-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcifar_base.log
1820 lines (1759 loc) · 280 KB
/
cifar_base.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
2023-02-02 22:44:25,121 - mmcls - INFO - Environment info:
------------------------------------------------------------
sys.platform: linux
Python: 3.8.13 | packaged by conda-forge | (default, Mar 25 2022, 06:04:10) [GCC 10.3.0]
CUDA available: True
GPU 0,1,2,3,4,5,6,7: A100-SXM4-40GB
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 11.7, V11.7.99
GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
PyTorch: 1.13.0a0+340c412
PyTorch compiling details: PyTorch built with:
- GCC 9.4
- C++ Version: 201402
- Intel(R) Math Kernel Library Version 2020.0.4 Product Build 20200917 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v2.6.0 (Git Hash N/A)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- LAPACK is enabled (usually provided by MKL)
- NNPACK is enabled
- CPU capability usage: AVX2
- CUDA Runtime 11.7
- NVCC architecture flags: -gencode;arch=compute_52,code=sm_52;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_86,code=compute_86
- CuDNN 8.4.1 (built against CUDA 11.6)
- Magma 2.6.2
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.7, CUDNN_VERSION=8.4.1, CXX_COMPILER=/usr/bin/c++, CXX_FLAGS=-fno-gnu-unique -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=OFF, USE_MPI=ON, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
TorchVision: 0.13.0a0
OpenCV: 3.4.11
MMCV: 1.6.1
MMCV Compiler: GCC 9.4
MMCV CUDA Compiler: 11.7
MMClassification: 0.23.2_71ef7ba+24f49fc
------------------------------------------------------------
2023-02-02 22:44:25,121 - mmcls - INFO - Distributed training: True
2023-02-02 22:44:25,433 - mmcls - INFO - Config:
model = dict(
type='ImageClassifierCIL',
backbone=dict(type='ResNet12', with_avgpool=False, flatten=False),
neck=dict(type='MLPFFNNeck', in_channels=640, out_channels=512),
head=dict(
type='ETFHead',
num_classes=100,
eval_classes=60,
in_channels=512,
loss=dict(type='DRLoss', loss_weight=10.0),
topk=(1, 5),
cal_acc=True,
with_len=False),
train_cfg=dict(augments=[
dict(type='BatchMixupTwoLabel', alpha=0.8, num_classes=-1, prob=0.4),
dict(type='BatchCutMixTwoLabel', alpha=1.0, num_classes=-1, prob=0.4),
dict(type='IdentityTwoLabel', num_classes=-1, prob=0.2)
]))
img_size = 32
_img_resize_size = 36
img_norm_cfg = dict(
mean=[129.304, 124.07, 112.434], std=[68.17, 65.392, 70.418], to_rgb=False)
meta_keys = ('filename', 'ori_filename', 'ori_shape', 'img_shape', 'flip',
'flip_direction', 'img_norm_cfg', 'cls_id', 'img_id')
train_pipeline = [
dict(
type='RandomResizedCrop',
size=32,
scale=(0.6, 1.0),
interpolation='bicubic'),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(type='ColorJitter', brightness=0.4, contrast=0.4, saturation=0.4),
dict(
type='Normalize',
mean=[129.304, 124.07, 112.434],
std=[68.17, 65.392, 70.418],
to_rgb=False),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(
type='Collect',
keys=['img', 'gt_label'],
meta_keys=('filename', 'ori_filename', 'ori_shape', 'img_shape',
'flip', 'flip_direction', 'img_norm_cfg', 'cls_id',
'img_id'))
]
test_pipeline = [
dict(type='Resize', size=(36, -1), interpolation='bicubic'),
dict(type='CenterCrop', crop_size=32),
dict(
type='Normalize',
mean=[129.304, 124.07, 112.434],
std=[68.17, 65.392, 70.418],
to_rgb=False),
dict(type='ImageToTensor', keys=['img']),
dict(
type='Collect',
keys=['img', 'gt_label'],
meta_keys=('filename', 'ori_filename', 'ori_shape', 'img_shape',
'flip', 'flip_direction', 'img_norm_cfg', 'cls_id',
'img_id'))
]
data = dict(
samples_per_gpu=64,
workers_per_gpu=8,
train_dataloader=dict(persistent_workers=True),
val_dataloader=dict(persistent_workers=True),
test_dataloader=dict(persistent_workers=True),
train=dict(
type='RepeatDataset',
times=4,
dataset=dict(
type='CIFAR100FSCILDataset',
data_prefix='/opt/data/cifar',
pipeline=[
dict(
type='RandomResizedCrop',
size=32,
scale=(0.6, 1.0),
interpolation='bicubic'),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(
type='ColorJitter',
brightness=0.4,
contrast=0.4,
saturation=0.4),
dict(
type='Normalize',
mean=[129.304, 124.07, 112.434],
std=[68.17, 65.392, 70.418],
to_rgb=False),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(
type='Collect',
keys=['img', 'gt_label'],
meta_keys=('filename', 'ori_filename', 'ori_shape',
'img_shape', 'flip', 'flip_direction',
'img_norm_cfg', 'cls_id', 'img_id'))
],
num_cls=60,
subset='train')),
val=dict(
type='CIFAR100FSCILDataset',
data_prefix='/opt/data/cifar',
pipeline=[
dict(type='Resize', size=(36, -1), interpolation='bicubic'),
dict(type='CenterCrop', crop_size=32),
dict(
type='Normalize',
mean=[129.304, 124.07, 112.434],
std=[68.17, 65.392, 70.418],
to_rgb=False),
dict(type='ImageToTensor', keys=['img']),
dict(
type='Collect',
keys=['img', 'gt_label'],
meta_keys=('filename', 'ori_filename', 'ori_shape',
'img_shape', 'flip', 'flip_direction',
'img_norm_cfg', 'cls_id', 'img_id'))
],
num_cls=60,
subset='test'),
test=dict(
type='CIFAR100FSCILDataset',
data_prefix='/opt/data/cifar',
pipeline=[
dict(type='Resize', size=(36, -1), interpolation='bicubic'),
dict(type='CenterCrop', crop_size=32),
dict(
type='Normalize',
mean=[129.304, 124.07, 112.434],
std=[68.17, 65.392, 70.418],
to_rgb=False),
dict(type='ImageToTensor', keys=['img']),
dict(
type='Collect',
keys=['img', 'gt_label'],
meta_keys=('filename', 'ori_filename', 'ori_shape',
'img_shape', 'flip', 'flip_direction',
'img_norm_cfg', 'cls_id', 'img_id'))
],
num_cls=100,
subset='test'))
optimizer = dict(type='SGD', lr=0.25, momentum=0.9, weight_decay=0.0005)
optimizer_config = dict(grad_clip=None)
lr_config = dict(
policy='CosineAnnealingCooldown',
min_lr=None,
min_lr_ratio=0.01,
cool_down_ratio=0.1,
cool_down_time=10,
by_epoch=False,
warmup='linear',
warmup_iters=100,
warmup_ratio=0.1,
warmup_by_epoch=False)
runner = dict(type='EpochBasedRunner', max_epochs=50)
checkpoint_config = dict(interval=1, max_keep_ckpts=2)
evaluation = dict(interval=1, save_best='auto')
log_config = dict(interval=10, hooks=[dict(type='TextLoggerHook')])
dist_params = dict(backend='nccl')
log_level = 'INFO'
workflow = [('train', 1)]
load_from = None
resume_from = None
mean_neck_feat = True
mean_cur_feat = False
feat_test = False
grad_clip = None
finetune_lr = 0.1
inc_start = 60
inc_end = 100
inc_step = 5
copy_list = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
step_list = (50, 50, 50, 50, 50, 50, 50, 50, 50, 50)
work_dir = '/opt/logger/cifar_etf'
gpu_ids = range(0, 8)
2023-02-02 22:44:25,434 - mmcls - INFO - Set random seed to 0, deterministic: True
2023-02-02 22:44:25,553 - mmcls - INFO - ETF head : evaluating 60 out of 100 classes.
2023-02-02 22:44:25,554 - mmcls - INFO - ETF head : with_len : False
Name of parameter - Initialization information
backbone.layer1.0.conv1.weight - torch.Size([64, 3, 3, 3]):
Initialized by user-defined `init_weights` in ResNet12
backbone.layer1.0.norm1.weight - torch.Size([64]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
backbone.layer1.0.norm1.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
backbone.layer1.0.conv2.weight - torch.Size([64, 64, 3, 3]):
Initialized by user-defined `init_weights` in ResNet12
backbone.layer1.0.norm2.weight - torch.Size([64]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
backbone.layer1.0.norm2.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
backbone.layer1.0.conv3.weight - torch.Size([64, 64, 3, 3]):
Initialized by user-defined `init_weights` in ResNet12
backbone.layer1.0.norm3.weight - torch.Size([64]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
backbone.layer1.0.norm3.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
backbone.layer1.0.downsample.0.weight - torch.Size([64, 3, 1, 1]):
Initialized by user-defined `init_weights` in ResNet12
backbone.layer1.0.downsample.1.weight - torch.Size([64]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
backbone.layer1.0.downsample.1.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
backbone.layer2.0.conv1.weight - torch.Size([160, 64, 3, 3]):
Initialized by user-defined `init_weights` in ResNet12
backbone.layer2.0.norm1.weight - torch.Size([160]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
backbone.layer2.0.norm1.bias - torch.Size([160]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
backbone.layer2.0.conv2.weight - torch.Size([160, 160, 3, 3]):
Initialized by user-defined `init_weights` in ResNet12
backbone.layer2.0.norm2.weight - torch.Size([160]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
backbone.layer2.0.norm2.bias - torch.Size([160]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
backbone.layer2.0.conv3.weight - torch.Size([160, 160, 3, 3]):
Initialized by user-defined `init_weights` in ResNet12
backbone.layer2.0.norm3.weight - torch.Size([160]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
backbone.layer2.0.norm3.bias - torch.Size([160]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
backbone.layer2.0.downsample.0.weight - torch.Size([160, 64, 1, 1]):
Initialized by user-defined `init_weights` in ResNet12
backbone.layer2.0.downsample.1.weight - torch.Size([160]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
backbone.layer2.0.downsample.1.bias - torch.Size([160]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
backbone.layer3.0.conv1.weight - torch.Size([320, 160, 3, 3]):
Initialized by user-defined `init_weights` in ResNet12
backbone.layer3.0.norm1.weight - torch.Size([320]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
backbone.layer3.0.norm1.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
backbone.layer3.0.conv2.weight - torch.Size([320, 320, 3, 3]):
Initialized by user-defined `init_weights` in ResNet12
backbone.layer3.0.norm2.weight - torch.Size([320]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
backbone.layer3.0.norm2.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
backbone.layer3.0.conv3.weight - torch.Size([320, 320, 3, 3]):
Initialized by user-defined `init_weights` in ResNet12
backbone.layer3.0.norm3.weight - torch.Size([320]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
backbone.layer3.0.norm3.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
backbone.layer3.0.downsample.0.weight - torch.Size([320, 160, 1, 1]):
Initialized by user-defined `init_weights` in ResNet12
backbone.layer3.0.downsample.1.weight - torch.Size([320]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
backbone.layer3.0.downsample.1.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
backbone.layer4.0.conv1.weight - torch.Size([640, 320, 3, 3]):
Initialized by user-defined `init_weights` in ResNet12
backbone.layer4.0.norm1.weight - torch.Size([640]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
backbone.layer4.0.norm1.bias - torch.Size([640]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
backbone.layer4.0.conv2.weight - torch.Size([640, 640, 3, 3]):
Initialized by user-defined `init_weights` in ResNet12
backbone.layer4.0.norm2.weight - torch.Size([640]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
backbone.layer4.0.norm2.bias - torch.Size([640]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
backbone.layer4.0.conv3.weight - torch.Size([640, 640, 3, 3]):
Initialized by user-defined `init_weights` in ResNet12
backbone.layer4.0.norm3.weight - torch.Size([640]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
backbone.layer4.0.norm3.bias - torch.Size([640]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
backbone.layer4.0.downsample.0.weight - torch.Size([640, 320, 1, 1]):
Initialized by user-defined `init_weights` in ResNet12
backbone.layer4.0.downsample.1.weight - torch.Size([640]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
backbone.layer4.0.downsample.1.bias - torch.Size([640]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
neck.ln1.linear.weight - torch.Size([1280, 640]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
neck.ln1.linear.bias - torch.Size([1280]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
neck.ln1.ln.weight - torch.Size([1280]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
neck.ln1.ln.bias - torch.Size([1280]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
neck.ln2.linear.weight - torch.Size([1280, 1280]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
neck.ln2.linear.bias - torch.Size([1280]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
neck.ln2.ln.weight - torch.Size([1280]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
neck.ln2.ln.bias - torch.Size([1280]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
neck.ln3.linear.weight - torch.Size([512, 1280]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
neck.ffn.proj.weight - torch.Size([512, 640]):
The value is the same before and after calling `init_weights` of ImageClassifierCIL
2023-02-02 22:44:38,966 - mmcls - INFO - Start running, host: root@DGX-108, work_dir: /opt/logger/cifar_etf
2023-02-02 22:44:38,967 - mmcls - INFO - Hooks will be executed in the following order:
before_run:
(VERY_HIGH ) CosineAnnealingCooldownLrUpdaterHook
(NORMAL ) CheckpointHook
(LOW ) DistEvalHook
(VERY_LOW ) TextLoggerHook
--------------------
before_train_epoch:
(VERY_HIGH ) CosineAnnealingCooldownLrUpdaterHook
(NORMAL ) DistSamplerSeedHook
(LOW ) IterTimerHook
(LOW ) DistEvalHook
(VERY_LOW ) TextLoggerHook
--------------------
before_train_iter:
(VERY_HIGH ) CosineAnnealingCooldownLrUpdaterHook
(LOW ) IterTimerHook
(LOW ) DistEvalHook
--------------------
after_train_iter:
(ABOVE_NORMAL) DistOptimizerHook
(NORMAL ) CheckpointHook
(LOW ) IterTimerHook
(LOW ) DistEvalHook
(VERY_LOW ) TextLoggerHook
--------------------
after_train_epoch:
(NORMAL ) CheckpointHook
(LOW ) DistEvalHook
(VERY_LOW ) TextLoggerHook
--------------------
before_val_epoch:
(NORMAL ) DistSamplerSeedHook
(LOW ) IterTimerHook
(VERY_LOW ) TextLoggerHook
--------------------
before_val_iter:
(LOW ) IterTimerHook
--------------------
after_val_iter:
(LOW ) IterTimerHook
--------------------
after_val_epoch:
(VERY_LOW ) TextLoggerHook
--------------------
after_run:
(VERY_LOW ) TextLoggerHook
--------------------
2023-02-02 22:44:38,967 - mmcls - INFO - workflow: [('train', 1)], max: 50 epochs
2023-02-02 22:44:38,967 - mmcls - INFO - Checkpoints will be saved to /opt/logger/cifar_etf by HardDiskBackend.
2023-02-02 22:44:50,200 - mmcls - INFO - Epoch [1][10/235] lr: 4.525e-02, eta: 3:39:44, time: 1.123, data_time: 0.305, memory: 701, top-1: 2.7344, top-5: 10.8008, loss_main: 2.6844, loss_aux: 1.7473, loss: 7.9449
2023-02-02 22:44:50,411 - mmcls - INFO - Epoch [1][20/235] lr: 6.775e-02, eta: 1:51:50, time: 0.021, data_time: 0.000, memory: 701, top-1: 4.7070, top-5: 14.7266, loss_main: 2.1481, loss_aux: 2.0251, loss: 7.0745
2023-02-02 22:44:50,628 - mmcls - INFO - Epoch [1][30/235] lr: 9.025e-02, eta: 1:15:54, time: 0.022, data_time: 0.000, memory: 701, top-1: 5.5469, top-5: 18.6133, loss_main: 2.3880, loss_aux: 1.7323, loss: 7.4006
2023-02-02 22:44:50,847 - mmcls - INFO - Epoch [1][40/235] lr: 1.127e-01, eta: 0:57:56, time: 0.022, data_time: 0.000, memory: 701, top-1: 7.2461, top-5: 23.6914, loss_main: 2.7892, loss_aux: 1.2507, loss: 6.7844
2023-02-02 22:44:51,067 - mmcls - INFO - Epoch [1][50/235] lr: 1.352e-01, eta: 0:47:11, time: 0.022, data_time: 0.000, memory: 701, top-1: 5.8789, top-5: 20.0781, loss_main: 2.3157, loss_aux: 1.6200, loss: 7.1450
2023-02-02 22:44:51,279 - mmcls - INFO - Epoch [1][60/235] lr: 1.577e-01, eta: 0:39:58, time: 0.021, data_time: 0.000, memory: 701, top-1: 6.5430, top-5: 22.6953, loss_main: 1.8526, loss_aux: 2.0312, loss: 6.6628
2023-02-02 22:44:51,507 - mmcls - INFO - Epoch [1][70/235] lr: 1.802e-01, eta: 0:34:52, time: 0.023, data_time: 0.000, memory: 701, top-1: 8.0273, top-5: 25.8398, loss_main: 2.1948, loss_aux: 1.6474, loss: 6.5307
2023-02-02 22:44:51,722 - mmcls - INFO - Epoch [1][80/235] lr: 2.027e-01, eta: 0:31:00, time: 0.021, data_time: 0.000, memory: 701, top-1: 12.1289, top-5: 32.5586, loss_main: 2.7885, loss_aux: 1.0051, loss: 6.2943
2023-02-02 22:44:51,934 - mmcls - INFO - Epoch [1][90/235] lr: 2.252e-01, eta: 0:27:59, time: 0.021, data_time: 0.000, memory: 701, top-1: 9.8242, top-5: 29.8633, loss_main: 2.4059, loss_aux: 1.3176, loss: 7.0881
2023-02-02 22:44:52,155 - mmcls - INFO - Epoch [1][100/235] lr: 2.477e-01, eta: 0:25:35, time: 0.021, data_time: 0.000, memory: 701, top-1: 11.6211, top-5: 34.9805, loss_main: 2.2356, loss_aux: 1.4566, loss: 5.7516
2023-02-02 22:44:52,373 - mmcls - INFO - Epoch [1][110/235] lr: 2.499e-01, eta: 0:23:38, time: 0.022, data_time: 0.001, memory: 701, top-1: 7.7344, top-5: 23.1055, loss_main: 1.6273, loss_aux: 1.9920, loss: 7.2546
2023-02-02 22:44:52,590 - mmcls - INFO - Epoch [1][120/235] lr: 2.499e-01, eta: 0:21:59, time: 0.022, data_time: 0.000, memory: 701, top-1: 11.9336, top-5: 33.8086, loss_main: 1.6228, loss_aux: 2.0144, loss: 6.2528
2023-02-02 22:44:52,810 - mmcls - INFO - Epoch [1][130/235] lr: 2.499e-01, eta: 0:20:37, time: 0.022, data_time: 0.000, memory: 701, top-1: 14.3750, top-5: 38.6914, loss_main: 2.3024, loss_aux: 1.2111, loss: 6.6708
2023-02-02 22:44:53,027 - mmcls - INFO - Epoch [1][140/235] lr: 2.499e-01, eta: 0:19:25, time: 0.022, data_time: 0.000, memory: 701, top-1: 13.8477, top-5: 37.5391, loss_main: 2.0074, loss_aux: 1.4754, loss: 5.5785
2023-02-02 22:44:53,239 - mmcls - INFO - Epoch [1][150/235] lr: 2.499e-01, eta: 0:18:23, time: 0.021, data_time: 0.000, memory: 701, top-1: 15.1367, top-5: 40.0391, loss_main: 1.9274, loss_aux: 1.5280, loss: 5.5707
2023-02-02 22:44:53,448 - mmcls - INFO - Epoch [1][160/235] lr: 2.499e-01, eta: 0:17:28, time: 0.021, data_time: 0.000, memory: 701, top-1: 18.1836, top-5: 47.3633, loss_main: 2.0908, loss_aux: 1.3591, loss: 5.6194
2023-02-02 22:44:53,652 - mmcls - INFO - Epoch [1][170/235] lr: 2.499e-01, eta: 0:16:40, time: 0.020, data_time: 0.000, memory: 701, top-1: 15.0195, top-5: 37.4805, loss_main: 2.0506, loss_aux: 1.3189, loss: 6.2267
2023-02-02 22:44:53,871 - mmcls - INFO - Epoch [1][180/235] lr: 2.499e-01, eta: 0:15:57, time: 0.022, data_time: 0.000, memory: 701, top-1: 11.0547, top-5: 31.2500, loss_main: 1.7264, loss_aux: 1.6878, loss: 6.4814
2023-02-02 22:44:54,077 - mmcls - INFO - Epoch [1][190/235] lr: 2.498e-01, eta: 0:15:19, time: 0.021, data_time: 0.000, memory: 701, top-1: 18.9258, top-5: 46.0352, loss_main: 2.1338, loss_aux: 1.1585, loss: 5.8461
2023-02-02 22:44:54,290 - mmcls - INFO - Epoch [1][200/235] lr: 2.498e-01, eta: 0:14:44, time: 0.021, data_time: 0.001, memory: 701, top-1: 8.4766, top-5: 26.1328, loss_main: 1.4686, loss_aux: 1.7667, loss: 6.9009
2023-02-02 22:44:54,502 - mmcls - INFO - Epoch [1][210/235] lr: 2.498e-01, eta: 0:14:13, time: 0.021, data_time: 0.000, memory: 701, top-1: 17.3828, top-5: 39.8828, loss_main: 1.4017, loss_aux: 1.7204, loss: 5.9826
2023-02-02 22:44:54,716 - mmcls - INFO - Epoch [1][220/235] lr: 2.498e-01, eta: 0:13:45, time: 0.022, data_time: 0.001, memory: 701, top-1: 17.6562, top-5: 44.3945, loss_main: 1.3492, loss_aux: 1.8512, loss: 5.0200
2023-02-02 22:44:54,902 - mmcls - INFO - Epoch [1][230/235] lr: 2.498e-01, eta: 0:13:17, time: 0.019, data_time: 0.000, memory: 701, top-1: 13.9648, top-5: 38.3008, loss_main: 1.5435, loss_aux: 1.7706, loss: 6.1990
2023-02-02 22:44:55,037 - mmcls - INFO - Saving checkpoint at 1 epochs
2023-02-02 22:44:58,662 - mmcls - INFO - Dist Eval Hook : There are 6000 samples in total.
