-
Notifications
You must be signed in to change notification settings - Fork 96
/
Copy pathble_bandwidth_test.ino
478 lines (422 loc) · 16.1 KB
/
ble_bandwidth_test.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
/* Copyright (c) 2014, Nordic Semiconductor ASA
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/** @defgroup ble_bandwidth_test ble_bandwidth_test
@{
@ingroup projects
@brief Empty project that can be used as ble bandwidth test, to test the uplink and downlink bandwidth
@details
The project will run correctly in its current state.
It can send data on the UART TX characteristic
It can receive data on the UART RX characteristic.
The bandwidth is measured with the nRF UART App in the Apple iOS app store.
the bandwidth is controlled by the timing used on the link.
The following instructions describe the steps to be made on the Windows PC:
-# Install the Master Control Panel on your computer. Connect the Master Emulator
and make sure the hardware drivers are installed.
-# You can use the nRF UART app in the Apple iOS app store with this UART template app
*
* Click on the "Serial Monitor" button on the Arduino IDE to reset the Arduino and start the application.
* The setup() function is called first and is called only once for each reset of the Arduino.
* The loop() function as the name implies is called in a loop.
*
* The setup() and loop() function are called in this way.
* main()
* {
* setup();
* while(1)
* {
* loop();
* }
* }
*
*/
#include <SPI.h>
#include <EEPROM.h>
#include <lib_aci.h>
#include <aci_setup.h>
/**
Put the nRF8001 setup in the RAM of the nRF8001.
*/
#include "services.h"
/**
Include the services_lock.h to put the setup in the OTP memory of the nRF8001.
This would mean that the setup cannot be changed once put in.
However this removes the need to do the setup of the nRF8001 on every reset.
*/
/*
Defining number of packets to send
*/
#define NUM_20BYTE_PACKETS_FOR_100KB 0x240 //0x1400 for 100Kbytes
#ifdef SERVICES_PIPE_TYPE_MAPPING_CONTENT
static services_pipe_type_mapping_t
services_pipe_type_mapping[NUMBER_OF_PIPES] = SERVICES_PIPE_TYPE_MAPPING_CONTENT;
#else
#define NUMBER_OF_PIPES 0
static services_pipe_type_mapping_t * services_pipe_type_mapping = NULL;
#endif
/* Store the setup for the nRF8001 in the flash of the AVR to save on RAM */
static const hal_aci_data_t setup_msgs[NB_SETUP_MESSAGES] PROGMEM = SETUP_MESSAGES_CONTENT;
// aci_struct that will contain
// total initial credits
// current credit
// current state of the aci (setup/standby/active/sleep)
// open remote pipe pending
// close remote pipe pending
// Current pipe available bitmap
// Current pipe closed bitmap
// Current connection interval, slave latency and link supervision timeout
// Current State of the the GATT client (Service Discovery)
// Status of the bond (R) Peer address
static struct aci_state_t aci_state;
/*
Temporary buffers for sending ACI commands
*/
static hal_aci_evt_t aci_data;
static hal_aci_data_t aci_cmd;
/*
Timing change state variable
*/
static bool timing_change_done = false;
/*
Used to test the UART TX characteristic notification
*/
static uint8_t uart_buffer[20];
static uint8_t uart_buffer_len = 0;
static bool data_tx_state = false;
static uint16_t sent_100k_data_pkt_counter = 0;
static uint8_t app_retries = 0;
/*
Initializing data input.
*/
uint8_t data_input[] = { 0x61,/*20 byte packet for testing*/
0x62,
0x63,
0x64,
0x65,
0x66,
0x67,
0x68,
0x69,
0x6A,
0x6B,
0x6C,
0x6D,
0x6E,
0x6F,
0x70,
0x71,
0x72,
0x00, /*Use the last 2 bytes as a packet counter*/
0x00};
unsigned long time1;
unsigned long time2;
/* Define how assert should function in the BLE library */
void __ble_assert(const char *file, uint16_t line)
{
Serial.print("ERROR ");
Serial.print(file);
Serial.print(": ");
Serial.print(line);
Serial.print("\n");
while(1);
}
/*
Description:
In this template we are using the BTLE as a UART and can send and receive packets.
