-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_ic.py
143 lines (123 loc) · 7.28 KB
/
train_ic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import argparse
from ast import arg
import logging
import os
from datetime import datetime
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import (EarlyStopping, LearningRateMonitor,
ModelCheckpoint)
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.utilities.seed import seed_everything
os.environ["TOKENIZERS_PARALLELISM"] = "false"
logger = logging.getLogger(__name__)
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument( "--dataset", default='ACE', type=str, choices=['ACE', 'ERE'])
parser.add_argument( "--refresh", action='store_true', default=False, help='Reprocessing datasets even if the processed version exists.')
parser.add_argument( '--tmp_dir', type=str)
parser.add_argument( "--ckpt_name", default=None, type=str, help="The output directory where the model checkpoints and predictions will be written.",)
parser.add_argument( "--load_ckpt", default=None, type=str,)
parser.add_argument( "--train_file", default='data/ACE05-E/train.oneie.json', type=str, help="The input training file. If a data dir is specified, will look for the file there. If no data dir or train/predict files are specified, will run with tensorflow_datasets.",)
parser.add_argument( "--val_file", default='data/ACE05-E/dev.oneie.json', type=str, help="The input evaluation file. If a data dir is specified, will look for the file there. If no data dir or train/predict files are specified, will run with tensorflow_datasets.",)
parser.add_argument( '--test_file', type=str, default='data/ACE05-E/test.oneie.json',)
parser.add_argument( '--inference', default=False, action="store_true", help="Whether or not to inference.")
parser.add_argument( '--negative_sampling', action='store_true', default=False, help='use negative samples when training and validating, while always use all negative samples when testing')
parser.add_argument( '--negative_ratio', type=float, default=1.0, help='negative_ratio')
parser.add_argument( "--train_batch_size", default=16, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument( "--eval_batch_size", default=32, type=int, help="Batch size per GPU/CPU for evaluation.")
parser.add_argument( "--eval_only", action="store_true",)
parser.add_argument( "--learning_rate", default=2e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument( "--accumulate_grad_batches", type=int, default=8, help="Number of updates steps to accumulate before performing a backward/update pass.",)
parser.add_argument( "--weight_decay", default=1e-5, type=float, help="Weight decay if we apply some.")
parser.add_argument( "--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument( "--gradient_clip_val", default=5.0, type=float, help="Max gradient norm.")
parser.add_argument( "--num_train_epochs", default=200, type=int, help="Total number of training epochs to perform.")
parser.add_argument( "--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.",)
parser.add_argument( "--warmup_ratio", default=0.1, type=float, help="Linear warmup over warmup_ratio * total_steps.")
parser.add_argument( "--gpus", default=-1, help='-1 means train on all gpus')
parser.add_argument( "--seed", type=int, default=42, help="random seed for initialization")
parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",)
parser.add_argument( "--bert_learning_rate", default=2e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument( '--backbone_model', type=str, default='roberta-large', choices=['bert-large-uncased','bert-large-uncased-whole-word-masking', 'bert-large-cased-whole-word-masking', 'roberta-large'])
parser.add_argument( "--lr_scheduler", default="linear", type=str, choices=['linear', 'cosine', 'cosine_w_restarts', 'polynomial'])
parser.add_argument( "--adafactor", default=False, action="store_true")
parser.add_argument( "--NSP", default=False, action="store_true")
parser.add_argument( "--problem_type", default="multi_label_classification", type=str, choices=['multi_label_classification'])
parser.add_argument( "--num_class", default=33, type=int, help="The classes of event type.")
parser.add_argument( "--debug", default=False, action="store_true", help="")
args = parser.parse_args()
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
# Set seed
seed_everything(args.seed)
if not args.ckpt_name:
d = datetime.now()
time_str = d.strftime('%m-%dT%H%M')
args.ckpt_name = '{}_{}lr{}_{}'.format(
args.model,
args.train_batch_size * args.accumulate_grad_batches,
args.learning_rate,
time_str
)
os.makedirs('./checkpoints', exist_ok=True)
args.ckpt_dir = os.path.join(f'./checkpoints/{args.ckpt_name}')
os.makedirs(args.ckpt_dir, exist_ok=True)
if not args.tmp_dir:
args.tmp_dir = os.path.join(f'{args.ckpt_dir}/preprocessed')
logger.info("Training/evaluation parameters %s", args)
lr_logger = LearningRateMonitor(logging_interval='step')
tb_logger = TensorBoardLogger(os.path.join(f'{args.ckpt_dir}/logs'), name='my_model')
if args.max_steps < 0:
args.max_epochs = args.min_epochs = args.num_train_epochs
if args.problem_type == "multi_label_classification":
from src.mlc.OneIE_data_module_az import DataModule
from src.mlc.model import ICModel
checkpoint_callback = ModelCheckpoint(
dirpath=args.ckpt_dir,
save_top_k=2,
monitor='val_loss',
mode='min',
save_weights_only=True,
filename='{epoch}', # this cannot contain slashes
)
model = ICModel(args)
dm = DataModule(args)
if args.debug:
limit_train_batches, limit_val_batches, limit_test_batches=0.1, 0.2, 0.3
else:
limit_train_batches, limit_val_batches, limit_test_batches=1.0, 1.0, 1.0
trainer = Trainer(
logger=tb_logger,
min_epochs=args.num_train_epochs//2,
max_epochs=args.num_train_epochs,
accumulate_grad_batches=args.accumulate_grad_batches,
gradient_clip_val=args.gradient_clip_val,
num_sanity_val_steps=2,
val_check_interval=0.5, # use float to check every n epochs
precision=16 if args.fp16 else 32,
callbacks=[lr_logger, checkpoint_callback, ],
gpus=args.gpus,
#strategy="ddp",
limit_train_batches=limit_train_batches,
limit_val_batches=limit_val_batches,
limit_test_batches=limit_test_batches,
)
if args.load_ckpt:
model.load_state_dict(torch.load(
args.load_ckpt,
map_location=model.device
)['state_dict'])
if args.eval_only:
dm.setup('test')
trainer.test(model, datamodule=dm) # also loads training dataloader
else:
dm.setup('fit')
trainer.fit(model, dm)
if __name__ == "__main__":
main()