2023-02-02 22:44:58,930 - mmcls - INFO - Now best checkpoint is saved as best_acc_epoch_1.pth.
2023-02-02 22:44:58,931 - mmcls - INFO - Best acc is 27.2167 at 1 epoch.
2023-02-02 22:44:58,931 - mmcls - INFO - Epoch(val) [1][12] acc: 27.2167
2023-02-02 22:45:01,192 - mmcls - INFO - Epoch [2][10/235] lr: 2.497e-01, eta: 0:14:14, time: 0.226, data_time: 0.204, memory: 701, top-1: 16.8555, top-5: 40.6055, loss_main: 1.7554, loss_aux: 1.3770, loss: 6.2743
2023-02-02 22:45:01,393 - mmcls - INFO - Epoch [2][20/235] lr: 2.497e-01, eta: 0:13:49, time: 0.020, data_time: 0.000, memory: 701, top-1: 15.5273, top-5: 38.9844, loss_main: 1.7712, loss_aux: 1.4206, loss: 6.6660
2023-02-02 22:45:01,592 - mmcls - INFO - Epoch [2][30/235] lr: 2.497e-01, eta: 0:13:25, time: 0.019, data_time: 0.000, memory: 701, top-1: 21.5625, top-5: 50.1172, loss_main: 1.8905, loss_aux: 1.5047, loss: 5.4319
2023-02-02 22:45:01,799 - mmcls - INFO - Epoch [2][40/235] lr: 2.497e-01, eta: 0:13:04, time: 0.021, data_time: 0.001, memory: 701, top-1: 16.6406, top-5: 41.2500, loss_main: 1.6218, loss_aux: 1.6592, loss: 6.0256
2023-02-02 22:45:02,001 - mmcls - INFO - Epoch [2][50/235] lr: 2.496e-01, eta: 0:12:44, time: 0.020, data_time: 0.000, memory: 701, top-1: 18.7695, top-5: 46.6016, loss_main: 1.9515, loss_aux: 1.4277, loss: 5.8892
2023-02-02 22:45:02,195 - mmcls - INFO - Epoch [2][60/235] lr: 2.496e-01, eta: 0:12:25, time: 0.019, data_time: 0.000, memory: 701, top-1: 23.2617, top-5: 51.5234, loss_main: 1.7356, loss_aux: 1.4247, loss: 4.8235
2023-02-02 22:45:02,399 - mmcls - INFO - Epoch [2][70/235] lr: 2.496e-01, eta: 0:12:07, time: 0.020, data_time: 0.000, memory: 701, top-1: 20.9375, top-5: 48.2617, loss_main: 1.7202, loss_aux: 1.1911, loss: 5.8620
2023-02-02 22:45:02,602 - mmcls - INFO - Epoch [2][80/235] lr: 2.496e-01, eta: 0:11:51, time: 0.021, data_time: 0.001, memory: 701, top-1: 23.5742, top-5: 50.6641, loss_main: 1.6456, loss_aux: 1.2590, loss: 5.4150
2023-02-02 22:45:02,803 - mmcls - INFO - Epoch [2][90/235] lr: 2.495e-01, eta: 0:11:36, time: 0.020, data_time: 0.000, memory: 701, top-1: 21.7383, top-5: 48.7695, loss_main: 1.6432, loss_aux: 1.2984, loss: 5.5343
2023-02-02 22:45:03,000 - mmcls - INFO - Epoch [2][100/235] lr: 2.495e-01, eta: 0:11:21, time: 0.019, data_time: 0.000, memory: 701, top-1: 27.4609, top-5: 57.4414, loss_main: 1.7718, loss_aux: 1.3609, loss: 4.3762
2023-02-02 22:45:03,207 - mmcls - INFO - Epoch [2][110/235] lr: 2.495e-01, eta: 0:11:07, time: 0.020, data_time: 0.000, memory: 701, top-1: 27.3047, top-5: 55.9766, loss_main: 1.8408, loss_aux: 1.1563, loss: 5.5271
2023-02-02 22:45:03,408 - mmcls - INFO - Epoch [2][120/235] lr: 2.494e-01, eta: 0:10:54, time: 0.021, data_time: 0.001, memory: 701, top-1: 22.2266, top-5: 46.7383, loss_main: 1.5632, loss_aux: 1.3843, loss: 5.4957
2023-02-02 22:45:03,606 - mmcls - INFO - Epoch [2][130/235] lr: 2.494e-01, eta: 0:10:42, time: 0.020, data_time: 0.000, memory: 701, top-1: 30.6836, top-5: 60.3320, loss_main: 1.5392, loss_aux: 1.2761, loss: 4.0671
2023-02-02 22:45:03,813 - mmcls - INFO - Epoch [2][140/235] lr: 2.494e-01, eta: 0:10:31, time: 0.021, data_time: 0.000, memory: 701, top-1: 29.8633, top-5: 62.8711, loss_main: 1.8122, loss_aux: 0.9916, loss: 4.6963
2023-02-02 22:45:04,026 - mmcls - INFO - Epoch [2][150/235] lr: 2.493e-01, eta: 0:10:20, time: 0.021, data_time: 0.000, memory: 701, top-1: 26.5820, top-5: 55.8008, loss_main: 1.7317, loss_aux: 1.1757, loss: 5.4953
2023-02-02 22:45:04,223 - mmcls - INFO - Epoch [2][160/235] lr: 2.493e-01, eta: 0:10:10, time: 0.020, data_time: 0.001, memory: 701, top-1: 24.3555, top-5: 51.5039, loss_main: 1.5261, loss_aux: 1.2670, loss: 5.2882
2023-02-02 22:45:04,423 - mmcls - INFO - Epoch [2][170/235] lr: 2.493e-01, eta: 0:10:00, time: 0.020, data_time: 0.000, memory: 701, top-1: 19.3945, top-5: 41.0352, loss_main: 1.1846, loss_aux: 1.5970, loss: 5.3849
2023-02-02 22:45:04,622 - mmcls - INFO - Epoch [2][180/235] lr: 2.492e-01, eta: 0:09:50, time: 0.020, data_time: 0.000, memory: 701, top-1: 29.3555, top-5: 57.8906, loss_main: 1.4708, loss_aux: 1.3086, loss: 4.6698
2023-02-02 22:45:04,840 - mmcls - INFO - Epoch [2][190/235] lr: 2.492e-01, eta: 0:09:41, time: 0.021, data_time: 0.000, memory: 701, top-1: 30.8984, top-5: 60.4102, loss_main: 1.7688, loss_aux: 1.0609, loss: 5.2002
2023-02-02 22:45:05,040 - mmcls - INFO - Epoch [2][200/235] lr: 2.492e-01, eta: 0:09:33, time: 0.021, data_time: 0.002, memory: 701, top-1: 28.3984, top-5: 58.7109, loss_main: 1.8597, loss_aux: 1.1942, loss: 4.9214
2023-02-02 22:45:05,236 - mmcls - INFO - Epoch [2][210/235] lr: 2.491e-01, eta: 0:09:24, time: 0.020, data_time: 0.000, memory: 701, top-1: 28.3984, top-5: 55.0586, loss_main: 1.6821, loss_aux: 1.3401, loss: 4.6258
2023-02-02 22:45:05,433 - mmcls - INFO - Epoch [2][220/235] lr: 2.491e-01, eta: 0:09:16, time: 0.019, data_time: 0.000, memory: 701, top-1: 28.7500, top-5: 58.6523, loss_main: 1.4142, loss_aux: 1.3896, loss: 4.6799
2023-02-02 22:45:05,607 - mmcls - INFO - Epoch [2][230/235] lr: 2.490e-01, eta: 0:09:08, time: 0.018, data_time: 0.001, memory: 701, top-1: 18.5352, top-5: 41.4062, loss_main: 1.4015, loss_aux: 1.3769, loss: 6.1577
2023-02-02 22:45:05,698 - mmcls - INFO - Saving checkpoint at 2 epochs
2023-02-02 22:45:08,109 - mmcls - INFO - Dist Eval Hook : There are 6000 samples in total.
2023-02-02 22:45:08,124 - mmcls - INFO - The previous best checkpoint /opt/logger/cifar_etf/best_acc_epoch_1.pth was removed
2023-02-02 22:45:08,349 - mmcls - INFO - Now best checkpoint is saved as best_acc_epoch_2.pth.
2023-02-02 22:45:08,349 - mmcls - INFO - Best acc is 40.7167 at 2 epoch.
2023-02-02 22:45:08,350 - mmcls - INFO - Epoch(val) [2][12] acc: 40.7167
2023-02-02 22:45:10,601 - mmcls - INFO - Epoch [3][10/235] lr: 2.490e-01, eta: 0:09:43, time: 0.225, data_time: 0.204, memory: 701, top-1: 29.5898, top-5: 57.9883, loss_main: 1.3103, loss_aux: 1.2540, loss: 4.5924
2023-02-02 22:45:10,807 - mmcls - INFO - Epoch [3][20/235] lr: 2.489e-01, eta: 0:09:35, time: 0.020, data_time: 0.000, memory: 701, top-1: 20.1367, top-5: 43.4766, loss_main: 1.3908, loss_aux: 1.4566, loss: 5.8730
2023-02-02 22:45:11,003 - mmcls - INFO - Epoch [3][30/235] lr: 2.489e-01, eta: 0:09:28, time: 0.020, data_time: 0.000, memory: 701, top-1: 27.1875, top-5: 55.4883, loss_main: 1.4868, loss_aux: 1.4285, loss: 5.1872
2023-02-02 22:45:11,202 - mmcls - INFO - Epoch [3][40/235] lr: 2.489e-01, eta: 0:09:20, time: 0.020, data_time: 0.000, memory: 701, top-1: 23.0273, top-5: 47.5391, loss_main: 1.3267, loss_aux: 1.5182, loss: 5.1594
2023-02-02 22:45:11,402 - mmcls - INFO - Epoch [3][50/235] lr: 2.488e-01, eta: 0:09:13, time: 0.020, data_time: 0.000, memory: 701, top-1: 31.4648, top-5: 61.3672, loss_main: 1.5276, loss_aux: 1.2052, loss: 4.8091
2023-02-02 22:45:11,597 - mmcls - INFO - Epoch [3][60/235] lr: 2.488e-01, eta: 0:09:07, time: 0.020, data_time: 0.000, memory: 701, top-1: 27.5000, top-5: 55.6445, loss_main: 1.5841, loss_aux: 1.1785, loss: 5.3108
2023-02-02 22:45:11,810 - mmcls - INFO - Epoch [3][70/235] lr: 2.487e-01, eta: 0:09:00, time: 0.021, data_time: 0.000, memory: 701, top-1: 21.4844, top-5: 44.7070, loss_main: 1.3734, loss_aux: 1.4226, loss: 6.0377
2023-02-02 22:45:12,009 - mmcls - INFO - Epoch [3][80/235] lr: 2.487e-01, eta: 0:08:54, time: 0.020, data_time: 0.001, memory: 701, top-1: 25.4297, top-5: 52.2656, loss_main: 1.5214, loss_aux: 1.2718, loss: 5.4759
2023-02-02 22:45:12,207 - mmcls - INFO - Epoch [3][90/235] lr: 2.486e-01, eta: 0:08:48, time: 0.020, data_time: 0.000, memory: 701, top-1: 35.8984, top-5: 67.7344, loss_main: 1.6982, loss_aux: 1.0213, loss: 4.5466
2023-02-02 22:45:12,408 - mmcls - INFO - Epoch [3][100/235] lr: 2.486e-01, eta: 0:08:42, time: 0.020, data_time: 0.000, memory: 701, top-1: 37.0312, top-5: 67.7539, loss_main: 1.7154, loss_aux: 0.9127, loss: 4.6973
2023-02-02 22:45:12,620 - mmcls - INFO - Epoch [3][110/235] lr: 2.485e-01, eta: 0:08:37, time: 0.021, data_time: 0.000, memory: 701, top-1: 22.9688, top-5: 45.6055, loss_main: 1.3402, loss_aux: 1.3098, loss: 5.5867
2023-02-02 22:45:12,822 - mmcls - INFO - Epoch [3][120/235] lr: 2.485e-01, eta: 0:08:32, time: 0.021, data_time: 0.001, memory: 701, top-1: 37.0117, top-5: 68.3984, loss_main: 1.7425, loss_aux: 0.8979, loss: 4.6497
2023-02-02 22:45:13,021 - mmcls - INFO - Epoch [3][130/235] lr: 2.484e-01, eta: 0:08:26, time: 0.020, data_time: 0.000, memory: 701, top-1: 25.2344, top-5: 49.8047, loss_main: 1.4928, loss_aux: 1.1575, loss: 5.2300
2023-02-02 22:45:13,230 - mmcls - INFO - Epoch [3][140/235] lr: 2.484e-01, eta: 0:08:21, time: 0.021, data_time: 0.000, memory: 701, top-1: 30.5469, top-5: 57.8516, loss_main: 1.5700, loss_aux: 1.2351, loss: 5.2153
2023-02-02 22:45:13,439 - mmcls - INFO - Epoch [3][150/235] lr: 2.483e-01, eta: 0:08:17, time: 0.021, data_time: 0.000, memory: 701, top-1: 27.5781, top-5: 52.2461, loss_main: 1.3685, loss_aux: 1.0789, loss: 5.3913
2023-02-02 22:45:13,640 - mmcls - INFO - Epoch [3][160/235] lr: 2.483e-01, eta: 0:08:12, time: 0.020, data_time: 0.000, memory: 701, top-1: 33.9062, top-5: 58.1250, loss_main: 1.2272, loss_aux: 1.0804, loss: 4.0836
2023-02-02 22:45:13,845 - mmcls - INFO - Epoch [3][170/235] lr: 2.482e-01, eta: 0:08:07, time: 0.021, data_time: 0.001, memory: 701, top-1: 37.5391, top-5: 66.7188, loss_main: 1.4422, loss_aux: 1.0380, loss: 4.1598
2023-02-02 22:45:14,059 - mmcls - INFO - Epoch [3][180/235] lr: 2.481e-01, eta: 0:08:03, time: 0.021, data_time: 0.000, memory: 701, top-1: 31.4062, top-5: 58.9453, loss_main: 1.4280, loss_aux: 1.1207, loss: 4.6910
2023-02-02 22:45:14,265 - mmcls - INFO - Epoch [3][190/235] lr: 2.481e-01, eta: 0:07:59, time: 0.021, data_time: 0.001, memory: 701, top-1: 39.9414, top-5: 70.9961, loss_main: 1.6308, loss_aux: 0.9498, loss: 4.2035
2023-02-02 22:45:14,461 - mmcls - INFO - Epoch [3][200/235] lr: 2.480e-01, eta: 0:07:54, time: 0.020, data_time: 0.001, memory: 701, top-1: 36.3086, top-5: 64.5898, loss_main: 1.4434, loss_aux: 1.0051, loss: 4.1466
2023-02-02 22:45:14,670 - mmcls - INFO - Epoch [3][210/235] lr: 2.480e-01, eta: 0:07:50, time: 0.021, data_time: 0.000, memory: 701, top-1: 33.6719, top-5: 63.4961, loss_main: 1.4726, loss_aux: 1.0488, loss: 5.0020
2023-02-02 22:45:14,872 - mmcls - INFO - Epoch [3][220/235] lr: 2.479e-01, eta: 0:07:46, time: 0.020, data_time: 0.000, memory: 701, top-1: 37.4219, top-5: 66.9922, loss_main: 1.3692, loss_aux: 1.0621, loss: 4.3575
2023-02-02 22:45:15,041 - mmcls - INFO - Epoch [3][230/235] lr: 2.478e-01, eta: 0:07:42, time: 0.017, data_time: 0.000, memory: 701, top-1: 37.4414, top-5: 64.1992, loss_main: 1.3895, loss_aux: 0.8793, loss: 3.9666
2023-02-02 22:45:15,127 - mmcls - INFO - Saving checkpoint at 3 epochs
2023-02-02 22:45:17,518 - mmcls - INFO - Dist Eval Hook : There are 6000 samples in total.
2023-02-02 22:45:17,532 - mmcls - INFO - The previous best checkpoint /opt/logger/cifar_etf/best_acc_epoch_2.pth was removed
2023-02-02 22:45:17,758 - mmcls - INFO - Now best checkpoint is saved as best_acc_epoch_3.pth.
2023-02-02 22:45:17,758 - mmcls - INFO - Best acc is 48.6167 at 3 epoch.
2023-02-02 22:45:17,759 - mmcls - INFO - Epoch(val) [3][12] acc: 48.6167
2023-02-02 22:45:20,011 - mmcls - INFO - Epoch [4][10/235] lr: 2.477e-01, eta: 0:08:06, time: 0.225, data_time: 0.204, memory: 701, top-1: 36.4844, top-5: 63.8867, loss_main: 1.3855, loss_aux: 0.9841, loss: 4.1164
2023-02-02 22:45:20,218 - mmcls - INFO - Epoch [4][20/235] lr: 2.477e-01, eta: 0:08:02, time: 0.021, data_time: 0.000, memory: 701, top-1: 25.8203, top-5: 48.7500, loss_main: 1.1756, loss_aux: 1.1591, loss: 5.2337
2023-02-02 22:45:20,417 - mmcls - INFO - Epoch [4][30/235] lr: 2.476e-01, eta: 0:07:58, time: 0.020, data_time: 0.000, memory: 701, top-1: 41.2891, top-5: 71.9336, loss_main: 1.5229, loss_aux: 0.8464, loss: 4.4830
2023-02-02 22:45:20,622 - mmcls - INFO - Epoch [4][40/235] lr: 2.476e-01, eta: 0:07:54, time: 0.020, data_time: 0.000, memory: 701, top-1: 33.6523, top-5: 63.9258, loss_main: 1.5718, loss_aux: 1.2751, loss: 4.7481
2023-02-02 22:45:20,839 - mmcls - INFO - Epoch [4][50/235] lr: 2.475e-01, eta: 0:07:51, time: 0.022, data_time: 0.001, memory: 701, top-1: 32.4609, top-5: 58.8672, loss_main: 1.3956, loss_aux: 1.1416, loss: 4.6517
2023-02-02 22:45:21,054 - mmcls - INFO - Epoch [4][60/235] lr: 2.474e-01, eta: 0:07:47, time: 0.021, data_time: 0.000, memory: 701, top-1: 29.7852, top-5: 58.7305, loss_main: 1.4687, loss_aux: 1.2488, loss: 5.1524
2023-02-02 22:45:21,261 - mmcls - INFO - Epoch [4][70/235] lr: 2.474e-01, eta: 0:07:44, time: 0.021, data_time: 0.000, memory: 701, top-1: 27.4414, top-5: 51.6602, loss_main: 1.4763, loss_aux: 1.2382, loss: 5.1124
2023-02-02 22:45:21,472 - mmcls - INFO - Epoch [4][80/235] lr: 2.473e-01, eta: 0:07:40, time: 0.021, data_time: 0.000, memory: 701, top-1: 35.2734, top-5: 62.1484, loss_main: 1.4336, loss_aux: 1.1252, loss: 4.7584
2023-02-02 22:45:21,664 - mmcls - INFO - Epoch [4][90/235] lr: 2.472e-01, eta: 0:07:37, time: 0.019, data_time: 0.000, memory: 701, top-1: 37.2852, top-5: 63.7891, loss_main: 1.4111, loss_aux: 0.8854, loss: 4.2898
2023-02-02 22:45:21,861 - mmcls - INFO - Epoch [4][100/235] lr: 2.471e-01, eta: 0:07:33, time: 0.020, data_time: 0.000, memory: 701, top-1: 35.6836, top-5: 61.0352, loss_main: 1.2782, loss_aux: 0.9029, loss: 4.2128
2023-02-02 22:45:22,069 - mmcls - INFO - Epoch [4][110/235] lr: 2.471e-01, eta: 0:07:30, time: 0.021, data_time: 0.001, memory: 701, top-1: 35.8008, top-5: 62.5781, loss_main: 1.3158, loss_aux: 1.1353, loss: 4.4507
2023-02-02 22:45:22,270 - mmcls - INFO - Epoch [4][120/235] lr: 2.470e-01, eta: 0:07:27, time: 0.020, data_time: 0.000, memory: 701, top-1: 31.6602, top-5: 58.0859, loss_main: 1.3173, loss_aux: 1.2613, loss: 5.0121
2023-02-02 22:45:22,484 - mmcls - INFO - Epoch [4][130/235] lr: 2.469e-01, eta: 0:07:24, time: 0.021, data_time: 0.000, memory: 701, top-1: 30.6445, top-5: 55.5664, loss_main: 1.3525, loss_aux: 1.2212, loss: 5.0363
2023-02-02 22:45:22,683 - mmcls - INFO - Epoch [4][140/235] lr: 2.469e-01, eta: 0:07:21, time: 0.020, data_time: 0.001, memory: 701, top-1: 43.3203, top-5: 73.4766, loss_main: 1.5063, loss_aux: 1.0400, loss: 4.0387
2023-02-02 22:45:22,887 - mmcls - INFO - Epoch [4][150/235] lr: 2.468e-01, eta: 0:07:18, time: 0.021, data_time: 0.000, memory: 701, top-1: 38.2031, top-5: 66.5039, loss_main: 1.4387, loss_aux: 1.0328, loss: 4.0418
2023-02-02 22:45:23,084 - mmcls - INFO - Epoch [4][160/235] lr: 2.467e-01, eta: 0:07:15, time: 0.020, data_time: 0.000, memory: 701, top-1: 36.6797, top-5: 60.1953, loss_main: 1.2649, loss_aux: 1.2110, loss: 3.7481
2023-02-02 22:45:23,271 - mmcls - INFO - Epoch [4][170/235] lr: 2.466e-01, eta: 0:07:12, time: 0.019, data_time: 0.000, memory: 701, top-1: 23.0664, top-5: 45.0391, loss_main: 1.2098, loss_aux: 1.3393, loss: 4.9783
2023-02-02 22:45:23,473 - mmcls - INFO - Epoch [4][180/235] lr: 2.466e-01, eta: 0:07:09, time: 0.020, data_time: 0.000, memory: 701, top-1: 46.8164, top-5: 75.1367, loss_main: 1.3811, loss_aux: 1.0210, loss: 3.7228
2023-02-02 22:45:23,667 - mmcls - INFO - Epoch [4][190/235] lr: 2.465e-01, eta: 0:07:06, time: 0.019, data_time: 0.000, memory: 701, top-1: 38.4180, top-5: 66.9922, loss_main: 1.4731, loss_aux: 1.0742, loss: 3.9628
2023-02-02 22:45:23,870 - mmcls - INFO - Epoch [4][200/235] lr: 2.464e-01, eta: 0:07:04, time: 0.020, data_time: 0.000, memory: 701, top-1: 34.1016, top-5: 58.5742, loss_main: 1.3092, loss_aux: 1.1480, loss: 4.3363
2023-02-02 22:45:24,073 - mmcls - INFO - Epoch [4][210/235] lr: 2.463e-01, eta: 0:07:01, time: 0.021, data_time: 0.001, memory: 701, top-1: 26.6797, top-5: 50.4102, loss_main: 1.2409, loss_aux: 1.0585, loss: 4.8870
2023-02-02 22:45:24,275 - mmcls - INFO - Epoch [4][220/235] lr: 2.462e-01, eta: 0:06:59, time: 0.020, data_time: 0.000, memory: 701, top-1: 33.8477, top-5: 60.0781, loss_main: 1.3111, loss_aux: 1.2505, loss: 4.6548
2023-02-02 22:45:24,446 - mmcls - INFO - Epoch [4][230/235] lr: 2.462e-01, eta: 0:06:56, time: 0.017, data_time: 0.000, memory: 701, top-1: 36.5820, top-5: 64.1602, loss_main: 1.3939, loss_aux: 1.0970, loss: 4.9051
2023-02-02 22:45:24,535 - mmcls - INFO - Saving checkpoint at 4 epochs
2023-02-02 22:45:26,931 - mmcls - INFO - Dist Eval Hook : There are 6000 samples in total.
