-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpart1_demo1_power_spectrum.m
405 lines (343 loc) · 13.3 KB
/
part1_demo1_power_spectrum.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
% Part 1: Diffusivity time-dependence along realistic white matter axons
% Demo 1: Power spectrum (Lee, et al., Commun Biol 2020)
%
% The purpose of this demontration includes:
% 1. Calculating the power spectrum of realistic axonal shapes along axons
% (Fig. 1).
% 2. Visualizing axon shapes (Fig. 6).
% 3. Calculating the surface area and volume of mitochondria (Supplementary
% Fig. 1).
%
% Reference:
% Lee, et al., Communications Biology 2020 (doi:10.1038/s42003-020-1050-x)
% Lee, et al., Brain Structure and Function 2019
% (doi:10.1007/s00429-019-01844-6)
%
% Author: Hong-Hsi Lee (0000-0002-3663-6559)
% Load axon shape
root = '.';
file = load(fullfile(root,'cell_segmentation','axon_shape.mat'));
% Load visualization tool
addpath(fullfile(root,'analysis'));
% axon.IAS: Intra-axonal space (including cytoplasm and mitochondria) of
% 227 white mater axons segmented from the eletrcon microsocpy data of a
% mouse brain.
% axon.mitochondria: Mitochondria of segmented axons
% The axon's main direction is aligned along the z-axis
axon = file.axon;
% voxel_size: The voxel size of the eletron microscopy data.
voxel_size = file.voxel_size;
%% Calculate and normalize axon radius
% Calculate radius of equivalent circle of axon cross sections
stat = struct([]);
for i = 1:size(axon)
ias = axon(i).IAS;
ri = sqrt(sum(sum(ias,1),2)/pi)*sqrt(prod(voxel_size(1:2)));
stat(i,1).ias_r = ri(:);
end
radius = [stat.ias_r]; % Radius
% Normalize radius using mean cross sectional area
[nz,nax] = size(radius);
ias_vol_mean = pi*sum(radius(:).^2)/nax;
radius_norm = zeros(nz,nax); % Normalized radius
for i = 1:nax
ri = radius(:,i);
vi = pi*sum(ri.^2);
radius_norm(:,i) = ri*sqrt(1/vi*ias_vol_mean);
end
%% 1D power spectrum
% Concatenate distance between beads
bead_pos = []; % Bead position
for i = 1:nax
ri = radius(:,i);
ri = smooth(ri,10);
[pks,locs] = findpeaks(ri,'MinPeakDistance',5,'MinPeakWidth',5);
temp = zeros(nz,1);
temp(locs) = 1;
di = diff(locs)*voxel_size(3);
bead_pos = cat(2,bead_pos,temp);
end
% Concatenate axons of the same length (18 micron)
bead_distance = []; % Distance between beads
nite = 100; % # iterations
rng(0);
for i = 1:nite
I = randperm(nax);
pos = bead_pos(:,I);
dis = diff(find(pos))*voxel_size(3);
bead_distance = cat(1,bead_distance,dis(:));
end
a_mean = mean(bead_distance); % Mean of bead distance
a_std = std(bead_distance); % Standard deviation of bead distance
% 1D power spectrum
L = nax*nz*voxel_size(3); % Length of concatenated length
power_spectrum_1d = zeros(nax*nz,1);
nite = 1000; % # iterations
rng(0);
for i = 1:nite
I = randperm(nax);
rho = bead_pos(:,I); rho = rho(:);
rhok2 = abs(fft(rho)).^2/L;
power_spectrum_1d = power_spectrum_1d + rhok2;
end
% 1D power spectrum is normalized by multiplying mean(a)
power_spectrum_1d = power_spectrum_1d/nite*a_mean;
kz = (0:numel(power_spectrum_1d)-1)/L;
kz_a_1d = kz*a_mean; % kz*mean(a)/(2pi)
%% 3D power spectrum
rng(0);
