-
Notifications
You must be signed in to change notification settings - Fork 68
/
Copy pathtrain_sop.yaml
98 lines (78 loc) · 1.71 KB
/
train_sop.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
postfix: metric_learning
seed: 42
precision: 16
accelerator: gpu
devices: 2
find_unused_parameters: False
dataframe_name: df.csv
dataset_root: data/Stanford_Online_Products/
logs_root: logs/Stanford_Online_Products/
logs_folder: ${now:%Y-%m-%d_%H-%M-%S}_${postfix}
num_workers: 20
cache_size: 0
transforms_train:
name: augs_hypvit_torch
args:
im_size: 224
transforms_val:
name: norm_resize_hypvit_torch
args:
im_size: 224
crop_size: 224
sampler:
name: category_balance
args:
n_labels: 32
n_instances: 6
n_categories: 3
resample_labels: True
weight_categories: True
bs_val: 256
max_epochs: 10000
valid_period: 1
metric_args:
metrics_to_exclude_from_visualization: [cmc,]
cmc_top_k: [1]
map_top_k: [5]
fmr_vals: [] # Since SOP is a big dataset you should be careful with increasing of the memory footprint, which is needed to calculate fmr
pcf_variance: [0.5, 0.9, 0.99]
return_only_overall_category: True
visualize_only_overall_category: True
log_images: False
metric_for_checkpointing: OVERALL/cmc/1
extractor:
name: vit
args:
normalise_features: True
use_multi_scale: False
weights: vits16_dino
arch: vits16
criterion:
name: triplet_with_miner
args:
need_logs: True
margin: 0.15
reduction: mean
miner:
name: hard_triplets
args: {}
optimizer:
name: adam
args:
lr: 1e-5 # if you provide scheduler this parameter will be ignored
scheduling: null
logger:
name: wandb # requires <WANDB_API_KEY> as global env
args:
project: "test_project"
hydra_dir: ${logs_root}/${logs_folder}/
tags:
- ${postfix}
- sop
hydra:
run:
dir: ${hydra_dir}
searchpath:
- pkg://oml.configs
job:
chdir: True