvInferRuntimePlugin.h"
#include
#include
diff --git a/include/NvInferVersion.h b/include/NvInferVersion.h
index 8c99bea7..13861a12 100644
--- a/include/NvInferVersion.h
+++ b/include/NvInferVersion.h
@@ -25,7 +25,7 @@
#define NV_TENSORRT_MAJOR 10 //!< TensorRT major version.
#define NV_TENSORRT_MINOR 0 //!< TensorRT minor version.
-#define NV_TENSORRT_PATCH 0 //!< TensorRT patch version.
+#define NV_TENSORRT_PATCH 1 //!< TensorRT patch version.
#define NV_TENSORRT_BUILD 6 //!< TensorRT build number.
#define NV_TENSORRT_LWS_MAJOR 0 //!< TensorRT LWS major version.
@@ -36,6 +36,6 @@
#define NV_TENSORRT_RELEASE_TYPE_RELEASE_CANDIDATE 1 //!< A release candidate
#define NV_TENSORRT_RELEASE_TYPE_GENERAL_AVAILABILITY 2 //!< A final release
-#define NV_TENSORRT_RELEASE_TYPE NV_TENSORRT_RELEASE_TYPE_EARLY_ACCESS //!< TensorRT release type
+#define NV_TENSORRT_RELEASE_TYPE NV_TENSORRT_RELEASE_TYPE_GENERAL_AVAILABILITY //!< TensorRT release type
#endif // NV_INFER_VERSION_H
diff --git a/parsers/CMakeLists.txt b/parsers/CMakeLists.txt
index 750942e6..6b4858ba 100644
--- a/parsers/CMakeLists.txt
+++ b/parsers/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/parsers/common/half.h b/parsers/common/half.h
index 7497459a..a66c197c 100644
--- a/parsers/common/half.h
+++ b/parsers/common/half.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/parsers/common/ieee_half.h b/parsers/common/ieee_half.h
index 071aee09..ac78fd6b 100644
--- a/parsers/common/ieee_half.h
+++ b/parsers/common/ieee_half.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/parsers/common/parserUtils.h b/parsers/common/parserUtils.h
index 115a2efa..eeb14724 100644
--- a/parsers/common/parserUtils.h
+++ b/parsers/common/parserUtils.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/parsers/onnx b/parsers/onnx
index 973d68d0..eb43908b 160000
--- a/parsers/onnx
+++ b/parsers/onnx
@@ -1 +1 @@
-Subproject commit 973d68d06f671998ddcc0c504b9a2fdfcfc85a62
+Subproject commit eb43908b02a296ea0594432f06e9d3fac288d672
diff --git a/plugin/CMakeLists.txt b/plugin/CMakeLists.txt
index 2e708d3a..2007b7ed 100644
--- a/plugin/CMakeLists.txt
+++ b/plugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -16,10 +16,10 @@
#
add_custom_target(plugin)
-set(TARGET_NAME nvinfer_plugin)
+set(TARGET_NAME ${nvinfer_plugin_lib_name})
set(SHARED_TARGET ${TARGET_NAME})
set(STATIC_TARGET ${TARGET_NAME}_static)
-set(VFC_TARGET_NAME nvinfer_vc_plugin)
+set(VFC_TARGET_NAME ${nvinfer_vc_plugin_lib_name})
set(VFC_SHARED_TARGET ${VFC_TARGET_NAME})
set(TARGET_DIR ${CMAKE_CURRENT_SOURCE_DIR})
@@ -143,10 +143,6 @@ else()
set_target_properties(${SHARED_TARGET} PROPERTIES LINK_FLAGS "-Wl,--exclude-libs,ALL -Wl,-Bsymbolic -Wl,--version-script=${PLUGIN_EXPORT_MAP} -Wl,--no-undefined")
endif()
-if (ADDITIONAL_PLATFORM_LIB_FLAGS)
- set_target_properties(${SHARED_TARGET} PROPERTIES LINK_FLAGS ${ADDITIONAL_PLATFORM_LIB_FLAGS})
-endif()
-
set_target_properties(${SHARED_TARGET} PROPERTIES DEBUG_POSTFIX ${TRT_DEBUG_POSTFIX})
set_target_properties(${SHARED_TARGET} PROPERTIES VERSION ${TRT_VERSION} SOVERSION ${TRT_SOVERSION} )
@@ -155,7 +151,7 @@ set_property(TARGET ${SHARED_TARGET} PROPERTY CUDA_STANDARD 14)
target_link_libraries(${SHARED_TARGET}
${CUDART_LIB}
- ${nvinfer_LIB_PATH}
+ ${${nvinfer_lib_name}_LIB_PATH}
${CMAKE_DL_LIBS}
)
@@ -189,10 +185,6 @@ set_target_properties(${STATIC_TARGET} PROPERTIES
set_target_properties(${STATIC_TARGET} PROPERTIES LINK_FLAGS "-Wl,--exclude-libs,ALL")
-if (ADDITIONAL_PLATFORM_LIB_FLAGS)
- set_target_properties(${STATIC_TARGET} PROPERTIES LINK_FLAGS ${ADDITIONAL_PLATFORM_LIB_FLAGS})
-endif()
-
set_target_properties(${STATIC_TARGET} PROPERTIES DEBUG_POSTFIX ${TRT_DEBUG_POSTFIX})
set_target_properties(${STATIC_TARGET} PROPERTIES VERSION ${TRT_VERSION} SOVERSION ${TRT_SOVERSION} )
@@ -230,10 +222,6 @@ else()
set_target_properties(${VFC_SHARED_TARGET} PROPERTIES LINK_FLAGS "-Wl,--exclude-libs,ALL -Wl,-Bsymbolic -Wl,--version-script=${VFC_PLUGIN_EXPORT_MAP} -Wl,--no-undefined")
endif()
-if (ADDITIONAL_PLATFORM_LIB_FLAGS)
- set_target_properties(${VFC_SHARED_TARGET} PROPERTIES LINK_FLAGS ${ADDITIONAL_PLATFORM_LIB_FLAGS})
-endif()
-
set_target_properties(${VFC_SHARED_TARGET} PROPERTIES DEBUG_POSTFIX ${TRT_DEBUG_POSTFIX})
set_target_properties(${VFC_SHARED_TARGET} PROPERTIES VERSION ${TRT_VERSION} SOVERSION ${TRT_SOVERSION} )
@@ -242,7 +230,7 @@ set_property(TARGET ${VFC_SHARED_TARGET} PROPERTY CUDA_STANDARD 14)
target_link_libraries(${VFC_SHARED_TARGET}
${CUDART_LIB}
- ${nvinfer_LIB_PATH}
+ ${${nvinfer_lib_name}_LIB_PATH}
${CMAKE_DL_LIBS}
)
diff --git a/plugin/batchTilePlugin/CMakeLists.txt b/plugin/batchTilePlugin/CMakeLists.txt
index a240519a..657bfadc 100644
--- a/plugin/batchTilePlugin/CMakeLists.txt
+++ b/plugin/batchTilePlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/batchTilePlugin/batchTilePlugin.cpp b/plugin/batchTilePlugin/batchTilePlugin.cpp
index 7b99d578..1e98ac6e 100644
--- a/plugin/batchTilePlugin/batchTilePlugin.cpp
+++ b/plugin/batchTilePlugin/batchTilePlugin.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/batchTilePlugin/batchTilePlugin.h b/plugin/batchTilePlugin/batchTilePlugin.h
index 0ff85bb0..fe1ce902 100644
--- a/plugin/batchTilePlugin/batchTilePlugin.h
+++ b/plugin/batchTilePlugin/batchTilePlugin.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/batchedNMSPlugin/CMakeLists.txt b/plugin/batchedNMSPlugin/CMakeLists.txt
index 1f1d4169..f1f6081b 100644
--- a/plugin/batchedNMSPlugin/CMakeLists.txt
+++ b/plugin/batchedNMSPlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/batchedNMSPlugin/batchedNMSInference.cu b/plugin/batchedNMSPlugin/batchedNMSInference.cu
index 9d01f5b8..2a0ceff3 100644
--- a/plugin/batchedNMSPlugin/batchedNMSInference.cu
+++ b/plugin/batchedNMSPlugin/batchedNMSInference.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/batchedNMSPlugin/batchedNMSPlugin.cpp b/plugin/batchedNMSPlugin/batchedNMSPlugin.cpp
index 40ff8671..428db1ad 100644
--- a/plugin/batchedNMSPlugin/batchedNMSPlugin.cpp
+++ b/plugin/batchedNMSPlugin/batchedNMSPlugin.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/batchedNMSPlugin/batchedNMSPlugin.h b/plugin/batchedNMSPlugin/batchedNMSPlugin.h
index 418333e8..4c6c749f 100644
--- a/plugin/batchedNMSPlugin/batchedNMSPlugin.h
+++ b/plugin/batchedNMSPlugin/batchedNMSPlugin.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/batchedNMSPlugin/gatherNMSOutputs.h b/plugin/batchedNMSPlugin/gatherNMSOutputs.h
index f245eb93..0e9b78e4 100644
--- a/plugin/batchedNMSPlugin/gatherNMSOutputs.h
+++ b/plugin/batchedNMSPlugin/gatherNMSOutputs.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/CMakeLists.txt b/plugin/bertQKVToContextPlugin/CMakeLists.txt
index 6bdff6d7..da805cd2 100644
--- a/plugin/bertQKVToContextPlugin/CMakeLists.txt
+++ b/plugin/bertQKVToContextPlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention/CMakeLists.txt b/plugin/bertQKVToContextPlugin/fused_multihead_attention/CMakeLists.txt
index 1d53970e..91e05d03 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention/CMakeLists.txt
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention/include/fused_multihead_attention.h b/plugin/bertQKVToContextPlugin/fused_multihead_attention/include/fused_multihead_attention.h
index d59e8a73..e1b51b9d 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention/include/fused_multihead_attention.h
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention/include/fused_multihead_attention.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
@@ -32,6 +32,236 @@
namespace nvinfer1
{
+
+namespace pluginInternal
+{
+template
+class TFusedMultiHeadAttentionXMMAKernel
+{
+public:
+ using KernelMeta = TKernelMeta;
+ using KernelParam = TKernelParam;
+ inline uint64_t hashID(uint32_t s, uint32_t d) const
+ {
+ return (uint64_t) s << 32 | d;
+ }
+ virtual uint64_t hashID(const KernelMeta& kernelMeta) const
+ {
+ return hashID(kernelMeta.mS, kernelMeta.mD);
+ }
+
+ TFusedMultiHeadAttentionXMMAKernel(
+ const TKernelMeta* pMetaStart, uint32_t nMetaCount, plugin::bert::Data_type type, uint32_t sm)
+ : mDataType(type)
+ , mKernelMeta(pMetaStart)
+ , mKernelMetaCount(nMetaCount)
+ , mSM(sm)
+ {
+ PLUGIN_ASSERT(mKernelMetaCount && "No kernels were loaded correctly.");
+ }
+
+ void loadXMMAKernels(uint32_t smVersion)
+ {
+ for (uint32_t i = 0; i < mKernelMetaCount; ++i)
+ {
+ const auto& kernelMeta = mKernelMeta[i];
+ const auto kernelKey = hashID(kernelMeta);
+ if (kernelMeta.mSM == smVersion && kernelMeta.mDataType == mDataType
+ && mFunctions.find(kernelKey) == mFunctions.end())
+ {
+ const uint32_t DEFAULT_SMEM_SIZE{48 * 1024};
+ if (kernelMeta.mSharedMemBytes >= DEFAULT_SMEM_SIZE)
+ {
+ int32_t deviceID{0};
+ cudaGetDevice(&deviceID);
+ int32_t sharedMemPerMultiprocessor{0};
+ if (cudaDeviceGetAttribute(
+ &sharedMemPerMultiprocessor, cudaDevAttrMaxSharedMemoryPerBlockOptin, deviceID)
+ != cudaSuccess
+ || sharedMemPerMultiprocessor < static_cast(kernelMeta.mSharedMemBytes))
+ {
+ // skip load function because not enough shared memory to launch the kernel
+ continue;
+ }
+ }
+
+ CUmodule hmod{0};
+ auto findModuleIter = mModules.find(kernelMeta.mCubin);
+ if (findModuleIter != mModules.end())
+ {
+ hmod = findModuleIter->second;
+ }
+ else
+ {
+ cuErrCheck(mDriver.cuModuleLoadData(&hmod, kernelMeta.mCubin), mDriver);
+ mModules.insert(std::make_pair(kernelMeta.mCubin, hmod));
+ }
+
+ FusedMultiHeadAttentionKernelInfo funcInfo;
+ funcInfo.mMetaInfoIndex = i;
+ cuErrCheck(mDriver.cuModuleGetFunction(&funcInfo.mDeviceFunction, hmod, kernelMeta.mFuncName), mDriver);
+ if (kernelMeta.mSharedMemBytes >= DEFAULT_SMEM_SIZE)
+ {
+ if (mDriver.cuFuncSetAttribute(funcInfo.mDeviceFunction,
+ CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES, kernelMeta.mSharedMemBytes)
+ != CUDA_SUCCESS)
+ {
+ // some chip may not have enough shared memory to launch the kernel
+ continue;
+ }
+ }
+ mFunctions.insert({kernelKey, funcInfo});
+ uint64_t const s = kernelMeta.mS;
+ uint64_t const headSize = kernelMeta.mD;
+ uint64_t key = (headSize << 32 | s);
+ if (mValidSequences.find(key) == mValidSequences.end())
+ {
+ mValidSequences.insert(key);
+ }
+ }
+ }
+ }
+
+ void loadXMMAKernels()
+ {
+ if (!mFunctions.empty())
+ {
+ return;
+ }
+
+ loadXMMAKernels(mSM);
+
+ // sm_86 chips prefer sm_86 sass, but can also use sm_80 sass if sm_86 not exist.
+ // sm_87 cannot run sm_80 sass
+ if (mSM == kSM_86)
+ {
+ loadXMMAKernels(kSM_80);
+ }
+
+ // sm_89 will reuse sm_80 and sm_86 kernels
+ if (mSM == kSM_89)
+ {
+ loadXMMAKernels(kSM_86);
+ loadXMMAKernels(kSM_80);
+ }
+ }
+
+ bool isValid(int32_t headSize, int32_t s) const
+ {
+ uint64_t key = (static_cast(headSize) << 32 | static_cast(s));
+ return (mValidSequences.find(key) != mValidSequences.end());
+ }
+
+ virtual void run(TKernelParam& params, cudaStream_t ss) const
+ {
+ const auto findIter = mFunctions.find(hashID(params.s, params.d));
+ std::stringstream errMsg;
+ errMsg << "Could not find kernel for:\n"
+ << "\t s: " << params.s << "\n"
+ << "\t d: " << params.d << "\n"
+ << "Was the plugin compiled on a compatible CUDA and SM version?\n"
+ << "\t Compiled on CUDA " << CUDA_VERSION << "\n"
+ << "\t Current SM version: " << mSM << "\n"
+ << "\t SM versions enabled during compilation: "
+#if defined(ENABLE_SM72)
+ << "72 "
+#endif
+#if defined(ENABLE_SM75)
+ << "75 "
+#endif
+#if defined(ENABLE_SM80)
+ << "80 "
+#endif
+#if defined(ENABLE_SM86)
+ << "86 "
+#endif
+#if defined(ENABLE_SM87)
+ << "87 "
+#endif
+#if defined(ENABLE_SM89)
+ << "89 "
+#endif
+#if defined(ENABLE_SM90)
+ << "90 "
+#endif
+ << "\n";
+ PLUGIN_VALIDATE(findIter != mFunctions.end(), errMsg.str().c_str());
+
+ const auto& kernelMeta = mKernelMeta[findIter->second.mMetaInfoIndex];
+ const CUfunction func = findIter->second.mDeviceFunction;
+
+ void* kernelParams[] = {¶ms, nullptr};
+ cuErrCheck(mDriver.cuLaunchKernel(func, params.h, params.b, 1, kernelMeta.mThreadsPerCTA, 1, 1,
+ kernelMeta.mSharedMemBytes, ss, kernelParams, nullptr),
+ mDriver);
+ }
+
+ virtual ~TFusedMultiHeadAttentionXMMAKernel() = default;
+
+protected:
+ nvinfer1::CUDADriverWrapper mDriver;
+
+ plugin::bert::Data_type mDataType;
+ const TKernelMeta* mKernelMeta;
+ uint32_t mKernelMetaCount;
+ uint32_t mSM;
+ std::unordered_map mModules;
+ struct FusedMultiHeadAttentionKernelInfo
+ {
+ uint32_t mMetaInfoIndex;
+ CUfunction mDeviceFunction;
+ };
+ std::unordered_map mFunctions;
+ // Set of valid sequence and head size combination. We use (headSize << 32 | sequence) as key here.
+ std::unordered_set mValidSequences;
+};
+template
+class TFusedMHAKernelFactory
+{
+public:
+ const TFusedMHAKernelList* getXMMAKernels(const typename TFusedMHAKernelList::KernelMeta* pKernelList,
+ uint32_t nbKernels, plugin::bert::Data_type type, uint32_t sm)
+ {
+ static std::mutex s_mutex;
+ std::lock_guard lg(s_mutex);
+
+ const auto id = hashID(type, sm);
+ const auto findIter = mKernels.find(id);
+ if (findIter == mKernels.end())
+ {
+ TFusedMHAKernelList* newKernel = new TFusedMHAKernelList{pKernelList, nbKernels, type, sm};
+ newKernel->loadXMMAKernels();
+ mKernels.insert(std::make_pair(id, std::unique_ptr(newKernel)));
+ return newKernel;
+ }
+ return findIter->second.get();
+ }
+
+ static TFusedMHAKernelFactory& Get()
+ {
+ static TFusedMHAKernelFactory s_factory;
+ return s_factory;
+ }
+
+private:
+ TFusedMHAKernelFactory() = default;
+
+ inline uint64_t hashID(plugin::bert::Data_type type, uint32_t sm) const
+ {
+ // use deviceID in hasID for multi GPU support before driver support context-less loading of cubin
+ int32_t deviceID{0};
+ CSC(cudaGetDevice(&deviceID), STATUS_FAILURE);
+
+ PLUGIN_ASSERT((deviceID & 0xFFFF) == deviceID);
+ PLUGIN_ASSERT((type & 0xFFFF) == type);
+ PLUGIN_ASSERT((sm & 0xFFFFFFFF) == sm);
+ return (uint64_t) type << 48 | (uint64_t) deviceID << 32 | sm;
+ }
+
+ std::unordered_map> mKernels;
+};
+} // namespace pluginInternal
+
namespace plugin
{
namespace bert
@@ -324,235 +554,10 @@ static const struct FusedMultiHeadAttentionKernelMetaInfoV1
#endif // defined(ENABLE_SM90)
};
-template
-class TFusedMultiHeadAttentionXMMAKernel
-{
-public:
- using KernelMeta = TKernelMeta;
- using KernelParam = TKernelParam;
- inline uint64_t hashID(uint32_t s, uint32_t d) const
- {
- return (uint64_t) s << 32 | d;
- }
- virtual uint64_t hashID(const KernelMeta& kernelMeta) const
- {
- return hashID(kernelMeta.mS, kernelMeta.mD);
- }
-
- TFusedMultiHeadAttentionXMMAKernel(const TKernelMeta* pMetaStart, uint32_t nMetaCount, Data_type type, uint32_t sm)
- : mDataType(type)
- , mKernelMeta(pMetaStart)
- , mKernelMetaCount(nMetaCount)
- , mSM(sm)
- {
- PLUGIN_ASSERT(mKernelMetaCount && "No kernels were loaded correctly.");
- }
-
- void loadXMMAKernels(uint32_t smVersion)
- {
- for (uint32_t i = 0; i < mKernelMetaCount; ++i)
- {
- const auto& kernelMeta = mKernelMeta[i];
- const auto kernelKey = hashID(kernelMeta);
- if (kernelMeta.mSM == smVersion && kernelMeta.mDataType == mDataType
- && mFunctions.find(kernelKey) == mFunctions.end())
- {
- const uint32_t DEFAULT_SMEM_SIZE{48 * 1024};
- if (kernelMeta.mSharedMemBytes >= DEFAULT_SMEM_SIZE)
- {
- int32_t deviceID{0};
- cudaGetDevice(&deviceID);
- int32_t sharedMemPerMultiprocessor{0};
- if (cudaDeviceGetAttribute(
- &sharedMemPerMultiprocessor, cudaDevAttrMaxSharedMemoryPerBlockOptin, deviceID)
- != cudaSuccess
- || sharedMemPerMultiprocessor < static_cast(kernelMeta.mSharedMemBytes))
- {
- // skip load function because not enough shared memory to launch the kernel
- continue;
- }
- }
-
- CUmodule hmod{0};
- auto findModuleIter = mModules.find(kernelMeta.mCubin);
- if (findModuleIter != mModules.end())
- {
- hmod = findModuleIter->second;
- }
- else
- {
- cuErrCheck(mDriver.cuModuleLoadData(&hmod, kernelMeta.mCubin), mDriver);
- mModules.insert(std::make_pair(kernelMeta.mCubin, hmod));
- }
-
- FusedMultiHeadAttentionKernelInfo funcInfo;
- funcInfo.mMetaInfoIndex = i;
- cuErrCheck(mDriver.cuModuleGetFunction(&funcInfo.mDeviceFunction, hmod, kernelMeta.mFuncName), mDriver);
- if (kernelMeta.mSharedMemBytes >= DEFAULT_SMEM_SIZE)
- {
- if (mDriver.cuFuncSetAttribute(funcInfo.mDeviceFunction,
- CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES, kernelMeta.mSharedMemBytes)
- != CUDA_SUCCESS)
- {
- // some chip may not have enough shared memory to launch the kernel
- continue;
- }
- }
- mFunctions.insert({kernelKey, funcInfo});
- uint64_t const s = kernelMeta.mS;
- uint64_t const headSize = kernelMeta.mD;
- uint64_t key = (headSize << 32 | s);
- if (mValidSequences.find(key) == mValidSequences.end())
- {
- mValidSequences.insert(key);
- }
- }
- }
- }
-
- void loadXMMAKernels()
- {
- if (!mFunctions.empty())
- {
- return;
- }
-
- loadXMMAKernels(mSM);
-
- // sm_86 chips prefer sm_86 sass, but can also use sm_80 sass if sm_86 not exist.
- // sm_87 cannot run sm_80 sass
- if (mSM == kSM_86)
- {
- loadXMMAKernels(kSM_80);
- }
-
- // sm_89 will reuse sm_80 and sm_86 kernels
- if (mSM == kSM_89)
- {
- loadXMMAKernels(kSM_86);
- loadXMMAKernels(kSM_80);
- }
- }
-
- bool isValid(int32_t headSize, int32_t s) const
- {
- uint64_t key = (static_cast(headSize) << 32 | static_cast(s));
- return (mValidSequences.find(key) != mValidSequences.end());
- }
-
- virtual void run(TKernelParam& params, cudaStream_t ss) const
- {
- const auto findIter = mFunctions.find(hashID(params.s, params.d));
- std::stringstream errMsg;
- errMsg << "Could not find kernel for:\n"
- << "\t s: " << params.s << "\n"
- << "\t d: " << params.d << "\n"
- << "Was the plugin compiled on a compatible CUDA and SM version?\n"
- << "\t Compiled on CUDA " << CUDA_VERSION << "\n"
- << "\t Current SM version: " << mSM << "\n"
- << "\t SM versions enabled during compilation: "
-#if defined(ENABLE_SM72)
- << "72 "
-#endif
-#if defined(ENABLE_SM75)
- << "75 "
-#endif
-#if defined(ENABLE_SM80)
- << "80 "
-#endif
-#if defined(ENABLE_SM86)
- << "86 "
-#endif
-#if defined(ENABLE_SM87)
- << "87 "
-#endif
-#if defined(ENABLE_SM89)
- << "89 "
-#endif
-#if defined(ENABLE_SM90)
- << "90 "
-#endif
- << "\n";
- PLUGIN_VALIDATE(findIter != mFunctions.end(), errMsg.str().c_str());
-
- const auto& kernelMeta = mKernelMeta[findIter->second.mMetaInfoIndex];
- const CUfunction func = findIter->second.mDeviceFunction;
-
- void* kernelParams[] = {¶ms, nullptr};
- cuErrCheck(mDriver.cuLaunchKernel(func, params.h, params.b, 1, kernelMeta.mThreadsPerCTA, 1, 1,
- kernelMeta.mSharedMemBytes, ss, kernelParams, nullptr),
- mDriver);
- }
-
- virtual ~TFusedMultiHeadAttentionXMMAKernel() = default;
-
-protected:
- nvinfer1::CUDADriverWrapper mDriver;
-
- Data_type mDataType;
- const TKernelMeta* mKernelMeta;
- uint32_t mKernelMetaCount;
- uint32_t mSM;
- std::unordered_map mModules;
- struct FusedMultiHeadAttentionKernelInfo
- {
- uint32_t mMetaInfoIndex;
- CUfunction mDeviceFunction;
- };
- std::unordered_map mFunctions;
- // Set of valid sequence and head size combination. We use (headSize << 32 | sequence) as key here.
- std::unordered_set mValidSequences;
-};
-
-template
-class TFusedMHAKernelFactory
-{
-public:
- const TFusedMHAKernelList* getXMMAKernels(
- const typename TFusedMHAKernelList::KernelMeta* pKernelList, uint32_t nbKernels, Data_type type, uint32_t sm)
- {
- static std::mutex s_mutex;
- std::lock_guard lg(s_mutex);
-
- const auto id = hashID(type, sm);
- const auto findIter = mKernels.find(id);
- if (findIter == mKernels.end())
- {
- TFusedMHAKernelList* newKernel = new TFusedMHAKernelList{pKernelList, nbKernels, type, sm};
- newKernel->loadXMMAKernels();
- mKernels.insert(std::make_pair(id, std::unique_ptr(newKernel)));
- return newKernel;
- }
- return findIter->second.get();
- }
-
- static TFusedMHAKernelFactory& Get()
- {
- static TFusedMHAKernelFactory s_factory;
- return s_factory;
- }
-
-private:
- TFusedMHAKernelFactory() = default;
-
- inline uint64_t hashID(Data_type type, uint32_t sm) const
- {
- // use deviceID in hasID for multi GPU support before driver support context-less loading of cubin
- int32_t deviceID{0};
- CSC(cudaGetDevice(&deviceID), STATUS_FAILURE);
-
- PLUGIN_ASSERT((deviceID & 0xFFFF) == deviceID);
- PLUGIN_ASSERT((type & 0xFFFF) == type);
- PLUGIN_ASSERT((sm & 0xFFFFFFFF) == sm);
- return (uint64_t) type << 48 | (uint64_t) deviceID << 32 | sm;
- }
-
- std::unordered_map> mKernels;
-};
-
using FusedMultiHeadAttentionXMMAKernel
- = TFusedMultiHeadAttentionXMMAKernel;
-using FusedMHAKernelFactory = TFusedMHAKernelFactory;
+ = pluginInternal::TFusedMultiHeadAttentionXMMAKernel;
+using FusedMHAKernelFactory = pluginInternal::TFusedMHAKernelFactory;
inline const FusedMultiHeadAttentionXMMAKernel* getXMMAKernels(Data_type type, uint32_t sm)
{
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention/include/fused_multihead_attention_common.h b/plugin/bertQKVToContextPlugin/fused_multihead_attention/include/fused_multihead_attention_common.h
index 11d4b954..e1fe7d40 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention/include/fused_multihead_attention_common.h
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention/include/fused_multihead_attention_common.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_128_64_kernel.sm75.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_128_64_kernel.sm75.cpp
index af45426d..9ae4c46d 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_128_64_kernel.sm75.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_128_64_kernel.sm75.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_128_64_kernel.sm80.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_128_64_kernel.sm80.cpp
index 3e5031b1..aef4ae47 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_128_64_kernel.sm80.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_128_64_kernel.sm80.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_128_64_kernel.sm87.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_128_64_kernel.sm87.cpp
index 0d0a6ed7..6846143d 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_128_64_kernel.sm87.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_128_64_kernel.sm87.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_128_64_kernel.sm90.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_128_64_kernel.sm90.cpp
index a5134aaf..41bd15fa 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_128_64_kernel.sm90.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_128_64_kernel.sm90.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_384_64_kernel.sm75.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_384_64_kernel.sm75.cpp
index e2604633..59cadd97 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_384_64_kernel.sm75.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_384_64_kernel.sm75.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_384_64_kernel.sm80.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_384_64_kernel.sm80.cpp
index 035270eb..ab54f6b9 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_384_64_kernel.sm80.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_384_64_kernel.sm80.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_384_64_kernel.sm86.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_384_64_kernel.sm86.cpp
index 81f7a887..9189749c 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_384_64_kernel.sm86.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_384_64_kernel.sm86.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_384_64_kernel.sm87.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_384_64_kernel.sm87.cpp
index 929c0a4b..92e6811e 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_384_64_kernel.sm87.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_384_64_kernel.sm87.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_384_64_kernel.sm90.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_384_64_kernel.sm90.cpp
index a9592f3f..a2a10d10 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_384_64_kernel.sm90.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_384_64_kernel.sm90.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_512_64_kernel.sm90.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_512_64_kernel.sm90.cpp
index a5a19772..690e6f42 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_512_64_kernel.sm90.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_512_64_kernel.sm90.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_64_64_kernel.sm75.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_64_64_kernel.sm75.cpp
index 9dc6ffa6..6d8c23da 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_64_64_kernel.sm75.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_64_64_kernel.sm75.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_64_64_kernel.sm80.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_64_64_kernel.sm80.cpp
index 588d5dc8..34eba769 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_64_64_kernel.sm80.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_64_64_kernel.sm80.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_64_64_kernel.sm87.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_64_64_kernel.sm87.cpp
index 4d6308d3..9268ddc3 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_64_64_kernel.sm87.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_64_64_kernel.sm87.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_64_64_kernel.sm90.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_64_64_kernel.sm90.cpp
index fd292683..43b2bd85 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_64_64_kernel.sm90.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_64_64_kernel.sm90.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_96_64_kernel.sm75.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_96_64_kernel.sm75.cpp
index 238e9fbd..f345e66c 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_96_64_kernel.sm75.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_96_64_kernel.sm75.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_96_64_kernel.sm80.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_96_64_kernel.sm80.cpp
index a2eb24f7..c61eb87a 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_96_64_kernel.sm80.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_96_64_kernel.sm80.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_96_64_kernel.sm87.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_96_64_kernel.sm87.cpp
index 5b39da95..29d128ef 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_96_64_kernel.sm87.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_96_64_kernel.sm87.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_96_64_kernel.sm90.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_96_64_kernel.sm90.cpp
index 1af3e96a..18e389ca 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_96_64_kernel.sm90.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_fp16_96_64_kernel.sm90.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_128_64_kernel.sm75.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_128_64_kernel.sm75.cpp
index a18e4874..26ca9b77 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_128_64_kernel.sm75.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_128_64_kernel.sm75.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_128_64_kernel.sm80.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_128_64_kernel.sm80.cpp
index 0c079b17..ffb0d50d 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_128_64_kernel.sm80.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_128_64_kernel.sm80.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_128_64_kernel.sm87.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_128_64_kernel.sm87.cpp
index b88a696d..26b7460f 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_128_64_kernel.sm87.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_128_64_kernel.sm87.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_128_64_kernel.sm90.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_128_64_kernel.sm90.cpp
index 457af2b6..eb18694d 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_128_64_kernel.sm90.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_128_64_kernel.sm90.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_384_64_kernel.sm75.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_384_64_kernel.sm75.cpp
index 22611907..941996d1 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_384_64_kernel.sm75.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_384_64_kernel.sm75.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_384_64_kernel.sm80.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_384_64_kernel.sm80.cpp
index bf716793..5fe88e45 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_384_64_kernel.sm80.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_384_64_kernel.sm80.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_384_64_kernel.sm87.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_384_64_kernel.sm87.cpp
index c4376f86..0d23c4a1 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_384_64_kernel.sm87.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_384_64_kernel.sm87.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_384_64_kernel.sm90.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_384_64_kernel.sm90.cpp
index 44f159a7..576b0e17 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_384_64_kernel.sm90.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_384_64_kernel.sm90.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_512_64_kernel.sm90.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_512_64_kernel.sm90.cpp
index fd51119e..6cef65c5 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_512_64_kernel.sm90.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_512_64_kernel.sm90.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_64_64_kernel.sm80.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_64_64_kernel.sm80.cpp
index 062ce999..6211cf87 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_64_64_kernel.sm80.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_64_64_kernel.sm80.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_96_64_kernel.sm80.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_96_64_kernel.sm80.cpp
index 017f6862..b94a6a7b 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_96_64_kernel.sm80.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention/src/fused_multihead_attention_int8_96_64_kernel.sm80.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/CMakeLists.txt b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/CMakeLists.txt
index 1d53970e..91e05d03 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/CMakeLists.txt
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/include/fused_multihead_attention_v2.h b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/include/fused_multihead_attention_v2.h
index bb729359..ecc3684d 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/include/fused_multihead_attention_v2.h
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/include/fused_multihead_attention_v2.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
@@ -832,14 +832,14 @@ static const struct FusedMultiHeadAttentionKernelMetaInfoV2
};
class FusedMultiHeadAttentionXMMAKernelV2
- : public TFusedMultiHeadAttentionXMMAKernel
{
public:
FusedMultiHeadAttentionXMMAKernelV2(
const FusedMultiHeadAttentionKernelMetaInfoV2* pMetaStart, uint32_t nMetaCount, Data_type type, uint32_t sm)
- : TFusedMultiHeadAttentionXMMAKernel(pMetaStart, nMetaCount, type, sm)
+ : pluginInternal::TFusedMultiHeadAttentionXMMAKernel(pMetaStart, nMetaCount, type, sm)
{
}
@@ -988,7 +988,7 @@ class FusedMultiHeadAttentionXMMAKernelV2
}
};
-using FusedMHAKernelFactoryV2 = TFusedMHAKernelFactory;
+using FusedMHAKernelFactoryV2 = pluginInternal::TFusedMHAKernelFactory;
inline const FusedMultiHeadAttentionXMMAKernelV2* getXMMAKernelsV2(Data_type type, uint32_t sm)
{
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_128_32_kernel.sm75.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_128_32_kernel.sm75.cpp
index 373f496a..d82cc0cb 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_128_32_kernel.sm75.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_128_32_kernel.sm75.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_128_32_kernel.sm80.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_128_32_kernel.sm80.cpp
index 1e3ff7c6..3f992060 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_128_32_kernel.sm80.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_128_32_kernel.sm80.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_128_64_kernel.sm75.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_128_64_kernel.sm75.cpp
index ece2d0eb..c146aa40 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_128_64_kernel.sm75.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_128_64_kernel.sm75.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_128_64_kernel.sm80.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_128_64_kernel.sm80.cpp
index dbc34090..6ae22e4a 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_128_64_kernel.sm80.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_128_64_kernel.sm80.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_128_64_kernel.sm86.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_128_64_kernel.sm86.cpp
index ff794f09..f8a98908 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_128_64_kernel.sm86.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_128_64_kernel.sm86.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_128_64_kernel.sm87.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_128_64_kernel.sm87.cpp
index d957a175..6f3b27e3 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_128_64_kernel.sm87.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_128_64_kernel.sm87.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_128_64_kernel.sm90.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_128_64_kernel.sm90.cpp
index 910c2772..d56ece44 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_128_64_kernel.sm90.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_128_64_kernel.sm90.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_256_32_kernel.sm75.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_256_32_kernel.sm75.cpp
index f466437c..05ffdb23 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_256_32_kernel.sm75.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_256_32_kernel.sm75.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_256_32_kernel.sm80.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_256_32_kernel.sm80.cpp
index 643f3abe..0d6a6c53 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_256_32_kernel.sm80.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_256_32_kernel.sm80.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_256_64_kernel.sm75.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_256_64_kernel.sm75.cpp
index b193aac5..d549443c 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_256_64_kernel.sm75.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_256_64_kernel.sm75.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_256_64_kernel.sm80.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_256_64_kernel.sm80.cpp
index eedf762f..e8b7ec1d 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_256_64_kernel.sm80.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_256_64_kernel.sm80.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_256_64_kernel.sm86.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_256_64_kernel.sm86.cpp
index 17cdf962..1d7791b3 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_256_64_kernel.sm86.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_256_64_kernel.sm86.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_256_64_kernel.sm87.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_256_64_kernel.sm87.cpp
index 3943f07e..a03a9a39 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_256_64_kernel.sm87.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_256_64_kernel.sm87.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_256_64_kernel.sm90.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_256_64_kernel.sm90.cpp
index 8aebf6e4..6e04b4e7 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_256_64_kernel.sm90.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_256_64_kernel.sm90.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_384_64_kernel.sm75.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_384_64_kernel.sm75.cpp
index 47d6f8b4..b9f264c2 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_384_64_kernel.sm75.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_384_64_kernel.sm75.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_384_64_kernel.sm80.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_384_64_kernel.sm80.cpp
index 2c0141c6..1b5e752a 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_384_64_kernel.sm80.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_384_64_kernel.sm80.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_384_64_kernel.sm86.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_384_64_kernel.sm86.cpp
index 007b0ca5..320a9e88 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_384_64_kernel.sm86.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_384_64_kernel.sm86.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_384_64_kernel.sm87.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_384_64_kernel.sm87.cpp
index e47a0eb5..e264c016 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_384_64_kernel.sm87.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_384_64_kernel.sm87.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_384_64_kernel.sm90.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_384_64_kernel.sm90.cpp
index 71047e0d..f9ce8e34 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_384_64_kernel.sm90.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_384_64_kernel.sm90.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_512_32_kernel.sm75.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_512_32_kernel.sm75.cpp
index e424fd93..8f766536 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_512_32_kernel.sm75.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_512_32_kernel.sm75.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_512_32_kernel.sm80.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_512_32_kernel.sm80.cpp
index f3b2aec9..b22936ed 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_512_32_kernel.sm80.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_512_32_kernel.sm80.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_512_64_kernel.sm75.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_512_64_kernel.sm75.cpp
index 6706f1e1..624e6e0b 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_512_64_kernel.sm75.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_512_64_kernel.sm75.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_512_64_kernel.sm80.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_512_64_kernel.sm80.cpp
index 57d31338..c8a9c2f9 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_512_64_kernel.sm80.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_512_64_kernel.sm80.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_512_64_kernel.sm90.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_512_64_kernel.sm90.cpp
index d9bbd955..a03160a2 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_512_64_kernel.sm90.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_512_64_kernel.sm90.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_64_64_kernel.sm75.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_64_64_kernel.sm75.cpp
index a93f1f80..4642ab1a 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_64_64_kernel.sm75.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_64_64_kernel.sm75.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_64_64_kernel.sm80.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_64_64_kernel.sm80.cpp
index fc6e825e..fae19400 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_64_64_kernel.sm80.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_64_64_kernel.sm80.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_64_64_kernel.sm86.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_64_64_kernel.sm86.cpp
index dc64aaf1..c5dc1be8 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_64_64_kernel.sm86.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_64_64_kernel.sm86.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_64_64_kernel.sm87.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_64_64_kernel.sm87.cpp
index 17394f7b..b93318b7 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_64_64_kernel.sm87.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_64_64_kernel.sm87.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_64_64_kernel.sm90.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_64_64_kernel.sm90.cpp
index 30a6a139..192047d0 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_64_64_kernel.sm90.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_64_64_kernel.sm90.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_96_64_kernel.sm75.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_96_64_kernel.sm75.cpp
index 75826861..a4dd7851 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_96_64_kernel.sm75.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_96_64_kernel.sm75.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_96_64_kernel.sm80.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_96_64_kernel.sm80.cpp
index a5a9db91..9f8557f6 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_96_64_kernel.sm80.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_96_64_kernel.sm80.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_96_64_kernel.sm86.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_96_64_kernel.sm86.cpp
index 5c0e4792..e45804f5 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_96_64_kernel.sm86.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_96_64_kernel.sm86.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_96_64_kernel.sm87.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_96_64_kernel.sm87.cpp
index 75cca5b0..f9fd241e 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_96_64_kernel.sm87.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_96_64_kernel.sm87.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_96_64_kernel.sm90.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_96_64_kernel.sm90.cpp
index 05ed3a7d..93e21e59 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_96_64_kernel.sm90.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_fp16_96_64_kernel.sm90.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_128_32_kernel.sm80.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_128_32_kernel.sm80.cpp
index 7377bb87..cf253602 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_128_32_kernel.sm80.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_128_32_kernel.sm80.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_128_64_kernel.sm87.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_128_64_kernel.sm87.cpp
index c486ba74..a446bdc9 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_128_64_kernel.sm87.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_128_64_kernel.sm87.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_128_64_kernel.sm90.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_128_64_kernel.sm90.cpp
index ff8b71b7..52dd640b 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_128_64_kernel.sm90.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_128_64_kernel.sm90.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_192_64_kernel.sm87.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_192_64_kernel.sm87.cpp
index b55a9b29..5f51d0f9 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_192_64_kernel.sm87.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_192_64_kernel.sm87.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_192_64_kernel.sm90.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_192_64_kernel.sm90.cpp
index a486db0f..2b0aec86 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_192_64_kernel.sm90.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_192_64_kernel.sm90.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_256_64_kernel.sm87.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_256_64_kernel.sm87.cpp
index dcac39f3..3cd2a96d 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_256_64_kernel.sm87.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_256_64_kernel.sm87.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_256_64_kernel.sm90.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_256_64_kernel.sm90.cpp
index 9826a2c2..5a3744f1 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_256_64_kernel.sm90.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_256_64_kernel.sm90.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_384_64_kernel.sm87.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_384_64_kernel.sm87.cpp
index b6659f16..10b61245 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_384_64_kernel.sm87.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_384_64_kernel.sm87.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_384_64_kernel.sm90.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_384_64_kernel.sm90.cpp
index bbb5eeeb..b52902cb 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_384_64_kernel.sm90.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_384_64_kernel.sm90.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_64_64_kernel.sm80.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_64_64_kernel.sm80.cpp
index f9fd6183..84db4d9b 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_64_64_kernel.sm80.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_64_64_kernel.sm80.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_64_64_kernel.sm87.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_64_64_kernel.sm87.cpp
index 6441c74a..abdc3f80 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_64_64_kernel.sm87.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_64_64_kernel.sm87.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_64_64_kernel.sm90.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_64_64_kernel.sm90.cpp
index df8cda25..dc88c038 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_64_64_kernel.sm90.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_64_64_kernel.sm90.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_96_64_kernel.sm80.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_96_64_kernel.sm80.cpp
index e62d93aa..014442ea 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_96_64_kernel.sm80.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_96_64_kernel.sm80.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_96_64_kernel.sm87.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_96_64_kernel.sm87.cpp
index 590c0df4..6d830826 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_96_64_kernel.sm87.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_96_64_kernel.sm87.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_96_64_kernel.sm90.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_96_64_kernel.sm90.cpp
index be698b64..b345aad7 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_96_64_kernel.sm90.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_il_int8_96_64_kernel.sm90.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_128_32_kernel.sm75.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_128_32_kernel.sm75.cpp
index ce3baa27..310bd7b3 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_128_32_kernel.sm75.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_128_32_kernel.sm75.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_128_32_kernel.sm80.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_128_32_kernel.sm80.cpp
index 0abcf4e3..754f1117 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_128_32_kernel.sm80.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_128_32_kernel.sm80.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_128_64_kernel.sm72.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_128_64_kernel.sm72.cpp
index fbf16481..e8d90371 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_128_64_kernel.sm72.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_128_64_kernel.sm72.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_128_64_kernel.sm75.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_128_64_kernel.sm75.cpp
index 56cb1930..208f99b1 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_128_64_kernel.sm75.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_128_64_kernel.sm75.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_128_64_kernel.sm80.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_128_64_kernel.sm80.cpp
index f7b86091..28063c3a 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_128_64_kernel.sm80.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_128_64_kernel.sm80.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_128_64_kernel.sm86.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_128_64_kernel.sm86.cpp
index fe49aaa3..9073a280 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_128_64_kernel.sm86.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_128_64_kernel.sm86.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_128_64_kernel.sm87.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_128_64_kernel.sm87.cpp
index b84b0dc8..a7c7067b 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_128_64_kernel.sm87.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_128_64_kernel.sm87.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_128_64_kernel.sm90.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_128_64_kernel.sm90.cpp
index 6f889451..2db0cf89 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_128_64_kernel.sm90.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_128_64_kernel.sm90.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_192_64_kernel.sm72.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_192_64_kernel.sm72.cpp
index 3c3735d1..81f815ab 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_192_64_kernel.sm72.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_192_64_kernel.sm72.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_192_64_kernel.sm75.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_192_64_kernel.sm75.cpp
index dfe6d8ce..c2725c28 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_192_64_kernel.sm75.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_192_64_kernel.sm75.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_192_64_kernel.sm80.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_192_64_kernel.sm80.cpp
index 8a1d2d2c..9e310f3e 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_192_64_kernel.sm80.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_192_64_kernel.sm80.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_192_64_kernel.sm86.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_192_64_kernel.sm86.cpp
index 31dd3150..d7c891c6 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_192_64_kernel.sm86.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_192_64_kernel.sm86.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_192_64_kernel.sm87.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_192_64_kernel.sm87.cpp
index aa2a81c9..a1a73aed 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_192_64_kernel.sm87.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_192_64_kernel.sm87.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_192_64_kernel.sm90.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_192_64_kernel.sm90.cpp
index a5e4c65e..e2ba6e02 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_192_64_kernel.sm90.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_192_64_kernel.sm90.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_256_32_kernel.sm75.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_256_32_kernel.sm75.cpp
index 2a729502..6b74c2fe 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_256_32_kernel.sm75.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_256_32_kernel.sm75.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_256_32_kernel.sm80.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_256_32_kernel.sm80.cpp
index aeac0ebd..ecb4e343 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_256_32_kernel.sm80.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_256_32_kernel.sm80.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_256_64_kernel.sm72.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_256_64_kernel.sm72.cpp
index a62c2cf9..248e3096 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_256_64_kernel.sm72.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_256_64_kernel.sm72.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_256_64_kernel.sm75.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_256_64_kernel.sm75.cpp
index 3fa33ae5..c9a585ee 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_256_64_kernel.sm75.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_256_64_kernel.sm75.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_256_64_kernel.sm80.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_256_64_kernel.sm80.cpp
index f597a37e..fe195f5e 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_256_64_kernel.sm80.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_256_64_kernel.sm80.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_256_64_kernel.sm86.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_256_64_kernel.sm86.cpp
index 24d31716..6afbe0c8 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_256_64_kernel.sm86.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_256_64_kernel.sm86.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_256_64_kernel.sm87.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_256_64_kernel.sm87.cpp
index b70f696d..f8e37cfb 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_256_64_kernel.sm87.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_256_64_kernel.sm87.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_256_64_kernel.sm90.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_256_64_kernel.sm90.cpp
index 07f7b870..d170e2f1 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_256_64_kernel.sm90.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_256_64_kernel.sm90.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_384_64_kernel.sm72.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_384_64_kernel.sm72.cpp
index 2d62254b..cb17f7ab 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_384_64_kernel.sm72.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_384_64_kernel.sm72.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_384_64_kernel.sm75.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_384_64_kernel.sm75.cpp
index b373a064..9fbd6434 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_384_64_kernel.sm75.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_384_64_kernel.sm75.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_384_64_kernel.sm80.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_384_64_kernel.sm80.cpp
index 86517581..d8c78ccd 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_384_64_kernel.sm80.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_384_64_kernel.sm80.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_384_64_kernel.sm86.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_384_64_kernel.sm86.cpp
index c9196880..aeac0b9e 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_384_64_kernel.sm86.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_384_64_kernel.sm86.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_384_64_kernel.sm87.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_384_64_kernel.sm87.cpp
index 70e699f8..044654af 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_384_64_kernel.sm87.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_384_64_kernel.sm87.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_384_64_kernel.sm90.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_384_64_kernel.sm90.cpp
index 848c68be..6028ed75 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_384_64_kernel.sm90.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_384_64_kernel.sm90.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_512_32_kernel.sm75.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_512_32_kernel.sm75.cpp
index baaf7441..36ece8b7 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_512_32_kernel.sm75.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_512_32_kernel.sm75.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_512_32_kernel.sm80.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_512_32_kernel.sm80.cpp
index 68204bf6..590cbecb 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_512_32_kernel.sm80.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_512_32_kernel.sm80.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_512_64_kernel.sm75.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_512_64_kernel.sm75.cpp
index 8ee4ced0..15312cff 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_512_64_kernel.sm75.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_512_64_kernel.sm75.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_512_64_kernel.sm80.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_512_64_kernel.sm80.cpp
index e9bd8613..0cd60732 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_512_64_kernel.sm80.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_512_64_kernel.sm80.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_512_64_kernel.sm90.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_512_64_kernel.sm90.cpp
index 48644b36..58e28091 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_512_64_kernel.sm90.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_512_64_kernel.sm90.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_64_64_kernel.sm80.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_64_64_kernel.sm80.cpp
index 77ccb240..23019c5a 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_64_64_kernel.sm80.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_64_64_kernel.sm80.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_64_64_kernel.sm87.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_64_64_kernel.sm87.cpp
index 2eb5c132..35635613 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_64_64_kernel.sm87.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_64_64_kernel.sm87.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_64_64_kernel.sm90.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_64_64_kernel.sm90.cpp
index 2280de3b..4161dcd5 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_64_64_kernel.sm90.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_64_64_kernel.sm90.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_96_64_kernel.sm80.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_96_64_kernel.sm80.cpp
index b7a7f1db..f9056c6d 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_96_64_kernel.sm80.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_96_64_kernel.sm80.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_96_64_kernel.sm87.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_96_64_kernel.sm87.cpp
index c2e6aca4..e5689381 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_96_64_kernel.sm87.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_96_64_kernel.sm87.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_96_64_kernel.sm90.cpp b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_96_64_kernel.sm90.cpp
index a4516a2d..427ab9f8 100644
--- a/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_96_64_kernel.sm90.cpp
+++ b/plugin/bertQKVToContextPlugin/fused_multihead_attention_v2/src/fused_multihead_attention_v2_int8_96_64_kernel.sm90.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/qkvToContextInt8InterleavedPlugin.cpp b/plugin/bertQKVToContextPlugin/qkvToContextInt8InterleavedPlugin.cpp
index f62f2c9a..40a42af0 100644
--- a/plugin/bertQKVToContextPlugin/qkvToContextInt8InterleavedPlugin.cpp
+++ b/plugin/bertQKVToContextPlugin/qkvToContextInt8InterleavedPlugin.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/zeroPadding2d.cu b/plugin/bertQKVToContextPlugin/zeroPadding2d.cu
index aa8a70c9..f8135ada 100644
--- a/plugin/bertQKVToContextPlugin/zeroPadding2d.cu
+++ b/plugin/bertQKVToContextPlugin/zeroPadding2d.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/bertQKVToContextPlugin/zeroPadding2d.h b/plugin/bertQKVToContextPlugin/zeroPadding2d.h
index bc1409a2..faa85ebe 100644
--- a/plugin/bertQKVToContextPlugin/zeroPadding2d.h
+++ b/plugin/bertQKVToContextPlugin/zeroPadding2d.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/clipPlugin/CMakeLists.txt b/plugin/clipPlugin/CMakeLists.txt
index 1f1d4169..f1f6081b 100644
--- a/plugin/clipPlugin/CMakeLists.txt
+++ b/plugin/clipPlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/clipPlugin/clip.cu b/plugin/clipPlugin/clip.cu
index f407ebbc..44bc1f73 100644
--- a/plugin/clipPlugin/clip.cu
+++ b/plugin/clipPlugin/clip.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/clipPlugin/clip.h b/plugin/clipPlugin/clip.h
index 70a53143..e21e8b43 100644
--- a/plugin/clipPlugin/clip.h
+++ b/plugin/clipPlugin/clip.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/CMakeLists.txt b/plugin/common/CMakeLists.txt
index 12ab940b..af59d7f7 100644
--- a/plugin/common/CMakeLists.txt
+++ b/plugin/common/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/bboxUtils.h b/plugin/common/bboxUtils.h
index 028eeb81..6419611d 100644
--- a/plugin/common/bboxUtils.h
+++ b/plugin/common/bboxUtils.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/bertCommon.h b/plugin/common/bertCommon.h
index e34e954f..4cb33551 100644
--- a/plugin/common/bertCommon.h
+++ b/plugin/common/bertCommon.h
@@ -86,6 +86,17 @@ constexpr size_t packedMaskSize384 = xmmasM384 * threadsPerCta384;
namespace nvinfer1
{
+namespace pluginInternal
+{
+template
+struct CudaDeleter
+{
+ void operator()(T* buf)
+ {
+ PLUGIN_CUASSERT(cudaFree(buf));
+ }
+};
+} // namespace pluginInternal
namespace plugin
{
namespace bert
@@ -308,16 +319,7 @@ struct CublasConfigHelper
};
template
-struct CudaDeleter
-{
- void operator()(T* buf)
- {
- PLUGIN_CUASSERT(cudaFree(buf));
- }
-};
-
-template
-using cuda_unique_ptr = std::unique_ptr>;
+using cuda_unique_ptr = std::unique_ptr>;
template
using cuda_shared_ptr = std::shared_ptr;
@@ -325,7 +327,7 @@ using cuda_shared_ptr = std::shared_ptr;
template
void make_cuda_shared(cuda_shared_ptr& ptr, void* cudaMem)
{
- ptr.reset(static_cast(cudaMem), bert::CudaDeleter());
+ ptr.reset(static_cast(cudaMem), pluginInternal::CudaDeleter());
}
struct WeightsWithOwnership : public nvinfer1::Weights
diff --git a/plugin/common/cub_helper.h b/plugin/common/cub_helper.h
index ee8402c4..7cc35848 100644
--- a/plugin/common/cub_helper.h
+++ b/plugin/common/cub_helper.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/cudaDriverWrapper.cpp b/plugin/common/cudaDriverWrapper.cpp
index 5e317564..fa83866c 100644
--- a/plugin/common/cudaDriverWrapper.cpp
+++ b/plugin/common/cudaDriverWrapper.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/cudaDriverWrapper.h b/plugin/common/cudaDriverWrapper.h
index b105e3c2..209ed3f8 100644
--- a/plugin/common/cudaDriverWrapper.h
+++ b/plugin/common/cudaDriverWrapper.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/dimsHelpers.h b/plugin/common/dimsHelpers.h
index 8198590b..239a63ac 100644
--- a/plugin/common/dimsHelpers.h
+++ b/plugin/common/dimsHelpers.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/half.h b/plugin/common/half.h
index 28825bb1..af49356a 100644
--- a/plugin/common/half.h
+++ b/plugin/common/half.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/kernels/CMakeLists.txt b/plugin/common/kernels/CMakeLists.txt
index 1f1d4169..f1f6081b 100644
--- a/plugin/common/kernels/CMakeLists.txt
+++ b/plugin/common/kernels/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/kernels/bboxDeltas2Proposals.cu b/plugin/common/kernels/bboxDeltas2Proposals.cu
index 945d3bc5..0be5e90d 100644
--- a/plugin/common/kernels/bboxDeltas2Proposals.cu
+++ b/plugin/common/kernels/bboxDeltas2Proposals.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/kernels/cropAndResizeKernel.cu b/plugin/common/kernels/cropAndResizeKernel.cu
index aa1bec14..fdae167b 100644
--- a/plugin/common/kernels/cropAndResizeKernel.cu
+++ b/plugin/common/kernels/cropAndResizeKernel.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/kernels/decodeBbox3DKernels.cu b/plugin/common/kernels/decodeBbox3DKernels.cu
index ac53c098..f1592e49 100644
--- a/plugin/common/kernels/decodeBbox3DKernels.cu
+++ b/plugin/common/kernels/decodeBbox3DKernels.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/kernels/detectionForward.cu b/plugin/common/kernels/detectionForward.cu
index 09cba7dd..6f28c15a 100644
--- a/plugin/common/kernels/detectionForward.cu
+++ b/plugin/common/kernels/detectionForward.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/kernels/extractFgScores.cu b/plugin/common/kernels/extractFgScores.cu
index f087e012..1785bf0a 100644
--- a/plugin/common/kernels/extractFgScores.cu
+++ b/plugin/common/kernels/extractFgScores.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/kernels/generateAnchors.cu b/plugin/common/kernels/generateAnchors.cu
index 398cf1b7..b80383f7 100644
--- a/plugin/common/kernels/generateAnchors.cu
+++ b/plugin/common/kernels/generateAnchors.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/kernels/gridAnchorLayer.cu b/plugin/common/kernels/gridAnchorLayer.cu
index 666997c5..2475a943 100644
--- a/plugin/common/kernels/gridAnchorLayer.cu
+++ b/plugin/common/kernels/gridAnchorLayer.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/kernels/kernel.cpp b/plugin/common/kernels/kernel.cpp
index 7f8a00dc..d5c0966a 100644
--- a/plugin/common/kernels/kernel.cpp
+++ b/plugin/common/kernels/kernel.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/kernels/lReLU.cu b/plugin/common/kernels/lReLU.cu
index 8a720ff1..87c42724 100644
--- a/plugin/common/kernels/lReLU.cu
+++ b/plugin/common/kernels/lReLU.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/kernels/maskRCNNKernels.cu b/plugin/common/kernels/maskRCNNKernels.cu
index b79d55e0..0a9d8083 100644
--- a/plugin/common/kernels/maskRCNNKernels.cu
+++ b/plugin/common/kernels/maskRCNNKernels.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/kernels/maskRCNNKernels.h b/plugin/common/kernels/maskRCNNKernels.h
index 71ed0784..433d7ca2 100644
--- a/plugin/common/kernels/maskRCNNKernels.h
+++ b/plugin/common/kernels/maskRCNNKernels.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/kernels/nmsLayer.cu b/plugin/common/kernels/nmsLayer.cu
index 0fdcdf39..8ce2a8f2 100644
--- a/plugin/common/kernels/nmsLayer.cu
+++ b/plugin/common/kernels/nmsLayer.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/kernels/permuteData.cu b/plugin/common/kernels/permuteData.cu
index dd43f04c..185e4c53 100644
--- a/plugin/common/kernels/permuteData.cu
+++ b/plugin/common/kernels/permuteData.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/kernels/pillarScatterKernels.cu b/plugin/common/kernels/pillarScatterKernels.cu
index 528a2665..6ee3c3e8 100644
--- a/plugin/common/kernels/pillarScatterKernels.cu
+++ b/plugin/common/kernels/pillarScatterKernels.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/kernels/priorBoxLayer.cu b/plugin/common/kernels/priorBoxLayer.cu
index 3c6e160b..af17af22 100644
--- a/plugin/common/kernels/priorBoxLayer.cu
+++ b/plugin/common/kernels/priorBoxLayer.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/kernels/proposalKernel.cu b/plugin/common/kernels/proposalKernel.cu
index 8fcaab14..82f2db9b 100644
--- a/plugin/common/kernels/proposalKernel.cu
+++ b/plugin/common/kernels/proposalKernel.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/kernels/proposalsForward.cu b/plugin/common/kernels/proposalsForward.cu
index cab00063..2be3a087 100644
--- a/plugin/common/kernels/proposalsForward.cu
+++ b/plugin/common/kernels/proposalsForward.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/kernels/reducedMathPlugin.h b/plugin/common/kernels/reducedMathPlugin.h
index 777a5e51..d7c17f92 100644
--- a/plugin/common/kernels/reducedMathPlugin.h
+++ b/plugin/common/kernels/reducedMathPlugin.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/kernels/regionForward.cu b/plugin/common/kernels/regionForward.cu
index a948dc4f..b33b9b3f 100644
--- a/plugin/common/kernels/regionForward.cu
+++ b/plugin/common/kernels/regionForward.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/kernels/reorgForward.cu b/plugin/common/kernels/reorgForward.cu
index becc87a7..ef5fdb7a 100644
--- a/plugin/common/kernels/reorgForward.cu
+++ b/plugin/common/kernels/reorgForward.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/kernels/roiPooling.cu b/plugin/common/kernels/roiPooling.cu
index abac39a2..353173cc 100644
--- a/plugin/common/kernels/roiPooling.cu
+++ b/plugin/common/kernels/roiPooling.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/kernels/rproiInferenceFused.cu b/plugin/common/kernels/rproiInferenceFused.cu
index 46d0243b..db1161bb 100644
--- a/plugin/common/kernels/rproiInferenceFused.cu
+++ b/plugin/common/kernels/rproiInferenceFused.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/kernels/sortScoresPerClass.cu b/plugin/common/kernels/sortScoresPerClass.cu
index 1ac96086..cd62df64 100644
--- a/plugin/common/kernels/sortScoresPerClass.cu
+++ b/plugin/common/kernels/sortScoresPerClass.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/kernels/sortScoresPerImage.cu b/plugin/common/kernels/sortScoresPerImage.cu
index 2137bc09..99749c53 100644
--- a/plugin/common/kernels/sortScoresPerImage.cu
+++ b/plugin/common/kernels/sortScoresPerImage.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/kernels/voxelGeneratorKernels.cu b/plugin/common/kernels/voxelGeneratorKernels.cu
index 785a7e63..57b71798 100644
--- a/plugin/common/kernels/voxelGeneratorKernels.cu
+++ b/plugin/common/kernels/voxelGeneratorKernels.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/mrcnn_config.h b/plugin/common/mrcnn_config.h
index 5b3673ca..88added0 100644
--- a/plugin/common/mrcnn_config.h
+++ b/plugin/common/mrcnn_config.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/nmsUtils.h b/plugin/common/nmsUtils.h
index 28a4aa7e..8dbd03ff 100644
--- a/plugin/common/nmsUtils.h
+++ b/plugin/common/nmsUtils.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/reducedMathPlugin.cpp b/plugin/common/reducedMathPlugin.cpp
index 4e33680a..bedd8d2b 100644
--- a/plugin/common/reducedMathPlugin.cpp
+++ b/plugin/common/reducedMathPlugin.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/serialize.hpp b/plugin/common/serialize.hpp
index 8a29dd46..8fcef07f 100644
--- a/plugin/common/serialize.hpp
+++ b/plugin/common/serialize.hpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/templates.h b/plugin/common/templates.h
index 298bb8c2..2870bfd6 100644
--- a/plugin/common/templates.h
+++ b/plugin/common/templates.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/vfcCommon.cpp b/plugin/common/vfcCommon.cpp
index 7122d0d4..8664ab56 100644
--- a/plugin/common/vfcCommon.cpp
+++ b/plugin/common/vfcCommon.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/common/vfcCommon.h b/plugin/common/vfcCommon.h
index ee84dc97..7b7db007 100644
--- a/plugin/common/vfcCommon.h
+++ b/plugin/common/vfcCommon.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/coordConvACPlugin/CMakeLists.txt b/plugin/coordConvACPlugin/CMakeLists.txt
index df2f2da8..0e7b1e6e 100644
--- a/plugin/coordConvACPlugin/CMakeLists.txt
+++ b/plugin/coordConvACPlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/coordConvACPlugin/coordConvACPlugin.cpp b/plugin/coordConvACPlugin/coordConvACPlugin.cpp
index 63462fcd..671e06ee 100644
--- a/plugin/coordConvACPlugin/coordConvACPlugin.cpp
+++ b/plugin/coordConvACPlugin/coordConvACPlugin.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/coordConvACPlugin/coordConvACPlugin.h b/plugin/coordConvACPlugin/coordConvACPlugin.h
index 1776d6f7..0df045ce 100644
--- a/plugin/coordConvACPlugin/coordConvACPlugin.h
+++ b/plugin/coordConvACPlugin/coordConvACPlugin.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/coordConvACPlugin/coordConvACPluginKernels.cu b/plugin/coordConvACPlugin/coordConvACPluginKernels.cu
index a0130a16..8f32aa87 100644
--- a/plugin/coordConvACPlugin/coordConvACPluginKernels.cu
+++ b/plugin/coordConvACPlugin/coordConvACPluginKernels.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/cropAndResizePlugin/CMakeLists.txt b/plugin/cropAndResizePlugin/CMakeLists.txt
index a240519a..657bfadc 100644
--- a/plugin/cropAndResizePlugin/CMakeLists.txt
+++ b/plugin/cropAndResizePlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/cropAndResizePlugin/cropAndResizePlugin.cpp b/plugin/cropAndResizePlugin/cropAndResizePlugin.cpp
index a0b19fc4..f8d5a731 100644
--- a/plugin/cropAndResizePlugin/cropAndResizePlugin.cpp
+++ b/plugin/cropAndResizePlugin/cropAndResizePlugin.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/cropAndResizePlugin/cropAndResizePlugin.h b/plugin/cropAndResizePlugin/cropAndResizePlugin.h
index 54c8f16b..c0f9d33d 100644
--- a/plugin/cropAndResizePlugin/cropAndResizePlugin.h
+++ b/plugin/cropAndResizePlugin/cropAndResizePlugin.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/decodeBbox3DPlugin/CMakeLists.txt b/plugin/decodeBbox3DPlugin/CMakeLists.txt
index a240519a..657bfadc 100644
--- a/plugin/decodeBbox3DPlugin/CMakeLists.txt
+++ b/plugin/decodeBbox3DPlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/decodeBbox3DPlugin/decodeBbox3D.cpp b/plugin/decodeBbox3DPlugin/decodeBbox3D.cpp
index f9e9faa5..96884a5b 100644
--- a/plugin/decodeBbox3DPlugin/decodeBbox3D.cpp
+++ b/plugin/decodeBbox3DPlugin/decodeBbox3D.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/decodeBbox3DPlugin/decodeBbox3D.h b/plugin/decodeBbox3DPlugin/decodeBbox3D.h
index ea85785a..65fbb5ae 100644
--- a/plugin/decodeBbox3DPlugin/decodeBbox3D.h
+++ b/plugin/decodeBbox3DPlugin/decodeBbox3D.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/detectionLayerPlugin/CMakeLists.txt b/plugin/detectionLayerPlugin/CMakeLists.txt
index a240519a..657bfadc 100644
--- a/plugin/detectionLayerPlugin/CMakeLists.txt
+++ b/plugin/detectionLayerPlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/detectionLayerPlugin/detectionLayerPlugin.cpp b/plugin/detectionLayerPlugin/detectionLayerPlugin.cpp
index 840156cd..cd243c11 100644
--- a/plugin/detectionLayerPlugin/detectionLayerPlugin.cpp
+++ b/plugin/detectionLayerPlugin/detectionLayerPlugin.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/detectionLayerPlugin/detectionLayerPlugin.h b/plugin/detectionLayerPlugin/detectionLayerPlugin.h
index adbf535d..88ac12f5 100644
--- a/plugin/detectionLayerPlugin/detectionLayerPlugin.h
+++ b/plugin/detectionLayerPlugin/detectionLayerPlugin.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/disentangledAttentionPlugin/CMakeLists.txt b/plugin/disentangledAttentionPlugin/CMakeLists.txt
index df2f2da8..0e7b1e6e 100644
--- a/plugin/disentangledAttentionPlugin/CMakeLists.txt
+++ b/plugin/disentangledAttentionPlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/disentangledAttentionPlugin/disentangledAttentionPlugin.cpp b/plugin/disentangledAttentionPlugin/disentangledAttentionPlugin.cpp
index c79096a5..d9bf788f 100644
--- a/plugin/disentangledAttentionPlugin/disentangledAttentionPlugin.cpp
+++ b/plugin/disentangledAttentionPlugin/disentangledAttentionPlugin.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/disentangledAttentionPlugin/disentangledAttentionPlugin.h b/plugin/disentangledAttentionPlugin/disentangledAttentionPlugin.h
index 7d77a514..f9d01a4c 100644
--- a/plugin/disentangledAttentionPlugin/disentangledAttentionPlugin.h
+++ b/plugin/disentangledAttentionPlugin/disentangledAttentionPlugin.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/disentangledAttentionPlugin/disentangledKernel.cu b/plugin/disentangledAttentionPlugin/disentangledKernel.cu
index f90a98e6..2636fd8f 100644
--- a/plugin/disentangledAttentionPlugin/disentangledKernel.cu
+++ b/plugin/disentangledAttentionPlugin/disentangledKernel.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/efficientNMSPlugin/CMakeLists.txt b/plugin/efficientNMSPlugin/CMakeLists.txt
index 1f1d4169..f1f6081b 100644
--- a/plugin/efficientNMSPlugin/CMakeLists.txt
+++ b/plugin/efficientNMSPlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/efficientNMSPlugin/efficientNMSInference.cu b/plugin/efficientNMSPlugin/efficientNMSInference.cu
index ba99cb56..f3eee1a3 100644
--- a/plugin/efficientNMSPlugin/efficientNMSInference.cu
+++ b/plugin/efficientNMSPlugin/efficientNMSInference.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/efficientNMSPlugin/efficientNMSInference.cuh b/plugin/efficientNMSPlugin/efficientNMSInference.cuh
index bf12c359..c16bdb40 100644
--- a/plugin/efficientNMSPlugin/efficientNMSInference.cuh
+++ b/plugin/efficientNMSPlugin/efficientNMSInference.cuh
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/efficientNMSPlugin/efficientNMSInference.h b/plugin/efficientNMSPlugin/efficientNMSInference.h
index d9ec3192..fa4749bd 100644
--- a/plugin/efficientNMSPlugin/efficientNMSInference.h
+++ b/plugin/efficientNMSPlugin/efficientNMSInference.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/efficientNMSPlugin/efficientNMSParameters.h b/plugin/efficientNMSPlugin/efficientNMSParameters.h
index 89829089..c4b6dc51 100644
--- a/plugin/efficientNMSPlugin/efficientNMSParameters.h
+++ b/plugin/efficientNMSPlugin/efficientNMSParameters.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/efficientNMSPlugin/efficientNMSPlugin.cpp b/plugin/efficientNMSPlugin/efficientNMSPlugin.cpp
index 1a8692ae..71836943 100644
--- a/plugin/efficientNMSPlugin/efficientNMSPlugin.cpp
+++ b/plugin/efficientNMSPlugin/efficientNMSPlugin.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/efficientNMSPlugin/efficientNMSPlugin.h b/plugin/efficientNMSPlugin/efficientNMSPlugin.h
index afceec01..c7248d91 100644
--- a/plugin/efficientNMSPlugin/efficientNMSPlugin.h
+++ b/plugin/efficientNMSPlugin/efficientNMSPlugin.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/efficientNMSPlugin/tftrt/CMakeLists.txt b/plugin/efficientNMSPlugin/tftrt/CMakeLists.txt
index a240519a..657bfadc 100644
--- a/plugin/efficientNMSPlugin/tftrt/CMakeLists.txt
+++ b/plugin/efficientNMSPlugin/tftrt/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/efficientNMSPlugin/tftrt/efficientNMSExplicitTFTRTPlugin.cpp b/plugin/efficientNMSPlugin/tftrt/efficientNMSExplicitTFTRTPlugin.cpp
index f5c86365..3aef2fe6 100644
--- a/plugin/efficientNMSPlugin/tftrt/efficientNMSExplicitTFTRTPlugin.cpp
+++ b/plugin/efficientNMSPlugin/tftrt/efficientNMSExplicitTFTRTPlugin.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/efficientNMSPlugin/tftrt/efficientNMSExplicitTFTRTPlugin.h b/plugin/efficientNMSPlugin/tftrt/efficientNMSExplicitTFTRTPlugin.h
index e1e98052..2ad7a2f0 100644
--- a/plugin/efficientNMSPlugin/tftrt/efficientNMSExplicitTFTRTPlugin.h
+++ b/plugin/efficientNMSPlugin/tftrt/efficientNMSExplicitTFTRTPlugin.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/efficientNMSPlugin/tftrt/efficientNMSImplicitTFTRTPlugin.cpp b/plugin/efficientNMSPlugin/tftrt/efficientNMSImplicitTFTRTPlugin.cpp
index 25c8e0ef..af75d75d 100644
--- a/plugin/efficientNMSPlugin/tftrt/efficientNMSImplicitTFTRTPlugin.cpp
+++ b/plugin/efficientNMSPlugin/tftrt/efficientNMSImplicitTFTRTPlugin.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/efficientNMSPlugin/tftrt/efficientNMSImplicitTFTRTPlugin.h b/plugin/efficientNMSPlugin/tftrt/efficientNMSImplicitTFTRTPlugin.h
index 51b09148..58e07289 100644
--- a/plugin/efficientNMSPlugin/tftrt/efficientNMSImplicitTFTRTPlugin.h
+++ b/plugin/efficientNMSPlugin/tftrt/efficientNMSImplicitTFTRTPlugin.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/embLayerNormPlugin/CMakeLists.txt b/plugin/embLayerNormPlugin/CMakeLists.txt
index f49d60bd..0fbe405b 100644
--- a/plugin/embLayerNormPlugin/CMakeLists.txt
+++ b/plugin/embLayerNormPlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/embLayerNormPlugin/embLayerNormKernel.cu b/plugin/embLayerNormPlugin/embLayerNormKernel.cu
index a32d14e5..6e6707d7 100644
--- a/plugin/embLayerNormPlugin/embLayerNormKernel.cu
+++ b/plugin/embLayerNormPlugin/embLayerNormKernel.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/embLayerNormPlugin/embLayerNormPlugin.cpp b/plugin/embLayerNormPlugin/embLayerNormPlugin.cpp
index 8e392b82..ab523971 100644
--- a/plugin/embLayerNormPlugin/embLayerNormPlugin.cpp
+++ b/plugin/embLayerNormPlugin/embLayerNormPlugin.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/embLayerNormPlugin/embLayerNormPlugin.h b/plugin/embLayerNormPlugin/embLayerNormPlugin.h
index eb21d268..5eb40958 100644
--- a/plugin/embLayerNormPlugin/embLayerNormPlugin.h
+++ b/plugin/embLayerNormPlugin/embLayerNormPlugin.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/embLayerNormPlugin/embLayerNormVarSeqlenKernelHFace.cu b/plugin/embLayerNormPlugin/embLayerNormVarSeqlenKernelHFace.cu
index db8f6b06..a23f3326 100644
--- a/plugin/embLayerNormPlugin/embLayerNormVarSeqlenKernelHFace.cu
+++ b/plugin/embLayerNormPlugin/embLayerNormVarSeqlenKernelHFace.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/embLayerNormPlugin/embLayerNormVarSeqlenKernelMTron.cu b/plugin/embLayerNormPlugin/embLayerNormVarSeqlenKernelMTron.cu
index 95e45820..2fddfe02 100644
--- a/plugin/embLayerNormPlugin/embLayerNormVarSeqlenKernelMTron.cu
+++ b/plugin/embLayerNormPlugin/embLayerNormVarSeqlenKernelMTron.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/embLayerNormPlugin/embLayerNormVarSeqlenPlugin.cpp b/plugin/embLayerNormPlugin/embLayerNormVarSeqlenPlugin.cpp
index 4b6bd72d..4313faa7 100644
--- a/plugin/embLayerNormPlugin/embLayerNormVarSeqlenPlugin.cpp
+++ b/plugin/embLayerNormPlugin/embLayerNormVarSeqlenPlugin.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/embLayerNormPlugin/embLayerNormVarSeqlenPlugin.h b/plugin/embLayerNormPlugin/embLayerNormVarSeqlenPlugin.h
index 80a0cc57..d3141a6b 100644
--- a/plugin/embLayerNormPlugin/embLayerNormVarSeqlenPlugin.h
+++ b/plugin/embLayerNormPlugin/embLayerNormVarSeqlenPlugin.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/exports-vfc_plugin.def b/plugin/exports-vfc_plugin.def
index d47954b3..28a79242 100644
--- a/plugin/exports-vfc_plugin.def
+++ b/plugin/exports-vfc_plugin.def
@@ -1,4 +1,4 @@
-; SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+; SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
; SPDX-License-Identifier: Apache-2.0
;
; Licensed under the Apache License, Version 2.0 (the "License");
@@ -13,7 +13,7 @@
; See the License for the specific language governing permissions and
; limitations under the License.
-LIBRARY nvinfer_vc_plugin
+LIBRARY nvinfer_vc_plugin_10
EXPORTS
setLoggerFinder
getPluginCreators
diff --git a/plugin/exports-vfc_plugin.map b/plugin/exports-vfc_plugin.map
index b90d58ce..7171544b 100644
--- a/plugin/exports-vfc_plugin.map
+++ b/plugin/exports-vfc_plugin.map
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/exports.def b/plugin/exports.def
index 6dac36fe..20503473 100644
--- a/plugin/exports.def
+++ b/plugin/exports.def
@@ -1,4 +1,4 @@
-; SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+; SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
; SPDX-License-Identifier: Apache-2.0
;
; Licensed under the Apache License, Version 2.0 (the "License");
@@ -13,7 +13,7 @@
; See the License for the specific language governing permissions and
; limitations under the License.
