-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmodel.py
120 lines (97 loc) · 4.29 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import torch.nn as nn
import math
def conv3x3(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1, down_sample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(in_planes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.down_sample = down_sample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.down_sample is not None:
residual = self.down_sample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000):
self.in_planes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Sequential(nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True))
self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.global_avg_pool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Sequential(nn.Linear(512 * block.expansion, 128),
nn.BatchNorm1d(128),
nn.ReLU(True),
nn.Linear(128, num_classes))
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm1d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
down_sample = None
if stride != 1 or self.in_planes != planes * block.expansion:
down_sample = nn.Sequential(
nn.Conv2d(self.in_planes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = [block(self.in_planes, planes, stride, down_sample)]
self.in_planes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.in_planes, planes))
return nn.Sequential(*layers)
def forward(self, x):
# [batch_size * seq_len, 1, input_size, input_size]
x = self.conv1(x)
# [batch_size * seq_len, 64, input_size // 2, input_size // 2]
x = self.max_pool(x)
# [batch_size * seq_len, 64, input_size // 4, input_size // 4]
x = self.layer1(x)
# [batch_size * seq_len, 64, input_size // 4, input_size // 4]
x = self.layer2(x)
# [batch_size * seq_len, 64, input_size // 8, input_size // 8]
x = self.layer3(x)
# [batch_size * seq_len, 64, input_size // 16, input_size // 16]
x = self.layer4(x)
# [batch_size * seq_len, 64, input_size // 32, input_size // 32]
x = self.global_avg_pool(x)
# [batch_size * seq_len, 512 * expansion, 1, 1]
x = x.view(x.size(0), -1)
# [batch_size * seq_len, 512 * expansion]
x = self.fc(x)
# [batch_size * seq_len, num_classes]
return x
class GenderAge(nn.Module):
def __init__(self, num_classes, layers):
super(GenderAge, self).__init__()
self.resnet = ResNet(BasicBlock, layers, num_classes)
def forward(self, x):
# [batch_size, 1, input_size, input_size]
x = self.resnet(x)
# [batch_size, num_classes]
return x