2023-02-02 22:45:26,945 - mmcls - INFO - The previous best checkpoint /opt/logger/cifar_etf/best_acc_epoch_3.pth was removed
2023-02-02 22:45:27,171 - mmcls - INFO - Now best checkpoint is saved as best_acc_epoch_4.pth.
2023-02-02 22:45:27,171 - mmcls - INFO - Best acc is 54.0333 at 4 epoch.
2023-02-02 22:45:27,171 - mmcls - INFO - Epoch(val) [4][12] acc: 54.0333
2023-02-02 22:45:29,451 - mmcls - INFO - Epoch [5][10/235] lr: 2.460e-01, eta: 0:07:14, time: 0.228, data_time: 0.205, memory: 701, loss: 4.3153, top-1: 36.3281, top-5: 62.8320, loss_main: 1.2901, loss_aux: 1.0204
2023-02-02 22:45:29,668 - mmcls - INFO - Epoch [5][20/235] lr: 2.459e-01, eta: 0:07:12, time: 0.022, data_time: 0.000, memory: 701, loss: 4.9793, top-1: 29.6484, top-5: 54.2188, loss_main: 1.2989, loss_aux: 1.0890
2023-02-02 22:45:29,892 - mmcls - INFO - Epoch [5][30/235] lr: 2.459e-01, eta: 0:07:10, time: 0.022, data_time: 0.000, memory: 701, loss: 3.9297, top-1: 40.2734, top-5: 66.4648, loss_main: 1.2919, loss_aux: 1.0692
2023-02-02 22:45:30,096 - mmcls - INFO - Epoch [5][40/235] lr: 2.458e-01, eta: 0:07:07, time: 0.020, data_time: 0.000, memory: 701, loss: 3.1590, top-1: 47.6953, top-5: 73.7500, loss_main: 1.2867, loss_aux: 0.9526
2023-02-02 22:45:30,298 - mmcls - INFO - Epoch [5][50/235] lr: 2.457e-01, eta: 0:07:04, time: 0.020, data_time: 0.000, memory: 701, loss: 4.0081, top-1: 44.0039, top-5: 68.9648, loss_main: 1.1999, loss_aux: 0.9540
2023-02-02 22:45:30,493 - mmcls - INFO - Epoch [5][60/235] lr: 2.456e-01, eta: 0:07:02, time: 0.019, data_time: 0.000, memory: 701, loss: 4.1703, top-1: 37.3828, top-5: 62.2656, loss_main: 1.2646, loss_aux: 1.1075
2023-02-02 22:45:30,681 - mmcls - INFO - Epoch [5][70/235] lr: 2.455e-01, eta: 0:06:59, time: 0.019, data_time: 0.000, memory: 701, loss: 4.0278, top-1: 39.4727, top-5: 65.7617, loss_main: 1.3496, loss_aux: 1.1346
2023-02-02 22:45:30,880 - mmcls - INFO - Epoch [5][80/235] lr: 2.454e-01, eta: 0:06:57, time: 0.020, data_time: 0.000, memory: 701, loss: 4.9328, top-1: 35.9570, top-5: 63.6914, loss_main: 1.4146, loss_aux: 1.1000
2023-02-02 22:45:31,068 - mmcls - INFO - Epoch [5][90/235] lr: 2.453e-01, eta: 0:06:54, time: 0.019, data_time: 0.001, memory: 701, loss: 3.8172, top-1: 39.3359, top-5: 66.1328, loss_main: 1.3067, loss_aux: 1.0918
2023-02-02 22:45:31,256 - mmcls - INFO - Epoch [5][100/235] lr: 2.452e-01, eta: 0:06:52, time: 0.019, data_time: 0.000, memory: 701, loss: 4.6441, top-1: 36.9141, top-5: 63.0469, loss_main: 1.4047, loss_aux: 1.1088
2023-02-02 22:45:31,449 - mmcls - INFO - Epoch [5][110/235] lr: 2.452e-01, eta: 0:06:50, time: 0.019, data_time: 0.000, memory: 701, loss: 4.0509, top-1: 38.2812, top-5: 67.2070, loss_main: 1.4758, loss_aux: 1.4178
2023-02-02 22:45:31,658 - mmcls - INFO - Epoch [5][120/235] lr: 2.451e-01, eta: 0:06:48, time: 0.021, data_time: 0.000, memory: 701, loss: 4.2558, top-1: 36.9336, top-5: 62.0703, loss_main: 1.3291, loss_aux: 1.0541
2023-02-02 22:45:31,875 - mmcls - INFO - Epoch [5][130/235] lr: 2.450e-01, eta: 0:06:46, time: 0.022, data_time: 0.000, memory: 701, loss: 3.5665, top-1: 44.3750, top-5: 69.3359, loss_main: 1.1141, loss_aux: 0.7704
2023-02-02 22:45:32,093 - mmcls - INFO - Epoch [5][140/235] lr: 2.449e-01, eta: 0:06:44, time: 0.022, data_time: 0.001, memory: 701, loss: 4.2773, top-1: 36.2305, top-5: 58.7109, loss_main: 1.1612, loss_aux: 0.9678
2023-02-02 22:45:32,306 - mmcls - INFO - Epoch [5][150/235] lr: 2.448e-01, eta: 0:06:42, time: 0.021, data_time: 0.000, memory: 701, loss: 3.6751, top-1: 43.1445, top-5: 71.6602, loss_main: 1.3339, loss_aux: 0.9842
2023-02-02 22:45:32,523 - mmcls - INFO - Epoch [5][160/235] lr: 2.447e-01, eta: 0:06:40, time: 0.021, data_time: 0.000, memory: 701, loss: 5.4407, top-1: 26.0547, top-5: 48.5938, loss_main: 1.1887, loss_aux: 1.1777
2023-02-02 22:45:32,741 - mmcls - INFO - Epoch [5][170/235] lr: 2.446e-01, eta: 0:06:38, time: 0.022, data_time: 0.001, memory: 701, loss: 4.2201, top-1: 43.5352, top-5: 74.1016, loss_main: 1.3701, loss_aux: 1.0925
2023-02-02 22:45:32,953 - mmcls - INFO - Epoch [5][180/235] lr: 2.445e-01, eta: 0:06:36, time: 0.022, data_time: 0.001, memory: 701, loss: 4.3962, top-1: 32.9883, top-5: 56.3672, loss_main: 1.2206, loss_aux: 1.1954
2023-02-02 22:45:33,162 - mmcls - INFO - Epoch [5][190/235] lr: 2.444e-01, eta: 0:06:34, time: 0.021, data_time: 0.000, memory: 701, loss: 4.7818, top-1: 30.6250, top-5: 51.4258, loss_main: 0.9639, loss_aux: 1.1693
2023-02-02 22:45:33,370 - mmcls - INFO - Epoch [5][200/235] lr: 2.443e-01, eta: 0:06:32, time: 0.021, data_time: 0.000, memory: 701, loss: 4.2922, top-1: 36.8555, top-5: 61.1719, loss_main: 1.3360, loss_aux: 0.9788
2023-02-02 22:45:33,579 - mmcls - INFO - Epoch [5][210/235] lr: 2.442e-01, eta: 0:06:30, time: 0.021, data_time: 0.000, memory: 701, loss: 3.5993, top-1: 44.3359, top-5: 68.9453, loss_main: 1.1438, loss_aux: 0.9268
2023-02-02 22:45:33,784 - mmcls - INFO - Epoch [5][220/235] lr: 2.441e-01, eta: 0:06:28, time: 0.021, data_time: 0.001, memory: 701, loss: 4.4867, top-1: 38.7109, top-5: 65.8984, loss_main: 1.2599, loss_aux: 1.1296
2023-02-02 22:45:33,961 - mmcls - INFO - Epoch [5][230/235] lr: 2.440e-01, eta: 0:06:26, time: 0.018, data_time: 0.001, memory: 701, loss: 3.7823, top-1: 42.9297, top-5: 66.7188, loss_main: 1.1164, loss_aux: 1.1283
2023-02-02 22:45:34,046 - mmcls - INFO - Saving checkpoint at 5 epochs
2023-02-02 22:45:36,439 - mmcls - INFO - Dist Eval Hook : There are 6000 samples in total.
2023-02-02 22:45:36,453 - mmcls - INFO - The previous best checkpoint /opt/logger/cifar_etf/best_acc_epoch_4.pth was removed
2023-02-02 22:45:36,680 - mmcls - INFO - Now best checkpoint is saved as best_acc_epoch_5.pth.
2023-02-02 22:45:36,680 - mmcls - INFO - Best acc is 57.1667 at 5 epoch.
2023-02-02 22:45:36,680 - mmcls - INFO - Epoch(val) [5][12] acc: 57.1667
2023-02-02 22:45:38,958 - mmcls - INFO - Epoch [6][10/235] lr: 2.438e-01, eta: 0:06:41, time: 0.228, data_time: 0.204, memory: 701, top-1: 33.3203, top-5: 60.0000, loss_main: 1.3825, loss_aux: 1.1536, loss: 5.1243
2023-02-02 22:45:39,170 - mmcls - INFO - Epoch [6][20/235] lr: 2.437e-01, eta: 0:06:39, time: 0.021, data_time: 0.000, memory: 701, top-1: 41.2695, top-5: 64.1992, loss_main: 1.0917, loss_aux: 0.8651, loss: 3.6389
2023-02-02 22:45:39,384 - mmcls - INFO - Epoch [6][30/235] lr: 2.436e-01, eta: 0:06:37, time: 0.021, data_time: 0.000, memory: 701, top-1: 35.6250, top-5: 56.4648, loss_main: 1.0662, loss_aux: 0.8367, loss: 4.5829
2023-02-02 22:45:39,598 - mmcls - INFO - Epoch [6][40/235] lr: 2.435e-01, eta: 0:06:36, time: 0.021, data_time: 0.000, memory: 701, top-1: 39.5898, top-5: 66.2500, loss_main: 1.2580, loss_aux: 1.0002, loss: 4.4119
2023-02-02 22:45:39,804 - mmcls - INFO - Epoch [6][50/235] lr: 2.434e-01, eta: 0:06:34, time: 0.021, data_time: 0.001, memory: 701, top-1: 35.0391, top-5: 60.4883, loss_main: 1.2632, loss_aux: 1.1854, loss: 4.7387
2023-02-02 22:45:40,006 - mmcls - INFO - Epoch [6][60/235] lr: 2.433e-01, eta: 0:06:32, time: 0.020, data_time: 0.000, memory: 701, top-1: 32.8711, top-5: 57.4414, loss_main: 1.2655, loss_aux: 1.1077, loss: 4.8180
2023-02-02 22:45:40,213 - mmcls - INFO - Epoch [6][70/235] lr: 2.432e-01, eta: 0:06:30, time: 0.020, data_time: 0.000, memory: 701, top-1: 47.9102, top-5: 73.2031, loss_main: 1.2472, loss_aux: 1.0056, loss: 3.3825
2023-02-02 22:45:40,424 - mmcls - INFO - Epoch [6][80/235] lr: 2.431e-01, eta: 0:06:28, time: 0.021, data_time: 0.001, memory: 701, top-1: 39.1797, top-5: 65.8789, loss_main: 1.2373, loss_aux: 1.1479, loss: 4.3341
2023-02-02 22:45:40,629 - mmcls - INFO - Epoch [6][90/235] lr: 2.430e-01, eta: 0:06:27, time: 0.021, data_time: 0.001, memory: 701, top-1: 41.2695, top-5: 65.2930, loss_main: 1.2259, loss_aux: 0.9043, loss: 4.2001
2023-02-02 22:45:40,847 - mmcls - INFO - Epoch [6][100/235] lr: 2.429e-01, eta: 0:06:25, time: 0.022, data_time: 0.000, memory: 701, top-1: 40.9961, top-5: 67.5195, loss_main: 1.3366, loss_aux: 0.9961, loss: 4.2723
2023-02-02 22:45:41,083 - mmcls - INFO - Epoch [6][110/235] lr: 2.428e-01, eta: 0:06:24, time: 0.024, data_time: 0.000, memory: 701, top-1: 33.7109, top-5: 56.4062, loss_main: 1.2416, loss_aux: 1.1877, loss: 4.3172
2023-02-02 22:45:41,301 - mmcls - INFO - Epoch [6][120/235] lr: 2.427e-01, eta: 0:06:22, time: 0.022, data_time: 0.000, memory: 701, top-1: 40.0195, top-5: 67.0312, loss_main: 1.2093, loss_aux: 1.0820, loss: 4.0169
2023-02-02 22:45:41,529 - mmcls - INFO - Epoch [6][130/235] lr: 2.425e-01, eta: 0:06:21, time: 0.023, data_time: 0.001, memory: 701, top-1: 44.7070, top-5: 71.1523, loss_main: 1.3081, loss_aux: 1.1135, loss: 3.7283
2023-02-02 22:45:41,746 - mmcls - INFO - Epoch [6][140/235] lr: 2.424e-01, eta: 0:06:19, time: 0.022, data_time: 0.000, memory: 701, top-1: 48.0078, top-5: 74.5117, loss_main: 1.3126, loss_aux: 0.9681, loss: 3.4079
2023-02-02 22:45:41,966 - mmcls - INFO - Epoch [6][150/235] lr: 2.423e-01, eta: 0:06:18, time: 0.022, data_time: 0.000, memory: 701, top-1: 50.2539, top-5: 77.9102, loss_main: 1.2795, loss_aux: 0.9381, loss: 3.1126
2023-02-02 22:45:42,169 - mmcls - INFO - Epoch [6][160/235] lr: 2.422e-01, eta: 0:06:16, time: 0.020, data_time: 0.001, memory: 701, top-1: 53.5938, top-5: 80.2539, loss_main: 1.2563, loss_aux: 0.8372, loss: 2.7475
2023-02-02 22:45:42,384 - mmcls - INFO - Epoch [6][170/235] lr: 2.421e-01, eta: 0:06:14, time: 0.022, data_time: 0.001, memory: 701, top-1: 43.6523, top-5: 68.8086, loss_main: 1.2200, loss_aux: 0.8352, loss: 3.9131
2023-02-02 22:45:42,592 - mmcls - INFO - Epoch [6][180/235] lr: 2.420e-01, eta: 0:06:13, time: 0.021, data_time: 0.000, memory: 701, top-1: 31.3477, top-5: 54.6094, loss_main: 1.0737, loss_aux: 1.1025, loss: 4.8286
2023-02-02 22:45:42,804 - mmcls - INFO - Epoch [6][190/235] lr: 2.418e-01, eta: 0:06:11, time: 0.021, data_time: 0.000, memory: 701, top-1: 32.4609, top-5: 60.2148, loss_main: 1.4855, loss_aux: 1.2303, loss: 5.0400
2023-02-02 22:45:43,032 - mmcls - INFO - Epoch [6][200/235] lr: 2.417e-01, eta: 0:06:10, time: 0.022, data_time: 0.000, memory: 701, top-1: 52.1094, top-5: 80.3906, loss_main: 1.2665, loss_aux: 0.8484, loss: 3.3493
2023-02-02 22:45:43,251 - mmcls - INFO - Epoch [6][210/235] lr: 2.416e-01, eta: 0:06:09, time: 0.022, data_time: 0.001, memory: 701, top-1: 24.1406, top-5: 44.2188, loss_main: 1.1220, loss_aux: 1.2254, loss: 5.3221
2023-02-02 22:45:43,468 - mmcls - INFO - Epoch [6][220/235] lr: 2.415e-01, eta: 0:06:07, time: 0.022, data_time: 0.000, memory: 701, top-1: 33.3203, top-5: 56.3281, loss_main: 1.0540, loss_aux: 1.3334, loss: 4.2148
2023-02-02 22:45:43,646 - mmcls - INFO - Epoch [6][230/235] lr: 2.414e-01, eta: 0:06:06, time: 0.018, data_time: 0.000, memory: 701, top-1: 46.4844, top-5: 75.2344, loss_main: 1.2874, loss_aux: 1.0893, loss: 3.5953
2023-02-02 22:45:43,727 - mmcls - INFO - Saving checkpoint at 6 epochs
2023-02-02 22:45:46,113 - mmcls - INFO - Dist Eval Hook : There are 6000 samples in total.
2023-02-02 22:45:46,114 - mmcls - INFO - Epoch(val) [6][12] acc: 44.8833
2023-02-02 22:45:48,392 - mmcls - INFO - Epoch [7][10/235] lr: 2.412e-01, eta: 0:06:18, time: 0.228, data_time: 0.204, memory: 701, top-1: 46.8945, top-5: 71.1133, loss_main: 1.0808, loss_aux: 0.9119, loss: 3.4533
2023-02-02 22:45:48,644 - mmcls - INFO - Epoch [7][20/235] lr: 2.411e-01, eta: 0:06:17, time: 0.025, data_time: 0.000, memory: 701, top-1: 55.1562, top-5: 79.4336, loss_main: 1.0331, loss_aux: 0.7134, loss: 2.5637
2023-02-02 22:45:48,887 - mmcls - INFO - Epoch [7][30/235] lr: 2.409e-01, eta: 0:06:15, time: 0.024, data_time: 0.001, memory: 701, top-1: 48.9453, top-5: 73.7305, loss_main: 1.1088, loss_aux: 0.7550, loss: 2.9926
2023-02-02 22:45:49,145 - mmcls - INFO - Epoch [7][40/235] lr: 2.408e-01, eta: 0:06:14, time: 0.026, data_time: 0.001, memory: 701, top-1: 36.2695, top-5: 60.7227, loss_main: 1.2215, loss_aux: 1.0363, loss: 4.1456
2023-02-02 22:45:49,358 - mmcls - INFO - Epoch [7][50/235] lr: 2.407e-01, eta: 0:06:13, time: 0.022, data_time: 0.001, memory: 701, top-1: 41.0156, top-5: 67.5391, loss_main: 1.3663, loss_aux: 0.9875, loss: 4.0499
2023-02-02 22:45:49,579 - mmcls - INFO - Epoch [7][60/235] lr: 2.406e-01, eta: 0:06:11, time: 0.022, data_time: 0.000, memory: 701, top-1: 46.0742, top-5: 75.3125, loss_main: 1.3994, loss_aux: 1.0829, loss: 3.5369
2023-02-02 22:45:49,787 - mmcls - INFO - Epoch [7][70/235] lr: 2.404e-01, eta: 0:06:10, time: 0.021, data_time: 0.000, memory: 701, top-1: 47.7930, top-5: 73.7109, loss_main: 1.3666, loss_aux: 1.0656, loss: 3.4948
2023-02-02 22:45:49,996 - mmcls - INFO - Epoch [7][80/235] lr: 2.403e-01, eta: 0:06:09, time: 0.021, data_time: 0.001, memory: 701, top-1: 46.2500, top-5: 72.2266, loss_main: 1.3137, loss_aux: 1.0578, loss: 3.3224
2023-02-02 22:45:50,206 - mmcls - INFO - Epoch [7][90/235] lr: 2.402e-01, eta: 0:06:07, time: 0.021, data_time: 0.000, memory: 701, top-1: 31.3281, top-5: 57.1289, loss_main: 1.3155, loss_aux: 1.1799, loss: 5.1932
2023-02-02 22:45:50,427 - mmcls - INFO - Epoch [7][100/235] lr: 2.400e-01, eta: 0:06:06, time: 0.022, data_time: 0.000, memory: 701, top-1: 35.5273, top-5: 54.8438, loss_main: 0.9671, loss_aux: 1.0641, loss: 4.2450
2023-02-02 22:45:50,631 - mmcls - INFO - Epoch [7][110/235] lr: 2.399e-01, eta: 0:06:05, time: 0.020, data_time: 0.000, memory: 701, top-1: 43.7500, top-5: 70.6250, loss_main: 1.1618, loss_aux: 0.9839, loss: 3.8751
2023-02-02 22:45:50,847 - mmcls - INFO - Epoch [7][120/235] lr: 2.398e-01, eta: 0:06:03, time: 0.022, data_time: 0.001, memory: 701, top-1: 29.3359, top-5: 51.0742, loss_main: 1.1056, loss_aux: 1.0918, loss: 4.8899
2023-02-02 22:45:51,055 - mmcls - INFO - Epoch [7][130/235] lr: 2.397e-01, eta: 0:06:02, time: 0.021, data_time: 0.000, memory: 701, top-1: 46.6992, top-5: 75.1953, loss_main: 1.4582, loss_aux: 1.1247, loss: 3.5846
2023-02-02 22:45:51,274 - mmcls - INFO - Epoch [7][140/235] lr: 2.395e-01, eta: 0:06:01, time: 0.022, data_time: 0.000, memory: 701, top-1: 41.2109, top-5: 65.0586, loss_main: 1.1069, loss_aux: 1.0558, loss: 3.8509
2023-02-02 22:45:51,488 - mmcls - INFO - Epoch [7][150/235] lr: 2.394e-01, eta: 0:05:59, time: 0.021, data_time: 0.000, memory: 701, top-1: 28.9648, top-5: 49.6875, loss_main: 0.9806, loss_aux: 1.0950, loss: 4.8534
2023-02-02 22:45:51,707 - mmcls - INFO - Epoch [7][160/235] lr: 2.393e-01, eta: 0:05:58, time: 0.022, data_time: 0.001, memory: 701, top-1: 34.4141, top-5: 60.8594, loss_main: 1.2601, loss_aux: 1.0643, loss: 4.7295
2023-02-02 22:45:51,917 - mmcls - INFO - Epoch [7][170/235] lr: 2.391e-01, eta: 0:05:57, time: 0.021, data_time: 0.000, memory: 701, top-1: 48.8672, top-5: 76.2695, loss_main: 1.3189, loss_aux: 1.0905, loss: 3.7390
2023-02-02 22:45:52,128 - mmcls - INFO - Epoch [7][180/235] lr: 2.390e-01, eta: 0:05:56, time: 0.021, data_time: 0.000, memory: 701, top-1: 38.2812, top-5: 64.1406, loss_main: 1.2756, loss_aux: 1.0904, loss: 4.2466
2023-02-02 22:45:52,343 - mmcls - INFO - Epoch [7][190/235] lr: 2.388e-01, eta: 0:05:54, time: 0.021, data_time: 0.000, memory: 701, top-1: 32.6367, top-5: 54.0039, loss_main: 1.0012, loss_aux: 1.1162, loss: 4.5053
2023-02-02 22:45:52,551 - mmcls - INFO - Epoch [7][200/235] lr: 2.387e-01, eta: 0:05:53, time: 0.021, data_time: 0.001, memory: 701, top-1: 36.5430, top-5: 59.9414, loss_main: 1.1132, loss_aux: 1.1829, loss: 4.1785
2023-02-02 22:45:52,772 - mmcls - INFO - Epoch [7][210/235] lr: 2.386e-01, eta: 0:05:52, time: 0.022, data_time: 0.000, memory: 701, top-1: 30.0977, top-5: 51.3867, loss_main: 1.0753, loss_aux: 1.1680, loss: 4.7097
2023-02-02 22:45:52,994 - mmcls - INFO - Epoch [7][220/235] lr: 2.384e-01, eta: 0:05:51, time: 0.022, data_time: 0.000, memory: 701, top-1: 48.2617, top-5: 77.3828, loss_main: 1.2108, loss_aux: 1.1682, loss: 3.5263
2023-02-02 22:45:53,196 - mmcls - INFO - Epoch [7][230/235] lr: 2.383e-01, eta: 0:05:50, time: 0.020, data_time: 0.001, memory: 701, top-1: 50.1562, top-5: 76.2109, loss_main: 1.2371, loss_aux: 0.9503, loss: 3.0281
2023-02-02 22:45:53,281 - mmcls - INFO - Saving checkpoint at 7 epochs
2023-02-02 22:45:55,702 - mmcls - INFO - Dist Eval Hook : There are 6000 samples in total.
2023-02-02 22:45:55,715 - mmcls - INFO - The previous best checkpoint /opt/logger/cifar_etf/best_acc_epoch_5.pth was removed
2023-02-02 22:45:55,961 - mmcls - INFO - Now best checkpoint is saved as best_acc_epoch_7.pth.
2023-02-02 22:45:55,961 - mmcls - INFO - Best acc is 58.1833 at 7 epoch.
2023-02-02 22:45:55,961 - mmcls - INFO - Epoch(val) [7][12] acc: 58.1833
2023-02-02 22:45:58,263 - mmcls - INFO - Epoch [8][10/235] lr: 2.381e-01, eta: 0:06:00, time: 0.230, data_time: 0.205, memory: 701, top-1: 46.3867, top-5: 73.3984, loss_main: 1.3540, loss_aux: 1.0474, loss: 3.6163
2023-02-02 22:45:58,509 - mmcls - INFO - Epoch [8][20/235] lr: 2.379e-01, eta: 0:05:59, time: 0.024, data_time: 0.000, memory: 701, top-1: 42.8320, top-5: 71.9336, loss_main: 1.3426, loss_aux: 1.0487, loss: 4.4493
2023-02-02 22:45:58,727 - mmcls - INFO - Epoch [8][30/235] lr: 2.378e-01, eta: 0:05:58, time: 0.022, data_time: 0.001, memory: 701, top-1: 53.8281, top-5: 80.1172, loss_main: 1.3951, loss_aux: 0.9418, loss: 2.6911
2023-02-02 22:45:58,948 - mmcls - INFO - Epoch [8][40/235] lr: 2.376e-01, eta: 0:05:57, time: 0.022, data_time: 0.000, memory: 701, top-1: 34.1211, top-5: 55.7031, loss_main: 1.1609, loss_aux: 0.9477, loss: 4.5248
2023-02-02 22:45:59,162 - mmcls - INFO - Epoch [8][50/235] lr: 2.375e-01, eta: 0:05:55, time: 0.022, data_time: 0.001, memory: 701, top-1: 44.5117, top-5: 69.8828, loss_main: 1.2376, loss_aux: 0.9543, loss: 3.6384
2023-02-02 22:45:59,395 - mmcls - INFO - Epoch [8][60/235] lr: 2.374e-01, eta: 0:05:54, time: 0.023, data_time: 0.000, memory: 701, top-1: 33.4961, top-5: 55.9766, loss_main: 1.0731, loss_aux: 0.9380, loss: 4.7590
2023-02-02 22:45:59,618 - mmcls - INFO - Epoch [8][70/235] lr: 2.372e-01, eta: 0:05:53, time: 0.022, data_time: 0.001, memory: 701, top-1: 40.0977, top-5: 62.2266, loss_main: 0.8053, loss_aux: 0.9830, loss: 3.8967
2023-02-02 22:45:59,838 - mmcls - INFO - Epoch [8][80/235] lr: 2.371e-01, eta: 0:05:52, time: 0.022, data_time: 0.001, memory: 701, top-1: 58.7500, top-5: 86.1133, loss_main: 1.1728, loss_aux: 0.7680, loss: 2.8337
2023-02-02 22:46:00,051 - mmcls - INFO - Epoch [8][90/235] lr: 2.369e-01, eta: 0:05:51, time: 0.022, data_time: 0.001, memory: 701, top-1: 48.6914, top-5: 73.8281, loss_main: 1.1738, loss_aux: 0.9054, loss: 3.1506
2023-02-02 22:46:00,268 - mmcls - INFO - Epoch [8][100/235] lr: 2.368e-01, eta: 0:05:50, time: 0.021, data_time: 0.000, memory: 701, top-1: 30.9570, top-5: 51.4258, loss_main: 1.1415, loss_aux: 1.1869, loss: 4.7689
2023-02-02 22:46:00,480 - mmcls - INFO - Epoch [8][110/235] lr: 2.366e-01, eta: 0:05:49, time: 0.021, data_time: 0.001, memory: 701, top-1: 46.1719, top-5: 72.4219, loss_main: 1.2610, loss_aux: 1.1712, loss: 3.8653
2023-02-02 22:46:00,712 - mmcls - INFO - Epoch [8][120/235] lr: 2.365e-01, eta: 0:05:48, time: 0.023, data_time: 0.000, memory: 701, top-1: 37.8320, top-5: 65.1172, loss_main: 1.2850, loss_aux: 1.0665, loss: 4.7119
2023-02-02 22:46:00,943 - mmcls - INFO - Epoch [8][130/235] lr: 2.363e-01, eta: 0:05:47, time: 0.023, data_time: 0.001, memory: 701, top-1: 40.5859, top-5: 63.7695, loss_main: 1.1241, loss_aux: 0.8430, loss: 4.1738
2023-02-02 22:46:01,162 - mmcls - INFO - Epoch [8][140/235] lr: 2.362e-01, eta: 0:05:46, time: 0.022, data_time: 0.001, memory: 701, top-1: 34.3359, top-5: 57.8711, loss_main: 1.1462, loss_aux: 1.0458, loss: 4.8723
2023-02-02 22:46:01,373 - mmcls - INFO - Epoch [8][150/235] lr: 2.360e-01, eta: 0:05:45, time: 0.021, data_time: 0.000, memory: 701, top-1: 46.3672, top-5: 73.1641, loss_main: 1.2963, loss_aux: 1.0267, loss: 3.7748
2023-02-02 22:46:01,590 - mmcls - INFO - Epoch [8][160/235] lr: 2.359e-01, eta: 0:05:43, time: 0.021, data_time: 0.000, memory: 701, top-1: 51.0156, top-5: 77.0312, loss_main: 1.1748, loss_aux: 0.9405, loss: 3.4628
2023-02-02 22:46:01,800 - mmcls - INFO - Epoch [8][170/235] lr: 2.357e-01, eta: 0:05:42, time: 0.021, data_time: 0.001, memory: 701, top-1: 30.6055, top-5: 55.6641, loss_main: 1.3494, loss_aux: 1.1800, loss: 4.9128
2023-02-02 22:46:02,005 - mmcls - INFO - Epoch [8][180/235] lr: 2.355e-01, eta: 0:05:41, time: 0.021, data_time: 0.000, memory: 701, top-1: 43.1445, top-5: 69.9609, loss_main: 1.3939, loss_aux: 1.1391, loss: 3.8284
2023-02-02 22:46:02,209 - mmcls - INFO - Epoch [8][190/235] lr: 2.354e-01, eta: 0:05:40, time: 0.020, data_time: 0.000, memory: 701, top-1: 39.3164, top-5: 64.6094, loss_main: 1.2767, loss_aux: 0.9661, loss: 4.2729
2023-02-02 22:46:02,421 - mmcls - INFO - Epoch [8][200/235] lr: 2.352e-01, eta: 0:05:39, time: 0.021, data_time: 0.001, memory: 701, top-1: 52.9297, top-5: 76.0156, loss_main: 1.0707, loss_aux: 0.7293, loss: 2.9209
2023-02-02 22:46:02,635 - mmcls - INFO - Epoch [8][210/235] lr: 2.351e-01, eta: 0:05:38, time: 0.021, data_time: 0.001, memory: 701, top-1: 26.7188, top-5: 53.0859, loss_main: 1.3346, loss_aux: 1.1793, loss: 5.4420
2023-02-02 22:46:02,844 - mmcls - INFO - Epoch [8][220/235] lr: 2.349e-01, eta: 0:05:37, time: 0.021, data_time: 0.001, memory: 701, top-1: 44.1211, top-5: 71.2109, loss_main: 1.2686, loss_aux: 0.8352, loss: 4.1744
2023-02-02 22:46:03,016 - mmcls - INFO - Epoch [8][230/235] lr: 2.348e-01, eta: 0:05:36, time: 0.018, data_time: 0.001, memory: 701, top-1: 45.1953, top-5: 70.1758, loss_main: 1.2185, loss_aux: 0.8898, loss: 3.7773
2023-02-02 22:46:03,107 - mmcls - INFO - Saving checkpoint at 8 epochs
2023-02-02 22:46:05,551 - mmcls - INFO - Dist Eval Hook : There are 6000 samples in total.
2023-02-02 22:46:05,552 - mmcls - INFO - Epoch(val) [8][12] acc: 58.1000
2023-02-02 22:46:07,840 - mmcls - INFO - Epoch [9][10/235] lr: 2.345e-01, eta: 0:05:45, time: 0.228, data_time: 0.206, memory: 701, top-1: 51.4844, top-5: 78.8867, loss_main: 1.3199, loss_aux: 0.9459, loss: 3.3147
2023-02-02 22:46:08,067 - mmcls - INFO - Epoch [9][20/235] lr: 2.344e-01, eta: 0:05:44, time: 0.022, data_time: 0.000, memory: 701, top-1: 48.7109, top-5: 71.5430, loss_main: 1.0480, loss_aux: 0.9895, loss: 3.1707
2023-02-02 22:46:08,285 - mmcls - INFO - Epoch [9][30/235] lr: 2.342e-01, eta: 0:05:43, time: 0.022, data_time: 0.001, memory: 701, top-1: 30.5469, top-5: 54.5508, loss_main: 1.1734, loss_aux: 1.0702, loss: 5.0894
2023-02-02 22:46:08,492 - mmcls - INFO - Epoch [9][40/235] lr: 2.340e-01, eta: 0:05:41, time: 0.021, data_time: 0.001, memory: 701, top-1: 43.0078, top-5: 69.8633, loss_main: 1.2779, loss_aux: 1.1775, loss: 3.8925
2023-02-02 22:46:08,704 - mmcls - INFO - Epoch [9][50/235] lr: 2.339e-01, eta: 0:05:40, time: 0.022, data_time: 0.001, memory: 701, top-1: 47.8125, top-5: 72.7539, loss_main: 1.1645, loss_aux: 0.9398, loss: 3.4093
2023-02-02 22:46:08,917 - mmcls - INFO - Epoch [9][60/235] lr: 2.337e-01, eta: 0:05:39, time: 0.021, data_time: 0.000, memory: 701, top-1: 28.2227, top-5: 50.6445, loss_main: 1.1884, loss_aux: 1.0855, loss: 4.9664
2023-02-02 22:46:09,151 - mmcls - INFO - Epoch [9][70/235] lr: 2.335e-01, eta: 0:05:38, time: 0.023, data_time: 0.001, memory: 701, top-1: 45.5273, top-5: 69.0625, loss_main: 1.0417, loss_aux: 0.8900, loss: 3.6719
2023-02-02 22:46:09,577 - mmcls - INFO - Epoch [9][80/235] lr: 2.334e-01, eta: 0:05:39, time: 0.043, data_time: 0.001, memory: 701, top-1: 49.6875, top-5: 75.3906, loss_main: 1.1843, loss_aux: 0.9648, loss: 3.3467
2023-02-02 22:46:09,924 - mmcls - INFO - Epoch [9][90/235] lr: 2.332e-01, eta: 0:05:38, time: 0.034, data_time: 0.001, memory: 701, top-1: 39.8828, top-5: 63.6914, loss_main: 1.1722, loss_aux: 1.0595, loss: 4.1733
2023-02-02 22:46:10,368 - mmcls - INFO - Epoch [9][100/235] lr: 2.330e-01, eta: 0:05:38, time: 0.043, data_time: 0.001, memory: 701, top-1: 44.9023, top-5: 70.5273, loss_main: 1.1642, loss_aux: 1.0384, loss: 3.8503
2023-02-02 22:46:10,758 - mmcls - INFO - Epoch [9][110/235] lr: 2.329e-01, eta: 0:05:38, time: 0.040, data_time: 0.002, memory: 701, top-1: 45.6445, top-5: 69.7461, loss_main: 1.1202, loss_aux: 0.9284, loss: 3.7758
2023-02-02 22:46:11,074 - mmcls - INFO - Epoch [9][120/235] lr: 2.327e-01, eta: 0:05:38, time: 0.032, data_time: 0.001, memory: 701, top-1: 40.9570, top-5: 61.5039, loss_main: 0.9847, loss_aux: 0.9724, loss: 3.7681
2023-02-02 22:46:11,313 - mmcls - INFO - Epoch [9][130/235] lr: 2.325e-01, eta: 0:05:37, time: 0.024, data_time: 0.001, memory: 701, top-1: 49.8047, top-5: 77.3633, loss_main: 1.1431, loss_aux: 1.0429, loss: 3.5925
2023-02-02 22:46:11,564 - mmcls - INFO - Epoch [9][140/235] lr: 2.324e-01, eta: 0:05:36, time: 0.025, data_time: 0.000, memory: 701, top-1: 32.5977, top-5: 56.5820, loss_main: 1.2616, loss_aux: 1.1297, loss: 4.8810
2023-02-02 22:46:11,811 - mmcls - INFO - Epoch [9][150/235] lr: 2.322e-01, eta: 0:05:35, time: 0.024, data_time: 0.001, memory: 701, top-1: 32.9297, top-5: 53.5938, loss_main: 1.0526, loss_aux: 1.0117, loss: 4.6009
2023-02-02 22:46:12,053 - mmcls - INFO - Epoch [9][160/235] lr: 2.320e-01, eta: 0:05:34, time: 0.025, data_time: 0.001, memory: 701, top-1: 45.6055, top-5: 65.6836, loss_main: 0.9037, loss_aux: 0.6992, loss: 3.5699
2023-02-02 22:46:12,309 - mmcls - INFO - Epoch [9][170/235] lr: 2.319e-01, eta: 0:05:34, time: 0.026, data_time: 0.001, memory: 701, top-1: 36.5234, top-5: 60.5859, loss_main: 1.3090, loss_aux: 0.9451, loss: 4.7779
2023-02-02 22:46:12,543 - mmcls - INFO - Epoch [9][180/235] lr: 2.317e-01, eta: 0:05:33, time: 0.024, data_time: 0.001, memory: 701, top-1: 51.4453, top-5: 76.6602, loss_main: 1.0942, loss_aux: 0.7813, loss: 3.0688
2023-02-02 22:46:12,779 - mmcls - INFO - Epoch [9][190/235] lr: 2.315e-01, eta: 0:05:32, time: 0.023, data_time: 0.000, memory: 701, top-1: 42.8320, top-5: 69.2188, loss_main: 1.1911, loss_aux: 1.0007, loss: 3.9472
2023-02-02 22:46:13,031 - mmcls - INFO - Epoch [9][200/235] lr: 2.313e-01, eta: 0:05:31, time: 0.025, data_time: 0.001, memory: 701, top-1: 37.8516, top-5: 62.2461, loss_main: 1.2107, loss_aux: 1.0515, loss: 4.4285
2023-02-02 22:46:13,284 - mmcls - INFO - Epoch [9][210/235] lr: 2.312e-01, eta: 0:05:30, time: 0.025, data_time: 0.001, memory: 701, top-1: 39.6484, top-5: 62.6953, loss_main: 1.2106, loss_aux: 0.8271, loss: 4.2841
2023-02-02 22:46:13,514 - mmcls - INFO - Epoch [9][220/235] lr: 2.310e-01, eta: 0:05:30, time: 0.023, data_time: 0.001, memory: 701, top-1: 24.0234, top-5: 43.5938, loss_main: 0.9766, loss_aux: 1.0971, loss: 5.1299
2023-02-02 22:46:13,722 - mmcls - INFO - Epoch [9][230/235] lr: 2.308e-01, eta: 0:05:29, time: 0.021, data_time: 0.000, memory: 701, top-1: 44.5117, top-5: 71.6016, loss_main: 1.2123, loss_aux: 1.0080, loss: 4.0052
2023-02-02 22:46:13,828 - mmcls - INFO - Saving checkpoint at 9 epochs
2023-02-02 22:46:16,274 - mmcls - INFO - Dist Eval Hook : There are 6000 samples in total.
2023-02-02 22:46:16,287 - mmcls - INFO - The previous best checkpoint /opt/logger/cifar_etf/best_acc_epoch_7.pth was removed
2023-02-02 22:46:16,553 - mmcls - INFO - Now best checkpoint is saved as best_acc_epoch_9.pth.
2023-02-02 22:46:16,553 - mmcls - INFO - Best acc is 61.5833 at 9 epoch.
