Skip to content

Commit 088cdc0

Browse files
committed
50008: Cleanup of section levels
1 parent 9232932 commit 088cdc0

File tree

3 files changed

+4
-4
lines changed

3 files changed

+4
-4
lines changed
Binary file not shown.

50008 - Probability and Statistics/joint_random_distributions/joint_random_distributions.tex

+3-3
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
\chapter{Joint Random Distributions}
22

3-
\subsection{CDF}
3+
\section{CDF}
44
Suppose we have random variables $X$ and $Y$ such that:
55
\[X: S_X \to \mathbb{R} \ \text{ and } \ Y: S_Y \to \mathbb{R}\]
66
We can define $Z$ operating on sample space $S$ such that:
@@ -29,7 +29,7 @@ \subsection{CDF}
2929
Hence we can get the interval:
3030
\[P_Z(x_1 < X \leq x_2, y_1 < Y \leq y_2) = F(x_2, y_2) - F(x_1, y_2) -F(x_2,y_1) + F(x_1,y_1)\]
3131

32-
\subsection{PMF}
32+
\section{PMF}
3333
\begin{definitionbox}{Joint Probability Mass Function}
3434
\[p(x,y) = P_Z(X = x, Y = y) \ \text{where } x,y \in \mathbb{R}\]
3535
We can get the original \keyword{pmfs} of the two variables as:
@@ -41,7 +41,7 @@ \subsection{PMF}
4141
\end{itemize}
4242
\end{definitionbox}
4343

44-
\subsection{PDF}
44+
\section{PDF}
4545
\begin{sidenotebox}{Fundamental Theorem of Caculus}
4646
The fundamental law that integration and differentiation and the inverse of each other (except for constant added in integration $c$, which does not affect definite integrals).
4747
\end{sidenotebox}

50008 - Probability and Statistics/posterior/posterior.tex

+1-1
Original file line numberDiff line numberDiff line change
@@ -145,7 +145,7 @@ \subsection{Bernoulli Distribution}
145145
\end{split}\]
146146
\end{sidenotebox}
147147

148-
\subsection{Normal Distribution - Single DataPoint Sample}
148+
\subsection{Normal Distribution - Single Datapoint Sample}
149149
Given some $x|\mu \thicksim N(\mu, \sigma^2)$ where $\sigma^2$ is known and $\mu$ is unknown. Using a sample of a single datapoint $x$.
150150
\\
151151
\\ \textbf{Step 1.} The likelihood can be found using the \keyword{Normal Distribution PDF}:

0 commit comments

Comments
 (0)