Skip to content

Commit 93d3dad

Browse files
committed
version 0.2.2
1 parent d5ad747 commit 93d3dad

File tree

3 files changed

+5
-6
lines changed

3 files changed

+5
-6
lines changed

README.md

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -60,8 +60,7 @@ range of 10–110 km and a magnitude range of 0–4.5 because of biases in the t
6060

6161
## Reference
6262

63-
Chai, C., Rose, D., Stewart, S., Martindale, N., Adams, M., Linville, L., Stanley, C., Polanco, A. T., and Bingham, P., PickerXL, a Large Deep Learning Model to Measure Arrival Times from Noisy Seismic Signals, Seismological Research Letters, accepted.
64-
63+
Chengping Chai, Derek Rose, Scott Stewart, Nathan Martindale, Mark Adams, Lisa Linville, Christopher Stanley, Anibely Torres Polanco, Philip Bingham; PickerXL, A Large Deep Learning Model to Measure Arrival Times from Noisy Seismic Signals. Seismological Research Letters 2025; doi: https://doi.org/10.1785/0220240353
6564

6665
## License
6766

pyproject.toml

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,8 @@ build-backend = "setuptools.build_meta"
66

77
[project]
88
name = "pickerxl"
9-
version = "0.2.1"
9+
version = "0.2.2"
10+
license = "GPL-3.0-or-later"
1011
authors = [
1112
{ name="Chengping Chai, Derek Rose, Scott Stewart, Nathan Martindale, Mark Adams, Lisa Linville, Christopher Stanley, Anibely Torres Polanco and Philip Bingham", email="[email protected]" },
1213
]
@@ -17,7 +18,6 @@ classifiers = [
1718
"Intended Audience :: Science/Research",
1819
"Topic :: Scientific/Engineering",
1920
"Programming Language :: Python :: 3",
20-
"License :: OSI Approved :: GNU General Public License v3 (GPLv3)",
2121
"Operating System :: OS Independent",
2222
]
2323
dependencies = [

src/pickerxl/pickerxl.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -151,9 +151,9 @@ def __init__(self):
151151
self.model.load_state_dict(checkpoint_data)
152152
self.model.eval()
153153

154-
def predict_probability(self, data):
154+
def predict_probability(self, data, eps=1e-10):
155155
data = np.array(data).astype(np.float32)
156-
data = data / (np.max(np.abs(data)) + 1e-10)
156+
data = data / (np.max(np.abs(data), axis=(1,2), keepdims=True) + eps)
157157
data = torch.Tensor(data)
158158
preds = self.model(data)
159159
return preds

0 commit comments

Comments
 (0)