-LIBRARY nvinfer_plugin
+LIBRARY nvinfer_plugin_10
EXPORTS
getInferLibVersion
getPluginRegistry
diff --git a/plugin/exports.map b/plugin/exports.map
index 64de08ba..b68b1d16 100644
--- a/plugin/exports.map
+++ b/plugin/exports.map
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/fcPlugin/CMakeLists.txt b/plugin/fcPlugin/CMakeLists.txt
index a240519a..657bfadc 100644
--- a/plugin/fcPlugin/CMakeLists.txt
+++ b/plugin/fcPlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/fcPlugin/fcPlugin.cpp b/plugin/fcPlugin/fcPlugin.cpp
index c98ae433..fd0c1339 100644
--- a/plugin/fcPlugin/fcPlugin.cpp
+++ b/plugin/fcPlugin/fcPlugin.cpp
@@ -140,7 +140,7 @@ void nvinfer1::plugin::bert::LtGemmSearch(cublasLtHandle_t ltHandle, cublasOpera
void const* A, int32_t const& lda, void const* B, int32_t const& ldb, void const* beta, // host pointer
void* C, int32_t const& ldc, void* workSpace, size_t workSpaceSize, cublasComputeType_t computeType,
cudaDataType_t scaleType, cudaDataType_t Atype, cudaDataType_t Btype, cudaDataType_t Ctype,
- std::vector& perfResults)
+ std::vector& perfResults, cudaStream_t stream)
{
cublasStatus_t status = CUBLAS_STATUS_SUCCESS;
@@ -153,7 +153,6 @@ void nvinfer1::plugin::bert::LtGemmSearch(cublasLtHandle_t ltHandle, cublasOpera
cudaEvent_t startEvent = nullptr;
cudaEvent_t stopEvent = nullptr;
- cudaStream_t stream = nullptr;
CublasLtWrapper& cublasLtWrapper = getCublasLtWrapper();
@@ -520,13 +519,20 @@ void FCPluginDynamic::configurePlugin(DynamicPluginTensorDesc const* inputs, int
if (mAlgo.data[0] == 0 && memcmp(mAlgo.data, mAlgo.data + 1, sizeof(mAlgo.data) - sizeof(mAlgo.data[0])) == 0)
{
gLogVerbose << "FCPluginDynamic gemmSearch\n";
+ if (mSharedStream == nullptr)
+ {
+ SharedStream ss{};
+ mSharedStream = static_cast(
+ getPluginRegistry()->acquirePluginResource(kFCPLUGIN_SHARED_STREAM_KEY, &ss))
+ ->mStream;
+ }
if (mType == DataType::kFLOAT)
{
- mAlgo = gemmSearch(mOutDim, mNmax, mK, kMAX_WORKSPACE_BYTES, actualWorkspace);
+ mAlgo = gemmSearch(mOutDim, mNmax, mK, kMAX_WORKSPACE_BYTES, actualWorkspace, mSharedStream);
}
else if (mType == DataType::kHALF)
{
- mAlgo = gemmSearch(mOutDim, mNmax, mK, kMAX_WORKSPACE_BYTES, actualWorkspace);
+ mAlgo = gemmSearch(mOutDim, mNmax, mK, kMAX_WORKSPACE_BYTES, actualWorkspace, mSharedStream);
}
}
@@ -656,6 +662,11 @@ int32_t FCPluginDynamic::initialize() noexcept
void FCPluginDynamic::terminate() noexcept
{
gLogVerbose << "FCPluginDynamic terminate\n";
+ if (mSharedStream)
+ {
+ TRT_UNUSED(getPluginRegistry()->releasePluginResource(kFCPLUGIN_SHARED_STREAM_KEY));
+ mSharedStream = nullptr;
+ }
}
size_t FCPluginDynamic::getSerializationSize() const noexcept
diff --git a/plugin/fcPlugin/fcPlugin.h b/plugin/fcPlugin/fcPlugin.h
index 1ba56f7b..855ce96d 100644
--- a/plugin/fcPlugin/fcPlugin.h
+++ b/plugin/fcPlugin/fcPlugin.h
@@ -31,6 +31,67 @@
namespace nvinfer1
{
+
+namespace pluginInternal
+{
+class SharedStream : public IPluginResource
+{
+public:
+ SharedStream(bool init = false)
+ {
+ if (init)
+ {
+ PLUGIN_CUASSERT(cudaStreamCreate(&mStream));
+ }
+ }
+
+ void free()
+ {
+ if (mStream != nullptr)
+ {
+ PLUGIN_CUASSERT(cudaStreamDestroy(mStream));
+ mStream = nullptr;
+ }
+ }
+
+ int32_t release() noexcept override
+ {
+ try
+ {
+ free();
+ }
+ catch (std::exception const& e)
+ {
+ return -1;
+ }
+ return 0;
+ }
+
+ IPluginResource* clone() noexcept override
+ {
+ std::unique_ptr cloned{};
+ try
+ {
+ cloned = std::make_unique(/* init */ true);
+ }
+ catch (std::exception const& e)
+ {
+ return nullptr;
+ }
+ return cloned.release();
+ }
+
+ ~SharedStream() override
+ {
+ if (mStream)
+ {
+ free();
+ }
+ }
+
+ cudaStream_t mStream{nullptr};
+};
+} // namespace pluginInternal
namespace plugin
{
namespace bert
@@ -41,6 +102,8 @@ struct GemmTypes
{
};
+char const* const kFCPLUGIN_SHARED_STREAM_KEY{"fcPlugin_timing_key"};
+
template <>
struct GemmTypes
{
@@ -174,11 +237,12 @@ void LtGemmSearch(nvinfer1::pluginInternal::cublasLtHandle_t ltHandle,
cudaDataType_t Atype,
cudaDataType_t Btype,
cudaDataType_t Ctype,
- std::vector &perfResults);
+ std::vector &perfResults,
+ cudaStream_t stream);
// clang-format on
template
void LtGemmSearch(nvinfer1::pluginInternal::cublasLtHandle_t ltHandle, Gemm const& g, void* workSpace,
- size_t workSpaceSize, std::vector& perfResults)
+ size_t workSpaceSize, std::vector& perfResults, cudaStream_t stream)
{
// clang-format off
LtGemmSearch(
@@ -203,7 +267,8 @@ void LtGemmSearch(nvinfer1::pluginInternal::cublasLtHandle_t ltHandle, Gemm c
Gemm::Types::cudaTypeI,
Gemm::Types::cudaTypeI,
Gemm::Types::cudaTypeO,
- perfResults
+ perfResults,
+ stream
);
// clang-format on
}
@@ -380,29 +445,30 @@ struct AlgoProps
};
template
-nvinfer1::pluginInternal::cublasLtMatmulAlgo_t gemmSearch(
- int32_t const m, int32_t const n, int32_t const k, size_t const workspaceSize, size_t& actualWorkspace)
+nvinfer1::pluginInternal::cublasLtMatmulAlgo_t gemmSearch(int32_t const m, int32_t const n, int32_t const k,
+ size_t const workspaceSize, size_t& actualWorkspace, cudaStream_t& stream)
{
Gemm g(m, n, k, false, false);
std::vector perfResults(kNB_ALGO_COMBINATIONS);
- PLUGIN_CUASSERT(cudaMalloc(reinterpret_cast(&g.A), g.bytesA));
- PLUGIN_CUASSERT(cudaMalloc(reinterpret_cast(&g.B), g.bytesB));
- PLUGIN_CUASSERT(cudaMalloc(reinterpret_cast(&g.C), g.bytesC));
+ PLUGIN_CUASSERT(cudaMallocAsync(reinterpret_cast(&g.A), g.bytesA, stream));
+ PLUGIN_CUASSERT(cudaMallocAsync(reinterpret_cast(&g.B), g.bytesB, stream));
+ PLUGIN_CUASSERT(cudaMallocAsync(reinterpret_cast(&g.C), g.bytesC, stream));
void* workspace;
- PLUGIN_CUASSERT(cudaMalloc(&workspace, workspaceSize));
+ PLUGIN_CUASSERT(cudaMallocAsync(&workspace, workspaceSize, stream));
nvinfer1::pluginInternal::cublasLtHandle_t lt;
nvinfer1::pluginInternal::CublasLtWrapper& cublasLtWrapper = nvinfer1::pluginInternal::getCublasLtWrapper();
PLUGIN_CUBLASASSERT(cublasLtWrapper.cublasLtCreate(<));
- LtGemmSearch(lt, g, workspace, workspaceSize, perfResults);
- PLUGIN_CUASSERT(cudaDeviceSynchronize());
+
+ LtGemmSearch(lt, g, workspace, workspaceSize, perfResults, stream);
+ PLUGIN_CUASSERT(cudaStreamSynchronize(stream));
PLUGIN_CUBLASASSERT(cublasLtWrapper.cublasLtDestroy(lt));
- PLUGIN_CUASSERT(cudaFree(workspace));
+ PLUGIN_CUASSERT(cudaFreeAsync(workspace, stream));
- PLUGIN_CUASSERT(cudaFree(g.A));
- PLUGIN_CUASSERT(cudaFree(g.B));
- PLUGIN_CUASSERT(cudaFree(g.C));
+ PLUGIN_CUASSERT(cudaFreeAsync(g.A, stream));
+ PLUGIN_CUASSERT(cudaFreeAsync(g.B, stream));
+ PLUGIN_CUASSERT(cudaFreeAsync(g.C, stream));
actualWorkspace = perfResults[0].workspaceSize;
return perfResults[0].algo;
@@ -410,27 +476,28 @@ nvinfer1::pluginInternal::cublasLtMatmulAlgo_t gemmSearch(
template
nvinfer1::pluginInternal::cublasLtMatmulAlgo_t gemmSearch(
- Gemm& g, size_t const workspaceSize, size_t& actualWorkspace)
+ Gemm& g, size_t const workspaceSize, size_t& actualWorkspace, cudaStream_t& stream)
{
std::vector perfResults(kNB_ALGO_COMBINATIONS);
- PLUGIN_CUASSERT(cudaMalloc(&g.A, g.bytesA));
- PLUGIN_CUASSERT(cudaMalloc(&g.B, g.bytesB));
- PLUGIN_CUASSERT(cudaMalloc(&g.C, g.bytesC));
+ PLUGIN_CUASSERT(cudaMallocAsync(&g.A, g.bytesA, stream));
+ PLUGIN_CUASSERT(cudaMallocAsync(&g.B, g.bytesB, stream));
+ PLUGIN_CUASSERT(cudaMallocAsync(&g.C, g.bytesC, stream));
void* workspace;
- PLUGIN_CUASSERT(cudaMalloc(&workspace, workspaceSize));
+ PLUGIN_CUASSERT(cudaMallocAsync(&workspace, workspaceSize, stream));
nvinfer1::pluginInternal::cublasLtHandle_t lt;
nvinfer1::pluginInternal::CublasLtWrapper& cublasLtWrapper = nvinfer1::pluginInternal::getCublasLtWrapper();
PLUGIN_CUBLASASSERT(cublasLtWrapper.cublasLtCreate(<));
- LtGemmSearch(lt, g, workspace, workspaceSize, perfResults);
- PLUGIN_CUASSERT(cudaDeviceSynchronize());
+
+ LtGemmSearch(lt, g, workspace, workspaceSize, perfResults, stream);
+ PLUGIN_CUASSERT(cudaStreamSynchronize(stream));
PLUGIN_CUBLASASSERT(cublasLtWrapper.cublasLtDestroy(lt));
- PLUGIN_CUASSERT(cudaFree(workspace));
+ PLUGIN_CUASSERT(cudaFreeAsync(workspace, stream));
- PLUGIN_CUASSERT(cudaFree(g.A));
- PLUGIN_CUASSERT(cudaFree(g.B));
- PLUGIN_CUASSERT(cudaFree(g.C));
+ PLUGIN_CUASSERT(cudaFreeAsync(g.A, stream));
+ PLUGIN_CUASSERT(cudaFreeAsync(g.B, stream));
+ PLUGIN_CUASSERT(cudaFreeAsync(g.C, stream));
actualWorkspace = perfResults[0].workspaceSize;
return perfResults[0].algo;
@@ -500,6 +567,7 @@ class FCPluginDynamic : public nvinfer1::IPluginV2DynamicExt
bert::cuda_unique_ptr mWdev;
LtContext mLtContext;
+ cudaStream_t mSharedStream{nullptr};
};
class FCPluginDynamicCreator : public nvinfer1::IPluginCreator
@@ -527,6 +595,7 @@ class FCPluginDynamicCreator : public nvinfer1::IPluginCreator
static std::vector mPluginAttributes;
std::string mNamespace;
};
+
} // namespace bert
} // namespace plugin
} // namespace nvinfer1
diff --git a/plugin/flattenConcat/CMakeLists.txt b/plugin/flattenConcat/CMakeLists.txt
index a240519a..657bfadc 100644
--- a/plugin/flattenConcat/CMakeLists.txt
+++ b/plugin/flattenConcat/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/geluPlugin/CMakeLists.txt b/plugin/geluPlugin/CMakeLists.txt
index f49d60bd..0fbe405b 100644
--- a/plugin/geluPlugin/CMakeLists.txt
+++ b/plugin/geluPlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/geluPlugin/geluKernel.cu b/plugin/geluPlugin/geluKernel.cu
index 823ae803..fd7f8d54 100644
--- a/plugin/geluPlugin/geluKernel.cu
+++ b/plugin/geluPlugin/geluKernel.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/geluPlugin/geluPlugin.cpp b/plugin/geluPlugin/geluPlugin.cpp
index ca0d775f..dc6d48f8 100644
--- a/plugin/geluPlugin/geluPlugin.cpp
+++ b/plugin/geluPlugin/geluPlugin.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/geluPlugin/geluPlugin.h b/plugin/geluPlugin/geluPlugin.h
index 14bc0f6a..724d4ee8 100644
--- a/plugin/geluPlugin/geluPlugin.h
+++ b/plugin/geluPlugin/geluPlugin.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/generateDetectionPlugin/CMakeLists.txt b/plugin/generateDetectionPlugin/CMakeLists.txt
index a240519a..657bfadc 100644
--- a/plugin/generateDetectionPlugin/CMakeLists.txt
+++ b/plugin/generateDetectionPlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/generateDetectionPlugin/generateDetectionPlugin.cpp b/plugin/generateDetectionPlugin/generateDetectionPlugin.cpp
index 574f2ba2..7c7f5f82 100644
--- a/plugin/generateDetectionPlugin/generateDetectionPlugin.cpp
+++ b/plugin/generateDetectionPlugin/generateDetectionPlugin.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/generateDetectionPlugin/generateDetectionPlugin.h b/plugin/generateDetectionPlugin/generateDetectionPlugin.h
index 75dd50f3..f888f8a7 100644
--- a/plugin/generateDetectionPlugin/generateDetectionPlugin.h
+++ b/plugin/generateDetectionPlugin/generateDetectionPlugin.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/gridAnchorPlugin/CMakeLists.txt b/plugin/gridAnchorPlugin/CMakeLists.txt
index a240519a..657bfadc 100644
--- a/plugin/gridAnchorPlugin/CMakeLists.txt
+++ b/plugin/gridAnchorPlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/groupNormalizationPlugin/CMakeLists.txt b/plugin/groupNormalizationPlugin/CMakeLists.txt
index 1f1d4169..f1f6081b 100644
--- a/plugin/groupNormalizationPlugin/CMakeLists.txt
+++ b/plugin/groupNormalizationPlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/groupNormalizationPlugin/groupNormalizationKernel.cu b/plugin/groupNormalizationPlugin/groupNormalizationKernel.cu
index fc051e7f..4ab6dd12 100644
--- a/plugin/groupNormalizationPlugin/groupNormalizationKernel.cu
+++ b/plugin/groupNormalizationPlugin/groupNormalizationKernel.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/instanceNormalizationPlugin/CMakeLists.txt b/plugin/instanceNormalizationPlugin/CMakeLists.txt
index 1f1d4169..f1f6081b 100644
--- a/plugin/instanceNormalizationPlugin/CMakeLists.txt
+++ b/plugin/instanceNormalizationPlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/instanceNormalizationPlugin/instanceNormCommon.h b/plugin/instanceNormalizationPlugin/instanceNormCommon.h
index fb6f5bd0..938ed2cf 100644
--- a/plugin/instanceNormalizationPlugin/instanceNormCommon.h
+++ b/plugin/instanceNormalizationPlugin/instanceNormCommon.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/instanceNormalizationPlugin/instanceNormFwd.h b/plugin/instanceNormalizationPlugin/instanceNormFwd.h
index 5f5901bb..1836eb41 100644
--- a/plugin/instanceNormalizationPlugin/instanceNormFwd.h
+++ b/plugin/instanceNormalizationPlugin/instanceNormFwd.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/instanceNormalizationPlugin/instanceNormFwdImpl.cu b/plugin/instanceNormalizationPlugin/instanceNormFwdImpl.cu
index b79436e7..3bf35f6b 100644
--- a/plugin/instanceNormalizationPlugin/instanceNormFwdImpl.cu
+++ b/plugin/instanceNormalizationPlugin/instanceNormFwdImpl.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/leakyReluPlugin/CMakeLists.txt b/plugin/leakyReluPlugin/CMakeLists.txt
index a240519a..657bfadc 100644
--- a/plugin/leakyReluPlugin/CMakeLists.txt
+++ b/plugin/leakyReluPlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/leakyReluPlugin/lReluPlugin.cpp b/plugin/leakyReluPlugin/lReluPlugin.cpp
index 28148c8b..3acf8f39 100644
--- a/plugin/leakyReluPlugin/lReluPlugin.cpp
+++ b/plugin/leakyReluPlugin/lReluPlugin.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/leakyReluPlugin/lReluPlugin.h b/plugin/leakyReluPlugin/lReluPlugin.h
index 60d81029..087b0a0b 100644
--- a/plugin/leakyReluPlugin/lReluPlugin.h
+++ b/plugin/leakyReluPlugin/lReluPlugin.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/modulatedDeformConvPlugin/CMakeLists.txt b/plugin/modulatedDeformConvPlugin/CMakeLists.txt
index df2f2da8..0e7b1e6e 100644
--- a/plugin/modulatedDeformConvPlugin/CMakeLists.txt
+++ b/plugin/modulatedDeformConvPlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/modulatedDeformConvPlugin/commonCudaHelper.h b/plugin/modulatedDeformConvPlugin/commonCudaHelper.h
index 5466817b..336867cd 100644
--- a/plugin/modulatedDeformConvPlugin/commonCudaHelper.h
+++ b/plugin/modulatedDeformConvPlugin/commonCudaHelper.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/multilevelCropAndResizePlugin/CMakeLists.txt b/plugin/multilevelCropAndResizePlugin/CMakeLists.txt
index a240519a..657bfadc 100644
--- a/plugin/multilevelCropAndResizePlugin/CMakeLists.txt
+++ b/plugin/multilevelCropAndResizePlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/multilevelCropAndResizePlugin/multilevelCropAndResizePlugin.cpp b/plugin/multilevelCropAndResizePlugin/multilevelCropAndResizePlugin.cpp
index 8b8c57f0..6ae3186d 100644
--- a/plugin/multilevelCropAndResizePlugin/multilevelCropAndResizePlugin.cpp
+++ b/plugin/multilevelCropAndResizePlugin/multilevelCropAndResizePlugin.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/multilevelCropAndResizePlugin/multilevelCropAndResizePlugin.h b/plugin/multilevelCropAndResizePlugin/multilevelCropAndResizePlugin.h
index c2f615b4..d30df9cf 100644
--- a/plugin/multilevelCropAndResizePlugin/multilevelCropAndResizePlugin.h
+++ b/plugin/multilevelCropAndResizePlugin/multilevelCropAndResizePlugin.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/multilevelProposeROI/CMakeLists.txt b/plugin/multilevelProposeROI/CMakeLists.txt
index a240519a..657bfadc 100644
--- a/plugin/multilevelProposeROI/CMakeLists.txt
+++ b/plugin/multilevelProposeROI/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/multilevelProposeROI/multilevelProposeROIPlugin.cpp b/plugin/multilevelProposeROI/multilevelProposeROIPlugin.cpp
index d9ad8add..48d3a359 100644
--- a/plugin/multilevelProposeROI/multilevelProposeROIPlugin.cpp
+++ b/plugin/multilevelProposeROI/multilevelProposeROIPlugin.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/multilevelProposeROI/multilevelProposeROIPlugin.h b/plugin/multilevelProposeROI/multilevelProposeROIPlugin.h
index 653958e6..e384556f 100644
--- a/plugin/multilevelProposeROI/multilevelProposeROIPlugin.h
+++ b/plugin/multilevelProposeROI/multilevelProposeROIPlugin.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/multilevelProposeROI/tlt_mrcnn_config.h b/plugin/multilevelProposeROI/tlt_mrcnn_config.h
index 13c8abfe..d85cc9fd 100644
--- a/plugin/multilevelProposeROI/tlt_mrcnn_config.h
+++ b/plugin/multilevelProposeROI/tlt_mrcnn_config.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/multiscaleDeformableAttnPlugin/CMakeLists.txt b/plugin/multiscaleDeformableAttnPlugin/CMakeLists.txt
index 1f1d4169..f1f6081b 100644
--- a/plugin/multiscaleDeformableAttnPlugin/CMakeLists.txt
+++ b/plugin/multiscaleDeformableAttnPlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/multiscaleDeformableAttnPlugin/multiscaleDeformableAttn.cu b/plugin/multiscaleDeformableAttnPlugin/multiscaleDeformableAttn.cu
index d6843c64..648c83fb 100644
--- a/plugin/multiscaleDeformableAttnPlugin/multiscaleDeformableAttn.cu
+++ b/plugin/multiscaleDeformableAttnPlugin/multiscaleDeformableAttn.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/multiscaleDeformableAttnPlugin/multiscaleDeformableAttn.h b/plugin/multiscaleDeformableAttnPlugin/multiscaleDeformableAttn.h
index ba29c0bb..50336389 100644
--- a/plugin/multiscaleDeformableAttnPlugin/multiscaleDeformableAttn.h
+++ b/plugin/multiscaleDeformableAttnPlugin/multiscaleDeformableAttn.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/multiscaleDeformableAttnPlugin/multiscaleDeformableAttnPlugin.cpp b/plugin/multiscaleDeformableAttnPlugin/multiscaleDeformableAttnPlugin.cpp
index 18b763ba..1a87adb0 100644
--- a/plugin/multiscaleDeformableAttnPlugin/multiscaleDeformableAttnPlugin.cpp
+++ b/plugin/multiscaleDeformableAttnPlugin/multiscaleDeformableAttnPlugin.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/multiscaleDeformableAttnPlugin/multiscaleDeformableIm2ColCuda.cuh b/plugin/multiscaleDeformableAttnPlugin/multiscaleDeformableIm2ColCuda.cuh
index 370c4cd1..454b9f03 100644
--- a/plugin/multiscaleDeformableAttnPlugin/multiscaleDeformableIm2ColCuda.cuh
+++ b/plugin/multiscaleDeformableAttnPlugin/multiscaleDeformableIm2ColCuda.cuh
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/nmsPlugin/CMakeLists.txt b/plugin/nmsPlugin/CMakeLists.txt
index a240519a..657bfadc 100644
--- a/plugin/nmsPlugin/CMakeLists.txt
+++ b/plugin/nmsPlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/nmsPlugin/nmsPlugin.cpp b/plugin/nmsPlugin/nmsPlugin.cpp
index 458c184e..e567f8b9 100644
--- a/plugin/nmsPlugin/nmsPlugin.cpp
+++ b/plugin/nmsPlugin/nmsPlugin.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/nmsPlugin/nmsPlugin.h b/plugin/nmsPlugin/nmsPlugin.h
index eccefc37..dc70f2b0 100644
--- a/plugin/nmsPlugin/nmsPlugin.h
+++ b/plugin/nmsPlugin/nmsPlugin.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/normalizePlugin/CMakeLists.txt b/plugin/normalizePlugin/CMakeLists.txt
index a240519a..657bfadc 100644
--- a/plugin/normalizePlugin/CMakeLists.txt
+++ b/plugin/normalizePlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/nvFasterRCNN/CMakeLists.txt b/plugin/nvFasterRCNN/CMakeLists.txt
index a240519a..657bfadc 100644
--- a/plugin/nvFasterRCNN/CMakeLists.txt
+++ b/plugin/nvFasterRCNN/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/pillarScatterPlugin/CMakeLists.txt b/plugin/pillarScatterPlugin/CMakeLists.txt
index a240519a..657bfadc 100644
--- a/plugin/pillarScatterPlugin/CMakeLists.txt
+++ b/plugin/pillarScatterPlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/pillarScatterPlugin/pillarScatter.cpp b/plugin/pillarScatterPlugin/pillarScatter.cpp
index b520347f..fe47b4c0 100644
--- a/plugin/pillarScatterPlugin/pillarScatter.cpp
+++ b/plugin/pillarScatterPlugin/pillarScatter.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/pillarScatterPlugin/pillarScatter.h b/plugin/pillarScatterPlugin/pillarScatter.h
index cdaf0454..6a968b08 100644
--- a/plugin/pillarScatterPlugin/pillarScatter.h
+++ b/plugin/pillarScatterPlugin/pillarScatter.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/priorBoxPlugin/CMakeLists.txt b/plugin/priorBoxPlugin/CMakeLists.txt
index a240519a..657bfadc 100644
--- a/plugin/priorBoxPlugin/CMakeLists.txt
+++ b/plugin/priorBoxPlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/proposalLayerPlugin/CMakeLists.txt b/plugin/proposalLayerPlugin/CMakeLists.txt
index a240519a..657bfadc 100644
--- a/plugin/proposalLayerPlugin/CMakeLists.txt
+++ b/plugin/proposalLayerPlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/proposalLayerPlugin/proposalLayerPlugin.cpp b/plugin/proposalLayerPlugin/proposalLayerPlugin.cpp
index 1335ea66..b9847495 100644
--- a/plugin/proposalLayerPlugin/proposalLayerPlugin.cpp
+++ b/plugin/proposalLayerPlugin/proposalLayerPlugin.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/proposalLayerPlugin/proposalLayerPlugin.h b/plugin/proposalLayerPlugin/proposalLayerPlugin.h
index 68a0d136..d612db29 100644
--- a/plugin/proposalLayerPlugin/proposalLayerPlugin.h
+++ b/plugin/proposalLayerPlugin/proposalLayerPlugin.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/proposalPlugin/CMakeLists.txt b/plugin/proposalPlugin/CMakeLists.txt
index a240519a..657bfadc 100644
--- a/plugin/proposalPlugin/CMakeLists.txt
+++ b/plugin/proposalPlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/proposalPlugin/proposalPlugin.cpp b/plugin/proposalPlugin/proposalPlugin.cpp
index e1bd677b..6a6e48c0 100644
--- a/plugin/proposalPlugin/proposalPlugin.cpp
+++ b/plugin/proposalPlugin/proposalPlugin.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
@@ -514,7 +514,7 @@ void ProposalPlugin::setPluginNamespace(char const* libNamespace) noexcept
{
try
{
- PLUGIN_VALIDATE(libNamespace != nullptr);
+ PLUGIN_VALIDATE(libNamespace == nullptr);
mNamespace = libNamespace;
}
catch (std::exception const& e)
@@ -527,7 +527,7 @@ void ProposalDynamicPlugin::setPluginNamespace(char const* libNamespace) noexcep
{
try
{
- PLUGIN_VALIDATE(libNamespace != nullptr);
+ PLUGIN_VALIDATE(libNamespace == nullptr);
mNamespace = libNamespace;
}
catch (std::exception const& e)
diff --git a/plugin/proposalPlugin/proposalPlugin.h b/plugin/proposalPlugin/proposalPlugin.h
index 05e9508f..025f1dee 100644
--- a/plugin/proposalPlugin/proposalPlugin.h
+++ b/plugin/proposalPlugin/proposalPlugin.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/pyramidROIAlignPlugin/CMakeLists.txt b/plugin/pyramidROIAlignPlugin/CMakeLists.txt
index a240519a..657bfadc 100644
--- a/plugin/pyramidROIAlignPlugin/CMakeLists.txt
+++ b/plugin/pyramidROIAlignPlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/pyramidROIAlignPlugin/pyramidROIAlignPlugin.cpp b/plugin/pyramidROIAlignPlugin/pyramidROIAlignPlugin.cpp
index 141339f1..e1cf5749 100644
--- a/plugin/pyramidROIAlignPlugin/pyramidROIAlignPlugin.cpp
+++ b/plugin/pyramidROIAlignPlugin/pyramidROIAlignPlugin.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/pyramidROIAlignPlugin/pyramidROIAlignPlugin.h b/plugin/pyramidROIAlignPlugin/pyramidROIAlignPlugin.h
index dde6a309..9d2cf26e 100644
--- a/plugin/pyramidROIAlignPlugin/pyramidROIAlignPlugin.h
+++ b/plugin/pyramidROIAlignPlugin/pyramidROIAlignPlugin.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/regionPlugin/CMakeLists.txt b/plugin/regionPlugin/CMakeLists.txt
index a240519a..657bfadc 100644
--- a/plugin/regionPlugin/CMakeLists.txt
+++ b/plugin/regionPlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/regionPlugin/regionPlugin.cpp b/plugin/regionPlugin/regionPlugin.cpp
index c6f709eb..6a140556 100644
--- a/plugin/regionPlugin/regionPlugin.cpp
+++ b/plugin/regionPlugin/regionPlugin.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/regionPlugin/regionPlugin.h b/plugin/regionPlugin/regionPlugin.h
index 7af234f1..66913fc0 100644
--- a/plugin/regionPlugin/regionPlugin.h
+++ b/plugin/regionPlugin/regionPlugin.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/reorgPlugin/CMakeLists.txt b/plugin/reorgPlugin/CMakeLists.txt
index a240519a..657bfadc 100644
--- a/plugin/reorgPlugin/CMakeLists.txt
+++ b/plugin/reorgPlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/reorgPlugin/reorgPlugin.cpp b/plugin/reorgPlugin/reorgPlugin.cpp
index 0154580a..227c59d9 100644
--- a/plugin/reorgPlugin/reorgPlugin.cpp
+++ b/plugin/reorgPlugin/reorgPlugin.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/reorgPlugin/reorgPlugin.h b/plugin/reorgPlugin/reorgPlugin.h
index 5971e028..f0e4b2e6 100644
--- a/plugin/reorgPlugin/reorgPlugin.h
+++ b/plugin/reorgPlugin/reorgPlugin.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/resizeNearestPlugin/CMakeLists.txt b/plugin/resizeNearestPlugin/CMakeLists.txt
index a240519a..657bfadc 100644
--- a/plugin/resizeNearestPlugin/CMakeLists.txt
+++ b/plugin/resizeNearestPlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/resizeNearestPlugin/resizeNearestPlugin.cpp b/plugin/resizeNearestPlugin/resizeNearestPlugin.cpp
index d60c91fa..75f0b73a 100644
--- a/plugin/resizeNearestPlugin/resizeNearestPlugin.cpp
+++ b/plugin/resizeNearestPlugin/resizeNearestPlugin.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/resizeNearestPlugin/resizeNearestPlugin.h b/plugin/resizeNearestPlugin/resizeNearestPlugin.h
index 5db5fc49..3f9f7e3e 100644
--- a/plugin/resizeNearestPlugin/resizeNearestPlugin.h
+++ b/plugin/resizeNearestPlugin/resizeNearestPlugin.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/roiAlignPlugin/CMakeLists.txt b/plugin/roiAlignPlugin/CMakeLists.txt
index bd8066f0..a2ac13d7 100644
--- a/plugin/roiAlignPlugin/CMakeLists.txt
+++ b/plugin/roiAlignPlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/roiAlignPlugin/roiAlignKernel.h b/plugin/roiAlignPlugin/roiAlignKernel.h
index 890a9822..3be3faaa 100644
--- a/plugin/roiAlignPlugin/roiAlignKernel.h
+++ b/plugin/roiAlignPlugin/roiAlignKernel.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/roiAlignPlugin/roiAlignPlugin.cpp b/plugin/roiAlignPlugin/roiAlignPlugin.cpp
index d5e51638..5681eff5 100644
--- a/plugin/roiAlignPlugin/roiAlignPlugin.cpp
+++ b/plugin/roiAlignPlugin/roiAlignPlugin.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/roiAlignPlugin/roiAlignPlugin.h b/plugin/roiAlignPlugin/roiAlignPlugin.h
index f1246c83..e22d2571 100644
--- a/plugin/roiAlignPlugin/roiAlignPlugin.h
+++ b/plugin/roiAlignPlugin/roiAlignPlugin.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/scatterElementsPlugin/CMakeLists.txt b/plugin/scatterElementsPlugin/CMakeLists.txt
index 1f1d4169..f1f6081b 100644
--- a/plugin/scatterElementsPlugin/CMakeLists.txt
+++ b/plugin/scatterElementsPlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/scatterElementsPlugin/TensorInfo.cuh b/plugin/scatterElementsPlugin/TensorInfo.cuh
index 0656756c..fd6dd69d 100644
--- a/plugin/scatterElementsPlugin/TensorInfo.cuh
+++ b/plugin/scatterElementsPlugin/TensorInfo.cuh
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/scatterElementsPlugin/atomics.cuh b/plugin/scatterElementsPlugin/atomics.cuh
index 90094c22..19c43e48 100644
--- a/plugin/scatterElementsPlugin/atomics.cuh
+++ b/plugin/scatterElementsPlugin/atomics.cuh
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/scatterElementsPlugin/reducer.cuh b/plugin/scatterElementsPlugin/reducer.cuh
index 7143aa9f..baa13d92 100644
--- a/plugin/scatterElementsPlugin/reducer.cuh
+++ b/plugin/scatterElementsPlugin/reducer.cuh
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/scatterElementsPlugin/scatterElementsPlugin.cpp b/plugin/scatterElementsPlugin/scatterElementsPlugin.cpp
index 7910ad55..babbaecc 100644
--- a/plugin/scatterElementsPlugin/scatterElementsPlugin.cpp
+++ b/plugin/scatterElementsPlugin/scatterElementsPlugin.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/scatterElementsPlugin/scatterElementsPlugin.h b/plugin/scatterElementsPlugin/scatterElementsPlugin.h
index a49c4448..01c2a73d 100644
--- a/plugin/scatterElementsPlugin/scatterElementsPlugin.h
+++ b/plugin/scatterElementsPlugin/scatterElementsPlugin.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/scatterElementsPlugin/scatterElementsPluginKernel.cu b/plugin/scatterElementsPlugin/scatterElementsPluginKernel.cu
index 7f487725..b09db5ae 100644
--- a/plugin/scatterElementsPlugin/scatterElementsPluginKernel.cu
+++ b/plugin/scatterElementsPlugin/scatterElementsPluginKernel.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/scatterElementsPlugin/scatterElementsPluginKernel.h b/plugin/scatterElementsPlugin/scatterElementsPluginKernel.h
index d7fa1f5a..307ef355 100644
--- a/plugin/scatterElementsPlugin/scatterElementsPluginKernel.h
+++ b/plugin/scatterElementsPlugin/scatterElementsPluginKernel.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/scatterPlugin/CMakeLists.txt b/plugin/scatterPlugin/CMakeLists.txt
index 1f1d4169..f1f6081b 100644
--- a/plugin/scatterPlugin/CMakeLists.txt
+++ b/plugin/scatterPlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/scatterPlugin/scatterLayer.cu b/plugin/scatterPlugin/scatterLayer.cu
index b7409156..55fdef1f 100644
--- a/plugin/scatterPlugin/scatterLayer.cu
+++ b/plugin/scatterPlugin/scatterLayer.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/skipLayerNormPlugin/CMakeLists.txt b/plugin/skipLayerNormPlugin/CMakeLists.txt
index f49d60bd..0fbe405b 100644
--- a/plugin/skipLayerNormPlugin/CMakeLists.txt
+++ b/plugin/skipLayerNormPlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/skipLayerNormPlugin/skipLayerNormInt8InterleavedKernelHFace.cu b/plugin/skipLayerNormPlugin/skipLayerNormInt8InterleavedKernelHFace.cu
index 428c7483..b915dfb2 100644
--- a/plugin/skipLayerNormPlugin/skipLayerNormInt8InterleavedKernelHFace.cu
+++ b/plugin/skipLayerNormPlugin/skipLayerNormInt8InterleavedKernelHFace.cu
@@ -1,6 +1,6 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION &
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION &
* AFFILIATES. All rights reserved. SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/skipLayerNormPlugin/skipLayerNormInt8InterleavedKernelMTron.cu b/plugin/skipLayerNormPlugin/skipLayerNormInt8InterleavedKernelMTron.cu
index f4c2a39c..7858f3e3 100644
--- a/plugin/skipLayerNormPlugin/skipLayerNormInt8InterleavedKernelMTron.cu
+++ b/plugin/skipLayerNormPlugin/skipLayerNormInt8InterleavedKernelMTron.cu
@@ -1,6 +1,6 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION &
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION &
* AFFILIATES. All rights reserved. SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/skipLayerNormPlugin/skipLayerNormInt8InterleavedPlugin.cpp b/plugin/skipLayerNormPlugin/skipLayerNormInt8InterleavedPlugin.cpp
index 72061613..1b74f944 100644
--- a/plugin/skipLayerNormPlugin/skipLayerNormInt8InterleavedPlugin.cpp
+++ b/plugin/skipLayerNormPlugin/skipLayerNormInt8InterleavedPlugin.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION &
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION &
* AFFILIATES. All rights reserved. SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/skipLayerNormPlugin/skipLayerNormInt8InterleavedPlugin.h b/plugin/skipLayerNormPlugin/skipLayerNormInt8InterleavedPlugin.h
index f12cdda8..e858919b 100644
--- a/plugin/skipLayerNormPlugin/skipLayerNormInt8InterleavedPlugin.h
+++ b/plugin/skipLayerNormPlugin/skipLayerNormInt8InterleavedPlugin.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION &
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION &
* AFFILIATES. All rights reserved. SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/skipLayerNormPlugin/skipLayerNormKernel.cu b/plugin/skipLayerNormPlugin/skipLayerNormKernel.cu
index 5d52c249..da0cee19 100644
--- a/plugin/skipLayerNormPlugin/skipLayerNormKernel.cu
+++ b/plugin/skipLayerNormPlugin/skipLayerNormKernel.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION &
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION &
* AFFILIATES. All rights reserved. SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/skipLayerNormPlugin/skipLayerNormPlugin.cpp b/plugin/skipLayerNormPlugin/skipLayerNormPlugin.cpp
index 04ed5885..c792486b 100644
--- a/plugin/skipLayerNormPlugin/skipLayerNormPlugin.cpp
+++ b/plugin/skipLayerNormPlugin/skipLayerNormPlugin.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION &
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION &
* AFFILIATES. All rights reserved. SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/skipLayerNormPlugin/skipLayerNormPlugin.h b/plugin/skipLayerNormPlugin/skipLayerNormPlugin.h
index b9fb8c50..9b1a783a 100644
--- a/plugin/skipLayerNormPlugin/skipLayerNormPlugin.h
+++ b/plugin/skipLayerNormPlugin/skipLayerNormPlugin.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION &
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION &
* AFFILIATES. All rights reserved. SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/specialSlicePlugin/CMakeLists.txt b/plugin/specialSlicePlugin/CMakeLists.txt
index a240519a..657bfadc 100644
--- a/plugin/specialSlicePlugin/CMakeLists.txt
+++ b/plugin/specialSlicePlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/specialSlicePlugin/specialSlicePlugin.cpp b/plugin/specialSlicePlugin/specialSlicePlugin.cpp
index f4bdb04c..3730cfcc 100644
--- a/plugin/specialSlicePlugin/specialSlicePlugin.cpp
+++ b/plugin/specialSlicePlugin/specialSlicePlugin.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/specialSlicePlugin/specialSlicePlugin.h b/plugin/specialSlicePlugin/specialSlicePlugin.h
index 0837682f..710bb8b4 100644
--- a/plugin/specialSlicePlugin/specialSlicePlugin.h
+++ b/plugin/specialSlicePlugin/specialSlicePlugin.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/splitPlugin/CMakeLists.txt b/plugin/splitPlugin/CMakeLists.txt
index 1f1d4169..f1f6081b 100644
--- a/plugin/splitPlugin/CMakeLists.txt
+++ b/plugin/splitPlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/splitPlugin/split.cu b/plugin/splitPlugin/split.cu
index 771e9cba..0afec432 100644
--- a/plugin/splitPlugin/split.cu
+++ b/plugin/splitPlugin/split.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/splitPlugin/split.h b/plugin/splitPlugin/split.h
index cc1916bf..2d7a9bd5 100644
--- a/plugin/splitPlugin/split.h
+++ b/plugin/splitPlugin/split.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/voxelGeneratorPlugin/CMakeLists.txt b/plugin/voxelGeneratorPlugin/CMakeLists.txt
index a240519a..657bfadc 100644
--- a/plugin/voxelGeneratorPlugin/CMakeLists.txt
+++ b/plugin/voxelGeneratorPlugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/voxelGeneratorPlugin/voxelGenerator.cpp b/plugin/voxelGeneratorPlugin/voxelGenerator.cpp
index c27d5193..2fff10cc 100644
--- a/plugin/voxelGeneratorPlugin/voxelGenerator.cpp
+++ b/plugin/voxelGeneratorPlugin/voxelGenerator.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/plugin/voxelGeneratorPlugin/voxelGenerator.h b/plugin/voxelGeneratorPlugin/voxelGenerator.h
index fea96877..9bb4f471 100644
--- a/plugin/voxelGeneratorPlugin/voxelGenerator.h
+++ b/plugin/voxelGeneratorPlugin/voxelGenerator.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/python/CMakeLists.txt b/python/CMakeLists.txt
index 1494c1fd..66034f8b 100644
--- a/python/CMakeLists.txt
+++ b/python/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -91,7 +91,7 @@ if (MSVC)
find_path(PY_LIB_DIR ${PYTHON_LIB_NAME}.lib HINTS ${WIN_EXTERNALS}/${PYTHON} ${EXT_PATH}/${PYTHON} PATH_SUFFIXES lib)
message(STATUS "PY_LIB_DIR: ${PY_LIB_DIR}")
else()
- find_path(PY_INCLUDE Python.h HINTS ${EXT_PATH}/${PYTHON} PATH_SUFFIXES include)
+ find_path(PY_INCLUDE Python.h HINTS ${EXT_PATH}/${PYTHON} /usr/include/${PYTHON} PATH_SUFFIXES include)
endif()
message(STATUS "PY_INCLUDE: ${PY_INCLUDE}")
@@ -133,16 +133,6 @@ else()
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${GLIBCXX_USE_CXX11_ABI_FLAG} -fvisibility=hidden -std=c++${CPP_STANDARD} -Wno-deprecated-declarations")
endif()
-# remove md
-# Add the flags to enable MD-TRT.
-if ("${ENABLE_MDTRT}" STREQUAL "1")
- include_directories(${TENSORRT_ROOT}/optimizer)
- include_directories(${TENSORRT_ROOT}/runtime)
- include_directories(${TENSORRT_ROOT}/common)
- include_directories(${TENSORRT_ROOT}/safety)
- add_compile_definitions(ENABLE_MDTRT=1)
-endif()
-
# Update linker
if(${NV_TARGET_OS} MATCHES "wddm2")
if(DEFINED W10_LINKER)
@@ -159,12 +149,26 @@ else()
set(vfc_suffix "")
endif()
+if (MSVC)
+ set(nvinfer_lib_name "nvinfer_${TENSORRT_MAJOR_VERSION}")
+ set(nvinfer_plugin_lib_name "nvinfer_plugin_${TENSORRT_MAJOR_VERSION}")
+ set(nvonnxparser_lib_name "nvonnxparser_${TENSORRT_MAJOR_VERSION}")
+ set(nvinfer_lean_lib_name "nvinfer_lean_${TENSORRT_MAJOR_VERSION}${vfc_suffix}")
+ set(nvinfer_dispatch_lib_name "nvinfer_dispatch_${TENSORRT_MAJOR_VERSION}${vfc_suffix}")
+else()
+ set(nvinfer_lib_name "nvinfer")
+ set(nvinfer_plugin_lib_name "nvinfer_plugin")
+ set(nvonnxparser_lib_name "nvonnxparser")
+ set(nvinfer_lean_lib_name "nvinfer_lean${vfc_suffix}")
+ set(nvinfer_dispatch_lib_name "nvinfer_dispatch${vfc_suffix}")
+endif()
+
if (${TENSORRT_MODULE} STREQUAL "tensorrt")
- set(TRT_LIBS nvinfer nvonnxparser nvinfer_plugin)
+ set(TRT_LIBS ${nvinfer_lib_name} ${nvonnxparser_lib_name} ${nvinfer_plugin_lib_name})
elseif (${TENSORRT_MODULE} STREQUAL "tensorrt_lean")
- set(TRT_LIBS "nvinfer_lean${vfc_suffix}")
+ set(TRT_LIBS ${nvinfer_lean_lib_name})
elseif (${TENSORRT_MODULE} STREQUAL "tensorrt_dispatch")
- set(TRT_LIBS "nvinfer_dispatch${vfc_suffix}")
+ set(TRT_LIBS ${nvinfer_dispatch_lib_name})
else()
message(FATAL_ERROR "Unknown TensorRT module " ${TENSORRT_MODULE})
endif()
diff --git a/python/docstrings/infer/pyAlgorithmSelectorDoc.h b/python/docstrings/infer/pyAlgorithmSelectorDoc.h
index f5814474..78ba454c 100644
--- a/python/docstrings/infer/pyAlgorithmSelectorDoc.h
+++ b/python/docstrings/infer/pyAlgorithmSelectorDoc.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
@@ -60,13 +60,7 @@ constexpr const char* descr = R"trtdoc(
:ivar num_inputs: :class:`int` number of inputs of the algorithm.
:ivar num_outputs: :class:`int` number of outputs of the algorithm.
)trtdoc"
-// remove md
-#if ENABLE_MDTRT
- R"trtdoc(
- :ivar instance_id: Read-only. The multi-device instance ID.
-)trtdoc"
-#endif // ENABLE_MDTRT
- ;
+ ;
constexpr const char* get_shape = R"trtdoc(
Get the minimum / optimum / maximum dimensions for a dynamic input tensor.
diff --git a/python/docstrings/infer/pyCoreDoc.h b/python/docstrings/infer/pyCoreDoc.h
index 3586fd9f..d59d6ac0 100644
--- a/python/docstrings/infer/pyCoreDoc.h
+++ b/python/docstrings/infer/pyCoreDoc.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
@@ -407,7 +407,7 @@ constexpr char const* descr = R"trtdoc(
:ivar nvtx_verbosity: The NVTX verbosity of the execution context. Building with DETAILED verbosity will generally increase latency in enqueueV3(). Call this method to select NVTX verbosity in this execution context at runtime. The default is the verbosity with which the engine was built, and the verbosity may not be raised above that level. This function does not affect how IEngineInspector interacts with the engine.
:ivar temporary_allocator: :class:`IGpuAllocator` The GPU allocator used for internal temporary storage.
:ivar weight_streaming_budget: Set and get the current weight streaming budget for inference. The budget may be set to -1 disabling weight streaming at runtime, 0 (default) enabling TRT to choose to weight stream or not, or a positive value in the inclusive range [minimum_weight_streaming_budget, streamable_weights_size - 1].
- :ivar minimum_weight_streaming_budget: Returns the minimum weight streaming budget in bytes required to run the network successfully. The engine must have been built with kWEIGHT_STREAMING.
+ :ivar minimum_weight_streaming_budget: Returns the minimum weight streaming budget in bytes required to run the network successfully. The engine must have been built with kWEIGHT_STREAMING.
:ivar streamable_weights_size: Returns the size of the streamable weights in the engine. This may not include all the weights.
)trtdoc";
@@ -731,15 +731,6 @@ constexpr char const* create_execution_context_without_device_memory = R"trtdoc(
:returns: An :class:`IExecutionContext` without device memory allocated.
)trtdoc";
-constexpr char const* get_profile_shape = R"trtdoc(
- Get the minimum/optimum/maximum dimensions for a particular binding under an optimization profile.
-
- :arg profile_index: The index of the profile.
- :arg binding: The binding index or name.
-
- :returns: A ``List[Dims]`` of length 3, containing the minimum, optimum, and maximum shapes, in that order.
-)trtdoc";
-
constexpr char const* get_tensor_profile_values = R"trtdoc(
Get minimum/optimum/maximum values for an input shape binding under an optimization profile. If the specified binding is not an input shape binding, an exception is raised.
@@ -882,7 +873,7 @@ To implement a custom output allocator, ensure that you explicitly instantiate t
def reallocate_output_async(self, tensor_name, memory, size, alignment, stream):
... # Your implementation here
-
+
def notify_shape(self, tensor_name, shape):
... # Your implementation here
@@ -936,7 +927,7 @@ To implement a custom stream reader, ensure that you explicitly instantiate the
def __init__(self):
trt.IStreamReader.__init__(self)
- def read(self, memory, size):
+ def read(self, size: int) -> bytes:
... # Your implementation here
)trtdoc";
@@ -1032,7 +1023,7 @@ constexpr char const* TACTIC_DRAM = R"trtdoc(
cudaGetDeviceProperties.embedded is true, and 100% otherwise.
)trtdoc";
constexpr char const* TACTIC_SHARED_MEMORY = R"trtdoc(
- TACTIC_SHARED_MEMORY defines the maximum shared memory size utilized for executing
+ TACTIC_SHARED_MEMORY defines the maximum shared memory size utilized for driver reserved and executing
the backend CUDA kernel implementation. Adjust this value to restrict tactics that exceed
the specified threshold en masse. The default value is device max capability. This value must
be less than 1GiB.
@@ -1074,7 +1065,7 @@ constexpr char const* NONE = R"trtdoc(
Do not require hardware compatibility with GPU architectures other than that of the GPU on which the engine was built.
)trtdoc";
constexpr char const* AMPERE_PLUS = R"trtdoc(
- Require that the engine is compatible with Ampere and newer GPUs. This will limit the max shared memory usage to
+ Require that the engine is compatible with Ampere and newer GPUs. This will limit the combined usage of driver reserved and backend kernel max shared memory to
48KiB, may reduce the number of available tactics for each layer, and may prevent some fusions from occurring.
Thus this can decrease the performance, especially for tf32 models.
This option will disable cuDNN, cuBLAS, and cuBLAS LT as tactic sources.
@@ -1624,7 +1615,7 @@ constexpr char const* deserialize_cuda_engine = R"trtdoc(
constexpr char const* deserialize_cuda_engine_reader = R"trtdoc(
Deserialize an :class:`ICudaEngine` from a stream reader.
- :arg stream_reader: The :class:`PyStreamReader` that will read the serialized :class:`ICudaEngine`. This enables deserialization from a file directly.
+ :arg stream_reader: The :class:`PyStreamReader` that will read the serialized :class:`ICudaEngine`. This enables deserialization from a file directly.
:returns: The :class:`ICudaEngine`, or None if it could not be deserialized.
)trtdoc";
@@ -1794,9 +1785,9 @@ constexpr char const* get_weights_prototype = R"trtdoc(
The dtype and size of weights prototype is the same as weights used for engine building.
The size of the weights prototype is -1 when the name of the weights is None or does not correspond to any refittable weights.
-
+
:arg weights_name: The name of the weights to be refitted.
-
+
:returns: weights prototype associated with the given name.
)trtdoc";
@@ -2033,7 +2024,7 @@ Note that all methods below (allocate, reallocate, deallocate, allocate_async, r
constexpr char const* allocate = R"trtdoc(
[DEPRECATED] Deprecated in TensorRT 10.0. Please use allocate_async instead.
A callback implemented by the application to handle acquisition of GPU memory.
- This is just a wrapper around a syncronous method allocate_async passing the default stream.
+ This is just a wrapper around a synchronous method allocate_async passing the default stream.
If an allocation request of size 0 is made, ``None`` should be returned.
@@ -2052,7 +2043,7 @@ constexpr char const* allocate = R"trtdoc(
constexpr char const* deallocate = R"trtdoc(
[DEPRECATED] Deprecated in TensorRT 10.0. Please use deallocate_async instead.
A callback implemented by the application to handle release of GPU memory.
- This is just a wrapper around a syncronous method deallocate_async passing the default stream.
+ This is just a wrapper around a synchronous method deallocate_async passing the default stream.
TensorRT may pass a 0 to this function if it was previously returned by ``allocate()``.
diff --git a/python/docstrings/infer/pyFoundationalTypesDoc.h b/python/docstrings/infer/pyFoundationalTypesDoc.h
index 0e404631..39ffd53f 100644
--- a/python/docstrings/infer/pyFoundationalTypesDoc.h
+++ b/python/docstrings/infer/pyFoundationalTypesDoc.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
@@ -94,8 +94,8 @@ constexpr const char* init_type = R"trtdoc(
constexpr const char* init_ptr = R"trtdoc(
Initializes a Weights object with the specified data.
- :type: A type to initialize the weights with.
- :ptr: A pointer to the data.
+ :type: A type to initialize the weights with.
+ :ptr: A pointer to the data.
:count: The number of weights.
)trtdoc";
@@ -108,7 +108,7 @@ constexpr const char* numpy = R"trtdoc(
Create a numpy array using the underlying buffer of this weights object.
The resulting array is just a view over the existing data, i.e. no deep copy is made.
- If the weights cannot be converted to NumPy (e.g. due to unsupported data type), the original weights are returned.
+ If the weights cannot be converted to NumPy (e.g. due to unsupported data type), the original weights are returned.
:returns: The NumPy array or the original weights.
)trtdoc";
diff --git a/python/docstrings/infer/pyGraphDoc.h b/python/docstrings/infer/pyGraphDoc.h
index 1581ad9c..e9913210 100644
--- a/python/docstrings/infer/pyGraphDoc.h
+++ b/python/docstrings/infer/pyGraphDoc.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
@@ -1341,8 +1341,10 @@ constexpr const char* descr = R"trtdoc(
Enumerates bounding box data formats used for the Boxes input tensor in the NMS layer.
)trtdoc";
-constexpr const char* CORNER_PAIRS = R"trtdoc((x1, y1, x2, y2) where (x1, y1) and (x2, y2) are any pair of diagonal corners)trtdoc";
-constexpr const char* CENTER_SIZES = R"trtdoc((x_center, y_center, width, height) where (x_center, y_center) is the center point of the box)trtdoc";
+constexpr const char* CORNER_PAIRS
+ = R"trtdoc((x1, y1, x2, y2) where (x1, y1) and (x2, y2) are any pair of diagonal corners)trtdoc";
+constexpr const char* CENTER_SIZES
+ = R"trtdoc((x_center, y_center, width, height) where (x_center, y_center) is the center point of the box)trtdoc";
} // namespace BoundingBoxFormatDoc
@@ -1422,7 +1424,6 @@ constexpr const char* set_input = R"trtdoc(
} // namespace INMSLayerDoc
-
namespace FillOperationDoc
{
constexpr const char* descr = R"trtdoc(The tensor fill operations that may performed by an Fill layer.)trtdoc";
diff --git a/python/docstrings/infer/pyInt8Doc.h b/python/docstrings/infer/pyInt8Doc.h
index 91b635fe..013c6c75 100644
--- a/python/docstrings/infer/pyInt8Doc.h
+++ b/python/docstrings/infer/pyInt8Doc.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/python/docstrings/infer/pyPluginDoc.h b/python/docstrings/infer/pyPluginDoc.h
index 5df97568..f541a281 100644
--- a/python/docstrings/infer/pyPluginDoc.h
+++ b/python/docstrings/infer/pyPluginDoc.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
@@ -183,7 +183,6 @@ constexpr const char* detach_from_context = R"trtdoc(
)trtdoc";
} // namespace IPluginV2ExtDoc
-
namespace IPluginV2DynamicExtDoc
{
constexpr const char* descr = R"trtdoc(
@@ -194,7 +193,7 @@ constexpr const char* descr = R"trtdoc(
Similar to `IPluginV2Ext` (including capability to support different output data types), but with support for dynamic shapes.
This class is made available for the purpose of implementing `IPluginV2DynamicExt` plugins with Python. Inherited
- Python->C++ bindings from `IPluginV2` and `IPluginV2Ext` will continue to work on C++-based `IPluginV2DynamicExt` plugins.
+ Python->C++ bindings from `IPluginV2` and `IPluginV2Ext` will continue to work on C++-based `IPluginV2DynamicExt` plugins.
.. note::
Every attribute except `tensorrt_version` must be explicitly initialized on Python-based plugins. Except `plugin_namespace`,
@@ -212,22 +211,22 @@ constexpr const char* initialize = R"trtdoc(
Initialize the plugin for execution. This is called when the engine is created.
.. note::
- When implementing a Python-based plugin, implementing this method is optional. The default behavior is equivalent to `pass`.
+ When implementing a Python-based plugin, implementing this method is optional. The default behavior is equivalent to `pass`.
.. warning::
In contrast to the C++ API for `initialize()`, this method must not return an error code. The expected behavior is to throw an appropriate exception
- if an error occurs.
+ if an error occurs.
.. warning::
This `initialize()` method is not available to be called from Python on C++-based plugins.
-
+
)trtdoc";
constexpr const char* terminate = R"trtdoc(
Release resources acquired during plugin layer initialization. This is called when the engine is destroyed.
.. note::
- When implementing a Python-based plugin, implementing this method is optional. The default behavior is equivalent to `pass`.
+ When implementing a Python-based plugin, implementing this method is optional. The default behavior is equivalent to `pass`.
)trtdoc";
@@ -238,7 +237,7 @@ constexpr const char* get_output_dimensions = R"trtdoc(
This function is called by the implementations of `IBuilder` during analysis of the network.
.. warning::
- This `get_output_dimensions()` method is not available to be called from Python on C++-based plugins
+ This `get_output_dimensions()` method is not available to be called from Python on C++-based plugins
:arg output_index: The index of the output tensor
:arg inputs: Expressions for dimensions of the input tensors
@@ -269,7 +268,7 @@ constexpr const char* configure_plugin = R"trtdoc(
Execution phase: `configure_plugin()` is called when a plugin is being prepared for executing the plugin for specific dimensions. This provides an opportunity for the plugin to change algorithmic choices based on the explicit input dimensions stored in `desc.dims` field.
.. warning::
- This `configure_plugin()` method is not available to be called from Python on C++-based plugins
+ This `configure_plugin()` method is not available to be called from Python on C++-based plugins
:arg in: The input tensors attributes that are used for configuration.
:arg out: The output tensors attributes that are used for configuration.
@@ -299,10 +298,10 @@ constexpr const char* get_workspace_size = R"trtdoc(
This function is called after the plugin is configured, and possibly during execution. The result should be a sufficient workspace size to deal with inputs and outputs of the given size or any smaller problem.
.. note::
- When implementing a Python-based plugin, implementing this method is optional. The default behavior is equivalent to `return 0`.
+ When implementing a Python-based plugin, implementing this method is optional. The default behavior is equivalent to `return 0`.
.. warning::
- This `get_workspace_size()` method is not available to be called from Python on C++-based plugins
+ This `get_workspace_size()` method is not available to be called from Python on C++-based plugins
:arg input_desc: How to interpret the memory for the input tensors.
:arg output_desc: How to interpret the memory for the output tensors.
@@ -314,7 +313,7 @@ constexpr const char* destroy = R"trtdoc(
Destroy the plugin object. This will be called when the :class:`INetworkDefinition` , :class:`Builder` or :class:`ICudaEngine` is destroyed.
.. note::
- When implementing a Python-based plugin, implementing this method is optional. The default behavior is a `pass`.
+ When implementing a Python-based plugin, implementing this method is optional. The default behavior is a `pass`.
)trtdoc";
@@ -322,13 +321,13 @@ constexpr const char* enqueue = R"trtdoc(
Execute the layer.
`inputs` and `outputs` contains pointers to the corresponding input and output device buffers as their `intptr_t` casts. `stream` also represents an `intptr_t` cast of the CUDA stream in which enqueue should be executed.
-
+
.. warning::
Since input, output, and workspace buffers are created and owned by TRT, care must be taken when writing to them from the Python side.
.. warning::
In contrast to the C++ API for `enqueue()`, this method must not return an error code. The expected behavior is to throw an appropriate exception.
- if an error occurs.
+ if an error occurs.
.. warning::
This `enqueue()` method is not available to be called from Python on C++-based plugins.
@@ -345,7 +344,7 @@ constexpr const char* enqueue = R"trtdoc(
constexpr const char* clone = R"trtdoc(
Clone the plugin object. This copies over internal plugin parameters as well and returns a new plugin object with these parameters.
- If the source plugin is pre-configured with `configure_plugin()`, the returned object should also be pre-configured.
+ If the source plugin is pre-configured with `configure_plugin()`, the returned object should also be pre-configured.
Cloned plugin objects can share the same per-engine immutable resource (e.g. weights) with the source object to avoid duplication.
)trtdoc";
@@ -353,7 +352,7 @@ constexpr const char* get_serialization_size = R"trtdoc(
Return the serialization size (in bytes) required by the plugin.
.. note::
- When implementing a Python-based plugin, implementing this method is optional. The default behavior is equivalent to `return len(serialize())`.
+ When implementing a Python-based plugin, implementing this method is optional. The default behavior is equivalent to `return len(serialize())`.
)trtdoc";
@@ -392,7 +391,7 @@ constexpr const char* ipluginv3_descr = R"trtdoc(
constexpr const char* iplugincapability_descr = R"trtdoc(
Base class for plugin capability interfaces
-
+
IPluginCapability represents a split in TensorRT V3 plugins to sub-objects that expose different types of capabilites a plugin may have,
as opposed to a single interface which defines all capabilities and behaviors of a plugin.
)trtdoc";
@@ -411,7 +410,7 @@ constexpr const char* ipluginv3onecore_descr = R"trtdoc(
constexpr const char* ipluginv3onebuild_descr = R"trtdoc(
A plugin capability interface that enables the build capability (PluginCapabilityType.BUILD).
-
+
Exposes methods that allow the expression of the build time properties and behavior of a plugin.
.. note::
@@ -423,7 +422,7 @@ constexpr const char* ipluginv3onebuild_descr = R"trtdoc(
constexpr const char* ipluginv3oneruntime_descr = R"trtdoc(
A plugin capability interface that enables the runtime capability (PluginCapabilityType.RUNTIME).
-
+
Exposes methods that allow the expression of the runtime properties and behavior of a plugin.
)trtdoc";
@@ -434,7 +433,7 @@ constexpr const char* get_output_shapes = R"trtdoc(
This function is called by the implementations of `IBuilder` during analysis of the network.
.. warning::
- This `get_output_shapes()` method is not available to be called from Python on C++-based plugins
+ This get_output_shapes() method is not available to be called from Python on C++-based plugins
:arg inputs: Expressions for shapes of the input tensors
:arg shape_inputs: Expressions for shapes of the shape inputs
@@ -445,9 +444,9 @@ constexpr const char* get_output_shapes = R"trtdoc(
constexpr const char* get_output_data_types = R"trtdoc(
- Return `DataType`s of the plugin outputs.
+ Return `DataType` s of the plugin outputs.
- Provide `DataType.FLOAT`s if the layer has no inputs. The data type for any size tensor outputs must be
+ Provide `DataType.FLOAT` s if the layer has no inputs. The data type for any size tensor outputs must be
`DataType.INT32`. The returned data types must each have a format that is supported by the plugin.
:arg input_types: Data types of the inputs.
@@ -458,7 +457,7 @@ constexpr const char* get_output_data_types = R"trtdoc(
constexpr const char* configure_plugin = R"trtdoc(
Configure the plugin.
- This function can be called multiple times in the build phase during creation of an engine by IBuilder.
+ This function can be called multiple times in the build phase during creation of an engine by IBuilder.
Build phase: `configure_plugin()` is called when a plugin is being prepared for profiling but not for any specific input size. This provides an opportunity for the plugin to make algorithmic choices on the basis of input and output formats, along with the bound of possible dimensions. The min, opt and max value of the
`DynamicPluginTensorDesc` correspond to the `MIN`, `OPT` and `MAX` value of the current profile that the plugin is
@@ -467,31 +466,28 @@ constexpr const char* configure_plugin = R"trtdoc(
.. warning::
In contrast to the C++ API for `configurePlugin()`, this method must not return an error code. The expected behavior is to throw an appropriate exception
- if an error occurs.
+ if an error occurs.
.. warning::
- This `configure_plugin()` method is not available to be called from Python on C++-based plugins
+ This `configure_plugin()` method is not available to be called from Python on C++-based plugins
:arg in: The input tensors attributes that are used for configuration.
:arg out: The output tensors attributes that are used for configuration.
)trtdoc";
constexpr const char* on_shape_change = R"trtdoc(
- Called when a plugin is being prepared for execution for specific dimensions. This could happen multiple times in the execution phase, both during creation of an engine by IBuilder and execution of an
- engine by IExecutionContext.
+ Called when a plugin is being prepared for execution for specific dimensions. This could happen multiple times in the execution phase, both during creation of an engine by IBuilder and execution of an
+ engine by IExecutionContext.
- * IBuilder will call this function once per profile, with `in` resolved to the values specified by the
- kOPT field of the current profile.
- * IExecutionContext will call this during the next subsequent instance of enqueue_v2() or execute_v3() if:
- - The optimization profile is changed.
- - An input binding is changed.
+ * IBuilder will call this function once per profile, with `in` resolved to the values specified by the kOPT field of the current profile.
+ * IExecutionContext will call this during the next subsequent instance of enqueue_v2() or execute_v3() if: (1) The optimization profile is changed (2). An input binding is changed.
.. warning::
In contrast to the C++ API for `onShapeChange()`, this method must not return an error code. The expected behavior is to throw an appropriate exception
- if an error occurs.
+ if an error occurs.
.. warning::
- This `on_shape_change()` method is not available to be called from Python on C++-based plugins
+ This `on_shape_change()` method is not available to be called from Python on C++-based plugins
:arg in: The input tensors attributes that are used for configuration.
:arg out: The output tensors attributes that are used for configuration.
@@ -521,10 +517,10 @@ constexpr const char* get_workspace_size = R"trtdoc(
This function is called after the plugin is configured, and possibly during execution. The result should be a sufficient workspace size to deal with inputs and outputs of the given size or any smaller problem.
.. note::
- When implementing a Python-based plugin, implementing this method is optional. The default behavior is equivalent to `return 0`.
+ When implementing a Python-based plugin, implementing this method is optional. The default behavior is equivalent to `return 0`.
.. warning::
- This `get_workspace_size()` method is not available to be called from Python on C++-based plugins
+ This `get_workspace_size()` method is not available to be called from Python on C++-based plugins
:arg input_desc: How to interpret the memory for the input tensors.
:arg output_desc: How to interpret the memory for the output tensors.
@@ -539,7 +535,7 @@ constexpr const char* destroy = R"trtdoc(
There is no direct equivalent to this method in the C++ API.
.. note::
- Implementing this method is optional. The default behavior is a `pass`.
+ Implementing this method is optional. The default behavior is a `pass`.
)trtdoc";
@@ -547,13 +543,13 @@ constexpr const char* enqueue = R"trtdoc(
Execute the layer.
`inputs` and `outputs` contains pointers to the corresponding input and output device buffers as their `intptr_t` casts. `stream` also represents an `intptr_t` cast of the CUDA stream in which enqueue should be executed.
-
+
.. warning::
Since input, output, and workspace buffers are created and owned by TRT, care must be taken when writing to them from the Python side.
.. warning::
In contrast to the C++ API for `enqueue()`, this method must not return an error code. The expected behavior is to throw an appropriate exception.
- if an error occurs.
+ if an error occurs.
.. warning::
This `enqueue()` method is not available to be called from Python on C++-based plugins.
@@ -580,7 +576,7 @@ constexpr const char* get_capability_interface = R"trtdoc(
constexpr const char* clone = R"trtdoc(
Clone the plugin object. This copies over internal plugin parameters as well and returns a new plugin object with these parameters.
- If the source plugin is pre-configured with `configure_plugin()`, the returned object should also be pre-configured.
+ If the source plugin is pre-configured with `configure_plugin()`, the returned object should also be pre-configured.
Cloned plugin objects can share the same per-engine immutable resource (e.g. weights) with the source object to avoid duplication.
)trtdoc";
@@ -602,7 +598,7 @@ constexpr const char* set_tactic = R"trtdoc(
.. warning::
In contrast to the C++ API for `setTactic()`, this method must not return an error code. The expected behavior is to throw an appropriate exception
- if an error occurs.
+ if an error occurs.
.. warning::
This `set_tactic()` method is not available to be called from Python on C++-based plugins.
@@ -611,7 +607,7 @@ constexpr const char* set_tactic = R"trtdoc(
constexpr const char* get_valid_tactics = R"trtdoc(
Return any custom tactics that the plugin intends to use.
-
+
.. note::
The provided tactic values must be unique and positive
@@ -626,9 +622,9 @@ constexpr const char* attach_to_context = R"trtdoc(
This function is called automatically for each plugin when a new execution context is created.
The plugin may use resources provided by the resource_context until the plugin is deleted by TensorRT.
-
+
:arg resource_context: A resource context that exposes methods to get access to execution context specific resources. A different resource context is guaranteed for each different execution context to which the plugin is attached.
-
+
.. note::
This method should clone the entire IPluginV3 object, not just the runtime interface
@@ -660,7 +656,7 @@ constexpr const char* release = R"trtdoc(
constexpr const char* clone = R"trtdoc(
Resource initialization (if any) may be skipped for non-cloned objects since only clones will be
registered by TensorRT.
-
+
)trtdoc";
} // namespace IPluginResourceDoc
@@ -703,7 +699,7 @@ namespace IDimensionExprDoc
{
constexpr const char* descr = R"trtdoc(
An `IDimensionExpr` represents an integer expression constructed from constants, input dimensions, and binary operations.
-
+
These expressions are can be used in overrides of `IPluginV2DynamicExt::get_output_dimensions()` to define output dimensions in terms of input dimensions.
)trtdoc";
@@ -787,7 +783,7 @@ namespace IPluginResourceContextDoc
{
constexpr const char* descr = R"trtdoc(
Interface for plugins to access per context resources provided by TensorRT
-
+
There is no public way to construct an IPluginResourceContext. It appears as an argument to trt.IPluginV3OneRuntime.attach_to_context().
)trtdoc";
} // namespace IPluginResourceContextDoc
@@ -953,7 +949,7 @@ constexpr const char* get_plugin_creator = R"trtdoc(
Return plugin creator based on type, version and namespace
.. warning::
- Returns None if a plugin creator with matching name, version, and namespace is found, but is not a
+ Returns None if a plugin creator with matching name, version, and namespace is found, but is not a
descendent of IPluginCreator
:arg type: The type of the plugin.
@@ -998,12 +994,12 @@ constexpr const char* deregister_library = R"trtdoc(
constexpr const char* acquire_plugin_resource = R"trtdoc(
Get a handle to a plugin resource registered against the provided key.
- :arg: key: Key for identifying the resource.
+ :arg: key: Key for identifying the resource.
:arg: resource: A plugin resource object. The object will only need to be valid until this method returns, as only a clone of this object will be registered by TRT. Cannot be null.
)trtdoc";
constexpr const char* release_plugin_resource = R"trtdoc(
- Decrement reference count for the resource with this key. If reference count goes to zero after decrement, release() will be invoked on the resource,
+ Decrement reference count for the resource with this key. If reference count goes to zero after decrement, release() will be invoked on the resource,
and the key will be deregistered.
:arg: key: Key that was used to register the resource.
diff --git a/python/docstrings/parsers/pyOnnxDoc.h b/python/docstrings/parsers/pyOnnxDoc.h
index 7099a207..17656d27 100644
--- a/python/docstrings/parsers/pyOnnxDoc.h
+++ b/python/docstrings/parsers/pyOnnxDoc.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/python/docstrings/pyTensorRTDoc.h b/python/docstrings/pyTensorRTDoc.h
index 2ebb0a82..3594d387 100644
--- a/python/docstrings/pyTensorRTDoc.h
+++ b/python/docstrings/pyTensorRTDoc.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/python/include/ForwardDeclarations.h b/python/include/ForwardDeclarations.h
index c377bf66..d4bed446 100644
--- a/python/include/ForwardDeclarations.h
+++ b/python/include/ForwardDeclarations.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/python/include/utils.h b/python/include/utils.h
index 0b46743a..2f0d5bdc 100644
--- a/python/include/utils.h
+++ b/python/include/utils.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
@@ -162,7 +162,7 @@ void throwPyError(PyObject* type, std::string const& message = "python error");
{ \
utils::throwPyError(PyExc_IndexError, "Out of bounds"); \
} \
- }while(false)
+ } while (false)
#define PY_ASSERT_VALUE_ERROR(assertion, msg) \
do \
diff --git a/python/packaging/bindings_wheel/setup.py b/python/packaging/bindings_wheel/setup.py
index 7bd97517..32b9a730 100644
--- a/python/packaging/bindings_wheel/setup.py
+++ b/python/packaging/bindings_wheel/setup.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/python/packaging/bindings_wheel/tensorrt/__init__.py b/python/packaging/bindings_wheel/tensorrt/__init__.py
index 01e49480..e82ee1ec 100644
--- a/python/packaging/bindings_wheel/tensorrt/__init__.py
+++ b/python/packaging/bindings_wheel/tensorrt/__init__.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -51,18 +51,18 @@ def find_lib(name):
# Order matters here because of dependencies
LIBRARIES = {
"tensorrt": [
- "nvinfer.dll",
+ "nvinfer_##TENSORRT_MAJOR##.dll",
"cublas64_##CUDA_MAJOR##.dll",
"cublasLt64_##CUDA_MAJOR##.dll",
"cudnn64_##CUDNN_MAJOR##.dll",
- "nvinfer_plugin.dll",
- "nvonnxparser.dll",
+ "nvinfer_plugin_##TENSORRT_MAJOR##.dll",
+ "nvonnxparser_##TENSORRT_MAJOR##.dll",
],
"tensorrt_dispatch": [
- "nvinfer_dispatch.dll",
+ "nvinfer_dispatch_##TENSORRT_MAJOR##.dll",
],
"tensorrt_lean": [
- "nvinfer_lean.dll",
+ "nvinfer_lean_##TENSORRT_MAJOR##.dll",
],
}["##TENSORRT_MODULE##"]
diff --git a/python/packaging/frontend_sdist/setup.py b/python/packaging/frontend_sdist/setup.py
index b593e52c..8c050d20 100644
--- a/python/packaging/frontend_sdist/setup.py
+++ b/python/packaging/frontend_sdist/setup.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -104,14 +104,20 @@ def parent_command_line():
pass
# fall back to shell
try:
- return subprocess.check_output(["ps", "-p", str(pid), "-o", "command", "--no-headers"]).decode()
+ return subprocess.check_output(
+ ["ps", "-p", str(pid), "-o", "command", "--no-headers"]
+ ).decode()
except:
return ""
# use pip-inside-pip hack only if the nvidia index is not set in the environment
install_requires = []
-if disable_internal_pip or nvidia_pip_index_url in parent_command_line() or nvidia_pip_index_url in pip_config_list():
+if (
+ disable_internal_pip
+ or nvidia_pip_index_url in parent_command_line()
+ or nvidia_pip_index_url in pip_config_list()
+):
install_requires.extend(tensorrt_submodules)
cmdclass = {}
else:
diff --git a/python/packaging/frontend_sdist/tensorrt/__init__.py b/python/packaging/frontend_sdist/tensorrt/__init__.py
index d15c89d7..5b7038fd 100644
--- a/python/packaging/frontend_sdist/tensorrt/__init__.py
+++ b/python/packaging/frontend_sdist/tensorrt/__init__.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/python/packaging/libs_wheel/setup.py b/python/packaging/libs_wheel/setup.py
index b6060e0b..b9f7af76 100644
--- a/python/packaging/libs_wheel/setup.py
+++ b/python/packaging/libs_wheel/setup.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/python/packaging/libs_wheel/tensorrt_libs/__init__.py b/python/packaging/libs_wheel/tensorrt_libs/__init__.py
index a7d9e91a..0335c921 100644
--- a/python/packaging/libs_wheel/tensorrt_libs/__init__.py
+++ b/python/packaging/libs_wheel/tensorrt_libs/__init__.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -43,7 +43,12 @@ def try_load_libs_from_dir(path):
]
for dep_path in DEPENDENCY_PATHS:
try_load_libs_from_dir(
- os.path.join(CURDIR, os.path.pardir, dep_path, "bin" if sys.platform.startswith("win") else "lib")
+ os.path.join(
+ CURDIR,
+ os.path.pardir,
+ dep_path,
+ "bin" if sys.platform.startswith("win") else "lib",
+ )
)
diff --git a/python/packaging/metapackage/setup.py b/python/packaging/metapackage/setup.py
index b5f8452f..bd673247 100644
--- a/python/packaging/metapackage/setup.py
+++ b/python/packaging/metapackage/setup.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/python/src/infer/pyAlgorithmSelector.cpp b/python/src/infer/pyAlgorithmSelector.cpp
index 75fe97d2..81984930 100644
--- a/python/src/infer/pyAlgorithmSelector.cpp
+++ b/python/src/infer/pyAlgorithmSelector.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
@@ -19,10 +19,6 @@
#include "ForwardDeclarations.h"
#include "utils.h"
#include
-// remove md
-#if ENABLE_MDTRT
-#include "api/internal.h"
-#endif // ENABLE_MDTRT
#include "infer/pyAlgorithmSelectorDoc.h"
#include
#include
@@ -167,11 +163,7 @@ void bindAlgorithm(py::module& m)
.def("get_shape", lambdas::get_shape, "index"_a, IAlgorithmContextDoc::get_shape)
.def_property_readonly("num_inputs", &IAlgorithmContext::getNbInputs)
.def_property_readonly("num_outputs", &IAlgorithmContext::getNbOutputs)
-// remove md
-#if ENABLE_MDTRT
- .def_property_readonly("instance_id", &nvinfer1AlgorithmGetInstanceID)
-#endif // ENABLE_MDTRT
- ;
+ ;
// IAlgorithm
py::class_>(
diff --git a/python/src/infer/pyCore.cpp b/python/src/infer/pyCore.cpp
index e2d95473..4d6f72e0 100644
--- a/python/src/infer/pyCore.cpp
+++ b/python/src/infer/pyCore.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
@@ -55,16 +55,16 @@ static const auto opt_profile_get_shape
return shapes;
};
-static const auto opt_profile_set_shape_input
- = [](IOptimizationProfile& self, std::string const& inputName, std::vector const& min,
- std::vector const& opt, std::vector const& max) {
- PY_ASSERT_RUNTIME_ERROR(self.setShapeValues(inputName.c_str(), OptProfileSelector::kMIN, min.data(), min.size()),
- "min input provided for shape tensor is inconsistent with other inputs.");
- PY_ASSERT_RUNTIME_ERROR(self.setShapeValues(inputName.c_str(), OptProfileSelector::kOPT, opt.data(), opt.size()),
- "opt input provided for shape tensor is inconsistent with other inputs.");
- PY_ASSERT_RUNTIME_ERROR(self.setShapeValues(inputName.c_str(), OptProfileSelector::kMAX, max.data(), max.size()),
- "max input provided for shape tensor is inconsistent with other inputs.");
- };
+static const auto opt_profile_set_shape_input = [](IOptimizationProfile& self, std::string const& inputName,
+ std::vector const& min, std::vector const& opt,
+ std::vector const& max) {
+ PY_ASSERT_RUNTIME_ERROR(self.setShapeValues(inputName.c_str(), OptProfileSelector::kMIN, min.data(), min.size()),
+ "min input provided for shape tensor is inconsistent with other inputs.");
+ PY_ASSERT_RUNTIME_ERROR(self.setShapeValues(inputName.c_str(), OptProfileSelector::kOPT, opt.data(), opt.size()),
+ "opt input provided for shape tensor is inconsistent with other inputs.");
+ PY_ASSERT_RUNTIME_ERROR(self.setShapeValues(inputName.c_str(), OptProfileSelector::kMAX, max.data(), max.size()),
+ "max input provided for shape tensor is inconsistent with other inputs.");
+};
static const auto opt_profile_get_shape_input
= [](IOptimizationProfile& self, std::string const& inputName) -> std::vector> {
@@ -144,7 +144,8 @@ Dims castDimsFromPyIterable(PyIterable& in)
int32_t const maxDims{static_cast(Dims::MAX_DIMS)};
Dims dims{};
dims.nbDims = py::len(in);
- PY_ASSERT_RUNTIME_ERROR(dims.nbDims <= maxDims, "The number of input dims exceeds the maximum allowed number of dimensions");
+ PY_ASSERT_RUNTIME_ERROR(
+ dims.nbDims <= maxDims, "The number of input dims exceeds the maximum allowed number of dimensions");
for (int32_t i = 0; i < dims.nbDims; ++i)
{
dims.d[i] = in[i].template cast();
@@ -182,21 +183,6 @@ std::vector get_tensor_profile_shape(ICudaEngine& self, std::string const&
return shapes;
};
-std::vector engine_get_profile_shape(ICudaEngine& self, int32_t profileIndex, int32_t bindingIndex)
-{
- std::vector shapes{};
- auto const tensorName = self.getIOTensorName(bindingIndex);
- shapes.emplace_back(self.getProfileShape(tensorName, profileIndex, OptProfileSelector::kMIN));
- shapes.emplace_back(self.getProfileShape(tensorName, profileIndex, OptProfileSelector::kOPT));
- shapes.emplace_back(self.getProfileShape(tensorName, profileIndex, OptProfileSelector::kMAX));
- return shapes;
-};
-// Overload to allow using binding names instead of indices.
