forked from e-sensing/sits
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsummary.variance_cube.Rd
58 lines (54 loc) · 1.44 KB
/
summary.variance_cube.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/sits_summary.R
\name{summary.variance_cube}
\alias{summary.variance_cube}
\title{Summarise variance cubes}
\usage{
\method{summary}{variance_cube}(
object,
...,
intervals = 0.05,
sample_size = 10000,
quantiles = c("75\%", "80\%", "85\%", "90\%", "95\%", "100\%")
)
}
\arguments{
\item{object}{Object of class "class_cube"}
\item{...}{Further specifications for \link{summary}.}
\item{intervals}{Intervals to calculate the quantiles}
\item{sample_size}{The size of samples will be extracted from the variance
cube.}
\item{quantiles}{Quantiles to be shown}
}
\value{
A summary of a variance cube
}
\description{
This is a generic function. Parameters depend on the specific
type of input.
}
\examples{
if (sits_run_examples()) {
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(
source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir
)
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# classify a data cube
probs_cube <- sits_classify(
data = cube, ml_model = rfor_model, output_dir = tempdir()
)
variance_cube <- sits_variance(
data = probs_cube,
output_dir = tempdir()
)
summary(variance_cube)
}
}
\author{
Gilberto Camara, \email{[email protected]}
}