2023-02-02 22:46:16,554 - mmcls - INFO - Epoch(val) [9][12] acc: 61.5833
2023-02-02 22:46:18,823 - mmcls - INFO - Epoch [10][10/235] lr: 2.305e-01, eta: 0:05:36, time: 0.227, data_time: 0.204, memory: 701, top-1: 41.3867, top-5: 62.9492, loss_main: 1.0990, loss_aux: 0.8341, loss: 4.1127
2023-02-02 22:46:19,227 - mmcls - INFO - Epoch [10][20/235] lr: 2.304e-01, eta: 0:05:36, time: 0.039, data_time: 0.000, memory: 701, top-1: 53.5352, top-5: 77.9883, loss_main: 1.0238, loss_aux: 0.7666, loss: 3.2224
2023-02-02 22:46:20,013 - mmcls - INFO - Epoch [10][30/235] lr: 2.302e-01, eta: 0:05:37, time: 0.080, data_time: 0.002, memory: 701, top-1: 34.3945, top-5: 56.7969, loss_main: 1.0396, loss_aux: 1.0243, loss: 4.5402
2023-02-02 22:46:20,224 - mmcls - INFO - Epoch [10][40/235] lr: 2.300e-01, eta: 0:05:37, time: 0.021, data_time: 0.000, memory: 701, top-1: 47.6758, top-5: 73.9258, loss_main: 1.0329, loss_aux: 1.0852, loss: 3.4956
2023-02-02 22:46:20,443 - mmcls - INFO - Epoch [10][50/235] lr: 2.298e-01, eta: 0:05:36, time: 0.022, data_time: 0.000, memory: 701, top-1: 47.2461, top-5: 71.2109, loss_main: 1.1820, loss_aux: 0.8181, loss: 3.5659
2023-02-02 22:46:20,673 - mmcls - INFO - Epoch [10][60/235] lr: 2.296e-01, eta: 0:05:35, time: 0.023, data_time: 0.000, memory: 701, top-1: 49.1211, top-5: 73.1836, loss_main: 1.1142, loss_aux: 0.9887, loss: 3.4337
2023-02-02 22:46:20,972 - mmcls - INFO - Epoch [10][70/235] lr: 2.295e-01, eta: 0:05:34, time: 0.028, data_time: 0.001, memory: 701, top-1: 50.2539, top-5: 72.7930, loss_main: 0.9232, loss_aux: 0.6593, loss: 3.1500
2023-02-02 22:46:21,675 - mmcls - INFO - Epoch [10][80/235] lr: 2.293e-01, eta: 0:05:35, time: 0.072, data_time: 0.003, memory: 701, top-1: 48.5352, top-5: 73.6719, loss_main: 1.1219, loss_aux: 0.7422, loss: 3.5257
2023-02-02 22:46:22,395 - mmcls - INFO - Epoch [10][90/235] lr: 2.291e-01, eta: 0:05:36, time: 0.068, data_time: 0.001, memory: 701, top-1: 44.2969, top-5: 74.4922, loss_main: 1.3710, loss_aux: 0.9739, loss: 4.0130
2023-02-02 22:46:23,164 - mmcls - INFO - Epoch [10][100/235] lr: 2.289e-01, eta: 0:05:38, time: 0.079, data_time: 0.005, memory: 701, top-1: 44.5508, top-5: 70.8008, loss_main: 1.3119, loss_aux: 0.9739, loss: 3.8374
2023-02-02 22:46:23,818 - mmcls - INFO - Epoch [10][110/235] lr: 2.287e-01, eta: 0:05:39, time: 0.066, data_time: 0.003, memory: 701, top-1: 55.5273, top-5: 82.4023, loss_main: 1.2726, loss_aux: 0.9070, loss: 2.8758
2023-02-02 22:46:24,417 - mmcls - INFO - Epoch [10][120/235] lr: 2.285e-01, eta: 0:05:40, time: 0.060, data_time: 0.002, memory: 701, top-1: 39.4727, top-5: 61.0547, loss_main: 1.2549, loss_aux: 1.0785, loss: 3.9895
2023-02-02 22:46:25,253 - mmcls - INFO - Epoch [10][130/235] lr: 2.284e-01, eta: 0:05:41, time: 0.082, data_time: 0.002, memory: 701, top-1: 42.2070, top-5: 62.6953, loss_main: 1.0222, loss_aux: 0.7631, loss: 3.7149
2023-02-02 22:46:25,981 - mmcls - INFO - Epoch [10][140/235] lr: 2.282e-01, eta: 0:05:42, time: 0.074, data_time: 0.004, memory: 701, top-1: 47.2070, top-5: 71.8555, loss_main: 1.0430, loss_aux: 0.9176, loss: 3.5227
2023-02-02 22:46:26,768 - mmcls - INFO - Epoch [10][150/235] lr: 2.280e-01, eta: 0:05:44, time: 0.078, data_time: 0.003, memory: 701, top-1: 34.2188, top-5: 57.5000, loss_main: 1.1030, loss_aux: 0.9370, loss: 4.4930
2023-02-02 22:46:27,525 - mmcls - INFO - Epoch [10][160/235] lr: 2.278e-01, eta: 0:05:45, time: 0.076, data_time: 0.003, memory: 701, top-1: 53.4375, top-5: 80.7031, loss_main: 1.1970, loss_aux: 0.9328, loss: 3.2309
2023-02-02 22:46:28,314 - mmcls - INFO - Epoch [10][170/235] lr: 2.276e-01, eta: 0:05:46, time: 0.080, data_time: 0.003, memory: 701, top-1: 44.6094, top-5: 67.6758, loss_main: 1.0525, loss_aux: 0.8319, loss: 3.9347
2023-02-02 22:46:29,059 - mmcls - INFO - Epoch [10][180/235] lr: 2.274e-01, eta: 0:05:48, time: 0.074, data_time: 0.002, memory: 701, top-1: 37.5781, top-5: 61.1523, loss_main: 1.0681, loss_aux: 0.9271, loss: 4.4984
2023-02-02 22:46:29,779 - mmcls - INFO - Epoch [10][190/235] lr: 2.272e-01, eta: 0:05:48, time: 0.065, data_time: 0.003, memory: 701, top-1: 49.5703, top-5: 74.3750, loss_main: 1.1561, loss_aux: 1.1334, loss: 3.3613
2023-02-02 22:46:30,455 - mmcls - INFO - Epoch [10][200/235] lr: 2.270e-01, eta: 0:05:49, time: 0.071, data_time: 0.009, memory: 701, top-1: 42.1289, top-5: 68.0078, loss_main: 1.1486, loss_aux: 1.1026, loss: 4.0322
2023-02-02 22:46:31,146 - mmcls - INFO - Epoch [10][210/235] lr: 2.268e-01, eta: 0:05:50, time: 0.071, data_time: 0.006, memory: 701, top-1: 55.0586, top-5: 82.0703, loss_main: 1.1470, loss_aux: 0.9091, loss: 2.8448
2023-02-02 22:46:31,826 - mmcls - INFO - Epoch [10][220/235] lr: 2.266e-01, eta: 0:05:51, time: 0.069, data_time: 0.004, memory: 701, top-1: 50.0391, top-5: 76.1914, loss_main: 1.1642, loss_aux: 0.8522, loss: 3.5301
2023-02-02 22:46:32,630 - mmcls - INFO - Epoch [10][230/235] lr: 2.264e-01, eta: 0:05:53, time: 0.081, data_time: 0.003, memory: 701, top-1: 43.0859, top-5: 67.1289, loss_main: 1.0384, loss_aux: 1.0466, loss: 4.3219
2023-02-02 22:46:32,942 - mmcls - INFO - Saving checkpoint at 10 epochs
2023-02-02 22:46:35,440 - mmcls - INFO - Dist Eval Hook : There are 6000 samples in total.
2023-02-02 22:46:35,453 - mmcls - INFO - The previous best checkpoint /opt/logger/cifar_etf/best_acc_epoch_9.pth was removed
2023-02-02 22:46:35,684 - mmcls - INFO - Now best checkpoint is saved as best_acc_epoch_10.pth.
2023-02-02 22:46:35,684 - mmcls - INFO - Best acc is 62.6333 at 10 epoch.
2023-02-02 22:46:35,684 - mmcls - INFO - Epoch(val) [10][12] acc: 62.6333
2023-02-02 22:46:38,363 - mmcls - INFO - Epoch [11][10/235] lr: 2.262e-01, eta: 0:06:00, time: 0.264, data_time: 0.206, memory: 701, top-1: 40.9375, top-5: 66.8945, loss_main: 1.2979, loss_aux: 1.2070, loss: 3.9973
2023-02-02 22:46:39,057 - mmcls - INFO - Epoch [11][20/235] lr: 2.260e-01, eta: 0:06:01, time: 0.072, data_time: 0.004, memory: 701, top-1: 40.5273, top-5: 65.3125, loss_main: 1.2113, loss_aux: 1.1395, loss: 4.1412
2023-02-02 22:46:39,883 - mmcls - INFO - Epoch [11][30/235] lr: 2.258e-01, eta: 0:06:03, time: 0.082, data_time: 0.001, memory: 701, top-1: 44.1406, top-5: 68.5156, loss_main: 1.1181, loss_aux: 0.8679, loss: 4.1426
2023-02-02 22:46:40,513 - mmcls - INFO - Epoch [11][40/235] lr: 2.256e-01, eta: 0:06:03, time: 0.064, data_time: 0.002, memory: 701, top-1: 41.6211, top-5: 65.5664, loss_main: 1.1899, loss_aux: 1.0385, loss: 3.9887
2023-02-02 22:46:41,202 - mmcls - INFO - Epoch [11][50/235] lr: 2.254e-01, eta: 0:06:04, time: 0.068, data_time: 0.001, memory: 701, top-1: 57.5195, top-5: 83.3984, loss_main: 1.2747, loss_aux: 1.1411, loss: 2.7784
2023-02-02 22:46:41,921 - mmcls - INFO - Epoch [11][60/235] lr: 2.252e-01, eta: 0:06:05, time: 0.071, data_time: 0.002, memory: 701, top-1: 55.9180, top-5: 79.8633, loss_main: 1.1385, loss_aux: 0.7693, loss: 2.8549
2023-02-02 22:46:42,657 - mmcls - INFO - Epoch [11][70/235] lr: 2.250e-01, eta: 0:06:06, time: 0.073, data_time: 0.003, memory: 701, top-1: 54.0820, top-5: 76.6797, loss_main: 1.0985, loss_aux: 0.7550, loss: 3.1589
2023-02-02 22:46:43,322 - mmcls - INFO - Epoch [11][80/235] lr: 2.248e-01, eta: 0:06:07, time: 0.069, data_time: 0.003, memory: 701, top-1: 55.3711, top-5: 81.7578, loss_main: 1.1249, loss_aux: 0.7443, loss: 3.1280
2023-02-02 22:46:44,150 - mmcls - INFO - Epoch [11][90/235] lr: 2.246e-01, eta: 0:06:08, time: 0.082, data_time: 0.001, memory: 701, top-1: 40.4688, top-5: 63.8867, loss_main: 1.1241, loss_aux: 0.9518, loss: 4.1579
2023-02-02 22:46:44,853 - mmcls - INFO - Epoch [11][100/235] lr: 2.244e-01, eta: 0:06:09, time: 0.069, data_time: 0.002, memory: 701, top-1: 49.9609, top-5: 74.8242, loss_main: 1.1603, loss_aux: 1.0968, loss: 3.5609
2023-02-02 22:46:45,508 - mmcls - INFO - Epoch [11][110/235] lr: 2.242e-01, eta: 0:06:09, time: 0.067, data_time: 0.003, memory: 701, top-1: 52.4805, top-5: 77.7148, loss_main: 1.0639, loss_aux: 1.1138, loss: 3.2654
2023-02-02 22:46:46,196 - mmcls - INFO - Epoch [11][120/235] lr: 2.240e-01, eta: 0:06:10, time: 0.067, data_time: 0.002, memory: 701, top-1: 36.2305, top-5: 60.9570, loss_main: 1.2343, loss_aux: 1.2185, loss: 4.4755
2023-02-02 22:46:47,074 - mmcls - INFO - Epoch [11][130/235] lr: 2.238e-01, eta: 0:06:11, time: 0.086, data_time: 0.003, memory: 701, top-1: 51.4648, top-5: 75.1367, loss_main: 1.1286, loss_aux: 0.8991, loss: 3.1002
2023-02-02 22:46:47,900 - mmcls - INFO - Epoch [11][140/235] lr: 2.236e-01, eta: 0:06:12, time: 0.085, data_time: 0.005, memory: 701, top-1: 40.8984, top-5: 68.1641, loss_main: 1.2864, loss_aux: 1.0520, loss: 4.1799
2023-02-02 22:46:48,837 - mmcls - INFO - Epoch [11][150/235] lr: 2.233e-01, eta: 0:06:14, time: 0.093, data_time: 0.003, memory: 701, top-1: 41.0352, top-5: 65.0195, loss_main: 1.1538, loss_aux: 1.0701, loss: 4.0650
2023-02-02 22:46:49,680 - mmcls - INFO - Epoch [11][160/235] lr: 2.231e-01, eta: 0:06:15, time: 0.083, data_time: 0.003, memory: 701, top-1: 39.3555, top-5: 64.3164, loss_main: 1.1000, loss_aux: 1.0094, loss: 4.4711
2023-02-02 22:46:50,405 - mmcls - INFO - Epoch [11][170/235] lr: 2.229e-01, eta: 0:06:16, time: 0.074, data_time: 0.004, memory: 701, top-1: 47.8711, top-5: 73.3789, loss_main: 1.1566, loss_aux: 0.9177, loss: 4.0015
2023-02-02 22:46:51,109 - mmcls - INFO - Epoch [11][180/235] lr: 2.227e-01, eta: 0:06:17, time: 0.069, data_time: 0.002, memory: 701, top-1: 39.9414, top-5: 58.2031, loss_main: 0.8263, loss_aux: 0.7250, loss: 3.8329
2023-02-02 22:46:51,853 - mmcls - INFO - Epoch [11][190/235] lr: 2.225e-01, eta: 0:06:17, time: 0.075, data_time: 0.004, memory: 701, top-1: 41.8164, top-5: 59.6680, loss_main: 0.7611, loss_aux: 0.7988, loss: 3.6622
2023-02-02 22:46:52,507 - mmcls - INFO - Epoch [11][200/235] lr: 2.223e-01, eta: 0:06:18, time: 0.067, data_time: 0.003, memory: 701, top-1: 56.9922, top-5: 81.8750, loss_main: 0.9449, loss_aux: 1.0018, loss: 2.8235
2023-02-02 22:46:53,245 - mmcls - INFO - Epoch [11][210/235] lr: 2.221e-01, eta: 0:06:19, time: 0.072, data_time: 0.001, memory: 701, top-1: 34.8438, top-5: 58.5938, loss_main: 1.1277, loss_aux: 1.0723, loss: 4.4542
2023-02-02 22:46:53,996 - mmcls - INFO - Epoch [11][220/235] lr: 2.219e-01, eta: 0:06:19, time: 0.077, data_time: 0.004, memory: 701, top-1: 33.6914, top-5: 55.4492, loss_main: 0.9880, loss_aux: 1.0374, loss: 4.5546
2023-02-02 22:46:54,626 - mmcls - INFO - Epoch [11][230/235] lr: 2.217e-01, eta: 0:06:20, time: 0.063, data_time: 0.002, memory: 701, top-1: 40.3906, top-5: 61.4453, loss_main: 0.8946, loss_aux: 0.9647, loss: 3.8111
2023-02-02 22:46:54,872 - mmcls - INFO - Saving checkpoint at 11 epochs
2023-02-02 22:46:57,362 - mmcls - INFO - Dist Eval Hook : There are 6000 samples in total.
2023-02-02 22:46:57,376 - mmcls - INFO - The previous best checkpoint /opt/logger/cifar_etf/best_acc_epoch_10.pth was removed
2023-02-02 22:46:57,601 - mmcls - INFO - Now best checkpoint is saved as best_acc_epoch_11.pth.
2023-02-02 22:46:57,601 - mmcls - INFO - Best acc is 64.9500 at 11 epoch.
2023-02-02 22:46:57,601 - mmcls - INFO - Epoch(val) [11][12] acc: 64.9500
2023-02-02 22:47:00,882 - mmcls - INFO - Epoch [12][10/235] lr: 2.214e-01, eta: 0:06:29, time: 0.326, data_time: 0.206, memory: 701, loss: 3.7157, top-1: 45.6250, top-5: 71.6016, loss_main: 1.0848, loss_aux: 0.9996
2023-02-02 22:47:01,789 - mmcls - INFO - Epoch [12][20/235] lr: 2.212e-01, eta: 0:06:30, time: 0.091, data_time: 0.002, memory: 701, loss: 4.7526, top-1: 33.1445, top-5: 55.0391, loss_main: 1.1680, loss_aux: 1.0720
2023-02-02 22:47:02,445 - mmcls - INFO - Epoch [12][30/235] lr: 2.209e-01, eta: 0:06:30, time: 0.064, data_time: 0.002, memory: 701, loss: 4.0866, top-1: 41.4062, top-5: 64.7266, loss_main: 1.1442, loss_aux: 0.8913
2023-02-02 22:47:03,723 - mmcls - INFO - Epoch [12][40/235] lr: 2.207e-01, eta: 0:06:33, time: 0.124, data_time: 0.003, memory: 701, loss: 4.2348, top-1: 41.0938, top-5: 64.9609, loss_main: 1.1879, loss_aux: 1.1504
2023-02-02 22:47:04,936 - mmcls - INFO - Epoch [12][50/235] lr: 2.205e-01, eta: 0:06:35, time: 0.123, data_time: 0.007, memory: 701, loss: 4.2808, top-1: 36.1719, top-5: 58.7109, loss_main: 1.0347, loss_aux: 1.1227
2023-02-02 22:47:06,028 - mmcls - INFO - Epoch [12][60/235] lr: 2.203e-01, eta: 0:06:37, time: 0.111, data_time: 0.005, memory: 701, loss: 3.7286, top-1: 44.6484, top-5: 67.6953, loss_main: 1.2586, loss_aux: 1.0042
2023-02-02 22:47:07,105 - mmcls - INFO - Epoch [12][70/235] lr: 2.201e-01, eta: 0:06:38, time: 0.104, data_time: 0.003, memory: 701, loss: 3.9346, top-1: 44.5898, top-5: 66.9922, loss_main: 1.0984, loss_aux: 0.9135
2023-02-02 22:47:08,116 - mmcls - INFO - Epoch [12][80/235] lr: 2.199e-01, eta: 0:06:40, time: 0.106, data_time: 0.007, memory: 701, loss: 3.5405, top-1: 48.7891, top-5: 74.4727, loss_main: 1.0165, loss_aux: 0.8322
2023-02-02 22:47:09,167 - mmcls - INFO - Epoch [12][90/235] lr: 2.196e-01, eta: 0:06:42, time: 0.102, data_time: 0.002, memory: 701, loss: 4.2392, top-1: 40.9375, top-5: 67.6367, loss_main: 1.2030, loss_aux: 1.0806
2023-02-02 22:47:10,141 - mmcls - INFO - Epoch [12][100/235] lr: 2.194e-01, eta: 0:06:43, time: 0.092, data_time: 0.005, memory: 701, loss: 3.1300, top-1: 53.4766, top-5: 76.8750, loss_main: 1.1596, loss_aux: 0.8538
2023-02-02 22:47:11,327 - mmcls - INFO - Epoch [12][110/235] lr: 2.192e-01, eta: 0:06:45, time: 0.117, data_time: 0.010, memory: 701, loss: 3.4749, top-1: 49.5898, top-5: 74.5117, loss_main: 1.3055, loss_aux: 1.1182
2023-02-02 22:47:12,192 - mmcls - INFO - Epoch [12][120/235] lr: 2.190e-01, eta: 0:06:46, time: 0.094, data_time: 0.011, memory: 701, loss: 3.9699, top-1: 42.5391, top-5: 65.0977, loss_main: 1.1484, loss_aux: 1.0588
2023-02-02 22:47:13,088 - mmcls - INFO - Epoch [12][130/235] lr: 2.188e-01, eta: 0:06:47, time: 0.087, data_time: 0.003, memory: 701, loss: 3.1838, top-1: 50.7422, top-5: 74.6289, loss_main: 1.1006, loss_aux: 1.1115
2023-02-02 22:47:13,996 - mmcls - INFO - Epoch [12][140/235] lr: 2.186e-01, eta: 0:06:48, time: 0.092, data_time: 0.006, memory: 701, loss: 3.6369, top-1: 45.6641, top-5: 68.3984, loss_main: 1.0119, loss_aux: 0.9746
2023-02-02 22:47:14,722 - mmcls - INFO - Epoch [12][150/235] lr: 2.183e-01, eta: 0:06:49, time: 0.075, data_time: 0.005, memory: 701, loss: 3.1559, top-1: 52.8125, top-5: 77.0312, loss_main: 1.0303, loss_aux: 0.9826
2023-02-02 22:47:15,521 - mmcls - INFO - Epoch [12][160/235] lr: 2.181e-01, eta: 0:06:49, time: 0.081, data_time: 0.003, memory: 701, loss: 4.3865, top-1: 35.1562, top-5: 56.4453, loss_main: 1.0103, loss_aux: 1.0736
2023-02-02 22:47:16,136 - mmcls - INFO - Epoch [12][170/235] lr: 2.179e-01, eta: 0:06:49, time: 0.060, data_time: 0.002, memory: 701, loss: 3.0806, top-1: 54.8438, top-5: 77.3242, loss_main: 1.1045, loss_aux: 1.0261
2023-02-02 22:47:17,048 - mmcls - INFO - Epoch [12][180/235] lr: 2.177e-01, eta: 0:06:50, time: 0.093, data_time: 0.003, memory: 701, loss: 3.4722, top-1: 54.7070, top-5: 82.4219, loss_main: 1.1079, loss_aux: 0.8486
2023-02-02 22:47:17,526 - mmcls - INFO - Epoch [12][190/235] lr: 2.174e-01, eta: 0:06:50, time: 0.049, data_time: 0.001, memory: 701, loss: 4.5612, top-1: 40.1562, top-5: 67.2852, loss_main: 1.1826, loss_aux: 1.1208
2023-02-02 22:47:17,741 - mmcls - INFO - Epoch [12][200/235] lr: 2.172e-01, eta: 0:06:49, time: 0.021, data_time: 0.000, memory: 701, loss: 4.8779, top-1: 27.8906, top-5: 46.7969, loss_main: 0.9316, loss_aux: 1.1040
2023-02-02 22:47:17,974 - mmcls - INFO - Epoch [12][210/235] lr: 2.170e-01, eta: 0:06:48, time: 0.024, data_time: 0.001, memory: 701, loss: 3.6915, top-1: 41.3281, top-5: 59.7461, loss_main: 0.8253, loss_aux: 0.8286
2023-02-02 22:47:18,194 - mmcls - INFO - Epoch [12][220/235] lr: 2.168e-01, eta: 0:06:46, time: 0.022, data_time: 0.001, memory: 701, loss: 3.2353, top-1: 49.9609, top-5: 69.3359, loss_main: 0.7951, loss_aux: 0.9460
2023-02-02 22:47:18,362 - mmcls - INFO - Epoch [12][230/235] lr: 2.165e-01, eta: 0:06:45, time: 0.017, data_time: 0.000, memory: 701, loss: 3.2546, top-1: 49.3164, top-5: 70.8789, loss_main: 0.8902, loss_aux: 0.9130
2023-02-02 22:47:18,452 - mmcls - INFO - Saving checkpoint at 12 epochs
2023-02-02 22:47:21,079 - mmcls - INFO - Dist Eval Hook : There are 6000 samples in total.
2023-02-02 22:47:21,080 - mmcls - INFO - Epoch(val) [12][12] acc: 60.7833
2023-02-02 22:47:23,641 - mmcls - INFO - Epoch [13][10/235] lr: 2.162e-01, eta: 0:06:50, time: 0.253, data_time: 0.205, memory: 701, top-1: 38.5938, top-5: 63.7109, loss_main: 1.2949, loss_aux: 1.1617, loss: 4.6306
2023-02-02 22:47:24,570 - mmcls - INFO - Epoch [13][20/235] lr: 2.160e-01, eta: 0:06:51, time: 0.095, data_time: 0.004, memory: 701, top-1: 46.3281, top-5: 72.6367, loss_main: 1.0507, loss_aux: 0.9689, loss: 3.8333
2023-02-02 22:47:25,264 - mmcls - INFO - Epoch [13][30/235] lr: 2.157e-01, eta: 0:06:51, time: 0.069, data_time: 0.002, memory: 701, top-1: 46.8945, top-5: 71.9336, loss_main: 1.2242, loss_aux: 1.0627, loss: 3.7466
2023-02-02 22:47:25,995 - mmcls - INFO - Epoch [13][40/235] lr: 2.155e-01, eta: 0:06:52, time: 0.073, data_time: 0.002, memory: 701, top-1: 45.9766, top-5: 68.6133, loss_main: 0.9979, loss_aux: 0.8756, loss: 3.9004
2023-02-02 22:47:27,202 - mmcls - INFO - Epoch [13][50/235] lr: 2.153e-01, eta: 0:06:53, time: 0.113, data_time: 0.003, memory: 701, top-1: 35.8203, top-5: 58.8086, loss_main: 1.1202, loss_aux: 1.1208, loss: 4.6272
2023-02-02 22:47:28,436 - mmcls - INFO - Epoch [13][60/235] lr: 2.151e-01, eta: 0:06:55, time: 0.124, data_time: 0.010, memory: 701, top-1: 45.4102, top-5: 69.9023, loss_main: 1.1355, loss_aux: 1.0662, loss: 3.8864
2023-02-02 22:47:29,587 - mmcls - INFO - Epoch [13][70/235] lr: 2.148e-01, eta: 0:06:57, time: 0.114, data_time: 0.010, memory: 701, top-1: 35.7227, top-5: 58.8086, loss_main: 1.1023, loss_aux: 1.0921, loss: 4.5364
2023-02-02 22:47:30,736 - mmcls - INFO - Epoch [13][80/235] lr: 2.146e-01, eta: 0:06:59, time: 0.122, data_time: 0.010, memory: 701, top-1: 38.6133, top-5: 64.4141, loss_main: 1.2050, loss_aux: 1.2028, loss: 4.3577
2023-02-02 22:47:32,024 - mmcls - INFO - Epoch [13][90/235] lr: 2.144e-01, eta: 0:07:01, time: 0.126, data_time: 0.003, memory: 701, top-1: 40.9180, top-5: 60.0586, loss_main: 0.9934, loss_aux: 0.8527, loss: 4.0526
2023-02-02 22:47:32,921 - mmcls - INFO - Epoch [13][100/235] lr: 2.141e-01, eta: 0:07:02, time: 0.094, data_time: 0.006, memory: 701, top-1: 46.6016, top-5: 71.4258, loss_main: 1.1376, loss_aux: 0.9417, loss: 3.9396
2023-02-02 22:47:33,875 - mmcls - INFO - Epoch [13][110/235] lr: 2.139e-01, eta: 0:07:02, time: 0.091, data_time: 0.001, memory: 701, top-1: 38.0078, top-5: 60.3516, loss_main: 1.1621, loss_aux: 1.0324, loss: 4.1742
2023-02-02 22:47:34,959 - mmcls - INFO - Epoch [13][120/235] lr: 2.137e-01, eta: 0:07:04, time: 0.110, data_time: 0.006, memory: 701, top-1: 58.1836, top-5: 81.4453, loss_main: 1.0211, loss_aux: 0.6946, loss: 3.0119
2023-02-02 22:47:35,848 - mmcls - INFO - Epoch [13][130/235] lr: 2.134e-01, eta: 0:07:05, time: 0.090, data_time: 0.004, memory: 701, top-1: 48.0469, top-5: 74.4336, loss_main: 1.1783, loss_aux: 1.0653, loss: 3.4830
2023-02-02 22:47:37,147 - mmcls - INFO - Epoch [13][140/235] lr: 2.132e-01, eta: 0:07:06, time: 0.122, data_time: 0.003, memory: 701, top-1: 41.8164, top-5: 66.1719, loss_main: 1.1808, loss_aux: 1.1030, loss: 4.0137
2023-02-02 22:47:38,198 - mmcls - INFO - Epoch [13][150/235] lr: 2.130e-01, eta: 0:07:08, time: 0.115, data_time: 0.011, memory: 701, top-1: 54.3164, top-5: 79.0625, loss_main: 1.1015, loss_aux: 1.0550, loss: 2.8887
2023-02-02 22:47:38,999 - mmcls - INFO - Epoch [13][160/235] lr: 2.127e-01, eta: 0:07:08, time: 0.078, data_time: 0.001, memory: 701, top-1: 46.0352, top-5: 69.3359, loss_main: 0.9895, loss_aux: 1.0132, loss: 3.9115
2023-02-02 22:47:39,683 - mmcls - INFO - Epoch [13][170/235] lr: 2.125e-01, eta: 0:07:08, time: 0.069, data_time: 0.004, memory: 701, top-1: 34.5312, top-5: 56.5820, loss_main: 1.0254, loss_aux: 0.9921, loss: 4.2571
2023-02-02 22:47:40,751 - mmcls - INFO - Epoch [13][180/235] lr: 2.122e-01, eta: 0:07:09, time: 0.103, data_time: 0.003, memory: 701, top-1: 46.2695, top-5: 70.1758, loss_main: 1.0922, loss_aux: 1.0268, loss: 3.7689
2023-02-02 22:47:41,436 - mmcls - INFO - Epoch [13][190/235] lr: 2.120e-01, eta: 0:07:09, time: 0.072, data_time: 0.007, memory: 701, top-1: 50.2148, top-5: 72.9688, loss_main: 1.0025, loss_aux: 0.8775, loss: 3.2984
2023-02-02 22:47:42,053 - mmcls - INFO - Epoch [13][200/235] lr: 2.118e-01, eta: 0:07:09, time: 0.064, data_time: 0.004, memory: 701, top-1: 30.4492, top-5: 50.4297, loss_main: 1.0702, loss_aux: 1.0403, loss: 4.7968
2023-02-02 22:47:42,740 - mmcls - INFO - Epoch [13][210/235] lr: 2.115e-01, eta: 0:07:09, time: 0.064, data_time: 0.001, memory: 701, top-1: 41.9141, top-5: 66.2109, loss_main: 1.1446, loss_aux: 1.1631, loss: 4.3488
2023-02-02 22:47:44,084 - mmcls - INFO - Epoch [13][220/235] lr: 2.113e-01, eta: 0:07:11, time: 0.134, data_time: 0.005, memory: 701, top-1: 38.9062, top-5: 61.2109, loss_main: 1.0197, loss_aux: 1.1939, loss: 3.9730
2023-02-02 22:47:45,211 - mmcls - INFO - Epoch [13][230/235] lr: 2.110e-01, eta: 0:07:13, time: 0.112, data_time: 0.006, memory: 701, top-1: 41.0742, top-5: 64.6094, loss_main: 1.0831, loss_aux: 1.0517, loss: 4.2263
2023-02-02 22:47:45,809 - mmcls - INFO - Saving checkpoint at 13 epochs
2023-02-02 22:47:48,467 - mmcls - INFO - Dist Eval Hook : There are 6000 samples in total.
2023-02-02 22:47:48,468 - mmcls - INFO - Epoch(val) [13][12] acc: 62.2500
2023-02-02 22:47:51,697 - mmcls - INFO - Epoch [14][10/235] lr: 2.107e-01, eta: 0:07:19, time: 0.321, data_time: 0.206, memory: 701, top-1: 48.2422, top-5: 73.0273, loss_main: 1.1352, loss_aux: 0.9463, loss: 3.6135
2023-02-02 22:47:52,745 - mmcls - INFO - Epoch [14][20/235] lr: 2.104e-01, eta: 0:07:20, time: 0.103, data_time: 0.003, memory: 701, top-1: 42.7148, top-5: 63.8086, loss_main: 0.9078, loss_aux: 0.8501, loss: 3.6313
2023-02-02 22:47:53,505 - mmcls - INFO - Epoch [14][30/235] lr: 2.102e-01, eta: 0:07:20, time: 0.076, data_time: 0.004, memory: 701, top-1: 37.0117, top-5: 64.0234, loss_main: 1.2417, loss_aux: 1.1029, loss: 4.5033
2023-02-02 22:47:54,262 - mmcls - INFO - Epoch [14][40/235] lr: 2.100e-01, eta: 0:07:20, time: 0.076, data_time: 0.004, memory: 701, top-1: 39.5312, top-5: 64.1016, loss_main: 1.1983, loss_aux: 1.2203, loss: 4.2981
2023-02-02 22:47:55,495 - mmcls - INFO - Epoch [14][50/235] lr: 2.097e-01, eta: 0:07:22, time: 0.119, data_time: 0.003, memory: 701, top-1: 37.2070, top-5: 58.2227, loss_main: 0.9904, loss_aux: 1.0443, loss: 4.3596
2023-02-02 22:47:56,242 - mmcls - INFO - Epoch [14][60/235] lr: 2.095e-01, eta: 0:07:22, time: 0.078, data_time: 0.007, memory: 701, top-1: 42.6172, top-5: 64.8242, loss_main: 0.8999, loss_aux: 0.9465, loss: 3.6963
2023-02-02 22:47:56,832 - mmcls - INFO - Epoch [14][70/235] lr: 2.092e-01, eta: 0:07:21, time: 0.055, data_time: 0.004, memory: 701, top-1: 57.7539, top-5: 80.9375, loss_main: 0.9867, loss_aux: 0.6986, loss: 2.8071
2023-02-02 22:47:57,834 - mmcls - INFO - Epoch [14][80/235] lr: 2.090e-01, eta: 0:07:22, time: 0.102, data_time: 0.007, memory: 701, top-1: 39.4727, top-5: 64.1602, loss_main: 1.1307, loss_aux: 1.0615, loss: 4.1372
2023-02-02 22:47:59,124 - mmcls - INFO - Epoch [14][90/235] lr: 2.087e-01, eta: 0:07:24, time: 0.133, data_time: 0.006, memory: 701, top-1: 38.2617, top-5: 60.7812, loss_main: 1.1259, loss_aux: 1.1108, loss: 4.4554
2023-02-02 22:48:00,261 - mmcls - INFO - Epoch [14][100/235] lr: 2.085e-01, eta: 0:07:25, time: 0.112, data_time: 0.001, memory: 701, top-1: 43.1641, top-5: 65.9180, loss_main: 1.1416, loss_aux: 1.0783, loss: 3.7552
2023-02-02 22:48:01,479 - mmcls - INFO - Epoch [14][110/235] lr: 2.082e-01, eta: 0:07:27, time: 0.123, data_time: 0.003, memory: 701, top-1: 47.2656, top-5: 70.2930, loss_main: 1.0610, loss_aux: 0.9241, loss: 3.4741
2023-02-02 22:48:02,505 - mmcls - INFO - Epoch [14][120/235] lr: 2.080e-01, eta: 0:07:27, time: 0.100, data_time: 0.001, memory: 701, top-1: 44.3359, top-5: 67.6367, loss_main: 1.1305, loss_aux: 1.0062, loss: 3.8399
2023-02-02 22:48:03,684 - mmcls - INFO - Epoch [14][130/235] lr: 2.077e-01, eta: 0:07:28, time: 0.113, data_time: 0.004, memory: 701, top-1: 53.4375, top-5: 77.2070, loss_main: 0.9630, loss_aux: 0.8133, loss: 3.0965
2023-02-02 22:48:04,776 - mmcls - INFO - Epoch [14][140/235] lr: 2.075e-01, eta: 0:07:30, time: 0.113, data_time: 0.009, memory: 701, top-1: 42.5000, top-5: 63.0078, loss_main: 1.0671, loss_aux: 0.9325, loss: 3.4488
2023-02-02 22:48:05,595 - mmcls - INFO - Epoch [14][150/235] lr: 2.072e-01, eta: 0:07:30, time: 0.085, data_time: 0.005, memory: 701, top-1: 45.3516, top-5: 67.9492, loss_main: 1.0670, loss_aux: 1.0996, loss: 3.6244
2023-02-02 22:48:06,479 - mmcls - INFO - Epoch [14][160/235] lr: 2.070e-01, eta: 0:07:30, time: 0.079, data_time: 0.002, memory: 701, top-1: 39.4922, top-5: 64.5117, loss_main: 1.1523, loss_aux: 1.0846, loss: 4.3076
2023-02-02 22:48:07,567 - mmcls - INFO - Epoch [14][170/235] lr: 2.067e-01, eta: 0:07:31, time: 0.116, data_time: 0.011, memory: 701, top-1: 41.5625, top-5: 64.9219, loss_main: 1.0218, loss_aux: 0.9003, loss: 4.2356
2023-02-02 22:48:08,686 - mmcls - INFO - Epoch [14][180/235] lr: 2.065e-01, eta: 0:07:32, time: 0.110, data_time: 0.004, memory: 701, top-1: 33.1641, top-5: 54.8047, loss_main: 1.1486, loss_aux: 1.1513, loss: 4.6022
2023-02-02 22:48:09,378 - mmcls - INFO - Epoch [14][190/235] lr: 2.062e-01, eta: 0:07:32, time: 0.073, data_time: 0.006, memory: 701, top-1: 47.7344, top-5: 69.5703, loss_main: 1.0302, loss_aux: 0.9631, loss: 3.6155
2023-02-02 22:48:10,099 - mmcls - INFO - Epoch [14][200/235] lr: 2.060e-01, eta: 0:07:32, time: 0.072, data_time: 0.001, memory: 701, top-1: 45.2930, top-5: 69.7852, loss_main: 1.1755, loss_aux: 1.0133, loss: 3.6882
2023-02-02 22:48:11,052 - mmcls - INFO - Epoch [14][210/235] lr: 2.057e-01, eta: 0:07:33, time: 0.093, data_time: 0.002, memory: 701, top-1: 52.0117, top-5: 75.2148, loss_main: 1.0308, loss_aux: 0.8225, loss: 3.3018
2023-02-02 22:48:11,970 - mmcls - INFO - Epoch [14][220/235] lr: 2.055e-01, eta: 0:07:33, time: 0.094, data_time: 0.004, memory: 701, top-1: 51.3672, top-5: 74.1992, loss_main: 1.0216, loss_aux: 0.9418, loss: 3.2965
2023-02-02 22:48:12,598 - mmcls - INFO - Epoch [14][230/235] lr: 2.052e-01, eta: 0:07:33, time: 0.062, data_time: 0.001, memory: 701, top-1: 41.7578, top-5: 62.7344, loss_main: 1.1161, loss_aux: 1.1582, loss: 3.9736
2023-02-02 22:48:12,926 - mmcls - INFO - Saving checkpoint at 14 epochs
2023-02-02 22:48:15,551 - mmcls - INFO - Dist Eval Hook : There are 6000 samples in total.
2023-02-02 22:48:15,563 - mmcls - INFO - The previous best checkpoint /opt/logger/cifar_etf/best_acc_epoch_11.pth was removed
2023-02-02 22:48:15,801 - mmcls - INFO - Now best checkpoint is saved as best_acc_epoch_14.pth.
2023-02-02 22:48:15,801 - mmcls - INFO - Best acc is 67.8333 at 14 epoch.
2023-02-02 22:48:15,801 - mmcls - INFO - Epoch(val) [14][12] acc: 67.8333
2023-02-02 22:48:18,954 - mmcls - INFO - Epoch [15][10/235] lr: 2.048e-01, eta: 0:07:38, time: 0.309, data_time: 0.204, memory: 701, top-1: 26.6602, top-5: 51.0352, loss_main: 1.2137, loss_aux: 1.1705, loss: 5.3705
2023-02-02 22:48:19,925 - mmcls - INFO - Epoch [15][20/235] lr: 2.046e-01, eta: 0:07:39, time: 0.100, data_time: 0.006, memory: 701, top-1: 50.7617, top-5: 73.7695, loss_main: 1.1348, loss_aux: 1.1374, loss: 3.1475
2023-02-02 22:48:20,814 - mmcls - INFO - Epoch [15][30/235] lr: 2.043e-01, eta: 0:07:39, time: 0.091, data_time: 0.004, memory: 701, top-1: 50.3516, top-5: 72.5391, loss_main: 0.9818, loss_aux: 0.8692, loss: 3.2588
2023-02-02 22:48:21,819 - mmcls - INFO - Epoch [15][40/235] lr: 2.041e-01, eta: 0:07:39, time: 0.097, data_time: 0.001, memory: 701, top-1: 48.6719, top-5: 77.1094, loss_main: 1.1869, loss_aux: 1.0733, loss: 3.8558
2023-02-02 22:48:22,864 - mmcls - INFO - Epoch [15][50/235] lr: 2.038e-01, eta: 0:07:40, time: 0.106, data_time: 0.005, memory: 701, top-1: 42.0117, top-5: 65.7617, loss_main: 1.1630, loss_aux: 0.9167, loss: 4.1680
2023-02-02 22:48:23,948 - mmcls - INFO - Epoch [15][60/235] lr: 2.035e-01, eta: 0:07:41, time: 0.109, data_time: 0.004, memory: 701, top-1: 53.4766, top-5: 75.0195, loss_main: 1.0303, loss_aux: 0.8297, loss: 2.7837
2023-02-02 22:48:24,740 - mmcls - INFO - Epoch [15][70/235] lr: 2.033e-01, eta: 0:07:41, time: 0.076, data_time: 0.003, memory: 701, top-1: 40.5273, top-5: 62.8125, loss_main: 1.0561, loss_aux: 1.0259, loss: 4.1892
2023-02-02 22:48:25,774 - mmcls - INFO - Epoch [15][80/235] lr: 2.030e-01, eta: 0:07:42, time: 0.108, data_time: 0.006, memory: 701, top-1: 47.7930, top-5: 71.6797, loss_main: 1.0303, loss_aux: 1.0031, loss: 3.7673
2023-02-02 22:48:26,543 - mmcls - INFO - Epoch [15][90/235] lr: 2.028e-01, eta: 0:07:42, time: 0.077, data_time: 0.001, memory: 701, top-1: 52.1289, top-5: 75.4688, loss_main: 1.0002, loss_aux: 0.7917, loss: 3.4360
2023-02-02 22:48:27,220 - mmcls - INFO - Epoch [15][100/235] lr: 2.025e-01, eta: 0:07:41, time: 0.065, data_time: 0.001, memory: 701, top-1: 59.6875, top-5: 84.6484, loss_main: 1.0875, loss_aux: 0.9037, loss: 2.5406
2023-02-02 22:48:28,125 - mmcls - INFO - Epoch [15][110/235] lr: 2.022e-01, eta: 0:07:42, time: 0.090, data_time: 0.004, memory: 701, top-1: 47.9883, top-5: 71.6211, loss_main: 1.0730, loss_aux: 0.9252, loss: 3.6126
2023-02-02 22:48:29,548 - mmcls - INFO - Epoch [15][120/235] lr: 2.020e-01, eta: 0:07:43, time: 0.141, data_time: 0.004, memory: 701, top-1: 37.8516, top-5: 58.2031, loss_main: 0.9412, loss_aux: 0.9100, loss: 4.2427
2023-02-02 22:48:30,727 - mmcls - INFO - Epoch [15][130/235] lr: 2.017e-01, eta: 0:07:44, time: 0.117, data_time: 0.004, memory: 701, top-1: 49.3164, top-5: 75.7617, loss_main: 1.1994, loss_aux: 1.0998, loss: 3.6713
2023-02-02 22:48:31,850 - mmcls - INFO - Epoch [15][140/235] lr: 2.015e-01, eta: 0:07:45, time: 0.116, data_time: 0.005, memory: 701, top-1: 59.6875, top-5: 85.1953, loss_main: 1.0808, loss_aux: 0.8772, loss: 2.7411
2023-02-02 22:48:32,837 - mmcls - INFO - Epoch [15][150/235] lr: 2.012e-01, eta: 0:07:46, time: 0.098, data_time: 0.001, memory: 701, top-1: 24.3555, top-5: 46.8945, loss_main: 1.0930, loss_aux: 1.2696, loss: 5.2262
2023-02-02 22:48:33,541 - mmcls - INFO - Epoch [15][160/235] lr: 2.009e-01, eta: 0:07:45, time: 0.071, data_time: 0.002, memory: 701, top-1: 32.2852, top-5: 50.9961, loss_main: 0.9131, loss_aux: 1.0437, loss: 4.6314
2023-02-02 22:48:34,506 - mmcls - INFO - Epoch [15][170/235] lr: 2.007e-01, eta: 0:07:46, time: 0.092, data_time: 0.001, memory: 701, top-1: 59.6680, top-5: 81.7773, loss_main: 1.0254, loss_aux: 0.8198, loss: 2.4571
2023-02-02 22:48:35,548 - mmcls - INFO - Epoch [15][180/235] lr: 2.004e-01, eta: 0:07:46, time: 0.102, data_time: 0.006, memory: 701, top-1: 44.1797, top-5: 70.1172, loss_main: 1.1970, loss_aux: 1.1964, loss: 4.2776
2023-02-02 22:48:36,397 - mmcls - INFO - Epoch [15][190/235] lr: 2.001e-01, eta: 0:07:47, time: 0.091, data_time: 0.008, memory: 701, top-1: 56.5820, top-5: 76.2305, loss_main: 1.0455, loss_aux: 1.1061, loss: 2.2012
2023-02-02 22:48:37,529 - mmcls - INFO - Epoch [15][200/235] lr: 1.999e-01, eta: 0:07:47, time: 0.107, data_time: 0.001, memory: 701, top-1: 49.3164, top-5: 69.5898, loss_main: 0.7976, loss_aux: 0.7559, loss: 3.3174
2023-02-02 22:48:38,387 - mmcls - INFO - Epoch [15][210/235] lr: 1.996e-01, eta: 0:07:47, time: 0.092, data_time: 0.008, memory: 701, top-1: 48.0078, top-5: 73.6133, loss_main: 1.1587, loss_aux: 1.0039, loss: 3.6842
2023-02-02 22:48:39,024 - mmcls - INFO - Epoch [15][220/235] lr: 1.993e-01, eta: 0:07:47, time: 0.065, data_time: 0.002, memory: 701, top-1: 55.3711, top-5: 80.2734, loss_main: 1.1453, loss_aux: 0.8653, loss: 3.1574
2023-02-02 22:48:39,199 - mmcls - INFO - Epoch [15][230/235] lr: 1.991e-01, eta: 0:07:46, time: 0.017, data_time: 0.000, memory: 701, top-1: 57.5000, top-5: 83.1250, loss_main: 1.1208, loss_aux: 0.9958, loss: 3.1155
2023-02-02 22:48:39,286 - mmcls - INFO - Saving checkpoint at 15 epochs
2023-02-02 22:48:41,687 - mmcls - INFO - Dist Eval Hook : There are 6000 samples in total.