[nz,nax] = size(radius);
L = nax*nz*voxel_size(3); % Length of concatenated length
power_spectrum_3d = zeros(nax*nz,1);
nite = 1000; % # iterations
for i = 1:nite
I = randperm(nax);
ri = radius_norm(:,I); ri = ri(:);
rho = pi*ri.^2*voxel_size(3);
vol = sum(rho);
area = vol/L;
rhok = abs(fft(rho)).^2/vol/area; rhok = rhok(:);
power_spectrum_3d = power_spectrum_3d + rhok;
end
% 3D power spectrum is normalized by dividing mean(a)
power_spectrum_3d = power_spectrum_3d/nite/a_mean;
kz = (0:numel(power_spectrum_3d)-1)/L;
kz_a_3d = kz*a_mean; % kz*mean(a)/(2pi)
%% Plot 1D and 3D power spectrum (Fig. 1c-f)
close all
figure('unit','inch','position',[0 0 12 12]);
[nz,nax] = size(radius);
L = nz*voxel_size(3);
% Plot radius variation along 7 selected axons
rng(1);
I = randperm(nax,7);
subplot(221)
z = (1:nz)*voxel_size(3); z = z(:);
h = plot(z,radius(:,I)); set(h,'linewidth',1.5)
xlim([0 L]); ylim([0 1.5])
set(gca,'fontsize',16); axis square
xlabel('z-axis ($\mu$m)','interpreter','latex','fontsize',24);
ylabel('$r$ ($\mu$m)','interpreter','latex','fontsize',24);
% Plot normalized radius variation along 7 selected axons
subplot(222)
h = plot(0.1*(1:180),radius_norm(:,I)); set(h,'linewidth',1.5)
xlim([0 L]); ylim([0 1.5])
set(gca,'fontsize',16); axis square
xlabel('z-axis ($\mu$m)','interpreter','latex','fontsize',24);
ylabel('$\tilde{r}$ ($\mu$m)','interpreter','latex','fontsize',24);
% Plot the histogram of the bead distance
va = visualizeaxon();
edges = linspace(0,25,50);
[N,centers] = va.histogram(bead_distance,edges);
subplot(223)
bar(centers,N,1);
set(gca,'fontsize',16,'xtick',0:5:30,'ytick',0:0.05:0.2)
xlim([0 20]); ylim([0 0.2]); grid on; axis square
xlabel('$a$ ($\mu$m)','interpreter','latex','fontsize',24);
ylabel('PDF ($\mu$m$^{-1}$)','interpreter','latex','fontsize',24);
fprintf('Distance between local swelling is: mean %.2f um and std %.2f um. \n',a_mean,a_std);
% Plot 1D power spectrum
subplot(224)
yyaxis right
plot(kz_a_1d,power_spectrum_1d,'linewidth',1);
set(gca,'xscale','log','yscale','log'); grid on
xlim([1e-2 1e1]); ylim([1e-4 1.001e1]);
set(gca,'fontsize',16,'xtick',[0.01 0.1 1 10]);
xlabel('$k_z\bar{a}/2\pi$','interpreter','latex','fontsize',24);
ylabel('$\Gamma_{\rm pos}(k_z)\cdot \bar{a}$','interpreter','latex','fontsize',24);
% Plot 3D power spectrum. The part of kz < 1/(individual axon length) is
% not shown because the length scale longer than individual axon length is
% unrelated with the bead arrangement.
yyaxis left
La = nz*voxel_size(3); % Individual axon length
[~,I1] = min(abs(kz_a_3d-a_mean/La));
kz_a_3d(1:I1-1) = nan;
plot(kz_a_3d,power_spectrum_3d,'linewidth',1);
% plateau: The level of power spectrum plateau at low k
plateau = mean(power_spectrum_3d(I1:I1+10));
hr = refline(0,plateau); set(hr,'linestyle','--','linewidth',0.75)
ylim([1e-4 1.001e1]);
set(gca,'xscale','log','yscale','log'); grid on
ylabel('$\Gamma_{\rm 1d}(k_z)/\bar{a}$','interpreter','latex','fontsize',24);
pbaspect([1 1 1]);
%% Visualize axon shapes (Fig. 6a)
figure('unit','inch','position',[0 0 15 5])
j = 0;
rng(8)
va = visualizeaxon();
for i = randsample(numel(axon),6).'