-std::vector engine_get_profile_shape_str(ICudaEngine& self, int32_t profileIndex, std::string const& bindingName)
-{
- return get_tensor_profile_shape(self, bindingName, profileIndex);
-};
-
std::vector> get_tensor_profile_values(
ICudaEngine& self, int32_t profileIndex, std::string const& tensorName)
{
@@ -618,8 +604,11 @@ class PyStreamReader : public IStreamReader
return 0;
}
- py::object bytesRead = pyFunc(reinterpret_cast(destination), size);
- return bytesRead.cast();
+ py::buffer data = pyFunc(size);
+ py::buffer_info info = data.request();
+ int64_t bytesRead = info.size * info.itemsize;
+ std::memcpy(destination, info.ptr, std::min(bytesRead, size));
+ return bytesRead;
}
catch (std::exception const& e)
{
@@ -1180,10 +1169,6 @@ void bindCore(py::module& m)
.def_property_readonly("name", &ICudaEngine::getName)
.def_property_readonly("num_optimization_profiles", &ICudaEngine::getNbOptimizationProfiles)
.def_property_readonly("engine_capability", &ICudaEngine::getEngineCapability)
- .def("get_profile_shape", utils::deprecate(lambdas::engine_get_profile_shape, "get_tensor_profile_shape"),
- "profile_index"_a, "binding"_a, ICudaEngineDoc::get_profile_shape)
- .def("get_profile_shape", utils::deprecate(lambdas::engine_get_profile_shape_str, "get_tensor_profile_shape"),
- "profile_index"_a, "binding"_a, ICudaEngineDoc::get_profile_shape)
// Start of enqueueV3 related APIs.
.def_property_readonly("num_io_tensors", &ICudaEngine::getNbIOTensors)
.def("get_tensor_name", &ICudaEngine::getIOTensorName, "index"_a, ICudaEngineDoc::get_tensor_name)
@@ -1278,7 +1263,7 @@ void bindCore(py::module& m)
.def_property_readonly("minimum_weight_streaming_budget", &ICudaEngine::getMinimumWeightStreamingBudget)
.def_property_readonly("streamable_weights_size", &ICudaEngine::getStreamableWeightsSize)
.def("is_debug_tensor", &ICudaEngine::isDebugTensor, "name"_a, ICudaEngineDoc::is_debug_tensor)
- .def("__del__", &utils::doNothingDel);
+ .def("__del__", &utils::doNothingDel);
py::enum_(m, "AllocatorFlag", py::arithmetic{}, AllocatorFlagDoc::descr, py::module_local())
.value("RESIZABLE", AllocatorFlag::kRESIZABLE, AllocatorFlagDoc::RESIZABLE);
diff --git a/python/src/infer/pyFoundationalTypes.cpp b/python/src/infer/pyFoundationalTypes.cpp
index e89e020a..6f64f7d4 100644
--- a/python/src/infer/pyFoundationalTypes.cpp
+++ b/python/src/infer/pyFoundationalTypes.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
@@ -40,8 +40,8 @@ static const auto weights_pointer_constructor = [](DataType const& type, size_t
static const auto weights_numpy_constructor = [](py::array& arr) {
arr = py::array::ensure(arr);
// In order to construct a weights object, we must have a contiguous C-style array.
- PY_ASSERT_VALUE_ERROR(arr,
- "Could not convert NumPy array to Weights. Is it using a data type supported by TensorRT?");
+ PY_ASSERT_VALUE_ERROR(
+ arr, "Could not convert NumPy array to Weights. Is it using a data type supported by TensorRT?");
PY_ASSERT_VALUE_ERROR((arr.flags() & py::array::c_style),
"Could not convert non-contiguous NumPy array to Weights. Please use numpy.ascontiguousarray() to fix this.");
return new Weights{utils::type(arr.dtype()), arr.data(), arr.size()};
@@ -105,8 +105,8 @@ static const auto dims_getter = [](Dims const& self, int32_t const pyIndex) -> i
static const auto dims_getter_slice = [](Dims const& self, py::slice slice) {
size_t start, stop, step, slicelength;
- PY_ASSERT_VALUE_ERROR(slice.compute(self.nbDims, &start, &stop, &step, &slicelength),
- "Incorrect getter slice dims");
+ PY_ASSERT_VALUE_ERROR(
+ slice.compute(self.nbDims, &start, &stop, &step, &slicelength), "Incorrect getter slice dims");
// Disallow out-of-bounds things.
PY_ASSERT_INDEX_ERROR(stop <= self.nbDims);
@@ -124,8 +124,8 @@ static const auto dims_setter = [](Dims& self, int32_t const pyIndex, int64_t co
static const auto dims_setter_slice = [](Dims& self, py::slice slice, Dims const& other) {
size_t start, stop, step, slicelength;
- PY_ASSERT_VALUE_ERROR(slice.compute(self.nbDims, &start, &stop, &step, &slicelength),
- "Incorrect setter slice dims");
+ PY_ASSERT_VALUE_ERROR(
+ slice.compute(self.nbDims, &start, &stop, &step, &slicelength), "Incorrect setter slice dims");
// Disallow out-of-bounds things.
PY_ASSERT_INDEX_ERROR(stop < self.nbDims);
diff --git a/python/src/infer/pyGraph.cpp b/python/src/infer/pyGraph.cpp
index 730481ae..ddca1e9d 100644
--- a/python/src/infer/pyGraph.cpp
+++ b/python/src/infer/pyGraph.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/python/src/infer/pyInt8.cpp b/python/src/infer/pyInt8.cpp
index 5639bcd1..9052f796 100644
--- a/python/src/infer/pyInt8.cpp
+++ b/python/src/infer/pyInt8.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
@@ -82,7 +82,8 @@ class pyCalibratorTrampoline : public Derived
{
py::gil_scoped_acquire gil{};
- py::function pyReadCalibrationCache = utils::getOverride(static_cast(this), "read_calibration_cache");
+ py::function pyReadCalibrationCache
+ = utils::getOverride(static_cast(this), "read_calibration_cache");
// Cannot cast `None` to py::buffer.
auto cacheRaw = pyReadCalibrationCache();
@@ -118,7 +119,7 @@ class pyCalibratorTrampoline : public Derived
py::function pyWriteCalibrationCache
= utils::getOverride(static_cast(this), "write_calibration_cache");
- #if PYBIND11_VERSION_MAJOR < 2 || PYBIND11_VERSION_MAJOR == 2 && PYBIND11_VERSION_MINOR < 6
+#if PYBIND11_VERSION_MAJOR < 2 || PYBIND11_VERSION_MAJOR == 2 && PYBIND11_VERSION_MINOR < 6
py::buffer_info info{
const_cast(ptr), /* Pointer to buffer */
sizeof(uint8_t), /* Size of one scalar */
@@ -128,10 +129,10 @@ class pyCalibratorTrampoline : public Derived
{ sizeof(uint8_t) } /* Strides (in bytes) for each index */
};
py::memoryview cache{info};
- #else
+#else
py::memoryview cache{
py::memoryview::from_buffer(static_cast(ptr), {length}, {sizeof(uint8_t)})};
- #endif
+#endif
pyWriteCalibrationCache(cache);
}
catch (std::exception const& e)
@@ -284,7 +285,10 @@ void bindInt8(py::module& m)
py::class_(m, "IInt8Calibrator", IInt8CalibratorDoc::descr, py::module_local())
.def(py::init<>())
- .def("get_batch_size", utils::deprecateMember(&IInt8Calibrator::getBatchSize, "Implicit batch dimensions support has been removed"), IInt8CalibratorDoc::get_batch_size)
+ .def("get_batch_size",
+ utils::deprecateMember(
+ &IInt8Calibrator::getBatchSize, "Implicit batch dimensions support has been removed"),
+ IInt8CalibratorDoc::get_batch_size)
.def("get_algorithm", &IInt8Calibrator::getAlgorithm, IInt8CalibratorDoc::get_algorithm)
// For documentation purposes only
.def("get_batch", docGetBatch, "names"_a, IInt8CalibratorDoc::get_batch)
@@ -296,7 +300,10 @@ void bindInt8(py::module& m)
py::class_(
m, "IInt8LegacyCalibrator", IInt8LegacyCalibratorDoc::descr, py::module_local())
.def(py::init<>())
- .def("get_batch_size", utils::deprecateMember(&IInt8LegacyCalibrator::getBatchSize, "Implicit batch dimensions support has been removed"), IInt8CalibratorDoc::get_batch_size)
+ .def("get_batch_size",
+ utils::deprecateMember(
+ &IInt8LegacyCalibrator::getBatchSize, "Implicit batch dimensions support has been removed"),
+ IInt8CalibratorDoc::get_batch_size)
.def("get_algorithm", &IInt8LegacyCalibrator::getAlgorithm, IInt8LegacyCalibratorDoc::get_algorithm)
// For documentation purposes only
.def("get_batch", docGetBatch, "names"_a, IInt8CalibratorDoc::get_batch)
@@ -308,7 +315,10 @@ void bindInt8(py::module& m)
py::class_>(
m, "IInt8EntropyCalibrator", IInt8EntropyCalibratorDoc::descr, py::module_local())
.def(py::init<>())
- .def("get_batch_size", utils::deprecateMember(&IInt8EntropyCalibrator::getBatchSize, "Implicit batch dimensions support has been removed"), IInt8CalibratorDoc::get_batch_size)
+ .def("get_batch_size",
+ utils::deprecateMember(
+ &IInt8EntropyCalibrator::getBatchSize, "Implicit batch dimensions support has been removed"),
+ IInt8CalibratorDoc::get_batch_size)
.def("get_algorithm", &IInt8EntropyCalibrator::getAlgorithm, IInt8EntropyCalibratorDoc::get_algorithm)
// For documentation purposes only
.def("get_batch", docGetBatch, "names"_a, IInt8CalibratorDoc::get_batch)
@@ -320,7 +330,10 @@ void bindInt8(py::module& m)
py::class_>(
m, "IInt8EntropyCalibrator2", IInt8EntropyCalibrator2Doc::descr, py::module_local())
.def(py::init<>())
- .def("get_batch_size", utils::deprecateMember(&IInt8EntropyCalibrator2::getBatchSize, "Implicit batch dimensions support has been removed"), IInt8CalibratorDoc::get_batch_size)
+ .def("get_batch_size",
+ utils::deprecateMember(
+ &IInt8EntropyCalibrator2::getBatchSize, "Implicit batch dimensions support has been removed"),
+ IInt8CalibratorDoc::get_batch_size)
.def("get_algorithm", &IInt8EntropyCalibrator2::getAlgorithm, IInt8EntropyCalibrator2Doc::get_algorithm)
// For documentation purposes only
.def("get_batch", docGetBatch, "names"_a, IInt8CalibratorDoc::get_batch)
@@ -332,7 +345,10 @@ void bindInt8(py::module& m)
py::class_>(
m, "IInt8MinMaxCalibrator", IInt8MinMaxCalibratorDoc::descr, py::module_local())
.def(py::init<>())
- .def("get_batch_size", utils::deprecateMember(&IInt8MinMaxCalibrator::getBatchSize, "Implicit batch dimensions support has been removed"), IInt8CalibratorDoc::get_batch_size)
+ .def("get_batch_size",
+ utils::deprecateMember(
+ &IInt8MinMaxCalibrator::getBatchSize, "Implicit batch dimensions support has been removed"),
+ IInt8CalibratorDoc::get_batch_size)
.def("get_algorithm", &IInt8MinMaxCalibrator::getAlgorithm, IInt8MinMaxCalibratorDoc::get_algorithm)
// For documentation purposes only
.def("get_batch", docGetBatch, "names"_a, IInt8CalibratorDoc::get_batch)
diff --git a/python/src/infer/pyPlugin.cpp b/python/src/infer/pyPlugin.cpp
index d87a42ec..9fc1b901 100644
--- a/python/src/infer/pyPlugin.cpp
+++ b/python/src/infer/pyPlugin.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
@@ -87,14 +87,14 @@ class PyIPluginV2DynamicExtImpl : public PyIPluginV2DynamicExt
public:
using PyIPluginV2DynamicExt::PyIPluginV2DynamicExt;
PyIPluginV2DynamicExtImpl() = default;
- PyIPluginV2DynamicExtImpl(const PyIPluginV2DynamicExt& a) {};
+ PyIPluginV2DynamicExtImpl(const PyIPluginV2DynamicExt& a){};
int32_t getNbOutputs() const noexcept override
{
try
{
py::gil_scoped_acquire gil{};
- if(!mIsNbOutputsInitialized)
+ if (!mIsNbOutputsInitialized)
{
utils::throwPyError(PyExc_AttributeError, "num_outputs not initialized");
}
@@ -104,7 +104,8 @@ class PyIPluginV2DynamicExtImpl : public PyIPluginV2DynamicExt
return -1;
}
- bool supportsFormatCombination(int32_t pos, PluginTensorDesc const* inOut, int32_t nbInputs, int32_t nbOutputs) noexcept override
+ bool supportsFormatCombination(
+ int32_t pos, PluginTensorDesc const* inOut, int32_t nbInputs, int32_t nbOutputs) noexcept override
{
try
{
@@ -118,7 +119,7 @@ class PyIPluginV2DynamicExtImpl : public PyIPluginV2DynamicExt
}
std::vector inOutVector;
- for(int32_t idx = 0; idx < nbInputs + nbOutputs; ++idx)
+ for (int32_t idx = 0; idx < nbInputs + nbOutputs; ++idx)
{
inOutVector.push_back(*(inOut + idx));
}
@@ -151,10 +152,11 @@ class PyIPluginV2DynamicExtImpl : public PyIPluginV2DynamicExt
return 0;
}
- try{
+ try
+ {
py::object pyResult = pyInitialize();
}
- catch (py::error_already_set &e)
+ catch (py::error_already_set& e)
{
std::cerr << "[ERROR] Exception thrown from initialize() " << e.what() << std::endl;
return -1;
@@ -165,7 +167,8 @@ class PyIPluginV2DynamicExtImpl : public PyIPluginV2DynamicExt
return -1;
}
- void terminate() noexcept override {
+ void terminate() noexcept override
+ {
try
{
py::gil_scoped_acquire gil{};
@@ -173,7 +176,7 @@ class PyIPluginV2DynamicExtImpl : public PyIPluginV2DynamicExt
py::function pyTerminate = py::get_override(static_cast(this), "terminate");
// if no implementation is provided for terminate(), it is defaulted to `pass`
- if(pyTerminate)
+ if (pyTerminate)
{
pyTerminate();
}
@@ -181,7 +184,8 @@ class PyIPluginV2DynamicExtImpl : public PyIPluginV2DynamicExt
PLUGIN_API_CATCH("terminate")
}
- int32_t enqueue(PluginTensorDesc const* inputDesc, PluginTensorDesc const* outputDesc, void const* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream) noexcept override
+ int32_t enqueue(PluginTensorDesc const* inputDesc, PluginTensorDesc const* outputDesc, void const* const* inputs,
+ void* const* outputs, void* workspace, cudaStream_t stream) noexcept override
{
try
{
@@ -194,12 +198,12 @@ class PyIPluginV2DynamicExtImpl : public PyIPluginV2DynamicExt
}
std::vector inVector;
- for(int32_t idx = 0; idx < mNbInputs; ++idx)
+ for (int32_t idx = 0; idx < mNbInputs; ++idx)
{
inVector.push_back(*(inputDesc + idx));
}
std::vector outVector;
- for(int32_t idx = 0; idx < mNbOutputs; ++idx)
+ for (int32_t idx = 0; idx < mNbOutputs; ++idx)
{
outVector.push_back(*(outputDesc + idx));
}
@@ -218,10 +222,11 @@ class PyIPluginV2DynamicExtImpl : public PyIPluginV2DynamicExt
intptr_t workspacePtr = reinterpret_cast(workspace);
intptr_t cudaStreamPtr = reinterpret_cast(stream);
- try{
+ try
+ {
pyEnqueue(inVector, outVector, inPtrs, outPtrs, workspacePtr, cudaStreamPtr);
}
- catch (py::error_already_set &e)
+ catch (py::error_already_set& e)
{
std::cerr << "[ERROR] Exception thrown from enqueue() " << e.what() << std::endl;
return -1;
@@ -283,8 +288,7 @@ class PyIPluginV2DynamicExtImpl : public PyIPluginV2DynamicExt
{
py::gil_scoped_acquire gil{};
- py::function pySerialize
- = utils::getOverride(static_cast(this), "serialize");
+ py::function pySerialize = utils::getOverride(static_cast(this), "serialize");
if (!pySerialize)
{
utils::throwPyError(PyExc_RuntimeError, "no implementation provided for serialize()");
@@ -307,7 +311,7 @@ class PyIPluginV2DynamicExtImpl : public PyIPluginV2DynamicExt
try
{
py::gil_scoped_acquire gil{};
- if(!mIsPluginTypeInitialized)
+ if (!mIsPluginTypeInitialized)
{
utils::throwPyError(PyExc_AttributeError, "plugin_type not initialized");
}
@@ -322,7 +326,7 @@ class PyIPluginV2DynamicExtImpl : public PyIPluginV2DynamicExt
try
{
py::gil_scoped_acquire gil{};
- if(!mIsPluginVersionInitialized)
+ if (!mIsPluginVersionInitialized)
{
utils::throwPyError(PyExc_AttributeError, "plugin_version not initialized");
}
@@ -374,7 +378,6 @@ class PyIPluginV2DynamicExtImpl : public PyIPluginV2DynamicExt
// Remove reference to the Python plugin object so that it could be garbage-collected
pyObjVec[this].dec_ref();
-
}
PLUGIN_API_CATCH("destroy")
}
@@ -393,7 +396,7 @@ class PyIPluginV2DynamicExtImpl : public PyIPluginV2DynamicExt
{
py::gil_scoped_acquire gil{};
// getPluginNamespace() is not passed through to the Python side
- if(!mIsNamespaceInitialized)
+ if (!mIsNamespaceInitialized)
{
utils::throwPyError(PyExc_AttributeError, "plugin_namespace not initialized");
}
@@ -417,7 +420,7 @@ class PyIPluginV2DynamicExtImpl : public PyIPluginV2DynamicExt
}
std::vector inVector;
- for(int32_t idx = 0; idx < nbInputs; ++idx)
+ for (int32_t idx = 0; idx < nbInputs; ++idx)
{
inVector.push_back(*(inputTypes + idx));
}
@@ -436,8 +439,8 @@ class PyIPluginV2DynamicExtImpl : public PyIPluginV2DynamicExt
return DataType{};
}
-
- DimsExprs getOutputDimensions(int32_t outputIndex, DimsExprs const* inputs, int32_t nbInputs, IExprBuilder& exprBuilder) noexcept override
+ DimsExprs getOutputDimensions(
+ int32_t outputIndex, DimsExprs const* inputs, int32_t nbInputs, IExprBuilder& exprBuilder) noexcept override
{
try
{
@@ -451,7 +454,7 @@ class PyIPluginV2DynamicExtImpl : public PyIPluginV2DynamicExt
}
std::vector inVector;
- for(int32_t idx = 0; idx < nbInputs; ++idx)
+ for (int32_t idx = 0; idx < nbInputs; ++idx)
{
inVector.push_back(*(inputs + idx));
}
@@ -470,7 +473,8 @@ class PyIPluginV2DynamicExtImpl : public PyIPluginV2DynamicExt
return DimsExprs{};
}
- void configurePlugin(DynamicPluginTensorDesc const* in, int32_t nbInputs, DynamicPluginTensorDesc const* out, int32_t nbOutputs) noexcept override
+ void configurePlugin(DynamicPluginTensorDesc const* in, int32_t nbInputs, DynamicPluginTensorDesc const* out,
+ int32_t nbOutputs) noexcept override
{
try
{
@@ -486,13 +490,13 @@ class PyIPluginV2DynamicExtImpl : public PyIPluginV2DynamicExt
}
std::vector inVector;
- for(int32_t idx = 0; idx < nbInputs; ++idx)
+ for (int32_t idx = 0; idx < nbInputs; ++idx)
{
inVector.push_back(*(in + idx));
}
std::vector outVector;
- for(int32_t idx = 0; idx < nbOutputs; ++idx)
+ for (int32_t idx = 0; idx < nbOutputs; ++idx)
{
outVector.push_back(*(out + idx));
}
@@ -502,13 +506,15 @@ class PyIPluginV2DynamicExtImpl : public PyIPluginV2DynamicExt
PLUGIN_API_CATCH("configure_plugin")
}
- size_t getWorkspaceSize(PluginTensorDesc const* inputs, int32_t nbInputs, PluginTensorDesc const* outputs, int32_t nbOutputs) const noexcept override
+ size_t getWorkspaceSize(PluginTensorDesc const* inputs, int32_t nbInputs, PluginTensorDesc const* outputs,
+ int32_t nbOutputs) const noexcept override
{
try
{
py::gil_scoped_acquire gil{};
- py::function pyGetWorkspaceSize = py::get_override(static_cast(this), "get_workspace_size");
+ py::function pyGetWorkspaceSize
+ = py::get_override(static_cast(this), "get_workspace_size");
if (!pyGetWorkspaceSize)
{
@@ -517,13 +523,13 @@ class PyIPluginV2DynamicExtImpl : public PyIPluginV2DynamicExt
}
std::vector inVector;
- for(int32_t idx = 0; idx < nbInputs; ++idx)
+ for (int32_t idx = 0; idx < nbInputs; ++idx)
{
inVector.push_back(*(inputs + idx));
}
std::vector outVector;
- for(int32_t idx = 0; idx < nbOutputs; ++idx)
+ for (int32_t idx = 0; idx < nbOutputs; ++idx)
{
outVector.push_back(*(outputs + idx));
}
@@ -559,23 +565,24 @@ class PyIPluginV2DynamicExtImpl : public PyIPluginV2DynamicExt
mPluginVersion = std::move(pluginVersion);
mIsPluginVersionInitialized = true;
}
- private:
- int32_t getTensorRTVersion() const noexcept override
- {
+
+private:
+ int32_t getTensorRTVersion() const noexcept override
+ {
return static_cast((static_cast(PluginVersion::kV2_DYNAMICEXT_PYTHON) << 24U)
| (static_cast(NV_TENSORRT_VERSION) & 0xFFFFFFU));
- }
+ }
- int32_t mNbInputs{};
- int32_t mNbOutputs{};
- std::string mNamespace;
- std::string mPluginType;
- std::string mPluginVersion;
+ int32_t mNbInputs{};
+ int32_t mNbOutputs{};
+ std::string mNamespace;
+ std::string mPluginType;
+ std::string mPluginVersion;
- bool mIsNbOutputsInitialized{false};
- bool mIsNamespaceInitialized{false};
- bool mIsPluginTypeInitialized{false};
- bool mIsPluginVersionInitialized{false};
+ bool mIsNbOutputsInitialized{false};
+ bool mIsNamespaceInitialized{false};
+ bool mIsPluginTypeInitialized{false};
+ bool mIsPluginVersionInitialized{false};
};
class IPluginCreatorImpl : public IPluginCreator
@@ -593,7 +600,7 @@ class IPluginCreatorImpl : public IPluginCreator
try
{
py::gil_scoped_acquire gil{};
- if(!mIsNameInitialized)
+ if (!mIsNameInitialized)
{
utils::throwPyError(PyExc_AttributeError, "name not initialized");
}
@@ -608,7 +615,7 @@ class IPluginCreatorImpl : public IPluginCreator
try
{
py::gil_scoped_acquire gil{};
- if(!mIsPluginVersionInitialized)
+ if (!mIsPluginVersionInitialized)
{
utils::throwPyError(PyExc_AttributeError, "plugin_version not initialized");
}
@@ -623,7 +630,7 @@ class IPluginCreatorImpl : public IPluginCreator
try
{
py::gil_scoped_acquire gil{};
- if(!mIsFCInitialized)
+ if (!mIsFCInitialized)
{
utils::throwPyError(PyExc_AttributeError, "field_names not initialized");
}
@@ -661,8 +668,7 @@ class IPluginCreatorImpl : public IPluginCreator
return nullptr;
}
- IPluginV2* deserializePlugin(
- const char* name, const void* serialData, size_t serialLength) noexcept override
+ IPluginV2* deserializePlugin(const char* name, const void* serialData, size_t serialLength) noexcept override
{
try
{
@@ -677,7 +683,9 @@ class IPluginCreatorImpl : public IPluginCreator
std::string nameString{name};
- py::handle handle = pyDeserializePlugin(nameString, py::bytes(static_cast(serialData), serialLength)).release();
+ py::handle handle
+ = pyDeserializePlugin(nameString, py::bytes(static_cast(serialData), serialLength))
+ .release();
try
{
auto result = handle.cast();
@@ -703,7 +711,7 @@ class IPluginCreatorImpl : public IPluginCreator
try
{
py::gil_scoped_acquire gil{};
- if(!mIsNamespaceInitialized)
+ if (!mIsNamespaceInitialized)
{
utils::throwPyError(PyExc_AttributeError, "plugin_namespace not initialized");
}
@@ -1755,9 +1763,10 @@ bool isPython(IVersionedInterface const& versionedInterface)
namespace lambdas
{
// For IPluginV2
-static const auto IPluginV2_get_output_shape = [](IPluginV2& self, int32_t const index, std::vector const& inputShapes) {
- return self.getOutputDimensions(index, inputShapes.data(), inputShapes.size());
-};
+static const auto IPluginV2_get_output_shape
+ = [](IPluginV2& self, int32_t const index, std::vector const& inputShapes) {
+ return self.getOutputDimensions(index, inputShapes.data(), inputShapes.size());
+ };
static const auto IPluginV2_configure_with_format
= [](IPluginV2& self, std::vector const& inputShapes, std::vector const& outputShapes, DataType dtype,
@@ -1789,13 +1798,14 @@ static const auto IPluginV2_serialize = [](IPluginV2& self) {
};
// `const vector::data()` corresponds to `const void* const*` (pointer to const-pointer to const void)
-static const auto IPluginV2_execute_async = [](IPluginV2& self, int32_t batchSize, const std::vector& inputs,
- std::vector& outputs, void* workspace, long stream) {
+static const auto IPluginV2_execute_async = [](IPluginV2& self, int32_t batchSize,
+ const std::vector& inputs, std::vector& outputs,
+ void* workspace, long stream) {
return self.enqueue(batchSize, inputs.data(), outputs.data(), workspace, reinterpret_cast(stream));
};
static const auto IPluginV2_set_num_outputs = [](IPluginV2& self, int32_t numOutputs) {
- if(getPluginVersion(self.getTensorRTVersion()) == PluginVersion::kV2_DYNAMICEXT_PYTHON)
+ if (getPluginVersion(self.getTensorRTVersion()) == PluginVersion::kV2_DYNAMICEXT_PYTHON)
{
auto plugin = static_cast(&self);
plugin->setNbOutputs(numOutputs);
@@ -1805,7 +1815,7 @@ static const auto IPluginV2_set_num_outputs = [](IPluginV2& self, int32_t numOut
};
static const auto IPluginV2_set_plugin_type = [](IPluginV2& self, std::string pluginType) {
- if(getPluginVersion(self.getTensorRTVersion()) == PluginVersion::kV2_DYNAMICEXT_PYTHON)
+ if (getPluginVersion(self.getTensorRTVersion()) == PluginVersion::kV2_DYNAMICEXT_PYTHON)
{
auto plugin = reinterpret_cast(&self);
plugin->setPluginType(std::move(pluginType));
@@ -1815,7 +1825,7 @@ static const auto IPluginV2_set_plugin_type = [](IPluginV2& self, std::string pl
};
static const auto IPluginV2_set_plugin_version = [](IPluginV2& self, std::string pluginVersion) {
- if(getPluginVersion(self.getTensorRTVersion()) == PluginVersion::kV2_DYNAMICEXT_PYTHON)
+ if (getPluginVersion(self.getTensorRTVersion()) == PluginVersion::kV2_DYNAMICEXT_PYTHON)
{
auto plugin = reinterpret_cast(&self);
plugin->setPluginVersion(std::move(pluginVersion));
@@ -1841,8 +1851,8 @@ static std::unique_ptr makeBoolArray(std::vector const& v)
static const auto configure_plugin
= [](IPluginV2Ext& self, std::vector const& inputShapes, std::vector const& outputShapes,
std::vector const& inputTypes, std::vector const& outputTypes,
- std::vector const& inputIsBroadcasted, std::vector const& outputIsBroadcasted, TensorFormat format,
- int32_t maxBatchSize) {
+ std::vector const& inputIsBroadcasted, std::vector const& outputIsBroadcasted,
+ TensorFormat format, int32_t maxBatchSize) {
auto inputBroadcast = makeBoolArray(inputIsBroadcasted);
auto outputBroadcast = makeBoolArray(outputIsBroadcasted);
return self.configurePlugin(inputShapes.data(), inputShapes.size(), outputShapes.data(), outputShapes.size(),
@@ -1984,7 +1994,7 @@ static const auto dimsexprs_vector_constructor = [](std::vector(Dims::MAX_DIMS)};
PY_ASSERT_VALUE_ERROR(in.size() <= maxDims,
- "Input length " + std::to_string(in.size()) + ". Max expected length is " + std::to_string(maxDims));
+ "Input length " + std::to_string(in.size()) + ". Max expected length is " + std::to_string(maxDims));
// Create the Dims object.
DimsExprs* self = new DimsExprs{};
@@ -2300,6 +2310,80 @@ void bindPlugin(py::module& m)
.def_readwrite("opt", &DynamicPluginTensorDesc::opt)
.def_readwrite("max", &DynamicPluginTensorDesc::max);
+ py::enum_(m, "PluginFieldType", PluginFieldTypeDoc::descr, py::module_local())
+ .value("FLOAT16", PluginFieldType::kFLOAT16)
+ .value("FLOAT32", PluginFieldType::kFLOAT32)
+ .value("FLOAT64", PluginFieldType::kFLOAT64)
+ .value("INT8", PluginFieldType::kINT8)
+ .value("INT16", PluginFieldType::kINT16)
+ .value("INT32", PluginFieldType::kINT32)
+ .value("CHAR", PluginFieldType::kCHAR)
+ .value("DIMS", PluginFieldType::kDIMS)
+ .value("UNKNOWN", PluginFieldType::kUNKNOWN)
+ .value("BF16", PluginFieldType::kBF16)
+ .value("INT64", PluginFieldType::kINT64)
+ .value("FP8", PluginFieldType::kFP8);
+
+ py::class_(m, "PluginField", PluginFieldDoc::descr, py::module_local())
+ .def(py::init(lambdas::plugin_field_default_constructor), "name"_a = "", py::keep_alive<1, 2>{})
+ .def(py::init(lambdas::plugin_field_constructor), "name"_a, "data"_a,
+ "type"_a = nvinfer1::PluginFieldType::kUNKNOWN, py::keep_alive<1, 2>{}, py::keep_alive<1, 3>{})
+ .def_property(
+ "name", [](PluginField& self) { return self.name; },
+ py::cpp_function(
+ [](PluginField& self, FallbackString& name) { self.name = name.c_str(); }, py::keep_alive<1, 2>{}))
+ .def_property(
+ "data",
+ [](PluginField& self) {
+ switch (self.type)
+ {
+ case PluginFieldType::kINT32:
+ return py::array(self.length, static_cast(self.data));
+ break;
+ case PluginFieldType::kINT8:
+ return py::array(self.length, static_cast(self.data));
+ break;
+ case PluginFieldType::kINT16:
+ return py::array(self.length, static_cast(self.data));
+ break;
+ case PluginFieldType::kFLOAT16:
+ // TODO: Figure out how to handle float16 correctly here
+ return py::array(self.length, static_cast(self.data));
+ break;
+ case PluginFieldType::kFLOAT32:
+ return py::array(self.length, static_cast(self.data));
+ break;
+ case PluginFieldType::kFLOAT64:
+ return py::array(self.length, static_cast(self.data));
+ break;
+ case PluginFieldType::kCHAR: return py::array(self.length, static_cast(self.data)); break;
+ default: assert(false && "No known conversion for returning data from PluginField"); break;
+ }
+ // should not reach this line
+ return py::array();
+ },
+ py::cpp_function(
+ [](PluginField& self, py::buffer& buffer) {
+ py::buffer_info info = buffer.request();
+ self.data = info.ptr;
+ },
+ py::keep_alive<1, 2>{}))
+ .def_readwrite("type", &PluginField::type)
+ .def_readwrite("size", &PluginField::length);
+
+ // PluginFieldCollection behaves like an iterable, and can be constructed from iterables.
+ py::class_(m, "PluginFieldCollection_", PluginFieldCollectionDoc::descr, py::module_local())
+ .def(py::init<>(lambdas::plugin_field_collection_constructor), py::keep_alive<1, 2>{})
+ .def("__len__", [](PluginFieldCollection& self) { return self.nbFields; })
+ .def("__getitem__", [](PluginFieldCollection& self, int32_t const index) {
+ PY_ASSERT_INDEX_ERROR(index < self.nbFields);
+ return self.fields[index];
+ });
+
+ // Creating a trt.PluginFieldCollection in Python will actually construct a vector,
+ // which can then be converted to an actual C++ PluginFieldCollection.
+ py::implicitly_convertible, PluginFieldCollection>();
+
py::class_(m, "IPluginV2", IPluginV2Doc::descr, py::module_local())
.def_property("num_outputs", &IPluginV2::getNbOutputs, lambdas::IPluginV2_set_num_outputs)
.def_property_readonly("tensorrt_version", &IPluginV2::getTensorRTVersion)
@@ -2337,7 +2421,8 @@ void bindPlugin(py::module& m)
.def("clone", &IPluginV2Ext::clone, IPluginV2ExtDoc::clone);
;
- py::class_>(m, "IPluginV2DynamicExtBase", py::module_local());
+ py::class_>(
+ m, "IPluginV2DynamicExtBase", py::module_local());
py::class_>(
@@ -2366,6 +2451,9 @@ void bindPlugin(py::module& m)
"stream"_a, IPluginV2DynamicExtDoc::enqueue)
.def("clone", &pluginDoc::clone, IPluginV2DynamicExtDoc::clone);
+ py::class_>(
+ m, "IPluginCapability", IPluginV3Doc::iplugincapability_descr, py::module_local());
+
py::class_>(
m, "IPluginV3", IPluginV3Doc::ipluginv3_descr, py::module_local())
.def(py::init<>())
@@ -2375,9 +2463,6 @@ void bindPlugin(py::module& m)
.def("clone", &pluginDoc::cloneV3, IPluginV3Doc::clone)
.def("destroy", &pluginDoc::destroyV3, IPluginV3Doc::destroy);
- py::class_>(
- m, "IPluginCapability", IPluginV3Doc::iplugincapability_descr, py::module_local());
-
py::class_>(
m, "IPluginV3OneCore", IPluginV3Doc::ipluginv3onecore_descr, py::module_local())
@@ -2430,80 +2515,6 @@ void bindPlugin(py::module& m)
"stream"_a, IPluginV3Doc::enqueue)
.def("attach_to_context", &pluginDoc::attachToContext, "resource_context"_a, IPluginV3Doc::attach_to_context);
- py::enum_(m, "PluginFieldType", PluginFieldTypeDoc::descr, py::module_local())
- .value("FLOAT16", PluginFieldType::kFLOAT16)
- .value("FLOAT32", PluginFieldType::kFLOAT32)
- .value("FLOAT64", PluginFieldType::kFLOAT64)
- .value("INT8", PluginFieldType::kINT8)
- .value("INT16", PluginFieldType::kINT16)
- .value("INT32", PluginFieldType::kINT32)
- .value("CHAR", PluginFieldType::kCHAR)
- .value("DIMS", PluginFieldType::kDIMS)
- .value("UNKNOWN", PluginFieldType::kUNKNOWN)
- .value("BF16", PluginFieldType::kBF16)
- .value("INT64", PluginFieldType::kINT64)
- .value("FP8", PluginFieldType::kFP8);
-
- py::class_(m, "PluginField", PluginFieldDoc::descr, py::module_local())
- .def(py::init(lambdas::plugin_field_default_constructor), "name"_a = "", py::keep_alive<1, 2>{})
- .def(py::init(lambdas::plugin_field_constructor), "name"_a, "data"_a,
- "type"_a = nvinfer1::PluginFieldType::kUNKNOWN, py::keep_alive<1, 2>{}, py::keep_alive<1, 3>{})
- .def_property(
- "name", [](PluginField& self) { return self.name; },
- py::cpp_function(
- [](PluginField& self, FallbackString& name) { self.name = name.c_str(); }, py::keep_alive<1, 2>{}))
- .def_property(
- "data",
- [](PluginField& self) {
- switch (self.type)
- {
- case PluginFieldType::kINT32:
- return py::array(self.length, static_cast(self.data));
- break;
- case PluginFieldType::kINT8:
- return py::array(self.length, static_cast(self.data));
- break;
- case PluginFieldType::kINT16:
- return py::array(self.length, static_cast(self.data));
- break;
- case PluginFieldType::kFLOAT16:
- // TODO: Figure out how to handle float16 correctly here
- return py::array(self.length, static_cast(self.data));
- break;
- case PluginFieldType::kFLOAT32:
- return py::array(self.length, static_cast(self.data));
- break;
- case PluginFieldType::kFLOAT64:
- return py::array(self.length, static_cast(self.data));
- break;
- case PluginFieldType::kCHAR: return py::array(self.length, static_cast(self.data)); break;
- default: assert(false && "No known conversion for returning data from PluginField"); break;
- }
- // should not reach this line
- return py::array();
- },
- py::cpp_function(
- [](PluginField& self, py::buffer& buffer) {
- py::buffer_info info = buffer.request();
- self.data = info.ptr;
- },
- py::keep_alive<1, 2>{}))
- .def_readwrite("type", &PluginField::type)
- .def_readwrite("size", &PluginField::length);
-
- // PluginFieldCollection behaves like an iterable, and can be constructed from iterables.
- py::class_(m, "PluginFieldCollection_", PluginFieldCollectionDoc::descr, py::module_local())
- .def(py::init<>(lambdas::plugin_field_collection_constructor), py::keep_alive<1, 2>{})
- .def("__len__", [](PluginFieldCollection& self) { return self.nbFields; })
- .def("__getitem__", [](PluginFieldCollection& self, int32_t const index) {
- PY_ASSERT_INDEX_ERROR(index < self.nbFields);
- return self.fields[index];
- });
-
- // Creating a trt.PluginFieldCollection in Python will actually construct a vector,
- // which can then be converted to an actual C++ PluginFieldCollection.
- py::implicitly_convertible, PluginFieldCollection>();
-
py::class_(
m, "IPluginCreatorInterface", IPluginCreatorInterfaceDoc::descr, py::module_local());
diff --git a/python/src/parsers/pyOnnx.cpp b/python/src/parsers/pyOnnx.cpp
index 122fc219..9059a3b7 100644
--- a/python/src/parsers/pyOnnx.cpp
+++ b/python/src/parsers/pyOnnx.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/python/src/pyTensorRT.cpp b/python/src/pyTensorRT.cpp
index a7fe0017..c562703a 100644
--- a/python/src/pyTensorRT.cpp
+++ b/python/src/pyTensorRT.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/python/src/utils.cpp b/python/src/utils.cpp
index 46e8b3ba..de601542 100644
--- a/python/src/utils.cpp
+++ b/python/src/utils.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
@@ -44,7 +44,7 @@ size_t size(nvinfer1::DataType type)
case nvinfer1::DataType::kUINT8: return 1;
case nvinfer1::DataType::kFP8: return 1;
case nvinfer1::DataType::kBF16: return 2;
- case nvinfer1::DataType::kINT4: break; //TRT-22011 - need to address sub-byte element size
+ case nvinfer1::DataType::kINT4: break; // TRT-22011 - need to address sub-byte element size
}
return -1;
}
diff --git a/quickstart/IntroNotebooks/Additional Examples/helper.py b/quickstart/IntroNotebooks/Additional Examples/helper.py
index 66c4e006..c00ed985 100644
--- a/quickstart/IntroNotebooks/Additional Examples/helper.py
+++ b/quickstart/IntroNotebooks/Additional Examples/helper.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/quickstart/IntroNotebooks/helper.py b/quickstart/IntroNotebooks/helper.py
index 66c4e006..c00ed985 100644
--- a/quickstart/IntroNotebooks/helper.py
+++ b/quickstart/IntroNotebooks/helper.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/quickstart/IntroNotebooks/onnx_helper.py b/quickstart/IntroNotebooks/onnx_helper.py
index 6bea97dd..2f3d6767 100644
--- a/quickstart/IntroNotebooks/onnx_helper.py
+++ b/quickstart/IntroNotebooks/onnx_helper.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/quickstart/Makefile b/quickstart/Makefile
index bf728ff4..1e700e3d 100644
--- a/quickstart/Makefile
+++ b/quickstart/Makefile
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/quickstart/Makefile.config b/quickstart/Makefile.config
index d81f325d..0d290ea5 100644
--- a/quickstart/Makefile.config
+++ b/quickstart/Makefile.config
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/quickstart/SemanticSegmentation/Makefile b/quickstart/SemanticSegmentation/Makefile
index 5c1bdea3..3c1f68d0 100644
--- a/quickstart/SemanticSegmentation/Makefile
+++ b/quickstart/SemanticSegmentation/Makefile
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/quickstart/SemanticSegmentation/export.py b/quickstart/SemanticSegmentation/export.py
index e5168aaa..560e233e 100644
--- a/quickstart/SemanticSegmentation/export.py
+++ b/quickstart/SemanticSegmentation/export.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/quickstart/SemanticSegmentation/tutorial-runtime.cpp b/quickstart/SemanticSegmentation/tutorial-runtime.cpp
index 7f0854a3..c1f09197 100644
--- a/quickstart/SemanticSegmentation/tutorial-runtime.cpp
+++ b/quickstart/SemanticSegmentation/tutorial-runtime.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/quickstart/common/logger.cpp b/quickstart/common/logger.cpp
index 2eaccd54..9d07754c 100644
--- a/quickstart/common/logger.cpp
+++ b/quickstart/common/logger.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/quickstart/common/logger.h b/quickstart/common/logger.h
index 513275c2..35cbf367 100644
--- a/quickstart/common/logger.h
+++ b/quickstart/common/logger.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/quickstart/common/logging.h b/quickstart/common/logging.h
index f323d22b..d891e168 100644
--- a/quickstart/common/logging.h
+++ b/quickstart/common/logging.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/quickstart/common/util.cpp b/quickstart/common/util.cpp
index 717b63aa..55ccd630 100644
--- a/quickstart/common/util.cpp
+++ b/quickstart/common/util.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/quickstart/common/util.h b/quickstart/common/util.h
index 50455e97..55457969 100644
--- a/quickstart/common/util.h
+++ b/quickstart/common/util.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/quickstart/deploy_to_triton/config.pbtxt b/quickstart/deploy_to_triton/config.pbtxt
index 63046c8d..f65a9c55 100644
--- a/quickstart/deploy_to_triton/config.pbtxt
+++ b/quickstart/deploy_to_triton/config.pbtxt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/quickstart/deploy_to_triton/export_resnet_to_onnx.py b/quickstart/deploy_to_triton/export_resnet_to_onnx.py
index fba1550a..64d6b137 100644
--- a/quickstart/deploy_to_triton/export_resnet_to_onnx.py
+++ b/quickstart/deploy_to_triton/export_resnet_to_onnx.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/quickstart/deploy_to_triton/triton_client.py b/quickstart/deploy_to_triton/triton_client.py
index a6e7553d..1575e208 100644
--- a/quickstart/deploy_to_triton/triton_client.py
+++ b/quickstart/deploy_to_triton/triton_client.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/CMakeLists.txt b/samples/CMakeLists.txt
index 1c26cc38..513810d9 100644
--- a/samples/CMakeLists.txt
+++ b/samples/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/CMakeSamplesTemplate.txt b/samples/CMakeSamplesTemplate.txt
index d4f78ae5..285e3f99 100644
--- a/samples/CMakeSamplesTemplate.txt
+++ b/samples/CMakeSamplesTemplate.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -62,11 +62,11 @@ add_executable(${TARGET_NAME}
set(DEPS_LIST "")
if(BUILD_PLUGINS)
- list(APPEND DEPS_LIST nvinfer_plugin)
+ list(APPEND DEPS_LIST ${nvinfer_plugin_lib_name})
endif()
if(BUILD_PARSERS)
- list(APPEND DEPS_LIST nvonnxparser)
+ list(APPEND DEPS_LIST ${nvonnxparser_lib_name})
endif()
if(BUILD_PLUGINS OR BUILD_PARSERS)
@@ -93,7 +93,7 @@ target_compile_options(${TARGET_NAME} PUBLIC
set(SAMPLE_DEP_LIBS
${CUDART_LIB}
- ${nvinfer_LIB_PATH}
+ ${${nvinfer_lib_name}_LIB_PATH}
${RT_LIB}
${CMAKE_DL_LIBS}
${CMAKE_THREAD_LIBS_INIT}
@@ -104,17 +104,17 @@ if (NOT MSVC)
endif()
if(${PLUGINS_NEEDED})
- list(APPEND SAMPLE_DEP_LIBS nvinfer_plugin)
+ list(APPEND SAMPLE_DEP_LIBS ${nvinfer_plugin_lib_name})
endif()
if("onnx" IN_LIST SAMPLE_PARSERS)
- list(APPEND SAMPLE_DEP_LIBS nvonnxparser)
+ list(APPEND SAMPLE_DEP_LIBS ${nvonnxparser_lib_name})
endif()
-# Necessary to link nvinfer_plugin library.
+# Necessary to link nvinfer_plugin library. Add unresolved symbols flag for non-Windows platforms.
target_link_libraries(${TARGET_NAME}
${SAMPLE_DEP_LIBS}
- -Wl,--unresolved-symbols=ignore-in-shared-libs
+ $<$>:-Wl,--unresolved-symbols=ignore-in-shared-libs>
)
set_target_properties(${TARGET_NAME} PROPERTIES LINK_FLAGS "-Wl,--exclude-libs,ALL")
diff --git a/samples/common/BatchStream.h b/samples/common/BatchStream.h
index f6da8d70..c4ab9de0 100644
--- a/samples/common/BatchStream.h
+++ b/samples/common/BatchStream.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/common/EntropyCalibrator.h b/samples/common/EntropyCalibrator.h
index 936d10e0..67a0130e 100644
--- a/samples/common/EntropyCalibrator.h
+++ b/samples/common/EntropyCalibrator.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/common/ErrorRecorder.h b/samples/common/ErrorRecorder.h
index cd00f745..bfb857c5 100644
--- a/samples/common/ErrorRecorder.h
+++ b/samples/common/ErrorRecorder.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
@@ -17,7 +17,7 @@
#ifndef ERROR_RECORDER_H
#define ERROR_RECORDER_H
-#include "NvInferRuntimeBase.h"
+#include "NvInferRuntime.h"
#include "logger.h"
#include
#include
diff --git a/samples/common/argsParser.h b/samples/common/argsParser.h
index 745070d9..b302dc47 100644
--- a/samples/common/argsParser.h
+++ b/samples/common/argsParser.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
@@ -68,7 +68,7 @@ struct Args
std::vector dataDirs;
std::string saveEngine;
std::string loadEngine;
- bool rowMajor{true};
+ bool rowOrder{true};
};
//!
@@ -85,7 +85,7 @@ inline bool parseArgs(Args& args, int32_t argc, char* argv[])
int32_t arg;
static struct option long_options[] = {{"help", no_argument, 0, 'h'}, {"datadir", required_argument, 0, 'd'},
{"int8", no_argument, 0, 'i'}, {"fp16", no_argument, 0, 'f'}, {"bf16", no_argument, 0, 'z'},
- {"columnMajor", no_argument, 0, 'c'}, {"saveEngine", required_argument, 0, 's'},
+ {"columnOrder", no_argument, 0, 'c'}, {"saveEngine", required_argument, 0, 's'},
{"loadEngine", required_argument, 0, 'o'}, {"useDLACore", required_argument, 0, 'u'},
{"batch", required_argument, 0, 'b'}, {nullptr, 0, nullptr, 0}};
int32_t option_index = 0;
@@ -124,7 +124,7 @@ inline bool parseArgs(Args& args, int32_t argc, char* argv[])
case 'i': args.runInInt8 = true; break;
case 'f': args.runInFp16 = true; break;
case 'z': args.runInBf16 = true; break;
- case 'c': args.rowMajor = false; break;
+ case 'c': args.rowOrder = false; break;
case 'u':
if (optarg)
{
diff --git a/samples/common/bfloat16.cpp b/samples/common/bfloat16.cpp
index a9944789..8222826a 100644
--- a/samples/common/bfloat16.cpp
+++ b/samples/common/bfloat16.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/common/bfloat16.h b/samples/common/bfloat16.h
index 90b77421..0d0ab922 100644
--- a/samples/common/bfloat16.h
+++ b/samples/common/bfloat16.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/common/buffers.h b/samples/common/buffers.h
index bf40dc9c..e58f2f5c 100644
--- a/samples/common/buffers.h
+++ b/samples/common/buffers.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/common/common.h b/samples/common/common.h
index 557bd169..0324d2fb 100644
--- a/samples/common/common.h
+++ b/samples/common/common.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/common/dumpTFWts.py b/samples/common/dumpTFWts.py
index 0b7a0123..70770fbd 100644
--- a/samples/common/dumpTFWts.py
+++ b/samples/common/dumpTFWts.py
@@ -1,6 +1,6 @@
#!/usr/bin/python
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/common/getOptions.cpp b/samples/common/getOptions.cpp
index 8bcf7958..19cd3281 100644
--- a/samples/common/getOptions.cpp
+++ b/samples/common/getOptions.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/common/getOptions.h b/samples/common/getOptions.h
index e8460513..4bbf9e27 100644
--- a/samples/common/getOptions.h
+++ b/samples/common/getOptions.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/common/getoptWin.h b/samples/common/getoptWin.h
index 7e1cf1ba..a1dc6ffa 100644
--- a/samples/common/getoptWin.h
+++ b/samples/common/getoptWin.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/common/half.h b/samples/common/half.h
index c5ebdb1a..b997e7db 100644
--- a/samples/common/half.h
+++ b/samples/common/half.h
@@ -16,7 +16,7 @@
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/common/logger.cpp b/samples/common/logger.cpp
index 0592db2c..909ec0bb 100644
--- a/samples/common/logger.cpp
+++ b/samples/common/logger.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/common/logger.h b/samples/common/logger.h
index ff59bfa9..8205e457 100644
--- a/samples/common/logger.h
+++ b/samples/common/logger.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/common/logging.h b/samples/common/logging.h
index e61b3687..d2c571d9 100644
--- a/samples/common/logging.h
+++ b/samples/common/logging.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
@@ -18,7 +18,7 @@
#ifndef TENSORRT_LOGGING_H
#define TENSORRT_LOGGING_H
-#include "NvInferRuntimeBase.h"
+#include "NvInferRuntime.h"
#include "sampleOptions.h"
#include
#include
diff --git a/samples/common/parserOnnxConfig.h b/samples/common/parserOnnxConfig.h
index ed0a9b55..67ee6c71 100644
--- a/samples/common/parserOnnxConfig.h
+++ b/samples/common/parserOnnxConfig.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/common/safeCommon.h b/samples/common/safeCommon.h
index fc9f28b0..4cc87a70 100644
--- a/samples/common/safeCommon.h
+++ b/samples/common/safeCommon.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
@@ -18,7 +18,7 @@
#ifndef TENSORRT_SAFE_COMMON_H
#define TENSORRT_SAFE_COMMON_H
-#include "NvInferRuntimeBase.h"
+#include "NvInferSafeRuntime.h"
#include "cuda_runtime.h"
#include "sampleEntrypoints.h"
#include
diff --git a/samples/common/sampleConfig.h b/samples/common/sampleConfig.h
index f60ed363..801a268a 100644
--- a/samples/common/sampleConfig.h
+++ b/samples/common/sampleConfig.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/common/sampleDevice.cpp b/samples/common/sampleDevice.cpp
index f504fa69..235ad9f0 100644
--- a/samples/common/sampleDevice.cpp
+++ b/samples/common/sampleDevice.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/common/sampleDevice.h b/samples/common/sampleDevice.h
index ad122180..5e62f6d0 100644
--- a/samples/common/sampleDevice.h
+++ b/samples/common/sampleDevice.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/common/sampleEngines.cpp b/samples/common/sampleEngines.cpp
index bea07a53..b39d513b 100644
--- a/samples/common/sampleEngines.cpp
+++ b/samples/common/sampleEngines.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
@@ -654,7 +654,15 @@ void setMemoryPoolLimits(IBuilderConfig& config, BuildOptions const& build)
}
if (build.tacticSharedMem >= 0)
{
- config.setMemoryPoolLimit(MemoryPoolType::kTACTIC_SHARED_MEMORY, roundToBytes(build.tacticSharedMem));
+ if (build.tacticSharedMem >= 0.046 && build.tacticSharedMem <= 0.047)
+ {
+ // 48KB is a common use case but user might not type the exact number 0.046875MB.
+ config.setMemoryPoolLimit(MemoryPoolType::kTACTIC_SHARED_MEMORY, 48 << 10);
+ }
+ else
+ {
+ config.setMemoryPoolLimit(MemoryPoolType::kTACTIC_SHARED_MEMORY, roundToBytes(build.tacticSharedMem));
+ }
}
}
diff --git a/samples/common/sampleEngines.h b/samples/common/sampleEngines.h
index f6cff080..4c4272b7 100644
--- a/samples/common/sampleEngines.h
+++ b/samples/common/sampleEngines.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/common/sampleEntrypoints.h b/samples/common/sampleEntrypoints.h
index 70f45dde..cc8bf1b9 100644
--- a/samples/common/sampleEntrypoints.h
+++ b/samples/common/sampleEntrypoints.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/common/sampleInference.cpp b/samples/common/sampleInference.cpp
index dfc76708..024dd6f6 100644
--- a/samples/common/sampleInference.cpp
+++ b/samples/common/sampleInference.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
@@ -620,8 +620,10 @@ class EnqueueExplicit : private Enqueue
try
{
bool const result = mContext.enqueueV3(stream.get());
- // Collecting layer timing info from current profile index of execution context
- if (mContext.getProfiler() && !mContext.getEnqueueEmitsProfile() && !mContext.reportToProfiler())
+ // Collecting layer timing info from current profile index of execution context, except under capturing
+ // mode.
+ if (!isStreamCapturing(stream) && mContext.getProfiler() && !mContext.getEnqueueEmitsProfile()
+ && !mContext.reportToProfiler())
{
gLogWarning << "Failed to collect layer timing info from previous enqueueV3()" << std::endl;
}
@@ -635,6 +637,14 @@ class EnqueueExplicit : private Enqueue
}
private:
+ // Helper function to check if a stream is in capturing mode.
+ bool isStreamCapturing(TrtCudaStream& stream) const
+ {
+ cudaStreamCaptureStatus status{cudaStreamCaptureStatusNone};
+ cudaCheck(cudaStreamIsCapturing(stream.get(), &status));
+ return status != cudaStreamCaptureStatusNone;
+ }
+
Bindings const& mBindings;
};
@@ -931,6 +941,8 @@ class Iteration
mEnqueue = EnqueueFunction(EnqueueExplicit(context, mBindings));
if (inference.graph)
{
+ sample::gLogInfo << "Capturing CUDA graph for the current execution context" << std::endl;
+
TrtCudaStream& stream = getStream(StreamType::kCOMPUTE);
// Avoid capturing initialization calls by executing the enqueue function at least
// once before starting CUDA graph capture.
@@ -948,6 +960,7 @@ class Iteration
{
mGraph.endCapture(stream);
mEnqueue = EnqueueFunction(EnqueueGraph(context, mGraph));
+ sample::gLogInfo << "Successfully captured CUDA graph for the current execution context" << std::endl;
}
else
{
diff --git a/samples/common/sampleInference.h b/samples/common/sampleInference.h
index e726cb31..e8e53bb7 100644
--- a/samples/common/sampleInference.h
+++ b/samples/common/sampleInference.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/common/sampleOptions.cpp b/samples/common/sampleOptions.cpp
index 575668e1..7f2bd9f1 100644
--- a/samples/common/sampleOptions.cpp
+++ b/samples/common/sampleOptions.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/common/sampleOptions.h b/samples/common/sampleOptions.h
index 00e8b15d..cddbc60d 100644
--- a/samples/common/sampleOptions.h
+++ b/samples/common/sampleOptions.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/common/sampleReporting.cpp b/samples/common/sampleReporting.cpp
index 3c8efab0..1d3e2ca5 100644
--- a/samples/common/sampleReporting.cpp
+++ b/samples/common/sampleReporting.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/common/sampleReporting.h b/samples/common/sampleReporting.h
index 8cab62ba..c6813fe6 100644
--- a/samples/common/sampleReporting.h
+++ b/samples/common/sampleReporting.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/common/sampleUtils.cpp b/samples/common/sampleUtils.cpp
index 7f827bc8..522cde65 100644
--- a/samples/common/sampleUtils.cpp
+++ b/samples/common/sampleUtils.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/common/sampleUtils.h b/samples/common/sampleUtils.h
index 32d5f1b0..6cd4280b 100644
--- a/samples/common/sampleUtils.h
+++ b/samples/common/sampleUtils.h
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/common/streamReader.h b/samples/common/streamReader.h
index 657e35b8..7d4aa1c6 100644
--- a/samples/common/streamReader.h
+++ b/samples/common/streamReader.h
@@ -18,7 +18,7 @@
#ifndef STREAM_READER_H
#define STREAM_READER_H
-#include "NvInferRuntimeBase.h"
+#include "NvInferRuntime.h"
#include "sampleUtils.h"
#include
diff --git a/samples/python/common.py b/samples/python/common.py
index f289c366..10b2c323 100644
--- a/samples/python/common.py
+++ b/samples/python/common.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -27,16 +27,21 @@
except NameError:
FileNotFoundError = IOError
+
def GiB(val):
return val * 1 << 30
def add_help(description):
- parser = argparse.ArgumentParser(description=description, formatter_class=argparse.ArgumentDefaultsHelpFormatter)
+ parser = argparse.ArgumentParser(
+ description=description, formatter_class=argparse.ArgumentDefaultsHelpFormatter
+ )
args, _ = parser.parse_known_args()
-def find_sample_data(description="Runs a TensorRT Python sample", subfolder="", find_files=[], err_msg=""):
+def find_sample_data(
+ description="Runs a TensorRT Python sample", subfolder="", find_files=[], err_msg=""
+):
"""
Parses sample arguments.
@@ -51,7 +56,9 @@ def find_sample_data(description="Runs a TensorRT Python sample", subfolder="",
# Standard command-line arguments for all samples.
kDEFAULT_DATA_ROOT = os.path.join(os.sep, "usr", "src", "tensorrt", "data")
- parser = argparse.ArgumentParser(description=description, formatter_class=argparse.ArgumentDefaultsHelpFormatter)
+ parser = argparse.ArgumentParser(
+ description=description, formatter_class=argparse.ArgumentDefaultsHelpFormatter
+ )
parser.add_argument(
"-d",
"--datadir",
@@ -66,7 +73,13 @@ def get_data_path(data_dir):
data_path = os.path.join(data_dir, subfolder)
if not os.path.exists(data_path):
if data_dir != kDEFAULT_DATA_ROOT:
- print("WARNING: " + data_path + " does not exist. Trying " + data_dir + " instead.")
+ print(
+ "WARNING: "
+ + data_path
+ + " does not exist. Trying "
+ + data_dir
+ + " instead."
+ )
data_path = data_dir
# Make sure data directory exists.
if not (os.path.exists(data_path)) and data_dir != kDEFAULT_DATA_ROOT:
@@ -109,10 +122,13 @@ def locate_files(data_paths, filenames, err_msg=""):
for f, filename in zip(found_files, filenames):
if not f or not os.path.exists(f):
raise FileNotFoundError(
- "Could not find {:}. Searched in data paths: {:}\n{:}".format(filename, data_paths, err_msg)
+ "Could not find {:}. Searched in data paths: {:}\n{:}".format(
+ filename, data_paths, err_msg
+ )
)
return found_files
+
# Sets up the builder to use the timing cache file, and creates it if it does not already exist
def setup_timing_cache(config: trt.IBuilderConfig, timing_cache_path: os.PathLike):
buffer = b""
@@ -122,8 +138,9 @@ def setup_timing_cache(config: trt.IBuilderConfig, timing_cache_path: os.PathLik
timing_cache: trt.ITimingCache = config.create_timing_cache(buffer)
config.set_timing_cache(timing_cache, True)
+
# Saves the config's timing cache to file
def save_timing_cache(config: trt.IBuilderConfig, timing_cache_path: os.PathLike):
timing_cache: trt.ITimingCache = config.get_timing_cache()
- with open(timing_cache_path, 'wb') as timing_cache_file:
+ with open(timing_cache_path, "wb") as timing_cache_file:
timing_cache_file.write(memoryview(timing_cache.serialize()))
diff --git a/samples/python/detectron2/build_engine.py b/samples/python/detectron2/build_engine.py
index aa6f5795..c62b941c 100644
--- a/samples/python/detectron2/build_engine.py
+++ b/samples/python/detectron2/build_engine.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -33,6 +33,7 @@
sys.path.insert(1, os.path.join(os.path.dirname(os.path.realpath(__file__)), os.pardir))
import common
+
class EngineCalibrator(trt.IInt8MinMaxCalibrator):
"""
Implements the INT8 MinMax Calibrator.
@@ -55,7 +56,10 @@ def set_image_batcher(self, image_batcher: ImageBatcher):
:param image_batcher: The ImageBatcher object
"""
self.image_batcher = image_batcher
- self.size = int(np.dtype(self.image_batcher.dtype).itemsize * np.prod(self.image_batcher.shape))
+ self.size = int(
+ np.dtype(self.image_batcher.dtype).itemsize
+ * np.prod(self.image_batcher.shape)
+ )
self.batch_allocation = common.cuda_call(cudart.cudaMalloc(self.size))
self.batch_generator = self.image_batcher.get_batch()
@@ -80,8 +84,14 @@ def get_batch(self, names):
return None
try:
batch, _, _ = next(self.batch_generator)
- log.info("Calibrating image {} / {}".format(self.image_batcher.image_index, self.image_batcher.num_images))
- common.memcpy_host_to_device(self.batch_allocation, np.ascontiguousarray(batch))
+ log.info(
+ "Calibrating image {} / {}".format(
+ self.image_batcher.image_index, self.image_batcher.num_images
+ )
+ )
+ common.memcpy_host_to_device(
+ self.batch_allocation, np.ascontiguousarray(batch)
+ )
return [int(self.batch_allocation)]
except StopIteration:
@@ -130,7 +140,9 @@ def __init__(self, verbose=False, workspace=8):
self.builder = trt.Builder(self.trt_logger)
self.config = self.builder.create_builder_config()
- self.config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace * (2 ** 30))
+ self.config.set_memory_pool_limit(
+ trt.MemoryPoolType.WORKSPACE, workspace * (2**30)
+ )
self.batch_size = None
self.network = None
@@ -158,13 +170,29 @@ def create_network(self, onnx_path):
log.info("Network Description")
for input in inputs:
self.batch_size = input.shape[0]
- log.info("Input '{}' with shape {} and dtype {}".format(input.name, input.shape, input.dtype))
+ log.info(
+ "Input '{}' with shape {} and dtype {}".format(
+ input.name, input.shape, input.dtype
+ )
+ )
for output in outputs:
- log.info("Output '{}' with shape {} and dtype {}".format(output.name, output.shape, output.dtype))
+ log.info(
+ "Output '{}' with shape {} and dtype {}".format(
+ output.name, output.shape, output.dtype
+ )
+ )
assert self.batch_size > 0
- def create_engine(self, engine_path, precision, config_file, calib_input=None, calib_cache=None, calib_num_images=5000,
- calib_batch_size=8):
+ def create_engine(
+ self,
+ engine_path,
+ precision,
+ config_file,
+ calib_input=None,
+ calib_cache=None,
+ calib_num_images=5000,
+ calib_batch_size=8,
+ ):
"""
Build the TensorRT engine and serialize it to disk.
:param engine_path: The path where to serialize the engine to.
@@ -194,8 +222,15 @@ def create_engine(self, engine_path, precision, config_file, calib_input=None, c
calib_shape = [calib_batch_size] + list(inputs[0].shape[1:])
calib_dtype = trt.nptype(inputs[0].dtype)
self.config.int8_calibrator.set_image_batcher(
- ImageBatcher(calib_input, calib_shape, calib_dtype, max_num_images=calib_num_images,
- exact_batches=True, config_file=config_file))
+ ImageBatcher(
+ calib_input,
+ calib_shape,
+ calib_dtype,
+ max_num_images=calib_num_images,
+ exact_batches=True,
+ config_file=config_file,
+ )
+ )
engine_bytes = self.builder.build_serialized_network(self.network, self.config)
if engine_bytes is None:
@@ -210,34 +245,76 @@ def create_engine(self, engine_path, precision, config_file, calib_input=None, c
def main(args):
builder = EngineBuilder(args.verbose, args.workspace)
builder.create_network(args.onnx)
- builder.create_engine(args.engine, args.precision, args.det2_config, args.calib_input, args.calib_cache, args.calib_num_images,
- args.calib_batch_size)
+ builder.create_engine(
+ args.engine,
+ args.precision,
+ args.det2_config,
+ args.calib_input,
+ args.calib_cache,
+ args.calib_num_images,
+ args.calib_batch_size,
+ )
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-o", "--onnx", help="The input ONNX model file to load")
parser.add_argument("-e", "--engine", help="The output path for the TRT engine")
- parser.add_argument("-c", "--det2_config", default=None, help="The Detectron 2 config file (.yaml) for the model", type=str)
- parser.add_argument("-p", "--precision", default="fp16", choices=["fp32", "fp16", "int8"],
- help="The precision mode to build in, either fp32/fp16/int8, default: 'fp16'")
- parser.add_argument("-v", "--verbose", action="store_true", help="Enable more verbose log output")
- parser.add_argument("-w", "--workspace", default=1, type=int, help="The max memory workspace size to allow in Gb, "
- "default: 1")
- parser.add_argument("--calib_input", help="The directory holding images to use for calibration")
- parser.add_argument("--calib_cache", default="./calibration.cache",
- help="The file path for INT8 calibration cache to use, default: ./calibration.cache")
- parser.add_argument("--calib_num_images", default=5000, type=int,
- help="The maximum number of images to use for calibration, default: 5000")
- parser.add_argument("--calib_batch_size", default=8, type=int,
- help="The batch size for the calibration process, default: 8")
+ parser.add_argument(
+ "-c",
+ "--det2_config",
+ default=None,
+ help="The Detectron 2 config file (.yaml) for the model",
+ type=str,
+ )
+ parser.add_argument(
+ "-p",
+ "--precision",
+ default="fp16",
+ choices=["fp32", "fp16", "int8"],
+ help="The precision mode to build in, either fp32/fp16/int8, default: 'fp16'",
+ )
+ parser.add_argument(
+ "-v", "--verbose", action="store_true", help="Enable more verbose log output"
+ )
+ parser.add_argument(
+ "-w",
+ "--workspace",
+ default=1,
+ type=int,
+ help="The max memory workspace size to allow in Gb, " "default: 1",
+ )
+ parser.add_argument(
+ "--calib_input", help="The directory holding images to use for calibration"
+ )
+ parser.add_argument(
+ "--calib_cache",
+ default="./calibration.cache",
+ help="The file path for INT8 calibration cache to use, default: ./calibration.cache",
+ )
+ parser.add_argument(
+ "--calib_num_images",
+ default=5000,
+ type=int,
+ help="The maximum number of images to use for calibration, default: 5000",
+ )
+ parser.add_argument(
+ "--calib_batch_size",
+ default=8,
+ type=int,
+ help="The batch size for the calibration process, default: 8",
+ )
args = parser.parse_args()
if not all([args.onnx, args.engine]):
parser.print_help()
log.error("These arguments are required: --onnx and --engine")
sys.exit(1)
- if args.precision in ["int8"] and not (args.calib_input or os.path.exists(args.calib_cache)):
+ if args.precision in ["int8"] and not (
+ args.calib_input or os.path.exists(args.calib_cache)
+ ):
parser.print_help()
- log.error("When building in int8 precision, --calib_input or an existing --calib_cache file is required")
+ log.error(
+ "When building in int8 precision, --calib_input or an existing --calib_cache file is required"
+ )
sys.exit(1)
main(args)
diff --git a/samples/python/detectron2/create_onnx.py b/samples/python/detectron2/create_onnx.py
index 38538464..478ead75 100644
--- a/samples/python/detectron2/create_onnx.py
+++ b/samples/python/detectron2/create_onnx.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -34,7 +34,9 @@
from detectron2.structures import ImageList
except ImportError:
print("Could not import Detectron 2 modules. Maybe you did not install Detectron 2")
- print("Please install Detectron 2, check https://github.com/facebookresearch/detectron2/blob/main/INSTALL.md")
+ print(
+ "Please install Detectron 2, check https://github.com/facebookresearch/detectron2/blob/main/INSTALL.md"
+ )
sys.exit(1)
import onnx_utils
@@ -81,14 +83,24 @@ def det2_setup(config_file, weights):
self.first_NMS_max_proposals = self.det2_cfg.MODEL.RPN.POST_NMS_TOPK_TEST
self.first_NMS_iou_threshold = self.det2_cfg.MODEL.RPN.NMS_THRESH
self.first_NMS_score_threshold = 0.01
- self.first_ROIAlign_pooled_size = self.det2_cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION
- self.first_ROIAlign_sampling_ratio = self.det2_cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO
+ self.first_ROIAlign_pooled_size = (
+ self.det2_cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION
+ )
+ self.first_ROIAlign_sampling_ratio = (
+ self.det2_cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO
+ )
self.first_ROIAlign_type = self.det2_cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE
self.second_NMS_max_proposals = self.det2_cfg.TEST.DETECTIONS_PER_IMAGE
self.second_NMS_iou_threshold = self.det2_cfg.MODEL.ROI_HEADS.NMS_THRESH_TEST
- self.second_NMS_score_threshold = self.det2_cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST
- self.second_ROIAlign_pooled_size = self.det2_cfg.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION
- self.second_ROIAlign_sampling_ratio = self.det2_cfg.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO
+ self.second_NMS_score_threshold = (
+ self.det2_cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST
+ )
+ self.second_ROIAlign_pooled_size = (
+ self.det2_cfg.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION
+ )
+ self.second_ROIAlign_sampling_ratio = (
+ self.det2_cfg.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO
+ )
self.second_ROIAlign_type = self.det2_cfg.MODEL.ROI_MASK_HEAD.POOLER_TYPE
self.mask_out_res = 28
@@ -97,17 +109,37 @@ def det2_setup(config_file, weights):
log.info("Number of classes is {}".format(self.num_classes))
log.info("First NMS max proposals is {}".format(self.first_NMS_max_proposals))
log.info("First NMS iou threshold is {}".format(self.first_NMS_iou_threshold))
- log.info("First NMS score threshold is {}".format(self.first_NMS_score_threshold))
+ log.info(
+ "First NMS score threshold is {}".format(self.first_NMS_score_threshold)
+ )
log.info("First ROIAlign type is {}".format(self.first_ROIAlign_type))
- log.info("First ROIAlign pooled size is {}".format(self.first_ROIAlign_pooled_size))
- log.info("First ROIAlign sampling ratio is {}".format(self.first_ROIAlign_sampling_ratio))
+ log.info(
+ "First ROIAlign pooled size is {}".format(self.first_ROIAlign_pooled_size)
+ )
+ log.info(
+ "First ROIAlign sampling ratio is {}".format(
+ self.first_ROIAlign_sampling_ratio
+ )
+ )
log.info("Second NMS max proposals is {}".format(self.second_NMS_max_proposals))
log.info("Second NMS iou threshold is {}".format(self.second_NMS_iou_threshold))
- log.info("Second NMS score threshold is {}".format(self.second_NMS_score_threshold))
+ log.info(
+ "Second NMS score threshold is {}".format(self.second_NMS_score_threshold)
+ )
log.info("Second ROIAlign type is {}".format(self.second_ROIAlign_type))
- log.info("Second ROIAlign pooled size is {}".format(self.second_ROIAlign_pooled_size))
- log.info("Second ROIAlign sampling ratio is {}".format(self.second_ROIAlign_sampling_ratio))
- log.info("Individual mask output resolution is {}x{}".format(self.mask_out_res, self.mask_out_res))
+ log.info(
+ "Second ROIAlign pooled size is {}".format(self.second_ROIAlign_pooled_size)
+ )
+ log.info(
+ "Second ROIAlign sampling ratio is {}".format(
+ self.second_ROIAlign_sampling_ratio
+ )
+ )
+ log.info(
+ "Individual mask output resolution is {}x{}".format(
+ self.mask_out_res, self.mask_out_res
+ )
+ )
self.batch_size = None
@@ -128,12 +160,16 @@ def sanitize(self):
model = shape_inference.infer_shapes(model)
self.graph = gs.import_onnx(model)
except Exception as e:
- log.info("Shape inference could not be performed at this time:\n{}".format(e))
+ log.info(
+ "Shape inference could not be performed at this time:\n{}".format(e)
+ )
try:
self.graph.fold_constants(fold_shapes=True)
except TypeError as e:
- log.error("This version of ONNX GraphSurgeon does not support folding shapes, please upgrade your "
- "onnx_graphsurgeon module. Error:\n{}".format(e))
+ log.error(
+ "This version of ONNX GraphSurgeon does not support folding shapes, please upgrade your "
+ "onnx_graphsurgeon module. Error:\n{}".format(e)
+ )
raise
count_after = len(self.graph.nodes)
@@ -182,7 +218,9 @@ def get_anchors(self, sample_image):
p4_anchors = det2_anchors[2].tensor.detach().cpu().numpy()
p5_anchors = det2_anchors[3].tensor.detach().cpu().numpy()
p6_anchors = det2_anchors[4].tensor.detach().cpu().numpy()
- final_anchors = np.concatenate((p2_anchors,p3_anchors,p4_anchors,p5_anchors,p6_anchors))
+ final_anchors = np.concatenate(
+ (p2_anchors, p3_anchors, p4_anchors, p5_anchors, p6_anchors)
+ )
return final_anchors
@@ -214,18 +252,29 @@ def update_preprocessor(self, batch_size):
self.graph.inputs[0].name = "input_tensor"
self.sanitize()
- log.info("ONNX graph input shape: {} [NCHW format set]".format(self.graph.inputs[0].shape))
+ log.info(
+ "ONNX graph input shape: {} [NCHW format set]".format(
+ self.graph.inputs[0].shape
+ )
+ )
# Find the initial nodes of the graph, whatever the input is first connected to, and disconnect them.
- for node in [node for node in self.graph.nodes if self.graph.inputs[0] in node.inputs]:
+ for node in [
+ node for node in self.graph.nodes if self.graph.inputs[0] in node.inputs
+ ]:
node.inputs.clear()
# Get input tensor.
input_tensor = self.graph.inputs[0]
# Create preprocessing Sub node and connect input tensor to it.
- sub_const = np.expand_dims(np.asarray([255 * 0.406, 255 * 0.456, 255 * 0.485], dtype=np.float32), axis=(1, 2))
- sub_out = self.graph.op_with_const("Sub", "preprocessor/mean", input_tensor, sub_const)
+ sub_const = np.expand_dims(
+ np.asarray([255 * 0.406, 255 * 0.456, 255 * 0.485], dtype=np.float32),
+ axis=(1, 2),
+ )
+ sub_out = self.graph.op_with_const(
+ "Sub", "preprocessor/mean", input_tensor, sub_const
+ )
# Find first Div node and connect to output of Sub node.
div_node = self.graph.find_node_by_op("Div")
@@ -242,7 +291,19 @@ def update_preprocessor(self, batch_size):
if type(node.inputs[1]) == gs.Constant and node.inputs[1].values[0] == 1:
node.inputs[1].values[0] = self.batch_size
- def NMS(self, boxes, scores, anchors, background_class, score_activation, max_proposals, iou_threshold, nms_score_threshold, user_threshold, nms_name=None):
+ def NMS(
+ self,
+ boxes,
+ scores,
+ anchors,
+ background_class,
+ score_activation,
+ max_proposals,
+ iou_threshold,
+ nms_score_threshold,
+ user_threshold,
+ nms_name=None,
+ ):
# Helper function to create the NMS Plugin node with the selected inputs.
# EfficientNMS_TRT TensorRT Plugin is suitable for our use case.
# :param boxes: The box predictions from the Box Net.
@@ -263,41 +324,71 @@ def NMS(self, boxes, scores, anchors, background_class, score_activation, max_pr
nms_name = "_" + nms_name
# Set score threshold.
- score_threshold = nms_score_threshold if user_threshold is None else user_threshold
+ score_threshold = (
+ nms_score_threshold if user_threshold is None else user_threshold
+ )
# NMS Outputs.
- nms_output_num_detections = gs.Variable(name="num_detections"+nms_name, dtype=np.int32, shape=[self.batch_size, 1])
- nms_output_boxes = gs.Variable(name="detection_boxes"+nms_name, dtype=np.float32,
- shape=[self.batch_size, max_proposals, 4])
- nms_output_scores = gs.Variable(name="detection_scores"+nms_name, dtype=np.float32,
- shape=[self.batch_size, max_proposals])
- nms_output_classes = gs.Variable(name="detection_classes"+nms_name, dtype=np.int32,
- shape=[self.batch_size, max_proposals])
+ nms_output_num_detections = gs.Variable(
+ name="num_detections" + nms_name, dtype=np.int32, shape=[self.batch_size, 1]
+ )
+ nms_output_boxes = gs.Variable(
+ name="detection_boxes" + nms_name,
+ dtype=np.float32,
+ shape=[self.batch_size, max_proposals, 4],
+ )
+ nms_output_scores = gs.Variable(
+ name="detection_scores" + nms_name,
+ dtype=np.float32,
+ shape=[self.batch_size, max_proposals],
+ )
+ nms_output_classes = gs.Variable(
+ name="detection_classes" + nms_name,
+ dtype=np.int32,
+ shape=[self.batch_size, max_proposals],
+ )
- nms_outputs = [nms_output_num_detections, nms_output_boxes, nms_output_scores, nms_output_classes]
+ nms_outputs = [
+ nms_output_num_detections,
+ nms_output_boxes,
+ nms_output_scores,
+ nms_output_classes,
+ ]
# Plugin.
self.graph.plugin(
op="EfficientNMS_TRT",
- name="nms"+nms_name,
+ name="nms" + nms_name,
inputs=[boxes, scores, anchors],
outputs=nms_outputs,
attrs={
- 'plugin_version': "1",
- 'background_class': background_class,
- 'max_output_boxes': max_proposals,
- 'score_threshold': max(0.01, score_threshold),
- 'iou_threshold': iou_threshold,
- 'score_activation': score_activation,
- 'class_agnostic': False,
- 'box_coding': 1,
- }
+ "plugin_version": "1",
+ "background_class": background_class,
+ "max_output_boxes": max_proposals,
+ "score_threshold": max(0.01, score_threshold),
+ "iou_threshold": iou_threshold,
+ "score_activation": score_activation,
+ "class_agnostic": False,
+ "box_coding": 1,
+ },
)
log.info("Created nms{} with EfficientNMS_TRT plugin".format(nms_name))
return nms_outputs
- def ROIAlign(self, rois, p2, p3, p4, p5, pooled_size, sampling_ratio, roi_align_type, num_rois, ra_name):
+ def ROIAlign(
+ self,
+ rois,
+ p2,
+ p3,
+ p4,
+ p5,
+ pooled_size,
+ sampling_ratio,
+ roi_align_type,
+ num_rois,
+ ra_name,
+ ):
# Helper function to create the ROIAlign Plugin node with the selected inputs.
# PyramidROIAlign_TRT TensorRT Plugin is suitable for our use case.
# :param rois: Regions of interest/detection boxes outputs from preceding NMS node.
@@ -318,31 +409,42 @@ def ROIAlign(self, rois, p2, p3, p4, p5, pooled_size, sampling_ratio, roi_align_
roi_coords_transform = 0
# ROIAlign outputs.
- roi_align_output = gs.Variable(name="roi_align/output_"+ra_name, dtype=np.float32,
- shape=[self.batch_size, num_rois, self.fpn_out_channels, pooled_size, pooled_size])
+ roi_align_output = gs.Variable(
+ name="roi_align/output_" + ra_name,
+ dtype=np.float32,
+ shape=[
+ self.batch_size,
+ num_rois,
+ self.fpn_out_channels,
+ pooled_size,
+ pooled_size,
+ ],
+ )
# Plugin.
self.graph.plugin(
op="PyramidROIAlign_TRT",
- name="roi_align_"+ra_name,
+ name="roi_align_" + ra_name,
inputs=[rois, p2, p3, p4, p5],
outputs=[roi_align_output],
attrs={
- 'plugin_version': "1",
- 'fpn_scale': 224,
- 'pooled_size': pooled_size,
- 'image_size': [self.height, self.width],
- 'roi_coords_absolute': 0,
- 'roi_coords_swap': 0,
- 'roi_coords_transform': roi_coords_transform,
- 'sampling_ratio': sampling_ratio,
- }
+ "plugin_version": "1",
+ "fpn_scale": 224,
+ "pooled_size": pooled_size,
+ "image_size": [self.height, self.width],
+ "roi_coords_absolute": 0,
+ "roi_coords_swap": 0,
+ "roi_coords_transform": roi_coords_transform,
+ "sampling_ratio": sampling_ratio,
+ },
)
log.info("Created {} with PyramidROIAlign_TRT plugin".format(ra_name))
return roi_align_output
- def process_graph(self, anchors, first_nms_threshold=None, second_nms_threshold=None):
+ def process_graph(
+ self, anchors, first_nms_threshold=None, second_nms_threshold=None
+ ):
"""
Processes the graph to replace the GenerateProposals and BoxWithNMSLimit operations with EfficientNMS_TRT
TensorRT plugin nodes and ROIAlign operations with PyramidROIAlign_TRT plugin nodes.