2023-02-02 22:48:41,687 - mmcls - INFO - Epoch(val) [15][12] acc: 64.8167
2023-02-02 22:48:45,323 - mmcls - INFO - Epoch [16][10/235] lr: 1.987e-01, eta: 0:07:51, time: 0.359, data_time: 0.208, memory: 701, top-1: 32.0703, top-5: 48.3203, loss_main: 0.7798, loss_aux: 0.8996, loss: 4.3662
2023-02-02 22:48:46,100 - mmcls - INFO - Epoch [16][20/235] lr: 1.984e-01, eta: 0:07:51, time: 0.079, data_time: 0.005, memory: 701, top-1: 58.3008, top-5: 78.5156, loss_main: 0.9030, loss_aux: 0.8728, loss: 2.3291
2023-02-02 22:48:47,029 - mmcls - INFO - Epoch [16][30/235] lr: 1.981e-01, eta: 0:07:51, time: 0.093, data_time: 0.004, memory: 701, top-1: 39.7852, top-5: 61.5234, loss_main: 1.0633, loss_aux: 1.0777, loss: 4.3160
2023-02-02 22:48:47,779 - mmcls - INFO - Epoch [16][40/235] lr: 1.979e-01, eta: 0:07:51, time: 0.076, data_time: 0.004, memory: 701, top-1: 47.6172, top-5: 69.9023, loss_main: 1.0395, loss_aux: 1.1165, loss: 3.5659
2023-02-02 22:48:48,774 - mmcls - INFO - Epoch [16][50/235] lr: 1.976e-01, eta: 0:07:51, time: 0.101, data_time: 0.003, memory: 701, top-1: 44.3555, top-5: 66.8555, loss_main: 1.1181, loss_aux: 1.0323, loss: 3.9421
2023-02-02 22:48:49,857 - mmcls - INFO - Epoch [16][60/235] lr: 1.973e-01, eta: 0:07:52, time: 0.104, data_time: 0.002, memory: 701, top-1: 23.3789, top-5: 41.2109, loss_main: 0.8631, loss_aux: 0.9729, loss: 5.2301
2023-02-02 22:48:50,862 - mmcls - INFO - Epoch [16][70/235] lr: 1.970e-01, eta: 0:07:52, time: 0.101, data_time: 0.005, memory: 701, top-1: 56.0156, top-5: 75.8789, loss_main: 0.8447, loss_aux: 0.7818, loss: 2.7978
2023-02-02 22:48:51,992 - mmcls - INFO - Epoch [16][80/235] lr: 1.968e-01, eta: 0:07:53, time: 0.113, data_time: 0.005, memory: 701, top-1: 56.8555, top-5: 77.7734, loss_main: 0.8757, loss_aux: 0.8632, loss: 2.6398
2023-02-02 22:48:52,931 - mmcls - INFO - Epoch [16][90/235] lr: 1.965e-01, eta: 0:07:53, time: 0.097, data_time: 0.005, memory: 701, top-1: 33.3594, top-5: 58.9062, loss_main: 1.0679, loss_aux: 1.1977, loss: 4.8987
2023-02-02 22:48:53,650 - mmcls - INFO - Epoch [16][100/235] lr: 1.962e-01, eta: 0:07:53, time: 0.071, data_time: 0.002, memory: 701, top-1: 45.5664, top-5: 68.5938, loss_main: 1.0862, loss_aux: 0.9549, loss: 3.8766
2023-02-02 22:48:54,545 - mmcls - INFO - Epoch [16][110/235] lr: 1.960e-01, eta: 0:07:53, time: 0.090, data_time: 0.003, memory: 701, top-1: 66.2500, top-5: 89.6680, loss_main: 0.9468, loss_aux: 0.8226, loss: 2.2453
2023-02-02 22:48:55,397 - mmcls - INFO - Epoch [16][120/235] lr: 1.957e-01, eta: 0:07:53, time: 0.084, data_time: 0.003, memory: 701, top-1: 40.8203, top-5: 62.9297, loss_main: 1.0499, loss_aux: 0.9853, loss: 3.8924
2023-02-02 22:48:56,178 - mmcls - INFO - Epoch [16][130/235] lr: 1.954e-01, eta: 0:07:53, time: 0.075, data_time: 0.003, memory: 701, top-1: 45.1562, top-5: 67.9688, loss_main: 0.9946, loss_aux: 0.9271, loss: 3.8095
2023-02-02 22:48:56,856 - mmcls - INFO - Epoch [16][140/235] lr: 1.951e-01, eta: 0:07:53, time: 0.073, data_time: 0.006, memory: 701, top-1: 36.8555, top-5: 59.3750, loss_main: 1.0968, loss_aux: 1.0738, loss: 4.7146
2023-02-02 22:48:58,264 - mmcls - INFO - Epoch [16][150/235] lr: 1.949e-01, eta: 0:07:54, time: 0.131, data_time: 0.001, memory: 701, top-1: 46.5430, top-5: 68.7109, loss_main: 1.0740, loss_aux: 1.0841, loss: 3.8680
2023-02-02 22:48:59,399 - mmcls - INFO - Epoch [16][160/235] lr: 1.946e-01, eta: 0:07:54, time: 0.120, data_time: 0.011, memory: 701, top-1: 43.3594, top-5: 64.2969, loss_main: 1.0470, loss_aux: 0.9900, loss: 3.8862
2023-02-02 22:49:00,449 - mmcls - INFO - Epoch [16][170/235] lr: 1.943e-01, eta: 0:07:55, time: 0.105, data_time: 0.005, memory: 701, top-1: 47.1680, top-5: 71.4453, loss_main: 1.0564, loss_aux: 1.0931, loss: 3.7533
2023-02-02 22:49:01,584 - mmcls - INFO - Epoch [16][180/235] lr: 1.940e-01, eta: 0:07:55, time: 0.116, data_time: 0.005, memory: 701, top-1: 49.0234, top-5: 73.8086, loss_main: 0.9518, loss_aux: 1.0243, loss: 3.7563
2023-02-02 22:49:02,457 - mmcls - INFO - Epoch [16][190/235] lr: 1.938e-01, eta: 0:07:56, time: 0.087, data_time: 0.002, memory: 701, top-1: 42.0117, top-5: 62.2266, loss_main: 0.9627, loss_aux: 0.8719, loss: 3.9950
2023-02-02 22:49:03,426 - mmcls - INFO - Epoch [16][200/235] lr: 1.935e-01, eta: 0:07:56, time: 0.095, data_time: 0.002, memory: 701, top-1: 50.0391, top-5: 75.6445, loss_main: 1.1678, loss_aux: 1.0438, loss: 3.3855
2023-02-02 22:49:04,508 - mmcls - INFO - Epoch [16][210/235] lr: 1.932e-01, eta: 0:07:56, time: 0.108, data_time: 0.004, memory: 701, top-1: 48.2422, top-5: 69.9414, loss_main: 0.8490, loss_aux: 0.9891, loss: 3.6306
2023-02-02 22:49:05,609 - mmcls - INFO - Epoch [16][220/235] lr: 1.929e-01, eta: 0:07:57, time: 0.113, data_time: 0.004, memory: 701, top-1: 36.7969, top-5: 58.7695, loss_main: 1.0573, loss_aux: 1.0345, loss: 4.6667
2023-02-02 22:49:06,735 - mmcls - INFO - Epoch [16][230/235] lr: 1.926e-01, eta: 0:07:57, time: 0.109, data_time: 0.002, memory: 701, top-1: 35.1172, top-5: 54.6875, loss_main: 1.0938, loss_aux: 0.9250, loss: 4.4860
2023-02-02 22:49:07,405 - mmcls - INFO - Saving checkpoint at 16 epochs
2023-02-02 22:49:09,934 - mmcls - INFO - Dist Eval Hook : There are 6000 samples in total.
2023-02-02 22:49:09,935 - mmcls - INFO - Epoch(val) [16][12] acc: 63.9667
2023-02-02 22:49:12,732 - mmcls - INFO - Epoch [17][10/235] lr: 1.922e-01, eta: 0:08:00, time: 0.277, data_time: 0.205, memory: 701, loss: 3.8490, top-1: 43.2227, top-5: 67.6562, loss_main: 1.1811, loss_aux: 1.1800
2023-02-02 22:49:14,017 - mmcls - INFO - Epoch [17][20/235] lr: 1.919e-01, eta: 0:08:01, time: 0.122, data_time: 0.003, memory: 701, loss: 3.6615, top-1: 48.3398, top-5: 70.9570, loss_main: 1.0759, loss_aux: 1.0338
2023-02-02 22:49:15,285 - mmcls - INFO - Epoch [17][30/235] lr: 1.917e-01, eta: 0:08:02, time: 0.123, data_time: 0.009, memory: 701, loss: 3.2514, top-1: 51.6016, top-5: 70.7031, loss_main: 0.7968, loss_aux: 0.8219
2023-02-02 22:49:16,581 - mmcls - INFO - Epoch [17][40/235] lr: 1.914e-01, eta: 0:08:03, time: 0.138, data_time: 0.012, memory: 701, loss: 3.1884, top-1: 52.7734, top-5: 74.3555, loss_main: 0.9200, loss_aux: 0.8336
2023-02-02 22:49:17,794 - mmcls - INFO - Epoch [17][50/235] lr: 1.911e-01, eta: 0:08:03, time: 0.121, data_time: 0.004, memory: 701, loss: 3.1584, top-1: 58.4375, top-5: 83.9648, loss_main: 1.0299, loss_aux: 0.9750
2023-02-02 22:49:18,711 - mmcls - INFO - Epoch [17][60/235] lr: 1.908e-01, eta: 0:08:03, time: 0.094, data_time: 0.005, memory: 701, loss: 2.9555, top-1: 53.0664, top-5: 74.2773, loss_main: 0.9671, loss_aux: 0.9709
2023-02-02 22:49:19,764 - mmcls - INFO - Epoch [17][70/235] lr: 1.905e-01, eta: 0:08:04, time: 0.103, data_time: 0.002, memory: 701, loss: 3.3768, top-1: 52.7930, top-5: 79.5898, loss_main: 1.1927, loss_aux: 1.1800
2023-02-02 22:49:20,998 - mmcls - INFO - Epoch [17][80/235] lr: 1.902e-01, eta: 0:08:04, time: 0.116, data_time: 0.004, memory: 701, loss: 4.5075, top-1: 42.7539, top-5: 69.3945, loss_main: 1.2239, loss_aux: 1.1511
2023-02-02 22:49:22,109 - mmcls - INFO - Epoch [17][90/235] lr: 1.900e-01, eta: 0:08:05, time: 0.120, data_time: 0.011, memory: 701, loss: 3.1641, top-1: 59.5508, top-5: 84.9609, loss_main: 0.9778, loss_aux: 0.8191
2023-02-02 22:49:23,228 - mmcls - INFO - Epoch [17][100/235] lr: 1.897e-01, eta: 0:08:05, time: 0.103, data_time: 0.002, memory: 701, loss: 3.5128, top-1: 47.3242, top-5: 68.7891, loss_main: 1.0096, loss_aux: 0.8802
2023-02-02 22:49:24,588 - mmcls - INFO - Epoch [17][110/235] lr: 1.894e-01, eta: 0:08:06, time: 0.139, data_time: 0.011, memory: 701, loss: 4.3495, top-1: 41.5820, top-5: 68.1836, loss_main: 1.2123, loss_aux: 1.1442
2023-02-02 22:49:25,470 - mmcls - INFO - Epoch [17][120/235] lr: 1.891e-01, eta: 0:08:06, time: 0.093, data_time: 0.008, memory: 701, loss: 3.3440, top-1: 54.8242, top-5: 81.8359, loss_main: 1.1726, loss_aux: 1.1410
2023-02-02 22:49:26,176 - mmcls - INFO - Epoch [17][130/235] lr: 1.888e-01, eta: 0:08:06, time: 0.071, data_time: 0.004, memory: 701, loss: 4.4362, top-1: 40.0977, top-5: 66.0352, loss_main: 1.2313, loss_aux: 1.1837
2023-02-02 22:49:27,005 - mmcls - INFO - Epoch [17][140/235] lr: 1.885e-01, eta: 0:08:05, time: 0.078, data_time: 0.003, memory: 701, loss: 3.6755, top-1: 45.1562, top-5: 69.1211, loss_main: 1.1700, loss_aux: 1.0004
2023-02-02 22:49:27,845 - mmcls - INFO - Epoch [17][150/235] lr: 1.882e-01, eta: 0:08:05, time: 0.089, data_time: 0.008, memory: 701, loss: 4.0464, top-1: 35.5469, top-5: 53.1445, loss_main: 0.8494, loss_aux: 0.8602
2023-02-02 22:49:28,476 - mmcls - INFO - Epoch [17][160/235] lr: 1.880e-01, eta: 0:08:05, time: 0.063, data_time: 0.003, memory: 701, loss: 3.9742, top-1: 45.2734, top-5: 67.7539, loss_main: 0.9824, loss_aux: 0.8453
2023-02-02 22:49:29,219 - mmcls - INFO - Epoch [17][170/235] lr: 1.877e-01, eta: 0:08:04, time: 0.072, data_time: 0.003, memory: 701, loss: 3.2726, top-1: 53.1641, top-5: 79.3164, loss_main: 1.1004, loss_aux: 1.0947
2023-02-02 22:49:29,939 - mmcls - INFO - Epoch [17][180/235] lr: 1.874e-01, eta: 0:08:04, time: 0.074, data_time: 0.006, memory: 701, loss: 3.5154, top-1: 47.4805, top-5: 69.9805, loss_main: 1.1422, loss_aux: 1.0947
2023-02-02 22:49:31,501 - mmcls - INFO - Epoch [17][190/235] lr: 1.871e-01, eta: 0:08:05, time: 0.158, data_time: 0.004, memory: 701, loss: 3.9074, top-1: 44.3164, top-5: 66.0938, loss_main: 1.0693, loss_aux: 1.0550
2023-02-02 22:49:32,430 - mmcls - INFO - Epoch [17][200/235] lr: 1.868e-01, eta: 0:08:05, time: 0.094, data_time: 0.002, memory: 701, loss: 3.2800, top-1: 51.8164, top-5: 77.1289, loss_main: 1.2055, loss_aux: 1.0873
2023-02-02 22:49:33,421 - mmcls - INFO - Epoch [17][210/235] lr: 1.865e-01, eta: 0:08:05, time: 0.097, data_time: 0.001, memory: 701, loss: 2.7934, top-1: 55.9180, top-5: 75.4102, loss_main: 0.7904, loss_aux: 0.8538
2023-02-02 22:49:34,539 - mmcls - INFO - Epoch [17][220/235] lr: 1.862e-01, eta: 0:08:05, time: 0.110, data_time: 0.003, memory: 701, loss: 4.0105, top-1: 47.9688, top-5: 72.8125, loss_main: 1.0394, loss_aux: 1.0314
2023-02-02 22:49:35,487 - mmcls - INFO - Epoch [17][230/235] lr: 1.859e-01, eta: 0:08:05, time: 0.094, data_time: 0.004, memory: 701, loss: 2.3461, top-1: 65.1562, top-5: 88.9258, loss_main: 0.9601, loss_aux: 0.8869
2023-02-02 22:49:35,963 - mmcls - INFO - Saving checkpoint at 17 epochs
2023-02-02 22:49:38,565 - mmcls - INFO - Dist Eval Hook : There are 6000 samples in total.