The maximum size of a packet is 20 bytes.
When a command it received a response(s) are transmitted back.
Since the response is done using a Notification the peer must have opened it(subscribed to it) before any packet is transmitted.
The pipe for the UART_TX becomes available once the peer opens it.
See section 20.4.1 -> Opening a Transmit pipe
In the master control panel, clicking Enable Services will open all the pipes on the nRF8001.
The ACI Evt Data Credit provides the radio level ack of a transmitted packet.
*/
void setup(void)
{
Serial.begin(115200);
//Wait until the serial port is available (useful only for the Leonardo)
//As the Leonardo board is not reseted every time you open the Serial Monitor
#if defined (__AVR_ATmega32U4__)
while(!Serial)
{}
delay(5000); //5 seconds delay for enabling to see the start up comments on the serial board
#elif defined(__PIC32MX__)
delay(1000);
#endif
Serial.println(F("Arduino setup"));
/**
Point ACI data structures to the the setup data that the nRFgo studio generated for the nRF8001
*/
if (NULL != services_pipe_type_mapping)
{
aci_state.aci_setup_info.services_pipe_type_mapping = &services_pipe_type_mapping[0];
}
else
{
aci_state.aci_setup_info.services_pipe_type_mapping = NULL;
}
aci_state.aci_setup_info.number_of_pipes = NUMBER_OF_PIPES;
aci_state.aci_setup_info.setup_msgs = (hal_aci_data_t*)setup_msgs;
aci_state.aci_setup_info.num_setup_msgs = NB_SETUP_MESSAGES;
/*
Tell the ACI library, the MCU to nRF8001 pin connections.
The Active pin is optional and can be marked UNUSED
*/
aci_state.aci_pins.board_name = BOARD_DEFAULT; //See board.h for details
aci_state.aci_pins.reqn_pin = 9;
aci_state.aci_pins.rdyn_pin = 8;
aci_state.aci_pins.mosi_pin = MOSI;
aci_state.aci_pins.miso_pin = MISO;
aci_state.aci_pins.sck_pin = SCK;
aci_state.aci_pins.spi_clock_divider = SPI_CLOCK_DIV8;//SPI_CLOCK_DIV8 = 2MHz SPI speed
//SPI_CLOCK_DIV16 = 1MHz SPI speed
aci_state.aci_pins.reset_pin = 4;
aci_state.aci_pins.active_pin = UNUSED;
aci_state.aci_pins.optional_chip_sel_pin = UNUSED;
aci_state.aci_pins.interface_is_interrupt = false;
aci_state.aci_pins.interrupt_number = 1;
//We reset the nRF8001 here by toggling the RESET line connected to the nRF8001
//and initialize the data structures required to setup the nRF8001
lib_aci_init(&aci_state,false);
}
bool data_tx_send()
{
// uint16_t * p_counter_for_packet = (uint16_t *)&data_input[0x12];
// *p_counter_for_packet = sent_100k_data_pkt_counter;
data_input[0x12] = (uint8_t) ((sent_100k_data_pkt_counter >> 8));
data_input[0x13] = (uint8_t) (sent_100k_data_pkt_counter);
if(lib_aci_send_data(PIPE_UART_OVER_BTLE_UART_TX_TX, &data_input[0], 20))
{
return true;
}
else
{
return false;
}
}
void uart_tx()
{
lib_aci_send_data(PIPE_UART_OVER_BTLE_UART_TX_TX, (uint8_t *)&data_input[0], 20);
aci_state.data_credit_available--;
}
void aci_loop()
{
static bool setup_required = false;
// We enter the if statement only when there is a ACI event available to be processed
if (lib_aci_event_get(&aci_state, &aci_data))
{
aci_evt_t * aci_evt;
aci_evt = &aci_data.evt;
switch(aci_evt->evt_opcode)
{
/**
As soon as you reset the nRF8001 you will get an ACI Device Started Event
*/
case ACI_EVT_DEVICE_STARTED:
{
aci_state.data_credit_total = aci_evt->params.device_started.credit_available;
switch(aci_evt->params.device_started.device_mode)
{
case ACI_DEVICE_SETUP:
/**
When the device is in the setup mode
*/
Serial.println(F("Evt Device Started: Setup"));
setup_required = true;
break;
case ACI_DEVICE_STANDBY:
Serial.println(F("Evt Device Started: Standby"));
//Looking for an iPhone by sending radio advertisements
//When an iPhone connects to us we will get an ACI_EVT_CONNECTED event from the nRF8001
if (aci_evt->params.device_started.hw_error)
{
delay(20); //Magic number used to make sure the HW error event is handled correctly.
