forked from pytorch/audio
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcase_utils.py
310 lines (252 loc) · 9.32 KB
/
case_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import functools
import os.path
import shutil
import subprocess
import sys
import tempfile
import time
import unittest
from itertools import zip_longest
import torch
import torchaudio
import torio
from torch.testing._internal.common_utils import TestCase as PytorchTestCase
from torchaudio._internal.module_utils import eval_env, is_module_available
from torchaudio.utils.ffmpeg_utils import get_video_decoders, get_video_encoders
class TempDirMixin:
"""Mixin to provide easy access to temp dir"""
temp_dir_ = None
@classmethod
def get_base_temp_dir(cls):
# If TORCHAUDIO_TEST_TEMP_DIR is set, use it instead of temporary directory.
# this is handy for debugging.
key = "TORCHAUDIO_TEST_TEMP_DIR"
if key in os.environ:
return os.environ[key]
if cls.temp_dir_ is None:
cls.temp_dir_ = tempfile.TemporaryDirectory()
return cls.temp_dir_.name
@classmethod
def tearDownClass(cls):
if cls.temp_dir_ is not None:
try:
cls.temp_dir_.cleanup()
cls.temp_dir_ = None
except PermissionError:
# On Windows there is a know issue with `shutil.rmtree`,
# which fails intermittenly.
#
# https://github.com/python/cpython/issues/74168
#
# We observed this on CircleCI, where Windows job raises
# PermissionError.
#
# Following the above thread, we ignore it.
pass
super().tearDownClass()
def get_temp_path(self, *paths):
temp_dir = os.path.join(self.get_base_temp_dir(), self.id())
path = os.path.join(temp_dir, *paths)
os.makedirs(os.path.dirname(path), exist_ok=True)
return path
class HttpServerMixin(TempDirMixin):
"""Mixin that serves temporary directory as web server
This class creates temporary directory and serve the directory as HTTP service.
The server is up through the execution of all the test suite defined under the subclass.
"""
_proc = None
_port = 12345
@classmethod
def setUpClass(cls):
super().setUpClass()
cls._proc = subprocess.Popen(
["python", "-m", "http.server", f"{cls._port}"], cwd=cls.get_base_temp_dir(), stderr=subprocess.DEVNULL
) # Disable server-side error log because it is confusing
time.sleep(2.0)
@classmethod
def tearDownClass(cls):
super().tearDownClass()
cls._proc.kill()
def get_url(self, *route):
return f'http://localhost:{self._port}/{self.id()}/{"/".join(route)}'
class TestBaseMixin:
"""Mixin to provide consistent way to define device/dtype aware TestCase"""
dtype = None
device = None
def setUp(self):
super().setUp()
torch.random.manual_seed(2434)
@property
def complex_dtype(self):
if self.dtype in ["float32", "float", torch.float, torch.float32]:
return torch.cfloat
if self.dtype in ["float64", "double", torch.double, torch.float64]:
return torch.cdouble
raise ValueError(f"No corresponding complex dtype for {self.dtype}")
class TorchaudioTestCase(TestBaseMixin, PytorchTestCase):
pass
_IS_FFMPEG_AVAILABLE = torio._extension.lazy_import_ffmpeg_ext().is_available()
_IS_SOX_AVAILABLE = torchaudio._extension.lazy_import_sox_ext().is_available()
_IS_CTC_DECODER_AVAILABLE = None
_IS_CUDA_CTC_DECODER_AVAILABLE = None
def is_ctc_decoder_available():
global _IS_CTC_DECODER_AVAILABLE
if _IS_CTC_DECODER_AVAILABLE is None:
try:
from torchaudio.models.decoder import CTCDecoder # noqa: F401
_IS_CTC_DECODER_AVAILABLE = True
except Exception:
_IS_CTC_DECODER_AVAILABLE = False
return _IS_CTC_DECODER_AVAILABLE
def is_cuda_ctc_decoder_available():
global _IS_CUDA_CTC_DECODER_AVAILABLE
if _IS_CUDA_CTC_DECODER_AVAILABLE is None:
try:
from torchaudio.models.decoder import CUCTCDecoder # noqa: F401
_IS_CUDA_CTC_DECODER_AVAILABLE = True
except Exception:
_IS_CUDA_CTC_DECODER_AVAILABLE = False
return _IS_CUDA_CTC_DECODER_AVAILABLE
def _fail(reason):
def deco(test_item):
if isinstance(test_item, type):
# whole class is decorated
def _f(self, *_args, **_kwargs):
raise RuntimeError(reason)
test_item.setUp = _f
return test_item
# A method is decorated
@functools.wraps(test_item)
def f(*_args, **_kwargs):
raise RuntimeError(reason)
return f
return deco
def _pass(test_item):
return test_item
_IN_CI = eval_env("CI", default=False)
def _skipIf(condition, reason, key):
if not condition:
return _pass
# In CI, default to fail, so as to prevent accidental skip.
# In other env, default to skip
var = f"TORCHAUDIO_TEST_ALLOW_SKIP_IF_{key}"
skip_allowed = eval_env(var, default=not _IN_CI)
if skip_allowed:
return unittest.skip(reason)
return _fail(f"{reason} But the test cannot be skipped. (CI={_IN_CI}, {var}={skip_allowed}.)")
