Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Hard coded numbers in template_entity function of inference.py #21

Open
khairunnisaor opened this issue Jun 2, 2022 · 1 comment
Open

Comments

@khairunnisaor
Copy link

Hi,

would you mind explaining some hard-coded numbers in the template_entity function from inference.py?

def template_entity(words, input_TXT, start):
    # input text -> template
    words_length = len(words)
    words_length_list = [len(i) for i in words]
    input_TXT = [input_TXT]*(5*words_length)

    input_ids = tokenizer(input_TXT, return_tensors='pt')['input_ids']
    model.to(device)
    template_list = [" is a location entity .", " is a person entity .", " is an organization entity .",
                     " is an other entity .", " is not a named entity ."]
    entity_dict = {0: 'LOC', 1: 'PER', 2: 'ORG', 3: 'MISC', 4: 'O'}
    temp_list = []
    for i in range(words_length):
        for j in range(len(template_list)):
            temp_list.append(words[i]+template_list[j])

    output_ids = tokenizer(temp_list, return_tensors='pt', padding=True, truncation=True)['input_ids']
    output_ids[:, 0] = 2
    output_length_list = [0]*5*words_length


    for i in range(len(temp_list)//5):
        base_length = ((tokenizer(temp_list[i * 5], return_tensors='pt', padding=True, truncation=True)['input_ids']).shape)[1] - 4
        output_length_list[i*5:i*5+ 5] = [base_length]*5
        output_length_list[i*5+4] += 1

    score = [1]*5*words_length
    with torch.no_grad():
        output = model(input_ids=input_ids.to(device), decoder_input_ids=output_ids[:, :output_ids.shape[1] - 2].to(device))[0]
        for i in range(output_ids.shape[1] - 3):
            # print(input_ids.shape)
            logits = output[:, i, :]
            logits = logits.softmax(dim=1)
            # values, predictions = logits.topk(1,dim = 1)
            logits = logits.to('cpu').numpy()
            # print(output_ids[:, i+1].item())
            for j in range(0, 5*words_length):
                if i < output_length_list[j]:
                    score[j] = score[j] * logits[j][int(output_ids[j][i + 1])]

    end = start+(score.index(max(score))//5)
        # score_list.append(score)
    return [start, end, entity_dict[(score.index(max(score))%5)], max(score)] #[start_index,end_index,label,score]

I learned from the opened issues that the 5s are the length of the template_list but how about the other numbers?

It would be a great help if you could response to this, thank you in advance!

@0413Lemon
Copy link

Have you solved this problem

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants