-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
126 lines (115 loc) · 4.58 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import torch
import argparse
from transformers import AutoModelForCausalLM, AutoTokenizer
from datasets import load_dataset
from shallowflow.trainer import LocalGPUTrainer, LLMTrainer
from shallowflow.utils.gpu_optimizations import GTX1660Config
from shallowflow.utils.aws_utils import AWSConfig
def parse_args():
parser = argparse.ArgumentParser(description='ShallowFlow Training')
parser.add_argument('--model_name', type=str, default='gpt2',
help='Model name or path')
parser.add_argument('--dataset', type=str, default='tiny_shakespeare',
help='Dataset name')
parser.add_argument('--batch_size', type=int, default=8,
help='Training batch size')
parser.add_argument('--learning_rate', type=float, default=5e-5,
help='Learning rate for training')
parser.add_argument('--num_epochs', type=int, default=3,
help='Number of training epochs')
parser.add_argument('--output_dir', type=str, default='outputs',
help='Output directory')
parser.add_argument('--use_aws', action='store_true',
help='Use AWS training')
parser.add_argument('--use_wandb', action='store_true',
help='Use Weights & Biases tracking')
parser.add_argument('--use_lora', action='store_true',
help='Use LoRA optimization')
parser.add_argument('--use_quantization', action='store_true',
help='Use 8-bit quantization')
parser.add_argument('--quantization_bits', type=int, default=8,
help='Number of bits for quantization')
parser.add_argument('--quantization_method', type=str, default='dynamic',
choices=['dynamic', 'static'],
help='Quantization method to use')
return parser.parse_args()
def main():
args = parse_args()
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(args.model_name)
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
# Load dataset
dataset = load_dataset(args.dataset)
# Configure training based on hardware
if args.use_aws:
# AWS Training Configuration
config = AWSConfig(
instance_type="g4dn.xlarge",
spot_instance=True,
quantization_config={
'use_quantization': args.use_quantization,
'bits': args.quantization_bits,
'method': args.quantization_method
}
)
trainer = LLMTrainer(
model=model,
tokenizer=tokenizer,
config=config,
use_wandb=args.use_wandb
)
else:
# Local GTX 1660 Configuration
config = GTX1660Config(
batch_size=args.batch_size,
mixed_precision=True,
gradient_checkpointing=True,
quantization_config={
'use_quantization': args.use_quantization,
'bits': args.quantization_bits,
'method': args.quantization_method
}
)
trainer = LocalGPUTrainer(
model_name=args.model_name,
dataset=args.dataset,
batch_size=args.batch_size,
num_epochs=args.num_epochs,
use_wandb=args.use_wandb
)
# Apply optimizations
if args.use_lora:
trainer._apply_lora()
if args.use_quantization:
trainer._apply_quantization()
try:
# Train model
trainer.train(
train_dataset=dataset["train"],
eval_dataset=dataset.get("validation", None),
num_epochs=args.num_epochs,
learning_rate=args.learning_rate
)
# Save model
if hasattr(trainer, 'save_model'):
trainer.save_model(args.output_dir)
else:
model.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
print(f"Model and tokenizer saved to {args.output_dir}")
except KeyboardInterrupt:
print("Training interrupted. Saving model...")
if hasattr(trainer, 'save_model'):
trainer.save_model(args.output_dir + "_interrupted")
else:
model.save_pretrained(args.output_dir + "_interrupted")
tokenizer.save_pretrained(args.output_dir + "_interrupted")
finally:
if args.use_wandb:
if hasattr(trainer, 'finish_wandb'):
trainer.finish_wandb()
else:
import wandb
wandb.finish()
if __name__ == "__main__":
main()