ias = axon(i).IAS;
mit = axon(i).mitochondria;
j = j+1;
subplot(1,6,j)
h = va.plotaxon(ias);
set(h,'edgealpha',0,'facealpha',0.6,'facecolor',[0.3 0.3 0.3])
axis equal off
hold on
material dull; lightangle(-45,30)
if nnz(mit)>0
h = va.plotaxon(mit);
set(h,'edgealpha',0,'facealpha',0.6,'facecolor',[1 0 0])
material dull;
end
lightangle(-45,30)
end
%% Relation between mitochondria and axon caliber variation (Fig. 6b and c)
stat = struct([]);
for i = 1:numel(axon)
ias = axon(i).IAS;
mit = axon(i).mitochondria;
ri = sqrt(sum(sum(ias,1),2)/pi)*sqrt(prod(voxel_size(1:2)));
ri = ri(:).';
% Mean radius of IAS for each axon
stat(i,1).ias_r = mean(ri);
Im = find(sum(sum(mit,1),2));
Ic = setdiff(1:size(ias,3),Im);
% Radius of IAS cross sections without the presence of mitochondria
stat(i,1).ias_cyt_r = ri(Ic);
% Radius of IAS cross sections with the presence of mitochondria
stat(i,1).ias_mit_r = ri(Im);
% Mitochondria volume for each axon
stat(i,1).mit_vol = nnz(mit)*prod(voxel_size);
% Axon length for each axon
stat(i,1).ias_len = size(ias,3)*voxel_size(3);
end
ias_cyt_r = [stat.ias_cyt_r]; ias_cyt_r = ias_cyt_r(:);
ias_mit_r = [stat.ias_mit_r]; ias_mit_r = ias_mit_r(:);
ias_d = 2*[stat.ias_r]; ias_d = ias_d(:);
mit_vol = [stat.mit_vol]; mit_vol = mit_vol(:);
ias_len = [stat.ias_len]; ias_len = ias_len(:);
va = visualizeaxon();
edges = linspace(0,4,51);
[Na,centers] = va.histogram(2*ias_cyt_r,edges);
[Nm,centers] = va.histogram(2*ias_mit_r,edges);
figure('unit','inch','position',[0 0 10 5]);
% Axonal diameter vs mitochondrial volume per unit axonal length
subplot(121)
plot(ias_d,mit_vol./ias_len,'.','markersize',8);
set(gca,'xscale','log','yscale','log');
box on; grid on
I0 = find(mit_vol==0);
dtmp = ias_d; vtmp = mit_vol./ias_len;
dtmp(I0) = []; vtmp(I0) = [];
X = [ones(numel(dtmp),1) log(dtmp)]\log(vtmp);
hold on
fit_d = linspace(0.5,2.2,100);
fit_v = exp(X(1))*fit_d.^X(2);
hr = plot(fit_d,fit_v,'-r');
set(hr,'linewidth',1);
set(gca,'xtick',0.5:0.5:3,'fontsize',12)
xlabel('Inner axonal diameter ($\mu$m)','interpreter','latex','fontsize',16);
ylabel('V(mitocondria)/axonal length ($\mu$m$^2$)','interpreter','latex','fontsize',16);
xlim([0.5 2.2])
pbaspect([1 1 1])
% Axonal diameter of cross sections with and without the presence of
% mitochondria
subplot(122)
hold on;
ha = bar(centers,Na,1); set(ha,'facealpha',0.5);
hm = bar(centers,Nm,1); set(hm,'facealpha',0.5);
legend([ha,hm],{'w/o mitochondria','w/ mitochondria'},'interpreter','latex','fontsize',16)
box on; grid on;
set(gca,'ytick',0:0.5:5,'xtick',0:4,'fontsize',12)
xlim([0 4]); ylim([0 1.5]); pbaspect([1 1 1])
xlabel('Inner axonal diameter ($\mu$m)','interpreter','latex','fontsize',16);
ylabel('PDF ($\mu$m$^{-1}$)','interpreter','latex','fontsize',16);
p = ranksum(2*ias_cyt_r,2*ias_mit_r,'method','approximate','tail','right');
%% Histogram of mitochondiral surface area and volume (Supplementary Fig. 1)
% In Supplementary Fig. 1, the volume and surface area were estimated
% before aligning axons to the z-axis. However, these metrics here are
% estimated based on the well-aligned geometry. This will lead to minor
% differences in the histogram.
stat = struct([]);
for i = 1:numel(axon)
ias = axon(i).IAS;
mit = axon(i).mitochondria;
xrange = find(sum(sum(mit,2),3)); xrange = xrange(:);
yrange = find(sum(sum(mit,1),3)); yrange = yrange(:);
zrange = find(sum(sum(mit,1),2)); zrange = zrange(:);
mit = mit(xrange,yrange,zrange);
CC = bwconncomp(mit);
numPixels = cellfun(@numel,CC.PixelIdxList);
vol = numPixels*prod(voxel_size);
% Exclude segmentations of volume smaller than 0.01 micron^3
vol = vol(vol>0.01);
% Mitochondrial number for each axon
stat(i,1).mit_num = numel(vol);
% Mitochondrial volume for each mitochondria
stat(i,1).mit_vol_ind = vol;
% Mitochondrial volume for each axon
stat(i,1).mit_vol = sum(vol);
% IAS volume for each axon
stat(i,1).ias_vol = nnz(ias)*prod(voxel_size);
s = regionprops3(mit,'Volume','SurfaceArea');
vol = s.Volume*prod(voxel_size);
area = s.SurfaceArea*prod(voxel_size(1:2));
area = area(vol>0.01); vol = vol(vol>0.01);
% Mitochondrial surface area for each mitochondria
stat(i,1).mit_surface_area = area.';
% Ratio of mitochondrial surface area to cytoplasm volume for each axon
stat(i,1).mit_surface_cyt_volume_ratio = ...