@@ -351,6 +453,7 @@ def process_graph(self, anchors, first_nms_threshold=None, second_nms_threshold=
:param first_nms_threshold: Override the 1st NMS score threshold value. If set to None, use the value in the graph.
:param second_nms_threshold: Override the 2nd NMS score threshold value. If set to None, use the value in the graph.
"""
+
def backbone():
"""
Updates the graph to replace all ResizeNearest ops with ResizeNearest plugins in backbone.
@@ -361,7 +464,6 @@ def backbone():
p4 = self.graph.find_node_by_op_name("Conv", "/backbone/fpn_output4/Conv")
p5 = self.graph.find_node_by_op_name("Conv", "/backbone/fpn_output5/Conv")
-
return p2.outputs[0], p3.outputs[0], p4.outputs[0], p5.outputs[0]
def proposal_generator(anchors, first_nms_threshold):
@@ -372,38 +474,101 @@ def proposal_generator(anchors, first_nms_threshold):
:param first_nms_threshold: Override the 1st NMS score threshold value. If set to None, use the value in the graph.
"""
# Get nodes containing final objectness logits.
- p2_logits = self.graph.find_node_by_op_name("Flatten", "/proposal_generator/Flatten")
- p3_logits = self.graph.find_node_by_op_name("Flatten", "/proposal_generator/Flatten_1")
- p4_logits = self.graph.find_node_by_op_name("Flatten", "/proposal_generator/Flatten_2")
- p5_logits = self.graph.find_node_by_op_name("Flatten", "/proposal_generator/Flatten_3")
- p6_logits = self.graph.find_node_by_op_name("Flatten", "/proposal_generator/Flatten_4")
+ p2_logits = self.graph.find_node_by_op_name(
+ "Flatten", "/proposal_generator/Flatten"
+ )
+ p3_logits = self.graph.find_node_by_op_name(
+ "Flatten", "/proposal_generator/Flatten_1"
+ )
+ p4_logits = self.graph.find_node_by_op_name(
+ "Flatten", "/proposal_generator/Flatten_2"
+ )
+ p5_logits = self.graph.find_node_by_op_name(
+ "Flatten", "/proposal_generator/Flatten_3"
+ )
+ p6_logits = self.graph.find_node_by_op_name(
+ "Flatten", "/proposal_generator/Flatten_4"
+ )
# Get nodes containing final anchor_deltas.
- p2_anchors = self.graph.find_node_by_op_name("Reshape", "/proposal_generator/Reshape_1")
- p3_anchors = self.graph.find_node_by_op_name("Reshape", "/proposal_generator/Reshape_3")
- p4_anchors = self.graph.find_node_by_op_name("Reshape", "/proposal_generator/Reshape_5")
- p5_anchors = self.graph.find_node_by_op_name("Reshape", "/proposal_generator/Reshape_7")
- p6_anchors = self.graph.find_node_by_op_name("Reshape", "/proposal_generator/Reshape_9")
+ p2_anchors = self.graph.find_node_by_op_name(
+ "Reshape", "/proposal_generator/Reshape_1"
+ )
+ p3_anchors = self.graph.find_node_by_op_name(
+ "Reshape", "/proposal_generator/Reshape_3"
+ )
+ p4_anchors = self.graph.find_node_by_op_name(
+ "Reshape", "/proposal_generator/Reshape_5"
+ )
+ p5_anchors = self.graph.find_node_by_op_name(
+ "Reshape", "/proposal_generator/Reshape_7"
+ )
+ p6_anchors = self.graph.find_node_by_op_name(
+ "Reshape", "/proposal_generator/Reshape_9"
+ )
# Concatenate all objectness logits/scores data.
- scores_inputs = [p2_logits.outputs[0], p3_logits.outputs[0], p4_logits.outputs[0], p5_logits.outputs[0], p6_logits.outputs[0]]
- scores_tensor = self.graph.layer(name="scores", op="Concat", inputs=scores_inputs, outputs=['scores'], attrs={'axis': 1})[0]
+ scores_inputs = [
+ p2_logits.outputs[0],
+ p3_logits.outputs[0],
+ p4_logits.outputs[0],
+ p5_logits.outputs[0],
+ p6_logits.outputs[0],
+ ]
+ scores_tensor = self.graph.layer(
+ name="scores",
+ op="Concat",
+ inputs=scores_inputs,
+ outputs=["scores"],
+ attrs={"axis": 1},
+ )[0]
# Unsqueeze to add 3rd dimension of 1 to match tensor dimensions of boxes tensor.
scores = self.graph.unsqueeze("scores_unsqueeze", scores_tensor, [2])[0]
# Concatenate all boxes/anchor_delta data.
- boxes_inputs = [p2_anchors.outputs[0], p3_anchors.outputs[0], p4_anchors.outputs[0], p5_anchors.outputs[0], p6_anchors.outputs[0]]
- boxes = self.graph.layer(name="boxes", op="Concat", inputs=boxes_inputs, outputs=['anchors'], attrs={'axis': 1})[0]
+ boxes_inputs = [
+ p2_anchors.outputs[0],
+ p3_anchors.outputs[0],
+ p4_anchors.outputs[0],
+ p5_anchors.outputs[0],
+ p6_anchors.outputs[0],
+ ]
+ boxes = self.graph.layer(
+ name="boxes",
+ op="Concat",
+ inputs=boxes_inputs,
+ outputs=["anchors"],
+ attrs={"axis": 1},
+ )[0]
# Convert the anchors from Corners to CenterSize encoding.
- anchors = np.matmul(anchors, [[0.5, 0, -1, 0], [0, 0.5, 0, -1], [0.5, 0, 1, 0], [0, 0.5, 0, 1]])
- anchors = anchors / [self.width, self.height, self.width, self.height] # Normalize anchors to [0-1] range
+ anchors = np.matmul(
+ anchors,
+ [[0.5, 0, -1, 0], [0, 0.5, 0, -1], [0.5, 0, 1, 0], [0, 0.5, 0, 1]],
+ )
+ anchors = anchors / [
+ self.width,
+ self.height,
+ self.width,
+ self.height,
+ ] # Normalize anchors to [0-1] range
anchors = np.expand_dims(anchors, axis=0)
anchors = anchors.astype(np.float32)
anchors = gs.Constant(name="default_anchors", values=anchors)
# Create NMS node.
- nms_outputs = self.NMS(boxes, scores, anchors, -1, False, self.first_NMS_max_proposals, self.first_NMS_iou_threshold, self.first_NMS_score_threshold, first_nms_threshold, 'rpn')
+ nms_outputs = self.NMS(
+ boxes,
+ scores,
+ anchors,
+ -1,
+ False,
+ self.first_NMS_max_proposals,
+ self.first_NMS_iou_threshold,
+ self.first_NMS_score_threshold,
+ first_nms_threshold,
+ "rpn",
+ )
return nms_outputs
@@ -422,63 +587,149 @@ def roi_heads(rpn_outputs, p2, p3, p4, p5, second_nms_threshold):
:param second_nms_threshold: Override the 2nd NMS score threshold value. If set to None, use the value in the graph.
"""
# Create ROIAlign node.
- box_pooler_output = self.ROIAlign(rpn_outputs[1], p2, p3, p4, p5, self.first_ROIAlign_pooled_size, self.first_ROIAlign_sampling_ratio, self.first_ROIAlign_type, self.first_NMS_max_proposals, 'box_pooler')
+ box_pooler_output = self.ROIAlign(
+ rpn_outputs[1],
+ p2,
+ p3,
+ p4,
+ p5,
+ self.first_ROIAlign_pooled_size,
+ self.first_ROIAlign_sampling_ratio,
+ self.first_ROIAlign_type,
+ self.first_NMS_max_proposals,
+ "box_pooler",
+ )
# Reshape node that prepares ROIAlign/box pooler output for Gemm node that comes next.
- box_pooler_shape = np.asarray([-1, self.fpn_out_channels*self.first_ROIAlign_pooled_size*self.first_ROIAlign_pooled_size], dtype=np.int64)
- box_pooler_reshape = self.graph.op_with_const("Reshape", "box_pooler/reshape", box_pooler_output, box_pooler_shape)
+ box_pooler_shape = np.asarray(
+ [
+ -1,
+ self.fpn_out_channels
+ * self.first_ROIAlign_pooled_size
+ * self.first_ROIAlign_pooled_size,
+ ],
+ dtype=np.int64,
+ )
+ box_pooler_reshape = self.graph.op_with_const(
+ "Reshape", "box_pooler/reshape", box_pooler_output, box_pooler_shape
+ )
# Get first Gemm op of box head and connect box pooler to it.
- first_box_head_gemm = self.graph.find_node_by_op_name("Gemm", "/roi_heads/box_head/fc1/Gemm")
+ first_box_head_gemm = self.graph.find_node_by_op_name(
+ "Gemm", "/roi_heads/box_head/fc1/Gemm"
+ )
first_box_head_gemm.inputs[0] = box_pooler_reshape[0]
# Get final two nodes of box predictor. Softmax op for cls_score, Gemm op for bbox_pred.
cls_score = self.graph.find_node_by_op_name("Softmax", "/roi_heads/Softmax")
- bbox_pred = self.graph.find_node_by_op_name("Gemm", "/roi_heads/box_predictor/bbox_pred/Gemm")
+ bbox_pred = self.graph.find_node_by_op_name(
+ "Gemm", "/roi_heads/box_predictor/bbox_pred/Gemm"
+ )
# Linear transformation to convert box coordinates from (TopLeft, BottomRight) Corner encoding
# to CenterSize encoding. 1st NMS boxes are multiplied by transformation matrix in order to
# encode it into CenterSize format.
- matmul_const = np.matrix('0.5 0 -1 0; 0 0.5 0 -1; 0.5 0 1 0; 0 0.5 0 1', dtype=np.float32)
- matmul_out = self.graph.matmul("RPN_NMS/detection_boxes_conversion", rpn_outputs[1], matmul_const)
+ matmul_const = np.matrix(
+ "0.5 0 -1 0; 0 0.5 0 -1; 0.5 0 1 0; 0 0.5 0 1", dtype=np.float32
+ )
+ matmul_out = self.graph.matmul(
+ "RPN_NMS/detection_boxes_conversion", rpn_outputs[1], matmul_const
+ )
# Reshape node that prepares bbox_pred for scaling and second NMS.
- bbox_pred_shape = np.asarray([self.batch_size, self.first_NMS_max_proposals, self.num_classes, 4], dtype=np.int64)
- bbox_pred_reshape = self.graph.op_with_const("Reshape", "bbox_pred/reshape", bbox_pred.outputs[0], bbox_pred_shape)
+ bbox_pred_shape = np.asarray(
+ [self.batch_size, self.first_NMS_max_proposals, self.num_classes, 4],
+ dtype=np.int64,
+ )
+ bbox_pred_reshape = self.graph.op_with_const(
+ "Reshape", "bbox_pred/reshape", bbox_pred.outputs[0], bbox_pred_shape
+ )
# 0.1, 0.1, 0.2, 0.2 are localization head variance numbers, they scale bbox_pred_reshape, in order to get accurate coordinates.
- scale_adj = np.expand_dims(np.asarray([0.1, 0.1, 0.2, 0.2], dtype=np.float32), axis=(0, 1))
- final_bbox_pred = self.graph.op_with_const("Mul", "bbox_pred/scale", bbox_pred_reshape[0], scale_adj)
+ scale_adj = np.expand_dims(
+ np.asarray([0.1, 0.1, 0.2, 0.2], dtype=np.float32), axis=(0, 1)
+ )
+ final_bbox_pred = self.graph.op_with_const(
+ "Mul", "bbox_pred/scale", bbox_pred_reshape[0], scale_adj
+ )
# Reshape node that prepares cls_score for slicing and second NMS.
- cls_score_shape = np.array([self.batch_size, self.first_NMS_max_proposals, self.num_classes+1], dtype=np.int64)
- cls_score_reshape = self.graph.op_with_const("Reshape", "cls_score/reshape", cls_score.outputs[0], cls_score_shape)
+ cls_score_shape = np.array(
+ [self.batch_size, self.first_NMS_max_proposals, self.num_classes + 1],
+ dtype=np.int64,
+ )
+ cls_score_reshape = self.graph.op_with_const(
+ "Reshape", "cls_score/reshape", cls_score.outputs[0], cls_score_shape
+ )
# Slice operation to adjust third dimension of cls_score tensor, deletion of background class (81 in Detectron 2).
- final_cls_score = self.graph.slice("cls_score/slicer", cls_score_reshape[0], 0, self.num_classes, 2)
+ final_cls_score = self.graph.slice(
+ "cls_score/slicer", cls_score_reshape[0], 0, self.num_classes, 2
+ )
# Create NMS node.
- nms_outputs = self.NMS(final_bbox_pred[0], final_cls_score[0], matmul_out[0], -1, False, self.second_NMS_max_proposals, self.second_NMS_iou_threshold, self.second_NMS_score_threshold, second_nms_threshold, 'box_outputs')
+ nms_outputs = self.NMS(
+ final_bbox_pred[0],
+ final_cls_score[0],
+ matmul_out[0],
+ -1,
+ False,
+ self.second_NMS_max_proposals,
+ self.second_NMS_iou_threshold,
+ self.second_NMS_score_threshold,
+ second_nms_threshold,
+ "box_outputs",
+ )
# Create ROIAlign node.
- mask_pooler_output = self.ROIAlign(nms_outputs[1], p2, p3, p4, p5, self.second_ROIAlign_pooled_size, self.second_ROIAlign_sampling_ratio, self.second_ROIAlign_type, self.second_NMS_max_proposals, 'mask_pooler')
+ mask_pooler_output = self.ROIAlign(
+ nms_outputs[1],
+ p2,
+ p3,
+ p4,
+ p5,
+ self.second_ROIAlign_pooled_size,
+ self.second_ROIAlign_sampling_ratio,
+ self.second_ROIAlign_type,
+ self.second_NMS_max_proposals,
+ "mask_pooler",
+ )
# Reshape mask pooler output.
- mask_pooler_shape = np.asarray([self.second_NMS_max_proposals*self.batch_size, self.fpn_out_channels, self.second_ROIAlign_pooled_size, self.second_ROIAlign_pooled_size], dtype=np.int64)
- mask_pooler_reshape_node = self.graph.op_with_const("Reshape", "mask_pooler/reshape", mask_pooler_output, mask_pooler_shape)
+ mask_pooler_shape = np.asarray(
+ [
+ self.second_NMS_max_proposals * self.batch_size,
+ self.fpn_out_channels,
+ self.second_ROIAlign_pooled_size,
+ self.second_ROIAlign_pooled_size,
+ ],
+ dtype=np.int64,
+ )
+ mask_pooler_reshape_node = self.graph.op_with_const(
+ "Reshape", "mask_pooler/reshape", mask_pooler_output, mask_pooler_shape
+ )
# Get first Conv op in mask head and connect ROIAlign's squeezed output to it.
- mask_head_conv = self.graph.find_node_by_op_name("Conv", "/roi_heads/mask_head/mask_fcn1/Conv")
+ mask_head_conv = self.graph.find_node_by_op_name(
+ "Conv", "/roi_heads/mask_head/mask_fcn1/Conv"
+ )
mask_head_conv.inputs[0] = mask_pooler_reshape_node[0]
# Reshape node that is preparing 2nd NMS class outputs for Add node that comes next.
- classes_reshape_shape = np.asarray([self.second_NMS_max_proposals*self.batch_size], dtype=np.int64)
- classes_reshape_node = self.graph.op_with_const("Reshape", "box_outputs/reshape_classes", nms_outputs[3], classes_reshape_shape)
+ classes_reshape_shape = np.asarray(
+ [self.second_NMS_max_proposals * self.batch_size], dtype=np.int64
+ )
+ classes_reshape_node = self.graph.op_with_const(
+ "Reshape",
+ "box_outputs/reshape_classes",
+ nms_outputs[3],
+ classes_reshape_shape,
+ )
# This loop will generate an array used in Add node, which eventually will help Gather node to pick the single
# class of interest per bounding box, instead of creating 80 masks for every single bounding box.
add_array = []
- for i in range(self.second_NMS_max_proposals*self.batch_size):
+ for i in range(self.second_NMS_max_proposals * self.batch_size):
if i == 0:
start_pos = 0
else:
@@ -488,23 +739,59 @@ def roi_heads(rpn_outputs, p2, p3, p4, p5, second_nms_threshold):
# This Add node is one of the Gather node inputs, Gather node performs gather on 0th axis of data tensor
# and requires indices that set tensors to be withing bounds, this Add node provides the bounds for Gather.
add_array = np.asarray(add_array, dtype=np.int32)
- classes_add_node = self.graph.op_with_const("Add", "box_outputs/add", classes_reshape_node[0], add_array)
+ classes_add_node = self.graph.op_with_const(
+ "Add", "box_outputs/add", classes_reshape_node[0], add_array
+ )
# Get the last Conv op in mask head and reshape it to correctly gather class of interest's masks.
- last_conv = self.graph.find_node_by_op_name("Conv", "/roi_heads/mask_head/predictor/Conv")
- last_conv_reshape_shape = np.asarray([self.second_NMS_max_proposals*self.num_classes*self.batch_size, self.mask_out_res, self.mask_out_res], dtype=np.int64)
- last_conv_reshape_node = self.graph.op_with_const("Reshape", "mask_head/reshape_all_masks", last_conv.outputs[0], last_conv_reshape_shape)
+ last_conv = self.graph.find_node_by_op_name(
+ "Conv", "/roi_heads/mask_head/predictor/Conv"
+ )
+ last_conv_reshape_shape = np.asarray(
+ [
+ self.second_NMS_max_proposals * self.num_classes * self.batch_size,
+ self.mask_out_res,
+ self.mask_out_res,
+ ],
+ dtype=np.int64,
+ )
+ last_conv_reshape_node = self.graph.op_with_const(
+ "Reshape",
+ "mask_head/reshape_all_masks",
+ last_conv.outputs[0],
+ last_conv_reshape_shape,
+ )
# Gather node that selects only masks belonging to detected class, 79 other masks are discarded.
- final_gather = self.graph.gather("mask_head/final_gather", last_conv_reshape_node[0], classes_add_node[0], 0)
+ final_gather = self.graph.gather(
+ "mask_head/final_gather",
+ last_conv_reshape_node[0],
+ classes_add_node[0],
+ 0,
+ )
# Get last Sigmoid node and connect Gather node to it.
- mask_head_sigmoid = self.graph.find_node_by_op_name("Sigmoid", "/roi_heads/mask_head/Sigmoid")
+ mask_head_sigmoid = self.graph.find_node_by_op_name(
+ "Sigmoid", "/roi_heads/mask_head/Sigmoid"
+ )
mask_head_sigmoid.inputs[0] = final_gather[0]
# Final Reshape node, reshapes output of Sigmoid, important for various batch_size support (not tested yet).
- final_graph_reshape_shape = np.asarray([self.batch_size, self.second_NMS_max_proposals, self.mask_out_res, self.mask_out_res], dtype=np.int64)
- final_graph_reshape_node = self.graph.op_with_const("Reshape", "mask_head/final_reshape", mask_head_sigmoid.outputs[0], final_graph_reshape_shape)
+ final_graph_reshape_shape = np.asarray(
+ [
+ self.batch_size,
+ self.second_NMS_max_proposals,
+ self.mask_out_res,
+ self.mask_out_res,
+ ],
+ dtype=np.int64,
+ )
+ final_graph_reshape_node = self.graph.op_with_const(
+ "Reshape",
+ "mask_head/final_reshape",
+ mask_head_sigmoid.outputs[0],
+ final_graph_reshape_shape,
+ )
final_graph_reshape_node[0].dtype = np.float32
final_graph_reshape_node[0].name = "detection_masks"
@@ -513,7 +800,9 @@ def roi_heads(rpn_outputs, p2, p3, p4, p5, second_nms_threshold):
# Only Detectron 2's Mask-RCNN R50-FPN 3x is supported currently.
p2, p3, p4, p5 = backbone()
rpn_outputs = proposal_generator(anchors, first_nms_threshold)
- box_head_outputs, mask_head_output = roi_heads(rpn_outputs, p2, p3, p4, p5, second_nms_threshold)
+ box_head_outputs, mask_head_output = roi_heads(
+ rpn_outputs, p2, p3, p4, p5, second_nms_threshold
+ )
# Append segmentation head output.
box_head_outputs.append(mask_head_output)
# Set graph outputs, both bbox and segmentation heads.
@@ -531,17 +820,55 @@ def main(args):
if __name__ == "__main__":
parser = argparse.ArgumentParser()
- parser.add_argument("-i", "--exported_onnx", help="The exported to ONNX Detectron 2 Mask R-CNN", type=str)
- parser.add_argument("-o", "--onnx", help="The output ONNX model file to write", type=str)
- parser.add_argument("-c", "--det2_config", help="The Detectron 2 config file (.yaml) for the model", type=str)
- parser.add_argument("-w", "--det2_weights", help="The Detectron 2 model weights (.pkl)", type=str)
- parser.add_argument("-s", "--sample_image", help="Sample image for anchors generation", type=str)
- parser.add_argument("-b", "--batch_size", help="Batch size for the model", type=int, default=1)
- parser.add_argument("-t1", "--first_nms_threshold", help="Override the score threshold for the 1st NMS operation", type=float)
- parser.add_argument("-t2", "--second_nms_threshold", help="Override the score threshold for the 2nd NMS operation", type=float)
+ parser.add_argument(
+ "-i",
+ "--exported_onnx",
+ help="The exported to ONNX Detectron 2 Mask R-CNN",
+ type=str,
+ )
+ parser.add_argument(
+ "-o", "--onnx", help="The output ONNX model file to write", type=str
+ )
+ parser.add_argument(
+ "-c",
+ "--det2_config",
+ help="The Detectron 2 config file (.yaml) for the model",
+ type=str,
+ )
+ parser.add_argument(
+ "-w", "--det2_weights", help="The Detectron 2 model weights (.pkl)", type=str
+ )
+ parser.add_argument(
+ "-s", "--sample_image", help="Sample image for anchors generation", type=str
+ )
+ parser.add_argument(
+ "-b", "--batch_size", help="Batch size for the model", type=int, default=1
+ )
+ parser.add_argument(
+ "-t1",
+ "--first_nms_threshold",
+ help="Override the score threshold for the 1st NMS operation",
+ type=float,
+ )
+ parser.add_argument(
+ "-t2",
+ "--second_nms_threshold",
+ help="Override the score threshold for the 2nd NMS operation",
+ type=float,
+ )
args = parser.parse_args()
- if not all([args.exported_onnx, args.onnx, args.det2_config, args.det2_weights, args.sample_image]):
+ if not all(
+ [
+ args.exported_onnx,
+ args.onnx,
+ args.det2_config,
+ args.det2_weights,
+ args.sample_image,
+ ]
+ ):
parser.print_help()
- print("\nThese arguments are required: --exported_onnx --onnx --det2_config --det2_weights and --sample_image")
+ print(
+ "\nThese arguments are required: --exported_onnx --onnx --det2_config --det2_weights and --sample_image"
+ )
sys.exit(1)
main(args)
diff --git a/samples/python/detectron2/eval_coco.py b/samples/python/detectron2/eval_coco.py
index 828413d4..7afb6116 100644
--- a/samples/python/detectron2/eval_coco.py
+++ b/samples/python/detectron2/eval_coco.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -31,9 +31,12 @@
from detectron2.structures import Instances, Boxes, ROIMasks
except ImportError:
print("Could not import Detectron 2 modules. Maybe you did not install Detectron 2")
- print("Please install Detectron 2, check https://github.com/facebookresearch/detectron2/blob/main/INSTALL.md")
+ print(
+ "Please install Detectron 2, check https://github.com/facebookresearch/detectron2/blob/main/INSTALL.md"
+ )
sys.exit(1)
+
def build_evaluator(dataset_name):
"""
Create evaluator for a COCO dataset.
@@ -45,6 +48,7 @@ def build_evaluator(dataset_name):
else:
raise NotImplementedError("Evaluator type is not supported")
+
def setup(config_file, weights):
"""
Create config and perform basic setup.
@@ -55,6 +59,7 @@ def setup(config_file, weights):
cfg.freeze()
return cfg
+
def main(args):
# Set up Detectron 2 config and build evaluator.
cfg = setup(args.det2_config, args.det2_weights)
@@ -63,10 +68,15 @@ def main(args):
evaluator.reset()
trt_infer = TensorRTInfer(args.engine)
- batcher = ImageBatcher(args.input, *trt_infer.input_spec(), config_file=args.det2_config)
+ batcher = ImageBatcher(
+ args.input, *trt_infer.input_spec(), config_file=args.det2_config
+ )
for batch, images, scales in batcher.get_batch():
- print("Processing Image {} / {}".format(batcher.image_index, batcher.num_images), end="\r")
+ print(
+ "Processing Image {} / {}".format(batcher.image_index, batcher.num_images),
+ end="\r",
+ )
detections = trt_infer.infer(batch, scales, args.nms_threshold)
for i in range(len(images)):
# Get inference image resolution.
@@ -85,13 +95,13 @@ def main(args):
for n in range(num_instances):
det = detections[i][n]
# Append box coordinates data.
- pred_boxes.append([det['ymin'], det['xmin'], det['ymax'], det['xmax']])
+ pred_boxes.append([det["ymin"], det["xmin"], det["ymax"], det["xmax"]])
# Append score.
- scores.append(det['score'])
+ scores.append(det["score"])
# Append class.
- pred_classes.append(det['class'])
+ pred_classes.append(det["class"])
# Append mask.
- pred_masks[n] = det['mask']
+ pred_masks[n] = det["mask"]
# Create new Instances object required for Detectron 2 evalutions and add:
# boxes, scores, pred_classes, pred_masks.
image_shape = (im_height, im_width)
@@ -100,10 +110,12 @@ def main(args):
instances.scores = torch.tensor(scores)
instances.pred_classes = torch.tensor(pred_classes)
roi_masks = ROIMasks(torch.tensor(pred_masks))
- instances.pred_masks = roi_masks.to_bitmasks(instances.pred_boxes, im_height, im_width, args.iou_threshold).tensor
+ instances.pred_masks = roi_masks.to_bitmasks(
+ instances.pred_boxes, im_height, im_width, args.iou_threshold
+ ).tensor
# Process evaluations per image.
- image_dict = [{'instances': instances}]
- input_dict = [{'image_id': source_id}]
+ image_dict = [{"instances": instances}]
+ input_dict = [{"image_id": source_id}]
evaluator.process(input_dict, image_dict)
# Final evaluations, generation of mAP accuracy performance.
@@ -113,17 +125,37 @@ def main(args):
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-e", "--engine", help="The TensorRT engine to infer with.")
- parser.add_argument("-i", "--input",
- help="The input to infer, either a single image path, or a directory of images.")
- parser.add_argument("-c", "--det2_config", help="The Detectron 2 config file (.yaml) for the model", type=str)
- parser.add_argument("-w", "--det2_weights", help="The Detectron 2 model weights (.pkl)", type=str)
- parser.add_argument("-t", "--nms_threshold", type=float,
- help="Override the score threshold for the NMS operation, if higher than the threshold in the engine.")
- parser.add_argument("--iou_threshold", default=0.5, type=float,
- help="Select the IoU threshold for the mask segmentation. Range is 0 to 1. Pixel values more than threshold will become 1, less 0.")
+ parser.add_argument(
+ "-i",
+ "--input",
+ help="The input to infer, either a single image path, or a directory of images.",
+ )
+ parser.add_argument(
+ "-c",
+ "--det2_config",
+ help="The Detectron 2 config file (.yaml) for the model",
+ type=str,
+ )
+ parser.add_argument(
+ "-w", "--det2_weights", help="The Detectron 2 model weights (.pkl)", type=str
+ )
+ parser.add_argument(
+ "-t",
+ "--nms_threshold",
+ type=float,
+ help="Override the score threshold for the NMS operation, if higher than the threshold in the engine.",
+ )
+ parser.add_argument(
+ "--iou_threshold",
+ default=0.5,
+ type=float,
+ help="Select the IoU threshold for the mask segmentation. Range is 0 to 1. Pixel values more than threshold will become 1, less 0.",
+ )
args = parser.parse_args()
if not all([args.engine, args.input, args.det2_config, args.det2_weights]):
parser.print_help()
- print("\nThese arguments are required: --engine --input --det2_config and --det2_weights")
+ print(
+ "\nThese arguments are required: --engine --input --det2_config and --det2_weights"
+ )
sys.exit(1)
main(args)
diff --git a/samples/python/detectron2/image_batcher.py b/samples/python/detectron2/image_batcher.py
index 228798ad..0fb1d90a 100644
--- a/samples/python/detectron2/image_batcher.py
+++ b/samples/python/detectron2/image_batcher.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -24,15 +24,26 @@
from detectron2.config import get_cfg
except ImportError:
print("Could not import Detectron 2 modules. Maybe you did not install Detectron 2")
- print("Please install Detectron 2, check https://github.com/facebookresearch/detectron2/blob/main/INSTALL.md")
+ print(
+ "Please install Detectron 2, check https://github.com/facebookresearch/detectron2/blob/main/INSTALL.md"
+ )
sys.exit(1)
+
class ImageBatcher:
"""
Creates batches of pre-processed images.
"""
- def __init__(self, input, shape, dtype, max_num_images=None, exact_batches=False, config_file=None):
+ def __init__(
+ self,
+ input,
+ shape,
+ dtype,
+ max_num_images=None,
+ exact_batches=False,
+ config_file=None,
+ ):
"""
:param input: The input directory to read images from.
:param shape: The tensor shape of the batch to prepare, either in NCHW or NHWC format.
@@ -68,10 +79,16 @@ def det2_setup(config_file):
extensions = [".jpg", ".jpeg", ".png", ".bmp", ".ppm"]
def is_image(path):
- return os.path.isfile(path) and os.path.splitext(path)[1].lower() in extensions
+ return (
+ os.path.isfile(path) and os.path.splitext(path)[1].lower() in extensions
+ )
if os.path.isdir(input):
- self.images = [os.path.join(input, f) for f in os.listdir(input) if is_image(os.path.join(input, f))]
+ self.images = [
+ os.path.join(input, f)
+ for f in os.listdir(input)
+ if is_image(os.path.join(input, f))
+ ]
self.images.sort()
elif os.path.isfile(input):
if is_image(input):
@@ -108,7 +125,7 @@ def is_image(path):
if self.num_images < 1:
print("Not enough images to create batches")
sys.exit(1)
- self.images = self.images[0:self.num_images]
+ self.images = self.images[0 : self.num_images]
# Subdivide the list of images into batches.
self.num_batches = 1 + int((self.num_images - 1) / self.batch_size)
@@ -122,7 +139,6 @@ def is_image(path):
self.image_index = 0
self.batch_index = 0
-
def preprocess_image(self, image_path):
"""
The image preprocessor loads an image from disk and prepares it as needed for batching. This includes padding,
@@ -165,7 +181,7 @@ def resize_pad(image, pad_color=(0, 0, 0)):
newh = int(newh + 0.5)
# Scaling factor for normalized box coordinates scaling in post-processing.
- scaling = max(newh/height, neww/width)
+ scaling = max(newh / height, neww / width)
# Padding.
image = image.resize((neww, newh), resample=Image.BILINEAR)
@@ -176,7 +192,7 @@ def resize_pad(image, pad_color=(0, 0, 0)):
scale = None
image = Image.open(image_path)
- image = image.convert(mode='RGB')
+ image = image.convert(mode="RGB")
# Pad with mean values of COCO dataset, since padding is applied before actual model's
# preprocessor steps (Sub, Div ops), we need to pad with mean values in order to reverse
# the effects of Sub and Div, so that padding after model's preprocessor will be with actual 0s.
@@ -185,7 +201,7 @@ def resize_pad(image, pad_color=(0, 0, 0)):
# Change HWC -> CHW.
image = np.transpose(image, (2, 0, 1))
# Change RGB -> BGR.
- return image[[2,1,0]], scale
+ return image[[2, 1, 0]], scale
def get_batch(self):
"""
diff --git a/samples/python/detectron2/infer.py b/samples/python/detectron2/infer.py
index db7c83b6..d086fb76 100644
--- a/samples/python/detectron2/infer.py
+++ b/samples/python/detectron2/infer.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -27,6 +27,7 @@
sys.path.insert(1, os.path.join(os.path.dirname(os.path.realpath(__file__)), os.pardir))
import common
+
class TensorRTInfer:
"""
Implements inference for the Model TensorRT engine.
@@ -65,12 +66,12 @@ def __init__(self, engine_path):
size *= s
allocation = common.cuda_call(cudart.cudaMalloc(size))
binding = {
- 'index': i,
- 'name': name,
- 'dtype': np.dtype(trt.nptype(dtype)),
- 'shape': list(shape),
- 'allocation': allocation,
- 'size': size
+ "index": i,
+ "name": name,
+ "dtype": np.dtype(trt.nptype(dtype)),
+ "shape": list(shape),
+ "allocation": allocation,
+ "size": size,
}
self.allocations.append(allocation)
if is_input:
@@ -88,7 +89,7 @@ def input_spec(self):
Get the specs for the input tensor of the network. Useful to prepare memory allocations.
:return: Two items, the shape of the input tensor and its (numpy) datatype.
"""
- return self.inputs[0]['shape'], self.inputs[0]['dtype']
+ return self.inputs[0]["shape"], self.inputs[0]["dtype"]
def output_spec(self):
"""
@@ -97,7 +98,7 @@ def output_spec(self):
"""
specs = []
for o in self.outputs:
- specs.append((o['shape'], o['dtype']))
+ specs.append((o["shape"], o["dtype"]))
return specs
def infer(self, batch, scales=None, nms_threshold=None):
@@ -115,11 +116,13 @@ def infer(self, batch, scales=None, nms_threshold=None):
outputs.append(np.zeros(shape, dtype))
# Process I/O and execute the network.
- common.memcpy_host_to_device(self.inputs[0]['allocation'], np.ascontiguousarray(batch))
+ common.memcpy_host_to_device(
+ self.inputs[0]["allocation"], np.ascontiguousarray(batch)
+ )
self.context.execute_v2(self.allocations)
for o in range(len(outputs)):
- common.memcpy_device_to_host(outputs[o], self.outputs[o]['allocation'])
+ common.memcpy_device_to_host(outputs[o], self.outputs[o]["allocation"])
# Process the results.
nums = outputs[0]
@@ -136,7 +139,7 @@ def infer(self, batch, scales=None, nms_threshold=None):
mask = masks[i][n]
# Calculate scaling values for bboxes.
- scale = self.inputs[0]['shape'][2]
+ scale = self.inputs[0]["shape"][2]
scale /= scales[i]
scale_y = scale
scale_x = scale
@@ -144,15 +147,17 @@ def infer(self, batch, scales=None, nms_threshold=None):
if nms_threshold and scores[i][n] < nms_threshold:
continue
# Append to detections
- detections[i].append({
- 'ymin': boxes[i][n][0] * scale_y,
- 'xmin': boxes[i][n][1] * scale_x,
- 'ymax': boxes[i][n][2] * scale_y,
- 'xmax': boxes[i][n][3] * scale_x,
- 'score': scores[i][n],
- 'class': int(pred_classes[i][n]),
- 'mask': mask,
- })
+ detections[i].append(
+ {
+ "ymin": boxes[i][n][0] * scale_y,
+ "xmin": boxes[i][n][1] * scale_x,
+ "ymax": boxes[i][n][2] * scale_y,
+ "xmax": boxes[i][n][3] * scale_x,
+ "score": scores[i][n],
+ "class": int(pred_classes[i][n]),
+ "mask": mask,
+ }
+ )
return detections
@@ -160,22 +165,117 @@ def main(args):
output_dir = os.path.realpath(args.output)
os.makedirs(output_dir, exist_ok=True)
- labels = ["person","bicycle","car","motorcycle","airplane","bus","train","truck","boat","traffic light","fire hydrant","stop sign","parking meter","bench","bird","cat","dog","horse","sheep","cow","elephant","bear","zebra","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite","baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife","spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza","donut","cake","chair","couch","potted plant","bed","dining table","toilet","tv","laptop","mouse","remote","keyboard","cell phone","microwave","oven","toaster","sink","refrigerator","book","clock","vase","scissors","teddy bear","hair drier", "toothbrush"]
+ labels = [
+ "person",
+ "bicycle",
+ "car",
+ "motorcycle",
+ "airplane",
+ "bus",
+ "train",
+ "truck",
+ "boat",
+ "traffic light",
+ "fire hydrant",
+ "stop sign",
+ "parking meter",
+ "bench",
+ "bird",
+ "cat",
+ "dog",
+ "horse",
+ "sheep",
+ "cow",
+ "elephant",
+ "bear",
+ "zebra",
+ "giraffe",
+ "backpack",
+ "umbrella",
+ "handbag",
+ "tie",
+ "suitcase",
+ "frisbee",
+ "skis",
+ "snowboard",
+ "sports ball",
+ "kite",
+ "baseball bat",
+ "baseball glove",
+ "skateboard",
+ "surfboard",
+ "tennis racket",
+ "bottle",
+ "wine glass",
+ "cup",
+ "fork",
+ "knife",
+ "spoon",
+ "bowl",
+ "banana",
+ "apple",
+ "sandwich",
+ "orange",
+ "broccoli",
+ "carrot",
+ "hot dog",
+ "pizza",
+ "donut",
+ "cake",
+ "chair",
+ "couch",
+ "potted plant",
+ "bed",
+ "dining table",
+ "toilet",
+ "tv",
+ "laptop",
+ "mouse",
+ "remote",
+ "keyboard",
+ "cell phone",
+ "microwave",
+ "oven",
+ "toaster",
+ "sink",
+ "refrigerator",
+ "book",
+ "clock",
+ "vase",
+ "scissors",
+ "teddy bear",
+ "hair drier",
+ "toothbrush",
+ ]
trt_infer = TensorRTInfer(args.engine)
- batcher = ImageBatcher(args.input, *trt_infer.input_spec(), config_file=args.det2_config)
+ batcher = ImageBatcher(
+ args.input, *trt_infer.input_spec(), config_file=args.det2_config
+ )
for batch, images, scales in batcher.get_batch():
- print("Processing Image {} / {}".format(batcher.image_index, batcher.num_images), end="\r")
+ print(
+ "Processing Image {} / {}".format(batcher.image_index, batcher.num_images),
+ end="\r",
+ )
detections = trt_infer.infer(batch, scales, args.nms_threshold)
for i in range(len(images)):
basename = os.path.splitext(os.path.basename(images[i]))[0]
# Image Visualizations
output_path = os.path.join(output_dir, "{}.png".format(basename))
- visualize_detections(images[i], output_path, detections[i], labels, args.iou_threshold)
+ visualize_detections(
+ images[i], output_path, detections[i], labels, args.iou_threshold
+ )
# Text Results
output_results = ""
for d in detections[i]:
- line = [d['xmin'], d['ymin'], d['xmax'], d['ymax'], d['score'], d['class']]
+ line = [
+ d["xmin"],
+ d["ymin"],
+ d["xmax"],
+ d["ymax"],
+ d["score"],
+ d["class"],
+ ]
output_results += "\t".join([str(f) for f in line]) + "\n"
with open(os.path.join(args.output, "{}.txt".format(basename)), "w") as f:
f.write(output_results)
@@ -185,17 +285,41 @@ def main(args):
if __name__ == "__main__":
parser = argparse.ArgumentParser()
- parser.add_argument("-e", "--engine", default=None, help="The serialized TensorRT engine")
- parser.add_argument("-i", "--input", default=None, help="Path to the image or directory to process")
- parser.add_argument("-c", "--det2_config", help="The Detectron 2 config file (.yaml) for the model", type=str)
- parser.add_argument("-o", "--output", default=None, help="Directory where to save the visualization results")
- parser.add_argument("-t", "--nms_threshold", type=float,
- help="Override the score threshold for the NMS operation, if higher than the threshold in the engine.")
- parser.add_argument("--iou_threshold", default=0.5, type=float,
- help="Select the IoU threshold for the mask segmentation. Range is 0 to 1. Pixel values more than threshold will become 1, less 0")
+ parser.add_argument(
+ "-e", "--engine", default=None, help="The serialized TensorRT engine"
+ )
+ parser.add_argument(
+ "-i", "--input", default=None, help="Path to the image or directory to process"
+ )
+ parser.add_argument(
+ "-c",
+ "--det2_config",
+ help="The Detectron 2 config file (.yaml) for the model",
+ type=str,
+ )
+ parser.add_argument(
+ "-o",
+ "--output",
+ default=None,
+ help="Directory where to save the visualization results",
+ )
+ parser.add_argument(
+ "-t",
+ "--nms_threshold",
+ type=float,
+ help="Override the score threshold for the NMS operation, if higher than the threshold in the engine.",
+ )
+ parser.add_argument(
+ "--iou_threshold",
+ default=0.5,
+ type=float,
+ help="Select the IoU threshold for the mask segmentation. Range is 0 to 1. Pixel values more than threshold will become 1, less 0",
+ )
args = parser.parse_args()
if not all([args.engine, args.input, args.output, args.det2_config]):
parser.print_help()
- print("\nThese arguments are required: --engine --input --output and --det2_config")
+ print(
+ "\nThese arguments are required: --engine --input --output and --det2_config"
+ )
sys.exit(1)
main(args)
diff --git a/samples/python/detectron2/onnx_utils.py b/samples/python/detectron2/onnx_utils.py
index 56d280fa..2144fea0 100644
--- a/samples/python/detectron2/onnx_utils.py
+++ b/samples/python/detectron2/onnx_utils.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -23,6 +23,7 @@
logging.getLogger("ModelHelper").setLevel(logging.INFO)
log = logging.getLogger("ModelHelper")
+
@gs.Graph.register()
def op_with_const(self, op, name, input, value):
"""
@@ -35,7 +36,10 @@ def op_with_const(self, op, name, input, value):
input_tensor = input if type(input) is gs.Variable else input[0]
log.debug("Created {} node '{}': {}".format(op, name, value.squeeze()))
const = gs.Constant(name="{}_value:0".format(name), values=value)
- return self.layer(name=name, op=op, inputs=[input_tensor, const], outputs=[name + ":0"])
+ return self.layer(
+ name=name, op=op, inputs=[input_tensor, const], outputs=[name + ":0"]
+ )
+
@gs.Graph.register()
def matmul(self, name, input, value):
@@ -48,7 +52,10 @@ def matmul(self, name, input, value):
input_tensor = input if type(input) is gs.Variable else input[0]
log.debug("Created {} node '{}': {}".format("MatMul", name, value.squeeze()))
const = gs.Constant(name="{}_value:0".format(name), values=value)
- return self.layer(name=name, op="MatMul", inputs=[input_tensor, const], outputs=[name + ":0"])
+ return self.layer(
+ name=name, op="MatMul", inputs=[input_tensor, const], outputs=[name + ":0"]
+ )
+
@gs.Graph.register()
def clip(self, name, input, clip_min, clip_max):
@@ -61,9 +68,19 @@ def clip(self, name, input, clip_min, clip_max):
"""
input_tensor = input if type(input) is gs.Variable else input[0]
log.debug("Created {} node '{}".format("Clip", name))
- const_min = gs.Constant(name="{}_value:0".format(name), values=np.asarray([clip_min], dtype=np.float32))
- const_max = gs.Constant(name="{}_value:1".format(name), values=np.asarray([clip_max], dtype=np.float32))
- return self.layer(name=name, op="Clip", inputs=[input_tensor, const_min, const_max], outputs=[name + ":0"])
+ const_min = gs.Constant(
+ name="{}_value:0".format(name), values=np.asarray([clip_min], dtype=np.float32)
+ )
+ const_max = gs.Constant(
+ name="{}_value:1".format(name), values=np.asarray([clip_max], dtype=np.float32)
+ )
+ return self.layer(
+ name=name,
+ op="Clip",
+ inputs=[input_tensor, const_min, const_max],
+ outputs=[name + ":0"],
+ )
+
@gs.Graph.register()
def slice(self, name, input, starts, ends, axes):
@@ -79,10 +96,22 @@ def slice(self, name, input, starts, ends, axes):
input_tensor = input if type(input) is gs.Variable else input[0]
log.debug("Created {} node '{}".format("Slice", name))
- const_start = gs.Constant(name="{}_value:0".format(name), values=np.asarray([starts], dtype=np.int64))
- const_end = gs.Constant(name="{}_value:1".format(name), values=np.asarray([ends], dtype=np.int64))
- const_axes = gs.Constant(name="{}_value:2".format(name), values=np.asarray([axes], dtype=np.int64))
- return self.layer(name=name, op="Slice", inputs=[input_tensor, const_start, const_end, const_axes], outputs=[name + ":0"])
+ const_start = gs.Constant(
+ name="{}_value:0".format(name), values=np.asarray([starts], dtype=np.int64)
+ )
+ const_end = gs.Constant(
+ name="{}_value:1".format(name), values=np.asarray([ends], dtype=np.int64)
+ )
+ const_axes = gs.Constant(
+ name="{}_value:2".format(name), values=np.asarray([axes], dtype=np.int64)
+ )
+ return self.layer(
+ name=name,
+ op="Slice",
+ inputs=[input_tensor, const_start, const_end, const_axes],
+ outputs=[name + ":0"],
+ )
+
@gs.Graph.register()
def unsqueeze(self, name, input, axes=[3]):
@@ -96,7 +125,14 @@ def unsqueeze(self, name, input, axes=[3]):
"""
input_tensor = input if type(input) is gs.Variable else input[0]
log.debug("Created Unsqueeze node '{}': {}".format(name, axes))
- return self.layer(name=name, op="Unsqueeze", inputs=[input_tensor], outputs=[name + ":0"], attrs={'axes': axes})
+ return self.layer(
+ name=name,
+ op="Unsqueeze",
+ inputs=[input_tensor],
+ outputs=[name + ":0"],
+ attrs={"axes": axes},
+ )
+
@gs.Graph.register()
def squeeze(self, name, input, axes=[2]):
@@ -110,7 +146,14 @@ def squeeze(self, name, input, axes=[2]):
"""
input_tensor = input if type(input) is gs.Variable else input[0]
log.debug("Created Squeeze node '{}': {}".format(name, axes))
- return self.layer(name=name, op="Squeeze", inputs=[input_tensor], outputs=[name + ":0"], attrs={'axes': axes})
+ return self.layer(
+ name=name,
+ op="Squeeze",
+ inputs=[input_tensor],
+ outputs=[name + ":0"],
+ attrs={"axes": axes},
+ )
+
@gs.Graph.register()
def gather(self, name, data, indices, axes=0):
@@ -125,7 +168,14 @@ def gather(self, name, data, indices, axes=0):
data_tensor = data if type(data) is gs.Variable else data[0]
indices_tensor = indices if type(indices) is gs.Variable else indices[0]
log.debug("Created Gather node '{}': {}".format(name, axes))
- return self.layer(name=name, op="Gather", inputs=[data_tensor, indices_tensor], outputs=[name + ":0"], attrs={'axes': axes})
+ return self.layer(
+ name=name,
+ op="Gather",
+ inputs=[data_tensor, indices_tensor],
+ outputs=[name + ":0"],
+ attrs={"axes": axes},
+ )
+
@gs.Graph.register()
def transpose(self, name, input, perm):
@@ -139,7 +189,14 @@ def transpose(self, name, input, perm):
"""
input_tensor = input if type(input) is gs.Variable else input[0]
log.debug("Created Transpose node '{}': {}".format(name, perm))
- return self.layer(name=name, op="Transpose", inputs=[input_tensor], outputs=[name + ":0"], attrs={'perm': perm})
+ return self.layer(
+ name=name,
+ op="Transpose",
+ inputs=[input_tensor],
+ outputs=[name + ":0"],
+ attrs={"perm": perm},
+ )
+
@gs.Graph.register()
def sigmoid(self, name, input):
@@ -152,7 +209,10 @@ def sigmoid(self, name, input):
"""
input_tensor = input if type(input) is gs.Variable else input[0]
log.debug("Created Sigmoid node '{}'".format(name))
- return self.layer(name=name, op="Sigmoid", inputs=[input_tensor], outputs=[name + ":0"])
+ return self.layer(
+ name=name, op="Sigmoid", inputs=[input_tensor], outputs=[name + ":0"]
+ )
+
@gs.Graph.register()
def plugin(self, op, name, inputs: list, outputs: list, attrs):
@@ -170,6 +230,7 @@ def plugin(self, op, name, inputs: list, outputs: list, attrs):
log.debug("Created TRT Plugin node '{}': {}".format(name, attrs))
return self.layer(op=op, name=name, inputs=inputs, outputs=outputs, attrs=attrs)
+
@gs.Graph.register()
def find_node_by_op(self, op):
"""
@@ -183,6 +244,7 @@ def find_node_by_op(self, op):
return node
return None
+
@gs.Graph.register()
def find_node_by_op_name(self, op, name):
"""
@@ -197,8 +259,11 @@ def find_node_by_op_name(self, op, name):
return node
return None
+
@gs.Graph.register()
-def find_node_by_op_input_output_name(self, op, input_name, output_name, input_pos=0, output_pos=0):
+def find_node_by_op_input_output_name(
+ self, op, input_name, output_name, input_pos=0, output_pos=0
+):
"""
Finds the first node in the graph with the given operation name.
:param self: The gs.Graph object being extended.
@@ -210,10 +275,15 @@ def find_node_by_op_input_output_name(self, op, input_name, output_name, input_p
:return: The first node matching that performs that op.
"""
for node in self.nodes:
- if node.op == op and node.inputs[input_pos].name == input_name and node.outputs[output_pos].name == output_name:
+ if (
+ node.op == op
+ and node.inputs[input_pos].name == input_name
+ and node.outputs[output_pos].name == output_name
+ ):
return node
return None
+
@gs.Graph.register()
def find_descendant_by_op(self, node, op, depth=10):
"""
@@ -237,6 +307,7 @@ def find_descendant_by_op(self, node, op, depth=10):
queue.append(child)
return None
+
@gs.Graph.register()
def find_ancestor_by_op(self, node, op, depth=10):
"""
diff --git a/samples/python/detectron2/visualize.py b/samples/python/detectron2/visualize.py
index dd8b6ead..00e930f1 100644
--- a/samples/python/detectron2/visualize.py
+++ b/samples/python/detectron2/visualize.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -22,55 +22,177 @@
import PIL.ImageFilter as ImageFilter
-COLORS = ['GoldenRod', 'MediumTurquoise', 'GreenYellow', 'SteelBlue', 'DarkSeaGreen', 'SeaShell', 'LightGrey',
- 'IndianRed', 'DarkKhaki', 'LawnGreen', 'WhiteSmoke', 'Peru', 'LightCoral', 'FireBrick', 'OldLace',
- 'LightBlue', 'SlateGray', 'OliveDrab', 'NavajoWhite', 'PaleVioletRed', 'SpringGreen', 'AliceBlue', 'Violet',
- 'DeepSkyBlue', 'Red', 'MediumVioletRed', 'PaleTurquoise', 'Tomato', 'Azure', 'Yellow', 'Cornsilk',
- 'Aquamarine', 'CadetBlue', 'CornflowerBlue', 'DodgerBlue', 'Olive', 'Orchid', 'LemonChiffon', 'Sienna',
- 'OrangeRed', 'Orange', 'DarkSalmon', 'Magenta', 'Wheat', 'Lime', 'GhostWhite', 'SlateBlue', 'Aqua',
- 'MediumAquaMarine', 'LightSlateGrey', 'MediumSeaGreen', 'SandyBrown', 'YellowGreen', 'Plum', 'FloralWhite',
- 'LightPink', 'Thistle', 'DarkViolet', 'Pink', 'Crimson', 'Chocolate', 'DarkGrey', 'Ivory', 'PaleGreen',
- 'DarkGoldenRod', 'LavenderBlush', 'SlateGrey', 'DeepPink', 'Gold', 'Cyan', 'LightSteelBlue', 'MediumPurple',
- 'ForestGreen', 'DarkOrange', 'Tan', 'Salmon', 'PaleGoldenRod', 'LightGreen', 'LightSlateGray', 'HoneyDew',
- 'Fuchsia', 'LightSeaGreen', 'DarkOrchid', 'Green', 'Chartreuse', 'LimeGreen', 'AntiqueWhite', 'Beige',
- 'Gainsboro', 'Bisque', 'SaddleBrown', 'Silver', 'Lavender', 'Teal', 'LightCyan', 'PapayaWhip', 'Purple',
- 'Coral', 'BurlyWood', 'LightGray', 'Snow', 'MistyRose', 'PowderBlue', 'DarkCyan', 'White', 'Turquoise',
- 'MediumSlateBlue', 'PeachPuff', 'Moccasin', 'LightSalmon', 'SkyBlue', 'Khaki', 'MediumSpringGreen',
- 'BlueViolet', 'MintCream', 'Linen', 'SeaGreen', 'HotPink', 'LightYellow', 'BlanchedAlmond', 'RoyalBlue',
- 'RosyBrown', 'MediumOrchid', 'DarkTurquoise', 'LightGoldenRodYellow', 'LightSkyBlue']
+COLORS = [
+ "GoldenRod",
+ "MediumTurquoise",
+ "GreenYellow",
+ "SteelBlue",
+ "DarkSeaGreen",
+ "SeaShell",
+ "LightGrey",
+ "IndianRed",
+ "DarkKhaki",
+ "LawnGreen",
+ "WhiteSmoke",
+ "Peru",
+ "LightCoral",
+ "FireBrick",
+ "OldLace",
+ "LightBlue",
+ "SlateGray",
+ "OliveDrab",
+ "NavajoWhite",
+ "PaleVioletRed",
+ "SpringGreen",
+ "AliceBlue",
+ "Violet",
+ "DeepSkyBlue",
+ "Red",
+ "MediumVioletRed",
+ "PaleTurquoise",
+ "Tomato",
+ "Azure",
+ "Yellow",
+ "Cornsilk",
+ "Aquamarine",
+ "CadetBlue",
+ "CornflowerBlue",
+ "DodgerBlue",
+ "Olive",
+ "Orchid",
+ "LemonChiffon",
+ "Sienna",
+ "OrangeRed",
+ "Orange",
+ "DarkSalmon",
+ "Magenta",
+ "Wheat",
+ "Lime",
+ "GhostWhite",
+ "SlateBlue",
+ "Aqua",
+ "MediumAquaMarine",
+ "LightSlateGrey",
+ "MediumSeaGreen",
+ "SandyBrown",
+ "YellowGreen",
+ "Plum",
+ "FloralWhite",
+ "LightPink",
+ "Thistle",
+ "DarkViolet",
+ "Pink",
+ "Crimson",
+ "Chocolate",
+ "DarkGrey",
+ "Ivory",
+ "PaleGreen",
+ "DarkGoldenRod",
+ "LavenderBlush",
+ "SlateGrey",
+ "DeepPink",
+ "Gold",
+ "Cyan",
+ "LightSteelBlue",
+ "MediumPurple",
+ "ForestGreen",
+ "DarkOrange",
+ "Tan",
+ "Salmon",
+ "PaleGoldenRod",
+ "LightGreen",
+ "LightSlateGray",
+ "HoneyDew",
+ "Fuchsia",
+ "LightSeaGreen",
+ "DarkOrchid",
+ "Green",
+ "Chartreuse",
+ "LimeGreen",
+ "AntiqueWhite",
+ "Beige",
+ "Gainsboro",
+ "Bisque",
+ "SaddleBrown",
+ "Silver",
+ "Lavender",
+ "Teal",
+ "LightCyan",
+ "PapayaWhip",
+ "Purple",
+ "Coral",
+ "BurlyWood",
+ "LightGray",
+ "Snow",
+ "MistyRose",
+ "PowderBlue",
+ "DarkCyan",
+ "White",
+ "Turquoise",
+ "MediumSlateBlue",
+ "PeachPuff",
+ "Moccasin",
+ "LightSalmon",
+ "SkyBlue",
+ "Khaki",
+ "MediumSpringGreen",
+ "BlueViolet",
+ "MintCream",
+ "Linen",
+ "SeaGreen",
+ "HotPink",
+ "LightYellow",
+ "BlanchedAlmond",
+ "RoyalBlue",
+ "RosyBrown",
+ "MediumOrchid",
+ "DarkTurquoise",
+ "LightGoldenRodYellow",
+ "LightSkyBlue",
+]
-#Overlay mask with transparency on top of the image.
+# Overlay mask with transparency on top of the image.
def overlay(image, mask, color, alpha_transparency=0.5):
for channel in range(3):
- image[:, :, channel] = np.where(mask == 1,
- image[:, :, channel] *
- (1 - alpha_transparency) + alpha_transparency * color[channel] * 255,
- image[:, :, channel])
+ image[:, :, channel] = np.where(
+ mask == 1,
+ image[:, :, channel] * (1 - alpha_transparency)
+ + alpha_transparency * color[channel] * 255,
+ image[:, :, channel],
+ )
return image
-def visualize_detections(image_path, output_path, detections, labels=[], iou_threshold=0.5):
- image = Image.open(image_path).convert(mode='RGB')
+
+def visualize_detections(
+ image_path, output_path, detections, labels=[], iou_threshold=0.5
+):
+ image = Image.open(image_path).convert(mode="RGB")
# Get image dimensions.
im_width, im_height = image.size
line_width = 2
font = ImageFont.load_default()
for d in detections:
- color = COLORS[d['class'] % len(COLORS)]
+ color = COLORS[d["class"] % len(COLORS)]
# Dynamically convert PIL color into RGB numpy array.
- pixel_color = Image.new("RGB",(1, 1), color)
+ pixel_color = Image.new("RGB", (1, 1), color)
# Normalize.
- np_color = (np.asarray(pixel_color)[0][0])/255
+ np_color = (np.asarray(pixel_color)[0][0]) / 255
# TRT instance segmentation masks.
- if isinstance(d['mask'], np.ndarray) and d['mask'].shape == (28, 28):
+ if isinstance(d["mask"], np.ndarray) and d["mask"].shape == (28, 28):
# PyTorch uses [x1,y1,x2,y2] format instead of regular [y1,x1,y2,x2].
- d['ymin'], d['xmin'], d['ymax'], d['xmax'] = d['xmin'], d['ymin'], d['xmax'], d['ymax']
+ d["ymin"], d["xmin"], d["ymax"], d["xmax"] = (
+ d["xmin"],
+ d["ymin"],
+ d["xmax"],
+ d["ymax"],
+ )
# Get detection bbox resolution.
- det_width = round(d['xmax'] - d['xmin'])
- det_height = round(d['ymax'] - d['ymin'])
+ det_width = round(d["xmax"] - d["xmin"])
+ det_height = round(d["ymax"] - d["ymin"])
# Slight scaling, to get binary masks after float32 -> uint8
# conversion, if not scaled all pixels are zero.
- mask = d['mask'] > iou_threshold
+ mask = d["mask"] > iou_threshold
# Convert float32 -> uint8.
mask = mask.astype(np.uint8)
# Create an image out of predicted mask array.
@@ -80,10 +202,10 @@ def visualize_detections(image_path, output_path, detections, labels=[], iou_thr
# Create an original image sized template for correct mask placement.
pad = Image.new("L", (im_width, im_height))
# Place your mask according to detection bbox placement.
- pad.paste(mask, (round(d['xmin']), (round(d['ymin']))))
+ pad.paste(mask, (round(d["xmin"]), (round(d["ymin"]))))
# Reconvert mask into numpy array for evaluation.
padded_mask = np.array(pad)
- #Creat np.array from original image, copy in order to modify.
+ # Creat np.array from original image, copy in order to modify.
image_copy = np.asarray(image).copy()
# Image with overlaid mask.
masked_image = overlay(image_copy, padded_mask, np_color)
@@ -92,23 +214,42 @@ def visualize_detections(image_path, output_path, detections, labels=[], iou_thr
# Bbox lines.
draw = ImageDraw.Draw(image)
- draw.line([(d['xmin'], d['ymin']), (d['xmin'], d['ymax']), (d['xmax'], d['ymax']), (d['xmax'], d['ymin']),
- (d['xmin'], d['ymin'])], width=line_width, fill=color)
- label = "Class {}".format(d['class'])
- if d['class'] < len(labels):
- label = "{}".format(labels[d['class']])
- score = d['score']
+ draw.line(
+ [
+ (d["xmin"], d["ymin"]),
+ (d["xmin"], d["ymax"]),
+ (d["xmax"], d["ymax"]),
+ (d["xmax"], d["ymin"]),
+ (d["xmin"], d["ymin"]),
+ ],
+ width=line_width,
+ fill=color,
+ )
+ label = "Class {}".format(d["class"])
+ if d["class"] < len(labels):
+ label = "{}".format(labels[d["class"]])
+ score = d["score"]
text = "{}: {}%".format(label, int(100 * score))
if score < 0:
text = label
left, top, right, bottom = font.getbbox(text)
text_width, text_height = right - left, bottom - top
- text_bottom = max(text_height, d['ymin'])
- text_left = d['xmin']
+ text_bottom = max(text_height, d["ymin"])
+ text_left = d["xmin"]
margin = np.ceil(0.05 * text_height)
- draw.rectangle([(text_left, text_bottom - text_height - 2 * margin), (text_left + text_width, text_bottom)],
- fill=color)
- draw.text((text_left + margin, text_bottom - text_height - margin), text, fill='black', font=font)
+ draw.rectangle(
+ [
+ (text_left, text_bottom - text_height - 2 * margin),
+ (text_left + text_width, text_bottom),
+ ],
+ fill=color,
+ )
+ draw.text(
+ (text_left + margin, text_bottom - text_height - margin),
+ text,
+ fill="black",
+ font=font,
+ )
if output_path is None:
return image
image.save(output_path)
diff --git a/samples/python/downloader.py b/samples/python/downloader.py
index b4a436e2..5e8be202 100755
--- a/samples/python/downloader.py
+++ b/samples/python/downloader.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -87,8 +87,13 @@ def download(data_dir, yaml_path, overwrite=False):
def _downloadFile(path, url):
logger.info("Downloading %s from %s", path, url)
import requests
+ from requests.adapters import HTTPAdapter, Retry
+
+ session = requests.Session()
+ retries = Retry(total=5, backoff_factor=0.5)
+ session.mount("http://", HTTPAdapter(max_retries=retries))
+ r = session.get(url, stream=True, timeout=10)
- r = requests.get(url, stream=True, timeout=5)
size = int(r.headers.get("content-length", 0))
from tqdm import tqdm
@@ -124,7 +129,9 @@ def _downloadFile(path, url):
def _parseArgs():
- parser = argparse.ArgumentParser(description="Downloader of TensorRT sample data files.")
+ parser = argparse.ArgumentParser(
+ description="Downloader of TensorRT sample data files."
+ )
parser.add_argument(
"-d",
"--data",
@@ -137,7 +144,11 @@ def _parseArgs():
default="download.yml",
)
parser.add_argument(
- "-o", "--overwrite", help="Force to overwrite if MD5 check failed", action="store_true", default=False
+ "-o",
+ "--overwrite",
+ help="Force to overwrite if MD5 check failed",
+ action="store_true",
+ default=False,
)
parser.add_argument(
"-v",
@@ -150,7 +161,9 @@ def _parseArgs():
args, _ = parser.parse_known_args()
data = os.environ.get("TRT_DATA_DIR", None) if args.data is None else args.data
if data is None:
- raise ValueError("Data directory must be specified by either `-d $DATA` or environment variable $TRT_DATA_DIR.")
+ raise ValueError(
+ "Data directory must be specified by either `-d $DATA` or environment variable $TRT_DATA_DIR."
+ )
return data, args
@@ -209,16 +222,22 @@ def getFilePath(path):
"""
global TRT_DATA_DIR
if not TRT_DATA_DIR:
- parser = argparse.ArgumentParser(description="Helper of data file download tool")
+ parser = argparse.ArgumentParser(
+ description="Helper of data file download tool"
+ )
parser.add_argument(
"-d",
"--data",
help="Specify the data directory where it is saved in. $TRT_DATA_DIR will be overwritten by this argument.",
)
args, _ = parser.parse_known_args()
- TRT_DATA_DIR = os.environ.get("TRT_DATA_DIR", None) if args.data is None else args.data
+ TRT_DATA_DIR = (
+ os.environ.get("TRT_DATA_DIR", None) if args.data is None else args.data
+ )
if TRT_DATA_DIR is None:
- raise ValueError("Data directory must be specified by either `-d $DATA` or environment variable $TRT_DATA_DIR.")
+ raise ValueError(
+ "Data directory must be specified by either `-d $DATA` or environment variable $TRT_DATA_DIR."
+ )
fullpath = os.path.join(TRT_DATA_DIR, path)
if not os.path.exists(fullpath):
diff --git a/samples/python/efficientdet/build_engine.py b/samples/python/efficientdet/build_engine.py
index 77143aad..58dd6d5c 100644
--- a/samples/python/efficientdet/build_engine.py
+++ b/samples/python/efficientdet/build_engine.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -56,7 +56,10 @@ def set_image_batcher(self, image_batcher: ImageBatcher):
:param image_batcher: The ImageBatcher object
"""
self.image_batcher = image_batcher
- size = int(np.dtype(self.image_batcher.dtype).itemsize * np.prod(self.image_batcher.shape))
+ size = int(
+ np.dtype(self.image_batcher.dtype).itemsize
+ * np.prod(self.image_batcher.shape)
+ )
self.batch_allocation = common.cuda_call(cudart.cudaMalloc(size))
self.batch_generator = self.image_batcher.get_batch()
@@ -81,8 +84,14 @@ def get_batch(self, names):
return None
try:
batch, _, _ = next(self.batch_generator)
- log.info("Calibrating image {} / {}".format(self.image_batcher.image_index, self.image_batcher.num_images))
- common.memcpy_host_to_device(self.batch_allocation, np.ascontiguousarray(batch))
+ log.info(
+ "Calibrating image {} / {}".format(
+ self.image_batcher.image_index, self.image_batcher.num_images
+ )
+ )
+ common.memcpy_host_to_device(
+ self.batch_allocation, np.ascontiguousarray(batch)
+ )
return [int(self.batch_allocation)]
except StopIteration:
log.info("Finished calibration batches")
@@ -130,7 +139,9 @@ def __init__(self, verbose=False, workspace=8):
self.builder = trt.Builder(self.trt_logger)
self.config = self.builder.create_builder_config()
- self.config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace * (2 ** 30))
+ self.config.set_memory_pool_limit(
+ trt.MemoryPoolType.WORKSPACE, workspace * (2**30)
+ )
self.network = None
self.parser = None
@@ -161,29 +172,46 @@ def create_network(self, onnx_path, batch_size, dynamic_batch_size=None):
profile = self.builder.create_optimization_profile()
dynamic_inputs = False
for input in inputs:
- log.info("Input '{}' with shape {} and dtype {}".format(input.name, input.shape, input.dtype))
+ log.info(
+ "Input '{}' with shape {} and dtype {}".format(
+ input.name, input.shape, input.dtype
+ )
+ )
if input.shape[0] == -1:
dynamic_inputs = True
if dynamic_batch_size:
if type(dynamic_batch_size) is str:
- dynamic_batch_size = [int(v) for v in dynamic_batch_size.split(",")]
+ dynamic_batch_size = [
+ int(v) for v in dynamic_batch_size.split(",")
+ ]
assert len(dynamic_batch_size) == 3
min_shape = [dynamic_batch_size[0]] + list(input.shape[1:])
opt_shape = [dynamic_batch_size[1]] + list(input.shape[1:])
max_shape = [dynamic_batch_size[2]] + list(input.shape[1:])
profile.set_shape(input.name, min_shape, opt_shape, max_shape)
- log.info("Input '{}' Optimization Profile with shape MIN {} / OPT {} / MAX {}".format(
- input.name, min_shape, opt_shape, max_shape))
+ log.info(
+ "Input '{}' Optimization Profile with shape MIN {} / OPT {} / MAX {}".format(
+ input.name, min_shape, opt_shape, max_shape
+ )
+ )
else:
shape = [batch_size] + list(input.shape[1:])
profile.set_shape(input.name, shape, shape, shape)
- log.info("Input '{}' Optimization Profile with shape {}".format(input.name, shape))
+ log.info(
+ "Input '{}' Optimization Profile with shape {}".format(
+ input.name, shape
+ )
+ )
if dynamic_inputs:
self.config.add_optimization_profile(profile)
outputs = [self.network.get_output(i) for i in range(self.network.num_outputs)]
for output in outputs:
- log.info("Output '{}' with shape {} and dtype {}".format(output.name, output.shape, output.dtype))
+ log.info(
+ "Output '{}' with shape {} and dtype {}".format(
+ output.name, output.shape, output.dtype
+ )
+ )
def set_mixed_precision(self):
"""
@@ -202,7 +230,8 @@ def set_mixed_precision(self):
# add or remove blocks.
for i in range(self.network.num_layers):
layer = self.network.get_layer(i)
- if layer.type == trt.LayerType.CONVOLUTION and any([
+ if layer.type == trt.LayerType.CONVOLUTION and any(
+ [
# AutoML Layer Names:
"/stem/" in layer.name,
"/blocks_0/" in layer.name,
@@ -213,12 +242,24 @@ def set_mixed_precision(self):
"/stack_0/block_0/" in layer.name,
"/stack_1/block_0/" in layer.name,
"/stack_1/block_1/" in layer.name,
- ]):
+ ]
+ ):
self.network.get_layer(i).precision = trt.DataType.HALF
- log.info("Mixed-Precision Layer {} set to HALF STRICT data type".format(layer.name))
-
- def create_engine(self, engine_path, precision, calib_input=None, calib_cache=None, calib_num_images=5000,
- calib_batch_size=8):
+ log.info(
+ "Mixed-Precision Layer {} set to HALF STRICT data type".format(
+ layer.name
+ )
+ )
+
+ def create_engine(
+ self,
+ engine_path,
+ precision,
+ calib_input=None,
+ calib_cache=None,
+ calib_num_images=5000,
+ calib_batch_size=8,
+ ):
"""
Build the TensorRT engine and serialize it to disk.
:param engine_path: The path where to serialize the engine to.
