-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbrain.py
184 lines (169 loc) · 7.22 KB
/
brain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import random
import math
import numpy as np
import copy
#here there is the brain
#create a brain structure
#input[] which is the
# rays distances (6), rays angles, speed, angle, energy
test_input = [400, 400, 400, 400, 400, 400, -60, -40, -20, +20, +40, +60, 50, 20, 80, 200]
# accelleration (max 10), angle change(0->360)
example_output = [8, 30]
class brain:
def __init__(self, layers):
self.nodes = populate_nodes(layers)
self.many_layers = self.compute_many_layers(self.nodes)
self.connections = populate_connections(5, self.nodes)
self.many_nodes = len(self.nodes)
def compute_many_layers(self, nodes):
many_layers = 0
for node in nodes.values():
if(node.layer > many_layers):
many_layers = node.layer
return many_layers
def compute_output(self, input_values):
#substitute to all the first layer nodes the inputs as values
for node in self.nodes.values():
if(node.id < len(input_values)):
node.value = input_values[node.id]
else:
node.value = 0
#now compute all the values for all the layers
for layer_id in range(1, self.many_layers + 1):
#for each connection check that the "to" node goes to
# a node of the layer. then add to that node the value multiplied
#after all for each node of the layer apply the sigmoid function
for connection in self.connections:
if(connection.to_id not in self.nodes.keys() or connection.from_id not in self.nodes.keys()):
del connection
continue
if(self.nodes[connection.to_id].layer == layer_id):
self.nodes[connection.to_id].value += self.nodes[connection.from_id].value * connection.weight
for id, node in self.nodes.items():
if(node.layer == layer_id and layer_id != self.many_layers):
self.nodes[id].value = 1 / (1 + np.exp(-node.value))
#now compute the output for our little creatures
accelleration = self.nodes[20].value
direction = self.nodes[21].value
"""
for id, node in self.nodes.items():
print("#",id, " ", node.value)
print("CONNECTIONS")
for connection in self.connections:
print("#",connection.from_id, " -> #", connection.to_id, " ", connection.weight)
"""
return (direction, accelleration)
#then we have X inner nodes
class inner_node:
def __init__(self, id, bias=10, layer=1):
self.id = id
self.bias = bias
self.layer = layer
self.value = 0.8
class connection:
def __init__(self, from_id, to_id, weight):
self.from_id = from_id
self.to_id = to_id
self.weight = weight
def populate_nodes(layers):
nodes = {}
iter = 0
for layer_id in range(len(layers)):
for id in range(layers[layer_id]):
nodes[iter] = inner_node(iter, 5, layer_id)
iter += 1
return nodes
#makes X random connections between nodes
def populate_connections(many, nodes, check=True):
connections = []
iterations = 0
while(len(connections) < many and iterations < 100):
random_from = random.randint(0, len(nodes)-1)
random_to = -1
iterations2 = 0
while(random_to == -1 or random_to == random_from):
random_to = random.randint(0, len(nodes)-1)
if(random_to not in nodes or random_from not in nodes):
continue
if(nodes[random_to].layer <= nodes[random_from].layer):
random_to = -1
if(iterations2 > 100):
break
iterations2 += 1
if(iterations2 > 100):
continue
random_weight = random.uniform(-5, +5)
conn = connection(random_from, random_to, random_weight)
if not check:
connections.append(conn)
if(is_unique_connection(conn, connections) and check):
connections.append(conn)
iterations += 1
return connections
def is_unique_connection(connection, connections):
for connection_i in connections:
if(connection_i.from_id == connection.from_id and connection_i.to_id == connection.to_id):
return False
return True
def mutation_of(brainl):
brain = copy.deepcopy(brainl)
#now make random nodes. 1new layer 2existing layer 3-6nothing
switch = random.randint(0,5)
if(switch == 0):
#change the final nodes layer, take their id and change connections
for id, node in brain.nodes.items():
if(node.layer == brain.many_layers):
node.layer += 1
brain.nodes[brain.many_nodes] = inner_node(brain.many_nodes, 5, brain.many_layers)
brain.many_layers += 1
brain.many_nodes += 1
elif(switch == 1):
random_layer = random.randint(1,brain.many_layers)
brain.nodes[brain.many_nodes] = inner_node(brain.many_nodes, 5, random_layer)
brain.many_nodes += 1
elif(switch ==2):
random_to_delete = random.randint(16,brain.many_nodes)
while(random_to_delete in [20,21]):
random_to_delete = random.randint(16,brain.many_nodes)
to_delete = []
if(random_to_delete in brain.nodes.keys()):
del brain.nodes[random_to_delete]
for connection_id in range(len(brain.connections)):
connection = brain.connections[connection_id]
if(connection.from_id == random_to_delete or connection.to_id == random_to_delete):
to_delete.append(connection_id)
cache_list = []
for i in range(len(brain.connections)):
if i not in to_delete:
cache_list.append(brain.connections[i])
brain.connections = cache_list
#1make connection 2make, if already present, destroy 3destroy connection 4-5do nothing
switch = random.randint(0,6)
if(switch == 0 or switch == 1):
connections_list = populate_connections(1, brain.nodes, True)
brain.connections.append(connections_list[0])
elif(switch == 2):
connections_list = populate_connections(1, brain.nodes, False)
if(is_unique_connection(connections_list[0], brain.connections)):
brain.connections.append(connections_list[0])
else:
for i in range(len(brain.connections)):
connection_i = brain.connections[i]
if(connection_i.from_id == connections_list[0].from_id and connection_i.to_id == connections_list[0].to_id):
del brain.connections[i]
break
elif switch == 3:
if(len(brain.connections) > 2):
del brain.connections[random.randint(0, len(brain.connections)-1)]
elif switch == 4:
if(len(brain.connections) > 2):
ran = random.randint(0,len(brain.connections)-1)
brain.connections[ran].weight += random.uniform(-2, +2)
if brain.connections[ran].weight > 5:
brain.connections[ran].weight = 5
elif brain.connections[ran].weight < 5:
brain.connections[ran].weight = -5
return brain
#test_brain = brain([(6+6+2+1), 4, (1+1)])
#out = test_brain.compute_output(test_input)
#print(out[0], out[1])