-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtakeoff.cpp
134 lines (106 loc) · 3.79 KB
/
takeoff.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
/*
* File: takeoff_t.cpp
* Author: gg
*
* Created on 4 de dezembro de 2019, 23:27
*/
#include "takeoff.h"
#include <cmath>
#include <cstdio>
takeoff_t::takeoff_t(const point3f& start, const point3f& end,
float height, unsigned int timeToComplete) :
start(start), end(end), height(height), timeToComplete(timeToComplete) {
normal = end - start;
length = normal.normalize();
float dt = timeToComplete / 1000.0f;
acceleration = 2 * length / (dt * dt);
printf("Acceleration on xy of the airplane is %f\n", acceleration);
// The horizontal angle is the angle of the airstrip on the xy plane,
// and since the airstrip doesn't move, the angle is always the same.
// So we just compute it once and return it.
horizontalAngle = atan2f(normal.y, normal.x);
}
void takeoff_t::reset() {
position = start;
secondHalf = false;
currentTime = 0;
completed = false;
velocity = 0;
}
void takeoff_t::update(int time) {
// Check if we didn't reached the end of the airstrip
if (completed || currentTime > timeToComplete) {
printf("Takeoff completed in %ld ms\n", currentTime);
position = end;
position.z = height;
verticalAngle = 0;
completed = true;
return;
}
currentTime += time;
float dt = currentTime / 1000.0f;
float distance = acceleration * dt * dt / 2;
float k = distance / length;
velocity = acceleration * dt;
// distance is after the middle of the airstrip
// d > l / 2
// 2d > l
if (distance * 2 > length) {
if (!secondHalf) {
secondHalf = true;
printf("The second half of the airstrip were reached in %ld ms\n", currentTime);
}
setTakeoff(k, distance);
} else {
setGround(k);
}
}
float takeoff_t::getFinalVelocity() const {
// s(t) = a / 2 * t^2
// s'(t) = a / 2 * t * 2
// s'(t) = at
// v(t) = at
return (timeToComplete / 1000.0f) * acceleration;
}
void takeoff_t::setGround(float k) {
position = start + (end - start) * k;
verticalAngle = 0;
}
void takeoff_t::setTakeoff(float k, float distance) {
setGround(k);
float k2 = (k - 0.5f) / 0.5f;
position.z += getTakeoffHeight(k2);
float r = distance - length * 0.5f;
// The vertical angle is a bit complicated, since it uses the tangent of a
// function to be the slope. We have to compute the arctan of it.
verticalAngle = -atanf(height * getTakeoffTangent(k2) / (length / 2));
// printf("z = %f\n", direction.z);
// printf("v = %f\n", verticalAngle);
// printf("k2 = %f\n", k2);
}
float takeoff_t::getTakeoffHeight(float x) const {
return height * getTakeoffFactor(x);
}
float takeoff_t::getTakeoffFactor(float x) {
// The idea here is to scale the sine wave of [-pi, pi] to [0,1].
// f(t) = sin(t), f(0) = 0, f(1) = sin(1)
// f(t) = sin(t - pi / 2), f(0) = sin(-pi/2)=-1, f(1) = sin(1 - pi / 2)
// f(t) = sin(pi * t - pi / 2), f(0) = sin(-pi/2)=-1, f(1) = sin(pi - pi / 2) = 1
// f(t) = sin(pi * t - pi / 2) + 1, f(0) = sin(-pi/2) + 1=0, f(1) = 1 + 1 = 2
// f(t) = (sin(pi * t - pi / 2) + 1) / 2, f(0) = 0 / 2 = 0, f(1) = 2 / 2 = 1
// f(t) = (sin(pi * (t - 1 / 2)) + 1) / 2, f(0) = 0 / 2 = 0, f(1) = 2 / 2 = 1
return (sinf(M_PI * (x - 0.5f)) + 1) * 0.5f;
}
float takeoff_t::getTakeoffTangentZ(float k) const {
// derivative of getTakeoffHeight
// f(t) = (sin(pi * (t - 1 / 2)) + 1) / 2
// f'(t) = (pi * cos(pi * (t - 1 / 2)) ) / 2
return height * getTakeoffTangent(k);
}
float takeoff_t::getTakeoffTangent(float k) {
// derivative of getTakeoffHeight
// f(t) = (sin(pi * (t - 1 / 2)) + 1) / 2
// f'(t) = (pi * cos(pi * (t - 1 / 2)) ) / 2
// f'(t) = (pi * cos(pi * (t - 1 / 2)) ) / 2
return M_PI / 2 * cosf(M_PI * (k - 0.5f));
}