@@ -251,8 +292,15 @@ def create_engine(self, engine_path, precision, calib_input=None, calib_cache=No
calib_shape = [calib_batch_size] + list(inputs[0].shape[1:])
calib_dtype = trt.nptype(inputs[0].dtype)
self.config.int8_calibrator.set_image_batcher(
- ImageBatcher(calib_input, calib_shape, calib_dtype, max_num_images=calib_num_images,
- exact_batches=True, shuffle_files=True))
+ ImageBatcher(
+ calib_input,
+ calib_shape,
+ calib_dtype,
+ max_num_images=calib_num_images,
+ exact_batches=True,
+ shuffle_files=True,
+ )
+ )
engine_bytes = self.builder.build_serialized_network(self.network, self.config)
if engine_bytes is None:
@@ -272,41 +320,88 @@ def main(args):
builder.create_network(args.onnx, args.batch_size, args.dynamic_batch_size)
if args.precision == "mixed":
builder.set_mixed_precision()
- builder.create_engine(args.engine, args.precision, args.calib_input, args.calib_cache, args.calib_num_images,
- args.calib_batch_size)
+ builder.create_engine(
+ args.engine,
+ args.precision,
+ args.calib_input,
+ args.calib_cache,
+ args.calib_num_images,
+ args.calib_batch_size,
+ )
if __name__ == "__main__":
parser = argparse.ArgumentParser()
- parser.add_argument("-o", "--onnx", required=True,
- help="The input ONNX model file to load")
- parser.add_argument("-e", "--engine", required=True,
- help="The output path for the TRT engine")
- parser.add_argument("-b", "--batch_size", default=1, type=int,
- help="The static batch size to build the engine with, default: 1")
- parser.add_argument("-d", "--dynamic_batch_size", default=None,
- help="Enable dynamic batch size by providing a comma-separated MIN,OPT,MAX batch size, "
- "if this option is set, --batch_size is ignored, example: -d 1,16,32, "
- "default: None, build static engine")
- parser.add_argument("-p", "--precision", default="fp16", choices=["fp32", "fp16", "int8", "mixed"],
- help="The precision mode to build in, either fp32/fp16/int8/mixed, default: fp16")
- parser.add_argument("-v", "--verbose", action="store_true",
- help="Enable more verbose log output")
- parser.add_argument("-w", "--workspace", default=8, type=int,
- help="The max memory workspace size to allow in Gb, default: 8")
- parser.add_argument("--calib_input",
- help="The directory holding images to use for calibration")
- parser.add_argument("--calib_cache", default=None,
- help="The file path for INT8 calibration cache to use, default: ./calibration.cache")
- parser.add_argument("--calib_num_images", default=5000, type=int,
- help="The maximum number of images to use for calibration, default: 5000")
- parser.add_argument("--calib_batch_size", default=8, type=int,
- help="The batch size for the calibration process, default: 8")
- parser.add_argument("--timing_cache", default="./timing.cache",
- help="The file path for timing cache, default: ./timing.cache")
+ parser.add_argument(
+ "-o", "--onnx", required=True, help="The input ONNX model file to load"
+ )
+ parser.add_argument(
+ "-e", "--engine", required=True, help="The output path for the TRT engine"
+ )
+ parser.add_argument(
+ "-b",
+ "--batch_size",
+ default=1,
+ type=int,
+ help="The static batch size to build the engine with, default: 1",
+ )
+ parser.add_argument(
+ "-d",
+ "--dynamic_batch_size",
+ default=None,
+ help="Enable dynamic batch size by providing a comma-separated MIN,OPT,MAX batch size, "
+ "if this option is set, --batch_size is ignored, example: -d 1,16,32, "
+ "default: None, build static engine",
+ )
+ parser.add_argument(
+ "-p",
+ "--precision",
+ default="fp16",
+ choices=["fp32", "fp16", "int8", "mixed"],
+ help="The precision mode to build in, either fp32/fp16/int8/mixed, default: fp16",
+ )
+ parser.add_argument(
+ "-v", "--verbose", action="store_true", help="Enable more verbose log output"
+ )
+ parser.add_argument(
+ "-w",
+ "--workspace",
+ default=8,
+ type=int,
+ help="The max memory workspace size to allow in Gb, default: 8",
+ )
+ parser.add_argument(
+ "--calib_input", help="The directory holding images to use for calibration"
+ )
+ parser.add_argument(
+ "--calib_cache",
+ default=None,
+ help="The file path for INT8 calibration cache to use, default: ./calibration.cache",
+ )
+ parser.add_argument(
+ "--calib_num_images",
+ default=5000,
+ type=int,
+ help="The maximum number of images to use for calibration, default: 5000",
+ )
+ parser.add_argument(
+ "--calib_batch_size",
+ default=8,
+ type=int,
+ help="The batch size for the calibration process, default: 8",
+ )
+ parser.add_argument(
+ "--timing_cache",
+ default="./timing.cache",
+ help="The file path for timing cache, default: ./timing.cache",
+ )
args = parser.parse_args()
- if args.precision in ["int8", "mixed"] and not (args.calib_input or os.path.exists(args.calib_cache)):
+ if args.precision in ["int8", "mixed"] and not (
+ args.calib_input or os.path.exists(args.calib_cache)
+ ):
parser.print_help()
- log.error("When building in int8 or mixed precision, --calib_input or an existing --calib_cache file is required")
+ log.error(
+ "When building in int8 or mixed precision, --calib_input or an existing --calib_cache file is required"
+ )
sys.exit(1)
main(args)
diff --git a/samples/python/efficientdet/compare_tf.py b/samples/python/efficientdet/compare_tf.py
index 54c356cd..4e4b91fc 100644
--- a/samples/python/efficientdet/compare_tf.py
+++ b/samples/python/efficientdet/compare_tf.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -35,7 +35,12 @@ def run(batcher, inferer, framework, nms_threshold=None):
for batch, images, scales in batcher.get_batch():
res_detections += inferer.process(batch, scales, nms_threshold)
res_images += images
- print("Processing {} / {} images ({})".format(batcher.image_index, batcher.num_images, framework), end="\r")
+ print(
+ "Processing {} / {} images ({})".format(
+ batcher.image_index, batcher.num_images, framework
+ ),
+ end="\r",
+ )
print()
return res_images, res_detections
@@ -62,7 +67,15 @@ def parse_annotations(annotations_path):
return annotations
-def compare_images(tf_images, tf_detections, trt_images, trt_detections, output_dir, annotations_path, labels_path):
+def compare_images(
+ tf_images,
+ tf_detections,
+ trt_images,
+ trt_detections,
+ output_dir,
+ annotations_path,
+ labels_path,
+):
labels = []
if labels_path and os.path.exists(labels_path):
with open(labels_path) as f:
@@ -72,7 +85,9 @@ def compare_images(tf_images, tf_detections, trt_images, trt_detections, output_
annotations = parse_annotations(annotations_path)
count = 1
- for tf_img, tf_det, trt_img, trt_det in zip(tf_images, tf_detections, trt_images, trt_detections):
+ for tf_img, tf_det, trt_img, trt_det in zip(
+ tf_images, tf_detections, trt_images, trt_detections
+ ):
vis = []
names = []
colors = []
@@ -90,18 +105,27 @@ def compare_images(tf_images, tf_detections, trt_images, trt_detections, output_
if img_id.isnumeric():
img_id = int(img_id)
if img_id in annotations.keys():
- vis.append(visualize_detections(trt_img, None, annotations[img_id], labels))
+ vis.append(
+ visualize_detections(trt_img, None, annotations[img_id], labels)
+ )
names.append("Ground Truth")
colors.append("RoyalBlue")
else:
- print("Image {} does not have a COCO annotation, skipping ground truth visualization".format(trt_img))
+ print(
+ "Image {} does not have a COCO annotation, skipping ground truth visualization".format(
+ trt_img
+ )
+ )
basename = os.path.splitext(os.path.basename(tf_img))[0]
output_path = os.path.join(output_dir, "{}.compare.png".format(basename))
os.makedirs(output_dir, exist_ok=True)
concat_visualizations(vis, names, colors, output_path)
- print("Processing {} / {} images (Visualization)".format(count, len(tf_images)), end="\r")
+ print(
+ "Processing {} / {} images (Visualization)".format(count, len(tf_images)),
+ end="\r",
+ )
count += 1
print()
@@ -110,32 +134,80 @@ def main(args):
tf_infer = TensorFlowInfer(args.saved_model)
trt_infer = TensorRTInfer(args.engine)
- trt_batcher = ImageBatcher(args.input, *trt_infer.input_spec(), max_num_images=args.num_images)
- tf_infer.override_input_shape(0, [1, trt_batcher.height, trt_batcher.width, 3]) # Same size input in TF as TRT
- tf_batcher = ImageBatcher(args.input, *tf_infer.input_spec(), max_num_images=args.num_images)
-
- tf_images, tf_detections = run(tf_batcher, tf_infer, "TensorFlow", args.nms_threshold)
- trt_images, trt_detections = run(trt_batcher, trt_infer, "TensorRT", args.nms_threshold)
-
- compare_images(tf_images, tf_detections, trt_images, trt_detections, args.output, args.annotations, args.labels)
+ trt_batcher = ImageBatcher(
+ args.input, *trt_infer.input_spec(), max_num_images=args.num_images
+ )
+ tf_infer.override_input_shape(
+ 0, [1, trt_batcher.height, trt_batcher.width, 3]
+ ) # Same size input in TF as TRT
+ tf_batcher = ImageBatcher(
+ args.input, *tf_infer.input_spec(), max_num_images=args.num_images
+ )
+
+ tf_images, tf_detections = run(
+ tf_batcher, tf_infer, "TensorFlow", args.nms_threshold
+ )
+ trt_images, trt_detections = run(
+ trt_batcher, trt_infer, "TensorRT", args.nms_threshold
+ )
+
+ compare_images(
+ tf_images,
+ tf_detections,
+ trt_images,
+ trt_detections,
+ args.output,
+ args.annotations,
+ args.labels,
+ )
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-e", "--engine", help="The TensorRT engine to infer with")
- parser.add_argument("-m", "--saved_model", help="The TensorFlow saved model path to validate against")
- parser.add_argument("-i", "--input",
- help="The input to infer, either a single image path, or a directory of images")
- parser.add_argument("-o", "--output", default=None, help="Directory where to save the visualization results")
- parser.add_argument("-l", "--labels", default="./labels_coco.txt",
- help="File to use for reading the class labels from, default: ./labels_coco.txt")
- parser.add_argument("-a", "--annotations", default=None,
- help="Set the path to the 'instances_val2017.json' file to use for COCO annotations, in which "
- "case --input should point to the COCO val2017 dataset, default: not used")
- parser.add_argument("-n", "--num_images", default=100, type=int,
- help="The maximum number of images to visualize, default: 100")
- parser.add_argument("-t", "--nms_threshold", type=float, help="Override the score threshold for the NMS operation, "
- "if higher than the threshold in the model/engine.")
+ parser.add_argument(
+ "-m",
+ "--saved_model",
+ help="The TensorFlow saved model path to validate against",
+ )
+ parser.add_argument(
+ "-i",
+ "--input",
+ help="The input to infer, either a single image path, or a directory of images",
+ )
+ parser.add_argument(
+ "-o",
+ "--output",
+ default=None,
+ help="Directory where to save the visualization results",
+ )
+ parser.add_argument(
+ "-l",
+ "--labels",
+ default="./labels_coco.txt",
+ help="File to use for reading the class labels from, default: ./labels_coco.txt",
+ )
+ parser.add_argument(
+ "-a",
+ "--annotations",
+ default=None,
+ help="Set the path to the 'instances_val2017.json' file to use for COCO annotations, in which "
+ "case --input should point to the COCO val2017 dataset, default: not used",
+ )
+ parser.add_argument(
+ "-n",
+ "--num_images",
+ default=100,
+ type=int,
+ help="The maximum number of images to visualize, default: 100",
+ )
+ parser.add_argument(
+ "-t",
+ "--nms_threshold",
+ type=float,
+ help="Override the score threshold for the NMS operation, "
+ "if higher than the threshold in the model/engine.",
+ )
args = parser.parse_args()
if not all([args.engine, args.saved_model, args.input, args.output]):
parser.print_help()
diff --git a/samples/python/efficientdet/create_onnx.py b/samples/python/efficientdet/create_onnx.py
index 17fee5f6..ffe83094 100644
--- a/samples/python/efficientdet/create_onnx.py
+++ b/samples/python/efficientdet/create_onnx.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -52,8 +52,12 @@ def __init__(self, saved_model_path):
with tf.Graph().as_default() as tf_graph:
tf.import_graph_def(graph_def, name="")
with tf_loader.tf_session(graph=tf_graph):
- onnx_graph = tfonnx.process_tf_graph(tf_graph, input_names=inputs, output_names=outputs, opset=11)
- onnx_model = optimizer.optimize_graph(onnx_graph).make_model("Converted from {}".format(saved_model_path))
+ onnx_graph = tfonnx.process_tf_graph(
+ tf_graph, input_names=inputs, output_names=outputs, opset=11
+ )
+ onnx_model = optimizer.optimize_graph(onnx_graph).make_model(
+ "Converted from {}".format(saved_model_path)
+ )
self.graph = gs.import_onnx(onnx_model)
assert self.graph
log.info("TF2ONNX graph created successfully")
@@ -65,7 +69,16 @@ def __init__(self, saved_model_path):
self.api = None
if len([node for node in self.graph.nodes if "class_net/" in node.name]) > 0:
self.api = "AutoML"
- elif len([node for node in self.graph.nodes if "/WeightSharedConvolutionalClassHead/" in node.name]) > 0:
+ elif (
+ len(
+ [
+ node
+ for node in self.graph.nodes
+ if "/WeightSharedConvolutionalClassHead/" in node.name
+ ]
+ )
+ > 0
+ ):
self.api = "TFOD"
assert self.api
log.info("Graph was detected as {}".format(self.api))
@@ -87,7 +100,9 @@ def sanitize(self):
model = shape_inference.infer_shapes(model)
self.graph = gs.import_onnx(model)
except Exception as e:
- log.info("Shape inference could not be performed at this time:\n{}".format(e))
+ log.info(
+ "Shape inference could not be performed at this time:\n{}".format(e)
+ )
try:
self.graph.fold_constants(fold_shapes=True)
except TypeError as e:
@@ -130,41 +145,63 @@ def update_preprocessor(self, input_format, input_size, preprocessor="imagenet")
assert input_size[i] >= 1
assert input_format in ["NCHW", "NHWC"]
if input_format == "NCHW":
- self.graph.inputs[0].shape = ['N', 3, input_size[0], input_size[1]]
+ self.graph.inputs[0].shape = ["N", 3, input_size[0], input_size[1]]
if input_format == "NHWC":
- self.graph.inputs[0].shape = ['N', input_size[0], input_size[1], 3]
+ self.graph.inputs[0].shape = ["N", input_size[0], input_size[1], 3]
self.graph.inputs[0].dtype = np.float32
self.graph.inputs[0].name = "input"
- log.info("ONNX graph input shape: {} [{} format]".format(self.graph.inputs[0].shape, input_format))
+ log.info(
+ "ONNX graph input shape: {} [{} format]".format(
+ self.graph.inputs[0].shape, input_format
+ )
+ )
self.sanitize()
# Find the initial nodes of the graph, whatever the input is first connected to, and disconnect them
- for node in [node for node in self.graph.nodes if self.graph.inputs[0] in node.inputs]:
+ for node in [
+ node for node in self.graph.nodes if self.graph.inputs[0] in node.inputs
+ ]:
node.inputs.clear()
# Convert to NCHW format if needed
input_tensor = self.graph.inputs[0]
if input_format == "NHWC":
- input_tensor = self.graph.transpose("preprocessor/transpose", input_tensor, [0, 3, 1, 2])
+ input_tensor = self.graph.transpose(
+ "preprocessor/transpose", input_tensor, [0, 3, 1, 2]
+ )
assert preprocessor in ["imagenet", "scale_range"]
preprocessed_tensor = None
if preprocessor == "imagenet":
# RGB Normalizers. The per-channel values are given with shape [1, 3, 1, 1] for proper NCHW shape broadcasting
scale_val = 1 / np.asarray([255], dtype=np.float32)
- mean_val = -1 * np.expand_dims(np.asarray([0.485, 0.456, 0.406], dtype=np.float32), axis=(0, 2, 3))
- stddev_val = 1 / np.expand_dims(np.asarray([0.229, 0.224, 0.225], dtype=np.float32), axis=(0, 2, 3))
+ mean_val = -1 * np.expand_dims(
+ np.asarray([0.485, 0.456, 0.406], dtype=np.float32), axis=(0, 2, 3)
+ )
+ stddev_val = 1 / np.expand_dims(
+ np.asarray([0.229, 0.224, 0.225], dtype=np.float32), axis=(0, 2, 3)
+ )
# y = (x * scale + mean) * stddev --> y = x * scale * stddev + mean * stddev
- scale_out = self.graph.elt_const("Mul", "preprocessor/scale", input_tensor, scale_val * stddev_val)
- mean_out = self.graph.elt_const("Add", "preprocessor/mean", scale_out, mean_val * stddev_val)
+ scale_out = self.graph.elt_const(
+ "Mul", "preprocessor/scale", input_tensor, scale_val * stddev_val
+ )
+ mean_out = self.graph.elt_const(
+ "Add", "preprocessor/mean", scale_out, mean_val * stddev_val
+ )
preprocessed_tensor = mean_out[0]
if preprocessor == "scale_range":
# RGB Normalizers. The per-channel values are given with shape [1, 3, 1, 1] for proper NCHW shape broadcasting
scale_val = 2 / np.asarray([255], dtype=np.float32)
- offset_val = np.expand_dims(np.asarray([-1, -1, -1], dtype=np.float32), axis=(0, 2, 3))
+ offset_val = np.expand_dims(
+ np.asarray([-1, -1, -1], dtype=np.float32), axis=(0, 2, 3)
+ )
# y = (x * scale + mean) * stddev --> y = x * scale * stddev + mean * stddev
- scale_out = self.graph.elt_const("Mul", "preprocessor/scale", input_tensor, scale_val)
- range_out = self.graph.elt_const("Add", "preprocessor/range", scale_out, offset_val)
+ scale_out = self.graph.elt_const(
+ "Mul", "preprocessor/scale", input_tensor, scale_val
+ )
+ range_out = self.graph.elt_const(
+ "Add", "preprocessor/range", scale_out, offset_val
+ )
preprocessed_tensor = range_out[0]
# Find the first stem conv node of the graph, and connect the normalizer directly to it
@@ -173,7 +210,11 @@ def update_preprocessor(self, input_format, input_size, preprocessor="imagenet")
stem_name = "/stem/"
if self.api == "TFOD":
stem_name = "/stem_conv2d/"
- stem = [node for node in self.graph.nodes if node.op == "Conv" and stem_name in node.name][0]
+ stem = [
+ node
+ for node in self.graph.nodes
+ if node.op == "Conv" and stem_name in node.name
+ ][0]
log.info("Found {} node '{}' as stem entry".format(stem.op, stem.name))
stem.inputs[0] = preprocessed_tensor
@@ -184,7 +225,10 @@ def update_shapes(self):
# Output-Head reshapes use [1, -1, C], corrected reshape value should be [-1, V, C]
for node in [node for node in self.graph.nodes if node.op == "Reshape"]:
shape_in = node.inputs[0].shape
- if shape_in is None or len(shape_in) not in [4,5]: # TFOD graphs have 5-dim inputs on this Reshape
+ if shape_in is None or len(shape_in) not in [
+ 4,
+ 5,
+ ]: # TFOD graphs have 5-dim inputs on this Reshape
continue
if type(node.inputs[1]) != gs.Constant:
continue
@@ -195,15 +239,29 @@ def update_shapes(self):
if len(shape_in) == 5:
volume *= shape_in[4]
shape_corrected = np.asarray([-1, volume, shape_out[2]], dtype=np.int64)
- node.inputs[1] = gs.Constant("{}_shape".format(node.name), values=shape_corrected)
- log.info("Updating Output-Head Reshape node {} to {}".format(node.name, node.inputs[1].values))
+ node.inputs[1] = gs.Constant(
+ "{}_shape".format(node.name), values=shape_corrected
+ )
+ log.info(
+ "Updating Output-Head Reshape node {} to {}".format(
+ node.name, node.inputs[1].values
+ )
+ )
# Other Reshapes only need to change the first dim to -1, as long as there are no -1's already
for node in [node for node in self.graph.nodes if node.op == "Reshape"]:
- if type(node.inputs[1]) != gs.Constant or node.inputs[1].values[0] != 1 or -1 in node.inputs[1].values:
+ if (
+ type(node.inputs[1]) != gs.Constant
+ or node.inputs[1].values[0] != 1
+ or -1 in node.inputs[1].values
+ ):
continue
node.inputs[1].values[0] = -1
- log.info("Updating Reshape node {} to {}".format(node.name, node.inputs[1].values))
+ log.info(
+ "Updating Reshape node {} to {}".format(
+ node.name, node.inputs[1].values
+ )
+ )
# Resize nodes try to calculate the output shape dynamically, it's more optimal to pre-compute the shape
if self.api == "AutoML":
@@ -223,13 +281,18 @@ def update_shapes(self):
concat = node.i(3)
if concat.op != "Concat":
continue
- if type(concat.inputs[1]) != gs.Constant or len(concat.inputs[1].values) != 2:
+ if (
+ type(concat.inputs[1]) != gs.Constant
+ or len(concat.inputs[1].values) != 2
+ ):
continue
scale_h = concat.inputs[1].values[0] / node.inputs[0].shape[2]
scale_w = concat.inputs[1].values[1] / node.inputs[0].shape[3]
scales = np.asarray([1, 1, scale_h, scale_w], dtype=np.float32)
del node.inputs[3]
- node.inputs[2] = gs.Constant(name="{}_scales".format(node.name), values=scales)
+ node.inputs[2] = gs.Constant(
+ name="{}_scales".format(node.name), values=scales
+ )
log.info("Updating Resize node {} to {}".format(node.name, scales))
self.sanitize()
@@ -241,7 +304,9 @@ def update_network(self):
"""
if self.api == "TFOD":
- for reduce in [node for node in self.graph.nodes if node.op == "ReduceMean"]:
+ for reduce in [
+ node for node in self.graph.nodes if node.op == "ReduceMean"
+ ]:
# TFOD models have their ReduceMean nodes applied with some redundant transposes that can be
# optimized away for better performance
# Make sure the correct subgraph is being replaced, basically search for this:
@@ -249,19 +314,30 @@ def update_network(self):
# And change to this:
# X > ReduceMean (2,3) > Conv > Y
transpose = reduce.i()
- if transpose.op != "Transpose" or transpose.attrs['perm'] != [0, 2, 3, 1]:
+ if transpose.op != "Transpose" or transpose.attrs["perm"] != [
+ 0,
+ 2,
+ 3,
+ 1,
+ ]:
continue
- if len(reduce.attrs['axes']) != 2 or reduce.attrs['axes'] != [1, 2]:
+ if len(reduce.attrs["axes"]) != 2 or reduce.attrs["axes"] != [1, 2]:
continue
reshape1 = reduce.o()
if reshape1.op != "Reshape" or len(reshape1.inputs[1].values) != 4:
continue
- if reshape1.inputs[1].values[1] != 1 or reshape1.inputs[1].values[2] != 1:
+ if (
+ reshape1.inputs[1].values[1] != 1
+ or reshape1.inputs[1].values[2] != 1
+ ):
continue
reshape2 = reshape1.o()
if reshape2.op != "Reshape" or len(reshape2.inputs[1].values) != 4:
continue
- if reshape2.inputs[1].values[2] != 1 or reshape2.inputs[1].values[3] != 1:
+ if (
+ reshape2.inputs[1].values[2] != 1
+ or reshape2.inputs[1].values[3] != 1
+ ):
continue
conv = reshape2.o()
if conv.op != "Conv":
@@ -269,12 +345,21 @@ def update_network(self):
# If all the checks above pass, then this node sequence can be optimized by just the ReduceMean itself
# operating on a different set of axes
input_tensor = transpose.inputs[0] # Input tensor to the Transpose
- reduce.inputs[0] = input_tensor # Forward the Transpose input to the ReduceMean node
+ reduce.inputs[0] = (
+ input_tensor # Forward the Transpose input to the ReduceMean node
+ )
output_tensor = reduce.outputs[0] # Output tensor of the ReduceMean
- conv.inputs[0] = output_tensor # Forward the ReduceMean output to the Conv node
- reduce.attrs["axes"] = [2, 3] # Update the axes that ReduceMean operates on
+ conv.inputs[0] = (
+ output_tensor # Forward the ReduceMean output to the Conv node
+ )
+ reduce.attrs["axes"] = [
+ 2,
+ 3,
+ ] # Update the axes that ReduceMean operates on
reduce.attrs["keepdims"] = 1 # Keep the reduced dimensions
- log.info("Optimized subgraph around ReduceMean node '{}'".format(reduce.name))
+ log.info(
+ "Optimized subgraph around ReduceMean node '{}'".format(reduce.name)
+ )
def update_nms(self, threshold=None, detections=None):
"""
@@ -290,10 +375,18 @@ def find_head_concat(name_scope):
# and the concatenated Box Net node has the shape [batch_size, num_anchors, 4].
# These concatenation nodes can be be found by searching for all Concat's and checking if the node two
# steps above in the graph has a name that begins with either "box_net/..." or "class_net/...".
- for node in [node for node in self.graph.nodes if node.op == "Transpose" and name_scope in node.name]:
+ for node in [
+ node
+ for node in self.graph.nodes
+ if node.op == "Transpose" and name_scope in node.name
+ ]:
concat = self.graph.find_descendant_by_op(node, "Concat")
assert concat and len(concat.inputs) == 5
- log.info("Found {} node '{}' as the tip of {}".format(concat.op, concat.name, name_scope))
+ log.info(
+ "Found {} node '{}' as the tip of {}".format(
+ concat.op, concat.name, name_scope
+ )
+ )
return concat
def extract_anchors_tensor(split):
@@ -319,7 +412,9 @@ def get_anchor_np(output_idx, op):
anchors_x = get_anchor_np(1, "Add")
anchors_h = get_anchor_np(2, "Mul")
anchors_w = get_anchor_np(3, "Mul")
- anchors = np.concatenate([anchors_y, anchors_x, anchors_h, anchors_w], axis=2)
+ anchors = np.concatenate(
+ [anchors_y, anchors_x, anchors_h, anchors_w], axis=2
+ )
return gs.Constant(name="nms/anchors:0", values=anchors)
self.sanitize()
@@ -328,7 +423,10 @@ def get_anchor_np(output_idx, op):
if self.api == "AutoML":
head_names = ["class_net/", "box_net/"]
if self.api == "TFOD":
- head_names = ["/WeightSharedConvolutionalClassHead/", "/WeightSharedConvolutionalBoxHead/"]
+ head_names = [
+ "/WeightSharedConvolutionalClassHead/",
+ "/WeightSharedConvolutionalBoxHead/",
+ ]
# There are five nodes at the bottom of the graph that provide important connection points:
@@ -353,9 +451,13 @@ def get_anchor_np(output_idx, op):
nms_node = self.graph.find_node_by_op("NonMaxSuppression")
# Extract NMS Configuration
- num_detections = int(nms_node.inputs[2].values) if detections is None else detections
+ num_detections = (
+ int(nms_node.inputs[2].values) if detections is None else detections
+ )
iou_threshold = float(nms_node.inputs[3].values)
- score_threshold = float(nms_node.inputs[4].values) if threshold is None else threshold
+ score_threshold = (
+ float(nms_node.inputs[4].values) if threshold is None else threshold
+ )
num_classes = class_net.i().inputs[1].values[-1]
normalized = True if self.api == "TFOD" else False
@@ -380,27 +482,41 @@ def get_anchor_np(output_idx, op):
nms_inputs = [box_net_tensor, class_net_tensor, anchors_tensor]
nms_op = "EfficientNMS_TRT"
nms_attrs = {
- 'plugin_version': "1",
- 'background_class': -1,
- 'max_output_boxes': num_detections,
- 'score_threshold': max(0.01, score_threshold), # Keep threshold to at least 0.01 for better efficiency
- 'iou_threshold': iou_threshold,
- 'score_activation': True,
- 'class_agnostic': False,
- 'box_coding': 1,
+ "plugin_version": "1",
+ "background_class": -1,
+ "max_output_boxes": num_detections,
+ "score_threshold": max(
+ 0.01, score_threshold
+ ), # Keep threshold to at least 0.01 for better efficiency
+ "iou_threshold": iou_threshold,
+ "score_activation": True,
+ "class_agnostic": False,
+ "box_coding": 1,
}
nms_output_classes_dtype = np.int32
# NMS Outputs
- nms_output_num_detections = gs.Variable(name="num_detections", dtype=np.int32, shape=['N', 1])
- nms_output_boxes = gs.Variable(name="detection_boxes", dtype=np.float32,
- shape=['N', num_detections, 4])
- nms_output_scores = gs.Variable(name="detection_scores", dtype=np.float32,
- shape=['N', num_detections])
- nms_output_classes = gs.Variable(name="detection_classes", dtype=nms_output_classes_dtype,
- shape=['N', num_detections])
+ nms_output_num_detections = gs.Variable(
+ name="num_detections", dtype=np.int32, shape=["N", 1]
+ )
+ nms_output_boxes = gs.Variable(
+ name="detection_boxes", dtype=np.float32, shape=["N", num_detections, 4]
+ )
+ nms_output_scores = gs.Variable(
+ name="detection_scores", dtype=np.float32, shape=["N", num_detections]
+ )
+ nms_output_classes = gs.Variable(
+ name="detection_classes",
+ dtype=nms_output_classes_dtype,
+ shape=["N", num_detections],
+ )
- nms_outputs = [nms_output_num_detections, nms_output_boxes, nms_output_scores, nms_output_classes]
+ nms_outputs = [
+ nms_output_num_detections,
+ nms_output_boxes,
+ nms_output_scores,
+ nms_output_classes,
+ ]
# Create the NMS Plugin node with the selected inputs. The outputs of the node will also become the final
# outputs of the graph.
@@ -409,8 +525,11 @@ def get_anchor_np(output_idx, op):
name="nms/non_maximum_suppression",
inputs=nms_inputs,
outputs=nms_outputs,
- attrs=nms_attrs)
- log.info("Created NMS plugin '{}' with attributes: {}".format(nms_op, nms_attrs))
+ attrs=nms_attrs,
+ )
+ log.info(
+ "Created NMS plugin '{}' with attributes: {}".format(nms_op, nms_attrs)
+ )
self.graph.outputs = nms_outputs
@@ -430,25 +549,54 @@ def main(args):
if __name__ == "__main__":
parser = argparse.ArgumentParser()
- parser.add_argument("-m", "--saved_model", required=True,
- help="The TensorFlow saved model directory to load")
- parser.add_argument("-o", "--onnx", required=True,
- help="The output ONNX model file to write")
- parser.add_argument("-f", "--input_format", default="NHWC", choices=["NHWC", "NCHW"],
- help="Set the input data format of the graph, either NCHW or NHWC, default: NHWC")
- parser.add_argument("-i", "--input_size", default="512,512",
- help="Set the input shape of the graph, as a comma-separated dimensions in H,W format, "
- "default: 512,512")
- parser.add_argument("-p", "--preprocessor", default="imagenet", choices=["imagenet", "scale_range"],
- help="Set the preprocessor to apply on the graph, either 'imagenet' for standard mean "
- "subtraction and stdev normalization, or 'scale_range' for uniform [-1,+1] "
- "normalization as is used in the AdvProp models, default: imagenet")
- parser.add_argument("-t", "--nms_threshold", type=float,
- help="Override the NMS score threshold, default: use the original value in the model")
- parser.add_argument("-d", "--nms_detections", type=int,
- help="Override the NMS max detections, default: use the original value in the model")
- parser.add_argument("--tf2onnx",
- help="The path where to save the intermediate ONNX graph generated by tf2onnx, useful"
- "for graph debugging purposes, default: not saved")
+ parser.add_argument(
+ "-m",
+ "--saved_model",
+ required=True,
+ help="The TensorFlow saved model directory to load",
+ )
+ parser.add_argument(
+ "-o", "--onnx", required=True, help="The output ONNX model file to write"
+ )
+ parser.add_argument(
+ "-f",
+ "--input_format",
+ default="NHWC",
+ choices=["NHWC", "NCHW"],
+ help="Set the input data format of the graph, either NCHW or NHWC, default: NHWC",
+ )
+ parser.add_argument(
+ "-i",
+ "--input_size",
+ default="512,512",
+ help="Set the input shape of the graph, as a comma-separated dimensions in H,W format, "
+ "default: 512,512",
+ )
+ parser.add_argument(
+ "-p",
+ "--preprocessor",
+ default="imagenet",
+ choices=["imagenet", "scale_range"],
+ help="Set the preprocessor to apply on the graph, either 'imagenet' for standard mean "
+ "subtraction and stdev normalization, or 'scale_range' for uniform [-1,+1] "
+ "normalization as is used in the AdvProp models, default: imagenet",
+ )
+ parser.add_argument(
+ "-t",
+ "--nms_threshold",
+ type=float,
+ help="Override the NMS score threshold, default: use the original value in the model",
+ )
+ parser.add_argument(
+ "-d",
+ "--nms_detections",
+ type=int,
+ help="Override the NMS max detections, default: use the original value in the model",
+ )
+ parser.add_argument(
+ "--tf2onnx",
+ help="The path where to save the intermediate ONNX graph generated by tf2onnx, useful"
+ "for graph debugging purposes, default: not saved",
+ )
args = parser.parse_args()
main(args)
diff --git a/samples/python/efficientdet/eval_coco.py b/samples/python/efficientdet/eval_coco.py
index 966f49be..d6796ac0 100644
--- a/samples/python/efficientdet/eval_coco.py
+++ b/samples/python/efficientdet/eval_coco.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -31,15 +31,24 @@ def main(args):
try:
import coco_metric
except ImportError:
- print("Could not import the 'coco_metric' module from AutoML. Searching in: {}".format(automl_path))
- print("Please clone the repository https://github.com/google/automl and provide its path with --automl_path.")
+ print(
+ "Could not import the 'coco_metric' module from AutoML. Searching in: {}".format(
+ automl_path
+ )
+ )
+ print(
+ "Please clone the repository https://github.com/google/automl and provide its path with --automl_path."
+ )
sys.exit(1)
trt_infer = TensorRTInfer(args.engine)
batcher = ImageBatcher(args.input, *trt_infer.input_spec())
evaluator = coco_metric.EvaluationMetric(filename=args.annotations)
for batch, images, scales in batcher.get_batch():
- print("Processing Image {} / {}".format(batcher.image_index, batcher.num_images), end="\r")
+ print(
+ "Processing Image {} / {}".format(batcher.image_index, batcher.num_images),
+ end="\r",
+ )
detections = trt_infer.process(batch, scales, args.nms_threshold)
coco_det = np.zeros((len(images), max([len(d) for d in detections]), 7))
coco_det[:, :, -1] = -1
@@ -54,7 +63,8 @@ def main(args):
det["xmax"] - det["xmin"],
det["ymax"] - det["ymin"],
det["score"],
- det["class"] + 1, # The COCO evaluator expects class 0 to be background, so offset by 1
+ det["class"]
+ + 1, # The COCO evaluator expects class 0 to be background, so offset by 1
]
evaluator.update_state(None, coco_det)
print()
@@ -64,14 +74,30 @@ def main(args):
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-e", "--engine", help="The TensorRT engine to infer with")
- parser.add_argument("-i", "--input",
- help="The input to infer, either a single image path, or a directory of images")
- parser.add_argument("-a", "--annotations", help="Set the path to the COCO 'instances_val2017.json' file")
- parser.add_argument("-p", "--automl_path", default="./automl",
- help="Set the path where to find the AutoML repository, from "
- "https://github.com/google/automl. Default: ./automl")
- parser.add_argument("-t", "--nms_threshold", type=float, help="Override the score threshold for the NMS operation, "
- "if higher than the threshold in the engine.")
+ parser.add_argument(
+ "-i",
+ "--input",
+ help="The input to infer, either a single image path, or a directory of images",
+ )
+ parser.add_argument(
+ "-a",
+ "--annotations",
+ help="Set the path to the COCO 'instances_val2017.json' file",
+ )
+ parser.add_argument(
+ "-p",
+ "--automl_path",
+ default="./automl",
+ help="Set the path where to find the AutoML repository, from "
+ "https://github.com/google/automl. Default: ./automl",
+ )
+ parser.add_argument(
+ "-t",
+ "--nms_threshold",
+ type=float,
+ help="Override the score threshold for the NMS operation, "
+ "if higher than the threshold in the engine.",
+ )
args = parser.parse_args()
if not all([args.engine, args.input, args.annotations]):
parser.print_help()
diff --git a/samples/python/efficientdet/image_batcher.py b/samples/python/efficientdet/image_batcher.py
index e519a5db..11b94c24 100644
--- a/samples/python/efficientdet/image_batcher.py
+++ b/samples/python/efficientdet/image_batcher.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -28,7 +28,16 @@ class ImageBatcher:
Creates batches of pre-processed images.
"""
- def __init__(self, input, shape, dtype, max_num_images=None, exact_batches=False, preprocessor="EfficientDet", shuffle_files=False):
+ def __init__(
+ self,
+ input,
+ shape,
+ dtype,
+ max_num_images=None,
+ exact_batches=False,
+ preprocessor="EfficientDet",
+ shuffle_files=False,
+ ):
"""
:param input: The input directory to read images from.
:param shape: The tensor shape of the batch to prepare, either in NCHW or NHWC format.
@@ -47,10 +56,16 @@ def __init__(self, input, shape, dtype, max_num_images=None, exact_batches=False
extensions = [".jpg", ".jpeg", ".png", ".bmp"]
def is_image(path):
- return os.path.isfile(path) and os.path.splitext(path)[1].lower() in extensions
+ return (
+ os.path.isfile(path) and os.path.splitext(path)[1].lower() in extensions
+ )
if os.path.isdir(input):
- self.images = [os.path.join(input, f) for f in os.listdir(input) if is_image(os.path.join(input, f))]
+ self.images = [
+ os.path.join(input, f)
+ for f in os.listdir(input)
+ if is_image(os.path.join(input, f))
+ ]
self.images.sort()
if shuffle_files:
random.seed(47)
@@ -129,7 +144,9 @@ def resize_pad(image, pad_color=(0, 0, 0)):
width_scale = width / self.width
height_scale = height / self.height
scale = 1.0 / max(width_scale, height_scale)
- image = image.resize((round(width * scale), round(height * scale)), resample=Image.BILINEAR)
+ image = image.resize(
+ (round(width * scale), round(height * scale)), resample=Image.BILINEAR
+ )
pad = Image.new("RGB", (self.width, self.height))
pad.paste(pad_color, [0, 0, self.width, self.height])
pad.paste(image)
diff --git a/samples/python/efficientdet/infer.py b/samples/python/efficientdet/infer.py
index 25bd28de..5308cf47 100644
--- a/samples/python/efficientdet/infer.py
+++ b/samples/python/efficientdet/infer.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -62,7 +62,7 @@ def __init__(self, engine_path):
shape = self.context.get_tensor_shape(name)
if is_input and shape[0] < 0:
assert self.engine.num_optimization_profiles > 0
- profile_shape = self.engine.get_profile_shape(0, name)
+ profile_shape = self.engine.get_tensor_profile_shape(name, 0)
assert len(profile_shape) == 3 # min,opt,max
# Set the *max* profile as binding shape
self.context.set_input_shape(name, profile_shape[2])
@@ -87,9 +87,14 @@ def __init__(self, engine_path):
self.inputs.append(binding)
else:
self.outputs.append(binding)
- print("{} '{}' with shape {} and dtype {}".format(
- "Input" if is_input else "Output",
- binding['name'], binding['shape'], binding['dtype']))
+ print(
+ "{} '{}' with shape {} and dtype {}".format(
+ "Input" if is_input else "Output",
+ binding["name"],
+ binding["shape"],
+ binding["dtype"],
+ )
+ )
assert self.batch_size > 0
assert len(self.inputs) > 0
@@ -101,7 +106,7 @@ def input_spec(self):
Get the specs for the input tensor of the network. Useful to prepare memory allocations.
:return: Two items, the shape of the input tensor and its (numpy) datatype.
"""
- return self.inputs[0]['shape'], self.inputs[0]['dtype']
+ return self.inputs[0]["shape"], self.inputs[0]["dtype"]
def output_spec(self):
"""
@@ -110,7 +115,7 @@ def output_spec(self):
"""
specs = []
for o in self.outputs:
- specs.append((o['shape'], o['dtype']))
+ specs.append((o["shape"], o["dtype"]))
return specs
def infer(self, batch):
@@ -120,11 +125,13 @@ def infer(self, batch):
:return A list of outputs as numpy arrays.
"""
# Copy I/O and Execute
- common.memcpy_host_to_device(self.inputs[0]['allocation'], batch)
+ common.memcpy_host_to_device(self.inputs[0]["allocation"], batch)
self.context.execute_v2(self.allocations)
for o in range(len(self.outputs)):
- common.memcpy_device_to_host(self.outputs[o]['host_allocation'], self.outputs[o]['allocation'])
- return [o['host_allocation'] for o in self.outputs]
+ common.memcpy_device_to_host(
+ self.outputs[o]["host_allocation"], self.outputs[o]["allocation"]
+ )
+ return [o["host_allocation"] for o in self.outputs]
def process(self, batch, scales=None, nms_threshold=None):
"""
@@ -143,11 +150,11 @@ def process(self, batch, scales=None, nms_threshold=None):
scores = outputs[2]
classes = outputs[3]
detections = []
- normalized = (np.max(boxes) < 2.0)
+ normalized = np.max(boxes) < 2.0
for i in range(self.batch_size):
detections.append([])
for n in range(int(nums[i])):
- scale = self.inputs[0]['shape'][2] if normalized else 1.0
+ scale = self.inputs[0]["shape"][2] if normalized else 1.0
if scales and i < len(scales):
scale /= scales[i]
if nms_threshold and scores[i][n] < nms_threshold:
@@ -181,7 +188,12 @@ def main(args):
print("Inferring data in {}".format(args.input))
batcher = ImageBatcher(args.input, *trt_infer.input_spec())
for batch, images, scales in batcher.get_batch():
- print("Processing Image {} / {}".format(batcher.image_index, batcher.num_images), end="\r")
+ print(
+ "Processing Image {} / {}".format(
+ batcher.image_index, batcher.num_images
+ ),
+ end="\r",
+ )
detections = trt_infer.process(batch, scales, args.nms_threshold)
if args.output:
for i in range(len(images)):
@@ -192,9 +204,18 @@ def main(args):
# Text Results
output_results = ""
for d in detections[i]:
- line = [d['xmin'], d['ymin'], d['xmax'], d['ymax'], d['score'], d['class']]
+ line = [
+ d["xmin"],
+ d["ymin"],
+ d["xmax"],
+ d["ymax"],
+ d["score"],
+ d["class"],
+ ]
output_results += "\t".join([str(f) for f in line]) + "\n"
- with open(os.path.join(output_dir, "{}.txt".format(basename)), "w") as f:
+ with open(
+ os.path.join(output_dir, "{}.txt".format(basename)), "w"
+ ) as f:
f.write(output_results)
else:
print("No input provided, running in benchmark mode")
@@ -210,10 +231,12 @@ def main(args):
times.append(time.time() - start)
print("Iteration {} / {}".format(i + 1, iterations), end="\r")
print("Benchmark results include time for H2D and D2H memory copies")
- print("Average Latency: {:.3f} ms".format(
- 1000 * np.average(times)))
- print("Average Throughput: {:.1f} ips".format(
- trt_infer.batch_size / np.average(times)))
+ print("Average Latency: {:.3f} ms".format(1000 * np.average(times)))
+ print(
+ "Average Throughput: {:.1f} ips".format(
+ trt_infer.batch_size / np.average(times)
+ )
+ )
print()
print("Finished Processing")
@@ -221,15 +244,33 @@ def main(args):
if __name__ == "__main__":
parser = argparse.ArgumentParser()
- parser.add_argument("-e", "--engine", default=None, required=True,
- help="The serialized TensorRT engine")
- parser.add_argument("-i", "--input", default=None,
- help="Path to the image or directory to process")
- parser.add_argument("-o", "--output", default=None,
- help="Directory where to save the visualization results")
- parser.add_argument("-l", "--labels", default="./labels_coco.txt",
- help="File to use for reading the class labels from, default: ./labels_coco.txt")
- parser.add_argument("-t", "--nms_threshold", type=float,
- help="Override the score threshold for the NMS operation, if higher than the built-in threshold")
+ parser.add_argument(
+ "-e",
+ "--engine",
+ default=None,
+ required=True,
+ help="The serialized TensorRT engine",
+ )
+ parser.add_argument(
+ "-i", "--input", default=None, help="Path to the image or directory to process"
+ )
+ parser.add_argument(
+ "-o",
+ "--output",
+ default=None,
+ help="Directory where to save the visualization results",
+ )
+ parser.add_argument(
+ "-l",
+ "--labels",
+ default="./labels_coco.txt",
+ help="File to use for reading the class labels from, default: ./labels_coco.txt",
+ )
+ parser.add_argument(
+ "-t",
+ "--nms_threshold",
+ type=float,
+ help="Override the score threshold for the NMS operation, if higher than the built-in threshold",
+ )
args = parser.parse_args()
main(args)
diff --git a/samples/python/efficientdet/infer_tf.py b/samples/python/efficientdet/infer_tf.py
index a02f87ee..a2ecbd93 100644
--- a/samples/python/efficientdet/infer_tf.py
+++ b/samples/python/efficientdet/infer_tf.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -30,47 +30,51 @@ class TensorFlowInfer:
"""
def __init__(self, saved_model_path):
- gpus = tf.config.experimental.list_physical_devices('GPU')
+ gpus = tf.config.experimental.list_physical_devices("GPU")
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
self.model = tf.saved_model.load(saved_model_path)
- self.pred_fn = self.model.signatures['serving_default']
+ self.pred_fn = self.model.signatures["serving_default"]
# Setup I/O bindings
self.batch_size = 1
self.inputs = []
fn_inputs = self.pred_fn.structured_input_signature[1]
for i, input in enumerate(list(fn_inputs.values())):
- self.inputs.append({
- 'index': i,
- 'name': input.name,
- 'dtype': np.dtype(input.dtype.as_numpy_dtype()),
- 'shape': [1, 512, 512, 3], # This can be overridden later
- })
+ self.inputs.append(
+ {
+ "index": i,
+ "name": input.name,
+ "dtype": np.dtype(input.dtype.as_numpy_dtype()),
+ "shape": [1, 512, 512, 3], # This can be overridden later
+ }
+ )
self.outputs = []
fn_outputs = self.pred_fn.structured_outputs
for i, output in enumerate(list(fn_outputs.values())):
- self.outputs.append({
- 'index': i,
- 'name': output.name,
- 'dtype': np.dtype(output.dtype.as_numpy_dtype()),
- 'shape': output.shape.as_list(),
- })
+ self.outputs.append(
+ {
+ "index": i,
+ "name": output.name,
+ "dtype": np.dtype(output.dtype.as_numpy_dtype()),
+ "shape": output.shape.as_list(),
+ }
+ )
def override_input_shape(self, input, shape):
- self.inputs[input]['shape'] = shape
+ self.inputs[input]["shape"] = shape
self.batch_size = shape[0]
def input_spec(self):
- return self.inputs[0]['shape'], self.inputs[0]['dtype']
+ return self.inputs[0]["shape"], self.inputs[0]["dtype"]
def output_spec(self):
- return self.outputs[0]['shape'], self.outputs[0]['dtype']
+ return self.outputs[0]["shape"], self.outputs[0]["dtype"]
def infer(self, batch):
# Process I/O and execute the network
- input = {self.inputs[0]['name']: tf.convert_to_tensor(batch)}
+ input = {self.inputs[0]["name"]: tf.convert_to_tensor(batch)}
output = self.pred_fn(**input)
return output
@@ -84,38 +88,42 @@ def process(self, batch, scales=None, nms_threshold=None):
classes = None
if len(self.outputs) == 1:
# Detected as AutoML Saved Model
- assert len(self.outputs[0]['shape']) == 3 and self.outputs[0]['shape'][2] == 7
- results = output[self.outputs[0]['name']].numpy()
+ assert (
+ len(self.outputs[0]["shape"]) == 3 and self.outputs[0]["shape"][2] == 7
+ )
+ results = output[self.outputs[0]["name"]].numpy()
boxes = results[:, :, 1:5]
scores = results[:, :, 5]
classes = results[:, :, 6].astype(np.int32)
elif len(self.outputs) >= 4:
# Detected as TFOD Saved Model
- assert output['num_detections']
- num = int(output['num_detections'].numpy().flatten()[0])
- boxes = output['detection_boxes'].numpy()[:, 0:num, :]
- scores = output['detection_scores'].numpy()[:, 0:num]
- classes = output['detection_classes'].numpy()[:, 0:num]
+ assert output["num_detections"]
+ num = int(output["num_detections"].numpy().flatten()[0])
+ boxes = output["detection_boxes"].numpy()[:, 0:num, :]
+ scores = output["detection_scores"].numpy()[:, 0:num]
+ classes = output["detection_classes"].numpy()[:, 0:num]
# Process the results
detections = [[]]
- normalized = (np.max(boxes) < 2.0)
+ normalized = np.max(boxes) < 2.0
for n in range(scores.shape[1]):
if scores[0][n] == 0.0:
break
- scale = self.inputs[0]['shape'][2] if normalized else 1.0
+ scale = self.inputs[0]["shape"][2] if normalized else 1.0
if scales:
scale /= scales[0]
if nms_threshold and scores[0][n] < nms_threshold:
continue
- detections[0].append({
- 'ymin': boxes[0][n][0] * scale,
- 'xmin': boxes[0][n][1] * scale,
- 'ymax': boxes[0][n][2] * scale,
- 'xmax': boxes[0][n][3] * scale,
- 'score': scores[0][n],
- 'class': int(classes[0][n]) - 1,
- })
+ detections[0].append(
+ {
+ "ymin": boxes[0][n][0] * scale,
+ "xmin": boxes[0][n][1] * scale,
+ "ymax": boxes[0][n][2] * scale,
+ "xmax": boxes[0][n][3] * scale,
+ "score": scores[0][n],
+ "class": int(classes[0][n]) - 1,
+ }
+ )
return detections
@@ -137,10 +145,10 @@ def main(args):
times.append(time.time() - start)
print("Iteration {} / {}".format(i + 1, iterations), end="\r")
print("Benchmark results include TensorFlow host overhead")
- print("Average Latency: {:.3f} ms".format(
- 1000 * np.average(times)))
- print("Average Throughput: {:.1f} ips".format(
- tf_infer.batch_size / np.average(times)))
+ print("Average Latency: {:.3f} ms".format(1000 * np.average(times)))
+ print(
+ "Average Throughput: {:.1f} ips".format(tf_infer.batch_size / np.average(times))
+ )
print()
print("Finished Processing")
@@ -148,11 +156,24 @@ def main(args):
if __name__ == "__main__":
parser = argparse.ArgumentParser()
- parser.add_argument("-m", "--saved_model", required=True,
- help="The TensorFlow saved model path to validate against")
- parser.add_argument("-i", "--input_size", default="512,512",
- help="The input size to run the model with, in HEIGHT,WIDTH format")
- parser.add_argument("-b", "--batch_size", default=1, type=int,
- help="The batch size to run the model with")
+ parser.add_argument(
+ "-m",
+ "--saved_model",
+ required=True,
+ help="The TensorFlow saved model path to validate against",
+ )
+ parser.add_argument(
+ "-i",
+ "--input_size",
+ default="512,512",
+ help="The input size to run the model with, in HEIGHT,WIDTH format",
+ )
+ parser.add_argument(
+ "-b",
+ "--batch_size",
+ default=1,
+ type=int,
+ help="The batch size to run the model with",
+ )
args = parser.parse_args()
main(args)
diff --git a/samples/python/efficientdet/onnx_utils.py b/samples/python/efficientdet/onnx_utils.py
index e55f7e11..a98c3a7c 100644
--- a/samples/python/efficientdet/onnx_utils.py
+++ b/samples/python/efficientdet/onnx_utils.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -36,7 +36,9 @@ def elt_const(self, op, name, input, value):
input_tensor = input if type(input) is gs.Variable else input[0]
log.debug("Created {} node '{}': {}".format(op, name, value.squeeze()))
const = gs.Constant(name="{}_value:0".format(name), values=value)
- return self.layer(name=name, op=op, inputs=[input_tensor, const], outputs=[name + ":0"])
+ return self.layer(
+ name=name, op=op, inputs=[input_tensor, const], outputs=[name + ":0"]
+ )
@gs.Graph.register()
@@ -51,7 +53,13 @@ def unsqueeze(self, name, input, axes=[-1]):
"""
input_tensor = input if type(input) is gs.Variable else input[0]
log.debug("Created Unsqueeze node '{}': {}".format(name, axes))
- return self.layer(name=name, op="Unsqueeze", inputs=[input_tensor], outputs=[name + ":0"], attrs={"axes": axes})
+ return self.layer(
+ name=name,
+ op="Unsqueeze",
+ inputs=[input_tensor],
+ outputs=[name + ":0"],
+ attrs={"axes": axes},
+ )
@gs.Graph.register()
@@ -66,7 +74,13 @@ def transpose(self, name, input, perm):
"""
input_tensor = input if type(input) is gs.Variable else input[0]
log.debug("Created Transpose node '{}': {}".format(name, perm))
- return self.layer(name=name, op="Transpose", inputs=[input_tensor], outputs=[name + ":0"], attrs={"perm": perm})
+ return self.layer(
+ name=name,
+ op="Transpose",
+ inputs=[input_tensor],
+ outputs=[name + ":0"],
+ attrs={"perm": perm},
+ )
@gs.Graph.register()
@@ -80,7 +94,9 @@ def sigmoid(self, name, input):
"""
input_tensor = input if type(input) is gs.Variable else input[0]
log.debug("Created Sigmoid node '{}'".format(name))
- return self.layer(name=name, op="Sigmoid", inputs=[input_tensor], outputs=[name + ":0"])
+ return self.layer(
+ name=name, op="Sigmoid", inputs=[input_tensor], outputs=[name + ":0"]
+ )
@gs.Graph.register()
@@ -98,7 +114,9 @@ def plugin(self, op, name, inputs, outputs, attrs):
"""
input_tensors = inputs if type(inputs) is list else [inputs]
log.debug("Created TRT Plugin node '{}': {}".format(name, attrs))
- return self.layer(op=op, name=name, inputs=input_tensors, outputs=outputs, attrs=attrs)
+ return self.layer(
+ op=op, name=name, inputs=input_tensors, outputs=outputs, attrs=attrs
+ )
@gs.Graph.register()
diff --git a/samples/python/efficientdet/visualize.py b/samples/python/efficientdet/visualize.py
index 4366f9e0..3fb982ef 100644
--- a/samples/python/efficientdet/visualize.py
+++ b/samples/python/efficientdet/visualize.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -182,9 +182,18 @@ def visualize_detections(image_path, output_path, detections, labels=[]):
text_left = d["xmin"]
margin = np.ceil(0.05 * text_height)
draw.rectangle(
- [(text_left, text_bottom - text_height - 2 * margin), (text_left + text_width, text_bottom)], fill=color
+ [
+ (text_left, text_bottom - text_height - 2 * margin),
+ (text_left + text_width, text_bottom),
+ ],
+ fill=color,
+ )
+ draw.text(
+ (text_left + margin, text_bottom - text_height - margin),
+ text,
+ fill="black",
+ font=font,
)
- draw.text((text_left + margin, text_bottom - text_height - margin), text, fill="black", font=font)
if output_path is None:
return image
image.save(output_path)
@@ -195,7 +204,12 @@ def draw_text(draw, font, text, width, bar_height, offset, color):
left, top, right, bottom = font.getbbox(text)
text_width, text_height = right - left, bottom - top
draw.rectangle([(offset, 0), (offset + width, bar_height)], fill=color)
- draw.text((offset + (width - text_width) / 2, text_height - text_height / 2), text, fill="black", font=font)
+ draw.text(
+ (offset + (width - text_width) / 2, text_height - text_height / 2),
+ text,
+ fill="black",
+ font=font,
+ )
bar_height = 18
width = 0
diff --git a/samples/python/efficientnet/build_engine.py b/samples/python/efficientnet/build_engine.py
index a4d75552..683c567c 100644
--- a/samples/python/efficientnet/build_engine.py
+++ b/samples/python/efficientnet/build_engine.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -56,7 +56,10 @@ def set_image_batcher(self, image_batcher: ImageBatcher):
:param image_batcher: The ImageBatcher object
"""
self.image_batcher = image_batcher
- size = int(np.dtype(self.image_batcher.dtype).itemsize * np.prod(self.image_batcher.shape))
+ size = int(
+ np.dtype(self.image_batcher.dtype).itemsize
+ * np.prod(self.image_batcher.shape)
+ )
self.batch_allocation = common.cuda_call(cudart.cudaMalloc(size))
self.batch_generator = self.image_batcher.get_batch()
@@ -81,8 +84,14 @@ def get_batch(self, names):
return None
try:
batch, _ = next(self.batch_generator)
- log.info("Calibrating image {} / {}".format(self.image_batcher.image_index, self.image_batcher.num_images))
- common.memcpy_host_to_device(self.batch_allocation, np.ascontiguousarray(batch))
+ log.info(
+ "Calibrating image {} / {}".format(
+ self.image_batcher.image_index, self.image_batcher.num_images
+ )
+ )
+ common.memcpy_host_to_device(
+ self.batch_allocation, np.ascontiguousarray(batch)
+ )
return [int(self.batch_allocation)]
except StopIteration:
log.info("Finished calibration batches")
@@ -127,7 +136,9 @@ def __init__(self, verbose=False):
self.builder = trt.Builder(self.trt_logger)
self.config = self.builder.create_builder_config()
- self.config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 8 * (2 ** 30)) # 8 GB
+ self.config.set_memory_pool_limit(
+ trt.MemoryPoolType.WORKSPACE, 8 * (2**30)
+ ) # 8 GB
self.batch_size = None
self.network = None
@@ -156,9 +167,17 @@ def create_network(self, onnx_path):
log.info("Network Description")
for input in inputs:
self.batch_size = input.shape[0]
- log.info("Input '{}' with shape {} and dtype {}".format(input.name, input.shape, input.dtype))
+ log.info(
+ "Input '{}' with shape {} and dtype {}".format(
+ input.name, input.shape, input.dtype
+ )
+ )
for output in outputs:
- log.info("Output '{}' with shape {} and dtype {}".format(output.name, output.shape, output.dtype))
+ log.info(
+ "Output '{}' with shape {} and dtype {}".format(
+ output.name, output.shape, output.dtype
+ )
+ )
assert self.batch_size > 0
def create_engine(
@@ -254,8 +273,12 @@ def main(args):
choices=["fp32", "fp16", "int8"],
help="The precision mode to build in, either 'fp32', 'fp16' or 'int8', default: 'fp16'",
)
- parser.add_argument("-v", "--verbose", action="store_true", help="Enable more verbose log output")
- parser.add_argument("--calib_input", help="The directory holding images to use for calibration")
+ parser.add_argument(
+ "-v", "--verbose", action="store_true", help="Enable more verbose log output"
+ )
+ parser.add_argument(
+ "--calib_input", help="The directory holding images to use for calibration"
+ )
parser.add_argument(
"--calib_cache",
default="./calibration.cache",
@@ -268,7 +291,10 @@ def main(args):
help="The maximum number of images to use for calibration, default: 25000",
)
parser.add_argument(
- "--calib_batch_size", default=8, type=int, help="The batch size for the calibration process, default: 1"
+ "--calib_batch_size",
+ default=8,
+ type=int,
+ help="The batch size for the calibration process, default: 1",
)
parser.add_argument(
"--calib_preprocessor",
@@ -288,6 +314,8 @@ def main(args):
sys.exit(1)
if args.precision == "int8" and not any([args.calib_input, args.calib_cache]):
parser.print_help()
- log.error("When building in int8 precision, either --calib_input or --calib_cache are required")
+ log.error(
+ "When building in int8 precision, either --calib_input or --calib_cache are required"
+ )
sys.exit(1)
main(args)
diff --git a/samples/python/efficientnet/compare_tf.py b/samples/python/efficientnet/compare_tf.py
index 6d9ad88f..2671572e 100644
--- a/samples/python/efficientnet/compare_tf.py
+++ b/samples/python/efficientnet/compare_tf.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -91,7 +91,10 @@ def main(args):
trt_infer = TensorRTInfer(args.engine)
batcher = ImageBatcher(
- args.input, *trt_infer.input_spec(), max_num_images=args.num_images, preprocessor=args.preprocessor
+ args.input,
+ *trt_infer.input_spec(),
+ max_num_images=args.num_images,
+ preprocessor=args.preprocessor
)
# Make sure both systems use the same input spec, so we can use the exact same image batches with both
@@ -101,14 +104,20 @@ def main(args):
print("Input datatype does not match")
print("TRT Engine Input Dtype: {} {}".format(trt_dtype))
print("TF Saved Model Input Dtype: {} {}".format(tf_dtype))
- print("Please use the same TensorFlow saved model that the TensorRT engine was built with")
+ print(
+ "Please use the same TensorFlow saved model that the TensorRT engine was built with"
+ )
sys.exit(1)
- if (tf_shape[1] and trt_shape[1] != tf_shape[1]) or (tf_shape[2] and trt_shape[2] != tf_shape[2]):
+ if (tf_shape[1] and trt_shape[1] != tf_shape[1]) or (
+ tf_shape[2] and trt_shape[2] != tf_shape[2]
+ ):
print("Input shapes do not match")
print("TRT Engine Input Shape: {} {}".format(trt_shape[1:]))
print("TF Saved Model Input Shape: {} {}".format(tf_shape[1:]))
- print("Please use the same TensorFlow saved model that the TensorRT engine was built with")
+ print(
+ "Please use the same TensorFlow saved model that the TensorRT engine was built with"
+ )
sys.exit(1)
match = 0
@@ -131,24 +140,40 @@ def main(args):
print(
"Processing {} / {} images: {:.2f}% match ".format(
- batcher.image_index, batcher.num_images, (100 * (match / batcher.image_index))
+ batcher.image_index,
+ batcher.num_images,
+ (100 * (match / batcher.image_index)),
),
end="\r",
)
print()
pc = 100 * (match / batcher.num_images)
- print("Matching Top-1 class predictions for {} out of {} images: {:.2f}%".format(match, batcher.num_images, pc))
+ print(
+ "Matching Top-1 class predictions for {} out of {} images: {:.2f}%".format(
+ match, batcher.num_images, pc
+ )
+ )
avgerror = np.sqrt(error / batcher.num_images)
- print("RMSE between TensorFlow and TensorRT confidence scores: {:.3f}".format(avgerror))
+ print(
+ "RMSE between TensorFlow and TensorRT confidence scores: {:.3f}".format(
+ avgerror
+ )
+ )
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-e", "--engine", help="The TensorRT engine to infer with")
- parser.add_argument("-m", "--saved_model", help="The TensorFlow saved model path to validate against")
parser.add_argument(
- "-i", "--input", help="The input to infer, either a single image path, or a directory of images"
+ "-m",
+ "--saved_model",
+ help="The TensorFlow saved model path to validate against",
+ )
+ parser.add_argument(
+ "-i",
+ "--input",
+ help="The input to infer, either a single image path, or a directory of images",
)
parser.add_argument(
"-n",
diff --git a/samples/python/efficientnet/create_onnx.py b/samples/python/efficientnet/create_onnx.py
index b98fd137..c0e7d109 100644
--- a/samples/python/efficientnet/create_onnx.py
+++ b/samples/python/efficientnet/create_onnx.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -32,12 +32,18 @@ def main(args):
# Load saved model
saved_model_path = os.path.realpath(args.saved_model)
assert os.path.isdir(saved_model_path)
- graph_def, inputs, outputs = tf_loader.from_saved_model(saved_model_path, None, None, "serve", ["serving_default"])
+ graph_def, inputs, outputs = tf_loader.from_saved_model(
+ saved_model_path, None, None, "serve", ["serving_default"]
+ )
with tf.Graph().as_default() as tf_graph:
tf.import_graph_def(graph_def, name="")
with tf_loader.tf_session(graph=tf_graph):
- onnx_graph = tfonnx.process_tf_graph(tf_graph, input_names=inputs, output_names=outputs, opset=11)
- onnx_model = optimizer.optimize_graph(onnx_graph).make_model("Converted from {}".format(saved_model_path))
+ onnx_graph = tfonnx.process_tf_graph(
+ tf_graph, input_names=inputs, output_names=outputs, opset=11
+ )
+ onnx_model = optimizer.optimize_graph(onnx_graph).make_model(
+ "Converted from {}".format(saved_model_path)
+ )
graph = gs.import_onnx(onnx_model)
assert graph
print()
@@ -55,11 +61,21 @@ def main(args):
# Format NCHW
graph.inputs[0].shape[2] = args.input_size
graph.inputs[0].shape[3] = args.input_size
- print("ONNX input named '{}' with shape {}".format(graph.inputs[0].name, graph.inputs[0].shape))
- print("ONNX output named '{}' with shape {}".format(graph.outputs[0].name, graph.outputs[0].shape))
+ print(
+ "ONNX input named '{}' with shape {}".format(
+ graph.inputs[0].name, graph.inputs[0].shape
+ )
+ )
+ print(
+ "ONNX output named '{}' with shape {}".format(
+ graph.outputs[0].name, graph.outputs[0].shape
+ )
+ )
for i in range(4):
if type(graph.inputs[0].shape[i]) != int or graph.inputs[0].shape[i] <= 0:
- print("The input shape of the graph is invalid, try overriding it by giving a fixed size with --input_size")
+ print(
+ "The input shape of the graph is invalid, try overriding it by giving a fixed size with --input_size"
+ )
sys.exit(1)
# Fix Clip Nodes (ReLU6)
@@ -85,9 +101,13 @@ def main(args):
if __name__ == "__main__":
parser = argparse.ArgumentParser()
- parser.add_argument("-m", "--saved_model", help="The TensorFlow saved model directory to load")
+ parser.add_argument(
+ "-m", "--saved_model", help="The TensorFlow saved model directory to load"
+ )
parser.add_argument("-o", "--onnx", help="The output ONNX model file to write")
- parser.add_argument("-b", "--batch_size", type=int, default=1, help="Set the batch size, default: 1")
+ parser.add_argument(
+ "-b", "--batch_size", type=int, default=1, help="Set the batch size, default: 1"
+ )
parser.add_argument(
"-i",
"--input_size",
diff --git a/samples/python/efficientnet/eval_gt.py b/samples/python/efficientnet/eval_gt.py
index 14d5a8d1..9f57aaa5 100644
--- a/samples/python/efficientnet/eval_gt.py
+++ b/samples/python/efficientnet/eval_gt.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -24,17 +24,25 @@
from infer import TensorRTInfer
from image_batcher import ImageBatcher
+
def main(args):
annotations = {}
for line in open(args.annotations, "r"):
line = line.strip().split(args.separator)
if len(line) < 2 or not line[1].isnumeric():
- print("Could not parse the annotations file correctly, make sure the correct separator is used")
+ print(
+ "Could not parse the annotations file correctly, make sure the correct separator is used"
+ )
sys.exit(1)
annotations[os.path.basename(line[0])] = int(line[1])
trt_infer = TensorRTInfer(args.engine)
- batcher = ImageBatcher(args.input, *trt_infer.input_spec(), max_num_images=args.num_images, preprocessor=args.preprocessor)
+ batcher = ImageBatcher(
+ args.input,
+ *trt_infer.input_spec(),
+ max_num_images=args.num_images,
+ preprocessor=args.preprocessor
+ )
top1 = 0
top5 = 0
total = 0
@@ -70,9 +78,15 @@ def main(args):
parser = argparse.ArgumentParser()
parser.add_argument("-e", "--engine", help="The TensorRT engine to infer with")
parser.add_argument(
- "-i", "--input", help="The input to infer, either a single image path, or a directory of images"
+ "-i",
+ "--input",
+ help="The input to infer, either a single image path, or a directory of images",
+ )
+ parser.add_argument(
+ "-a",
+ "--annotations",
+ help="Set the file to use for classification ground truth annotations",
)
- parser.add_argument("-a", "--annotations", help="Set the file to use for classification ground truth annotations")
parser.add_argument(
"-s",
"--separator",
diff --git a/samples/python/efficientnet/image_batcher.py b/samples/python/efficientnet/image_batcher.py
index 996a72a3..63d37784 100644
--- a/samples/python/efficientnet/image_batcher.py
+++ b/samples/python/efficientnet/image_batcher.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -27,7 +27,15 @@ class ImageBatcher:
Creates batches of pre-processed images.
"""
- def __init__(self, input, shape, dtype, max_num_images=None, exact_batches=False, preprocessor="V2"):
+ def __init__(
+ self,
+ input,
+ shape,
+ dtype,
+ max_num_images=None,
+ exact_batches=False,
+ preprocessor="V2",
+ ):
"""
:param input: The input directory to read images from.
:param shape: The tensor shape of the batch to prepare, either in NCHW or NHWC format.
@@ -45,10 +53,16 @@ def __init__(self, input, shape, dtype, max_num_images=None, exact_batches=False
extensions = [".jpg", ".jpeg", ".png", ".bmp"]
def is_image(path):
- return os.path.isfile(path) and os.path.splitext(path)[1].lower() in extensions
+ return (
+ os.path.isfile(path) and os.path.splitext(path)[1].lower() in extensions
+ )
if os.path.isdir(input):
- self.images = [os.path.join(input, f) for f in os.listdir(input) if is_image(os.path.join(input, f))]
+ self.images = [
+ os.path.join(input, f)
+ for f in os.listdir(input)
+ if is_image(os.path.join(input, f))
+ ]
self.images.sort()
elif os.path.isfile(input):
if is_image(input):
diff --git a/samples/python/efficientnet/infer.py b/samples/python/efficientnet/infer.py
index 2c70b14e..cc18e1c8 100644
--- a/samples/python/efficientnet/infer.py
+++ b/samples/python/efficientnet/infer.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -110,7 +110,9 @@ def infer(self, batch, top=1):
output = np.zeros(*self.output_spec())
# Process I/O and execute the network
- common.memcpy_host_to_device(self.inputs[0]["allocation"], np.ascontiguousarray(batch))
+ common.memcpy_host_to_device(
+ self.inputs[0]["allocation"], np.ascontiguousarray(batch)
+ )
self.context.execute_v2(self.allocations)
common.memcpy_device_to_host(output, self.outputs[0]["allocation"])
@@ -126,7 +128,9 @@ def infer(self, batch, top=1):
def main(args):
trt_infer = TensorRTInfer(args.engine)
- batcher = ImageBatcher(args.input, *trt_infer.input_spec(), preprocessor=args.preprocessor)
+ batcher = ImageBatcher(
+ args.input, *trt_infer.input_spec(), preprocessor=args.preprocessor
+ )
for batch, images in batcher.get_batch():
classes, scores, top = trt_infer.infer(batch)
for i in range(len(images)):
@@ -146,10 +150,16 @@ def main(args):
parser = argparse.ArgumentParser()
parser.add_argument("-e", "--engine", help="The TensorRT engine to infer with")
parser.add_argument(
- "-i", "--input", help="The input to infer, either a single image path, or a directory of images"
+ "-i",
+ "--input",
+ help="The input to infer, either a single image path, or a directory of images",
)
parser.add_argument(
- "-t", "--top", default=1, type=int, help="The amount of top classes and scores to output per image, default: 1"
+ "-t",
+ "--top",
+ default=1,
+ type=int,
+ help="The amount of top classes and scores to output per image, default: 1",
)
parser.add_argument(
"-s",
diff --git a/samples/python/engine_refit_onnx_bidaf/build_and_refit_engine.py b/samples/python/engine_refit_onnx_bidaf/build_and_refit_engine.py
index 268a5cf5..240f1295 100644
--- a/samples/python/engine_refit_onnx_bidaf/build_and_refit_engine.py
+++ b/samples/python/engine_refit_onnx_bidaf/build_and_refit_engine.py
@@ -1,6 +1,6 @@
#!/usr/bin/env python3
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -20,25 +20,25 @@
import sys
import numpy as np
-
+import argparse
import tensorrt as trt
-from data_processing import get_inputs, preprocess
sys.path.insert(1, os.path.join(sys.path[0], ".."))
-import common
+from cuda import cudart
TRT_LOGGER = trt.Logger()
-def get_engine(onnx_file_path, engine_file_path):
+def get_plan(onnx_file_path, engine_file_path, version_compatible):
"""Attempts to load a serialized engine if available, otherwise builds a new TensorRT engine and saves it."""
- def build_engine():
+ def build_plan():
"""Takes an ONNX file and creates a TensorRT engine to run inference with"""
+ import tensorrt as trt
+
builder = trt.Builder(TRT_LOGGER)
- network = builder.create_network(common.EXPLICIT_BATCH)
+ network = builder.create_network(0)
parser = trt.OnnxParser(network, TRT_LOGGER)
- runtime = trt.Runtime(TRT_LOGGER)
# Parse model file
print("Loading ONNX file from path {}...".format(onnx_file_path))
@@ -59,8 +59,8 @@ def build_engine():
config = builder.create_builder_config()
config.set_flag(trt.BuilderFlag.REFIT)
- config.max_workspace_size = 1 << 28 # 256MiB
-
+ if version_compatible:
+ config.set_flag(trt.BuilderFlag.VERSION_COMPATIBLE)
for opt in [6, 10]:
profile = builder.create_optimization_profile()
@@ -68,47 +68,119 @@ def build_engine():
input0_min = (1, 1)
input0_opt = (opt, 1)
input0_max = (15, 1)
- profile.set_shape(network.get_input(0).name, min=input0_min, opt=input0_opt, max=input0_max)
+ profile.set_shape(
+ network.get_input(0).name,
+ min=input0_min,
+ opt=input0_opt,
+ max=input0_max,
+ )
input1_min = (1, 1, 1, 16)
input1_opt = (opt, 1, 1, 16)
input1_max = (15, 1, 1, 16)
- profile.set_shape(network.get_input(1).name, min=input1_min, opt=input1_opt, max=input1_max)
+ profile.set_shape(
+ network.get_input(1).name,
+ min=input1_min,
+ opt=input1_opt,
+ max=input1_max,
+ )
input2_min = (1, 1)
input2_opt = (opt, 1)
input2_max = (15, 1)
- profile.set_shape(network.get_input(2).name, min=input2_min, opt=input2_opt, max=input2_max)
+ profile.set_shape(
+ network.get_input(2).name,
+ min=input2_min,
+ opt=input2_opt,
+ max=input2_max,
+ )
input3_min = (1, 1, 1, 16)
input3_opt = (opt, 1, 1, 16)
input3_max = (15, 1, 1, 16)
- profile.set_shape(network.get_input(3).name, min=input3_min, opt=input3_opt, max=input3_max)
+ profile.set_shape(
+ network.get_input(3).name,
+ min=input3_min,
+ opt=input3_opt,
+ max=input3_max,
+ )
config.add_optimization_profile(profile)
- print("Building an engine from file {}; this may take a while...".format(onnx_file_path))
+ print(
+ "Building an engine from file {}; this may take a while...".format(
+ onnx_file_path
+ )
+ )
plan = builder.build_serialized_network(network, config)
- engine = runtime.deserialize_cuda_engine(plan)
print("Completed creating Engine")
with open(engine_file_path, "wb") as f:
f.write(plan)
- return engine
+ return plan
if os.path.exists(engine_file_path):
# If a serialized engine exists, use it instead of building an engine.
- print("Reading engine from file {}".format(engine_file_path))
- with open(engine_file_path, "rb") as f:
- runtime = trt.Runtime(TRT_LOGGER)
- return runtime.deserialize_cuda_engine(f.read())
- else:
- return build_engine()
+ print("Reading engine from file {}...".format(engine_file_path))
+ f = open(engine_file_path, "rb")
+ return f.read()
+ return build_plan()
def main():
+ global trt
+ global TRT_LOGGER
+
+ parser = argparse.ArgumentParser()
+ parser.add_argument(
+ "-l",
+ "--weights-location",
+ dest="weights_location",
+ default="GPU",
+ choices=["GPU", "CPU"],
+ help="The location for weights passed to refitter, either GPU/CPU, default: GPU",
+ )
+ parser.add_argument(
+ "--version-compatible",
+ dest="version_compatible",
+ action="store_true",
+ help="Build a version compatible engine for refitting",
+ )
+ args = parser.parse_args()
+
onnx_file_path = "bidaf-modified.onnx"
- engine_file_path = "bidaf.trt"
+ engine_file_path = "bidaf{}.trt".format("-vc" if args.version_compatible else "")
+
+ plan = get_plan(onnx_file_path, engine_file_path, args.version_compatible)
+
+ if args.version_compatible:
+ # Try using dispatch runtime for refitting and inference. If failed, fallback to full runtime.
+ try:
+ del sys.modules["tensorrt"]
+ sys.modules["tensorrt"] = __import__("tensorrt_dispatch")
+ sys.modules["trt"] = sys.modules["tensorrt"]
+ import tensorrt_dispatch as trt
+
+ print(
+ "Importing tensorrt_dispatch instead of full tensorrt for refitting and running vc engines."
+ )
+ except:
+ print(
+ "Failed to import tensorrt_dispatch for refitting and running vc engines. Please install the package first!"
+ )
+ sys.modules["tensorrt"] = __import__("tensorrt")
+ TRT_LOGGER = trt.Logger()
+
+ engine = None
+ with open(engine_file_path, "rb") as f:
+ runtime = trt.Runtime(TRT_LOGGER)
+ if args.version_compatible:
+ runtime.engine_host_code_allowed = True
+ engine = runtime.deserialize_cuda_engine(plan)
+
+ # should be after get_engine
+ from data_processing import get_inputs, preprocess
+ import common_runtime as common
# input
context = "A quick brown fox jumps over the lazy dog."
@@ -119,50 +191,93 @@ def main():
# Do inference with TensorRT
weights_names = ["Parameter576_B_0", "W_0"]
- refit_weights_dict = {name: np.load("{}.npy".format(name)) for name in weights_names}
- fake_weights_dict = {name: np.ones_like(weights) for name, weights in refit_weights_dict.items()}
- engine = get_engine(onnx_file_path, engine_file_path)
+ refit_weights_dict = {
+ name: np.load("{}.npy".format(name)) for name in weights_names
+ }
+ fake_weights_dict = {
+ name: np.ones_like(weights) for name, weights in refit_weights_dict.items()
+ }
+ device_mem_dict = {}
+ if args.weights_location == "GPU":
+ for name, weights in refit_weights_dict.items():
+ nbytes = weights.size * weights.itemsize
+ device_mem_dict[name] = common.cuda_call(cudart.cudaMalloc(nbytes))
+
+ execution_context = engine.create_execution_context()
refitter = trt.Refitter(engine, TRT_LOGGER)
- for weights_dict, answer_correct in [(fake_weights_dict, False), (refit_weights_dict, True)]:
- print("Refitting engine...")
