@@ -70,8 +70,8 @@ class operator_sum {
70
70
// / that is, the dimension of each degree of freedom
71
71
// / that the operator acts on. Example for two, 2-level
72
72
// / degrees of freedom: `{0:2, 1:2}`.
73
- // / @arg `parameters` : A map of the paramter names to their concrete, complex
74
- // / values.
73
+ // / @arg `parameters` : A map of the parameter names to their concrete,
74
+ // / complex values.
75
75
complex_matrix
76
76
to_matrix (const std::map<int , int > &dimensions,
77
77
const std::map<std::string, double > ¶ms = {}) const ;
@@ -107,7 +107,7 @@ class operator_sum {
107
107
// / addition is commutative, as is the product of two operators if they
108
108
// / act on different degrees of freedom.
109
109
// / The equality comparison does *not* take commutation relations into
110
- // / account, and does not try to reorder terms blockwise ; it may hence
110
+ // / account, and does not try to reorder terms block-wise ; it may hence
111
111
// / evaluate to False, even if two operators in reality are the same.
112
112
// / If the equality evaluates to True, on the other hand, the operators
113
113
// / are guaranteed to represent the same transformation for all arguments.
@@ -168,7 +168,7 @@ class product_operator : public operator_sum {
168
168
// / addition is commutative, as is the product of two operators if they
169
169
// / act on different degrees of freedom.
170
170
// / The equality comparison does *not* take commutation relations into
171
- // / account, and does not try to reorder terms blockwise ; it may hence
171
+ // / account, and does not try to reorder terms block-wise ; it may hence
172
172
// / evaluate to False, even if two operators in reality are the same.
173
173
// / If the equality evaluates to True, on the other hand, the operators
174
174
// / are guaranteed to represent the same transformation for all arguments.
@@ -185,8 +185,8 @@ class product_operator : public operator_sum {
185
185
// / that is, the dimension of each degree of freedom
186
186
// / that the operator acts on. Example for two, 2-level
187
187
// / degrees of freedom: `{0:2, 1:2}`.
188
- // / @arg `parameters` : A map of the paramter names to their concrete, complex
189
- // / values.
188
+ // / @arg `parameters` : A map of the parameter names to their concrete,
189
+ // / complex values.
190
190
complex_matrix
191
191
to_matrix (const std::map<int , int > dimensions,
192
192
const std::map<std::string, std::complex<double >> parameters) const ;
@@ -205,7 +205,7 @@ class product_operator : public operator_sum {
205
205
template <typename TEval>
206
206
TEval _evaluate (operator_arithmetics<TEval> &arithmetics) const ;
207
207
208
- // / @brief A map of the paramter names to their concrete, complex values.
208
+ // / @brief A map of the parameter names to their concrete, complex values.
209
209
std::map<std::string, std::complex<double >> parameters;
210
210
211
211
const std::vector<std::variant<scalar_operator, elementary_operator>> &
@@ -343,7 +343,7 @@ class elementary_operator : public product_operator {
343
343
// / @brief The degrees of freedom that the operator acts on in canonical
344
344
// / order.
345
345
std::vector<int > degrees;
346
- // / @brief A map of the paramter names to their concrete, complex values.
346
+ // / @brief A map of the parameter names to their concrete, complex values.
347
347
// / This will be enabled once we can handle generalized callback function
348
348
// / arguments.
349
349
// / @FIXME: Not needed until generalizing the function arguments.
@@ -439,7 +439,7 @@ class scalar_operator : public product_operator {
439
439
std::vector<scalar_operator> _operators_to_compose;
440
440
441
441
// / NOTE: We should revisit these constructors and remove any that have
442
- // / become unecessary as the implementation improves.
442
+ // / become unnecessary as the implementation improves.
443
443
scalar_operator () = default ;
444
444
// Copy constructor.
445
445
scalar_operator (const scalar_operator &other);
0 commit comments