forked from ISosnovik/sesn
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_scale_mnist.py
157 lines (123 loc) · 4.85 KB
/
train_scale_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
'''MIT License. Copyright (c) 2020 Ivan Sosnovik, Michał Szmaja'''
import os
import time
from argparse import ArgumentParser
import torch
import torch.optim as optim
import torch.backends.cudnn as cudnn
import models
from utils.train_utils import train_xent, test_acc
from utils import loaders
from utils.model_utils import get_num_parameters
from utils.misc import dump_list_element_1line
#########################################
# arguments
#########################################
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = ArgumentParser()
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--epochs', type=int, default=60)
parser.add_argument('--optim', type=str, default='adam', choices=['adam', 'sgd'])
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--nesterov', action='store_true', default=False)
parser.add_argument('--decay', type=float, default=1e-4)
parser.add_argument('--lr', type=float, default=0.01)
parser.add_argument('--lr_steps', type=int, nargs='+', default=[20, 40])
parser.add_argument('--lr_gamma', type=float, default=0.1)
parser.add_argument('--model', type=str, choices=model_names, required=True)
parser.add_argument('--extra_scaling', type=float, default=1.0,
required=False, help='add scaling data augmentation')
parser.add_argument('--cuda', action='store_true', default=False)
parser.add_argument('--save_model_path', type=str, default='')
parser.add_argument('--tag', type=str, default='', help='just a tag')
parser.add_argument('--data_dir', type=str)
args = parser.parse_args()
print("Args:")
for k, v in vars(args).items():
print(" {}={}".format(k, v))
print(flush=True)
assert len(args.save_model_path)
#########################################
# Data
#########################################
train_loader = loaders.scale_mnist_train_loader(args.batch_size, args.data_dir, args.extra_scaling)
val_loader = loaders.scale_mnist_val_loader(args.batch_size, args.data_dir)
test_loader = loaders.scale_mnist_test_loader(args.batch_size, args.data_dir)
print('Train:')
print(loaders.loader_repr(train_loader))
print('\nVal:')
print(loaders.loader_repr(val_loader))
print('\nTest:')
print(loaders.loader_repr(test_loader))
#########################################
# Model
#########################################
model = models.__dict__[args.model]
model = model(**vars(args))
print('\nModel:')
print(model)
print()
use_cuda = args.cuda and torch.cuda.is_available()
device = torch.device('cuda' if use_cuda else 'cpu')
print('Device: {}'.format(device))
if use_cuda:
cudnn.enabled = True
cudnn.benchmark = True
print('CUDNN is enabled. CUDNN benchmark is enabled')
model.cuda()
print('num_params:', get_num_parameters(model))
print(flush=True)
#########################################
# optimizer
#########################################
parameters = filter(lambda x: x.requires_grad, model.parameters())
if args.optim == 'adam':
optimizer = optim.Adam(parameters, lr=args.lr)
if args.optim == 'sgd':
optimizer = optim.SGD(parameters, lr=args.lr, momentum=args.momentum,
weight_decay=args.decay, nesterov=args.nesterov)
print(optimizer)
lr_scheduler = optim.lr_scheduler.MultiStepLR(optimizer, args.lr_steps, args.lr_gamma)
#########################################
# training
#########################################
print('\nTraining\n' + '-' * 30)
if args.save_model_path:
if not os.path.isdir(os.path.dirname(args.save_model_path)):
os.makedirs(os.path.dirname(args.save_model_path))
start_time = time.time()
best_acc = 0.0
for epoch in range(args.epochs):
train_xent(model, optimizer, train_loader, device)
acc = test_acc(model, val_loader, device)
print('Epoch {:3d}/{:3d}| Acc@1: {:3.1f}%'.format(
epoch + 1, args.epochs, 100 * acc), flush=True)
if acc > best_acc:
best_acc = acc
torch.save(model.state_dict(), args.save_model_path)
lr_scheduler.step()
print('-' * 30)
print('Training is finished')
print('Best Acc@1: {:3.1f}%'.format(best_acc * 100), flush=True)
end_time = time.time()
elapsed_time = end_time - start_time
time_per_epoch = elapsed_time / args.epochs
print('\nTesting\n' + '-' * 30)
model.load_state_dict(torch.load(args.save_model_path))
final_acc = test_acc(model, test_loader, device)
print('Test Acc:', final_acc)
#########################################
# save results
#########################################
results = vars(args)
results.update({
'dataset': 'scale_mnist',
'elapsed_time': int(elapsed_time),
'time_per_epoch': int(time_per_epoch),
'num_parameters': int(get_num_parameters(model)),
'acc': final_acc,
})
with open('results.yml', 'a') as f:
f.write(dump_list_element_1line(results))