}
else
{
lib_aci_connect(180/* in seconds */, 0x0050 /* advertising interval 100ms*/);
Serial.println(F("Advertising started"));
}
break;
}
}
break; //ACI Device Started Event
case ACI_EVT_CMD_RSP:
//If an ACI command response event comes with an error -> stop
if (ACI_STATUS_SUCCESS != aci_evt->params.cmd_rsp.cmd_status)
{
//ACI ReadDynamicData and ACI WriteDynamicData will have status codes of
//TRANSACTION_CONTINUE and TRANSACTION_COMPLETE
//all other ACI commands will have status code of ACI_STATUS_SCUCCESS for a successful command
Serial.print(F("ACI Command "));
Serial.println(aci_evt->params.cmd_rsp.cmd_opcode, HEX);
Serial.println(F("Evt Cmd respone: Error. Arduino is in an while(1); loop"));
while (1);
}
if (ACI_CMD_GET_DEVICE_VERSION == aci_evt->params.cmd_rsp.cmd_opcode)
{
//Store the version and configuration information of the nRF8001 in the Hardware Revision String Characteristic
lib_aci_set_local_data(&aci_state, PIPE_DEVICE_INFORMATION_HARDWARE_REVISION_STRING_SET,
(uint8_t *)&(aci_evt->params.cmd_rsp.params.get_device_version), sizeof(aci_evt_cmd_rsp_params_get_device_version_t));
}
break;
case ACI_EVT_CONNECTED:
Serial.println(F("Evt Connected"));
aci_state.data_credit_available = aci_state.data_credit_total;
/*
Get the device version of the nRF8001 and store it in the Hardware Revision String
*/
lib_aci_device_version();
break;
case ACI_EVT_PIPE_STATUS:
Serial.println(F("Evt Pipe Status"));
if (lib_aci_is_pipe_available(&aci_state, PIPE_UART_OVER_BTLE_UART_TX_TX) && (false == timing_change_done))
{
lib_aci_change_timing(11/*13.75ms*/, 18/*22.5ms*/, 0/*Slave latency*/, 600/*6000 ms*/); // Used to increase or decrease bandwidth
timing_change_done = true;
}
else if (lib_aci_is_pipe_available(&aci_state, PIPE_UART_OVER_BTLE_UART_TX_TX))
{
data_tx_state = true;
}
else
{
sent_100k_data_pkt_counter = 0;
data_tx_state = false;
}
break;
case ACI_EVT_TIMING:
Serial.print(F("Evt link connection interval changed to (ms): "));
data_tx_state = true;
Serial.println(aci_evt->params.timing.conn_rf_interval * 1.25);
break;
case ACI_EVT_DISCONNECTED:
Serial.println(F("Evt Disconnected/Advertising timed out"));
//Initialize the variables used
sent_100k_data_pkt_counter = 0;
data_tx_state = false;
timing_change_done = false;
lib_aci_connect(180/* in seconds */, 0x0100 /* advertising interval 100ms*/);
Serial.println(F("Advertising started"));
break;
case ACI_EVT_DATA_RECEIVED:
Serial.print(F("UART RX: 0x"));
Serial.print(aci_evt->params.data_received.rx_data.pipe_number, HEX);
{
Serial.print(F(" Data(Hex) : "));
for(int i=0; i<aci_evt->len - 2; i++)
{
Serial.print(aci_evt->params.data_received.rx_data.aci_data[i], HEX);
uart_buffer[i] = aci_evt->params.data_received.rx_data.aci_data[i];
Serial.print(F(" "));
}
