Skip to content

Commit f4c0cb7

Browse files
committed
50003: Fixed typo in undecidable sets if numbers
1 parent 1f8e66a commit f4c0cb7

File tree

2 files changed

+3
-3
lines changed

2 files changed

+3
-3
lines changed
Binary file not shown.

50003 - Models of Computation/halting_problem/halting_problem.tex

+3-3
Original file line numberDiff line numberDiff line change
@@ -94,21 +94,21 @@ \subsection{Undecidable Set of Numbers}
9494
$S$ is \textit{register machine decidable} if its characteristic function is a register machine computable function.
9595
\\
9696
\\ $S$ is decidable iff there is a register machine $M$ such that for all $x \in \mathbb{N}$ when run with $\reglabel{0} = 0, \reglabel{1} = x$ and $\reglabel{2..} = 0$ it eventually halts with:
97-
\[\reglabel{0} = 1 \Leftrightarrow x \in S \qquad \qquad \reglabel{0} = 1 x \not\in S \]
97+
\[\reglabel{0} = 1 \Leftrightarrow x \in S \qquad \qquad \reglabel{0} = 1 \Leftrightarrow x \not\in S \]
9898
Hence we are effectively asking if a register machine exists that can determine if any number is in some set $S$.
9999
\\
100100
\\ We can then define subsets of $\mathbb{N}$ that are decidable/undecidable.
101101

102102
\subsubsection{The set of functions mapping $0$ is undecidable}
103103
Given a set:
104-
\[S_0 \triangleq \{e | \varphi_e(0)\downarrow\}\]
104+
\[S_0 \triangleq \{e \ | \ \varphi_e(0)\downarrow\}\]
105105
Hence we are finding the set of the indexes (numbers representing register machines) that halt on input $0$.
106106
\\
107107
\\ If such a machine exists, we can use it to create a register machine to solve the halting problem. Hence this is a contradiction, so the set is undecidable.
108108

109109
\subsubsection{The set of total functions is undecidable}
110110
Take set $S_1 \subseteq \mathbb{N}$:
111-
\[S_1 \triangleq \{e | \varphi_e\text{total function}\}\]
111+
\[S_1 \triangleq \{e \ | \ \varphi_e\text{total function}\}\]
112112
If such a register machine exists to compute $\chi_{S_1}$, we can create another register machine, simply checking $0$. Hence as from the previous example, there is no register machine to determine $S_0$, there is none to determine $S_1$.
113113

114114

0 commit comments

Comments
 (0)