- # To get a list of all refittable weights' names
- # in the network, use refitter.get_all_weights().
-
+ # Skip weights validation since we are confident that the new weights are similar to the weights used to build engine.
+ refitter.weights_validation = False
+ # To get a list of all refittable weights' names
+ # in the network, use refitter.get_all_weights().
+
+ if args.weights_location == "GPU":
+ for name, device_mem in device_mem_dict.items():
+ device_weights = trt.Weights(
+ trt.DataType.FLOAT, device_mem, refit_weights_dict[name].size
+ )
+ weights_prototype = refitter.get_weights_prototype(name)
+ assert device_weights.dtype == weights_prototype.dtype
+ assert device_weights.size == weights_prototype.size
+ refitter.set_named_weights(name, device_weights, trt.TensorLocation.DEVICE)
+
+ for weights_dict, answer_correct in [
+ (fake_weights_dict, False),
+ (refit_weights_dict, True),
+ ]:
+ import time
+
+ T1 = time.perf_counter()
+ device_mem_list = []
# Refit named weights via set_named_weights
for name in weights_names:
- refitter.set_named_weights(name, weights_dict[name])
-
- # Get missing weights names. This should return empty
- # lists in this case.
+ host_weights = weights_dict[name]
+ if args.weights_location == "CPU":
+ weights = host_weights
+ location = trt.TensorLocation.HOST
+ refitter.set_named_weights(name, weights, location)
+ else:
+ common.memcpy_host_to_device(device_mem_dict[name], host_weights)
+
+ # Get missing weights names. This should return empty lists in this case.
missing_weights = refitter.get_missing_weights()
assert (
len(missing_weights) == 0
), "Refitter found missing weights. Call set_named_weights() or set_weights() for all missing weights"
- # Refit the engine with the new weights. This will return True if
- # the refit operation succeeded.
+
+ print(f"Refitting engine from {args.weights_location} weights...")
+ # Refit the engine with the new weights. This will return True if the refit operation succeeded.
assert refitter.refit_cuda_engine()
+ T2 = time.perf_counter()
+ print("Engine refitted in {:.2f} ms.".format((T2 - T1) * 1000))
+
for profile_idx in range(engine.num_optimization_profiles):
print("Doing inference...")
# Do inference
- inputs, outputs, bindings, stream = common.allocate_buffers(engine, profile_idx)
+ inputs, outputs, bindings, stream = common.allocate_buffers(
+ engine, profile_idx
+ )
padding_bindings = [0] * (len(bindings) * profile_idx)
new_bindings = padding_bindings + bindings
- # Set host input. The common.do_inference_v2 function will copy the input to the GPU before executing.
+ # Set host input. The common.do_inference function will copy the input to the GPU before executing.
inputs[0].host = cw
inputs[1].host = cc
inputs[2].host = qw
inputs[3].host = qc
- execution_context = engine.create_execution_context()
execution_context.set_optimization_profile_async(profile_idx, stream)
execution_context.set_input_shape("CategoryMapper_4", (10, 1))
execution_context.set_input_shape("CategoryMapper_5", (10, 1, 1, 16))
execution_context.set_input_shape("CategoryMapper_6", (6, 1))
execution_context.set_input_shape("CategoryMapper_7", (6, 1, 1, 16))
- trt_outputs = common.do_inference_v2(
- execution_context, bindings=new_bindings, inputs=inputs, outputs=outputs, stream=stream
+ trt_outputs = common.do_inference(
+ execution_context,
+ engine=engine,
+ bindings=bindings,
+ inputs=inputs,
+ outputs=outputs,
+ stream=stream,
)
start = trt_outputs[0].item()
@@ -170,6 +285,10 @@ def main():
answer = [w.encode() for w in cw_str[start : end + 1].reshape(-1)]
assert answer_correct == (answer == [b"brown"]), answer
common.free_buffers(inputs, outputs, stream)
+
+ for _, device_mem in device_mem_dict.items():
+ common.cuda_call(cudart.cudaFree(device_mem))
+
print("Passed")
diff --git a/samples/python/engine_refit_onnx_bidaf/data_processing.py b/samples/python/engine_refit_onnx_bidaf/data_processing.py
index 6eb90fa0..f6740bc5 100644
--- a/samples/python/engine_refit_onnx_bidaf/data_processing.py
+++ b/samples/python/engine_refit_onnx_bidaf/data_processing.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -40,7 +40,9 @@ def preprocess(text):
def get_map_func(filepath):
file = open(filepath)
category_map = json.load(file)
- category_mapper = dict(zip(category_map["cats_strings"], category_map["cats_int64s"]))
+ category_mapper = dict(
+ zip(category_map["cats_strings"], category_map["cats_int64s"])
+ )
default_int64 = category_map["default_int64"]
func = lambda s: category_mapper.get(s, default_int64)
return np.vectorize(func)
diff --git a/samples/python/engine_refit_onnx_bidaf/prepare_model.py b/samples/python/engine_refit_onnx_bidaf/prepare_model.py
index cbeb6a92..eb45226e 100644
--- a/samples/python/engine_refit_onnx_bidaf/prepare_model.py
+++ b/samples/python/engine_refit_onnx_bidaf/prepare_model.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -82,7 +82,9 @@ def save_weights_for_refitting(graph):
def main():
- org_model_file_path = getFilePath("samples/python/engine_refit_onnx_bidaf/bidaf-original.onnx")
+ org_model_file_path = getFilePath(
+ "samples/python/engine_refit_onnx_bidaf/bidaf-original.onnx"
+ )
print("Modifying the ONNX model ...")
original_model = onnx.load(org_model_file_path)
diff --git a/samples/python/introductory_parser_samples/onnx_resnet50.py b/samples/python/introductory_parser_samples/onnx_resnet50.py
index f07e99ff..fd69cc48 100644
--- a/samples/python/introductory_parser_samples/onnx_resnet50.py
+++ b/samples/python/introductory_parser_samples/onnx_resnet50.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -40,6 +40,7 @@ class ModelData(object):
# You can set the logger severity higher to suppress messages (or lower to display more messages).
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
+
# The Onnx path is used for Onnx models.
def build_engine_onnx(model_file):
builder = trt.Builder(TRT_LOGGER)
@@ -111,7 +112,14 @@ def main():
test_case = load_normalized_test_case(test_image, inputs[0].host)
# Run the engine. The output will be a 1D tensor of length 1000, where each value represents the
# probability that the image corresponds to that label
- trt_outputs = common.do_inference(context, engine=engine, bindings=bindings, inputs=inputs, outputs=outputs, stream=stream)
+ trt_outputs = common.do_inference(
+ context,
+ engine=engine,
+ bindings=bindings,
+ inputs=inputs,
+ outputs=outputs,
+ stream=stream,
+ )
# We use the highest probability as our prediction. Its index corresponds to the predicted label.
pred = labels[np.argmax(trt_outputs[0])]
common.free_buffers(inputs, outputs, stream)
diff --git a/samples/python/network_api_pytorch_mnist/model.py b/samples/python/network_api_pytorch_mnist/model.py
index 3f1a4fe4..53371989 100644
--- a/samples/python/network_api_pytorch_mnist/model.py
+++ b/samples/python/network_api_pytorch_mnist/model.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -59,7 +59,9 @@ def __init__(self):
"/tmp/mnist/data",
train=True,
download=True,
- transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]),
+ transform=transforms.Compose(
+ [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
+ ),
),
batch_size=self.batch_size,
shuffle=True,
@@ -70,7 +72,9 @@ def __init__(self):
datasets.MNIST(
"/tmp/mnist/data",
train=False,
- transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]),
+ transform=transforms.Compose(
+ [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
+ ),
),
batch_size=self.test_batch_size,
shuffle=True,
@@ -86,7 +90,11 @@ def learn(self, num_epochs=2):
# Train the network for a single epoch
def train(epoch):
self.network.train()
- optimizer = optim.SGD(self.network.parameters(), lr=self.learning_rate, momentum=self.sgd_momentum)
+ optimizer = optim.SGD(
+ self.network.parameters(),
+ lr=self.learning_rate,
+ momentum=self.sgd_momentum,
+ )
for batch, (data, target) in enumerate(self.train_loader):
if torch.cuda.is_available():
data = data.to("cuda")
@@ -126,7 +134,10 @@ def test(epoch):
test_loss /= len(self.test_loader)
print(
"\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n".format(
- test_loss, correct, len(self.test_loader.dataset), 100.0 * correct / len(self.test_loader.dataset)
+ test_loss,
+ correct,
+ len(self.test_loader.dataset),
+ 100.0 * correct / len(self.test_loader.dataset),
)
)
diff --git a/samples/python/network_api_pytorch_mnist/sample.py b/samples/python/network_api_pytorch_mnist/sample.py
index 1f634443..a695ee9a 100644
--- a/samples/python/network_api_pytorch_mnist/sample.py
+++ b/samples/python/network_api_pytorch_mnist/sample.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -41,7 +41,9 @@ class ModelData(object):
def populate_network(network, weights):
# Configure the network layers based on the weights provided.
- input_tensor = network.add_input(name=ModelData.INPUT_NAME, dtype=ModelData.DTYPE, shape=ModelData.INPUT_SHAPE)
+ input_tensor = network.add_input(
+ name=ModelData.INPUT_NAME, dtype=ModelData.DTYPE, shape=ModelData.INPUT_SHAPE
+ )
def add_matmul_as_fc(net, input, outputs, w, b):
assert len(input.shape) >= 3
@@ -64,7 +66,9 @@ def add_matmul_as_fc(net, input, outputs, w, b):
)
bias_const = net.add_constant(trt.Dims2(1, n), b)
- bias_add = net.add_elementwise(mm.get_output(0), bias_const.get_output(0), trt.ElementWiseOperation.SUM)
+ bias_add = net.add_elementwise(
+ mm.get_output(0), bias_const.get_output(0), trt.ElementWiseOperation.SUM
+ )
output_reshape = net.add_shuffle(bias_add.get_output(0))
output_reshape.reshape_dims = trt.Dims4(m, n, 1, 1)
@@ -73,16 +77,24 @@ def add_matmul_as_fc(net, input, outputs, w, b):
conv1_w = weights["conv1.weight"].cpu().numpy()
conv1_b = weights["conv1.bias"].cpu().numpy()
conv1 = network.add_convolution_nd(
- input=input_tensor, num_output_maps=20, kernel_shape=(5, 5), kernel=conv1_w, bias=conv1_b
+ input=input_tensor,
+ num_output_maps=20,
+ kernel_shape=(5, 5),
+ kernel=conv1_w,
+ bias=conv1_b,
)
conv1.stride_nd = (1, 1)
- pool1 = network.add_pooling_nd(input=conv1.get_output(0), type=trt.PoolingType.MAX, window_size=(2, 2))
+ pool1 = network.add_pooling_nd(
+ input=conv1.get_output(0), type=trt.PoolingType.MAX, window_size=(2, 2)
+ )
pool1.stride_nd = trt.Dims2(2, 2)
conv2_w = weights["conv2.weight"].cpu().numpy()
conv2_b = weights["conv2.bias"].cpu().numpy()
- conv2 = network.add_convolution_nd(pool1.get_output(0), 50, (5, 5), conv2_w, conv2_b)
+ conv2 = network.add_convolution_nd(
+ pool1.get_output(0), 50, (5, 5), conv2_w, conv2_b
+ )
conv2.stride_nd = (1, 1)
pool2 = network.add_pooling_nd(conv2.get_output(0), trt.PoolingType.MAX, (2, 2))
@@ -92,11 +104,15 @@ def add_matmul_as_fc(net, input, outputs, w, b):
fc1_b = weights["fc1.bias"].cpu().numpy()
fc1 = add_matmul_as_fc(network, pool2.get_output(0), 500, fc1_w, fc1_b)
- relu1 = network.add_activation(input=fc1.get_output(0), type=trt.ActivationType.RELU)
+ relu1 = network.add_activation(
+ input=fc1.get_output(0), type=trt.ActivationType.RELU
+ )
fc2_w = weights["fc2.weight"].cpu().numpy()
fc2_b = weights["fc2.bias"].cpu().numpy()
- fc2 = add_matmul_as_fc(network, relu1.get_output(0), ModelData.OUTPUT_SIZE, fc2_w, fc2_b)
+ fc2 = add_matmul_as_fc(
+ network, relu1.get_output(0), ModelData.OUTPUT_SIZE, fc2_w, fc2_b
+ )
fc2.get_output(0).name = ModelData.OUTPUT_NAME
network.mark_output(tensor=fc2.get_output(0))
@@ -143,7 +159,14 @@ def main():
case_num = load_random_test_case(mnist_model, pagelocked_buffer=inputs[0].host)
# For more information on performing inference, refer to the introductory samples.
# The common.do_inference function will return a list of outputs - we only have one in this case.
- [output] = common.do_inference(context, engine=engine, bindings=bindings, inputs=inputs, outputs=outputs, stream=stream)
+ [output] = common.do_inference(
+ context,
+ engine=engine,
+ bindings=bindings,
+ inputs=inputs,
+ outputs=outputs,
+ stream=stream,
+ )
pred = np.argmax(output)
common.free_buffers(inputs, outputs, stream)
print("Test Case: " + str(case_num))
diff --git a/samples/python/onnx_custom_plugin/CMakeLists.txt b/samples/python/onnx_custom_plugin/CMakeLists.txt
index 75f69af4..f00bcd31 100644
--- a/samples/python/onnx_custom_plugin/CMakeLists.txt
+++ b/samples/python/onnx_custom_plugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/python/onnx_custom_plugin/load_plugin_lib.py b/samples/python/onnx_custom_plugin/load_plugin_lib.py
index 0a85f18e..a3feaa37 100644
--- a/samples/python/onnx_custom_plugin/load_plugin_lib.py
+++ b/samples/python/onnx_custom_plugin/load_plugin_lib.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -18,7 +18,9 @@
import os
import ctypes
-WORKING_DIR = os.environ.get("TRT_WORKING_DIR") or os.path.dirname(os.path.realpath(__file__))
+WORKING_DIR = os.environ.get("TRT_WORKING_DIR") or os.path.dirname(
+ os.path.realpath(__file__)
+)
IS_WINDOWS = os.name == "nt"
if IS_WINDOWS:
HARDMAX_PLUGIN_LIBRARY_NAME = "customHardmaxPlugin.dll"
@@ -28,7 +30,10 @@
]
else:
HARDMAX_PLUGIN_LIBRARY_NAME = "libcustomHardmaxPlugin.so"
- HARDMAX_PLUGIN_LIBRARY = [os.path.join(WORKING_DIR, "build", HARDMAX_PLUGIN_LIBRARY_NAME)]
+ HARDMAX_PLUGIN_LIBRARY = [
+ os.path.join(WORKING_DIR, "build", HARDMAX_PLUGIN_LIBRARY_NAME)
+ ]
+
def load_plugin_lib():
for plugin_lib in HARDMAX_PLUGIN_LIBRARY:
diff --git a/samples/python/onnx_custom_plugin/model.py b/samples/python/onnx_custom_plugin/model.py
index cde029c5..53b2a96e 100644
--- a/samples/python/onnx_custom_plugin/model.py
+++ b/samples/python/onnx_custom_plugin/model.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -24,18 +24,21 @@
MODEL_URL = "https://github.com/onnx/models/raw/e77240a62df68ed13e3138a5812553a552b857bb/text/machine_comprehension/bidirectional_attention_flow/model/bidaf-9.onnx"
-WORKING_DIR = os.environ.get("TRT_WORKING_DIR") or os.path.dirname(os.path.realpath(__file__))
-MODEL_DIR = os.path.join(WORKING_DIR, "models")
+WORKING_DIR = os.environ.get("TRT_WORKING_DIR") or os.path.dirname(
+ os.path.realpath(__file__)
+)
+MODEL_DIR = os.path.join(WORKING_DIR, "models")
RAW_MODEL_PATH = os.path.join(MODEL_DIR, "bidaf-9.onnx")
TRT_MODEL_PATH = os.path.join(MODEL_DIR, "bidaf-9-trt.onnx")
+
def _do_graph_surgery(raw_model_path, trt_model_path):
graph = gs.import_onnx(onnx.load(raw_model_path))
# Replace unsupported Hardmax with our CustomHardmax op
for node in graph.nodes:
- if node.op == 'Hardmax':
- node.op = 'CustomHardmax'
+ if node.op == "Hardmax":
+ node.op = "CustomHardmax"
hardmax_node = node
# The original onnx model also uses another unsupported op called "Compress".
@@ -47,16 +50,16 @@ def _do_graph_surgery(raw_model_path, trt_model_path):
#
# So, we will replace the subgraph Compress(Transpose_29, Cast(Reshape(Hardmax)))
# with the subgraph Einsum(Transpose_29, Hardmax) where the equation in Einsum takes the dot product.
- node_by_name = {node.name : node for node in graph.nodes}
- transpose_node = node_by_name['Transpose_29']
- compress_node = node_by_name['Compress_31']
+ node_by_name = {node.name: node for node in graph.nodes}
+ transpose_node = node_by_name["Transpose_29"]
+ compress_node = node_by_name["Compress_31"]
einsum_node = gs.Node(
- 'Einsum',
- 'Dot_of_Hardmax_and_Transpose',
- attrs={'equation': 'ij,ij->i'}, # "Dot product" of 2d tensors
+ "Einsum",
+ "Dot_of_Hardmax_and_Transpose",
+ attrs={"equation": "ij,ij->i"}, # "Dot product" of 2d tensors
inputs=[hardmax_node.outputs[0], transpose_node.outputs[0]],
- outputs=[compress_node.outputs[0]]
+ outputs=[compress_node.outputs[0]],
)
graph.nodes.append(einsum_node)
@@ -80,7 +83,9 @@ def _do_graph_surgery(raw_model_path, trt_model_path):
#
# Later we will feed the model the integer tokens directly.
# Note: list conversion is necessary because we modify graph.nodes in the for loop.
- category_mapper_nodes = [node for node in graph.nodes if node.op == 'CategoryMapper']
+ category_mapper_nodes = [
+ node for node in graph.nodes if node.op == "CategoryMapper"
+ ]
for node in category_mapper_nodes:
# Remove CategoryMapper node from onnx graph
graph.nodes.remove(node)
diff --git a/samples/python/onnx_custom_plugin/sample.py b/samples/python/onnx_custom_plugin/sample.py
index 7026f0e5..25d4ca36 100644
--- a/samples/python/onnx_custom_plugin/sample.py
+++ b/samples/python/onnx_custom_plugin/sample.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -30,7 +30,7 @@
# Reuse some BiDAF-specific methods
# ../engine_refit_onnx_bidaf/data_processing.py
-sys.path.insert(1, os.path.join(parent_dir, 'engine_refit_onnx_bidaf'))
+sys.path.insert(1, os.path.join(parent_dir, "engine_refit_onnx_bidaf"))
from engine_refit_onnx_bidaf.data_processing import preprocess, get_inputs
# Maxmimum number of words in context or query text.
@@ -38,10 +38,12 @@
# Adjustable.
MAX_TEXT_LENGTH = 64
-WORKING_DIR = os.environ.get("TRT_WORKING_DIR") or os.path.dirname(os.path.realpath(__file__))
+WORKING_DIR = os.environ.get("TRT_WORKING_DIR") or os.path.dirname(
+ os.path.realpath(__file__)
+)
# Path to which trained model will be saved (check README.md)
-ENGINE_FILE_PATH = os.path.join(WORKING_DIR, 'bidaf.trt')
+ENGINE_FILE_PATH = os.path.join(WORKING_DIR, "bidaf.trt")
# Define global logger object (it should be a singleton,
# available for TensorRT from anywhere in code).
@@ -49,13 +51,16 @@
# (or lower to display more messages)
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
+
# Builds TensorRT Engine
def build_engine(model_path):
builder = trt.Builder(TRT_LOGGER)
network = builder.create_network(0)
config = builder.create_builder_config()
- config.set_tactic_sources(config.get_tactic_sources() | 1 << int(trt.TacticSource.CUBLAS))
+ config.set_tactic_sources(
+ config.get_tactic_sources() | 1 << int(trt.TacticSource.CUBLAS)
+ )
parser = trt.OnnxParser(network, TRT_LOGGER)
runtime = trt.Runtime(TRT_LOGGER)
@@ -90,17 +95,20 @@ def build_engine(model_path):
f.write(plan)
return engine
+
def load_test_case(inputs, context_text, query_text, trt_context):
# Part 1: Specify Input shapes
cw, cc = preprocess(context_text)
qw, qc = preprocess(query_text)
for arr in (cw, cc, qw, qc):
- assert arr.shape[0] <= MAX_TEXT_LENGTH, "Input context or query is too long! " + \
- "Either decrease the input length or increase MAX_TEXT_LENGTH"
- trt_context.set_input_shape('CategoryMapper_4', cw.shape)
- trt_context.set_input_shape('CategoryMapper_5', cc.shape)
- trt_context.set_input_shape('CategoryMapper_6', qw.shape)
- trt_context.set_input_shape('CategoryMapper_7', qc.shape)
+ assert arr.shape[0] <= MAX_TEXT_LENGTH, (
+ "Input context or query is too long! "
+ + "Either decrease the input length or increase MAX_TEXT_LENGTH"
+ )
+ trt_context.set_input_shape("CategoryMapper_4", cw.shape)
+ trt_context.set_input_shape("CategoryMapper_5", cc.shape)
+ trt_context.set_input_shape("CategoryMapper_6", qw.shape)
+ trt_context.set_input_shape("CategoryMapper_7", qc.shape)
# Part 2: load input data
cw_flat, cc_flat, qw_flat, qc_flat = get_inputs(context_text, query_text)
@@ -138,20 +146,23 @@ def main():
inputs, outputs, bindings, stream = common.allocate_buffers(engine, profile_idx=0)
testcases = [
- ('Garry the lion is 5 years old. He lives in the savanna.', 'Where does the lion live?'),
- ('A quick brown fox jumps over the lazy dog.', 'What color is the fox?')
+ (
+ "Garry the lion is 5 years old. He lives in the savanna.",
+ "Where does the lion live?",
+ ),
+ ("A quick brown fox jumps over the lazy dog.", "What color is the fox?"),
]
print("\n=== Testing ===")
- interactive = '--interactive' in sys.argv
+ interactive = "--interactive" in sys.argv
if interactive:
context_text = input("Enter context: ")
query_text = input("Enter query: ")
testcases = [(context_text, query_text)]
trt_context = engine.create_execution_context()
- for (context_text, query_text) in testcases:
+ for context_text, query_text in testcases:
context_words, _ = preprocess(context_text)
@@ -159,7 +170,14 @@ def main():
if not interactive:
print(f"Input context: {context_text}")
print(f"Input query: {query_text}")
- trt_outputs = common.do_inference(trt_context, engine=engine, bindings=bindings, inputs=inputs, outputs=outputs, stream=stream)
+ trt_outputs = common.do_inference(
+ trt_context,
+ engine=engine,
+ bindings=bindings,
+ inputs=inputs,
+ outputs=outputs,
+ stream=stream,
+ )
start = trt_outputs[1].item()
end = trt_outputs[0].item()
answer = context_words[start : end + 1].flatten()
@@ -168,5 +186,6 @@ def main():
common.free_buffers(inputs, outputs, stream)
print("Passed")
+
if __name__ == "__main__":
main()
diff --git a/samples/python/onnx_custom_plugin/test_custom_hardmax_plugin.py b/samples/python/onnx_custom_plugin/test_custom_hardmax_plugin.py
index c99b78d1..59b08b06 100644
--- a/samples/python/onnx_custom_plugin/test_custom_hardmax_plugin.py
+++ b/samples/python/onnx_custom_plugin/test_custom_hardmax_plugin.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -29,27 +29,35 @@
TRT_LOGGER = trt.Logger(trt.Logger.ERROR)
+
def hardmax_reference_impl(arr, axis):
one_hot = np.zeros(arr.shape, dtype=arr.dtype)
argmax = np.expand_dims(np.argmax(arr, axis), axis)
- np.put_along_axis(one_hot,argmax,1,axis=axis)
+ np.put_along_axis(one_hot, argmax, 1, axis=axis)
return one_hot
+
def make_trt_network_and_engine(input_shape, axis):
registry = trt.get_plugin_registry()
plugin_creator = registry.get_plugin_creator("CustomHardmax", "1")
axis_buffer = np.array([axis])
axis_attr = trt.PluginField("axis", axis_buffer, type=trt.PluginFieldType.INT32)
field_collection = trt.PluginFieldCollection([axis_attr])
- plugin = plugin_creator.create_plugin(name="CustomHardmax", field_collection=field_collection)
+ plugin = plugin_creator.create_plugin(
+ name="CustomHardmax", field_collection=field_collection
+ )
builder = trt.Builder(TRT_LOGGER)
network = builder.create_network(0)
config = builder.create_builder_config()
- config.set_tactic_sources(config.get_tactic_sources() | 1 << int(trt.TacticSource.CUBLAS))
+ config.set_tactic_sources(
+ config.get_tactic_sources() | 1 << int(trt.TacticSource.CUBLAS)
+ )
runtime = trt.Runtime(TRT_LOGGER)
- input_layer = network.add_input(name="input_layer", dtype=trt.float32, shape=input_shape)
+ input_layer = network.add_input(
+ name="input_layer", dtype=trt.float32, shape=input_shape
+ )
hardmax = network.add_plugin_v2(inputs=[input_layer], plugin=plugin)
network.mark_output(hardmax.get_output(0))
@@ -58,15 +66,24 @@ def make_trt_network_and_engine(input_shape, axis):
return engine
+
def custom_plugin_impl(input_arr, engine):
inputs, outputs, bindings, stream = common.allocate_buffers(engine)
context = engine.create_execution_context()
inputs[0].host = input_arr.astype(trt.nptype(trt.float32))
- trt_outputs = common.do_inference(context, engine=engine, bindings=bindings, inputs=inputs, outputs=outputs, stream=stream)
+ trt_outputs = common.do_inference(
+ context,
+ engine=engine,
+ bindings=bindings,
+ inputs=inputs,
+ outputs=outputs,
+ stream=stream,
+ )
output = trt_outputs[0].copy()
common.free_buffers(inputs, outputs, stream)
return output
+
def main():
load_plugin_lib()
for num_dims in range(1, 8):
@@ -80,5 +97,6 @@ def main():
assert np.all(res1 == res2), f"Test failed for shape={shape}, axis={axis}"
print("Passed")
-if __name__ == '__main__':
+
+if __name__ == "__main__":
main()
diff --git a/samples/python/onnx_packnet/convert_to_onnx.py b/samples/python/onnx_packnet/convert_to_onnx.py
index df604f96..72c31b72 100644
--- a/samples/python/onnx_packnet/convert_to_onnx.py
+++ b/samples/python/onnx_packnet/convert_to_onnx.py
@@ -1,6 +1,6 @@
#!/usr/bin/env python3
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -63,17 +63,29 @@ def build_packnet(model_file, args):
model_pyt = PackNet01(version="1A")
# Convert the model into ONNX
- torch.onnx.export(model_pyt, input_pyt, model_file, verbose=args.verbose, opset_version=args.opset)
+ torch.onnx.export(
+ model_pyt, input_pyt, model_file, verbose=args.verbose, opset_version=args.opset
+ )
def main():
parser = argparse.ArgumentParser(
description="Exports PackNet01 to ONNX, and post-processes it to insert TensorRT plugins"
)
- parser.add_argument("-o", "--output", help="Path to save the generated ONNX model", default="model.onnx")
- parser.add_argument("-op", "--opset", type=int, help="ONNX opset to use", default=11)
parser.add_argument(
- "-v", "--verbose", action="store_true", help="Flag to enable verbose logging for torch.onnx.export"
+ "-o",
+ "--output",
+ help="Path to save the generated ONNX model",
+ default="model.onnx",
+ )
+ parser.add_argument(
+ "-op", "--opset", type=int, help="ONNX opset to use", default=11
+ )
+ parser.add_argument(
+ "-v",
+ "--verbose",
+ action="store_true",
+ help="Flag to enable verbose logging for torch.onnx.export",
)
args = parser.parse_args()
diff --git a/samples/python/onnx_packnet/post_processing.py b/samples/python/onnx_packnet/post_processing.py
index 887834c7..33adcf1d 100644
--- a/samples/python/onnx_packnet/post_processing.py
+++ b/samples/python/onnx_packnet/post_processing.py
@@ -1,6 +1,6 @@
#!/usr/bin/env python3
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -22,6 +22,7 @@
import numpy as np
import torch
+
# Pad layer subgraph structure in ONNX (specific to opset 11):
# Constant
# |
@@ -65,7 +66,9 @@ def process_pad_nodes(graph):
def fold_pad_inputs(node, graph):
# Gather the amount of padding in each dimension from pytorch graph.
if torch.__version__ < "1.5.0":
- pad_values_pyt = node.i(1).i(0).i(0).i(0).i(0).i(0).i(0).i(0).attrs["value"].values
+ pad_values_pyt = (
+ node.i(1).i(0).i(0).i(0).i(0).i(0).i(0).i(0).attrs["value"].values
+ )
elif torch.__version__ < "2.0.0":
pad_values_pyt = node.i(1).i(0).i(0).i(0).i(0).i(0).inputs[0].values
else:
@@ -80,7 +83,9 @@ def fold_pad_inputs(node, graph):
j -= 1
# Change the existing pad tensor to the new onnx_pad values tensor
- pads_folded_tensor = gs.Constant(name=node.inputs[1].name, values=np.array(onnx_pad_values))
+ pads_folded_tensor = gs.Constant(
+ name=node.inputs[1].name, values=np.array(onnx_pad_values)
+ )
node.inputs[1] = pads_folded_tensor
@@ -134,7 +139,9 @@ def fold_upsample_inputs(upsample, graph, opset=11):
if opset == 9:
# Gather the scale factor from mul op in the upsample input subgraph
- scale_factor = upsample.i(1).i(1).i(0).i(0).i(0).i(0).i(0).i(0).i(1).attrs["value"].values
+ scale_factor = (
+ upsample.i(1).i(1).i(0).i(0).i(0).i(0).i(0).i(0).i(1).attrs["value"].values
+ )
# Create the new scales tensor
scales = np.array([1.0, 1.0, scale_factor, scale_factor], dtype=np.float32)
@@ -148,7 +155,9 @@ def fold_upsample_inputs(upsample, graph, opset=11):
sizes_tensor_name = upsample.inputs[3].name
# Create the new scales tensor
- scale_factor = upsample.i(3).i(1).i().i().i().i().i(0).i(1).attrs["value"].values
+ scale_factor = (
+ upsample.i(3).i(1).i().i().i().i().i(0).i(1).attrs["value"].values
+ )
scales = np.array([1.0, 1.0, scale_factor, scale_factor], dtype=np.float32)
scale_tensor = gs.Constant(name=sizes_tensor_name, values=scales)
diff --git a/samples/python/python_plugin/CMakeLists.txt b/samples/python/python_plugin/CMakeLists.txt
index 3b8fc1f3..6338ea50 100644
--- a/samples/python/python_plugin/CMakeLists.txt
+++ b/samples/python/python_plugin/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/python/python_plugin/circ_pad_plugin_cpp.py b/samples/python/python_plugin/circ_pad_plugin_cpp.py
index a820399f..a7cb8d2f 100644
--- a/samples/python/python_plugin/circ_pad_plugin_cpp.py
+++ b/samples/python/python_plugin/circ_pad_plugin_cpp.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -29,14 +29,29 @@
TrtRunner,
)
+
def parseArgs():
- parser = argparse.ArgumentParser(description="Options for Circular Padding plugin C++ example")
+ parser = argparse.ArgumentParser(
+ description="Options for Circular Padding plugin C++ example"
+ )
- parser.add_argument('--precision', type=str, default="fp32", choices=["fp32", "fp16"], help="Precision to use for plugin")
- parser.add_argument('--plugin-lib', type=str, help="Path to the Circular Padding plugin lib", required=True)
+ parser.add_argument(
+ "--precision",
+ type=str,
+ default="fp32",
+ choices=["fp32", "fp16"],
+ help="Precision to use for plugin",
+ )
+ parser.add_argument(
+ "--plugin-lib",
+ type=str,
+ help="Path to the Circular Padding plugin lib",
+ required=True,
+ )
return parser.parse_args()
+
if __name__ == "__main__":
args = parseArgs()
@@ -67,15 +82,15 @@ def parseArgs():
# build engine
build_engine = EngineFromNetwork(
- NetworkFromOnnxPath(onnx_path), CreateConfig(fp16=precision==np.float16)
+ NetworkFromOnnxPath(onnx_path), CreateConfig(fp16=precision == np.float16)
)
Y_ref = np.pad(X, [[0, 0], [0, 0], [pads[0], pads[1]], [pads[2], pads[3]]], "wrap")
# Run
- with TrtRunner(build_engine, "trt_runner")as runner:
+ with TrtRunner(build_engine, "trt_runner") as runner:
outputs = runner.infer({"X": X})
Y = outputs["Y"]
-
+
if np.allclose(Y, Y_ref):
print("Inference result correct!")
else:
diff --git a/samples/python/python_plugin/circ_pad_plugin_cuda_python.py b/samples/python/python_plugin/circ_pad_plugin_cuda_python.py
index 88ad1ff7..212e3e74 100644
--- a/samples/python/python_plugin/circ_pad_plugin_cuda_python.py
+++ b/samples/python/python_plugin/circ_pad_plugin_cuda_python.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -24,14 +24,14 @@
CreateConfig,
EngineFromNetwork,
NetworkFromOnnxPath,
- TrtRunner
+ TrtRunner,
)
from polygraphy.json import to_json, from_json
from utils import checkCudaErrors, KernelHelper, parseArgs, CudaCtxManager
from cuda import cuda
-circ_pad_half_kernel = r'''
+circ_pad_half_kernel = r"""
#include
extern "C" __global__
void circ_pad_half(half const* X, int const* all_pads, int const* orig_dims, half* Y, int const* Y_shape, int Y_len) {
@@ -58,9 +58,9 @@
];
}
}
-'''
+"""
-circ_pad_float_kernel = r'''
+circ_pad_float_kernel = r"""
extern "C" __global__
void circ_pad_float(float const* X, int const* all_pads, int const* orig_dims, float* Y, int const* Y_shape, int Y_len) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
@@ -86,7 +86,8 @@
];
}
}
-'''
+"""
+
class CircPadPlugin(trt.IPluginV2DynamicExt):
def __init__(self, fc=None):
@@ -107,7 +108,9 @@ def __init__(self, fc=None):
self.cuDevice = None
if fc is not None:
- assert set([f.name for f in fc]) == set(["pads", "N"]), "Field collection invalid"
+ assert set([f.name for f in fc]) == set(
+ ["pads", "N"]
+ ), "Field collection invalid"
for f in fc:
if f.name == "pads":
self.pads = f.data
@@ -116,11 +119,17 @@ def __init__(self, fc=None):
def initialize(self):
err, self.cuDevice = cuda.cuDeviceGet(0)
- trt.get_plugin_registry().acquire_plugin_resource("cuda_ctx", CudaCtxManager(self.cuDevice))
- self.all_pads_d = checkCudaErrors(cuda.cuMemAlloc(np.int32().itemsize * self.N * 2))
- self.orig_dims_d = checkCudaErrors(cuda.cuMemAlloc(np.int32().itemsize * self.N))
+ trt.get_plugin_registry().acquire_plugin_resource(
+ "cuda_ctx", CudaCtxManager(self.cuDevice)
+ )
+ self.all_pads_d = checkCudaErrors(
+ cuda.cuMemAlloc(np.int32().itemsize * self.N * 2)
+ )
+ self.orig_dims_d = checkCudaErrors(
+ cuda.cuMemAlloc(np.int32().itemsize * self.N)
+ )
self.Y_shape_d = checkCudaErrors(cuda.cuMemAlloc(np.int32().itemsize * self.N))
-
+
def get_output_datatype(self, index, input_types):
return input_types[0]
@@ -157,11 +166,17 @@ def configure_plugin(self, inp, out):
# Copy vectors from host memory to device memory
if self.all_pads_d:
- checkCudaErrors(cuda.cuMemcpyHtoD(self.all_pads_d, all_pads, all_pads.nbytes))
+ checkCudaErrors(
+ cuda.cuMemcpyHtoD(self.all_pads_d, all_pads, all_pads.nbytes)
+ )
if self.orig_dims_d:
- checkCudaErrors(cuda.cuMemcpyHtoD(self.orig_dims_d, orig_dims, orig_dims.nbytes))
+ checkCudaErrors(
+ cuda.cuMemcpyHtoD(self.orig_dims_d, orig_dims, orig_dims.nbytes)
+ )
if self.Y_shape_d:
- checkCudaErrors(cuda.cuMemcpyHtoD(self.Y_shape_d, out_dims, out_dims.nbytes))
+ checkCudaErrors(
+ cuda.cuMemcpyHtoD(self.Y_shape_d, out_dims, out_dims.nbytes)
+ )
self.Y_len_d = np.prod(out_dims)
@@ -205,25 +220,43 @@ def enqueue(self, input_desc, output_desc, inputs, outputs, workspace, stream):
if inp_dtype == np.float32:
kernelHelper = KernelHelper(circ_pad_float_kernel, int(self.cuDevice))
- _circ_pad_float_kernel = kernelHelper.getFunction(b'circ_pad_float')
- checkCudaErrors(cuda.cuLaunchKernel(_circ_pad_float_kernel,
- numBlocks, 1, 1,
- blockSize, 1, 1,
- 0,
- stream_ptr,
- kernelArgs, 0))
+ _circ_pad_float_kernel = kernelHelper.getFunction(b"circ_pad_float")
+ checkCudaErrors(
+ cuda.cuLaunchKernel(
+ _circ_pad_float_kernel,
+ numBlocks,
+ 1,
+ 1,
+ blockSize,
+ 1,
+ 1,
+ 0,
+ stream_ptr,
+ kernelArgs,
+ 0,
+ )
+ )
elif inp_dtype == np.float16:
kernelHelper = KernelHelper(circ_pad_half_kernel, int(self.cuDevice))
- _circ_pad_half_kernel = kernelHelper.getFunction(b'circ_pad_half')
- checkCudaErrors(cuda.cuLaunchKernel(_circ_pad_half_kernel,
- numBlocks, 1, 1,
- blockSize, 1, 1,
- 0,
- stream_ptr,
- kernelArgs, 0))
+ _circ_pad_half_kernel = kernelHelper.getFunction(b"circ_pad_half")
+ checkCudaErrors(
+ cuda.cuLaunchKernel(
+ _circ_pad_half_kernel,
+ numBlocks,
+ 1,
+ 1,
+ blockSize,
+ 1,
+ 1,
+ 0,
+ stream_ptr,
+ kernelArgs,
+ 0,
+ )
+ )
else:
raise ValueError("inp_dtype not valid")
-
+
def clone(self):
cloned_plugin = CircPadPlugin()
cloned_plugin.__dict__.update(self.__dict__)
@@ -239,7 +272,7 @@ def terminate(self):
trt.get_plugin_registry().release_plugin_resource("cuda_ctx")
- #
+ #
# The following defaults take effect since the respective methods are not overriden
#
@@ -248,7 +281,7 @@ def terminate(self):
# def get_workspace_size(self, input_desc, output_desc):
# return 0
-
+
# def destroy(self):
# pass
@@ -259,10 +292,12 @@ def __init__(self):
self.name = "CircPadPlugin"
self.plugin_namespace = ""
self.plugin_version = "1"
- self.field_names = trt.PluginFieldCollection([
- trt.PluginField("pads", np.array([]), trt.PluginFieldType.INT32),
- trt.PluginField("N", np.array([]), trt.PluginFieldType.INT32)
- ])
+ self.field_names = trt.PluginFieldCollection(
+ [
+ trt.PluginField("pads", np.array([]), trt.PluginFieldType.INT32),
+ trt.PluginField("N", np.array([]), trt.PluginFieldType.INT32),
+ ]
+ )
def create_plugin(self, name, fc):
return CircPadPlugin(fc)
@@ -273,12 +308,13 @@ def deserialize_plugin(self, name, data):
deserialized.__dict__.update(j)
return deserialized
+
if __name__ == "__main__":
args = parseArgs()
# Initialize CUDA Driver API
- err, = cuda.cuInit(0)
+ (err,) = cuda.cuInit(0)
# Retrieve handle for device 0
err, cuDevice = cuda.cuDeviceGet(0)
@@ -319,12 +355,12 @@ def deserialize_plugin(self, name, data):
# build engine
build_engine = EngineFromNetwork(
- NetworkFromOnnxPath(onnx_path), CreateConfig(fp16=precision==np.float16)
+ NetworkFromOnnxPath(onnx_path), CreateConfig(fp16=precision == np.float16)
)
Y_ref = np.pad(X, [[0, 0], [0, 0], [pads[0], pads[1]], [pads[2], pads[3]]], "wrap")
# Run
- with TrtRunner(build_engine, "trt_runner")as runner:
+ with TrtRunner(build_engine, "trt_runner") as runner:
outputs = runner.infer({"X": X})
Y = outputs["Y"]
diff --git a/samples/python/python_plugin/circ_pad_plugin_cupy.py b/samples/python/python_plugin/circ_pad_plugin_cupy.py
index 82b271cc..19545a11 100644
--- a/samples/python/python_plugin/circ_pad_plugin_cupy.py
+++ b/samples/python/python_plugin/circ_pad_plugin_cupy.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -27,14 +27,15 @@
CreateConfig,
EngineFromNetwork,
NetworkFromOnnxPath,
- TrtRunner
+ TrtRunner,
)
from polygraphy.json import to_json, from_json
from utils import volume, parseArgs
-circ_pad_half_kernel = cp.RawKernel(r'''
+circ_pad_half_kernel = cp.RawKernel(
+ r"""
#include
extern "C" __global__
void circ_pad_half(half const* X, int const* all_pads, int const* orig_dims, half* Y, int const* Y_shape, int const* Y_len) {
@@ -61,9 +62,12 @@
];
}
}
-''', 'circ_pad_half')
+""",
+ "circ_pad_half",
+)
-circ_pad_float_kernel = cp.RawKernel(r'''
+circ_pad_float_kernel = cp.RawKernel(
+ r"""
extern "C" __global__
void circ_pad_float(float const* X, int const* all_pads, int const* orig_dims, float* Y, int const* Y_shape, int const* Y_len) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
@@ -89,14 +93,17 @@
];
}
}
-''', 'circ_pad_float')
+""",
+ "circ_pad_float",
+)
+
class CircPadPlugin(trt.IPluginV2DynamicExt):
def __init__(self, fc=None):
trt.IPluginV2DynamicExt.__init__(self)
self.pads = []
self.X_shape = []
-
+
self.num_outputs = 1
self.plugin_namespace = ""
self.plugin_type = "CircPadPlugin"
@@ -190,9 +197,31 @@ def enqueue(self, input_desc, output_desc, inputs, outputs, workspace, stream):
with cuda_stream:
if inp_dtype == np.float32:
- circ_pad_float_kernel((numBlocks,), (blockSize,), (a, self.all_pads_d, self.orig_dims_d, c, self.Y_shape_d, self.Y_len_d))
+ circ_pad_float_kernel(
+ (numBlocks,),
+ (blockSize,),
+ (
+ a,
+ self.all_pads_d,
+ self.orig_dims_d,
+ c,
+ self.Y_shape_d,
+ self.Y_len_d,
+ ),
+ )
elif inp_dtype == np.float16:
- circ_pad_half_kernel((numBlocks,), (blockSize,), (a, self.all_pads_d, self.orig_dims_d, c, self.Y_shape_d, self.Y_len_d))
+ circ_pad_half_kernel(
+ (numBlocks,),
+ (blockSize,),
+ (
+ a,
+ self.all_pads_d,
+ self.orig_dims_d,
+ c,
+ self.Y_shape_d,
+ self.Y_len_d,
+ ),
+ )
else:
raise ValueError("inp_dtype not valid")
@@ -201,7 +230,7 @@ def clone(self):
cloned_plugin.__dict__.update(self.__dict__)
return cloned_plugin
- #
+ #
# The following defaults take effect since the respective methods are not overriden
#
@@ -213,17 +242,18 @@ def clone(self):
# def get_workspace_size(self, input_desc, output_desc):
# return 0
-
+
# def destroy(self):
# pass
# def terminate(self):
# pass
+
class CircPadPluginCreator(trt.IPluginCreator):
def __init__(self):
trt.IPluginCreator.__init__(self)
-
+
self.name = "CircPadPlugin"
self.plugin_namespace = ""
self.plugin_version = "1"
@@ -233,13 +263,14 @@ def __init__(self):
def create_plugin(self, name, fc):
return CircPadPlugin(fc)
-
+
def deserialize_plugin(self, name, data):
j = dict(from_json(data.decode("utf-8")))
deserialized = CircPadPlugin()
deserialized.__dict__.update(j)
return deserialized
+
if __name__ == "__main__":
args = parseArgs()
@@ -275,12 +306,12 @@ def deserialize_plugin(self, name, data):
# build engine
build_engine = EngineFromNetwork(
- NetworkFromOnnxPath(onnx_path), CreateConfig(fp16=precision==np.float16)
+ NetworkFromOnnxPath(onnx_path), CreateConfig(fp16=precision == np.float16)
)
Y_ref = np.pad(X, [[0, 0], [0, 0], [pads[0], pads[1]], [pads[2], pads[3]]], "wrap")
# Run
- with TrtRunner(build_engine, "trt_runner")as runner:
+ with TrtRunner(build_engine, "trt_runner") as runner:
outputs = runner.infer({"X": X})
Y = outputs["Y"]
diff --git a/samples/python/python_plugin/circ_pad_plugin_inetdef_cuda_python.py b/samples/python/python_plugin/circ_pad_plugin_inetdef_cuda_python.py
index 60208ab3..6abf526f 100644
--- a/samples/python/python_plugin/circ_pad_plugin_inetdef_cuda_python.py
+++ b/samples/python/python_plugin/circ_pad_plugin_inetdef_cuda_python.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -23,7 +23,7 @@
CreateConfig,
TrtRunner,
create_network,
- engine_from_network
+ engine_from_network,
)
from polygraphy.json import to_json, from_json
@@ -31,7 +31,7 @@
from utils import checkCudaErrors, KernelHelper, parseArgs, CudaCtxManager
from cuda import cuda
-circ_pad_half_kernel = r'''
+circ_pad_half_kernel = r"""
#include
extern "C" __global__
void circ_pad_half(half const* X, int const* all_pads, int const* orig_dims, half* Y, int const* Y_shape, int Y_len) {
@@ -58,9 +58,9 @@
];
}
}
-'''
+"""
-circ_pad_float_kernel = r'''
+circ_pad_float_kernel = r"""
extern "C" __global__
void circ_pad_float(float const* X, int const* all_pads, int const* orig_dims, float* Y, int const* Y_shape, int Y_len) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
@@ -86,7 +86,8 @@
];
}
}
-'''
+"""
+
class CircPadPlugin(trt.IPluginV2DynamicExt):
def __init__(self, fc=None):
@@ -107,7 +108,9 @@ def __init__(self, fc=None):
self.cuDevice = None
if fc is not None:
- assert set([f.name for f in fc]) == set(["pads", "N"]), "Field collection invalid"
+ assert set([f.name for f in fc]) == set(
+ ["pads", "N"]
+ ), "Field collection invalid"
for f in fc:
if f.name == "pads":
self.pads = f.data
@@ -116,11 +119,17 @@ def __init__(self, fc=None):
def initialize(self):
err, self.cuDevice = cuda.cuDeviceGet(0)
- trt.get_plugin_registry().acquire_plugin_resource("cuda_ctx", CudaCtxManager(self.cuDevice))
- self.all_pads_d = checkCudaErrors(cuda.cuMemAlloc(np.int32().itemsize * self.N * 2))
- self.orig_dims_d = checkCudaErrors(cuda.cuMemAlloc(np.int32().itemsize * self.N))
+ trt.get_plugin_registry().acquire_plugin_resource(
+ "cuda_ctx", CudaCtxManager(self.cuDevice)
+ )
+ self.all_pads_d = checkCudaErrors(
+ cuda.cuMemAlloc(np.int32().itemsize * self.N * 2)
+ )
+ self.orig_dims_d = checkCudaErrors(
+ cuda.cuMemAlloc(np.int32().itemsize * self.N)
+ )
self.Y_shape_d = checkCudaErrors(cuda.cuMemAlloc(np.int32().itemsize * self.N))
-
+
def get_output_datatype(self, index, input_types):
return input_types[0]
@@ -157,11 +166,17 @@ def configure_plugin(self, inp, out):
# Copy vectors from host memory to device memory
if self.all_pads_d:
- checkCudaErrors(cuda.cuMemcpyHtoD(self.all_pads_d, all_pads, all_pads.nbytes))
+ checkCudaErrors(
+ cuda.cuMemcpyHtoD(self.all_pads_d, all_pads, all_pads.nbytes)
+ )
if self.orig_dims_d:
- checkCudaErrors(cuda.cuMemcpyHtoD(self.orig_dims_d, orig_dims, orig_dims.nbytes))
+ checkCudaErrors(
+ cuda.cuMemcpyHtoD(self.orig_dims_d, orig_dims, orig_dims.nbytes)
+ )
if self.Y_shape_d:
- checkCudaErrors(cuda.cuMemcpyHtoD(self.Y_shape_d, out_dims, out_dims.nbytes))
+ checkCudaErrors(
+ cuda.cuMemcpyHtoD(self.Y_shape_d, out_dims, out_dims.nbytes)
+ )
self.Y_len_d = np.prod(out_dims)
@@ -205,25 +220,43 @@ def enqueue(self, input_desc, output_desc, inputs, outputs, workspace, stream):
if inp_dtype == np.float32:
kernelHelper = KernelHelper(circ_pad_float_kernel, int(self.cuDevice))
- _circ_pad_float_kernel = kernelHelper.getFunction(b'circ_pad_float')
- checkCudaErrors(cuda.cuLaunchKernel(_circ_pad_float_kernel,
- numBlocks, 1, 1,
- blockSize, 1, 1,
- 0,
- stream_ptr,
- kernelArgs, 0))
+ _circ_pad_float_kernel = kernelHelper.getFunction(b"circ_pad_float")
+ checkCudaErrors(
+ cuda.cuLaunchKernel(
+ _circ_pad_float_kernel,
+ numBlocks,
+ 1,
+ 1,
+ blockSize,
+ 1,
+ 1,
+ 0,
+ stream_ptr,
+ kernelArgs,
+ 0,
+ )
+ )
elif inp_dtype == np.float16:
kernelHelper = KernelHelper(circ_pad_half_kernel, int(self.cuDevice))
- _circ_pad_half_kernel = kernelHelper.getFunction(b'circ_pad_half')
- checkCudaErrors(cuda.cuLaunchKernel(_circ_pad_half_kernel,
- numBlocks, 1, 1,
- blockSize, 1, 1,
- 0,
- stream_ptr,
- kernelArgs, 0))
+ _circ_pad_half_kernel = kernelHelper.getFunction(b"circ_pad_half")
+ checkCudaErrors(
+ cuda.cuLaunchKernel(
+ _circ_pad_half_kernel,
+ numBlocks,
+ 1,
+ 1,
+ blockSize,
+ 1,
+ 1,
+ 0,
+ stream_ptr,
+ kernelArgs,
+ 0,
+ )
+ )
else:
raise ValueError("inp_dtype not valid")
-
+
def clone(self):
cloned_plugin = CircPadPlugin()
cloned_plugin.__dict__.update(self.__dict__)
@@ -239,7 +272,7 @@ def terminate(self):
plg_registry.release_plugin_resource("cuda_ctx")
- #
+ #
# The following defaults take effect since the respective methods are not overriden
#
@@ -248,7 +281,7 @@ def terminate(self):
# def get_workspace_size(self, input_desc, output_desc):
# return 0
-
+
# def destroy(self):
# pass
@@ -259,10 +292,12 @@ def __init__(self):
self.name = "CircPadPlugin"
self.plugin_namespace = ""
self.plugin_version = "1"
- self.field_names = trt.PluginFieldCollection([
- trt.PluginField("pads", np.array([]), trt.PluginFieldType.INT32),
- trt.PluginField("N", np.array([]), trt.PluginFieldType.INT32)
- ])
+ self.field_names = trt.PluginFieldCollection(
+ [
+ trt.PluginField("pads", np.array([]), trt.PluginFieldType.INT32),
+ trt.PluginField("N", np.array([]), trt.PluginFieldType.INT32),
+ ]
+ )
def create_plugin(self, name, fc):
return CircPadPlugin(fc)
@@ -273,13 +308,14 @@ def deserialize_plugin(self, name, data):
deserialized.__dict__.update(j)
return deserialized
+
if __name__ == "__main__":
args = parseArgs()
precision = np.float32 if args.precision == "fp32" else np.float16
# Initialize CUDA Driver API
- err, = cuda.cuInit(0)
+ (err,) = cuda.cuInit(0)
# Retrieve handle for device 0
err, cuDevice = cuda.cuDeviceGet(0)
@@ -306,28 +342,36 @@ def deserialize_plugin(self, name, data):
builder, network = create_network()
plg_creator = plg_registry.get_plugin_creator("CircPadPlugin", "1", "")
plugin_fields_list = [
- trt.PluginField("pads", np.array(pads, dtype=np.int32), trt.PluginFieldType.INT32),
+ trt.PluginField(
+ "pads", np.array(pads, dtype=np.int32), trt.PluginFieldType.INT32
+ ),
trt.PluginField("N", np.array([4], dtype=np.int32), trt.PluginFieldType.INT32),
]
pfc = trt.PluginFieldCollection(plugin_fields_list)
plugin = plg_creator.create_plugin("CircPadPlugin", pfc)
# Populate network
- input_X = network.add_input(name="X", dtype=trt.float32 if precision==np.float32 else trt.float16, shape=X.shape)
+ input_X = network.add_input(
+ name="X",
+ dtype=trt.float32 if precision == np.float32 else trt.float16,
+ shape=X.shape,
+ )
out = network.add_plugin_v2([input_X], plugin)
out.get_output(0).name = "Y"
network.mark_output(tensor=out.get_output(0))
# Build engine
config = builder.create_builder_config()
- engine = engine_from_network((builder, network), CreateConfig(fp16=precision==trt.float16))
+ engine = engine_from_network(
+ (builder, network), CreateConfig(fp16=precision == trt.float16)
+ )
Y_ref = np.pad(X, [[0, 0], [0, 0], [pads[0], pads[1]], [pads[2], pads[3]]], "wrap")
# Run
- with TrtRunner(engine, "trt_runner")as runner:
+ with TrtRunner(engine, "trt_runner") as runner:
outputs = runner.infer({"X": X})
Y = outputs["Y"]
-
+
if np.allclose(Y, Y_ref):
print("Inference result correct!")
else:
diff --git a/samples/python/python_plugin/circ_pad_plugin_numba.py b/samples/python/python_plugin/circ_pad_plugin_numba.py
index 2cc0bfab..d568419d 100644
--- a/samples/python/python_plugin/circ_pad_plugin_numba.py
+++ b/samples/python/python_plugin/circ_pad_plugin_numba.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -32,6 +32,7 @@
from polygraphy.json import to_json, from_json
from utils import volume, parseArgs
+
@cuda.jit
def circ_pad(X, all_pads, orig_dims, Y, Y_shape, Y_len):
index = cuda.blockIdx.x * cuda.blockDim.x + cuda.threadIdx.x
@@ -57,6 +58,7 @@ def circ_pad(X, all_pads, orig_dims, Y, Y_shape, Y_len):
)
]
+
class CircPadPlugin(trt.IPluginV2DynamicExt):
def __init__(self, fc=None):
trt.IPluginV2DynamicExt.__init__(self)
@@ -76,7 +78,7 @@ def get_output_datatype(self, index, input_types):
return input_types[0]
def get_output_dimensions(self, output_index, inputs, exprBuilder):
-
+
output_dims = trt.DimsExprs(inputs[0])
for i in range(np.size(self.pads) // 2):
@@ -163,8 +165,8 @@ def clone(self):
cloned_plugin = CircPadPlugin()
cloned_plugin.__dict__.update(self.__dict__)
return cloned_plugin
-
- #
+
+ #
# The following defaults take effect since the respective methods are not overriden
#
@@ -176,7 +178,7 @@ def clone(self):
# def get_workspace_size(self, input_desc, output_desc):
# return 0
-
+
# def destroy(self):
# pass
@@ -203,6 +205,7 @@ def deserialize_plugin(self, name, data):
deserialized.__dict__.update(j)
return deserialized
+
if __name__ == "__main__":
args = parseArgs()
@@ -234,12 +237,12 @@ def deserialize_plugin(self, name, data):
# build engine
build_engine = EngineFromNetwork(
- NetworkFromOnnxPath(onnx_path), CreateConfig(fp16=precision==np.float16)
+ NetworkFromOnnxPath(onnx_path), CreateConfig(fp16=precision == np.float16)
)
Y_ref = np.pad(X, [[0, 0], [0, 0], [pads[0], pads[1]], [pads[2], pads[3]]], "wrap")
# Run
- with TrtRunner(build_engine, "trt_runner")as runner:
+ with TrtRunner(build_engine, "trt_runner") as runner:
outputs = runner.infer({"X": X})
Y = outputs["Y"]
diff --git a/samples/python/python_plugin/circ_pad_plugin_torch.py b/samples/python/python_plugin/circ_pad_plugin_torch.py
index 8b036469..76e8cc41 100644
--- a/samples/python/python_plugin/circ_pad_plugin_torch.py
+++ b/samples/python/python_plugin/circ_pad_plugin_torch.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -33,12 +33,13 @@
from utils import volume, parseArgs
+
class CircPadPlugin(trt.IPluginV2DynamicExt):
def __init__(self, fc=None):
trt.IPluginV2DynamicExt.__init__(self)
self.pads = []
self.X_shape = []
-
+
self.num_outputs = 1
self.plugin_namespace = ""
self.plugin_type = "CircPadPlugin"
@@ -110,10 +111,10 @@ def enqueue(self, input_desc, output_desc, inputs, outputs, workspace, stream):
a_d = cp.ndarray(tuple(input_desc[0].dims), dtype=inp_dtype, memptr=a_ptr)
c_d = cp.ndarray((volume(output_desc[0].dims)), dtype=inp_dtype, memptr=c_ptr)
- a_t = torch.as_tensor(a_d, device='cuda')
+ a_t = torch.as_tensor(a_d, device="cuda")
# Use PyTorch functional op - no need to write kernel
- out = torch.nn.functional.pad(a_t, self.pads.tolist(), mode='circular')
+ out = torch.nn.functional.pad(a_t, self.pads.tolist(), mode="circular")
cp.copyto(c_d, cp.reshape(cp.asarray(out), (-1,)))
return 0
@@ -123,7 +124,7 @@ def clone(self):
cloned_plugin.__dict__.update(self.__dict__)
return cloned_plugin
- #
+ #
# The following defaults take effect since the respective methods are not overriden
#
@@ -135,7 +136,7 @@ def clone(self):
# def get_workspace_size(self, input_desc, output_desc):
# return 0
-
+
# def destroy(self):
# pass
@@ -162,6 +163,7 @@ def deserialize_plugin(self, name, data):
deserialized.__dict__.update(j)
return deserialized
+
if __name__ == "__main__":
args = parseArgs()
@@ -193,12 +195,12 @@ def deserialize_plugin(self, name, data):
# build engine
build_engine = EngineFromNetwork(
- NetworkFromOnnxPath(onnx_path), CreateConfig(fp16=precision==np.float16)
+ NetworkFromOnnxPath(onnx_path), CreateConfig(fp16=precision == np.float16)
)
Y_ref = np.pad(X, [[0, 0], [0, 0], [pads[0], pads[1]], [pads[2], pads[3]]], "wrap")
# Run
- with TrtRunner(build_engine, "trt_runner")as runner:
+ with TrtRunner(build_engine, "trt_runner") as runner:
outputs = runner.infer({"X": X})
Y = outputs["Y"]
diff --git a/samples/python/python_plugin/circ_pad_plugin_triton.py b/samples/python/python_plugin/circ_pad_plugin_triton.py
index 93b5f0fd..686d4e5c 100644
--- a/samples/python/python_plugin/circ_pad_plugin_triton.py
+++ b/samples/python/python_plugin/circ_pad_plugin_triton.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -36,13 +36,26 @@
from utils import volume, parseArgs
+
@triton.jit
-def circ_pad(X,
- all_pads_0, all_pads_2, all_pads_4, all_pads_6,
- orig_dims_0, orig_dims_1, orig_dims_2, orig_dims_3,
- Y,
- Y_shape_1, Y_shape_2, Y_shape_3,
- X_len, Y_len, BLOCK_SIZE: tl.constexpr,):
+def circ_pad(
+ X,
+ all_pads_0,
+ all_pads_2,
+ all_pads_4,
+ all_pads_6,
+ orig_dims_0,
+ orig_dims_1,
+ orig_dims_2,
+ orig_dims_3,
+ Y,
+ Y_shape_1,
+ Y_shape_2,
+ Y_shape_3,
+ X_len,
+ Y_len,
+ BLOCK_SIZE: tl.constexpr,
+):
pid = tl.program_id(0)
i = pid * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
@@ -58,7 +71,12 @@ def circ_pad(X,
j2 = (i2 - all_pads_4 + orig_dims_2) % orig_dims_2
j3 = (i3 - all_pads_6 + orig_dims_3) % orig_dims_3
- load_idx = orig_dims_3 * orig_dims_2 * orig_dims_1 * j0 + orig_dims_3 * orig_dims_2 * j1 + orig_dims_3 * j2 + j3
+ load_idx = (
+ orig_dims_3 * orig_dims_2 * orig_dims_1 * j0
+ + orig_dims_3 * orig_dims_2 * j1
+ + orig_dims_3 * j2
+ + j3
+ )
mask_x = load_idx < X_len
x = tl.load(X + load_idx, mask=mask_x)
@@ -143,8 +161,8 @@ def enqueue(self, input_desc, output_desc, inputs, outputs, workspace, stream):
a_d = cp.ndarray((volume(input_desc[0].dims)), dtype=inp_dtype, memptr=a_ptr)
c_d = cp.ndarray((volume(output_desc[0].dims)), dtype=inp_dtype, memptr=c_ptr)
- a_t = torch.as_tensor(a_d, device='cuda')
- c_t = torch.as_tensor(c_d, device='cuda')
+ a_t = torch.as_tensor(a_d, device="cuda")
+ c_t = torch.as_tensor(c_d, device="cuda")
N = len(self.X_shape)
all_pads = np.zeros((N * 2,), dtype=np.int32)
@@ -163,12 +181,23 @@ def enqueue(self, input_desc, output_desc, inputs, outputs, workspace, stream):
blockSize = 256
numBlocks = (int((np.prod(out_dims) + blockSize - 1) // blockSize),)
- circ_pad[numBlocks](a_t,
- all_pads[0], all_pads[2], all_pads[4], all_pads[6],
- orig_dims[0], orig_dims[1], orig_dims[2], orig_dims[3],
+ circ_pad[numBlocks](
+ a_t,
+ all_pads[0],
+ all_pads[2],
+ all_pads[4],
+ all_pads[6],
+ orig_dims[0],
+ orig_dims[1],
+ orig_dims[2],
+ orig_dims[3],
c_t,
- out_dims[1], out_dims[2], out_dims[3],
- int(np.prod(orig_dims)), int(np.prod(out_dims)), BLOCK_SIZE=256
+ out_dims[1],
+ out_dims[2],
+ out_dims[3],
+ int(np.prod(orig_dims)),
+ int(np.prod(out_dims)),
+ BLOCK_SIZE=256,
)
return 0
@@ -178,7 +207,7 @@ def clone(self):
cloned_plugin.__dict__.update(self.__dict__)
return cloned_plugin
- #
+ #
# The following defaults take effect since the respective methods are not overriden
#
@@ -190,7 +219,7 @@ def clone(self):
# def get_workspace_size(self, input_desc, output_desc):
# return 0
-
+
# def destroy(self):
# pass
@@ -217,6 +246,7 @@ def deserialize_plugin(self, name, data):
deserialized.__dict__.update(j)
return deserialized
+
if __name__ == "__main__":
args = parseArgs()
@@ -248,12 +278,12 @@ def deserialize_plugin(self, name, data):
# build engine
build_engine = EngineFromNetwork(
- NetworkFromOnnxPath(onnx_path), CreateConfig(fp16=precision==np.float16)
+ NetworkFromOnnxPath(onnx_path), CreateConfig(fp16=precision == np.float16)
)
Y_ref = np.pad(X, [[0, 0], [0, 0], [pads[0], pads[1]], [pads[2], pads[3]]], "wrap")
# Run
- with TrtRunner(build_engine, "trt_runner")as runner:
+ with TrtRunner(build_engine, "trt_runner") as runner:
outputs = runner.infer({"X": X})
Y = outputs["Y"]
diff --git a/samples/python/python_plugin/circ_plugin_cpp/circ_pad_plugin.cu b/samples/python/python_plugin/circ_plugin_cpp/circ_pad_plugin.cu
index 8e06a025..0bcffd56 100644
--- a/samples/python/python_plugin/circ_plugin_cpp/circ_pad_plugin.cu
+++ b/samples/python/python_plugin/circ_plugin_cpp/circ_pad_plugin.cu
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
@@ -109,8 +109,7 @@ __global__ void circPadKernel(
int32_t j2 = (i2 - allPads[4] + origDims[2]) % origDims[2];
int32_t j3 = (i3 - allPads[6] + origDims[3]) % origDims[3];
- y[i] = x[origDims[3] * origDims[2] * origDims[1] * j0 + origDims[3] * origDims[2] * j1 + origDims[3] * j2
- + j3];
+ y[i] = x[origDims[3] * origDims[2] * origDims[1] * j0 + origDims[3] * origDims[2] * j1 + origDims[3] * j2 + j3];
}
}
diff --git a/samples/python/python_plugin/utils.py b/samples/python/python_plugin/utils.py
index 4015b72c..1a1aa16c 100644
--- a/samples/python/python_plugin/utils.py
+++ b/samples/python/python_plugin/utils.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -23,15 +23,26 @@
import tensorrt as trt
+
def parseArgs():
- parser = argparse.ArgumentParser(description="Options for Circular Padding plugin C++ example")
- parser.add_argument('--precision', type=str, default="fp32", choices=["fp32", "fp16"], help="Precision to use for plugin")
+ parser = argparse.ArgumentParser(
+ description="Options for Circular Padding plugin C++ example"
+ )
+ parser.add_argument(
+ "--precision",
+ type=str,
+ default="fp32",
+ choices=["fp32", "fp16"],
+ help="Precision to use for plugin",
+ )
return parser.parse_args()
+
def volume(d):
return np.prod(d)
+
# Taken from https://github.com/NVIDIA/cuda-python/blob/main/examples/common/helper_cuda.py
def checkCudaErrors(result):
def _cudaGetErrorEnum(error):
@@ -43,9 +54,14 @@ def _cudaGetErrorEnum(error):
elif isinstance(error, nvrtc.nvrtcResult):
return nvrtc.nvrtcGetErrorString(error)[1]
else:
- raise RuntimeError('Unknown error type: {}'.format(error))
+ raise RuntimeError("Unknown error type: {}".format(error))
+
if result[0].value:
- raise RuntimeError("CUDA error code={}({})".format(result[0].value, _cudaGetErrorEnum(result[0])))
+ raise RuntimeError(
+ "CUDA error code={}({})".format(
+ result[0].value, _cudaGetErrorEnum(result[0])
+ )
+ )
if len(result) == 1:
return None
elif len(result) == 2:
@@ -53,34 +69,50 @@ def _cudaGetErrorEnum(error):
else:
return result[1:]
+
# Taken from https://github.com/NVIDIA/cuda-python/blob/main/examples/common/common.py
class KernelHelper:
def __init__(self, code, devID):
- prog = checkCudaErrors(nvrtc.nvrtcCreateProgram(str.encode(code), b'sourceCode.cu', 0, [], []))
- CUDA_HOME = os.getenv('CUDA_HOME')
+ prog = checkCudaErrors(
+ nvrtc.nvrtcCreateProgram(str.encode(code), b"sourceCode.cu", 0, [], [])
+ )
+ CUDA_HOME = os.getenv("CUDA_HOME")
if CUDA_HOME == None:
- CUDA_HOME = os.getenv('CUDA_PATH')
+ CUDA_HOME = os.getenv("CUDA_PATH")
if CUDA_HOME == None:
- raise RuntimeError('Environment variable CUDA_HOME or CUDA_PATH is not set')
- include_dirs = os.path.join(CUDA_HOME, 'include')
+ raise RuntimeError("Environment variable CUDA_HOME or CUDA_PATH is not set")
+ include_dirs = os.path.join(CUDA_HOME, "include")
# Initialize CUDA
checkCudaErrors(cudart.cudaFree(0))
- major = checkCudaErrors(cudart.cudaDeviceGetAttribute(cudart.cudaDeviceAttr.cudaDevAttrComputeCapabilityMajor, devID))
- minor = checkCudaErrors(cudart.cudaDeviceGetAttribute(cudart.cudaDeviceAttr.cudaDevAttrComputeCapabilityMinor, devID))
+ major = checkCudaErrors(
+ cudart.cudaDeviceGetAttribute(
+ cudart.cudaDeviceAttr.cudaDevAttrComputeCapabilityMajor, devID
+ )
+ )
+ minor = checkCudaErrors(
+ cudart.cudaDeviceGetAttribute(
+ cudart.cudaDeviceAttr.cudaDevAttrComputeCapabilityMinor, devID
+ )
+ )
_, nvrtc_minor = checkCudaErrors(nvrtc.nvrtcVersion())
- use_cubin = (nvrtc_minor >= 1)
- prefix = 'sm' if use_cubin else 'compute'
- arch_arg = bytes(f'--gpu-architecture={prefix}_{major}{minor}', 'ascii')
+ use_cubin = nvrtc_minor >= 1
+ prefix = "sm" if use_cubin else "compute"
+ arch_arg = bytes(f"--gpu-architecture={prefix}_{major}{minor}", "ascii")
try:
- opts = [b'--fmad=true', arch_arg, '--include-path={}'.format(include_dirs).encode('UTF-8'),
- b'--std=c++11', b'-default-device']
+ opts = [
+ b"--fmad=true",
+ arch_arg,
+ "--include-path={}".format(include_dirs).encode("UTF-8"),
+ b"--std=c++11",
+ b"-default-device",
+ ]
checkCudaErrors(nvrtc.nvrtcCompileProgram(prog, len(opts), opts))
except RuntimeError as err:
logSize = checkCudaErrors(nvrtc.nvrtcGetProgramLogSize(prog))
- log = b' ' * logSize
+ log = b" " * logSize
checkCudaErrors(nvrtc.nvrtcGetProgramLog(prog, log))
print(log.decode())
print(err)
@@ -88,11 +120,11 @@ def __init__(self, code, devID):
if use_cubin:
dataSize = checkCudaErrors(nvrtc.nvrtcGetCUBINSize(prog))
- data = b' ' * dataSize
+ data = b" " * dataSize
checkCudaErrors(nvrtc.nvrtcGetCUBIN(prog, data))
else:
dataSize = checkCudaErrors(nvrtc.nvrtcGetPTXSize(prog))
- data = b' ' * dataSize
+ data = b" " * dataSize
checkCudaErrors(nvrtc.nvrtcGetPTX(prog, data))
self.module = checkCudaErrors(cuda.cuModuleLoadData(np.char.array(data)))
@@ -100,8 +132,9 @@ def __init__(self, code, devID):
def getFunction(self, name):
return checkCudaErrors(cuda.cuModuleGetFunction(self.module, name))
+
class CudaCtxManager(trt.IPluginResource):
- def __init__(self, device = None):
+ def __init__(self, device=None):
trt.IPluginResource.__init__(self)
self.device = device
self.cuda_ctx = None
diff --git a/samples/python/scripts/download_mnist_data.sh b/samples/python/scripts/download_mnist_data.sh
index 809bcbc9..196ddd4e 100755
--- a/samples/python/scripts/download_mnist_data.sh
+++ b/samples/python/scripts/download_mnist_data.sh
@@ -1,6 +1,6 @@
#!/bin/bash
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/python/scripts/download_mnist_pgms.py b/samples/python/scripts/download_mnist_pgms.py
index a1ee0cba..dee877fe 100644
--- a/samples/python/scripts/download_mnist_pgms.py
+++ b/samples/python/scripts/download_mnist_pgms.py
@@ -1,6 +1,6 @@
#!/usr/bin/env python3
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/python/simple_progress_monitor/simple_progress_monitor.py b/samples/python/simple_progress_monitor/simple_progress_monitor.py
index 9ed6c6ba..fe54f720 100644
--- a/samples/python/simple_progress_monitor/simple_progress_monitor.py
+++ b/samples/python/simple_progress_monitor/simple_progress_monitor.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -36,6 +36,7 @@ class ModelData(object):
# We can convert TensorRT data types to numpy types with trt.nptype().
DTYPE = trt.float32
+
# This is a simple ASCII-art progress monitor comparable to the C++ version in sample_progress_monitor.
class SimpleProgressMonitor(trt.IProgressMonitor):
def __init__(self):
@@ -46,10 +47,15 @@ def __init__(self):
def phase_start(self, phase_name, parent_phase, num_steps):
try:
if parent_phase is not None:
- nbIndents = 1 + self._active_phases[parent_phase]['nbIndents']
+ nbIndents = 1 + self._active_phases[parent_phase]["nbIndents"]
else:
nbIndents = 0
- self._active_phases[phase_name] = { 'title': phase_name, 'steps': 0, 'num_steps': num_steps, 'nbIndents': nbIndents }
+ self._active_phases[phase_name] = {
+ "title": phase_name,
+ "steps": 0,
+ "num_steps": num_steps,
+ "nbIndents": nbIndents,
+ }
self._redraw()
except KeyboardInterrupt:
# The phase_start callback cannot directly cancel the build, so request the cancellation from within step_complete.
@@ -58,13 +64,13 @@ def phase_start(self, phase_name, parent_phase, num_steps):
def phase_finish(self, phase_name):
try:
del self._active_phases[phase_name]
- self._redraw(blank_lines=1) # Clear the removed phase.
+ self._redraw(blank_lines=1) # Clear the removed phase.
except KeyboardInterrupt:
_step_result = False
def step_complete(self, phase_name, step):
try:
- self._active_phases[phase_name]['steps'] = step
+ self._active_phases[phase_name]["steps"] = step
self._redraw()
return self._step_result
except KeyboardInterrupt:
@@ -75,32 +81,35 @@ def _redraw(self, *, blank_lines=0):
# The Python curses module is not widely available on Windows platforms.
# Instead, this function uses raw terminal escape sequences. See the sample documentation for references.
def clear_line():
- print('\x1B[2K', end='')
+ print("\x1B[2K", end="")
+
def move_to_start_of_line():
- print('\x1B[0G', end='')
+ print("\x1B[0G", end="")
+
def move_cursor_up(lines):
- print('\x1B[{}A'.format(lines), end='')
+ print("\x1B[{}A".format(lines), end="")
def progress_bar(steps, num_steps):
INNER_WIDTH = 10
completed_bar_chars = int(INNER_WIDTH * steps / float(num_steps))
- return '[{}{}]'.format(
- '=' * completed_bar_chars,
- '-' * (INNER_WIDTH - completed_bar_chars))
+ return "[{}{}]".format(
+ "=" * completed_bar_chars, "-" * (INNER_WIDTH - completed_bar_chars)
+ )
# Set max_cols to a default of 200 if not run in interactive mode.
max_cols = os.get_terminal_size().columns if sys.stdout.isatty() else 200
move_to_start_of_line()
for phase in self._active_phases.values():
- phase_prefix = '{indent}{bar} {title}'.format(
- indent = ' ' * phase['nbIndents'],
- bar = progress_bar(phase['steps'], phase['num_steps']),
- title = phase['title'])
- phase_suffix = '{steps}/{num_steps}'.format(**phase)
+ phase_prefix = "{indent}{bar} {title}".format(
+ indent=" " * phase["nbIndents"],
+ bar=progress_bar(phase["steps"], phase["num_steps"]),
+ title=phase["title"],
+ )
+ phase_suffix = "{steps}/{num_steps}".format(**phase)
allowable_prefix_chars = max_cols - len(phase_suffix) - 2
if allowable_prefix_chars < len(phase_prefix):
- phase_prefix = phase_prefix[0:allowable_prefix_chars-3] + '...'
+ phase_prefix = phase_prefix[0 : allowable_prefix_chars - 3] + "..."
clear_line()
print(phase_prefix, phase_suffix)
for line in range(blank_lines):
@@ -109,16 +118,20 @@ def progress_bar(steps, num_steps):
move_cursor_up(len(self._active_phases) + blank_lines)
sys.stdout.flush()
+
# You can set the logger severity higher to suppress messages (or lower to display more messages).
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
+
# The Onnx path is used for Onnx models.
def build_engine_onnx(model_file):
builder = trt.Builder(TRT_LOGGER)
network = builder.create_network(0)
config = builder.create_builder_config()
if not sys.stdout.isatty():
- print("Warning: This sample should be run from an interactive terminal in order to showcase the progress monitor correctly.")
+ print(
+ "Warning: This sample should be run from an interactive terminal in order to showcase the progress monitor correctly."