def skipIfNoExec(cmd):
return _skipIf(
shutil.which(cmd) is None,
f"`{cmd}` is not available.",
key=f"NO_CMD_{cmd.upper().replace('-', '_')}",
)
def skipIfNoModule(module, display_name=None):
return _skipIf(
not is_module_available(module),
f'"{display_name or module}" is not available.',
key=f"NO_MOD_{module.replace('.', '_')}",
)
skipIfNoCuda = _skipIf(
not torch.cuda.is_available(),
reason="CUDA is not available.",
key="NO_CUDA",
)
# Skip test if CUDA memory is not enough
# TODO: detect the real CUDA memory size and allow call site to configure how much the test needs
skipIfCudaSmallMemory = _skipIf(
"CI" in os.environ and torch.cuda.is_available(), # temporary
reason="CUDA does not have enough memory.",
key="CUDA_SMALL_MEMORY",
)
skipIfNoSox = _skipIf(
not _IS_SOX_AVAILABLE,
reason="Sox features are not available.",
key="NO_SOX",
)
def skipIfNoSoxDecoder(ext):
return _skipIf(
not _IS_SOX_AVAILABLE or ext not in torchaudio.utils.sox_utils.list_read_formats(),
f'sox does not handle "{ext}" for read.',
key="NO_SOX_DECODER",
)
def skipIfNoSoxEncoder(ext):
return _skipIf(
not _IS_SOX_AVAILABLE or ext not in torchaudio.utils.sox_utils.list_write_formats(),
f'sox does not handle "{ext}" for write.',
key="NO_SOX_ENCODER",
)
skipIfNoRIR = _skipIf(
not torchaudio._extension._IS_RIR_AVAILABLE,
reason="RIR features are not available.",
key="NO_RIR",
)
skipIfNoCtcDecoder = _skipIf(
not is_ctc_decoder_available(),
reason="CTC decoder not available.",
key="NO_CTC_DECODER",
)
skipIfNoCuCtcDecoder = _skipIf(
not is_cuda_ctc_decoder_available(),
reason="CUCTC decoder not available.",
key="NO_CUCTC_DECODER",
)
skipIfRocm = _skipIf(
eval_env("TORCHAUDIO_TEST_WITH_ROCM", default=False),
reason="The test doesn't currently work on the ROCm stack.",
key="ON_ROCM",
)
skipIfNoQengine = _skipIf(
"fbgemm" not in torch.backends.quantized.supported_engines,
reason="`fbgemm` is not available.",
key="NO_QUANTIZATION",
)
skipIfNoFFmpeg = _skipIf(
not _IS_FFMPEG_AVAILABLE,
reason="ffmpeg features are not available.",
key="NO_FFMPEG",
)
skipIfPy310 = _skipIf(
sys.version_info >= (3, 10, 0),
reason=(
"Test is known to fail for Python 3.10, disabling for now"
"See: https://github.com/pytorch/audio/pull/2224#issuecomment-1048329450"
),
key="ON_PYTHON_310",
)
skipIfNoAudioDevice = _skipIf(
not (_IS_FFMPEG_AVAILABLE and torchaudio.utils.ffmpeg_utils.get_output_devices()),
reason="No output audio device is available.",
key="NO_AUDIO_OUT_DEVICE",
)
skipIfNoMacOS = _skipIf(
sys.platform != "darwin",
reason="This feature is only available for MacOS.",
key="NO_MACOS",
)
disabledInCI = _skipIf(
"CI" in os.environ,
reason="Tests are failing on CI consistently. Disabled while investigating.",
key="TEMPORARY_DISABLED",
)
def skipIfNoHWAccel(name):
key = "NO_HW_ACCEL"
if not _IS_FFMPEG_AVAILABLE:
return _skipIf(True, reason="ffmpeg features are not available.", key=key)
if not torch.cuda.is_available():
return _skipIf(True, reason="CUDA is not available.", key=key)
if torchaudio._extension._check_cuda_version() is None:
return _skipIf(True, "Torchaudio is not compiled with CUDA.", key=key)
if name not in get_video_decoders() and name not in get_video_encoders():
return _skipIf(True, f"{name} is not in the list of available decoders or encoders", key=key)
return _pass
def zip_equal(*iterables):
"""With the regular Python `zip` function, if one iterable is longer than the other,
the remainder portions are ignored.This is resolved in Python 3.10 where we can use
`strict=True` in the `zip` function
From https://github.com/pytorch/text/blob/c047efeba813ac943cb8046a49e858a8b529d577/test/torchtext_unittest/common/case_utils.py#L45-L54 # noqa: E501
"""
sentinel = object()
for combo in zip_longest(*iterables, fillvalue=sentinel):
if sentinel in combo:
raise ValueError("Iterables have different lengths")
yield combo