sum(area)/(nnz(ias)*prod(voxel_size)-sum(vol));
end
mit_num = [stat.mit_num]; mit_num = mit_num(:);
mit_vol = [stat.mit_vol]; mit_vol = mit_vol(:);
ias_vol = [stat.ias_vol]; ias_vol = ias_vol(:);
mit_vol_ind = [stat.mit_vol_ind]; mit_vol_ind = mit_vol_ind(:);
mit_area = [stat.mit_surface_area]; mit_area = mit_area(:);
mit_sv_ratio = [stat.mit_surface_cyt_volume_ratio];
mit_sv_ratio = mit_sv_ratio(:);
va = visualizeaxon();
figure('unit','inch','position',[0,0,15,10]);
% Number of mitochondria per unit IAS volume for all axons
subplot(231);
edges = linspace(0,1,51);
[N,centers] = va.histogram(mit_num./ias_vol,edges);
bar(centers,N,1);
set(gca,'xtick',0:0.25:2,'ytick',0:10,'fontsize',12)
xlabel('\# mitochondria/V(IAS) ($\mu$m$^{-3}$)','interpreter','latex','fontsize',16);
ylabel('PDF ($\mu$m$^3$)','interpreter','latex','fontsize',16)
pbaspect([1,1,1]); grid on
xlim([0 1]); ylim([0 5]);
subplot(232)
% Ratio of mitochondrial surface area to cytoplasm volume for all axons
edges = linspace(0,2,51);
[N,centers] = va.histogram(mit_sv_ratio,edges);
bar(centers,N,1);
set(gca,'xtick',0:0.5:2,'ytick',0:0.5:2,'fontsize',12)
xlabel('S(mitochondria)/V(cytoplasm) ($\mu$m$^{-1}$)','interpreter','latex','fontsize',16);
ylabel('PDF ($\mu$m)','interpreter','latex','fontsize',16)
pbaspect([1,1,1]); grid on
xlim([0 2]); ylim([0 2]);
subplot(233);
% Ratio of mitochondrial volume to IAS volume for all axons
edges = linspace(0,0.2,51);
[N,centers] = va.histogram(mit_vol./ias_vol,edges);
N = N/sum(N)/mean(diff(edges));
bar(centers,N,1);
set(gca,'xtick',0:0.05:0.2,'ytick',0:5:30,'fontsize',12)
xlabel('V(mitochondria)/V(IAS)','interpreter','latex','fontsize',16);
ylabel('PDF','interpreter','latex','fontsize',16)
pbaspect([1,1,1]); grid on
xlim([0 0.2]); ylim([0 25]);
subplot(234)
% Surface area of all segmented mitochondria
edges = linspace(0,20,51);
[N,centers] = va.histogram(mit_area,edges);
bar(centers,N,1);
set(gca,'xtick',0:5:20,'ytick',0:0.1:0.5,'fontsize',12)
xlabel('$s$(mitochondria) ($\mu$m$^2$)','interpreter','latex','fontsize',16);
ylabel('PDF ($\mu$m$^{-2}$)','interpreter','latex','fontsize',16)
pbaspect([1,1,1]); grid on
xlim([0 20]); ylim([0 0.4]);
subplot(235);
% Mitochondrial volume of all segmented mitochondria
edges = linspace(0,2,51);
[N,centers] = va.histogram(mit_vol_ind,edges);
N = N/sum(N)/mean(diff(edges));
bar(centers,N,1);
set(gca,'xtick',0:0.5:2,'ytick',0:6,'fontsize',12)
xlabel('$v$(mitochondria) ($\mu$m$^3$)','interpreter','latex','fontsize',16);
ylabel('PDF ($\mu$m$^{-3}$)','interpreter','latex','fontsize',16)
pbaspect([1,1,1]); grid on
xlim([0 2]); ylim([0 6]);