+ )
config.progress_monitor = SimpleProgressMonitor()
parser = trt.OnnxParser(network, TRT_LOGGER)
@@ -186,7 +199,14 @@ def main():
test_case = load_normalized_test_case(test_image, inputs[0].host)
# Run the engine. The output will be a 1D tensor of length 1000, where each value represents the
# probability that the image corresponds to that label
- trt_outputs = common.do_inference(context, engine=engine, bindings=bindings, inputs=inputs, outputs=outputs, stream=stream)
+ trt_outputs = common.do_inference(
+ context,
+ engine=engine,
+ bindings=bindings,
+ inputs=inputs,
+ outputs=outputs,
+ stream=stream,
+ )
# We use the highest probability as our prediction. Its index corresponds to the predicted label.
pred = labels[np.argmax(trt_outputs[0])]
common.free_buffers(inputs, outputs, stream)
@@ -195,5 +215,6 @@ def main():
else:
print("Incorrectly recognized " + test_case + " as " + pred)
+
if __name__ == "__main__":
main()
diff --git a/samples/python/tensorflow_object_detection_api/build_engine.py b/samples/python/tensorflow_object_detection_api/build_engine.py
index 0a0d6238..9bbf5f7c 100644
--- a/samples/python/tensorflow_object_detection_api/build_engine.py
+++ b/samples/python/tensorflow_object_detection_api/build_engine.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -56,7 +56,10 @@ def set_image_batcher(self, image_batcher: ImageBatcher):
:param image_batcher: The ImageBatcher object
"""
self.image_batcher = image_batcher
- size = int(np.dtype(self.image_batcher.dtype).itemsize * np.prod(self.image_batcher.shape))
+ size = int(
+ np.dtype(self.image_batcher.dtype).itemsize
+ * np.prod(self.image_batcher.shape)
+ )
self.batch_allocation = common.cuda_call(cudart.cudaMalloc(size))
self.batch_generator = self.image_batcher.get_batch()
@@ -81,8 +84,14 @@ def get_batch(self, names):
return None
try:
batch, _, _ = next(self.batch_generator)
- log.info("Calibrating image {} / {}".format(self.image_batcher.image_index, self.image_batcher.num_images))
- common.memcpy_host_to_device(self.batch_allocation, np.ascontiguousarray(batch))
+ log.info(
+ "Calibrating image {} / {}".format(
+ self.image_batcher.image_index, self.image_batcher.num_images
+ )
+ )
+ common.memcpy_host_to_device(
+ self.batch_allocation, np.ascontiguousarray(batch)
+ )
return [int(self.batch_allocation)]
except StopIteration:
log.info("Finished calibration batches")
@@ -128,7 +137,9 @@ def __init__(self, verbose=False, workspace=8):
self.builder = trt.Builder(self.trt_logger)
self.config = self.builder.create_builder_config()
- self.config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace * (2 ** 30))
+ self.config.set_memory_pool_limit(
+ trt.MemoryPoolType.WORKSPACE, workspace * (2**30)
+ )
self.batch_size = None
self.network = None
@@ -157,9 +168,17 @@ def create_network(self, onnx_path):
log.info("Network Description")
for input in inputs:
self.batch_size = input.shape[0]
- log.info("Input '{}' with shape {} and dtype {}".format(input.name, input.shape, input.dtype))
+ log.info(
+ "Input '{}' with shape {} and dtype {}".format(
+ input.name, input.shape, input.dtype
+ )
+ )
for output in outputs:
- log.info("Output '{}' with shape {} and dtype {}".format(output.name, output.shape, output.dtype))
+ log.info(
+ "Output '{}' with shape {} and dtype {}".format(
+ output.name, output.shape, output.dtype
+ )
+ )
assert self.batch_size > 0
# TODO: These overrides are to improve fp16/int8 performance on FRCNN models
@@ -167,17 +186,25 @@ def create_network(self, onnx_path):
# type on the two NMS plugins. To be determined.
for i in range(self.network.num_layers):
if self.network.get_layer(i).name in [
- "FirstStageBoxPredictor/ConvolutionalBoxHead_0/BoxEncodingPredictor/squeeze",
- "FirstStageBoxPredictor/ConvolutionalBoxHead_0/BoxEncodingPredictor/scale_value:0",
- "FirstStageBoxPredictor/ConvolutionalBoxHead_0/BoxEncodingPredictor/scale",
- "nms/anchors:0"]:
+ "FirstStageBoxPredictor/ConvolutionalBoxHead_0/BoxEncodingPredictor/squeeze",
+ "FirstStageBoxPredictor/ConvolutionalBoxHead_0/BoxEncodingPredictor/scale_value:0",
+ "FirstStageBoxPredictor/ConvolutionalBoxHead_0/BoxEncodingPredictor/scale",
+ "nms/anchors:0",
+ ]:
self.network.get_layer(i).precision = trt.DataType.FLOAT
- self.network.get_layer(i-1).precision = trt.DataType.FLOAT
+ self.network.get_layer(i - 1).precision = trt.DataType.FLOAT
if self.network.get_layer(i).name == "FirstNMS/detection_boxes_conversion":
self.network.get_layer(i).precision = trt.DataType.FLOAT
- def create_engine(self, engine_path, precision, calib_input=None, calib_cache=None, calib_num_images=5000,
- calib_batch_size=8):
+ def create_engine(
+ self,
+ engine_path,
+ precision,
+ calib_input=None,
+ calib_cache=None,
+ calib_num_images=5000,
+ calib_batch_size=8,
+ ):
"""
Build the TensorRT engine and serialize it to disk.
:param engine_path: The path where to serialize the engine to.
@@ -218,8 +245,14 @@ def create_engine(self, engine_path, precision, calib_input=None, calib_cache=No
calib_shape = [calib_batch_size] + list(inputs[0].shape[1:])
calib_dtype = trt.nptype(inputs[0].dtype)
self.config.int8_calibrator.set_image_batcher(
- ImageBatcher(calib_input, calib_shape, calib_dtype, max_num_images=calib_num_images,
- exact_batches=True))
+ ImageBatcher(
+ calib_input,
+ calib_shape,
+ calib_dtype,
+ max_num_images=calib_num_images,
+ exact_batches=True,
+ )
+ )
engine_bytes = self.builder.build_serialized_network(self.network, self.config)
if engine_bytes is None:
@@ -234,33 +267,68 @@ def create_engine(self, engine_path, precision, calib_input=None, calib_cache=No
def main(args):
builder = EngineBuilder(args.verbose, args.workspace)
builder.create_network(args.onnx)
- builder.create_engine(args.engine, args.precision, args.calib_input, args.calib_cache, args.calib_num_images,
- args.calib_batch_size)
+ builder.create_engine(
+ args.engine,
+ args.precision,
+ args.calib_input,
+ args.calib_cache,
+ args.calib_num_images,
+ args.calib_batch_size,
+ )
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-o", "--onnx", help="The input ONNX model file to load")
parser.add_argument("-e", "--engine", help="The output path for the TRT engine")
- parser.add_argument("-p", "--precision", default="fp16", choices=["fp32", "fp16", "int8"],
- help="The precision mode to build in, either 'fp32', 'fp16' or 'int8', default: 'fp16'")
- parser.add_argument("-v", "--verbose", action="store_true", help="Enable more verbose log output")
- parser.add_argument("-w", "--workspace", default=1, type=int, help="The max memory workspace size to allow in Gb, "
- "default: 1")
- parser.add_argument("--calib_input", help="The directory holding images to use for calibration")
- parser.add_argument("--calib_cache", default="./calibration.cache",
- help="The file path for INT8 calibration cache to use, default: ./calibration.cache")
- parser.add_argument("--calib_num_images", default=5000, type=int,
- help="The maximum number of images to use for calibration, default: 5000")
- parser.add_argument("--calib_batch_size", default=8, type=int,
- help="The batch size for the calibration process, default: 8")
+ parser.add_argument(
+ "-p",
+ "--precision",
+ default="fp16",
+ choices=["fp32", "fp16", "int8"],
+ help="The precision mode to build in, either 'fp32', 'fp16' or 'int8', default: 'fp16'",
+ )
+ parser.add_argument(
+ "-v", "--verbose", action="store_true", help="Enable more verbose log output"
+ )
+ parser.add_argument(
+ "-w",
+ "--workspace",
+ default=1,
+ type=int,
+ help="The max memory workspace size to allow in Gb, " "default: 1",
+ )
+ parser.add_argument(
+ "--calib_input", help="The directory holding images to use for calibration"
+ )
+ parser.add_argument(
+ "--calib_cache",
+ default="./calibration.cache",
+ help="The file path for INT8 calibration cache to use, default: ./calibration.cache",
+ )
+ parser.add_argument(
+ "--calib_num_images",
+ default=5000,
+ type=int,
+ help="The maximum number of images to use for calibration, default: 5000",
+ )
+ parser.add_argument(
+ "--calib_batch_size",
+ default=8,
+ type=int,
+ help="The batch size for the calibration process, default: 8",
+ )
args = parser.parse_args()
if not all([args.onnx, args.engine]):
parser.print_help()
log.error("These arguments are required: --onnx and --engine")
sys.exit(1)
- if args.precision == "int8" and not (args.calib_input or os.path.exists(args.calib_cache)):
+ if args.precision == "int8" and not (
+ args.calib_input or os.path.exists(args.calib_cache)
+ ):
parser.print_help()
- log.error("When building in int8 precision, --calib_input or an existing --calib_cache file is required")
+ log.error(
+ "When building in int8 precision, --calib_input or an existing --calib_cache file is required"
+ )
sys.exit(1)
main(args)
diff --git a/samples/python/tensorflow_object_detection_api/compare_tf.py b/samples/python/tensorflow_object_detection_api/compare_tf.py
index 409aec6b..ae5168eb 100644
--- a/samples/python/tensorflow_object_detection_api/compare_tf.py
+++ b/samples/python/tensorflow_object_detection_api/compare_tf.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -27,6 +27,7 @@
from image_batcher import ImageBatcher
from visualize import visualize_detections, concat_visualizations
+
class TensorFlowInfer:
"""
Implements TensorFlow inference of a saved model, following the same API as the TensorRTInfer class.
@@ -36,45 +37,49 @@ def __init__(self, saved_model_path, preprocessor, detection_type, iou_threshold
self.preprocessor = preprocessor
self.detection_type = detection_type
self.iou_threshold = iou_threshold
- gpus = tf.config.experimental.list_physical_devices('GPU')
+ gpus = tf.config.experimental.list_physical_devices("GPU")
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
self.model = tf.saved_model.load(saved_model_path)
- self.pred_fn = self.model.signatures['serving_default']
+ self.pred_fn = self.model.signatures["serving_default"]
# Setup I/O bindings
self.inputs = []
fn_inputs = self.pred_fn.structured_input_signature[1]
for i, input in enumerate(list(fn_inputs.values())):
- self.inputs.append({
- 'index': i,
- 'name': input.name,
- 'dtype': np.dtype(input.dtype.as_numpy_dtype()),
- 'shape': [1, 512, 512, 3], # This can be overridden later
- })
+ self.inputs.append(
+ {
+ "index": i,
+ "name": input.name,
+ "dtype": np.dtype(input.dtype.as_numpy_dtype()),
+ "shape": [1, 512, 512, 3], # This can be overridden later
+ }
+ )
self.outputs = []
fn_outputs = self.pred_fn.structured_outputs
for i, output in enumerate(list(fn_outputs.values())):
- self.outputs.append({
- 'index': i,
- 'name': output.name,
- 'dtype': np.dtype(output.dtype.as_numpy_dtype()),
- 'shape': output.shape.as_list(),
- })
+ self.outputs.append(
+ {
+ "index": i,
+ "name": output.name,
+ "dtype": np.dtype(output.dtype.as_numpy_dtype()),
+ "shape": output.shape.as_list(),
+ }
+ )
def override_input_shape(self, input, shape):
- self.inputs[input]['shape'] = shape
+ self.inputs[input]["shape"] = shape
def input_spec(self):
- return self.inputs[0]['shape'], self.inputs[0]['dtype']
+ return self.inputs[0]["shape"], self.inputs[0]["dtype"]
def output_spec(self):
- return self.outputs[0]['shape'], self.outputs[0]['dtype']
+ return self.outputs[0]["shape"], self.outputs[0]["dtype"]
def infer(self, batch, scales=None, nms_threshold=None):
# Process I/O and execute the network
- input = {self.inputs[0]['name']: tf.convert_to_tensor(batch)}
+ input = {self.inputs[0]["name"]: tf.convert_to_tensor(batch)}
output = self.pred_fn(**input)
# Extract the results depending on what kind of saved model this is
@@ -82,24 +87,24 @@ def infer(self, batch, scales=None, nms_threshold=None):
scores = None
classes = None
- assert output['num_detections']
- num = int(output['num_detections'].numpy().flatten()[0])
- boxes = output['detection_boxes'].numpy()[:, 0:num, :]
- scores = output['detection_scores'].numpy()[:, 0:num]
- classes = output['detection_classes'].numpy()[:, 0:num]
+ assert output["num_detections"]
+ num = int(output["num_detections"].numpy().flatten()[0])
+ boxes = output["detection_boxes"].numpy()[:, 0:num, :]
+ scores = output["detection_scores"].numpy()[:, 0:num]
+ classes = output["detection_classes"].numpy()[:, 0:num]
# One additional output for segmentation masks
if "detection_masks" in output:
- masks = output['detection_masks'].numpy()[:, 0:num]
+ masks = output["detection_masks"].numpy()[:, 0:num]
# Process the results
detections = [[]]
- normalized = (np.max(boxes) < 2.0)
+ normalized = np.max(boxes) < 2.0
for n in range(scores.shape[1]):
# Depending on preprocessor, box scaling will be slightly different.
if self.preprocessor == "fixed_shape_resizer":
if scores[0][n] == 0.0:
break
- scale_x = self.inputs[0]['shape'][1] if normalized else 1.0
- scale_y = self.inputs[0]['shape'][2] if normalized else 1.0
+ scale_x = self.inputs[0]["shape"][1] if normalized else 1.0
+ scale_y = self.inputs[0]["shape"][2] if normalized else 1.0
if scales:
scale_x /= scales[0][0]
@@ -107,11 +112,11 @@ def infer(self, batch, scales=None, nms_threshold=None):
if nms_threshold and scores[0][n] < nms_threshold:
continue
# Depending on detection type you need slightly different data.
- if self.detection_type == 'bbox':
+ if self.detection_type == "bbox":
mask = None
# Segmentation is only supported with Mask R-CNN, which has
# fixed_shape_resizer as image_resizer (lookup pipeline.config)
- elif self.detection_type == 'segmentation':
+ elif self.detection_type == "segmentation":
# Select a mask
mask = masks[0][n]
# Slight scaling, to get binary masks after float32 -> uint8
@@ -124,7 +129,7 @@ def infer(self, batch, scales=None, nms_threshold=None):
mask = None
if scores[0][n] == 0.0:
break
- scale = self.inputs[0]['shape'][2] if normalized else 1.0
+ scale = self.inputs[0]["shape"][2] if normalized else 1.0
if scales:
scale /= scales[0]
scale_y = scale
@@ -132,15 +137,17 @@ def infer(self, batch, scales=None, nms_threshold=None):
if nms_threshold and scores[0][n] < nms_threshold:
continue
# Append to detections
- detections[0].append({
- 'ymin': boxes[0][n][0] * scale_y,
- 'xmin': boxes[0][n][1] * scale_x,
- 'ymax': boxes[0][n][2] * scale_y,
- 'xmax': boxes[0][n][3] * scale_x,
- 'score': scores[0][n],
- 'class': int(classes[0][n]) - 1,
- 'mask': mask,
- })
+ detections[0].append(
+ {
+ "ymin": boxes[0][n][0] * scale_y,
+ "xmin": boxes[0][n][1] * scale_x,
+ "ymax": boxes[0][n][2] * scale_y,
+ "xmax": boxes[0][n][3] * scale_x,
+ "score": scores[0][n],
+ "class": int(classes[0][n]) - 1,
+ "mask": mask,
+ }
+ )
return detections
@@ -150,7 +157,12 @@ def run(batcher, inferer, framework, nms_threshold=None):
for batch, images, scales in batcher.get_batch():
res_detections += inferer.infer(batch, scales, nms_threshold)
res_images += images
- print("Processing {} / {} images ({})".format(batcher.image_index, batcher.num_images, framework), end="\r")
+ print(
+ "Processing {} / {} images ({})".format(
+ batcher.image_index, batcher.num_images, framework
+ ),
+ end="\r",
+ )
print()
return res_images, res_detections
@@ -159,34 +171,45 @@ def parse_annotations(annotations_path, detection_type):
annotations = {}
if annotations_path and os.path.exists(annotations_path):
# Load annotations as coco, to extract segmentation masks
- coco=COCO(annotations_path)
+ coco = COCO(annotations_path)
with open(annotations_path) as f:
ann_json = json.load(f)
- for ann in ann_json['annotations']:
- img_id = ann['image_id']
+ for ann in ann_json["annotations"]:
+ img_id = ann["image_id"]
if img_id not in annotations.keys():
annotations[img_id] = []
# Depending on detection type you need slightly different data.
- if detection_type == 'bbox':
+ if detection_type == "bbox":
mask = None
# Segmentation is only supported with Mask R-CNN, which has
# fixed_shape_resizer as image_resizer (lookup pipeline.config)
- elif detection_type == 'segmentation':
+ elif detection_type == "segmentation":
# Get np.array segmentation mask from annotation
mask = coco.annToMask(ann)
- annotations[img_id].append({
- 'ymin': ann['bbox'][1],
- 'xmin': ann['bbox'][0],
- 'ymax': ann['bbox'][1] + ann['bbox'][3],
- 'xmax': ann['bbox'][0] + ann['bbox'][2],
- 'score': -1,
- 'class': ann['category_id'] - 1,
- 'mask': mask,
- })
+ annotations[img_id].append(
+ {
+ "ymin": ann["bbox"][1],
+ "xmin": ann["bbox"][0],
+ "ymax": ann["bbox"][1] + ann["bbox"][3],
+ "xmax": ann["bbox"][0] + ann["bbox"][2],
+ "score": -1,
+ "class": ann["category_id"] - 1,
+ "mask": mask,
+ }
+ )
return annotations
-def compare_images(tf_images, tf_detections, trt_images, trt_detections, output_dir, annotations_path, labels_path, detection_type):
+def compare_images(
+ tf_images,
+ tf_detections,
+ trt_images,
+ trt_detections,
+ output_dir,
+ annotations_path,
+ labels_path,
+ detection_type,
+):
labels = []
if labels_path and os.path.exists(labels_path):
with open(labels_path) as f:
@@ -196,7 +219,9 @@ def compare_images(tf_images, tf_detections, trt_images, trt_detections, output_
annotations = parse_annotations(annotations_path, detection_type)
count = 1
- for tf_img, tf_det, trt_img, trt_det in zip(tf_images, tf_detections, trt_images, trt_detections):
+ for tf_img, tf_det, trt_img, trt_det in zip(
+ tf_images, tf_detections, trt_images, trt_detections
+ ):
vis = []
names = []
colors = []
@@ -214,60 +239,142 @@ def compare_images(tf_images, tf_detections, trt_images, trt_detections, output_
if img_id.isnumeric():
img_id = int(img_id)
if img_id in annotations.keys():
- vis.append(visualize_detections(trt_img, None, annotations[img_id], labels))
+ vis.append(
+ visualize_detections(trt_img, None, annotations[img_id], labels)
+ )
names.append("Ground Truth")
colors.append("RoyalBlue")
else:
- print("Image {} does not have a COCO annotation, skipping ground truth visualization".format(trt_img))
+ print(
+ "Image {} does not have a COCO annotation, skipping ground truth visualization".format(
+ trt_img
+ )
+ )
basename = os.path.splitext(os.path.basename(tf_img))[0]
output_path = os.path.join(output_dir, "{}.compare.png".format(basename))
os.makedirs(output_dir, exist_ok=True)
concat_visualizations(vis, names, colors, output_path)
- print("Processing {} / {} images (Visualization)".format(count, len(tf_images)), end="\r")
+ print(
+ "Processing {} / {} images (Visualization)".format(count, len(tf_images)),
+ end="\r",
+ )
count += 1
print()
def main(args):
- tf_infer = TensorFlowInfer(args.saved_model, args.preprocessor, args.detection_type, args.iou_threshold)
- trt_infer = TensorRTInfer(args.engine, args.preprocessor, args.detection_type, args.iou_threshold)
-
- trt_batcher = ImageBatcher(args.input, *trt_infer.input_spec(), max_num_images=args.num_images, preprocessor=args.preprocessor)
- tf_infer.override_input_shape(0, [1, trt_batcher.height, trt_batcher.width, 3]) # Same size input in TF as TRT
- tf_batcher = ImageBatcher(args.input, *tf_infer.input_spec(), max_num_images=args.num_images, preprocessor=args.preprocessor)
-
- tf_images, tf_detections = run(tf_batcher, tf_infer, "TensorFlow", args.nms_threshold)
- trt_images, trt_detections = run(trt_batcher, trt_infer, "TensorRT", args.nms_threshold)
-
- compare_images(tf_images, tf_detections, trt_images, trt_detections, args.output, args.annotations, args.labels, args.detection_type)
+ tf_infer = TensorFlowInfer(
+ args.saved_model, args.preprocessor, args.detection_type, args.iou_threshold
+ )
+ trt_infer = TensorRTInfer(
+ args.engine, args.preprocessor, args.detection_type, args.iou_threshold
+ )
+
+ trt_batcher = ImageBatcher(
+ args.input,
+ *trt_infer.input_spec(),
+ max_num_images=args.num_images,
+ preprocessor=args.preprocessor
+ )
+ tf_infer.override_input_shape(
+ 0, [1, trt_batcher.height, trt_batcher.width, 3]
+ ) # Same size input in TF as TRT
+ tf_batcher = ImageBatcher(
+ args.input,
+ *tf_infer.input_spec(),
+ max_num_images=args.num_images,
+ preprocessor=args.preprocessor
+ )
+
+ tf_images, tf_detections = run(
+ tf_batcher, tf_infer, "TensorFlow", args.nms_threshold
+ )
+ trt_images, trt_detections = run(
+ trt_batcher, trt_infer, "TensorRT", args.nms_threshold
+ )
+
+ compare_images(
+ tf_images,
+ tf_detections,
+ trt_images,
+ trt_detections,
+ args.output,
+ args.annotations,
+ args.labels,
+ args.detection_type,
+ )
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-e", "--engine", help="The TensorRT engine to infer with")
- parser.add_argument("-m", "--saved_model", help="The TensorFlow saved model path to validate against")
- parser.add_argument("-i", "--input",
- help="The input to infer, either a single image path, or a directory of images")
- parser.add_argument("-o", "--output", default=None, help="Directory where to save the visualization results")
- parser.add_argument("-l", "--labels", default="./labels_coco.txt",
- help="File to use for reading the class labels from, default: ./labels_coco.txt")
- parser.add_argument("-a", "--annotations", default=None,
- help="Set the path to the 'instances_val2017.json' file to use for COCO annotations, in which "
- "case --input should point to the COCO val2017 dataset, default: not used")
- parser.add_argument("-n", "--num_images", default=100, type=int,
- help="The maximum number of images to visualize, default: 100")
- parser.add_argument("-t", "--nms_threshold", type=float,
- help="Override the score threshold for the NMS operation, if higher than the threshold in the model/engine.")
- parser.add_argument("--iou_threshold", default=0.5, type=float,
- help="Select the IoU threshold for the mask segmentation. Range is 0 to 1. Pixel values more than threshold will become 1, less 0")
- parser.add_argument("-d", "--detection_type", default="bbox", choices=["bbox", "segmentation"],
- help="Detection type for COCO, either bbox or if you are using Mask R-CNN's instance segmentation - segmentation")
- parser.add_argument("--preprocessor", default="fixed_shape_resizer", choices=["fixed_shape_resizer", "keep_aspect_ratio_resizer"],
- help="Select the image preprocessor to use based on your pipeline.config, either 'fixed_shape_resizer' or 'keep_aspect_ratio_resizer', default: fixed_shape_resizer")
+ parser.add_argument(
+ "-m",
+ "--saved_model",
+ help="The TensorFlow saved model path to validate against",
+ )
+ parser.add_argument(
+ "-i",
+ "--input",
+ help="The input to infer, either a single image path, or a directory of images",
+ )
+ parser.add_argument(
+ "-o",
+ "--output",
+ default=None,
+ help="Directory where to save the visualization results",
+ )
+ parser.add_argument(
+ "-l",
+ "--labels",
+ default="./labels_coco.txt",
+ help="File to use for reading the class labels from, default: ./labels_coco.txt",
+ )
+ parser.add_argument(
+ "-a",
+ "--annotations",
+ default=None,
+ help="Set the path to the 'instances_val2017.json' file to use for COCO annotations, in which "
+ "case --input should point to the COCO val2017 dataset, default: not used",
+ )
+ parser.add_argument(
+ "-n",
+ "--num_images",
+ default=100,
+ type=int,
+ help="The maximum number of images to visualize, default: 100",
+ )
+ parser.add_argument(
+ "-t",
+ "--nms_threshold",
+ type=float,
+ help="Override the score threshold for the NMS operation, if higher than the threshold in the model/engine.",
+ )
+ parser.add_argument(
+ "--iou_threshold",
+ default=0.5,
+ type=float,
+ help="Select the IoU threshold for the mask segmentation. Range is 0 to 1. Pixel values more than threshold will become 1, less 0",
+ )
+ parser.add_argument(
+ "-d",
+ "--detection_type",
+ default="bbox",
+ choices=["bbox", "segmentation"],
+ help="Detection type for COCO, either bbox or if you are using Mask R-CNN's instance segmentation - segmentation",
+ )
+ parser.add_argument(
+ "--preprocessor",
+ default="fixed_shape_resizer",
+ choices=["fixed_shape_resizer", "keep_aspect_ratio_resizer"],
+ help="Select the image preprocessor to use based on your pipeline.config, either 'fixed_shape_resizer' or 'keep_aspect_ratio_resizer', default: fixed_shape_resizer",
+ )
args = parser.parse_args()
- if not all([args.engine, args.saved_model, args.input, args.output, args.preprocessor]):
+ if not all(
+ [args.engine, args.saved_model, args.input, args.output, args.preprocessor]
+ ):
parser.print_help()
sys.exit(1)
main(args)
diff --git a/samples/python/tensorflow_object_detection_api/create_onnx.py b/samples/python/tensorflow_object_detection_api/create_onnx.py
index 919cc8e6..fc75fa17 100644
--- a/samples/python/tensorflow_object_detection_api/create_onnx.py
+++ b/samples/python/tensorflow_object_detection_api/create_onnx.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -32,7 +32,9 @@
from object_detection.utils import config_util
except ImportError:
print("Could not import TFOD modules. Maybe you did not install TFOD API")
- print("Please install TensorFlow 2 Object Detection API, check https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2.md")
+ print(
+ "Please install TensorFlow 2 Object Detection API, check https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2.md"
+ )
sys.exit(1)
import onnx_utils
@@ -55,14 +57,19 @@ def __init__(self, saved_model_path, pipeline_config_path):
assert os.path.exists(saved_model_path)
# Use tf2onnx to convert saved model to an initial ONNX graph.
- graph_def, inputs, outputs = tf_loader.from_saved_model(saved_model_path, None, None, "serve",
- ["serving_default"])
+ graph_def, inputs, outputs = tf_loader.from_saved_model(
+ saved_model_path, None, None, "serve", ["serving_default"]
+ )
log.info("Loaded saved model from {}".format(saved_model_path))
with tf.Graph().as_default() as tf_graph:
tf.import_graph_def(graph_def, name="")
with tf_loader.tf_session(graph=tf_graph):
- onnx_graph = tfonnx.process_tf_graph(tf_graph, input_names=inputs, output_names=outputs, opset=11)
- onnx_model = optimizer.optimize_graph(onnx_graph).make_model("Converted from {}".format(saved_model_path))
+ onnx_graph = tfonnx.process_tf_graph(
+ tf_graph, input_names=inputs, output_names=outputs, opset=11
+ )
+ onnx_model = optimizer.optimize_graph(onnx_graph).make_model(
+ "Converted from {}".format(saved_model_path)
+ )
self.graph = gs.import_onnx(onnx_model)
assert self.graph
log.info("TF2ONNX graph created successfully")
@@ -71,61 +78,140 @@ def __init__(self, saved_model_path, pipeline_config_path):
self.graph.fold_constants()
# Pipeline config parsing.
- pipeline_config = config_util.get_configs_from_pipeline_file(pipeline_config_path)
+ pipeline_config = config_util.get_configs_from_pipeline_file(
+ pipeline_config_path
+ )
# Get input resolution.
- self.height, self.width = config_util.get_spatial_image_size(config_util.get_image_resizer_config(pipeline_config["model"]))
+ self.height, self.width = config_util.get_spatial_image_size(
+ config_util.get_image_resizer_config(pipeline_config["model"])
+ )
# If your model is SSD, get characteristics accordingly from pipeline.config file.
if pipeline_config["model"].HasField("ssd"):
# Getting model characteristics.
self.model = str(pipeline_config["model"].ssd.feature_extractor.type)
- self.first_stage_nms_score_threshold = float(pipeline_config["model"].ssd.post_processing.batch_non_max_suppression.score_threshold)
- self.first_stage_nms_iou_threshold = float(pipeline_config["model"].ssd.post_processing.batch_non_max_suppression.iou_threshold)
- self.first_stage_max_proposals = int(pipeline_config["model"].ssd.post_processing.batch_non_max_suppression.max_detections_per_class)
+ self.first_stage_nms_score_threshold = float(
+ pipeline_config[
+ "model"
+ ].ssd.post_processing.batch_non_max_suppression.score_threshold
+ )
+ self.first_stage_nms_iou_threshold = float(
+ pipeline_config[
+ "model"
+ ].ssd.post_processing.batch_non_max_suppression.iou_threshold
+ )
+ self.first_stage_max_proposals = int(
+ pipeline_config[
+ "model"
+ ].ssd.post_processing.batch_non_max_suppression.max_detections_per_class
+ )
# If your model is Faster R-CNN get it's characteristics from pipeline.config file.
elif pipeline_config["model"].HasField("faster_rcnn"):
# Getting model characteristics.
- self.model = str(pipeline_config["model"].faster_rcnn.feature_extractor.type)
+ self.model = str(
+ pipeline_config["model"].faster_rcnn.feature_extractor.type
+ )
self.num_classes = pipeline_config["model"].faster_rcnn.num_classes
- self.first_stage_nms_score_threshold = float(pipeline_config["model"].faster_rcnn.first_stage_nms_score_threshold)
- self.first_stage_nms_iou_threshold = float(pipeline_config["model"].faster_rcnn.first_stage_nms_iou_threshold)
- self.first_stage_max_proposals = int(pipeline_config["model"].faster_rcnn.first_stage_max_proposals)
- self.first_stage_crop_size = int(pipeline_config["model"].faster_rcnn.initial_crop_size)
- self.second_stage_nms_score_threshold = float(pipeline_config["model"].faster_rcnn.second_stage_post_processing.batch_non_max_suppression.score_threshold)
- self.second_stage_iou_threshold = float(pipeline_config["model"].faster_rcnn.second_stage_post_processing.batch_non_max_suppression.iou_threshold)
+ self.first_stage_nms_score_threshold = float(
+ pipeline_config["model"].faster_rcnn.first_stage_nms_score_threshold
+ )
+ self.first_stage_nms_iou_threshold = float(
+ pipeline_config["model"].faster_rcnn.first_stage_nms_iou_threshold
+ )
+ self.first_stage_max_proposals = int(
+ pipeline_config["model"].faster_rcnn.first_stage_max_proposals
+ )
+ self.first_stage_crop_size = int(
+ pipeline_config["model"].faster_rcnn.initial_crop_size
+ )
+ self.second_stage_nms_score_threshold = float(
+ pipeline_config[
+ "model"
+ ].faster_rcnn.second_stage_post_processing.batch_non_max_suppression.score_threshold
+ )
+ self.second_stage_iou_threshold = float(
+ pipeline_config[
+ "model"
+ ].faster_rcnn.second_stage_post_processing.batch_non_max_suppression.iou_threshold
+ )
self.mask_height = None
self.mask_width = None
self.matmul_crop_and_resize = False
# Check what kind of Crop and Resize operation is used
- if pipeline_config["model"].faster_rcnn.HasField("use_matmul_crop_and_resize"):
- self.matmul_crop_and_resize = pipeline_config["model"].faster_rcnn.use_matmul_crop_and_resize
+ if pipeline_config["model"].faster_rcnn.HasField(
+ "use_matmul_crop_and_resize"
+ ):
+ self.matmul_crop_and_resize = pipeline_config[
+ "model"
+ ].faster_rcnn.use_matmul_crop_and_resize
# If model is Mask R-CNN, get final instance segmentation masks resolution.
- if pipeline_config["model"].faster_rcnn.second_stage_box_predictor.mask_rcnn_box_predictor.HasField("mask_height") and pipeline_config["model"].faster_rcnn.second_stage_box_predictor.mask_rcnn_box_predictor.HasField("mask_width"):
- self.mask_height = int(pipeline_config["model"].faster_rcnn.second_stage_box_predictor.mask_rcnn_box_predictor.mask_height)
- self.mask_width = int(pipeline_config["model"].faster_rcnn.second_stage_box_predictor.mask_rcnn_box_predictor.mask_width)
+ if pipeline_config[
+ "model"
+ ].faster_rcnn.second_stage_box_predictor.mask_rcnn_box_predictor.HasField(
+ "mask_height"
+ ) and pipeline_config[
+ "model"
+ ].faster_rcnn.second_stage_box_predictor.mask_rcnn_box_predictor.HasField(
+ "mask_width"
+ ):
+ self.mask_height = int(
+ pipeline_config[
+ "model"
+ ].faster_rcnn.second_stage_box_predictor.mask_rcnn_box_predictor.mask_height
+ )
+ self.mask_width = int(
+ pipeline_config[
+ "model"
+ ].faster_rcnn.second_stage_box_predictor.mask_rcnn_box_predictor.mask_width
+ )
else:
log.info("Given Model type is not supported")
sys.exit(1)
# List of supported models.
- supported_models = ["ssd_mobilenet_v2_keras", "ssd_mobilenet_v1_fpn_keras", "ssd_mobilenet_v2_fpn_keras", "ssd_resnet50_v1_fpn_keras",
- "ssd_resnet101_v1_fpn_keras", "ssd_resnet152_v1_fpn_keras", "faster_rcnn_resnet50_keras", "faster_rcnn_resnet101_keras",
- "faster_rcnn_resnet152_keras", "faster_rcnn_inception_resnet_v2_keras"]
+ supported_models = [
+ "ssd_mobilenet_v2_keras",
+ "ssd_mobilenet_v1_fpn_keras",
+ "ssd_mobilenet_v2_fpn_keras",
+ "ssd_resnet50_v1_fpn_keras",
+ "ssd_resnet101_v1_fpn_keras",
+ "ssd_resnet152_v1_fpn_keras",
+ "faster_rcnn_resnet50_keras",
+ "faster_rcnn_resnet101_keras",
+ "faster_rcnn_resnet152_keras",
+ "faster_rcnn_inception_resnet_v2_keras",
+ ]
assert self.model in supported_models
# Model characteristics.
log.info("Model is {}".format(self.model))
log.info("Height is {}".format(self.height))
log.info("Width is {}".format(self.width))
- log.info("First NMS score threshold is {}".format(self.first_stage_nms_score_threshold))
- log.info("First NMS iou threshold is {}".format(self.first_stage_nms_iou_threshold))
+ log.info(
+ "First NMS score threshold is {}".format(
+ self.first_stage_nms_score_threshold
+ )
+ )
+ log.info(
+ "First NMS iou threshold is {}".format(self.first_stage_nms_iou_threshold)
+ )
log.info("First NMS max proposals is {}".format(self.first_stage_max_proposals))
if "faster_rcnn" in self.model:
log.info("Number of classes is {}".format(self.num_classes))
- log.info("Crop and Resize output size is {}".format(self.first_stage_crop_size))
- log.info("Second NMS score threshold is {}".format(self.second_stage_nms_score_threshold))
- log.info("Second NMS iou threshold is {}".format(self.second_stage_iou_threshold))
- log.info("Using MatMul Crop and Resize: {}".format(self.matmul_crop_and_resize))
+ log.info(
+ "Crop and Resize output size is {}".format(self.first_stage_crop_size)
+ )
+ log.info(
+ "Second NMS score threshold is {}".format(
+ self.second_stage_nms_score_threshold
+ )
+ )
+ log.info(
+ "Second NMS iou threshold is {}".format(self.second_stage_iou_threshold)
+ )
+ log.info(
+ "Using MatMul Crop and Resize: {}".format(self.matmul_crop_and_resize)
+ )
if not (self.mask_height is None and self.mask_width is None):
log.info("Mask height is {}".format(self.mask_height))
log.info("Mask width is {}".format(self.mask_width))
@@ -155,12 +241,16 @@ def sanitize(self):
model = shape_inference.infer_shapes(model)
self.graph = gs.import_onnx(model)
except Exception as e:
- log.info("Shape inference could not be performed at this time:\n{}".format(e))
+ log.info(
+ "Shape inference could not be performed at this time:\n{}".format(e)
+ )
try:
self.graph.fold_constants(fold_shapes=True)
except TypeError as e:
- log.error("This version of ONNX GraphSurgeon does not support folding shapes, please upgrade your "
- "onnx_graphsurgeon module. Error:\n{}".format(e))
+ log.error(
+ "This version of ONNX GraphSurgeon does not support folding shapes, please upgrade your "
+ "onnx_graphsurgeon module. Error:\n{}".format(e)
+ )
raise
count_after = len(self.graph.nodes)
@@ -189,11 +279,22 @@ def add_debug_output(self, debug):
for n, name in enumerate(debug):
if name not in tensors:
log.warning("Could not find tensor '{}'".format(name))
- debug_tensor = gs.Variable(name="debug:{}".format(n), dtype=tensors[name].dtype)
- debug_node = gs.Node(op="Identity", name="debug_{}".format(n), inputs=[tensors[name]], outputs=[debug_tensor])
+ debug_tensor = gs.Variable(
+ name="debug:{}".format(n), dtype=tensors[name].dtype
+ )
+ debug_node = gs.Node(
+ op="Identity",
+ name="debug_{}".format(n),
+ inputs=[tensors[name]],
+ outputs=[debug_tensor],
+ )
self.graph.nodes.append(debug_node)
self.graph.outputs.append(debug_tensor)
- log.info("Adding debug output '{}' for graph tensor '{}'".format(debug_tensor.name, name))
+ log.info(
+ "Adding debug output '{}' for graph tensor '{}'".format(
+ debug_tensor.name, name
+ )
+ )
def update_preprocessor(self, batch_size, input_format):
"""
@@ -208,46 +309,71 @@ def update_preprocessor(self, batch_size, input_format):
assert input_format in ["NCHW", "NHWC"]
input_shape = [None] * 4
if input_format == "NHWC":
- input_shape = [self.batch_size, self.height, self.width, 3]
+ input_shape = [self.batch_size, self.height, self.width, 3]
if input_format == "NCHW":
- input_shape = [self.batch_size, 3, self.height, self.width]
+ input_shape = [self.batch_size, 3, self.height, self.width]
self.graph.inputs[0].shape = input_shape
self.graph.inputs[0].dtype = np.float32
self.graph.inputs[0].name = "input_tensor"
self.sanitize()
- log.info("ONNX graph input shape: {} [NCHW format set]".format(self.graph.inputs[0].shape))
+ log.info(
+ "ONNX graph input shape: {} [NCHW format set]".format(
+ self.graph.inputs[0].shape
+ )
+ )
# Find the initial nodes of the graph, whatever the input is first connected to, and disconnect them.
- for node in [node for node in self.graph.nodes if self.graph.inputs[0] in node.inputs]:
+ for node in [
+ node for node in self.graph.nodes if self.graph.inputs[0] in node.inputs
+ ]:
node.inputs.clear()
# Get input tensor.
# Convert to NCHW format if needed.
input_tensor = self.graph.inputs[0]
if input_format == "NHWC":
- input_tensor = self.graph.transpose("preprocessor/transpose", input_tensor, [0, 3, 1, 2])
+ input_tensor = self.graph.transpose(
+ "preprocessor/transpose", input_tensor, [0, 3, 1, 2]
+ )
# Mobilenets' and inception's backbones preprocessor.
- if 'mobilenet' in self.model or 'inception_resnet' in self.model:
- mul_const = np.expand_dims(np.asarray([2 / 255], dtype=np.float32), axis=(0, 2, 3))
- sub_const = np.expand_dims(np.asarray([1], dtype=np.float32), axis=(0, 2, 3))
- mul_out = self.graph.op_with_const("Mul", "preprocessor/scale", input_tensor, mul_const)
- sub_out = self.graph.op_with_const("Sub", "preprocessor/mean", mul_out, sub_const)
+ if "mobilenet" in self.model or "inception_resnet" in self.model:
+ mul_const = np.expand_dims(
+ np.asarray([2 / 255], dtype=np.float32), axis=(0, 2, 3)
+ )
+ sub_const = np.expand_dims(
+ np.asarray([1], dtype=np.float32), axis=(0, 2, 3)
+ )
+ mul_out = self.graph.op_with_const(
+ "Mul", "preprocessor/scale", input_tensor, mul_const
+ )
+ sub_out = self.graph.op_with_const(
+ "Sub", "preprocessor/mean", mul_out, sub_const
+ )
# Resnet backbones' preprocessor.
- elif 'resnet' in self.model:
- sub_const = np.expand_dims(np.asarray([255 * 0.485, 255 * 0.456, 255 * 0.406], dtype=np.float32), axis=(0, 2, 3))
- sub_out = self.graph.op_with_const("Sub", "preprocessor/mean", input_tensor, sub_const)
+ elif "resnet" in self.model:
+ sub_const = np.expand_dims(
+ np.asarray([255 * 0.485, 255 * 0.456, 255 * 0.406], dtype=np.float32),
+ axis=(0, 2, 3),
+ )
+ sub_out = self.graph.op_with_const(
+ "Sub", "preprocessor/mean", input_tensor, sub_const
+ )
# Backbone is not supported.
else:
- log.info("Given model's backbone is not supported, pre-processor algorithm can't be generated")
+ log.info(
+ "Given model's backbone is not supported, pre-processor algorithm can't be generated"
+ )
sys.exit(1)
# Find first Conv node and connect preprocessor directly to it.
conv_node = self.graph.find_node_by_op("Conv")
- log.info("Found {} node '{}' as stem entry".format(conv_node.op, conv_node.name))
+ log.info(
+ "Found {} node '{}' as stem entry".format(conv_node.op, conv_node.name)
+ )
conv_node.inputs[0] = sub_out[0]
# Disconnect the last node in one of the preprocessing branches with first TensorListStack parent node.
@@ -275,9 +401,17 @@ def find_head_end(self, head_name, descendant, end_op):
# and the Box Net end node has the shape [batch_size, num_anchors, 4].
# These end nodes can be be found by searching for all end_op's operation nodes and checking if the node two
# steps above in the graph has a name that begins with one of head_names for Class Net and Box Net respectively.
- for node in [node for node in self.graph.nodes if node.op == descendant and head_name in node.name]:
+ for node in [
+ node
+ for node in self.graph.nodes
+ if node.op == descendant and head_name in node.name
+ ]:
target_node = self.graph.find_descendant_by_op(node, end_op)
- log.info("Found {} node '{}' as the tip of {}".format(target_node.op, target_node.name, head_name))
+ log.info(
+ "Found {} node '{}' as the tip of {}".format(
+ target_node.op, target_node.name, head_name
+ )
+ )
return target_node
def extract_anchors_tensor(self, split):
@@ -314,14 +448,27 @@ def get_anchor(output_idx, op, depth=5):
anchors_h = get_anchor(2, "Mul")
anchors_w = get_anchor(3, "Mul")
- batched_anchors = np.concatenate([anchors_y, anchors_x, anchors_h, anchors_w], axis=2)
+ batched_anchors = np.concatenate(
+ [anchors_y, anchors_x, anchors_h, anchors_w], axis=2
+ )
# Identify num of anchors without repetitions.
- num_anchors = int(batched_anchors.shape[1]/self.batch_size)
+ num_anchors = int(batched_anchors.shape[1] / self.batch_size)
# Trim total number of anchors in order to not have copies introduced by growing number of batch_size.
- anchors = batched_anchors[0:num_anchors,0:num_anchors]
+ anchors = batched_anchors[0:num_anchors, 0:num_anchors]
return gs.Constant(name="nms/anchors:0", values=anchors)
- def NMS(self, box_net_tensor, class_net_tensor, anchors_tensor, background_class, score_activation, iou_threshold, nms_score_threshold, user_threshold, nms_name=None):
+ def NMS(
+ self,
+ box_net_tensor,
+ class_net_tensor,
+ anchors_tensor,
+ background_class,
+ score_activation,
+ iou_threshold,
+ nms_score_threshold,
+ user_threshold,
+ nms_name=None,
+ ):
# Helper function to create the NMS Plugin node with the selected inputs.
# EfficientNMS_TRT TensorRT Plugin is suitable for our use case.
# :param box_net_tensor: The box predictions from the Box Net.
@@ -341,35 +488,53 @@ def NMS(self, box_net_tensor, class_net_tensor, anchors_tensor, background_class
nms_name = "_" + nms_name
# Set score threshold.
- score_threshold = nms_score_threshold if user_threshold is None else user_threshold
+ score_threshold = (
+ nms_score_threshold if user_threshold is None else user_threshold
+ )
# NMS Outputs.
- nms_output_num_detections = gs.Variable(name="num_detections"+nms_name, dtype=np.int32, shape=[self.batch_size, 1])
- nms_output_boxes = gs.Variable(name="detection_boxes"+nms_name, dtype=np.float32,
- shape=[self.batch_size, self.first_stage_max_proposals, 4])
- nms_output_scores = gs.Variable(name="detection_scores"+nms_name, dtype=np.float32,
- shape=[self.batch_size, self.first_stage_max_proposals])
- nms_output_classes = gs.Variable(name="detection_classes"+nms_name, dtype=np.int32,
- shape=[self.batch_size, self.first_stage_max_proposals])
+ nms_output_num_detections = gs.Variable(
+ name="num_detections" + nms_name, dtype=np.int32, shape=[self.batch_size, 1]
+ )
+ nms_output_boxes = gs.Variable(
+ name="detection_boxes" + nms_name,
+ dtype=np.float32,
+ shape=[self.batch_size, self.first_stage_max_proposals, 4],
+ )
+ nms_output_scores = gs.Variable(
+ name="detection_scores" + nms_name,
+ dtype=np.float32,
+ shape=[self.batch_size, self.first_stage_max_proposals],
+ )
+ nms_output_classes = gs.Variable(
+ name="detection_classes" + nms_name,
+ dtype=np.int32,
+ shape=[self.batch_size, self.first_stage_max_proposals],
+ )
- nms_outputs = [nms_output_num_detections, nms_output_boxes, nms_output_scores, nms_output_classes]
+ nms_outputs = [
+ nms_output_num_detections,
+ nms_output_boxes,
+ nms_output_scores,
+ nms_output_classes,
+ ]
# Plugin.
self.graph.plugin(
op="EfficientNMS_TRT",
- name="nms/non_maximum_suppression"+nms_name,
+ name="nms/non_maximum_suppression" + nms_name,
inputs=[box_net_tensor, class_net_tensor, anchors_tensor],
outputs=nms_outputs,
attrs={
- 'plugin_version': "1",
- 'background_class': background_class,
- 'max_output_boxes': self.first_stage_max_proposals,
- 'score_threshold': max(0.01, score_threshold),
- 'iou_threshold': iou_threshold,
- 'score_activation': score_activation,
- 'class_agnostic': False,
- 'box_coding': 1,
- }
+ "plugin_version": "1",
+ "background_class": background_class,
+ "max_output_boxes": self.first_stage_max_proposals,
+ "score_threshold": max(0.01, score_threshold),
+ "iou_threshold": iou_threshold,
+ "score_activation": score_activation,
+ "class_agnostic": False,
+ "box_coding": 1,
+ },
)
log.info("Created 'nms/non_maximum_suppression{}' NMS plugin".format(nms_name))
@@ -384,15 +549,26 @@ def CropAndResize(self, unsqeeze_input, relu_node_outputs, cnr_num):
# CropAndResizePlugin requires 4th dimension of 1: [N, B, 4, 1], so
# we need to add unsqeeze node to make tensor 4 dimensional.
- unsqueeze_node = self.graph.unsqueeze("CNR/detection_boxes_unsqueeze_"+cnr_num, unsqeeze_input)
+ unsqueeze_node = self.graph.unsqueeze(
+ "CNR/detection_boxes_unsqueeze_" + cnr_num, unsqeeze_input
+ )
# CropAndResizePlugin's inputs
feature_maps = relu_node_outputs
rois = unsqueeze_node[0]
# CropAndResize Outputs.
- cnr_pfmap = gs.Variable(name="cnr/pfmap_"+cnr_num, dtype=np.float32,
- shape=[self.batch_size, self.first_stage_max_proposals, feature_maps.shape[1], self.first_stage_crop_size, self.first_stage_crop_size])
+ cnr_pfmap = gs.Variable(
+ name="cnr/pfmap_" + cnr_num,
+ dtype=np.float32,
+ shape=[
+ self.batch_size,
+ self.first_stage_max_proposals,
+ feature_maps.shape[1],
+ self.first_stage_crop_size,
+ self.first_stage_crop_size,
+ ],
+ )
# Create the CropandResize Plugin node with the selected inputs.
# Two inputs are given to the CropAndResize TensorRT node:
@@ -400,19 +576,29 @@ def CropAndResize(self, unsqeeze_input, relu_node_outputs, cnr_num):
# - The rois (clipped and normalized detection boxes resulting from NMS): [batch_size, featuremap, 4, 1]
self.graph.plugin(
op="CropAndResize",
- name="cnr/crop_and_resize_"+cnr_num,
+ name="cnr/crop_and_resize_" + cnr_num,
inputs=[feature_maps, rois],
outputs=[cnr_pfmap],
attrs={
- 'crop_width': self.first_stage_crop_size,
- 'crop_height': self.first_stage_crop_size,
- }
+ "crop_width": self.first_stage_crop_size,
+ "crop_height": self.first_stage_crop_size,
+ },
)
log.info("Created {} CropAndResize plugin".format(cnr_num))
# Reshape node that is preparing CropAndResize's pfmap output shape for MaxPool node that comes next.
- reshape_shape = np.asarray([self.first_stage_max_proposals*self.batch_size, feature_maps.shape[1], self.first_stage_crop_size, self.first_stage_crop_size], dtype=np.int64)
- reshape_node = self.graph.op_with_const("Reshape", "cnr/reshape_"+cnr_num, cnr_pfmap, reshape_shape)
+ reshape_shape = np.asarray(
+ [
+ self.first_stage_max_proposals * self.batch_size,
+ feature_maps.shape[1],
+ self.first_stage_crop_size,
+ self.first_stage_crop_size,
+ ],
+ dtype=np.int64,
+ )
+ reshape_node = self.graph.op_with_const(
+ "Reshape", "cnr/reshape_" + cnr_num, cnr_pfmap, reshape_shape
+ )
return reshape_node[0]
@@ -423,7 +609,10 @@ def process_graph(self, first_nms_threshold=None, second_nms_threshold=None):
:param first_nms_threshold: Override the 1st NMS score threshold value. If set to None, use the value in the graph.
:param second_nms_threshold: Override the 2nd NMS score threshold value. If set to None, use the value in the graph.
"""
- def first_nms(background_class, score_activation, first_nms_threshold, nms_name=None):
+
+ def first_nms(
+ background_class, score_activation, first_nms_threshold, nms_name=None
+ ):
"""
Updates the graph to replace the 1st NMS op by EfficientNMS_TRT TensorRT plugin node.
:param background_class: Set EfficientNMS_TRT's background_class atribute.
@@ -432,35 +621,67 @@ def first_nms(background_class, score_activation, first_nms_threshold, nms_name=
:param nms_name: Set the NMS node name.
"""
# Supported models
- ssd_models = ['ssd_mobilenet_v1_fpn_keras', 'ssd_mobilenet_v2_fpn_keras', 'ssd_resnet50_v1_fpn_keras', 'ssd_resnet101_v1_fpn_keras', 'ssd_resnet152_v1_fpn_keras']
- frcnn_models = ['faster_rcnn_resnet50_keras', 'faster_rcnn_resnet101_keras', 'faster_rcnn_resnet152_keras', 'faster_rcnn_inception_resnet_v2_keras']
+ ssd_models = [
+ "ssd_mobilenet_v1_fpn_keras",
+ "ssd_mobilenet_v2_fpn_keras",
+ "ssd_resnet50_v1_fpn_keras",
+ "ssd_resnet101_v1_fpn_keras",
+ "ssd_resnet152_v1_fpn_keras",
+ ]
+ frcnn_models = [
+ "faster_rcnn_resnet50_keras",
+ "faster_rcnn_resnet101_keras",
+ "faster_rcnn_resnet152_keras",
+ "faster_rcnn_inception_resnet_v2_keras",
+ ]
# Getting SSD's Class and Box Nets final tensors.
if "ssd" in self.model:
# Find the concat node at the end of the class net (multi-scale class predictor).
- class_net_head_name = 'BoxPredictor/ConvolutionalClassHead_' if self.model == 'ssd_mobilenet_v2_keras' else 'WeightSharedConvolutionalBoxPredictor/WeightSharedConvolutionalClassHead'
- class_net = self.find_head_end(class_net_head_name, "Transpose", "Concat")
+ class_net_head_name = (
+ "BoxPredictor/ConvolutionalClassHead_"
+ if self.model == "ssd_mobilenet_v2_keras"
+ else "WeightSharedConvolutionalBoxPredictor/WeightSharedConvolutionalClassHead"
+ )
+ class_net = self.find_head_end(
+ class_net_head_name, "Transpose", "Concat"
+ )
# Final Class Net tensor
- class_net_tensor = self.graph.slice(class_net_head_name+"/slicer", class_net.outputs[0], 1, 91, 2)[0] # Remove background class
+ class_net_tensor = self.graph.slice(
+ class_net_head_name + "/slicer", class_net.outputs[0], 1, 91, 2
+ )[
+ 0
+ ] # Remove background class
# Find the concat or squeeze node at the end of the box net (multi-scale localization predictor).
- if self.model == 'ssd_mobilenet_v2_keras':
- box_net_head_name = 'BoxPredictor/ConvolutionalBoxHead_'
- box_net = self.find_head_end(box_net_head_name, "Transpose", "Squeeze")
+ if self.model == "ssd_mobilenet_v2_keras":
+ box_net_head_name = "BoxPredictor/ConvolutionalBoxHead_"
+ box_net = self.find_head_end(
+ box_net_head_name, "Transpose", "Squeeze"
+ )
else:
- box_net_head_name = 'WeightSharedConvolutionalBoxPredictor/WeightSharedConvolutionalBoxHead'
- box_net = self.find_head_end(box_net_head_name, "Transpose", "Concat")
+ box_net_head_name = "WeightSharedConvolutionalBoxPredictor/WeightSharedConvolutionalBoxHead"
+ box_net = self.find_head_end(
+ box_net_head_name, "Transpose", "Concat"
+ )
box_net_output = box_net.outputs[0]
# 0.1, 0.1, 0.2, 0.2 are localization head variance numbers, they scale box_net_output in order to get accurate coordinates.
- variance_adj = np.expand_dims(np.asarray([0.1, 0.1, 0.2, 0.2], dtype=np.float32), axis=(0, 1))
+ variance_adj = np.expand_dims(
+ np.asarray([0.1, 0.1, 0.2, 0.2], dtype=np.float32), axis=(0, 1)
+ )
# Final Box Net tensor.
- box_net_tensor = self.graph.op_with_const("Mul", box_net_head_name+"/scale", box_net_output, variance_adj)[0]
+ box_net_tensor = self.graph.op_with_const(
+ "Mul", box_net_head_name + "/scale", box_net_output, variance_adj
+ )[0]
# Getting Faster R-CNN's 1st Class and Box Nets tensors.
elif "faster_rcnn" in self.model:
# Identify Class Net and Box Net head names
- head_names = ['FirstStageBoxPredictor/ConvolutionalClassHead_0/ClassPredictor','FirstStageBoxPredictor/ConvolutionalBoxHead_0/BoxEncodingPredictor']
+ head_names = [
+ "FirstStageBoxPredictor/ConvolutionalClassHead_0/ClassPredictor",
+ "FirstStageBoxPredictor/ConvolutionalBoxHead_0/BoxEncodingPredictor",
+ ]
# Find the softmax node at the end of the class net (multi-scale class predictor).
class_net = self.find_head_end(head_names[0], "Transpose", "Softmax")
@@ -472,12 +693,18 @@ def first_nms(background_class, score_activation, first_nms_threshold, nms_name=
# Final Box Net tensor.
box_net_output = box_net.outputs[0]
- #Insert a squeeze node
- squeeze_node = self.graph.squeeze(head_names[1]+"/squeeze", box_net_output)
+ # Insert a squeeze node
+ squeeze_node = self.graph.squeeze(
+ head_names[1] + "/squeeze", box_net_output
+ )
# 0.1, 0.1, 0.2, 0.2 are localization head variance numbers, they scale box_net_output, in order to get accurate coordinates.
- variance_adj = np.expand_dims(np.asarray([0.1, 0.1, 0.2, 0.2], dtype=np.float32), axis=(0, 1))
+ variance_adj = np.expand_dims(
+ np.asarray([0.1, 0.1, 0.2, 0.2], dtype=np.float32), axis=(0, 1)
+ )
# Final Box Net tensor.
- box_net_tensor = self.graph.op_with_const("Mul", head_names[1]+"/scale", squeeze_node, variance_adj)[0]
+ box_net_tensor = self.graph.op_with_const(
+ "Mul", head_names[1] + "/scale", squeeze_node, variance_adj
+ )[0]
# Find the split node that separates the box net coordinates and feeds them into the box decoder.
box_net_split = self.graph.find_descendant_by_op(box_net, "Split")
@@ -487,7 +714,17 @@ def first_nms(background_class, score_activation, first_nms_threshold, nms_name=
anchors_tensor = self.extract_anchors_tensor(box_net_split)
# Create NMS node.
- nms_outputs = self.NMS(box_net_tensor, class_net_tensor, anchors_tensor, background_class, score_activation, self.first_stage_nms_iou_threshold, self.first_stage_nms_score_threshold, first_nms_threshold, nms_name)
+ nms_outputs = self.NMS(
+ box_net_tensor,
+ class_net_tensor,
+ anchors_tensor,
+ background_class,
+ score_activation,
+ self.first_stage_nms_iou_threshold,
+ self.first_stage_nms_score_threshold,
+ first_nms_threshold,
+ nms_name,
+ )
# Return NMS's outputs.
return nms_outputs
@@ -501,26 +738,47 @@ def first_cnr(input):
# Locate the last Relu node of the first backbone (pre 1st NMS). Relu node contains feature maps
# necessary for CropAndResize plugin.
relu_name = "StatefulPartitionedCall/model/"
- relu_node = [node for node in self.graph.nodes if node.op == "Relu" and relu_name in node.name][-1]
+ relu_node = [
+ node
+ for node in self.graph.nodes
+ if node.op == "Relu" and relu_name in node.name
+ ][-1]
# Before passing 1st NMS's detection boxes (rois) to CropAndResize, we need to clip and normalize them.
# Clipping happens for coordinates that are less than 0 and more than self.height.
# Normalization is just divison of every coordinate by self.height.
- clip_out = self.graph.clip("FirstNMS/detection_boxes_clipper", input, 0, self.height)
- div_const = np.expand_dims(np.asarray([self.height, self.width, self.height, self.width], dtype=np.float32), axis=(0, 1))
- div_out = self.graph.op_with_const("Div", "FirstNMS/detection_boxes_normalizer", clip_out[0], div_const)
+ clip_out = self.graph.clip(
+ "FirstNMS/detection_boxes_clipper", input, 0, self.height
+ )
+ div_const = np.expand_dims(
+ np.asarray(
+ [self.height, self.width, self.height, self.width], dtype=np.float32
+ ),
+ axis=(0, 1),
+ )
+ div_out = self.graph.op_with_const(
+ "Div", "FirstNMS/detection_boxes_normalizer", clip_out[0], div_const
+ )
# Linear transformation to convert box coordinates from (TopLeft, BottomRight) Corner encoding
# to CenterSize encoding. 1st NMS boxes are multiplied by transformation matrix in order to
# encode it into CenterSize format.
- matmul_const = np.matrix('0.5 0 -1 0; 0 0.5 0 -1; 0.5 0 1 0; 0 0.5 0 1', dtype=np.float32)
- matmul_out = self.graph.matmul("FirstNMS/detection_boxes_conversion", div_out[0], matmul_const)
+ matmul_const = np.matrix(
+ "0.5 0 -1 0; 0 0.5 0 -1; 0.5 0 1 0; 0 0.5 0 1", dtype=np.float32
+ )
+ matmul_out = self.graph.matmul(
+ "FirstNMS/detection_boxes_conversion", div_out[0], matmul_const
+ )
# Create Crop and Resize node.
cnr_output = self.CropAndResize(div_out, relu_node.outputs[0], "first")
# Find MaxPool node that summarizes CropAndResize structure.
- maxpool_node = [node for node in self.graph.nodes if node.op == "MaxPool" and "MaxPool2D/MaxPool" in node.name][0]
+ maxpool_node = [
+ node
+ for node in self.graph.nodes
+ if node.op == "MaxPool" and "MaxPool2D/MaxPool" in node.name
+ ][0]
maxpool_node.inputs[0] = cnr_output
# Return linear transformation node, it will be located between 1st and 2nd NMS,
@@ -528,7 +786,13 @@ def first_cnr(input):
# In case you are converting Mask R-CNN, feature maps are required for 2nd CropAndResize.
return matmul_out[0], relu_node.outputs[0]
- def second_nms(background_class, score_activation, encoded_boxes, second_nms_threshold, nms_name=None):
+ def second_nms(
+ background_class,
+ score_activation,
+ encoded_boxes,
+ second_nms_threshold,
+ nms_name=None,
+ ):
"""
Updates the graph to replace the 2nd (or final) NMS op by EfficientNMS_TRT TensorRT plugin node.
:param background_class: Set EfficientNMS_TRT's background_class atribute.
@@ -539,14 +803,20 @@ def second_nms(background_class, score_activation, encoded_boxes, second_nms_thr
"""
# Identify Class Net and Box Net head names.
- second_head_names = ['StatefulPartitionedCall/mask_rcnn_keras_box_predictor/mask_rcnn_class_head/ClassPredictor_dense',
- 'StatefulPartitionedCall/mask_rcnn_keras_box_predictor/mask_rcnn_box_head/BoxEncodingPredictor_dense']
+ second_head_names = [
+ "StatefulPartitionedCall/mask_rcnn_keras_box_predictor/mask_rcnn_class_head/ClassPredictor_dense",
+ "StatefulPartitionedCall/mask_rcnn_keras_box_predictor/mask_rcnn_box_head/BoxEncodingPredictor_dense",
+ ]
# Find the softmax node at the end of the 2nd class net (multi-scale class predictor).
- second_class_net = self.find_head_end(second_head_names[0], "MatMul", "Softmax")
+ second_class_net = self.find_head_end(
+ second_head_names[0], "MatMul", "Softmax"
+ )
# Faster R-CNN's slice operation to adjust third dimension of Class Net's last node tensor (adjusting class values).
- slice_out = self.graph.slice(second_head_names[0]+"/slicer", second_class_net.outputs[0], 1, 91, 2)
+ slice_out = self.graph.slice(
+ second_head_names[0] + "/slicer", second_class_net.outputs[0], 1, 91, 2
+ )
# Final Class Net tensor.
second_class_net_tensor = slice_out[0]
@@ -561,19 +831,56 @@ def second_nms(background_class, score_activation, encoded_boxes, second_nms_thr
# If use_matmul_crop_and_resize in pipeline.config is set to True, expect: [batch_size, first_stage_max_proposals, 4].
# Else use_matmul_crop_and_resize is either False or absent, expect: [batch_size, first_stage_max_proposals, num_classes, 4]
if self.matmul_crop_and_resize:
- reshape_shape_second = np.asarray([self.batch_size, self.first_stage_max_proposals, second_box_net.outputs[0].shape[1]], dtype=np.int64)
+ reshape_shape_second = np.asarray(
+ [
+ self.batch_size,
+ self.first_stage_max_proposals,
+ second_box_net.outputs[0].shape[1],
+ ],
+ dtype=np.int64,
+ )
else:
- reshape_shape_second = np.asarray([self.batch_size, self.first_stage_max_proposals, self.num_classes, second_box_net.outputs[0].shape[1]/self.num_classes], dtype=np.int64)
- reshape_node_second = self.graph.op_with_const("Reshape", second_head_names[1]+"/reshape", second_box_net_output, reshape_shape_second)
+ reshape_shape_second = np.asarray(
+ [
+ self.batch_size,
+ self.first_stage_max_proposals,
+ self.num_classes,
+ second_box_net.outputs[0].shape[1] / self.num_classes,
+ ],
+ dtype=np.int64,
+ )
+ reshape_node_second = self.graph.op_with_const(
+ "Reshape",
+ second_head_names[1] + "/reshape",
+ second_box_net_output,
+ reshape_shape_second,
+ )
# 0.1, 0.1, 0.2, 0.2 are localization head variance numbers, they scale second_box_net_output, in order to get accurate coordinates.
- second_scale_adj = np.expand_dims(np.asarray([0.1, 0.1, 0.2, 0.2], dtype=np.float32), axis=(0, 1))
- second_scale_out = self.graph.op_with_const("Mul", second_head_names[1]+"/scale_second", reshape_node_second[0], second_scale_adj)
+ second_scale_adj = np.expand_dims(
+ np.asarray([0.1, 0.1, 0.2, 0.2], dtype=np.float32), axis=(0, 1)
+ )
+ second_scale_out = self.graph.op_with_const(
+ "Mul",
+ second_head_names[1] + "/scale_second",
+ reshape_node_second[0],
+ second_scale_adj,
+ )
# Final Box Net tensor.
second_box_net_tensor = second_scale_out[0]
# Create NMS node.
- nms_outputs = self.NMS(second_box_net_tensor, second_class_net_tensor, encoded_boxes, background_class, score_activation, self.second_stage_iou_threshold, self.second_stage_nms_score_threshold, second_nms_threshold, nms_name)
+ nms_outputs = self.NMS(
+ second_box_net_tensor,
+ second_class_net_tensor,
+ encoded_boxes,
+ background_class,
+ score_activation,
+ self.second_stage_iou_threshold,
+ self.second_stage_nms_score_threshold,
+ second_nms_threshold,
+ nms_name,
+ )
return nms_outputs
@@ -585,24 +892,36 @@ def second_cnr(feature_maps, second_nms_outputs):
# Before passing 2nd NMS's detection boxes (rois) to second CropAndResize, we need to clip them.
# Clipping happens for coordinates that are less than 0 and more than 1 (binary).
- clip_out = self.graph.clip("SecondNMS/detection_boxes_clipper", second_nms_outputs[1], 0, 1)
+ clip_out = self.graph.clip(
+ "SecondNMS/detection_boxes_clipper", second_nms_outputs[1], 0, 1
+ )
# Create Crop and Resize node.
cnr_output = self.CropAndResize(clip_out, feature_maps, "second")
# Find MaxPool node that summarizes CropAndResize structure
- maxpool_node = [node for node in self.graph.nodes if node.op == "MaxPool" and "MaxPool2D/MaxPool_1" in node.name][0]
+ maxpool_node = [
+ node
+ for node in self.graph.nodes
+ if node.op == "MaxPool" and "MaxPool2D/MaxPool_1" in node.name
+ ][0]
maxpool_node.inputs[0] = cnr_output
# Reshape node that is preparing 2nd NMS class outputs for Add node that comes next.
# [self.batch_size, self.first_stage_max_proposals] -> [self.first_stage_max_proposals*self.batch_size]
- class_reshape_shape = np.asarray([self.first_stage_max_proposals*self.batch_size], dtype=np.int64)
- class_reshape_node = self.graph.op_with_const("Reshape", "Reshape_Class", second_nms_outputs[3], class_reshape_shape)
+ class_reshape_shape = np.asarray(
+ [self.first_stage_max_proposals * self.batch_size], dtype=np.int64
+ )
+ class_reshape_node = self.graph.op_with_const(
+ "Reshape", "Reshape_Class", second_nms_outputs[3], class_reshape_shape
+ )
# Find sigmoid node in the end of the network, applies sigmoid to get instance segmentation masks
- last_sigmoid_node = self.graph.find_descendant_by_op(maxpool_node, "Sigmoid", 40)
+ last_sigmoid_node = self.graph.find_descendant_by_op(
+ maxpool_node, "Sigmoid", 40
+ )
- if (self.num_classes > 1):
+ if self.num_classes > 1:
# Find first ancestor of Sigmoid of operation type Add. This Add node is one of the Gather node inputs,
# Gather node performs gather on 0th axis of data tensor and requires indices that set tesnors to be withing bounds,
# this Add node provides the bounds for Gather.
@@ -610,8 +929,21 @@ def second_cnr(feature_maps, second_nms_outputs):
add_node.inputs[1] = class_reshape_node[0]
# Final Reshape node, reshapes output of Sigmoid, important for various batch_size support.
- final_reshape_shape = np.asarray([self.batch_size, self.first_stage_max_proposals, self.mask_height, self.mask_width], dtype=np.int64)
- final_reshape_node = self.graph.op_with_const("Reshape", "Reshape_Final_Masks", last_sigmoid_node.outputs[0], final_reshape_shape)
+ final_reshape_shape = np.asarray(
+ [
+ self.batch_size,
+ self.first_stage_max_proposals,
+ self.mask_height,
+ self.mask_width,
+ ],
+ dtype=np.int64,
+ )
+ final_reshape_node = self.graph.op_with_const(
+ "Reshape",
+ "Reshape_Final_Masks",
+ last_sigmoid_node.outputs[0],
+ final_reshape_shape,
+ )
final_reshape_node[0].dtype = np.float32
final_reshape_node[0].name = "detection_masks"
@@ -623,17 +955,27 @@ def second_cnr(feature_maps, second_nms_outputs):
self.graph.outputs = first_nms(-1, True, first_nms_threshold)
self.sanitize()
# If your model is Faster R-CNN, you will need 2 NMS nodes with CropAndResize in between.
- elif "faster_rcnn" in self.model and self.mask_height is None and self.mask_width is None:
+ elif (
+ "faster_rcnn" in self.model
+ and self.mask_height is None
+ and self.mask_width is None
+ ):
first_nms_outputs = first_nms(0, False, first_nms_threshold, "rpn")
first_cnr_output, feature_maps = first_cnr(first_nms_outputs[1])
# Set graph outputs.
- self.graph.outputs = second_nms(-1, False, first_cnr_output, second_nms_threshold)
+ self.graph.outputs = second_nms(
+ -1, False, first_cnr_output, second_nms_threshold
+ )
self.sanitize()
# Mask R-CNN
- elif "faster_rcnn" in self.model and not (self.mask_height is None and self.mask_width is None):
+ elif "faster_rcnn" in self.model and not (
+ self.mask_height is None and self.mask_width is None
+ ):
first_nms_outputs = first_nms(0, False, first_nms_threshold, "rpn")
first_cnr_output, feature_maps = first_cnr(first_nms_outputs[1])
- second_nms_outputs = second_nms(-1, False, first_cnr_output, second_nms_threshold)
+ second_nms_outputs = second_nms(
+ -1, False, first_cnr_output, second_nms_threshold
+ )
second_cnr_output = second_cnr(feature_maps, second_nms_outputs)
# Append segmentation head output.
second_nms_outputs.append(second_cnr_output)
@@ -655,20 +997,57 @@ def main(args):
if __name__ == "__main__":
parser = argparse.ArgumentParser()
- parser.add_argument("-p", "--pipeline_config", help="Pipeline configuration file to load", type=str)
- parser.add_argument("-m", "--saved_model", help="The TensorFlow saved model directory to load", type=str)
- parser.add_argument("-o", "--onnx", help="The output ONNX model file to write", type=str)
- parser.add_argument("-b", "--batch_size", help="Batch size for the model", type=int, default=1)
- parser.add_argument("-t1", "--first_nms_threshold", help="Override the score threshold for the 1st NMS operation", type=float)
- parser.add_argument("-t2", "--second_nms_threshold", help="Override the score threshold for the 2nd NMS operation", type=float)
- parser.add_argument("-d", "--debug", action='append', help="Add an extra output to debug a particular node")
- parser.add_argument("-f", "--input_format", default="NHWC", choices=["NHWC", "NCHW"],
- help="Set the input shape of the graph, as comma-separated dimensions in NCHW or NHWC format, default: NHWC")
- parser.add_argument("--tf2onnx", help="The path where to save the intermediate ONNX graph generated by tf2onnx, "
- "useful for debugging purposes, default: not saved", type=str)
+ parser.add_argument(
+ "-p", "--pipeline_config", help="Pipeline configuration file to load", type=str
+ )
+ parser.add_argument(
+ "-m",
+ "--saved_model",
+ help="The TensorFlow saved model directory to load",
+ type=str,
+ )
+ parser.add_argument(
+ "-o", "--onnx", help="The output ONNX model file to write", type=str
+ )
+ parser.add_argument(
+ "-b", "--batch_size", help="Batch size for the model", type=int, default=1
+ )
+ parser.add_argument(
+ "-t1",
+ "--first_nms_threshold",
+ help="Override the score threshold for the 1st NMS operation",
+ type=float,
+ )
+ parser.add_argument(
+ "-t2",
+ "--second_nms_threshold",
+ help="Override the score threshold for the 2nd NMS operation",
+ type=float,
+ )
+ parser.add_argument(
+ "-d",
+ "--debug",
+ action="append",
+ help="Add an extra output to debug a particular node",
+ )
+ parser.add_argument(
+ "-f",
+ "--input_format",
+ default="NHWC",
+ choices=["NHWC", "NCHW"],
+ help="Set the input shape of the graph, as comma-separated dimensions in NCHW or NHWC format, default: NHWC",
+ )
+ parser.add_argument(
+ "--tf2onnx",
+ help="The path where to save the intermediate ONNX graph generated by tf2onnx, "
+ "useful for debugging purposes, default: not saved",
+ type=str,
+ )
args = parser.parse_args()
if not all([args.pipeline_config, args.saved_model, args.onnx]):
parser.print_help()
- print("\nThese arguments are required: --pipeline_config, --saved_model and --onnx")
+ print(
+ "\nThese arguments are required: --pipeline_config, --saved_model and --onnx"
+ )
sys.exit(1)
main(args)
diff --git a/samples/python/tensorflow_object_detection_api/eval_coco.py b/samples/python/tensorflow_object_detection_api/eval_coco.py
index 5086c660..f04c17f3 100644
--- a/samples/python/tensorflow_object_detection_api/eval_coco.py
+++ b/samples/python/tensorflow_object_detection_api/eval_coco.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -24,23 +24,35 @@
from infer import TensorRTInfer
from image_batcher import ImageBatcher
+
def main(args):
try:
import object_detection.metrics.coco_tools as coco_tools
except ImportError:
- print("Could not import the 'object_detection.metrics.coco_tools' module from TFOD. Maybe you did not install TFOD API")
- print("Please install TensorFlow 2 Object Detection API, check https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/install.html")
+ print(
+ "Could not import the 'object_detection.metrics.coco_tools' module from TFOD. Maybe you did not install TFOD API"
+ )
+ print(
+ "Please install TensorFlow 2 Object Detection API, check https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/install.html"
+ )
sys.exit(1)
- trt_infer = TensorRTInfer(args.engine, args.preprocessor, args.detection_type, args.iou_threshold)
- batcher = ImageBatcher(args.input, *trt_infer.input_spec(), preprocessor=args.preprocessor)
+ trt_infer = TensorRTInfer(
+ args.engine, args.preprocessor, args.detection_type, args.iou_threshold
+ )
+ batcher = ImageBatcher(
+ args.input, *trt_infer.input_spec(), preprocessor=args.preprocessor
+ )
# Read annotations json as dictionary.
with open(args.annotations) as f:
data = json.load(f)
groundtruth = coco_tools.COCOWrapper(data, detection_type=args.detection_type)
detections_list = []
for batch, images, scales in batcher.get_batch():
- print("Processing Image {} / {}".format(batcher.image_index, batcher.num_images), end="\r")
+ print(
+ "Processing Image {} / {}".format(batcher.image_index, batcher.num_images),
+ end="\r",
+ )
detections = trt_infer.infer(batch, scales, args.nms_threshold)
for i in range(len(images)):
# Get inference image resolution.
@@ -49,43 +61,52 @@ def main(args):
for n in range(len(detections[i])):
source_id = int(os.path.splitext(os.path.basename(images[i]))[0])
det = detections[i][n]
- if args.detection_type == 'bbox':
+ if args.detection_type == "bbox":
coco_det = {
- 'image_id': source_id,
- 'category_id': det['class']+1, # adjust class num
- 'bbox': [det['xmin'], det['ymin'], det['xmax'] - det['xmin'], det['ymax'] - det['ymin']],
- 'score': det['score']
+ "image_id": source_id,
+ "category_id": det["class"] + 1, # adjust class num
+ "bbox": [
+ det["xmin"],
+ det["ymin"],
+ det["xmax"] - det["xmin"],
+ det["ymax"] - det["ymin"],
+ ],
+ "score": det["score"],
}
detections_list.append(coco_det)
- elif args.detection_type == 'segmentation':
+ elif args.detection_type == "segmentation":
# Get detection bbox resolution.
- det_width = round(det['xmax'] - det['xmin'])
- det_height = round(det['ymax'] - det['ymin'])
+ det_width = round(det["xmax"] - det["xmin"])
+ det_height = round(det["ymax"] - det["ymin"])
# Create an image out of predicted mask array.
- small_mask = Image.fromarray(det['mask'])
+ small_mask = Image.fromarray(det["mask"])
# Upsample mask to detection bbox's size.
- mask = small_mask.resize((det_width, det_height), resample=Image.BILINEAR)
+ mask = small_mask.resize(
+ (det_width, det_height), resample=Image.BILINEAR
+ )
# Create an original image sized template for correct mask placement.
pad = Image.new("L", (im_width, im_height))
# Place your mask according to detection bbox placement.
- pad.paste(mask, (round(det['xmin']), (round(det['ymin']))))
+ pad.paste(mask, (round(det["xmin"]), (round(det["ymin"]))))
# Reconvert mask into numpy array for evaluation.
padded_mask = np.array(pad)
# Add one more dimension of 1, this is required by ExportSingleImageDetectionMasksToCoco.
final_mask = padded_mask[np.newaxis, :, :]
# Export detection mask to COCO format
- coco_mask = coco_tools.ExportSingleImageDetectionMasksToCoco(image_id=source_id,
- category_id_set=set(list(range(1,91))),
- detection_classes=np.array([det['class']+1]),
- detection_scores=np.array([det['score']]),
- detection_masks=final_mask)
+ coco_mask = coco_tools.ExportSingleImageDetectionMasksToCoco(
+ image_id=source_id,
+ category_id_set=set(list(range(1, 91))),
+ detection_classes=np.array([det["class"] + 1]),
+ detection_scores=np.array([det["score"]]),
+ detection_masks=final_mask,
+ )
detections_list.append(coco_mask[0])
# Finish evalutions.
detections = groundtruth.LoadAnnotations(detections_list)
- if args.detection_type == 'bbox':
+ if args.detection_type == "bbox":
evaluator = coco_tools.COCOEvalWrapper(groundtruth, detections, iou_type="bbox")
- elif args.detection_type == 'segmentation':
+ elif args.detection_type == "segmentation":
evaluator = coco_tools.COCOEvalWrapper(groundtruth, detections, iou_type="segm")
evaluator.ComputeMetrics()
@@ -93,20 +114,46 @@ def main(args):
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-e", "--engine", help="The TensorRT engine to infer with.")