uart_buffer_len = aci_evt->len - 2;
}
Serial.println(F(""));
break;
case ACI_EVT_DATA_CREDIT:
aci_state.data_credit_available = aci_state.data_credit_available + aci_evt->params.data_credit.credit;
break;
case ACI_EVT_PIPE_ERROR:
//See the appendix in the nRF8001 Product Specication for details on the error codes
Serial.print(F("ACI Evt Pipe Error: Pipe #:"));
Serial.print(aci_evt->params.pipe_error.pipe_number, DEC);
Serial.print(F(" Pipe Error Code: 0x"));
Serial.println(aci_evt->params.pipe_error.error_code, HEX);
//Increment the credit available as the data packet was not sent.
//The pipe error also represents the Attribute protocol Error Response sent from the peer and that should not be counted
//for the credit.
if (ACI_STATUS_ERROR_PEER_ATT_ERROR != aci_evt->params.pipe_error.error_code)
{
aci_state.data_credit_available++;
}
break;
case ACI_EVT_HW_ERROR:
Serial.println(F("HW error: "));
Serial.println(aci_evt->params.hw_error.line_num, DEC);
for(uint8_t counter = 0; counter <= (aci_evt->len - 3); counter++)
{
Serial.write(aci_evt->params.hw_error.file_name[counter]); //uint8_t file_name[20];
}
Serial.println();
lib_aci_connect(30/* in seconds */, 0x0100 /* advertising interval 100ms*/);
Serial.println(F("Advertising started"));
break;
}
}
else
{
//Serial.println(F("No ACI Events available"));
// No event in the ACI Event queue and if there is no event in the ACI command queue the arduino can go to sleep
// Arduino can go to sleep now
// Wakeup from sleep from the RDYN line
}
/* setup_required is set to true when the device starts up and enters setup mode.
* It indicates that do_aci_setup() should be called. The flag should be cleared if
* do_aci_setup() returns ACI_STATUS_TRANSACTION_COMPLETE.
*/
if(setup_required)
{
if (SETUP_SUCCESS == do_aci_setup(&aci_state))
{
setup_required = false;
}
}
}
void loop()
{
aci_loop();
if ((data_tx_state == true) && (aci_state.data_credit_available > 0))
{
if (data_tx_send())
{
sent_100k_data_pkt_counter++;
aci_state.data_credit_available--;
if(1 == sent_100k_data_pkt_counter)
{
Serial.print("Time Start: ");
time1 = millis();
//prints time since program started
Serial.println(time1);
}
if (NUM_20BYTE_PACKETS_FOR_100KB == sent_100k_data_pkt_counter)
{
data_tx_state = false;
sent_100k_data_pkt_counter=0;
time2 = millis();
Serial.print("Time Stop: ms: ");
//prints time since program started
Serial.println(time2);
Serial.print("Time diff: ms: ");
Serial.println(time2-time1);
Serial.print(F("Number of bytes = "));
Serial.println(NUM_20BYTE_PACKETS_FOR_100KB);
Serial.print(F("Bandwidth from nRF8001 to peer: Bytes per second: "));
Serial.println( (NUM_20BYTE_PACKETS_FOR_100KB*20/((time2-time1)/1000) ) );
}
}
else
{
app_retries++;
}
}
//if credit-send as fast as possible.
}