2023-02-02 22:49:38,566 - mmcls - INFO - Epoch(val) [17][12] acc: 66.3667
2023-02-02 22:49:41,634 - mmcls - INFO - Epoch [18][10/235] lr: 1.855e-01, eta: 0:08:08, time: 0.303, data_time: 0.206, memory: 701, top-1: 38.4570, top-5: 60.1758, loss_main: 0.8811, loss_aux: 0.9721, loss: 4.1922
2023-02-02 22:49:42,583 - mmcls - INFO - Epoch [18][20/235] lr: 1.852e-01, eta: 0:08:08, time: 0.096, data_time: 0.004, memory: 701, top-1: 54.8828, top-5: 80.6055, loss_main: 1.0617, loss_aux: 0.8865, loss: 3.5315
2023-02-02 22:49:43,124 - mmcls - INFO - Epoch [18][30/235] lr: 1.849e-01, eta: 0:08:08, time: 0.056, data_time: 0.003, memory: 701, top-1: 35.7812, top-5: 51.7188, loss_main: 0.7765, loss_aux: 0.7766, loss: 4.0023
2023-02-02 22:49:43,758 - mmcls - INFO - Epoch [18][40/235] lr: 1.846e-01, eta: 0:08:07, time: 0.062, data_time: 0.001, memory: 701, top-1: 47.5195, top-5: 67.5781, loss_main: 0.7944, loss_aux: 0.7342, loss: 3.5380
2023-02-02 22:49:44,819 - mmcls - INFO - Epoch [18][50/235] lr: 1.843e-01, eta: 0:08:07, time: 0.100, data_time: 0.003, memory: 701, top-1: 32.3633, top-5: 56.1328, loss_main: 1.1753, loss_aux: 1.1640, loss: 4.9281
2023-02-02 22:49:46,212 - mmcls - INFO - Epoch [18][60/235] lr: 1.840e-01, eta: 0:08:08, time: 0.145, data_time: 0.008, memory: 701, top-1: 46.5430, top-5: 67.6562, loss_main: 0.9952, loss_aux: 0.9227, loss: 3.6126
2023-02-02 22:49:47,401 - mmcls - INFO - Epoch [18][70/235] lr: 1.838e-01, eta: 0:08:08, time: 0.113, data_time: 0.002, memory: 701, top-1: 41.6406, top-5: 62.2266, loss_main: 0.9333, loss_aux: 0.7992, loss: 4.1292
2023-02-02 22:49:48,579 - mmcls - INFO - Epoch [18][80/235] lr: 1.835e-01, eta: 0:08:09, time: 0.122, data_time: 0.008, memory: 701, top-1: 55.4102, top-5: 78.7305, loss_main: 1.0882, loss_aux: 0.8521, loss: 3.0947
2023-02-02 22:49:49,526 - mmcls - INFO - Epoch [18][90/235] lr: 1.832e-01, eta: 0:08:09, time: 0.094, data_time: 0.004, memory: 701, top-1: 65.9766, top-5: 89.8047, loss_main: 0.9970, loss_aux: 0.8543, loss: 2.2341
2023-02-02 22:49:50,733 - mmcls - INFO - Epoch [18][100/235] lr: 1.829e-01, eta: 0:08:09, time: 0.116, data_time: 0.005, memory: 701, top-1: 44.1406, top-5: 66.8750, loss_main: 1.0450, loss_aux: 0.9920, loss: 3.8949
2023-02-02 22:49:51,837 - mmcls - INFO - Epoch [18][110/235] lr: 1.826e-01, eta: 0:08:09, time: 0.115, data_time: 0.009, memory: 701, top-1: 48.9453, top-5: 71.1328, loss_main: 1.0634, loss_aux: 0.9391, loss: 3.3289
2023-02-02 22:49:52,594 - mmcls - INFO - Epoch [18][120/235] lr: 1.823e-01, eta: 0:08:09, time: 0.078, data_time: 0.005, memory: 701, top-1: 46.1133, top-5: 62.9102, loss_main: 0.8233, loss_aux: 0.8771, loss: 3.1752
2023-02-02 22:49:53,761 - mmcls - INFO - Epoch [18][130/235] lr: 1.820e-01, eta: 0:08:09, time: 0.114, data_time: 0.003, memory: 701, top-1: 42.1680, top-5: 68.4961, loss_main: 1.0945, loss_aux: 1.0931, loss: 4.3755
2023-02-02 22:49:55,083 - mmcls - INFO - Epoch [18][140/235] lr: 1.817e-01, eta: 0:08:10, time: 0.126, data_time: 0.005, memory: 701, top-1: 46.2695, top-5: 70.1953, loss_main: 1.1022, loss_aux: 0.9982, loss: 3.9121
2023-02-02 22:49:55,556 - mmcls - INFO - Epoch [18][150/235] lr: 1.814e-01, eta: 0:08:09, time: 0.058, data_time: 0.011, memory: 701, top-1: 39.3359, top-5: 59.4336, loss_main: 1.0058, loss_aux: 0.9399, loss: 4.3097
2023-02-02 22:49:55,770 - mmcls - INFO - Epoch [18][160/235] lr: 1.811e-01, eta: 0:08:08, time: 0.022, data_time: 0.001, memory: 701, top-1: 64.4531, top-5: 87.7344, loss_main: 0.9897, loss_aux: 0.9131, loss: 2.8502
2023-02-02 22:49:55,982 - mmcls - INFO - Epoch [18][170/235] lr: 1.808e-01, eta: 0:08:06, time: 0.021, data_time: 0.000, memory: 701, top-1: 31.7773, top-5: 51.3086, loss_main: 0.9128, loss_aux: 1.0032, loss: 4.8362
2023-02-02 22:49:56,184 - mmcls - INFO - Epoch [18][180/235] lr: 1.805e-01, eta: 0:08:05, time: 0.020, data_time: 0.000, memory: 701, top-1: 50.5859, top-5: 70.5078, loss_main: 0.9081, loss_aux: 0.9011, loss: 3.1978
2023-02-02 22:49:56,386 - mmcls - INFO - Epoch [18][190/235] lr: 1.802e-01, eta: 0:08:03, time: 0.020, data_time: 0.000, memory: 701, top-1: 52.5977, top-5: 77.9883, loss_main: 1.0610, loss_aux: 1.0459, loss: 3.8159
2023-02-02 22:49:56,595 - mmcls - INFO - Epoch [18][200/235] lr: 1.799e-01, eta: 0:08:02, time: 0.021, data_time: 0.000, memory: 701, top-1: 39.7656, top-5: 63.4180, loss_main: 0.9767, loss_aux: 0.9396, loss: 4.3037
2023-02-02 22:49:56,797 - mmcls - INFO - Epoch [18][210/235] lr: 1.796e-01, eta: 0:08:00, time: 0.020, data_time: 0.000, memory: 701, top-1: 43.7695, top-5: 68.8477, loss_main: 1.0797, loss_aux: 1.1751, loss: 4.4205
2023-02-02 22:49:57,356 - mmcls - INFO - Epoch [18][220/235] lr: 1.793e-01, eta: 0:08:00, time: 0.053, data_time: 0.000, memory: 701, top-1: 50.3906, top-5: 68.1445, loss_main: 0.8809, loss_aux: 0.9323, loss: 2.9636
2023-02-02 22:49:58,001 - mmcls - INFO - Epoch [18][230/235] lr: 1.790e-01, eta: 0:07:59, time: 0.067, data_time: 0.004, memory: 701, top-1: 54.5312, top-5: 77.7734, loss_main: 0.8304, loss_aux: 0.9596, loss: 3.0268
2023-02-02 22:49:58,090 - mmcls - INFO - Saving checkpoint at 18 epochs
2023-02-02 22:50:00,679 - mmcls - INFO - Dist Eval Hook : There are 6000 samples in total.
2023-02-02 22:50:00,680 - mmcls - INFO - Epoch(val) [18][12] acc: 65.7667
2023-02-02 22:50:04,192 - mmcls - INFO - Epoch [19][10/235] lr: 1.786e-01, eta: 0:08:03, time: 0.344, data_time: 0.208, memory: 701, top-1: 44.2383, top-5: 64.7656, loss_main: 0.8364, loss_aux: 0.9030, loss: 3.6798
2023-02-02 22:50:05,141 - mmcls - INFO - Epoch [19][20/235] lr: 1.783e-01, eta: 0:08:02, time: 0.098, data_time: 0.007, memory: 701, top-1: 30.6250, top-5: 48.0273, loss_main: 0.8683, loss_aux: 0.8356, loss: 4.5198
2023-02-02 22:50:06,299 - mmcls - INFO - Epoch [19][30/235] lr: 1.780e-01, eta: 0:08:03, time: 0.114, data_time: 0.004, memory: 701, top-1: 61.3281, top-5: 86.2500, loss_main: 0.8290, loss_aux: 0.8405, loss: 2.6443
2023-02-02 22:50:07,284 - mmcls - INFO - Epoch [19][40/235] lr: 1.777e-01, eta: 0:08:03, time: 0.102, data_time: 0.006, memory: 701, top-1: 48.3008, top-5: 70.6641, loss_main: 1.0618, loss_aux: 0.9508, loss: 3.3259
2023-02-02 22:50:08,115 - mmcls - INFO - Epoch [19][50/235] lr: 1.774e-01, eta: 0:08:02, time: 0.085, data_time: 0.003, memory: 701, top-1: 55.4102, top-5: 80.2734, loss_main: 1.0264, loss_aux: 1.0810, loss: 3.2924
2023-02-02 22:50:08,929 - mmcls - INFO - Epoch [19][60/235] lr: 1.771e-01, eta: 0:08:02, time: 0.081, data_time: 0.001, memory: 701, top-1: 57.2852, top-5: 83.0664, loss_main: 1.0466, loss_aux: 0.9334, loss: 2.9824
2023-02-02 22:50:10,046 - mmcls - INFO - Epoch [19][70/235] lr: 1.768e-01, eta: 0:08:02, time: 0.108, data_time: 0.002, memory: 701, top-1: 43.2031, top-5: 65.8398, loss_main: 1.0955, loss_aux: 0.9231, loss: 4.2511
2023-02-02 22:50:10,674 - mmcls - INFO - Epoch [19][80/235] lr: 1.765e-01, eta: 0:08:02, time: 0.067, data_time: 0.005, memory: 701, top-1: 50.9570, top-5: 76.8164, loss_main: 1.1572, loss_aux: 1.1418, loss: 3.6354
2023-02-02 22:50:11,514 - mmcls - INFO - Epoch [19][90/235] lr: 1.761e-01, eta: 0:08:01, time: 0.080, data_time: 0.001, memory: 701, top-1: 62.8320, top-5: 87.5781, loss_main: 1.0165, loss_aux: 0.9358, loss: 2.7612
2023-02-02 22:50:12,330 - mmcls - INFO - Epoch [19][100/235] lr: 1.758e-01, eta: 0:08:01, time: 0.085, data_time: 0.005, memory: 701, top-1: 48.2031, top-5: 70.7812, loss_main: 0.9939, loss_aux: 0.9329, loss: 3.7235
2023-02-02 22:50:13,179 - mmcls - INFO - Epoch [19][110/235] lr: 1.755e-01, eta: 0:08:01, time: 0.084, data_time: 0.002, memory: 701, top-1: 43.3398, top-5: 64.0820, loss_main: 1.0119, loss_aux: 0.8849, loss: 4.0700
2023-02-02 22:50:13,944 - mmcls - INFO - Epoch [19][120/235] lr: 1.752e-01, eta: 0:08:00, time: 0.074, data_time: 0.003, memory: 701, top-1: 43.1445, top-5: 69.3164, loss_main: 1.0795, loss_aux: 1.1389, loss: 4.1936
2023-02-02 22:50:14,617 - mmcls - INFO - Epoch [19][130/235] lr: 1.749e-01, eta: 0:07:59, time: 0.070, data_time: 0.006, memory: 701, top-1: 30.4297, top-5: 52.0312, loss_main: 1.0544, loss_aux: 1.0301, loss: 4.5746
2023-02-02 22:50:15,695 - mmcls - INFO - Epoch [19][140/235] lr: 1.746e-01, eta: 0:07:59, time: 0.102, data_time: 0.003, memory: 701, top-1: 35.9375, top-5: 55.0391, loss_main: 1.0064, loss_aux: 1.0429, loss: 4.1549
2023-02-02 22:50:17,012 - mmcls - INFO - Epoch [19][150/235] lr: 1.743e-01, eta: 0:08:00, time: 0.135, data_time: 0.008, memory: 701, top-1: 54.8828, top-5: 75.6641, loss_main: 0.9893, loss_aux: 0.8744, loss: 3.1547
2023-02-02 22:50:18,279 - mmcls - INFO - Epoch [19][160/235] lr: 1.740e-01, eta: 0:08:00, time: 0.127, data_time: 0.005, memory: 701, top-1: 29.5703, top-5: 51.5234, loss_main: 1.0901, loss_aux: 0.9776, loss: 4.8486
2023-02-02 22:50:19,404 - mmcls - INFO - Epoch [19][170/235] lr: 1.737e-01, eta: 0:08:00, time: 0.107, data_time: 0.005, memory: 701, top-1: 56.6602, top-5: 79.7461, loss_main: 0.9882, loss_aux: 1.1059, loss: 2.7850
2023-02-02 22:50:20,620 - mmcls - INFO - Epoch [19][180/235] lr: 1.734e-01, eta: 0:08:01, time: 0.129, data_time: 0.010, memory: 701, top-1: 49.5117, top-5: 74.4531, loss_main: 1.0589, loss_aux: 1.0071, loss: 3.7254
2023-02-02 22:50:21,521 - mmcls - INFO - Epoch [19][190/235] lr: 1.731e-01, eta: 0:08:01, time: 0.088, data_time: 0.003, memory: 701, top-1: 57.1289, top-5: 80.8398, loss_main: 0.9825, loss_aux: 0.8358, loss: 3.0037
2023-02-02 22:50:22,595 - mmcls - INFO - Epoch [19][200/235] lr: 1.728e-01, eta: 0:08:01, time: 0.108, data_time: 0.005, memory: 701, top-1: 42.3438, top-5: 64.3164, loss_main: 0.9140, loss_aux: 0.9516, loss: 4.1840
2023-02-02 22:50:23,567 - mmcls - INFO - Epoch [19][210/235] lr: 1.725e-01, eta: 0:08:00, time: 0.094, data_time: 0.004, memory: 701, top-1: 60.1367, top-5: 83.4961, loss_main: 0.9700, loss_aux: 0.9155, loss: 2.5928
2023-02-02 22:50:24,428 - mmcls - INFO - Epoch [19][220/235] lr: 1.722e-01, eta: 0:08:00, time: 0.091, data_time: 0.007, memory: 701, top-1: 46.3672, top-5: 71.1719, loss_main: 1.0236, loss_aux: 0.9791, loss: 3.8919
2023-02-02 22:50:25,189 - mmcls - INFO - Epoch [19][230/235] lr: 1.719e-01, eta: 0:08:00, time: 0.077, data_time: 0.002, memory: 701, top-1: 63.0469, top-5: 87.8711, loss_main: 1.1163, loss_aux: 1.1336, loss: 2.4677
2023-02-02 22:50:25,562 - mmcls - INFO - Saving checkpoint at 19 epochs
2023-02-02 22:50:28,078 - mmcls - INFO - Dist Eval Hook : There are 6000 samples in total.
2023-02-02 22:50:28,079 - mmcls - INFO - Epoch(val) [19][12] acc: 62.5167
2023-02-02 22:50:31,447 - mmcls - INFO - Epoch [20][10/235] lr: 1.714e-01, eta: 0:08:02, time: 0.332, data_time: 0.208, memory: 701, top-1: 55.0781, top-5: 78.3398, loss_main: 1.0574, loss_aux: 0.7213, loss: 3.0724
2023-02-02 22:50:32,711 - mmcls - INFO - Epoch [20][20/235] lr: 1.711e-01, eta: 0:08:03, time: 0.126, data_time: 0.005, memory: 701, top-1: 45.0781, top-5: 70.2930, loss_main: 1.1277, loss_aux: 0.9438, loss: 3.7975
2023-02-02 22:50:33,932 - mmcls - INFO - Epoch [20][30/235] lr: 1.708e-01, eta: 0:08:03, time: 0.123, data_time: 0.005, memory: 701, top-1: 55.3125, top-5: 79.6875, loss_main: 1.0523, loss_aux: 0.9007, loss: 3.1658
2023-02-02 22:50:35,056 - mmcls - INFO - Epoch [20][40/235] lr: 1.705e-01, eta: 0:08:03, time: 0.106, data_time: 0.004, memory: 701, top-1: 53.5742, top-5: 73.5547, loss_main: 0.9406, loss_aux: 0.8683, loss: 2.9593
2023-02-02 22:50:36,001 - mmcls - INFO - Epoch [20][50/235] lr: 1.702e-01, eta: 0:08:03, time: 0.099, data_time: 0.010, memory: 701, top-1: 38.5156, top-5: 65.7812, loss_main: 1.1095, loss_aux: 1.0957, loss: 4.4335
2023-02-02 22:50:36,983 - mmcls - INFO - Epoch [20][60/235] lr: 1.699e-01, eta: 0:08:03, time: 0.102, data_time: 0.006, memory: 701, top-1: 54.5898, top-5: 78.5352, loss_main: 1.0821, loss_aux: 0.9603, loss: 2.9848
2023-02-02 22:50:38,163 - mmcls - INFO - Epoch [20][70/235] lr: 1.696e-01, eta: 0:08:03, time: 0.108, data_time: 0.001, memory: 701, top-1: 57.1094, top-5: 81.7383, loss_main: 1.0836, loss_aux: 0.9218, loss: 3.0319
2023-02-02 22:50:39,278 - mmcls - INFO - Epoch [20][80/235] lr: 1.692e-01, eta: 0:08:03, time: 0.115, data_time: 0.011, memory: 701, top-1: 51.0938, top-5: 70.7812, loss_main: 0.8461, loss_aux: 0.7211, loss: 3.2989
2023-02-02 22:50:40,397 - mmcls - INFO - Epoch [20][90/235] lr: 1.689e-01, eta: 0:08:03, time: 0.118, data_time: 0.007, memory: 701, top-1: 39.0039, top-5: 64.8242, loss_main: 1.1631, loss_aux: 1.1933, loss: 4.5170
2023-02-02 22:50:41,169 - mmcls - INFO - Epoch [20][100/235] lr: 1.686e-01, eta: 0:08:02, time: 0.075, data_time: 0.001, memory: 701, top-1: 49.2383, top-5: 73.5742, loss_main: 0.9770, loss_aux: 0.9450, loss: 3.6035
2023-02-02 22:50:41,829 - mmcls - INFO - Epoch [20][110/235] lr: 1.683e-01, eta: 0:08:02, time: 0.068, data_time: 0.003, memory: 701, top-1: 46.9922, top-5: 68.8477, loss_main: 0.9842, loss_aux: 0.8254, loss: 3.6630
2023-02-02 22:50:42,595 - mmcls - INFO - Epoch [20][120/235] lr: 1.680e-01, eta: 0:08:01, time: 0.074, data_time: 0.001, memory: 701, top-1: 43.8672, top-5: 67.8320, loss_main: 1.1249, loss_aux: 1.1782, loss: 3.9354
2023-02-02 22:50:43,533 - mmcls - INFO - Epoch [20][130/235] lr: 1.677e-01, eta: 0:08:01, time: 0.094, data_time: 0.003, memory: 701, top-1: 61.6016, top-5: 83.0469, loss_main: 1.0334, loss_aux: 1.1882, loss: 2.4658
2023-02-02 22:50:44,302 - mmcls - INFO - Epoch [20][140/235] lr: 1.674e-01, eta: 0:08:00, time: 0.077, data_time: 0.004, memory: 701, top-1: 48.4375, top-5: 75.0586, loss_main: 1.0951, loss_aux: 1.1478, loss: 3.9097
2023-02-02 22:50:45,142 - mmcls - INFO - Epoch [20][150/235] lr: 1.671e-01, eta: 0:08:00, time: 0.086, data_time: 0.003, memory: 701, top-1: 49.2773, top-5: 70.8984, loss_main: 1.0606, loss_aux: 0.8970, loss: 3.6507
2023-02-02 22:50:45,981 - mmcls - INFO - Epoch [20][160/235] lr: 1.668e-01, eta: 0:07:59, time: 0.076, data_time: 0.001, memory: 701, top-1: 48.0469, top-5: 70.7617, loss_main: 1.1417, loss_aux: 1.0824, loss: 3.5631
2023-02-02 22:50:47,279 - mmcls - INFO - Epoch [20][170/235] lr: 1.664e-01, eta: 0:08:00, time: 0.133, data_time: 0.009, memory: 701, top-1: 61.9531, top-5: 85.9766, loss_main: 1.0721, loss_aux: 0.9588, loss: 2.7996
2023-02-02 22:50:48,478 - mmcls - INFO - Epoch [20][180/235] lr: 1.661e-01, eta: 0:08:00, time: 0.121, data_time: 0.005, memory: 701, top-1: 54.2969, top-5: 76.7383, loss_main: 0.9528, loss_aux: 0.8854, loss: 2.9667
2023-02-02 22:50:49,562 - mmcls - INFO - Epoch [20][190/235] lr: 1.658e-01, eta: 0:08:00, time: 0.110, data_time: 0.004, memory: 701, top-1: 64.6484, top-5: 87.7344, loss_main: 0.9406, loss_aux: 0.9256, loss: 2.3182
2023-02-02 22:50:50,701 - mmcls - INFO - Epoch [20][200/235] lr: 1.655e-01, eta: 0:08:00, time: 0.111, data_time: 0.003, memory: 701, top-1: 45.1562, top-5: 68.3203, loss_main: 0.9472, loss_aux: 1.0051, loss: 3.8659
2023-02-02 22:50:51,571 - mmcls - INFO - Epoch [20][210/235] lr: 1.652e-01, eta: 0:08:00, time: 0.092, data_time: 0.006, memory: 701, top-1: 41.0938, top-5: 61.5625, loss_main: 1.0007, loss_aux: 0.9078, loss: 4.1484
2023-02-02 22:50:52,316 - mmcls - INFO - Epoch [20][220/235] lr: 1.649e-01, eta: 0:07:59, time: 0.074, data_time: 0.001, memory: 701, top-1: 47.4023, top-5: 72.7930, loss_main: 1.0530, loss_aux: 0.9732, loss: 3.8687
2023-02-02 22:50:52,949 - mmcls - INFO - Epoch [20][230/235] lr: 1.646e-01, eta: 0:07:58, time: 0.062, data_time: 0.002, memory: 701, top-1: 37.1680, top-5: 58.2227, loss_main: 1.0521, loss_aux: 1.1743, loss: 4.3277
2023-02-02 22:50:53,524 - mmcls - INFO - Saving checkpoint at 20 epochs
2023-02-02 22:50:56,070 - mmcls - INFO - Dist Eval Hook : There are 6000 samples in total.
2023-02-02 22:50:56,082 - mmcls - INFO - The previous best checkpoint /opt/logger/cifar_etf/best_acc_epoch_14.pth was removed
2023-02-02 22:50:56,312 - mmcls - INFO - Now best checkpoint is saved as best_acc_epoch_20.pth.
2023-02-02 22:50:56,312 - mmcls - INFO - Best acc is 68.7167 at 20 epoch.
2023-02-02 22:50:56,312 - mmcls - INFO - Epoch(val) [20][12] acc: 68.7167
2023-02-02 22:50:58,942 - mmcls - INFO - Epoch [21][10/235] lr: 1.641e-01, eta: 0:08:00, time: 0.262, data_time: 0.205, memory: 701, top-1: 52.9492, top-5: 76.5430, loss_main: 1.0688, loss_aux: 0.8282, loss: 3.4570
2023-02-02 22:50:59,721 - mmcls - INFO - Epoch [21][20/235] lr: 1.638e-01, eta: 0:07:59, time: 0.078, data_time: 0.002, memory: 701, top-1: 57.5195, top-5: 77.6367, loss_main: 0.9433, loss_aux: 0.8151, loss: 2.8340
2023-02-02 22:51:00,533 - mmcls - INFO - Epoch [21][30/235] lr: 1.635e-01, eta: 0:07:59, time: 0.079, data_time: 0.001, memory: 701, top-1: 54.6875, top-5: 75.9766, loss_main: 0.8101, loss_aux: 0.7375, loss: 3.1104
2023-02-02 22:51:01,890 - mmcls - INFO - Epoch [21][40/235] lr: 1.631e-01, eta: 0:07:59, time: 0.134, data_time: 0.004, memory: 701, top-1: 45.0000, top-5: 67.7930, loss_main: 1.0506, loss_aux: 0.8749, loss: 4.0677
2023-02-02 22:51:02,931 - mmcls - INFO - Epoch [21][50/235] lr: 1.628e-01, eta: 0:07:59, time: 0.104, data_time: 0.005, memory: 701, top-1: 38.8867, top-5: 61.1328, loss_main: 1.1326, loss_aux: 1.1022, loss: 4.2074