- parser.add_argument("-i", "--input",
- help="The input to infer, either a single image path, or a directory of images.")
- parser.add_argument("-d", "--detection_type", default="bbox", choices=["bbox", "segmentation"],
- help="Detection type for COCO, either bbox or if you are using Mask R-CNN's instance segmentation - segmentation.")
- parser.add_argument("-a", "--annotations", help="Set the json file to use for COCO instance annotations.")
- parser.add_argument("-t", "--nms_threshold", type=float,
- help="Override the score threshold for the NMS operation, if higher than the threshold in the engine.")
- parser.add_argument("--iou_threshold", default=0.5, type=float,
- help="Select the IoU threshold for the mask segmentation. Range is 0 to 1. Pixel values more than threshold will become 1, less 0.")
- parser.add_argument("--preprocessor", default="fixed_shape_resizer", choices=["fixed_shape_resizer", "keep_aspect_ratio_resizer"],
- help="Select the image preprocessor to use based on your pipeline.config, either 'fixed_shape_resizer' or 'keep_aspect_ratio_resizer', default: fixed_shape_resizer.")
+ parser.add_argument(
+ "-i",
+ "--input",
+ help="The input to infer, either a single image path, or a directory of images.",
+ )
+ parser.add_argument(
+ "-d",
+ "--detection_type",
+ default="bbox",
+ choices=["bbox", "segmentation"],
+ help="Detection type for COCO, either bbox or if you are using Mask R-CNN's instance segmentation - segmentation.",
+ )
+ parser.add_argument(
+ "-a",
+ "--annotations",
+ help="Set the json file to use for COCO instance annotations.",
+ )
+ parser.add_argument(
+ "-t",
+ "--nms_threshold",
+ type=float,
+ help="Override the score threshold for the NMS operation, if higher than the threshold in the engine.",
+ )
+ parser.add_argument(
+ "--iou_threshold",
+ default=0.5,
+ type=float,
+ help="Select the IoU threshold for the mask segmentation. Range is 0 to 1. Pixel values more than threshold will become 1, less 0.",
+ )
+ parser.add_argument(
+ "--preprocessor",
+ default="fixed_shape_resizer",
+ choices=["fixed_shape_resizer", "keep_aspect_ratio_resizer"],
+ help="Select the image preprocessor to use based on your pipeline.config, either 'fixed_shape_resizer' or 'keep_aspect_ratio_resizer', default: fixed_shape_resizer.",
+ )
args = parser.parse_args()
if not all([args.engine, args.input, args.annotations, args.preprocessor]):
parser.print_help()
- print("\nThese arguments are required: --engine --input --output and --preprocessor")
+ print(
+ "\nThese arguments are required: --engine --input --output and --preprocessor"
+ )
sys.exit(1)
main(args)
diff --git a/samples/python/tensorflow_object_detection_api/image_batcher.py b/samples/python/tensorflow_object_detection_api/image_batcher.py
index c40e86c8..202e998d 100644
--- a/samples/python/tensorflow_object_detection_api/image_batcher.py
+++ b/samples/python/tensorflow_object_detection_api/image_batcher.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -27,7 +27,15 @@ class ImageBatcher:
Creates batches of pre-processed images.
"""
- def __init__(self, input, shape, dtype, max_num_images=None, exact_batches=False, preprocessor="fixed_shape_resizer"):
+ def __init__(
+ self,
+ input,
+ shape,
+ dtype,
+ max_num_images=None,
+ exact_batches=False,
+ preprocessor="fixed_shape_resizer",
+ ):
"""
:param input: The input directory to read images from.
:param shape: The tensor shape of the batch to prepare, either in NCHW or NHWC format.
@@ -45,10 +53,16 @@ def __init__(self, input, shape, dtype, max_num_images=None, exact_batches=False
extensions = [".jpg", ".jpeg", ".png", ".bmp"]
def is_image(path):
- return os.path.isfile(path) and os.path.splitext(path)[1].lower() in extensions
+ return (
+ os.path.isfile(path) and os.path.splitext(path)[1].lower() in extensions
+ )
if os.path.isdir(input):
- self.images = [os.path.join(input, f) for f in os.listdir(input) if is_image(os.path.join(input, f))]
+ self.images = [
+ os.path.join(input, f)
+ for f in os.listdir(input)
+ if is_image(os.path.join(input, f))
+ ]
self.images.sort()
elif os.path.isfile(input):
if is_image(input):
@@ -85,7 +99,7 @@ def is_image(path):
if self.num_images < 1:
print("Not enough images to create batches")
sys.exit(1)
- self.images = self.images[0:self.num_images]
+ self.images = self.images[0 : self.num_images]
# Subdivide the list of images into batches
self.num_batches = 1 + int((self.num_images - 1) / self.batch_size)
@@ -133,7 +147,10 @@ def resize_pad(image, pad_color=(0, 0, 0)):
return image, scale
elif self.preprocessor == "keep_aspect_ratio_resizer":
scale = 1.0 / max(width_scale, height_scale)
- image = image.resize((round(width * scale), round(height * scale)), resample=Image.BILINEAR)
+ image = image.resize(
+ (round(width * scale), round(height * scale)),
+ resample=Image.BILINEAR,
+ )
pad = Image.new("RGB", (self.width, self.height))
pad.paste(pad_color, [0, 0, self.width, self.height])
pad.paste(image)
@@ -141,9 +158,12 @@ def resize_pad(image, pad_color=(0, 0, 0)):
scale = None
image = Image.open(image_path)
- image = image.convert(mode='RGB')
- if self.preprocessor == "fixed_shape_resizer" or self.preprocessor == "keep_aspect_ratio_resizer":
- #Resize & Pad with ImageNet mean values and keep as [0,255] Normalization
+ image = image.convert(mode="RGB")
+ if (
+ self.preprocessor == "fixed_shape_resizer"
+ or self.preprocessor == "keep_aspect_ratio_resizer"
+ ):
+ # Resize & Pad with ImageNet mean values and keep as [0,255] Normalization
image, scale = resize_pad(image, (124, 116, 104))
image = np.asarray(image, dtype=self.dtype)
else:
diff --git a/samples/python/tensorflow_object_detection_api/infer.py b/samples/python/tensorflow_object_detection_api/infer.py
index 3ea07863..298b7a0c 100644
--- a/samples/python/tensorflow_object_detection_api/infer.py
+++ b/samples/python/tensorflow_object_detection_api/infer.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -28,6 +28,7 @@
from image_batcher import ImageBatcher
from visualize import visualize_detections
+
class TensorRTInfer:
"""
Implements inference for the Model TensorRT engine.
@@ -68,11 +69,11 @@ def __init__(self, engine_path, preprocessor, detection_type, iou_threshold):
size *= s
allocation = common.cuda_call(cudart.cudaMalloc(size))
binding = {
- 'index': i,
- 'name': name,
- 'dtype': np.dtype(trt.nptype(dtype)),
- 'shape': list(shape),
- 'allocation': allocation,
+ "index": i,
+ "name": name,
+ "dtype": np.dtype(trt.nptype(dtype)),
+ "shape": list(shape),
+ "allocation": allocation,
}
self.allocations.append(allocation)
if is_input:
@@ -90,7 +91,7 @@ def input_spec(self):
Get the specs for the input tensor of the network. Useful to prepare memory allocations.
:return: Two items, the shape of the input tensor and its (numpy) datatype.
"""
- return self.inputs[0]['shape'], self.inputs[0]['dtype']
+ return self.inputs[0]["shape"], self.inputs[0]["dtype"]
def output_spec(self):
"""
@@ -99,7 +100,7 @@ def output_spec(self):
"""
specs = []
for o in self.outputs:
- specs.append((o['shape'], o['dtype']))
+ specs.append((o["shape"], o["dtype"]))
return specs
def infer(self, batch, scales=None, nms_threshold=None):
@@ -117,10 +118,12 @@ def infer(self, batch, scales=None, nms_threshold=None):
outputs.append(np.zeros(shape, dtype))
# Process I/O and execute the network
- common.memcpy_host_to_device(self.inputs[0]['allocation'], np.ascontiguousarray(batch))
+ common.memcpy_host_to_device(
+ self.inputs[0]["allocation"], np.ascontiguousarray(batch)
+ )
self.context.execute_v2(self.allocations)
for o in range(len(outputs)):
- common.memcpy_device_to_host(outputs[o], self.outputs[o]['allocation'])
+ common.memcpy_device_to_host(outputs[o], self.outputs[o]["allocation"])
# Process the results
nums = outputs[0]
@@ -131,14 +134,14 @@ def infer(self, batch, scales=None, nms_threshold=None):
if len(outputs) == 5:
masks = outputs[4]
detections = []
- normalized = (np.max(boxes) < 2.0)
+ normalized = np.max(boxes) < 2.0
for i in range(self.batch_size):
detections.append([])
for n in range(int(nums[i])):
# Depending on preprocessor, box scaling will be slightly different.
if self.preprocessor == "fixed_shape_resizer":
- scale_x = self.inputs[0]['shape'][1] if normalized else 1.0
- scale_y = self.inputs[0]['shape'][2] if normalized else 1.0
+ scale_x = self.inputs[0]["shape"][1] if normalized else 1.0
+ scale_y = self.inputs[0]["shape"][2] if normalized else 1.0
if scales and i < len(scales):
scale_x /= scales[i][0]
@@ -146,11 +149,11 @@ def infer(self, batch, scales=None, nms_threshold=None):
if nms_threshold and scores[i][n] < nms_threshold:
continue
# Depending on detection type you need slightly different data.
- if self.detection_type == 'bbox':
+ if self.detection_type == "bbox":
mask = None
# Segmentation is only supported with Mask R-CNN, which has
# fixed_shape_resizer as image_resizer (lookup pipeline.config)
- elif self.detection_type == 'segmentation':
+ elif self.detection_type == "segmentation":
# Select a mask
mask = masks[i][n]
# Slight scaling, to get binary masks after float32 -> uint8
@@ -161,7 +164,7 @@ def infer(self, batch, scales=None, nms_threshold=None):
elif self.preprocessor == "keep_aspect_ratio_resizer":
# No segmentation models with keep_aspect_ratio_resizer
mask = None
- scale = self.inputs[0]['shape'][2] if normalized else 1.0
+ scale = self.inputs[0]["shape"][2] if normalized else 1.0
if scales and i < len(scales):
scale /= scales[i]
scale_y = scale
@@ -169,15 +172,17 @@ def infer(self, batch, scales=None, nms_threshold=None):
if nms_threshold and scores[i][n] < nms_threshold:
continue
# Append to detections
- detections[i].append({
- 'ymin': boxes[i][n][0] * scale_y,
- 'xmin': boxes[i][n][1] * scale_x,
- 'ymax': boxes[i][n][2] * scale_y,
- 'xmax': boxes[i][n][3] * scale_x,
- 'score': scores[i][n],
- 'class': int(classes[i][n]),
- 'mask': mask,
- })
+ detections[i].append(
+ {
+ "ymin": boxes[i][n][0] * scale_y,
+ "xmin": boxes[i][n][1] * scale_x,
+ "ymax": boxes[i][n][2] * scale_y,
+ "xmax": boxes[i][n][3] * scale_x,
+ "score": scores[i][n],
+ "class": int(classes[i][n]),
+ "mask": mask,
+ }
+ )
return detections
@@ -191,10 +196,17 @@ def main(args):
for i, label in enumerate(f):
labels.append(label.strip())
- trt_infer = TensorRTInfer(args.engine, args.preprocessor, args.detection_type, args.iou_threshold)
- batcher = ImageBatcher(args.input, *trt_infer.input_spec(), preprocessor=args.preprocessor)
+ trt_infer = TensorRTInfer(
+ args.engine, args.preprocessor, args.detection_type, args.iou_threshold
+ )
+ batcher = ImageBatcher(
+ args.input, *trt_infer.input_spec(), preprocessor=args.preprocessor
+ )
for batch, images, scales in batcher.get_batch():
- print("Processing Image {} / {}".format(batcher.image_index, batcher.num_images), end="\r")
+ print(
+ "Processing Image {} / {}".format(batcher.image_index, batcher.num_images),
+ end="\r",
+ )
detections = trt_infer.infer(batch, scales, args.nms_threshold)
for i in range(len(images)):
basename = os.path.splitext(os.path.basename(images[i]))[0]
@@ -204,7 +216,14 @@ def main(args):
# Text Results
output_results = ""
for d in detections[i]:
- line = [d['xmin'], d['ymin'], d['xmax'], d['ymax'], d['score'], d['class']]
+ line = [
+ d["xmin"],
+ d["ymin"],
+ d["xmax"],
+ d["ymax"],
+ d["score"],
+ d["class"],
+ ]
output_results += "\t".join([str(f) for f in line]) + "\n"
with open(os.path.join(args.output, "{}.txt".format(basename)), "w") as f:
f.write(output_results)
@@ -214,22 +233,54 @@ def main(args):
if __name__ == "__main__":
parser = argparse.ArgumentParser()
- parser.add_argument("-e", "--engine", default=None, help="The serialized TensorRT engine")
- parser.add_argument("-i", "--input", default=None, help="Path to the image or directory to process")
- parser.add_argument("-o", "--output", default=None, help="Directory where to save the visualization results")
- parser.add_argument("-l", "--labels", default="./labels_coco.txt",
- help="File to use for reading the class labels from, default: ./labels_coco.txt")
- parser.add_argument("-d", "--detection_type", default="bbox", choices=["bbox", "segmentation"],
- help="Detection type for COCO, either bbox or if you are using Mask R-CNN's instance segmentation - segmentation")
- parser.add_argument("-t", "--nms_threshold", type=float,
- help="Override the score threshold for the NMS operation, if higher than the threshold in the engine.")
- parser.add_argument("--iou_threshold", default=0.5, type=float,
- help="Select the IoU threshold for the mask segmentation. Range is 0 to 1. Pixel values more than threshold will become 1, less 0")
- parser.add_argument("--preprocessor", default="fixed_shape_resizer", choices=["fixed_shape_resizer", "keep_aspect_ratio_resizer"],
- help="Select the image preprocessor to use based on your pipeline.config, either 'fixed_shape_resizer' or 'keep_aspect_ratio_resizer', default: fixed_shape_resizer")
+ parser.add_argument(
+ "-e", "--engine", default=None, help="The serialized TensorRT engine"
+ )
+ parser.add_argument(
+ "-i", "--input", default=None, help="Path to the image or directory to process"
+ )
+ parser.add_argument(
+ "-o",
+ "--output",
+ default=None,
+ help="Directory where to save the visualization results",
+ )
+ parser.add_argument(
+ "-l",
+ "--labels",
+ default="./labels_coco.txt",
+ help="File to use for reading the class labels from, default: ./labels_coco.txt",
+ )
+ parser.add_argument(
+ "-d",
+ "--detection_type",
+ default="bbox",
+ choices=["bbox", "segmentation"],
+ help="Detection type for COCO, either bbox or if you are using Mask R-CNN's instance segmentation - segmentation",
+ )
+ parser.add_argument(
+ "-t",
+ "--nms_threshold",
+ type=float,
+ help="Override the score threshold for the NMS operation, if higher than the threshold in the engine.",
+ )
+ parser.add_argument(
+ "--iou_threshold",
+ default=0.5,
+ type=float,
+ help="Select the IoU threshold for the mask segmentation. Range is 0 to 1. Pixel values more than threshold will become 1, less 0",
+ )
+ parser.add_argument(
+ "--preprocessor",
+ default="fixed_shape_resizer",
+ choices=["fixed_shape_resizer", "keep_aspect_ratio_resizer"],
+ help="Select the image preprocessor to use based on your pipeline.config, either 'fixed_shape_resizer' or 'keep_aspect_ratio_resizer', default: fixed_shape_resizer",
+ )
args = parser.parse_args()
if not all([args.engine, args.input, args.output, args.preprocessor]):
parser.print_help()
- print("\nThese arguments are required: --engine --input --output and --preprocessor")
+ print(
+ "\nThese arguments are required: --engine --input --output and --preprocessor"
+ )
sys.exit(1)
main(args)
diff --git a/samples/python/tensorflow_object_detection_api/onnx_utils.py b/samples/python/tensorflow_object_detection_api/onnx_utils.py
index b539197a..07819328 100644
--- a/samples/python/tensorflow_object_detection_api/onnx_utils.py
+++ b/samples/python/tensorflow_object_detection_api/onnx_utils.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -23,6 +23,7 @@
logging.getLogger("SSDHelper").setLevel(logging.INFO)
log = logging.getLogger("SSDHelper")
+
@gs.Graph.register()
def op_with_const(self, op, name, input, value):
"""
@@ -35,7 +36,10 @@ def op_with_const(self, op, name, input, value):
input_tensor = input if type(input) is gs.Variable else input[0]
log.debug("Created {} node '{}': {}".format(op, name, value.squeeze()))
const = gs.Constant(name="{}_value:0".format(name), values=value)
- return self.layer(name=name, op=op, inputs=[input_tensor, const], outputs=[name + ":0"])
+ return self.layer(
+ name=name, op=op, inputs=[input_tensor, const], outputs=[name + ":0"]
+ )
+
@gs.Graph.register()
def matmul(self, name, input, value):
@@ -48,7 +52,10 @@ def matmul(self, name, input, value):
input_tensor = input if type(input) is gs.Variable else input[0]
log.debug("Created {} node '{}': {}".format("MatMul", name, value.squeeze()))
const = gs.Constant(name="{}_value:0".format(name), values=value)
- return self.layer(name=name, op="MatMul", inputs=[input_tensor, const], outputs=[name + ":0"])
+ return self.layer(
+ name=name, op="MatMul", inputs=[input_tensor, const], outputs=[name + ":0"]
+ )
+
@gs.Graph.register()
def clip(self, name, input, clip_min, clip_max):
@@ -61,9 +68,19 @@ def clip(self, name, input, clip_min, clip_max):
"""
input_tensor = input if type(input) is gs.Variable else input[0]
log.debug("Created {} node '{}".format("Clip", name))
- const_min = gs.Constant(name="{}_value:0".format(name), values=np.asarray([clip_min], dtype=np.float32))
- const_max = gs.Constant(name="{}_value:1".format(name), values=np.asarray([clip_max], dtype=np.float32))
- return self.layer(name=name, op="Clip", inputs=[input_tensor, const_min, const_max], outputs=[name + ":0"])
+ const_min = gs.Constant(
+ name="{}_value:0".format(name), values=np.asarray([clip_min], dtype=np.float32)
+ )
+ const_max = gs.Constant(
+ name="{}_value:1".format(name), values=np.asarray([clip_max], dtype=np.float32)
+ )
+ return self.layer(
+ name=name,
+ op="Clip",
+ inputs=[input_tensor, const_min, const_max],
+ outputs=[name + ":0"],
+ )
+
@gs.Graph.register()
def slice(self, name, input, starts, ends, axes):
@@ -79,10 +96,22 @@ def slice(self, name, input, starts, ends, axes):
input_tensor = input if type(input) is gs.Variable else input[0]
log.debug("Created {} node '{}".format("Slice", name))
- const_start = gs.Constant(name="{}_value:0".format(name), values=np.asarray([starts], dtype=np.int64))
- const_end = gs.Constant(name="{}_value:1".format(name), values=np.asarray([ends], dtype=np.int64))
- const_axes = gs.Constant(name="{}_value:2".format(name), values=np.asarray([axes], dtype=np.int64))
- return self.layer(name=name, op="Slice", inputs=[input_tensor, const_start, const_end, const_axes], outputs=[name + ":0"])
+ const_start = gs.Constant(
+ name="{}_value:0".format(name), values=np.asarray([starts], dtype=np.int64)
+ )
+ const_end = gs.Constant(
+ name="{}_value:1".format(name), values=np.asarray([ends], dtype=np.int64)
+ )
+ const_axes = gs.Constant(
+ name="{}_value:2".format(name), values=np.asarray([axes], dtype=np.int64)
+ )
+ return self.layer(
+ name=name,
+ op="Slice",
+ inputs=[input_tensor, const_start, const_end, const_axes],
+ outputs=[name + ":0"],
+ )
+
@gs.Graph.register()
def unsqueeze(self, name, input, axes=[3]):
@@ -96,7 +125,14 @@ def unsqueeze(self, name, input, axes=[3]):
"""
input_tensor = input if type(input) is gs.Variable else input[0]
log.debug("Created Unsqueeze node '{}': {}".format(name, axes))
- return self.layer(name=name, op="Unsqueeze", inputs=[input_tensor], outputs=[name + ":0"], attrs={'axes': axes})
+ return self.layer(
+ name=name,
+ op="Unsqueeze",
+ inputs=[input_tensor],
+ outputs=[name + ":0"],
+ attrs={"axes": axes},
+ )
+
@gs.Graph.register()
def squeeze(self, name, input, axes=[2]):
@@ -110,7 +146,14 @@ def squeeze(self, name, input, axes=[2]):
"""
input_tensor = input if type(input) is gs.Variable else input[0]
log.debug("Created Squeeze node '{}': {}".format(name, axes))
- return self.layer(name=name, op="Squeeze", inputs=[input_tensor], outputs=[name + ":0"], attrs={'axes': axes})
+ return self.layer(
+ name=name,
+ op="Squeeze",
+ inputs=[input_tensor],
+ outputs=[name + ":0"],
+ attrs={"axes": axes},
+ )
+
@gs.Graph.register()
def transpose(self, name, input, perm):
@@ -124,7 +167,14 @@ def transpose(self, name, input, perm):
"""
input_tensor = input if type(input) is gs.Variable else input[0]
log.debug("Created Transpose node '{}': {}".format(name, perm))
- return self.layer(name=name, op="Transpose", inputs=[input_tensor], outputs=[name + ":0"], attrs={'perm': perm})
+ return self.layer(
+ name=name,
+ op="Transpose",
+ inputs=[input_tensor],
+ outputs=[name + ":0"],
+ attrs={"perm": perm},
+ )
+
@gs.Graph.register()
def sigmoid(self, name, input):
@@ -137,7 +187,10 @@ def sigmoid(self, name, input):
"""
input_tensor = input if type(input) is gs.Variable else input[0]
log.debug("Created Sigmoid node '{}'".format(name))
- return self.layer(name=name, op="Sigmoid", inputs=[input_tensor], outputs=[name + ":0"])
+ return self.layer(
+ name=name, op="Sigmoid", inputs=[input_tensor], outputs=[name + ":0"]
+ )
+
@gs.Graph.register()
def plugin(self, op, name, inputs, outputs, attrs):
@@ -154,7 +207,10 @@ def plugin(self, op, name, inputs, outputs, attrs):
"""
input_tensors = inputs if type(inputs) is list else [inputs]
log.debug("Created TRT Plugin node '{}': {}".format(name, attrs))
- return self.layer(op=op, name=name, inputs=input_tensors, outputs=outputs, attrs=attrs)
+ return self.layer(
+ op=op, name=name, inputs=input_tensors, outputs=outputs, attrs=attrs
+ )
+
@gs.Graph.register()
def find_node_by_op(self, op):
@@ -169,6 +225,7 @@ def find_node_by_op(self, op):
return node
return None
+
@gs.Graph.register()
def find_descendant_by_op(self, node, op, depth=10):
"""
diff --git a/samples/python/tensorflow_object_detection_api/visualize.py b/samples/python/tensorflow_object_detection_api/visualize.py
index f3e4ffc1..f88ed6f0 100644
--- a/samples/python/tensorflow_object_detection_api/visualize.py
+++ b/samples/python/tensorflow_object_detection_api/visualize.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -16,6 +16,7 @@
#
import numpy as np
+
np.set_printoptions(threshold=np.inf, suppress=True)
import PIL.Image as Image
@@ -24,95 +25,228 @@
import PIL.ImageFilter as ImageFilter
-
-COLORS = ['GoldenRod', 'MediumTurquoise', 'GreenYellow', 'SteelBlue', 'DarkSeaGreen', 'SeaShell', 'LightGrey',
- 'IndianRed', 'DarkKhaki', 'LawnGreen', 'WhiteSmoke', 'Peru', 'LightCoral', 'FireBrick', 'OldLace',
- 'LightBlue', 'SlateGray', 'OliveDrab', 'NavajoWhite', 'PaleVioletRed', 'SpringGreen', 'AliceBlue', 'Violet',
- 'DeepSkyBlue', 'Red', 'MediumVioletRed', 'PaleTurquoise', 'Tomato', 'Azure', 'Yellow', 'Cornsilk',
- 'Aquamarine', 'CadetBlue', 'CornflowerBlue', 'DodgerBlue', 'Olive', 'Orchid', 'LemonChiffon', 'Sienna',
- 'OrangeRed', 'Orange', 'DarkSalmon', 'Magenta', 'Wheat', 'Lime', 'GhostWhite', 'SlateBlue', 'Aqua',
- 'MediumAquaMarine', 'LightSlateGrey', 'MediumSeaGreen', 'SandyBrown', 'YellowGreen', 'Plum', 'FloralWhite',
- 'LightPink', 'Thistle', 'DarkViolet', 'Pink', 'Crimson', 'Chocolate', 'DarkGrey', 'Ivory', 'PaleGreen',
- 'DarkGoldenRod', 'LavenderBlush', 'SlateGrey', 'DeepPink', 'Gold', 'Cyan', 'LightSteelBlue', 'MediumPurple',
- 'ForestGreen', 'DarkOrange', 'Tan', 'Salmon', 'PaleGoldenRod', 'LightGreen', 'LightSlateGray', 'HoneyDew',
- 'Fuchsia', 'LightSeaGreen', 'DarkOrchid', 'Green', 'Chartreuse', 'LimeGreen', 'AntiqueWhite', 'Beige',
- 'Gainsboro', 'Bisque', 'SaddleBrown', 'Silver', 'Lavender', 'Teal', 'LightCyan', 'PapayaWhip', 'Purple',
- 'Coral', 'BurlyWood', 'LightGray', 'Snow', 'MistyRose', 'PowderBlue', 'DarkCyan', 'White', 'Turquoise',
- 'MediumSlateBlue', 'PeachPuff', 'Moccasin', 'LightSalmon', 'SkyBlue', 'Khaki', 'MediumSpringGreen',
- 'BlueViolet', 'MintCream', 'Linen', 'SeaGreen', 'HotPink', 'LightYellow', 'BlanchedAlmond', 'RoyalBlue',
- 'RosyBrown', 'MediumOrchid', 'DarkTurquoise', 'LightGoldenRodYellow', 'LightSkyBlue']
+COLORS = [
+ "GoldenRod",
+ "MediumTurquoise",
+ "GreenYellow",
+ "SteelBlue",
+ "DarkSeaGreen",
+ "SeaShell",
+ "LightGrey",
+ "IndianRed",
+ "DarkKhaki",
+ "LawnGreen",
+ "WhiteSmoke",
+ "Peru",
+ "LightCoral",
+ "FireBrick",
+ "OldLace",
+ "LightBlue",
+ "SlateGray",
+ "OliveDrab",
+ "NavajoWhite",
+ "PaleVioletRed",
+ "SpringGreen",
+ "AliceBlue",
+ "Violet",
+ "DeepSkyBlue",
+ "Red",
+ "MediumVioletRed",
+ "PaleTurquoise",
+ "Tomato",
+ "Azure",
+ "Yellow",
+ "Cornsilk",
+ "Aquamarine",
+ "CadetBlue",
+ "CornflowerBlue",
+ "DodgerBlue",
+ "Olive",
+ "Orchid",
+ "LemonChiffon",
+ "Sienna",
+ "OrangeRed",
+ "Orange",
+ "DarkSalmon",
+ "Magenta",
+ "Wheat",
+ "Lime",
+ "GhostWhite",
+ "SlateBlue",
+ "Aqua",
+ "MediumAquaMarine",
+ "LightSlateGrey",
+ "MediumSeaGreen",
+ "SandyBrown",
+ "YellowGreen",
+ "Plum",
+ "FloralWhite",
+ "LightPink",
+ "Thistle",
+ "DarkViolet",
+ "Pink",
+ "Crimson",
+ "Chocolate",
+ "DarkGrey",
+ "Ivory",
+ "PaleGreen",
+ "DarkGoldenRod",
+ "LavenderBlush",
+ "SlateGrey",
+ "DeepPink",
+ "Gold",
+ "Cyan",
+ "LightSteelBlue",
+ "MediumPurple",
+ "ForestGreen",
+ "DarkOrange",
+ "Tan",
+ "Salmon",
+ "PaleGoldenRod",
+ "LightGreen",
+ "LightSlateGray",
+ "HoneyDew",
+ "Fuchsia",
+ "LightSeaGreen",
+ "DarkOrchid",
+ "Green",
+ "Chartreuse",
+ "LimeGreen",
+ "AntiqueWhite",
+ "Beige",
+ "Gainsboro",
+ "Bisque",
+ "SaddleBrown",
+ "Silver",
+ "Lavender",
+ "Teal",
+ "LightCyan",
+ "PapayaWhip",
+ "Purple",
+ "Coral",
+ "BurlyWood",
+ "LightGray",
+ "Snow",
+ "MistyRose",
+ "PowderBlue",
+ "DarkCyan",
+ "White",
+ "Turquoise",
+ "MediumSlateBlue",
+ "PeachPuff",
+ "Moccasin",
+ "LightSalmon",
+ "SkyBlue",
+ "Khaki",
+ "MediumSpringGreen",
+ "BlueViolet",
+ "MintCream",
+ "Linen",
+ "SeaGreen",
+ "HotPink",
+ "LightYellow",
+ "BlanchedAlmond",
+ "RoyalBlue",
+ "RosyBrown",
+ "MediumOrchid",
+ "DarkTurquoise",
+ "LightGoldenRodYellow",
+ "LightSkyBlue",
+]
-#Overlay mask with transparency on top of the image.
+# Overlay mask with transparency on top of the image.
def overlay(image, mask, color, alpha_transparency=0.5):
for channel in range(3):
- image[:, :, channel] = np.where(mask == 1,
- image[:, :, channel] *
- (1 - alpha_transparency) + alpha_transparency * color[channel] * 255,
- image[:, :, channel])
+ image[:, :, channel] = np.where(
+ mask == 1,
+ image[:, :, channel] * (1 - alpha_transparency)
+ + alpha_transparency * color[channel] * 255,
+ image[:, :, channel],
+ )
return image
+
def visualize_detections(image_path, output_path, detections, labels=[]):
- image = Image.open(image_path).convert(mode='RGB')
+ image = Image.open(image_path).convert(mode="RGB")
# Get image dimensions.
im_width, im_height = image.size
line_width = 2
font = ImageFont.load_default()
for d in detections:
- color = COLORS[d['class'] % len(COLORS)]
+ color = COLORS[d["class"] % len(COLORS)]
# Dynamically convert PIL color into RGB numpy array.
- pixel_color = Image.new("RGB",(1, 1), color)
+ pixel_color = Image.new("RGB", (1, 1), color)
# Normalize.
- np_color = (np.asarray(pixel_color)[0][0])/255
+ np_color = (np.asarray(pixel_color)[0][0]) / 255
# Process TF and TRT instance segmentation masks.
- if isinstance(d['mask'], np.ndarray) and d['mask'].shape == (33, 33):
+ if isinstance(d["mask"], np.ndarray) and d["mask"].shape == (33, 33):
# Get detection bbox resolution.
- det_width = round(d['xmax'] - d['xmin'])
- det_height = round(d['ymax'] - d['ymin'])
+ det_width = round(d["xmax"] - d["xmin"])
+ det_height = round(d["ymax"] - d["ymin"])
# Create an image out of predicted mask array.
- small_mask = Image.fromarray(d['mask'])
+ small_mask = Image.fromarray(d["mask"])
# Upsample mask to detection bbox's size.
mask = small_mask.resize((det_width, det_height), resample=Image.BILINEAR)
# Create an original image sized template for correct mask placement.
pad = Image.new("L", (im_width, im_height))
# Place your mask according to detection bbox placement.
- pad.paste(mask, (round(d['xmin']), (round(d['ymin']))))
+ pad.paste(mask, (round(d["xmin"]), (round(d["ymin"]))))
# Reconvert mask into numpy array for evaluation.
padded_mask = np.array(pad)
- #Creat np.array from original image, copy in order to modify.
+ # Creat np.array from original image, copy in order to modify.
image_copy = np.asarray(image).copy()
# Image with overlaid mask.
masked_image = overlay(image_copy, padded_mask, np_color)
# Reconvert back to PIL.
image = Image.fromarray(masked_image)
# Separate clause for ground truth instance segmentation masks.
- elif isinstance(d['mask'], np.ndarray):
- #Creat np.array from original image, copy in order to modify.
+ elif isinstance(d["mask"], np.ndarray):
+ # Creat np.array from original image, copy in order to modify.
image_copy = np.asarray(image).copy()
# Image with overlaid mask.
- masked_image = overlay(image_copy, d['mask'], np_color)
+ masked_image = overlay(image_copy, d["mask"], np_color)
# Reconvert back to PIL
image = Image.fromarray(masked_image)
# Bbox lines.
draw = ImageDraw.Draw(image)
- draw.line([(d['xmin'], d['ymin']), (d['xmin'], d['ymax']), (d['xmax'], d['ymax']), (d['xmax'], d['ymin']),
- (d['xmin'], d['ymin'])], width=line_width, fill=color)
- label = "Class {}".format(d['class'])
- if d['class'] < len(labels):
- label = "{}".format(labels[d['class']])
- score = d['score']
+ draw.line(
+ [
+ (d["xmin"], d["ymin"]),
+ (d["xmin"], d["ymax"]),
+ (d["xmax"], d["ymax"]),
+ (d["xmax"], d["ymin"]),
+ (d["xmin"], d["ymin"]),
+ ],
+ width=line_width,
+ fill=color,
+ )
+ label = "Class {}".format(d["class"])
+ if d["class"] < len(labels):
+ label = "{}".format(labels[d["class"]])
+ score = d["score"]
text = "{}: {}%".format(label, int(100 * score))
if score < 0:
text = label
left, top, right, bottom = font.getbbox(text)
text_width, text_height = right - left, bottom - top
- text_bottom = max(text_height, d['ymin'])
- text_left = d['xmin']
+ text_bottom = max(text_height, d["ymin"])
+ text_left = d["xmin"]
margin = np.ceil(0.05 * text_height)
- draw.rectangle([(text_left, text_bottom - text_height - 2 * margin), (text_left + text_width, text_bottom)],
- fill=color)
- draw.text((text_left + margin, text_bottom - text_height - margin), text, fill='black', font=font)
+ draw.rectangle(
+ [
+ (text_left, text_bottom - text_height - 2 * margin),
+ (text_left + text_width, text_bottom),
+ ],
+ fill=color,
+ )
+ draw.text(
+ (text_left + margin, text_bottom - text_height - margin),
+ text,
+ fill="black",
+ font=font,
+ )
if output_path is None:
return image
image.save(output_path)
@@ -123,7 +257,12 @@ def draw_text(draw, font, text, width, bar_height, offset, color):
left, top, right, bottom = font.getbbox(text)
text_width, text_height = right - left, bottom - top
draw.rectangle([(offset, 0), (offset + width, bar_height)], fill=color)
- draw.text((offset + (width - text_width) / 2, text_height - text_height / 2), text, fill='black', font=font)
+ draw.text(
+ (offset + (width - text_width) / 2, text_height - text_height / 2),
+ text,
+ fill="black",
+ font=font,
+ )
bar_height = 18
width = 0
@@ -132,7 +271,7 @@ def draw_text(draw, font, text, width, bar_height, offset, color):
width += im.width
height = max(height, im.height)
- concat = Image.new('RGB', (width, height + bar_height))
+ concat = Image.new("RGB", (width, height + bar_height))
draw = ImageDraw.Draw(concat)
font = ImageFont.load_default()
diff --git a/samples/python/yolov3_onnx/data_processing.py b/samples/python/yolov3_onnx/data_processing.py
index 8a68145f..998cbc5f 100644
--- a/samples/python/yolov3_onnx/data_processing.py
+++ b/samples/python/yolov3_onnx/data_processing.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -31,7 +31,9 @@ def load_label_categories(label_file_path):
return categories
-LABEL_FILE_PATH = os.path.join(os.path.dirname(os.path.realpath(__file__)), "coco_labels.txt")
+LABEL_FILE_PATH = os.path.join(
+ os.path.dirname(os.path.realpath(__file__)), "coco_labels.txt"
+)
ALL_CATEGORIES = load_label_categories(LABEL_FILE_PATH)
# Let's make sure that there are 80 classes, as expected for the COCO data set:
@@ -103,7 +105,14 @@ def _shuffle_and_normalize(self, image):
class PostprocessYOLO(object):
"""Class for post-processing the three outputs tensors from YOLOv3-608."""
- def __init__(self, yolo_masks, yolo_anchors, obj_threshold, nms_threshold, yolo_input_resolution):
+ def __init__(
+ self,
+ yolo_masks,
+ yolo_anchors,
+ obj_threshold,
+ nms_threshold,
+ yolo_input_resolution,
+ ):
"""Initialize with all values that will be kept when processing several frames.
Assuming 3 outputs of the network in the case of (large) YOLOv3.
@@ -135,7 +144,9 @@ def process(self, outputs, resolution_raw):
for output in outputs:
outputs_reshaped.append(self._reshape_output(output))
- boxes, categories, confidences = self._process_yolo_output(outputs_reshaped, resolution_raw)
+ boxes, categories, confidences = self._process_yolo_output(
+ outputs_reshaped, resolution_raw
+ )
return boxes, categories, confidences
@@ -311,8 +322,12 @@ def _nms_boxes(self, boxes, box_confidences):
keep.append(i)
xx1 = np.maximum(x_coord[i], x_coord[ordered[1:]])
yy1 = np.maximum(y_coord[i], y_coord[ordered[1:]])
- xx2 = np.minimum(x_coord[i] + width[i], x_coord[ordered[1:]] + width[ordered[1:]])
- yy2 = np.minimum(y_coord[i] + height[i], y_coord[ordered[1:]] + height[ordered[1:]])
+ xx2 = np.minimum(
+ x_coord[i] + width[i], x_coord[ordered[1:]] + width[ordered[1:]]
+ )
+ yy2 = np.minimum(
+ y_coord[i] + height[i], y_coord[ordered[1:]] + height[ordered[1:]]
+ )
width1 = np.maximum(0.0, xx2 - xx1 + 1)
height1 = np.maximum(0.0, yy2 - yy1 + 1)
diff --git a/samples/python/yolov3_onnx/onnx_to_tensorrt.py b/samples/python/yolov3_onnx/onnx_to_tensorrt.py
index c7e54d16..2ba322bc 100644
--- a/samples/python/yolov3_onnx/onnx_to_tensorrt.py
+++ b/samples/python/yolov3_onnx/onnx_to_tensorrt.py
@@ -1,6 +1,6 @@
#!/usr/bin/env python3
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -18,23 +18,25 @@
from __future__ import print_function
+import os
+import sys
+
import numpy as np
import tensorrt as trt
-
+from data_processing import ALL_CATEGORIES, PostprocessYOLO, PreprocessYOLO
from PIL import ImageDraw
-from data_processing import PreprocessYOLO, PostprocessYOLO, ALL_CATEGORIES
-
-import sys, os
-
sys.path.insert(1, os.path.join(sys.path[0], ".."))
-import common
from downloader import getFilePath
+import common
+
TRT_LOGGER = trt.Logger()
-def draw_bboxes(image_raw, bboxes, confidences, categories, all_categories, bbox_color="blue"):
+def draw_bboxes(
+ image_raw, bboxes, confidences, categories, all_categories, bbox_color="blue"
+):
"""Draw the bounding boxes on the original input image and return it.
Keyword arguments:
@@ -58,7 +60,11 @@ def draw_bboxes(image_raw, bboxes, confidences, categories, all_categories, bbox
bottom = min(image_raw.height, np.floor(y_coord + height + 0.5).astype(int))
draw.rectangle(((left, top), (right, bottom)), outline=bbox_color)
- draw.text((left, top - 12), "{0} {1:.2f}".format(all_categories[category], score), fill=bbox_color)
+ draw.text(
+ (left, top - 12),
+ "{0} {1:.2f}".format(all_categories[category], score),
+ fill=bbox_color,
+ )
return image_raw
@@ -69,17 +75,21 @@ def get_engine(onnx_file_path, engine_file_path=""):
def build_engine():
"""Takes an ONNX file and creates a TensorRT engine to run inference with"""
with trt.Builder(TRT_LOGGER) as builder, builder.create_network(
- 0
+ 0
) as network, builder.create_builder_config() as config, trt.OnnxParser(
network, TRT_LOGGER
) as parser, trt.Runtime(
TRT_LOGGER
) as runtime:
- config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 28) # 256MiB
+ config.set_memory_pool_limit(
+ trt.MemoryPoolType.WORKSPACE, 1 << 28
+ ) # 256MiB
# Parse model file
if not os.path.exists(onnx_file_path):
print(
- "ONNX file {} not found, please run yolov3_to_onnx.py first to generate it.".format(onnx_file_path)
+ "ONNX file {} not found, please run yolov3_to_onnx.py first to generate it.".format(
+ onnx_file_path
+ )
)
exit(0)
print("Loading ONNX file from path {}...".format(onnx_file_path))
@@ -93,7 +103,11 @@ def build_engine():
# The actual yolov3.onnx is generated with batch size 64. Reshape input to batch size 1
network.get_input(0).shape = [1, 3, 608, 608]
print("Completed parsing of ONNX file")
- print("Building an engine from file {}; this may take a while...".format(onnx_file_path))
+ print(
+ "Building an engine from file {}; this may take a while...".format(
+ onnx_file_path
+ )
+ )
plan = builder.build_serialized_network(network, config)
engine = runtime.deserialize_cuda_engine(plan)
print("Completed creating Engine")
@@ -131,19 +145,34 @@ def main():
output_shapes = [(1, 255, 19, 19), (1, 255, 38, 38), (1, 255, 76, 76)]
# Do inference with TensorRT
trt_outputs = []
- with get_engine(onnx_file_path, engine_file_path) as engine, engine.create_execution_context() as context:
+ with get_engine(
+ onnx_file_path, engine_file_path
+ ) as engine, engine.create_execution_context() as context:
inputs, outputs, bindings, stream = common.allocate_buffers(engine)
# Do inference
print("Running inference on image {}...".format(input_image_path))
# Set host input to the image. The common.do_inference function will copy the input to the GPU before executing.
inputs[0].host = image
- trt_outputs = common.do_inference(context, engine=engine, bindings=bindings, inputs=inputs, outputs=outputs, stream=stream)
+ trt_outputs = common.do_inference(
+ context,
+ engine=engine,
+ bindings=bindings,
+ inputs=inputs,
+ outputs=outputs,
+ stream=stream,
+ )
# Before doing post-processing, we need to reshape the outputs as the common.do_inference will give us flat arrays.
- trt_outputs = [output.reshape(shape) for output, shape in zip(trt_outputs, output_shapes)]
+ trt_outputs = [
+ output.reshape(shape) for output, shape in zip(trt_outputs, output_shapes)
+ ]
postprocessor_args = {
- "yolo_masks": [(6, 7, 8), (3, 4, 5), (0, 1, 2)], # A list of 3 three-dimensional tuples for the YOLO masks
+ "yolo_masks": [
+ (6, 7, 8),
+ (3, 4, 5),
+ (0, 1, 2),
+ ], # A list of 3 three-dimensional tuples for the YOLO masks
"yolo_anchors": [
(10, 13),
(16, 30),
@@ -168,7 +197,11 @@ def main():
obj_detected_img = draw_bboxes(image_raw, boxes, scores, classes, ALL_CATEGORIES)
output_image_path = "dog_bboxes.png"
obj_detected_img.save(output_image_path, "PNG")
- print("Saved image with bounding boxes of detected objects to {}.".format(output_image_path))
+ print(
+ "Saved image with bounding boxes of detected objects to {}.".format(
+ output_image_path
+ )
+ )
# Free host and device memory used for inputs and outputs
common.free_buffers(inputs, outputs, stream)
diff --git a/samples/python/yolov3_onnx/yolov3_to_onnx.py b/samples/python/yolov3_onnx/yolov3_to_onnx.py
index 59f8b3a6..ffd9d19f 100644
--- a/samples/python/yolov3_onnx/yolov3_to_onnx.py
+++ b/samples/python/yolov3_onnx/yolov3_to_onnx.py
@@ -1,6 +1,6 @@
#!/usr/bin/env python3
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -128,7 +128,9 @@ def _parse_params(self, param_line):
param_value = layer_indexes
elif isinstance(param_value_raw, str) and not param_value_raw.isalpha():
condition_param_value_positive = param_value_raw.isdigit()
- condition_param_value_negative = param_value_raw[0] == "-" and param_value_raw[1:].isdigit()
+ condition_param_value_negative = (
+ param_value_raw[0] == "-" and param_value_raw[1:].isdigit()
+ )
if condition_param_value_positive or condition_param_value_negative:
param_value = int(param_value_raw)
else:
@@ -276,17 +278,29 @@ def load_conv_weights(self, conv_params):
initializer = list()
inputs = list()
if conv_params.batch_normalize:
- bias_init, bias_input = self._create_param_tensors(conv_params, "bn", "bias")
- bn_scale_init, bn_scale_input = self._create_param_tensors(conv_params, "bn", "scale")
- bn_mean_init, bn_mean_input = self._create_param_tensors(conv_params, "bn", "mean")
- bn_var_init, bn_var_input = self._create_param_tensors(conv_params, "bn", "var")
+ bias_init, bias_input = self._create_param_tensors(
+ conv_params, "bn", "bias"
+ )
+ bn_scale_init, bn_scale_input = self._create_param_tensors(
+ conv_params, "bn", "scale"
+ )
+ bn_mean_init, bn_mean_input = self._create_param_tensors(
+ conv_params, "bn", "mean"
+ )
+ bn_var_init, bn_var_input = self._create_param_tensors(
+ conv_params, "bn", "var"
+ )
initializer.extend([bn_scale_init, bias_init, bn_mean_init, bn_var_init])
inputs.extend([bn_scale_input, bias_input, bn_mean_input, bn_var_input])
else:
- bias_init, bias_input = self._create_param_tensors(conv_params, "conv", "bias")
+ bias_init, bias_input = self._create_param_tensors(
+ conv_params, "conv", "bias"
+ )
initializer.append(bias_init)
inputs.append(bias_input)
- conv_init, conv_input = self._create_param_tensors(conv_params, "conv", "weights")
+ conv_init, conv_input = self._create_param_tensors(
+ conv_params, "conv", "weights"
+ )
initializer.append(conv_init)
inputs.append(conv_input)
return initializer, inputs
@@ -299,7 +313,11 @@ def _open_weights_file(self, weights_file_path):
"""
weights_file = open(weights_file_path, "rb")
length_header = 5
- np.ndarray(shape=(length_header,), dtype="int32", buffer=weights_file.read(length_header * 4))
+ np.ndarray(
+ shape=(length_header,),
+ dtype="int32",
+ buffer=weights_file.read(length_header * 4),
+ )
return weights_file
def _create_param_tensors(self, conv_params, param_category, suffix):
@@ -312,10 +330,16 @@ def _create_param_tensors(self, conv_params, param_category, suffix):
suffix -- a string determining the sub-type of above param_category (e.g.,
'weights' or 'bias')
"""
- param_name, param_data, param_data_shape = self._load_one_param_type(conv_params, param_category, suffix)
+ param_name, param_data, param_data_shape = self._load_one_param_type(
+ conv_params, param_category, suffix
+ )
- initializer_tensor = helper.make_tensor(param_name, TensorProto.FLOAT, param_data_shape, param_data)
- input_tensor = helper.make_tensor_value_info(param_name, TensorProto.FLOAT, param_data_shape)
+ initializer_tensor = helper.make_tensor(
+ param_name, TensorProto.FLOAT, param_data_shape, param_data
+ )
+ input_tensor = helper.make_tensor_value_info(
+ param_name, TensorProto.FLOAT, param_data_shape
+ )
return initializer_tensor, input_tensor
def _load_one_param_type(self, conv_params, param_category, suffix):
@@ -337,7 +361,11 @@ def _load_one_param_type(self, conv_params, param_category, suffix):
elif suffix == "bias":
param_shape = [channels_out]
param_size = np.product(np.array(param_shape))
- param_data = np.ndarray(shape=param_shape, dtype="float32", buffer=self.weights_file.read(param_size * 4))
+ param_data = np.ndarray(
+ shape=param_shape,
+ dtype="float32",
+ buffer=self.weights_file.read(param_size * 4),
+ )
param_data = param_data.flatten().astype(float)
return param_name, param_data, param_shape
@@ -385,7 +413,9 @@ def build_onnx_graph(self, layer_configs, weights_file_path, verbose=True):
output_dims = [
self.batch_size,
] + self.output_tensors[tensor_name]
- output_tensor = helper.make_tensor_value_info(tensor_name, TensorProto.FLOAT, output_dims)
+ output_tensor = helper.make_tensor_value_info(
+ tensor_name, TensorProto.FLOAT, output_dims
+ )
outputs.append(output_tensor)
inputs = [self.input_tensor]
weight_loader = WeightLoader(weights_file_path)
@@ -395,20 +425,30 @@ def build_onnx_graph(self, layer_configs, weights_file_path, verbose=True):
_, layer_type = layer_name.split("_", 1)
params = self.param_dict[layer_name]
if layer_type == "convolutional":
- initializer_layer, inputs_layer = weight_loader.load_conv_weights(params)
+ initializer_layer, inputs_layer = weight_loader.load_conv_weights(
+ params
+ )
initializer.extend(initializer_layer)
inputs.extend(inputs_layer)
elif layer_type == "upsample":
- initializer_layer, inputs_layer = weight_loader.load_resize_scales(params)
+ initializer_layer, inputs_layer = weight_loader.load_resize_scales(
+ params
+ )
initializer.extend(initializer_layer)
inputs.extend(inputs_layer)
del weight_loader
self.graph_def = helper.make_graph(
- nodes=self._nodes, name="YOLOv3-608", inputs=inputs, outputs=outputs, initializer=initializer
+ nodes=self._nodes,
+ name="YOLOv3-608",
+ inputs=inputs,
+ outputs=outputs,
+ initializer=initializer,
)
if verbose:
print(helper.printable_graph(self.graph_def))
- model_def = helper.make_model(self.graph_def, producer_name="NVIDIA TensorRT sample")
+ model_def = helper.make_model(
+ self.graph_def, producer_name="NVIDIA TensorRT sample"
+ )
return model_def
def _make_onnx_node(self, layer_name, layer_dict):
@@ -423,8 +463,12 @@ def _make_onnx_node(self, layer_name, layer_dict):
layer_type = layer_dict["type"]
if self.input_tensor is None:
if layer_type == "net":
- major_node_output_name, major_node_output_channels = self._make_input_tensor(layer_name, layer_dict)
- major_node_specs = MajorNodeSpecs(major_node_output_name, major_node_output_channels)
+ major_node_output_name, major_node_output_channels = (
+ self._make_input_tensor(layer_name, layer_dict)
+ )
+ major_node_specs = MajorNodeSpecs(
+ major_node_output_name, major_node_output_channels
+ )
else:
raise ValueError('The first node has to be of type "net".')
else:
@@ -435,10 +479,17 @@ def _make_onnx_node(self, layer_name, layer_dict):
node_creators["upsample"] = self._make_resize_node
if layer_type in node_creators.keys():
- major_node_output_name, major_node_output_channels = node_creators[layer_type](layer_name, layer_dict)
- major_node_specs = MajorNodeSpecs(major_node_output_name, major_node_output_channels)
+ major_node_output_name, major_node_output_channels = node_creators[
+ layer_type
+ ](layer_name, layer_dict)
+ major_node_specs = MajorNodeSpecs(
+ major_node_output_name, major_node_output_channels
+ )
else:
- print("Layer of type %s not supported, skipping ONNX node generation." % layer_type)
+ print(
+ "Layer of type %s not supported, skipping ONNX node generation."
+ % layer_type
+ )
major_node_specs = MajorNodeSpecs(layer_name, None)
return major_node_specs
@@ -491,7 +542,10 @@ def _make_conv_node(self, layer_name, layer_dict):
stride = layer_dict["stride"]
filters = layer_dict["filters"]
batch_normalize = False
- if "batch_normalize" in layer_dict.keys() and layer_dict["batch_normalize"] == 1:
+ if (
+ "batch_normalize" in layer_dict.keys()
+ and layer_dict["batch_normalize"] == 1
+ ):
batch_normalize = True
kernel_shape = [kernel_size, kernel_size]
@@ -542,7 +596,11 @@ def _make_conv_node(self, layer_name, layer_dict):
layer_name_lrelu = layer_name + "_lrelu"
lrelu_node = helper.make_node(
- "LeakyRelu", inputs=inputs, outputs=[layer_name_lrelu], name=layer_name_lrelu, alpha=self.alpha_lrelu
+ "LeakyRelu",
+ inputs=inputs,
+ outputs=[layer_name_lrelu],
+ name=layer_name_lrelu,
+ alpha=self.alpha_lrelu,
)
self._nodes.append(lrelu_node)
inputs = [layer_name_lrelu]
@@ -633,7 +691,9 @@ def _make_resize_node(self, layer_name, layer_dict):
"""
resize_scale_factors = float(layer_dict["stride"])
# Create the scale factor array with node parameters
- scales = np.array([1.0, 1.0, resize_scale_factors, resize_scale_factors]).astype(np.float32)
+ scales = np.array(
+ [1.0, 1.0, resize_scale_factors, resize_scale_factors]
+ ).astype(np.float32)
previous_node_specs = self._get_previous_node_specs()
inputs = [previous_node_specs.name]
diff --git a/samples/sampleAlgorithmSelector/CMakeLists.txt b/samples/sampleAlgorithmSelector/CMakeLists.txt
index ef9386b3..3b30570c 100644
--- a/samples/sampleAlgorithmSelector/CMakeLists.txt
+++ b/samples/sampleAlgorithmSelector/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/sampleAlgorithmSelector/sampleAlgorithmSelector.cpp b/samples/sampleAlgorithmSelector/sampleAlgorithmSelector.cpp
index 0072f761..02fd9975 100644
--- a/samples/sampleAlgorithmSelector/sampleAlgorithmSelector.cpp
+++ b/samples/sampleAlgorithmSelector/sampleAlgorithmSelector.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/sampleCharRNN/CMakeLists.txt b/samples/sampleCharRNN/CMakeLists.txt
index 89d82682..d52245fb 100644
--- a/samples/sampleCharRNN/CMakeLists.txt
+++ b/samples/sampleCharRNN/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/sampleCharRNN/sampleCharRNN.cpp b/samples/sampleCharRNN/sampleCharRNN.cpp
index 73ba53cc..8ddbb2ac 100644
--- a/samples/sampleCharRNN/sampleCharRNN.cpp
+++ b/samples/sampleCharRNN/sampleCharRNN.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/sampleDynamicReshape/CMakeLists.txt b/samples/sampleDynamicReshape/CMakeLists.txt
index 374b5566..548e9bd5 100644
--- a/samples/sampleDynamicReshape/CMakeLists.txt
+++ b/samples/sampleDynamicReshape/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/sampleDynamicReshape/sampleDynamicReshape.cpp b/samples/sampleDynamicReshape/sampleDynamicReshape.cpp
index d91b1a68..0f880509 100644
--- a/samples/sampleDynamicReshape/sampleDynamicReshape.cpp
+++ b/samples/sampleDynamicReshape/sampleDynamicReshape.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/sampleINT8API/CMakeLists.txt b/samples/sampleINT8API/CMakeLists.txt
index e8eed5c3..00a6e82b 100644
--- a/samples/sampleINT8API/CMakeLists.txt
+++ b/samples/sampleINT8API/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/sampleINT8API/sampleINT8API.cpp b/samples/sampleINT8API/sampleINT8API.cpp
index a20acff3..7cf6e819 100644
--- a/samples/sampleINT8API/sampleINT8API.cpp
+++ b/samples/sampleINT8API/sampleINT8API.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/sampleIOFormats/CMakeLists.txt b/samples/sampleIOFormats/CMakeLists.txt
index 4ec93187..4640a2ff 100755
--- a/samples/sampleIOFormats/CMakeLists.txt
+++ b/samples/sampleIOFormats/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
@@ -16,6 +16,11 @@
#
SET(SAMPLE_SOURCES
sampleIOFormats.cpp
+ ../common/sampleDevice.cpp
+ ../common/sampleEngines.cpp
+ ../common/sampleOptions.cpp
+ ../common/sampleUtils.cpp
+ ../common/bfloat16.cpp
)
SET(SAMPLE_PARSERS "onnx")
diff --git a/samples/sampleIOFormats/sampleIOFormats.cpp b/samples/sampleIOFormats/sampleIOFormats.cpp
index 2c8b87af..9e167134 100644
--- a/samples/sampleIOFormats/sampleIOFormats.cpp
+++ b/samples/sampleIOFormats/sampleIOFormats.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
@@ -33,6 +33,7 @@
#include "half.h"
#include "logger.h"
#include "parserOnnxConfig.h"
+#include "sampleOptions.h"
#include "NvInfer.h"
#include "NvOnnxParser.h"
@@ -144,6 +145,15 @@ class BufferDesc
}
};
+//! Specification for a network I/O tensor.
+class TypeSpec
+{
+public:
+ DataType dtype; //!< datatype
+ TensorFormat format; //!< format
+ std::string formatName; //!< name of the format
+};
+
class SampleBuffer
{
public:
@@ -245,30 +255,14 @@ class SampleIOFormats
bool build(int32_t dataWidth);
//!
- //! \brief Runs the TensorRT inference engine for this sample
- //!
- bool infer(SampleBuffer& inputBuf, SampleBuffer& outputBuf);
-
- //!
- //! \brief Used to run CPU reference and get result
- //!
- bool reference();
-
- //!
- //! \brief Used to compare the CPU reference with the TRT result
+ //! \brief Verify the built engine I/O types and formats.
//!
- void compareResult();
+ bool verify(TypeSpec const& spec);
//!
- //! \brief Reads the digit map from the file
- //!
- bool readDigits(SampleBuffer& buffer, int32_t groundTruthDigit);
-
- //!
- //! \brief Verifies that the output is correct and prints it
+ //! \brief Runs the TensorRT inference engine for this sample
//!
- template
- bool verifyOutput(SampleBuffer& outputBuf, int32_t groundTruthDigit) const;
+ bool infer(SampleBuffer& inputBuf, SampleBuffer& outputBuf);
private:
//!
@@ -293,6 +287,62 @@ class SampleIOFormats
int32_t mDigit;
};
+//!
+//! \brief Validates engine I/O datatypes and formats against a reference.
+//!
+//! \details This function queries I/O datatype and format description from the built engine.
+//! Validating them is sufficient to ensure that `ITensor::setType` and `ITensor::setAllowedFormats` API as
+//! expected.
+//!
+//! \return true if type and format validation succeeds.
+//!
+bool SampleIOFormats::verify(TypeSpec const& spec)
+{
+ assert(mEngine->getNbIOTensors() == 2);
+ char const* inputName = mEngine->getIOTensorName(0);
+ char const* outputName = mEngine->getIOTensorName(1);
+
+ auto verifyType = [](DataType actual, DataType expected) {
+ if (actual != expected)
+ {
+ sample::gLogError << "Expected " << expected << " data type, got " << actual;
+ return false;
+ }
+ return true;
+ };
+
+ if (!verifyType(mEngine->getTensorDataType(inputName), spec.dtype))
+ {
+ return false;
+ }
+
+ if (!verifyType(mEngine->getTensorDataType(outputName), spec.dtype))
+ {
+ return false;
+ }
+
+ auto verifyFormat = [](std::string actual, std::string expected) {
+ if (expected.find(actual) != std::string::npos)
+ {
+ sample::gLogError << "Expected " << expected << " format, got " << actual;
+ return false;
+ }
+ return true;
+ };
+
+ if (!verifyFormat(std::string(mEngine->getTensorFormatDesc(inputName)), spec.formatName))
+ {
+ return false;
+ }
+
+ if (!verifyFormat(std::string(mEngine->getTensorFormatDesc(inputName)), "kLINEAR"))
+ {
+ return false;
+ }
+
+ return true;
+}
+
//!
//! \brief Creates the network, configures the builder and creates the network engine
//!
@@ -474,134 +524,6 @@ bool SampleIOFormats::infer(SampleBuffer& inputBuf, SampleBuffer& outputBuf)
return true;
}
-//!
-//! \brief Reads the digit map from file
-//!
-bool SampleIOFormats::readDigits(SampleBuffer& buffer, int32_t groundTruthDigit)
-{
- int32_t const inputH = buffer.dims.d[2];
- int32_t const inputW = buffer.dims.d[3];
-
- // Read a random digit file
- std::vector fileData(inputH * inputW);
- readPGMFile(
- locateFile(std::to_string(groundTruthDigit) + ".pgm", mParams.dataDirs), fileData.data(), inputH, inputW);
-
- // Print ASCII representation of digit
- for (int32_t i = 0; i < inputH * inputW; i++)
- {
- sample::gLogInfo << (" .:-=+*#%@"[fileData[i] / 26]) << (((i + 1) % inputW) ? "" : "\n");
- }
- sample::gLogInfo << std::endl;
-
- float* inputBuf = reinterpret_cast(buffer.buffer);
-
- for (int32_t i = 0; i < inputH * inputW; i++)
- {
- inputBuf[i] = 1.0F - static_cast(fileData[i] / 255.0F);
- }
-
- return true;
-}
-
-//!
-//! \brief Verifies that the output is correct and prints it
-//!
-template
-bool SampleIOFormats::verifyOutput(SampleBuffer& outputBuf, int32_t groundTruthDigit) const
-{
- T const* prob = reinterpret_cast(outputBuf.buffer);
-
- float val{0.0F};
- float elem{0.0F};
- int32_t idx{0};
- int32_t const kDIGITS = 10;
-
- for (int32_t i = 0; i < kDIGITS; i++)
- {
- elem = static_cast(prob[i]);
- if (val < elem)
- {
- val = elem;
- idx = i;
- }
- }
- sample::gLogInfo << "Predicted Output: " << idx << std::endl;
-
- return (idx == groundTruthDigit && val > 0.9F);
-}
-
-int32_t calcIndex(SampleBuffer& buffer, int32_t c, int32_t h, int32_t w)
-{
- int32_t index;
-
- if (!buffer.desc.channelPivot)
- {
- index = c / buffer.desc.dims[4] * buffer.desc.dims[2] * buffer.desc.dims[3] * buffer.desc.dims[4]
- + h * buffer.desc.dims[3] * buffer.desc.dims[4] + w * buffer.desc.dims[4] + c % buffer.desc.dims[4];
- }
- else
- {
- index = h * buffer.desc.dims[3] * buffer.desc.dims[2] + w * buffer.desc.dims[3] + c;
- }
-
- return index;
-}
-
-//!
-//! \brief Reformats the buffer. Src and dst buffers should be of same datatype and dims.
-//!
-template
-void reformat(SampleBuffer& src, SampleBuffer& dst)
-{
- if (src.format == dst.format)
- {
- memcpy(dst.buffer, src.buffer, src.getBufferSize());
- return;
- }
-
- int32_t srcIndex, dstIndex;
-
- T* srcBuf = reinterpret_cast(src.buffer);
- T* dstBuf = reinterpret_cast(dst.buffer);
-
- for (int32_t c = 0; c < src.dims.d[1]; c++)
- {
- for (int32_t h = 0; h < src.dims.d[2]; h++)
- {
- for (int32_t w = 0; w < src.dims.d[3]; w++)
- {
- srcIndex = calcIndex(src, c, h, w);
- dstIndex = calcIndex(dst, c, h, w);
- dstBuf[dstIndex] = srcBuf[srcIndex];
- }
- }
- }
-}
-
-template
-void convertGoldenData(SampleBuffer& goldenInput, SampleBuffer& dstInput)
-{
- SampleBuffer tmpBuf(goldenInput.dims, sizeof(T), goldenInput.format, true);
-
- float* golden = reinterpret_cast(goldenInput.buffer);
- T* tmp = reinterpret_cast(tmpBuf.buffer);
-
- for (int32_t i = 0; i < goldenInput.desc.getElememtSize(); i++)
- {
- if (std::is_same::value)
- {
- tmp[i] = static_cast(1 - ((1.0F - golden[i]) * 255.0F - 128) / 255.0F);
- }
- else
- {
- tmp[i] = static_cast(golden[i]);
- }
- }
-
- reformat(tmpBuf, dstInput);
-}
-
//!
//! \brief Initializes members of the params struct using the command line args
//!
@@ -644,67 +566,29 @@ void printHelpInfo()
//!
template
bool process(SampleIOFormats& sample, sample::Logger::TestAtom const& sampleTest, SampleBuffer& inputBuf,
- SampleBuffer& outputBuf, SampleBuffer& goldenInput)
+ SampleBuffer& outputBuf, TypeSpec& spec)
{
sample::gLogInfo << "Building and running a GPU inference engine with specified I/O formats." << std::endl;
- inputBuf = SampleBuffer(sample.mInputDims, sizeof(T), sample.mTensorFormat, true);
- outputBuf = SampleBuffer(sample.mOutputDims, sizeof(T), TensorFormat::kLINEAR, false);
if (!sample.build(sizeof(T)))
{
return false;
}
- convertGoldenData(goldenInput, inputBuf);
-
- if (!sample.infer(inputBuf, outputBuf))
- {
- return false;
- }
-
- if (!sample.verifyOutput(outputBuf, sample.mDigit))
- {
- return false;
- }
-
- return true;
-}
-
-bool runFP32Reference(SampleIOFormats& sample, sample::Logger::TestAtom const& sampleTest, SampleBuffer& goldenInput,
- SampleBuffer& goldenOutput)
-{
- sample::gLogInfo << "Building and running a FP32 GPU inference to get golden input/output" << std::endl;
-
- if (!sample.build(sizeof(float)))
+ if (!sample.verify(spec))
{
return false;
}
- goldenInput = SampleBuffer(sample.mInputDims, sizeof(float), TensorFormat::kLINEAR, true);
- goldenOutput = SampleBuffer(sample.mOutputDims, sizeof(float), TensorFormat::kLINEAR, false);
-
- sample.readDigits(goldenInput, sample.mDigit);
-
- if (!sample.infer(goldenInput, goldenOutput))
- {
- return false;
- }
+ inputBuf = SampleBuffer(sample.mInputDims, sizeof(T), sample.mTensorFormat, true);
+ outputBuf = SampleBuffer(sample.mOutputDims, sizeof(T), TensorFormat::kLINEAR, false);
- if (!sample.verifyOutput(goldenOutput, sample.mDigit))
+ if (!sample.infer(inputBuf, outputBuf))
{
return false;
}
-
return true;
}
-//! Specification for a network I/O tensor.
-class IOSpec
-{
-public:
- TensorFormat format; //!< format
- std::string formatName; //!< name of the format
-};
-
int32_t main(int32_t argc, char** argv)
{
samplesCommon::Args args;
@@ -727,56 +611,45 @@ int32_t main(int32_t argc, char** argv)
samplesCommon::OnnxSampleParams params = initializeSampleParams(args);
- std::vector vecFP16TensorFmt = {
- IOSpec{TensorFormat::kLINEAR, "kLINEAR"},
- IOSpec{TensorFormat::kCHW2, "kCHW2"},
- IOSpec{TensorFormat::kHWC8, "kHWC8"},
- };
- std::vector vecINT8TensorFmt = {
- IOSpec{TensorFormat::kLINEAR, "kLINEAR"},
- IOSpec{TensorFormat::kCHW4, "kCHW4"},
- IOSpec{TensorFormat::kCHW32, "kCHW32"},
+ std::vector fp16TypeSpec = {
+ TypeSpec{DataType::kHALF, TensorFormat::kLINEAR, "kLINEAR"},
+ TypeSpec{DataType::kHALF, TensorFormat::kCHW2, "kCHW2"},
+ TypeSpec{DataType::kHALF, TensorFormat::kHWC8, "kHWC8"},
};
- SampleBuffer goldenInput, goldenOutput;
+ std::vector int8TypeSpec = {
+ TypeSpec{DataType::kINT8, TensorFormat::kLINEAR, "kLINEAR"},
+ TypeSpec{DataType::kINT8, TensorFormat::kCHW4, "kCHW4"},
+ TypeSpec{DataType::kINT8, TensorFormat::kCHW32, "kCHW32"},
+ };
SampleIOFormats sample(params);
- srand(unsigned(time(nullptr)));
- sample.mDigit = rand() % 10;
-
- sample::gLogInfo << "The test chooses MNIST as the network and recognizes a randomly generated digit" << std::endl;
sample::gLogInfo
- << "Firstly it runs the FP32 as the golden data, then INT8/FP16 with different formats will be tested"
- << std::endl
+ << "Build TRT engine with different IO data type and formats. Ensure that built engine abide by them"
<< std::endl;
- if (!runFP32Reference(sample, sampleTest, goldenInput, goldenOutput))
- {
- return sample::gLogger.reportFail(sampleTest);
- }
-
// Test FP16 formats
- for (auto spec : vecFP16TensorFmt)
+ for (auto spec : fp16TypeSpec)
{
sample::gLogInfo << "Testing datatype FP16 with format " << spec.formatName << std::endl;
sample.mTensorFormat = spec.format;
SampleBuffer inputBuf, outputBuf;
- if (!process(sample, sampleTest, inputBuf, outputBuf, goldenInput))
+ if (!process(sample, sampleTest, inputBuf, outputBuf, spec))
{
return sample::gLogger.reportFail(sampleTest);
}
}
// Test INT8 formats
- for (auto spec : vecINT8TensorFmt)
+ for (auto spec : int8TypeSpec)
{
sample::gLogInfo << "Testing datatype INT8 with format " << spec.formatName << std::endl;
sample.mTensorFormat = spec.format;
SampleBuffer inputBuf, outputBuf;
- if (!process(sample, sampleTest, inputBuf, outputBuf, goldenInput))
+ if (!process(sample, sampleTest, inputBuf, outputBuf, spec))
{
return sample::gLogger.reportFail(sampleTest);
}
diff --git a/samples/sampleNamedDimensions/CMakeLists.txt b/samples/sampleNamedDimensions/CMakeLists.txt
index f03d19b1..21662668 100644
--- a/samples/sampleNamedDimensions/CMakeLists.txt
+++ b/samples/sampleNamedDimensions/CMakeLists.txt
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/sampleNamedDimensions/create_model.py b/samples/sampleNamedDimensions/create_model.py
index e4146aa5..575bd4e6 100644
--- a/samples/sampleNamedDimensions/create_model.py
+++ b/samples/sampleNamedDimensions/create_model.py
@@ -1,5 +1,5 @@
#
-# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/sampleNamedDimensions/sampleNamedDimensions.cpp b/samples/sampleNamedDimensions/sampleNamedDimensions.cpp
index 42298ba4..11e04841 100644
--- a/samples/sampleNamedDimensions/sampleNamedDimensions.cpp
+++ b/samples/sampleNamedDimensions/sampleNamedDimensions.cpp
@@ -1,5 +1,5 @@
/*
- * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
+ * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
diff --git a/samples/sampleNonZeroPlugin/README.md b/samples/sampleNonZeroPlugin/README.md
index 15e8e4c2..10e45109 100644
--- a/samples/sampleNonZeroPlugin/README.md
+++ b/samples/sampleNonZeroPlugin/README.md
@@ -16,7 +16,7 @@
## Description
This sample, sampleNonZeroPlugin, implements a plugin for the NonZero operation, customizable to output the non-zero indices in
-either a row major (each set of indices in the same row) or column major format (each set of indices in the same column).
+either a row order (each set of indices in the same row) or column order format (each set of indices in the same column).
NonZero is an operation where the non-zero indices of the input tensor is found.
@@ -36,7 +36,7 @@ Until `IPluginV3` (and associated interfaces), TensorRT plugins could not have o
on input shapes). `IPluginV3OneBuild` which exposes a build capability for `IPluginV3`, provides support for such data-dependent output shapes.
`NonZeroPlugin` in this sample is written to handle 2-D input tensors of shape $R \times C$. Assume that the tensor contains $K$ non-zero elements and that the
-non-zero indices are required in a row-major order. Then the output shape would be $K \times 2$.
+non-zero indices are required in a row ordering (each set of indices in its own row). Then the output shape would be $K \times 2$.
The output shapes are expressed to the TensorRT builder through the `IPluginV3OneBuild::getOutputShapes()` API. Expressing the second dimension of the output is
straightforward:
@@ -70,7 +70,7 @@ and let's not forget to declare that the size tensor is a scalar (0-D):
outputs[1].nbDims = 0;
```
-The `NonZeroPlugin` can also be configured to emit the non-zero indices in a column-major fashion through the `rowMajor` plugin attribute, by setting it to `0`.
+The `NonZeroPlugin` can also be configured to emit the non-zero indices in a column-order fashion through the `rowOrder` plugin attribute, by setting it to `0`.
In this case, the first output of the plugin will have shape $2 \times K$, and the output shape specification must be adjusted accordingly.
### Creating network and building the engine
@@ -95,7 +95,7 @@ Download the sample data from the [TensorRT release tarball](https://developer.n
2. Run the sample to build and run the MNIST engine from the ONNX model.
```
- ./sample_non_zero_plugin [-h or --help] [-d or --datadir=] [--columnMajor] [--fp16]
+ ./sample_non_zero_plugin [-h or --help] [-d or --datadir=] [--columnOrder] [--fp16]
```
3. Verify that the sample ran successfully. If the sample runs successfully you should see output similar to the following:
diff --git a/samples/sampleNonZeroPlugin/nonZeroKernel.cu b/samples/sampleNonZeroPlugin/nonZeroKernel.cu
index 7e015b2c..cdb4c615 100644
--- a/samples/sampleNonZeroPlugin/nonZeroKernel.cu
+++ b/samples/sampleNonZeroPlugin/nonZeroKernel.cu
@@ -17,8 +17,23 @@
#include "nonZeroKernel.h"
+inline __device__ int32_t isZero(float const& a)
+{
+ return a == 0.F;
+}
+
+inline __device__ int32_t isZero(half const& a)
+{
+#if __CUDA_ARCH__ >= 530
+ return a == __float2half(0.F);
+#else
+ return __half2float(a) == 0.F;
+#endif
+}
+
+template
__global__ void findNonZeroIndicesKernel(
- float const* X, int32_t* indices, int32_t* count, int32_t const* K, int32_t R, int32_t C, bool rowMajor)
+ T const* X, int32_t* indices, int32_t* count, int32_t const* K, int32_t R, int32_t C, int32_t rowOrder)
{
int32_t col = blockIdx.x * blockDim.x + threadIdx.x;
@@ -27,12 +42,12 @@ __global__ void findNonZeroIndicesKernel(
{
for (int32_t row = 0; row < R; ++row)
{
- if (X[row + R * col] != 0.F)
+ if (!isZero(X[row * C + col]))
{
int32_t index = atomicAdd(count, 1); // Increment count atomically and get the previous value
if (indices)
{
- if(!rowMajor)
+ if(rowOrder == 0)
{
indices[index] = row;
indices[index + *K] = col;
@@ -48,11 +63,20 @@ __global__ void findNonZeroIndicesKernel(
}
}
-void nonZeroIndicesImpl(
- float const* X, int32_t* indices, int32_t* count, int32_t const* K, int32_t R, int32_t C, bool rowMajor, cudaStream_t stream)
+template
+void nonZeroIndicesImpl(T const* X, int32_t* indices, int32_t* count, int32_t const* K, int32_t R, int32_t C,
+ bool rowOrder, cudaStream_t stream)
{
constexpr int32_t kBLOCK_SIZE = 256;
- int32_t const blocksPerGrid = (R + kBLOCK_SIZE - 1) / kBLOCK_SIZE;
-
- findNonZeroIndicesKernel<<