-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolo_opencv_of.py
93 lines (74 loc) · 3.12 KB
/
yolo_opencv_of.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import cv2
import numpy as np
# Load YOLO
net = cv2.dnn.readNet("weights/yolov3.weights", "cfg/yolov3.cfg")
layer_names = net.getLayerNames()
# Ensure compatibility with different versions of OpenCV
try:
unconnected_layers = net.getUnconnectedOutLayers()
if isinstance(unconnected_layers[0], list) or isinstance(unconnected_layers[0], np.ndarray):
output_layers = [layer_names[i[0] - 1] for i in unconnected_layers]
else:
output_layers = [layer_names[i - 1] for i in unconnected_layers]
except Exception as e:
print(f"An error occurred: {e}")
output_layers = [layer_names[i - 1] for i in net.getUnconnectedOutLayers()]
# Load class names
with open("data/coco.names", "r") as f:
classes = [line.strip() for line in f.readlines()]
# Define colors for different classes
colors = np.random.uniform(0, 255, size=(len(classes), 3))
# Capture video from the webcam
cap = cv2.VideoCapture(0)
# Function to calculate distance based on object dimensions
def calculate_distance(w):
W = 20 # Known real-world width of the object (example, adjust based on your object)
F = 1000 # Focal length of the camera (example, adjust based on your camera)
# Calculate distance using the formula D = (W * F) / w
distance = (W * F) / w
return distance
while True:
ret, frame = cap.read()
height, width, channels = frame.shape
# Prepare the frame for YOLO
blob = cv2.dnn.blobFromImage(frame, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(output_layers)
# Analyze the output
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label_image = str(classes[class_ids[i]])
label_confidence = confidences[i]
# Calculate distance based on object dimensions (w, h)
distance = calculate_distance(w)
# Assign color based on class_id
color = colors[class_ids[i]]
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
cv2.putText(frame, f'{label_image} ({label_confidence:.2f}) : {distance:.2f} inches', (x, y - 20), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
# Resize the frame for display
frame = cv2.resize(frame, (width * 2, height * 2)) # Double the size of the frame
cv2.imshow("Image", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()