-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathevaluate.py
102 lines (83 loc) · 3.76 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import gin
import pytorch_lightning as pl
import wandb
from pytorch_lightning.loggers import WandbLogger
from arg_parser import parse_arguments, TaskMode
from model.dataset.isaac_sim_dataset import XMobilityIsaacSimDataModule
from model.trainer import XMobilityTrainer
from model.eval.prediction_evaluator import PredictionEvaulator
@gin.configurable
def evaluate_observation(dataset_path, checkpoint_path, wandb_entity_name,
wandb_project_name, wandb_run_name, num_gpus,
precision):
data = XMobilityIsaacSimDataModule(dataset_path=dataset_path)
model = XMobilityTrainer.load_from_checkpoint(checkpoint_path)
model.eval()
wandb_logger = WandbLogger(entity=wandb_entity_name,
project=wandb_project_name,
name=wandb_run_name,
group="DDP",
log_model=True)
trainer = pl.Trainer(num_nodes=num_gpus,
precision=precision,
logger=wandb_logger,
strategy='ddp')
trainer.test(model, datamodule=data)
wandb.finish()
@gin.configurable
def evaluate_prediction(dataset_path,
checkpoint_path,
wandb_entity_name,
wandb_project_name,
wandb_run_name,
max_history_length=2,
max_future_length=[1, 3, 6],
use_trained_policy=False):
data_module = XMobilityIsaacSimDataModule(
dataset_path=dataset_path,
sequence_length=max_history_length + np.max(max_future_length))
model = XMobilityTrainer.load_from_checkpoint(checkpoint_path,
strict=False)
model.eval()
wandb_logger = WandbLogger(entity=wandb_entity_name,
project=wandb_project_name,
name=wandb_run_name,
group="DDP",
log_model=False)
evaulator = PredictionEvaulator(model, data_module, wandb_logger,
max_history_length, max_future_length,
use_trained_policy)
evaulator.compute()
wandb.finish()
def main():
args = parse_arguments(TaskMode.EVAL)
for config_file in args.config_files:
gin.parse_config_file(config_file, skip_unknown=True)
if args.eval_target == 'observation':
# Run the evaluation loop.
evaluate_observation(args.dataset_path, args.checkpoint_path,
args.wandb_entity_name, args.wandb_project_name,
args.wandb_run_name)
elif args.eval_target == 'imagination':
evaluate_prediction(args.dataset_path, args.checkpoint_path,
args.wandb_entity_name, args.wandb_project_name,
args.wandb_run_name)
else:
raise ValueError('Unsupported eval target.')
if __name__ == '__main__':
main()